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Preface

Cancer is an age related disease that leads to the outgrowth of cell popula-

tions in the body, which can result in significant morbidity and mortality.

Treatment approaches are based on our understanding of the biology of spe-

cific cancers, and a great amount of work has been and is being performed to

improve this understanding. Significant progress is being made with respect

to identifying cellular defects, genetic and epigenetic events, and molecu-

lar pathways towards malignant growth in the context of different cancers.

Apart from focusing on cellular characteristics, the interactions of tumor

cells with other cells in their vicinity, the microenvironment, is thought to

be a crucial component in carcinogenesis. Experiments and clinical studies

have elucidated many key mechanisms that underlie the development of

cancer and that can be potentially exploited by treatments.

However, another approach to studying the development and progres-

sion of cancer has emerged and is becoming increasingly important: the

field of mathematical oncology, which uses mathematical and computa-

tional techniques to study how cancer cells get generated, grow, and evolve.

The concept of evolution plays a special role in this context. Cancers arise

and progress by accumulating various mutations and epigenetic changes,

which gives them a selective advantage over healthy cells, and lead to growth

and pathogenesis. Mutation and selection, the hallmarks of evolution, are

central components in the development of cancer. Mathematical work, in

turn, has played a central role for elucidating evolutionary principles.

This book provides an introduction to the field of mathematical oncol-

ogy, explaining some central mathematical and computational techniques

that are at the core of this field, and highlighting how mathematical anal-

ysis has provided valuable biological insights into concepts and data. The

book is not meant to be a comprehensive survey of the field, which has

vii
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grown to be rather large. Instead it aims to explore a few topics in depth,

with an emphasis on evolutionary aspects of cancer. The book is based on

our own work. It provides the reader with a solid technical background to

understand how mathematical results have been obtained, and shows how

these mathematical results can by applied to advance biology.

The book is multi-faceted, and can be used in a variety of settings.

Because it explains in detail the mathematical techniques, it can be used

as a textbook for applied mathematics students learning aspects of math-

ematical biology, as well as as a reference for people that are interested

in the mathematical techniques. As the book highlights biological insights

and advances, it can also be used by students in population and evolu-

tionary biology who are interested in biomedical applications. Similarly, it

can serve as a summary for cancer biologists who are interested in learning

about some of the biological lessons that have resulted from mathematical

models.

We have tried to write the book in such a way that it is accessible and

useful both for a mathematical and a biological readership by marking with

gray background all the materials that are more suited for mathematicians

and that might be difficult to understand for a biological readership without

a mathematical background. It is the hope that future generations of scien-

tists will be well-trained at the interface between mathematics and biology,

such that there will be fewer communication issues between biologists and

mathematicians. It is a field that is rising at a fast pace, and our book

aims to contribute to the interdisciplinary education of the new generation

of researchers.

We would like to thank a number of people, whose input and discus-

sions have shaped the material that is discussed in this book: David Ax-

elrod, Rick Boland, Hung Fan, Steve Frank, Ajay Goel, Andy Hofacre,

Yoh Iwasa, Vincent Jancen, David Krakauer, John Lowengrub, Ignacio

Rodriguez-Brenes, Alex Sadovski, Akira Sasaki, Fred Wan, and Ryan Zu-

rakowski. We also thank members of our group, Alen Katouli, John Lau,

Leili Shahriyari, Zhiying Sun, and Erin Urwin. We would like to especially

thank Martin Nowak, whose guidance has shaped the work of both authors.

Dominik Wodarz and Natalia Komarova
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Chapter 1

Teaching guide

This book can be used for teaching upper-division undergraduate of grad-

uate classes in Cancer modeling. In this chapter we provide some hints on

how to organize a course based on this book’s materials.

1.1 How to use this book

The book is written with two audiences in mind. Those who have a solid

mathematics background will find very detailed mathematical derivations

of all the results. These are printed on a gray background.

In order to follow the “gray” parts of the book, we require some basic

knowledge of applied mathematical techniques, such as solutions of lin-

ear systems of ODEs, linear stability analysis of ODEs, the method of

characteristics for solving first order PDEs, and basic probability.

These parts of the book can be skipped by readers that have less of

a mathematical background, without interrupting the logical flow of the

exposition.

Each chapter contains a set of problems. There are three kinds of prob-

lems. (1) Basic problems are mathematical exercises aimed at a more de-

tailed understanding of the mathematical derivations given in the text,

or reviewing some concepts needed to understand the “gray” parts of the

book. (2) “Numerical projects” are more advanced problems which require

some computer coding. They require some knowledge of a programming

language, such as Mathematica, Maple, Matlab, C++, Fortran, etc. These

1
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two types of problems should be offered in a course taught to an audience

with some applied mathematics background. (3) Finally, the third type

of problems termed “Research projects” do not require any knowledge of

mathematics, and suggest topics of independent in-depth study of a bio-

logical topic or the history of a certain concept or discovery. These can be

offered in a course taught to students with a biology background.

The book contains three parts. Part 1, “Basic growth dynamics and de-

terministic models”, introduces concepts of growth (including single-species

growth and two-species competition), and also shows how these concepts

can be relevant for studying cancer. It further introduces the important is-

sue of genetic instability and talks about angiogenesis, inhibitors, and pro-

moters. Almost all the mathematical developments in this part of the book

are deterministic. Important concepts that come up are exponential and

logistic growth, two-species competition and stability analysis, axiomatic

modeling, quasispecies equations, and optimization.

Part 2, “Evolutionary dynamics and stochastic models”, introduces

stochasticity in the description of cancer. With this powerful tool, it is

possible to model cell population dynamics at low numbers, which is impor-

tant when talking about cancer initiation (Chapters 9-14). In this context,

we discuss oncogenes and tumor suppressor genes, sporadic and familial

cancers, and stem cells. Stochasticity is also essential when talking about

cancer treatment, in particular, the generation of resistance against drugs

(Chapters 15-16).

Finally, Part 3, “Advanced topics”, uses stochastic and deterministic

methods, together with computational tools, to explore a variety of topics,

such as epigenetic mechanisms, telomeres, gene therapy and oncolytic virus

therapy, and immune responses.

A 30-hour course aimed at students with some mathematical back-

ground will normally only cover sections in Parts 1 and 2 of the book.

A course taught in a biology department will be able to cover all three

parts of the book.

1.2 A sample syllabus for a Mathematics course

Below we provide a sample syllabus for a 30-hour course aimed at Mathe-

matics students:
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(1) Chapter 2: Cancer and somatic evolution.

(2) Chapter 2, continued: Overview of cancer biology.

(3) Chapter 3: Mathematical modeling techniques.

(4) Chapter 4: Different growth laws for tumors.

(5) Chapter 5: Two-species growth.

(6) Chapter 5, continued: Axiomatic modeling.

(7) Chapter 6: Competition between genetically stable and unstable cells.

(8) Chapter 6, continued: Quasispecies equations.

(9) Chapter 7: Chromosomal instability.

(10) Chapter 7, continued: The optimization problem.

(11) Chapter 8: Angiogenesis, inhibitors, and promoters.

(12) Chapter 15: A birth-death process with mutations.

(13) Chapter 15, continued: Modeling cancer drug treatments.

(14) Chapter 15, continued: Example: the case of two drugs.

(15) Review.

(16) Midterm.

(17) Chapter 16: CML treatment with small molecule inhibitors.

(18) Chapter 16, continued: Tumor stem cells.

(19) Chapter 16, continued: Cyclic treatments vs combination treatments.

(20) Chapter 9: Oncogenes and gain-of-function mutations.

(21) Chapter 9, continued: Moran process and mutant fixation.

(22) Chapter 10: Tumor-suppressor genes and loss-of-function mutations.

(23) Chapter 10, continued: Two-step process and stochastic tunneling.

(24) Chapter 11: Chromosomal instability and colon cancer initiation.

(25) Chapter 11, continued: Sporadic and familial cancers.

(26) Chapter 12: Modeling hierarchical populations.

(27) Chapter 12, continued: symmetric and asymmetric divisions of stem

cells.

(28) Chapter 14: Spatial tumor dynamics.

(29) Advanced topics: an overview.

(30) Review.

1.3 A sample syllabus for a Biology course

Below we provide a sample syllabus for a 30-hour course aimed at Biology

students:

(1) Chapter 2: Cancer and somatic evolution.

(2) Chapter 2, continued: Overview of cancer biology.
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(3) Chapter 3: Mathematical modeling techniques.

(4) Chapter 4: Different growth laws for tumors.

(5) Chapter 5: Two-species growth.

(6) Chapter 6: Competition between genetically stable and unstable cells.

(7) Chapter 7: Chromosomal instability and an optimization problem.

(8) Chapter 8: Angiogenesis, inhibitors, and promoters.

(9) Chapter 9: Oncogenes, Moran process, and mutant fixation.

(10) Chapter 10: Tumor-suppressor genes: the two-step process and

stochastic tunneling.

(11) Chapter 11: Chromosomal instability and colon cancer initiation.

(12) Chapter 11, continued: Sporadic and familial colorectal cancers.

(13) Chapter 12: Modeling hierarchical populations: symmetric and asym-

metric stem cell divisions.

(14) Review.

(15) Midterm.

(16) Chapter 14: Spatial tumor dynamics.

(17) Chapter 15: Birth-death processes, mutation networks, treatment

modeling.

(18) Chapter 16: CML treatment with small molecule inhibitors.

(19) Chapter 16, continued: Cancer turnover; short-term vs long-term

startegies.

(20) Chapter 16, continued: Cross-resistance; cyclic vs combination

therapies.

(21) Chapter 17: Stem-cell driven tumors.

(22) Chapter 18: Programmed cell death and cancer progression.

(23) Chapter 19: Epigenetic change and the rate of DNA methylation.

(24) Chapter 20: Telomeres and cancer progression.

(25) Chapter 21: Gene therapy and oncolytic virus therapy.

(26) Chapter 21, continued: Oncolytic virus therapy: spatial virus spread.

(27) Chapter 22: Immune responses, tumor growth, and therapy.

(28) Chapter 22, continued: Immunotherapy against cancers.

(29) Chapter 23: Higher complexities: social interactions of cancer cells.

(30) Review.
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Chapter 2

Cancer and somatic evolution

2.1 What is cancer?

The development and healthy life of a human being requires the cooper-

ation of more than ten million cells for the good of the organism. This

cooperation is maintained by signals and cellular checkpoints which deter-

mine whether cells divide, die, or differentiate. The phenomenon of cancer

can be defined on various levels. On the most basic level, cancer represents

the collapse of this cooperation. This results in the selfish, uncontrolled

growth of cells within the body which eventually leads to the death of

the organism. This chapter discusses several aspects of cancer biology and

forms the background for the mathematical models that are presented in

this book. Of course, cancer biology is a very complicated topic and in-

volves many components which are not mentioned here. A comprehensive

review of cancer biology is given in standard textbooks, such as [Vogelstein

and Kinzler (2002)].

It is commonly thought that cancer is a disease of the DNA. That is,

uncontrolled growth of cells is the result of alterations or mutations in the

genetic material. More precisely, the emergence of cancer may require the

accumulation of multiple mutations which allow cells to break out of the

regulatory networks which ensure cooperation. This concept is referred

to as multi-stage carcinogenesis. Once a cancerous cell has been created

it can undergo a process known as clonal expansion. That is, it gives

rise to descendants by cell division, and the population of cells grows to

higher numbers. During this process, cells can acquire a variety of further

mutations which leads to more advanced progression. A cancer is typically

comprised of a variety of different genotypes and represents a “mosaic” of

cell lineages. The growth of a single, or primary, cancer does not usually

5
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lead to the death of the organism. Some cancer cells can, however, acquire

the ability to enter the blood supply, travel to a different site, and start

growing in a different organ. This process is referred to as metastasis. It is

usually the metastatic growth which kills the organism.

2.2 Basic cancer genetics

Specific genes ensure that the integrity of cells is maintained and that un-

controlled growth is prevented. When these genes are mutated, cells become

prone to developing a cancerous phenotype (also referred to as transfor-

mation). These genes can be broadly divided into three basic categories

[Vogelstein et al. (2000)] : oncogenes, tumor suppressor genes, and repair

genes.

(a) Oncogene (gain of function)

(b) Tumor suppressor gene (loss of function)

first

mutation

second

mutation

Single mutational event

Fig. 2.1 The concept of (a) oncogenes and (b) tumor suppressor genes. Oncogenes
result in a gain of function if one of the two copies receives an activating mutation.
Tumor suppressor genes can be inactivated (loss of function) if both copies are mutated.

In healthy cells, oncogenes (figure 2.1) promote the regulated prolifer-

ation of cells in the presence of the appropriate growth signals. The best

example is the renewal of epithelial tissue such as the skin or the lining of
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the gastrointestinal tract. When oncogenes become mutated they induce

the cell to divide continuously, irrespective of the presence or absence of

growth signals. This can result in unwanted growth and cancer. Examples

of oncogenes include Ras in colon cancer or BCL-2 in lymphoid cancers.

Only a single mutation is required to activate an oncogene because it causes

a “gain of function”. Normal cells have two copies of every gene and chro-

mosome; one derived from the mother, the other derived from the father.

If any of the copies becomes activated, the cell attains the new behavior.

Tumor suppressor genes (figure 2.1), on the other hand, are responsible

for stopping growth in normal cells. Cell growth has to be stopped if a cell

becomes damaged or mutated, or if cell death is required for normal tissue

homeostasis. This is done either by preventing the cell from completing the

cell cycle (cell cycle arrest or senescence), or by inducing a cellular program

which results in cell death (apoptosis). In this way, altered cells cannot suc-

ceed to grow to higher levels and cannot induce pathology. When tumor

suppressor genes become inactivated, the growth of altered cells is not pre-

vented anymore, and this promotes the development of cancer. Because

this type of gene needs to be inactivated rather than activated (i.e. a loss

of function event), both the paternal and the maternal copies of the gene

have to be mutated. Therefore, two mutational events are required for the

inactivation of tumor suppressor genes. Because many cancers are initiated

via the inactivation of a tumor suppressor gene, it is thought that cancer

initiation often requires two hits. This idea was first formulated by Alfred

Knudson and is called the “two-hit hypothesis” [Knudson (1971)]. Exam-

ples of tumor suppressor genes are the gene which encodes the retinoblas-

toma protein and which is inactivated in retinoblastomas, APC which is

inactivated in colon cancer, and p53 which is inactivated in more than 50%

of all human cancers.

Finally, repair genes are responsible for maintaining the integrity of

genomes. When DNA becomes damaged, for example through the exposure

to UV radiation or carcinogens contained in food, those genes make sure

that the damage is removed and the cell remains healthy. If repair genes

become mutated, cells can acquire new genetic alterations at a faster rate,

and this promotes the process of carcinogenesis. For example, mutations in

oncogenes or tumor suppressor genes are generated faster. Cells which have

mutated repair genes are sometimes referred to as “mutator phenotypes”

or “genetically unstable cells” [Loeb (2011)]. Examples of repair genes are

mismatch repair genes and nucleotide excision repair genes. Their inactiva-

tion promotes a variety of cancers. Loss of repair function usually requires
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two hits, although a single mutation might result in reduced function in the

context of certain repair genes.

2.3 Multi-stage carcinogenesis and colon cancer

Cancer initiation and progression involves the sequential accumulation of

mutations, most importantly in tumor suppressor genes and in oncogenes.

A case study where this is understood in some detail so far is colorectal

cancer [Goel and Boland (2010)]. The colon consists of a collection of so-

called crypts.

differentiation
into committed
epithelial cells

A small number of tem cells 
replenishes the whole crypt

Apoptosis
on top of crypt

Fig. 2.2 Schematic diagram of crypts in the colon.

Crypts are involutions of the colonic epithelium (figure 2.2). Stem cells

are thought to be located at the base of the crypts. These are undiffer-

entiated cells which can keep dividing and which give rise to differentiated

epithelial cells. The division patterns of tissue stem cells have been debated.

In fruit flies, tissue stem cell division tends to be asymmetric, that is, stem

cell division creates one new stem cell and one cell which embarks on a

journey of differentiation [Wodarz (2005a); Wodarz and Huttner (2003);

Hirth (2011)]. In this way, the stem cell population is maintained while

also giving rise to differentiated cells. This mode of division is also thought

to occur in humans, although it has been increasingly recognized that an-

other pattern of cell division may be more important here [Simons and

Clevers (2011a); Mascré et al. (2012); Snippert et al. (2010); Lopez-Garcia

et al. (2010); Baumann (2010)]. It is thought that the type of daughter

cells arising from a tissue stem cell division is determined probabilistically.

For example, 50% of divisions lead to two daughter stem cells, while the
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other 50% of stem cell divisions give rise to two cells that are on the path-

way of differentiation. On average, this also maintains a constant stem cell

population while replenishing the pool of differentiated tumor cells. The

differentiating cells travel up the crypt, perform their function, and die by

apoptosis after about a week. Because the epithelial cells are relatively

short lived, stem cell division has to give rise to new differentiated cells

continuously in order to replenish the tissue. For this process to function

in a healthy way, it is crucial that the differentiated cells die by apopto-

sis. If this cell death fails, we observe an accumulation of transformed cells

around the crypts, and this gives rise to a mass of cells called a dysplastic

crypt (figure 2.3).

Healthy Cells Dysplastic Crypt Early Adenoma Late Adenoma Carcinoma

loss of 

APC K-ras
loss of 

DCC/DPC4/JV18

loss of p53

Fig. 2.3 Diagram describing the multi-stage progression of colon cancer. Drawn ac-
cording to [Kinzler and Vogelstein (2002)].

This is the first stage of colon cancer [Vogelstein and Kinzler (2002)].

In molecular terms, the death of differentiated cells is induced by the APC

gene. APC is a tumor suppressor gene. Data suggest that the majority

of colon cancers are initiated through the inactivation of the APC gene

(figure 2.3). A dysplastic crypt is also sometimes referred to as a polyp. As

a subsequent step, many colon cancers activate the oncogene K-ras which

allows the overgrowth of surrounding cells and an increase in the size of

the tumor. This stage is called the early adenoma stage (figure 2.3). In

more than 70% of the cases, this is followed by the loss of chromosome 18q

which contains several tumor suppressor genes including DDC, DPC4, and

JV18-1/MADR2. This results in the generation of late adenomas (figure

2.3). In the further transition from late adenoma to the carcinoma stage,

p53 is typically lost in more than 80% of the cases (figure 2.3). Further

mutations are assumed to occur which subsequently allow the colon cancer

cells to enter the blood system and metastasize. Note that this sequence of

event is not a hard fact, but rather a caricature. The exact details may vary

from case to case, and new details emerge as more genetic and epigenetic

research is performed (see below).
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This is a good example of cells acquiring sequential mutations in a

multi-step process while they proceed down the path of malignancy. This

gives rise to an important question. The multi-step process requires many

mutations. The inactivation of each tumor suppressor gene requires two

mutations, and the activation of each oncogene requires one mutation. The

physiological mutation rate has been estimated to be 10−7per gene per cell
division. Is this rate high enough to allow cells to proceed through multi-

stage carcinogenesis during the life-time of a human? Some investigators

argue that the process of clonal expansion involves a sufficient number of

cell divisions in order to account for the accumulation of all the mutations

[Tomlinson et al. (1996); Sieber et al. (2003)]. A competing argument says

that the accumulation of the oncogenic mutations requires a loss of repair

function and the generation of mutator phenotypes (i.e. genetically unsta-

ble cells) [Loeb (1991, 2011)]. Genetic instability is a defining characteristic

of many cancers. It is reviewed in the following section.

2.4 Genetic instability

Many cancer cells show a large variety of genetic alterations which range

from small scale mutations to large chromosomal aberrations [Vogelstein

and Kinzler (2002); Hoeijmakers (2001)]. While this is an intriguing ob-

servation, this does not prove that the cells are genetically unstable. The

alterations could come about through a variety of factors, such as the ex-

posure to extensive damage at some point in time, or specific selective con-

ditions. Genetic instability is defined by an increased rate at which cells

acquire genetic abnormalities [Lengauer et al. (1998)]. That is, cells have

a defect in specific repair genes which results in higher variability. Indeed,

studies have shown that many cancer cells are characterized by an increased

rate at which genetic alterations are accumulated and are truly genetically

unstable [Lengauer et al. (1997)]. Different types of genetic instabilities can

be distinguished [Lengauer et al. (1997); Negrini et al. (2010); Boland et al.

(1998)]. They can be broadly divided into two categories. Small sequence

instabilities and gross chromosomal instabilities (figure 2.4).

Small sequence instabilities involve subtle genetic changes which can

dramatically speed up the process of cancer progression. Defects in mis-

match repair mechanisms give rise to microsatellite instability or MSI

[Popat et al. (2005); Boland and Goel (2010); Vilar and Gruber (2010)].

This involves copying errors in repeat sequences (figure 2.4). MSI is most
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CACACACACACACA

GTGTGTGTGTGTGT

CACACACACACACA

GTGTGT  GTGTGT

G..T

Mismatch repair

CACACACACACA

GTGTGTGTGTGT

CACACACACACACA

GTGTGTGTGTGTGT

Mistake Shortened

repeat

Normal

repeat

(a)

(b)

Fig. 2.4 Schematic diagram explaining the concept of genetic instability. (a) Small
scale instabilities, such as MSI, involve subtle sequence changes. With MSI, mismatch
repair genes are defect and this leads to copying mistakes in repeat sequences. (b) Chro-
mosomal instability involves gross chromosomal changes, such as loss of chromosomes.

common in colon cancer. It is observed in about 13% of sporadic cases

and is the mechanism of cancer initiation in the hereditary non-polyposis

colorectal cancer (HNPCC). Another type of small scale instability comes

about through defects in nucleotide excision repair genes. These are re-

sponsible for the repair of DNA damage caused by exogenous mutagens,

most importantly ultraviolet light. It is thus most important in the de-

velopment of skin cancers. A defect in such repair mechanisms has been

found in a disease called xeroderma pigmentosum, which is characterized

by the development of many skin tumors in sun exposed areas [Dworaczek

and Xiao (2007); Cleaver (2005)].

Instabilities which involve gross chromosomal alterations are called chro-

mosomal instability or CIN [Thompson et al. (2010); Pino and Chung

(2010); Lengauer et al. (1998)] (figure 2.4). Cells which are characterized

by CIN show a variety of chromosomal abnormalities. There can be alter-

ations in chromosome numbers which involve losses and gains of whole chro-

mosomes. This results in aneuploidy [Rajagopalan and Lengauer (2004)].
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Alternatively, parts of chromosomes may be lost, or we can observe chro-

mosome translocations, gene amplifications, and mitotic recombinations.

Many cancers show evidence of chromosomal instability. For example, 87%

of sporadic colon cancers show CIN [Lengauer et al. (1998)]. The reason

why CIN is observed in so many cancers is unclear. CIN can be advan-

tageous because it helps to inactivate tumor suppressor genes where both

functional copies have to be lost. Assume that one copy of a tumor sup-

pressor gene becomes inactivated by a point mutation which occurs with

a rate of 10−7 per cell division. The second copy can then be lost much

faster by a CIN event (figure 2.4). For example, CIN could speed up the

generation of an APC deficient cell in the colon. On the other hand, CIN

is very destructive to the genome. Therefore, even though a cell with an

inactivated tumor suppressor gene can be created with a faster rate, clonal

expansion of this cell can be compromised because of elevated cell death

as a consequence of chromosome loss [Komarova and Wodarz (2004)]. The

costs and benefits of CIN, as well as the role of CIN in cancer progression,

will be discussed extensively in this book.

While it seems intuitive that genetic instability can be advantageous

because it leads to the faster accumulation of oncogenic mutations, this is

not the whole story. Genetic instability can be advantageous because of an

entirely different reason. If cells become damaged frequently, they will enter

cell cycle arrest relatively often in order to repair the damage. Therefore, in

the presence of elevated damage, repair can compromise the growth of cells.

On the other hand, cells which are unstable avoid cell cycle arrest in the face

of damage and keep replicating while accumulating genetic alterations. This

can lead to an overall higher growth rate of unstable compared to stable

cells [Breivik (2001); Breivik and Gaudernack (1999a,b); Bardelli et al.

(2001)]. The role of DNA damage for the selection of genetic instability

will be discussed later in the book.

2.5 Barriers to cancer progression: importance of the

micro-environment

So far we have discussed the processes of multi-stage carcinogenesis in some

detail. We have thereby concentrated on an approach which is centered

around the genetic events that allow cells to escape from growth control

and to become cancerous. However, experiments have revealed that the in-

teractions between tumor cells with their tissue micro-environment may be
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equally important in the process of carcinogenesis [Hsu et al. (2002); Tlsty

(2001); Tlsty and Hein (2001); Whiteside (2008); Albini and Sporn (2007);

Bissell and Hines (2011); Mbeunkui and Johann Jr (2009)]. The stroma sur-

rounding the tumors shows in many cases changes in the patterns of gene

expression, in the cellular composition, and in the extracellular matrix.

Such changes (among others) can promote the initiation and progression

of cancer. The development of cancer can thus be seen as a conspiracy

between tumor cells and their altered environment which allows uncon-

trolled growth. Under non-pathogenic conditions, the tissue environment

can prevent tumor cells from growing to significant levels.

Interestingly, autopsies have revealed that people who die without ever

developing cancers show microscopic colonies of cancer cells which are re-

ferred to as in situ tumors [Folkman and Kalluri (2004)]. Data suggest that

>30% of women in the age range between 40 and 50 who do not develop

cancer in their life-time are characterized by small colonies of breast can-

cer cells. Only 1% of women in this age range, however, develop clinically

visible breast cancer. Similar patterns have been observed in the context

of thyroid or prostate cancers. The reason for the inability of cancer cells

to grow to higher numbers and give rise to pathology is important to un-

derstand. The defensive role of the tissue microenvironment in which the

cancer tries to grow could be a key factor. For example, cancer cells require

the formation of new blood supply in order to obtain oxygen and nutrients,

and to grow beyond a relatively small size [Folkman (2002, 2006)]. The

formation of new blood supply is termed angiogenesis (figure 2.5).

Our understanding about the role of angiogenesis in the development of

cancers has been advanced significantly by a variety of studies from Judah

Folkman’s laboratory [Folkman (2006)]. Whether new blood supply can

be formed or not appears to be determined by the balance between an-

giogenesis inhibitors and angiogenesis promoters. Healthy tissue produces

angiogenesis inhibitors. Examples of inhibitors are thrombospondin, tum-

statin, canstatin, endostatin, angiostatin, and interferons. At the time of

cancer initiation, the balance between inhibitors and promoters is heavily

in favor of inhibition. Data suggest that even cancer cells themselves ini-

tially produce angiogenesis inhibitors which strengthens the defense of the

organism against the spread of aberrant genes. In order to grow beyond a

small size, angiogenic tumors have to emerge. These are tumor cells which

can shift the balance away from inhibition and in favor of promotion. This

can be brought about by the inactivation of angiogenesis inhibitors, or by

mutations which result in the production of angiogenesis promoters. Exam-
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(a)

(b)

(c)

Pre-angiogenic mass of tumor cells

(small tumor)

Early stage angiogenesis where

blood vessels are recruited

Growing capillaries

Chemical

signals

Growing tumor

Fig. 2.5 Diagram explaining the concept of angiogenesis. (a) When a cancerous cell is
created it can expand up to a small size without the need for blood supply. At this stage,
the growth of an avascular tumor stops. (b) When angiogenic cell lines emerge, they
send out chemical signals called promoters. This induces blood vessels to grow towards
the tumor. (c) This process leads to the complete vascularization of the tumor, allowing
it to grow to larger sizes.

ples of promoters are growth factors such as FGF, VEGF, IL-8, or PDGF. If

the balance between inhibitors and promoters has been shifted sufficiently

in favor of promotion, the cancer cells can grow to higher numbers and

progress towards malignancy (figure 2.5). The mechanisms by which blood

supply is recruited to the tumor, and the ways in which inhibitors and

promoters affect cancer cells are still under investigation. New blood sup-

ply can be built from existing local endothelial cells. On the other hand,

angiogenesis promoters may induce a population of circulating endothelial

progenitor cells to be recruited to the local site where the blood supply

needs to be built. Blood supply can affect cancer cells in different ways.
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It can influence the rate of cell death. That is, in the absence of blood

supply cells die more often by apoptosis as a result of hypoxia, and this is

relaxed when sufficient blood supply is available. On the other hand, lack

of blood supply can prevent cancer cells from dividing. In this case they

remain dormant, That is, they do not divide and do not die.

2.6 Cellular hierarchies in cancer

When discussing the development of cancer we presented simplified sce-

narios, talking about cells that accumulate alterations and subsequently

undergo clonal expansion. Of course, this is generally the correct picture,

but it is more complex than this. Cancers are thought to be characterized

by a hierarchical structure, similar to healthy tissue (figure 2.6). It is a

wide-spread notion that cancers are maintained by so-called cancer stem

cells, which make up a relatively small fraction of the total tumor cell pop-

ulation [Visvader and Lindeman (2008); Driessens et al. (2012); Chen et al.

(2012); Schepers et al. (2012); Reya et al. (2001); Dalerba et al. (2007)].

The tumor stem cells give rise to cells that are more differentiated and

that make up the bulk of the tumor and cannot maintain growth. This

has important implications for a variety of aspects. Importantly, the size

of the tumor is often a key variable when considering genetic diversity and

responses to treatment. If a relatively large fraction of the tumor cell pop-

ulation cannot maintain growth, then the “effective population size” of the

tumor could be a lot smaller. This in turn could imply that the tumor

has a lower chance to have accumulated certain mutations that promote

the disease or render the cells resistant to drugs. Population size is a cru-

cial measure when investigating the evolutionary dynamics of cancer, and

the uncertainty regarding the effective population size of the tumor cell

population has to be kept in mind in the context of these considerations.

2.7 Genetic and epigenetic changes

So far, we have concentrated our discussion on genetic changes that are ac-

cumulated in cells and that allow the cells to escape tissue homeostasis and

grow uncontrolled. However, epigenetic changes can also contribute to the

generation of cancerous phenotypes, in particular changes in methylation

patterns across the genome [Iacobuzio-Donahue (2009); Jones and Baylin

(2002); Laird and Jaenisch (1996); Sharma et al. (2010); Esteller (2008);
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Fig. 2.6 The architecture found in healthy tissue is also thought to underlie the archi-
tecture of tumors. Healthy tissue is maintained by a small population of tissue stem
cells that can self-renew. They differentiated to give rise to progenitor cells, which can
also self-renew, although to a lesser extent. They eventually differentiate to give rise to
terminally differentiate cells which do not have self-renewal capacity and die. A similar
architecture is thought to apply to tumors. They are thought to be maintained by a
relatively small population of cancer stem cells that can self-renew and seed new cancer
growth. The bulk of the tumor is thought to be made up of more differentiated cells.

Sugimura and Ushijima (2000)]. Tumor cell genomes are often character-

ized by global hypomethylation. This has been suggested to contribute to

the emergence of karyotypic instabilities as well as to the activation of onco-

genes. On the other hand, CpG islands are susceptible to hypermethylation,

and when it occurs in the promoter, it is associated with gene silencing and

can induce the deactivation of tumor suppressor genes. Similar to the mu-

tator phenotype concept, the “methylator phenotype” concept has emerged

to account for the tendency to observe patterns of hypermethylation in cer-

tain cell lines. Tumor cell lines that are characterized by relatively high

levels of CpG island methylation have been called CpG island methylator

phenotypes (CIMP cells), which sets them apart from non-CIMP cells that

are characterized by lower levels of CpG island methylation [Issa (2004);

Nosho et al. (2008); Toyota et al. (1999); Toyota and Issa (1999)]. Both ge-

netic and epigenetic changes are most likely involved in the processes that

contribute to carcinogenesis, and they can be interconnected. An interest-

ing example is colon cancer. As mentioned above, microsatellite instability

(MSI) and chromosomal instability (CIN) can contribute the the develop-

ment of colon cancer. Most cases of sporadic MSI colon cancers have been

attributed to the epigenetic silencing of the mismatch repair genes MLH1,

usually brought about by CIMP phenotypes [Toyota et al. (1999)]. Further-

more, a negative correlation has been found between the CIN and CIMP
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phenptypes in colon cancer [Goel et al. (2007); Cheng et al. (2008)], indi-

cating that they are two distinct mechanisms for driving tumor initiation

that do not overlap. This picture shows that while the genetic events that

can contribute to the development of colon cancer are well documented, the

disease process is a lot more complex than the simple accumulation of the

various mutations outlined above in this chapter. Even in cancers that are

thought to be relatively well-understood, we are only beginning to elucidate

some of the molecular complexities that underlie and drive carcinogenesis.

2.8 Evolutionary theory and Darwinian selection

Theodosius Dobzhansky who, according to Stephen J. Gould, was the great-

est evolutionary geneticist of our times, wrote that “nothing in biology

makes sense except in the light of evolution”. This also applies to our

understanding of cancer. The process of carcinogenesis includes all the

essential ingredients of evolutionary theory [Greaves (2002, 2007); Beeren-

winkel et al. (2007); Wodarz (2005b); Frank and Nowak (2004); Merlo et al.

(2006)]: reproduction, mutation, and selection (figure 2.7). Mathematical

models play a crucial role for analyzing such evolutionary processes [Kim-

mel (2010)].

As outlined in detail above, the process of cancer initiation and progres-

sion is concerned with the accumulation of genetic and epigenetic changes

which allow the cells to break out of normal regulatory mechanisms. Such

cells will grow better than healthy cells and are advantageous. In evolu-

tionary terms, they are said to have a higher fitness. The more oncogenic

alternations the cells acquire, the better they are adapted to growing in

their environments, and the higher their fitness. Cancer cells which grow

best can be selected for and can exclude less fit types. Cancer cells can even

adapt their “evolvability”: genetically unstable cells may be able to evolve

faster and adapt better than stable cells. This can be very important in the

face of many selective barriers and changing environments. Barriers can in-

clude inhibitory effects which are exerted by the tissue microenvironment,

or an adaptive immune system which can specifically recognize a variety

of tumor proteins and mount new responses as the tumor evolves. The

environment in our bodies can change over time and render different geno-

types advantageous at different stages. An example is aging which involves

the continuous rise in the rate of DNA damage as a result reactive oxygen

species which are produced as a byproduct of metabolism [Benz and Yau

(2008)].
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Fig. 2.7 Diagram explaining the concept of somatic evolution and cancer progression.
Cancer originates with the generation of a mutant cell. This cell divides and the popu-

lation grows. This is called clonal expansion. Further mutations can subsequently arise
which have a higher fitness. They grow and expand further. Consecutive mutations and
rounds of clonal expansion allow the cancer to grow to ever increasing sizes.
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Chapter 3

Mathematical modeling of

tumorigenesis

Broadly speaking, there are three major areas where theory has contributed

the most to cancer research:

(i) Modeling in the context of epidemiology and other statistical

data. One of the oldest and most successful methodologies in theo-

retical cancer research is using the available incident statistics and

creating models to explain the observations. This field was originated

by [Armitage and Doll (1954)], and then taken to the next level by

Moolgavkar and colleagues [Moolgavkar and Knudson (1981)].

(ii) Mechanistic modeling of tumor growth, including multiscale

modeling. An entirely different approach to cancer modeling is to

look at the mechanistic aspects of tumor material and use physical

properties of biological tissues to describe tumor growth, see [Preziosi

(2003); Cristini and Lowengrub (2010)] for review.

(iii) Modeling of cancer initiation and progression as somatic evo-

lution. In this area of research, methods of population dynamics and

evolutionary game theory are applied to study cancer. First devel-

oped by ecologists and evolutionary biologists, these methods have

been used to understand the collective behavior of a population of

cancer cells, see [Gatenby and Gawlinski (2003); Gatenby and Vin-

cent (2003b)].

In this chapter we review basic mathematical tools necessary to under-

take different types of cancer modeling. These are: ordinary differential

equations, partial differential equations, stochastic processes, cellular au-

tomata and agent based modeling.

19
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3.1 Ordinary differential equations

Mathematical modeling of growth, differentiation and mutations of cells in

tumors is one of the oldest and best developed topics in biomathematics

[Bellomo and Maini (2007)]. Let us view cancer as a population of cells

that evolves deterministically and has some potential to grow. In the first

example, we can model cellular growth followed by saturation with the

following logistic ordinary differential equation (ODE):

ẋ = rx(1 − x/K), x(0) = 1,

where dot is the time derivative, x = x(t) is the number of cancer cells

at time t, r is the growth rate and K is the carrying capacity, that is,

the maximal size the population of cells can reach, defined by the nutrient

supply, spatial constraints etc. The solution of the above ODE is a familiar

looking “sigmoidal” curve.

Next, let us suppose that the population of cells is heterogeneous, and

all cells compete with each other and with surrounding healthy cells for

nutrients, oxygen and space. Then we can imagine the following system,

equipped with the appropriate number of initial conditions:

ẋi = rixi − φxi, 0 ≤ i ≤ n, xi(0) = x̂i,

where xi is the number of cells of type i, with the corresponding growth

rate, ri. We have the total of n types, and we can model the competition

by the term φ in a variety of ways, e.g. by setting

φ =

∑n
i=0 rixi

N
,

where N =
∑n

i=0 x̂i is the total number of cells in the system, which is

assumed to be constant in this model.

As a next step, we can allow for mutations in the system. In other words,

each cell division (happening with rate ri for each type) has a chance to

result in the production of a different type. Let us assume for simplicity

that type i can mutate into type (i + 1) only, according to the following

simple diagram:

x0 → x1 → . . . → xn−1 → xn

Then the equations become,

ẋ0 = r0(1− u0)x0 − φx0,

ẋi = ui−1ri−1xi−1 + ri(1− ui)xi − φxi, 1 ≤ i ≤ n− 1,

ẋn = rn−1un−1xn−1 + rnxn − φxn,

xi(0) = x̂i, 0 ≤ i ≤ n,
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where φ is defined as before, and ui is the probability that a cell of type

(i + 1) is created as a result of a division of a cell of type i. The above

equations are called the quasispecies equations. These were introduced

by Manfred Eigen in 1971 as a way to model the evolutionary dynamics

of single-stranded RNA molecules in in vitro evolution experiments [Eigen

(1971)]. Since Eigen’s original paper, the quasispecies model has been ex-

tended to viruses, bacteria, and even to simple models of the immune sys-

tem. Quasispecies equations are nonlinear, like most differential equations

in cancer modeling. However, there is a simple and elegant way to solve

these equations, which we review in Chapter 6. In a more general case, the

mutation network can be more complicated, allowing mutations from each

type to any other type. This is done by introducing a mutation matrix with

entries, uij , for mutation rates from type i to type j.

Other ordinary differential equations used to study the dynamics of can-

cerous cells are similar to predator-prey systems in ecology. For instance,

[Gatenby and Vincent (2003a)] used the following competition model,

ẋ = rx

(

1− x+ αxyy

k

)

x, ẏ = ry

(

1− y + αyxx

k

)

y,

where x and y describe the populations of cancerous and healthy cells,

respectively.

The equations shown above are toy models to illustrate general princi-

ples, rather than actual tools to study real biological phenomena. However,

by modifying these equations and incorporating particular properties of a

biological system in question, we can describe certain aspects of cancer

dynamics. Like any other method, the method of ODEs has advantages

and drawbacks. Among the advantages is its simplicity. The disadvantages

include the absence of detail. For instance, no spatial interactions can be

described by ODEs, thus imposing the assumption of “mass-action”-type

interactions. Stochastic effects are not included, restricting the applicabil-

ity to large systems with no “extinction” effects.

Finally, because of an empirical nature of this kind of modeling, this

method (like most other empirical methods) presents a problem when try-

ing to find ways to measure coefficients in the equations. Several methods

of robustness analysis have been developed. The main idea is as follows. If

the number of equations is in the tens, and the number of coefficients is in

the hundreds, one could argue that almost any kind of behavior can be re-

produced if we tune the parameters in the right way. Therefore, it appears

desirable to reduce the number of unknown parameters and also to design

some sort of reliability measure of the system. In the paper by [Moore
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and Li (2004)], latin hypercube sampling on large ranges of the parame-

ters is employed, which is a method for systems with large uncertainties

in parameters. This involves choosing parameters randomly from a range

and solving the resulting system numerically, trying to identify the param-

eters to which the behavior is the most sensitive. In the paper by [Evans

et al. (2004)], “structural identifiability analysis” is discussed, which deter-

mines whether model outputs can uniquely determine all of the unknown

parameters. This is related to (but is not the same as) the confidence with

which we view parameter estimation from experimental data. In general,

questions of robustness and reliability are studied in mathematical control

theory.

In this book, several chapters use ODEs as their main method of de-

scription. Most of Part 1 of the book (“Basic growth dynamics and de-

terministic models”) uses ordinary differential equations as the method of

choice. ODEs are also used in some of the advanced topics.

3.2 Extensions of ODE modeling

3.2.1 Optimal control

A particular branch of research related to ODEs that we would like to

mention is optimal control theory. Mathematical theory of optimal control

has been used in several areas of biosciences [Sontag (2004); Lenhart and

Workman (2007)]. In the context of oncology, optimal control theory has

been employed to design treatment strategies by methods of optimization

[Swan (1990); Kirschner et al. (1997); Ledzewicz and Schättler (2007, 2008);

Ledzewicz et al. (2012); Engelhart et al. (2011)].

One particular area of application concerns the interactions between

cancer and the immune system [De Pillis and Radunskaya (2001, 2003);

De Pillis et al. (2007)]. Typically, the problem is formulated as a system of

ODEs for the number of cells in a colony obeying a birth-death dynamics.

The growth and/or death parameters are affected by treatment, which is

described as an unknown function of time whose values reflect the amount

of drug administered. The goal is to find the treatment function which in

some sense optimizes an “objective function”, which for example could be

equivalent to minimizing the number of cancer cells at a certain moment of

time. The mathematical theory for finding the optimal strategy has been

developed in the literature and allows to use analytical methods such as

the Pontryagin Maximum Principle [Pontryagin et al. (1962)].
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In this book, control theory is used in Chapter 7, but it is not applied to

treatment design. Instead, we use control theory to argue about different

strategies adopted by cancer in the context of chromosomal instability.

3.2.2 ODEs and cancer epidemiology

The idea is the following. A multi-stage model of carcinogenesis is formu-

lated as a stochastic process, which includes a series of mutational events

and clonal expansions. The mutation rates, the average rates of clonal ex-

pansions for each stage, and even the number of stages are variables of the

model. Then, the probability of developing cancer by a certain age is calcu-

lated (usually, by means of numerical simulations), as a function of all the

unknown parameters. The outcome of such calculations, for each set of pa-

rameters, is then compared with the existing data on cancer incidence, and

the set of parameters which gives the best fit is identified. In their papers,

[Luebeck and Moolgavkar (2002); Meza et al. (2008)] use the data on the

incidence of colorectal cancers in the Surveillance, Epidemiology, and End

Results (SEER) registry. They conclude that the statistics are most consis-

tent with a model with two rare events followed by a high-frequency event

in the conversion of a normal stem cell into an initiated cell that expands

clonally, which is followed by one more rare event. The two rare events

involved in the initiation are interpreted to represent the homozygous loss

of the APC gene.

Several authors have analyzed age-incidence curves [Frank (2004, 2007);

Hornsby et al. (2007)] and death statistics [Filoche and Schwartz (2004)].

In the latter paper, the statistics of fluctuations in cancer deaths per year

lead to an intriguing discovery: there is a big difference between cancers of

young ages and cancers after 40. The authors suggest that cancers attacking

older people behave like “critical systems” in physics and can be considered

as an avalanche of “malfunctions” in the entire organism.

3.3 Partial differential equations

The next method that we will mention here is partial differential equations

(PDEs). In many cases, this is the tool of choice when studying tumor

growth and invasion into surrounding tissue. In many models, tumor tissue

is described as a mechanistic system, for instance, as a fluid (with a pro-

duction term proportional to the concentration of nutrients) [Evans et al.
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(2004)], or as a mixture of solid (tumor) and liquid (extracellular fluid with

nutrients) phases [Byrne and Preziosi (2003)]. As an example, we quote the

system used by [Fauth and Speicher (2001); Franks et al. (2003)]. These

authors view an avascular tumor as a coherent mass whose behavior is sim-

ilar to that of a viscous fluid. The variables n(x, t), m(x, t) and ρ(x, t)

describe the concentration of tumor cells, dead cells and surrounding ma-

terial, respectively. The nutrient concentration is c(x, t), and the velocity

of cells is denoted by v(x, t). Applying the principle of mass balance to

different kinds of material, we arrive at the following system:

ṅ+∇ · (nv) = (km(c)− kd(c))n, (3.1)

ṁ+∇ · (mv) = kd(c)n, (3.2)

ρ̇+∇(ρv) = 0. (3.3)

Here, we have production terms given by the rate of mitosis, kd(c), and cell

death, kd(c), which are both given empirical functions of nutrient concen-

tration. The nutrients are governed by a similar mass transport equation,

ċ+∇(cv) = D∇2c− γkm(c)n,

where D is the diffusion coefficient and γkm(c)n represents the rate of

nutrient consumption. In order to fully define the system, we also need

to use the mass conservation law for the cells, modeled as incompressible,

continuous fluid, n + m + ρ = 1. Finally, a constitutive law for material

deformation must be added to define the relation between concentration

(stress) and velocity. Also, the complete set of boundary conditions must

be imposed to make the system well defined. We skip the details here,

referring the reader to the original papers. Our goal in this chapter is to

give the flavor of the method.

Avascular growth is relevant only when studying very small lesions, or

tumor spheroids grown in vitro. To realistically describe tumorigenesis at

later stages, one needs to look at the vascular stage and consider mech-

anisms responsible for angiogenesis. The model developed by [Anderson

and Chaplain (1998b)] describes the dynamics of endothelial cell (EC) den-

sity, migrating toward a tumor and forming neovasculature in response to

specific chemical signals, tumor angiogenic factors (TAF). If we denote by

n(x, t) the EC density, then their migration can be described as

ṅ = D∇2n−∇(χ(c)n∇c) + g(n, f, c),

where D and χ(c) are the diffusion and the chemotactic parameter respec-

tively, c(x, t) is a specific chemical (TAF) responsible for chemotaxis, and
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g(n, c) is the proliferation function. In the simplest case, the chemicals can

be assumed to be in a steady-state (that is, t-independent), or they can

satisfy a PDE:

ċ = Dc∇2n+ v(c, n),

with v(n, f) being a specific production/uptake function.

As with any system of nonlinear PDEs, one should be careful about

well-posedness of the problem. The appropriate boundary conditions must

be imposed, depending on the dimensionality and geometry of the problem.

Then, either numerical solutions can be investigated, or a stability analysis

of a simple solution performed. An example of a simple solution could be,

for instance, a spherically symmetrical or planar tumor.

In this book, PDEs are employed in Chapter 8.

To summarize the method of partial differential equations, applied to

mechanistic modeling of tumor growth, we note that it is significantly

more powerful than the method of ODEs, as it allows us to make a dy-

namic description of spatial variations in the system. We have a large,

well-established apparatus of mathematical physics, fluid mechanics and

material science working for us, as long as we model biological tissue as

a “material”. We have the comforting convenience of laws. A potential

problem is that we do not exactly know to what extent a tumor behaves

as an incompressible fluid (or homogeneous porous medium, or any other

physical idealization), and to what extent its behavior is governed by more

complicated mechanisms. On a more down-to-earth note, there is one ob-

vious limitation of PDEs which comes from the very nature of differential

equations: they describe continuous functions. If the cellular structure of

an organ is important, then we need to use a different method, and this is

what we consider next.

3.4 Stochastic modeling

Next we review one of the most important tools in biological modeling,

which is stochastic processes. The need for stochastic modeling arises be-

cause many of the phenomena in biology have characteristics of random

variables. That is, as a process develops, we cannot predict exactly the

state of the system at any given moment of time, but there are certain

trends which can be deduced, and, if repeated, an experiment will lead to

a similar (but not identical) outcome. In this chapter we are not aiming

at a comprehensive introduction to stochastic processes. Rather, we will
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give several examples where various stochastic methods are used to describe

tumorigenesis.

The process where the stochastic nature of events can be seen very

clearly is the accumulation of mutations. This process is central to cancer

progression, and therefore developing tools to describe it is of vital impor-

tance for modeling. In the simplest case, we can envisage cell division as

a binary (or branching) process, where at regular instances of time, each

cell divides into two identical cells with probability 1− u, and it results in

creating one mutant and one wild type cell with probability u. To complete

the description of this simplified model, we assume that a mutant cell can

only give rise to two mutant daughter cells. Let us start from one wild

type cell and denote the number of mutants at time n as zn. The ran-

dom variable zn can take nonnegative integer values; another way to say

this is that the state space is {0} ∪ I. This is a simple branching process,

which is a discrete state space, discrete time process. We could ask the

question: what is the probability distribution of the variable zn? Possible

modifications of this process can come from the existence of several consec-

utive mutations, a possibility of having one or both daughter cells mutate

as a result of cell division, allowing for cell death, or from distinguishing

among different kinds of mutations. As an example of a branching process

type model, we will mention the paper by [Frank (2003)] which addressed

the accumulation of somatic mutation during the embryonic (developmen-

tal) stage, where cells divide in a binary fashion, similar to the branching

process. Two recessive mutations to the retinoblastoma locus are required

to initiate tumors. In this paper, a mathematical framework is developed

for somatic mosaicism in which two recessive mutations cause cancer. The

following question is asked: given the observed frequency of cells with two

mutations, what is the conditional frequency distribution of cells carry-

ing one mutation (thus rendering them susceptible to transformation by

a second mutation)? Luria-Delbruck-type analysis is used to calculate a

conditional distribution of single somatic mutations.

Next, we consider another important process, the birth and death pro-

cess. Suppose that we have a population of cells, whose number changes

from time t to time t+∆t, where ∆t is a short time interval, according to

the following rules:

• With probability L∆t a cell reproduces, creating an identical copy of

itself,

• With probability D∆t a cell dies.
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All other events have a vanishingly small probability. The number of cells,

x(t), can take positive integer values, and it depends on the continuous time

variable. That is, it can change at any time, and not just at prescribed in-

tervals. Therefore, this is a continuous time, discrete state space process.

One obvious modification to the above rules is to include mutations. Say,

instead of L∆t, we could have the probability L(1 − u)∆t to reproduce

faithfully, and probability Lu∆t to create a mutant. Further, we could

consider a chain of mutations, and describe the evolution of the number

of cells of each type. This resembles Moolgavkar’s description of multi-

stage carcinogenesis [Moolgavkar and Knudson (1981)] which is discussed

in Chapter 10.

In the birth-death type processes, the population of cells may become

extinct, or it could grow indefinitely. Another type of process that is very

common in tumor modeling corresponds to constant population size. An

example is the Moran process. Whenever a cell reproduces (with the prob-

ability weighted with the cell’s fitness), another cell is chosen to die to

keep a constant population size. If we include a possibility of mutations

(or sequences of mutations), which lead to a change of fitness in cells, we

can model the emergence and invasion of malignant cells. Models of this

kind are relevant for the description of cellular compartments [Komarova

et al. (2003b)] or organs of adult organisms. In a series of stochastic mod-

els, [Frank and Nowak (2003)] discussed how the architecture of renewing

epithelial tissues could affect the accumulation of mutations. They showed

that a hierarchy of stem cells could reduce the accumulation of mutations

by the mechanism that they term stochastic flushing. They assume that

each compartment retains a pool of nearly quiescent proto-stem cells. The

renewal of tissue happens in the usual way by stem cell divisions. If a stem

cell dies, it is replaced from the pool of proto-stem cells.

Stochastic models of stem cell dynamics have been proposed by several

authors, in particular, in the context of the hematopoietic system [Dingli

et al. (2007)]. [Nowak et al. (2003)] employ a linear process of somatic evo-

lution to mimic the dynamics of tissue renewal. There, cells in a constant

population are thought to be put in a straight line. The first one is the

symmetrically dividing stem cell, which places its offspring next to itself

and moves the other cells by one position. The last cell is taken out of the

system. This process has the property of canceling out selective differences

among cells yet retaining the protective function of apoptosis. It is shown

that this design can slow down the rate of somatic evolution and there-

fore delay the onset of cancer. A different constant population model is
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employed by [Calabrese et al. (2004); Kim et al. (2004)], where precancer-

ous mutations in colon stem cell compartments (niches) are studied. Each

niche contains multiple stem cells, and niche stem cells are lost at random

with replacement. It is assumed that each stem cell can either divide asym-

metrically, or give rise to two stem cells, or to two differentiated cells. This

loss and replacement dynamics eventually leads to the loss of all stem cell

lineages except one. The average time to cancer is calculated with this

model, using five successive mutational steps. The results are compared

with the existing age-incidence statistics. We will briefly mention statisti-

cal methods at the end of this chapter.

In this book, most chapters in Part 2 (“Evolutionary dynamics and

stochastic models”) involve stochastic modeling of the type described here

(except Chapter 14 which uses cellular automata). All the models discussed

so far describe stochastic effects, but do not include spatial structures of

populations. The next type of models can do both.

3.5 Cellular automaton models

Traditionally, cellular automaton models are based on a spatial grid, where

the dynamics are defined by some local rules of interaction among neighbor-

ing nodes. The interaction rules can be deterministic or stochastic (that is,

dictated by some random processes, with probabilities imposed). Each grid

point may represent an individual cell, or a cluster of cells; for simplicity we

will refer to them as “cells”. To begin, we present a very simple model of

tumor growth which illustrates the method. We start from a rectangular,

two-dimensional grid. Let us refer to a grid point as xij , where i and j

are the horizontal and vertical coordinates of the point. Each node, xij ,

can be a healthy cell, a cancer cell, or a dead cell. We start from an initial

distribution of tumor cells, healthy cells and dead cells. For each time-step,

we update the grid values according to some local interaction rules. Let

us denote the discrete time variable as n = 1, 2, . . .. Here is an example of

an update rule. At each time step, we update one site, in a random order;

xij(n+ 1) is given by the following:

• If xij is surrounded by a layer of thickness δ of tumor cells, it dies.

• If xij is a tumor cell not surrounded by a δ-layer of tumor cells, it

reproduces. This means that the site xij remains a tumor cell, and

in addition, one of its neighbors (chosen at random) becomes a tumor

cell. As a result, all the non-dead cells on that side of xij between xij

and the nearest dead cell are shifted away from xij by one position.
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• If xij is a dead cell, it remains a dead cell.

• If xij is a healthy cell, it remains a healthy cell.

Of course, this is only a toy model. Cellular automata models used to

describe realistic situations are more complicated as they have to grasp

many aspects of tumor biology. For instance, [Kansal et al. (2000)] used

a very sophisticated three-dimensional cellular automaton model of brain

tumor growth. It included both proliferative and non-proliferative cells, an

isotropic lattice, and an adaptive grid lattice.

Cellular automata have been used to study a variety of questions.

[Alarcón et al. (2003)] studied how inhomogeneous environments can af-

fect tumor growth. They considered a network of normal healthy blood

vessels and used an (engineering in spirit) approach to model the dynam-

ics of blood flow through this fixed network. The outcome of this part

of the model was the distribution of oxygen (red blood cells) throughout

the network. Next, a cellular automaton model was run where, like in

our toy model above, each element of the discrete spatial grid could take

one of three values: “unoccupied”, “has a normal cell”, or “has a cancer-

ous cell”. The concentration of oxygen was fed into the local interaction

rules.

In the paper by [Gatenby and Gawlinski (2003)], the acid-mediated tu-

mor invasion hypothesis was studied. This hypothesis states that tumors

are invasive because they perturb the environment in such a way that it

is optimal for their proliferation, and toxic to the normal cells with which

they compete for space and substrate. The authors considered a spatial

tumor invasion model, using PDEs and cellular automata. The model was

based on the competition of healthy and tumor cells, with elements of acid

production by tumor cells, acid reabsorption, buffering and spatial diffu-

sion of acid and cells. The authors proposed that the associated glycolytic

phenotype represents a successful adaptation to environmental selection pa-

rameters because it confered the ability for the tumor to invade.

A cellular automaton model of tumor angiogenesis was designed by [An-

derson and Chaplain (1998b)]. In their discrete model, the movement rules

between states are based directly on a discretized form of the continuous

model, which was considered in the previous section. The discretization is

performed by using the Euler finite difference approximation to the PDEs.

Then, numerical simulations allow for tracking the dynamics of individual

endothelial cells, as they build blood vessels in response to TAFs. A qual-

itatively novel feature of this model is its ability to describe branching of
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new vessels by imposing some simple local rules. In particular, it is assumed

that if (i) the density of TAFs is above critical, (ii) there is enough space

for branching, and (iii) the current sprout is sufficiently “old”, then there

is a finite probability for the vessel to branch and form a new sprout. This

behavior cannot be grasped by the continuous, PDE-based models.

In this book, cellular automata are used in Chapters 14, 17, 21, and 23.

The cellular automaton approach gives rise to a new class of behaviors

which can hardly be seen in continuous, PDE-based models. It allows to

track individual cells, and reproduce the dynamics of emerging structures

such as tumor vasculature. A drawback of this approach is that it is almost

universally numerical. It is difficult to perform any analysis of such models,

which leaves the researcher without an ability to generalize the behavioral

trends.

3.6 Hybrid and multiscale modeling

These modern approaches to tumor modeling [Alarcón et al. (2005)] are

constantly being developed by several groups and combine elements of dif-

ferent methodologies described above.

As the first example, we mention the paper by [Anderson (2007)] which

describes a hybrid discrete-continuous model of solid tumor growth and

invasion. This model focuses on four variables: tumor cells, extracellular

matrix, matrix-degradative enzymes, and oxygen. This model is considered

to be hybrid because the latter 3 variables are concentrations and thus are

continuous, while the tumor cells are discrete objects.

Hybrid models have been widely employed in modeling tumor vascula-

ture. The need for hybrid models comes from the necessity to describe the

process of sprouting together with several diffusion-type processes. A nice

review of discrete, continuous, and hybrid models of angiogenesis is given

in [Milde et al. (2008)]. The state of the art of angiogenesis modeling is

presented in [Jackson (2012)], where a variety of hybrid models by different

groups are presented.

We will also mention the multiscale modeling approach [Cristini and

Lowengrub (2010); Deisboeck and Stamatakos (2011)] that incorporates

modeling techniques on several spatio-temporal scales, starting from within-

cell processes, all the way to the level of individual organs and even whole-

body processes, see e.g. [Rejniak and Anderson (2011); Osborne et al.

(2010); Stolarska et al. (2009)].
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In this book, we will not cover these advanced methods. The reason

is that the main focus of our studies is evolutionary cancer dynamics, and

the philosophy of our approach is reductionist. We aim to reduce the very

complex systems at hand to smaller, simpler problems which we then try

to understand by analytical or relatively simple numerical methods. This

approach should be considered complimentary to those working on very

complex models described in this section.
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Chapter 4

Single species growth

As alluded to in Chapter 2, cancer is an incredibly complex disease, char-

acterized by an array of cellular and micro-environmental defects that al-

low the cells to escape homeostatic control and to grow without bound.

Molecular biology is aiming to unravel those defects, thus improving our

understanding of the pathways that lead to the development of cancers

and identifying possible drug targets for therapies. It is, however, equally

important to understand the laws and principles according to which tu-

mor cell populations grow. This fundamental aspect of cancer research is

the focus of the current chapter. Different tumor growth patterns have

been identified experimentally and clinically over the years. Mathematical

models have been constructed to describe those observed patterns. The

tumor growth models are partly rooted in ecological models that study the

growth dynamics of single species populations. The simplest growth law

is exponential growth, which results from unbounded reproduction of cells.

More realistic models have introduced density dependence in a variety of

ways, and included specific biological details to account for specific observa-

tions. This chapter reviews the main tumor growth models that have been

described, and relates each growth model to experimental data. This is

done in the context of a historic time-line [Rodriguez-Brenes et al. (2013)],

describing the models in the chronological order in which they have been

published. This timeline is summarized graphically in figure 4.1, and can

be consulted for reference while reading the rest of this chapter.

4.1 Exponential growth

The exponential law is probably the simplest model used to describe tu-

mor growth (figure 4.2(a)). In 1956 Collins [Collins (1956)] proposed that

35
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Fig. 4.1 Time line of representative models of tumor growth, organized historically.
The models are depicted with different colors, representing the type of growth patterns
predicted: exponential, surface, sigmoidal, atypical, and multistep. A) From 1930-2000.
B) From 2000. Note: The time line does not include many valuable contributions. It
only contains some representative examples. In particular it does not include influential
3D models, which do not focus explicitly on tumor growth patterns.

tumors grow exponentially with one cell giving rise to two cells, these two

cells to four cells... and so on. This growth scheme leads to equation

Ẇ = aW, (4.1)

whereW is the number of tumor cells at a given time and Ẇ is the derivative

with respect to time.
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Collins’ work introduced the concept of doubling times DT = ln(2)/a

to characterize tumor growth. Prior to this analysis, tumor growth was

generally described in non-quantitative terms such as “slow” or “fast”. Over

the following decades, the doubling times of many tumors were computed

(see e.g. [Spratt Jr and Spratt (1964); Steel (1977)]).

The exponential law was used to calculate the clinically observed por-

tion of a tumor’s existence, and it played a significant role in the field of

chemotherapy. The discovery that a number of leukemias and lymphomas

exhibited exponential growth –most notably the L1210 leukemia [Shackney

(1970)]– lead Skipper, Schabel and Wilcox to develop the log-kill model

[Skipper et al. (1964); Wilcox (1966)]. It proposed that a given chemother-

apy drug dose would kill the same percentage, not the same number, of

widely different-sized leukemic cell populations. Exponential growth has

also been documented in solid tumors (for a review see [Friberg et al.

(1997)]). However, it has also been suggested that this law might not be

applicable over long time periods to most solid tumors, and instead might

be only appropriate to describe the growth dynamics of certain non-solid

cancer-types [Simon and Norton (2006)].

4.2 Surface growth

Other measurements of tumor growth suggest that a solid tumor’s diame-

ter grows primarily as a linear function of time [Mayneord (1932); Schrek

(1935); Knighton et al. (1977)], resulting in a cubic growth law for the

tumor’s volume (figure 4.2(b)). In 1932 while studying Jensen’s rat sar-

coma, Mayneord [Mayneord (1932)] showed that this growth pattern could

be explained in mathematical terms if the active growth of a solid tumor

was limited to a thin surface layer of cells. Several recent models use the

same basic idea in which most of the growth activity is concentrated at

the tumor’s boundary. [Komarova and Mironov (2005)] proposed that an-

giogenesis could explain cubic growth assuming that new blood vessels are

formed near the surface of the existing tumor, making the cells near the

surface divide more often than the core. [Brú et al. (2003)] observed a

similar pattern in in vitro cell colonies, where most of the mitotic activ-

ity occurred near the tumor’s boundary. This group developed a model

that explains the growth kinetics as a consequence of the tumor’s fractal

structure [Brú et al. (1998, 2003)]. Other studies use contact inhibition

to explain cubic growth dynamics, like the biophysical model by [Drasdo
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Fig. 4.2 Data samples depicting different types of tumor growth. A) Exponential
growth. L1210 a mouse lymphocytic leukemia [Shackney (1970)]. B) Surface growth.
Multicellular tumor spheroids of EMT6/Ro cells [Freyer and Sutherland (1986)], a mouse
mammary tumor. C) sigmoidal growth. Jurkat T cell human leukemia [Reuss et al.
(2004)]. The fit was produced using Gompertz law. D) Atypical growth, power law with
exponent of size 1.84. Murine plasmacytoma [Simpson-Herren et al. (1970)].

and Höhme (2005)] describing the growth of multicellular tumor spheroids

[Freyer and Sutherland (1985, 1986)]. This model starts with an exponen-

tial phase followed by cubic growth, as a result of a biomechanical form of

contact inhibition. There is also evidence of surface growth from a study of

27 untreated low-grade gliomas [Mandonnet et al. (2003)], which suggests

a linear relationship between time and a tumor’s diameter. In 2003 Swan-

son et al. [Swanson et al. (2003)] developed a model that replicates this

phenomenon as a product of cell proliferation and diffusion.
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The basic model of surface growth can be presented as follows. In two

dimensions, the surface scales with the square root of the volume, giving

Ẇ = r
√
W,

with the solution

W (t) = (W
1/2
0 + rt/2)2,

where we set the initial tumor load to be W (0) = W0. The growth is

quadrating in time. In three dimensions, the surface scales with the power

2/3 of the volume, and we have

Ẇ = rW 2/3 ⇔ W (t) = (W
1/3
0 + rt/3)3,

that is, the volume (and the cell number) grows as a cubic power of time.

In these models, the growth is much slower than in the simple exponential

model, but still as time advances, the volume increases to infinity. In the

next section we review several types of self-limiting growth, where W (t)

increases and then reaches a horizontal asymptote.

4.3 Sigmoidal growth

Numerous models describe tumor growth as following a sigmoidal (S-

shaped) curve (figure 4.2(c)). Here, we consider some noteworthy repre-

sentative examples.

4.3.1 Logistic growth

The logistic equation is possibly the first used to model tumor dynamics

[Robertson (1923)]:

Ẇ = aW − bW 2. (4.2)

Because of the widespread use of this equation in modeling, we will present

its solution and discuss its long-term behavior. First we note that a conven-

tional way to write down equation (4.2) is in terms of the carrying capacity,

Ẇ = aW (1−W/K), (4.3)

where the carrying capacity constant is given by K = a/b.
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To solve this nonlinear ODE, we note that
∫

dW

W (1−W/K)
=

∫

a dt.

The left hand side can be evaluated by partial fractions,
∫ (

1

W
+

1

K(1−W/K)

)

dW = at+ c,

where c is the constant of integration. Integrating the left hand side, we

obtain

ln
W

K −W
= at+ c ⇔ W =

KCeat

1 + Ceat
, C = ec.

If the initial condition is given by

W (0) = W0,

then the constant C = W0

K+W0
, and the solution can be written as

W (t) =
KW0e

at

K +W0(eat − 1)
. (4.4)

The logistic equation is very versatile: for example by making b small in

(4.2), and thus the carrying capacity K large, the kinetics become almost

exponential for small values of time. It is intuitively clear: far from the

carrying capacity, the colony grows exponentially, but as it inceases, the

restrictions start being felt more and more, slowing down the growth and

eventually stopping it. We note that

lim
t→∞

W (t) = K,

that is, if W0 < K, the tumor grows toward the carrying capacity limit. If

W0 > K, it will decrease to K.

An intuitive understanding of tumor growth without having to solve the

ODE analytically is afforded by linear stability analysis. The fixed points

of equation (4.3) are given by

W = 0 and W = K.

To investigate the stability of these, we note that the right hand side of

equation (4.3) is a one-humped function of W (with roots at the fixed

points), and it has a positive slope at W = 0 and a negative slope at
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W = K. This means that the point W = 0 is unstable, and the point

W = K is stable.

The logistic model is mostly empirical as there is no clear physiological

basis for the exponents’ selection. It however fits several tumor data sets

well and continues to be used (see e.g. [Choe et al. (2011); Weedon-Fekjær

et al. (2008)]).

4.3.2 Other sigmoidal laws

All sigmoidal curves have a lower and upper asymptote (the upper asymp-

tote is the maximum tumor size). In the logistic equation the curve ap-

proaches both asymptotes symmetrically. This differs from Gompertz curve

(described below) where the maximum tumor size is approached more grad-

ually than the lower valued asymptote. A proposed generalized version is

[Weedon-Fekjær et al. (2008); Spratt et al. (1993a,b)]:

Ẇ = aW − bWN+1. (4.5)

If the growth rate decays exponentially we get Gompertz law:

Ẇ = aW − bW ln (W ). (4.6)

Casey in 1934 first used it to fit tumor data. In 1964 [Laird (1964)] suc-

cessfully fit the growth of 19 tumor lines (ten mice, eight rat and one rabbit)

using the Gompertz equation. Since then it has been extensively used in

this context (see e.g. [Steel (1977); Afenya and Calderón (2000); Norton

(1988)]). Originally developed on an empirical basis, physiologically-based

models have since been developed to explain it. For example, Burton in

1966 [Burton et al. (1966)] proposed that diffusion and the limitation of

nutrient consumption to the tumor’s surface could explain Gompertzian

kinetics. More recently, in 2006, Norton and Massagué [Norton and Mas-

sagué (2006)] suggested that “self-seeding” of tumor cells would cause tu-

mor proliferation to concentrate on the tumor’s periphery, because of tumor

cells in the bloodstream approaching the mass from the outside and by cells

migrating outward from the tumor core.

Gompertz law also played an important role in chemotherapy, especially

through Norton and Simon’s work beginning in 1976 [Simon and Norton

(2006)]. They argued that the log-kill hypothesis only applies to certain

leukemias and that Gompertz growth is better suited for chemotherapy
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regimes dealing with solid tumors. Because chemotherapy is most effective

when cancer cells are dividing rapidly, Gompertz growth kinetics implies

that it is more efficient to attack cancer cells at their earliest stage of growth.

Hence, they proposed reducing the intervals between treatment cycles (a

scheduling plan known as dose-dense) giving tumors less time to regrow

between treatments [Simon and Norton (2006)].

Other sigmoidal growth models are based on allometric principles. In

1960 Bertalanffy [von Bertalanffy (1960)] proposed that the tumor growth

and degradation rates are proportional to a power of the tumor’s size. The

model assumes that (i) every tumor cell might die, but (ii) only cells near

the boundary have access to nutrients and are capable of division (the

addition of a death rate distinguishes it from surface growth). If a tumor

is modeled as a sphere, then:

Ẇ = aW 2/3 − bW. (4.7)

In 2003 Guiot et al. [Guiot et al. (2003)] proposed a growth law that is

very similar in structure:

Ẇ = aW 3/4 − bW. (4.8)

In 2001 West et al. [West et al. (2001)] proposed this law as a model

for ontogenetic growth, deriving (4.8) from physical principles like energy

conservation and allometric scaling. In particular, the 3/4 exponent was

derived from the fractal-like structure of the energy distribution network

[West et al. (2001)]. This structure ultimately determines the scaling law

for the total number of terminal supply units (capillaries) in the network

[West et al. (2001)]. With the exception of logistic growth, all the sigmoidal

models discussed are based on the same principle: proliferation occurs in

a tumor’s region that has a lower fractal dimension than the region where

cell death occurs.

Several authors have compared the fits produced by competing sigmoid

models (e.g. [Skehan (1986); Marušić et al. (1994)]), but there is no con-

sensus on a single optimal model to fit all data. This may be partially

attributed to the versatility and the functional similarities found in these

models. Marušić [Marušić et al. (1994)] provides a good comparison from

a mathematical point of view. If we consider the Gompertz equation as a

special limiting case of the generalized logistic, the sigmoidal models con-

sidered here are described by the “generalized two parameter equation”
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[Marušić et al. (1994)]:

Ẇ = aWα − bW β . (4.9)

Finally, sigmoidal curves follow three distinct phases: the initial expo-

nential phase, the linear phase and the plateau. This makes it possible to

fit data that show no decrease in the growth rate with sigmoidal curves by

arguing that saturation occurs at some point in the future not observed

in experiments. This practice often results in data fits where the curves’

theoretical upper limit is several times larger than the maximum tumor

size observed. Given that simpler models (i.e., with fewer parameters that

predict no saturation) may also fit this type of data well, the prevalence

of sigmoidal curves in tumor data fitting could be partially the result of

over-parametrization.

4.4 Atypical growth

Other data sets of solid and non-solid tumors do not conform to the growth

laws described so far. These data sets show sub-cubic growth for solid

tumors and sub-exponential growth for non-solid tumors. Moreover they

show no real retardation in their growth rate, indicating no reason to as-

sume a sigmoidal pattern (figure 4.2(d)). Hart et al. [Hart et al. (1998)]

reported this growth type in 1998, where data from primary breast cancer is

shown to be inconsistent with the exponential, logistic and Gompertz laws,

but supports instead a power law with exponent size equal to 0.5. Other

examples of this type of growth pattern have been reported in several types

of cancer, including the human ovarian carcinoma cell line A2780 [Simeoni

et al. (2004)], murine leukemia [Simpson-Herren et al. (1970)], and Ehrlich’s

ascites tumor [Klein and Révész (1953)].

Gatenby and Friden in 2004 [Gatenby and Frieden (2004)] proposed a

model that predicts sub-cubic growth in solid tumors, using information

theory and Monte Carlo methods to study the role of information in tu-

morigenesis. They predicted a power growth law with an exponent of 1.62,

which agreed very well with data from six studies demonstrating power law

growth in small human breast cancers with an exponent of 1.72 ± 0.24.

[Komarova and Mironov (2005)] developed a model based on the dynamics

of endothelial cells in neovascularization that predicts the same type of pat-

tern. They argued that if vasculogenesis is the dominant process by which

tumors form new vasculature, tumor mass will be characterized by a linear

growth in time.
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4.5 Multistep growth

Other authors argue in favor of irregular growth patterns. The theory of

multistage carcinogenesis also played a role in the development of tumor

growth laws. According to this, cancer is primarily a genetic disease that

requires cells to sequentially accumulate several random mutations and epi-

genetic changes [Moolgavkar and Knudson (1981); Meza et al. (2008)]. In

1984 Speer et al. [Speer et al. (1984)] introduced a model characterized

by periods of tumor growth alternated by periods of dormancy (for a tu-

mor dormancy review see [Aguirre-Ghiso (2007)]). The Speer-Retsky model

predicts the occurrence of spontaneous changes in the growth rate, causing

the overall growth pattern to proceed in a stepwise fashion. It uses pub-

lished clinical data that show irregular growth kinetics [Squartini (1961);

Retsky et al. (1990)] and argues that traditional growth laws (e.g. exponen-

tial, Gompertz) are better suited to describe tumor growth averages, but

are not valid for all individual tumors. According to this model, adjuvant

chemotherapy should be applied at low doses over a prolonged period of

time as to coincide with the growth spurts.

Several authors used the multistage carcinogenesis theory to develop

models that predict a multi-step pattern, such that sharp increases in the

tumor growth rate correspond to the acquisition of new mutations. A

recent example [Spencer et al. (2004)] describes the trajectory of tumor

growth in terms of ordinary differential equations that explore the balance

between angiogenesis, cell death rate and genetic instability. Ashkenazi et

al. [Ashkenazi et al. (2008)] (2008) offer another such model that simulates

the progressive acquisition of mutations that lead to an increase in cancer

cells fitness. Spencer et al. [Spencer et al. (2006)] give a stochastic model

predicting a multistep growth pattern.

4.6 Conclusions

This chapter summarized different tumor growth patterns that have been

found in the literature, and mathematical models that describe them. This

is the most fundamental information from a population dynamic perspec-

tive. Most models in the field of mathematical oncology, no matter how

complex, are based on specific assumptions about the laws of tumor growth,

and these assumptions obviously can influence the predictions of the model.

This is important to kept in mind when considering the robustness of
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results. With this information in mind, the following chapters will build

increasingly complex models of tumor dynamics that are all based on the

simple types of growth dynamics outlined here.

Problems

Problem 4.1. Generalize the equation for surface growth to d dimensions,

and write down its solution.

Problem 4.2. Study the equation describing logistic growth. (a) Find fixed

points of equation (4.3) and investigate their stability. (b) Find the limit

as t → ∞ of solution (4.4) of the logistic equation. Discuss in the context

of the solution of part (a) of the problem.

Problem 4.3. Numerical project. By using numerical simulations,

compare the properties of logistic and Gompertzian growth laws.

Problem 4.4. Research project. Find out about different reasons for

the growth “plateau” often observed in cancer growth patterns.
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Chapter 5

Two-species competition dynamics

In Chapter 4 we presented a number of models describing growth of one

species of (cancer) cell. Because of the heterogeneous nature of cancers, it

is important to develop tools to study the growth and interactions of more

than one species of cells. While many types of interactions are possible

among cancer cells, competition for resources or space is of central impor-

tance. Such dynamics can determine whether different cell clones can co-

exist or whether only one cell clone persists and the other one goes extinct.

These dynamics are very related to the topic of interspecific competition in

ecology, and the models explored here will be similar in nature. We start by

exploring a specific, simple model that describes the competition for space

among two species or clones of cancer cells. We subsequently generalize

this analysis by considering axiomatic models of competition among two

species of cells.

5.1 Logistic growth of two species and the basic dynamics

of competition

Here, we describe the simplest model for the logistic growth of two species

that compete with each other. We make the simplifying assumption that

the two cell clones share the same space, defined by the carrying capacity

K, and that they only differ in their rates of cell division. This can de-

scribe a variety of scenarios where the total population size cannot exceed

a certain threshold, determined by e.g. limitation of blood supply or space.

Later on in the chapter, we consider more general models where the two

species of cells can differ in other parameters as well, such as in their re-

spective carrying capacities.

47
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Thus, equation (4.2) or (4.3), describing the logistic growth of one

species, can be generalized to two species in the following way. Let us

denote the abundance of two species of cells as x(t) and y(t), and describe

their joint dynamics as

ẋ = rxx

(

1− x+ αyxy

K

)

, (5.1)

ẏ = ryy

(

1− y + αxyx

K

)

. (5.2)

This type of model is often discussed in ecological texts, see e.g. [Begon

et al. (2009)], and the properties are summarized as follows. If y(t) = 0,

the variable x(t) satisfies equation (4.3) with a = rx, a logistic growth law.

Similarly, if x(t) = 0, the variable y(t) satisfies logistic equation (4.3) with

a = ry. The constants αxy and αyx contain information on the extent to

which crowding affects the growth of the two species of cells. If αxy 6= αyx,

this means that the species affect each other in an asymmetric way. Larger

values of αxy or αyx correspond to a higher degree of suppression that one

species exercises toward the other.

While an analytical solution of a one-species logistic equation was pos-

sible (Section 4.3.1), we cannot solve system (5.1-5.2) directly. Instead, we

will study the long-term behavior of its solutions by performing a linear

stability analysis of its fixed points.

Let us suppose that αxy 6= 1 and αyx 6= 1. To find the fixed points, we

solve equations ẋ = ẏ = 0, which yields four different solutions:

S0 = (0, 0), (5.3)

Sx = (K, 0), Sy = (0,K), (5.4)

Sxy =

(

K(αyx − 1)

αxyαxy − 1
,
K(αyx − 1)

αxyαyx − 1

)

. (5.5)

The first fixed point corresponds to the extinction of both species. The

second and the third point correspond to the extinction of one of the species,

while the second species resides at the carrying capacity; such type of a

dynamic outcome is called “competitive exclusion”. Finally, the fourth

point corresponds to the coexistence of both species.

We would like to investigate stability properties of these points. For a

comprehensive treatment of stability analyses we refer the reader to stan-

dard textbooks such as [Arrowsmith and Place (1990)]). The Jacobian of
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system (5.1-5.2) is given by

J =





rx

(

1− x+αyxy
K

)

− rx
K x − rxαyx

K x

− ryαxy

K y ry

(

1− y+αxyx
K

)

− ry
K y



 .

If both eigenvalues of the Jacobian evaluated at a fixed point have a negative

real part, the corresponding fixed point is stable. It is unstable if at least

one eigenvalue has a positive real part. Neutral stability corresponds to

both eigenvalues having a zero real part.

Starting from the extinction equilibrium, S0 (equation (5.3)), we can see

that the Jacobian has eigenvalues rx and ry , which are positive numbers.

Therefore, the extinction equilibrium is always unstable.

Next, let us consider the first of the competitive exclusion equilibria, Sx

(equation (5.4)). The Jacobian becomes

J =

(−rx −αxyrx
0 (1 − αyx)ry ,

)

,

and the eigenvalues are given by −rx (which is always negative) and (1 −
αxy)ry , which is negative as long as αxy > 1. We conclude that the first

species can dominate if it exhibits more suppression on the second species

than the second species on itself. In other words, competitive exclusion

occurs if the degree of inter-specific competition is stronger than the degree

of intra-specific competition. Similarly, we can show that species 2 can

dominate (equilibrium Sy stable) if αyx > 1.

Finally, we consider the coexistence equilibrium Sxy, equation (5.5).

The Jacobian is given by

J =

(

− rx(1−αyx)
1−αxyαyx

−αyxrx(1−αyx)
1−αxyαyx

−αxyry(1−αxy)
1−αxyαyx

− ry(1−αxy)
1−αxyαyx

)

.

The characteristic polynomial of this matrix is given by

P (λ) = λ2 + bλ+ c, (5.6)

with

b =
(1− αxy)rx + (1− αyx)ry

1− αxyαyx
, c =

(1− αxy)rx(1 − αyx)ry
1− αxyαyx

.

In order for both roots of the polynomial P (λ) to have negative real parts,

we need to require simultaneously,

b > 0, c > 0. (5.7)
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These conditions are satisfied if and only if,

αxy < 0, αyx < 0.

That is, in order to have a stable coexistence equilibrium, we need to require

for both species to exhibit less suppression on the other species than on

themselves. In other words, the degree of intra-specific competition needs

to be greater than the degree of inter-specific competition.

All these cases can be represented graphically by drawing phase por-

traits, which show the direction of trajectories in the (x, y) space at each

point (x, y), see figure 5.1. There are four logical cases. If both αxy and

αyx are greater than one, then the long-term behavior of the system is de-

termined by the initial conditions. Either species one or species two will

dominate, and the other one will go extinct, see figure 5.1(a). This situation

when two equilibria are simultaneously stable is called bistability. If one

of the coefficients αxy, αyx is greater than 1 and the other one is smaller

than 1, then in the long run, only one of the species will survive, and the

other one will go extinct, resulting in competitive exclusion, figure 5.1(b,c).

Finally, if both coefficients αxy and αyx are smaller than 1, we have a stable

coexistence of an internal equilibrium, Sxy, figure 5.1(d).

5.2 Two-species dynamics: the axiomatic approach

System (5.1-5.2) presents a particular model of the growth rate of the two

species. There, the growth rate of species one is given by rx[1 − (x +

αyxy)/K], and the growth rate of species two is given by ry [1 − (y +

αxyx)/K]. When x ≪ K and αyxy ≪ K, species one grows nearly expo-

nentially with a constant rate rx (a similar statement can be made about

the growth of species two). For larger values of x and y, the growth slows

down because of the crowding effect. Usually, while the verbal description

holds true, it is not precisely known in what way the growth slows down. In

other words, the functional form describing the growth rate of species is un-

known. Can we still say anything about the dynamics, without specifying

the growth terms?

This question brings us to an axiomatic modeling approach, where in-

stead of studying specific equations, we will spell out the biological assump-

tions and try to derive the information about the system’s behavior without

using specific, often arbitrary, functional forms.

Let us assume that we want to describe a growth of two interacting

species, which inhibit each other’s (and their own) growth as their abun-
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Fig. 5.1 The competition dynamics in a two-species system. Stable equilibria are
marked by black circles, and unstable one by gray circles. (a) Coexistence of two stable
exclusion equilibria, αxy = 1.5, αyx = 1.3. (b) Only species 1 survives: αxy = 1.5,
αyx = 0.7. (c) Only species 2 survives: αxy = 0.8, αyx = 1.3. (d) Stable coexistence of
the two species: αxy = 0.8, αyx = 0.7.

dances increase. We will ignore spatial effects and stochasticity, and de-

scribe the system as two ODEs:

ẋ = rxxF (x, y), (5.8)

ẏ = ryyG(x, y), (5.9)

where

F (0, 0) = G(0, 0) = 1,

such that rx and ry describe the growth rate of the species at very low
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levels. To incorporate the phenomenon of crowding, we must assume that

∂F

∂x
≤ 0,

∂F

∂y
≤ 0,

∂G

∂x
≤ 0,

∂G

∂y
≤ 0. (5.10)

The functions F (x, y) and G(x, y) represent the net growth rate of the two

species. They can be thought of as a balance between divisions and deaths.

If the division rate is higher than the death rate, the corresponding net

growth function is positive. If the death rate is higher than the division

rate, the corresponding function is negative. Our assumption is that when

the space becomes too crowded, the death rate increases, and/or division

rate decreases, eventually tipping the balance such that the net growth rate

becomes negative. This means that when x and y are large enough, the

functions F (x, y) and G(x, y) become negative.

We will formulate this mathematically and graphically in the following

way, see figure 5.2. The quadrant x ≥ 0, y ≥ 0 consists of two connected

regions: R+
F and R−F , such that for all (x, y) ∈ R+

F , F (x, y) > 0, and

for all (x, y) ∈ R−F , F (x, y) < 0. We have (0, 0) ∈ R+
F . We will call

the curve separating these regions CF : if (x, y) ∈ CF , then F (x, y) = 0.

In figure 5.2 the regions of positivity of function F (x, y) are denoted by

right-slanted, dashed lines.

Similarly, for the function G(x, y), the two regions are R+
G and R−G.

For all (x, y) ∈ R+
G, G(x, y) > 0, and for all (x, y) ∈ R−G, G(x, y) < 0.

We have (0, 0) ∈ R+
G. We will call the curve separating these regions CG:

if (x, y) ∈ CG, then G(x, y) = 0. In figure 5.2 the regions of positivity of

function G(x, y) are denoted by left-slanted, thick lines.

Let us assume that the two curves intersect at (at most) one point,

(x∗, y∗) ∈ CF , (x
∗, y∗) ∈ CG. In figure 5.2, only the curves in panels

(a) and (d) intersect. Let us denote by x̄ the point of intersection of the

curve CF with the x-axis, that is, (x̄, 0) ∈ CF . Similarly, (0, ȳ) ∈ CG.

Note that the values x̄ and ȳ have the meaning of the carrying capacity

of each of the species in the absence of the other one.

The possible arrangements of intersecting and non-intersecting lines

CF and CG are shown in figure 5.2. For example, in panels (a) and (b),

point x̄ belongs to the region of positivity of function G, R+
G, because it

is inside the region marked by left-slanted, thick lines. In panels (c) and

(d), x̄ is outside R+
G. Similarly, in panels (a) and (c), point ȳ is inside

region R+
F (right-slanted, dashed lines), and in panels (b) and (d) it is

outside that region.
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Fig. 5.2 The competition dynamics in an axiomatic two-species system, equations
(5.8-5.9). Stable equilibria are marked by black circles, and unstable one by gray
circles. The lines CF and CG outline the regions where F (x, y) and G(x, y) are
positive, respectively. The regions of positivity of F are marked by right-slanted,
dashed lines. The regions of positivity of G are marked by left-slanted, thick lines.
(a) Coexistence of two stable exclusion equilibria. (b) Only species 1 survives. (c)
Only species 2 survives. (d) Stable coexistence of the two species.

System (5.8-5.9) has four equilibria:

S0 = (0, 0), (5.11)

Sx = (x̄, 0), Sy = (0, ȳ), (5.12)

Sxy = (x∗, y∗), if exists. (5.13)

As in Section 5.1, the first fixed point corresponds to the extinction of

both species, the second and the third point - to the competitive exclu-

sion outcome, and the fourth point to the coexistence of both species.

Next we demonstrate how stability analysis can be performed for

these equilibria. The Jacobian of system (5.8-5.9) can be written:

J =

(

rx
(

F + x∂F
∂x

)

rxx
∂F
∂y

ryy
∂G
∂x ry

(

G+ y ∂G
∂y

)

)

.
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For point S0, equation (5.11), we have

J =

(

rx 0

0 ry

)

,

and thus the extinction equilibrium is always unstable.

For point Sx, equation (5.12), we have

J =

(

rxx̄
∂F
∂x |(x̄,0) rxx̄∂F

∂y |(x̄,0)
0 ryG(x̄, 0)

)

.

The first eigenvalue, rxx̄∂F/∂x|(x̄,0) ≤ 0 because of condition (5.10).

The second eigenvalue has the same sign as G(x̄, 0). As shown in figure

5.2, there are two ways in which we can arrange intersecting CF and CG

with respect to their intersections with the x-axis: either (x̄, 0) ∈ R+
G or

(x̄, 0) ∈ R−G. The equilibrium Sx is stable in the latter case, panels (a,b),

and it is unstable in panels (c,d). We can see that the first species can

drive the second one extinct in the long run if G(x̄, 0) < 0. This latter

condition implies that there is a region in the space (x, y) where y is low,

and

G(x, y) < F (x, y),

that is, species x exhibits a larger crowding effect on the y species than

on itself.

A similar argument leads to the conclusion that point Sy is stable as

long as F (0, ȳ) < 0. This point is stable in panels (a,c) and unstable in

panels (b,d).

Finally, we consider the stability of the internal equilibrium Sxy =

(x∗, y∗), equation (5.13). The Jacobian is given by

J =

(

rxx
∂F
∂x rxx

∂F
∂y

ryy
∂G
∂x ryy

∂G
∂y

)

.

The characteristic polynomial is given by equation (5.6) with

b = −(rxx
∗Fx + ryy

∗Gy), c = rxx
∗Fxryy

∗Gy − rxx
∗Fyryy

∗Gx,

where we denoted by Fx, Fy, etc. the partial derivatives of the func-

tions F and G evaluated at equilibrium Sxy. Conditions (5.7) must be

satisfied for stability of the coexistence equilibrium. Both conditions are

equivalent to

FxGy > FyGx.
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The latter inequality has a transparent biological meaning. The two

multipliers on the left characterize the effect each species exhibits on

itself. The multipliers on the right measure the effect of each species

on the other species. Thus the condition for stability of the coexistence

equilibrium states that each of the species must suppress itself more

than it suppresses the other species. The internal equilibrium is stable

in figure 5.2(d) and it is unstable in figure 5.2(a).

5.3 Summary

The simple models examined here demonstrated several things. First of

all, in the presence of competition, the long-term behavior can follow dif-

ferent patterns depending on system parameters. For instance, one species

can outcompete the other driving it extinct (competitive exclusion). Under

some circumstances both species may in principle be capable of outcompet-

ing the other, in which case the long-term outcome depends on the initial

conditions. Alternatively, one species can be “weaker”, such that for any

initial conditions, it will be dominated by the other species and go extinct.

Finally, both species may be able to coexist at a certain balance.

Apart from these interesting scenarios associated with a seemingly sim-

ple competition model, we also saw how universal these findings are. In-

stead of considering a specific (logistic) model of interactions, we formulated

a system based on several very general biological assumptions. We call this

approach axiomatic modeling. It was possible to show that consistent with

these assumptions, and independent of the particular shape of the interac-

tion functions, the same outcomes can be expected. The conditions defining

which outcome is expected are formulated in terms of inequalities involving

the (unknown) interaction functions. These conditions have an intuitive

interpretation. Competitive exclusion occurs if the degree of inter-specific

competitions is greater than the degree of intra-specific competition. In the

opposite case, coexistence is possible. Graphic analysis of the growth rates

of the two species (see figure 5.2) allows to identify stability properties of

the various equilibria.

The simple two-species system considered here is a stepping stone to-

ward more complex and more realistic systems describing aspects of cancer.

In Chapter 6 we use this type of description to study the competition be-

tween stable and unstable phenotypes in cancer. More details will be added
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to take account of further complexities, such as the heterogeneity within

each phenotype.

Problems

Problem 5.1. Suppose that αxy = 1 and αyx 6= 1 in system (5.1-5.2).

Perform the linear stability analysis.

Problem 5.2. Suppose that αxy = αyx = 1 in system (5.1-5.2). What kind

of interaction between the two species does such a system describe? Per-

form the linear stability analysis. Learn about the phenomenon of neutral

stability.

Problem 5.3. Perform the general analysis described in Section 5.2 by

using the specific example of system (5.1-5.2). Sketch figure 5.2 for this

example. Rederive stability conditions of the various equilibria.
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Chapter 6

Competition between genetically

stable and unstable cells

The last two chapters covered basic tumor growth dynamics. Chapter 4

described different tumor growth laws, and Chapter 5 was concerned with

competition between two different tumor cell variants. This is the sim-

plest way to capture a very important aspect of tumors: heterogeneity. In

a growing tumor, mutations give rise to different cell variants, and these

variants can often compete for limiting resources, such as space, growth

factors, and nutrients. The current chapter studies tumor heterogeneity

and complexity in more detail. In particular, we investigate the growth

and competition dynamics of different cell types that vary in their ability

to accumulate mutations. On the one hand, we consider tumor cells that

are characterized by a mutation rate similar to that in healthy cells. In

such cells, repair mechanisms are still intact. We call such cells “stable

cells”. On the other hand, we consider “mutator phenotypes” [Loeb (1991,

2001, 2011); Loeb et al. (2003); Fox et al. (2013); Kolodner et al. (2011);

Stratton et al. (2009)]. They are characterized by the lack of appropriate

repair mechanisms and can hence accumulate mutations with a faster rate

than healthy cells. As explained in Chapter 2, this phenomenon is called

genetic instability, and we term the affected cells “mutator cells” or “un-

stable cells”. We will examine the competition dynamics between stable

and unstable cells and investigate the conditions under which genetically

unstable cells enjoy a selective advantage and thus grow to become the

dominant population. While different types of genetic instability can be

distinguished [Cahill et al. (1999); Vogelstein and Kinzler (2002)], we do

not delve on these differences in this chapter; see Chapters 7, 11 for more

details. Here, we concentrate on the following trade-off.

Mutations occur when DNA becomes altered or damaged. How does

57



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 58

58 Dynamics of cancer: mathematical foundations of oncology

DNA damage influence the growth process of the cell populations? High

amounts of DNA damage have the following consequences for stable cells.

On the one hand, the intact repair system allows these cells to maintain

relatively stable genomes, because environmentally induced DNA damage

gets repaired. On the other hand, repair takes time and is usually mani-

fested in cell cycle arrest or in stalling of the replication process. Repair is

therefore costly because it slows down the overall growth of the cell pop-

ulation. Unstable cells are influenced by high levels of DNA damage

in the following way. They avoid repair and therefore do not enter cell

cycle arrest. On the other hand, they pay an alternative cost. Many mu-

tants are created, and a large proportion of the mutants are likely to be

non-viable.

With this trade-off in mind, under what conditions are stable cells ad-

vantageous, and when are unstable cells selected for? This depends on the

level of DNA damage that is occurring, and this in turn can be determined

by environmental factors. DNA damage can come from a variety of sources.

Carcinogens contained in food we eat or in the air we breathe can damage

DNA. UV radiation can break DNA. Chemotherapeutic agents can lead to

various forms of DNA damage. Most importantly perhaps, aging leads to

an increased amount of DNA damage. This is because metabolic activi-

ties produce reactive oxygen species which are toxic for our genome [Hasty

et al. (2003); Campisi and Vijg (2009); Lim and Campisi (2001); Campisi

and Warner (2001); Jackson et al. (1998)].

This chapter presents a mathematical model to investigate whether and

how DNA damage can influence the growth processes of stable and unstable

cells. This is done by examining the competition dynamics between stable

and unstable cells. Which cell type wins? Can an increase in the level of

DNA damage reverse the outcome of competition?

6.1 Competition dynamics

We start by exploring the competition dynamics between a stable and a

mutator cell population [Komarova and Wodarz (2003)]. Let us denote the

abundance of stable and mutator cells as S and M , respectively. The com-

petition dynamics are given by the following pair of differential equations,
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which describe the development of the cell populations over time,

Ṡ = rsS(1− u+ βǫsu) + αursS(1− ǫs)− φS, (6.1)

Ṁ = rmM(1− u+ βǫmu) + αurmM(1− ǫm)− φM. (6.2)

The model is explained graphically in figure 6.1. The cells replicate at a

rate rs or rm. These parameters reflect how often cells reproduce and die;

we will call this the intrinsic replication rate of the cells. The two cell

populations compete for a shared resource. Competition is captured in the

expressions φS and φM , where φ is defined as follows:

φ=Srs

[

1−u

(

1−βǫs−α(1−ǫs)

)]

+Mrm

[

1−u

(

1−βǫm−α(1−ǫm)

)]

.

(6.3)

During replication a genetic alteration can occur with a probability u.

We call this the DNA hit rate. DNA damage can occur both spontaneously

(most likely at low levels), or it can be induced by DNA damaging agents

which corresponds to a high value of u. If a genetic alteration has occurred,

it gets repaired with a probability ǫs or ǫm. The probability of repair is

assumed to be higher for stable cells than it is for mutators:

ǫs > ǫm.

During repair, there is cell cycle arrest, and this is captured in the parameter

β. The value of β can lie between zero and one and thus reduces the rate of

cell division (given by βr). If β = 0, the repairing cells never replicate and

this is the maximal cost. If β = 1, there is no cell cycle arrest and no cost

associated with repair. With a probability (1 − ǫs or 1 − ǫm) the genetic

alteration does not get repaired, and a mutant is generated. A mutation is

therefore the result of the occurrence of DNA damage combined with the

absence of repair. The mutant is viable with a probability α, while it is

non-viable with a probability 1−α. Therefore, the model captures both the

costs and benefits of repair: Efficient repair avoids deleterious mutations

but is associated with cell cycle arrest. Absence of efficient repair can result

in the generation of deleterious mutants, but avoids cell cycle arrest.

Note that in this first model, we assume that mutants that are created

are either non-viable (and thus do not participate in the competition dy-

namics) or neutral (and thus have the same intrinsic reproductive rate as

the wild type). We will include the possibility of advantageous and disad-

vantageous (but viable) mutants later.

Let us explore how the competition dynamics depends on the rate at

which cells acquire genetic alterations (DNA hit rate, u). In general, if
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Fig. 6.1 Schematic diagram of the model. (a) Process of cell reproduction, DNA dam-
age, repair, cell cycle arrest, mutation, and death. (b) When DNA damage is not re-
paired, the cells can accumulate mutations. In the model cancer progression corresponds
to the successive accumulation of mutations, also referred to as the mutation cascade.

two cell populations compete, the cells with the higher fitness wins. The

fitness of the cells in this model is given by rs,m[1−u[1−α+ ǫs,m(α−β)]].

Note that the quantity 1− α has the meaning of the cost of production of
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Fig. 6.2 Effect of the DNA hit rate, u, on the fitness of two cell populations. At low
DNA hit rates, the population with the higher intrinsic replication rate wins. An increase
in the DNA hit rate decreases the fitness of both cell populations. However, the degree of
fitness reduction of the population characterized by the higher intrinsic replication rate
is stronger than that of the slower population of cells. If there is a sufficient difference
in the repair rates (degrees of genetic stability) between the two cell populations (b), an
increase in the DNA hit rate can result in a reversal of the relative fitnesses, and thus
in a reversal of the outcome of competition. If the difference in repair rates between the
two cell populations is not sufficient, (a), we do not observe such a reversal. Parameter
values were chosen as follows: rs = 1; rm = 1.3; α = 0.05; β = 0.3; ǫs = 0.99. For (a)
ǫm = 0.1. For (b) ǫm = 0.9.

deleterious mutants; we will refer to it as

Cdel = 1− α.

Similarly, the quantity 1− β is the cost of cell cycle arrest,

Carr = 1− β.

In these notations, we can rewrite the expression for the fitness in a more

intuitive way,

rs,m − urs,m[Cdel + ǫs,m(Carr − Cdel)]. (6.4)

If the DNA hit rate is low (low value of u), the fitness of the cells is ap-

proximately given by their intrinsic rate of replication (rs and rm). Thus,

the cell population with the higher intrinsic replication rate has a higher

fitness than the cell population with the lower intrinsic replication rate.
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On the other hand, when the DNA hit rate, u, is increased, the fitness

depends more strongly on other parameters. In particular, the fitness of

both populations can depend on the DNA hit rate, u. Notably, an increase

in the value of u may result in a stronger decline in fitness of the cell popu-

lation with the faster intrinsic rate of replication relative to the slower cell

population (figure 6.2). Therefore, if the DNA hit rate crosses a critical

threshold, u > uc, the outcome of competition can be reversed. The value

of uc is given by

uc =
rs − rm

(rs − rm)Cdel + (rsǫs − rmǫm)(Carr − Cdel)
. (6.5)

We are interested to find out, under what circumstances reversal of com-

petition can occur. One condition required for the reversal of competition is

that the stable and mutator cells are characterized by a sufficient difference

in the repair rate (figure 6.2) which is defined as

∆ǫ ≥ |rs − rm|[(1− Cdel)(1 − ǫs) + ǫs(1− Carr)]

|Carr − Cdel|rm
. (6.6)

Further, we need to distinguish between two scenarios.

(1) In the first case we assume that the stable cells have a faster intrinsic

rate of replication than the mutator cells (i.e., rs > rm). Therefore, at

low DNA hit rates, the stable cells win. An increased DNA hit rate,

u, can shift the competition dynamics in favor of the unstable cells.

In other words, unstable cells gain a selective advantage as the DNA

hit rate becomes large. This is because the population of stable cells

frequently enters cell cycle arrest when repairing genetic damage and

this slows down the overall growth rate. For this outcome to be possible,

the following condition has to be fulfilled: The cost of cell cycle arrest,

Carr, must be greater than the cost of producing non-viable mutants,

Cdel. If this condition is not fulfilled, reversal of competition at high

DNA hit rates is not observed.

(2) In the second case we assume that the stable cells have a slower intrinsic

replication rate than the mutator cells (i.e., rs < rm). Therefore, at

low DNA hit rates, the unstable cells win. An increased DNA hit

rate, u, can shift the competition dynamics in favor of the stable cells.

In other words, a high DNA hit rate selects against genetic instability.

This is because the unstable cells produce more non-viable mutants and

this reduces the effective growth rate significantly. In contrast to the

previous scenario, this requires that the cost of producing non-viable

mutants, Cdel, must be higher than the cost of cell cycle arrest, Carr.
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If this condition is not fulfilled, reversal of competition at high DNA

hit rates is not observed.

Table 6.1 Summary of the basic competition dynamics. If the mutators
(M) have a lower intrinsic replication rate than the stable cells (S), a high
DNA hit rate can select in favor of M. If the intrinsic replication rate of M
is higher than that of S, then a high DNA hit rate can select for S.

M slower than S M faster than S

Low DNA hit rate S win M win

High DNA hit rate M win if Carr > Cdel S win if Carr < Cdel

To summarize, this analysis gives rise to the following results (Table

6.1). A high DNA hit rate, u, can reverse the outcome of competition in

favor of the cell population characterized by a slower intrinsic growth rate

if the competing populations are characterized by a sufficient difference in

their repair rates. The higher the difference in the intrinsic replication rate

of the two cell populations, the higher the difference in repair rates required

to reverse the outcome of competition. If the intrinsic replication rate of

the genetically unstable cell is slower, a high DNA hit rate can select in

favor of genetic instability. On the other hand, if the intrinsic growth rate

of the genetically unstable cell is faster, a high DNA hit rate can select

against genetic instability.

6.2 Competition dynamics and cancer evolution

6.2.1 A quasispecies model

In the previous section, we considered the competition dynamics between

stable and unstable populations of cells, assuming that they are character-

ized by different and fixed rates of replication. We further assumed that

mutations are either non-viable or neutral. However, mutations are un-

likely to be neutral, and will change the replication rate of the cells. In

other words, cells may evolve to grow either at a faster or a slower rate,

depending on the mutations generated. Here, we extend the above model

to take into account such evolutionary dynamics.

The competition problem. As before, we consider two competing cell

populations: a genetically stable population, S, and a mutator population,

M , see figure 6.1(b). We start with unaltered cells which have not accu-

mulated any mutations. They are denoted by S0 and M0, respectively.
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Both are assumed to replicate at the same rate, r0. When the cells become

damaged and this damage is not repaired, mutants are generated. If the

mutants are viable, they can continue to replicate. During these replication

events, further mutations can be accumulated if genetic alterations are not

repaired. We call the process of accumulation of mutations the mutational

cascade. Cells which have accumulated i mutations are denoted by Si and

Mi, respectively, where i = 1, . . . , n. They are assumed to replicate at a

rate ri. Stable and unstable cells differ in the rate at which they proceed

down the mutational cascade. In addition to the basic dynamics of cell

replication described in the previous section, we assume that during cell

division, mutated cells can undergo apoptosis, since oncogenic mutations

can induce apoptotic checkpoints [Seoane et al. (2002); Vogelstein et al.

(2000)]. Thus, the intrinsic replication rate of mutated cells is given by

ri(1 − a), where a denotes the probability to undergo apoptosis upon cell

division. These processes can be summarized in the following equations:

Ṡ0=R0S0(1−us)−φS0, (6.7)

Ṡi=αuRi−1Si−1(1−ǫs)+RiSi(1− us)−φSi, 1≤ i≤n−1, (6.8)

Ṡn=αuRn−1Sn−1(1−ǫs)+RnSn[1−us+αu(1−ǫs)]−φSn, (6.9)

Ṁ0=R0M0(1−um)−φM0, (6.10)

Ṁi=αuRi−1Mi−1(1−ǫm)+RiMi(1−um)−φMi, 2≤ i≤n−1, (6.11)

Ṁn=αuRn−1Mn−1(1−ǫm)+RnMn[1−um+αu(1−ǫm)]−φSn, (6.12)

ẇ=(1−α)u

[

(1−ǫs)

n
∑

i=1

RiSi+(1−ǫm)

n
∑

i=1

RiMi

]

−φw, (6.13)

where we introduced the following short hand notations: Ri is the effective

intrinsic reproductive rate, Ri = ri(1 − a) for 1 ≤ i ≤ n and R0 = r0, and

us,m are the two effective mutation rates, us,m = u(1−βǫs,m). The variable

w denotes the non-viable mutants produced by the cells. The equations are

coupled through the function φ, the average fitness, which is given by

φ = (1 − us)

n
∑

j=0

RjSj + (1− um)

n
∑

j=1

RjMj.

Solving quasispecies equations. Equations (6.7-6.13) are an example

of a quasispecies-type system, which is a well-known population dynamical

model in evolutionary biology. Quasispecies equations were first derived

for molecular evolution by [Eigen and Schuster (1979)], and since then

have found applications in many areas of research, including biochemistry,

evolution, and game theory.
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In order to analyze system (6.7-6.13), we would like to review some

of the techniques for solving quasispecies equations. Let the variable

x = (x0, x1, . . . , xn+1) satisfy the system

ẋ0 = a0x0 − φx0, (6.14)

ẋi = bixi−1 + aixi − φxi, 1 ≤ i ≤ n, (6.15)

ẋn+1 =

n
∑

i=0

cixi − φxn+1, (6.16)

where

φ = (a0 + c0)x0 +

n
∑

k=1

[(ak + ck)xk + bkxk−1].

We have
∑n+1

k=0 xk = 1. System (6.14-6.16) is nonlinear. However, the

nonlinearity can be removed by the following trick. Let us consider the

variable z = (z0, z1, . . . , zn+1) which satisfies the following system:

ż0 = a0z0, (6.17)

żi = bizi−1 + aizi, 1 ≤ i ≤ n, (6.18)

żn+1 =
n
∑

i=0

cizi. (6.19)

If we set

xi = zi/

n+1
∑

k=0

zk, 0 ≤ i ≤ n+ 1, (6.20)

then the variable x satisfies system (6.14-6.16). The general solution of

system (6.17-6.19) is given by

z(t) =

n
∑

j=0

αjv
(j)eajt + αn+1v

(n+1), (6.21)

where αj are constants determined from the initial condition, and v(j)

are eigenvectors of the appropriate triangular matrix corresponding to

the eigenvalues aj . The eigenvector v(n+1) = (0, 0, . . . , 0, 1)T corre-

sponds to the zero eigenvalue, and for the rest of the eigenvectors we

have,

v
(j)
i =











0, i < j,

1, i = j,

(−1)i−j
∏i−j

k=1
bj+k

(aj+k−aj)
, j + 1 ≤ i ≤ n.

(6.22)
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From solution (6.21) and transformation (6.20) we can see that as time

goes to infinity, the solution x(t) tends to the normalized eigenvector

corresponding to the largest of the eigenvalues a0, . . . , an.

The exact solution corresponding to the initial condition z(0) =

(1, 0, . . . , 0)T can be found. The appropriate coefficients in equation

(6.21) are

αj =

j
∏

m=1

bm
(aj − am−1)

, 0 ≤ i ≤ n.

For the ith component, we obtain,

zi(t) =

(

i
∏

k=1

bk

)

i
∑

j=0

eajt
i
∏

m=0,m 6=j

1

aj − am
, 1 ≤ i ≤ n. (6.23)
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Fig. 6.3 Simulation of mutation cascades. In the picture above, we have ai =
ai−1+2, for 1 ≤ i ≤ n and bi = ǫ. In the picture below, we have ai = ai−1+2(1+ξi)
and bi = ǫ(1 + ζi), where ξi and ζi are some random numbers drawn from a uniform
distribution between zero and one. For both pictures, n = 9, ci = 0 for all i, ǫ = 0.001
and a0 = 1.
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The short-time behavior of this quantity is given by

zi(t) =

(

i
∏

k=1

bk

)

ti, 1 ≤ i ≤ n, ajt ≪ 1 ∀j.

The expression for zn+1 can also be obtained but is slightly more

cumbersome.

Mutation cascades. Let us assume that a0 < an, and in addition we

have ai−ai−1 ∼ ai ∼ 1. Then the system exhibits the following behavior

(figure 6.3).

Starting from the “all x0” state, the fraction of type x0 goes down

steadily, and the population acquires some amount of x1. Upon reaching

a maximum, the fraction of x1 decreases and the fraction of x2 experi-

ences a “hump”, to be in turn replaced by x3, etc. The characteristic

time at which each type experiences its maximum abundance can be

estimated if we replace the expressions for zj(t) in (6.23) by the leading

term, i.e., the term which has the largest exponent, so that

zi(t) ≈
(

i
∏

m=1

bm
ai − am−1

)

eait.

Then type i is at its maximum near

t ≈ ti =
1

ai−1 − ai

(

log
bi

ai − ai−1
+

i−2
∑

m=0

log
ai−1 − am
ai − am

)

. (6.24)

In particular, after time tn, the type xn will dominate.

Multidimensional competition dynamics. Equations (6.7-6.13)

represent two parallel mutation cascades, that is, two sets of quasis-

pecies equations, coupled via the common fitness term, φ. In order to

use the techniques developed above, let us write the equations for the

mutational cascade in a simpler form,

ż0 = a0z0, żi = bizi−1 + aizi, 1 ≤ i ≤ n, (6.25)

ż′0 = a′0z
′
0, ż′i = b′iz

′
i−1 + a′iz

′
i, 1 ≤ i ≤ n, (6.26)

żn+1 =
n
∑

k=0

(ckzk + c′kz
′
k), (6.27)
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by introducing the following obvious notations:

zi → Si, z′i → Mi, 0 ≤ i ≤ n, zn+1 → w, (6.28)

ai = Ri(1− us), a′i = Ri(1− um), 0 ≤ i ≤ n− 1, (6.29)

an = Rn[1− us + αu(1 − ǫs)], a′n = Rn[1− um + αu(1− ǫm)], (6.30)

bi = αuRi−1(1− ǫs), b′i = αuRi−1(1− ǫm), 1 ≤ i ≤ n, (6.31)

ci = (1− α)Riu(1− ǫs), c′i = (1 − α)Riu(1− ǫm), 0 ≤ i ≤ n. (6.32)

In a matrix notation, equations (6.7-6.13) read:

ż = f̂sz, ż′ = f̂mz′, (6.33)

where the fitness matrices f̂s,m are found from (6.25-6.27). The solution

of the nonlinear system can be found by re-normalizing the solution of

system (6.25-6.27), as before.

Fitness landscape. In order to analyze the dynamics of system (6.7-6.13),

we have to make assumptions on the fitness landscape for the consecutive

mutants (figure 6.4).

Since we are interested in cancer progression, we assume that the intrin-

sic rate of cell division of the consecutive mutants, ri, increases (ri+1 > ri).

Such mutations could correspond to alterations in oncogenes or tumor sup-

pressor genes. Because an accumulation of mutations cannot result in an

infinite increase in the division rate of cells, we assume that the division

rate plateaus. Once the cells have accumulated n mutations, we assume

that further viable mutants are neutral because the division rate cannot

be increased further. (This end stage of the mutational cascade is thus

mathematically identical to the simple model discussed in the previous sec-

tion.) While we assume that the consecutive mutants can divide faster,

they can also carry a disadvantage: the mutations can be recognized by

the appropriate checkpoints which induce apoptosis. With this in mind, we

will consider two basic types of fitness landscapes. If r0 > rn(1 − a), the

intrinsic growth rate of the mutated cells, Si and Mi, will be less than that

of the unaltered cells, S0 and M0 (figure 6.4). While the mutations allow

the cells to divide more often, the mutated cells are killed at a fast rate by

apoptosis upon cell division. This scenario corresponds to the presence of

efficient apoptotic mechanisms in cells. On the other hand, if r0 < rn(1−a),

the accumulation of mutations will eventually result in an intrinsic growth

rate which is larger than that of unaltered cells (figure 6.4). While mutated
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Fig. 6.4 Fitness landscape as a result of the successive accumulation of mutations by
cells. We distinguish two scenarios. (a) If apoptosis is intact, accumulation of mutations
results in a lower fitness compared to unaltered cells. Even if the mutations result in an
increased rate of cell division, the induction of apoptosis in mutated cells prevents them
from attaining a higher fitness than the unaltered cells. (b) If apoptosis is impaired, the
accumulation of successive mutations will eventually result in a higher fitness compared
to unaltered cells. The exact shapes of the curves are not essential. What is important is

whether the mutants will eventually have a lower (a) or higher (b) intrinsic reproductive
rate.

cells can still undergo apoptosis upon cell division, apoptosis is not strong

enough to prevent an increase in the intrinsic growth rate. Hence, this sce-

nario corresponds to impaired apoptosis in cells. In the following sections,

we study the competition dynamics between stable and mutator cells in an

evolutionary setting, assuming the presence of relatively strong and weak

apoptotic responses.

Time scale separation. In what follows we will assume that the dynamics

of the two cell populations happen on two different time scales. In other

words, we require that the stable population is still in the state S0 while

the unstable population has already produced all mutants and reached a

quasistationary state.

The typical time, ts1, of change for the type S0 is found from equation

(6.24). Similarly, we can find the time, tmn , it takes to reach the state Mn.

It is given by the same equation (6.24) except the coefficients in the nth

equation must be replaced by the corresponding coefficients with primes.

The mapping to the biological parameters is found from (6.28-6.32). Note
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that using formula (6.24) has its restrictions, and in the case where it is not

applicable, one can directly calculate tmn by estimating the time it takes for

zn to reach its maximum (see formula (6.23)). The inequality

ts1 ≪ tmn (6.34)

guarantees that by the time the unstable population has traveled down the

mutation cascade to approach its quasistationary distribution, the stable

population of cells is still dominated by S0.

The conditions for the reversal of competition. In the multidi-

mensional competition problem, equations (6.33), the outcome is deter-

mined by the largest eigenvalue of the fitness matrices, f̂s and f̂m. As

time goes by, the unstable cell population will approach its stationary

distribution (defined by the eigenvector corresponding to the principal

eigenvalue), and its fitness is given by the eigenvalue. Because of the

time-scale separation, we will assume that during this time, the stable

population remains largely at the state S0. Thus the “winner” of the

competition is defined by comparing the two eigenvalues, a0 and a′n, see
equations (6.29-6.30).

Let us define the value of u, uc, so that for u = uc, we have a0 = a′n.
As the hit rate passes through uc, the result of the competition reverses.

We have

uc =
R0 −Rn

R0 −Rn − β(R0ǫs −Rnǫm) +Rnα(1 − ǫm)
.

In order to determine whether competition reversal takes place for

each scenario (see below), we need to make sure that the following con-

dition is satisfied:

0 ≤ uc ≤ 1.

In the next sections we will examine different parameter regimes and

conclude that competition reversal may or may not take place; we de-

rive the exact conditions for this. In what follows, we will use several

definitions. Let us set

∆ǫ = ǫs − ǫm,

and denote by ǭs the following threshold value of ǫs,

ǭs =
αRn

βR0 +Rn(α− β)
. (6.35)
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This quantity is defined from setting uc = 1 and ∆ǫ = 0. Finally,

we define the critical gap, ∆∗ǫ, between the two values of ǫ, by setting

uc = 1:

∆∗ǫ = ǫs

[

1 +
βR0

(α− β)Rn

]

− α

α− β
.

Now, let us go back to the two types of fitness landscape, figure 6.4,

and examine the scenarios of strong and weak apoptosis separately.

6.2.2 Strong apoptosis

Here we assume that the apoptotic mechanisms in cells are strong. That

is, r0 > rn(1− a) (figure 6.4(a)). This means that although the successive

mutations will allow the cell to divide faster, the induction of apoptosis

ensures that the intrinsic growth rate of the mutants is lower compared to

unaltered cells. Note that it is not necessary to assume that oncogenic mu-

tations allow cells to divide faster. Indeed, some cancer cells may progress

more slowly through the cell cycle than healthy cells. The important as-

sumption is that accumulation of mutations lowers the intrinsic growth rate

of the cells.

In this scenario, the intrinsic growth rate of the stable cells, S, is higher

than that of the unstable cells, M . The reason is as follows. The population

of stable cells, S, has efficient repair mechanisms. Thus, most cells will

remain at the unaltered stage, S0. Because population M is unstable, a

higher fraction of this cell population will contain mutations. Since these

mutations impair reproduction (e.g. because of induction of apoptosis),

the intrinsic growth rate of the unstable cells, M , is lower than that of the

stable population, S.

At low DNA hit rates, the cells with the faster intrinsic growth rate win

the competition. Thus, at low DNA hit rates (low value of u), the stable

phenotype, S, wins (figure 6.5(a)). On the other hand, at higher DNA

hit rates (high value of u), the outcome of competition can be reversed

because frequent cell cycle arrest significantly reduces growth. That is, the

genetically unstable cells, M , may win and take over the population. As

in the simple model discussed above, it requires that the cost of cell cycle

arrest is higher than the cost associated with the generation of deleterious

mutants (i.e., Carr > Cdel). Furthermore, reversal of competition may

require that the repair rate of stable cells (ǫs) lies below a threshold, and
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that there is a sufficient difference in the repair rate between stable and

unstable cells.

As the population of unstable cells wins, they accumulate mutations.

Even if the sequential mutants are disadvantageous because of the induc-

tion of apoptosis, the high mutation rate pushes the population down the

mutational cascade. While all variants, Mi, persist, the distribution of the

variants becomes skewed toward Mn as the DNA hit rate is increased.

These results can be obtained by a very simple analysis of the relative

values of the relevant eigenvectors, see (6.29-6.30), and by finding con-

ditions under which reversal can occur. In mathematical terms, strong

apoptosis corresponds to the situation where

R0 > Rn.

From definition (6.35), 0 ≤ ǭs ≤ 1. Also, we will use the fact that ∆∗ǫ
grows with ǫs, so that ∆∗ǫ > 0 for ǫs > ǭs and ∆∗ǫ < 0 for ǫs < ǭs. We

can distinguish the following two cases:

• If β > α (which is the same as Carr < Cdel), we have an > a′n,
which means that Mn never corresponds to the largest eigenvalue.

This means that the stable cells always win and the competition

reversal does not happen. (Technically speaking, the reversal hap-

pens between a0 and an rather than a0 and a′n.)
• If β < α (which is the same as Carr > Cdel), then competition

reversal will happen if the following condition is satisfied: ∆ǫ > ∆∗ǫ
(this is because the function uc decays with ∆ǫ). We also observe

that in this case, ∆∗ǫ is a growing function of ǫs, which reaches zero

at ǫs = ǭ, with 0 ≤ ǭ ≤ 1. We have two subcases:

(a) For ǫs < ǭs, we have ∆
∗ǫ < 0, and the reversal happens for any

difference between ǫs and ǫm.

(b) For ǫs > ǭs, ∆
∗ǫ > 0, and we need a finite gap between ǫs and

ǫm, ∆ǫ > ∆∗ǫ. We also have to make sure that ∆∗ǫ < ǫs, which

gives the condition

ǫs <
αRn

βR0
.

The biological interpretation of these conditions was given in the begin-

ning of this section.
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Fig. 6.5 DNA damage and the selection of genetic instability. (a) Cells have intact
apoptotic responses. At low DNA hit rates stability wins. At high DNA hit rates
instability wins. (b) Cells have impaired apoptotic responses. At low DNA hit rates,
instability wins. At high DNA hit rates stability wins. Parameter values were chosen
as follows: ǫs = 0.99; ǫm = 0.1; β = 0.2. For (a) α = 0.6l a = 0.5. For (b) α = 0.1;
a = 0.2. Low DNA hit rate corresponds to u = 0.07, and high DNA hit rate corresponds
to u = 0.7. Fitness landscapes for successive mutants are given in figure 6.4.

The model tells us that in the presence of intact apoptotic mechanisms,

a high DNA hit rate selects in favor of genetic instability, while the tissue

remains stable and unaltered if the DNA hit rate is low. These results have

important practical implications. A high DNA hit rate can be brought

about both by the presence of carcinogens, or by chemotherapy. Therefore,

if healthy tissue is exposed to carcinogens, we expect genetic instability to
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rapidly emerge and this can give rise to cancer progression. In the same

way, chemotherapy can select for genetic instability in otherwise healthy

tissue and thus induce new tumors as a side effect.

6.2.3 Weak apoptosis

Now we assume that the apoptotic mechanisms in cells are impaired. That

is, r0 < rN (1 − a), figure 6.4(b). This means that accumulation of muta-

tions will eventually result in the generation of variants which have a faster

intrinsic growth rate compared to unaltered cells. Thus, in principle, both

populations are expected to eventually evolve toward the accumulation of

mutations and progression to cancer. Hence, both stable and unstable can-

cers can be observed. However, as we noted before, we assume that these

processes occur over different time scales for the two populations of cells,

condition (6.34).

If the stable and unstable populations compete, the unstable population

will have a higher intrinsic growth rate than the stable population (because

the induction of apoptosis in response to mutation is inefficient). Therefore,

at low DNA hit rates, u, the mutator phenotype, M , wins the competition

(figure 6.5). If the DNA hit rate is increased, the competition can be

reversed in favor of the stable cell population, S. This requires that the cost

of generating deleterious mutants be greater than the cost of cell cycle arrest

(i.e., Cdel > Carr). Furthermore, a sufficient difference in the repair rate of

stable and unstable cells is required to reverse the outcome of competition.

Here is the reasoning behind these conclusions. For weak apoptosis, we

have

R0 < Rn.

In this case, if (Rn − R0)/Rn < α/β, then ǭs > 1. If on the other hand

(Rn −R0)/Rn > α/β, then ǭs < 0. We have the following two cases:

• If β > α, then the function uc decays with ∆ǫ, so for reversal to

occur we need to have ∆ǫ > ∆∗ǫ.

(a) For (Rn−R0)/Rn < α/β, the function ∆∗ǫ decays with ǫs and

crosses zero at ǫs = ǭ > 1. This means that for all ǫs, ∆
∗ǫ > 0.

We need to require that ∆∗ǫ < ǫs, which gives the condition

ǫs >
αRn

βR0
.
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If this condition holds then the reversal occurs, as long as ∆ǫ >

∆∗ǫ; that is, the difference in repair rates must be larger than

the critical value.

(b) For (Rn − R0)/Rn > α/β, the function ∆∗ǫ grows with ǫs
and crosses zero at ǫs = ǭ < 0. This means that for all ǫs,

∆∗ǫ > 0. We need to require that ∆∗ǫ < ǫs, which gives again

the condition

ǫs >
αRn

βR0
.

If this condition holds then the reversal occurs as long as ∆ǫ >

∆∗ǫ.

• If β < α, then the function uc grows with ∆ǫ, so we need to have

∆ǫ < ∆∗ǫ.

(a) Condition (Rn − R0)/Rn > α/β is impossible to satisfy, so

reversal does not happen in this case.

(b) If (Rn − R0)/Rn < α/β then ∆∗ǫ is a growing function of ǫs
which crosses zero at ǫs = ǭ > 1. This means that for all ǫs,

∆∗ǫ < 0, and reversal is again impossible.

Our results have practical implications. If cells develop a mutation

resulting in impaired apoptotic responses, then genetic instability has a se-

lective advantage if the DNA hit rate is low. Therefore, even if there is no

exposure to carcinogens, a chance loss of apoptosis can result in the out-

growth of genetic instability and thus progression of cancer. On the other

hand, if there is a growing cancer with impaired apoptotic responses, our

results suggest that an elevation of the DNA hit rate by chemotherapeutic

agents can reverse the relative fitness in favor of stable cells, and this can

result in cancer reduction or slower progression.

A note of clarification: in the above arguments we assumed for simplicity

that apoptosis is inefficient in both the unstable and the stable cells. The

arguments about chemotherapy, however, remain robust even if we assume

that only the mutator phenotypes have impaired apoptosis, while the stable

and healthy population of cells has intact apoptotic responses. The reason

is that over the time frame considered, the population of stable cells remains

genetically unaltered (i.e., at stage S0). Since the cells are unaltered, the

presence or absence of apoptosis does not change the dynamics.
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6.3 Overview of the insights obtained so far

The equations have examined the competition dynamics between geneti-

cally stable and unstable populations of cells. They identified under which

circumstances genetic instability is selected for or against in the context

of cancer progression. In particular, they examined the role of the rate at

which DNA is damaged.

Table 6.2 Summary of the results gained from the model which takes into
account evolution and mutation cascades. If apoptosis is intact, mutators
(M) have a lower intrinsic growth rate than stable cells (S). Hence, a high
DNA hit rate can select for M. If apoptosis is impaired, M have a higher
overall intrinsic growth rate than S. Thus, a high DNA hit rate can select in
favor of S.

Apoptosis intact Apoptosis impaired

Low DNA hit rate S win M win

High DNA hit rate M win if Carr > Cdel S win if Carr < Cdel

A change in the DNA hit rate can reverse the outcome of competition.

In the simplest setting, an increase in the DNA hit rate can switch the

outcome of competition in favor of cells characterized by a slower intrinsic

growth rate. This requires a sufficient difference in the repair rate between

the stable and mutator cells, and a condition on the relative values of costs

associated with cell cycle arrest and creation of deleterious mutants. The

conditions under which genetic instability is selected for depends on the

efficacy of apoptosis. In terms of cancer evolution and progression, this

gave rise to the following insights (Table 6.2).

• If apoptosis is strong, accumulation of mutations by unstable cells slows

down the intrinsic growth rate because of the frequent induction of cell

death. Thus, stable cells have a higher intrinsic growth rate than mu-

tators. Consequently, at low DNA hit rates, the stable cells win. The

presence of high DNA hit rates can, however, result in the selection

and emergence of the genetically unstable cells. This occurs if the

cost of cell cycle arrest upon repair is higher than the cost of creat-

ing deleterious mutations. These dynamics can have implications for

conditions, in which inflammatory processes increase the amount of

DNA damage and lead to the prevalence of genetically unstable cells

in otherwise healthy tissue. This in turn can predispose the tissue to

the development of cancer. An example of this is ulcerative colitis
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[Rabinovitch et al. (1999)]. These notions are further supported by

data demonstrating that increased inflammation and DNA damage can

provide an advantage for unstable cells [Breivik (2001); Bardelli et al.

(2001)].

• On the other hand, if apoptotic responses are impaired, accumulation

of mutations by unstable cells will not result in frequent cell death upon

division. Therefore, the intrinsic growth rate of unstable cells can be

higher than that of stable cells if adaptive mutations are acquired. In

this case, genetic instability is expected to emerge at low DNA hit rates.

At high DNA hit rates, however, genetic instability can be selected

against and mutators can go extinct. This occurs if the cost of creating

deleterious mutations is higher than the cost of cell cycle arrest. These

results have implications for chemotherapies, which is explored in the

next section.

6.4 Can competition be reversed by chemotherapy?

The results derived in this chapter have implications for the use of

chemotherapy (figure 6.6). Chemotherapy essentially increases the degree

of DNA damage. Therefore, it can be used to reverse the relative fitness

of stable and unstable cells such that unstable cells are excluded (figure

6.6). This can drive progressing cancer cells extinct and result in the per-

sistence of stable cells. These may either be healthy cells or less aggressive

and slowly progressing tumor cells. In order to achieve this outcome, there

needs to be a sufficient difference in the repair rate between stable and

unstable cells. If this is not the case, therapy can merely slow down cancer

progression.

Since in this scenario, chemotherapy acts by modulating the competition

between stable and unstable cells, it is not a requirement that every last cell

is killed by the drugs. Selection and competition will make sure that the

unstable cancer cells are driven extinct. This argument, however, requires

that there is an element of competition between unstable and stable cells.

Whether and under which circumstances this is the case remains to be

determined.

This is a different mechanism of action compared to the traditional view

which assumes that chemotherapy only acts by killing dividing cells. For

chemotherapy to reverse the fitness of stable and unstable cells, two condi-

tions are required. (i) There needs to be a sufficient difference in the repair
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Fig. 6.6 Simulation of chemotherapy, modeled by an increase in the DNA hit rate, u.
We start with a situation where cells which are unstable and have impaired apoptosis
spontaneously give rise to cancer growth and progression. (a) If there is a large difference
in repair rate between stable and unstable cells, therapy can exclude the unstable cells.
(b) If there is a smaller difference between stable and unstable cells, then therapy fails to

exclude instability. Parameters were chosen as follows: ǫs = 0.99; β = 0.2; α = 0.1. We
assume that the degree of apoptosis differs between stable and unstable cells. Stable cells
have intact apoptosis (a = 0.5), while unstable cells have impaired apoptosis (a = 0.2).
For (a) ǫm = 0.1. For (b) ǫm = 0.4. Low DNA hit rate corresponds to u = 0.07, and
high DNA hit rate corresponds to u = 0.8. Fitness landscapes for successive mutants
are given in figure 6.4.

rate between stable and unstable cells. The higher the replication rate of

unstable cells relative to stable cells, the higher this difference in the repair

rate required to achieve success. Therefore, contrary to traditional views,

a faster rate of cell division of cancerous unstable cells renders successful

treatment more difficult in this scenario. (ii) The cost of generating lethal
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mutants in unstable cells must be higher than the cost of cell cycle arrest

in stable cells. If this is not the case, it does not pay to retain repair mech-

anisms, and the fitness of unstable cells can never be reversed. In this case,

treatment has a higher negative impact on stable than on unstable cells,

and the mutators are resistant.

6.5 Summary

This chapter explored how the environment, and in particular the muta-

tion rate, can influence the relative fitness of genetically stable and un-

stable cells. One of the core results was that an increase in the mutation

rate can lead to a reversal of the competition outcome. Depending on

the exact conditions and circumstances, an increased hit rate can either

lead to a selective advantage or disadvantage of genetically unstable cells.

As mentioned in the previous section, this can be utilized by chemother-

apy, where a treatment-induced increase in the rate at which genomes get

altered can lead to the selection against unstable cells that might be re-

sponsible for driving pathogenesis. This highlights the clinical importance

of understanding in vivo ecological processes that are inherent in the popu-

lation dynamics of cancer cells. Rather than directly killing pathogenic cell

lines, it might be more effective to create environmental conditions that se-

lect against those cell lines and thus indirectly lead to their disappearance.

This concept goes beyond the competition between genetically stable and

unstable cells. Environmental conditions are likely crucial with respect to

selection of several different cellular characteristics that drive progression,

and therapy can be aimed at changing these environmental conditions such

that those pathogenic cell lines become disadvantageous.

Problems

Problem 6.1. Research project. Learn about quasispecies equations, the

first derivation by M. Eigen and P. Schuster [Eigen and Schuster (1979)],

and different ways in which they are used in various branches of quantitative

biology.

Problem 6.2. Research project. Learn about the concept of “mutator

phenotype” and the work of L. Loeb who introduced this concept (see refer-

ences in this chapter).
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Problem 6.3. Show that equations (6.1-6.2) add up to zero under the

condition S +M = 1. Hint: use expressions (6.3) for the average fitness,

φ.

Problem 6.4. Derive formula (6.6) by first finding the expression uc for

which the values for cell fitness defined in (6.4) are equal to each other

(this is given in equation (6.5)), and then requiring that requiring that

0 ≤ uc ≤ 1.

Problem 6.5. Show that equations (6.14-6.16) add up to zero under the

condition
∑n+1

k=0 xk = 1.

Problem 6.6. Show that quantity (6.20) satisfies system (6.14-6.16).

Problem 6.7. Numerical project. Consider the following version of

quasispecies equations:

ẋ0 = a0(1 − u)x0 − φx0, (6.36)

ẋi = ai−1uxi−1 + aixi(1 − u)− φxi, 1 ≤ i ≤ n− 1, (6.37)

ẋn = an−1uxn−1 + anxn − φxn, (6.38)

where

φ =

n
∑

i=0

aixi.

(a) Show that the ODEs add up to zero under the condition
∑n

i=0 xi = 1.

(b) Suppose that all values ai are distinct, and ak with k 6= 0 is the largest

of them: ak = maxi{ai}. Write a code to simulate the behavior of system

(6.36-6.38) starting with the initial condition x0 = 1, xi = 0 for 1 ≤ i ≤ n.

What is the long-term behavior? (c) Use the transformation to the variable

z as in equation (6.20) to solve the system analytically and confirm the

numerical results. (d) What happens if there are two values, ak = am with

m 6= k such that ak = maxi{ai} (that is, two phenotypes have a maximum

fitness)?
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Chapter 7

Chromosomal instability and tumor

growth

Chapter 6 considered competition dynamics between genetically stable and

unstable cells, and examined the conditions that can lead to the selection

of genetically unstable cell populations in vivo. Unstable cells, in turn, can

accumulate selfish, advantageous mutations, that allow them to undergo

uncontrolled clonal expansion, thus forming a tumor. This chapter inves-

tigates the effect of genetic instability on tumor formation in more detail,

taking into account both the required mutant generation and the clonal

expansion of the mutated cell population.

As reviewed in Chapter 2, genomic instability can be divided into two

broad categories: small scale mutations (such as MSI) and gross chromoso-

mal abnormalities (such as CIN). After a mutant cell has been generated, it

needs to give rise to clonal expansion for the cancer to be established. If the

instability induces the generation of subtle sequence changes, the process

of clonal expansion is not likely to be influenced to a significant degree. If

the instability induces destructive genomic changes, such as imbalances in

genes and chromosome numbers and loss-of-heterozygocity (LOH) events,

then clonal expansion can be compromised significantly. Although the cells

can undergo uncontrolled growth, genome destruction can result in fre-

quent cell death and this could counteract the establishment of a cancer.

Therefore, while CIN can speed up the generation of a mutated cell with

an inactivated tumor suppressor gene, it might impair the growth of these

cells and slow down clonal expansion. In the light of this tradeoff, what is

the overall effect of CIN on the establishment and progression of a cancer?

This is the subject of the current chapter.

81



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 82

82 Dynamics of cancer: mathematical foundations of oncology

7.1 The effect of chromosome loss on the generation of

cancer

We study the role of chromosomal instability in the context of the inacti-

vation of tumor suppressor genes (TSG). We will concentrate on a specific

event, namely, the LOH event [Thiagalingam et al. (2001); Sotillo et al.

(2009); Janssen and Medema (2013); Burrell et al. (2013)]. Other fea-

tures of CIN such as mitotic recombination or chromosome duplication,

may contribute to an activation of oncogenes or gene dosage effects [Luo

et al. (2000); Tischfield and Shao (2003); Wijnhoven et al. (2001)], but such

events cannot turn off a TSG. Thus, focusing on cancers with a TSG allows

us to isolate one feature of CIN, that is, an increased frequency of LOH,

and identify its role in cancer progression.

2u

u

p
Inactivating
mutation

chromosome
Loss of

Inactivating
mutation

expansion
capable of clonal

Normal cell

TSP   cell 

TSP   cell
+/−

−/−

Fig. 7.1 Two mechanisms of a TSG inactivation. First, one allele of the TSG must be

inactivated by a small-scale event, e.g. a point mutation. Then, there are two possibil-
ities. Either the second allele experiences another small-scale hit (the phenotype with

two inactivated copies of the gene is represented by a black circle). Or, the whole chro-
mosome containing the second, functional copy of the TSG could be lost (this phenotype

is represented by a black semicircle).

Let us start our quantitative study by identifying exactly how LOH

may influence the inactivation of a TSG, see figure 7.1 [Komarova and

Wodarz (2004)], see also Chapter 11. In a normal cell (an empty circle),

both maternal and paternal chromosomes are present, and both alleles of

the TSG are intact. An inactivating mutation can occur which turns off

one of the alleles of the TSG (this is represented by a half of the circle
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turning black). The corresponding phenotype is denoted by TSG+/−. For
“classical” TSG’s there is no noticeable change in function of such cells;

both alleles must be inactivated before a phenotypic change is observed.

This second event, the inactivation of the remaining allele of the TSG, can

happen in two ways. First of all, another inactivating small-scale event

could occur (both halves of the circle become black). Alternatively, the

second allele can be lost by a loss-of-chromosome event (this is depicted by

means of a “missing” half of a circle). This will unmask the mutated copy

of the TSG and lead to a phenotypic change in the cell.

Normal
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First TSP
−/−

slow step

Rate 2u, Rate u,

slow step
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(a) Stable cells, p=0
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(b) Unstable cells, p>>u

Fig. 7.2 TSG inactivation and clonal expansion. (a) In the case where chromosome
losses occur rarely (p = 0), we have the following sequence of events: first, a mutant
appears which has one copy of the TSG inactivated. After a while, a second mutation
may occur producing a cell with two inactivated copies of the TSG. This leads to clonal
expansion. (b) If losses of chromosomes are possible, then one of the progeny of the first
TSG+/− cell may lose the chromosome containing the functional copy of the TSG, thus
giving rise to cells with one inactivated TSG copy and one “missing” TSG copy. Such
cells enter a phase of clonal expansion, but this happens at a slower rate compared to (a)
because of frequent chromosome loss events resulting in dead or non-reproductive cells.
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Let us denote the rate at which small-scale genetic events happen by u

(per cell division per gene), and the rate of LOH by p (per cell division per

chromosome). The basic rate at which such mutation events occur in stable

cells has been estimated to be approximately u = 10−7 per cell division per

gene. The inactivation of the first allele of the TSG will happen with the

rate 2u, because there are two alleles. The inactivation of the second allele

can happen with the rate u by a mutation, and with the rate p by loss of

chromosome, see figure 7.2. Let us first suppose that the rate of chromosome

loss is zero, p = 0, figure 7.2(a); a TSG can only be inactivated by two

consecutive, independent (small scale) genetic events. This is possible, but

the probability of such a double mutation is very low. Next, let us consider

the opposite extreme, where the rate of LOH is very high, such that p ≫ u,

figure 7.2(b). Now, the second inactivation event happens with probability

p, that is, it is greatly accelerated compared to the case p = 0. However, the

price that the cell lineage has to pay is a very high rate at which non-viable

mutants are produced. This will considerably slow down the expansion of

the TSG-negative phenotype.

Therefore, there must be an intermediate, optimal (for cancer!) value of

the rate of chromosome loss, for which wild-type cells have a high chance of

inactivating the TSG, without having to pay too high a price in non-viable

or non-reproductive mutants.

7.2 Calculating the optimal rate of chromosome loss

The model set-up. We model epithelial tissue organized into compart-

ments. In the simplest case, there is one stem cell per compartment. For

example, in colon this would correspond to crypts with a stem cell situ-

ated at the base of each crypt. Stem cells divide asymmetrically producing

one (immortal) stem cell and one differentiated cell. Here we concentrate

on the dynamics of the stem cells. Each division event is equivalent to a

replacement of the old stem cell with a copy of itself. Upon division of a

stem cell, the immortal daughter cell might (i) acquire a silencing mutation

in one of its alleles of the APC gene with probability u per cell division, or

(ii) lose one of its chromosomes, with probability p per cell per cell division

per chromosome. Once both copies of the TSG have been inactivated, the

cell will be able to escape homeostatic control and create a growing clone.

We will describe the clonal expansion by a deterministic model.
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Uncertainties still exist about the exact cellular origins of cancer, see

Chapter 12 for a discussion. According to the stem cell theory, it is the

stem cells which are at risk. The de-differentiation theory suggests that

partially differentiated cells could be targets for cancerous mutations. If

we do not want to restrict ourselves to one or the other theory, we can

solve the problem of optimization for a number of different assumptions.

According to one scenario, cancer is initiated in adult stem cells. There

are one or several stem cells per compartment, such as the crypt of the

colon. Alternatively, we can assume that a healthy compartment contains

a population of partially differentiated cells, which are subject to a constant

turnover, but still maintain a constant size of the compartment. Depend-

ing on the number of cells, this can be described either with a stochastic

or a deterministic model. Again, inactivation of a TSG results in clonal

expansion. It turns out that the results remain very similar in the context

of the different assumptions.

Optimal rate of chromosome loss. Suppose that a stem cell loses a

chromosome with probability p per chromosome per cell division. First

we calculate the probability to inactivate the TSG gene by time t. The

sequence of events can be expressed by the following simple diagram,

Y0
2u - Y1

p - Y2

d0(k)

? ?

d1(k)

lose 2k

chromosomes

lose 2k − 1

chromosomes

(7.1)

Here Yi is the probability for the stem cell to have i inactivated copies of the

TSG. The first event of inactivation happens by a fine-scale genetic event

(probability u times two for two alleles), and the second event is a loss of

the chromosome with the remaining copy of the TSG gene (probability p).

The parameter k is related to the cost of chromosome loss, as explained

below.

A very important issue here is the exact cost of LOH events for the

cell and its reproductive potential. At one end of the spectrum, (a), there

is no reduction in fitness due to the loss of any other chromosomes: the

only chromosome that “counts” is the one containing the TSG. At stage

Y0, a loss of either copy damages the cell, and at stage Y1, a loss of the

chromosome with the mutated copy of the TSG is harmful, and a loss of

the other copy leads to a clonal expansion. An alternative interpretation
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of this extreme case is that while loss of a single chromosome copy would

reduce fitness, this is buffered by duplication events. At the other end of

the spectrum, (b), a loss of any chromosome results in cell death, unless it

leads to a TSG inactivation. It is safe to say that the reality is somewhere

between these extreme scenarios.

For scenario (b), we set d0(k) = 1−(1−p)2k and d1(k) = 1−(1−p)2k−1,
where k = 23 is the number of chromosomes. For scenario (a), the death

rates can be expressed by the same formulas with k = 1.

Diagram 7.1 allows us to write down the Kolmogorov forward equations

for all the probabilities, see e.g. [Karlin and Taylor (1975)]. For example,

in an infenitesimally-small time-interval, ∆t, a wild-type stem cell can

die with probability d0(k)∆t, or become mutated with probability (1 −
d0(k))2u∆t. Similarly, a stem cell containing one inactivated copy of a

TSG can die with probability d1(k)∆t, or become a double-hit mutant

with probability (1− d1(k))p∆t. Skipping the argument k of d0 and d1,

we have the following system:

Ẏ0 = [(1− d0)(1 − 2u)− 1]Y0, (7.2)

Ẏ1 = (1− d0)2uy0 + [(1− d1)(1− p)− 1]Y1, (7.3)

Ẏ2 = (1− d1)pY1, (7.4)

with the initial condition Y0(0) = 1. Note that while these equations

are valid for a single stem cell, more sophisticated methods exist for

describing stochastic dynamics of populations of cells, see Chapter 10.

We need to calculate the probability distribution of creating a TSG−/−

mutant as a function of time, which is given by Ẏ2. We have,

Ẏ2(t) =
up(e−ut − e−(p+d1)t)

p+ d1 − u
, (7.5)

where we assumed that ut ≪ 1. Once a TSG−/− cell has been produced,

it starts dividing according to some law which is (at least, initially) close

to exponential. Starting from one cell at time t = 0, by time t we will

have Zy(t) cells, with

Zy(t) = ea[1−d1(k)]t, (7.6)

where the parameter a is the growth rate of the initiated cells. The

factor [1 − d1(k)] comes from the probability for a CIN cell to produce

a non-viable mutant, which for scenario (a) only happens if only one
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particular chromosome is lost, and for scenario (b) - if any chromosome

is lost.

If we now include the mutation stage, we will need to evaluate the

convolution,

Zy(t) =

∫ t

0

ẏ2(t
′)ea(1−p)

2k−1(t−t′) dt′.

The integral yields the following law of growth:

Zy(t) =
upea(1−d1)t

a(1− d1)
,

where we assumed that for relevant times, at > 1.

Let us ask the following question: how long does it take, on average, for

a TSG−/− clone to reach a certain size? The answer will depend on all

the parameters of the system, and in particular, on the rate of chromosome

loss, p. For the reasons explained above, the waiting time will be relatively

large both for p = 0 and for very high values of p. Indeed, for very small p

the mutations that lead to a TSG inactivation will take too long, and for

very large values of p, the clonal expansion will be too slow because of the

amount of non-viable or non-reproductive cells produced. The waiting time

will have a minimum for an intermediate value of p = p∗, which we call the

optimal (for cancer) value of the rate of chromosome loss. With this value

of p, a cancer will appear and grow at the fastest rate. This approach is

equivalent to the “minimum-time-to-target” method in optimization theory.

To find an optimal value of p that maximizes the growth, we solve

Zy(t) = M for t, which gives,

T =
1

a(1− d1)
log

[

aM

u

1− d1
p

]

,

and then we minimize this as a function of p. This can be done easily if we

assume that p ≪ 1/(2k) (it will turn out that the result for p∗ satisfies this
assumption). Expanding the expression dT/dp in terms of p, we obtain the

equation for p,
1

p
= (2k − 1) log

aM

up
,

where we formally have k = 1 for scenario (a), and k = 23 for scenario (b).

Parameter dependence of the result. The result for p∗ turns out to

be amazingly robust, see Table 7.1. We can see that p∗ depends logarith-
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mically (that is, weakly), on the combination κ = aM/u. As we vary these

parameters over many decades, so that κ changes from 105 to 1020, the

result for the optimal value of p varies only slightly. Interestingly, it also

does not significantly depend on the overall fitness cost for the cell brought

about by chromosome loss. The results for scenarios (a) and (b) are pre-

sented in Table 7.1. The optimal value of p is lower in scenario (b), which

is not surprising because this case assumes a higher penalty for chromo-

some loss events. The remarkable fact is that the values of p∗ for the two

scenarios are so close to each other, and that they depend so little on the

assumptions of the model.

Table 7.1 Calculated values for the
optimal rate of chromosome loss, p∗,
for different values of the parameter,
κ, and for each of the two scenarios,
(a) and (b).

Scenario κ = 1020 κ = 105

(a) 2× 10−2 8× 10−2

(b) 5× 10−4 2× 10−3

Large initial number of cells. In order to handle the scenario where a

large number of cells are competing in a compartment, we can model the

dynamics as a deterministic quasispecies set of equations, see [Eigen and

Schuster (1979)] and also Chapter 6. Suppose that the abundance of wild-

type cells is y0, the abundance of cells with one copy of the TSG inactivated

is y1, and the abundance of double-hit mutants is y2. We have,

ẏ0 = (1 − 2u− d0)y0 − φy0, (7.7)

ẏ1 = 2uy0 + (1− u− p− d1)y1 − φy1, (7.8)

ẏ2 = (p+ u)y1 + (1− d1)y2, (7.9)

where

φ =
(1− d0)y0 + (1− d1)y1

N
.

Cells reproduce and die, and the rate of renewal is taken 1 for types y0 and

y1. In the absence of double mutants, y2, the total number of cells y0 and

y1 stays constant (that is, the sum of equations (7.7-7.9) with y2 = 0 is

zero). The optimal rate of chromosome loss in this case can be calculated

numerically, and is close to the rate p∗ found from the stochastic model.
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Experimental measurements of the rate of LOH. We can compare

these results with the value of the rate of chromosomal loss obtained by

[Lengauer et al. (1997)] in vitro for several CIN colon cancer cell lines. In

their paper, Lengauer et al. allowed cell colonies to grow from a single cell

for 25 generations, after which FISH analysis was performed on a subset of

the progeny. This allowed to count the number of individual chromosomes

in cells. The average number of chromosomal copies was calculated for

each cell line, for each chromosome, and this was compared with the mode

number, equivalent to the number of chromosome copies in the original

cell. This was the first (and only) experiment which allowed to calculate

the rate of chromosome loss and gain, as opposed to the estimates of the

frequency of various chromosomal aberrations in a given lesion/cell colony.

Two types of cancer cells have been used: some known to possess mismatch

repair instability, and some characterized by CIN. In the cell lines with mi-

crosatellite instability, the rate of chromosome loss was the same as control

(and indistinguishable from the background). In the chromosomally unsta-

ble cell lines, the rate of chromosome copy change was highly elevated. The

value that emerges from experiments of Lengauer et al. is p = 10−2 per

chromosome per cell division, which is almost exactly in the middle of the

range that we obtained theoretically.

7.3 The optimal rate of LOH: a time-dependent problem

So far in this chapter we asked: What is the optimal level of instability

which makes the cancer progress in the fastest way? The mathematical

problem is finding the most efficient (from the point of view of cancer) rate

at which genetic changes occur in cells. It was shown that “too much”

instability is detrimental for the cells because of an increased death rate.

“Too little” instability also slows down the progress because the basic rate

at which cancerous mutations are acquired is low. An optimal level of

genetic instability was identified which maximizes the rate of progression.

This was quantified in terms of the probability of chromosomal loss per cell

division.

Next, we take this model a step further and study the temporal change

of the level of instability. As cancer progresses, the microevolutionary pres-

sures inevitably change. What might have been a good strategy at the

beginning of the growth may be detrimental for the colony later on. A

highly elevated rate of LOH calculated in this chapter may indeed be opti-
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mal during early and intermediate stages of cancer progression as long as

they involve TSG’s. However, it is well-known that a lesion cannot grow

above a certain small size (about 2 mm) without extra blood supply (an-

giogenesis). A larger or metastasizing tumor is hard to maintain, and the

price of losing chromosomes becomes too high to be balanced by an ele-

vated variability. Therefore, it is possible that at later stages, the optimal

rate of LOH will decrease to nearly zero [Komarova (2004); Komarova et al.

(2008a)]. This is consistent with observations that late stage cancers are

sometimes (surprisingly) stable [Albertson et al. (2003)].

Similarly, if the activation of oncogenes (rather than the inactivation of

tumor suppressor genes) plays a major role in the progression of cancers,

then chromosomal instability is likely to be detrimental to the cancer. In-

deed, to turn on an oncogene, a small scale mutation is often needed rather

than a chromosome loss event or another crude chromosomal change. More-

over, a chromosome loss event may lead to the inactivation of a functioning

oncogene which will revert the process of oncogenesis.

In [Chin et al. (2004)] it is argued that the level of genetic instability

in breast cancers first increases, reaches a peak and then decreases as the

cancer passes through telomere crisis. A paper by [Rudolph et al. (2001)]

reports data on intestinal carcinoma in mice and humans which is consistent

with a similar model: telomere dysfunction promotes chromosomal insta-

bility which drives carcinogenesis at early stages, and telomerase activation

restores stability to allow further tumor progression. The mechanism of

telomerase activation and subsequent prevention of chromosomal instabil-

ity is also described in the papers by [Samper et al. (2001)] and [Artandi

and DePinho (2000)]. It is shown that short telomeres can make mice resis-

tant to skin cancer because of an increased cell death rate [Gonzalez-Suarez

et al. (2000)] which also suggests that telomerase activation and reduction

in the level of chromosomal instability may be a necessary step for cancer

to develop.

The idea that instability may be beneficial for cancer at an early stage

and can become a liability later on is developed mathematically in the rest

of this chapter. We formulate the time-dependent optimization problem to

investigate the way to maximize cancerous growth. To model growth and

mutations, we employ ODEs similar to equations (7.7-7.9). Using methods

of optimal control theory, we find strategies most advantageous for the

tumor’s growth. The degree of instability (the rate of mutations) appears

as an unknown function of time, sought to maximize the growth of the

mutants.
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7.3.1 Formulation of the time-dependent problem

We will consider two types of processes: a simpler one-step process (see

diagram (7.10) below) and a two-step process (see diagram (7.11)):

x1
u+p - x2

- growth

d(p)

? ?

d(p)

death death

(7.10)

x0
2u - x1

u+p - x2
- growth

d(p)

? ?

d(p)

?

d(p)

death death death

(7.11)

In the first scenario, we assume that a colony of cells (of abundance

x1) is currently at a constant population size, near a selection barrier. The

growth is stalled, and the cellular population remains near the “carrying

capacity”, which is defined by the available space, nutrients, and the cells’

ability to divide and die. This barrier can be overcome by the offspring of

a mutant whose properties are different (the abundance of these mutants is

denoted by x2). Here we assume that the transformation proceeds according

to a gain-of-function scenario (Chapter 9). For instance, the mutant cells

could have an activated oncogene and show an increased division rate, or

a decreased death rate. We assume that such transformed cells are created

by means of one molecular event, genetic or epigenetic.

In the second scenario, the growth advantage is acquired by means of a

loss-of-function mutation, such as an inactivation of a TSG (Chapter 10).

Here, xi with i = 0, 1, 2 stands for the abundance of cells with i copies

of the TSG inactivated. There is a certain asymmetry between the first

and the second inactivation events. The inactivation of the first copy of

the TSG happens at rate 2u, where u is the inactivation rate per copy.

The inactivation of the remaining copy of the TSG happens at rate u. In

addition, it can also be inactivated by an LOH event at rate p. In principle,

the first allele can also be inactivated by an LOH event. However, the fitness

of a cell with a missing chromosome and one active copy of the TSG is very

low. Such cells will quickly die out and will make no difference for the

present analysis. On the other hand, a cell with one chromosome missing

and both copies of the TSG inactivated, has a selective advantage, because
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we assume that the inactivation of the TSG leads to an increase in the cell’s

growth rate. Such cells are produced by the sequence of events depicted in

diagram 7.11.

The systems of quasispecies–like ODEs describing these processes can

be formulated as follows. For the one-step process (diagram (7.10)) we have

ẋ1 = (1− u− p− d(p))x1 − φx1, (7.12)

ẋ2 = (p+ u)x1 + a(1 − d(p))x2 − φx2, (7.13)

where φ = (1 − d(p))x1/N , and x1(0) = N , x2(0) = 0. The term φ is

similar to logistic growth in the absence of mutants (see also Chapter 4),

and accounts for the homeostatic control present in a system of x1 cells.

x2-cells break out of regulation and enter a phase of exponential growth.

The term with x1 in the equation for x2 is added to represent a partial, non-

symmetric, homeostatic control that may play some role at the beginning

of the growth of x2 cells. Later on that term is simply a correction to the

growth rate of the x2 cells.

For the two-step process (diagram (7.11)) we have

ẋ0 = (1− 2u− d(p))x0 − φx0, (7.14)

ẋ1 = 2ux0 + (1− u− p− d(p))x1 − φx1, (7.15)

ẋ2 = (p+ u)x1 + a(1 − d(p))x2, (7.16)

where

φ =
(1− d(p))(x0 + x1)

N
.

Cells reproduce and die, and the rate of renewal is taken 1 for types x0 and

x1. In the absence of dangerous mutants, x2, the total number of cells x0

and x1 stays constant (that is, the sum of equations (7.14-7.16) with x2 = 0

is zero). The mutants x2 expand at rate a > 1.

This way of modeling the dynamics is not unique, and a detailed dis-

cussion of the robustness of the model is presented in [Komarova et al.

(2008a)].

In diagrams (7.10,7.11), the death rate, d(p), is a function of the mu-

tation rate, p. If p is small, then chromosome losses do not happen, and

if p is large, a cell often loses chromosomes which results in an increased

death rate. Therefore, in general, the function d(p) will be a monotonically

increasing function of p. Here we consider an example of a parameteriza-

tion of the death rate as a function of p. It is convenient to introduce a



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 93

Chromosomal instability and tumor growth 93

normalized rate of chromosome loss, p̃, and express the death rate in terms

of this parameter:

d(p̃) = dm (1− (1− p̃)α) , p̃ =
p− pmin

pmax − pmin
, pmin ≤ p ≤ pmax, α > 0,

(7.17)

see figure 7.3. The case α > 1 corresponds to a concave function, and

the case α < 1 - to a convex function. The motivation for this particular

dependency is as follows. Let us suppose that a cell dies if it loses one of α

essential chromosome copies (out of the total of 2× 23 copies in a human).

Then, if we set pmin = 0 and pmax = 1, the death rate (7.17) can be written

in a form

d(p̃) = dm × [Probability of cell death by chromosome loss].

The constant dm defines the magnitude of the death rate, and the values

pmin and pmax define a biologically relevant range of the LOH rate, p. We

allow α, the exponent in equation (7.17), to be a real positive number. In

particular, we investigate the influence of the concavity of this function on

the optimal solution (cases α < 1 and α > 1). The special case α = 1 yields

a control problem where the controls enter linearly, a case much studied in

the optimal control literature and rich with analytical results.

In this chapter we adopt the theoretical framework where it is possible

to set the rate of genetic instability to an arbitrary (but meaningful) value

at each moment of time. Mathematically, this means specifying the LOH

rate, p(t), as a function of time. Every choice of such a function determines

a growth process of the tumor. We will seek the choice of p(t) that allow

the cancerous population to reach a given size, M , in the shortest possible

time. In the terminology of optimization and control theory, the population

size M is called the “target”, the possible values of LOH rate p are called

“admissible controls”, and each choice of the function p(t) is called a “strat-

egy”. A strategy steering the system to the target faster than any other

strategy is said to be an “optimal strategy”, or “optimal control”. In this

terminology, we seek a strategy for controlling the system to reach the tar-

get as soon as possible. A meaningful qualitative comparison between two

strategies is now possible: the “better”, or “more advantageous”, strategy

is the one allowing the system to reach the target sooner. Thus, an “advan-

tageous strategy” is advantageous for the cancer in the sense of Darwinian

microevolution in an individual organism.

To find the optimal strategy, we consider the quantity, T , which is the

solution of the equation

x2(T ) = M,
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where x2 is the solution of system (7.12-7.13) or (7.14-7.16). The growth

time, T , depends on all the parameters of the system, including the time-

dependent mutation rate, p(t). The optimal strategy is the one that mini-

mizes the value of T .

7.3.2 Mathematical apparatus

In this section we develop a mathematical framework for the one-step

process. Similar calculations lead to the corresponding formulation for

the two-step problem, see [Komarova et al. (2008a)].

7.3.2.1 Statement of the one-step problem

Equations of State: Let us define the following parameter combina-

tions: σ = M/N , µ = u + pmin, pm = pmax − pmin. Introducing the

scaled quantities x∗1 = x1/N , x∗2 = x1/M , and dropping the asterisks for

simplicity, we can rewrite system (7.12-7.13) as

ẋ1 = −(µ+ pmp̃)x1 + [1− d(p̃)](1 − x1)x1 ≡ g1(x1, x2, p̃), (7.18)

ẋ2 =
1

σ
(µ+ pmp̃)x1 + [1− d(p̃)](a− x1)x2 ≡ g2(x1, x2, p̃). (7.19)

The death rate, d(p̃), is given by equation (7.17). Recall that p̃ is the

normalized LOH rate with 0 ≤ p̃ ≤ 1. As we show below, the three cases

α > 1, α = 1 and α < 1 may have to be treated separately in some cases.

Boundary Conditions: The two ODEs (7.18-7.19) are subject to the

following three auxiliary conditions:

x1(0) = 1, x2(0) = 0, x2(T ) = 1, (7.20)

where T is the time when the dangerous mutant cell population reaches

the target size.

Problem: Choose the control function p̃(t) to minimize the time T

needed to reach the target population size of the dangerous mutants

subject to the inequality constraint,

0 ≤ p̃ ≤ 1, (7.21)

on the control p̃(t) and non-negative constraints on the cell populations,

x1 ≥ 0, x2 ≥ 0. (7.22)
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Re-statement of the Optimal Control Problem: To apply the

Hamiltonian system approach, we re-cast the problem described above

by choosing the control function p̃(t) to minimize the performance index:

J =

∫ T

0

1 dt, (7.23)

subject to the equations of state (7.18) and (7.19), the boundary condi-

tions (7.20) and the inequality constraints (7.21) and (7.22) with T > 0

as a part of the solution.

7.3.2.2 The Maximum Principle

The Hamiltonian and Adjoint Variables. Optimal control problems

can be effectively analyzed through the Pontryagin’s Maximum Princi-

ple and its associated Hamiltonian formalism [Bryson and Ho (1969);

Wan (1995)]. In this section we develop components of the Hamiltonian

formalism for our system. The Hamiltonian for our problem is

H = 1 + λ1(t)g1 + λ2(t)g2, (7.24)

where λ1 and λ2 are the two continuous and piecewise differentiable

adjoint (or co-state) variables for the problem chosen to satisfy two

adjoint ODE,

λ′1 = −
(

λ1
∂g1
∂x1

+ λ2
∂g2
∂x1

)

, (7.25)

λ′2 = −
(

λ1
∂g1
∂x2

+ λ2
∂g2
∂x2

)

, (7.26)

and (for the given auxiliary conditions on the state variable x1 and x2)

one transversality condition

λ1(T ) = 0. (7.27)

Note that (7.18), (7.19), (7.25), and (7.26) form a Hamiltonian system

for the Hamiltonian given in (7.24).

Formulation of the Maximum Principle. The optimal solution of

our minimum terminal time problem requires the optimal control func-

tion p̄(t) to satisfy the following necessary conditions, known as the Max-

imum Principle [Gelfand and Fomin (1963); Pontryagin et al. (1962);

Wan (1995)]:
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(1) Four continuous and piecewise differentiable functions {x̄1, x̄2,

λ̄1, λ̄2} exist and satisfy the four differential equations (7.18),

(7.19), (7.25), (7.26), and four auxiliary conditions in (7.20) and

(7.27) for the admissible control p̄(t).

(2) The minimum terminal time T obtained with u = p̄(t), satisfies a

free end condition

[H ]t=T =
[

1 + λ̄2ḡ2
]∣

∣

t=T
= 0, (7.28)

with

ḡ2 = g2(x̄1, x̄2, λ̄1, λ̄2, p̄(t)),

where the adjoint boundary condition (7.27) has been used to sim-

plify the expression for H .

(3) For all t in [0, T ], the Hamiltonian achieves its minimum for p̃ =

p̄(t), i.e.,

H(x̄1(t), x̄2(t), λ̄1(t), λ̄2(t), p̄(t))=inf
v

[

H(x̄1(t), x̄2(t), λ̄1(t), λ̄2(t), v)
]

.

(7.29)

for all v in the set of admissible controls restricted by (7.21).

(4) If there should be a change in the control ū at the instance Ts that

involves a finite jump discontinuity in the value of the control, op-

timality requires that the Hamiltonian be continuous at Ts [Bryson

and Ho (1969); Wan (1995)]:

[H ]t=Ts+
t=Ts− = 0. (7.30)

Given the admissible controls as specified by (7.21), the optimal con-

trol p̄(t) can have finite jump discontinuities in (0, T ). It follows from

the way p̃(t) appears in the state and adjoint ODE that the state and

adjoint variables are continuous in (0, T ), including instances of a control

jump discontinuity.

The Interior Control. Let us for simplicity take dm = 1, and denote

by d′ the derivative of d(p̃) with respect to p̃:

d′ = α(1 − p̃)α−1. (7.31)

Suppose the optimal control strategy p̄(t) satisfies 0 ≤ p̄(t) ≤ 1 and the

equation
[

∂H

∂p̃

]

p̃=p̄

= 0 (7.32)
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with
∂H

∂p̃
= λ1{−[pm + d′ ]x1 + d′ x2

1}+
λ2

σ
{pmx1 − σd′ x2(a− x1)}

= pmx1

(

λ2

σ
− λ1

)

− {λ1x1(1− x1) + λ2x2(a− x1)}d′. (7.33)

Then we call (x1, x2, λ1, λ2, p̄) an interior solution for which the optimal

control p̄ = pint(t) is an extremum of the Hamiltonian. The stationary

condition (7.32) can be written as

{λ1x1(1− x1) + λ2x2(a− x1)}d′ =
pm
σ

x1{λ2 − λ1σ}. (7.34)

Using the expression for the death rate (7.17) with expression (7.31),

we obtain from condition (7.34) the following formula for the interior

solution,

p̃(t) = p̃int(t) = 1−
(

pmx1(λ2 − σλ1)

ασ{λ1x1(1 − x1) + λ2x2(a− x1)}

)
1

α−1

. (7.35)

It can be shown [Wan et al. (2010)] that the interior solution above

violates the inequality constraints (7.21) in some part of the solution

domain for some range of system parameter values. Consequently, some

combination of the “upper corner solution” (p̃(t) = 1), the “lower corner

solution” (p̃(t) = 0) and the interior solution have to be considered for

the optimal solution. Whenever a corner control is applicable, the ad-

joint variables (and the corresponding adjoint ODE and auxiliary con-

ditions) may or may not play a role in the solution process since the

control variable p̃(t) is completely specified (and not determined by the

stationary condition (7.32)).

A Vanishing Hamiltonian, H(t) = 0. For an autonomous control

problem, the Hamiltonian is constant for the optimal solution p̄(t) [Wan

(1995); Wan et al. (2010)]. The free end condition (7.28) and the conti-

nuity condition (7.30) then require H(t) = 0. This result (together with

the formula for the interior solution, equation (7.35)) will be used to

find an optimal control. It can also be used to check how far a candidate

control function is from the actual optimal control.

Given the approach sketched above, a combination of analytical and

computational methods was used in [Komarova et al. (2008a)] to char-

acterize the optimal control function, p̄(t). The results are summarized

below.
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7.3.3 The optimal strategy for cancer

We used methods of control theory to find the shape of the time-dependent

LOH rate, p(t), which maximizes the growth of cancer [Komarova et al.

(2008a)]. The results are qualitatively similar for the two-step and the

three-step models. In both cases, it was found that large mutation rates

at first, and lower mutation rates later on, constitute the optimal strategy.

The exact shape of the optimal mutation strategy depends on the concavity

of the function d(p̃), the instability-dependent death rate. There are two

cases. For non-convex death rates, figure 7.3(a), the best performance is

achieved if the rate of LOH, p(t), jumps (in a discontinuous, abrupt fashion)

from a maximum to a minimum (what is referred to as a “bang-bang”

control in the literature). For convex death rates (figure 7.3(b)), the decay

of the function p(t) is gradual. In both cases, having the highest possible

mutation rate is advantageous at first; later on, it pays off to switch to a

lower mutation rate. Figure 7.4 shows some numerically found shapes of

the function p̃(t), the optimal rate of LOH, as a function of time, for the

one-step and the two-step models.

Genetic instability is “blind”, that is, it does not necessarily “hit” the

exact genes necessary for cancer progression. It may cause defects in other

genes thus creating deleterious cells. The question is whether the gain in

progression speed due to the increased mutation rate would outweigh the

losses suffered by the cells as a result of spurious, deadly mutations created

by the instability. In order to model this, we introduce two parameters, pm,

the maximum rate of LOH, and dm, the magnitude of the death rate. Small

values of pm mean a small gain in creating cancerous mutations. Large

values of dm mean a large penalty paid by the colony as a result of many

LOH-related deaths. While the function form of the time-dependent rate of

LOH, p(t), is always as shown in figure 7.3, the “switch” (abrupt or gradual)

from a high degree of instability to lower degree of instability happens

at a different time. In some cases, the function p(t) drops down almost

immediately, which simply means that instability does not pay off in such

cases. In other cases, p(t) remains very high for most of the time-course.

And again, there are regimes where the switch happens at intermediate

times. Which strategy is optimal largely depends on the parameters pm
and dm.

Depending on these parameters, there are three qualitatively different

forms of optimal strategies. In figure 7.5, black shading means “no insta-

bility”, white – “instability all the way”, and shades of gray correspond to
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Fig. 7.3 The instability-dependent death rate and the shape of the optimal control,
p̄(t). (a) The instability-dependent death rate, d(p), is a linear or concave function,
α ≥ 1. In this case the optimal control is a “bang-bang” control, with one switch at
time Ts. (b) If the instability-dependent death rate is a convex function, α < 1, the we
have an interior optimal control. In both cases, the optimal rate of LOH starts off at its
maximum value and then drops down as cancer progresses.

an intermediate switch from high to low levels of instability. In one sce-

nario, the instability makes a minimal contribution to creating carcinogenic

mutations (small pm), but significantly increases the death rate (large dm).

Consequently, it does not pay to be unstable at any stage of the growth

in this case. At the other extreme (large pm and small dm), instability is

useful and it “comes cheap”, because the death toll paid by the affected

cells is small. Therefore, the colony is better off being unstable at all times.

Finally, between these two extremes, optimal controls start at a large rate

of LOH and then drop to the lowest possible value at some time during the
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Fig. 7.4 The optimal control found numerically, for different values of α < 1, for (a) a
one-step process and (b) a two-step process. The other parameters are a = 2, σ = 10,

pm = 1, u = 10−1.

dynamics. This corresponds to genetic instability being advantageous at

the beginning and becoming a liability later. This explains the growing ex-

perimental literature suggesting that tumors switch from genetic instability

to stability some time in the course of cancer progression.

7.4 The bigger picture

Mathematical theory of optimal control has been used in many areas of

biosciences [Sontag (2004); Lenhart and Workman (2007)]. In biomedical

applications, control theory has usually been employed to design treatment

strategies by methods of optimization, see e.g. [Swan (1990); Kirschner

et al. (1997); De Pillis et al. (2007)]. In this chapter, we applied optimal

control theory to studying cancer in a very different way. We solved an

optimization problem for the dynamics of cancerous growth in order to un-

derstand why cancer behaves the way it does. This approach is similar in

spirit to the work of [Iwasa and Levin (1995)], who analyzed the optimal

timing of life-strategies of breeding and migrating organisms. In a sense, we

study the “ecology” of cancer, based on our current knowledge of carcino-

genesis, and hypothesize that the observed behavior of tumors is essentially

a consequence of the process of optimization.

We studied optimal strategies for a cancerous colony with respect to the

magnitude of the rate of LOH, as the colony acquires carcinogenic mutations

and enters a phase of a clonal expansion. Biologically, a large LOH rate

corresponds to genetic instability, and a small LOH rate to stability of

cancerous cells. The two types of carcinogenic mutations that we considered
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are activation of an oncogene (the one-step model) or inactivation of a

tumor suppressor gene (the two-step model).

In order for a cancer to progress, a cell colony first has to generate

carcinogenic mutants, and then to grow in size. Genetic instability may

expedite the first of these processes and slow down the second. Therefore,

this process can be examined as an optimization problem.

The first part of this chapter assumed that the rate of LOH has a con-

stant value. We calculated the optimal rate of LOH assuming that cancer

is initiated by the inactivation of a TSG followed by a clonal expansion.

The resulting rate, p∗ ≈ 10−2 per cell division per chromosome, is simi-

lar to that obtained experimentally by [Lengauer et al. (1997)]. This is a

thought-provoking result. A hypothesis consistent with our finding is that

the rate at which cancerous cells lose chromosomal material is under selec-

tion pressure, and as a result, the optimal rate, p∗, is the one that survives

the competition. In other words, out of many possibilities, we will mostly

see the cancers that have the rate of LOH close to optimal, because these

are cancers that are initiated and progress at the fastest rate.
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In the second part of this chapter we allowed for a temporal variation

of the rate of LOH, and asked what exact function of time, p(t), would

optimize cancer growth.

7.4.1 Does cancer solve an optimization problem?

Not literally, of course. However, by solving the optimization problem

described, one can obtain valuable information about the growth of cancer.

This is similar to the general philosophy of the evolutionary game theory,

see e.g. [Maynard Smith (1982)]. In the latter paper, different strategies

are played against each other to see which one wins. In principle, one

could design an “ideal” strategy which leads to the maximal payoff in the

game. The game can be a model of something that happens in nature, for

instance the behavior of animals in different situations, or adaptations of

cells in various environments. The “ideal” (optimal) strategy may not even

be realistic (there are many constraints in nature which escape modeling,

but can make a strategy impossible). What occurs in reality, however,

tends to approximate an optimal strategy. Finding the “evolutionary stable

strategy” or the “Nash equilibrium” in the system helps us understand the

general experimentally observed trend. A plausible explanation for the

survival of those animals is that they have won the evolutionary game

against other animals who used an inferior strategy.

In this chapter, we solved the optimization problem for cancerous

growth and found optimal strategies. Does cancer always use an optimal

strategy? Probably not. One obstacle to optimality is that cancer is unable

to adjust its level of instability instantaneously throughout the entire popu-

lation to optimize the growth. However, a cancer which follows the general

trend, that is, a strategy close to an optimal one, will grow faster. These are

the colonies that “succeed” causing a disease. Other pre-cancerous colonies

of cells might exist in any organ of an organism, but if they do not use

a strategy sufficiently close to optimal, they do not succeed with further

growth and are not observed.

7.4.2 Summary

Throughout this chapter we formulated the problem of cancer growth from

the point of view of cancerous cells, in order to find the most optimal muta-

tion strategy. Selection in this problem takes place on two levels. One level

is the level of individual cells, where normal cells are competing for space
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and nutrients (this is one of the mechanisms of homeostatic control), and

cancerous cells escape this control to enter a phase of exponential growth.

The forces of selection are manifested in the nonlinearities of the basic

ODEs. The second level of selection is the level of cell colonies. Differ-

ent colonies are characterized by different functions p(t). They are not

assumed to be in direct interaction with one another. Winning this compe-

tition simply means that a given colony will reach a cancerous state quickly

and become observable. The mathematical problem we solve is to find the

optimal strategy p(t), such that the colony with this strategy will be the

first one to “make it”. This work highlights the costs and benefits of chro-

mosomal instability, which is important for understanding the potential role

of chromosomal instability for the generation and progression of cancers. It

also helps us interpret data on patterns of chromosomal instabilities found

at different time points in specific cancers.

Problems

Problem 7.1. Research project. Learn about different large-scale

aberrations observed in different cancers with CIN. Hint: Read pa-

pers by Mitelman and colleagues, e.g. [Mitelman (2000); Höglund

et al. (2001, 2002b,a); Frigyesi et al. (2003)], and visit Mitelman

Database of Chromosome Aberrations and Gene Fusions in Cancer,

http://cgap.nci.nih.gov/Chromosomes/Mitelman

Problem 7.2. Research project. Find out about the connection between

CIN and telomeres.

Problem 7.3. It is mentioned that systems (7.12-7.13) and (7.14-7.16) are

not the only way to model the processes depicted in diagrams (7.10) and

(7.11) respectively. What are some other quasispecies–type models com-

patible with these diagrams? Note: [Komarova et al. (2008a)] provides

an analysis of robustness of the results with respect to different modeling

choices.

Problem 7.4. Research project. Mathematical theory of optimal control

has been used by many authors to study cancer treatment, see e.g. [Swan

(1990); Kirschner et al. (1997); De Pillis and Radunskaya (2001); De Pillis

et al. (2007); Ledzewicz and Schättler (2008)]. Use some of these references

to learn about different ways in which control theory has been applied in

oncology.
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Problem 7.5. Numerical project. Suppose that pm = dm = 1. In

[Komarova et al. (2008a)], the following algorithm was described which

allowed to approximate numerically the optimal control function, p̄(t), in

the case of the one-step process with α < 1:

(1) Start from any control, 0 ≤ p̃0(t) ≤ 1, e.g. p̃0(t) = 1.

(2) Solve the initial value problem (7.18-7.20) for 0 ≤ t ≤ T1 such that

x2(T1) > 1.

(3) Find the solution, t = T0, of the equation x2(t) = 1. This is the zeroth

approximation to the best terminal time.

(4) Solve the boundary value problem (7.25-7.28) on 0 ≤ t ≤ T0 with the

functions x1(t), x2(t) known from the previous step.

(5) Use the obtained state and adjoint variables to calculate the function

p̃(t) by formula (7.35). Call this function p̄1(t).

(6) Take p̃1(t) = p̄1(t)θ(p̄1(t)) (θ is the Heaviside step-function). That is,

replace all negative values of the control by zero. This gives us the next

approximation to the optimal control, p̃1(t).

(7) Go to step 2, and repeat all the operations.

Implement this algorithm to find and plot the optimal controls for several

different values of α.
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Chapter 8

Angiogenesis, inhibitors, promoters,

and spatial growth

In previous chapters, a variety of tumor growth models were considered

that differed in their complexity. The simplest growth model is exponen-

tial growth, while more realistic models include some form of saturation or

density dependence, which leads to a reduced growth rate and eventually

to cessation of growth when the cell population reaches a certain level. The

cell populations can break out of the growth plateaus by the emergence of

mutants that overcome the relevant selective barriers. The barriers can be

determined by a variety of factors, including spatial, nutrient, or metabolic

limitations.

This chapter considers a more complex set of models, which assume

that tumor cells can produce tumor-promoting and inhibiting factors, and

where the relative balance between promoters and inhibitors determines

whether tumor growth plateaus at a relatively small size, or whether more

aggressive growth is observed [Folkman et al. (1992)]. Therefore, the exact

tumor growth pattern emerges from these dynamics that are intrinsic to

the tumor rather than being modeled more phenomenologically as in the

previous chapters. The dynamics of tumor promotion and inhibition are

especially important in the context of the formation of a solid blood supply

for the tumor, a process that is called angiogenesis [Folkman (2006)]. These

considerations are part of the notion that tumor growth is not only deter-

mined by the properties of the tumor cells themselves, but also by their

surroundings, i.e., their microenvironment [Nyberg et al. (2008); Mbeunkui

and Johann Jr (2009); Dvorak et al. (2011)]

Let us consider in some more detail the process of angiogenesis, i.e., the

formation of blood supply which provides cancer cells with oxygen, the nec-

essary nutrients, and factors required for replication and survival. A given

105
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tissue or organ must have a sufficient blood supply in order to function.

No extra blood supply is available though, which will hinder any potential

abnormal growth. Cancer cells have to induce the generation of new blood

supply in order to sustain their growth, i.e., they have to induce angio-

genesiss. Research on the role of angiogenesis for cancer progression has

been pioneered by Judah Folkman in the 1960s and 70s [Folkman (1971)],

and work from his laboratory has been very influential in the literature,

e.g. [Folkman (1995, 2002, 2006)]. In early experiments, Folkman and col-

leagues placed a small number of rabbit melanoma cells on the surface of

the rabbit thyroid gland. They observed that the tumor cells initially grew

but subsequently stopped growing once they reached a relatively small size

comparable to that of a pea. The reason is that the tumor cells run out of

blood supply.

It is now clear that growth to larger sizes requires the emergence of so-

called angiogenic tumor cells. The ability of the cancer to grow depends on

the balance between so-called angiogenesis inhibitors, and angiogenesis pro-

moters. Examples of inhibitors are thrombospondin, tumstatin, canstatin,

endostatin, angiostatin and interferons. Examples of promoters are growth

factors such as FGF, VEGF, IL-8, and PDGF. Normal tissue produces

mostly angiogenesis inhibitors. So do cancer cells. This serves as a pre-

ventative measure against abnormal growth. Angiogenic cancer cells, on

the other hand, have mutations which allow the balance between inhibitors

and promoters to be shifted away from inhibition, and towards promotion.

This is done by activating the production of angiogenesis promoters, or by

inactivating genes which encode inhibitors. Once such angiogenic cells have

evolved, it is possible for the cancer to recruit new blood vessels and hence

to grow to larger sizes. Folkman’s research has also given rise to exciting

new avenues of therapies [Hahnfeldt et al. (1999); Weis and Cheresh (2011);

Gastl et al. (2009); Abdelrahim et al. (2010)]: Administration of angiogen-

esis inhibitors can destroy blood supply and result in remission of cancers.

While encouraging results have been obtained in laboratory animals, our

understanding is far less complete in the context of human pathologies.

This chapter reviews ordinary differential equation models which have

examined the dynamics of angiogenesis-dependent tumor growth, in par-

ticular the dependence of growth on the relative balance of promoters and

inhibitors. This is just one example of mathematical work that has been

done in this area, and for more details on this modeling topic, the reader

is referred to the literature (e.g. [Mantzaris et al. (2004); Chaplain (1996);

Chaplain et al. (2006); Anderson and Chaplain (1998a); Anderson et al.
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(2012); Milde et al. (2008); Ledzewicz and Schättler (2008)]). Conditions

will be discussed that lead to self-limited tumor growth up to a relatively

small plateau size, and those that allow more advanced and uncontrolled

tumor growth. Moreover, we will examine partial differential equation mod-

els that show how differences in the ranges over which promoters and in-

hibitors act can lead to specific spatial patterns that have been observed

in patients.

8.1 Model 1: Angiogenesis inhibition induces cell death

We describe and analyze a model for the evolution of angiogenic tumor

cell lines [Wodarz and Krakauer (2001)]. The model consists of three basic

variables (figure 8.1).

Healthy cells

First tumor stage:

non-angiogenic

Angiogenic cells,

required for further 

tumor growth

Balance in favor of 

inhibition

Balance in favor of 

inhibition

Can shift balance in

favor of the angiogenic

switch

Fig. 8.1 Schematic diagram illustrating the central assumptions underlying the math-
ematical model.

Healthy host tissue, x0; a first transformed cell line, x1, which is non-

angiogenic and cannot grow above a given threshold size; an angiogenic

tumor cell line which has the potential to progress, x2. It is thought that

the formation of new blood vessels depends on a balance of angiogenesis

inhibitors and promoters. If the balance is in favor of the inhibitors, new

blood vessels are not formed. On the other hand, if it is in favor of the pro-

moters, angiogenesis can proceed. Hence, the model assumes that healthy

tissue, x0, and stage one tumor cells, x1, produce a ratio of inhibitors and
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promoters that is in favor of angiogenesis inhibition. On the other hand,

it is assumed that angiogenic tumor cell lines have the ability to shift the

balance in favor of angiogenesis promotion. We first consider progression

from the wildtype cells to a first transformed cell line. The basic model is

given by the following pair of differential equations,

ẋ0 = r0x0

(

1− x0

k0

)

(1− µ0)− d0x0, (8.1)

ẋ1 = µ0r0x0

(

1− x0

k0

)

+ r1x1

(

1− x1

k1

)

(1− µ1)− d1x1. (8.2)

Healthy cells are assumed to replicate at a density dependent rate r0x0(1−
x0/k0). The value of k0 represents the maximum size this population of

cells can achieve, or the carrying capacity. The cells die at a rate d0x0. We

assume that the rate of mutation is proportional to the rate of replication

of the cells, and is thus given by µwr0x0(1 − x0/k0). The mutations give

rise to the first stage of tumor progression, x1, i.e., to a tumor cell line that

is not angiogenic. This cell line will depend on the blood supply of the

healthy tissue and will not be able to grow beyond a small size. These cells

replicate at a density dependent rate r1x1(1 − x1/k1), where the carrying

capacity k1 is assumed to be relatively small (k1 << k0). They die at a rate

d1x1, and mutate to give rise to an angiogenic tumor cell line, x2, at a rate

µxr1x1(1 − x1/k1). In the model, the population of healthy cells attains

a homeostatic setpoint given by x∗0 = k0(r0 − d0)/r0. The mutation rate

µ0 can be assumed to be very small, since healthy tissue has intact repair

mechanisms that ensure faithful replication of the genome. Once mutation

gives rise to the first tumor cell line, it will grow to its small homeostatic

set point level defined by x∗1 = k1(r1 − d1)/r1.

The wildtype cell population and the small population of first stage

tumors are assumed to reach constant levels in a relatively short time. In

other words, they reach an equilibrium abundance. Further tumor growth

requires the emergence of the angiogenic cell line, x2. In the following we

investigate the conditions required for angiogenic tumor cell lines to evolve

assuming a constant background abundance of x0 and x1.

The angiogenic cell line replicates at a density dependent rate r2x2(1−
x2/k2). As these cells can potentially influence the balance of inhibitors

and promoters in favor of promoters, we have to take these dynamics into

account. The death rate of these cells is determined by two components.

The angiogenic tumor cells are characterized by a composite background

death rate d2x2, as with x0 and x1. In addition, the model assumes that the
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death rate can be increased if the balance between angiogenesis inhibition

and promotion is in favor of inhibition. Hence, this death rate is expressed

as (p0x0 + p1x1 + p2x2)/(qx2 + 1). Thus all three cell types lead to the

inhibition of angiogenesis, whereas inhibition of angiogenesis can only be

overcome by cell line x2.

As we have assumed that x0 and x1 are at equilibrium, we start our

analysis by ignoring mutation and simply looking at the dynamics of the

angiogenic cell line, x2. These dynamics are described by the equation,

ẋ2 = r2x2

(

1− x2

k2

)

− d2x2 −
x2 (p0x

∗
0 + p1x

∗
1 + p2x2)

qx2 + 1
,

where x∗0 and x∗1 are defined above. Two outcomes are possible. (i) The

cell line x2 cannot invade, resulting in equilibrium E0 where x
(0)
2 = 0. (ii)

The cell line x2 can invade and converges to equilibrium E1 described by

x
(1)
2 =

−Q+
√

Q2 − 4r2q2 [k (d2 − r2) + kpIxI ]

2r2q2
,

where Q = kq2 (d2 − r2) + r2 + kp2 and subscript I refers to the inhibitory

cell lines: pIxI = p0x
∗
0 + p1x

∗
1.

In the following we examine the stability properties of these two equi-

libria which are summarized in figure 8.2. If pIxI < r2 − d2, then the

equilibrium describing the extinction of the angiogenic tumor, x
(0)
2 , is not

stable. The equilibrium describing the invasion of the angiogenic tumor cell

line, x
(1)
2 , is stable. In other words, if the above condition is fulfilled, then

the degree of angiogenesis inhibition is too weak, and the angiogenic tumor

cell line can emerge, marking progression of the disease.

On the other hand, if pIxI > r2−d2, the degree of inhibition is stronger

and the situation is more complicated (figure 8.2). The equilibrium describ-

ing the extinction of the angiogenic cell population, x
(0)
2 , becomes stable.

However, equilibrium x
(1)
2 , describing the emergence of angiogenic tumor

cells, may or may not be stable (figure 8.2).

(1) If the degree of angiogenesis inhibition lies above a certain threshold,

equilibrium x
(1)
2 is unstable and the angiogenic cell line cannot invade.

It was not possible to define this threshold in a meaningful way.

(2) If the degree of angiogenesis inhibition lies below this threshold, equilib-

rium x
(1)
2 remains stable. Now, both the extinction and the emergence

equilibria are stable (figure 8.2). This means that two outcomes are

possible and that the outcome depends on the initial conditions. Ei-

ther the angiogenic cell line fails to emerge, or the angiogenic cell line
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Fig. 8.2 Graph showing the stability properties and the outcome of the model. Param-
eters were chosen as follows: r2 = 1; k2 = 1; d2 = 0.1; p2 = 1; q = 10.

does emerge, resulting in tumor progression. As shown in figure 8.3,

a low initial abundance of angiogenic tumor cells results in failure of

growth. On the other hand, a high initial number of angiogenic tumor

cells results in growth of the tumor and progression (figure 8.3).

To summarize, the model shows the existence of three parameter re-

gions (figure 8.2). If the degree of angiogenesis inhibition by healthy tissue

and stage one tumor cells lies below a threshold, angiogenic tumor cell lines

always invade resulting in progression of the disease. If the degree of in-

hibition lies above a threshold, the angiogenic cell lines can never emerge

and pathology is prevented. Between these two thresholds, both outcomes

are possible depending on the initial conditions. A high initial number of
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Fig. 8.3 Direction field plot showing how the outcome of the model can depend on the
initial conditions. Parameters were chosen as follows: r2 = 1; k2 = 100; d2 = 0.1; p2 =
1; q = 10. For the purpose of simplicity the populations of non-angiogenic cells were
summarized in a single variable and assumed to converge towards a stable setpoint
(characterized by the parameters r=0.15; d=0.1; k=10 ).

angiogenic tumor cells results in growth of this cell line and progression of

the disease.

What does the initial number of angiogenic cells mean in biological

terms? The dependence of growth on the initial number of angiogenic

tumor cells presents an effective barrier against pathologic tumor growth.

Given that a small number of non-angiogenic tumor cells exists, it will

be difficult to create a sufficiently large number of angiogenic mutants to

overcome the blood supply barrier. This difficulty could explain why, upon

autopsy, people tend to show small tumors which have failed to grow to

larger sizes. The initial number of the angiogenic cells could be determined

by the mutation rate µ1, which gives rise to the angiogenic cells. If the

mutation rate is high, the initial number of angiogenic cells will be high.

On the other hand, if the mutation rate is low, the initial number of the

angiogenic cells will be low. Hence, in the parameter region where the

outcome of the dynamics depends on the initial conditions, a high mutation
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rate promotes the emergence and growth of angiogenic tumor cells (figure

8.4). If a high mutation rate by tumor cells defines genetic instability, then

it is possible that genetic instability might be required for the invasion of

angiogenic tumor cells.

(a) genetic stability / low mutation rate (b) genetic instability / high mutation rate
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Fig. 8.4 Genetic instability and the emergence of angiogenic cell lines. (a) If the
mutation rate is low (genetic stability), the initial number of angiogenic cells created is
low. Consequently they cannot emerge. (b) On the other hand, if the mutation rate is
high (genetic instability), a higher initial number of angiogenic cells is created. Hence,
they emerge and become established. Parameters were chosen as follows: r0 = 0.11; k0 =
10;µ0 = 0.001; d0 = 0.1; r1 = 0.12; k1 = 2; d2 = 0.1; r2 = 2.5; k2 = 2; d2 = 0.1; p0 =
2; p1 = 2; p2 = 2; q = 10; for (a) µ1 = 0.001; For (b) µ1 = 0.01;µ2 = µ1.

8.2 Model 2: Angiogenesis inhibition prevents tumor cell

division

We consider a basic mathematical model which describes the growth of a

cancer cell population, assuming that the amount of blood supply does not

influence cell death, but the rate of cell division [Wodarz et al. (2004)].

This model will also be used to consider the effect of diffusion of cells and

soluble molecules across space; this is done in the next sections. Therefore,

the model will take into account explicitly the dynamics of promoters and

inhibitors. This is in contrast to the last section where for the purpose

of simplicity inhibitors and promoters were assumed to be proportional to

the number of cells which secrete them. The new model includes three

variables: the population of cancer cells, C; promoters, P ; and inhibitors,

I. It is assumed that both promoters and inhibitors can be produced by
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cancer cells. In addition, inhibitors may be produced by healthy tissue. The

model is given by the following set of differential equations which describe

cancer growth as a function of time,

Ċ =

(

rC

ǫC + 1

)(

P

I + 1

)

− δC, (8.3)

Ṗ = aPC − bPP, (8.4)

İ = ξ + aIC − bII. (8.5)

The population of cancer cells grows with a rate r. Growth is assumed

to be density dependent and saturates if the population of cancer cells

becomes large (expressed in the parameter ǫ). In addition, the growth

rate of the cancer cells depends on the balance between promoters and

inhibitors, expressed as P/(I+1). The higher the level of promoters relative

to inhibitors, the faster the growth rate of the cancer cell population. If the

level of promoters is zero, or the balance between promoters and inhibitors

is heavily in favor of inhibitors, the cancer cells cannot grow and remain

dormant [O’Reilly et al. (1996, 1997); Ramanujan et al. (2000)]. Cancer

cells are assumed to die at a rate δ. Promoters are produced by cancer

cells at a rate ap and decay at a rate bp. Inhibitors are produced by cancer

cells at a rate aI and decay at a rate bI . In addition, the model allows for

production of inhibitors by normal tissue at a rate ξ.

8.2.1 Linear stability analysis of the ODEs

Let us simplify system (8.3-8.5) by using a quasistationary approach,

that is, we will assume that the level of promoters adjusts instanta-

neously to its steady-state value (P = CaP /bP ). It is convenient to

denote

W =
raP
δbP

, γ =
aI
bI

.

Now we have a two-dimensional system,

Ċ = δC

(

WC

(1 + ǫC)(1 + I)
− 1

)

, (8.6)

İ = bI(γC − I). (8.7)
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There can be up to three fixed points in this system,

(C, I) = (0, 0) and (C, I) = (Ĉ±, Î±),

where Î± = γĈ±, and

Ĉ± =
−(γ + ǫ−W )±

√

(γ + ǫ−W )2 − 4ǫγ

2ǫγ
.

It is obvious that if γ + ǫ − W < 0 and (γ + ǫ − W )2 − 4ǫγ > 0, then

there are exactly three positive equilibria in the system. If either of

these conditions is violated, the (0, 0) solution is the only (biologically

meaningful) stable point.

Stability analysis can be performed by the usual methods. It shows

that for the (0, 0) equilibrium, the Jacobian is
( −δ 0

bIγ −bI

)

,

that is, this equilibrium is always stable. For the points (C±, I±), we get
the following Jacobian,

(

−δ(ǫ−γ−W±Γ)
2W

δ(ǫ−γ−W−Γ)
2γW

bIγ −bI

)

,

where we denote for convenience, Γ ≡
√

(ǫ + γ −W )2 − 4ǫγ. It is easy

to show that the eigenvalues of this matrix for the solution (Ĉ−, Î−) are
given by

1

4W

(

−Y− ±
√

Y 2
− + 16bIδWΓ

)

,

and for the solution (Ĉ+, Î+) we have eigenvalues

1

4W

(

−Y+ ±
√

Y 2
+ − 16bIδWΓ

)

,

where Y± ≡ 2bIW+δ(ǫ−γ−W±Γ). We can see that solution (Ĉ−, Î−) is
always unstable and we will not consider it any longer. Solution (Ĉ+, Î+),

which we call for simplicity (Ĉ, Î) from now on, is stable as long as

Y+ > 0. (8.8)
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8.2.2 Conclusions from the linear analysis

As we can see this model has very similar properties compared to the last

one, and they are summarized as follows. There are two outcomes. (i)

The cancer cells cannot grow and consequently go extinct. That is, C = 0,

P = 0 and I = ξ/bI . The cancer goes extinct in the model because we

only consider cells which require the presence of promoters for division.

If the level of promoters is not sufficient, the rate of cell death is larger

than the rate of cell division. In reality, however, it is possible that a

small population of non-angiogenic tumor cells survives. This was modeled

in more detail in the previous section. Here, we omit this for simplic-

ity. (ii) The population of cancer cells grows to significant levels, that is,

C = Ĉ.

How do the parameter values influence the outcome of cancer growth?

The cancer extinction outcome is always stable. The reason is as follows.

The cancer cells require promoters to grow. The promoters, however, are

produced by the cancer cells themselves. If we start with a relatively low

initial number of cancer cells, this small population cannot produce enough

promoters to overcome the presence of inhibitors. Consequently, the cancer

fails to grow and goes extinct. This outcome is always a possibility, regard-

less of the parameter values. Significant cancer growth can be observed if

the intrinsic growth rate, r, lies above a threshold relative to the death rate

of the cells, δ, and degree of tumor cell inhibition (ap and bp relative to aI
and bI). The exact condition is given by (8.8). In this case, the outcome

is either failure of cancer growth, or successful growth to large numbers.

Which outcome is achieved depends on the initial conditions. Successful

growth is only observed if the initial number of cancer cells lies above a

threshold. Then, enough promoters are initially produced to overcome in-

hibition. This is the same result as presented in the previous section; in

biological terms this may mean that mutant cells which produce promot-

ers must be generated frequently (e.g. by mutator phenotypes) in order to

initiate tumor growth to higher levels [Wodarz and Krakauer (2001)].

8.3 Spread of tumors across space

In this section, we introduce space into the above described model. We

consider a one-dimensional space along which tumor cells can migrate. The

model is formulated as a set of partial differential equations and is written
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as follows,

∂C

∂T
=

(

rC

ǫC + 1

)(

P

I + 1

)

− δC +Dc
∂C2

∂x2
, (8.9)

∂P

∂T
= aPC − bPP, (8.10)

∂I

∂T
= aIC − bII +DI

∂I2

∂x2
, 0 ≤ x ≤ L. (8.11)

The model assumes that tumor cells can migrate, and this is described by

the diffusion coefficient Dc. Inhibitors can also diffuse across space, and

this is described by the diffusion coefficient DI . It is generally thought

that inhibitors act over a longer range, while promoters act locally [Folk-

man (2002); Ramanujan et al. (2000)]. Therefore, we make the extreme

assumption that promoters do not diffuse. For simplicity we assume that

inhibitors are only produced by cancer cells and ignore the production by

normal tissue (that is, ξ = 0). This simplification is justified because this

model concentrates on the tumor dynamics, and numerical simulations show

that the results considered here are not altered by this simplification. As

mentioned above, the model considers tumor spread across space. It is im-

portant to point out that we do not consider long-range metastatic spread.

Instead, we consider local spread of a tumor within a tissue, such as the

breast, liver, brain, or esophagus.

These equations must be equipped with appropriate initial and bound-

ary conditions. In the simulations we used the following (Neumann) bound-

ary conditions:

∂C

∂x

∣

∣

∣

∣

x=0

=
∂I

∂x

∣

∣

∣

∣

x=0

=
∂P

∂x

∣

∣

∣

∣

x=0

=
∂C

∂x

∣

∣

∣

∣

x=L

=
∂I

∂x

∣

∣

∣

∣

x=L

=
∂P

∂x

∣

∣

∣

∣

x=L

= 0.

The dependence of the results on the initial conditions is discussed above.

Here we investigate the process of tumor growth and progression

in relation to the degree of inhibition and promotion. First we will

present a mathematical analysis and then biological insights and results of

simulations.

8.3.1 Turing stability analysis

Again, we are going to assume that promoters adjust instantaneously to

their equilibrium level. By replacing P with C defined by P =
ap

bp
C, we
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can rewrite equation (8.9) as

∂C

∂t
=

(

Crap
bp(1 + ǫC)(1 + I)

− δ

)

C +Dy
∂2C

∂x2
. (8.12)

This equation together with equation (8.11) gives a Turing model.

Let us go back to the system of ODEs, (8.6-8.7), and assume that so-

lution (Ĉ, Î) is a stable equilibrium. Of course, this solution also satisfies

the system of PDEs, (8.12, 8.11). Let us consider a wave-like deviation

from this spatially uniform solution:

C(x, t) = Ĉ +A cos(ωx)eλt,

I(x, t) = Î +B cos(ωx)eλt.

Here, the amplitudes of the perturbation, A and B, are small compared

to the amplitude of the spatially uniform solution, and we assume an

infinitely large space. The equation for the new eigenvalue, λ, is

det

(

α−Dcω
2 − λ −β

aI −bI −DIω
2 − λ

)

= 0, (8.13)

where we define

α =
Ĉrap

bp(1 + ǫĈ)2(1 + Î)
> 0, β =

Ĉ2rap

bp(1 + ǫĈ)(1 + Î)2
> 0.

Equation (8.13) can be written as

λ2+λ(bI−α+(DC+DI)ω
2)+aIβ−(bI+DIω

2)(α−DCω
2) = 0. (8.14)

This is the dispersion relation which connects the growth-rate, λ, with

the spatial frequency of the perturbation, ω. The stability conditions

are now given by

bI − α+ (DC +DI)ω
2 > 0, (8.15)

aIβ − (bI +DIω
2)(α−DCω

2) > 0. (8.16)

Note that the stability conditions for solution (Ĉ, Î) of the system of

ODEs, (8.6-8.7), are obtained automatically from the conditions above

by setting ω = 0:

bI − α > 0, (8.17)

aIβ − bIα > 0. (8.18)

Inequality (8.15) is always satisfied because of inequality (8.17). Let us

derive conditions under which the spatially uniform solution is unstable.
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This requires that condition (8.16) be reversed. This can be expressed

as follows:

F (ω) ≡ DIDCω
4 − ω2γ1 + γ2 < 0, (8.19)

where we denoted for simplicity,

γ1 = αDI − bIDC , γ2 = aIβ − αbI > 0.

This is a fourth order polynomial, symmetrical with respect to the line

ω = 0, with a positive leading term. The points, ±|ω|, satisfying
ω2 =

γ1
2DIDC

, (8.20)

correspond to the two minima of the left hand side of inequality (8.19).

Let us call these values of ω, ±ωc. The condition F (ωc) < 0 defines that

the uniform solution (Ĉ, Î) is unstable.

[th]

�c
��c

a=0.1I

a=a =0.31I I,c

a=0.4I

�

F( )�

Fig. 8.5 Emergence of Turing instability. As aI increases and through its critical
value, the function F (ω) (equation (8.19)) crosses zero. Negative regions of F (ω)
correspond to unstable wave-numbers. The wave-number which becomes unstable
first is denoted by ωc. The parameters are as follows: r = 1; δ = 0.1; aP = 5; bP =
0.1; bI = 0.01;DC = 0.00001;DI = 0.001.

Let us plot the function F (ω) for different values of aI , see figure

8.5. For small values of aI , F (ω) is strictly positive, and the spatially
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uniform solution is stable. As aI increases, the function F (ω) crosses

the line F = 0. The critical value of aI , aI,c, for which F (ωc) = 0, is

determined from

(αDI − bIDC)
2 = 4DIDC(aIβ − αbI),

where α and β both depend on aI . We solved this equation numerically

to find the critical value of aI,c, see figure 8.5.

The applicability of the above analysis depends on the parameters of

the system. First of all, we need conditions (8.17-8.18) to be satisfied.

They mean that without diffusion, a positive, spatially uniform solution

is stable. Next, we need to be in a weakly nonlinear regime, where

the function F (ω) has only very narrow regions of ω corresponding to

negative values. More precisely, ∆ω ∼ L−1, where L is the spatial

dimension of the system. In terms of parameter aI , we require that it

is sufficiently close to aI,c. Then, we can calculate the “most unstable”

wave-number, that is, ωc defined by equation (8.20), with ωc,I . This

value will determine the spatial period of the solution,

Period =
2π

ωc
. (8.21)

8.3.2 Stationary periodic solutions

Let us start from the value aI below the critical, aI < aI,c. The system

exhibits bistability. If we start in the vicinity of a (0, 0) solution, then

cancer will not grow and decay to zero. If we start from a point (C, I) in

the domain of attraction of the solution (Ĉ, Î), then the system will develop

towards this positive spatially homogeneous stationary solution.

Next, let us suppose we have aI > aI,c, but make sure that it is suffi-

ciently close to aI,c (the exact meaning of “close” is specified in the analysis

above). Again, if the initial conditions are close to the zero solution, then

the zero state will be the state that the system will attain. However, if we

start in the vicinity of the (Ĉ, Î) state, we will observe interesting behavior.

Solution (Ĉ, Î) is now unstable, and we will see “ripples” developing on top

of this solution. This is Turing instability. The spatial period of the ripple

was calculated in the previous section. Long-time evolution of this state is

of course not in the realm of linear stability analysis, but we can predict

that the spatial scale of the resulting solution will be given by (8.21).
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Finally, let us assume that aI is much higher than critical. Now, solution

(Ĉ, Î) is unstable even in the system of ODEs. However, a periodic solution

will develop, unless the initial condition is in the domain of attraction of

the zero solution. The spatial scale of the periodic solution is determined

intrinsically by the parameters of the system, and it grows with aI . Intu-

itively this is easy to understand, because higher values of aI correspond

to higher levels of inhibition, so the distance between regions of large C

will become larger. Note that the exact period of the periodic solution is

adjusted to fit the boundary conditions of the system. For instance, with

the Neumann boundary conditions, the boundary points are forced to be

troughs of the wave-like pattern. In other words, the period of the solution

must be an integer fraction of L.

8.3.3 Biological implications and numerical simulations

We start with a scenario where the degree of inhibition is much larger

than the degree of promotion (aI/bI >> ap/bp). This corresponds to the

early stages when the tumor is generated. We then investigate how tumor

growth changes as the degree of inhibition is reduced relative to the level of

promotion (i.e., the value of aI/bI is reduced). We consider the following

parameter regions (figure 8.6).

(1) If the degree of inhibition is strong and lies above a threshold, growth

of the cancer cells to higher levels does not occur (not shown). Only

a small number of cells which do not require promotion for survival

would remain.

(2) If the degree of inhibition is weaker, the cancer cells can grow. The

spread across space is, however, self-limited (figure 8.6(a)). The can-

cer cells migrate across space. The inhibitors produced by the cancer

cells also spread across space, while the promoters do not. There-

fore, as the cancer cells migrate, they enter regions of the tissue where

the balance of inhibitors to promoters is heavily in favor of inhibitors.

Consequently, these cells cannot grow within the space. They remain

dormant and may eventually die. In biological terms, this corresponds

to a single coherent but self-limited lesion (uni-focal). Note that this

does not mean that it is in principle impossible to generate more le-

sions. It means that the space between lesions is bigger than the space

provided for cancer growth within the tissue.

(3) As the production of inhibitors is further reduced, we enter another
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parameter region. Now fewer inhibitors diffuse across space. We ob-

serve that multiple lesions or foci are formed (figure 8.6(b)). They

are separated by tissue space which does not contain any tumor cells.

The separate lesions produce some inhibitors, and they diffuse across

space. This explains the absence of tumor cells between lesions. Be-

cause the production of inhibitors is weakened, however, tumor growth

is only inhibited in a certain area around the lesion, and not across

the whole space. How many lesions are found within a tissue depends

on the parameters in the model, in particular on the relative strength

of inhibition and promotion (figures 8.6(b) and (c)). The stronger the

degree of inhibition, the larger the space between lesions, and the fewer

lesions we expect. The weaker the degree of inhibition, the smaller the

space between lesions, and the larger the expected number of lesions.

In biological terms, the occurrence of multiple lesions within a tissue

which arise from a single tumor is often referred to as multi-focal can-

cers. Spatially distinct lesions have also been studied mathematically

in other contexts, e.g. [Marciniak-Czochra and Kimmel (2008)].

(4) If the degree of inhibition is further reduced and lies below a threshold,

spread of inhibitors is sufficiently diminished such that the tumor cells

can invade the entire space and tissue (figure 8.6(d)). In biological

terms, this corresponds to the most extensive tumor growth possible

within a tissue.

In summary, as the relative degree of inhibition is reduced, the patterns

of tumor growth change from absence of significant growth, to a single

self-limited tumor, to the occurrence of multiple foci, and to the maximal

invasion of the tissue by tumor cells. Multi-focal cancers may arise through

the dynamical interplay between long range inhibition and local promotion.

The following section will examine this in the light of somatic evolution.

8.4 Somatic cancer evolution and progression

The previous sections have shown how the pattern of cancer growth can

depend on the relative balance of promoters and inhibitors. Here we con-

sider these results in the context of somatic evolution. Initially, the balance

between inhibitors and promoters is in favor of inhibition. Inhibitors are

likely to be produced by healthy cells (e.g. in the context of angiogene-

sis), which are more abundant than an initiating population of transformed
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Fig. 8.6 Outcome of the spatial model depending on the relative balance of promoters
and inhibitors, captured in the variable ai. Parameters were chosen as follows: r =
1; δ = 0.1; aP = 5; bP = 0.1; bI = 0.01;DC = 0.00001;DI = 0.001;L = 2 For (a) aI = 3,
(b) aI = 2, (c), aI = 1, (d) aI = 0.1.

cells. In the context of angiogenesis, specific mutations have been shown to

result in the enhanced production of promoters or reduced production of

inhibitors in cancer cells. Our model has shown that such mutants have to

be produced at a relatively high frequency, so that a sufficient number of

promoting cells are present in order to ensure that enough promoters are

produced to overcome the effect of inhibition.
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Once the promoting cells have succeeded to expand, cancer progression

can occur in a variety of ways according to the model. How the cancer

progresses depends on how much the balance between promotion and in-

hibition has been shifted in favor of promotion. We distinguish between

three possibilities (figures 8.7, 8.8 and 8.9).
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Fig. 8.7 Tumor progression if the initial mutant cell line has only shifted the balance
between promoters and inhibitors slightly in favor of promotion. This cell line can only
give rise to self limited growth. Further tumor growth requires the generation of further
mutants. The new mutant in the simulation is depicted by the dashed line. Parameters
were chosen as follows: r = 1; δ = 0.1; aP = 5; bP = 0.1; aI = 3; bI = 0.01;Dc =
0.00001;DI = 0.001, L = 2. For mutant: aI = 0.5; aP = 20.
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Fig. 8.8 Tumor progression if the initial mutant cell line has shifted the balance between
promoters and inhibitors more substantially towards promotion. Now, multiple foci can
develop without the need for further mutations. The multiple foci develop, however, by
first generating a single lesion which subsequently splits to give rise to two lesions during
the natural growth process. Parameters were chosen as follows: r = 1; δ = 0.1; aP =
5; bP = 0.1; aI = 1; bI = 0.01;DC = 0.00001;DI = 0.001, L = 2.

(i) The balance between inhibition and promotion has been shifted only

slightly in favor of promotion, such that self-limited growth of the cancer is

observed (figure 8.7). That is, we observe a single lesion which can grow to

a certain size but which is limited in the spread through the tissue. In order

to progress further towards the occurrence of multiple lesions or towards
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more extensive invasion of the tissue, further mutants have to be generated

which are characterized by enhanced production of promoters or by reduced

production of inhibitors. This introduces a new problem: such a mutant will

not have a selective advantage, but is selectively neutral relative to the other

cells. This is because the promoters and inhibitors secreted from one cell

affect the whole population of cells. If the mutant produces more promoters,

not only the mutant, but the entire population of tumor cells benefits. This

means that a mutant characterized by enhanced production of promoters

will not invade the tumor cell population. Instead, we observe genetic

drift which is stochastic and not described by the equations considered

here. The model does, however, suggest the following (figure 8.7): if the

population of mutant cells remains below a given threshold relative to the

rest of the tumor cells, it will not alter the growth pattern. If the population

of mutant cells grows beyond a threshold relative to the rest of the tumor

cells, it can change the pattern of cancer growth, even if the mutants do not

become fixed in the population (figure 8.7). The change can either be the

generation of multiple lesions, or invasion of the whole tissue, depending

on the amount by which the level of promotion has been enhanced by the

mutant cell population. The chances that the mutant cell population drifts

to levels high enough to cause such a change in tumor growth depend on

the population size of the lesion. The larger the number of tumor cells,

the lower the chance that the relative population size of the mutants can

cross this threshold. If this cannot occur, further cancer progression not

only requires the generation of a mutation which enhances the level of

promotion, but an additional mutation which gives the promoter mutant a

selective advantage over the rest of the cell population. That is, in addition

to the mutation which shifts the balance in favor of promotion, a mutation

is required either in an oncogene or a tumor suppressor gene so that the

mutant can grow to sufficiently high numbers or fixation.

(ii) The first mutation shifts the balance between promoters and in-

hibitors to a lager extent which is sufficient to result in the generation of

multiple lesions (figure 8.8). The multiple lesions do not, however, occur

immediately. First, the tumor grows as a single and self limited lesion (fig-

ure 8.8). Over time, this lesion bifurcates to give rise to two lesions, or

further lesions if the degree of promotion is large enough relative to the

degree of inhibition (figure 8.8). The temporal sequence from a single and

self-controlled lesion to the occurrence of multiple lesions is the same as in

the previous case. But in contrast to the previous case, no further muta-

tions are required. This is because multiple foci arise from the split and
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Fig. 8.9 Tumor progression if the initial cell line has largely escaped inhibition, and
promotion is the dominant force. Now the tumor grows in space as a single lesion until
the whole tissue is invaded. Parameters were chosen as follows; r = 1; δ = 0.1; aP =
5; bP = 0.1; aI = 0.1; bI = 0.01;DC = 0.00001;DI = 0.001, L = 2.

migration of a single lesion. The number of foci that form depends on the

exact degree of promotion which was achieved by the initial mutation. The

higher the degree of promotion, the larger the number of lesions. Growth

beyond this number of lesions (which will eventually result in maximal in-

vasion) then requires higher levels of promotion. This is in turn achieved
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by further mutational events according to the same principles as described

in the previous section.

(iii) Finally, assume that the initial mutation shifts the balance so much

in favor of promotion that maximal invasion of the tissue is possible (figure

8.9). Now we observe cancer progression without the generation of multiple

foci. Instead, a relatively small single lesion expands in space until all the

tissue has been invaded.

In summary, the model predicts different modes of cancer progression

in relation to the evolution away from tumor inhibition and towards pro-

motion. A single cancer lesion may spread across the tissue without the

occurrence of multiple lesions. Alternatively, the cancer can first grow as a

single, self-contained lesion. This can then bifurcate to give rise to multiple

foci, either as a result of additional mutations, or as a result of the natural

pathway by which multiple foci are generated, depending on the degree of

tumor promotion conferred by the initial mutation. Further evolutionary

events can then induce the multiple foci to become a single, maximally

invasive mass. The occurrence of multiple foci therefore represents an in-

termediate stage in tumor progression towards malignancy.

8.5 Summary and clinical implications

The occurrence of multiple lesions is observed in a variety of cancers. That

is, not one, but several lesions are observed within a given tissue [Weis-

senbacher et al. (2010); Boyages et al. (2010); Wang et al. (2009); Andreoiu

and Cheng (2010)]. Multiple lesions can occur by two basic mechanisms

[Wilkens et al. (2000); Tsuda and Hirohashi (1995); Ruijter et al. (1999);

Hartmann et al. (2000); Hafner et al. (2002)]. Either they originate indepen-

dently by separate carcinogenic events, or they are generated by a single

transformation event (monoclonal origin). Sometimes, the term “multi-

centric cancers” is used to describe the occurrence of clonally unrelated

lesions, while the term “multi-focal” refers to a monoclonal origin [Teix-

eira et al. (2003)]. Clinically, it is important to determine the nature of

multiple lesions. The occurrence of multiple lesions can be indicative of a

familial cancer, especially if they occur at a relatively young age. Exam-

ples are familial adenomatous polyposis (FAP) in the colon, and familial

retinoblastoma [Marsh and Zori (2002)]. The genetic predisposition of such

individuals renders multiple independent carcinogenic events likely. Al-

ternatively, multiple independent lesions can arise because a large area of
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tissue has been altered and is prone to the development of cancer, such as

Barrett’s esophagus [Van Dekken et al. (1999)], or by other mechanisms

which are not yet understood. On the other hand, genetic analysis has in-

dicated that multiple lesions in several cases have a monoclonal origin [An-

tonescu et al. (2000); Holland (2000); Junker et al. (2002); Kupryjanczyk

et al. (1996); Louhelainen et al. (2000); Middleton et al. (2002); Miyake

et al. (1998); Noguchi et al. (1994); Rosenthal et al. (2002); Simon et al.

(2001); Van Dekken et al. (1999)]. Examples are mammary carcinoma,

gliomas, renal cell carcinoma, hepatocellular carcinoma, and esophageal

adenocarcinoma.

The models discussed here show that multiple foci with a monoclonal

origin can develop through a dynamical interplay between tumor promoters

and inhibitors. The cancer can only grow to high loads as a single mass if it

has largely escaped all inhibitory effects. Otherwise, the cancer is likely to

grow via the generation of a relatively small and self limited tumor which

then bifurcates into multiple foci until it finally invades the entire tissue.

The occurrence of multiple foci is therefore an intermediate stage in cancer

progression. The higher the number of foci, the further advanced the stage

of cancer progression.

A clinically important step in carcinogenesis is the process of metastasis.

That is, the spread of tumor cells to the lymph node, entry into the blood

supply, and the spread to other tissues. Various studies have investigated

the metastatic potential of multi-focal compared to uni-focal cancers [Andea

et al. (2002); Junker et al. (1997, 1999)]. In uni-focal cancers, tumor size has

been found to be a predictor of metastatic potential. For staging multi-focal

breast carcinomas, it has been suggested to use the diameter of the largest

tumor only [Andea et al. (2002)]. This, however, assumes that the other

foci do not significantly contribute to tumor progression. According to our

arguments, this would under-stage the cancer. According to the model, the

number of foci correlates with the stage of the disease. This has also been

concluded in clinical studies, and is supported by data which show reduced

patient survival with multi-focal compared to uni-focal cancers [Andea et al.

(2002)]. Moreover, because our model suggests that multi-focality can occur

as a result of reduced tumor cell inhibition, successful metastatic growth

might be easier to achieve. Although under debate, some data suggest

that inhibitors produced by the primary tumor can prevent metastatic cells

from growing [Ramanujan et al. (2000)]. If multi-focality correlates with

reduced inhibition, then it could also correlate with an increased chance

that metastatic cells grow and do not remain dormant.
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Further, it is important to note that studies which aim to assess the

correlation between multi-focality and metastatic potential should not only

concentrate on the number of foci, but also on the size of the foci. As we

have shown with the model, cancer progression might start with a small

single lesion which can be considered uni-focal. It can then bifurcate to give

rise to multiple foci, and finally spread through the entire tissue. When such

spread occurs, the multiple foci turn into a big and single mass, and this

would again be considered uni-focal. Hence, the cumulative size or volume

of the tumor is likely to be the best predictor of malignant progression.

Problems

Problem 8.1. In the first model describing the invasion of angiogenic cell

lines (model 8.1), how does the mutation rate threshold for µ1 change as

the carrying capacity k1 is lowered?

Problem 8.2. Research project. Read more about multi-focal cancers.

How do the number of foci relate to prognosis in clinical data?
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Chapter 9

Evolutionary dynamics of tumor

initiation through oncogenes: the

gain-of-function model

9.1 Introduction

The question about the origins of cancer is among the most important in

our understanding of the disease. There is no universal answer to this

question, as different cancers are initiated by different mechanisms. There

are however certain patterns that can be recognized. Among the most

prominent ones is cancer initiation via (1) an activation of oncogenes and (2)

an inactivation of tumor suppressor genes. The first mechanism is studied

in this chapter. The second one is addressed in the following chapter.

Some mutations directly lead to the generation of advantageous mu-

tants. This is characteristic of the gain-of-function mutations (see e.g.

[Strachan and Read (1996)]) which activate oncogenes. An oncogene is

a modified gene that promotes tumor growth. The term “oncogene” was

coined by [Huebner and Todaro (1969)] who proposed that viral genes could

be integrated into the cellular genome where they might remain dormant

or become activated, thus causing cancer.

The modern paradigm is that eukaryotic cells contain certain genes

(called proto-oncogenes) involved in the control of cellular growth and dif-

ferentiation. Changes in expression of these genes can give rise to ma-

lignant transformation. Following the hypothesis of Huebner and Torado,

by using a variety of molecular techniques, scientists have subsequently

identified a number of proto-oncogenes, which after activation to onco-

genes become causative factors for a wide variety of human cancers. For

example, the SRC oncogene was discovered by [Stehelin et al. (1976)].

Bishop and Varmus received the Noble Prize in 1989 for their discov-

ery of cellular origins of retroviral oncogenes. Other important onco-

genes are the RAS oncogene found in colon cancer [Vogelstein and Kinzler

133
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(2002)], and the Brc-Abl fusion gene found in chronic myeloid leukemia

[Heisterkamp et al. (1985)].

Three dominant genetic mechanisms of oncogene activation have been

identified [Pierotti et al. (2003)]:

(i) Mutations lead to the uncontrolled, continuous activity of the mutated

protein. For example, point mutations are frequently detected in the

RAS family of proto-oncogenes (K-RAS, H-RAS, and N-RAS). It has

been estimated that as many as 15-20% of human tumors may contain

a RAS mutation. Mutations in K-RAS predominate in carcinomas.

Studies have found K-RAS mutations in about 30% of lung adeno-

carcinomas, 50% of colon carcinomas, and 90% of carcinomas of the

pancreas.

(ii) Another mechanism of oncogene activation is gene amplification,

whereby an expansion in copy number of a gene is observed. The

process of gene amplification occurs through redundant replication of

genomic DNA, often giving rise to karyotypic abnormalities. About

20-30% of breast and ovarian cancers show c-myc amplification, and

an approximately equal frequency of c-myc amplification is found in

some types of squamous cell carcinomas.

(iii) Chromosomal rearrangements are often detected in hematologic malig-

nancies as well as in some solid tumors. These rearrangements consist

mainly of chromosomal translocations. The so-called “fusion genes”

can be created by chromosomal rearrangements when the chromoso-

mal breakpoints fall within the loci of two different genes. The resul-

tant juxtaposition of segments from two different genes gives rise to a

composite structure consisting of the head of one gene and the tail of

another. For example, the Philadelphia chromosome is a translocation,

in which parts of two chromosomes, 9 and 22, swap places. The result

is that a fusion gene is created by juxtapositioning the Abl1 gene on

chromosome 9 to a part of the BCR gene on chromosome 22, thus cre-

ating the Bcr-Abl oncogene responsible for chronic myeloid leukemia

(CML).

Apart from these mechanisms, oncogenes can also be activated by viruses,

whereby viral DNA is integrated into the cellular genome, which can cause

the onset of cancer by activating an oncogene [Lodish et al. (2000)]. More-

over, the gene sequences may be picked up by certain viruses (in which they

occur as viral oncogenes) and transduced to other cells. Viruses which have

acquired cellular sequences of this kind are called oncogenic retroviruses
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[Paul (1984)]. It is estimated that 15% of all human tumors worldwide are

caused by viruses [Butel (2000)].

In this chapter we will set up a stochastic framework to discuss the

generation of gain-of-function mutations. We will use an abstraction of

space-free stochastic processes with a constant population. This is called

the Moran process. We will discuss the dynamics of mutants in a sea of

wild-type cells. What is the probability that starting from a single mutant,

the whole colony of cells will eventually be replaced by progeny of this

mutant? What is the expected time of an advantageous mutant fixation?

These and other questions are addressed below.

9.2 Mutation-selection diagrams and the stochastic

Moran process

In order to model a cellular turnover in tissues of constant size, we will

employ the Moran process, whereby each cell division is coupled with a cell

death, thus keeping the population constant. We will study the generation

of mutants and also trace the fate of their clones (a clone is a set of all

progeny of a given cell).

Let us assume that there could be two types of cells in a population,

which we will call type “A” and type “B”, and the total population size

equals N . The two cell types differ by their fitness parameter. We let the

cells of type “A” have fitness 1 and the cells of type “B” - fitness r. At each

time step, one cell reproduces, and one cell dies, figure 9.1. We assume that

all cells have an equal chance to die (this is equal to 1/N). On the other

hand, reproduction happens differentially depending on the type, and the

relative probability of being chosen for reproduction is given by 1 and r for

the cells of types “A” and “B” respectively. Obviously, in this setting the

total number of cells is preserved.

We further include the process of mutations. Mutations happen with

a small probability upon cell divisions, whereby one of the daughter cells

differs from the original cell. In the simple process described here, only one

type of mutations is considered. Namely, we assume that the probability

that a cell of type “A” reproduces faithfully is 1− u, and with probability

u it will mutate to type “B”. Cells of type “B” are assumed to reproduce

faithfully. We will use the following convenient short-hand representation

of the processes of divisions and mutations:

A(1)
u - B(r) (9.1)
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Fig. 9.1 A schematic of one update of the Moran process. Empty circles represent
wild-type cells (type A cells), and filled circles represent mutants (type B cells). One
cell is chosen for death and another cell is chosen for reproduction. Spatial locations of
cells are not taken into account.

Here the fitness parameter of each type is given in brackets and the mu-

tation rate is marked above the arrow. We will refer to such diagrams

as mutation-selection networks. Mutation-selection networks can be very

complex; network (9.1) represents one of the simplest examples.

The relative fitness parameter r tells us how likely a mutant cell is to

divide compared to a wild-type cell. In the context of oncogene activation,

the mutants’ fitness is larger than that of wild-type cells. That is, r > 1. A

mutation-selection network (9.1) can be relevant not only for the description

of oncogene activation, but also for studying cancer initiation in patients

with familial disorders, where the first allele is mutated in the germ line,

and the inactivation of the second allele leads to a fitness advantage of the

cell, see Chapter 11. In these cases, we can also assume r > 1. In the

more general case, we can view the one-hit model as the process of any one

genetic alteration, resulting in an advantageous (r > 1), disadvantageous

(r < 1) or a neutral (r = 1) mutant.

Let us denote the number of cells of type “A” as a, and the number of

cells of type “B” as b, so that a+b = N . The probability that a cell of type

“A” reproduces is proportional to its frequency and relative fitness (equal

to 1), and is given by a/(a + rb). Similarly, the probability that a cell of

type “B” reproduces is rb/(a+ rb). Thus the probability that the new cell

is of type “A” or type “B” is given respectively by

P+A = (1− u)
a

a+ rb
, P+B = u

a

a+ rb
+

rb

a+ rb
.

Cells of both types have a probability to die proportional to their abun-
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dance, i.e., the probability that a cell of type “A” (or “B”) dies is given

respectively by

P−A =
a

N
, P−B =

b

N
.

We will refer to an event consisting of one replication and one cell death by

an elementary event.

The resulting population dynamics is a Markov process with states b =

0, 1, . . . , N . We set the length of each time step to be 1/N , so that during

a unit time interval, N cells are chosen for reproduction and N cells die.

The choice of this scaling (the “generation” time-scale) is dictated by the

fact that during a physical time-unit, the number of cell divisions should

scale with the system size, N .

9.3 Analysis

The probability that an elementary event results in an increase of the

number of cells of type “B”, is equal to P+BP−A, and the probability

that the number of cells of type “B” decreases is equal to P−BP+A. If

Pij is the probability to go to state b = j from state b = i, then the

transition matrix is given by

Pij =



















u(N−i)+ri
Ni

N−i
N , j = i+ 1,

(1−u)(N−i)
Ni

i
N , j = i− 1,

1− Pi,i+1 − Pi,i−1 j = i,

0 otherwise,

(9.2)

where 0 ≤ i, j ≤ N , and we introduced the notation

Ni = N − i(1− r). (9.3)

The corresponding Markov process is a biased random walk with one

absorbing state, b = N . Let us set the initial condition to be b = 0 (all

cells are of type “A”) and study the dynamics of absorption into the

state b = N .

An equation for the absorption time for the Markov process can be

written down in a straightforward way, [Karlin and Taylor (1975)]. If we

denote the number of elementary events until absorption starting from

state i as ti, we have

ti = N +

N−1
∑

m=0

Pimtm, 0 ≤ i ≤ N − 1. (9.4)



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 138

138 Dynamics of cancer: mathematical foundations of oncology

The absorption time is then given by T ≡ t0. The factor N appears

in the equation above because of our definition of a unit time: T = 1

corresponds to N elementary events. Solving system (9.4) directly is

however cumbersome, so we will use some approximations.

9.3.1 The method of differential equations

Let us denote the probability to be in state a = i at time t as ϕi(t).

Using the transition matrix for two types, (9.2), we can write down the

Kolmogorov forward equation for ϕi:

∂ϕi

∂t
= (1− u)

[

ϕi−1
(i− 1)[N − (i − 1)]

rN − (i − 1)(r − 1)
− ϕi

i(N − i)

rN − i(r − 1)

]

+ ϕi+1
[r(N − (i+ 1)) + (i+ 1)u](i+ 1)

rN − (i+ 1)(r − 1)

− ϕi
[r(N − i) + iu](N − i)

rN − i(r − 1)
. (9.5)

It is convenient to introduce the variable η = i/N . Taking the continuous

limit and expanding into the Taylor series up to the second order, we

obtain the following partial differential equation for ϕ(η, t):

∂ϕ

∂t
=

∂

∂η
(Mϕ) +

1

N

∂2

∂η2
(V ϕ), (9.6)

where

M =
η(1 − r)(1 − η)− u

η(r − 1)− r
, V = −1

2

η[(1− η)(1 + r) − u(1− 2η)]

η(r − 1)− r
.

When |1− r| ≪ 1, we have the following equation:

N
∂ϕ

∂t
= N(r − 1)

∂

∂η
(η(1 − η)ϕ) +

∂2

∂η2
(η(1 − η)ϕ).

This equation is studied in [Kimura (1995)].

Neutral mutants. In the case |1− r| ≪ 1/N the principal term in the

expression for ϕ(η, t) is proportional to e−µ0t, where

µ0 =
1

N
(1 +O((N(r − 1))2)).

This sets the typical time-scale of the process.

Positively and negatively selected mutants. We can also study the

case 1/N ≪ |1−r| ≪ 1. In that limit, for r > 1 (advantageous mutants),
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the region of interest is η ≪ 1 (remember that η = 0 corresponds to the

all “B” state). Thus the equation simplifies to

N
∂ϕ

∂t
= N(r − 1)

∂

∂η
(ηϕ) +

∂2

∂η2
(ηϕ).

This equation could be solved in terms of Laguerre polynomials, in

general:

ϕ(η, t) = e−N(r−1)η
∞
∑

n=0

cnL
1
n(N(r − 1)η)e−(r−1)(1+n)t.

The Laguerre polynomials, Lα
n(x) satisfy the differential equation

(

x
d2

dx2
+ (α+ 1− x)

d

dx
+ n

)

Lα
n(x) = 0.

Note that the leading transient gives

µ0 = |1− r|
in this limit. One could similarly treat the case of r < 1 (disadvantageous

mutants). In general, µ0 = 1
N f(N(r − 1)) where f(s) = 1 + O(s2) for

small s but f(s) ≈ |s| for large s. The quantity µ0 will be used in

Sections 9.4 and 9.4.1 to find an approximation to the absorption time

and to justify the coarse-grained description of system (9.5).

9.3.2 The probability of absorption

Equation (9.5) in principle provides all the information about the

stochastic behavior of the cell compartment, but it is difficult to solve.

Instead of solving the full system and obtaining values for all the prob-

abilities, we can concentrate on some important aspects of the problem

and obtain solutions in the limiting cases of interest.

First, let us consider a simpler problem, where cells do not mutate.

Let us suppose that initially, cells of both types are present in the sys-

tem. With a constant cellular turnover in the Moran process, and in

the absence of mutations, as time t → ∞, there are exactly two out-

comes that we can envisage: (1) all cells are uniformly wild-type, and

the mutants have gone extinct, or (2) all the cells are mutant, and the

wild-type cells have gone extinct. Which outcome is more likely depends

on the fitness of the mutants, and on the initial number of mutant cells.

Of biological interest is the probability for a mutant to reach fixation
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(that is, to reach the state where all cells in the system are replaced by

mutants). Below is a mathematical description of this problem.

For u = 0, the system has two absorbing states, b = 0 and b = N .

Let us denote the probability to get absorbed in b = N starting from the

state b = i as πi. These quantities are given by the system:

πi = PiN +

N−1
∑

m=1

Pimπm; (9.7)

note that we set u = 0 in the expression for P . System (9.7) can be

rewritten as

−πi−1 + (r + 1)πi − rπi+1 = 0, 1 < i < N − 1,

where we canceled the common multiplier in the terms of the matrix

I − P in the same row. The boundary conditions are

(r + 1)π1 − rπ2 = 0,

−πN−2 + (r + 1)πN−1 = r.

We can look for a solution in the form πi = αi. The quadratic equation

for α gives the roots α = 1/r and α = 1. Substituting πi = Ar−i + B

into the boundary conditions we obtain the solution,

πi =
rN−i(1 − ri)

1− rN
=

1− (1/r)i

1− (1/r)N
, r 6= 1. (9.8)

For r = 1 we obtain in the limit,

πi =
i

N
, r = 1. (9.9)

The latter result can be derived (i) as a limit of expression (9.8) when r →
1, and (ii) from symmetry considerations: if all cells have equal fitness,

they all have an equal chance to eventually dominate the population.

9.4 Probability and timing of mutant fixation

There are two processes that go on in the system: mutation and selection.

If the characteristic time scales of the two processes are vastly different,

we can treat them separately, and obtain some very useful insights. Let us

assume that the mutation rate u is very small, so that once a mutant of

type “B” is produced, it typically has time to get fixated or die out before
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a new mutation occurs. In other words, once a mutant is produced, it is

safe to assume that during its life-time no other mutations occur.

Below we will discuss the behavior of mutants whose fitness can be

smaller than, equal to, or larger than that of the wild type, which corre-

sponds to negatively selected, neutral, or positively selected mutants. In

the context of oncogene activation, the assumption r > 1 (positively se-

lected mutants) is usually made. We however will consider the whole range

of possibilities. In particular, neutral and negatively selected mutants can

be important in the context of tumor suppressor gene inactivation, which

is studied in detail in Chapter 10.

Let us study the fate of individual mutant lineages. If the fitness of

mutants is equal to or smaller than that for the wild-type cells, then most

of the time the lineages will die out. Rarely will they expand to large

numbers or even reach fixation, that is, replace the wild type cells and come

to completely dominate the cell compartment. What is the probability of

this happening? Starting from imutants, the probability of fixation is given

by

πi =

{

1−(1/r)i
1−(1/r)N , r 6= 1,
i
N , r = 1.

(9.10)

The quantities πi are probabilities of fixation of a mutant of relative fitness

r starting from i cells, in a population of N−i wild-type cells. Figure 9.2(a)

shows the graphs of probability πi as a function of the initial number of

mutants for advantageous, neutral, and disadvantageous mutants.

Of particular importance is quantity π1, the probability of fixation start-

ing from exactly one mutant. Let us reserve the notation ρ for the proba-

bility π1:

ρ ≡ π1 =

{

1−1/r
1−1/rN , r 6= 1,
1
N , r = 1.

(9.11)

Expressions given in (9.11) play an important role in the dynamics of one-hit

mutants, spreading through a population of wild-type cells. A log-log plot

of the probability ρ as a function of the fitness parameter r is presented in

figure 9.2(b). Below r = 1, it quickly drops down to very low numbers. This

means that it is unlikely for disadvantageous mutants to reach fixation in a

population. For r > 1, the fixation probability approaches 1 as r increases.

Next, let us study the timing of fixation. Starting from the all-“A”

population of cells, how long does it typically take for mutants “B” to be

produced and to dominate the compartment? In the case of rare mutations,
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Fig. 9.2 The probability of mutant fixation. (a) The probability of fixation, πi, as a

function of the initial number of mutants, i, plotted for three different fitness values.
(b) The probability of fixation starting from one cell, plotted as a function of the fit-
ness parameter, r. The horizontal line represents that probability of fixation of neutral
mutants, equal to 1/N . We used the value N = 100.

the inverse time to fixation is roughly u times the probability for a given

mutant to get fixated:

T =
1

Nuρ
. (9.12)

In order for approximation (9.12) to be valid, we need to make sure that

the time-scale related to mutation ((Nu)−1) is much longer than the time-

scale of the fixation/extinction processes. Only the fraction ρ of all mutants

will successfully reach fixation, whereas the rest will be quickly driven to

extinction. In order for each mutant lineage to be treated independently,

we need to require that the time it takes to produce a successful mutant,

(ρNu)−1, is much larger than the typical time-scale of fixation, µ−10 (Section

9.3.1). In the case of neutral mutations, ρ = 1/N , µ0 = 1/N and we arrive

at the condition,

uN ≪ 1, if |1− r| ≪ 1

N
. (9.13)

In the case where the mutation is positively or negatively selected, we have

uN ≪ r−(N−1), if r < 1,
1

N
≪ |1− r| ≪ 1, (9.14)

uN ≪ r, if r > 1,
1

N
≪ |1− r| ≪ 1. (9.15)

If these conditions hold, we can say that mutations are rare, and each

mutant and its clone typically have a chance to either invade or die off
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before another mutant is generated. Furthermore, under these conditions,

approximation (9.12) is valid. Finally, condition (9.13) (or (9.14), (9.15),

depending on the mutant fitness) allows us to describe the system in a very

simple and intuitive way, as explained next.

9.4.1 The approximation of “almost absorbing” states and

the growth of mutants

We will call a state of the system homogeneous, or pure, if all the N cells are

of the same type. States containing more than one type of cells (1 < b < N)

will be referred to as heterogeneous, or mixed states.

If conditions (9.13-9.15) hold, then the mutation rate is very low relative

to the time-scale of mutant lineage dynamics, and the probability of finding

the system in a heterogeneous state is very low. The system spends most

of the time in the pure states, b = 0 and b = N . This allows us to make a

further approximation of “almost absorbing” states.

Let us use the capital letters A and B for the probability to find the

system in the state b = 0 and b = N respectively. Strictly speaking, the

state b = 0 is not absorbing, but it is long-lived. We have approximately,

A + B ≈ 1. Let us define the following “coarse-grained”, continuous time

stochastic process: the system jumps between two states, A = 0 and A = 1,

with the following probabilities:

P (A = 0, t+∆t|A = 1, t) = uρ∆t, P (A = 0, t+∆t|A = 0, t) = 1,

P (A = 1, t+∆t|A = 1, t) = 1− uρ∆t, P (A = 1, t+∆t|A = 0, t) = 0.

The Kolmogorov forward equations for this simple system can be written

down, which describe the dynamics of the two-species model, (9.1):

Ȧ = −uNρA A(0) = 1, (9.16)

Ḃ = uNρA, B(0) = 0, (9.17)

where A is the probability to find the entire system in state “A”, B is the

probability to find the entire system in state “B”, and ρ is given by equation

(9.8). Equations (9.16-9.17) lead to the solution A(t) = exp(−uNρt) and

B = 1− exp(−uNρt), (9.18)

the probability of fixation of mutants of type “B”.

A short-hand notation for coarse-grained differential equations (9.16-

9.17) is as follows:

A RA→B - B (9.19)
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where the transition rate, RA→B = uNρ, is a product of the total popula-

tions size, the mutatin rate, and the probability of mutant fixation.

Equations (9.16-9.17) give us a very powerful and simple method of

studying the stochastic system of dividing, dying and mutating cells. In-

stead of keeping track of each cell and calculating all the probabilities, we

can simply think of the cell compartment as a two-state system: all-“A”

and all-“B”, with a simple transition rate between the states. This type of

dynamics is schematically illustrated in figure 9.3(a).
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The “coarse-grained”, two-state  dynamics 

The “nearly deterministic” mutant dynamics  

“B”Type “A” Type “A”

Type “A”

Type “B”

T=1/(Nu   ) 

Fig. 9.3 A schematic illustration of the two types of behavior, which we expect to see
depending on whether or not conditions (9.13-9.15) hold. (a) A jump between the all-
“A” and the all-“B” states, described by the coarse-grained equations (9.16-9.17), when
conditions (9.13-9.15) hold. (b) The nearly-deterministic rise of mutants in the case
of neutral or advantageous mutants. For disadvantageous mutants such that condition

(9.25) holds, the mutants do not reach fixation but are maintained at level (9.26).

9.4.2 Nearly-deterministic regime

Finally, we need to see what happens if the opposite of conditions (9.13-

9.15) hold. In this case, we can think of the system as very large, and/or
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having a high mutation rate, such that new mutants are produced fre-

quently, and accumulate in a nearly-deterministic fashion. In this regime,

neutral mutants’ dynamics will resemble the behavior of advantageous mu-

tants, because in the absence of back-mutations, they will constantly grow

in abundance, see figure 9.3(b).

In this case, the dynamics of the mutants can be described by using a

deterministic set of quasispecies equations (Chapter 6). If x0 is the abun-

dance of type “A” cells, and x1 the abundance of type “B” cells, we have

ẋ0 = (1− u)x0 − φx0, (9.20)

ẋ1 = ux0 + rx1 − φx1, (9.21)

x0(0) = N, x1(0) = 0, (9.22)

where the average fitness is given by

φ =
x0 + rx1

N
.

In these equations, we have x0 + x1 = N , and the solution for the number

of type “B” mutants reads:

x1(t) = N

(

1− et(r + u− 1)

uet(r+u) + (r − 1)et

)

. (9.23)

In particular, if r = 1, this expression simplifies to

x1(t) = N(1− e−ut). (9.24)

If r > 1− u, the abundance of one-hit mutants will rise and reach fixation.

For disadvantageous mutants with

r < 1− u, (9.25)

the type-“B” mutants will be maintained at a selection-mutation balance,

x1(t) = Nu/(1− r). (9.26)

9.5 Summary

In this chapter we studied the (mathematically) simplest pattern of cancer

initiation, which is described by a gain-of-function model. We discussed the

probability of mutant fixation, the time to fixation, and a coarse-grained

description of the process. A detailed understanding of these processes is

required to gain insights about the development of tumors that are driven

by the activation of an oncogene, such as chronic myeloid leukemia (CML).

If the appropriate parameters are measured, it is possible to use the cal-

culations developed here to predict the timing of cancer emergence and

thus to interpret age-incidence patterns. Next, we look at loss-of-function

mutations, which proceed in a sequence of two inactivation mutations.
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Problems

Problem 9.1. Research project. Learn about the connection between

viruses and oncogene inactivation.

Problem 9.2. Derive equation (9.24) by taking the limit r → 1 in expres-

sion (9.23).

Problem 9.3. Derive equation (9.26) by assuming that r < 1 − u and

taking the limit t → ∞ in expression (9.23). What happens as t → ∞ if

r > 1− u?

Problem 9.4. Derive equation (9.9) by taking the limit r → 1 in expression

(9.8).

Problem 9.5. Numerical project. Absorption time in a Markov chain

can be calculated directly by using equation (9.4). Solve algebraic system

(9.4) numerically for particular values of parameters u, r, and N . Show

that result (9.12) holds approximately if condition (9.13) (or (9.14, 9.15)

is satisfied. Note: Formula (9.12) can also be obtained analytically if one

solves system (9.4) explicitly and then takes the first term in the Taylor

expansion of T0 in u.
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Chapter 10

Evolutionary dynamics of tumor

initiation through tumor-suppressor

genes: the loss-of-function model and

stochastic tunneling

10.1 Introduction

In the previous chapter we concentrated on a mathematical description of

oncogenes, that are activated by a gain-of-function mutation. Here we in-

troduce another very common pattern in cancer initiation and progression,

which is described by a loss-of-function model. A loss-of-function mutation

results in a gene product having less or no function. Two independent loss-

of-function mutations are necessary to inactivate a gene, because after the

first mutation, the second copy of the gene is still active. In the context

of cancer, the loss-of-function mechanism is involved in the inactivation of

tumor suppressor genes.

The concept of tumor-suppressor genes has evolved during the last 30

years. A defining landmark was the discovery of the Rb gene. Retinoblas-

toma is a rare and deadly cancer of the eye that afflicts children. It comes

in two versions. One affects newborn infants and is characterized by mul-

tiple tumors. The other hits children when they are older and is usually

characterized by only a single tumor. In 1971, Alfred Knudson proposed

an explanation, which became known as the famous Knudson’s “two-hit

hypothesis” [Knudson (1971)]. According to his theory, in the early-onset

version of retinoblastoma, children inherit a defective gene from one par-

ent. These children are halfway to getting the disease the moment they

are born. Then, an error in DNA replication in a single eye cell, causing a

defect in the normal gene that was inherited from the other parent, would

send that cell on its way to becoming a tumor. In contrast, children who

147
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develop retinoblastoma later in childhood are probably born with two good

copies of the gene but acquire two hits in both copies of the gene in a cell.

This would take longer, causing the cancer to show up at a later age.

Knudson proposed the tumor suppressor gene hypothesis of oncogen-

esis after detecting a partial deletion of chromosome 13 in a child with

retinoblastoma. This was a revolutionary concept, that is, cancer was not

caused by the presence of an oncogene, but rather the absence of an “anti-

oncogene”. He concluded that the retinoblastoma tumor suppressor gene

would be found at band 13q14. It wasn’t until the late 1980s when scien-

tists eventually cloned the gene Rb which mapped exactly where predicted

by Knudson.

Other genes with similar properties were discovered, including p53,

WT1, BRCA1, BRCA2 and APC. The generic definition of a tumor sup-

pressor gene comprises the idea of a loss of function. Only when both alleles

of the gene are inactivated, does the cell acquire a phenotypic change. Many

of tumor suppressor genes are involved in familial cancers. The mechanism

is similar to the one described by Knudson in retinoblastoma. If a defec-

tive allele is present in the germline, the affected individuals will have a

higher chance of developing a cancer as only one remaining allele must be

inactivated to initiate an early stage lesion.

In collaboration with Suresh Moolgavkar, Knudson went on to de-

velop mathematical models for this hypothesis, which were the first to

coalesce clinical-epidemiological observations with putative mutation rates

and molecular genetics [Moolgavkar and Knudson (1981)]. In their publi-

cations, Moolgavkar and colleagues have created a rigorous methodology

of studying two-stage carcinogenesis [Moolgavkar (1978); Moolgavkar et al.

(1980, 1988)]. In this chapter we will review some of the main ideas of the

two-hit models in a general context. We will also introduce the concept of

“stochastic tunneling”, which is an important computational tool to study

the process of loss-of-function mutations.

10.2 Process description and the mutation-selection

diagram

The process we are studying is characterized by the possibility of three types

of cells: the wild-type cells, the intermediate mutants, or one-hit mutants,

and the double-mutants. According to this, we suppose that there are three

types of cells: type “A”, type “B” and type “C”, and the mutation-selection
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network that governs the dynamics is as follows:

A(1)
u1 - B(r)

u2 -C(r1) (10.1)

The fitness parameters are denoted respectively by 1, r and r1. As before,

the fitness parameters must be interpreted as relative probabilities to be

chosen for reproduction, rather than parameters defining the time-scale.

We assume that type “A” can mutate into type “B” with probability u1,

and type “B” can mutate to type “C” with probability u2. There are no

other mutation processes in the system.

This model describes several biologically relevant situations. For in-

stance, it may be directly applied for the two-hit hypothesis, that is, the

process of the inactivation of a tumor suppressor gene. In the simplest

case, the inactivation of the first allele of a tumor suppressor gene (TSP)

does not lead to a phenotypic change, which would correspond to the value

r = 1. This rigid definition can be relaxed to allow for certain gene dosage

effects. For instance, the loss of one copy can lead to a certain change in

the phenotype, and the loss of both copies will increase this effect. In this

case, we could have 1 < r < r1. Finally, the case r < 1, r1 > 1 means

that the intermediate cell has a disadvantage compared to wild type cells.

For example, this may correspond to the situation where the inactivation

of the first allele is achieved by a large scale genomic alteration, such as a

loss-of-heterozigocity event where many genes have been lost. This would

lead to the intermediate product having a disadvantage compared to the

wild type cells. Losing the remaining allele of the tumor suppressor gene

will give the cell a growth advantage which may override the fitness loss of

the previous event, resulting in r1 > 1.

In general, the two-hit model described above refers to any two con-

secutive mutations, such that the first one may be positively or negatively

selected (or neutral), and the second one confers a significant selective ad-

vantage to the cell.

Let us specify the states of the system by the variables a, b and c, the

number of cells of species “A”,“B” and “C”, respectively. In the framework

of the Moran process, they satisfy the constraint a + b + c = N . We

can characterize a state as a vector (b, c). In this notation, the state we

start with is (0, 0), which is all “A”. The final state, which is the state of

interest, is (0, N), or all “C”. The question we will study is again, the time

of absorption in the state c = N .
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10.3 Three regimes: a two-step process, stochastic tunnel-

ing, and a nearly-deterministic regime

Let us start from the all “A” state. If we are in the regime of homogeneous

states, conditions (9.13-9.15), we can consider the lineages of each mutant

of type “B” separately. Once a mutant of type “B” is created, its lineage

can either go extinct, or become fixated. A mutant of type “C” can be

created before or after type “B” reaches fixation. This gives rise to two

possible scenarios, figure 10.1(a,b).
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Fig. 10.1 A schematic depicting two possible processes of two-hit mutant creation.
(a) The genuine two-step process. (b) Stochastic tunneling. (c) Nearly-deterministic
process.

We will call a genuine two-step process a sequence of steps where starting

from (0, 0), after some time the system finds itself in the state (N, 0) and
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then gets absorbed in the state (0, N). In other words, starting from the all

“A” state, the system gets to the state where the entire population consists

of cells of type “B”, and finally reaches fixation in the all “C” state, see

figure 10.1(a).

We will use the term stochastic tunneling for processes where the system

goes from (0, 0) to (0, N) without ever visiting state (N, 0). This means that

from the all “A” state the system gets absorbed in the all “C” state, skip-

ping the intermediate fixation of type “B”, see figure 10.1(b). The concept

of stochastic tunneling was introduced by [Nowak et al. (2002); Komarova

et al. (2003b)] when studying the first step in colon cancer initiation, the

inactivation of the tumor suppressor gene APC. The concept has later been

investigated by several groups in the context of cancer initiation, escape dy-

namics [Iwasa et al. (2004b)], and more broadly as a means of crossing a

fitness valley by an evolving species [Weissman et al. (2009)]. The basic

Moran process in a homogeneous tissue has been used as the underlying

mathematical model. A generalization to a model of renewing epithelial

tissue will be described in Chapter 12, and a spatial generalization for the

tunneling rate will be considered in Chapter 13.

Finally, there is a third distinct regime of the double-hit mutant gener-

ation, whereby one-hit mutants grow in a nearly-deterministic fashion, and

eventually a double-hit mutant is produced in their midst. This regime is

schematically shown in figure 10.1(c).

It turns out that the computation of the waiting times for a mutant of

type “C” to appear will be different in the three regimes.

10.4 The transition matrix

We are interested in the case where the type “C” has a large selective

advantage, i.e., r1 ≫ (1, r), so that once there is one cell of type “C”,

this type will invade instantaneously with probability one. Under this

assumption we can use a trick which allows us to view the dynamics as a

one-dimensional process. Namely, let us consider the following reduced

Markov process with the independent stochastic variable b: the states

b = i with 0 ≤ i ≤ N correspond to a = N − i, b = i, c = 0, and the

additional state E contains all states with c > 1. The state E is the only

absorbing state of the system, because we assume that once a mutant of

type “C” appears, then cells “C” invade, so the system cannot go back
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to a state with c = 0. Using notation 9.3,

Ni = ri +N − i,

the transition probabilities are given by

Pij =



























u1(N−i)+(1−u2)ri
Ni

N−i
N , j = i + 1,

(1−u1)(N−i)
Ni

i
N , j = i − 1,

u2ri
Ni

, j = E,

1− Pi,i+1 − Pi,i−1 − Pi,E , j = i,

0 otherwise,

(10.2)

for 0 ≤ i ≤ N , PE,E = 1 and PE,j = 0 for all 0 ≤ j ≤ N . In some

special cases, the absorption time can be found from equation (9.4). A

direct solution is not possible in the general case, and we will use some

approximations.

10.5 Mathematical theory

10.5.1 The Kolmogorov forward equation in the absence

of intermediate mutant fixation

Let us denote by i the number of one-hit mutants in a population of

N cells. We start the process with all wild-type cells, and stop when

the first double-hit mutant appears. We also assume that the number of

intermediate, one-hit mutants does not become large, that is,

i ≪ N. (10.3)

The conditions when this approach holds true are discussed later in this

chapter. The following transitions are possible, starting from state i:

• The number of mutants decreases by 1 with probability

Pi→i−1 =
i

N

N − i

N (1− u2) ≈
1

N
i(1− u2), (10.4)

where the first multiplier corresponds to the probability of death of

a one-hit mutant, and the second multiplier is a faithful reproduc-

tion of one of the wild-type cells. Here and below we neglected i/N

compared to 1 in the approximation.

• The number of one-hit mutants increases by 1 with probability

Pi→i+1 =
N − i

N

(

ri

N (1− u2) +
N − i

N u2

)

≈ 1

N
(ri(1− u2) +Nu2) ,

(10.5)
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where the first multiplier corresponds to the probability of death of

a wild-type cell, and the second multiplier contains two processes

whereby a one-hit mutant is created: a faithful division of a one-hit

mutant and a mutation of a wild-type cell.

• A two-hit mutant is created with probability

Pi→E =
ri

N u2 ≈ 1

N
riNu2, (10.6)

which corresponds to death of any cell (probability 1) and a division

of a one-hit mutant with a mutation.

Let us denote by ϕi(t) the probability to find the system in state i at

time t. We have

N
∑

i=0

ϕi(t) + ϕE(t) = 1. (10.7)

The function ϕi(t) satisfies the following Kolmogorov forward equation:

ϕ̇i = ϕi−1Pi−1→1 +ϕi+1Pi+1→i −ϕi(Pi→i+1 +Pi→i−1 +Pi→E). (10.8)

Let us scale the time variable by a factor of N to adopt the generation

time scale (see Section 9.2). This eliminates the factor 1/N in front of

all the probabilities. We have:

ϕ̇i = ϕi−1[r(i − 1)(1− u2) +Nu2] + ϕi+1(i+ 1)(1− u2)

− ϕi[i(1− u2) + ri +Nu2]. (10.9)

10.5.2 The probability generating function

System (10.9) is a coupled infinite system of ODEs, which we do not

intend to solve exactly. Instead, we will extract useful information from

this system which does not require the detailed knowledge of all the

probabilities ϕi(t). We will use the method of the probability generating

function:

Ψ(x, t) =

N
∑

i=0

ϕi(t)x
i, (10.10)

see e.g. [Karlin and Taylor (1975)]. The transition from {ϕi(t)} to

Ψ(x, t) is a variable transformation that allows us to reduce an infinite

system of ODEs, equations (10.9), to a single equation, a PDE for Ψ(x, t).
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Before we derive this PDE, we note that the quantity Ψ(1, t) has

the meaning of the probability to find the system in one of the states

0, 1, . . . , N . Therefore, by equation (10.7), the quantity

P2(t) = 1−Ψ(1, t)

is the probability to have produced a double-hit mutant by time t. This

is the quantity we would like to calculate.

Multiplying equation (10.9) by xi and summing over all i, we obtain

the following PDE for the probability generating function:

∂Ψ

∂t
=

∂Ψ

∂x
[r(1−u2)x

2+(1−u2)−(1−u2+r)x]+ΨNu2(x−1). (10.11)

10.5.3 The method of characteristics and the Riccati

equation

We can solve the first order linear PDE, equation (10.11), by the standard

method of characteristics. We have

P2(t) = 1− exp

(

−
∫ t

0

Nu1(1− x(t′)) dt′
)

, (10.12)

where x(t) is a solution of the initial value problem,

ẋ = r(1 − u2)x
2 + (1− u2)− (1 − u2 + r)x, (10.13)

x(0) = 1. (10.14)

Equation (10.12) is sometimes called the doubly-stochastic approxima-

tion, and can be derived in the theory of branching processes, see e.g.

[Parzen (1962)]. The quantity

P1(t) ≡ 1− x(t) (10.15)

is the probability to generate a double-hit mutant by time t, starting

from exactly one cell of type “B”.

The equation that x(t) satisfies is a Riccati equation and can be

solved exactly. Let us consider problem (10.13-10.14) with general (con-

stant) coefficients:

ẋ = ax2 − bx+ c, (10.16)

x(0) = 1, (10.17)

where in our particular case,

a = r(1 − u2), b = 1 + r − u2, c = 1− u2.
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The solution of this equation is given by

x(t) = −Aβ1e
(β1−β2)t + β2

a(Ae(β1−β2)t + 1)
, A = −a+ β2

a + β1
, (10.18)

where β1 < β2 are the two roots of the quadratic equation β2 + bβ +

ac = 0.

Equation (10.16) has a globally-stable fixed point. We will describe

the trajectory approaching this fixed point from initial condition (10.17),
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Fig. 10.2 The quantity P1(t) = 1 − x(t) from system (10.13-10.14) is plotted as a

function time for (a) disadvantageous intermediate mutant (r = 0.99), (b) neutral
intermediate mutants (r = 1), and (c) advantageous intermediate mutants (r =

1.01). The approximations given by formula (10.19) are shown by dashed lines. The
mutation rate is u2 = 10−7.
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in terms of function P1(t), equation (10.15), instead of the function x(t).

This function grows linearly with slope L for small values of t ≪ t∗, and
eventually saturates to a constant R for large values of t ≫ t∗. We have

L = b− a− c, t∗ =
1

β2 − β1
=

1√
b2 − 4ac

, R = 1 +
β2

a
. (10.19)

10.5.4 Tunneling for disadvantageous, neutral, and

advantageous intermediate mutants

We would like to characterize the behavior of the exponent in (10.12).

In figure 10.2, we plot the quantity P1(t) = 1 − x(t) as a function of

time, using the exact solution for x(t), equation (10.18). The function

P1(t) starts at zero at t = 0, grows monotonically (the growth is linear

with slope L for short time scales), and it reaches saturation at level R.

Let us evaluate the expressions in (10.19). There are three important

limits:

(i) Disadvantageous intermediate mutants, r < 1, |1−r| ≫ √
u2, figure

10.2(a). In this regime, L = ru2, t∗ = 1
1−r , and R = ru2

1−r .

(ii) Neutral intermediate mutants, |1 − r| ≪ √
u2, figure 10.2(b). In

this regime, L = u2, t∗ = 1
2
√
u2
, and R =

√
u2.

(iii) Advantageous intermediate mutants, r > 1, |1 − r| ≫ √
u2 , figure

10.2(c). In this regime, L = ru2, t∗ = 1
r−1 , and R = r−1

r . In

the case of advantageous intermediate mutants, there is a distinct

intermediate regime, corresponding 1/(r − 1) < t ≪ tc, where

tc = ln

(

(r − 1)2

r2u2
+ 1

)

/(r − 1). (10.20)

In this regime, the function 1− x(t) grows faster than linear, figure

10.2(c). If we assume that |r − 1| ≫ u2, and r > 1, then the

expression for 1− x(t) can be simplified to give

P1(t) =
u2r

(

e(r−1)t − 1
)

r − 1
. (10.21)

In the limit of small t, the above function becomes linear with the

slope ru2. Therefore, we can say that there are two regimes in the

growth of function P1(t): for t ≪ tc it can be approximated by

formula (10.21), and for t ≫ tc, we have P1(t) ≈ (r − 1)/r.
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10.5.5 Genuine two-step process vs tunneling

The method used so far assumes the independence of the lineages of the

intermediate mutant. Thus for the method to work, the probability of

fixation of intermediate mutants must be small compared to the proba-

bility of “tunneling”. The former probability is given by equation (9.18),

and the latter - by equation (10.12). Therefore, the inequality,

ρt ≫
∫ t

0

P1(t
′) dt′, (10.22)

guarantees that fixation of an intermediate mutant typically happens

before a double-hit mutant is produced. The quantity ρ is the proba-

bility that a one-hit mutant becomes fixated and is given by equation

(9.11). The condition simplifies depending on the exact regime (growth,

saturation) and the types of intermediate mutant.

If condition (10.22) holds, then the description of Section 10.5.4

breaks down, and we have a consecutive fixation first of type “B” mu-

tants and then type “C” mutants. This is the genuine two-step process,

figure 10.1(a).

10.5.6 Time-scales of the process

As mentioned above, the quantity P1(t) = 1 − x(t) has the meaning of

the probability that starting from exactly one intermediate mutant, a

double-mutant is created at time t. This quantity defines a certain time

scale (t∗ for neutral and disadvantageous mutants, and tc for advanta-

geous mutants). These time-scales separate the regime of growth and

the regime of saturation of probability P1(t).

Another time-scale is defined by the left hand side of equation (10.22),

and corresponds to the typical time to fixation of an intermediate

mutant.

Finally, there is another time-scale coming from the factor Nu1 (in-

termediate mutant production) in expression (10.12). This time-scale,

which we call t1, is the time when the expression in the exponent of

(10.12) becomes of the order one,

u1N

∫ t1

0

P1(t
′) dt′ = 1. (10.23)

For t ≫ t1, we have P2(t) ≈ 1. Therefore, it makes sense to restrict the

values of the time-variable to the domain of interest, t ∈ [0, t1].
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The interplay between the three time scales is key for calculating

the probability of double-mutant creation in the Moran process. This

is shown next, in the context of the three distinct types of intermediate

mutants.

10.5.7 Neutral intermediate mutants

Neutral mutants in this context are defined by the condition |1 − r| ≪√
u2. We will separate two limiting cases: the case where t∗ ≪ t1 and

the case where t∗ ≫ tc, see figure 10.3.

Fig. 10.3 Two configurations of the time-scales t∗ (for neutral of disadvantageous
mutants) or tc (for advantageous mutants) and t1. (a) t1 ≪ t∗. (b) t∗ ≪ t1.

(a) Assume that t∗ ≫ t1, figure 10.3(a). This means that for all relevant

values of time, we have P1(t) = u2t, a linear growth regime. This allows

us to calculate t1 =
√

2
u1u2N

from equation (10.23), and given that

t∗ = 1/(2
√
u2), condition t∗ ≫ t1 is equivalent to requiring

u1N ≫ 1. (10.24)

To decide if a two-step process takes place, we use inequality (10.22).

A quick calculation shows that the result depends on time. It turns

out that if t ≪ 2/(Nu2), the fixation of a one-hit mutant typically has

a chance to happen before a two-hit mutant is created. The two-step

process is described in Section 10.6.1. Here we just mention that for

t ≪ 2/(Nu2), it is easy to show that condition (10.37) holds, and we

have

P2(t) ≈ N2u1u2t
2/2. (10.25)

When the opposite condition holds, that is, when t ≫ 2/(Nu2), we

can use formula (10.12) under the linear approximation of P1(t), to get

P2(t) = 1− exp
(

−N2ru1u2t
2/2
)

, (10.26)
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which is approximately equal to the expression in (10.25), the result

obtained by the two-step process.

Finally, we notice that condition (10.24) is the condition of being in

a nearly-deterministic regime, see inequality (9.13) for neutral mutants.

This regime is characterized by a steady growth of intermediate mu-

tants, eventually producing a double-hit mutant. The formula for P2(t)

calculated for the nearly-deterministic regime for neutral intermediate

mutants coincides with equation (10.26).

(b) Assume that t∗ ≪ t1, figure 10.3(b). To determine the value of t1, we

note that the greatest contribution to the integral in (10.12) comes from

the saturated regime in P1(t). Therefore, we replace P1(t) by R =
√
u2,

and obtain from (10.23) that t1 = (u1
√
u2N)−1. Condition t∗ ≫ t1 is

equivalent to requiring

u1N ≪ 1, (10.27)

the opposite of condition (10.24). Now, depending on the time-scale of

interest, there could be two separate cases: t ≪ t∗ and t∗ ≪ t ≪ t1.

(b1) Suppose that t ≪ t∗. This case is similar to case (a) in that

we have P1(t) ≈ u2t. If t ≪ 2/(Nu2), then a two-step process with

quadratic formula (10.25) takes place. If t ≫ 2/(Nu2), then we have the

same result, but obtained from formula (10.12). Of course, the latter is

possible only if 2/(Nu2) ≪ t∗, which is equivalent to the requirement

N ≫ Ntun, Ntun =
1√
u2

. (10.28)

(b2) Suppose that t ≫ t∗. In this case, we can use the approximation

P1(t) ≈ R =
√
u2. Condition (10.22) is equivalent to condition (10.28).

That is, if this condition holds, we have a genuine two-step process. If

the opposite of condition (10.28) takes place, then we have a tunneling

process with the rate R =
√
u2: P2 = 1− exp

(

−Nu1
√
u2t
)

.

All these conditions, together with conditions for disadvantageous

and advantageous mutants (see below), are summarized concisely in

Section 10.6.5.
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10.5.8 Disadvantageous intermediate mutants

Disadvantageous mutants are defined by the conditions |1 − r| ≫ √
u2

and r < 1. The arguments in this case follow the same logic as those for

the neutral case.

(a) Assume that t∗ ≫ t1, figure 10.3(a). This means that for all relevant

values of time, we have P1(t) = u2rt, and t1 =
√

2
ru1u2N

from equation

(10.23). Given that t∗ = 1/(1− r), condition t∗ ≫ t1 is equivalent to

u1N ≫ (1 − r)2

ru2
. (10.29)

Using inequality (10.22), we can see that the behavior is different for

different values of time. If t ≪ 2ρ/(rNu2), we have a two-step process

with a quadratic dependence,

P2(t) ≈ N2ρu1u2t
2/2. (10.30)

For time values with t ≫ 2ρ/(Nu2), P2(t) is defined by formula (10.26),

the same as in the case of neutral mutants. Although in the case of the

disadvantageous mutants the two time-dependencies are not the same,

we observe that the time-threshold, 2ρ/(rNu2), is extremely small (less

than one time-unit), and thus does not play a practical role. We can say

that formula (10.26) describes all the relevant regimes in this case, and

the two-step process is not observed.

In the neutral process we noticed that case (a) coincides with the

nearly-deterministic regime. It is not the case with the disadvanta-

geous mutants. A nearly-deterministic regime is defined by the inequal-

ity (9.14) for disadvantageous mutants, but the behavior in this regime

is very different, as described at the end of Section 9.4.2. As long as

|r − 1| > u1, the mutants of type “A” are maintained at a selection-

mutation balance (at level Nu1/(1 − r)). It is shown in Section 10.6.3

that in the deterministic regime, disadvantageous intermediate mutants

produces double-hit mutants exactly at the same rate as predicted by

the tunneling formula.

(b) Next, we consider the case t∗ ≪ t1, figure 10.3(b). To determine the

value of t1, we replace P1(t) by R = ru2/(1−r), and obtain from (10.23)

that t1 = (1 − r)/(ru1u2N). Condition t∗ ≫ t1 is equivalent to the

opposite of condition (10.29). Depending on the time-scale of interest,

there could be two separate cases: t ≪ t∗ and t∗ ≪ t ≪ t1.
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(b1) Suppose that t ≪ t∗. As in case (a), we have P1(t) ≈ ru2t. If

t ≪ 2ρ/(Nru2), then a two-step process with quadratic formula (10.30)

takes place. If 2ρ/(Nu2) ≪ t ≪ t∗, which is only possible if

N ≫ Ntun, Ntun =
ln
(

(1−r)2
r2u2

)

| ln r| , (10.31)

then the probability of double-mutant creation is described by formula

(10.26).

(b2) Finally, we assume that t ≫ t∗. In this case, we can use the

approximation P1(t) ≈ R = ru2/(1− r). Condition (10.22) is equivalent

to condition (10.31). If this condition holds, we have a genuine two-

step process. If the opposite of condition (10.28) takes place, then we

have a tunneling process with the rate R = u2r/(1 − r): P2 = 1 −
exp (−Nru1u2t/(r − 1)).

10.5.9 Advantageous intermediate mutants

In this case, it is the superlinear behavior that defines the growth of

P1(t) before saturation, see figure 10.2. Therefore, we will use figure

10.3 with tc instead of t∗. We start with case (b).

(b) Assume that tc ≪ t1, figure 10.3(b). To determine the value of t1,

we replace P1(t) by R = (r − 1)/r, and obtain from (10.23) that t1 =

r/(u1N(r − 1)). The value of tc is given in equation (10.20). Condition

tc ≫ t1 is then equivalent to

u1N ≪ r

ln
(

(r−1)2
r2u2

+ 1
) . (10.32)

Depending on the time-scale of interest, there could be two separate

cases: t ≪ tc and tc ≪ t ≪ t1.

(b1) Suppose that t ≪ tc. In this case, P1(t) is given by equation

(10.21), and we have P1(t) < R = (r − 1)/r. We further note that for

advantageous mutants, ρ ≈ R = (r − 1)/r. Inequality (10.22) becomes

r − 1

r
t >

∫ t

0

u2r
(

e(r−1)t
′ − 1

)

r − 1
dt′,
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which holds for any values of t. This means that in this case we have a

two-step process.

(b2) Next, we assume that t ≫ t∗, such that P1(t) ≈ R = (r − 1)/r.

In this case inequality (10.22) becomes an equality. In this regime, we

have a mixed regime where sometimes the fixation of a type-“B” mutant

happens before the generation of a type “C” mutant, and sometimes a

type-“C” mutant is generated first.

(a) Finally, we assume that tc ≫ t1, figure 10.3(a). In this case the

function P1(t) is approximated by equation (10.21). Even though the

integral in equation (10.23) can be evaluated easily, it is not possible to

resolve the equation for t1. Numerical simulations show that the opposite

of condition (10.32) should hold for this regime. The behavior in this

regime is similar to case (b1) above, with exactly the same argument.

The dynamics happen predominantly by a genuine two-step process.

10.6 Dynamics of loss-of-function mutations

The mathematical theory presented above confirms the existence of three

different modes of double-hit mutant generation sketched in figure 10.1.

The parameters that define the dynamics are the population size, N , the

mutations rates, u1 and u2, and the fitness of the intermediate mutants, r.

Below we describe each regime in detail and show under what circumstances

we can expect which kind of behavior.

10.6.1 The genuine two-step processes

This regime is characterized by a consecutive fixation of mutants of type

“B” and then mutants of type “C”, figure 10.1(a). If the number of cells

in the population, N , is sufficiently small (the precise conditions for this

and other regime are provided in Section 10.6.5), then the dynamics can be

represented by the diagram

A RA→B -B RB→C - C

with

RA→B = Nu1ρ, RB→C = Nu2. (10.33)
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This selection-mutation diagram corresponds to two consecutive diagrams

for a one-step process described in Chapter 9, see diagram 9.19 and also

figure 9.3(a). Here we assumed that 1−1/r1
1−1/rN1

≈ 1. The corresponding dif-

ferential equations are derived from (9.16-9.17):

Ȧ = −RA→BA, A(0) = 1, (10.34)

Ḃ = RA→BA−RB→CB, B(0) = 0, (10.35)

Ċ = RB→CB, C(0) = 0. (10.36)

Solving this system, we obtain

P2(t) = 1− u2e
−Nu1ρt − u1ρe

−Nu2t

u2 − u1ρ
,

where P2(t) stands for the probability to have produced a two-hit mutant

by time t, and is the same as C(t). The function ρ depends on the fitness

of the intermediate mutant,

ρ =

{

1−1/r
1−1/rN , r 6= 1,
1
N , r = 1.

At short time scales, such that

RA→Bt ≪ 1, RB→Ct ≪ 1, (10.37)

the function P2(t) behaves quadratically with time,

P2(t) ≈
1

2
N2ρu1u2t

2. (10.38)

This is a signature of a two-hit process, which tells us that the loss-of-

function mutation process takes places in a sequence of two rate-limiting

steps.

10.6.2 Tunneling

For intermediate population sizes, the tunneling regime is entered. Mutants

of type “B” come and go, staying at relatively low numbers, until a two-hit

mutant is produced, see figure 10.1(b). In the case of “linear” tunneling,

we have the following diagram:

A RA→C - C (10.39)

where the transition rate is given by

RA→C = Nu1R, (10.40)
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Table 10.1 Tunneling rate approximations.
Interm. mutants Conditions Tunneling rate, R

Disadvantageous r < 1, |1− r| ≫ √
u2

u2r
1−r

Neutral |1− r| ≪ √
u2

√
u2

Advantageous r > 1, |1− r| ≫ √
u2

r−1
r

the product of the population size, the mutation rate of single-mutant pro-

duction, and the constant R, whose approximations in the three regimes

are summarized in Table 10.1.

Diagram (10.39) corresponds to the differential equations,

Ȧ = −RA→CA A(0) = 1, (10.41)

Ċ = RA→CA, C(0) = 0, (10.42)

and the probability for the double-hit mutant to arise by time t is given by

P2(t) = 1− e−RA→Ct. (10.43)

System (10.41-10.42) is similar to the one-hit model, which we considered in

the previous chapter, see equations (9.16-9.17). What essentially happens

is that for intermediate population sizes, a two-step process of creating a

double-hit mutant behaves like a one-step process with rate RA→C that

depends on all the parameters of the system. We can say that in this

regime, there is only one and not two rate-limiting steps in this process.

Equation (10.43) is a good approximation on relatively long times scales

(see Section 10.6.5 for the exact bounds). On shorter time-scales, we have

P2(t) = 1− exp

(

−Nu1u2rt
2

2

)

. (10.44)

We refer to this regime as “quadratic tunneling” below.

In general, the regime of tunneling is facilitated by (1) having a high

mutation rate, u2, and (2) having a relatively large population size, such

that fixation of type “B” does not typically happen before a double-hit

mutant is produced. The tunneling rate, RA→C , was first calculated in

[Nowak et al. (2002); Komarova et al. (2003b)], by a method involving

an analysis of transition matrices. A different method was used later by

[Iwasa et al. (2004b)]. The method of this chapter is the closest to that

used by [Moolgavkar et al. (1988)], but it is somewhat different in the

way it uses the theory of doubly-stochastic processes. Yet another, slightly

different method, is provided in Chapter 13 to generalize this model to

spatial systems. This is done in order to expose the reader to a variety of

methodologies.
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10.6.3 Nearly deterministic regime

Finally, for large system sizes, the dynamics of intermediate mutant gener-

ation is almost deterministic. The population size is sufficiently large (and

the first mutation rate is sufficiently high) such that the mutants are con-

stantly produced and steadily increase in abundance, see figure 9.3(b). The

double-hit mutant production happens accordingly.

The abundance of one-hit mutants, x1(t), is described by equation

(9.23). The probability to create a two-hit mutant is then given by

P2(t) = 1− exp

(

−u2

∫ t

0

x1(t
′) dt′

)

.

In the case of neutral intermediate mutants, for relatively short times

(u1t ≪ 1), we have x1(t) ≈ Nu2t, and

P2(t) = 1− exp

(

−Nu1u2rt
2

2

)

.

For disadvantageous mutants, we have x1(t) ≈ Nu1/(r − 1), and

P2(t) = 1− exp

(

−Nu1u2t

r − 1

)

,

which exactly coincides with the formula derived for stochastic tunneling.

This result is intuitively clear: for very large population sizes, disadvanta-

geous intermediate mutants remain at a relatively low level, and therefore

the conditions for tunneling are still satisfied.

10.6.4 Disadvantageous, neutral and advantageous

intermediate mutants

The behavior of intermediate mutants falls under three different types. The

value r, which is the fitness parameter of intermediate mutants, defines

whether type “B” cells behave as neutral, positively selected, or negatively

selected mutants. If

|1− r| ≪ √
u2,

then type “B” effectively behaves as a neutral mutant. If

|1− r| ≫ √
u2 and r < 1,

type “B” is disadvantageous. If on the other hand

|1− r| ≫ √
u2 and r > 1,
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type “B” is advantageous. Interestingly, the neutrality of intermediate

mutants is defined based on the comparison of the fitness difference with

the mutation rate u2, at which double-mutants are created. This is different

from the conventional definition which instead involves the population size,

see condition (9.13). The reason is related to the time-scale of the processes.

A mutant is defined to be neutral if it behaves effectively as a neutral

mutant on time-scales of interest, which in the present situation are defined

by the time-scale of tunneling, which depends on the rate of mutation u2.

More precisely, the relevant time scale is defined by the inverse tunneling

rate, 1/
√
u2, see Table 10.1 below for the rate of tunneling in the case of

intermediate mutants.

10.6.5 The role of the population size

The three regimes depicted in figure 10.1 and described above, can be rel-

evant at different population sizes, depending on whether the intermedi-

ate mutants are neutral, disadvantageous, or advantageous. As described

above, typically for small populations sizes, the system tends to follow the

genuine two-step process, figure 10.1(a). For intermediate population sizes,

the effect of tunneling is observed, figure 10.1(b). Finally, for very large

population sizes, we have a nearly deterministic system, figure 10.1(c). The

system sizes characteristic for these processes differ in the three cases, and

not all regimes are observed for all the ranges of fitness parameter r.

Neutral intermediate mutants. In this case, all the regimes are ob-

served depending on the population size, and we have the simplest picture:

• For small populations:

N ≪ 1√
u2

,

a genuine two-step process dominates.

• For intermediate populations,
1√
u2

≪ N ≪ 1

u1
, (10.45)

the process can be described as stochastic tunneling. In particular, for

times t < 1/
√
u2, we have “quadratic tunneling”, and for larger times

- “linear tunneling.

• For large population sizes,
1

u1
≪ N, (10.46)

a nearly deterministic process takes place.
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Disadvantageous intermediate mutants. In this case, we have the

following regimes:

• For small population sizes,

N ≪
ln
(

(1−r)2
r2u2

)

− ln r
, (10.47)

a two-step process is observed. Compared to the case of neutral mu-

tants, for disadvantageous intermediate mutants the two-step process

happens for much smaller population sizes, because of a very low prob-

ability that a disadvantageous mutant fixates, ρ.

• For intermediate and large population sizes,

ln
(

(1−r)2
r2u2

)

− ln r
≪ N,

the effect of stochastic tunneling takes place. In particular, if the

population is relatively low,

ln
(

(1−r)2
r2u2

)

− ln r
≪ N ≪ (1− r)2

ru1u2
, (10.48)

then “quadratic tunneling” is observed for times between 2ρ/(ru2) and

1/(1− r), and “linear tunneling” takes place for larger values of t. For

intermediate population sizes, with

(1 − r)2

ru1u2
≪ N ≪ r−(N−1)

u1
,

only the quadratic tunneling formula is relevant. For the largest pop-

ulation sizes,

r−(N−1)

u1
≪ N,

we have a linear tunneling formula.

Advantageous intermediate mutants. In this case, we have the follow-

ing regimes:

• For small population sizes,

N ≪ r

ln
(

(r−1)2
r2u2

+ 1
) ,
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a two-step process is observed for short times, t <
ln

(

(r−1)2

r2u2
+1

)

r−1 , and

a mixed regime is entered for larger values of t, such that the creation

of double-hit mutants may or may not occur before the fixation of

type “B” mutants. In this case, the two-step formula provides an

overestimation of the probability P2(t) of double-mutant creation, and

the nearly-deterministic formula is an underestimation.

• For intermediate populations,

r

ln
(

(r−1)2
r2u2

+ 1
) ≪ N ≪ r

u1
,

we have a two-step process.

• For larger population sizes,

r

u1
≪ N,

the mutant production follows a nearly-deterministic law.

For advantageous mutants, the two-step process is the predominant one,

because of a high probability of fixation of advantageous intermediate

mutants.

10.7 Summary

In this chapter we summarized the main ideas of the stochastic formalism

for two-hit models of carcinogenesis. Similar mathematical problems have

been studied in different contexts and for different assumptions (Kimura,

1985; Barton and Rouhani, 1987; Carter and Wagner, 2002; Komarova

et al., 2003b; Iwasa et al., 2004b,a; Weinreich and Chao, 2005; Durrett

and Schmidt, 2008; Weissman et al., 2009; Gokhale et al., 2009; Durrett

et al., 2012; Durrett and Moseley, 2012). These calculations provide an

understanding of the time constraints that determine the development of

cancers that rely on the inactivation of tumor suppressor genes, and pro-

vides valuable information for possible evolutionary pathways to disease.

The results presented here are useful stepping stones for studying more

complex models that include more biological details. So far, the assump-

tion of mean-field, or mass-action, was used where the spatial locations of

individuals were not taken into account.
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In the next chapters we expand and generalize these first models to

adapt them to various systems, with more complexities added. In Chapter

12 we will talk about hierarchical cell populations, where stem cells and

differentiated cells interact to maintain tissue homeostasis. In Chapters 13

and 14 we will describe a spatial generalization of these results. We will

also see how some of these ideas can be applied to study some of the most

intriguing questions of cancer initiation and progression.

Problems

Problem 10.1. Research project. Learn about Knudson’s two-hit hy-

pothesis and discovery of the Rb gene and other tumor-suppressor genes.

Problem 10.2. Derive equation (10.11) from equation (10.9) by multiply-

ing it by xi and summing over all i.

Problem 10.3. In Section 10.5.1 we made assumption (10.3) to simplify

the expressions for the probabilities, such that they are linear functions of

i. If assumption (10.3) did not hold, would we be able to derive equation

(10.11) for the probability generating function?

Problem 10.4. Fill in the steps in the solution of Riccati equation, (10.16),

to obtain formula (10.18).

Problem 10.5. In the definition of neutrality in the context of double-

hit mutant production, we compare the fitness difference, |1 − r|, with√
u2. Consider the limiting behavior of expressions for t∗ and R, equations

(10.19), as u2 → 0, and show how it differs in three cases (a) |1−r| ≪ √
u2,

(b) |1− r| ≫ √
u2 and r < 1, and (c) |1− r| ≫ √

u2 and r > 1.

Problem 10.6. Research project. Equation (10.38) shows that for small

populations, the probability of double-hit mutant creation depends quadrat-

ically on time. This is directly related to the fact that in this regime, there

are two rate-limiting steps in the process of double-hit mutant creation. In

the case when tunneling is important, there is only one rate-limiting step in

this process. How is the number of limiting steps related to age-incidence

curves curves obtained in epidemiological studies of cancer? See e.g.

[Luebeck and Moolgavkar (2002)].
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Chapter 11

Microsatellite and chromosomal

instability in sporadic and familial

colorectal cancers

This chapter provides an example of how the theory developed in Chapters

9, 10 can be used to study various phenomena associated with carcinogene-

sis. It is also one of a number of chapters which investigates the relationship

between carcinogenesis and genetic instability. Here, we will examine the

most basic scenario: the generation of the first malignant cell. Does the

presence of genetic instability result in a faster generation of the first malig-

nant cell? We present a simple example of how stochastic models developed

for two-hit processes can be applied to biological reality.

We will concentrate on cancers which are initiated via the inactivation

of a tumor suppressor gene. That is, both the maternal and the paternal

copy of the gene have to lose function. A particular example which will

be discussed in this context is colorectal cancer. Colorectal cancer is a

major cause of mortality in the Western world. Approximately 5% of the

population develop the disease, and about 40% of those diagnosed with

it die within 5 years. Considerable progress has been made in identifying

genetic events leading to colorectal cancer. Somatic inactivation of the

adenomatous polyposis coli (APC) gene is believed to be one of the earliest

steps occurring in sporadic colorectal cancer. It has been observed that the

frequency of APC mutations is as high in small lesions as it is in cancers.

Evidence that the APC gene plays a crucial role in colorectal cancer also

comes from the study of individuals with familial adenomatous polyposis

coli (FAP). FAP patients inherit a mutation in one of the copies of the APC

gene; by their teens, they harbor hundreds to thousands of adenomatous

polyps.

The APC gene is a tumor suppressor gene which controls cell birth and

cell death processes. Inactivation of only one copy of the APC gene does

171
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not seem to lead to any phenotypic changes. Inactivation of both copies of

this gene appears to result in an increased cell birth to death ratio in the

corresponding cell, and leads to clonal expansion and the formation of a

dysplastic crypt. Here, we define a dysplastic crypt as a crypt that consists

of cells with both copies of the APC gene inactivated. Dysplastic crypts are

at risk of developing further somatic mutations which will eventually lead

to cancer. The typical estimate is that an average 70-year-old has about

1-10 dysplastic crypts, but precise counts have never been published.

How can the tumor suppressor gene be inactivated? A point mutation

can induce a loss of function in one copy of the gene. Both copies of the

gene can be inactivated by two subsequent point mutations in the same cell:

one in the maternal, and the other in the paternal allele. Each mutation

would occur with the physiological mutation rate of 10−7 per gene per cell

division.

Now consider genetic instability. As explained in Chapters 2 and 7,

there are two major types of instabilities [Lengauer et al. (1997, 1998)],

which are described briefly below:

• (i) Small scale subtle sequence changes, such as microsatellite instabil-

ity (MSI) [Boland and Goel (2010); Yurgelun et al. (2012)]. The MSI

phenotype is generated if specific MSI genes are inactivated. Both

copies of an MSI gene need to be mutated. MSI basically results in an

elevated point mutation rate in the context of repeat sequences called

microsatellites.

• (ii) Gross chromosomal alterations, known as chromosomal instability

(CIN) [Boland et al. (2009); Sen (2000)]. The genetic basis of CIN

is uncertain, and specific scenarios will be discussed below. If one

copy of the tumor suppressor gene has been inactivated by a point

mutation, the other copy can be inactivated very quickly in CIN cells

due to the loss of the healthy allele. This can occur through a variety

of mechanisms. They include loss of the remaining chromosome and

loss of part of the remaining chromosome. These processes are also

called loss of heterozygocity, or LOH.

While genetic instability might speed up the loss of tumor suppressor

function, the MSI or CIN phenotypes need to be generated first (for ex-

ample by basic point mutations). This chapter discusses a mathematical

analysis of how MSI and CIN influence the rate of tumor suppressor gene

inactivation. We will apply this analysis to various scenarios which include

the sporadic (spontaneous) development of colon cancer and familial colon
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cancers. We start with some more detailed biological facts about CIN and

MSI in colon cancer and then present the mathematical analysis.

11.1 Some biological facts about genetic instability in colon

cancer

Here we will study the role that CIN and MSI may play in the inactivation

of the APC gene. About 13% of all colorectal cancers have MSI and most

of the rest are characterized by CIN [Lengauer et al. (1998)]. MSI occurs in

virtually all hereditary non-polyposis colorectal cancers (HNPCC), which

account for about 3% of all colorectal cancers. The MSI phenotype results

from defective mismatch repair. Several genes have been identified whose

inactivation leads to an increased rate of subtle genetic alterations. The

main ones are hMSH2 and hMLH1. Both copies of an MSI gene must be

inactivated in order for any phenotypic changes to occur. HNPCC patients

inherit a mutation in one of the copies of an MSI gene and normally develop

colorectal tumors in their forties. Unlike FAP patients, they do not have a

vastly increased number of polyps, but the rate of progression from polyp

to cancer is faster.

Molecular mechanisms leading to CIN in human cancers remain to be

understood. It has been proposed that CIN might be caused by mutations

in genes involved in centrosome/microtubule dynamics, or checkpoint genes

that monitor the progression of the cell cycle, e.g. the spindle checkpoint

or the DNA-damage checkpoint [Negrini et al. (2010)]. For example, het-

erozygous mutations in the mitotic spindle checkpoint gene hBUB1 have

been detected in a small fraction of colorectal cancers with the CIN phe-

notype. Also, the MAD2 gene seems to be transcriptionally repressed in

various solid tumors. Some CIN genes might act in a dominant-negative

fashion: an alteration in one allele leads to CIN.

11.2 A model for the initiation of sporadic colorectal

cancers

11.2.1 The first model of the APC gene inactivation: no

instabilities

The colonic epithelium is organized in crypts covered with a self-renewing

layer of cells (figure 11.1). The total number of crypts is of the order of

M = 107 in a human. Each crypt contains of the order of 103 cells. A crypt
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approximately
36 hours

A small number of tem cells 
replenishes the whole crypt

Apoptosis
on top of crypt

Fig. 11.1 The epithelium of the colon is organized into crypts. Each crypt contains
about 103 cells. A small number of (stem) cells, which are thought to be located at the
bottom of the crypt, divide to replenish the whole crypt. They give rise to differentiated
cells which travel within 36 hours to the top of the crypt where they undergo apoptosis.
Inactivation of both copies of the APC gene is believed to prevent apoptosis. The

mutated cells remain on the top of the crypt, continue to divide and ultimately take over
the crypt. This process gives rise to a dysplastic crypt, which represents the first step
on the way to colorectal cancer.

is renewed by a small number of stem cells (perhaps 1− 10) [Yatabe et al.

(2001)]. The life cycle of stem cells is of the order of 1 − 20 days [Bach

et al. (2000); Potten et al. (1992)]. Stem cells give rise to differentiated

cells which divide at a faster rate, and travel to the top of the crypt where

they undergo apoptosis.

We will apply the theory developed in Chapter 10 to describe the basic

model of sporadic colorectal cancer initiation. Let us assume that the

effective population size of a crypt is N ; this means that N cells are at

risk of developing mutations which can lead to cancer. The value of N is

unknown. As explained in detail in Chapter 12, one hypothesis is that only

the stem cells are at risk of developing cancer, which gives N ∼ 1 − 10,

and in this case the average turnover rate would be τ = 1 − 20 days.

Alternatively, we could assume that some differentiated cells are also at

risk. In this case, N might be of the order of 100− 1000 and the average

turnover rate could be less than 1 day. In this chapter, we will not consider
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the details of the population structure. That is, the distinction between

stem cell and differentiated cell division patterns will be ignored. Chapter

12 suggests a way of incorporating this in the model.

As the first model we will concentrate only on the inactivation of the

tumor-suppressor gene APC and consider the simplest network, figure 11.2.

Let us denote by X0, X1 and X2 the probability that the whole crypt con-

sists of cells with 0, 1 and 2 copies of the APC gene inactivated, respectively

(please note the difference in notations: in Chapter 10 the three probabil-

ities of being in homogeneous states were denoted as A, B, and C. In the

present context, as in Chapter 7, it is more convenient to adopt a different

notation, as will become clear later in this chapter). The rate of change is

equal to the probability that one relevant mutation occurs times the prob-

ability that the mutant cell will take over the crypt. For this model and

further models, all the parameters with their respective values are summa-

rized in Table 11.1.

Table 11.1 Parameters, notations and possible numerical values; the mutation
and LOH rates are given per gene per cell division.
Quantity Definition Range

M Number of crypts in a colon 107

N Effective number of cells in a crypt 1− 100

τ Effective time of cell cycle, days 1− 20

u Probability of mutation in normal (non-MSI) cells 10−7

ũ Probability of mutation in MSI cells 10−4

p0 Rate of LOH in normal (non-CIN) cells 10−7

p Rate of LOH in CIN cells 10−2

r Relative fitness of APC+/− cells ≈ 1 or < 1

rc Relative fitness of CIN cells ?

nm Total number of MSI genes 2− 5

nc Total number of CIN genes ?

uc Mutation rate to produce a CIN cell ncu

um Mutation rate to produce a CIN cell nmu

X0 X1 X2 X X
2N    u N(u+p0) 

X0 X2 

N2uR 
X

(a) (b) 

Fig. 11.2 Mutation-selection networks of sporadic colorectal cancer initiation, in the

absence of instability. (a) A two-step process. (b) A tunneling process.

In the beginning (see figure 11.2), all cells are wild type. The first copy of

the APC gene can get inactivated by a mutation event. We will assume that
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the fitness of the resulting APC+/− cell, r, is the same or lower than that

of the wild-type cell. Because the mutation rate per gene per cell division,

u ≈ 10−7, is very small and the number of cells, N , is not large, it is safe

to assume that a coarse-grained description is applicable, see Chapter 10.

For realistic values of the mutation rates and populations sizes, see Table

11.1, two types of dynamics are possible: a genuine two-step process (figure

10.1(a)) and stochastic tunneling (figure 10.1(b)). Figure 11.3 shows which

regime can be expected depending on the fitness of APC+/− cells.

Fig. 11.3 The quantity Ntun =
ln

(u+p0)r2

(1−r)2

ln r
, see formula (10.47), is plotted for u+p0 =

10−6. For effective population sizes, N , smaller than Ntun, a genuine two-step process
is a good approximation. For N ≫ Ntun, tunneling is the dominant process.

In particular, if inactivation of one copy of the APC gene does not

result in a phenotypic change, it is likely that a genuine two-step process

is observed. This process is depicted in diagram 11.2(a) and described

theoretically in Section 10.6.1. With the rate Nρ2u, cells with one copy of

the APC gene mutated will take over the crypt (state X1). This rate of

change is calculated asN times the probability (per cell division) to produce

a one-hit mutant (2u because either of the two alleles can be mutated) times

the probability ρ of one mutant of type X1 to get fixed (equal to 1/N if

APC+/− cells are neutral).

Once the first allele of the APC gene has been inactivated, the second

allele can be inactivated either by another point mutation (probability u

per cell division) or by an LOH event (probability p0 per cell division, see

Table 11.1). We assume that mutants with both copies of the APC gene

inactivated (the APC−/− mutants) have a large selective advantage, so that

once such a mutant is produced, the probability of its fixation is close to
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one. Therefore, from state X1 the system can go to state X2 (both copies of

the APC gene inactivated) with the rate N(u+ p0). This rate is calculated

as N times the probability per cell division to produce a two-hit mutant

(u for an independent point mutation plus p0 for an LOH event) times the

probability of the advantageous mutant of type X2 to take over (this is 1).

Note that the assumption that the probability of fixation of APC−/−

mutants is one is made for simplicity. More generally, the relative fitness

of type X2 is r1, whereas the fitness of type X0 and X1 is 1. Then the

second rate in figure 11.2(a) should be taken to be Nρ̃(u + p0), with ρ̃ =

(1 − 1/r1)/(1 − 1/rN1 ). If the population size is not too large, and the

relative fitness of type X2 is much greater than 1, we have ρ̃ → 1, and we

obtain the expression N(u+ p0).

As in the examples of Section 10.6, the mutation-selection network of

figure 11.2 is equivalent to a linear system of ordinary differential equations

(ODE’s), where the rates by the arrows refer to the coefficients and the

direction of the arrows to the sign of the terms. In this chapter, we set a

dimensionless time scale in terms of stem cell cycle length, τ . One (non-

dimensional) time unit (t/τ = 1), as before, corresponds to a generation

turn-over, that is to N “elementary events” of the Moran process, where

an elementary event includes one birth and one death. We have:

τẊ0 = −2uX0,

τẊ1 = 2uX0 −N(u+ p0)X1,

with the constraint X0 +X1 +X2 = 1 and the initial condition

X0(0) = 1, X1(0) = 0.

Here, we use the fact that the intermediate mutant is neutral and that the

population size is small, so that stochastic tunneling does not take place.

Calculations for larger values of N can also be performed, see below.

Using ut/τ ≪ 1 and N(p0+u)t/τ ≪ 1, we can approximate the solution

for X2 as

X2(t) = Nu(u+ p0)(t/τ)
2.

The quantity X2(t) stands for the probability that a crypt is dysplastic

(i.e., consists of cells with both copies of the APC gene inactivated) at

time t measured in days. This formula is a consequence of the fact that in

the parameter regime we are considering, APC−/− cells are produced as a

result of a genuine two-hit process. There are two steps that separate the

state X0 from the state X2, and thus the expected number of dysplastic
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crypts in a person of age t is proportional to the product of the two rates

and the second power of time.

The probability to have i dysplastic crypts by the age t is given by

a simple binomial,
(

M
i

)

X2(t)
i(1 − X2(t))

M−i. The expected number of

dysplastic crypts in a person of age t is then given by the following quantity,

ν(t) = MNu(u+ p0)(t/τ)
2. (11.1)

Some estimates of the expected number of dysplastic crypts, based on equa-

tion (11.1), are given in figure 11.4, the lines marked with “Small popula-

tion, neutral APC+/− cells”.

Fig. 11.4 Sporadic colorectal cancer: the expected number of dysplastic crypts, at 70
years of age, the simple model. The number of dysplastic crypts is calculated for two
different values of p0 (the rate of LOH), as a function of the effective cell cycle length, τ .
The lines on the right correspond to the model where only stem cells acquire mutations
(N = 5), and APC+/− cells are neutral. The lines on the left correspond to a larger
effective population size (N = 100), and negatively-selected APC+/− (r = 0.85). The
rest of the parameters are M = 107, N = 5, u = 10−7, and t = 70 years.

For completeness, we will also consider the case where stochastic tunnel-

ing plays an important role. This can for example happen if the APC+/−

mutants are negatively selected, and/or if the effective population size is

sufficiently large, see figure 11.3. In this case the process is described by

the diagram in figure 11.2(b). The type APC+/− does not have a chance

to get fixated, before a double-hit mutant is created. We have

τẊ0 = −2NuRX0, (11.2)

τẊ2 = 2NuRX0, (11.3)

where R is given by R =
√
u+ p0 in the neutral case and R = r(u+p0)

1−r in

the case of disadvantageous APC+/− mutants, Table 10.1. In this case,

X2(t) = 1− E−2NuRt/τ ≈ 2NuRt/τ,
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a linear function of time for short time-scales. The rest of the analysis can

be carried out accordingly. Calculated numbers of dysplastic crypts under

the assumption that APC+/− cells are negatively-selected are presented

in figure 11.4, the lines marked with “Large population, disadv. APC+/−

cells”. In the rest of this chapter we will only concentrate on the case where

APC+/− mutants are neutral, and thus set r = 1.

One has to be careful when comparing these calculations with data.

It is possible that dysplastic crypts can be lost. The model presented

here gives the number of dysplastic crypts that are being produced over

time, which could be larger than the actual number of dysplastic crypts

that patients have at a particular time point. Exact measurements of the

incidence of dysplastic crypts will provide important information about the

crucial parameters of colorectal cancer initiation.

11.2.2 Colorectal cancer and chromosomal instability

Next, we include the possibility of CIN. Consider the evolutionary dynamics

of a single crypt with six different types of cells. Let x0, x1, and x2 denote

the abundance of non-CIN cells with 0, 1, and 2 inactivated copies of APC,

respectively. Let y0, y1, and y2 denote the abundance of corresponding CIN

cells. Figure 11.5 shows the mutation network. We assume that non-CIN

cells with at least one functional APC gene have a relative reproductive rate

of 1. As before, cells with two inactivated copies of APC have a reproductive

rate of r1 > 1, which gives them a selective advantage and enables them to

take over the crypt with a high probability.

As explained above, there are two possibilities to proceed from x1 to

x2. The second copy of APC can be inactivated by (i) another mutational

event occurring with probability u or (ii) a loss of heterozygosity (LOH)

event occurring with probability p0 per cell division. Hence the resulting

mutation rate is u + p0. Similarly, y1 proceeds to y2 with a mutation rate

of u+ p, where p is the rate of LOH in CIN cells.

We assume that the crucial effect of CIN is to increase the rate of LOH,

which implies p ≫ p0 and p ≫ u. Intuitively, the advantage of CIN for the

cancer cell is to accelerate the loss of the second copy of the APC gene. As

discussed in Chapter 7, the cost of CIN is that copies of other genes are

being eliminated, which might lead to nonviable cells or enhanced rates of

apoptosis. Here we will assume that the reproductive rate, rc, of CIN cells

could be equal to or smaller than 1.

Whether there is any effective selection against CIN depends on the
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relative magnitude of the selection coefficient, |rc − 1|, compared with the

dominant mutational process and compared with the reciprocal of the pop-

ulation size. If the effective population size, N , is small, then the evolution-

ary dynamics are dominated by random drift, see condition of neutrality

(9.13). If the rate of LOH in CIN cells is large, then the effect of selection is

outpaced by LOH, Section 10.6.4. Let us define δ = max(1/N,
√
p). CIN is

positively selected if rc−1 > δ, and CIN is negatively selected if 1− rc > δ.

CIN is effectively neutral if |rc − 1| < δ.

In our model, a CIN cell carries a mutation that results in an increased

rate of LOH. A number of mechanisms can lead to LOH including nondis-

junction of chromosomes (with or without duplication), mitotic recombina-

tion, gene conversion, interstitial deletion, or a double-strand break result-

ing in the loss of a chromosome arm. Here we include any such mechanism

leading to an increased rate of LOH as CIN. Hence, any mutation that

increases the rate of one of these processes qualifies as a CIN mutation.

[Lengauer et al. (1997)] estimated the rate of loss of chromosomes in CIN

cell lines to be p = 0.01 per cell division. Note, however, that even such a

high rate of LOH does not imply that CIN cells must have LOH in almost

all their loci, because there is conceivably selection against LOH in many

loci.

We assume there are nc genes such that a single mutation in any one of

these genes can cause CIN. Hence the mutation rate from xi to yi is given

by uc = 2ncu.

To derive equations for the probabilities in the coarse-grained approx-

imation, as described in Chapter 10, we denote by Xi and Yi the proba-

bility to be in homogeneous states that contain only cells of type xi and

yi, respectively. The evolutionary dynamics are described by a linear Kol-

mogorov forward equation, such as (10.34-10.36) or (10.41-10.42), which can

be solved analytically. It is crucial to include the phenomenon of stochastic

tunneling in this description. As outlined in figure 11.5, there could be

three stochastic tunnels in our system: X0 → X2, X1 → Y2, and Y0 → Y2,

and we can calculate the parameter conditions for individual tunnels to be

“open” or “closed”. It turns out there are four distinct reaction networks,

figure 11.5. Each reaction network specifies a linear differential equation.

The applicability conditions for each of the networks can be derived by

using methods of Chapter 10. Note that tunnel X0 → X2 is neutral by

the assumption that an inactivation of one of the two copies of the APC

gene does not result in a fitness change. Tunnel X1 → Y2 can be neutral

or disadvantageous depending on the fitness of type y1, rc.
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X0 X1 X2 X X

Y0 Y1 Y2 Y YY YY YY

2u N(u+p0) 

Nuc Nuc Nuc

2u Np 

X0 X1 X2 X X

Y0 Y2 YY YYYY

2u N(u+p0) 

Nuc Nuc

2uN 

X0 X1 X2 X X

Y0 Y1 Y2 Y YY

2u N(u+p0) 

Nuc
Nuc

2u Np 

X0 X2 X

Y0 Y2 YY YY

Nuc Nuc

p

NucR 

YYYY

N

NpNp

NucR 

2uN p

2uN u p
0

(i) (ii) 

(iii) (iv) 

Fig. 11.5 Transition rates and stochastic tunnels of the probabilistic process describing
the dynamics of early steps in colon cancer. The states X0, X1, and X2 refer to the
probabilities to have a homogeneous crypts of non-CIN cells with 0, 1, and 2 inactivated
copies of APC, respectively. The states Y0, Y1, and Y2 refer to probabilities of having
homogeneous crypts of CIN cells with 0, 1, and 2 inactivated copies of APC, respectively.
We assume that APC+/− cells are neutral. The probability of intermediate mutant
fixation, ρ = (1 − 1/rc)/(1 − (1/rc)N ) for rc 6= 1 and ρ = 1/N for rc = 1. In the
expressions for the rates, we neglected u ≪ p compared to p.

Let us ignore u ≪ p compared to p in all the expressions for simplicity.

These are the generic cases, see figure 11.5:

(i) All tunnels closed. For neutral mutants y1, such that |1−rc| ≪ √
p,

we have conditions
√
u+ p0 ≪ 1/N (tunnel X0 → X2 is closed),

and
√
p ≪ 1/N (tunnel Y0 → Y2 is closed). In this case tunnel

X1 → Y2 is automatically closed. For disadvantageous or advanta-

geous mutants y1, such that rc − 1 ≫ √
p, we have an additional

condition p ≪ (1− rc)
2rN−2c .

(ii) Tunnels X1 → Y2 and Y0 → Y2 are open. For neutral or disad-

vantageous mutants y1, we have conditions
√
u+ p0 ≪ 1/N and√

p ≫ 1.

(iii) Only tunnel X1 → Y2 is open. We have to require that
√
u+ p0 ≪

1/N and
√
p ≪ 1/N , and also that mutants y1 are disadvantageous,

rc < 1, |1− rc| ≫ √
p, and p ≫ (1− rc)

2rN−2c .

(iv) Channels X0 → X2 and Y0 → Y2 are open. In this case we have

the single condition
√
u+ p0 ≫ 1/N .
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In the derivation of the conditions above we used the fact that if tunnel

Y0 → Y2 is closed and y1 is neutral, then tunnel X1 → Y2 must also

be closed, but if y1 is disadvantageous, then tunnel X1 → Y2 can be

open. This and other similar logical arguments help reduce the number

of conditions.

Instead of writing down the exact solution for the linear ODEs cor-

responding to the networks in figure 11.5, we can find an approximation

to those solutions. The form of the approximation crucially depends on

the time-scale. For example, on very long time-scales, such that tu ≫ 1,

tp0 ≫ 1, we have Y2 → 1 and the rest of the variables tend to zero. On

very short time-scales, such that pt ≪ 1, we can see that X2 is quadratic

in t and Y2 is cubic in t, such that Y2 ≪ X2. If however we focus on

intermediate time-scales, where

ut/τ ≪ 1, p0t/τ ≪ 1, pt/τ ≫ 1, (11.4)

we can see that both X2 and Y2 are quadratic functions of time. For

example, for case (i) in figure 11.5, the system of equations reads:

τẊ0 = −(2uNucρ)X0, (11.5)

τẊ1 = 2uX0 − (N(u+ p0) +Nucρ)X1, (11.6)

τẊ2 = N(u+ p0)X1, (11.7)

τẎ0 = NucρX0 − 2uY0, (11.8)

τẎ1 = 2uY0 +NucρX1 −NpY1, (11.9)

τẎ2 = NpY1 +NucρX2. (11.10)

We have the following approximations for all the variables:

X0 ≈ 1, X1 ≈ 2ut/τ, X2 ≈ 2Nu(u+ p0)(t/τ)
2/2, (11.11)

Y0 ≈ Nucρt/τ, Y1 ≈ 2uNucρ

Np

(

t

τ

)2

, Y2 ≈ 2uNucρ

(

t

τ

)2

. (11.12)

Therefore, in this case, condition Y2 > X2 is equivalent to the condition

4uNucρ > 2Nu(u+ p0), or equivalently,

uc >
u

2ρ

(

1 +
p0
u

)

.

The same condition can be expressed in terms of the number of genes

that, if mutated, can lead to CIN:

nc >
1

2ρ

(

1 +
p0
u

)

.
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Similar considerations apply to networks (ii-iii) of figure 11.5. In general,

the condition for CIN to win can be written down by using the following

combinatorial rule.

Combinatorial rule. We need to consider all paths leading from X0

to X2 and from X0 to Y2. Then we identify fast and slow leaps in

the diagram. A leap is considered “slow” at a given time-frame if the

corresponding rate is much smaller than τ/t. A leap is “‘fast” if its

rate is much larger than τ/t. In the regime identified by inequalities

(11.4), leaps with rates multiplying u, uc and p0 are slow, and leaps

corresponding to rate p are fast. For each path, we calculate the number

of slow leaps. This number defines the power of t. We will only need the

paths with the smallest number of slow steps. For each such path, we

multiply the corresponding slow rates together; fast leaps do not count.

Finally, we add all the paths together and divide by the factorial of the

number of slow leaps.

In networks (i-iii) of figure 11.5, the probability X2(t) is given by

X2(t) = uN(u+ p0)(t/τ)
2.

The probability Y2(t) is different for the different networks, and can be

calculated by similar methods.

The crucial question is whether the system reaches X2 before Y2 or vice

versa. In the first case, APC inactivation occurs in a non-CIN cell. In

the second case, APC inactivation occurs in a CIN cell, and hence CIN

causes inactivation of APC (because p ≫ u). The answer can be stated in

a concise form provided there is a separation of time scales: for the relevant

time scale t of human life, we have ut/τ ≪ 1, p0t/τ ≪ 1, and pt/τ ≫ 1.

The condition for CIN to cause inactivation of the second APC gene can

then be expressed as the number of CIN genes exceeding a certain threshold

value,

nc >
(

1 +
p0
u

) 1

K , (11.13)

where K = 2ρ for case (i), K = ρN
√
p+ R in case (ii), and K = ρ + R in

case (iii). Case (iv) can be treated similarly.
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11.3 Sporadic colorectal cancers, CIN and MSI

Let us now consider the possibility of developing two types of genetic in-

stability during cancer initiation. Starting from a population of normal

cells, three different events can occur: (i) inactivation of the first copy of

the APC gene, (ii) mutation of one copy of one of nc CIN genes, and (iii)

inactivation of the first copy of one of nm MSI genes.

We use the notation Xi, Yi and Zi, respectively, for the probability that

a crypt consists of normal cells, CIN cells or MSI cells with i copies of the

APC gene inactivated, see Table 11.2. Figure 11.6 shows the mutation-

selection network of colorectal cancer initiation including CIN and MSI.

All the transition rates are calculated as the relevant mutation rate times

the probability that the mutant will take over the crypt.

Table 11.2 The three major classes of homogeneous states.
Quantity Definition Point mutation rate Rate of LOH

X0,X1,X2 non-CIN, non-MSI u p0
Y0, Y1, Y2 CIN u p > p0
Z0, Z1, Z2 MSI ũ > u p0

In this model we will assume that (a) CIN is neutral, that is, rc = 1,

and that (b) the population is small enough such that stochastic tunneling

does not occur. This significantly simplifies the description. An interested

reader can expand this framework to include stochastic tunnels, as was

done in the previous section in the case of CIN only.

As before, we are interested in the probability to find the crypt in the

state X2, Y2 and Z2 as a function of t. In other words, we want to know

the probability for the dysplastic crypt to have CIN (Y2), MSI (Z2) or no

genetic instability (X2). The diagram of figure 11.6 corresponds to a system

of 11 linear ODE’s describing the time-evolution of the probabilities to find

the system in any of the 12 possible homogeneous states. An exact solution

can be written down but it is a very cumbersome expression, so we will

make the same approximation as for equations (11.11-11.12). Taking the

Taylor expansion of the solution in terms of ut/τ and N(u + p0)t/τ , we

obtain the following result:

X2(t) = Nu(u+ p0)(t/τ)
2, Y2(t) = 4ncu

2(t/τ)2. (11.14)

The rate ũ is neither fast nor slow, so the solution for Z2 is more compli-
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Fig. 11.6 Mutation-selection network of sporadic colorectal cancer initiation including

CIN and MSI. From the initial wild-type state, X0, the crypt can change to state X1

as in figure 11.2(a), acquire a CIN mutation (the arrow down) or an MSI mutation
(the arrow up). The line X0 → X1 → X2 is identical to the process in figure 11.2(a)

of developing a dysplastic crypt with no genetic instabilities. The bottom row of the
diagram corresponds to CIN cells acquiring the first, and then the second, mutation

(loss) of the APC gene; the second copy can be lost by a point mutation or by an LOH

event whose rate is much larger for CIN cells than it is for normal or MSI cells. The state
Y2 corresponds to a CIN dysplastic crypt. The top row is the development of an MSI

dysplastic crypt. The MSI phenotype is characterized by an increased point mutation

rate, ũ. The state Z2 is an MSI dysplastic crypt. Thick arrows denote faster steps. Note
that it takes only one leap (down) to go to a CIN state from a state with no genetic

instability, because CIN genes are assumed to be dominant-negative. It takes two steps
to acquire MSI (up) because both copies of an MSI gene need to be inactivated before

any phenotypic changes happen.

cated. We have

Z2(t) =
nmu(u+ p0)

(abũ)2(a− b)

(

2(b3Ea − a3Eb + a3 − b3

+ ab(b2 − a2)ũt/τ) + a2b2(a− b)ũ2(t/τ)2
)

, (11.15)
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where

a = 2, b = N(ũ+ p0)/ũ, Ex = e−xũt/τ .

Note that if the ũ-steps are fast (i.e., if ũt/τ ≫ 1), the limit of this ex-

pression is given by Z(t) = nmu(u+ p0)(t/τ)
2. In the opposite limit where

ũt/τ ≪ 1, we have Z(t) = nmNu(u+ p0)ũ(ũ+ p0)(t/τ)
4/6.

The key idea of this analysis is to identify how many slow (rate-limiting)

steps separate the initial state (X0) from the state of interest. The slow

steps in our model are the ones whose rates scale with u or p0. The step

from Y1 to Y2 is fast, because it is proportional to the rate of LOH in CIN

cells, p, which is much larger than u and p0. The steps with the rate ũ are

neither fast nor slow. For all possible pathways from the initial state to

the final state of interest, we have to multiply the slow rates together times

the appropriate power of t/τ , and divide by the factorial of the number of

slow steps. Summing over all possible paths we will obtain the probability

to find the crypt in the state in question.

Applying this rule, we can see that, as before, X2(t) and Y2(t) are both

quadratic in time, because it takes two rate-limiting steps to go from X0

to X2 and from X0 to Y2. The state Z2 is separated from X0 by two rate-

limiting steps and two “intermediate” steps (whose rate is proportional to

ũ), so the quantity Z2(t) grows as the forth power of time for ũt/τ ≪ 1 and

as the second power of time in the opposite limit.

The probability that a crypt is dysplastic at time t is given by S(t) =

X2(t) + Y2(t) +Z2(t). Therefore, the expected number of dysplastic crypts

in a person of age t, ν(t), is given by

ν(t) = MS(t).

Of these dysplastic crypts, MY2(t) have CIN and MZ2(t) have MSI. This

suggests that the fraction of CIN cancers is at least Y2(t)/S(t) and the

fraction of MSI cancers is at least Z2(t)/S(t). The actual values may be

higher because in our model, only the very first stage of cancer develop-

ment is considered. At later stages of progression from a dysplastic crypt

to cancer, there are more chances for cells to acquire a CIN or an MSI

mutation.

Some numerical examples of such computations are presented in figure

11.7, where the logarithm of the expected number of dysplastic crypts is

plotted against τ , for three different values of nc, the number of CIN genes.

Figure 11.8(a) presents relative fractions of dysplastic crypts with CIN

(gray lines) and MSI (black lines) as functions of nc. Larger values of nc
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Fig. 11.7 Sporadic colorectal cancer: the logarithm of the expected number of dysplastic

crypts as a function of τ at 70 years of age, in the model with CIN and MSI. The three
curves correspond to three different values of nc. M = 107, N = 5, u = 10−7, ũ = 10−4,

p0 = 10−7, nm = 3 and t = 70 years.

lead to an increased percentage of dysplastic crypts with CIN. The fraction

of MSI crypts as predicted by this model is quite low (for nc = 10 we get

only 0.1% of dysplastic crypts with MSI). This could mean that MSI devel-

ops at later stages of cancer. However, there is indirect evidence that the

replication error phenotype precedes, and is responsible for, APC mutations

in MSI cancers (Huang et al., 1996). At the same time, according to obser-

vations, 13% of all sporadic colorectal cancers have MSI (Lengauer et al.,

1998). Our model is consistent with this data if we assume higher rates of

MSI induction in a cell. These could be a consequence of epigenetic mech-

anisms of MSI gene inactivation. DNA methylation of the hMLH1 gene

is found at a high frequency in sporadic MSI tumors (Ahuja et al., 1997;

Kane et al., 1997; Cunningham et al., 1998).

In the diagram of figure 11.6 this means that the rates from X0 to the

MSI type (vertical arrows), 2nmu and u+p0, should be replaced by 2nmumet

and umet + p0, respectively, where umet is the rate of methylation per gene

per cell division. In terms of our equations, we need to replace u by umet
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Fig. 11.8 Sporadic colorectal cancer: fractions of crypts with different instabilities, as a

function of nc; gray lines correspond to CIN and black lines to MSI. (a) The inactivation
of MCI genes is by mutation, with the rate u = 10−7. (b) The inactivation of MCI genes

is by methylation, with the rate u = 10−6. The rest of the parameters is as in figure

11.7.

in the expression for Z2(t), equation (11.15). De-novo methylation rates

have not been quantified; in figure 11.8(b) we assume that umet is larger

than the basic mutation rate, u (umet = 10−6), and plot the proportion of

MSI crypts. We can see that the expected fraction of MSI crypts predicted

by our model becomes larger. Figure 11.8(b) should be compared with the

observation that 13% of dysplastic crypts are MSI. We can see that this

holds for values of nc of the order of 10. As nc becomes larger than about

20, the predicted fraction of CIN crypts becomes much higher, and the

fraction of MSI crypts much lower than expected.

The calculations presented here were performed under the assumption

that chromosomal instability does not have a cost. In other words, the CIN

phenotype is neutral with respect to the wild type. Perhaps a more realistic

model should include a possibility that CIN phenotype is disadvantageous

compared to the wild-type, as presented in the previous section. In this

case, the expected number of CIN dysplastic crypts will be lower. For
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example, if the relative disadvantage of a CIN cell is 10%, then the fraction

of CIN dysplastic crypts will be reduced by 20%.

In our model, we assume that CIN is generated by means of a mutation

in any of nc dominant-negative CIN genes. In other words, a genetic hit in

either of the two copies of a CIN gene will lead to the acquisition of the CIN

phenotype. Alternatively, it could happen that the CIN phenotype requires

the inactivation of both copies, like MSI genes or tumor suppressor genes.

In terms of figure 11.6, this would mean that we have two steps separating

the wild type (X0) from the CIN phenotype (Z0). If we assume that the

CIN phenotype is neutral, the fraction of CIN dysplastic crypts in figure

11.8 would be negligible. This means that in this case, the CIN phenotype

must be very advantageous in order to show up early in carcinogenesis.

11.4 FAP

The framework developed in this chapter allows us to study familial cancers

in a systematic manner, by modifying the basic mutation-selection diagram

of figure 11.6. In FAP patients, one allele of the APC gene is inactivated

in the germ line. In terms of our model this means that all crypts start in

state X1. The corresponding mutation-selection network is found in figure

11.9(a).

Again, the mutation-selection diagram can be converted into a system

of ODEs. The solutions are given by

X2(t) = N(u+ p0)t/τ, Y2(t) = 2ncut/τ,

and

Z2(t) =
nmu(u+ p0)[2 − 2ũbt/τ + (ũbt/τ)2 − 2Eb]

(ũb)2
.

In the limit where ũt/τ → ∞, we have Z2(t) = nmu(u + p0)(t/τ)
2. If

ũt/τ ≪ 1, then Z2(t) = nmNu(u + p0)(ũ + p0)(t/τ)
3/3. X2(t) and Y2(t)

are linear functions of time (there is one rate-limiting step), whereas Z2(t)

grows slower than the second power of time (two rate-limiting steps plus

one ‘intermediate’ step).

Some predictions of the model are shown in figure 11.10. The expected

number of dysplastic crypts and the fraction of CIN crypts are calculated

for t = 16 years. As the number of CIN genes, nc, increases, we expect

more dysplastic crypts, and a larger fraction of crypts with CIN. According

to our model, the expected number of dysplastic crypts grows linearly with
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Fig. 11.9 (a) Mutation-selection network of FAP initiation. We start with the type X1

because the first copy of the APC gene is inactivated in the germ line. (b) Mutation-

selection network of HNPCC initiation. One mutation of an MSI gene is inherited, and

therefore it takes only one step (inactivation of the second copy of the MSI gene, arrows
up) to develop the MSI phenotype.

time, and by the age of 16 years is expected to be in the thousands to tens of

thousands, see figure 11.10. This should be compared with the observation

that patients with FAP have hundreds to thousands of polyps by age 16.

The number of polyps in FAP patients does not grow linearly with

time. Instead, most polyps appear ‘suddenly’ in the second decade of life.

These observations are consistent with the predictions of our model. It

is believed that polyps result from dysplastic crypts by means of further

somatic mutations and clonal expansions. Therefore, the number of polyps

is expected to be a higher than linear power of time, which looks like a steep

increase in the number of lesions after a relatively non-eventful period. Also,

the number of dysplastic crypts (103 − 104 in our model) is expected to be

much larger than the number of polyps (102 − 103) consistent with the

expectation that not all dysplastic crypts progress to polyps.

Another prediction of this model is that the fraction of MSI crypts in

patients with FAP is negligible. This is consistent with an experimental

study where MSI was found in none of the 57 adenomas from FAP patients

[Keller et al. (2001)].
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Fig. 11.10 FAP: (a) the logarithm of the expected number of dysplastic crypts and (b)

the fraction of CIN crypts, at 16 years of age, as functions of nc. Parameter values are
as in figure 11.7. In (b), the fraction of MSI is nearly zero.

Finally, we note that the logical possibility exists that the second copy

of the APC gene in FAP patients may be inactivated by an epigenetic event,

just like the second copy of an MSI gene can be silenced by methylation.

Experimental investigations [Menigatti et al. (2001)] however suggest that

this is unlikely: out of the 84 FAP tumors, only 1 exhibited hypermethyla-

tion of the APC gene.

11.5 HNPCC

Patients with HNPCC inherit one mutation in an MSI gene. The corre-

sponding mutation-selection network is presented in figure 11.9(b). The

solutions for X2 and Y2 in this case are identical to those for sporadic col-

orectal cancers and are given by equations (11.14). The solution for Z2 is

as follows:

Z2(t) =
(u+ p0)[a

2Eb − b2Ea + (a − b)(ũabt/τ − (a + b))]

abũ(a − b)
;
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in the limit where ũ is a fast rate we have Z2(t) = (u + p0)t/τ . In the

opposite limit, where ũ is a slow rate, Z2(t) = N(u+p0)ũ(ũ+p0)(t/τ)
3/3. If

we assume that the second copy of the MSI gene is silenced by methylation,

we need to replace u by umet in the expression for Z2(t).

The solutions for X2 and Y2 in this case are quadratic in time (two rate-

limiting steps), and the quantity Z2(t) grows slower than linear but faster

than quadratic, because it requires one rate-limiting and two intermediate

steps (note that we are talking about linear and quadratic functions of an

argument smaller than one). In figure 11.11 we present the expected number

of dysplastic crypts and the fraction of MSI crypts, calculated for t = 40.

We have varied the rate at which inactivation of the second copy of an MSI

gene happens. This rate, umet, ranges from 10−7, which corresponds to the

methylation rate equal to the mutation rate (or to inactivation happening

by a point mutation), to 10−5, where we assume that the methylation rate

is a hundred times higher than the mutation rate.

Our model predicts that the majority of dysplastic crypts in HNPCC

patients are expected to have MSI. However, we do not find that 100%

of dysplastic crypts will contain MSI. On the other hand, we know that

virtually all tumors in HNPCC patients have MSI. This might suggest that

selection for MSI also happens at later stages of carcinogenesis: dysplastic

crypts with MSI might have a faster rate of progression to cancer than

dysplastic crypts containing CIN or normal cells.

Finally we note that the total number of dysplastic crypts in HNPCC

patients, as predicted by our model, is of the order 10 at age 40, which is

only slightly larger than the expected number of dysplastic crypts in normal

individuals and is not nearly as high as in the case of FAP (of the order

10, 000, figure 11.10. This is also consistent with observations.

11.6 Summary

In this chapter we applied the tools developed in Chapter 10 to study

the dynamics of colorectal cancer initiation. We calculated the rate of

dysplastic crypt formation as a consequence of inactivating both alleles of

the APC tumor suppressor gene. This can either happen in normal cells

or in cells that have already acquired one of the two genetic instabilities,

MSI or CIN. If the rate of triggering genetic instability in a cell is high and

if the cost of genetic instability is not too large, then inactivation of APC

will frequently occur in cells that are genetically unstable. In this case,
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Fig. 11.11 HNPCC: (a) the logarithm of the expected number of dysplastic crypts and

(b) the fraction of MSI crypts, at 40 years of age, as functions of log10 umet. Parameter
values are as in figure 11.7, with nc = 10.

genetic instability is the first phenotypic modification of a cell on the way

to cancer.

It is interesting to compare the two types of instability, MSI and CIN.

MSI, being associated with subtle changes in the genome, is probably less

of a liability for the cell than CIN. In other words, CIN cells are more likely

to produce non-viable offspring than MSI cells. At the same time, it may

be possible that CIN is easier to trigger (for instance, if it requires a change

in a single allele of many genes). Our analysis shows that if inactivation

of MSI genes (either by point mutation or by methylation) occurs at a

sufficiently fast rate - around 10−6 per cell division, then MSI can precede

APC inactivation in a significant number of cases. Regarding CIN, the

crucial questions are (i) how many dominant CIN genes can be found in

the human genome, (ii) how fast are CIN genes inactivated, and (iii) what

are the costs of CIN. A more detailed analysis of costs and benefits of CIN

is given in Chapters 6 and 7.

Our calculations have shown that important insights could be derived
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by carefully monitoring the incidence rate of dysplastic crypts in patients

as function of age. With or without early genetic instability, the abundance

of dysplastic crypts should grow approximately as a second power of time.

The two rate limiting steps can either refer to two mutations of APC, or

one mutation of APC and one CIN mutation. In the case of CIN, LOH of

the second allele of APC is not rate limiting. Hence, two rate limiting steps

for the inactivation of a tumor suppressor gene can be compatible with an

additional genetic instability mutation.

We have also examined the dynamics of familial colorectal cancer ini-

tiation. FAP patients inherit one inactivated copy of the APC gene, and

as a result, dysplastic crypt formation involves only one rate limiting step.

This could be the inactivation of the remaining copy of the APC gene by

a mutation or an LOH event, or a CIN mutations (followed by a fast loss

of the remaining APC copy by an LOH event). Our model predicts that

the fraction of MSI dysplastic crypts in FAP patients is close to zero. A

significant number of dysplastic crypts will contain CIN. This is consistent

with experiments observations.

In HNPCC patients, one MSI mutation is inherited, and progression to

dysplasia contains one rate-limiting step (the loss of the remaining copy of

the MSI gene), followed by two “intermediate” steps (the inactivation of

the APC gene as a loss-of-function mutation which happens at an elevated

rate because of MSI).

An interesting possibility that we did not explore here is that dysplastic

crypts can be lost and replaced by normal crypts, or that unstable crypts

could have an advantage/disadvantage compared to stable crypts. In this

case, many dysplastic crypts could be produced, but only a part of them

is retained so that the actual number of dysplastic crypts stays low. Also,

the relative fraction of CIN and MSI crypts can change. The competitive

dynamics of crypts in a colon should be investigated experimentally in more

detail, to inform further modeling efforts.

Problems

Problem 11.1. Research project. Learn about details of MSI. In which

cancers is it observed apart from colorectal cancer? How prevalent is it?

What are the mechanisms of MSI?

Problem 11.2. In figure 11.5, there are three possible tunnels: X0 → X2,

X1 → Y2, and Y0 → Y2. Four configurations of “open” and “closed” tunnels
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are presented. Show that no other configurations are possible assuming that

rc ≤ 1 and r = 1.

Problem 11.3. Write down the expressions for Y2(t) for networks (i)-(iv)

of figure 11.5 using the combinatorial rule described in this chapter, under

assumption (11.4).

Problem 11.4. Derive the condition for CIN to cause inactivation of the

second APC gene, similar to condition (11.13), for the case of diagram (iv)

in figure 11.5.

Problem 11.5. If we allowed “costly CIN” (that is, rc < 1), then instead

of one diagram of figure 11.6, there would be several possibilities, similar

to figure 11.5. How would these different possibilities modify the analysis

of Section 11.3? Without performing calculations, can you predict how the

assumption rc < 1 would change the expected percentage of CIN crypts?

Problem 11.6. Numerical project. The mutation spectrum of the APC

gene is far from random (one reason being that the APC gene is long and

multi-functional). The type of the second APC mutation may depend on

where the first APC mutation took place, see e.g. [Lamlum et al. (1999);

Segditsas and Tomlinson (2006)]. Our model is well suited to take this into

account. Here is a simple way to differentiate between two kinds of point

mutations. Let us assume that the total probability of a point mutation is

u (as in the basic model), and there are two kinds of mutations. (i) With

probability u1, a mutation happens such that the second allele can only

be inactivated by a point mutation. (ii) With probability u2, a mutation

happens which can be followed by another point mutation or an LOH event.

We have u1 + u2 = u. Incorporate these two scenarios in the calculations.

How does this change the results?



May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 197

Chapter 12

Evolutionary dynamics in hierarchical

populations

12.1 Introduction

In Chapter 10 we explored a mathematical framework that allows modeling

of cancer initiation by loss-of-function mutations. A prominent example of

such a mechanism is the inactivation of tumor suppressor genes. The model

considered in Chapter 10 assumed a very simple setting: a constant pop-

ulation of N cells was considered homogeneous, in the sense that the only

phenotypic differences among cells were caused by mutations that affected

their fitness. This is a crude simplification of reality. Many tissues are

characterized by a hierarchical architecture, where, even in the absence of

mutations, cells differ phenotypically, and different cell types play a differ-

ent role. Typically, cell populations consist of stem cells and various classes

of daughter cells that differ by their degrees of differentiation. Such hi-

erarchical architecture is a feature of many tissues, especially those which

are characterized by frequent self-renewal, such as blood and epithelium

(MacKey, 2001; Yatabe et al., 2001).

Tissue stem cells (or undifferentiated cells) are distinguished by their

ability to divide or self-renew indefinitely, and generate all the cell types of

the organ, potentially regenerating the entire organ from a few cells. Cel-

lular differentiation is the process by which a less specialized cell becomes

more specialized. This process takes place inside organs, for example, when

stem cells divide and create differentiated daughter cells during tissue re-

pair and during normal cell turnover. Differentiated (or transit-amplifying,

TA) cells differ from stem cells by size, shape, metabolic activity, and re-

sponsiveness to signals. These changes happen due to highly controlled

modifications in gene expression, and do not involve a change in the DNA.

197
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Thus, different cells can have very different physical characteristics despite

having the same genome.

In this context, the concept of cell lineages is often discussed. Cell lin-

eages consist of classes of cells that differ by their properties such as the

degree of differentiation and the capability of self-renewal. In the simplest

case a lineage can be comprised of stem cells and differentiated cells. Sev-

eral intermediate classes of daughter cells can also be present, giving rise

to multistage cell lineages. In self-renewing tissues such as the epithelial

tissue, cell lineages are considered to be basic units that ensure the cor-

rect functioning of the organ. Divisions, deaths, and differentiation events

of cells in a lineage are subject to regulation. The specific mechanisms of

control are complex and tissue-specific, and they are beginning to be de-

scribed in the literature (Binetruy et al., 2007; Gan et al., 2007; Tothova

and Gilliland, 2007; Discher et al., 2009).

12.2 Types of stem cells divisions

Two basic models of stem cell divisions are discussed in the literature, see

figure 12.1. The asymmetric model suggests that the homeostatic control

of the stem cell pool is maintained at the level of single cells, whereby each

stem cell produces a copy of itself plus one differentiated cell [Knoblich

(2008); Fuchs et al. (2004); Zhong and Chia (2008); Ho (2005)]. From

the engineering prospective, this model has the advantage of keeping the

stem cell population level steady. An obvious disadvantage is its inability

to replenish the stem cell pool in case of injury. This problem is naturally

solved by the symmetric model, which maintains homeostatic control at the

population level, rather than at the individual cell level. There, stem cells

are capable of two types of symmetric divisions: a proliferation division

resulting in the creation of two stem cells, and a differentiation division

resulting in the creation of two differentiated cells [Zhang et al. (2009);

Loeffler and Roeder (2002); Marshman et al. (2002); Clayton et al. (2007)].

Differentiation/proliferation decisions are though to be under control of

numerous signals emanating from the surrounding tissue and the stem cells

themselves [Liu et al. (2000); Simmons et al. (2003); Alvarez-Buylla and

Lim (2004); Saha et al. (2006); Lien et al. (2006); Adams and Scadden

(2007); Dehay and Kennedy (2007); Orford and Scadden (2008); Nusse

(2008); Spiegel et al. (2008); Saha et al. (2008); Sen et al. (2008); Guilak

et al. (2009); Lavado et al. (2010); De Graaf et al. (2010); Li and Clevers
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(2010); Salomoni and Calegari (2010); Hsieh (2012); Ordóñez-Morán and

Huelsken (2012)].

Asymmetric divisions 
Proliferation Differentiation 

Symmetric divisions 

Stem 

Diff Stem Stem Stem 

Stem Stem 

Diff Diff 

Fig. 12.1 Symmetric and asymmetric stem cell divisions. In the asymmetric division
model, a stem cell produces one differentiated cell and one stem cell. In the symmetric
division model, a stem cell produces two stem cells (a proliferation event) or two stem
cells (a differentiation event).

The ability of stem cells to divide asymmetrically to produce one stem

and one non-stem daughter cell is often considered to be one of the defining

characteristics of “stemness”. On the other hand, there is ample evidence

suggesting that adult stem cell can and do divide symmetrically [Morrison

and Kimble (2006); Shen et al. (2004)].

Uncovering division patterns of stem cells has been subject of intense

research in the last fifteen years. Some of the first quantifications of the

division strategies in vitro come from the work of [Yatabe et al. (2001)] who

tracked methylation patterns in the dividing cells of the colon crypts. The

analysis of the complex methylation patterns revealed that crypts contain

multiple stem cells that go through “bottlenecks” during the life of the or-

ganism, which suggests that symmetric divisions are part of the picture.

Another piece of evidence comes from experiments with chimeric mice to

determine the dynamics of polyclonality of crypts. Crypts that are initially

polyclonal eventually become monoclonal, which suggests that symmetric

divisions must occur [Spradling et al. (2001); Nicolas et al. (2007)]. By

means of radiotherapy-induced mutations, the study of [Campbell et al.

(1996)] suggests that a significant fraction of the somatic mutations in hu-

man colon stem cells are lost within one year.
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An important advance in quantification of symmetric vs antisymmetric

divisions became possible with the invention of inducible genetic labeling

[Klein and Simons (2011)]. This technique provides access to lineage-tracing

measurements, from which the fate of labeled cells and their clones can be

tracked over time. By means of the quantitative analysis of long-term

lineage-tracing data [Klein et al. (2010); Clayton et al. (2007)], it has been

shown that the rate of stem cell replacement is comparable to the cell divi-

sion rate, implying that symmetric cell divisions contribute significantly to

stem cell homeostasis [Lopez-Garcia et al. (2010); Snippert et al. (2010)].

The paper by [Simons and Clevers (2011b)] provides a review of the recent

evidence of symmetric divisions in mammalian intestinal stem cells, sper-

matogenesis [Klein et al. (2010)] and epithelial tissues such as hair follicles

[Doupé et al. (2010)].

As explained in Chapter 10, many cancerous transformations start off by

an inactivation of a tumor-suppressor gene. We ask the following question:

from the point of view of two-hit mutant generation, what type of stem cell

divisions is advantageous for the organism? What frequency of symmetric

vs asymmetric divisions can maximally delay the stochastic generation of a

dangerous mutant? To this end, we consider a continuous range of strategies

with mixed type divisions and explore how the frequency of symmetric vs

asymmetric divisions affects the generation of mutations.

12.3 The set-up

Stem cell dynamics and evolution have been the subject of mathematical

research, e.g. [Dingli et al. (2007); Dingli and Pacheco (2011); Traulsen

et al. (2010); Dingli and Pacheco (2010); Michor (2008); Kern and Shibata

(2007); Calabrese et al. (2004); Sottoriva et al. (2011)]. Here, we consider

a non-spatial stochastic model of stem cells and differentiated cells with a

constant total population. The stem cells are capable of both symmetric

and asymmetric divisions (see figure 12.1). The relative proportion of sym-

metric divisions can vary and is denoted by the symbol σ, where σ = 1

means that all divisions are symmetrical, and σ = 0 means that stem cells

only divide asymmetrically. The symmetric divisions can be of two types,

proliferation and differentiation. The type of symmetric division is defined

by a regulatory mechanism which assures an approximately constant level

of stem cells. In this model we explicitly consider cells of two types: stem

cells (S) and TA cells, D. Implicitly included are terminally differentiated
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cells. The total population is denoted by N = S+D and remains constant.

An important parameter is λ = N/D, which defines the proportion of stem

cells with respect to TA cells: S/D = λ− 1.

We assume that the TA cells are removed from the system (by becom-

ing terminally differentiated cells), and that both stem cell and TA cells

have a chance to divide. We will refer to the process of terminal differen-

tiation of TA cells as “death” because mathematically a removal from the

compartment is equivalent to a death event.

Mutations are included as follows. Each time a division happens, there

is a probability, u1, that one of the daughter cells is a one-hit mutant with

fitness r (while the fitness of all wild-type cells is given by 1). The fitness

parameter defines the relative probability of the given cell-type to be chosen

for division. As before, we consider a range of fitness values, r, such that

the one-hit mutants can be disadvantageous compared to wild-type cells,

neutral, or slightly advantageous. When a one-hit mutant divides, it has

the probability u2 to give rise to a two-hit mutant. Two-hit mutants are

transformed cells which have a potential to give rise to a cancerous tissue

transformation. We investigate how the timing of such mutant production

depends on the tissue architecture, and specifically, on the symmetry of

stem cell divisions.

(a) (b) (c) Differentiated cell divides 
Stem cell divides 

asymmetrically 

Stem cell divides 

symmetrically 

Fig. 12.2 A schematic representation of updates of the generalized Moran process.
Filled circles represent stem cells and empty circles - differentiated cells (unlike in figure
9.1, mutants are not shown). (a) Following a differentiated cell death, a differentiated
cell divides. (b) Following a differentiated cell death, a stem cell divides asymmetrically.
(c) Two differentiated cell death events are balanced by two symmetric divisions of stem
cells, one proliferation event and one differentiation event. The dividing stem cell shown
in black represents the differentiation event whereby a stem cell is replaced by two dif-
ferentiated cells.
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In order to study this process analytically, we designed the following

slightly simplified proess which is a generalization of the Moran process

described in Chapters 9 and 10 that includes two types of cell populations

and different types of cell divisions. At each update, a daughter cell is

chosen for death at random, figure 12.2. Then a cell (a stem cell or a

differentiated cell) is chosen to divide, according to its fitness, in the same

way as described in Chapter 9. If a differentiated cell is chosen for division,

it divides in a usual manner, and this concludes the update, figure 12.2(a).

If however a stem cell is chosen for division, we proceed as follows. (1) With

probability 1−σ, the stem cell divides asymmetrically, which concludes this

step. This is depicted in figure 12.2(b). (2) With probability σ, the stem cell

divides symmetrically by differentiation, which is followed by a proliferation

of another randomly chosen stem cell. Finally, another daughter cell is

chosen for death, which concludes this step.

This version of the Moran process is slightly different from the process

that we initially described. In the generalized Moran process, the numbers

of stem cells (S) and differentiated cells (D) are kept constant at every step.

This is a simplification that allows for analytical tractability (see below).

In the numerical simulations the number of stem and differentiated cells

fluctuates around a mean value, but despite this difference, the analytical

formulas derived here are in an excellent agreement with the simulations.

Note that in order to keep S constant, the symmetric stem cell divisions

have to come in pairs (one proliferation and one differentiation event), and

must be combined with two cell death events, figure 12.2(c). Therefore, an

update involving symmetric divisions counts as two (and not one) elemen-

tary updates.

12.4 Methodology

12.4.1 Analysis of the Moran process

Let us denote by j∗ the number of single-mutant stem cells and by j

the number of single-mutant differentiated cells. The updates can be

envisaged as a Markov process in the space (j∗, j), where j∗, j ≥ 0,

with an additional state E denoting the generation of a double-mutant

cell. Below we will use the condition that mutants are drifting at low

numbers, j∗ ≪ S and j ≪ D. We have the following probabilities (cf.

the probabilities listed in Section 10.5.1 for the original, homogeneous
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Moran process):

• The probability that the number of mutant differentiated cells in-

creases by one can be approximated as follows:

Pj∗,j→j∗,j+1 =
r(j + (1− σ)j∗)

N
(1−u2)+

D

N
u1+(1−σ)

S

N

u1

2
+
u1Sσ

2N
,

which is (i) a death of a wild-type differentiated cell (probability

≈ 1), followed by either a faithful division of a mutant differentiated

cell, or a faithful asymmetric division of a mutant stem cell; (ii) a

division of a wild-type differentiated cell with a mutation; (iii) an

asymmetric division of a wild-type stem cell with a mutation hap-

pening in the differentiated daughter cell; (iv) a symmetric division

of a wild-type stem cell with a mutation (times 1/2 by association

with the symmetric division process). Here and below, when cal-

culating various transition probabilities, the terms associated with

symmetric divisions require a factor 1/2 because symmetric updates

involve two death and two division events and thus count as two

updates.

• The probability that the number of mutant differentiated cells de-

creases by one is

Pj∗,j→j∗,j−1 =
j

D
,

which is the probability that a mutant differentiated cell dies fol-

lowed by a faithful division of any w.t. cell (≈ 1).

• The probability that the number of mutant differentiated cells in-

creases by two, and the number of mutant stem cells decreases by

one:

Pj∗,j→j∗−1,j+2 =
σrj∗
2N

(1− u2),

which is only possible for a symmetric update, when two w.t.

differentiated cells die (probability ≈ 1) followed by a mutant

stem cell differentiating without a further mutation (probability
σrj∗
N (1 − u2)), followed by a w.t. stem cell proliferating without a

mutation (probability ≈ 1); the factor 1/2 comes from the symmet-

ric update.

• The probability that the number of mutant stem cells increases by

one is

Pj∗,j→j∗+1,j =
(1− σ)S

N

u1

2
+

σ

2

(

Su1

N
+

rj∗
N

(1− u2)

)

,
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which is (i) the probability that following a death of a wild-type

differentiated cell (≈ 1), a wild-type stem cell divides asymmet-

rically with a mutation in the stem cell offspring, (ii) a wild-type

stem cell proliferates with a mutation (u1), or (iii) a mutant stem

cell proliferates without a further mutation ( rj∗
S (1− u2)).

• The probability to create a double-hit mutant is

Pj∗,j→E =
rju2

N
+ (1 − σ)

rj∗u2

N
+ σ

rj∗u2

N
,

which is (i) the probability that a mutant differentiated cell divides

with a mutation, (ii) a mutant stem cell divides asymmetrically

with a mutation, or (iii) a mutant stem cell undergoes either a

differentiation or a proliferation event with a mutation.

Let us define by ϕj∗,j(t) the probability to have j∗ mutated stem cells

and j mutated differentiated cells at time t. The Kolmogorov forward

equation for this function is given by

ϕ̇ = ϕj∗,j−1

[

r(j − 1 + (1 − σ)j∗)(1− u2) +Du1 +
Su1

2

]

+ ϕj∗,j+1λ(j + 1)

+ ϕj∗+1,j−2
σr(j∗ + 1)

2
(1 − u2)

+ ϕj∗−1,j
[

Su1/2 +
σ

2
r(j∗ − 1)(1− u2)

]

− ϕj∗,j(r(j∗ + j) +Nu1 + λj). (12.1)

Let us define the probability generating function,

Ψ(y∗, y; t) =
∑

j∗,j

ϕj∗,j(t)y
j∗
∗ yj .

The probability to be in one of the states (j∗, j) is given by Ψ(1, 1; t).

Therefore, the probability to transit to state E is P2(t) = 1−Ψ(1, 1; t).

The probability generating function satisfies the following first order

PDE, whose derivation is similar to that of Section 10.5.2:

∂Ψ

∂t
=

∂Ψ

∂y∗

(

[
rσ

2
(y2∗ + y2) + r(1 − σ)y∗y](1− u2)− ry∗

)

+
∂Ψ

∂y
(r(1 − u2)y

2 + λ(1− y)− ry)

− u1Ψ

((

D +
S

2

)

(1 − y) +
S

2
(1− y∗)

)

. (12.2)
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We have

P2(t) = 1− exp

(

−u1

∫ t

0

{(

D +
S

2

)

(1− y(t′)) +
S

2
(1− y∗(t

′))

}

dt′
)

,

(12.3)

where

ẏ∗ =
[rσ

2
(y2∗ + y2) + r(1 − σ)y∗y

]

(1− u2)− ry∗, (12.4)

ẏ = r(1 − u2)y
2 + λ(1 − y)− ry, (12.5)

y∗(t) = y(0) = 1. (12.6)

Equation (12.3) states that one-hit mutants in differentiated cells are

produced by divisions of differentiated cells at the rate u1D and by di-

visions of stem cells at the rate u1S/2. The factor 1/2 comes from the

fact that in asymmetric divisions, only a half of mutations will be in

the differentiated cells, and in symmetric divisions which consist of pairs

differentiation/proliferation, only half of the time a mutation will hap-

pen upon differentiation. Mutations in stem cells are produced by the

divisions of stem cells at rate u1S/2. The ordinary differential equations

describe the dynamics of lineages that start from one differentiated mu-

tant (equation for ẏ) or from one stem cell mutant (equation for ẏ∗).
The dynamics of differentiated mutants is independent of σ.

Let us first solve equation (12.5), which informs us about the proba-

bility of creating a double-hit mutant in a differentiated cell. This Riccati

equation can be solved by standard methods, see Section 10.5.3, and the

growth of the quantity 1− y proceeds in the following stages:

• The linear growth stage, where 1− y ≈ ru2t, as long as t ≪ t∗ (to
be defined).

• The saturation stage, where 1− y ≈ R, as long as t ≫ t∗.

The constant R obtained from the stable fixed point of equation (12.5)

is given by the equation

y = 1− λ+ r −
√

(λ+ r)2 − 4rλ(1 − u2)

2r(1− u2)
,

and can be approximated by concise expressions as shown below. Given

the solution for y, equation (12.4) can also be analyzed. The function

1 − y∗ increases monotonically and reaches saturation at 1 − y∗ = 1,

after characteristic time t∗∗. To find that time-scale, we substitute the

constant approximation for the function y, to obtain

y∗(t) ≈ exp(−t/t∗∗).
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There are several regimes where the expressions take a particularly sim-

ple form (see also summary in Table 12.1).

Regime (2A). Let us assume that |λ− r| ≫ √
u2, r < λ, and σ ≪ u2.

In this case, we have

R =
ru2

λ− r
, t∗ =

1

λ− r
, t∗∗ =

λ− r

λru2
≫ t∗.

There are therefore three distinct regimes defined by the behavior of the

functions y(t) and y∗(t).

(1) If t ≪ t∗, we have 1 − y = ru2t and 1 − y∗ = ru2t+ (rt)2u2/2. In

this case we have

P lin
2 (t) = 1− exp

(

−Nu1u2rt
2

2
− Su1u2r

2t3

12

)

,

where the second term in the exponent is typically smaller than

the first, and the behavior is thus indistinguishable for the usual

homogeneous Moran process at early times.

(2) If t∗ ≪ t ≪ t∗∗, we have 1 − y = ru2/(λ − r) and 1 − y∗ =

λru2t/(λ− r). In this case we have

P inter
2 (t) = 1− exp

(

− (D + S/2)u1u2rt

λ− r
− Su1u2λrt

2

4(λ− r)

)

. (12.7)

(3) Finally, if t ≫ t∗∗, we have 1− y = ru2/(λ− r) and 1− y∗ = 1, and

P sat
2 (t) = 1− exp (−RA→Ct) , RA→C =

(D + S/2)u1u2r

λ− r
+

Su1

2
.

(12.8)

This regime becomes unimportant if for t = t∗∗ we can show that

the quantity in the exponent is much larger than one. We have

P sat
2 (t∗∗) = P inter

2 (t∗∗) = 1−exp

(

− (D + S/2)u1

r
+

Su1(λ− r)

λru2

)

,

and this quantity is very close to 1 for example if u1 ∼ u2 and

(λ− r)S ≫ 1.

Regime (2B). Let us assume that |λ − r| ≪ √
u2 and σ ≪ √

u2. In

this case, we have

R =
√
u2, t∗ =

1

2λ
√
u2

, t∗∗ =
1

λ
√
u2

∼ t∗.

There are therefore only two regimes defined by the behavior of the

functions y(t) and y∗(t).
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(1) If t ≪ t∗, we have as in the previous case, 1−y = ru2t and 1−y∗ =
ru2t+ (rt)2u2/2. The probability of double-hit mutant production

is thus given by

P lin
2 (t) = 1− exp

(

−Nu1u2λt
2

2
− Su1u2λ

2t3

12

)

,

where the second term in the exponent is typically smaller than

the first, and the behavior is thus indistinguishable for the usual

homogeneous Moran process at early times.

(2) If t∗ ≪ t, we have 1− y =
√
u2 and 1− y∗ = 1. In this case we have

P sat
2 (t) = 1− exp (−RA→Ct) , RA→C = (D + S/2)u1

√
u2 +

Su1

2
.

(12.9)

Regime (1A). Let us assume that |λ− r| ≫ √
u2, r < λ, and σ ≫ u2.

The quantity 1− y∗(t) behaves as a linear function,

1− y∗(t) =
λru2t

λ− r
,

for t∗ ≪ t ≪ t∗∗, where

t∗ =
1

λ− r
, t∗∗ =

1

r

√

λ− r

2u2λσ
. (12.10)

For t ≫ t∗∗, the quantity 1− y∗(t) tends to a constant,

1− y∗(t) =

√

2u2λ

σ(λ− r)
. (12.11)

Note that the initial behavior of the function 1− y∗(t) does not depend
on σ. This means that for relatively short times (t ≪ t∗∗), the mutant

generation in stem cells proceeds in the same way for symmetric and

asymmetric divisions. The length of this regime and the level of satura-

tion however are both functions of σ. It is easy to see that both t∗∗ and
the saturation level increase as σ decreases. This means that the rate of

mutant accumulation becomes higher for asymmetric divisions.

Regime (1B). Let us assume that |λ − r| ≪ √
u2 and σ ≫ √

u2.

Now, the linear stage for 1− y∗(t) is defined as

1− y∗(t) = r
√
u2t,

and it occurs for the times t∗ ≪ t ≪ t∗∗, where

t∗ =
1

2λ
√
u2

, t∗∗ =
1

λ
√
2σu

1/4
2

.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 208

208 Dynamics of cancer: mathematical foundations of oncology

For t ≫ t∗∗, the quantity 1− y∗(t) tends to a constant,

1− y∗(t) =

√

2

σ
u
1/4
2 . (12.12)

Calculations for regimes (1C) and (2C) are performed in a similar

manner.

The approximations obtained here and summarized in Table 12.1 are

illustrated in figure 12.3. Predictions of equation (12.3), have been com-

pared with stochastic numerical simulations, and found to be in excellent

agreement with them, see below.
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Fig. 12.3 The six different approximation regimes (Table 12.1) for the steady-state
solution of system (12.4-12.5). Plotted is the quantity (a) 1 − y∗ and (b) y∗ as
a function of the frequency of symmetric divisions, σ, for three different values of
λ (solid lines), together with the approximations given by the formulas in Table
12.1. Approximations (1A), (1B), and (1C) are best demonstrated in panel (a),
where the quantity 1− y∗ is plotted. Approximations (2A), (2B), and (2C) are best
demonstrated in panel (b), where the quantity y∗ is plotted. The other parameters
are u1 = u2 = 10−7, r = 1.1.

12.4.2 Numerical simulations

In the generalized Moran process described above, the number of stem

and differentiated cells is kept constant at every update. To relax this

rigid assumption, we can use the following stochastic process. Suppose

that the population consists of four types of cells: stem cells (wild-type,

i∗, and one-hit mutants, j∗), and TA cells (wild-type, i, and one-hit

mutants, j). We have i + i∗ + j + j∗ = N , where N is a constant

total population size. The dynamics proceed as a sequence of updates.
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At each update, one TA cell is randomly removed from the population,

and replaced with an offspring of another cell, thus keeping the total

population size constant.

The process of division is modeled as follows. All cells (stem or TA

cells) have a probability to divide. A cell is chosen for division based on

its fitness. The fitness of mutated cells is given by r and the fitness of

wild-type cells is 1. Let us use the notation N = i+ i∗+ r(j+ j∗). Then
the probability that a wild-type stem cell is chosen for division is given

by i∗/N ; the probability that a mutated stem cell is chosen for division

is given by rj∗/N ; the probability that a wild-type TA cell is chosen for

division is given by i/N ; and the probability that a mutant TA cell is

chosen for division is given by rj/N .

If a wild-type TA cell divides, it creates another wild-type TA cell

with probability 1 − u1, and it creates a one-hit mutant TA cell with

probability u1. If a mutant TA cell divides, it creates a one-hit mutant

TA cell with probability 1 − u2, and it creates a two-hit mutant with

probability u2. In case of such an event, the process stops.

Divisions of stem cells can be either symmetric (with probability σ)

or asymmetric (with probability 1−σ). Asymmetric divisions result in a

creation of a TA cell. If a wild-type stem cell is dividing asymmetrically,

then with probability 1−u1 no mutations happen, and a one-hit mutant

will be created with probability u1. In case of such an event, with proba-

bility 1/2 the TA daughter cell will get a mutation, and with probability

1/2 it will be the stem cell that acquires a mutation. Similarly, a one-hit

mutant stem cell that divides symmetrically will create a two-hit mutant

with probability u2, in which case the process stops.

Symmetric divisions can be of two types: a differentiation, which

results in a replacement of the dividing stem cell with two TA cells, or a

proliferation which results in a creation of a stem cell. The probability

of proliferation is taken to be p = (i∗+j∗)
10

S10+(i∗+j∗)10
, where S is a constant

parameter which measures the expected number of stem cells in the

system. The probability of proliferation is given by 1− p. Again, when

a wild-type stem cell divides, with probability 1−u1 both daughter cells

are wild-type, and with probability u1 one of the daughter cells is a one-

hit mutant. If a one-hit mutant stem cell divides, both daughter cells

are one-hit mutants with probability 1−u2, and with probability u2 the

process stops because a double-hit mutant is created.

The decision trees for stem cells are shown in figure 12.4, for wild-type
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stem cells (a) and for mutated stem cells (b). Stem cells are denoted by

light circles with “S” and TA cells by shaded circles with “D”. One-hit

mutants are marked with a star.
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Fig. 12.4 Stem cell division decision trees for the numerical algorithm.

(a) Divisions of wild-type stem cells. (b) Divisions of mutant stem cells. Stem cells

are denoted by light circles with an “S” and TA cells by shaded circles with a “D”.
One-hit mutants are marked with a star.

These updates were performed repeatedly until either a double-hit

mutant was created, or the maximum number of time-steps was reached.

Numerical simulations of this process were compared with the analytical

predictions obtained for the generalized Moran process.

12.5 Generation of mutations in a hierarchical population

12.5.1 Tunneling rates

Our theoretical results on the rate of double-hit mutant formation provide

a generalization of the expression for the tunneling rate obtained for a

simpler, homogeneous process in Chapter 10. Let us concentrate on the

results for the tunneling rates - the rates at which the stem cell system of
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a given size produces double-hit mutants (assuming that one-hit mutants

drift at relatively low levels). As before, we denote the tunneling rate as

RA→C . We have

RA→C = Rstem
A→C +RTA

A→C =
Nu1

2

[(

1− 1

λ

)

(1 − y∗) +

(

1 +
1

λ

)

(1− y)

]

,

(12.13)

where quantities y and y∗ satisfy the system

0 =
[rσ

2
(y2∗ + y2) + r(1 − σ)y∗y

]

(1− u2)− ry∗, (12.14)

0 = r(1 − u2)y
2 + λ(1 − y)− ry. (12.15)

The time to produce double-hit mutants is distributed exponentially with

the mean

T =
1

RA→C
.

Formula (12.13) describes the generation of double-hit mutants in the stem

cells (the first term on the right) and in TA cells (the second term of the

right). Several limiting cases are presented in Table 12.1, to be compared

with Table 10.1.

Table 12.1 Important limiting cases for the tunneling rate (formula (12.13)).

Regime* Description† Conditions 1− y∗ 1− y

(1A) r < λ, s+a σ ≫ u2, |λ− r| ≫ √
u2, r < λ

√

2u2
σ(1−r/λ)

ru2
λ−r

(1B) r ≈ λ, s+a σ ≫ √
u2, |λ− r| ≪ √

u2

√

2
√

u2

σ

√
u2

(1C) r > λ, s+a σ ≫ |λ− r|, |λ− r| ≫ √
u2, r > λ

√

2
σ

(

r
λ
− 1

)

1− λ
r

(2A) r < λ, a σ ≪ u2, |λ− r| ≫ √
u2, r < λ 1− σ(1−r/λ)

2u2

ru2
λ−r

(2B) r ≈ λ, a σ ≪ √
u2, |λ− r| ≪ √

u2 1− σ
2
√

u2

√
u2

(2C) r > λ, a σ ≪ |λ− r|, |λ− r| ≫ √
u2, r > λ 1− σ

2(r/λ−1)
1− λ

r

*The notations for the six different regimes refer to figure 12.3.
† “s+a” stands for symmetric and asymmetric, “a” for asymmetric.

12.5.2 Double-hit mutants are produced slower under

symmetric compared to asymmetric divisions

An important question is how the fraction of symmetric divisions (σ) affects

the rate of double-mutant production. We can see that the production of

double-mutants by non-stem cells does not depend on σ, the frequency of

symmetric divisions. On the other hand, the production by stem cells is

crucially affected by this parameter. Our formulas show clearly that the
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rate of tunneling grows as σ decreases, and it is the highest when σ = 0, the

case of purely asymmetric divisions. This means that in order to minimize

the rate of double-hit mutant formation, one needs to maximize the share

of symmetric divisions. In figure 12.5 we plot the quantity

Rstem
A→C(σ = 1)

Rstem
A→C(σ = 0)

, (12.16)

for different percentages of stem cells. We can see that for realistic ranges of

the mutation rates, the difference is at least 10-fold, and can be as high as

104-fold, with the symmetrically dividing stem cells producing double-hit

mutants slower than asymmetrically dividing cells.
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Fig. 12.5 The reduction in the rate of double mutant production in stem cells with
symmetric divisions compared to stem cells with asymmetric divisions only. Plotted is
the quantity in formula (12.16) as a function of the mutation rate, u1. The percentage
of the stem cells in the whole population (S/N) is marked next to the lines. The other
parameters are u2 = u1/2, r = 1.

Figure 12.6 compares the analytical findings for the double-hit mutant

production dynamics with the numerical simulations. We ran the stochas-

tic numerical model for a fixed number of time-steps, and recorded whether

or not a double-hit mutant has been generated. Repeated implementation
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of this procedure produced a numerical approximation of the probability

of double-hit mutant generation, which is plotted (together with the stan-

dard deviations) as a function of σ, the probability of symmetric divisions,

for three different values of λ, which measures the fraction of stem cells.

Clearly, the probability of mutant generation in the course of a given time-

interval is a decaying function of σ.

12.5.3 Comparison with the homogeneous model

Another result that follows from our computations is the comparison of

the double-mutant production in a hierarchical (stem cells plus TA cells)

model compared with the conventional, homogeneous model described in

Chapter 10. It turns out the hierarchical model with purely asymmetric

divisions always produces mutants faster than the homogeneous model. For

the hierarchical model with purely symmetric divisions the result depends

on the fitness of one-hit mutants. For disadvantageous one-hit mutants

whose fitness satisfies r < 1, |1 − r| ≫ √
u2, the hierarchical model with

purely symmetric divisions produces double-mutants faster, and for neutral

and advantageous mutants, it produces double-hit mutants slower than the

homogeneous model. In figure 12.6 we can see that for r = 1 (neutral

one-hit mutants), hierarchical models with a sufficiently large values of σ

are characterized by slower double-hit mutant generation compared to the

homogeneous model (the horizontal line).

Figure 12.7 shows additional results of simulations (together with our

analytical calculations), where for three different values of r (one-hit mu-

tant fitness) the probability of double-hit mutant generation is plotted as

a function of λ. The values λ → 1 correspond to a vanishingly low fraction

of stem cells in the system, while λ = 2 corresponds to 50% of all cells

being stem cells. We show purely symmetric (σ = 1) and purely asym-

metric (σ = 0) cases. For fixed mutation rates and populations sizes, the

homogeneous model is characterized by only one parameter, r, which is the

fitness of one-hit mutants. The probability of double-hit mutant generation

strongly depends on whether these intermediate mutants are disadvanta-

geous (r < 1), neutral (r ≈ 1), or advantageous (r > 1). In contrast

to the homogeneous model, the hierarchical model contains two additional

parameters, λ (the ratio of TA cells and the total population) and σ (the

probability of symmetric divisions). We can see that these two parameters

affect the probability of double-hit mutant generation at least as strongly

as the fitness r does. The influence of σ is clear: the more the fraction of
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Fig. 12.6 The probability of double-hit mutant generation as a function of σ, the

probability of symmetric stem cell divisions. The results of numerical simulations are
presented as points (standard deviations are included). Analytical results are given
by solid lines (formula (12.3)). The horizontal line represents the calculations for the
homogeneous model. We ran 10 batches of 1000 runs. The parameters are r = 1.0,
u1 = 0.00001, u2 = 0.002, N = 500.

symmetric divisions, the slower double-hit mutants are produced. Next, we

examine the role of the stem cell to TA cell ratio.

12.5.4 The optimal fraction of stem cells

Let us consider an optimization problem for the tissue design, with the

goal to delay the production of double-hit mutants. What is the optimal

fraction of stem cells that the population should maintain? Analysis of the

tunneling rates for a hierarchical model with purely symmetric divisions

suggests that the optimal fraction of stem cells depends on the fitness of

the one-hit mutants. If the one-hit mutants are disadvantageous (r < 1,

|1 − r| ≪ √
u2), then the tunneling rate grows with the parameter λ. In

other words, in order to minimize the rate of double-mutant production,

one would need to keep the stem cell pool as small as possible.

For neutral and advantageous intermediate mutants, where the sym-

metric division model gives rise to the lowest double-mutant production

rate compared to the homogeneous model and the hierarchical model with

asymmetric divisions, this rate is minimized for a particular fraction of

stem cells. This fraction is defined by the mutation rate u2 in the neutral
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case, and by the fitness of the intermediate mutants in the case of weakly

advantageous mutants. For neutral one-hit mutants (|1 − r| ≪ √
u2), the

optimal value of λ is given by

λopt = 1 + 2u
1/3
2 , (12.17)

and for weakly advantageous mutants with 1 < r < λ, |r − 1| ≫ √
u2, we

have

λopt =
r

2− r
. (12.18)

For example, for the biologically most relevant case of neutral one-hit mu-

tants, the optimal fraction of stem cells is approximately 1% of the total

population, assuming u2 = 10−7.
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Fig. 12.7 The probability of double-mutant generation as a function of λ, the ratio of
TA cells to the total number of cells. As in figure 12.6, the results of numerical simulations
are presented as points (standard deviations are included), and the analytical results are
given by solid lines (formula (12.3)). The horizontal lines represent the calculations for
the homogeneous model. We ran 10 batches of 1000 runs. Plotted is the probability
of double-mutant generation as a function of λ, for purely symmetric (σ = 1) and
purely asymmetric (σ = 0) models, for three different values of r. The parameters are
u1 = 10−5, u2 = 10−4, N = 1000.

These results are illustrated in figure 12.8. In this plot, we can see that

for r = 0.8 the probability of having a doubly mutated cell (after a given

time-span) is an increasing function of λ, as predicted. For the case of r = 1,

the numerical simulation in figure 12.8 shows that λopt ≈ 1.1 (compared

with λopt = 1.093 predicted by formula (12.17)). For the case r = 1.2,
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formula (12.18) gives λopt ≈ 1.5, which approximately coincides with the

numerical optimum. In the case of advantageous mutants, however, the

minima of λ are very shallow.
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Fig. 12.8 The probability of double-hit mutant generation in the symmetric division
model. The case of symmetrically dividing stem cells, same as in figure 12.7.

12.5.5 Do mutations in TA cells produce double-mutants?

Let us compare the relative contributions to the double-mutant production

rate coming from stem cells and TA cells, equation (12.13):

Rstem
A→C =

Nu1

2

(

1− 1

λ

)

(1− y∗), RTA
A→C =

Nu1

2

(

1 +
1

λ

)

(1− y).

(12.19)

The contribution from the TA cells grows as the fraction of TA cells in-

creases. In figure 12.9 we plot the fraction of stem cells (given by 1− 1/λ)

that corresponds to Rstem
A→C = RTA

A→C . We can see that for the mutation

rates around 10−7, this fraction is about 0.1% for disadvantageous inter-

mediate mutants, about 0.5% for neutral mutants, and about 15% for ad-

vantageous mutants. This means that as long as the fraction of stem cells

in the population is lower than these threshold values, TA cells contribute

more to the production of double-hit mutants than stem cells. This thresh-

old fraction grows for larger mutation rates, making it easier for TA cells to

contribute significantly to the double-hit mutant production. An analytical
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approximation for the threshold value of λ can be found for small values of

mutation rates, such as

λc =











1 + r
√

2σu2

1−r , r < 1, Regime (1A),

r − (r−1)2
2σ , r > 1, Regime (1C).

(12.20)
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Fig. 12.9 The threshold fraction of stem cells corresponding to stem and TA cells
contributing equally to double-hit mutant production. The quantity 1 − 1/λc, which
corresponds to Rstem

A→C = RTA
A→C , is plotted as a function of the mutation rate, u2, for

three different values of r, and σ = 1. For the fraction of stem cells above these values,
stem cells have a higher contribution to the rate of double-mutant production compared
to the non-stem cells. Thin dashed lines show the approximations of equation (12.20).

Next we address the question of optimization assuming that only muta-

tions acquired by stem cells are dangerous and can lead to further malignant

transformations. In this case, the rate of mutant production is given by

Rstem
A→C , equation (12.19). It is easy to show that this quantity is maximized

by asymmetric divisions only (σ = 0), and it is minimized by symmetric
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divisions of stem cells (σ = 1). Thus the message does not change if only

stem cell mutations are assumed to contribute to carcinogenesis.

12.6 Biological discussion

In this chapter we found that symmetrically dividing stem cells are charac-

terized by a significantly lower rate of two-hit mutant generation, compared

to asymmetrically-dividing cells. This is especially important in the context

of tumor-suppressor gene inactivation, which is one of the more common

patterns of carcinogenesis. This provides an evolutionary framework for

reasoning about stem cell division patterns.

In the literature, both types of stem cell divisions have been reported in

various tissues. It has also been reported that the same stem cells are ca-

pable of both symmetric and asymmetric divisions. Whether a cell divides

symmetrically or asymmetrically depends on factors such as the polarized

organization of the dividing cell as well as the cell cycle length [Huttner

and Kosodo (2005)]. In Drosophila germ stem cells, cell division is asym-

metric or symmetric depending on whether the orientation of the mitotic

spindle is perpendicular or parallel to the interface between the stem cell

and its niche [Yin et al. (2006)]. Similarly, mammalian stem cells have been

reported to employ both symmetric and asymmetric divisions to regulate

their numbers and tissue homeostasis [Noctor et al. (2004); Morrison and

Spradling (2008)]. A switch from a symmetric mode of divisions to the

asymmetric model has also been reported to take place in development (see

[Egger et al. (2011, 2010)] in the context of Drosophila).

The fact that the rate of double-hit mutant production is the lowest for

symmetrically dividing cells does not in itself explain or predict any aspects

of the tissue architecture. It however provides an alternative hypothesis for

the observation that in mammalian tissues, symmetric patterns of stem

cell division seem to be very common. The force of selection that comes

from the cancer-delaying effect of such an architecture can be thought to

have helped shape the observed division patterns. On the other hand, in

more primitive organisms such as Drosophila, asymmetric stem cell divi-

sions seem to dominate adult homeostasis (following the predominantly

symmetric division patterns of development). Since cancer delay does not

provide an important selection mechanism in the context of Drosophila, we

can argue that this could help explain the observed differences.
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12.6.1 Symmetric divisions can have a cancer-delaying

effect

The mathematical result obtained here is that symmetrically dividing cells

appear to delay double-hit mutant production compared to an equivalent

system with asymmetrically dividing stem cells. What is the intuition be-

hind this finding? Double-mutants are generated by means of mutations

that happen in singly-mutated cells. To understand this process, let us

focus on the dynamics of single mutants. In particular, we concentrate on

singly-mutated stem cells, because the fates of single mutations in TA cells

are identical in the two models. What happens to a singly-mutated stem

cell under the different division patterns?

If stem cells divide asymmetrically, then a mutation acquired in a stem

cell will remain in the system indefinitely, because at every cell division, a

new copy of the mutant stem cell will be generated. On the other hand,

a mutant stem cell generated under the symmetric division model has a

very different and much less certain fate. Each division of a mutant stem

cell can result either in (1) elimination of the mutation from the stem cell

compartment as a result of a differentiation, or (2) creation of an additional

mutant stem cell as a result of a proliferation event. Superficially, it might

look like the two processes might balance each other out. This intuition is

however misleading. A lineage of mutant stem cells starting from a single

mutant stem cell is much more likely to die out than to persist and expand.

In fact, only 1/K of all such lineages will expand to size K. Half of the

lineages will differentiate out after the very first division. Statistically there

will be occasional, rare long-lived lineages, but the vast majority will leave

the stem cell compartment after a small number of divisions. The produc-

tion of those “lucky” long-lived mutants is not enough to counter-balance

the great majority of the dead-end lineages that quickly exit the stem cell

compartment. This is illustrated in figure 12.10, which plots the “weight”

(the net size of a lineage over time, T ) of a typical symmetrically dividing

mutant stem cell, Xsym, divided by the weight of a typical asymmetrically

dividing mutant stem cell, Xasym. The latter quantity is simply given by

T , and the former quantity is a stochastic variable. We can see that the

weight of symmetrically dividing mutant lineages is always lower than that

of asymmetrically dividing lineages, which means that the former will have

a lower probability to produce double-mutant offspring. We conclude that

the uncertainty of fate of single mutant stem cells is the reason for the
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statistically longer time it takes for the symmetrically dividing stem cell

model to produce a double-hit mutant.
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Fig. 12.10 Why are symmetrically dividing stem cells produce mutants slower? The
weight of a typical symmetrically dividing mutant stem cell lineage, Xsym, relative to the
weight of an asymmetrically dividing mutant stem cell lineage, Xasym = T , is plotted
as a function of the number of stem cell divisions, T . Here, S = 20, N = 1000, and 20
batches of 10, 000 simulations were performed to calculate the mean and the standard
deviation.

Interestingly, the above argument can be made in a similar manner for

disadvantageous, neutral, or advantageous mutants. In any of those cases,

an asymmetrically dividing mutant stem cell remains in the population

indefinitely. In the model with symmetric divisions, whenever a mutant

stem cell is chosen for division, its probability to proliferate is similar to

its probability to differentiate (in order to keep the homeostasis), and thus

the dynamics of each lineage are independent of its fitness (except that the

frequency of updates is determined by the fitness of mutants; this is why

the fitness parameter r factors out of equations (12.14) and (12.4)).

We note that the effect of double-hit mutant production delay caused by

symmetric divisions compared to asymmetric divisions is very significant.

The difference in the tunneling rate which characterizes the time-scale of

the process can be as high as 1, 000-fold for tissues with 10% of stem cells

and the mutation rate of 10−7 per gene per cell division.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 221

Evolutionary dynamics in hierarchical populations 221

12.6.2 Can TA cells create double-hit mutants?

The model studied in this chapter tracks single- and double-hit mutant

production in both stem and TA cells. It is interesting to compare which

mechanism (through stem cell single mutants or TA cell single mutants)

contributes more to the double-mutant production. It turns out that as

long as the fraction of stem cells is smaller than a threshold (or equiva-

lently, if the fraction of the TA cells is larger than a threshold), non-stem

cells contribute equally or more to the production of double-mutants. This

threshold fraction depends on (1) the mutation rate and (2) the fitness of

intermediate, one-hit mutants. For example, if the intermediate mutants

are neutral and the mutation rate is 10−7 per gene per cell-division, then

the threshold fraction of stem cells is about 0.5% of the total population.

In other words, mutations originating in non-stem cells are significant if

stem cells comprise less than 0.5% of the total population. This number is

much higher if the intermediate mutants are advantageous, or if the muta-

tion rate responsible for the second hit is higher. For u2 = 10−3, non-stem
cells are the driving force behind double-mutant production as long as stem

cells comprise less than about 10% of the total population. This scenario is

realistic in the presence of genetic instability, where inactivation of a tumor

suppressor gene is likely to occur through a small-scale mutation of the first

copy of the gene followed by a loss of heterozygocity event inactivating the

second copy. The latter can happen a rate as high as 10−2 per cell division

per chromosome [Lengauer et al. (1997)].

The arguments presented above clarify some aspects of the long-

standing debate about the origins of cancer, see also [Komarova and Wang

(2004)]. It is sometimes argued that TA cells are unimportant for cancer

initiation, for the following (quantitative) reason, unrelated to biological

evidence. Intuitively, it seems that double-hit mutants cannot be created

among TA cells, because all one-hit mutants in the TA compartment will

be washed away before they have a chance to acquire the second hit. As

John Cairns writes, “...there are 256 exponentially multiplying cells that

divide twice a day and are being replenished continually by the divisions

of a single stem cell, none of these 256 cells will ever be separated from

the stem cell by more than eight divisions, and the replication errors made

in those eight divisions are destined, of course, to be discarded”, [Cairns

(2002)]. The computations in this chapter demonstrate that under some

realistic parameter regimes, double-hit mutants can be created in the TA

compartment, and TA cells statistically can contribute equally or more to
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double-hit mutant production compared to stem cells. The simple reason

for this is as follows. Even though TA cells are short-lived, and getting

a second mutation in a singly-mutated TA cell is unlikely, there are many

more TA cells than stem cells. The low chance of double-mutant generation

in a single TA cells can be outweighed by the fact that TA cells are a large

majority, and single probabilities add up to create a significant effect.

12.6.3 Cancer stem cell hypothesis

The question discussed above is purely mathematical, and deals with the

simple possibility to acquire two hits in the TA compartment. A related

biological question is whether mutations occurring in the TA compartment

can lead to further carcinogenic transformations, which brings us to the

cancer stem cell hypothesis [Jordan et al. (2006); Nguyen et al. (2012)].

While the concept of the cancer stem cell remains controversial [Vermeulen

et al. (2008); Gupta et al. (2009)], here we do not intend to argue for or

against this theory. Moreover, we refrain from making specific interpre-

tations of this theory with regards to the exact origins of cancer. It has

been argued that there is a distinction between the broader concept of the

cancer stem cell on the one hand, and the narrower concept of normal stem

cell becoming cancerous [Nguyen et al. (2012)]. While the cancer stem cell

hypothesis states that cancer is maintained by a small fraction of cells with

stem-like properties, without making a specific assumption of how those

cells are generated, the more narrow theory argues that mutations gener-

ated among non-stem cells cannot be cancer-initiating, because (at least,

some) cancers originate via the creation of a cancer stem cell, which is a

modified stem cell that retains some characteristics of “stemness”.

In the light of this latter hypothesis, let us analyze the process of double-

hit mutant production that occurs via mutations in stem cells only. Will

our results change if only stem cell mutations can lead to carcinogenic

transformation? To accommodate this assumption in our model, we must

only use the first term in equation (12.13). It turns out that in this case,

the message remains exactly the same: symmetrically dividing stem cell

systems are characterized by a slower production of double-hit mutants

compared to asymmetrically dividing stem cells. The universality of this

result is explained above: the fate of mutations originating in the differenti-

ated compartment is identical under the two models, and the only difference

comes from the fates of mutant stem cells.
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12.7 Summary

This chapter examined how different tissue stem cell division patterns in-

fluence the rate at which mutations are accumulated in the stem cells, and

thus how they determine the risk of cancer development. Tissue stem cells

have been observed to divide asymmetrically where division gives rise to

one stem cell and one differentiating cell. On the other hand, evidence sug-

gests that symmetric stem cell division can also occur, where the division

fate can be determined stochastically, generating either two stem or two dif-

ferentiating daughter cells. The models suggest that the stem cell division

pattern can have a significant influence on the rate at which mutants are

generated. Importantly, symmetric division patterns lead to a slower accu-

mulation of mutations and thus to a lower risk of carcinogenesis. Hence, it

can be hypothesized that the observed occurrence of symmetric stem cell

divisions in humans have evolved as a strategy to delay the onset of cancer.

Problems

Problem 12.1. Research project. Find out more about strategies of

stem cells in the context of symmetric and asymmetric stem cell divisions,

see e.g. [Simons and Clevers (2011b)].

Problem 12.2. In the analysis of solutions of system (12.4-12.5), different

limiting cases correspond to different magnitude of the expression λ − r.

Show that the steady-state level, R, takes on different values in the following

cases: (a) |λ− r| ≪ √
u2, (b) |λ− r| ≫ √

u2 and r < λ.

Problem 12.3. Find the minimum of the tunneling rate RA→C , equation

(12.13), as a function of λ, in different regimes, and derive the results of

Section 12.5.4.

Problem 12.4. Research project. Find out more about the stem cell

hypothesis and the distinction between the broader concept of the cancer

stem cell on the one hand, and the narrower concept of normal stem cell

becoming cancerous [Nguyen et al. (2012)].

Problem 12.5. Assume that only mutations acquired by stem cells are

dangerous and can lead to further malignant transformations. In this case,

the rate of mutant production is given by Rstem
A→C , equation (12.19). Show
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that this quantity is maximized by asymmetric divisions only (σ = 0), and

it is minimized by symmetric divisions of stem cells (σ = 1).



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 225

Chapter 13

Spatial evolutionary dynamics of

tumor initiation

13.1 Introduction

We have developed a stochastic methodology that describes the accumula-

tion of tumor-initiating mutations, Chapters 9, 10. These models assumed

perfect mixing in the population of cells. There was no information about

spatial locations, and no spatial dynamics. This may not be a shortcoming

if we talk about cancers of the blood, such as leukemia. In a discussion of

solid tumors, however, spatial considerations must play a role. Many spa-

tial mechanistic models of cancer spread have been proposed, see e.g. [Bel-

lomo and Preziosi (2000); Chaplain (1996); Araujo and McElwain (2004);

Bellomo et al. (2004); Chaplain and Lolas (2005); Anderson and Chaplain

(1998a); Byrne and Chaplain (1996); Shochat et al. (1999); Bartoszyński

et al. (2001); Ledzewicz and Schättler (2002); Hanin (2002); Gatenby and

Maini (2003); Swierniak et al. (2003); Gaffney (2004)], and more recently,

[De Pillis et al. (2006); Chaplain et al. (2006); Hinow et al. (2006); Byrne

et al. (2006); Gerlee and Anderson (2007); Enderling et al. (2007, 2006);

Deisboeck et al. (2008b); Anderson and Quaranta (2008); Deisboeck et al.

(2008a); Marciniak-Czochra and Kimmel (2007); Rejniak (2007); Bellomo

et al. (2008); Macklin et al. (2009); Lowengrub et al. (2010); Stolarska et al.

(2009); Hinow et al. (2009); Swierniak et al. (2009); Cristini and Lowengrub

(2010); De Matteis et al. (2013)]. These are examples of a large body of

literature on spatial models of cancer, such as partial differential equation

models, hybrid models, and multi-scale models. These models are briefly

reviewed in Section 3.6.

In this chapter we consider much simpler, one-dimensional spatial mod-

els, and concentrate on the evolutionary aspects of carcinogenesis. The

relative simplicity of the formulation allows an analytical understanding.

225
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This chapter is rather technical and can be skipped without interrupting

the logic of the book. The following chapter (Chapter 14) discusses two-

dimensional spatial models and provides more biological applications.

Fig. 13.1 The Moran process generalized to the one-dimensional space: a cell is cho-
sen for death at random, and is immediately replaced by a division of one of the two
neighboring cells (chosen proportional to their fitness).

13.2 1D spatial Moran process

As a first attempt to include spatial considerations in the stochastic evolu-

tionary dynamics of malignancy, we have designed a one-dimensional spatial

generalization of the mass-action Moran birth-death process (Komarova,

2006a). The cells are aligned along a regular grid, at locations 1, 2, . . . , N ,

see figure 13.1. As before, we assume that the total number of cells does

not change. Cells are randomly chosen for death. Each cell death is fol-

lowed by a cell division of one of its two neighboring cells, which places

its daughter cell at the empty slot. Cell death occurs randomly and the

division probability is proportional to the relative fitness of the cells.

In this chapter we study the dynamics of mutations that occur in such

spatial models, both in the context of oncogenes and tumor suppressor

genes. Let us first consider the two-species process depicted in diagram

(9.1), which includes only one type of mutations. The wild-type cells (type

“A” cells) mutate with probability u1 per cell division, to create type-“B”

cells. Type “B” cells are assumed to reproduce faithfully.
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In order to appreciate the difference in the mutant dynamics between

the space-free and the spatial models, let us for the time being ignore de-

novo mutations and concentrate on the process of the spread of existing

mutants.

Let us assume that there is a mutant cell with the relative fitness r at

position j. If any cell at position 1, . . . , j−2 or j+2, . . . , N dies, then there

can be no change in configuration. A change can occur only in two cases:

• Death occurs at position j, in which case the mutant disappears.

• Death occurs at position j + 1 or j − 1. Then the number of mutants

can increase by one if the mutant cell is chosen for division.

Similarly, if we have several mutant cells at sequential positions from i

through j, then a change of the number of mutants can only happen if

death occurs at positions i − 1, i, j or j + 1 (see figure 13.1). In this

model, a mutant colony which originated as one cell can only occupy a set

of adjacent slots. A change in the position of this set can only be caused

by cell death at its boundary.

We can see that the dynamics of mutant spread is very much affected by

the spatial constraints imposed by the 1D geometry of this model. Only a

small subset of elementary updates (namely, only the updates that happen

at the interface between the mutants and wild-type cells) can lead to a

change in cell configuration. The difference in the mutant growth between

the non-spatial and the spatial models can be illustrated by looking at the

spread of advantageous mutants. In this case, the situation is similar to the

difference between the exponential growth and the surface growth described

in Chapter 4. In the former case, the mutants can grow significantly faster,

because a death anywhere in the population can lead to a division of a

mutant. In the latter case, growth can only occur by a change near a

boundary (or a surface).

This feature of the spatial process leads to the differences in the dynam-

ics of mutants in the spatial model compared to the space-free model in the

context of both gain-of-function and loss-of-function mutations. Similar

tendencies are also observed in more realistic 2D models studied in Chap-

ter 14.

In the following sections we will first concentrate on a two-species pro-

cess without mutations, and calculate the probability of invasion of a type-

“B” mutant. Then we proceed to study a three-species system, similar to

the loss-of-function process described in Chapter 10.
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13.3 Two-species dynamics

13.3.1 Preliminaries

We can characterize the states of the system by positions of the leftmost

and the rightmost mutants, i and j, such that

1 ≤ i ≤ j ≤ N. (13.1)

The transition matrix is given by the following. If the left boundary of

the mutant domain is at 1 (or the right boundary is at N), then these

boundaries cannot move anymore. Otherwise, if the number of mutants

is larger than one, then the probabilities to expand the mutant domain

to the left and right are given by Pi,j→i−1,j = Pi,j→i,j+1 = 1
N

r
1+r , and

the probabilities to reduce the domain on left and right are given by

Pi,j→i+1,j = Pi,j→i,j−1 = 1
N

1
1+r . Finally, if there is only one mutant

(that is, i = j), then we have Pi,i→i−1,i = Pi,i→i,i+1 = 1
N

r
r+1 , and the

probability to lose the mutant is 1
N . All the rest of the elements of the

transition matrix are equal to zero.
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Fig. 13.2 Numerical solutions of system (13.2-13.5), where the probability of ab-
sorption uii is plotted as a function of the position of the mutant, i, in a system of
N = 200 cells. (a) Disadvantageous mutants, r = 0.95; (b) neutral mutants, r = 1;
(c) advantageous mutants, r = 1.2. The dotted horizontal line corresponds to the
value ρ(r), the probability of fixation for the space-free system.
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We can envisage the dynamics as a 2-dimensional Markov random

walk inside domain (13.1), with an additional absorbing state which

can be reached from the diagonal i = j; this state corresponds to the

extinction of the mutant and is denoted by Ẽ. The other absorbing state

is the fixation of the mutant, (0, N). The random walk is governed by

the matrix above. We can set i to be the horizontal and j the vertical

coordinate of the position of the walker, and then the above probabilities

can be referred as P→ij , P
←
ij , P

↑
ij and P ↓ij .

13.3.2 Probability of mutant fixation

We can calculate the probability of absorption in (0, N) starting from a

state (i, j), which we call uij . We have the following system of equations,

uij = ui−1,jP
← + ui+1,jP

→ + ui,j−1P
↓ + ui,j+1P

↑ (13.2)

+ uij [1− (P← + P→ + P ↓ + P ↑)], 1 < i < j < N,

u1j = u1,j+1P
↑ + u1,j−1P

↓ + u1j [1− (P ↑ + P ↓)], 1 < j < N

uiN = ui−1,NP← + ui+1,NP→ + uiN [1− (P← + P→)], 1 < i < N,

ujj = uj−1,jP
← + uj,j+1P

↑ + ujj [1− (P← + P ↑ + P Ẽ)], 1 < j < N,

u11 = u12P
↑ + u11[1− (P ↑ + P Ẽ)], (13.3)

uNN = uN−1,NP← + uNN [1− (P← + P Ẽ)], (13.4)

u1N = 1. (13.5)

The quantities uii are probabilities of fixation starting from one mutant

at position i.

The results for this model must be compared with the probabilities

of fixation in the mass-action model, equations (9.8) and (9.9). Nu-

merical solutions for the probabilities of absorption show that quantities

uii are symmetric one-hump functions which are flat except for narrow

boundary regions near i = 1 and i = N , see figure 13.2.

In order to find expressions for the “inner” values of fixation prob-

abilities, we note the following. If point (i, j) is sufficiently far away

from the boundary, then the boundary effects are not felt and uij only

depends on |j − i| rather than on the initial position of the mutant in-

terval. In order to solve the problem away from the boundary, we can

use the periodic boundary conditions, which is equivalent to replacing
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equations (13.3) and (13.4) with the following:

u11 = u12P
↑ + u11[1− (P ↑ + P Ẽ/2)], (13.6)

uNN = uN−1,NP← + uNN [1 − (P← + P Ẽ/2)]. (13.7)

Now, quantities uij do not depend on the position of the mutant interval,

but only on its length. Let us denote by πj the probability that the

mutant will reach fixation starting from a mutant interval of length j+1.

We have a self-consistent system of equations for the probabilities πi,

πi(P
↑ + P ↓) = P ↑πi+1 + P ↓πi−1, 0 < i < N − 1, (13.8)

π0(P
↑ + P Ẽ/2) = P ↑π1, (13.9)

πN−1 = 1. (13.10)

This system can be solved by setting πi ∝ αi, and finding α = 1 and

α = P ↓/P ↑ = 1/r. Therefore, we have

πi = A+B/ri,

and the constants A and B are found from the boundary conditions,

A =

(

1− r + 1

rN−1(3r − 1)

)−1
, B =

rN−1(r + 1)

1 + r + rN−1 − 3rN
.

The probability to reach fixation starting from only one mutant cell is

given by ρspace ≡ π0 = A+B. We have,

ρspace =

{

2rN−1(1−r)
1+r+rN−1−3rN , r 6= 1,
1
N , r = 1.

(13.11)

For large values of N , we can approximate the fixation probabilities as

follows:

r < 1 : ρspace =
2(1− r)

r + 1
rN , (13.12)

r > 1 : ρspace =
2(r − 1)

3r − 1
. (13.13)

These expressions are further discussed in Section 13.5.1, where we com-

pare them with the probability of mutant fixation in the space-free

model.
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13.4 Three-species dynamics

Next, let us formulate the dynamics for a three-species model, diagram

(10.1), in a one-dimensional space. Again, we will use a homogeneous

state approximation and describe the behavior of the system by means

of equations (10.34-10.36) or (10.41-10.42). The applicability conditions

for this approximation are now somewhat more restrictive and they are

derived in section 13.4.2. The rate constants RA→B and RB→C can be

calculated in the same way as for the non-spatial model. We have (cf.

formula (10.33)),

RA→B = Nuρspace = Nu
2rN (1 − r)

1 + r + rN − 3rN+1
, (13.14)

where ρspace is the probability of successful fixation of a mutant starting

from one cell of type “B”. Approximations for neutral and disadvanta-

geous mutants are given by formulas (13.45) and (13.44). Similarly, we

calculate the second rate in the two-step process, which is the same as

in the mass-action model, equation (10.33),

RB→C = Nu2. (13.15)

Finally, we need to find the tunneling rate, RA→C .

13.4.1 Calculating the tunneling rate by the doubly-

stochastic approximation

In order to find the rate of tunneling, we again use the doubly-stochastic

approximation, see (10.12, 10.15):

P2(t)=1−exp

(

−
∫ t

0

Nu1(1−x(t′)) dt′
)

=1−exp

(

−Nu1

∫ t

0

P1(t
′) dt′

)

.

(13.16)

In this approach, the key is to calculate the probability P1(t) = 1− x(t)

of creating a double mutant starting with one cell of type “B” (and no

further mutations). Each (independent) lineage of type “B” spreads as

a one-dimensional connected spot. The size of the spot is given by the

random variable i. The state i = 0 is the extinction of the mutant. The

state i = E corresponds to the creation of a mutant of type “C”. The

probability P1(t) is the probability to acquire a second mutation among

the lineage of a single cell of type “B”.
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Let us introduce a short-hand notation,

r̃ = r/(r + 1).

Then for the dynamics within a lineage, the transition probabilities are

given by: Pi→i+1 = r̃(1− u2) for 0 ≤ i ≤ N − 1, Pi→i−1 = 1/(r + 1) for

1 ≤ i ≤ N , P1→0 = 1/2, PN→N = N(1 − u2), Pi→E = 4r̃u2 + (i − 2)u2

for 3 ≤ i ≤ N , P2→E = 4r̃u2, and P1→E = 2r̃u2, where time is measured

in terms of generations.

In what follows we will simplify the problem so that the transition

probabilities are:

Pi→i+1 = λ, Pi→i−1 = µ, Pi→E = βi. (13.17)

These probabilities represent a “model” of the real situation rather than

an approximation. Indeed, in equations (13.17), with

λ = r̃(1− u2), µ = 1/(r + 1), β = 3r̃u2,

we neglect several subtleties that we discovered for spatial propagation

of mutants. For instance, we ignore the fact that P1→0 6= Pi→i−1 for

i > 1. We also ignore the fact that the probability for exiting into state

E from state i is not exactly proportional to i: for i < 3 it does not

depend on i, and for larger i it has a constant (in i) term.

Next we find the quantity P1(t), equation (10.15). Let us denote by

ξi(t)∆t the probability to be absorbed in E during the interval (t, t+∆t)

starting from state i at t = 0. We have

ξ1 =
dP1(t)

dt
. (13.18)

On the other hand, we have the following equations for ξi:

ξ̇i = λξi+1 + µξi−1 + βiξE − (λ+ µ+ βi)ξi, 2 ≤ i,

with the boundary condition

ξ̇1 = λξ2 + µξ0 + βξE − (λ + µ+ β)ξ1,

with ξ0 = ξE = 0, and the initial condition

ξi(0) = iβ. (13.19)

Let us take the Laplace transform of the ODE, where

Lξi(t) = fi(s).
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Using Lξ̇i = sfi − ξi(0), we obtain the following system of equations,

[λfi+1 + µfi−1 − (λ+ µ+ s)fi]− fiβi = −iβ, i > 1, (13.20)

[λf2 − (λ+ µ+ s)f1]− f1β = −β. (13.21)

While a direct solution of this system is difficult, we note that equa-

tion (13.20) is similar to an inhomogeneous discrete Airy equation. Let

us denote

hi = fi − 1,

and set

ǫ = λ− µ.

The quantity ǫ measures the difference between the “birth rate” and the

“death rate” of the one-hit mutants. We have for the function hi,

λ(hi+1 − 2hi + hi−1) + ǫ(hi − hi−1)− shi = βihi, (13.22)

λ(h2 − h1)− h1(λ− ǫ+ β + s) = λ− ǫ. (13.23)

Using the continuous limit, we obtain the system

λh′′ + ǫh′ − sh = βxh, (13.24)

λh′(0)− h(0)(λ − ǫ+ β + s) = λ− ǫ; (13.25)

for the second boundary condition we use the boundedness of the solution

for large x. This system can be solved exactly in terms of the Airy

function Ai and its derivative. We have,

h(x) =
2e−

ǫx
2λ (ǫ − λ)Ai[Ks(x)]

(2β − ǫ + 2(λ+ s))Ai[Ks(0)]− 2β(λ/β)2/3Ai′[Ks(0)]
, (13.26)

where

Ks(x) =
ǫ2 + 4λ(s+ βx)

2(β/λ)2/3λ2
.

In order to obtain P1(t), the mutation probability in each lineage, we

would need to find f1(s) (we start from one cell of type “B”), and evaluate

L−1[f1(s)/s]. Indeed, the cumulative probability P1(t) is related to the

function ξ1(t) by equation (13.18). Therefore their Laplace transforms

differ by a factor s:

L(ξ1) = L
[

dP1

dt

]

= sL[P1]− P1(0), where P1(0) = 0.
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Therefore, we have

L[P1] = L(ξ1)/s = f1/s, (13.27)

and

P1(t) = L−1
[

f1
s

]

.

Next, we note that much like in the calculations of Section 10.5.3, the

probability P1(t) grows from zero and as t → ∞ saturates at a nonzero

level, see equation (10.19). It is shown below that it is the limiting

value R = limt→∞ P1(t) that is of interest, because it gives the main

contribution to probability (13.16) in some important cases. This value

can be found without having to perform the inverse Laplace transform.

By the final value theorem of Laplace transform, we have

lim
t→∞

P1(t) = lim
s→0

sL[P1(s)] = lim
s→0

f1(s) = f1(0),

because of equation (13.27). Finally, we note that

f1(0) = 1 + h1(0) = 1 + h(0)|s=0 +O(1/N),

where h(x) is given by equation (13.26). Therefore, we have

lim
t→∞

P1(t) ≡ R ≈ 1 + h(0)|s=0. (13.28)

In the next section we investigate when this limiting value gives the main

contribution to the probability P2(t) of double-mutant generation, and

derive three important limiting cases.

13.4.2 Limiting cases and the tunneling rate

approximations

Let us find the solution h(0), equation (13.26), in the limit of small values

of s. We have

h(0) =
2(ǫ− λ)Ai[Ks(0)]

(2β − ǫ+ 2(λ+ s))Ai[Ks(0)]− 2β(λ/β)2/3Ai′[Ks(0)]
, (13.29)

Ks(0) =
ǫ2 + 4λs

2(β/λ)2/3λ2
. (13.30)

The contribution corresponding to s = 0 will yield the saturation con-

stant, R (equation (13.28)), and the correction corresponding to the first

order in s will inform us on the time-scale on which the function P1(t)

reaches saturation. We will expand expression (13.29) in the Taylor se-

ries in terms of small s, and consider three limiting cases, compare with

results in Section 10.5.4:
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(i) Disadvantageous intermediate mutants. Let us suppose that ǫ ≫
(βλ2)1/3, and ǫ < 0, which is equivalent to conditions

r < 1, |1− r| ≫ 2(3u2)
1/3.

Then as β → 0, the argument of the Airy function, Ks(0) (equa-

tion (13.30)), tends to infinity, and we can use the large-argument

expansion of the Airy function:

Ai(z) ∼ e−
2
3 z

−3/2

2
√
πz1/4

.

We obtain in the limit of small β,

1 + h(0) =
(λ− µ)2 + λ2

(λ− µ)2µ
β − s

λ− µ
+O(s2).

To obtain the time-scale of saturation we ask: how small should s be

in the above expression in order for the second term to be negligible

compared to the first term? If s ≪ β(λ2 + (λ − µ)2)/(µ(λ − µ)),

then the value of h(0) can be approximated by its s = 0 value, and

therefore for t ≫ t∗ with

t∗ ∼
(λ− µ)µ

(λ2 + (λ − µ)2)β
=

1− r2

3ru2(r2 + (r − 1)2)
,

we have

P1(t) ≈ R =
(λ − µ)2 + λ2

(λ− µ)2µ
β

= 3ru2
(1− r)2 + r2

(1− r)2
. (13.31)

(ii) Neutral intermediate mutants. If ǫ ≪ (βλ2)1/3, which is equivalent

to

|1− r| ≪ 2(3u2)
1/3,

then we have

1 + h(0) =

(

3β

λ

)1/3
Γ(2/3)

Γ(1/3)
+

(

9β

λ2

)1/3(
Γ(2/3)

Γ(1/3)

)2

s+O(s2).

For times t ≫ t∗ with

t∗ ∼
(

3

β2λ

)1/3
Γ(2/3)

Γ(1/3)
=

Γ(2/3)

Γ(1/3)

2

(3u2
2)

1/3
,

we have

P1(t) ≈ R =

(

3β

λ

)1/3
Γ(2/3)

Γ(1/3)

= (9u2)
1/3Γ(2/3)

Γ(1/3)
. (13.32)
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(iii) Advantageous intermediate mutants. If ǫ ≫ (βλ2)1/3 and ǫ > 0,

which is equivalent to conditions

r > 1, |r − 1|gg2(3u2)
1/3,

then we can use the same type of a large-argument expansion as in

(i), and obtain

t∗ ∼
(2λ− µ)µ

λ(λ − µ)2
=

(2r − 1)(r + 1)

(r − 1)2r
,

such that with t ≫ t∗,

P1(t) ≈ R =
λ− µ

λ

=
r − 1

r
. (13.33)

Tunneling rate approximations derived here are summarized in Table

13.1.

13.4.3 When is tunneling important?

For the tunneling rate approximation to be relevant, we need to show

that (a) the system is not too large such that individual mutant lineages

do not accumulate too fast, and (b) the system is not too small, such that

tunneling takes place faster than fixation of the intermediate mutant.

In order to satisfy the first of these conditions (case (a) above), let

us estimate expression (13.16). We will use roughly the same approach

as in Section 10.5.4, but omit some details to get the main picture.

The function P1(t) approaches its saturation level around the time t∗
(the expressions for these values in different limits are given in Section

13.4.2). Again, we denote by t1 the time-scale when the expression in

the exponent of (13.16) becomes of the order one,

u1N

∫ t1

0

P1(t
′) dt′ ∼ 1.

If condition t∗ ≪ t1 holds, then for times t > t∗, the creation of double-

hit mutants is well approximated by the constant tunneling rate,

RA→C = Nu1R, (13.34)

R =

[

1− 1

2λ

(

λ+ µ+ β −
√

(λ + µ+ β)2 − 4λµ
)

]

. (13.35)
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If the opposite is true, that is, if t∗ ≫ t1, then although for t ≫ t∗ the
tunneling formula above works, the probability P2(t) is exponentially

close to 1, and therefore the tunneling approximation does not provide

a useful tool.

Condition t∗ ≪ t1 is equivalent to

Nu1 ≪ 1

Rt∗
, (13.36)

which can be rewritten as follows in the three limiting cases:

Disadvantageous mutants : Nu1 ≪
1− r

r + 1
, (13.37)

Neutral mutants : Nu1 ≪ 1

2

(u2

3

)1/3
(

Γ(1/3)

Γ(2/3)

)2

, (13.38)

Advantageous mutants : Nu1 ≪ (r − 1)r2

(r + 1)(2r − 1)
. (13.39)

The second condition (case (b) above) requires that typically, mu-

tants of type “C” are generated before fixation of type “B” occurs. This

is equivalent to condition

RA→B ≪ RA→C ,

or

ρspace ≪ R, (13.40)

where the fixation rates are calculated in (13.11, 13.12, 13.13), and the

tunneling rates are given by (13.31, 13.32, 13.33). Condition (13.40)

leads to condition N ≫ Ntun. For disadvantageous mutants of type

“B”, Ntun is given by

Ntun = log

[

3

2

u2r(r + 1)[(r − 1)2 + r2]

(r − 1)3

]

/ log r. (13.41)

In figure 13.3 we present the comparison of Ntun for the space-free (see

formula (10.31)) and spatial models, for a fixed value of u2, and different

values of r. In the case of neutral intermediate mutants, we have

Ntun =
Γ(1/3)

Γ(2/3)

1

(9u2)1/3
, (13.42)

to be compared with formula (10.28) for the mass-action model. We can

see that Ntun is smaller for the spatial model compared to that for the

mass-action model.
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Finally, in the case of advantageous mutants, the rate of intermediate

mutant fixation does not become smaller than the tunneling rate. This

situation is similar to the regime of advantageous intermediate mutants

described in Chapter 10.

Ntun Space-free model

Spatial model

r

Fig. 13.3 The quantity Ntun for disadvantageous mutants, for the spatial and space-
free models, calculated from formulas (13.41) and (10.31) respectively. For this graph,
u1 = 10−3; the range of r is from zero to 0.75, so that the mutant is disadvantageous
in the spatial model.

13.5 Dynamics of mutant generation

13.5.1 Gain-of-function mutations: a two-species problem

Gain-of-functions mutations were described in Chapter 9, and a mathe-

matical formalism describing their dynamics was developed for mass-action

(space-free) models. Here we generalize these findings to the 1D spatial

spatial process. We consider the dynamics of fixation of mutants of type

“B”, diagram (9.1). Gain-of-function mutations are essential when talk-

ing about oncogene activation, in which case we assume that the fitness of

type-“B” mutants is larger than that of the wild type cells, r > 1. It is

however important to also study the cases with r = 1 and r < 1 (neutral
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and negatively selected mutants). Such mutations can correspond to an

inactivation of one copy of a tumor suppressor gene, or to the activation of

CIN genes which can result in a fitness reduction, see Chapters 7 and 11.

In the spatial problem with natural boundary conditions, the probabil-

ity of eventual fixation of a given mutant clone depends on the position of

the originating cell. If the original mutant is produced near the domain’s

boundary, its offspring has a relatively smaller chance to expand and invade

the population compared with clones originating away from the boundary.

For mutants originating in the bulk of the domain, the probability of fixa-

tion approaches the value given by equation (13.11).

We can compare this quantity with the fixation probability, ρ, in the

mass-action model (equation (9.11)),

ρspace = ρ
2r(1 − rN−1)

1 + r + rN−1 − 3rN
. (13.43)

In particular, for neutral mutants such that |r − 1| ≪ 1/N , we have

ρspace = ρ = 1/N.

For large values of N , we obtain, in the case of disadvantageous mutants

(r < 1, |r − 1| ≫ 1/N),

ρspace =
2r

1 + r
ρ < ρ, (13.44)

and in the case of advantageous mutants (r > 1, |1− r| ≫ 1/N) we have

ρspace =
2r

3r − 1
ρ < ρ. (13.45)

To summarize, the probability that the offspring of one cell of type “B”

will reach fixation is given by 1/N , as long as the fitness of type “B” is

equal to that of type “A”. If the fitness of type “B” is smaller or larger

than that of type “A”, then the probability of fixation is always bigger in

the mass-action model compared to the spatial model. This is illustrated

in figure 13.4.

13.5.2 Loss-of-function mutations: a three-species problem

Loss-of-function mutations are characteristic of tumor suppressor gene inac-

tivation, see Chapter 10, and are described by diagram (10.1). The general

pattern of double-hit mutant generation in space is similar to what we ob-

tained in the space-free model, Section 10.6.5. Depending on the population

size, the dynamics will follow different scenarios. For small populations, we
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ρ

Fig. 13.4 The quantity ρspace/ρ, formula (13.43), as a function of r for N = 1000. This

quantity tells us how much less likely a mutant fixation is in the spatial model compared

to the mass-action model.

have a genuine two-step process (figure 10.1(a)), where the acquisition of a

double-hit mutant requires two distinct rate-limiting steps. The two rates

are given by

RA→B = Nuρspace, RB→C = Nu2.

For intermediate populations, we enter the regime of stochastic tunneling

(figure 10.1(b)), where intermediate mutants do not get a chance to become

fixated, because a double-hit mutant is produced. In the tunneling process,

the single rate is given by

RA→C = Nu1R,

where the approximations for the value R are given in Table 13.1.

Table 13.1 Tunneling rate approximations in the spatial model.
Interm. mutants Conditions Tunneling rate, R

Disadvantageous r < 1, |1− r| ≫ 2(3u2)1/3 3ru2
(1−r)2+r2

(1−r)2

Neutral |1− r| ≪ 2(3u2)1/3 (9u2)1/3
Γ(2/3)
Γ(1/3)

Advantageous r > 1, |1− r| ≫ 2(3u2)1/3
r−1
r

Finally, for the largest populations we have a nearly-deterministic regime,

figure 10.1(c).
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13.5.3 Definition of neutrality

An interesting issue is the definition on neutrality in different models. It

is the same for spatial and mass-action descriptions in the regime where a

two-step process dominates (or if we have only two types, “A” and “B” in

the system). In this case mutants with fitness satisfying |1− r| ≪ 1/N can

be considered neutral. Indeed, in the expansion of the fixation probability

of a mutant in terms of r around the value r = 1, the highest order term

is given by 1/N , and the next term is (N − 1)(r − 1)/2N without spatial

effects, and (N −1)2(r−1)/2N2 in the spatial model. The smallness of the

second term compared to the first term is a criterion of neutrality.

The meaningful definition of neutrality changes in the system where

double-mutants are produced. There, it is not the time-scale of fixation,

but rather the rate of second mutation acquisition which is the dominant

factor. Now, the definition is different in the spatial model compared to

that in the mass-action model. In the latter case, neutral mutants were

defined by the condition

|1− r| ≪ √
u2. (13.46)

In the spatial case, we have

|1− r| ≪ 2(3u2)
1/3. (13.47)

That is, a larger region of fitnesses around r = 1 qualifies as neutral.

13.5.4 Three-species dynamic: a comparison with the

space-free model

Let us compare the behavior of the mass-action and the spatial models.

Consider the tunneling rates, Tables 13.1 and 10.1. In the case of dis-

advantageous mutants, the tunneling rate for the spatial model is always

larger than that for the mass-action model. It has the same order of mag-

nitude in terms of small u2. Regarding the case of neutral mutants, it is

interesting that the rate of tunneling in the spatial model has a larger order

of magnitude than that in the mass-action model. In both cases, tunneling

happens faster in the spatial model compared to the mass-action model. In

the case of advantageous intermediate mutants, the tunneling rate is the

same in the spatial and the mass action model.

Finally, we turn to the two-step process. It is characterized by two

coefficients, RA→B and RB→C . While the value of RB→C is the same for
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both spatial and non-spatial models, the rate RA→B is larger in the mass-

action model (unless r = 1).

As we can see, the two-step dynamics tend to happen faster in the

mass-action model, and tunneling proceeds faster in the spatial model.

Depending on the parameters, the two-step or the tunneling regime may be

more important. If the dynamics occur predominantly by a genuine two-

step process (which tends to be the case for smaller population sizes), then

the mass-action model produces two-hit mutants faster. If on the other

hand the tunneling process contributes the most, as is the case for larger

populations, then the spatial model will produce two-hit mutants faster.

In figure 13.5 we present a numerical simulation where some of these

effects are demonstrated. We ran stochastic spatial and non-spatial models

in the regime where tunneling played an important role (compared to a

two-step process, see the conditions below). The mutant “B” was taken to

be neutral (r = 1). The initial condition was the all “A” state, and the sim-

ulations were stopped as soon as the first mutant of type “C” was created.

For each model, we performed 10, 000 runs and found out numerically the

distribution of generation times of double-hit mutants. One can see that

time

Spatial model

Space-free model
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Fig. 13.5 Cumulative probability distribution function for the generation of a mutant of
type “C”, in spatial and non-spatial models (numerical results). Here, r = 1, N = 100,
u = 0.005 and u1 = 0.02. The simulation was performed for a discrete-time Markov
process.
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for the spatial model, the generation of a double-hit mutant occurs earlier,

that is, at a higher rate, than that for the space-free model.

The difference in the predictions between the two models can be quite

substantial. For instance, if we take u1 = u2 = 10−5 and N = 104, after

100 generations the probability to have started a colony of type “C” is

given by pm−a = 3 · 10−2 in the mass-action model and psp = 2 · 10−1 in

the spatial model. For parameter values u1 = u2 = 10−6, and the same

colony size, we have after 1000 generations: pm−a = 10−2 and psp = 10−1.
We can see that the two models result in an order-of-magnitude difference

in their predictions. One could envisage the following experiment where

these calculations can be verified. Suppose we have a cell culture where

space is a limiting factor such that the cells are in competition with each

other. Various degrees of cellular mixing can be attained by putting cells in

different environments. Suppose all cells are of type “A” at the beginning,

and type “C” cells are marked for an easy detection (e.g. with GFP, the

green fluorescent protein). After a fixed number of generations, we can

determine the number of cultures which developed clones of type “C” cells.

This should be compared with the quantities pm−a and psp to see which

model gives a better fit.

We have shown that the tunneling rate is higher for the spatial model

than it is for the mass-action model. This finding is of general interest and

will be discussed further in Chapter 14 in the context of more advanced

spatial models. The reason for this accelerated rate of double-mutant pro-

duction compared to the mass-action model is the very slow dynamics of

single mutant cells. Let us look at the rate at which the number of mutants

of type “B” can decrease/increase in the two models. We need to compare

the spatial rates, equations (13.17), with the mass-action rates given by

equations (10.4, 10.5). We notice that for the mass-action model, these

rates increase with the number of mutants. In the spatial model, they are

constant. Indeed, in the spatial model, cells of type “B”, once produced,

form mutant “islands”, i.e., joint sets of points of type “B”. The number

of mutants can only change if a death occurs at one of the two boundaries

of such islands. In the mass-action model, a change in the mutant number

can occur upon death of any cell, followed by a reproduction of any cell of

the other type. Therefore, in the spatial model, once an island of type “B”

mutants is created, it tends to linger for a long time, serving as a platform

for creating a double mutant.
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13.6 Outlook

A lesson that we learn from the simple model analyzed in this chapter is

that spatial considerations are important. Therefore, one must be cautious

and instead of using the simplest, mass-action model, examine carefully

whether or not the spatial structure should be included. For instance,

when modeling the initiation of cancers of the blood, spatial considerations

do not enter in the same way as in solid tissues. In solid tumors, spatial

consideration must be taken into account, thus making the spatial model

the tool of choice.

An important area of applications of multistage models of the kind pre-

sented here, is the comparison with epidemiological data. Starting with

early studies of Knudson [Knudson (1971)] and Moolgavkar and colleagues

[Moolgavkar (1978); Moolgavkar et al. (1988)], until more recent works

[Luebeck and Moolgavkar (2002); Little and Wright (2003); Little and Li

(2006); Meza et al. (2008)], two-hit and multi-hit models have been com-

pared with age-incidence data on various cancers. Usually, the goal of such

research is to derive unknown system parameters from fitting the model

results with the age-incidence curves. There, the difference between the

spatial and non-spatial models can become very important.

In Chapter 14 we will extend the discussion of this chapter to two-

dimensional settings, and to a larger number of intermediate steps. The

complex role of space in the mutant dynamics will be explained in more

detail. We will also depart from the rigidity of the Moran process and

consider an alternative process (contact process) to explore the robustness

of the results.

Problems

Problem 13.1. Derive inequalities (13.44) and (13.45) from expression

(13.43).

Problem 13.2. In this chapter, cells can reproduce by placing their off-

spring in the adjacent location. More generally, one could assume that cells

can reproduce by placing their offspring within a certain radius. The ap-

proach described here cannot be easily generalized to such models. What

essential assumption breaks down if we allow reproduction into locations

not immediately adjacent to the dividing cell?
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Problem 13.3. Research project. Elegant “Isothermal theorem” for

graphs proven in [Lieberman et al. (2005)] states that, if each node of a

graph has the same number of neighboring nodes, i.e. a symmetric bidi-

rectional graph, then the invasion probability is equivalent to that of the

fixation probability of the traditional Moran process in the absence of mi-

gration. Formula (13.43) is an apparent contradiction with this statement.

Can you resolve this paradox? Hint: pay attention to the order of the events

in an elementary update.
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Chapter 14

Complex tumor dynamics in space

14.1 Introduction

In Chapters 9, 10, 12, and 13 we concerned ourselves with the most common

elementary patterns of cancer initiation and progression: gain-of-function

mutations and loss-of-function mutations. We developed a very detailed

theory for probabilities and timing of invasion of advantageous mutants,

in one- and two-step processes. We examined the associated dynamics

and showed that depending on the system size and mutation rates, differ-

ent patterns of mutant emergence can be observed. A two-step process is

characterized by a consecutive fixation of the intermediate, one-hit mutant

followed by the rise of the two-hit, advantageous mutant. Stochastic tun-

neling is the effect whereby the two-hit mutant is created before fixation

of the intermediate mutant occurs. We looked at the homogeneous pop-

ulations (Chapters 9 and 10), hierarchical populations (Chapter 12), and

spatial populations (Chapter 13).

Chapter 13 provides the simplest, 1D generalization of the Moran pro-

cess, see also [Komarova (2006c)]. Similar results for 2D and 3D models

were obtained in (Durrett et al., 2012; Durrett and Moseley, 2012), and the

effect of migration on these evolutionary processes was studied in [Thal-

hauser et al. (2010)]. All of this work considered Moran processes, which

are birth-death processes in a constant population. In particular, these

models assume that a death of an individual is immediately balanced by

the birth of another, thus not allowing for variation in the population size

or for empty space. In addition, these models were studied in the con-

text of two sites that need to be mutated in order to attain the advanta-

geous trait, and only the situation of the nearest-neighbor interactions was

considered.

247
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The present chapter explores the role of spatial interactions, comparing

different population growth processes in 2D. In addition to the Moran pro-

cess, we also consider a different type of model, called the contact process,

where the population size is determined by the birth and death rates and

where it is possible to have empty, unoccupied space. This relaxes the very

rigid requirement of a microscopic balance between births and deaths in the

Moran model. The Moran process can be considered as a limiting case of

the contact process where the division rates are extremely high compared

to death rates. We examine the dynamics for different numbers of sites that

need to be mutated to attain the advantageous phenotype, and explore the

whole range of spatial restriction, from the nearest-neighbor model to the

mass-action scenario. We examine the cases of disadvantageous, neutral,

and advantageous intermediate mutations.

In this chapter we look at cancer as an evolutionary process that hap-

pens in a spatial setting, and relate it to the well-known concept of complex

traits. Some broad notions from evolutionary biology that can be useful

are reviewed next.

14.2 Complex traits and fitness valleys

Complex traits depend on the interactions between several different ge-

netic loci (Whitlock et al., 1995). The simplest case of a complex trait that

we have considered so far was the inactivation of tumor suppressor genes,

where two separate mutations were required to achieve the advantageous

phenotype. In general, cancerous phenotypes require the presence of many

genetic (or epigenetic) alterations, each of which might in itself be disad-

vantageous. One of the central questions is to understand how the complex

(advantageous) phenotype evolves by gradually acquiring the intermediate,

possibly disadvantageous alterations.

In ecology, this process is termed “crossing the fitness valley”. Graph-

ically this is represented in figure 14.1(a). Starting from the wild-type

cells, several intermediate mutations may induce changes that lead to fit-

ness reduction. The corresponding cells will be selected against, making

it difficult for the cell lineages to survive long enough to acquire further

mutations that would eventually confer a fitness advantage. When the in-

termediate mutants are disadvantageous, the term “fitness valley” is used

(Whitlock et al., 1995; Weinreich and Chao, 2005; Weissman et al., 2009).

For neutral mutants, we have a fitness “plateau”, figure 14.1(b), and for
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slightly advantageous intermediate phenotypes we can talk about the fit-

ness “foothill”, figure 14.1(c). Even though it is easier to envisage that

evolution can proceed toward the foothill, if the advantage of intermediate

phenotypes is small, the process may take a very long time.
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Fig. 14.1 A schematic representing the concepts of a (a) fitness valley, (b) fitness
plateau, and (c) fitness foothill.

Scenarios where intermediate mutants are disadvantageous or neutral

are abundant and have been discussed in the previous chapters in the con-

text of inactivation of tumor-suppressor genes. Scenarios where intermedi-

ate mutants are slightly advantageous compared to the wild-type, and the

complex trait is even more advantageous (evolutionary foothills) are also

common in nature. An interesting example is the evolution of p53 loss,

leading to accelerated and uncontrolled cell growth and the formation of

tumors [de Vries et al. (2002)]. While complete loss of p53 function has been

mainly attributed to an inactivation of both copies of the gene, a dominant

negative effect has also been documented, where a single mutated copy of

the gene can reduce overall p53 function to a certain degree through dis-

ruption of p53 tetramer formation, which is required for function [de Vries

et al. (2002)].

14.3 The Moran process

We first consider the Moran process, as this allows a greater degree of

mathematical insight. We will restrict our attention to a process in a 2D

square grid of size N . In this process, which is a generalization of the

model described in Chapter 13, individuals die at random, independently

of their phenotype, and are immediately replaced by the progeny of one of
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the nearby individuals, selected randomly from the square neighborhood of

a fixed size, M . The probability to be selected for reproduction is propor-

tional to the fitness of each phenotype.

In order to model the process of mutation accumulation, we assume

that the genome of each cell contains m sites, such that if all m sites are

mutated, the cell acquires the advantageous (complex) phenotype, while

any smaller subset of mutations confers fitness r to the cell. Mutations

can happen in any order, and mutations happen with a given (and equal)

probability for each out of m sites upon reproduction. As before, back-

mutations are not taken into account. Figure 14.2(a) shows an example of

a mutation diagram for m = 3 sites. The population size stays constant

(equal to N) after each update, and there are no empty spots on the grid.

000 010

001

100 110

101

011

111

(a) (b)

Fig. 14.2 The simulation setup. (a) The combinatorial mutation diagram for m = 3
sites. (b) The concept of neighborhood, illustrated with the neighborhoods of radius 2.

We will investigate the role of spatial interactions by varying the neigh-

borhood size where the individuals can place their offspring. If for a given

individual, the neighborhood only includes the 8 surrounding spots on the

square grid, this corresponds to the nearest neighbor situation, or a “radius

1 neighborhood”. If the neighborhood is as big as the whole population,

then this is the mass-action situation. An example of a neighborhood of

radius 2 is shown in figure 14.2(b). The question we ask is how the rate of

m-hit mutant production depends on the neighborhood size.

14.3.1 Spatial restriction accelerates evolution

Numerical simulations of this process are presented in figure 14.3(a), as-

suming that two loci need to be mutated to acquire the advantageous phe-
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Fig. 14.3 Effect of the neighborhood radius on the time at which the m-hit mutant
arises in the Moran process. (a) The average time of emergence for 4 neighborhood
radii: 1, 2, 10, 50. Averages are based on at least 105 iterations of the simulation. The
chosen parameters were: grid size N = 50 × 50, m = 2, intermediate mutants were
neutral, u = 10−4. (b) Histograms showing the distribution of outcomes, corresponding

to the data presented in part (a). For simplicity only two radii are compared: 1 and 50.
(c) Same type of histogram, but with u = 10−5, showing a greater difference.

notypes (m = 2). There, for each neighborhood size, we ran the process at

least 105 times, stopping when them-hit mutant was generated, and record-

ing the waiting times. An example of mean waiting times as a function of

the neighborhood radius is shown in figure 14.3(a). The exact distribution

of waiting times for different neighborhood sizes are shown in the form of

histograms in figures 14.3(b,c). We can see that even if the differences in

the mean waiting times between the mass-action and the nearest neighbor

model are smaller than the widths of the distributions, these distributions

are clearly distinct, and the means are significantly different (with the p-

value in both the T-test and Mann-Witney U-test less than 10−10). In fact,

for the examples presented in figures 14.3(b,c), the sample size of only 2500
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and 1000 points respectively, consistently yields p-values smaller than 0.05

for the Mann-Witney U-test.

We observe (figure 14.3(a)) that the waiting times increase monotoni-

cally with the neighborhood size. In other words, tight spatial interactions

lead to the fastest m-hit mutant production. The results hold for both neu-

tral and disadvantageous intermediate mutants. An intuitive explanation

for this phenomenon that was proposed in Chapter 13 evokes the concept

of mutant islands. Under mass-action rules, all types are mixed randomly

(figure 14.4(a)). On the other hand, if reproduction is only allowed within a

small neighborhood, spatial structures tend to form, where the nearby indi-

viduals are likely to have identical genotypes (figure 14.4(b)). For example,

in the case of m = 2, where one-hit mutants are neutral or disadvanta-

geous, once a one-hit mutant is generated, its clone (if it has a chance to

form) will be located in the vicinity of the original de-novo mutation. It

can be argued that such localized clones are on average longer-lived than

spatially dispersed clones. This is because a dead mutant is more likely to

be replaced by the progeny of another mutant than a wild-type individual,

if most of its neighbors are mutants. In turn, longer-lived clones of inter-

mediate mutants are more likely to produce m-hit mutants, which speeds

up the process of m-hit mutant generation.

How tight the mutant islands are depends on the neighborhood size.

For very small neighborhoods, the dynamics are the most localized, and

the islands are more pronounced than in systems with larger neighborhood

sizes.

14.3.2 Dependence on parameters

The extent to which spatial restriction accelerates the emergence of the

m-hit mutant is intimately related to the exact scenario of m-hit mutant

generation. In Chapters 10 and 13 we described three regimes, see figure

10.1 in the case when m = 2. A genuinely two-step process, stochastic

tunneling, or a nearly deterministic process are observed depending on the

population size, N , relative to other parameters of the system.

In the present chapter, instead of varying the system size, N , we varied

the mutation rate, u. Figure 14.5 shows the relative mean waiting time for

the mass-action system compared to that for the nearest-neighbor system,

for different mutation rates. For each mutation rate, we calculated the

mean waiting time for the m-hit mutants in the mass-action model, and
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wild

type
island of

one hit mutants(a) (b)

Fig. 14.4 Spatial configuration of the Moran process for the case of (a) mass-action
and (b) a neighborhood radius of one. With spatial restriction, islands of intermediate
mutants are observed. The chosen parameters were: grid size=50, m = 2, intermediate
mutants were neutral, u = 10−4. Dark color indicates wild-type, light color mutants.

divided it by the mean waiting time in the nearest-neighbor setting. This

ratio was plotted for several different values of the mutation rate, u. Panels

(a,c,e) correspond to neutral intermediate mutants, and panels (b,d) to dis-

advantageous mutants. We can see a common pattern where for very high

mutation rates, the spatial interactions do not have much influence on the

rate of m-hit mutant generation (the ratio of waiting times is close to one).

For intermediate mutation rates, the spatially-restricted systems produce

mutants significantly faster (the ratio > 1). Then for low mutation rates,

the difference between spatial and non-spatial systems either stops chang-

ing with u (for disadvantageous intermediate mutants), or it decreases (for

neutral intermediate mutants). The notions of “high”, “intermediate”, and

“low” mutation rates are defined relative to other parameters, in particular,

the population size N , the intermediate mutant fitness, r, and the number

of sites, m. Here we describe the observed trends:

High mutation rates. For relatively large mutation rates, the difference

between the spatial and mass-action systems is very small. This is because

for very high mutation rates, new mutants are produced very frequently,
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Fig. 14.5 Time to emergence of m-hit mutant in the Moran process. Compared are
mass-action relative to extreme spatial restriction, where the neighborhood radius is
one. The time to emergence for radius=1 was set to unity, and the time observed for
mass-action was scaled accordingly. This number is plotted against the mutation rate,
u. (a) m = 2, grid size N = 10 × 10, neutral intermediate mutants. (b) m = 2,
N = 10 × 10, intermediate mutants have 10% fitness cost. (c) m = 2, N = 50 × 50,
neutral intermediate mutants. (d) m = 2, N = 50× 50, intermediate mutants have 10%
fitness cost. (e) m = 4, N = 50× 50, neutral intermediate mutants.
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Fig. 14.6 Time series simulation showing the evolutionary dynamics for (a-d) the Moran
process and (e-h) the contact process, assuming m = 4, a 50 × 50 grid and neutral
intermediate mutants. Wild-types are shown in black, intermediate 1-hit, 2-hit, and 3-
hit mutants are shown in blue, green and pink, respectively. The intermediate mutants
have fitness r = 1. The advantageous 4-hit mutant is shown in red. For the Moran
process, the mutation rates were (a) u = 10−2, (b) u = 10−3, (c) u = 10−4, (d)
u = 10−5. For the contact process, L/D = 3, and (e) u = 10−2, (f) u = 10−3, (g)
u = 10−4, (h) u = 10−5.
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and are accumulated mostly by de-novo production rather than by mutant

reproduction (the nearly-deterministic regime of Chapters 9 and 10). In

this case, the role of mutant islands is negligible, and the waiting time is

not changed by the neighborhood size. Figure 14.6(a) shows a typical time-

series of mutant generation for high mutation rates, in the case of neutral

intermediate mutants. We can see that intermediate mutants are generated

constantly and experience a steady climb. This behavior is similar to the

behavior of advantageous mutants. Even though the mutations are neutral,

the presence of a one-way mutation process at a high rate effectively makes

those mutants behave like advantageous mutants.

This behavior is observed if the mutation rate is significantly larger than

a threshold, u
(1)
c . This threshold for the case of m = 2 can be determined

from the theory in Chapter 10: u
(1)
c ∼ 1

N for neutral intermediate mutants

when |1 − r| ≪ √
u, see inequality (10.46) with u1 = u2. For disadvanta-

geous intermediate mutants, we have a selection-mutation balance defined

by production and selection, and the threshold value u
(1)
c is given by the

upper bound in the inequality (10.48): u
(1)
c ∼

√

1
N (1 − r)/r, where we set

u1 = u2.

Intermediate mutation rates. As the mutation rates become smaller

than u
(1)
c , the accelerating role of space inm-hit mutant generation becomes

more pronounced, because de-novo mutant generation is less frequent now,

and the mutant island effect becomes more important. Figures 14.6(b)

and (c) show typical time-series in this regime, where the m-hit mutant

is formed by stochastic tunneling, with no intermediate mutants reaching

fixation. A similar picture is observed for disadvantageous intermediate

mutants.

For even smaller values of u, there is another change in behavior. The

system behaves differently for neutral and disadvantageous intermediate

mutants.

Low mutation rates, neutral intermediate mutants. In the case of

neutral intermediate mutants, when u ≪ u
(2,neut)
c (which is defined later),

the role of space is again diminished, figure 14.5(a,e); figure 14.5(c) does

not show this regime because simulations for lower mutation rates for the

given parameter values are exceedingly long. We can see that the difference

between the spatial and non-spatial model for very low mutation rates is

smaller than that for intermediate mutation rates. The explanation again

is given by the time-series, figure 14.6(d). For very small mutation rates,
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sequential fixation takes place for one or more consecutive mutants. The

reason is that it is unlikely to mutate the next locus before the preceding

mutant has reached fixation. The total waiting time now consists of two

parts: the time waiting for fixation (one or more) and the time waiting for

tunneling through the rest of intermediate mutations. While the tunneling

rate is accelerated by spatial constraints, fixation events take somewhat

longer in the nearest-neighbor model compared to mass action, simply be-

cause the spread of mutants happens via “surface growth” where the expan-

sion can only take place at the outside rim of the mutant island, compared

to the bulk growth of the mass-action model. The two effects act in the

opposite ways, and we can see that the mass action waiting time for such

small mutation rates is not too different from that of the nearest-neighbor

model.

Let us denote by Ri the tunneling rate starting from a homogeneous

population of type i, and by ρi→j the probability for a mutant of type j to

reach fixation in a homogeneous population of mutants of type i, starting

from one cell. The characteristic time of mutant fixation was found in

formula (9.12), and the time of tunneling is given by the inverse Ri. If

tunneling is the dominant process, which happens when

Nu0ρ
0→1 ≫ R0, (14.1)

we can estimate the time until an m-hit mutant is produced as

T ≈ 1

R0
.

If condition (14.1) is reversed, the fixation of the first mutant is typically

followed by a tunneling through the rest of the mutations, and we have

T ≈ 1

Nu0ρ0→1
+

1

R1
.

Since tunneling rates are accelerated by spatial interactions, and fixation

rates are slowed down, we can see that lowering mutation rates will decrease

the accelerating effect of space. In the limit of very small mutation rates,

the dynamics proceed as a sequence of consecutive fixations of intermedi-

ate mutants, and the total mean time to m-hit mutant generation can be

approximated as

T ≈
m−1
∑

i=0

1

Nuiρi→i+1
,

the sum of inverse consecutive fixation rates. Condition (14.1) allows us

to calculate the threshold value, u
(2,neut)
c , when the role of space becomes
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negligible. We have in the neutral case, ρ0→1 = 1/N , and the tunneling

rate is given by
∏m−1

i=0 u
1/2i

i (Iwasa et al., 2004a). In the symmetric case

where all the mutation rates are the same and given by u, the expression

for u
(2,neut)
c is given by u

(2,neut)
c = N

− 2m−1

2m−1
−1 . In particular, for m = 2, we

simply have u
(2,neut)
c = 1/N2.

Low mutation rates, disadvantageous intermediate mutants. In

the case where r < 1 and |1− r| ≫ √
u, fixation of intermediate mutants is

very unlikely. There, the difference between spatial and non-spatial rates

of m-hit mutant production does not decrease for small values of u, but

it merely stops increasing. In other words, starting from some threshold

value, u
(2,dis)
c , decreasing u will not lead to further growth in the ratio

of waiting times. This threshold value can be estimated if we impose the

condition that the time-scale of new mutant production (given by 1/(Nu))

is significantly larger than a typical life-span of a disadvantageous mutant

(given approximately by 1/(1− r), see [Weissman et al. (2010)]). We then

have the value u
(2,dis)
c = 1−r

N .

14.4 The contact process

Next, we consider a model that is arguably more realistic than the Moran

process described above. In the Moran process, each death is immedi-

ately followed by a reproduction event, which makes the model analytically

tractable, but imposes a very rigid constraint on the timing of events. In

what follows we describe a model that is more widely used in ecological and

evolutionary simulations, and which is a type of a contact process studied

in different contexts (Liggett, 1999).

In a square 2D grid of size N , nodes can be unoccupied or occupied with

cells of different types. Each time-step consists of N elementary updates,

where N is the total number of occupied sites. At each elementary update,

we pick an individual at random. With probability 0 < D < 1 this individ-

ual is removed, and with probability L = 1 −D it attempts reproduction.

Reproduction proceeds as follows. A random site in the neighborhood of

size M of this individual is picked, and if it is occupied, the reproduction

is aborted, and the update is complete. If the site is empty, the offspring

(possibly with a mutation) of the individual is placed at the site, which

completes the update. The Moran process described earlier can be consid-
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ered the limit of the contact process where L ≫ D (except the time-steps

proceed uniformly in our version of the Moran process, and they happen

with an exponentially-distributed time-steps in this limit of the contact

process). In the case where L ≫ D, the grid is completely filled with live

cells at all times, and the dynamics are driven by the death events, each of

which is immediately followed by a division event.

14.4.1 The steady-state density of cells

Before we explore the question of the rate of fitness valley crossing in the

contact process, we need to gain an understanding of the model’s basic

properties. Let us set the mutation rates to zero and simply observe the

spatio-temporal behavior of individuals on the grid. Let us suppose that

L > D. In the mass-action model, the process reaches a quasi-stationary

state where the individuals are distributed around the grid with the equi-

librium density of

ν = 1− D

L
.

That is, there are typically N(1−D/L) individuals, and the probability of

each site to be occupied is given by ν (in other words, they are distributed

uniformly throughout the grid). This result can be derived very easily by

assuming a uniform distribution of individuals and equating the probability

of death with the probability of successful reproduction.

Things are significantly more complicated in a spatially-restricted model

(M < N). In this case, it is known that the probability of reproduction

L has to be greater than a threshold value, Lc > D, for the system to

reach the quasi-steady state, but the exact value of Lc is not theoretically

known. Also, the equilibrium density has not been calculated (apart from

the limiting values as M → N (Bramson et al., 1989)). In the regime

of interest where M ≪ N , no estimates of the equilibrium density are

available.

The complication comes from the macroscopic structures forming in the

system in the case of spatially-restricted interactions (figure 14.7). In fig-

ure 14.8 we show numerically obtained steady-state numbers of individuals

as a function of the neighborhood size, M . We can see that the resulting

density is lower than the mass-action density νm.a.. An attempt to describe

this behavior was made by the pair approximation method, which takes lo-

cal interactions into account by considering pair correlations of neighboring

sites [Boots and Sasaki (2002); Tomé and de Carvalho (2007)]. Unfortu-
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(a) (b)

Fig. 14.7 Spatial configuration of the contact process model for the case of (a) mass-
action and (b) a neighborhood radius of one. With spatial restriction, islands of interme-
diate mutants are observed. Individuals are not evenly distributed, but form macroscopic
structures. The chosen parameters were: grid size 50× 50, m = 2, intermediate mutants
were neutral, u = 10−4, L/D = 3. Darkest color indicates wild-type, lightest color
mutants, and intermediate gray color shows empty space.

nately this approximation crudely underestimates the difference between

the spatial behavior and the mass-action behavior.

To capture the spatial effects more effectively, we studied numerically

generated quantity (1 − ν)L/D as a function of the neighborhood size,

M . For the mass-action system, this quantity is simply 1. For spatially-

structured system, this quantity grows as M decreases. We noticed that

this quantity is very well described by a simple inverse function ofM , which

yielded the following empirical formula:

N = N
(

1−D/L
(

1 +
c

M

))

, (14.2)

where c does not depend on M (that appears to depend on the parameter

D/L, for example, c ≈ 4 for D/L = 1/3 and c ≈ 4.5 for D/L = 1/2). It

was further empirically found that the density of individuals in the neigh-

borhood of a given individual is on average given by

νloc = 1−D/L
(

1 +
( c1
M

)α)

, (14.3)

where c1 and α are both M -independent (with c1 ≈ 1.6 and α ≈ 0.9 both

for D/L = 1/3 and D/L = 1/2).

We observe the following two important trends:
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Fig. 14.8 Numerically calculated densities of cells in the contact process, plotted as
functions of the neighborhood radius. We present the mean density (together with the
empirical formula 14.2), and the mean density of cells in a neighborhood of nonempty
spots (together with empirical formula (14.3). Also, plotted is the pair-approximation
of the mean density. The parameters are N = 41 × 41, and L/D = 3.

(i) The density in the vicinity of an occupied spot is greater than the mean

density. The distribution of cells throughout the grid is no longer uni-

form, and the probability of finding an occupied site in the vicinity of

a given individual is higher than the mean density. This is a quantifi-

cation of the clustering effect, which can also be observed by simply

examining a typical spatial distribution of individuals in a spatially-

structured system, figure 14.7(b).

(ii) The mean number of individuals and the mean number of neighbors

of an individual both increase with the neighborhood size, M , and ap-

proach N(1 − D/L) as M → N (the mass-action limit). This can be

viewed as a direct consequence of macroscopic structures. For smaller

values of M , the density becomes non-uniform, with the local density

higher than the average density. This makes individuals land on other

occupied spots and thus reduces the number of successful events per

time-step. The number of successful divisions at equilibrium must be

matched by the deaths, which are proportional to the total population.
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Therefore, the total population in spatial systems must be lowered com-

pared to the mass-action system.

The importance of these trends for our evolutionary question becomes

clear once we realize that the equilibrium number of individuals as well as

the number of neighbors of a given individual define the time-scale of the

contact process. This is explained below, after we talk about the empirical

observations for this model.
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Fig. 14.9 Time to emergence of m-hit mutant in the contact process. Compared are
neighborhood radii of 1, 2, 10, and 50. The time to emergence for neighborhood radius 1
was set to unity, and the waiting time observed for the other radii was scaled accordingly.
Different curves are shown for different mutations rates u, as indicated in the plots. For
all plots, L/D = 3. (a) m = 2, grid size is 50 × 50, neutral intermediate mutants. (b)
m = 2, grid size is 50× 50, intermediate mutants have 10% fitness cost. (c) m = 4, grid
size is 50× 50, neutral intermediate mutants.
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14.4.2 Complex effects of spatial restriction

The effect of spatial restriction on the waiting time for the emergence of

the m-hit mutant is more complicated than that in the Moran process

model. In the current setting, spatial restriction can either accelerate or

delay the generation of the m-hit mutant, depending on parameters. In

some cases, there is an optimal neighborhood size that maximizes the rate

of emergence of the m-hit mutant. That is, evolution works fastest for

intermediate-range interactions. Figure 14.9 presents some typical results.

In this figure, for a given mutation rate u, we calculated the mean waiting

time for the m-hit mutant emergence for several neighborhood radii, and

divided it by the mean waiting time for the nearest neighbor scenario (the

radius 1 neighborhood model). These relative mean waiting times were

plotted as functions of the neighborhood radius, for different mutation rates.

In panels (a) and (b), we have m = 2 and the intermediate mutants are

neutral and disadvantageous respectively. In panel (c), we have m = 4

with neutral intermediate mutations. We can see that the waiting time

decays monotonically with the neighborhood radius e.g. for u = 10−2 in

figures 14.9(a,b) and u = 10−3 in figure 14.9(a). It increases monotonically

for u = 10−5 in figures 14.9(a,b) and for u = 10−4 in figures 14.9(b,c).

The waiting time as a function of the neighborhood radius experiences an

intermediate minimum for u = 10−4 in figure 14.9(a), for u = 10−3 in figure

14.9(b,c) and for u = 10−2 in figure 14.9(c).

To explain this complicated behavior, we note that there are two differ-

ent mechanisms that govern the spatio-temporal dynamics of m-hit mutant

generation.

(1) The formation of mutant islands is facilitated by tight spatial inter-

actions (figure 14.7). This is exactly the same trend as observed and

explained in the context of the Moran model, and it results in the

increase of the tunneling rate for the nearest-neighbor model.

(2) In contrast to the Moran model, the population development over time

in the contact process is nonuniform and is defined by the equilibrium

number of individuals. For smaller values of M , the total number of

individuals is smaller, and thus the total number of events is also lower.

Therefore, the rate of evolution (measured e.g. by the rate of tunneling)

for the mass-action model is faster compared to the nearest-neighbor

model.

Combining the two opposite effects, we can describe the mean time of fitness
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valley crossing as

TMoran

τ
, (14.4)

where TMoran grows with M and 1/τ decays with M . Under some parame-

ter regimes, the resulting function can be shown to possess an intermediate

minimum, which corresponds to the evolutionary optimum for the fitness

valley crossing. It can also be a monotonically increasing or decreasing

function of M , depending on the parameters.

14.4.3 Parameter dependencies

The mutation rate is an important parameter in determining the exact effect

of spatial restriction on the rate at which the m-hit mutant is generated.

Figure 14.9 shows the effect of spatial restriction on the time it takes to

generate the m-hit mutant, for different mutation rates. We observe the

following patterns:

• For large mutation rates, the crossing of the fitness valley happens

the fastest in the mass-action model, because the tunneling rate is

largely independent of the neighborhood size (as we learned in the

Moran process), and the time-scale of the events, τ , is faster for mass

action, as explained in the previous section.

• For intermediate mutation rates, the two trends trade-off and the mean

time for fitness valley crossing experiences a minimum for intermediate

values of M .

• For small mutation rates, spatial restriction decreases the time until the

m-hit mutant emerges. Evolution occurs slowest for the mass-action

scenario and fastest for the nearest neighbor scenario. As the mutation

rate decreases, the magnitude of this effect rises.

• However, if the mutation rate is decreased below a threshold, the m-

hit mutants are not generated by tunneling anymore. Instead, the

sequential fixation of intermediate mutants occurs. While the nearest-

neighbor model still allows for fastest evolution, the effect is less pro-

nounced in this parameter region.

The evolutionary pathways are shown as time series in figure 14.6(e-h),

demonstrating evolution through tunneling for lower mutation rates, and

through sequential fixation for higher mutation rates.

The difference in the rate of evolution in the spatially restricted and the

mass-action scenarios is generally smaller than that for the Moran process
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(figure 14.9 compared to figure 14.5). The reason is that in the contact

process the forces that accelerate evolution in a spatial setting are offset by

the slower dynamics inherent in the spatial situation, where growth involves

the formation of macroscopic structures. In general, the maximal difference

between the spatial and mass-action settings did not exceed 15-20% in our

simulations. Hence, the difference is less pronounced than in the Moran

process model, where a difference of up to 40-50% was observed between

nearest neighbor and mass-action settings for disadvantageous intermediate

mutants.
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Fig. 14.10 Time to emergence of m-hit mutant in (a) the Moran process and (b) the
contact process, assuming that intermediate mutants are advantageous compared to the
wild-type, and that the m-hit mutant is even more advantageous. Compared are mass-
action relative to extreme spatial restriction, where the neighborhood radius is one. The
time to emergence for radius=1 was set to unity, and the time observed for mass-action
was scaled accordingly. This number is plotted against the mutation rate, u. The other
parameters were assigned the following values: m = 2, grid size N = 50×50, intermediate
mutants have 10% fitness advantage. For (b) L/D = 3.

14.5 Advantageous intermediate mutants

The analysis so far concentrated on situations where intermediate mutants

are either neutral or disadvantageous, and similar patterns were observed

for the two cases. Here, we investigate the evolutionary dynamics assum-

ing that intermediate mutants are advantageous compared to the wild-type,

and that the m-hit mutant is even more advantageous. Results are qual-

itatively similar for the Moran process (figure 14.10(a)) and the contact

process (figure 14.10(b)). In these plots, for each mutation rate we cal-

culated the mean waiting time for the m-hit mutants in the mass-action
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model, and divided it by the mean waiting time in the nearest-neighbor

setting. We can see that in sharp contrast to the patterns seen for neu-

tral and disadvantageous mutants, for advantageous intermediate mutants

nearest-neighbor interactions always slow down the emergence of the m-hit

mutant (figure 14.10). The degree to which this happens depends on the

mutation rate, u (in relation to other system parameters). The effect is

highest for intermediate mutation rates, and the difference is small for low

and high mutation rates. Below we describe the observed patterns for the

Moran process, and give explanations.

High mutation rates. Advantageous intermediate mutants are selected

for and grow (almost) deterministically rather than drifting. For very high

mutation rates, the production of the intermediate mutants by de-novo

mutations from wild-type also contributes to this growth, and in fact is

the dominant force as long as uN ≫ r, see figure 14.11(a). As explored

in previous sections, mutant growth by production from wild-type is not

influenced by the spatial configuration, explaining the small difference be-

tween the spatial and mass action simulations for high mutation rates. For

the parameters in figure 14.10(a), we can see that the difference between

the mass-action and the nearest-neighbor model is small for u ≫ 4 · 10−4.

Intermediate mutation rates. In this regime, replication contributes

significantly to the growth of m-hit mutants, figure 14.11(b). As seen in fig-

ure 14.10, for intermediate mutation rates, systems with spatial restrictions

produce m-hit mutants slower than the mass-action model. The reason for

that, interestingly, is the existence of mutant islands. Advantageous inter-

mediate mutants in the spatial systems tend to expand, but they can do

so only by growing on the outer rims of the mutant islands (the so-called

surface growth, see e.g. [Wodarz et al. (2012)]). On the contrary, in the

mass-action systems, the mutants experience a bulk growth, leading to a

faster (exponential) expansion. The existence of mutant islands serve to

accelerate the production of m-hit mutants for the neutral and disadvan-

tageous case, because of its protective role. For advantageous intermediate

mutants, these islands constrain the growth, slowing down the evolution

compared to the mass-action system.

Low mutation rates. For very low mutation rates, fixation of the inter-

mediate mutant often occurs before the generation of the m-hit mutant, see

figure 14.11(c). As explored above, this reduces the influence of the neigh-

borhood radius on the rate of evolution, explaining the reduced difference

at low mutation rates.
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Fig. 14.11 Time series simulations showing the evolutionary dynamics for the Moran

process, assuming that intermediate mutants are advantageous and the m-hit mutant is
even more advantageous. Plots are shown for three mutation rates: (a) 10−2, (b) 10−4,
and (c) 10−6. Wild-types are shown in black, intermediate mutants (i.e. 1-hit mutants)
in blue, and m-hit mutants in green. The simulations were done with m = 2, a 50 × 50
grid, and a 10% fitness advantage of intermediate mutants compared to wild-types.

In the contact process (figure 14.10(b)), the same effects take places as

described above for the Moran process. The difference is that in the contact

process, there is an additional effect whereby the dynamics in the mass-

action model always happens faster than in the spatially-restricted systems.

As explained before, this happens because of the uniform distribution of

individuals across the grid in the mass-action model, which increases the

probability of successful reproduction events. Since this effect combines in

a positive way with the effects described for the Moran process, the overall

effect in the contact process is more significant compared to the Moran

process. In the contact process, we observe that the evolution happens

faster in the mass-action system across all mutation rates, with the effect

being the strongest for the intermediate values of u.
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14.6 Summary and discussion

In this chapter we saw that the effects of spatial structure on the rate of

cancer evolution are far from straightforward.

• In the Moran process, spatial interactions speed up the evolution of the

complex trait for neutral and disadvantageous intermediate mutants,

consistent with previous work (Chapter 13, (Komarova, 2006c; Durrett

et al., 2012; Durrett and Moseley, 2012)).

• For advantageous intermediate mutants in the Moran process, spatial

interactions slow down the evolution of the complex trait. This is the

opposite effect of space compared to the case of neutral and disadvan-

tageous intermediate mutants.

• In the contact process for neutral and disadvantageous intermediate

mutants, spatial interactions can either accelerate or slow down the

rate of evolution, depending on the mutation rate. It is also possible to

have an intermediate optimal interaction radius (between mass-action

and nearest neighbor interactions), which minimizes the time until the

advantageous trait emerges.

• For advantageous intermediate mutants in the contact process, spatial

interactions speed up the evolution of the complex trait, even more so

than in the Moran process.

The two types of models (the Moran and the contact processes) correspond

to different biological scenarios, which we discuss next.

Moran and contact processes: comparisons and applications.

The Moran process practically assumes a high degree of regulation that

keeps the population at a constant level and avoids the generation of empty

space that is not filled with live individuals. This situation can apply to

populations of tissue cells, or perhaps even tissue stem cells, whose home-

ostasis is tightly controlled by various feedback-mechanisms (Lander et al.,

2009). In this situation, spatial restriction always minimizes the time un-

til the m-hit mutant is generated. This confirms the results obtained in

the previous studies and is especially pronounced if the intermediate mu-

tants are disadvantageous. It is actually a biologically surprising result.

Tissue cells are for the most part characterized by a high degree of spa-

tial restriction, and this can facilitate the emergence of aberrant cells that

could potentially lead to the development of cancer. It is likely that spa-

tial restrictions of cellular interactions are vital for other processes that
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determine the functioning of the tissue and the organism, and that the ac-

celerated evolution of aberrant cells is a side-effect of this architecture. As

shown in [Thalhauser et al. (2010)], migration and motility result in dy-

namics that converge towards mass-action scenarios, and could thus slow

down the rate of evolution in tissues. One can hypothesize that migration

of cells in tissues could hence be an adaptive response to slow down the

accumulation of aberrant mutations.

On the other hand we can envisage situations where populations are

regulated less tightly, and where a death of a cell is not immediately fol-

lowed by a reproduction event. In this case the Moran process is not a

realistic description anymore. For this reason we also studied the contact

process, which is a stochastic birth-death process that is characterized by

a stochastic (long-lived) quasi-steady state with a nearly constant density

of cells, resulting from the balance of death and division events. Hence, at

equilibrium, the entire space is not filled with individuals, but contains un-

occupied space. Interestingly, this makes a lot of difference because macro-

scopic structures can form, and successful reproduction events tend to occur

only at the surface of those structures. This counters the effect that spatial

restriction accelerates evolution through the formation of mutant islands

that are protected from being replaced by wild-types. This has several

consequences, in the context of neutral or disadvantageous intermediate

mutations.

(1) Increasing the interaction radius can monotonically increase the rate

of evolution, it can monotonically decrease it, or there can be an optimum

interaction radius that minimizes the time until the m-hit mutant is gen-

erated. Which pattern is observed depends largely on the mutation rate

(compared to some characteristic constant that depends on the population

size, the number of sites and the fitness of the intermediate mutants). Spa-

tial restriction tends to slow down evolution for higher mutation rates, and

accelerate it for lower mutation rates. Which pattern is in fact observed

depends not only on the mutation rate, but also on other factors such as

the number of loci involved.

(2) Another consequence is that because of trading-off forces in the

dynamics, the extent of the difference observed between spatial and non-

spatial settings is relatively small. No more than a 15-20% difference was

observed in the simulations. Nevertheless, this can still be enough to pro-

vide significant selection pressure that can shape the life-style of organisms,

i.e., whether they adopt a sedentary life-style characterized by significant
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spatial restrictions and limited movement, or whether they adopt a life style

characterized by extensive movement and migration. An interesting exam-

ple are bacteria, which can either show planktonic growth or sessile growth

characterized by the formation of biofilms (Jefferson, 2004). According

to the model explored here, sessile growth could be favored if mutation

rates are relatively low because in this case, populations can adapt faster

through accelerated crossing of fitness valleys. If, however, mutation rates

are higher, faster adaptation could be promoted by a planktonic life-style.

Note, however, that many other factors are likely to influence the life-style

of bacteria and organisms in general, and that the rate at which organisms

are able to cross fitness valleys and adapt is only one of many dimensions

that play a role.

When we turn to slightly advantageous intermediate mutations, we

discover that in some sense, spatial interactions play the opposite role

compared to the situation with neutral or disadvantageous mutants. In

both Moran and contact processes, the speed of evolution grows monoton-

ically with the neighborhood size, and the nearest-neighbor model corre-

sponds to the lowest rate of m-hit mutant generation. Interestingly, this

effect increases in the contact process compared to the Moran process.

For all intermediate mutant fitnesses, the effect of space is the most pro-

nounced when stochastic tunneling is the dominant mode of m-hit mutant

generation.

The dynamics of mutant islands. To explain our observations, we

studied the formation of “mutant islands”. These are spatially-correlated

colonies of mutants, which arise in models with spatial restrictions, and

are the tightest for the nearest-neighbor model. Clearly, in these models,

neighboring cells tend to have similar genotypes, which gives rise to these

islands of intermediate mutants. The abundance of the intermediate mu-

tant is the main correlate of the rate of m-hit mutant generation in the

tunneling regime. We discovered that mutant islands promote the persis-

tence of mutant colonies when they are disadvantageous or neutral. In this

case, the generation of m-hit mutants relies on the survival of intermediate

mutant colonies, which are typically transient and short-lived, and which

in the spatial setting are facilitated by the protective islands. In contrast

to this, mutant islands effectively slow down the growth of mutant colonies

when they are advantageous. In the mass-action scenario, advantageous

intermediate mutants experience a bulk (exponential) growth, while they

can only expand along the island surface in spatial settings.
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These arguments explain the opposite influence of space on the m-hit

mutant generation in the case of neutral/disadvantageous intermediate mu-

tants on the one hand, and advantageous intermediate mutants on the

other.
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Fig. 14.12 A schematic summarizing the complex role of space in the generation time

of m-hit mutants. The top row represents the Moran process, and the bottom row the

contact process. The left column corresponds to neutral/disadvantageous intermediate
mutants, and the right column to the advantageous intermediate mutants. In each graph,

the horizontal axis represents the degree of mixing, from the nearest neighbor model to
the mass-action model. The curves show whether the waiting time increases or decreases

(or is non-monotonic) as a function of the neighborhood size. It also shows the relative

size of the effect, when comparing the Moran process with the contact process.

In the case of the Moran process, the influence of space on the rate of

m-hit mutant generation can be explained completely by the mutant island

arguments. The contact process involves an additional effect, which is

related to the existence of empty space in that model, and the dependence of

the individuals’ spatial distribution on the neighborhood size. It turns out
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that in the spatially restricted situation, the distribution is very different

from that in the mass-action situation, resulting in a smaller number of

successful divisions per time unit. We will refer to this effect as the “time-

scale effect”.

How do the two effects (the mutant island effect and the time-scale

effect) trade-off to influence the rate of m-hit mutant generation in the

contact process? Do they add up or do they work in the opposite direc-

tions? In the case of neutral/disadvantageous mutants, the time-scale effect

slows down the evolution while the mutant island effect tends to speed it

up. Therefore, (1) the effect of space is weaker in the contact process com-

pared to the Moran process, and (2) space could speed up evolution, slow

it down, or have a nonmonotonic effect depending on the neighborhood

size.

For advantageous intermediate mutants, the two effects work in the

same direction: the slowing down of the time-scale of evolution by spatial

constraints adds to the effect of mutant islands. As a result, (1) the effect

of space is stronger in the contact process compared to the Moran process,

and (2) space always slows down evolution in this setting. All these effects

are summarized schematically in figure 14.12.

An important message that follows from our analysis is that the effect

of spatial restriction on the rate at which fitness valleys are crossed is not

at all straightforward but depends on a multitude of factors. This is in

contrast to previous notions that space accelerates the evolution of complex

phenotypes. Of particular importance are the laws according to which

populations grow in spatially restricted settings. It is currently not possible

to say whether the contact process presented here is a sufficiently realistic

description of spatial growth in experimental or natural populations. This

will need to be examined by experiments, tracking both the number of

individuals, as well as the spatial patterns the develop over time. Cell

cultures or experiments with microorganisms, which can be fluorescently

labeled (Wodarz et al., 2012; Hofacre et al., 2012), would be a suitable

system to examine this. Indeed, it is likely that spatial population growth

is characterized by different laws in different settings, and that the effect

on the rate of fitness valley crossing varies for different spatial population

growth laws. This can be investigated by further computational models,

once more experimental information is available about spatial population

growth laws in different organisms and different settings.
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Problems

Problem 14.1. Research project. Learn about the general concept of

complex phenotypes and fitness value crossing in evolutionary biology.

Problem 14.2. In Chapter 10 we characterized three different scenarios

of two-hit mutant generation, figure 10.1: a two-step process (or more gen-

erally, sequential fixation), stochastic tunneling, and a nearly-deterministic

process. Identify which processes are observed in figures 14.6(a-d) for neu-

tral intermediate mutants and m = 4.

Problem 14.3. Similar to the previous questions, but for figure 14.11. In

this case, intermediate mutants are advantageous, and m = 2. Use theory

of Chapter 10 to predict which regime is expected for the three different

values of u.

Problem 14.4. In figures 14.5(a) and (e) it is shown that for very small

mutation rates the difference betweem spatial and non-spatial dynamics de-

creases. This is related to the general trend that as u decreases, we enter

the regime of sequential fixation of mutants. Explain why we do not see this

trend in figures 14.5(b), (c) and (d). Hint: by using theory developed in

Chapter 10, find the value of u small enough such that sequential fixation is

observed for parameter values of figures 14.5(b), (c) and (d); take u1 = u2.
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Chapter 15

Stochastic modeling of cancer

growth, treatment, and

resistance generation

15.1 Introduction

In this chapter we develop some useful mathematical tools that allow us

to model the growth of cancer, the generation of resistance, and the ef-

fect of multi-drug treatment. The methodology is stochastic, based on the

description of a cellular colony as a birth-death process with mutations.

We start by describing the growth of a cellular colony as a birth-death

process with mutations. Several different mutations can be included, and

the resulting cell types are characterized by the mutations that they have

accumulated. The general problem of mutation accumulation by a grow-

ing cell colony goes back to Luria and Delbrück, who developed the so-

called “fluctuation analysis” of mutations in bacterial cultures in 1943

[Luria and Delbrück (1943)]. Since then the distribution of the number

of mutants in growing populations of cells has been studied by many au-

thors (see the review by [Zheng (1999)] and references therein). Even

though the fluctuation analysis of Luria and Delbrück was originally de-

signed for bacterial populations, it has since been widely applied to cancer

genetics [Kendal and Frost (1988); Jaffrézou et al. (1994); Dewanji et al.

(2005)].

This chapter is not a comprehensive review of the Luria-Delbrück anal-

ysis, but instead it provides a toolbox sufficient to study certain aspects of

cancer. Specifically, we are interested in generation of drug resistance in

growing tumors, under different treatment regimes. Several applications of

the theory developed here will be considered in Chapter 16.

275
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15.2 The basic model of cancer growth and generation of

mutations

15.2.1 The concept: a birth-death process with mutations

The aim is to describe the dynamics of birth, death, and mutations in a

colony of cells [Komarova and Wodarz (2005); Komarova (2006b)]. We

assume that there are four different processes that can take place in the

colony, see figure 15.1. A death will lead to the number of cells of the given

type decreasing by one. Faithful reproduction will increase the number of

cells of the given type. Reproduction with a mutation will result in an

increment in the number of cells of the mutant type. Transformation will

decrease the number of cells of a given type and simultaneously increase the

number of cells of the mutant type. Such transformations can be caused

by environmental factors or can be a direct consequence of treatment by

mutagenic drugs.

Faithful division

Division with a mutation

Death

Transformation

Fig. 15.1 The four basic processes: death, faithful and unfaithful division, and trans-
formation. For simplicity, only two cell types are included: wild type and transformed

cells. Wild type cells are depicted as empty circles, and transformed cells as filled circles.

Because of mutations, there may be cells of different types in a colony.

Each cellular type (phenotype) in this model is characterized by the types

of mutations that it has acquired. Figure 15.2 illustrates the mutation

network in the case where m = 3 different mutations are tracked. It follows

that with m different mutations, the total of

n = 2m − 1

genotypes can exist in the system. Each phenotype can be expressed as

a binary number of length m, where 1 stands for mutation and 0 for the

absence of mutation in a given site.
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Fig. 15.2 Mutation diagram corresponding to three drugs. The binary number, s, for
each node describes the genotype with respect to three possible mutations, where 0 is

“not mutated” and 1 is “mutated”. In the context of drug resistance to m = 3 drugs, 0
stands for “susceptible” and 1 for “resistant”.

15.2.2 Summary of all the probabilities

We will model the dynamics by using a continuous time, discrete state

space Markov birth-death process on a combinatorial mutation network.

For an infinitesimal time increment, ∆t, the probability for a cell to un-

dergo each of the four basic processes (death, faithful division, mutation

and transformation) is proportional to ∆t; the probability of two events

occurring simultaneously (within ∆t) is neglected. Different events will

occur with different probabilities (or rates), depending on whether treat-

ment is applied. We denote by Ls the birth rate of type s, and by ds its

death rate.

Here is a formal description of all the processes [Komarova and

Wodarz (2005); Komarova (2006b)]. Each phenotype “As” with some

0 ≤ s ≤ 2m, is represented as a node of a mutation network with arrows

coming in and out, see figure 15.3. We assume that in time interval ∆t,

the following events can occur with each phenotype “As”:

• With probability Ls(1−
∑

j u
s,out
j )∆t a cell of type “As” reproduces,

creating an identical copy of itself.

• For each outgoing arrow, with probability Lsu
s,out
j a cell of type

“As” reproduces with a mutation, creating a cell of type “As next
j ”,

for all j.
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• With probability ds∆t a cell of type “As” dies.

• For each outgoing arrow, with probability Ksα
s,out
j a cell of type

“As” is transformed into a cell of type “Asnext
j ”, for all j.

u

u

u3

2
u4

1

As

u1

u2

s,out

s,out

s,out
s,in

s,in

s,out

Fig. 15.3 An example of a vortex in a mutation diagram.

We start with a given number of cells of type “A0”, and follow the

process until the first cell of type “An” has been created. We would like

to calculate the probability, Pn(t), that a cell of type “An” has been

created as a function of time.

15.2.3 Stochastic description: the example of one

mutation

Before we introduce the general methodology, let us consider a specific

example of a one-drug treatment. The states of the system are charac-

terized by integer-valued vectors, (i0, i1), where i0 is the number of cells

susceptible to the drug and i1 is the number of cells resistant to the drug.

Let us denote by ϕi0,i1(t) the probability to be in state (i0, i1) at time

t. Let us consider the processes of cell divisions, death, and mutations

from type 0 to type 1 with probability u per cell division. This function
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ϕi0,i1 satisfies the following Kolmogorov forward equation:

ϕi0,i1 = L0(1− u)ϕi0−1,i1(i0 − 1) + L1ϕi0,i1−1(i1 − 1)

+ L0uϕi0,i1−1i0

+ d0ϕi0+1,i1(i0 + 1) + d1ϕi0,i1+1(i1 + 1)

+ −ϕi0,j0(L0 + L1 +D0 +D1), (15.1)

where the terms on the first line represent divisions of both types of

cells, the second line corresponds to mutations creating resistant cells,

the third line is death of both types of cells, and the last line corresponds

to the possibility of no change (the negative term). To proceed, it is

convenient to define the probability generating function,

Ψ(ξ0, ξ1; t) =
∑

i0,i1

ϕi0,i1(t)ξ
i0
0 ξi11 .

In order to derive an equation satisfied by this function, we multiply

equation (15.1) by ξi00 ξi11 and sum over i0 and i1. Then the left hand

side becomes ∂Ψ/∂t. On the right hand side we have several types of

terms. For example, the first term can be written as
∑

i0,i1

ϕi0−1,i1(i0 − 1)ξi00 ξi11 =
∑

k,i1

ϕk,i1kξ
k+1
0 ξi11 ,

where k = i0 − 1. Next we notice that this can be rewritten as

ξ20
∑

k,i1

ϕk,i1kξ
k−1
0 ξi11 = ξ20

∂

∂ξ0

∑

k,i1

ϕk,i1ξ
k
0 ξ

i1
1 = ξ20

∂

∂ξ0
Ψ.

Similarly, the other terms can be rewritten in terms of partial derivatives

of the function Ψ with respect to ξ0 or ξ1. We obtain the following

equation:

∂Ψ

∂t
=

∂Ψ

∂ξ0
(L0(1−u)ξ20+d0−ξ0(L0+d0−L0uξ1))+

∂Ψ

∂ξ1
(L1ξ

2
1+d1−ξ1(L1+d1)).

(15.2)

In the next section we will generalize this methodology to multiple mu-

tations, and then show how it can be used to answer important questions

related to drug treatments of cancer. Before we go on, we will explain

the general usefulness of the approach outlined here.

The probability function, ϕi0,i1(t) contains all the “microscopic” in-

formation about the stochastic process of interest. In fact, it contains

“too much” information, and often one could make shortcuts to extract
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only the “useful” information needed to answer a specific question. One

such shortcut is demonstrated by the method outlined above and gen-

eralized below. The calculations leading to equation (15.2) demonstrate

the convenience of the probability generating function description: in-

stead of an infinite system of coupled equations (15.1) for the original

probability function, ϕi0,i1(t), we obtained a single first order PDE for

the probability generating function. This PDE can be solved by the

method of characteristics (as reviewed below). The solutions can be re-

lated to important characteristics of the process, such as the probability

of cancer treatment success/failure.

15.2.4 The probability generating function description

In the general case of m drugs, let us introduce the function

ϕi0,...,in(t),

the probability to have is cells of type As at time t, where 0 ≤ s ≤ n =

2m are binary numbers. We can write down the Kolmogorov forward

equation,

ϕ̇i0,...,in =

n
∑

s=0

Q{As}, (15.3)

where Q{As} is the contribution obtained from considering probabilities
of reproduction and death of cell-type “As”,

Q{As} = ϕ...,is−1,...(is − 1)Ls

(

1−
∑

j

u
s,out
j

)

+ isLs

∑

j

ϕ...,is,...,ij−1,...u
s,out
j

+ ϕ...,is+1,...(is + 1)ds +Ks

∑

j

α
s,out
j ϕ...,is+1,...,ij−1,...(is + 1)

− ϕ...is(Ls + ds +Ks

∑

j

α
s,out
j ). (15.4)

We used the following short-hand notations: ϕ... stands for ϕi0,...,in , and

the only explicit subscripts indicate the indices which are different from

(i0, . . . , in). In equation (15.4), the first term is faithful reproduction, the

second term represents all possible mutations, the third term is death,

the fourth term is transformation of cells, and the last term comes from

the probability of no change.
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It is convenient to define the probability generating function,

Ψ(ξ0, . . . , ξn; t),

Ψ(ξ0, . . . , ξn; t) =
∑

i0,...,in

ϕi0,...,in

n
∏

s=0

ξiss . (15.5)

This expression can be viewed as a transformation from discrete variables

i0, . . . in to continuous variables ξ0, . . . , ξn.

Let us multiply equation (15.3) by
∏n

s=0 ξ
is
s and sum over all indices

to obtain the equation for the generating function. The rule for rewrit-

ing various types of terms in terms of the generating function can be

summarized as follows:

• Terms with ϕ...is give ξs
∂

∂ξs
;

• Terms that multiply ϕ...is−1...(is − 1) give ξ2s
∂

∂ξs
;

• Terms that multiply ϕ...is+1...(is + 1) give ∂
∂ξs

;

• Terms like ϕ...is...ij−1...is give ξsξj
∂

∂ξs
;

• Terms with ϕ...is+1...ij−1(is + 1) give ξj
∂

∂ξs
.

It is convenient to introduce the following shorthand notations,

us,out =
∑

j

us,out
j , αs,out =

∑

j

αs,out
j .

Then the function Ψ(ξ0, . . . , ξn; t) satisfies the following hyperbolic par-

tial differential equation:

∂Ψ

∂t
=
∑

s

∂Ψ

∂ξs



ξ2sLs

(

1− us,out
)

+ ds + ξsLs

∑

j

ξju
s,out
j

+ Ks

∑

j

ξjα
s,out
j −

(

Ls + ds +Ksα
s,out

)

ξs



 . (15.6)

The fact that this is a first order equation follows from the assumption

of linearity of the underlying birth-death process. Nonlinear processes

lead to higher order equations.

15.2.5 The method of characteristics

The first-order PDE (15.6) can be solved by the standard method of

characteristics, see e.g. [Gockenbach (2010)], Chapter 8. The equations
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for characteristics for equation (15.6) are given by:

ξ̇s = Ls

(

1− us,out
)

ξ2s +



Ls

∑

j

us,out
j ξj − (Ls + ds +Ksα

s,out)



 ξs

+ Ks

∑

j

ξjα
s,out
j + ds), 0 ≤ s ≤ n. (15.7)

Let us assume that at t = 0, we have M0 wild-type (non-mutated) cells,

so that ϕM0,0,...,0(0) = 1. From definition (15.5) we have

Ψ(ξ0, . . . , ξn; 0) = ξM0
n .

Suppose that we want to obtain expression for Ψ(ξ̄0, . . . , ξ̄n; t̄) by the

method of characteristics, where ξ̄0, . . . , ξ̄n and t̄ are some fixed values.

For time t̄, we have

Ψ(ξ̄0, . . . , ξ̄n; t̄) = ξn(t̄)
M0 ,

where the function ξn(t) is a solution of system (15.7) which satisfies the

initial conditions,

ξj(0) = ξ̄j , 0 ≤ j ≤ n. (15.8)

This method can for instance be used to find the probability of non-

production of m-hit mutants, see also Chapter 10. The quantity

Ψ(0, 1, . . . , 1; t) = ξ0(t)
M0

has the meaning that by time t, no cell which contains all m mutations

has been produced. This is an important quantity when we talk about

the process of carcinogenesis, as well as resistant mutant generation, as

described in the next section.

15.3 Application to cancer treatment and generation of

resistance

Here we apply the stochastic models developed above for multi-drug resis-

tance and investigate the dependence of treatment outcomes on the initial

tumor load, mutation rates, the turnover rate of cancerous cells, and the

treatment strategy. The main goal is to elucidate the general principles of

the emergence and evolution of resistant cells inside the tumor, before and

after the start of treatment.
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The first stochastic model of drug resistance was created by Goldie and

Coldman [Goldie and Coldman (1979)], who developed a whole new ap-

proach to mathematical treatment of resistance in their subsequent work,

see e.g. [Goldie and Coldman (1983a,b); Coldman and Goldie (1985);

Goldie and Coldman (1985, 1998)]. A number of important theoretical and

numerical results have been obtained by the authors for the case of one and

more drugs. Since this ground-breaking work, a lot of mathematical models

of drug resistance in cancer have been proposed. Several models, including

stochastic branching models for stable and unstable gene amplification and

its relevance to drug resistance, were explored by [Kimmel and Axelrod

(1990); Harnevo and Agur (1991, 1993); Axelrod et al. (1994); Kimmel and

Stivers (1994)]. Methods of optimal control theory were used to analyze

drug dosing and treatment strategies [Cojocaru and Agur (1992); Kimmel

et al. (1998); Coldman and Murray (2000); Swierniak and Smieja (2001);

Murray and Coldman (2003); Smieja and Swierniak (2003)] (for a review of

the optimal control theory in chemotherapy see [Swan (1990)]). Models for

tumor growth incorporating age-structured cell cycle dynamics, in applica-

tion to chemotherapy scheduling, have been developed by [Gaffney (2004,

2005)]. Mechanistic mathematical models developed to improve the design

of chemotherapy regimes are reviewed in [Gardner and Fernandes (2003)].

[Jackson and Byrne (2000)] extended an earlier PDE model of [Byrne and

Chaplain (1995)] to study the role of drug resistance and vasculature in tu-

mors’ response to chemotherapy; in this class of spatial models, the tumor is

treated as a continuum of different types of cells, which include susceptible

and resistant cells. Another class of models is based on the Luria-Delbrück

mutation analysis [Kendal and Frost (1988); Jaffrézou et al. (1994); Chen

et al. (2000)].

The stochastic model described here follows the tradition of [Goldie and

Coldman (1983a, 1998)], and takes this classical work a step further. In

particular, it has been possible to include a nonzero death rate for cancer

cells and still obtain analytical results. Other extensions include the studies

of cross-resistance, quiescence/cycling transitions, and a variety of different

treatment strategies, which are considered in Chapter 16.

15.3.1 The framework

The methodology developed in the previous section is a very useful modeling

framework for studying treatment of tumors with single and multiple drugs.

In this case, each cellular type (phenotype) is characterized by its resistance
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properties. For instance, if we consider one drug, then a cell can be either

resistant or susceptible to this drug. The system has only two types, and

the state space consists of vectors (i, j), where i, j ≥ 0 are integer numbers

denoting the number of susceptible and resistant cells respectively. We

assume that resistance to the drug is acquired by means of a mutation. This

process is reflected by the following (very simple) network, x0 →u x1. Here

u is the mutation rate, that is, the probability to create a resistant mutant

upon division, and the index k in notation xk characterizes susceptibility,

with k = 0 meaning susceptible, and k = 1 not susceptible (resistant) to

the drug.

We can generalize this process of resistance generation to the case of m

different drugs [Komarova and Wodarz (2005); Komarova (2006b)]. Each

cell can acquire resistance to each of the drugs, by means of a certain

mutation. There are m types of mutations, with rates u1, . . . , um. Each

mutation event corresponding to rate ui leads to a phenotype resistant to

drug i. We assume that resistance to one drug does not imply resistance to

another drug (in general, this is not always true and cross-resistance is often

observed, which is addressed in Chapter 16). In order to develop resistance

to all m drugs, a cell must accumulate m mutations. The total number of

types is 2m−1, and the system’s state is characterized by an integer-valued

vector of length 2m. In particular, there are

(

m

k

)

phenotypes resistant

to k ≤ m drugs. We label each phenotype by a binary number of length

m, where “1” indicates resistance to the drug corresponding to its position

and “0” indicates susceptibility. For example, if m = 3 (see figure 15.2),

then type 000 is fully susceptible, phenotype 111 is fully resistant, and

type 101 is resistant to drugs number 1 and 3 and it is susceptible to drug

number 2.

In the context of drug treatment, the death rate of cells, ds, is comprised

of their natural death date, Ds, which is equal to the death rate in the

absence of treatment, and possibly a drug-induced death rate, Hs. We have

ds = Ds +Hs.

For the wild-type cancer cells we assume that the corresponding rates satisfy

L0 > D0, so that the colony grows in the absence of treatment. The ratio

0 ≤ D0/L0 < 1 defines the turnover of cancer cells. The values D0/L0 ≪ 1

correspond to low turnover, low death cancers, whereas values D0/L0 ≈ 1

describe extremely high-turnover, slow-growth cancers.
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In addition to the natural death rate, cells can be subject to an ad-

ditional, drug-induced death rate, Hs. There are many ways to model

drug-induced death rates. For instance, we could assume that each drug

a cell is susceptible to increases its death rate by a certain amount, so the

more drugs a cell is resistant to, the higher its death rate. To model partial

resistance, we could assume that even “maximally resistant” cells have a

residual drug-induced death rate. However, here we will adopt a simpler

framework. We assume that if a cell is resistant to all the drugs applied,

then its drug-induced death rate is simply zero. On the other hand, if a cell

is susceptible to at least one of the drugs, then its drug-induced death rate

is equal to a constant, H , which has the meaning of the intensity of therapy.

The more complicated scenarios described above can also be incorporated

in the model, see e.g. [Katouli and Komarova (2010)].

15.3.2 Treatment regimes

Let us denote by t∗ the time when treatment begins. The timing of

treatment, that is, the value t∗, is related to the tumor size at the start

of treatment, N . In the simplest case we can assume a deterministic

relationship,

N = M0e
(L0−D0)t∗ , (15.9)

where all the types in the absence of treatment are assumed to divide and

die with the same rates given by L0 and D0. This is an approximation,

which is made throughout this chapter and also Chapter 16. Its conse-

quences are explored in detail in [Komarova et al. (2007)].

In the simplest case, we envisage a one-stage treatment, which begins at

a given time-point, t∗. More complex processes consisting of several stages

are considered in Chapter 16.

When applying the method of characteristics in the context of cancer

treatment (Section 15.2.5), one needs to keep in mind that the coefficients

in system (15.7) are time-dependent. The reason for this is that the death

rate of cells, ds, depends on whether treatment is applied or not. In the

simplest case, we have the following 2-stage process: for 0 < t < t∗ no

treatment is applied, such that ds = Ds. We call this regime the pre-

treatment stage. At time t = t∗, therapy starts and continues for all

values of t ≥ t∗, such that ds = Ds +Hs. This is the treatment stage.

We would like to calculate the function Ψ(ξ̄0, . . . , ξ̄n; t∗ + t̄), that is, the
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characteristic function at time t̄ after the start of therapy. In this case

we have two sets of equations for characteristics of type (15.7), one with

“pre-treatment coefficients” and the other with “treatment coefficients”.

In order to solve this problem, we can employ the following simple

but superficially counterintuitive algorithm. First, we solve the system

of ODEs for characteristics with treatment coefficients, with the initial

conditions given by ξ0(0) = ξ̄0, . . . , ξn(0) = ξ̄n, and obtain the solution

ξ0(t̄), . . . , ξn(t̄). Next, we use these values as the initial condition for the

system with pre-treatment coefficients, and get the solution of that at

time t∗, ξ0(t∗), . . . , ξn(t∗). The result is then given by

Ψ(ξ̄0, . . . , ξ̄n; t̄) = ξn(t∗)
M0 .

The reason for this time-reversal is the fact that the equations for char-

acteristics are used to trace the trajectories back to the initial conditions.

This is consistent with the standard 1st order PDE techniques.

15.3.3 Probability of extinction and treatment success

As explained above, the function Ψ(0, 1, . . . , 1; t) has the meaning of the

probability that at time t, no cells of type “An” exist. We will call this

quantity “the probability of non-production” (of resistance); it is given

by

Pnon−prod(t) = Ψ(0, 1, . . . , 1; t) = ξ0(t)
M0 ,

where M0 is the type cells, and functions ξi(t) satisfy system (15.7) with

initial conditions

ξ0 = 0, ξi = 1, 1 ≤ i ≤ n.

The probability of extinction, that is, the probability that there are

zero cells of each type at time t, can be defined as

Pext = Ψ(0, 0, . . . , 0; t) = (ξ0(t))
M0 ,

where ξn(t) is the solution of the system (15.7) with different initial

conditions,

ξ0(0) = ξ1(0) = . . . = ξn(0) = 0.

Note that in the regime of treatment, the probability of extinction,

as t → ∞, coincides with the long-time limit of the probability of non-

production of a resistant mutant,

lim
t→∞

Pext = lim
t→∞

Pnon−prod.
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The function Ψ(0, . . . , 0; t) is a monotonically increasing function, which

equals zero for t = 0, and steadily approaches a horizontal asymptote.

The function Ψ(0, 1, . . . , 1; t) is not necessarily monotonic. It starts at

one for t = 0, can drop to a minimum and then climb up and approach

the same asymptote from below. In other scenarios, it can be a mono-

tonically decreasing function of time (e.g. for D = 0). The reason for a

non-monotonic behavior is this. As treatment starts at t = 0, there are

no mutants, and then some resistant mutants may be produced quickly,

while the population of cells is still large. Later on, the susceptible popu-

lation decreases dramatically, so no new resistant mutants are produced,

but there is a natural death rate for the mutants which may lead to

accidental extinction of the mutant colony before it reaches a significant

size. Once the resistant colony grows, the chance of its spontaneous ex-

tinction approaches zero, and thus the probability to have a resistant

mutant stabilizes at a constant level.

The quantities Pext and Pnon−prod are related to the probabilities of

treatment success and failure. The probability of treatment failure can

be defined as

Pfailure(t) = 1− ξM0
0 .

To define the probability of treatmnet success, we note that the quantity

ϕ0,...,0(t) = Ψ(0, . . . , 0; t) is the probability of having zero cells of all types

at time t. This probability includes (i) the scenario where the colony goes

extinct spontaneously, and (ii) the scenario where the tumor grows and

is subsequently treated successfully. The latter process has the meaning

of the probability of treatment success. For small mutation rates, the

probability that scenario (i) occurs can be approximated as (D0/L0)
M0 .

We have,

ϕ0,...,0(t) = (D0/L0)
M0 + (1− (D0/L0)

M0)Psuccess(t),

where M0 denotes the initial number of wild-type cells, and L0 and

D0 are division and death rates of susceptible (wild-type) cells before

treatment starts. Thus we have

Psuccess(t) =
ξM0
0 (t)− (D0/L0)

M0

1− (D0/L0)M0
. (15.10)

15.3.4 Symmetric coefficients

All the resistant types can be separated into classes such that in each

class k, all the types are resistant to exactly k drugs (and susceptible
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to m − k drugs). For each k, the class consists of all variables ξs such

that the binary numbers s contain exactly k nonzero entries. Therefore,

we can denote by ξk, with 0 ≤ k ≤ m, the class of variables describing

resistance to k drugs. Let us suppose that within each class, the birth

and death rates are equal, and also that all mutation rates are equal to

each other. Because of this symmetry assumption, it does not matter

which k drugs we pick. The total number of distinct equations in this

case is not n = 2m + 1, but m+ 1:

ξ̇k = Lk(1−(m−k)u)ξ2k+[(m−k)Lkuξk+1−(Ls+dk)]ξk+dk, 0 ≤ k ≤ m.

(15.11)

We can further simplify the description by assuming a fully symmetrical

case, where all the rate coefficients are the same for all types and all

drugs.

15.4 Example: the case of two drugs

Let us suppose that the treatment is a combination of m = 2 drugs.

Therefore we can distinguish four phenotypes, “A00”, “A10”, “A01” and

“A11”. The Kolmogorov forward equation is given by:

ϕ̇i00,i10,i01,i11 =

[

ϕi00−1,i10,i01,i11L00(i00 − 1)(1− u1 − u2 − u12) +

ϕi00,i10−1,i01,i11L10(i10 − 1)(1− u2 − u12) +

ϕi00,i10,i01−1,i11L01(i01 − 1)(1− u1 − u12) + ϕi00,i10,i01,i11−1L10(i11 − 1)

]

+

[

i00(u1ϕi00,i10−1,i01,i11 + u2ϕi00,i10,i01−1,i11 + u12ϕi00,i10,i01,i11−1)

+i10(u2ϕi00,i10,i01,i11−1 + u12ϕi00,i10,i01,i11−1)

+i01(u1ϕi00,i10,i01,i11−1 + u12ϕi00,i10,i01,i11−1)

]

+

[

d00ϕi00+1,i10,i01,i11 + d10ϕi00,i10+1,i01,i11 +

d01ϕi00,i10,i01+1,i11 + d11ϕi00,i10,i01,i11+1

]

−
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ϕi00,i10,i01,i11

[

i00(L00 + d00) + i10(L10 + d10)

+i01(L01 + d01) + i11(L11 + d11)

]

. (15.12)

In this master equation, the first term in square brackets on the right

hand side comprises all the processes of faithful cell division, the second

term in square brackets includes all the mutation events, the third one

represents all the cell death events, and the fourth term corresponds to

no change in the system’s state.

15.4.1 Equations for the moments

From the master equation, information about all the moments can be

extracted. In particular, the equations for the mean number of cells in

each class can be written. Let us denote

x00(t) =
∑

ϕi00,i10,i01,i11(t)i00, x10(t) =
∑

ϕi00,i10,i01,i11(t)i10,

x01(t) =
∑

ϕi00,i10,i01,i11(t)i01, x11(t) =
∑

ϕi00,i10,i01,i11(t)i11,

where the summation is performed over all the four indices. Then we

have:

ẋ00 = [L00(1− u1 − u2)− d00]x00, (15.13)

ẋ10 = [L10(1− u2)− d10]x10 + L00u1x00, (15.14)

ẋ01 = [L01(1− u1)− d01]x01 + L00u2x00, (15.15)

ẋ11 = [L11 − d11]x11 + L10u2x10 + L01u1x01. (15.16)

These equations can be obtained directly from the master equation; for

example, the first equation is nothing but equation (15.12) multiplied

by i00 and summed over all the indices. The initial conditions can be

written as

x00(0) = M0, x10(0) = x01(0) = x11(0) = 0. (15.17)

In other words, we assume that at time zero, there are M0 fully-

susceptible cells, and no mutants are initially present. The deterministic

equations obtained in this way can help one reason about the expected

dynamic of the colony growth and resistance generation. Equations of

this type are used, for example, in [Komarova and Wodarz (2007); Ka-

touli and Komarova (2011)]. However, they cannot address questions



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 290

290 Dynamics of cancer: mathematical foundations of oncology

of the probability of treatment success. To quantify the likelihood of a

successful treatment outcome, we need to use the stochastic approach,

which is described next.

15.4.2 Equations for the characteristics

The probability generating function is defined in accordance with equa-

tion (15.5),

Ψ(ξ00, ξ10, ξ01, ξ11; t) =
n
∑

s=0

ϕi00,i10,i10,i11(t)ξ
i00
00 ξi1010 ξ

i01
01 ξ

i11
11 .

The equations for the characteristics are as follows:

ξ̇11 = L11ξ
2
11 − (L11 + d11)ξ11 + d11, (15.18)

ξ̇10 = L10(1− u2)ξ
2
10 + [L10u2ξ11 − (L10 + d10)]ξ10 + d10, (15.19)

ξ̇01 = L01(1− u1)ξ
2
01 + [L01u1ξ11 − (L01 + d01)]ξ01 + d01, (15.20)

ξ̇00 = L00(1− u1 − u2)ξ
2
00

+ [L00(u1ξ10 + u2ξ01)− (L00 + d00)]ξ00 + d00, (15.21)

with general initial conditions (15.8). Solutions of this system with the

initial conditions

ξ00 = ξ10 = ξ01 = ξ11 = 0 (15.22)

are used to calculate the probability of treatment success. Equations

(15.18-15.21) can be solved recursively. Let us assume the absence of

treatment (ds = Ds). We make the change of variables,

ξs = − Ẋs

Ls (1− us,out)Xs
, 0 ≤ s ≤ n (15.23)

and obtain a Riccatti-type equation for Xs:

Ẍs +



Ls



1−
∑

j

us,out
j ξj



+Ds



 Ẋs + Ls

(

1− us,out
)

DsXs = 0.

(15.24)

Note that the solution, Xs, depends of the functions ξj , the variables

downstream from the node s. For Ds 6= 0, only the first of the equa-

tions, the one for X11, can be solved analytically because there are no

variables downstream from node (11), and we have a Riccatti equation
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with constant coefficients. All the rest of the equations in general have

to be solved numerically.

One way to get some analytical insights is to suppress the dynamics

of type “A11”, such that the equation for ξ11 becomes

ξ̇11 = 0. (15.25)

In this case the quantity

1− ξs(t)

stands for the probability to create at least one mutant of type “As”

by time t; note that this mutant may have died away by time t, or

it may have created offspring: because of equation (15.25) we do not

distinguish between these scenarios. From initial conditions (15.22) we

have ξ11(t) = 0, and the two equations for the variables corresponding

to resistance to one drug can be solved analytically. These variables

correspond to the indices s that contain only one nonzero entry. We

have,

ξ01 = − b1 +Ab2e
(b2−b1)t

L01(1− u1)(1 +Ae(b2−b1)t)
, (15.26)

where

A = −b1 + L01(1− u1)

b2 + L01(1− u1)
,

and b1 > b2 are roots of the quadratic equation,

b2 + (L01 +D01)b+ L01(1− u1)D01 = 0. (15.27)

Similarly, ξ10 is obtained by changing u1 → u2, L01 → L10, and D01 →
D10.

To get the answer for ξ00, these expressions should be substituted in

equation (15.21) to continue the recursion. Only a solution by numerical

integration is possible, unless further simplifying assumptions are made.

15.5 Mutant production before and during treatment

15.5.1 General theory

At what stage are mutants predominantly generated: before the start of

treatment, or after therapy is applied? Let us introduce two quantities,
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P ↑(N) and P ↓(N), in order to be able to characterize and compare the

production of mutants before therapy and during therapy.

To simplify the description, we will assume the symmetry in coeffi-

cients described in Section 15.3.4, so that the number of equations for

m drugs is m+ 1.

Pre-existence of resistant mutants. Let us suppose that we can

switch off the mutation rate during therapy, and calculate the probability

of non-extinction (which is the same as the probability to have resistant

mutants as t → ∞). Let us find the probability to have mutants in the

limit when t → ∞. We have the following systems of equations. Before

start of treatment,

ξ̇m = Lξ2m − (L +D)ξm +D, (15.28)

ξ̇i = L(1− iu)ξ2i + (iLuξi+1 − (L+D))ξi +D, 0 ≤ i < m, (15.29)

and upon the start of therapy,

ξ̇m = Lξ2m − (L +D)ξm +D, (15.30)

ξ̇i = L(1− iu)ξ2i − (L+D +H)ξi +D +H. 0 ≤ i < m. (15.31)

In order to solve this general problem, we need to implement the method

described in Section 15.2.5. We are interested in the quantity

P ↑(N) = lim
t̄→∞

Ψ(0, 1, . . . , 1, t∗ + t̄).

The meaning of P ↑ is the probability to develop resistance, as t → ∞, if

mutations only happen before the start of treatment.

First we solve system (15.30-15.31) and find its limiting behavior.

Then we use the steady-state values for all the variables as the initial con-

dition for system (15.28-15.29). The quantity describing pre-existence of

resistant mutants can be calculated as

P ↑(N) = 1− ξ0(t∗)
M0 , t∗ =

1

L−D
ln(N/M0).

This corresponds to the probability to have at least one fully resistant

mutant as t → ∞, given that the size of the colony at the start of

treatment is N , and no further mutants are produced during treatment.

Generation of mutants during treatment. In order to characterize

the role of the treatment phase in the generation of resistance, we will

switch off the mutation rates during the growth (pre-treatment) phase,
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and turn them back on once treatment starts. The simplest way in

which the problem can be formulated is as follows. We consider only the

treatment phase, and start from N susceptible cells (no pre-existence).

We have

ξ̇m = Lξ2m − (L+D)ξm +D, (15.32)

ξ̇i = L(1− iu)ξ2i + [iLuξi+1 − (L+D +H)]ξi

+ (D +H), 0 ≤ i < m, (15.33)

ξi(0) = 0, 0 ≤ i ≤ m. (15.34)

The quantity characterizing the generation of mutants during therapy is

given by

P ↓(N) = 1− lim
t→∞

ξ0(t)
N .

This function has the meaning of the probability to have created viable

mutants in the course of therapy, starting from N fully-susceptible cells.

We can calculate the limiting behavior of solutions of system (15.32-

15.34), as time goes to infinity, by using the method described in Section

15.3.3. We have, under the assumption that u ≪ (L−D), that

lim
t→∞

ξm =
D

L
, (15.35)

lim
t→∞

ξi = 1− i!(L−D)Li−1ui

(D +H − L)i
, 0 ≤ i < m. (15.36)

If the total number of drugs used is m, then the probability of mutant

generation with no pre-existence is given by

P ↓(N) = 1−
(

1− m!(L−D)Lm−1um

(D +H − L)m

)N

. (15.37)

We observe that the larger the initial size, the lower is the probability of

treatment success.

In the rest of this section we will calculate and compare the quantities

P ↑ and P ↓. If it turns out that P ↑(N) > P ↓(N), then we can conclude

that resistance is generated at a higher intensity before therapy, and the

contribution of the therapy phase is less important. The opposite result,

P ↑(N) < P ↓(N), would tell us that most mutants are generated after

therapy begins. The biological consequences of the results are discussed

in more detail in the next chapter.
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15.5.2 The case of one drug

Mutant production during treatment. The expression for the prob-

ability to create resistance during therapy is obtained from equation

(15.37):

P ↓(N) = 1−
(

1− (L−D)u

H − (L−D)

)N

. (15.38)

In the analysis below it is convenient to use the following threshold value

of treatment intensity, H :

Hc = 2(L−D). (15.39)

For H = Hc, we have

P ↓(N) = 1− (1− u)
N ≈ 1− e−Nu. (15.40)

For values of H larger than the threshold, H > Hc, the corresponding

probability to create resistance is lower.

Mutant production before treatment. In the case of one drug, we

have only two equations in system (15.28-15.29). The equation for ξm =

ξ1 can be solved exactly. However, the equations for ξ0 will contain non-

constant coefficients and cannot be solved analytically (unless D = 0).

Therefore, instead of solving systems (15.28-15.29, 15.30-15.33) directly,

we will use a different method.

Let us first suppress the dynamics of the resistant mutant (ξ̇1 =

0) and calculate the probability of mutant generation during the pre-

treatment phase. We have ξ1 = 0, and thus the equation for ξ0 reads

ξ̇0 = L(1− u)ξ20 − (L +D)ξ0 +D.

This Riccatti equation can be solved to yield

ξ0 = −β1 +Aβ2e
(β2−β1)t

a(1 +Ae(β2−β1)t)
,

with

β1,2 =
1

2

(

−(L+D)±
√

(L +D)2 − 4LD(1− u)
)

,

and

A = −β1 + L(1− u)

β2 + L(1− u)
.
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Taking the highest order terms in u, we obtain,

ξ0(t) = 1− (e(L−D)t − 1)Lu

L−D
≈ 1− NLu

M0(L−D)
, (15.41)

and the probability to have created a mutant is simply

Pcreate = 1− ξM0
0 ≈ LuN

L−D
.

This quantity has the meaning of the probability to have produced at

least one resistant mutant by the time the colony has reached size N (this

mutant and all its progeny may or may not be present at this point).

This is a very intuitive result, as the probability to have created

a mutant is given by the total number of cell divisions, N , times the

mutation rate, u. The total number of cell divisions from one cell to N

cells is roughly given by N = NL/(L−D), which results in the formula

for Pcreate above.

Now, each resistant mutant created during the pre-treatment phase,

will give rise to a lineage of progeny, with the growth rate L and the death

rateD, which is not affected by the presence of the drug. The probability

for a lineage starting from one cell to survive (not to go extinct as t → ∞)

is given by Psurvive = 1 −D/L. Therefore, the probability to generate

resistance during the pre-treatment phase is given by

P ↑(N) = PcreatePsurvive = Nu.

This result was obtained by intuitive reasoning, and it obviously holds

only when Nu < 1. A more rigorous derivation for the quantity P ↑ is

possible, and is presented next.

Let us consider one equation,

ẋ1 = Lx2
1 − (L+D)x1 +D, x1(0) = 1,

where the quantity 1 − x1(t) has the meaning of the probability that a

one-hit colony survives until time t. We have,

1− x1(t) =
L−D

L−De−(L−D)t
. (15.42)

Using doubly-stochastic processes, we can calculate the probability that

the colony has at least one mutant by time t,

1− exp

{

−uL

∫ t

0

N(t′)[1 − x1(t− t′)] dt′
}

,
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where the multiplier uN(t′) reflects the production of mutants and the

quantity (1− x1) corresponds to the survival probability of each mutant

lineage. We set N(t) = M0e
(L−D)t. Integration gives

1− exp

{

−Nu
L

D

(

Dt+ ln
Le−Dt −De−Lt

L−D

)}

. (15.43)

This quantity corresponds to the probability to have at least one resistant

mutant by the time when therapy starts. Note that in the limit D → 0

we obtain

P ↑ = 1− e−u(N(t)−M0),

which coincides exactly with the result by [Goldie and Coldman (1983a)].

Equation (15.43) is a generalization of the formula by [Goldie and Cold-

man (1983a)] for nonzero death-rates.

In order to calculate the quantity P ↑(N), we need to find the limiting

behavior of the probability to have a mutant as t → ∞, and also to ignore

the production of new mutants during the treatment stage. Instead of the

time-dependent formula (15.42) we can use its limiting value at t → ∞,

1−D/L, so we have

P ↑(N) = 1−e

{

−M0uLe(L−D)t
∫

t
0
e−(L−D)t′ (1−D

L ) dt
′

}

= 1−e−Nu. (15.44)

We can see that this is exactly equal to expression (15.40).

Probability of treatment success. Let us solve the two-stage problem

for the case of one drug, m = 1. Therapy starts at the time, t∗ (and

the colony size reaches the value N). Before start of treatment, we have

system (15.28-15.29), and during treatment, we have equations (15.32-

15.33).

In order to solve this problem, let us use the method of Section

15.2.5. We first need to find the limiting values of ξi under the treatment

conditions (system (15.32-15.33)), as given by formulas (15.35-15.36),

and use these as the initial conditions for equations (15.28-15.29), in

the interval 0 ≤ t ≤ t∗, where t∗ is the time when treatment starts.

The quantities [ξi(t∗)]M0 are the probabilities of treatment success with

therapy starting at time t∗.
Equation (15.28) for ξ1(t) with initial condition (15.35) can be solved

exactly to give

ξ1(t) =
D

L
.
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The equation for ξ0 is a constant coefficient Riccatti equation,

ξ̇0 = L(1− u)ξ20 + (Du − (L+D))ξ0 +D, ξ0(0) = 1− (L −D)u

D +H + L
.

We can write down the exact solution:

ξ0=
Ae(D[1−u]−L)tL+D(1−u)

L(1−u)[1+Ae(D[1−u]−L)t]
, A=

(1+u)(L−D)(D+H−L[1+u])

Lu[H+(D−L)u]
.

The limiting behavior is given by

lim
t∗→∞

ξ0 =
D

L
.

In the case where Nu < 1, we can take the limit u → 0 and find an

approximate formula for ξ0(t),

ξ0 ≈ 1−
(

He(L−D)t

H +D − L
− 1

)

u.

Setting

e(L−D)t =
N

M0
,

and neglecting 1 compared to this quantity, we can write down the prob-

ability of treatment success,

Psuccess(N) ≈
(

1− HNu

(H +D − L)M0

)M0

. (15.45)

We can see that larger values of D correspond to a higher probability of

treatment success. If therapy is very strong such that H ≫ L −D, we

have a very simple formula,

Psuccess(N) ≈
(

1− N

M0
u

)M0

,

i.e., treatment success does not depend on D for strong therapies.

15.5.3 The case of two drugs

Mutant production during treatment. From expression (15.37) we

obtain in the case m = 2,

P ↓(N) = 1−
(

1− 2(L−D)Lu2

(H − (L−D))2

)N

.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 298

298 Dynamics of cancer: mathematical foundations of oncology

Although Nu may or may not be a small quantity, it is safe to assume

that Nu2 ≪ 1, which allows the following approximation:

P ↓(N) =
2(L−D)Lu2N

(H − (L−D))2
. (15.46)

Mutant production before treatment. In the case of two drugs,

let us calculate the probability of double-mutant creation as a function

of the tumor size. Again, we will suppress the dynamics of the double

mutants, such that ξ0 ≡ 0, and only keep track of the creation process.

We will make the approximation of a doubly-stochastic process, whereby

generation of each one-hit mutant leads to a birth-death process, all of

which are independent and identically distributed (see also [Moolgavkar

et al. (1988); Iwasa et al. (2004b)]). We will assume that the total

population size changes according to the deterministic exponential law,

N(t) = M0e
(L−D)t (see [Komarova et al. (2007)] for extended discus-

sion). Generalizing the notion of a filtered Poisson processes described

e.g. in [Parzen (1962)], we have,

Ψ(0, 1; t) = exp

[

−2Lu

∫ t

0

N(t′) (1− Φ(0, 1; t− t′)) dt′
]

, (15.47)

where LuN(t′)dt′ is the probability to create a one-hit mutant in the

time-interval (t, t + dt), and 1 − Φ(0, 1; t − t′) is the probability that

the lineage resulting from that mutant will give rise to the production

of a double-mutant in the time from the creation of the lineage, t′, to
the current time, t. The latter probability is given by 1 − ξ1(t − t′),
see formula (15.41). The factor 2 in the exponent comes from the two

possibilities of acquiring two hits. We have,

Pcreate = 2

(

Lu

L−D

)2

N

(

ln
N

M0
− 1

)

. (15.48)

The method of a doubly-stochastic process is a good approximation as

long as the one-hit mutants are “rare”. Multiplying Pcreate by the prob-

ability of each double-mutant to survive, Psurvive = 1−D/L, we obtain

P ↑(N) =
2Lu2N

L−D

(

ln
N

M0
− 1

)

, (15.49)

that is, this quantity now depends on the turnover rate, D/L. Note

that formula (15.49) breaks down as D → L as the doubly-stochastic

approximation is not applicable in this regime anymore; at this moment

we do not have a method to handle the regime D ≈ L.
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15.6 Outlook

In this chapter we developed a mathematical formalism which allows us to

calculate the probability of resistance generation, in the setting of single-

or multi-drug treatment. This framework only includes the basics. For

example, we only considered a one-phase treatment with a combination

therapy in the absence of cross-resistance. The main point is to show the

reader how to approach the basic problem. More complicated scenarios can

be studied by using similar methods.

In Chapter 16 we will demonstrate how this framework can be applied

to approach several important questions in drug treatments of cancer. We

will consider multi-stage therapies, include the existence of quiescent cells,

and examine the problem of cross-resistance.

Problems

Problem 15.1. Derive the partial differential equation (15.2) from the Kol-

mogorov forward equation (15.1), in the case of a one-drug treatment.

Problem 15.2. The same in the case of 2-drug treatments: Derive the

partial differential equation and the equations for characteristics, (15.13-

15.16), from Kolmogorov forward equation (15.12). How does the descrip-

tion simplify in the case of symmetric coefficients, Ls = L, Ds = D, etc.?

Problem 15.3. In the general case of m-drug treatments: Derive the

partial differential equation (15.6) from the Kolmogorov forward equation

(15.4). Show that the rewrite rules listed in Section 15.2.4 hold.

Problem 15.4. Apply the method of characteristics outlined in Section

15.2.5 to the PDE in the case of one-drug treatment, (15.2). Find the

probability of treatment success assuming that at t = 0, there are M0 sus-

ceptible mutants, and treatment starts at time t∗.

Problem 15.5. Show that the probability of spontaneous colony extinction

starting from M0 cells in the absence of treatment is given by (D0/L0)
M0 ,

where L0 and D0 are division and death rates of the cells. This result was

used in the derivation of formula (15.10). (Hint: this is similar to the

gambler’s ruin problem.)

Problem 15.6. Research project. Determining the number of mutations
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in a growing colony of cells is related to the famous Luria-Delbrk̈ distribu-

tion. Find out about the history and major benchmarks in the efforts to

solve this problem.

Problem 15.7. Research project. In this book, approximation (15.9)

was used, which postulates a deterministic connection between the total cell

number and the time elapsed. What are the consequences of this assumption

(see [Komarova et al. (2007)])?

Problem 15.8. Numerical project. Use any programming language to

set up a simulation that calculates the probability of treatment success, given

a treatment with m drugs that begins at time t∗ (with approximation (15.9)).

Assume that at t = 0, the colony consists of M0 susceptible mutants. First

solve the system for the charactetristic equations under the treatment con-

ditions (for infinitely long treatment, the result can be found from the stable

equilibrium of the system for characteristics). Then use this result as the

initial condition for the system with pre-treatment coefficients.
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Chapter 16

Evolutionary dynamics of drug

resistance in chronic myeloid leukemia

One of the most important clinical problems in cancer research is deeply

connected to the principles of evolutionary biology: the emergence and pre-

vention of resistance against drug treatment (e.g. [Diaz Jr et al. (2012)]).

Cancer cells which are resistant to specific cancer therapies are generated by

random mutations which develop as the cancer cells divide without control.

In the presence of treatment, these resistant cells are selected, resulting in

continued disease progression despite drug therapy. Computational anal-

ysis of the evolutionary dynamics of cancer cells in vivo can allow us to

understand how drug resistance emerges, and thus how resistance can be

prevented.

The mathematical tools that are required to study these aspects have

been described in some detail in the previous chapter. Here, we will describe

a detailed application of this framework to the targeted treatment of chronic

myeloid leukemia (CML), and highlight a variety of biologically and clini-

cally relevant insights that have been generated by mathematical models.

CML is a good case study for model application because the initiation and

progression of the disease is relatively well-understood, and because this

was the first case where targeted drug therapy showed significant success

in the treatment of patients. The chapter starts with a brief introduction

to CML biology and targeted treatment. It subsequently summarizes how

mathematical models have given rise to important insights. This discussion

focusses on a few particular studies. For other important work in the field,

the reader is referred to the literature, e.g. [Lenaerts et al. (2010); Dingli

et al. (2008, 2010); Michor et al. (2005a); Roeder and Glauche (2008); Moore

and Li (2004); Horn et al. (2008); Roeder et al. (2006)].i The current chap-

ter concentrates on biological lessons learnt rather than on mathematical

techniques that were the subject of the previous chapter.

301
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16.1 Biology of CML

CML is a cancer of the hematopoietic system, i.e., a cancer of the blood

(leukemia) [An et al. (2010); Melo et al. (2003); Melo and Barnes (2007)]. It

is characterized by an unregulated growth of myeloid cells in the bone mar-

row, and an accumulation of those cells in the blood. CML is not the most

common leukemia, accounting only for about 20% of all leukemia cases. Ac-

cording to the Surveillance Epidemiology and End Results (SEER) statis-

tics, from 2005-2009, the median age at diagnosis for CML was 64 years

of age [Howlader et al. (2012)]. The disease process can be divided into

three phases: the chronic phase, the accelerated phase, and the blast crisis.

The disease starts with the chronic phase which tends to be asymptomatic.

The number of cells grows relatively slowly leading to an elevated blood

cell count, and the cells are characterized by a relatively high degree of

differentiation. The chronic phase eventually develops into the accelerated

phase, where the cell population expands more rapidly and the propor-

tion of undifferentiated cells (blasts) increases. Finally, the blast crisis is

characterized by the explosive growth of blast cells that show low degrees of

differentiation. It presents a growth pattern similar to acute leukemia, lead-

ing to severe pathology and death. While CML was first described in the

late 19th century, the defining characteristic of this tumor was discovered

in 1960: 90% of affected individuals carry the Philadelphia chromosome,

which is the result of a fusion between abelson (ABL) tyrosine kinase gene

on chromosome 9 and the break point cluster (BCR) gene on chromosome

22. The BCR-ABL fusion gene is an oncogene that is thought to maintain

and drive the disease.

16.2 Therapy and targeted small molecule inhibitors

The aim of therapy is to reduce the disease burden. In this respect, three

types of therapy responses have been considered [An et al. (2010)]: the

hematological response, the cytogenetic response, and the molecular re-

sponse. A complete hematological response is defined by the normalization

of the blood cell counts. The cytogenetic response is the most common

assessment of treatment, quantifying the number of Philadelphia chromo-

some positive metaphases over time. An absence of measurable levels of

these cells is called a complete cytogenetic response, while a major cyto-

genetic response is defined by a prevalence of Philadelphia chromosome
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positive cells of about 0-35%. The molecular response quantifies the num-

ber of BCR-ABL mRNAs and is the most sensitive method to monitor the

treatment response. A complete molecular response is defined by the ab-

sence of detectable BCR-ABL mRNAs, measured by reverse transcriptase

polymerase chain reaction (RT-PCR). A major molecular response occurs

if a 3-log reduction of the BCR-ABL/BCR level occurs compared to the

median pre-treatment levels.

The initial treatment approach involved the use of chemotherapeutic

agents [Bolin et al. (1982)] which normalized the blood cell count but

failed to alter disease progression to blast crisis. Treatment outcomes

BCR-ABL 

ATP 

substrate 
BCR-ABL 

substrate 

phosphates tyrosine 
Imatinib 

tyrosine 

BCR-ABL 
substrate 

Imatinib 

tyrosine 

(a) (b) 

(c) 

Fig. 16.1 Schematic explaining the concept behind the tyrosine kinase inhibitor ima-
tinib in the treatment of CML. (a) BCR-ABL tyrosine kinase binds ATP and transfers
phosphates from ATP to tyrosine residues on substrates. This leads to downstream ef-
fects that cause unregulated cellular behavior. (b) Tyrosine kinase inhibitors, such as
imatinib, block ATP from binding to BCR-ABL tyrosine kinase, thus preventing unreg-
ulated behavior. (c) A point mutation in the ATP binding site of the BCR-ABL tyrosine
kinase changes the shape of the binding site (indicated by a triangle), thus blocking the
drug from binding.
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were significantly improved by the introduction of recombinant interferon

alpha (rIFN-α) therapy [Group (1997)]. Hematopoietic stem cell trans-

plants also offered benefits and could even lead to cures, although they are

associated with a high risk of morbidity and mortality [An et al. (2010)].

The breakthrough in CML treatment came with the development of small

molecule inhibitors of the tumorigenic BCR-ABL tyrosine kinase. The first

such small molecule inhibitor was imatinib mesylate, also referred to as ima-

tinib, STI-571, or Gleevec [Deininger et al. (2005); Deininger and Druker

(2003)]. The principle according to which this drug works is as follows.

The BCR-ABL gene product is a constitutively active kinase that binds

ATP and transfers phosphate from ATP to tyrosine residues, thereby lead-

ing to aberrant cellular behavior. Imatinib is designed to specifically block

the binding of ATP to the BCR-ABL tyrosine kinase, thereby preventing

continued functioning of the tumor cells (figure 16.1).

The use of imatinib in the chronic phase of the disease leads to very

good treatment results, demonstrating impressive hematological, cytoge-

netic, and molecular responses. Drug treatment typically leads to a bi-

phasic decline in the BCR-ABL transcript number [Michor et al. (2005b);

Roeder et al. (2006)]. Initially a fast phase of decline is observed, followed

by a slower phase. These dynamics can be explained with a number of

different hypotheses [Michor et al. (2005b); Roeder et al. (2006); Komarova

and Wodarz (2007); Wodarz (2010)]. Patients with complete cytogenetic

and molecular responses also showed prolonged progression-free survival,

indicating that the course of the disease had been altered [An et al. (2010)].

However, in patients that were treated during blast crisis, the outcome was

less impressive. A major obstacle for treatment success was resistance to

imatinib [Shannon (2002); Shah et al. (2004); Tauchi and Ohyashiki (2004);

Kantarjian et al. (2006); Branford et al. (2003); Volpe et al. (2009); Bozic

et al. (2012)]. Most commonly, resistance is conferred by point mutations

that prevent the binding of the drug to its target (figure 16.1). In a minor-

ity of cases, gene amplification events can also lead to drug resistance. The

consequent increase in the level of BCR-ABL protein levels allows ongoing

oncogenic activity in the presence of the drug. Subsequent, second gener-

ation inhibitors have been developed to broaden the therapeutic approach

and to address problems arising from drug resistance. These include the

drugs dasatinib and nilotinib [Leitner et al. (2011); Kantarjian et al. (2011);

Weisberg et al. (2007)].

There are many point mutations that confer resistance against a par-

ticular inhibitor. Many of them specifically confer resistance to one (e.g.
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imatinib) but not the other inhibitors (e.g. dasatinib and nilotinib). How-

ever, one of the most common mutations found in blast crisis patients, the

T315I mutation [O’Hare et al. (2006)], confers resistance to imatinib, dasa-

tinib, and nilotinib. This phenomenon is referred to as “cross-resistance”.

It can considerably complicate treatment options. A number of drugs

are under development that are aimed at overcoming the T315I mutation

[An et al. (2010); Giles et al. (2007)]. Examples of such drugs include

ponatinib, a pan-BCR-ABL inhibitor, and the aurora kinase inhibitor MK-

0457, which have documented activity against cells containing the T315I

mutation.

16.3 The computational framework

In order to understand how resistant mutants are generated during can-

cer progression and treatment, we use the mathematical framework that

was introduced in the previous chapter. The following provides a basic

summary, and the basic concepts are also explained schematically in figure

16.2. Cancerous cells are described by a stochastic birth-death process with

a positive net proliferation rate. If we denote the growth rate of cells as L

and the death rate as D, the condition L > D corresponds to clonal expan-

sion. We further assume that cancer is detected when the colony reaches

a certain size, N , at which moment therapy starts (treatment size). The

effect of therapy is modeled by the drug-induced death rate, H , which shifts

the balance of birth and death such that the colony shrinks. That is, the

net cell death rate is now larger than the birth rate, D + H > L. If all

cancerous cells were susceptible to the drug, then therapy would inevitably

lead to eradication of cancer. However, in the course of cancer progression,

mutations can lead to the generation of cell types which are resistant to

the drug. This is assumed to occur with a probability u upon cell division.

Before the tumor is treated, the mutant will behave identically compared

to the wild-type. During therapy, however, the resistant phenotype will

proliferate while the wild-type will be killed with a rate H . For simplic-

ity, we assume that mutant cells which are not resistant to all drugs in

use are killed with the same rate as wild-type cells. Alternatively, it can

be assumed that such mutants are partially resistant (i.e., are affected less

than the wild-type but more than the fully resistant phenotype [Schabel Jr

et al. (1983, 1979)]. However, analysis indicates that this does not alter our

results significantly.
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More than one drugs can be used simultaneously or in sequence in order

to reduce the probability of treatment failure due to drug resistance. The

rational behind using multiple drugs is quite simple. In the absence of

cross-resistance, in order to become resistant to m drugs, the cell has to

accumulate m mutations. Much of the discussion below is devoted to the

analysis of multiple drug treatments, and what protocols can optimize the

likelihood of treatment success.

time 

treatment 

treatment 

pre-treatment 

pre-treatment 

N 

N 

(i) without resistance 

(ii) with resistance 

Fig. 16.2 Schematic representation of the assumptions which underlie the modeling
framework. (i) Without resistance, the cancer grows exponentially, and treatment starts
at tumor size N . Upon treatment, the tumor size shrinks until it is driven extinct. (ii)
If mutations can occur, resistant cell clones are generated. This can occur both before
and during treatment. As therapy is applied, a resistant cell clone can expand while the
wild-type declines. Therefore, treatment fails to drive the cancer extinct. Treatment
phases are indicated by shading.
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16.4 When do resistant cells emerge?

This is a fundamental question which has important implications for the

development of treatment strategies with the aim to prevent failure due

to resistance. On the one hand, the growth of a tumor involves many cell

divisions during which mutations can occur. In addition, many cancers are

characterized by some form of genetic instability which accelerates the rate

at which cells acquire mutations during this growth phase. Hence, it is

possible that by the time the tumor reaches a certain size, there will be

one or more cells resistant to therapy. Upon start of treatment, these cells

may proliferate and grow to large numbers, preventing the eradication of

the tumor. The computational framework of Section 15.5 has allowed us to

quantify the probability that at least one cell is resistant before the start of

treatment. On the other hand, once therapy starts, cells can also acquire

mutations. While the death rate of the tumor cells is now larger than their

rate of division, cell divisions, and thus mutations, can still occur. The

probability that at least one resistant mutant is generated during the phase

of treatment is also calculated in Section 15.5.

The upshot of these calculations is that the treatment phase does not

contribute significantly to the generation of drug resistance. If resistance

poses a problem during treatment, the model suggests that resistant cells

must have pre-existed before the start of therapy. The situation is slightly

different depending on whether treatment occurs with a single drug, or

whether several drugs are used in combination:

(1) If the cancer is treated with a single drug, then there is a parameter

region in which the generation of resistant cells is more likely to oc-

cur during the treatment phase than during the growth phase before

therapy. This occurs if the efficacy of treatment is weak relative to the

growth rate of the cancer. In our notation explained above, it occurs

if H < 2(L−D). However, we argue that this is not relevant for prac-

tical purposes. This condition means that the number of cell divisions

during treatment is higher than the number of cell divisions during the

growth phase before treatment. In other words, the time it would take

to eradicate the tumor by drugs in the absence of resistance is larger

than the age of the tumor upon start of therapy. This seems like an

unrealistic parameter regime.

(2) If two or more drugs are used, the treatment phase becomes even less

significant in the context of the generation of resistant cells. That is,
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in all parameter regions, resistance is more likely to pre-exist than to

be generated during therapy. The reason lies in the dynamics of the

intermediate mutants. During the growth phase, a cell with a single

resistant mutation will undergo clonal expansion, which facilitates the

generation of further mutations. During the treatment phase, a cell

with a single resistant mutation has a negative growth rate (as it is

susceptible to one or more drugs). This makes it unlikely that addi-

tional mutations can be attained before the clone is extinct.

Because the treatment phase can be ignored, we note that the chances

of treatment failure due to resistance are not influenced significantly by the

efficacy of treatment (assuming that treatment is strong enough to remove

the cancer in the absence of resistance).

16.5 Cancer turnover and the evolution of resistance

Let us consider the number of cell divisions which occur during the growth

phase until the tumor has reached size N . This is roughly given by ν =

NL/(L − D). We can see that if D = 0 or D ≪ L, the number of cell

divisions is approximately given by ν ≈ N . On the other hand, if D is close

to L (D ≈ L), many more cell divisions are required to reach size N , since

a high death rate cancels the effect of cell divisions. For convenience, we

will call the scenario where D ≈ L a high-turnover cancer. In contrast, we

will call the scenario where D = 0 or D ≪ L a low-turnover cancer.

How does the turnover rate of the cancer influence the emergence of

resistant cells during the growth phase and thus the pre-existence of re-

sistance? The answer depends on how many drugs are used to treat the

cancer.

(1) If the cancer is treated with a single drug, then the probability that a

resistant mutant exists before therapy is not dependent on the turnover

rate of the cancer. That is, high-turnover and low-turnover cancers be-

have in exactly the same way as far as the pre-existence of mutants is

concerned. An intuitive explanation is as follows. A higher turnover

cancer requires more cell divisions to reach size N , and thus more mu-

tants are created. At the same time, however, the death rate of the

mutants is also increased. The two effects cancel each other out. Simi-

lar results were also observed in related and earlier mathematical mod-

els by Goldie and Coldman who did pioneering work in this field of

research.
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(2) If two or more drugs are used, the probability that resistant mutants

pre-exist does depend on the natural death rate of the tumor cells, D.

In other words, the dynamics are different for high-turnover and low-

turnover cancers. The higher the turnover rate of the cancer cells, the

higher the probability that a resistant mutant exists when the cancer

has reached size N . The larger the number of drugs used, the stronger

this dependency. To explain this, consider the process of mutant gen-

eration. In the case of one drug, the increase in mutant production is

canceled out exactly by the increase in mutant death as the turnover

rate of the tumor cells is increased. This does not hold for two or more

drugs. Now, an increase in the turnover rate of the tumor cells in-

creases the production rate of resistant mutants more than it increases

the death rate of the mutant cells. The net effect is that a resistant

mutant is more likely to be present at the time of treatment if the

turnover rate of the tumor cells is higher. In general, if the number of

drugs is increased, a higher natural death rate of tumor cells, D, con-

tributes increasingly to the production of resistant mutants and thus

to treatment failure.

This gives rise to the important insight that cancers which are charac-

terized by a high turnover rate (i.e., the death rate of cells is close to their

division rate) might be difficult to control with combination therapy. This

is discussed further in the next section.

16.6 Combination therapy and the prevention of resistance

The combination of several drugs together seems like an obvious strategy

to prevent treatment failure as a result of resistance. If a one cell has to

accumulate a sufficient number of mutations in order to become fully resis-

tant, it is less likely that a resistant cell will exist upon start of treatment.

If there is no cross-resistance between different drugs, then a cell has to

acquire m mutations in order to become resistant to m drugs (see figure

15.2). Combination therapy has shown great success in the context of HIV

infection [Maldarelli et al. (2007)]. In a typical HIV infected patient, we

can expect that viruses are present which are resistant to one or two drugs.

However, it is extremely unlikely that a virus exists which is resistant to

three drugs [Ribeiro et al. (1998)]. This provides the rationale for using a

combination of three drugs to achieve long-term suppression of the virus
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by drug therapy. In the following, we discuss how combination therapy af-

fects the chance of treatment failure in the context of cancers treated with

targeted small molecule drugs.

We ask at which tumor size N the probability of treatment failure

reaches a threshold value, which we denote by δ. This means that if we
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Fig. 16.3 Log tumor size, N , at which treatment failure is observed, depending on the
parameters of the model. (a) Dependence on the rate at which resistant mutants are
generated, u. The higher the value of u, the lower the tumor size at which treatment
fails. The larger the number of drugs, the stronger this dependency. (b) Dependence
on the natural death rate of tumor cells, D. The higher the value of D (i.e., the higher
the turnover of the cancer), the lower the tumor size at which treatment fails. The
higher the number of drugs, and the higher the rate at which resistant mutants are
generated, u, the more pronounced this trend. (c) Dependence on the number of drugs,
n. Increasing the number of drugs increases the tumor size at which treatment fails. The
higher the mutation rate, however, the lower the advantage gained from adding further
drugs. Baseline parameter values were chosen as follows: L = 1, δ = 0.01.
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start treatment at tumor size N , failure will be observed in a fraction δ

of the patients, while treatment will be successful in a fraction 1 − δ of

patients. For now we assume that an acceptable goal is to treat 99% of

patients successfully, that is δ = 0.01. In other words, if more than 1%

of patients shows resistance, we consider the treatment strategy a failure.

So we ask at which tumor size treatment failure is expected to occur. In

particular, we ask how the number of drugs used in combination influences

the tumor size when resistance is observed. According to the model, this

depends on the mutation rate, u, and the turnover rate of the tumor cells

(value of D relative to L) (see figure 16.3).

(1) The higher the rate at which resistance mutations are acquired, u,

the less the effect of adding another drug, and the more difficult it

becomes to treat (figure 16.3). Consider the most optimistic scenario

when D = 0 (table 16.1). Assume that cancers can reach up to sizes of

1013 cells [McKinnell (1998)]. Then, the physiological point mutation

rate, u = 10−9, requires two drugs, values of u between u = 10−8 and

10−7 require three drugs, u between 10−6 and 10−5 require four drugs,

and u = 10−4 requires six drugs (table 16.1). By extrapolation, 10

drugs are needed if u = 10−3, and about 30 drugs are needed if u =

10−2. Therefore, if resistance mutations can occur at levels which are

significantly higher than the physiological mutation rate (e.g. because

genetic instability promotes the generation of resistance mutations),

combination therapy is unlikely to be advantageous.

(2) A high turnover rate of cancer cells also abolishes benefits which can

be obtained from combination therapy (figure 16.3(b)). In the context

of combination therapy, resistance arises at lower tumor sizes as the

death rate of tumor cells, D, is increased. In fact, if the death rate

of tumor cells, D, comes close to their division rate, L (high turnover

cancer), then the effect of combining multiple drugs disappears (figure

16.3(b)). The size at which resistance arises converges to the same

value, no matter how many drugs are used. In this case, the frequency

with which cancers arise is low because they have a high chance to go

extinct spontaneously, but when they do arise, the chances of complete

tumor eradication are very slim. Because high turnover cancers are

likely to grow very slowly, however, drug therapy could still increase

the life-span of the patient by reducing the number of tumor cells for

a prolonged period of time. Re-growth of resistant cells to large sizes

would take a long time.
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This leaves us with the following message: combination therapy will

provide benefits for preventing treatment failure due to resistance, except

in the following cases: (i) The cancer has a high turnover rate. Such cancers

are likely to grow slowly. (ii) Resistance mutations against the drugs in use

can be generated at rates which are several orders of magnitude higher than

the physiological mutation rate.

Table 16.1 The log10 size at which resistance becomes a problem (i.e., treatment
fails in more than 1% of patients), depending on the number of drugs and the
rate at which resistant mutants are generated, u. If we assume that the cancers
cannot grow beyond 1013 cells without causing death, a treatment regime can
be considered acceptable if resistance only becomes a problem at sizes which are
greater than 1013 cells (i.e., log10 of the size > 13). The parameter regimes where
this occurs and treatment is expected to be successful are indicated by bold font
in the table. The calculations assume L = 1, D = 0.

1 drug 2 drugs 3 drugs 4 drugs 5 drugs 6 drugs

u = 10−4 2.01 4.95 7.46 9.81 12.06 14.23
u = 10−5 3.01 6.73 10.13 13.36 16.70 20.02
u = 10−6 4.01 8.61 12.91 17.04 21.49 25.83
u = 10−7 5.01 10.53 15.75 20.8 26.17 31.43
u = 10−8 6.01 12.47 18.62 24.6 30.90 37.10
u = 10−9 7.01 14.42 21.36 28.23 35.61 42.86

16.7 Parameters and CML

While the treatment of CML with the targeted drug imatinib (Gleevec) has

shown significant success especially during the chromic phase of the disease,

treatment of blast crisis often fails because of drug resistance [McCormick

(2001)]. In accordance with our framework it has been reported that mu-

tants might pre-exist the initiation of treatment rather than being generated

during the treatment phase [Gambacorti-Passerini et al. (2003); Nardi et al.

(2004)]. Data suggest that two main types of mutations confer resistance

to the cells [McCormick (2001); Gambacorti-Passerini et al. (2003); Gorre

et al. (2001)]: the amplification of BCR-ABL, or a point mutation in the

target protein. Genetic instability [Loeb (2011)] is likely to promote the

occurrence of gene amplifications which have been measured to occur in

cancer cells at a rate of 10−4 per cell division [Tlsty et al. (1989)]. On the

other hand, the point mutation rate is about 10−9 per base per cell division
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[Loeb et al. (1974)]. However, the frequency of gene amplifications is much

less than that of point mutations among patients [Gambacorti-Passerini

et al. (2003)]. Part of the reason might be that BCR-ABL amplifications

are costly to the cells in the absence of treatment [Tipping et al. (2001)].

Including this assumption into the modeling framework, however, shows

that even if this fitness cost is very significant, amplifications should still

be observed more often than point mutations. However it is thought that

the level of resistance is a function of the number of extra copies of the

BCR-ABL gene. Therefore, if a significant degree of resistance requires 2

or more amplification events (but only one point mutation event), we ex-

pect that a resistant mutant is generated faster by point mutation than by

gene amplification, explaining the observed frequencies.

Thus, for prevention of drug resistance we assume that resistant mu-

tants are generated maximally with a point mutation rate between 10−9

and 10−8 per base pair per generation. Experiments with susceptible CML

cell lines have shown viability measurements (in the absence of treatment)

of about 90% [Tipping et al. (2001)]. From this we can roughly calculate

that the relative death rate of cancer cells is in the range ofD/L = 0.1−0.5.

In this parameter region, we find that a combination of three drugs should

prevent resistance and ensure successful therapy even for advanced cancers

(table 16.2). This assumes that the size of advanced cancers is less than

1013 cells, which derives from white blood cell count measurements which

range from 105 to 106 per microliter of blood in blast crisis. The findings of

[Nowicki et al. (2004)] indicate that BCR-ABL might increase the amount

of reactive oxygen species and thus the rate of point mutations. As long as

the elevation of the mutation rate is less than a hundred fold, our results

remain robust (table 16.3).

In summary these calculations provide optimistic results for the treat-

ment of CML with a combination of different targeted small molecule

inhibitors.

Table 16.2 log10 size at which resistance becomes a problem, depending
on the number of drugs and the turnover rate of the cancer cells (value of
D/L).

1 drug 2 drugs 3 drugs 4 drugs 5 drugs

D/L = 0.1 5.95 12.34 18.45 24.38 30.19
D/L = 0.5 5.95 12.13 17.99 23.69 29.26
D/L = 0.9 5.95 11.48 16.70 21.74 26.66
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Table 16.3 Same as in table 16.2, except that we assume that resistant
mutants are generated with an elevated rate of u = 10−6.

1 drug 2 drugs 3 drugs 4 drugs 5 drugs

D/L = 0.1 4.00 8.55 12.80 16.89 20.86
D/L = 0.5 4.00 8.31 12.37 16.20 19.93
D/L = 0.9 4.00 7.68 11.07 14.40 17.40

16.8 Tumor architecture and tumor stem cells

So far, we have treated the growing cancer cells as a homogeneous popula-

tion without taking into account tissue architecture. It is, however, widely

believed that tumors are characterized by an architecture that is similar to

that found in healthy tissue. Thus, the tumor is thought to be maintained

by a small number of tumor stem cells, while the bulk of the tumor is made

up of more differentiated cells that cannot maintain a tumor or initiate new

tumor growth [Visvader and Lindeman (2008); Reya et al. (2001); Dalerba

et al. (2007)]. Further, tumor stem cells seem to share certain characteris-

tics with their healthy counterparts. With tissue stem cells, cellular quies-

cence is a central process that regulates the kinetics of cellular proliferation

and tissue homeostasis, especially in stem cells [Pelayo et al. (2006); Arai

and Suda (2007); Moore and Lemischka (2006); Fuchs et al. (2004); Weiss-

man (2000); Cheshier et al. (1999)]. If stem cells are not needed to divide

and to replenish tissue cells, they temporarily stop to progress through the

cell cycle until further divisions are required. While primitive cancer cells

proliferate with a higher rate than healthy cells, data indicate that they can

still undergo quiescence, both during tumor growth and during treatment.

This has been demonstrated in CML [Holyoake et al. (1999, 2001)]. It has

even been suggested that in CML, therapy induces quiescence in primitive

cancer cells [Graham et al. (2002)]. Quiescent cells in turn are not affected

by the drug and are therefore shielded from therapy-induced elimination

[Graham et al. (2002)]. Stem cell dynamics and the distinction between

active and quiescent tumor stem cells can be important key factors influ-

encing the dynamics of tumor growth [Ducrot et al. (2011); Gyllenberg and

Webb (1991)] and the evolutionary dynamics of drug-resistant cell variants.

This is explored in the current section.

We use an extension of the stochastic model of Chapter 15 that includes

a population of primitive, proliferating CML cells, and a population of qui-
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escent CML cells [Komarova and Wodarz (2007); Komarova (2007)]. The

cells enter a quiescent state with a rate α, and quiescent cells re-enter the

cell cycle with a rate β. Quiescent cells do not divide or die and are not

susceptible to any drug activity. In addition to these processes, CML cells

can mutate to give rise to acquired drug resistance with a probability u, as

before.

The conclusion that resistance is most likely due to the pre-existence

of resistant mutants before therapy still holds in the context of quiescent

tumor stem cells. Interestingly, while quiescence prolongs the time until

therapy reduces the number of cells to low levels or extinction, the therapy

phase is irrelevant for the evolution of drug resistant mutants. If treat-

ment fails as a result of resistance, the mutants will have evolved during

the tumor growth phase, before the start of therapy. Thus, prevention of

resistance is not promoted by reducing the quiescent cell population dur-

ing therapy (e.g., by a combination of cell activation and drug-mediated

killing).

The probability of treatment failure as a result of resistance in the

context of a single drug is not affected by quiescence parameters (figure

16.4(a)). To put this in quantitative terms, the probability to have at least

one resistant mutant at size N is independent of α and β.

This is demonstrated by the following argument. Let us assume for

simplicity that there is no cell death in the colony (all the arguments can

be extended to nonzero death rates). In the model, mutants are generated

during cell division. The probability of resistance is the same as the proba-

bility to generate mutants, which is defined by the number of cell divisions

(and the constant mutation rate). It is easy to see that the total number of

cell divisions until the tumor reaches size N does not depend on the quies-

cence parameters α and β. For instance, if there is no cell death, then the

number of cell divisions to expand from one cell to N cells is exactly N −1,

no matter what the quiescence rates are, see figure 16.5. It is of course

the case that the higher the rate at which cells enter quiescence, and the

lower the rate at which cells exit quiescence, the longer it takes the tumor

to grow to size N . However, the actual number of cell divisions to reach

size N is unchanged by quiescence. Therefore, the probability to produce

resistant mutants is independent of quiescence rates.

The situation is different when considering resistance against two or

more drugs. For treatment with multiple drugs, the probability of treat-



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 316

316 Dynamics of cancer: mathematical foundations of oncology

ment failure as a result of resistance depends on the quiescence parameters

(figure 16.4(b-d)). The higher the rate of entry into the quiescent state

(larger α) and the lower the rate of exit from the quiescent state (lower

β), the higher the probability of treatment failure. This has important

implications for understanding the principles underlying potential combi-

nation treatments and for developing computational methods to predict the

number of drugs needed to overcome drug resistance.

0 5 10 15 20

0.2

0.4

0.6

0.8

1

β
0.0                         0.25                         0.5                         0.75                        1.0

(a)

P
ro

b
 (

n
o

 r
es

is
ta

n
t 

m
u

ta
n

ts
 a

t 
si

ze
 N

)

2.5 5 7.5 10 12.5 15 17.5 20

0.93

0.94

0.95

0.96

0.0                        0.25                         0.5                            0.75                           1.0

β

α increases

(b)

P
ro

b
 (

n
o

 r
es

is
ta

n
t 

m
u

ta
n

ts
 a

t 
si

ze
 N

)

2.5 5 7.5 10 12.5 15 17.5 20

0.93

0.94

0.95

0.96

0.97

0.98

0.0                        0.25                         0.5                            0.75                           1.0

β

α increases

(c)

P
ro

b
 (

n
o
 r

es
is

ta
n
t 

m
u
ta

n
ts

 a
t 

si
ze

 N
)

2.5 5 7.5 10 12.5 15 17.5 20

0.94

0.95

0.96

0.97

0.98

0.99

0.0                        0.25                         0.5                            0.75                           1.0

β

α increases

(d)

P
ro

b
 (

n
o
 r

es
is

ta
n
t 

m
u
ta

n
ts

 a
t 

si
ze

 N
)

Fig. 16.4 The probability of having no fully-resistant mutants at size N for different
quiescence parameters. Each figure (a)-(d) shows the probability of no resistant mutants
as a function of β (the rate of cell awakening), for 10 different values of α (the rate
at which cells become quiescent), α = 0.1, 0.2, . . ., and 1.0. (a) Treatment with m = 1
drugs; all the curves corresponding to different values of α are the same. The parameters
are N = 107 and u = 10−7. (b) Treatment with m = 2 drugs, N = 1011, u =
10−7. (c) m = 3 drugs, N = 1013, u = 10−6. (d) m = 4 drugs, N = 1013, u =
10−5. In all plots, we took M0 = 103, L = 1, D = 0. The reason we used different
values of N and u for different values of m is because we chose the parameter regime
corresponding to intermediate values of the probability of treatment success. When this
probability is nearly 100% or nearly 0, the dependence on α and β is less apparent and less
meaningful.
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16.9 Short-term versus long-term treatment strategies

The previous sections examined the number of targeted drugs that need

to be used in combination in order to overcome treatment failure as a re-

sult of drug resistance. If a good response to treatment is achieved, it is

likely that the drug will have to be taken for substantial amounts of time

in order to sustain the response. The combination of multiple drugs, how-

ever, can increase side-effects, which might not be possible to endure in the

long term. The question arises whether the number of drugs can be reduced

over time once the tumor burden has declined to a certain degree. This was

investigated mathematically [Komarova and Wodarz (2009)] by using the

mathematical framework of Chapter 15, taking into account the tumor cell

tissue architecture and the occurrence of tumor stem cell quiescence. This

analysis showed that one or more drugs can be removed once the number

of tumor cells is reduced significantly, without compromising the chances of

sustained tumor suppression. Which drug to remove first depends on the

(a)

(b)(b)

Fig. 16.5 A schematic demonstrating the number of cell divisions that is needed for a
colony of cells to expand from 1 cell to N cells (in the figure, N = 6). Empty circles
represent cycling cells, and gray circles represent quiescent cells. Columns depict states
of the colony in consecutive moments of time. The changes are marked by arrows. Two
arrows stemming from one cell represent a cell division. A single arrow represents either
a cell becoming quiescent or a quiescent cell waking up. (a) A colony without quiescence.
(b) A colony with quiescence. In both cases we can see that it takes exactly N − 1 = 5
cell divisions to expand to size N ; however the process in (b) contains more “events”
and it takes a longer time.
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number of mutations in the BCR-ABL gene that confer resistance to the

drugs, as well as on how effectively the drugs inhibit Bcr-Abl protein tyro-

sine kinase activity and inhibit tumor growth. The model further showed

that the number of CML cells at which the number of drugs can be re-

duced does not correlate with the two phases of decline of the BCR-ABL

transcript numbers. Neither does it depend much on kinetic parameters of

CML growth, except for the mutation rates at which resistance is gener-

ated (figure 16.6). This is a significant finding because even without any

information on most parameters, and using only the data on the number

of cancer cells and the rate at which resistant mutants are generated, it is

possible to predict at which stage of treatment the number of drugs can be

reduced. These calculations provide a clinically useful guide for the devel-

opment of long term treatment strategies that initiate with a combination

of different drugs.
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Fig. 16.6 The number of drugs needed for the probability of treatment success 1 − δ
with δ = 0.01, as a function of u and N . Other parameters are: L = 1, D = 0, H = 2,
α = 0.01, β = 0.05, M0 = 100. The jagged appearance of the boundaries between the
domains with different values of m is due to a discrete method used to calculate it, and
can be smoothed by using a simulation with a higher resolution.
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16.10 Cross-resistance and combination therapy

The initial model described here has shown how the combination of three

or four tyrosine kinase inhibitors can potentially overcome drug resistance

even during the advanced blast crisis stage of CML. It was assumed that

mutations that confer resistance against one drug do not confer resistance

against any of the other drugs in use. In addition to imatinib, the second

generation inhibitors dasatinib and nilotinib are alternative inhibitors of the

BCR-ABL gene product. More than 50 mutations have been identified that

confer CML resistance against one of the drugs (in particular imatinib), but

not against the others [Rix et al. (2007)]. However, one particular mutation

has been identified, called T315I [O’Hare et al. (2007)], which confers resis-

tance to all three drugs: imatinib, dasatinib, and nilotinib. This obviously

complicates the use of combination therapy. In the following, we exam-

ine the effectiveness of combining the currently used inhibitors under the

assumption that the T315I mutation confers cross-resistance to all drugs,

while on the order of 10-100 mutations confer resistance to only one drug

in the combination. We also explore the consequences of combining exist-

ing drugs with new drugs that can potentially inhibit T315I mutant cells

[O’Hare et al. (2007)].

Compared to the simple framework of Chapter 15, cross-resistance is

characterized by the existence of mutants simultaneously resistant to more

than one drug. In terms of the combinatorial mutation diagrams (see figure

15.2), this manifests itself in “short-cuts” - mutational steps that create

resistance to several drugs at once, see figure 16.7. The existing medical

knowledge on the types of mutations for CML drugs can be incorporated

in the rates of mutations u. We assume that ki mutations give rise to

resistance to drug i without affecting resistance properties with respect

to the other drugs (the index i takes values 1, 2, 3 for the three drugs).

This translates into ui = kiu, where u is the basic point mutation rate.

Similarly, we denote by uij with i 6= j the rate of mutations leading to cells

simultaneously resistant to drugs i and j (for three drugs, there are three

such rates, u12, u13, and u23). Finally, u123 is the rate of generation of

mutants conferring resistance to all the three drugs.

As an example relevant to CLM treatments, we assume that there are

of the order ki = k ∼ 10 − 100 different point mutations that can confer

resistance against only one of the drugs. There is also one particular mu-

tation which can confer resistance against all the drugs in use (k123 = 1).
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Fig. 16.7 Combinatorial mutation diagram for different resistance classes. Treatment
with m = 3 drugs. One-drug mutations are denoted by thin solid arrows, two-drug

mutations by dashed arrows, and three-drug mutations by a thick solid arrow. The

mutation rates are indicated next to each arrow.

Different drugs can possess different degrees of cross-resistance. For

combinations of three drugs, there are five possibilities, depending on pair-

wise cross-resistance properties of the drugs and the triple-resistance prop-

erties. These five cases can be captured by means of five possible three-drug

cross-resistance networks, see figure 16.8. In the figure, each drug is repre-

sented as a node of the network. Each pair of circles is connected if there

exists a mutation event that confers resistance against the two drugs. Dif-

ferent lines (single, double, dashed) correspond to different mutations. In

figure 16.8, the drugs are denoted by the numerals “1”, “2”, and “3”. If a

cross-resistance network has no connecting lines (the leftmost diagram in

figure 16.8) this means that no cross-resistance takes place. If the lines in a

cross-resistance network are different, this means that different mutants are

resistant against each pair of drugs. If the lines are the same, then triple

cross-resistance takes place (the rightmost cross-resistance network in figure

16.8). This case is exemplified by the drugs imatinib, dasatinib, and nilo-

tinib. By setting some of the double-resistance and triple-resistance rates
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to zero, we can model any of the five possible cross-resistance networks by

using the diagram of figure 16.7.

Non−cross−res. 
drugs resistance

Partial cross− Partial cross−
resistance

Complete
pairwise 
cross−resistance

Triple
cross−
resistance

1
2

3

1 1 1 1
2 2

2
2

3 3 3 3

u  =u  =u  =0 131312 23 u     >0123u   =0 u   ,u    ,u   >0u   =u  =012 12 231312

Fig. 16.8 All possible three-drug resistance networks. The number of nodes corresponds
to the number of drugs used. Connected nodes correspond to the existence of a cross-

resistant mutation. Identical connecting lines indicate that the same mutation confers
resistance to all connected drugs. Different (single, double, dashed) lines correspond to

different mutations.

First, consider the combination of two drugs. For reference, figure 16.9

shows the probability of treatment success for one and two drugs assuming

the absence of cross resistance. This is compared to various cross-resistance

scenarios. While the probability of treatment success is lower in the pres-

ence than in the absence of cross resistance, combining two drugs with

cross-resistance clearly improves the probability of treatment success rela-

tive to the use of only one drug. The reason is that it is much more likely

to acquire a mutation that confers resistance against only one drug than

to acquire the doubly-resistant mutation. This is because only one specific

mutation can lead to cross-resistance, while many mutations can confer

resistance against a single drug. Hence, for most mutations, combination

therapy will not be challenged by cross-resistance. On a qualitative level,

this result does not depend on the kinetic parameters of the model, such

as the division and death rates. The advantage of combining two drugs

becomes insignificant if the number of mutations that confer resistance to

only one drug is very low (figure 16.10(a)), or if the rate at which the

doubly-resistant mutants are acquired is relatively high. If the number of

mutations that confer resistance against only one drug is on the order of

50 − 100, and if the rate at which resistant mutations are generated is on

the order of 10−6 − 10−9, however, the model suggests that combining two

drugs is advantageous to the patient, even if cross-resistance is possible.
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Fig. 16.9 The probability of treatment success is plotted as a function of the colony
size, N . Different curves correspond to different combination treatments, with one, two
and three drugs. The cross-resistance networks are presented by using connected and
disconnected nodes, see figure 16.8. Simulation parameters are as follows: u = 10−9,
k = 100, M0 = 100, D/L = 0.5, H/L = 3. The symbols “I”, “D”, “N”, and “K”
stand for “imatinib”, “dasatinib”, “nilotinib” and a future drug which can bind to T315
mutants.

Next, consider a combination of three drugs, i.e., imatinib, dasatinib,

and nilotinib. The model shows that combining three drugs will not lead

to any further advantage compared to the combination of two drugs (figure

16.9). For triple combination therapy to be advantageous, most resistant

cells must harbor mutations that render them resistant against two of the

drugs (but not the third one). Accumulating two separate resistance muta-

tions, however, is a relatively rare event. It is much more likely that a cell

acquires the single cross-resistance mutation. Hence, triple combination

therapy does not improve the probability of treatment success compared to

double combination therapy. Triple combination therapy can only provide

an additional advantage if the number of mutations that confer resistance

against only one drug is unrealistically high (figure 16.10(b)). Assuming

reasonable values for the cellular division, death, and mutation rates, there

must be at least k = 1000 mutations that confer resistance against only one

drug for triple combination therapy to somewhat improve the chances of
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Fig. 16.10 The probability of treatment success is plotted as a function of the colony
size, N . (a) The number of non-cross-resistant mutations is low (k = 10) and the muta-
tion rate for cross-resistance is 10 times higher than in figure 16.9. Conclusion: combining
more than one cross-resistant drugs does not improve the chances of treatment success.
(b) The number of non-cross-resistant mutations is high, k = 104. Conclusion: combin-
ing three cross-resistant drugs improves the chances of treatment success compared with
two cross-resistant or non-cross-resistant drugs (which in turn is better than using only
one drug). The rest of parameters are as in figure 16.9.

treatment success. The improvement becomes significant for k = 10, 000 or

more mutations (figure 16.10(b)). For such high values of k we observe that

the effect of cross-resistance is insignificant and treatment failure occurs as

a result of mutations that confer resistance to one drug at a time. In this

case combining three drugs with triple cross-resistance gives a better out-

come than two drugs in the absence of cross-resistance (see figure 16.10(b)).
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Again, these results do not qualitatively depend on the kinetic parameters

of the model.

General cross-resistance networks have relevance for future generation

treatment options. If drugs are used that show no cross resistance with ima-

tinib, dasatinib, and nilotinib, such as VX-680, danusertib, and ponatinib

[Winter et al. (2012); Pinilla-Ibarz and Flinn (2012); Burley (2006); Carter

et al. (2005); Melo and Chuah (2007); Harrington et al. (2004); Young et al.

(2006); Duncan et al. (2008)], would it be advantageous to combine such a

drug with two or more drugs that do not inhibit the T315I mutation? Our

calculations show that it is advantageous to combine such a future genera-

tion drug (call it drug “K”) with two drugs that cannot act on the T315I

mutation, say, imatinib (I) and dasatinib (D). This is seen for example in

figure 16.9 where we compare the probability of treatment success for two

cross-resistant drugs with that for “pairwise cross-resistant” drugs. We ob-

serve that any of the pairwise cross-resistant combinations of three drugs

gives a significant improvement. Note that adding a third cross-resistant

drug does not improve the chances of successful therapy.

We can examine all possible resistance networks for three-drug ther-

apies, see figure 16.9. Let us suppose that there is some cross-resistance

between drug K and, say, I. In other words, even though the T315I mutation

does not confer resistance to K, there may be a different mutation which

makes the cell resistant to both K and I, but not to D. In this situation,

treating with I and K is obviously better than just treating with I (this

follows from our previous results), but what is interesting, adding D does

give an advantage in this case. Adding D will even give an advantage if

there is a third mutation which confers resistance to both K and D (but not

I). In other words, even though treating with three drugs characterized by

triple cross-resistance does not improve the chances of treatment success

compared to two such drugs, treating with three pairwise-cross-resistant

drugs is advantageous compared to treating with two such drugs.

16.11 Combination versus cyclic sequential treatment

In order to overcome resistance-induced treatment failure, we have so

far considered various combination therapy strategies. While combina-

tion therapies with targeted drugs are gaining some attention [Bozic et al.

(2013); Komarova and Boland (2013)], clinicians often consider the use of
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cyclic drug applications, where treatment is initiated with the first drug,

then the patient is switched to a second drug, and so on. Hence, it is impor-

tant to determine whether such cyclic treatment regimes lead to improved

treatment outcomes compared to single drug mono-therapy. This was in-

vestigated with mathematical models [Katouli and Komarova (2011)]. The

stochastic framework that was developed in the previous chapter and that

was used to study the effects of combination treatment can also be applied

to study cyclic treatment regimes. Cyclic drug treatments are assumed to

proceed as follows, see figure 16.11(a). Treatment starts at time t∗. Drug

1 is applied for a time-duration of ∆t1. Then the drug is discontinued and

replaced by drug 2. After time-duration ∆t2, drug 2 is in turn replaced by

drug 1. The total treatment duration is denoted by Ttreat and consists of

2N cycles of treatment (here the word “cycle” refers to a one-drug treat-

ment with drug 1 or 2).

∆ t2 ∆ t1 ∆ t2 ∆ t1∆ t1
∆ t2t*

No treatment Drug 1 Drug 2 Drug 1 Drug 2 Drug 1 Drug 2

Ttreat

time

u12u12

u2 u12+

u1 u12+

u2 u12+

u1 u12+

(a)

(b) Treatment with drug 1: Treatment with drug 2:
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Fig. 16.11 Cyclic two-drug treatments. (a) A cyclic treatment protocol. (b) The muta-

tion diagrams and drug-induced death rates for treatments with drug 1 and drug 2. The
resistance types are represented by circles with binary indices; the drug-induced death

rates are marked next to the circles; the mutation rates are indicated next to the arrows.

Mathematically, each treatment protocol corresponds to specific values

of the death rates, Ds, at different moments of time:

ds = Ds +Hs(t),

where as before, the coefficients Ds are natural death rates of the can-

cer cells, and Hs(t) are the drug-induced cell death rates. The functions
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Hs(t) depend on the particular treatment strategy used. As different drugs

are applied, the “strength” of each drug, which depends on the concentra-

tion of the drug in the patient’s blood, changes as some smooth function

of time. The exact shape of these functions, and therefore, the shape of

Hs(t), depends not only on the treatment strategy (that is, whether drugs

are applied in combination, or cyclically), but also on the way the drugs are

administered, and on how quickly they are absorbed. For example, it can

be assumed that Hs(t) for a susceptible class reaches a maximum sometime

after the drug is taken, and decays until the next administration of the drug.

However, we can simplify this picture by assuming that the functions Hs(t)

are piecewise constant. They are assumed to have a constant nonzero value

for all the susceptible classes as long as the patient is treated with a given

drug, and they become zero after the drug is discontinued. For the effects

of pharmacokinetics on the dynamics of treatment see [Gaffney (2005)].

This framework, which is based on [Day (1986)], can be used to de-

termine how different cyclic treatment strategies influence the chances of

treatment success by preventing the production of fully resistant mutants.

The mutation diagrams corresponding to the two different cycles (treat-

ment with drug 1 and treatment with drug 2) are shown in figure 16.11(b).

Depending on which drug is applied, different mutants are experiencing dif-

ferent drug-induced death rates. For example, during the cycle of the 1st

drug application, mutants of type (10) (that is, mutants resistant to drug 1

and susceptible to drug 2) are growing, and mutants of type (01) are killed

at rate H2. Similarly, during the cycle of the 2nd drug application, mutants

of type (10) are killed at rate H2, and mutants of type (01) are growing.

In figure 16.12 we plot the population sizes of the two partially-resistant

colonies, x10(t) (dashed lines) and x01(t) (solid lines), in the course of treat-

ment, for some fixed values of the parameters. In figure 16.12(a), treatment

starts with drug 1, and we can see that during the first cycle the colony

x01 which is susceptible to this drug, decays exponentially, while the colony

x10, which is resistant to this drug, grows. In the second cycle, when drug

2 is applied, colony x01 grows and colony x10 decays. In figure 16.12(b) we

present the scenario where the order of the drugs is switched (while all the

parameters are kept the same). We can see immediately that the dynam-

ics of mutant decay are sensitive to the order in which the two drugs are

applied.
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Fig. 16.12 Cyclic two-drug treatments. The deterministic dynamics of the populations
of partially-resistant mutants, x01 (solid lines) and x10 (dashed lines). (a) Worst drug
first (black lines), (b) best drug first (gray lines), (c) lines from panels (a) and (b)
are plotted together; also, the thin dotted lines present the same populations under a
combination treatment. The parameters are H1 = 3, H2 = 3.5, γ = 1, the total number
of cells at the start of treatment is N = 1011, u = 10−7, the numbers of partially-
resistant mutants at start of treatment are N01 = N10 = N logNu, and ∆t1 = ∆t2 =
logN/γ/50 ≈ 0.5. Neither of the two treatment strategies is optimal.

Before summarizing the model results about cyclic treatment protocols,

we note an important implication of our model. Combining two drugs in-

stead of using a cyclic treatment protocol will always correspond to a larger

probability of colony elimination. Figure 16.12(c) shows the dynamics of

the two partially-susceptible colonies under the cyclic treatment protocols

of figures 16.12(a) and (b) together with the dynamics corresponding to the

combination treatment where drugs 1 and 2 are applied simultaneously and

continuously (dotted lines). The drug-induced death rates of all types are

always smaller (or at least not larger) under combination treatment, thus

eliminating the two colonies at a faster rate.

With this in mind, the model suggests optimal cyclic treatment regimes

that reduce the probability of resistance-induced treatment failure com-

pared to singe drug mono-therapy. In this context, we need to distinguish

two different characteristics of the drugs: their potency and their activity

spectrum. By potency, we mean how effectively a drug kills cells that are

susceptible to the drug. Further, a drug is characterized by a broad activ-

ity spectrum if it is effective against a large spectrum of mutant cells. On

the other hand, a drug with a narrow activity spectrum is a more specific

agent, which is active against a relatively small number of cell variants.

We find that in order for a cyclic treatment to be effective, the drugs’

potencies must satisfy a certain condition, which we call the condition of
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“mutual strength” [Katouli and Komarova (2011)]. This condition states

that the strength of the two drugs involved must lie above a certain thresh-

old relative to the growth rate of the tumor cell population:

1

H1
+

1

H2
<

1

L−D
. (16.1)

For realistic parameters, drugs which are not mutually strong will yield very

poor probabilities of treatment success if applied cyclically. If the drugs

under consideration are characterized by similar activity spectra, then the

optimal treatment regime is to use the best drug first, but use the worst

drug for longer. This “best drug rule” also applies in the presence of cross-

resistance. If the drugs under consideration are characterized by similar

potency but different activity spectra, then the optimal treatment regime

is to use the less active drug first, and to use the more active drug for

longer. In general, this framework can be used to calculate optimal cycle

sequences and durations for given parameters such as drug strength, drug

potencies, and mutation rates. We would, however, again, like to point out

that no cyclic treatment regime can lead to better results than combina-

tion treatments, which is also supported by experimental data [Shah et al.

(2007)].

16.12 Summary

In this chapter, we described how the mathematical methodology developed

in the previous chapter can be used to gain clinically important insights into

the evolution of drug resistance against small molecule inhibitors, and to

design treatment regimes that overcome resistance and lead to sustained

suppression of the tumor. We started from a relatively simple model that

can be used to describe the blast crisis phase of CML, and found that in

the context of measured parameters, a combination of 3 drugs can success-

fully overcome the problem of drug resistance. We subsequently explored

how this framework can be extended to include a variety of other biological

aspects, such as tumor tissue architecture, the dynamics of tumor stem cell

quiescence and activation, and the evolution of simultaneous resistance to

multiple drugs. We explored treatment strategies under various circum-

stances, including the long-term application of therapy. Finally, we com-

pared combination treatments with sequential cyclic treatment approaches,

and described optimal cyclic treatment approaches that can lead to better

outcomes than monotherapies, although such cyclic approaches can never
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lead to better outcomes than combination therapies. These models have

given rise to a variety of clinically important insights, and can be improved

further by including more biological details.

Problems

Problem 16.1. Numerical project. Use the code written for Problem

15.8 to investigate how tumor turnover, D/L, influences the likelihood of

having resistant mutants at a given time.

Problem 16.2. Suppose there are i0 cycling susceptible cells and j0 qui-

escent susceptible cells in the population. Further suppose that there are i1
and j1 cycling and quiescent cells resistant to the drug (assuming m = 1).

Transition rates from cycling to quiescence and back are given by α and β

respectively. (a) Write down the Kolmogorov forward equation for the prob-

ability function ϕi0,j0,i1,j1(t) (see Section 15.2.4). (b) Define the probability

generating function to be

Ψ(ξ0, η0, ξ1, η1; t) =
∑

ϕi0,j0,i1,j1(t)ξ
i0
0 ξi11 ηj00 ηj11 ,

and derive the PDE it satisfies (see Section 15.2.4). (c) Write down the

equations for characteristics for ξ0, η0, etc (see Section 15.2.5).

Problem 16.3. Draw a mutation diagram with cross-resistance in the case

of m = 2, similar to the one in figure 16.7. Repeat the analysis of Section

15.4 including cross-resistance.

Problem 16.4. Research project. Find out about the research into ther-

apeutic agents that are active against T315 mutants.

Problem 16.5. Research project. Learn about the work by [Day (1986)]

and the “Worst drug first” rule.
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Chapter 17

Evolutionary dynamics of stem-cell

driven tumor growth

One of the first topics considered in this book were single-species growth

dynamics. We described various tumor growth laws, such as exponential

growth, logistic growth, Gompertzian growth, etc., and discussed various

data that can be fitted by those models. The basic models that describe

different tumor growth laws are often phenomenological in nature, i.e., they

do not have a particular mechanistic underpinning. In this chapter, we will

link different tumor growth laws to specific evolutionary processes that can

occur in stem cell driven cancers. In particular, we concentrate on the

evolution of escape from feedback regulatory mechanisms that normally

ensure tissue homeostasis. We will show how such an evolutionary model of

stem cell-driven tumors can predict the different observed patterns of tumor

growth, depending on the evolutionary pathways that lead to the escape

from feedback control and the consequent breakdown of tissue homeostasis.

Evidence suggests that tumors are maintained by a relatively small num-

ber of tumor stem cells or tumor initiating cells that have the potential to

divide indefinitely [Clevers (2011); Petersen and Polyak (2010); Wang et al.

(2010); Johnston et al. (2010)]. The rest of the tumor bulk is assumed to

be made up of more differentiated cells that can only undergo a limited

number of divisions [Clevers (2011); Al-Hajj et al. (2003)]. This notion is

supported by experiments where tumor cells are transplanted into immun-

odeficient mice, which show that a majority of cells fail to establish new

tumors and only a small, defined subset of cells is capable of sustained pro-

liferation [Bonnet and Dick (1997); Al-Hajj et al. (2003); Passegué et al.

(2003)]. In these experiments the subset of tumorigenic cells expressed

markers which are also expressed in healthy tissue stem cells. Hence, these

cells are thought to have certain stem characteristics that allow them to

self-renew and regenerate the tumor.

333
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Healthy human tissue is highly regulated to ensure homeostasis, with

feedback loops playing a fundamental role in this regard. In particular,

two types of feedback loops have been suggested to be crucial: Differenti-

ated cells secrete factors that inhibit the division of stem cells. In addition,

differentiated cells secrete factors that suppress self renewal of stem cells

and instead promote cell death following terminal differentiation [Lander

et al. (2009); Wu et al. (2003); McPherron et al. (1997)]. Strong evidence

for these feedback mechanisms has been found in the olfactory epithelium

[Lander et al. (2009); Wu et al. (2003)], but also in a variety of other tissues,

including striated muscle, liver, bone, central nervous system, hematopoi-

etic system, among others [McPherron et al. (1997); Daluiski et al. (2001);

Yamasaki et al. (2003); Tzeng et al. (2011); Elgjo and Reichelt (2004)].

As pointed out throughout this book, tumor formation occurs through

a multi-step process where cells sequentially accumulate random mutations

and epigenetic changes. Different types of cancers (depending on the tissue

of origin) tend to arise through different and specific mutational pathways of

varying complexity [Vogelstein and Kinzler (2004); Deininger et al. (2000)].

Tumor initiation and progression can involve key events, such as the emer-

gence of genetic instability that allows mutations to be accumulated faster,

or the acquisition of the angiogenic phenotype that enables the formation

of new blood supply, among other processes [Weinberg]. Despite this great

complexity and heterogeneity in the mechanism of tumor formation, there

is ample evidence that escape from feedback regulation is a key ingredient

in the formation of most, if not all, stem-cell driven tumors (reviewed in

[Vogelstein and Kinzler (2004)]).

17.1 The model

The dynamics of tissue regulation through feedback loops has been studied

in several cell lineages including the hematopoietic system, the lympho-

cytic system, the olfactory epithelium and the colon crypt [Johnston et al.

(2007); Marciniak-Czochra et al. (2009a); Lander et al. (2009); Bocharov

et al. (2011)]. To study the escape from feedback, we introduce a ba-

sic computational model of feedback-regulated tissue homeostasis that is

based on previously published and experimentally validated work [Lander

et al. (2009)] (figure 17.1(a)). This model [Rodriguez-Brenes et al. (2011)],

described by equation (17.1), takes into account two populations: stem

cells, S, which have unlimited reproductive potential, and differentiated
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Fig. 17.1 Feedback-regulated tissue homeostasis and cell growth properties in the ordi-
nary differential equations model. (a) Stem cells divide at a rate v producing either two
stem cells with probability p or two differentiated cells with probability (1 − p). Differ-
entiated cells die at a rate d and produce factors that inhibit self-renewal and division in
stem cells. (b) Inhibited growth. If only differentiation feedback is lost, the population
of stem cells and differentiated cells grows without bound at a slower than exponential
rate. (c) Uninhibited growth. If both feedbacks are lost stem cells and differentiated
cells grow at a rate dominated by the same exponential. Time is expressed in units of
ln 2/v(D̂), the expect duration of one cell cycle at equilibrium.

cells, D, that eventually die (this includes all cell populations with limited

reproductive potential, such as transit cells).

Ṡ = (2p(D)− 1) v(D)S,

Ḋ = 2(1− p(D)) v(D)S − dD.
(17.1)

Stem cells divide at a rate v; this results in either two daughter stem

cells with probability p; or two differentiated cells with probability 1 − p.

Differentiated cells die at rate d. In accordance with data, we assume that

differentiated cells secrete two types of feedback signals: one inhibits the

rate of cell division, and the other reduces the probability of stem cell

self-renewal, leading to cell death via terminal differentiation. The rate

of cell division and the probability of self-renewal are treated as general

functions of the number of differentiated cells, v(D) and p(D), respectively.
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That is, we do not assume specific mathematical terms for these processes.

This ensures that results are robust and are not dependent on particular

and arbitrary mathematical expressions. We require however, that both

feedbacks be decreasing functions of the number of differentiated cells, D,

and go to zero if D grows without bound. Also, 0.5 < p(0) ≤ 1, otherwise

the only outcome is population extinction. While asymmetric stem cell

divisions (giving rise to one stem and one differentiated cell) is a possibility,

its introduction does not change any of our results.

17.2 Evolutionary dynamics in ODE models

In model (17.1), only loss of the differentiation feedback can lead to uncon-

trolled growth, two types of which are observed: If the division feedback

is still intact, we observe relatively slow, sub-exponential, growth, which

we call “inhibited growth” (figure 17.1(b)), see also Chapter 4. If the divi-

sion feedback is also lost, we observe faster exponential growth, which we

call “uninhibited growth” (figure 17.1(c)). We further observe that with

uninhibited growth, the ratio of stem cells to differentiated cells always

converges to a fixed percentage. With inhibited growth, however, stem

cells make up an ever increasing fraction over time. The predicted impor-

tance of losing the differentiation feedback for carcinogenesis is in line with

previous modeling approaches [Johnston et al. (2007)].

To study the evolutionary dynamics of feedback escape, we assume that

the healthy cell population is near equilibrium, and investigate the growth

of mutational phenotypes from low numbers. We denote mutations that

lack production of feedback signals by differentiated cells with the prefix D;

and those that lack response by stem cells to these signals with the prefix

S. Mutations that affect cell differentiation carry the suffix diff- and those

affecting the division rate the suffix div-. The phenotypes considered are

described as follows: (i) Type Ddiff- lacks production of differentiation-

regulating signals by differentiated cells; (ii) Type Sdiff- lacks the stem cell

response to the differentiation-regulating signals; (iii) Type Ddiv- lacks pro-

duction of division inhibiting signals by differentiated cells; (iv) Type Sdiv-

lacks the stem cell response to division inhibiting signals. The mutational

steps, the nature and number of which are likely tissue dependent, are not

modeled.

In a background of healthy tissue, types Ddiv-, Ddiff-, Sdiv-, are not se-

lected for; they are selectively neutral with respect to healthy cells, and are
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Fig. 17.2 Evolutionary dynamics of feedback loss in the ordinary differential equations
model. The simulations begin at equilibrium with two stem cells carrying the specified
mutation. (a) For populations near equilibrium mutations Sdiv-, Ddiv- and Ddiff- do
not confer any competitive advantages over their wild type counterparts. If the mutation
arises in a small number of cells the steady state number of mutant stem cells will be
negligible. (b) Mutation Sdiff- results in inhibited growth in the number of mutant stem
cells and differentiated cells. (c) Mutation Sdiff-/partial produces a finite increase in
both the number of mutant stem cells and differentiated cells. (d) Mutations Sdiff- and
Sdiff-/partial result in the extinction of the wild type stem cell population.

thus likely to go extinct in a stochastic setting (figure 17.2(a)). Only Sdiff-

types, lacking a stem cell response to the differentiation-regulating signals,

can have a growth advantage in a background of healthy tissue, eventually

taking over the entire population and growing uncontrolled according to

the “inhibited”’ growth pattern (figure 17.2(b,d)). Hence, this must be the

first significant step towards malignancy. Only in these Sdiff-type of mu-

tants can the acquisition of the phenotype Sdiv- confer a selective advantage

to the cells, which will grow exponentially according to the “uninhibited”
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Fig. 17.3 In a healthy population at equilibrium, a stem cell acquires mutation Sdiff-
at the time indicated by the arrow (solid line); the subsequent appearance of mutation
Sdiv-/partial in a Sdiff- cell produces an acceleration in the growth of the tumor (dashed
line).

growth pattern and eventually dominate the population (figure 17.3). None

of the other phenotypes enjoys a selective advantage in any setting. Hence,

loss of feedback control in this system requires that mutants lose the ability

to respond to, rather than produce, the signals. Importantly, this can only

occur via a unique sequence of events, where first the response to differ-

entiation, then to division feedback is lost (figure 17.4). We suggest this

to be a universal pathway of feedback escape among stem cell driven can-

cers, although the nature and number of mutation events to achieve this is

certainly tissue specific.

We also consider mutations that confer only a partial loss of response to

feedback signals. A mutation that only partially compromises the response

to differentiation-regulating factors (denoted by Sdiff-/partial) will even-

tually take over the entire population, producing a bounded “sigmoidal”

growth pattern (figure 17.2(c,d)). A mutation that produces a partial loss in

the response to division rate factors (Sdiv-/partial) cannot invade a healthy

cell population, but it will produce an acceleration in the growth rate of a

tumor exhibiting inhibited growth (figure 17.3).
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Fig. 17.4 Tumor progression towards uninhibited growth follows a unique sequence of
feedback inactivations: first mutation Sdiff- must occur, followed by mutation Sdiv-.

a                      t = 50 A                    t = 250

  differentiated cell         wild type stem cell          mutant stem cell

Fig. 17.5 Spatial arrangement of the cell population at two different times in the
spatial model. The simulation begins with a tissue at near equilibrium with two stem
cells randomly selected to carry mutation Sdiff- at time t = 0.

17.3 Evolutionary dynamics in a stochastic, spatial model

Next, we consider these dynamics in the context of a stochastic, three-

dimensional rectangular lattice model corresponding to solid tumor growth
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with spatial structure. A lattice point can host at most one cell at any

time. For a cell to divide, there must be a free lattice point adjacent to it

to place the offspring. A stochastic simulation algorithm is used, where the

probabilities of cell division, differentiation and death correspond to our

previous non-spatial model. Our main results remain unchanged (figures

17.5 and 17.6). Again, we observe uninhibited tumor growth if both feed-

back loops are broken, and inhibited growth when only the differentiation

feedback loop is broken. The percentage of stem cells increases progres-

sively with inhibited growth, while it converges to a fixed percentage for

uninhibited growth. However, in contrast to the non-spatial situation, the

tumor growth rates are slower. Uninhibited growth is not characterized

by exponential, but by cubic growth. Inhibited growth is characterized

by sub-cubic growth. This difference is partly caused by surface growth

dynamics in the three-dimensional model, a behavior observed in several

types of solid tumors [Brú et al. (2003); Drasdo and Höhme (2005); En-

derling et al. (2009a)]. Looking at the evolutionary dynamics, we find that

feedback inactivation occurs via the same unique pathway as in the non-

spatial model. A full analysis of this model is given in [Rodriguez-Brenes

et al. (2011)].

17.4 Predicted versus observed tumor growth patterns

Performing extensive literature searches, we found that most growth pat-

terns belong to one of the categories resulting from our models: The unin-

hibited pattern, which is exponential in the non-spatial system and cubic

in the spatial system; the inhibited pattern, which is sub-exponential in the

non-spatial system and sub-cubic in the spatial system; and the sigmoidal

growth pattern. In the following examples, specific forms of the models

were fitted to different types of published tumor growth data using least

squares procedures. (i) Inhibited non-spatial growth is found in Ehrlich’s

ascites tumor [Laird (1964)] where cells grow sub-exponentially. (figure

17.7(a)). (ii) Inhibited spatial growth is found in A2780 human ovarian

carcinoma growth in mice [Simeoni et al. (2004)] (figure 17.7(b)). The data

show sub-cubic kinetics with a power law of 2.17 and no saturation. (iii)

Uninhibited non-spatial growth is found in data from L1210 cells [Shackney

(1970)], a mouse lymphocytic leukemia, where cells grow exponentially (fig-

ure 17.7(c)). (iv) Uninhibited spatial growth is found in data from spatial

multicellular tumor spheroids of EMT6/Ro cells [Freyer and Sutherland
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Fig. 17.6 Evolutionary dynamics in the spatial model. (a) The appearance of mutation
Sdiff- results in the unlimited growth of the mutant stem cell and differentiated cell
populations. (b) The number of wild type stem cells decreases. Note that a small number
of stem cells that are trapped -and thus unable to divide-lingers in the population for a
long time. The number of wild type stem cells however, becomes a negligible percentage
of the entire cell population. (c) Cell population with stem cells carrying mutations Sdiff-
and Sdiv- (simulations start with a small number of stem cells carrying both mutations).
Cell growth is much faster than if only mutation Sdiff- is present (note different scales
in a and c); but, unlike the non-spatial model, the growth is not exponential. Results
represent the average of 24 runs.

(1986)], derived from a mouse mammary tumor, which show cubic growth

(figure 17.7(d)). (v) Finally, a sigmoidal growth pattern is found in Jurkat

cells [Reuss et al. (2004)] originating from a T cell human leukemia (figure

17.7(e)).
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Fig. 17.7 Experimentally observed growth patterns and model fits. (a) Inhibited growth
in the non-spatial model. Ehrlich’s ascites tumor [Laird (1964)] (three experiments
shown: •, △, ◦). (b) Inhibited growth in the spatial model. Main frame: (�) A2780
human ovarian carcinoma [Simeoni et al. (2004)] and projection of the model using the
function y = axb (solid line). Inset: Simulation results (•) and projection of the model
(simulations were not carried further in time due to computational constraints). (c)
Uninhibited growth in the non-spatial model. (∗) L1210 a mouse lymphocytic leukemia
[Shackney (1970)]. (d) Uninhibited growth in the spatial model. Multicellular tumor
spheroids of EMT6/Ro cells [Freyer and Sutherland (1986)], a mouse mammary tumor
(two experiments shown: ◦, •). (e) Sigmoidal growth in the non-spatial model. (•)
Jurkat T cell human leukemia [Reuss et al. (2004)]. Simulations are shown in solid lines;
those corresponding to the stochastic spatial model represent the average of 24 runs.

17.5 The order of phenotypic transitions

Here, we address model predictions about the order of phenotypic transi-

tions and the central importance of the Sdiff-type with previously published
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data. A transgenic mouse model of hepatocellular carcinoma was devel-

oped, in which it is possible to regulate the expression of the human MYC

oncogene in murine liver cells, suppressing it through doxycycline treatment

[Shachaf et al. (2004); Shachaf and Felsher (2005); Felsher (2003)]. While

transgenic mice treated with doxycycline remained disease free, those with

active MYC from the discontinuation of treatment developed malignant tu-

mors that were locally invasive and able to metastasize. When MYC was

subsequently inactivated, rapid tumor regression was observed that was

associated with terminal differentiation into normal liver cells and apopto-

sis. Moreover, re-activation of MYC resulted in significant tumor re-growth

and de-differentiation. These observations validate key model predictions.

MYC expression influences self-renewal and differentiation of cells, and thus

influences the function p(D) in our model. Activation of MYC corresponds

to corrupted differentiation feedback, i.e., to the Sdiff- phenotype in the

model, while inhibition of MYC reverses this phenotype. The model pre-

dicts Sdiff- to be the initial and most crucial event in the evolution of

feedback loss and uncontrolled growth. Even if cells have acquired other

mutations that can also contribute to tumor progression, these mutations

are predicted to only contribute to growth in cells that already have cor-

rupted differentiation feedback. Hence, restoration of the differentiation

feedback loop even in cells with further complex genetic alterations is pre-

dicted by the model to result in tumor regression and tissue dynamics that

are characteristic of a healthy state. This same behavior is observed in

the experiments where the macroscopic and malignant nature of the tu-

mors indicate the presence of additional mutations, which are incapable

of promoting growth in the absence of MYC [Shachaf et al. (2004)]. Fig-

ure 17.8 shows a computer simulation that successfully recapitulates the

dynamics observed in the MYC regulation experiments. Similar dynam-

ics have been observed in the context of other tumors and/or oncogenes

(e.g. Myc-induced hematopoietic tumors, breast cancers and osteogenic

sarcoma, or Ras-induced melanomas), although details of the results can

differ in various ways (e.g. treatment leading to complete extinction of the

tumor) [Shachaf et al. (2004); Shachaf and Felsher (2005); Felsher (2003)].

Understanding the mechanisms that lead to differences in outcome will be

important future work that can be aided by computational models.

In general, many key mutations in carcinogenesis disrupt negative feed-

back regulation of cell division patterns. Consider the protein transform-

ing growth factor beta (TGF-β). This protein plays a key role in tissue
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Fig. 17.8 Simulation of MYC regulation experiments [Shachaf et al. (2004); Shachaf
and Felsher (2005); Felsher (2003)]. Upon activation of MYC (represented in the model
by the Sdiff- phenotype) the cell population (solid line) exhibits sustained growth char-
acterized by a reduction in the fraction of differentiated cells (dashed line). When MYC
is subsequently inactivated (Sdiff+ phenotype) the fraction of differentiated cells in-
creases while the cell population decreases to a lower valued steady state; when MYC is
re-activated the cell population rises again. See text for discussion.

homeostasis by inhibiting mitosis and promoting cell differentiation [Wein-

berg]. Many types of cancers must circumvent TGF-β growth inhibition

to be able to thrive. In these cancers feedback escape is accomplished by

inactivating the genes for the TGF-β receptors or through downstream al-

terations that disable the tumor-suppressive arm of the pathway [Derynck

et al. (2001); Massagué (2000, 2001)]. Half of all pancreatic carcinomas and

more than a quarter of colon cancers carry mutations that make cells irre-

sponsive to TGF-β signals that inhibit cell division and promote differenti-

ation [Rozenblum et al. (1997); Woodford-Richens et al. (2001)]. Mutations

that affect TGF-β receptors also occur in gastric, biliary, pulmonary, ovar-

ian, esophageal, and head and neck carcinomas [Massagué (2000)]. Another

specific example of feedback escape in cancers is observed in glioblastomas

that inactivate the bone morphogenetic protein 4 pathway (BMP4). There

is strong evidence that glioblastomas are maintained by a small popula-

tion of tumor initiating cells that have stem cell characteristics [Wu et al.

(2008)]. In humans, naturally occurring BMP4 induces glia stem cells to

differentiate, inhibiting cell proliferation [Lim et al. (2000)]. The relation-

ship between BMP4 and cancer is supported by evidence of epigenetic si-
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lencing of BMP4 receptors in glioblastomas [Lee et al. (2008)], and by in

vitro experiments that show that the addition of BMP4 causes a colony of

glioblastoma multiforme cells to increase the fraction of differentiated cells

and lose their tumorigenic capabilities [Piccirillo et al. (2006)]. Finally, in

colorecal cancer the initial mutational events are defined relatively well.

They are the loss of the APC tumor suppressor gene and the concomitant

activation of the Wnt cascade, followed by the activation of the K-Ras

oncogene. While both alterations lead to complex phenotypic changes, a

common effect of both is that the cell division pattern is shifted away from

differentiation and towards self-renewal, consistent with our model.

17.6 Summary

Using evolutionary computational models, we found that escape from feed-

back-regulated tissue homeostasis can only occur via a unique sequence

of phenotypic transitions that we propose to be common among stem cell

driven tumors, even if the nature and number of mutational events re-

quired to achieve this are certainly tissue specific. The resulting growth

dynamics predicted by the model fall into three categories: uninhibited,

sigmoidal, and inhibited. These can describe many experimental growth

patterns found in the literature, which was demonstrated by fitting the

model to five sets of published data. The finding of inhibited tumor growth

patterns in the literature is of particular interest. Such a growth pattern,

especially in the form of sub-cubic growth, could only be explained if the

growing tumor is still partially subject to feedback regulation that has re-

mained from the underlying tissue. This gives support to the notion that

not only the tissue architecture, but also the regulatory mechanisms of

the corresponding healthy tissue continue to operate to a certain degree in

tumors, especially at early stages.

Problems

Problem 17.1. Research project. Find out more about feedback loops

in stem cell dynamics.

Problem 17.2. Numerical project. Modify the basic stem cell model

(17.1) to include an intermediate transit amplifying population. This popu-

lation, call it A, is assumed to be generated by differentiation from the stem
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cells population, S. The A population is assumed to divide, although with a

slower rate than stem cells, and to differentiate into the terminally differen-

tiated cell population D. The processes of A division and differentiation are

subject to the same types of feedback inhibition as the stem cells. Thus, in-

stead of a 2-compartment model, you will now have a 3-compartment model.

Explore the dynamics of uninhibited and inhibited growth in this new model.

How do they compare to the dynamics observed for model (17.1)?
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Chapter 18

Tumor growth kinetics and disease

progression

In Part 2 of the book, a mathematical framework was developed to study

the evolutionary dynamics of mutant generation during tumor growth. An

obvious application of this framework is the generation of mutants that are

resistant to drug therapy, and the theory was developed in this context.

The current chapter explores implications of this mathematical framework

for the evolution of tumor cells, namely, the progression of cancers towards

increased malignancy.

As explored in the introductory chapters, the process of carcinogenesis

involves the accumulation of multiple genetic mutations enabling cells to

defy homeostatic regulation and grow in an unregulated manner [Vogel-

stein and Kinzler (2002); Boland and Goel (2005)]. This process continues

throughout the progression of the disease. Initially, the tumor may be

able to grow to a certain degree until it hits a selective barrier and growth

plateaus. Further growth then requires the presence of mutants that can

overcome the relevant selective barrier. This process can repeat as the can-

cer progresses further towards malignancy. We explore how the potential of

the tumor to accumulate mutations and to progress depends on parameters

describing the tumor growth kinetics.

In particular, we are interested in the effect of cell death on cancer pro-

gression. The rate of cell death is related to the turnover of the tumor

cell population. The closer the death rate of cells is to their division rate,

the higher the turnover. Tumor cell populations that mostly grow and do

not exhibit significant amounts of cell death are considered low turnover

tumors. In Chapter 16, we have shown that the turnover of the tumor cell

population can have a substantial effect on the rate at which mutants are

347
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Fig. 18.1 Schematic diagram that puts the concept of programmed cell death or apop-
tosis into bigger context of cellular checkpoints. When the genome of cells becomes
altered (which includes oncogenic mutations), two things can happen. First, the cell can
try to repair the alteration, in which case it returns to its previous (wild-type) state.
Repair, however, is not always possible. In this case, the cell can either undergo pro-
grammed cell death (most often apoptosis), or the altered cell can continue to divide.
If the altered cell continues to divide, then apoptosis can occur during cell divisions
because checkpoints are invoked that detect the altered state. In healthy cells, repair
and apoptosis checkpoints are intact and function well. In tumor cells these pathways
are often compromised. The checkpoints can still function relatively well in early cancer
cells, and tend to be more compromised during later stages and in malignant cancer
cells.

generated, with high turnover cancers exhibiting significantly faster rates

of evolution.

Similar to healthy cells, cancer cells, especially at earlier stages, can

respond to their altered state by undergoing programmed cell death (PCD)

[Jäättelä (2004); Kroemer and Martin (2005)] (figure 18.1). At later stages

of the disease, cancer cells tend to have inactivated some PCD pathways.
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The most commonly discussed form of PCD is apoptosis, although several

non-apoptotic modes of PCD can also be induced and are an important

mechanism to remove cancerous cells [Jäättelä (2004); Kroemer and Martin

(2005)]. PCD is induced by a variety of triggers including damaged DNA,

and altered levels of regulatory proteins that exist in the cell as a result

of oncogenic mutations [Jäättelä (2004)] (e.g. the c-myc or Ras oncogenes

in a variety of cancers). Cancer cells might also die by necrosis in certain

circumstances, but this is a very different mode of death and does not

represent a response to stress or genetic alterations. When talking about

cell death in this chapter, we refer to programmed cell death.

It is generally accepted that PCD protects against the development of

tumors. Here we argue that the situation is more complex than this. It is

certainly true that PCD can prevent the establishment of a tumor mass, and

that a certain loss of PCD can be required for clonal expansion of trans-

formed cells. We argue, however, that cancer progression to malignancy

can be prevented by reduced levels of PCD, while it can be promoted by

higher levels of programmed cell death. A reduced rate of programmed cell

death correlates with fewer cell divisions during clonal expansion and thus

fewer mutants present in the tumor cell population at a given size. More

cell death correlates with a greater number of cell divisions during clonal

expansion and thus with more mutants present in the tumor cell population

when a certain size is reached. Since a pool of mutant cells is required for

the tumor to overcome selective barriers (e.g. the requirement for blood

supply or for overcoming growth inhibition) and to expand further, a higher

level of cell death in the expanding tumor cell population can increase the

chances that the tumor progresses towards malignancy instead of becoming

a dead end.

18.1 Cell death and mutant generation

Consider a population of first stage tumor cells that clonally expands (i.e.,

cells that have just been transformed and that can divide beyond homeo-

static control). Growth stops once the tumor has reached size N . Further

progression towards malignancy requires the presence of mutants such that

selective barriers can be overcome (figure 18.2(a)). The more mutants in

the tumor cell population, the greater the likelihood that the appropri-

ate mutants are present to overcome selective barriers. This increases the

chances that the tumor progresses to malignancy and that growth does not

result in a pathogenic dead end.
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barrier

First wave of 

clonal expansion
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(i)

(ii)

• less cell death

• fewer cell divisions

• smaller pool of mutants

• required mutant not present

• failure to progress

• more cell death

• more cell divisions

• larger pool of mutants

• required mutant present

• successful progression

(a) (b)

Fig. 18.2 Schematic diagram of the basic concept that underlies our arguments. (a)
We consider a growing colony of cells and the generation of mutants. Upon cancer
initiation, a first wave of clonal expansion occurs. This stops if a selective barrier is
encountered, such as the requirement for new blood supply. The tumor size at which
the selective barrier is encountered is denoted by N . In order for the tumor to progress
and grow further, an appropriate mutant (indicated in red) has to be generated during
this first wave of clonal expansion. If the appropriate mutant is not present, then the

tumor fails to progress and becomes a dead end. The color grey depicts wild-type tumor
cells, and different colors indicate different mutants. (b) Schematic representation of our
central message. (i) If the death rate of tumor cells is relatively low, fewer divisions
are required to reach tumor size N . Consequently, fewer mutants are present in the
tumor cell population when the selective barrier is hit. This decreases the chance that
the appropriate mutant required for progression (indicated in red) exists. If the required
mutant does not exist, the tumor does not progress and is a dead end. (ii) If the
death rate of tumor cells is higher, then more cell divisions are required to reach tumor
size N . Consequently, more mutants are produced. This increases the chance that
the appropriate mutant required for progression (marked in red) exists by the time the
selective barrier is hit.

The mathematical framework that was used to study these processes

was reviewed in detail in Chapter 15. Here, we briefly summarize the

main points that are relevant for the current arguments. Suppose we

have a colony of tumor cells which grows stochastically from size M0,
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until it reaches size N . This clonal expansion is a birth-death process

with rates of cell division and cell death defined by constants L and D,

respectively. The ability of a cell to undergo PCD correlates with the

death rate of the cell, D. In addition, cells can mutate with a probability

u. Mutant cells are also characterized by the appropriate division and

death rates. It can be assumed that mutant cells have a death rate

D1 which is higher than D. The reason is that these can be mutations

which contribute to cancer progression, and therefore drive up the level

of PCD. The expected numbers of wild-type and mutant cells in a colony

starting from M0 cells are given by equations

ẋ0 = L(1− u)x0 −Dx0,

ẋ1 = Lux0 + (L−D1)x1,

x0(0) = M0, x1(0) = 0, (18.1)

see Section 15.4.1. Let us assume for simplicity that D1 = D. We denote

the expected number of mutants after time t by G1(t). By solving the

above system we can show that it is given by

G1(t) = M0e
(L−D)t(1− e−Lut).

On the other hand, we can relate the time-variable t to the colony size,

N :

N = M0e
(L−D)t.

Using this in the solution for x1, we can obtain the expression for the

expected number of mutants by the time the colony reaches size N .

Calling this quantity G2(N), we obtain approximately

G2(N) = N

(

1−
(

N

M0

)− Lu
L−D

)

.

The higher the death rate, the longer it takes for the colony to reach size

N . Let T be the threshold time, that is, the time remaining from the

beginning of the clonal expansion to a certain upper age limit where the

patient death is likely to be caused by a multitude of reasons other than

cancer. Let us denote Dc = L − 1
T ln N

M0
. Then for D < Dc, the size N

is reached before time T , and for D > Dc it takes longer than T to reach

size N . The expected number of mutants produced by the colony once

it reaches size N or time T (whichever happens first) is given by

Emut = θ(Dc −D)G2(N) + θ(D −Dc)G1(T ),
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which is a one-humped function of the death rate D (here θ(.) denotes

the Heaviside function). If we assume a more general case. I.e., that the

death rate of mutants D1 > D (because oncogenic mutations can induce

cell death), and that it grows with D, the property of this relationship

remains the same. Note that size N and time T can vary from tumor to

tumor. Here we consider the ensemble average, but this does not affect

the notions discussed.

How does the average number of mutant cells and thus the potential of

the tumor to progress after the first wave of clonal expansion depend on

the death rate of tumor cells, i.e., the rate of PCD, D (assuming that other

cellular parameters, such as the division rate, remain constant)? As the

death rate D increases from low to high, the average number of mutants

present in the colony at size N rises. This is because more cell divisions

are required for the tumor to reach size N . In other words, higher levels of

cell death (PCD) increase the mutant pool and promote tumor progression.

Because more cell divisions are required to reach size N , the rate of tumor

growth is slowed down as the death rate D is increased relative to the

division rate L. We can see that from the point of view of the tumor there

is a clear trade-off: Very low death rates lead to fast growing but benign

tumors (as not enough mutants are generated before the clone reaches size

N). Very high death rates lead to a larger mutant pool but make the growth

too inefficient. One way to capture these trends is as follows. Assume that

T denotes the time or the age up to which progression of a first stage tumor

can significantly contribute to mortality. If it takes less time than T to reach

size N , we can count the number of mutants (at size N) as a function of

the death rate. Beyond time T , the organism is too old and is more likely

to die from other causes before the cancer has invaded sufficiently. In this

parameter region, we have to consider the number of mutants found in the

tumor at time T . This is a decreasing function of the death rate D.

Overall, there is a one-humped relationship between the number of mu-

tant cells at the end of clonal expansion, and the death rate of tumor cells,

D (i.e., we see an increase followed by a peak and a decline, see figure 18.3).

As seen in figure 18.3, the number of mutants at size N always increases

with higher death rates D, but when the value of D crosses a threshold, the

tumor does not reach size N within the life-span of the organism. There, an

increase in the death rate of tumor cells leads to a reduction in the number

of mutants at time T .
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Note that these arguments assume that during the growth plateau N ,

cell divisions stop. This has been observed to occur, for example when

initial early cells undergo replicative senescence after a certain number of

divisions. In this case, for further growth to occur, clonal expansion needs to

give rise to a mutant cell which escapes replicative senescence and continues

to divide. However, not all growth plateaus are characterized by a cessation

of cell division. In some cases, such as in telomeric crisis, cell growth can

stop because the death rate of the cells is increased and roughly matches

the division rate of cells. Our arguments do not apply to such scenarios.

18.2 Does PCD protect against cancer?

The predominant view is that PCD protects against cancer because cell

death counters clonal expansion [Jäättelä (2004)]. Loss of PCD certainly is

a defining characteristic of tumor cells, and is thought to allow cancer cells

to survive better and to progress towards malignancy. It is true that strong

PCD (i.e., a high death rate of tumor cells) can prevent the progression of

cancer because clonal expansion is so slow that the cancer will not grow to

a sufficient size or accumulate a sufficient number of mutations during the

life-span of the organism. Even stronger, if the death rate of tumor cells is

greater than their division rate, clonal expansion can never be successful.

However, loss of PCD can reduce the chances that the tumor progresses

towards malignancy if the first wave of clonal expansion occurs sufficiently

fast relative to the life-span of the organism. In this case, loss of PCD is

actually protective for the organism. Assume that cells have inactivated

some PCD pathways, such that clonal expansion can occur at a significant

rate and that the tumor cell population can reach a defined size within the

life-span of the organism. Now, if the cells reduced the ability to undergo

PCD by too much, not enough mutants will be produced during this wave

of clonal expansion, consequently the tumor has a high probability of failing

to progress from a benign to a malignant form. On the other hand, if the

ability of cells to undergo PCD is lost to a lesser extent (i.e., the cells can

still undergo PCD to a certain degree), then the number of mutants pro-

duced during this wave of clonal expansion is significantly higher, increasing

the chances that the tumor can overcome selective barriers and progress to

a malignant phenotype. This conclusion is summarized schematically in

figure 18.2(b). This argument can also be thought of as an optimization

problem. For the organism, the optimal strategy is either to have the
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Fig. 18.3 Relationship between the number of mutants found after the first wave of
clonal expansion and the death rate of tumor cells, D. (a) Mutant tumor cells are
assumed to have the same death rate as wild-type cells. (b) Mutant tumor cells are
assumed to have a death rate that is higher than that of wild type tumor and satisfies
D1 = D + 0.9(L − D). Both scenarios show the same pattern. That is, the number of
mutants after the first wave of clonal expansion is a one humped function of the death
rate D. If tumor size N is reached before time T , we consider the number of mutants at
size N , which is an increasing function of the death rate D. If tumor size N is reached
after time T (when the organism dies of cancer-unrelated causes), then we consider
the number of mutants at time T , which is a decreasing function of the death rate D.
Parameters are given by: N = 109, u = 10−7, M0 = 1, T = 20 years, L = L1 = 1,
assuming on average 10 cell divisions per year.

highest rate of PCD such that a tumor never undergoes significant clonal

expansion, or a relatively weak rate of PCD such that potentially harmful

mutants are not present. The optimal strategy for the cancer is to have an

intermediate rate of PCD. The rate of PCD has to be reduced such that
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initial clonal expansion occurs, but it should not be reduced too much such

that the mutants necessary for progression are present.

It is a well-known fact that especially at older ages, people tend to har-

bor a number of harmless tumors that fail to progress [Folkman and Kalluri

(2004); Volpe et al. (2004)]. Mutational processes are random, and hence,

the exact extent to which PCD is lost can vary along a spectrum. The

presence of these non-progressing tumors might be explained by the fact

that the loss of PCD was too great, resulting in the failure to generate a

sufficient number of mutants during clonal expansion. A well-known selec-

tive barrier is the requirement of tumors for the formation of new blood

supply (angiogenesis) [Folkman et al. (1992)]. Tumor cells can divide un-

til the population reaches a certain small size at which it stops growing

unless angiogenic cells induce the formation of new blood supply. If the

population of tumor cells has not generated many mutants during this ex-

pansion, chances are low that angiogenic cells will be found in this tumor

cell population (because angiogenic cells can be created by defined muta-

tions [Folkman et al. (1992)]. However, it is important to point out that

this is a hypothesis at this stage, and that other mechanisms can also ex-

plain an abundance of covert tumors in aging individuals (such as a balance

between proliferation and death).

In the light of this discussion, we note that some important tumor sup-

pressor genes never tend to be lost in the initial stages of carcinogenesis,

but only during later stages, just before the transition to full malignancy.

The most famous example is the tumor suppressor p53 which is responsible

for apoptosis and senescence, among other things [Vogelstein and Kinzler

(2002); Kemp et al. (1993)]. According to our theory, an early inactivation

of p53 would result in a low rate of cell death early on. Consequently,

tumor cells would divide less and thus not create a sufficient number of

mutants during clonal expansion. Consequently, such a tumor would reach

a dead end. On the other hand, at later stages of carcinogenesis, p53 can be

lost because lots of mutants have already been generated, and this pool is

enough to allow progression towards malignancy. Inactivation of p53 would

then be a very common event, as observed, because it allows the popula-

tion of cancer cells to grow faster than in the presence of p53 [Blagosklonny

(2002); Oren (2003)].

It is interesting to consider our arguments in the context of genetic

instability (elevation of the rate of genetic alterations observed in many

tumor cells). In some cancers, such as colon cancer, genetic instability is

thought to arise relatively early in the course of the disease [Shih et al.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 356

356 Dynamics of cancer: mathematical foundations of oncology

(2001)]. While genetic instability can promote the generation of mutant

cells, it also leads to the destruction of the tumor cells’ genome [Komarova

and Wodarz (2004)] and this in turn can lead to apoptosis. Therefore,

in this case the rate of mutation and the rate of apoptosis can be linked

in cancer cells. Cells with a high degree of genetic instability might also

undergo apoptosis more readily because of the deranged genomes, and thus

undergo more cell divisions and create more opportunities to mutate until

a certain tumor size is reached.

18.3 Cell turnover and pathology

The arguments presented here can also be applied to interpret differences

in the natural history and pathology of various cancers. Here we compare

two specific examples: renal cell carcinoma and pancreatic cancer.

The investigation of the natural history of renal cell carcinoma (RCC)

has been difficult because most patients are treated surgically with par-

tial or radical nephrectomy shortly after the diagnosis [Volpe et al. (2004);

Motzer et al. (1996); Rathmell et al. (2007); Ozono et al. (2004); Bosniak

(1995); Oda et al. (2001)]. As a result of improved diagnostic tools, the

reported incidence of RCC has increased, and many RCCs are now de-

tected incidentally as small tumors in asymptomatic patients. This has

allowed a more detailed examination of the natural history of this cancer.

Patients with such small tumors usually do not have any metastases. The

potential of the tumor to grow and progress varies among patients [Volpe

et al. (2004)]. Some tumors progress relatively fast, while others grow very

slowly or not at all. Some small tumor masses were even observed to shrink.

About one third of small renal masses that are presumed to be RCC grow

and progress significantly [Volpe et al. (2004)]. Most small tumors, however,

do not grow or progress at a significant rate [Volpe et al. (2004)]. These

could be tumors that have not generated a sufficient number of mutants

in the initial wave of clonal expansion, and that are consequently unable

to progress further. According to our model, this is because the degree of

PCD that these initial cancer cells undergo is too low. Thus, relatively few

cell divisions are required for the initial growth of the cancers to the small

size at which they were found. This notion is supported by autopsy reports,

showing that 67-74% of RCCs are undetected until death, and that only

9-20% of undiagnosed RCCs result in malignant progression and death of

the patient [Volpe et al. (2004)].
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The picture is quite different with pancreatic cancer [Bardeesy and De-

Pinho (2002); Leach (2004); Rosenberg (2000); Hingorani et al. (2003)].

Infliltrating ductal adenocarcinoma of the pancreas is responsible for over

95% of all exocrine pancreatic malignancies and is the fifth leading cause

of cancer-related death in the USA. Moreover, diagnosis with pancreatic

cancer usually has a poor prognosis, with five year survival between 1-4%.

Surgery of small lesions is the only possible form of treatment because the

cancer is resistant against all possible forms of available chemotherapy and

radiotherapy. However, even surgical removal of lesions does not provide

a strong benefit for the patient because metastases have been established

even if the primary tumor is very small (<2cm) [Hingorani et al. (2003)].

The cancer spreads to the regional lymph nodes at an early stage of the

disease, and subclinical liver metastases are present in most patients at the

time of diagnosis [Rosenberg (2000)]. In the light of our framework, we

hypothesize that even growth to relatively small sizes is sufficient to gen-

erate a large pool of mutants that allows the cancer to progress towards

malignancy with a fast rate, including the potential of the cancer cells to

metastasize at this early stage. The reason would be as follows. Although

the tumor cells have lost some ability to undergo PCD such that the cancer

is initiated and the cells can undergo clonal expansion, the cells retain a

significant ability to undergo cell death. Consequently, a significant amount

of cell death occurs during clonal expansion. Therefore, a relatively large

number of cell divisions is required for the cancer to grow to a defined size,

and this enables the cancer to generate a large pool of mutants that al-

lows the cancer to progress further and to be resistant against chemo- and

radiotherapies.

18.4 Conclusions

The relationship between cell death and the process of carcinogenesis and

cancer progression is complex. According to the traditional view, higher

levels of cell death, in particular PCD, prevent the emergence of cancer,

while lower levels of cell death promote the emergence of cancer. According

to the mathematical framework discussed here, some loss of cell death is

required for the tumor cells to clonally expand. However, if the extent

to which cells have lost the ability to undergo death is too large, then

not enough mutants might be accumulated during clonal expansion, and

the tumor might fail to progress, essentially becoming a dead end and
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remaining benign. On the other hand, if the ability to undergo cell death

has been lost to a lesser extent, then clonal expansion is more likely to

produce a sufficient number of mutants such that the tumor can overcome

selective barriers and progress towards malignancy. These insights might

help us understand genetic pathways which lead towards malignancy, and

differences in the patterns of pathology that are observed among different

cancers. Importantly, to go beyond theoretical arguments, this hypothesis

should be tested by experiment. Two cell lines could be compared, a control

population and a population of cells that have a defect in a defined apoptotic

pathway. These cells should divide until a defined population size has

been reached, and the distribution of mutations of certain genes should be

measured. This should directly address the arguments presented here.

Problems

Problem 18.1. Research project. This chapter only addresses growth

plateaus where cells essentially stop dividing. There are other situations

where the net growth stalls because the death rate matches the division

rate of cells. The two types of growth plateaus are termed “division-driven

growth” and “death-driven growth” in [Sorace and Komarova (2012)]. The

process of mutant accumulation is very different in the two cases. Learn

about these differences by reading [Sorace and Komarova (2012)].
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Chapter 19

Epigenetic changes and the rate of

DNA methylation

A large portion of the book dealt with somatic evolutionary processes that

contribute to carcinogenesis and cancer progression. Somatic evolution is

driven by the accumulation of phenotypic changes, such as the activation of

oncogenes or the loss of tumor suppressor genes. These phenotypic changes

were linked to specific genetic events, such as point mutations and larger

chromosomal alterations that can lead to loss of heterozygosity. Based on

the details of these genetic events and their effect on the fitness of cells, mod-

els were explored that calculated the rate at which cancerous mutants are

generated, which has important implications for determining the most likely

evolutionary pathways towards cancer. While such genetic events are cer-

tainly fundamental to the development of cancer, epigenetic events are likely

to be equally important, and probably interact with genetic changes to drive

the disease [Jones and Baylin (2002); Iacobuzio-Donahue (2009); Esteller

and Herman (2002); Komarova et al. (2008b); Goel and Boland (2012)]. As

mentioned in the introductory Chapter 2, DNA methylation patterns are

thought to be particularly significant [Laird and Jaenisch (1996); Esteller

and Herman (2002); Ehrlich et al. (2002); Baylin (2005); Robertson et al.

(2001); Baylin and Herman (2000); Wajed et al. (2001); Clark et al. (2002)].

Methylation is a covalent chemical modification that leads to the addition

of a methyl group (CH3) at the carbon 5 position of the cytosine ring,

which occurs mostly at CpG dinucleotide sequences. DNA methylation is

mediated by a group of enzymes called DNA methyltransferases (DNMTs),

some of which are responsible for de novo methylation, while others are

responsible for maintenance methylation. For a detailed review of DNA

methylaiton processes and their biochemical underpinnings, the reader is

referred to the references cited above. Aberrant methylation patterns, i.e.,

deviation from “normal” methylation levels, have been associated with

359
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carcinogenesis. Hypomethylaiton, an overall decreased level of methyla-

tion throughout the genome, can contribute to the formation of tumors in

a variety of ways. It can affect the CpGs in the promotes of proto-oncogenes

genes, which can lead to their over expression and consequently to aber-

rant growth. Decreased methylation in repetitive DNA sequences can also

promote the occurrence of chromosomal rearrangements, which are tightly

linked with the development of cancer. On the other hand, increased levels

of methylation is referred to hypermethylation, and this can also contribute

to the development of cancer. In particular, it can lead to the silencing of

tumor suppressor genes through transcription repression of their promoter

regions, which has obvious tumorigenic properties.

With both genetic and epigenetic processes being able to contribute

to major phenotypic transitions in tumorigenesis, an important question

concerns the rate with which epigenetic events induce such changes, com-

pared to the rate at which genetic events induce them. For example, is it

more likely that a tumor suppressor gene becomes inactivated by genetic or

epigenetic processes? This information would shed light onto the relative

importance of these two mechanisms for cancer initiation and progression.

Mutation rates have been quantified in a variety of settings, e.g. reviewed

in [Wodarz and Komarova (2005)]. The activation of oncogenes requires

specific nucleotide changes that turns on expression. Such mutations occur

at the order of 10−9 per base pair per generation. The inactivation of one

tumor suppressor gene copy occurs at a faster rate because many differ-

ent mutations can potentially lead to the inactivation, hence an estimated

rate of about 10−7 per gene per generation. In genetically unstable cells,

the mutation rates are significantly elevated, e.g. it has been shown that

chromosome loss in chromosomally unstable cells occurs at a rate of 10−2

to 10−3 per chromosome per generation. On the other hand, the rate at

which epigenetic processes lead to the equivalent phenotypic changes is not

well understood. An interesting aspect is hypermethylation. Similar to the

mutator phenotypes in the context of genetic events, CpG island methyla-

tor phenotypes, or CIMP cells have been identified. These are cells that

are generally characterized by relatively high levels of CpG island methy-

lation [Issa (2004); Nosho et al. (2008); Toyota et al. (1999); Toyota and

Issa (1999)]. However, the amount of CpG island methylation measured

at one point in time does not tell us anything about the rate or speed at

which methyl groups are added to the DNA. Do methylator phenotypes

add methyl groups faster?
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This turns out to be a difficult question to answer. The rate of de

novo methylation has bee recently measured in select cancer cell lines in

the context of different promoters and genes [Wodarz et al. (2013)]. In

order to obtain a more detailed understanding of the differences between

CIMP and non-CIMP cells, this study aimed to investigate the methylation

kinetics in cells that were partially de-methylated. This was achieved by

measuring the de novo methylation rate following 5−aza−2′deoxycytidine
(5-AZA) treatment in CIMP and non-CIMP cell lines, using a combination

of experimental and mathematical approaches. Another study quantified

the rate of de novo methylation in CIMP cells without de-methylation, i.e.,

in cells characterized by relatively high degrees of methylation [Ushijima

et al. (2005); Watanabe et al. (2006)]. This chapter will review these data,

and discuss a mathematical framework to help interpret the results.

19.1 De novo methylation kinetics in CIMP and non-CIMP

cells following demethylation

Based on observed patterns of hypermethylation, cell lines SW48 and RKO

have been designated as CIMP cell lines in the literature [Boland and Goel

(2005)]. The cell lines HT29 and HCT116 are thought to be non-CIMP

cell lines [Boland and Goel (2005)]. In these cells, methylation levels were

measured with respect to the 7 different sites [Wodarz et al. (2013)]: ALU,

Line-1, APC1, RASSF2-1, HPP1, SFRP2, and MGMT. This was done us-

ing quantitative pyrosequencing assays after de-methylating the cells using

5-AZA. After treatment, the temporal process of re-methylation was ex-

amined with respect to the 7 sites. The results of these measurements are

presented in figure 19.1 [Wodarz et al. (2013)]. There, each of the 7 plots

(a-g) corresponds to a different site, which is marked on the corresponding

graph. The four lines on each graph correspond to the four cell lines, which

are color-coded. The measured methylation level (as percentage) is plotted

against time post-treatment. The baseline methylation levels for the cell

lines are presented by horizontal lines of the corresponding color.

We can see that qualitatively, the majority of remethylation curves start

at a level lower than their base methylation level, and then climb up with

visibly different slopes. Some of the curves reach saturation (which inter-

estingly may or may not coincide with the measured baseline methylation

level), while others continue to climb during the whole duration of the ex-

periment. Another noticeable feature of some of the curves is the presence
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Fig. 19.1 Methylation time-series for four cell lines, for 7 sites. Experimental measure-
ments are shown by connected points, and the fitted functions by dashed lines. The cell
lines are color-coded, and the base methylation level for each cell line is presented by a
horizontal line of the appropriate color. The panels (a-g) correspond to the 7 different
sites.

of a time-delay. In fact, the majority of the experimental runs can be as-

signed to one of two different groups, as shown in figure 19.1. In one group,

the methylation level starts climbing up immediately upon the cessation of

5-AZA treatment. An example of such behavior is exhibited by line SW48
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(the green line in figure 19.1(a)). In the other group, there is a certain

time-delay between the cessation of 5-AZA treatment and the point where

the methylation process picks up. For example, the blue line (HCT116)

in figure 19.1(a) climbs up between time-points approximately 10 and 25.

For the first 10 days post 5-AZA treatment, the process of remethylation

is slow to gain momentum.

19.2 Quantifying the de novo methylation kinetics

In order to quantify these data and to extract information about methyla-

tion rates, the data were fitted with the function

f(t) = y0 + y1 tanh(mt− b). (19.1)

This function is characterized by 4 parameters. Parameterm (days−1) mea-

sures the methylation rate; the dimensionless parameter b characterizes the

time-delay until the de novo methylation process starts to gain momentum,

as described above; parameters y0 and y1 are related to the initial and tar-

get methylatin level, with y0−y1 tanh(b) being the initial methylation level

(after the 5-AZA treatment), and y0 + y1, the target methylation level.

The choice of this functional form was dictated by the patterns seen in the

methylation time-series and described above. Function f(t) is one of many

possible functions capable of accounting for the two types of methylation

patterns, with and without delay. The exact mathematical form of this

function is unimportant, as long as the following requirements are met: (i)

the function has the ability to capture a climb (gradual or step-like) from

one level to another level and (ii) has parameters which can be extracted

to characterize the slope of the climb (the de novo methylation rate) and

the amount of time delay. In the function f(t) chosen here, parameter m

measures the de novo methylation rate, and parameter b characterizes the

time-delay.

Figure 19.1 presents the results of fitting the function f(t) to the data,

which for each case is given by a dashed line of the appropriate color. Out

of the total of 4× 7 = 28 experimental runs, it was possible to successfully

fit 18 [Wodarz et al. (2013)]: these include all the cell-lines in the context

of ALU, LINE-1, HPP1, and SFRP2, as well as lines HT29 and SW48 in

the context of RASSF2-1. The discussion will consequently focus on these

cases.
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Fig. 19.2 Scatter plots of some methylation parameters extracted from the 18 successful
experimental runs, and their correlations. (a) A scatter plot of the methylation rate vs
the base methylation level. (b) A scatter plot of the (dimensionless) methylation onset
parameter, b, vs the base methylation level. The linear model together with the p-value
are marked on the plots.

Fitting the function f(t) to the data yielded the numerical values of the

parameters m (remethyation rate) and b (the dimensionless methylation

onset). We will first focus on the remethylation rate. The parameter m

characterizes the “steepness” of the slope of the methylation time-series in

the regions where de novo methylation process takes place (and it does not

capture other aspects of the methylation process). Figure 19.2(a) presents

a scatter plot of the measured re-methylation rates versus the baseline

methylation level for the 18 experiments. We performed a linear regres-

sion analysis of this scatter plot and determined that the methylation rate

negatively correlates with the base methylation level, with the Pearson rank

correlation of -0.499 and the Spearman rank correlation of -0.574 (for the

sample size of n=18). This correlation is significant, with the p-value of

0.035 (or p =0.013 if using the Student’s t-distribution with the Spearman

rank correlation). This surprising result suggests that the rate at which

the methylation level climbs up after 5-AZA treatment is the lowest for the

cell lines with the highest base-level of methylation. This can be clearly

seen in figure 19.3(a), where we plot the mean average methylation rate for

the four cell lines against their mean base methylation level. In the figure,

we group the four cell-lines investigated into two groups: lines HT29 and

HCT116 comprise the non-CIMP group, while lines SW48 and RKO are

classified as CIMP. This grouping is consistent with the characterization
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these cell lines received in the literature [Boland and Goel (2005)], and also

corresponds to the higher base methylation levels for the CIMP cells. We

can see that lines HT29 and HCT116 (which exhibit lower base methylation

levels compared to their CIMP counterparts) are characterized by higher

de novo methylation rates. Thus, CIMP cell lines show slower rates of re-

methylation, while non-CIMP cell lines show faster rates of re-methylation.
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Fig. 19.3 Scatter plots of the mean characteristics presented in figure 19.2 for each
cell line across the loci (a) The mean methylation rate vs the mean base methylation
level. (b) The mean (dimensionless) methylation onset parameter vs the mean base
methylation level. Each point corresponds to one cell-line, marked in the plots. Also,

the CIMP status of each cell line is indicated.

To examine this phenomenon more closely, we performed further data

analysis. While parameter m only provides information on how steeply de

novo methylation curves climb up, it does not reflect the presence or the

absence of a time-delay in the onset of the re-methylation process. To quan-

tify these differences in a systematic way, we look at parameter b, which

yields the dimensionless onset for remethylation. It turns out that there is a

significant negative correlation between the base methylation level, and the

onset parameter, b (the p-value is 0.038), see figures 19.2(b) and 19.3(b).

There is also a very strong (with p = 2×10−6) positive correlation between

the re-methylation rate, m, and the onset parameter, b (not shown). This

suggests that the de novo methylation rate and the onset parameter (as

specified by the function f) vary together, and a better description of the

observed phenomena is provided by a function f̃(t) = y0+y1 tanh(m(t−b′)),
where parameter b′ = b/mmeasures the delay time in days. The time-delay



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 366

366 Dynamics of cancer: mathematical foundations of oncology

b′ does not show a significant correlation with the base methylation lev-

els (not shown). The function f̃(t) assumes explicitly that re-methylation

time-series that climb faster tend to experience a longer delay between the

5-AZA treatment cessation and the onset of de novo methylation.

To summarize this analysis, we can say that the CIMP phenotypes,

which are characterized by higher base methylation levels, tend to show a

slower de novo methylation rate, but experience a steady climb in methy-

lation levels which starts soon after the cessation of 5-AZA treatment. In

contrast, non-CIMP cell lines with a lower base methylation level tend to

exhibit a certain delay in re-gaining their methylation status, followed by

a relatively rapid increase in methylation levels. Roughly speaking, non-

CIMP phenotypes have a spurt of relatively rapid methylation increase

following a relatively long delay. The methylator phenotypes start increas-

ing their methylation levels relatively quickly and steadily, albeit slowly.

No other, statistically significant correlations were found in these data

[Wodarz et al. (2013)]. The following section discusses a mathematical

model that can help interpret the findings reviewed here.

19.3 Interpreting the results with the help of a mathematical

model

A key finding from the above quantitative analysis was that CIMP cells

tended to start the methylation process immediately upon cessation of 5-

AZA treatment, but did so relatively slowly, while non-CIMP cells showed

a relatively fast burst of re-methylation but only after a certain time delay

following treatment cessation. The existence of a time delay before a phase

of accelerated re-methylation could indicate the existence of a negative

feedback loop in the regulation of the de novo methylation process. The

basic idea is as follows. If methylation levels in the genome are around a

certain homeostatic setpoint, de novo methylation ceases to occur due to

negative feedback, and only maintenance methylation takes place. On the

other hand, if the methylation levels are significantly reduced, e.g. following

5-AZA treatment, release of negative feedback induces appropriate DNA

methyltransferase (MTase) activity. The process of activation typically

is not instantaneous but requires the interactions among several factors,

leading to a delay [Chen et al. (2005); Denis et al. (2011); McAdams and
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Arkin (1997)]. MTase activation leads to a burst of de novo methylation,

which is shut down again through negative feedback as methylation levels

in the genome recover. On the other hand, it can be hypothesized that

in CIMP cells this feedback regulatory mechanism is corrupted and the

appropriate MTases are constantly active at a relatively low level, leading

to slow but continuous de novo methylation. According to this scenario,

re-methylation of CIMP cells would commence without a delay following

5-AZA treatment, and would proceed with a relatively slow rate because

of the continuous activity of MTase. The exact MTase responsible for

CpG island de novo methylation in cancer cells is debated. In the context

of non-cancerous cells, it is thought that DNMT1 contributes mainly to

maintenance methylation, while de novo methylation activity is ascribed

to DNMT3a and DNMT3b [Hermann et al. (2004); Pradhan et al. (1999)].

Work in human cancer cell lines, however, demonstrated that DNMT1 can

exhibit de novo methylation activity for CpG islands [Jair et al. (2006)],

and DNMT1 has been shown to be up-regulated in different tumor types

[Kanai et al. (2001); Lee et al. (1996); Saito et al. (2003)].

To investigate whether this hypothesis is consistent with the observed

experimental patterns, we construct a mathematical model of de novo

methylation in the context of negative feedback regulation of MTases that

are responsible for de novo methylation. The model takes into account the

following variables. The methylation level of the loci in question is denoted

by x. The methylation level of loci that drives the negative feedback is

denoted by w. These remain hypothetical loci for now. The molecular

processes that regulate de novo methylation are not well understood [De-

nis et al. (2011); Turker (1999)], although feedback mechanisms have been

implicated in the regulation of DNMT1 [Slack et al. (1999)]. It has been

suggested that the methylation status of regulatory elements of DNMT1

determines the activity of this MTase, which could result in negative feed-

back. This element has been shown to be highly methylated in somatic

tissues, and unmethylated in a mouse adrenal carcinoma cell line [Slack

et al. (1999)], consistent with the notions explored here. For simplicity,

we will refer to such regulatory elements as “feedback sensors”, without

assuming a particular mechanism that underlies feedback. Our model gen-

erally assumes a “sensor” that reduces and shuts down MTase activity if

methylation levels in the genome rise towards some homeostatic level. The

model can be adjusted as specific biological information becomes available.

MTase activity that is required for de novo methylation is denoted by yn.

It is assumed that activation of MTase requires the interactions of different
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signaling components, which are denoted by yi, where i = 1, . . . , n−1. The

model is given by the following set of ordinary differential equations, which

describe the time-evolution of these variables.

ẋ = λyn

(

1− x

k1

)

− a1x, (19.2)

ẇ = γyn

(

1− w

k2

)

− a2w, (19.3)

ẏ1 = ηprod − qy1, (19.4)

ẏi = qyi−1 − qyi, 1 < i < n, (19.5)

ẏn = qyn−1 − byn. (19.6)

The locus in question is methylated in the presence of active MTase (yn)

with a rate λ. It is assumed that k1 methyl groups can be added. During

5-AZA treatment, de-methylation occurs with a rate a1. Similarly, de novo

methylation of feedback sensors occurs with a rate γ in the presence of

MTase, yn, and 5-AZA treatment causes de-methylation of these loci with

a rate a2. The maximum methylation level of feedback sensors is given by

k2. Activation of MTase, yn, occurs via a signaling cascade, yi. Regulation

occurs in the first element of this signaling cascade, y1, which is produced

with a rate ηprod . Details of this production term depend on the nature

of the cell line. For non-CIMP cells, we assume the presence of negative

feedback. Thus, if the methylation levels of feedback sensors lie below a

threshold, c, production occurs with a rate η(c−w). If the methylation level

of feedback sensors rises above this threshold, the rate of production is set

to zero. On the other hand, for CIMP cells, it is assumed that production

of y1 occurs at a constant rate η. Once y1 is produced, it induces MTase

activity through interactions with elements of the signaling cascade, yi.

Finally, MTase activity decays with a rate b.

We will concentrate on the parameter regime where the MTase activity

is relatively short-lived in the absence of the activation signals in the model.

That is, the parameter b is sufficiently large. This ensures that when the

activation signal is switched off, de novo methylation ceases without sig-

nificant delay. Model properties will be described first for non-CIMP cells

and then for CIMP cells under this assumption.

For non-CIMP cells, the methylation of feedback sensors, w, always

rises towards a level given by the parameter c, after which the negative

feedback kicks in and de novo methylation stops. Hence, the methylation

of w remains constant at this level. On the other hand, the degree to which
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individual loci become methylated before de novo methylation is shut down

by negative feedback depends on initial conditions, as explained below.

0

20

40

60

80

100

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 10 20 30 40 50 60 70 80

5-AZA 

5-AZA 

days 

m
e

th
y

la
ti

o
n

 l
e

v
e

l 
o

f 
in

d
iv

id
u

a
l 

lo
cu

s 
(%

) 

m
e

th
y

lt
ra

n
sf

e
ra

se
 a

ct
iv

it
y

 (
a

rb
it

ra
ry

 u
n

it
s)

 

(a) 

(b) 

Fig. 19.4 Computer simulation of the re-methylation kinetics in (a) non-CIMP and
(b) CIMP cells, according to the mathematical model described in the text. 5-AZA
treatment is indicated by the arrow. The solid line represents the methylation level of
an individual locus, x, while the dashed line represents de novo MTase activity, yn.
Parameters were chosen as follows. (a) λ =0.4; k1 =0.04; a1 =4; g=80; k2 =100;
a2 =0.4 η =2; c=10; q=0.8; b=4000 ; (b) same, but η =2.

Figure 19.4a has been generated by starting the computer simulation

with a completely un-methylated cell and allowing the genome to become

methylated. In this case, the individual methylation of locus x stabilizes

around 75%. This stable state is shown in figure 19.4a before the start of
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5-AZA treatment. Then, 5-AZA treatment is initiated in the simulation

and maintained for 72 hours, after which treatment stops. Following the

simulated 5-AZA treatment, both the site of interest, and the feedback sen-

sors, become demethylated. However, the feedback sensors retain a higher

level of methylation. This is compatible with the notion that different

sites in the genome de-methylate at different rates in response to 5-AZA

treatment. After cessation of 5-AZA treatment, after a certain time delay,

active MTase levels rise and de novo methylation increases at a relatively

fast rate, as seen in the experimental data. Over time, the methylation

level stabilizes. In the simulation of figure 19.4a, it stabilizes at a lower

level compared to the base methylation level, as observed in some of the

experimental patterns described here (figure 19.1). This is a consequence

of the assumption that the methylation level of feedback sensors, w, was

reduced to a lesser degree than the methylation level of the locus under con-

sideration, x. Therefore, upon re-methylation, feedback sensors reach their

homeostatic set-point and shut down MTase activity before methylation

of the locus under consideration has reached its pre-treatment base level.

In general, the degree to which given loci become re-methylated following

5-AZA treatment depends on the exact state of the cell after treatment is

complete. It can become less methylated, or it can achieve the same amount

of methylation seen before treatment. Restoration of pre-treatment methy-

lation levels is likely either if the amount of methylation of feedback sensors

is reduced more during 5-AZA treatment, or if the loci in question become

de-methylated to a lesser extend during treatment.

For CIMP cells, different dynamics are observed (figure 19.4b). Before

5-AZA treatment, the methylation level of the locus x is not stable but

rises at a slow rate. This is the consequence of the assumption that MTase

activity is constantly on at relatively low levels and that feedback regulation

is corrupted. As before, the simulation assumes 5-AZA treatment for 72

hours. Re-methylation commences instantly and occurs at a relatively slow

rate, as observed in the experimental data. Again, the reason is that MTase

activity is constantly on. Thus, after de-methylation, it does not have to be

activated and hence re-methylation starts immediately. Similarly, because

feedback regulation is corrupted, low levels of methylation do not induce a

sharp rise in the methylation rate.

In summary, the mathematical model reproduces the key phenom-

ena found in the data: Following 5-AZA treatment, non-CIMP cells re-

methylate with a faster rate following a certain time delay, while CIMP

cells start re-methylation immediately, although at a slower rate. More-
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over, in agreement with the data, the model predicts that in non-CIMP

cells, individual loci can re-methylate to levels that are lower than those

found before 5-AZA treatment.

19.4 De novo methylation kinetics in highly methylated cells

The slower re-methylation kinetics observed in CIMP cells comes as a sur-

prise given the observed hyper-methylation of CpG islands in these cells. It

also appears to be at odds with another study which investigated patterns

of de novo methylation in CIMP and non-CIMP gastric cancer cell lines

[Ushijima et al. (2005); Watanabe et al. (2006)]. In this study, however,

cells were not de-methylated before measuring the kinetics. CIMP cells

were characterized by a higher de novo methylation rate than non-CIMP

cells. This study [Ushijima et al. (2005); Watanabe et al. (2006)] demon-

strated reduced fidelity in replicating methylation patterns of CpG islands

in CIMP gastric cell lines compared to non-CIMP lines, mostly caused by

de novo methylation. The methylated status of CpG sites was more stably

maintained than the unmethylated state. This could lead to the methyla-

tion of entire CpG islands in experiments that allowed clonal expansion of

cells, which was not observed in non-CIMP cells.

The above described mathematical model, based on feedback-regulated

activity of de novo methylation, can reconcile these data with the seemingly

conflicting results obtained in de-methylated cells. If methylation levels are

relatively low in non-CIMP cells, maximal MTase activity is attained in or-

der to re-methylate the cell; de novo methylation stops in highly methylated

cells once the degree of methylation of feedback sensors reaches a defined

level. However, if we assume that the feedback mechanism is corrupted in

CIMP cells, a low level of methylation activity occurs constantly. Hence,

in de-methylated CIMP cells a slow rate of de novo methylation occurs

without any time delay. However, this slow rate of de novo methylation

continues with the same rate even when relatively high rates methylation

levels have already been achieved. In CIMP cells, feedback does not shut

down the de novo methylation process. Hence, in addition to the dynam-

ics observed in de-methylated cells, this model can reproduce the results

found in highly methylated cancer cells: de novo methylation continues un-

obstructedly in CIMP cells, while this is not the case in non-CIMP cells.
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19.5 Importance of experimental verification

This theory provides a guide to investigate possible feedback senor mech-

anisms in CIMP and non-CIMP cells. The mechanisms that are responsi-

ble for regulating the activity of de novo methylation are not well under-

stood. Data suggest a dynamic interplay between different posttranscrip-

tional modifications [Denis et al. (2011)], and the occurrence of negative

feedback has been suggested in the context of the DNA methyl transferase

DNMT1 [Slack et al. (1999)]. However, more work needs to be done to

investigate and document such effects more extensively in order to test

the model. While this model presented here provides a nice framework

to interpret experimental data, it has to be kept in mind that this is cur-

rently just a hypothesis that awaits experimental investigation, and that

other mechanisms could also play a role at driving these dynamics. The

overall effect of de-methylation on the gene expression profile of cells is

likely to be highly complex and needs further examination. For example,

there is indication that DNA methylation status alone cannot account for

gene expression patterns, but that a coordination of DNA methylation and

histone modifications can determine transcriptional status [Mossman and

Scott (2011)].

19.6 Summary

The results described in this chapter clearly show that the concept of methy-

lator phenotypes is a lot more complex than the concept of mutator phe-

notypes. A thorough understanding of the methylation kinetics, and the

meaning of methylator phenotypes, will form an important basis for evalu-

ating the relative role of genetic and epigenetic events for the emergence of

cancerous phenotypes, such as cells with silenced tumor suppressor genes.

This can in turn tell us whether one pathway is dominant over the other

in carcinogenesis, or whether both mutations and CpG island methylation

events contribute equally. This can have implications for treatment ap-

proaches. These explorations also show that computational models of can-

cer initiation and progression that are based on only genetic events (which

are most models at the moment) might be too simplistic to capture the

overall dynamics, and that more accurate predictions about the rates of

cancer incidence and progression might require more complex models that

take into account both genetic and epigenetic alterations. A good example
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of this is colon cancer. The introductory chapter (Chapter 2) reviewed the

literature about colon cancer initiation and it was stated that the events

leading to this disease are relatively well-understood, comprising a specific

sequence of genetic events. At the same time, however, it is clear that the

disease process is more complicated and heterogeneous, with some cases

of colon cancer showing CIMP but not CIN, while others show CIN but

not CIMP [Goel et al. (2007); Cheng et al. (2008)]. Hence, a more com-

prehensive framework is required to better understand the initiation and

pathogenesis of specific cancers.

Problems

Problem 19.1. Research project. Learn about the role of methylation

in cancer initiation.

Problem 19.2. Research project. Learn about the CIMP phenotype and

how it relates to CIN in colon cancer.

Problem 19.3. Numerical project. Learn about linear data fitting. (a)

Create an artificial dataset by taking yi = 1+2ηii, with i = 1, . . . , 20, where

ηi is a random variable taken from a uniform distribution in [0, 1]. (b) Use

any software to fit the function y = at + b to this dataset. (c) Find the

p-value of the fit. What does this value tell us?

Problem 19.4. Numerical project. Learn about nonlinear data fitting.

(a) Create an artificial data set by taking yi = y0 + y1 tanh(mi− bηi), with

i = 1, . . . , 10, where y0 = 1, y1 = 10, m = 0.1, b = 0.1, and ηi is a random

variable taken from a uniform distribution in [0, 1]. (b) Use any software to

perform nonlinear fit of these data with function given by equation (19.1).

(c) Repeat (b) several time with different random numbers, to see how much

variation you get in the fitted values y0, y1, m, and b.
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Chapter 20

Telomeres and cancer protection

When modeling the process of carcinogenesis, we examined the probability

that certain mutations are generated in cells, and assumed clonal expansion

of transformed cells. Here, we add a layer of complexity to this situation

by assuming that cells can undergo a limited number of cell divisions. This

can greatly influence the potential to generate a progressing cancer, and is

discussed in the current chapter.

Human somatic cells can undergo only a limited number of divisions in

vitro [Hayflick and Moorhead (1961)]. This phenomenon known as replica-

tive senescence or the Hayflick limit has long been attributed to the pro-

gressive shortening of telomeres with age, which occurs both in vivo and in

vitro [Harley et al. (1990)]. Telomeres are specialized noncoding repetitive

sequences of DNA that are highly conserved throughout evolution and are

found at the end of eukaryotic chromosomes [Blackburn (1991); De Lange

(2005)]. There are several processes, which are believed to contribute to

telomere shortening during cell division; these include the incomplete repli-

cation of linear DNA molecules by DNA polymerases [Olovnikov (1973)],

active degradation by an unknown exonuclease [Makarov et al. (1997)], and

oxidative stress [von Zglinicki (2002)].

It has been suggested that replication limits in somatic cells evolved as

a means to reduce the incidence of cancer in multicellular organisms. A

transformed cell dividing without control must first evade the constrains

imposed by the replication limit before it can establish a neoplasia of a

significant size. The link between telomeres and cancer is supported by the

fact that most colonies of transformed human cells initially proliferate but

ultimately cease to divide and die [Counter et al. (1992); Chin et al. (2004)].

375
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This extinction coincides with a phase termed telomere crisis, in which there

is an abundance of cells with very short telomeres and widespread cell death

(presumably due to chromosome instability) [Counter et al. (1992)]. Also,

very significantly, between 85-90% of cancer cells express telomerase [Pi-

atyszek et al. (1994)] (an enzyme that extends telomere length) allowing

them to circumvent the limitations imposed by replicative limits.

The role of replication limits in the context of cancer biology has been

seen as a mechanism to curtail the clonal expansion of cells. Conceptu-

ally if an oncogenic event causes uncontrolled proliferation of a cell and

its progeny, replication limits place a cap on the maximum size of the cell

colony and on the total number of divisions by transformed cells. Ac-

cording to the multi-hit theory of carcinogenesis, full progression toward

malignancy requires the accumulation of several mutations in altered cells.

Since mutations typically occur during cell division, a limit on the possible

number of divisions reduces the probability of acquiring additional muta-

tions. Hence, the lower the replication capacity (defined as the number of

divisions left) of the originally transformed cell, the lower the chances of

acquiring subsequent mutations that can lead to further cancer progression.

This explains the goal of minimizing the average replication capacity of a

dividing cell. We also note that a mutation that results in the activation of

telomerase could allow cells to bypass the replicative limit [Piatyszek et al.

(1994)], so the probability of escaping Hayflick’s limit itself also depends

on the replication capacity of the originally transformed cell.

In order to understand how replication limits protect against cancer, it

is essential to understand how a tissue’s architecture affects the replicative

capacity of the cell population. Recently cell lineages have been viewed as

the fundamental units of tissue development, maintenance, and regenera-

tion [Reya et al. (2001); Shizuru et al. (2005); Frank (2007)]. At the starting

points of lineages one finds stem cells, characterized by their ability to main-

tain their own numbers through self-replication [Reya et al. (2001)]. Stem

cells give rise to intermediate more differentiated progenitor cells, which

are often capable of at least some degree of self-replication [Shizuru et al.

(2005)]. The end products of lineages are the fully differentiated mostly

non-dividing cells associated with mature tissue functions.

We explore how different architectural characteristics of a cell lineage

–the number of intermediate cell compartments, the self-renewal capabili-
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ties of cells, and the rates of cell division– impact the replication capacity

of a cell population. In any given system, there are many theoretically pos-

sible architectures that are able to produce a fixed physiologically required

output of differentiated cells from a small stem cell pool. Yet, we find that

these alternative architectures may produce radically different results with

regard to the replicative potential of the cell population. We describe spe-

cific features that define an optimal tissue architecture that minimizes the

expected replication capacity of dividing cells and thus the risk of cancer.

20.1 Lineages and replication limits

Cell lineages follow specific differentiation pathways. The turnover rate,

degree of differentiation and distinct function of different cells within a lin-

eage can often be associated with the expression of specific markers [Frank

(2007); Passegué et al. (2005)]. These observations have led to the idea

of cell compartments as a sequence of distinct and distinguishable differ-

entiation steps. The organization of lineages into cell compartments is a

widely proposed model that has been studied both biologically and mathe-

matically in many tissues including the hematopoietic and neural systems,

epidermis, esophagus and colon crypt (see e.g. [Passegué et al. (2005); Gage

(2000); Potten and Booth (2002); Okumura et al. (2003); Marshman et al.

(2002)]). The level of differentiation of cells can change upon cell division

[Shizuru et al. (2005)]. Alternatively for certain tissues it has been pro-

posed that cells can also change their differentiation level by moving away

from the stem cell niche [Reya and Clevers (2005)] leading to a continuous

differentiation process. Given our interest in replication limits and their in-

trinsic connection to cell division here we focus on differentiation occurring

through cell division.
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Fig. 20.1 Cell lineage model. Transit cells of type j divide at a rate vj producing two
j-type cells with probability pj or two (j + 1)- type cells with probability 1− pj . Stem
cells S divide at a rate r. There are k + 1 intermediate steps until cells become fully
differentiated (D). Once they do they exit the cell cycle and die at a rate d.
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We begin by introducing a variant of a widely proposed model of cell

dynamics within a cell lineage [Johnston et al. (2007); Marciniak-Czochra

et al. (2009a); Lander et al. (2009); Bocharov et al. (2011); Rodriguez-

Brenes et al. (2011); Werner et al. (2011)]. In this model (figure 20.1) the

starting point of the lineage are stem cells S. Downstream from the stem

cell population, one finds a series of intermediate cell types often referred to

in the literature as progenitor cells or transit amplifying cells (here named

X0, . . . , Xk). If a stem cell divides, each daughter cell remains in the stem

cell compartment with probability ps or proceed to the X0 compartment

with probability 1 − ps. Similarly, if a cell in compartment j (hereafter

called a j-type cell) divides, each daughter cell will remain in the j com-

partment with probability pj or differentiate into a (j + 1)-type cell with

probability 1− pj . The end products of the cell lineage are fully differenti-

ated cells D, which cannot divide any further and die at a certain rate d.

The division rates are r for stem cells and vj for a j-type cell.

Healthy tissue is highly regulated to ensure homeostasis with feedback

loops playing a fundamental role in this regard [McPherron et al. (1997);

Wu et al. (2003)]. Thus, if one wishes to examine certain dynamic prop-

erties, such as tissue regeneration after an injury, it is necessary to impose

control mechanisms that guarantee the stability of the system. In practice

this means that the division rates (r and vj) and self-renewal probabilities

(ps and pj) may be functions that take on different values depending on

the state of the system [Johnston et al. (2007); Marciniak-Czochra et al.

(2009a); Lander et al. (2009); Bocharov et al. (2011); Rodriguez-Brenes

et al. (2011)]. In case of an injury the self-renewal probabilities and division

rates might temporarily increase to ensure a faster recovery [Lander et al.

(2009)], leading to an increased number of divisions per unit of time. Thus,

repeated injury and repair might augment the risk of cancer by increasing

the number of cell divisions. In particular, control must be imposed on

the self-renewal probability of stem cells, because otherwise in a stochas-

tic setting the fate of the lineage would inevitably result in extinction or

uncontrolled growth. Here however, we are only concerned with properties

at homeostasis. Hence, we are only interested in the values of r, ps, vj
and pj at equilibrium and the precise nature of the control mechanisms is

irrelevant to our analysis.

Next we consider replication limits in the context of telomere biology.

In vivo telomeres interact with a number of proteins, allowing them to be
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recognized by the cell as being in a protected or ‘capped’ state (for a Re-

view see [De Lange (2005)]). As telomeres shorten they lose their ability to

form these capped or protected structures and any further division is then

halted. If a cell happens to exhaust its replication capacity but nevertheless

attempts mitosis, then senescence or apoptosis would be triggered through

the p53 or p16-RB pathways [Smogorzewska and De Lange (2002)]. Several

models for cellular replication limits have been proposed. These models use

a range of approaches from population dynamics [Marciniak-Czochra et al.

(2009b); Glauche et al. (2011); Enderling et al. (2009b); Arkus (2005); Olof-

sson and Kimmel (1999)] to detailed considerations of the molecular mech-

anisms affecting telomere function [Rodriguez-Brenes and Peskin (2010);

Proctor and Kirkwood (2002)]. Here, we discuss the following framework:

associated with every cell there is a number that we call the replication

capacity of the cell. When a non-stem cell divides, the replication capac-

ity of the daughter cells will be one unit less than the replication capacity

of the parent cell. First we consider the case where all stem cells have a

fixed replication capacity ρ that does not change with time. This setting

corresponds to a scenario in which stem cells express enough telomerase

to maintain a stable telomere length. (Later we consider the case where

the replication capacity of stem cells diminishes with time.) Here ρ plays

the role of Hayflick’s limit and is treated as a parameter. Experimental

measurements typically set the value of ρ between 50–70 divisions [Huff-

man et al. (2000)]. Biologically ρ should be large enough to produce and

replenish the necessary number of cells required to sustain tissue function

during the lifespan of the organism.

We integrate the cell dynamics described above into a single stochastic

agent-based model. In this agent-based formulation we track cells individu-

ally. Every cell has two attributes: a type determined by the compartment

it belongs to, and a replication capacity. When an intermediate cell di-

vides, the replication capacity of the daughter cells will be one unit less

than that of the parent. The same thing occurs if a stem cell divides into

two intermediate cells. The cell division events and the death of differen-

tiated cells are decided probabilistically according to the death rate d and

the division rates r and vj . If a cell attempting division has exhausted

its replication capacity, division is halted and the cell is removed from the

cell population. If division occurs in compartment j the probability of self-

renewal will be pj . To decide the fate of a stem cell division we impose the

following simple control mechanism. If the number of stem cells is larger
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than the equilibrium number S, then the stem cell division results in two

intermediate daughter cells, otherwise division results in two daughter stem

cells. At homeostasis equation (20.1) gives the analogous model in terms

of ordinary differential equations.






































Ṡ = 0

Ẋ0 = (2p0 − 1)v0X0 + rS

Ẋ1 = (2p1 − 1)v1X1 + 2(1− p0)v0X0

...
...

Ẋk = (2pk − 1)vkXk + 2(1− pk−1)vk−1Xk−1
Ḋ = 2(1− pk)vkXk − dD.

(20.1)

The precise correspondence between the agent-based model and this ana-

lytical formulation is discussed later in the chapter.

20.2 Model analysis

20.2.1 Population turnover and replication capacity:

analytical results

From system (20.1) we find two expressions for the steady state number

of cells in compartment j (which we will need later):

x̂j =

(

2(1− pj−1)vj−1
(1 − 2pj)vj

)

x̂j−1 & x̂j =
rS

vj
· 2j

1− 2pj
·
j−1
∏

i=0

1− pi
1− 2pi

.

In compartment j at any given time there are: vjxj cells leaving

the compartment; 2pjvjxj new j-type cells created through symmetric

divisions; and 2(1−pj−1)vj−1xj−1 cells arriving from compartment j−1.

If the system is at equilibrium, then the expected replication capacity of

the cells coming into the compartment must be the same as the expected

replication capacity of the cells leaving the compartment. Thus, if we call

ai the expected replication capacity of the i-compartment at equilibrium,

we find that:

aj · x̂j = (aj − 1) · 2pjvj x̂j + (aj−1 − 1) · 2(1− pj−1)vj−1x̂j−1

and using the relation previously found between x̂j and x̂j−1 we find:

aj · vj x̂j = (aj − 1) · 2pjvj x̂j + (aj−1 − 1) · (1− 2pj)vj x̂j .
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From this have:

aj = −1− 2pj
1− 2pj

+ aj−1 ⇒ aj = ρ− (j + 1)−
j
∑

i=0

2pi
1− 2pi

.

Proposition 1. If the equilibrium number of stem cells S in not fixed, a

cell lineage that minimizes the average replication capacity of a dividing

cell necessarily has S = 1.

Proof. In this case the system is constrained by the equation
∑

vjxj +

rS = dD where r, d and D are fixed. Clearly S cannot be smaller than 1.

Suppose now that there is a cell lineage that minimizes the average repli-

cation capacity of a dividing cell with S ≥ 2. This lineage is defined by

a given stem cell division rate r and a set of parameters {pj, vj}j=0,...,k.

Let us define an alternative architecture with one more intermediate cell

compartment characterized by the same stem cell division rate and a set

of parameters {p̃j , ṽj}j=0,...,k+1 that satisfy p̃j = pj−1 and ṽj = vj−1 for

j > 0.

If we make p̃0 = 0, ṽ0 = 1 and S̃ = S/2 then x̃0 = S/2 and x̃j = xj−1
for all j > 0. It follows that this new cell lineage also satisfies

∑

ṽj x̃j +

rS̃ = dD. Furthermore, if we respectively call the average replication

capacities of the jth compartments aj and ãj , we find ã0 = ρ − 1 and

ãj = aj−1−1 for j > 0. The variable aj refers to a specific compartment

(the jth compartment). We are also interested in the variable A, the

expected replication capacity of a dividing cell in the entire population.

We find: The expected replication capacity of a dividing cell A = (ρrS+
∑k

0 ajvjxj)/dD for the original cell linage and Ã = (ρrS/2+(ρ−1)rS/2+
∑k

0 (aj − 1)vjxj)/dD for the new cell lineage. Clearly Ã < A which is a

contradiction.

Proposition 2. Let v, r, S, d,D and k be fixed and assume there is at

most one compartment j of transit amplifying cells for which pj > 0.

Then the value of pj, and the distribution of the replication capacity of

the transit cell population at equilibrium are independent of j.

Proof. Let N =
∑

xj be the total steady state number of transit ampli-

fying cells. Using the previously derived expression for xj we find after
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simplifying:

N =
rS

v
· −1 + 2pj + (1 − pj)2

k+1

1− 2pj

which implicitly defines pj as a function of N and k independent of j.

We want to look at the distribution of the replication capacity of

the entire cell population at equilibrium. To simplify the notation we

assume rS/v = 1 (the case rS/v 6= 1 follows immediately from this). Let

x(a) be the number of cells in the entire population that have replication

capacity a at equilibrium, and x
(a)
j the corresponding number of j type

cells. Let us assume that pj = 0 ∀j 6= s. Then for j = 0, . . . , s− 1 we

have:

x
(a)
j =

{

2j if a = ρ− (j + 1)

0 otherwise.

For j = s we have:

xρ−(s+1)−r
s =

{

2s(2p)r if r ≥ 0

0 otherwise.

Moreover it can be shown that j = 1, . . . , k − s:

x
ρ−(k+1)−r
s+j = 2s(1− p)(2p)(k−s)+r−j2j.

First, we will show that xρ−(k+1)−r is independent of s for r > 0. We

have:

xρ−(k+1)−r = 2s(2p)(k−s)+r + 2s(1 − p)

k−s
∑

j=1

(2p)(k−s)+r−j2j .

But then after simplifying we get:

xρ−(k+1)−r = 2k+rpr.

Now we want to look at the values of xρ−(i+1) for 0 ≤ i ≤ k−1. If i < s,

then clearly x(i) = 2i. If i ≥ s, then we can call r = i− s and we find:

xρ−(i+1) = xρ−(s+1)−r = 2s(2p)r + 2s(1− p)
r
∑

j=1

(2p)r−j2j = 2r+s = 2i.

Thus we find that the distribution of the cell replication capacity is

independent of the choice of the self-renewing compartment.
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Proposition 3. Suppose that all the vj are equal and consider

v, r, S, d and D fixed. If at most one pj > 0 we want to find the pair (p, k)

that minimizes the entire replication capacity of the transit cell popula-

tion at equilibrium. Under this condition the entire replication capacity

of the transit cell population at equilibrium is minimized by choosing p

as large as possible subject to the restriction ak ≥ 1.

Proof. We proved that if at most one pi > 0, then the entire replication

capacity of the transit cell population is independent of the choice of i.

Thus without loss of generality we assume i = 0. Let α = (1 − p)/(1 −
2p), N be the steady state number of transit cells and k the number of

compartments, then:

N =
k
∑

j=0

xj =
rS

v

(

2k+1α− 1
)

.

We also have xk = (rS/v)2kα from where it follows that 2xk = N +

rS/v. On the other hand, dD = 2vxk, and we find that N is completely

determined by rS, dD and v:

N =
dD − rS

v
.

Now the entire replication capacity of the j-compartment at equi-

librium is aj = ρ − (j + 1) − 2(α − 1) for all j. We want to minimize

A =
∑

ajxj . We have:

A = [ρ− 2(α− 1)]
∑

xj −
∑

(j + 1)xj .

The first term in the LHS of the previous equation equals N [ρ−2(α−1)].

Given that x0 = (rS/v)(2α− 1) and xj = (rS/v) · 2jα for j > 0, we can

decompose the second term (call it B) in the following way:

B =
∑

(j + 1)xj

= (rS/v)(α − 1) + (rS/v)
∑

(j + 1)2jα

= (rS/v)(α − 1) + (rS/v)[(k + 1)2k+2α− (k + 2)2k+1α+ α].

Now call c = rS/v and n = k+1. Then using the fact that 2nαc = N+c

we find that:

B = 2αc+ (N + c)n− (N + 2c)

⇒ A = {N(ρ+ 2) + (N + 2c)} − {(N + c)(2α+ n)}.
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Hence, to minimize A we should maximize 2α+n. Given that n log(2)+

log(α) = log(N/c + 1), if we write f(α) = 2α − log(α)/ log(2) we find

that 2α+ n equals

f(α) + log(N/c+ 1)/ log(2).

It is easy to prove that the f : [1,∞] → R is a decreasing function.

Hence to minimize A we should make α as large as possible, which is

equivalent to choosing p as large as possible given the restriction ak ≥ 1.

Lemma 1. For any pair (N, k) let {yj} be the sequence defined by y0 =

1/(1−2p), yj = 2j(1−p)/(1−2p) for 0 < j < k and
∑k

j=0 yj = N , and bj
be the entire replication capacity of the jth compartment at equilibrium.

Then for any other sequence {xj} with entire replication capacities aj
that satisfies N =

∑k
j=0 xj we have:

1) bk ≤ ak and 2)
∑

bjyj ≤
∑

ajxj .

Proof. Preliminaries

First let us write αi = 2(1 − pi)/(1 − 2pi) ⇒ 1/(1 − 2pi) = αi − 1.

For j > 0 we then have:

xj =
1

1− 2pj

j−1
∏

i=0

2(1− pi)

1− 2pi
= (αj − 1)

j−1
∏

i=0

αi.

Calling βj =
∏j

i=0 αi we have xj = βj − βj−1 for j > 0. Thus we can

write:

N =

k
∑

j=0

xj = (α0 − 1) +

k
∑

j=1

[βj − βj−1] = βk − 1.

Thus we have:

N + 1 =

k
∏

i=0

αi.

Proof of 1)

Note that following the previous definitions ak = ρ − (k + 1) −
∑k

j=0 (αj−2) = ρ+(k+1)−∑k
j=0 αj . Thus the problem reduces to the

maximization of
∑

αj subject to the conditions: a) N + 1 =
∏k

i=0 αi ,

b) αi ≥ 2 and c) ak ≥ 0. Let us assume that {αi} satisfy the condi-

tions stated above. Assume that at least two of the αi are greater than



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 385

Telomeres and cancer protection 385

two. Without loss of generality let them be α0 and α1. We can write

N + 1 = Pα0α1 and S = s+ (α0 + α1). We want to maximize α0 + α1

subject to A = (N + 1)/P = α0α1. Which means we want to maximize

α0 +A/α0. It is easy to see that this function has a unique minimum at

α0 =
√
A thus the maxima occur at the endpoints of its domain which

is [2 , A/2].

Proof of 2)

We will prove this part of the proposition using the principle of math-

ematical induction.

Base step

Let k = 2. Then, N + 1 = α0α1 and:

S = (α0 − 1)(ρ− 1− (α0 − 2))

+ (α1 − 1)α0(ρ− 2− (α0 − 2)− (α1 − 2))

⇒ S = 2 + 3N − (α0 + α1)(1 +N) +Nr.

Given this last expression the problem for minimizing S reduces to the

maximization of α0 + α1, subject to the conditions N + 1 = α0α1 and

a1 ≥ 0 ⇔ r + 2− (α0 + α1) ≥ 0. From the symmetry of these equations

it is easy to prove that the minimization occurs when either α0 or α1

equals 2, and therefore either p0 or p1 equals 0.

Induction step

Assume the proposition is true for n = k − 1. Let (x0, . . . , xk) be

defined by P = (p0, . . . , pk) and assume that the sequence {xj} mini-

mizes the replication capacity of the population subject to the condition

N =
∑

xj .

Case A: There is a single pj ≥ 0 for j ≤ k. Then there is nothing to

prove.

Case B: There are at least two pj > 0 for j ≤ k − 1 (we will prove this

leads to a contradiction).

Let us call Nk−1 =
∑k−1

j=0 xj . Make p̃j = 0 for j > 0 and

p̃0 such that Nk−1 =
∑k−1

j=0 yj . Now by the induction hypothesis
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Sk−1 =
∑k−1

j=0 ajxj > S̃k−1 =
∑k−1

j=0 bjyj . Note that:

1 +Nk = βk = 2(p̃k − 1)yk and 1 +Nk = 2(pk − 1)xk.

Given that xk = yk it follows that pk = p̃k and then we have:

Sk = Sk−1 + akxk = Sk−1 +

[

ak−1 −
2pk

1− 2pk

]

yk.

From part 1) we have bk−1 ≤ ak−1, and thus it follows that Sk > S̃k,

which means that {xj} does not minimize the entire replication capacity

of the transit cell population, which is a contradiction.

Case C: There is one pj 6= 0 for j < k − 1 and pk 6= 0.

If we prove that A =
∑

ajxj is invariant under a permutation pi ↔
pj , then the situation reduces to Case B. It is sufficient to prove that A

is invariant under pj ↔ pj+1. Note that:

xj = (αj − 1)βj−1 & aj = ρ+ (j + 1)− αj −
j−1
∑

i=0

αi.

After the permutation x′j = (αj+1−1)βj−1 and x′j+1 = (αj−1)αj+1βj−1.
Then:

a′j = ρ+(j+1)−αj+1−
j−1
∑

i=0

αi & a′j+1 = ρ+(j+2)−αj−αj+1−
j−1
∑

i=0

αi.

From where ajxj + aj+1xj+1 = a′jx
′
j + a′j+1x

′
j+1 and it follows that the

permutation A is invariant under this permutation.

Proposition 4. Suppose that all the vj are equal and consider

v, r, S, d and D fixed. Then to minimize the entire replication capacity of

the transit cell population at equilibrium, make at most one pj > 0 and

choose the pair (pj , k) such that pj is the largest possible subject to the

restriction ak ≥ 0. Furthermore, the value of pj, and the distribution of

the replication capacity of the transit cell population at equilibrium are

independent of j.

Proof. Let k and P = (p0, . . . , pk) be such that the sequence

(x0, . . . , xk) they define minimizes A =
∑

ajxj subject to the restric-

tions imposed by the choice of parameters r, S, v and D. Because of
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Proposition 2, there is at most one j such that pj > 0. Furthermore

because of Lemma 1 the pair (k, pj) is such that amongst all pairs

(K,Pj) that fit the parameters, pj is maximum subject to the restric-

tion ak ≥ 1. The last statement of the proposition follows straight from

Proposition 1.

20.2.2 Agent-based model

An agent-based stochastic version of the model is implemented as an

algorithm. At any given time t the system is described by a set of cells,

each of which has two attributes: a real number representing its replica-

tion capacity and a type. If we call A = rS+dD(t)+
∑

vixi(t), then the

probability that the next reaction involves a j-type cell is vixi(t)/A(t),

and the probabilities that it involves a differentiated cell or a stem cell

are Sr/A(t) and dD(t)/A(t) respectively. Once a type of cell is selected,

a random cell amongst all cells of this particular type is selected. Then

we proceed in the following way:

(1) If division occurs in an intermediate cell, the two offspring of the

parent cell will have a replication capacity one unit smaller than

that of the parent cell. If division occurs in a j-type cell the proba-

bility of self-renewal is pj. If the cell attempting division has a zero

replication capacity division is halted and the cell is removed from

the cell population.

(2) If division occurs in a stem cell and the current number of stem cells

S(t) is less than the equilibrium value Ŝ, then we make ps = 1 and

if S(t) ≥ Ŝ we make ps = 0. This is a simple way of establishing

control in the stem cell population. As we mentioned before, we

are only interested in equilibrium properties of the intermediate

compartments, so any control mechanism on the number of stem

cells will suffice.

(3) If a differentiated cell is selected then the only possible event is cell

death.

(4) The time when the next reaction occurs is exponentially distributed

with mean equal to 1/A(t).

The difference between the ode model and the agent-based model lies

with the fraction of cells at equilibrium that exhaust their replication

capacity and nevertheless attempt cell division. In the ode model there
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is no built-in mechanism to prevent such cells from dividing. In the

agent-based model division is halted and the cells are removed from the

population. For an optimal architecture this fraction f is given by:

f =
(2p)ρ−(k+1)

2(1− p)
− 1− 2p

2k+1(1− p)
≤ (2p)ρ−(k+1).

Typical experimental measurements for ρ yield a value of approximately

50 − 70 divisions [Huffman et al. (2000)], and proposed models for the

number of transit amplifying cell types in several tissues, including blood,

neurons and hair [Shizuru et al. (2005)], set the number of intermediate

cell compartments (k + 1) between one and four. These values for ρ

and k + 1 produce a very large exponent on the right hand side of the

previous inequality suggesting a small value for f . In figure 20.4(a) we

show results from the agent-based model that demonstrate very good

agreement with the corresponding analytical model, suggesting that the

latter adequately captures the essential dynamics of the system.

20.2.3 Decrease in the replication capacity of stem cells

First, assuming that the cell population is at equilibrium, we derive an

approximation formula for aj(t), the expected replication capacity of the

j-type population as a function of time. Under this condition we have

rS = x0v0(1 − 2p0), which means that:

ȧ0 = (2p0 − 1)v0a0 − 2pv + v0(1 − 2p)(ρ0 − 1) + v0(2p− 1)ǫ.

Hence we can write ȧ0 = Ka0 +B +Kǫt where K and B are constants.

From here we find:

a0 = −B + ǫ

K
− ǫt+ C0e

kt

for some constant C0 and it follows that:

a0 = ρ(t)− 1− 2p0
1− 2p0

+O(e(2p0−1)v0).

Let us call Kj = (2pj − 1)vj . We find after simplifying:

ȧ1 = K1a1 +

{

ρ− 1− 2p0
1− 2p0

+
ǫ

(1− 2p0)v0

}

+K1ǫt+O(eK0t)
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and we find:

a1 = C1e
K1t + (ρ− 2)− 2p0

1− 2p0
− 2p1

1− 2p1
+

ǫ

(1 − 2p0)v0
+

ǫ

(1 − 2p1)v1

− tǫ+ eK1t

∫

e−K1tO(eK0t)dt.

Note that eK1t
∫

e−K1tO(eK0t)dt = O(eK0t) and CeK1t + O(eK0t) =

O(emax{Ko,K1}). From these considerations it follows that:

aj(t) = ρ(t)− (j + 1)−
j
∑

i=0

2pi
1− 2pi

+

j
∑

i=0

ǫ

(1 − 2pi)vi
+O(emax{Ki}).

Finally note that all the Ki are negative, hence the O(emax{Ki}) in the

previous expression goes to zero exponentially fast. We may thus neglect

this term and find a good approximation to aj(t).

Now we would like to address the optimality results previously de-

rived, this time in the context of a replication capacity of stem cells that

decreases with time. Consider the case where all the vj = v are equal.

Once again we assume that the cell population is at equilibrium and thus

the aj(t) are well approximated by the following formula:

aj(t) = ρ(t)− (j + 1)−
j
∑

i=0

2pi
1− 2pi

+

j
∑

i=0

ǫ

(1− 2pi)vi
.

Let us write αi = 2(1−pi)/(1−2pi) and call F (j) = (j+1)−∑j
i=0 αi. If

ǫ = 0 then we find after simplifying that aj = ρ+F (j). If ǫ > 0 similarly

we find aj(t) = ρ(t) + (1 − ǫ/v)F (j). Thus to minimize
∑

aj(t)xj we

only need to focus on minimizing (1− ǫ/v)
∑

F (j)xj . It follows that the

choice of parameters that minimizes S when ǫ = 0 also minimizes S(t)

when ǫ > 0.

20.3 Tissue architecture and the development of cancer

We are interested in finding an optimal cell lineage architecture that pro-

tects against cancer by minimizing the replication capacity of dividing cells.

Stated in this form, however, the problem is not sufficiently constrained. In

particular the target number of differentiated cells D and their death rate
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d depend on other biological considerations such as tissue function and

organismic physiology that lie clearly outside the scope of the optimiza-

tion problem. Thus we consider the outflow of differentiated cells (dD)

as a fundamental fixed quantity of the system. With this constraint at

hand we arrive at our first insight: A cell lineage architecture concerned

only with minimizing the replication capacity of dividing cells would have

a stem cell compartment consisting of a single cell. Note that a cell lineage

that depends on a single stem cell would be extremely fragile; thus in vivo

the equilibrium number of stem cells must depend on other factors (inde-

pendent of replication limits) that deal with the robustness of the system.

Hence in broader terms what this result suggests is that a tissue architec-

ture concerned with reducing the risk of cancer should have a very small

number of stem cells compared to the total number of cells in the lineage

(in the colon epithelium for example there might be as little as four stem

cells per crypt [Bach et al. (2000); Marshman et al. (2002)]). This result

becomes intuitive when we look at the proliferative potential of stem cells

in specific tissues. For example, colon stem cells are estimated to divide up

to 5000 times during a human lifespan [Marshman et al. (2002)]. Thus the

cumulative number of divisions in clones originating from a transformed

colon stem cell is potentially enormous, suggesting that replication limits

are not an effective mechanism to protect against the accumulation of mu-

tations in stem cells.

If the stem cell compartment is small, then most of the cell divisions

required for normal tissue function must be carried out by non-stem cells,

where the much smaller replication limits can protect against the sequen-

tial accumulation of mutations. As pointed out above, the effectiveness

of this protection will depend on the replication capacity of the originally

transformed cell as it directly influences the likelihood of acquiring sub-

sequent mutations and of escaping the Hayflik limit itself. Even though

the proliferative potential of non-stem cells is limited because they are re-

sponsible for the overwhelming majority of cell divisions within a tissue, it

can be shown that statistically the accumulation of mutations in non-stem

cells is possible [Komarova and Wang (2004)]. Furthermore for certain

types of cancers there is evidence that the initiating mutations originate

in progenitors (for a review see [Visvader (2011)]). Recently progenitor

cell populations have been identified as targets for tumor initiation in a

number of leukemias [Guibal et al. (2009); Krivtsov et al. (2006); Goar-

don et al. (2011); Wojiski et al. (2009); Huntly et al. (2004); Cozzio et al.
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(2003)] and several types of solid cancer, including glioblastoma, medul-

loblastoma, prostate cancer, basal cell carcinoma and basal-like breast can-

cer [Friedmann-Morvinski et al. (2012); Schüller et al. (2008); Goldstein

et al. (2010); Youssef et al. (2010); Lim et al. (2009)]. To study how repli-

cation limits and tissue architecture protect against mutations originating

outside the stem cell compartment, we treat the influx of stem cells (rS) and

the outflow of differentiated cells (dD) as the fundamental fixed quantities

of the system, and ask how the number of intermediate cell compartments

(k + 1), the self-renewal probabilities (pj), and the cell division rates (vj)

affect the replication capacity of dividing cells.

We start by describing some of the fundamental features of the system.

As explained above, the flux of cells between the stem cell and differentiated

cell compartments (dD − rS) is fixed. At homeostasis dD − rS equals the

number of intermediate cell divisions per unit of time. Thus, if we call the

equilibrium number of j-type cells xj , we have the constraint:
∑

vjxj = dD − rS. (20.2)

The steady state number of cells in compartment j is:

xj =
rS

vj(1− 2pj)

j−1
∏

i=0

2(1− pi)

1− 2pi
. (20.3)

From this last equation it follows that increasing the self-renewal prob-

ability in an intermediate compartment increases the compartments size

and the number of divisions per unit of time in that compartment (vjxj).

Hence, given the constraint found in equation (20.2), an increase in the self-

renewal probability in one of the compartments must be offset by a change

in some other variable of the system. Figure 20.2 illustrates this situation

with two alternative architectures. The same target number of divisions

may be reached by a lineage with smaller self-renewal probabilities and

a larger number of compartments or by a lineage with larger self-renewal

probabilities and fewer compartments.

An increase in the division rate in a compartment produces a decrease in

the compartment’s size, equation (20.3). If we multiply the expression for xj

in equation (20.3) by vj , we find that at equilibrium the number of divisions

per unit of time is independent of the division rate. Both of these phenom-

ena are demonstrated in figure 20.3. Here, an increase in the division rate
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Fig. 20.2 Architectures for the same target number of divisions in the intermediate cell
population. Increasing the self renewal probability increases the size and the number of
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probabilities and three intermediate compartments (a), or by a lineage with larger self-
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Parameters (a): (p0 = 0.3, p1 = 0.4, p2 = 0). Parameters (b): (p0 = 0.41, p1 = 0.41).
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Fig. 20.3 An increase in the division rate of a compartment produces a decrease in the
compartments size; however the number of divisions per unit of time and the average
replication capacity in a compartment is independent of the division rate. Note that
the number of divisions per unit of time increases with each compartment. (See text for
discussion.) In both figures rS = 100, dD = 2400, p0 = 0, p1 = 0.4, p2 = 0, v0 = 1,
v2 = 1.5 and k = 2. Parameters (a): (v1 = 1). Parameters (b): (v1 = 2).

in one of the compartments results in a reduction of the population size;

the number of divisions per unit of time however, does not change. There

is also another feature of the system that is apparent from figure 20.3. The

relative sizes of the compartments are not necessarily determined by their
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positions within the lineage; however, the number of divisions occurring in

the compartments is. Thus, a more differentiated compartment produces

at least the same number of divisions than any of its predecessors. Indeed,

it is easy to see from equation (20.3) that vj−1xj−1 ≤ vjxj .

Let us call aj the expected replication capacity of the j-compartment

at equilibrium, which can be intuitively defined as the average number of

divisions left for a typical cell in the compartment when the tissue is at

homeostasis. There are two important things to remark: one, aj decreases

with differentiation (histograms in figures 20.2 and 20.3) and two, the archi-

tecture of a lineage affects the distribution of the replication capacity of the

entire population (figures 20.2 and 20.3). From the point of view of repli-

cation limits, the optimal architecture to protect against cancer is one that

minimizes the expected replication capacity of a dividing cell. Note that we

emphasize the fact that we are interested in the properties of dividing cells

and not just cells in general. Given that mutations typically occur during

cell division, we need to take into account that compartments with a fast

division rate carry an increased risk of producing a transformed cell. Hence,

the quantity that we seek to minimize is the expected replication capacity of

a dividing cell, which in mathematical terms equals (
∑

ajvjxj)/(rS−dD).

Our next result examines the effect of position within the cell lineage

on the replicative potential. If there is only one intermediate cell compart-

ment with self-renewal capabilities, then the distribution of the replication

capacity of dividing cells is independent of where this compartment lies

within the order of the cell lineage (Proposition 1 in Section 20.2.1). Figure

20.4(a) exemplifies this behavior in a system with three transit amplifying

cell compartments. Here only one compartment has a non-zero self-renewal

probability and the distribution of the replication capacity of dividing cells

does not change when the self-renewal compartment is alternatively chosen

to be either the zeroth or second compartment.

Next we study what happens if we distribute the self-renewal potential

amongst several compartments. If the number of compartments is fixed,

then the average replication capacity of dividing cells is minimized when

there is no more than one self-renewing compartment (Proposition 2 in Sec-

tion 20.2.1). This is illustrated in figure 20.4(b) where we consider a system

with two intermediate cell compartments and plot the average replication
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Fig. 20.4 (A) Distribution of the replication capacity of dividing cells (k = 2, r = 1,
vj = 1, S = 50, ρ = 50, p0 or p2 = 0.45). Here self-renewal only occurs in one
transit amplifying cell compartment. Bar plots are produced using the agent-based
model and allowing for self-renewal only in compartment 0. The continuous line is
produced using the analytical model allowing for self-renewal only in compartment 2.
The distribution does not change when the non-zero self-renewal probability is switched
from compartment 0 to compartment 2. (Stem cell and differentiated cell compartments
are not depicted in the inset.) (B) Replication capacity of the entire cell population at
equilibrium as a function of p0 (k = 1, v = 1, dD − rS = 1716, ρ = 50). Given that
dD − rS is fixed, the value of p0 = 0 determines the value of p1 (see inset). Note that
the minimum occurs when there is self-renewal in only one of the compartments (i.e., p0
or p1 is equal to zero).
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Fig. 20.5 It is not always possible to reach a specified target number of divisions with
only one intermediate compartment. Here the number of differentiated cells produced
by a system with a single intermediate compartment is incapable of producing the target
number of differentiated cells (indicated by a half-filled compartment D). In this case
rS = 50, D = 1600, d = 1, and ρ = 20. Results were obtained using the agent-based
model. (See text for discussion.)

capacity for different values of the self-renewal probability of the zeroth

compartment. In this instance, where there are only two compartments,

the self-renewal probability of one of them completely determines the self-

renewal probability of the other (see inset). From this figure we note that
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the average replication capacity is minimized when only one of the com-

partments has a positive probability of self-renewal.

Given a fixed target of intermediate cell divisions (dD − rS), there is

an upper limit to the number of cell compartments. Indeed, if there are

k + 1 intermediate compartments, the equilibrium number of cell divisions

per unit of time is always greater than or equal to rS(2k+1 − 1). From

this, it is clear that we cannot choose k arbitrarily large. There may also

be a lower limit to the number of compartments. First, having only one

intermediate cell compartment may lead to too many cells exhausting their

replication capacity, making it impossible for the compartment to reach the

target number of divisions. For example, in figure 20.5 simulations using

the agent-based model show that for a given set of values dD− rS and ρ, it

is impossible to produce the target number of divisions with only one inter-

mediate cell compartment. Hence a target flux of cells dD−rS and a given

maximum replication capacity ρmight preclude certain tissue architectures.

Second, it is important to note that every fork in the differentiation path-

way of cells adds a new compartment to a cell lineage. Thus, there may

be a minimal theoretical number of intermediate cell compartments when

different types of mature cells arise from the same kind of stem cell (such

is the case of the hematopoietic system, discussed in the next section).
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Fig. 20.6 (A) Average replication capacity as a function of the number of transit ampli-
fying cell compartments (k+1). Here only one compartment has self-renewal capabilities
(vj = 1, dD − rS = 6500, ρ = 70). The average replication capacity increases with
(k+1). (B) Frequency of the replication capacity of dividing cells. In both instances the
number of intermediate cell divisions is the same. In both cases vj = 1 for all j, ρ = 60
and rS = 50. Lines: k = 6 and all pj = 0. Bars: k = 4, p0 = 0.43 and all other pj = 0.
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Fig. 20.7 Two alternative architectures for the same target number of intermediate cell
divisions (3450). In the cell lineage depicted in (a) (k = 2, p0 = p1 = p2 = 0.341)
the resulting average replication capacity of dividing cells is 51. An optimal cell lineage
depicted in (b) (k = 1, p0 = 0.485, p1 = 0) minimizes the average replication capacity
of dividing cells by minimizing the number of compartments and allowing self-renewal
in only one of them. In both cell lineages rS = 50, ρ = 60 and all v = 1. The
average replication capacity of dividing cells is minimized by a tissue architecture in
which at most one intermediate cell type has self-renewal capabilities and the number of
compartments is kept as small as possible.

Finally to arrive at our core result we combine the previous observations

with the relation between the self-renewal probabilities and the number of

intermediate cell compartments. We find that the average replication ca-

pacity of dividing cells is minimized by a tissue architecture in which at most

one cell compartment has self-renewal capabilities and the number of com-

partments is kept as small as possible. Moreover the replication capacity

of the cell population is independent of the position that the self-renewing

compartment holds in the hierarchy of the cell lineage (Proposition 3 in

Section 20.2.1). Figure 20.6(a) demonstrates these results when there is

only one self-renewing compartment. As the number of intermediate cell

compartments increases, so does the average replication capacity. Also note

that not only the average, but also the entire distribution of the replication

capacity is deeply affected by the number of compartments and self-renewal

probabilities (figure 20.6(b)). Figure 20.7 further highlights these results.

Here, two alternative architectures for the same target of intermediate cell

divisions are presented. The optimal cell lineage that both minimizes the

number of intermediate cell compartments and has only one self-renewing

compartment has a significantly lower average replication capacity than

that of the alternative architecture.
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Next we turn our attention to the division rates. If there is one inter-

mediate compartment with a slower division rate than all the rest, then it

would be optimal as a cancer preventing strategy if it were the first (ze-

roth) compartment. In this case the most ‘dangerous cells’ (i.e., those with

the largest replication capacity) would be dividing slower. Indeed, it is

reasonable to assume that if a cell starts behaving erratically and breaks

away from tissue regulation, it would present a greater threat if it originally

comes from a compartment that has a fast division rate. Assuming that

the first compartment has the slowest division rate, it would then make

sense as a cancer prevention strategy to have this same compartment be

the one with self-renewal capabilities, as this would increase the number of

cells with a slow division rate.

Hence, an optimal tissue architecture to protect against cancer is one

where the less differentiated cells have a larger rate of self-renewal and a

slower rate of cell division. These types of cell dynamics have been repeat-

edly observed in cell lineages, suggesting that they may have evolved to

decrease the risk of cancer. It is important to note however, that there are

other biological issues at play (which are not considered here) that may

affect the choice of the cell division rates, such as the speed of tissue regen-

eration after an injury.

Finally, we look at the question of whether adult stem cells have a truly

unlimited replication capacity. While it is widely acknowledged that adult

stem cells have a greater replication capacity than more differentiated cell

types, experimental evidence suggest that some adult stem cells experience

a diminishment of their replicative potential during the lifespan of the host

[Flores et al. (2006, 2008)]. To address this possibility we consider a cell

lineage model in which the replication capacity of stem cells decreases with

time and explore whether our previous results hold in this scenario. More

precisely let ρ(t) be the time dependent average replication capacity of the

stem cell population. We assume a decrease in the replication capacity of

the stem cell population that is linear with time. In mathematical terms:

ρ(t) = ρ0 − ǫt. Similarly let us call aj(t) the time dependent expected

replication capacity of the transit cells in the j-compartment. If the cell

population (x0, . . . , xk) is at equilibrium, we have:
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ρ̇ = −ǫ

x0ȧ0 = (a0 − 1)2p0v0x0 + (ρ(t) − 1)rS − a0v0x0

x1ȧ1 = (a1 − 1)2p1v1x1 + (a0 − 1)2(1− p0)v0x1 − a1v1x1

...
...

xkȧk = (ak − 1)2pkvkxk + (ak−1 − 1)2(1− pk−1)vk−1xk − akvkxk.

(20.4)

To analyze this system of ordinary differential equations (see Sections

20.2.2, 20.2.3) we develop an approximation formula and compare our re-

sults with the corresponding implementation of the agent-based model. We

find that the central result regarding the optimal architecture to minimize

the expected replication capacity of a dividing cell holds when the replica-

tive capacity of stem cells decreases with time. This is demonstrated in

figure 20.8: here we compare the distributions of the replication capacity

of two cell lineages with the same target number of divisions (one with

an optimal and one with a sub-optimal architecture). Each distribution is

presented at two different times. In both instances the replication capacity

of stem cells decreases at the same rate.

20.4 Theory and observed tissue architecture

Several of the features that characterize an optimal tissue architecture are

found in various cell lineages. Consider the hematopoietic system. At the

starting point of this lineage there are stem cells which are classified into

two categories: long-term repopulating stem cells and short-term repop-

ulating stem cells. There are three intermediate cell types: Multipotent

progenitor cells, common progenitors, and precursor cells. Out of the in-

termediate cells there is self-renewal only in multipotent progenitors, which

in the cell lineage appear immediately downstream from the stem cell pop-

ulation. The end products of the lineages are fully mature differentiated

cells that perform tissue function [Shizuru et al. (2005); Lobo et al. (2007)].

Thus, in the hematopoietic system it appears that self-renewal occurs only

in the first least differentiated intermediate cell compartment, which is one

of the features that we found reduces the replication capacity of the non-

stem cell population (although there is some recent ex vivo evidence of

self-renewal downstream of progenitors [England et al. (2011)]. With re-

gard to the number of intermediate cell compartments, we note that there
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Fig. 20.8 Distribution of the replication capacity of dividing cells for the case when
the stem cell replication capacity diminishes with time. Results from two alternative
cell lineage architectures for the same target number of intermediate cell divisions are
presented. The distributions are shown at two different times t0 = 0 and t1 = 3500
(units of time equal the mean cell division time of stem cells). In both cell lineages all
vj = 1, r = 1, S = 50 and ǫ = 0.02. In the optimal architecture (bars) k = 0 and
p0 = 0.42; in the sub-optimal architecture (lines) k = 1, p0 = 0.31 and p1 = 0.31.

is no definite agreement on the number of stages of differentiation; however

there appears to be at least two forks in the differentiation pathway. Mul-

tipotent progenitors give rise to two different types of common progenitors:

Common lymphoid progenitors and common myeloid progenitors. These

common progenitors further subdivide into two types of precursors, each of

which ultimately gives rise to the mature lymphoid and myeloid cells that

make up blood. The division rates follow an optimal pattern with division

rates increasing with each more differentiated intermediate compartment

[Passegué et al. (2005)]. Also the number of stem cells is small compared

to the total number of blood cells [Shizuru et al. (2005)].

Neural tissues also exhibit characteristics of an optimal tissue architec-

ture. In the process of adult neurogenesis, multipotent neural stem cells
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give rise to intermediate neuron progenitors that exhibit some degree of

self-renewal. The neuron progenitors in turn give rise to cells that exit the

cell cycle and differentiate into neurons [Lander et al. (2009); Sanai et al.

(2005)]. A similar organization has been observed in the production of glia

cells. Neural stem cells give rise to intermediate glia progenitors, which ex-

hibit some degree of self-renewal and produce the different types of mature

glia cells [Sanai et al. (2005)].

In most tissues, however, there is some uncertainty about the precise

hierarchical structure of the cell lineage. For example, in adult neurogenesis

the number of intermediate cell compartments is alternatively reported as

one or two [Gage (2000); Lander et al. (2009)]. Part of this uncertainty is

explained by a lack of a clear standard to distinguish between stem cells

and progenitor cells. In many tissues there is also uncertainty about the

self-renewal capabilities of intermediate cells. It is often unclear whether an

experimentally observed transit-amplifying behavior is produced by a cell

program that allows for a fixed number of divisions in progenitor cells, or by

some degree of self-renewal. A cell program that calls for a fixed number of

divisions would be represented in our framework as a lineage with numer-

ous intermediate compartments and no self-renewal. By contrast through

a self-renewal mechanism the cell’s decision to differentiate would be inde-

pendent of the number of previous divisions and instead be determined by

the current state of the cell’s microenvironment. As we have discussed here,

the two mechanisms may be able to produce the same results in terms of

population sizes. Yet, our model demonstrates that the precise architecture

of a cell lineage has dramatic implications for the replication capacity of a

cell population, and thus the risk of cancer. Experiments should be devised

to characterize not only the transit-amplifying behavior of intermediate

cells but to determine which mechanisms different systems use. Finally, we

note that when interpreting the model’s results in the context of a specific

biological system, it is important that the biological description of a “cell

compartment” agrees with the one presented here. In particular within the

model’s framework, a common surface marker cannot be used to define a

cell compartment if it is expressed by a heterogeneous group of cells with

inherently different self-renewal capabilities.
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20.5 Summary

In this chapter we have demonstrated that a lineage’s architecture can

significantly impact the goal of reducing the replicative potential of cells.

These findings underscore the importance of fully understanding a lineage’s

architecture as well as the precise mechanisms used to accomplish transit-

amplifying behavior. The fact that at least some of the features that char-

acterize an optimal architecture are present in various tissues suggests that

they might have evolved to minimize cancer risk. This however does not

mean that tissues must follow all aspects that define an optimal architec-

ture. What we have described here is only one of possibly many evolution-

ary forces that shape a tissue’s architecture. There could be other forces

unrelated to reducing the risk of cancer, which also play a role in ultimately

determining the architecture of a specific tissue. A better understanding

of how a tissue’s architecture and replicative limits impact the likelihood

of cancer can provide insights into cancer biology that may lead to new

targets of therapy.

Problems

Problem 20.1. Research project. Learn more about replicative senes-

cence, the Hayflick limit and telomeres.

Problem 20.2. What is the long-term behavior of equation (20.1)? Find

the stable fixed point.

Problem 20.3. Show that equation (20.2) holds at steady state.

Problem 20.4. Numerical project. Consider equation (20.3) which de-

fines steady-state sizes of compartments. How do compartment sizes depend

on parameters pi and vi? Explore different numerical values for these quan-

tities and observe the patterns of tissue architecture that you notice.
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Chapter 21

Gene therapy and oncolytic virus

therapy

Oncolytic viruses replicate selectively in tumor cells and have been explored

as a targeted treatment approach against cancers [Bell (2007); Bell et al.

(2003); Moon Crompton and Kirn (2007); Davis and Fang (2005); Kaplan

(2005); Kelly and Russell (2007); Kirn and McCormick (1996); McCormick

(2003, 2005); O’Shea (2005); Parato et al. (2005); Post et al. (2005); Roberts

et al. (2006); Vähä-Koskela et al. (2007); Wong et al. (2010)]. In principle

an oncolytic virus will spread though the tumor cell population and lyse the

infected cells, leading to eradication or control of the tumor. Because of the

selectivity of such viruses for cancer cells rather than normal human cells,

side effects should also be less pronounced than those associated with tra-

ditional treatments, such as chemotherapy or ionizing radiation. Oncolytic

virus therapy has been explored in the context of several different virus

species. While some non-human viruses display natural selectivity for can-

cer cells in humans [Koppers-Lalic and Hoeben (2011)], modern approaches

use genetically engineered viruses to achieve tumor selectivity. The first en-

gineered virus generated in the 1990s was a herpes simplex virus-1 [Martuza

et al. (1991)]. Engineered adenoviruses have been of major interest in recent

clinical trials, especially in the context of head and neck cancer [Wong et al.

(2010)]. Indeed the adenovirus H101 (Shanghai Sunway Biotech, Shanghai,

China) was approved in China for the treatment of head and neck cancer in

combination with chemotherapy [Garber (2006)]. A variety of other virus

types has also been explored [Eager and Nemunaitis (2011)]. However de-

spite initial promising results and observations in the laboratory and clinic,

oncolytic viruses have so far failed to demonstrate sustained and reliable

treatment success [Wong et al. (2010)].

Besides experimental research, mathematical and computational mod-

eling has increasingly become a tool to study the dynamics of oncolytic

403
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viruses. Mathematical models can help us understand the emerging prop-

erties of cancer-virus interactions, to interpret experimental results, and to

design new experiments. The first mathematical models of oncolytic virus

therapy considered ordinary differential equations that described the basic

interactions between a replicating virus and a growing population of tumor

cells, and also immune responses [Wodarz (2001b, 2003)]. Further work

extended this type of approach in a number of ways, describing different

scenarios and applying models to specific virus-tumor systems [Bajzer et al.

(2008); Biesecker et al. (2010); Dingli et al. (2006, 2009); Friedman et al.

(2006); Karev et al. (2006); Komarova and Wodarz (2010); Novozhilov et al.

(2006); Wein et al. (2003); Wodarz (2004, 2009); Wodarz and Komarova

(2009); Bagheri et al. (2011); Zurakowski and Wodarz (2007)]. One of the

assumptions that is implicit in such modeling approaches is that cells and

viruses mix perfectly with each other (mass action). While this might hold

true in the context of some in vitro experiments, and while this might be

a reasonable approximation of the dynamics occurring in some non-solid

tumors, the majority of tumors have intricate spatial structures where cells

and viruses do not mix well, but where interactions are limited to local

neighborhoods. Hence, to gain a better understanding about the dynamics

of oncolytic viruses, spatially explicit models are required. Some spatial

modeling studies have been performed and have given rise to interesting

results [Wein et al. (2003); Mok et al. (2009); Paiva et al. (2009); Reis et al.

(2010)]. They commonly include, in addition to basic spatial dynamics, one

or more additional assumptions that introduce further complexity.

This chapter summarizes our own modeling approaches to studying the

dynamics of oncolytic viruses. The aim is to highlight the usefulness and

limitations of different modeling approaches in the quest to obtain an accu-

rate model that can be applied to specific treatments and provide predictive

power. The chapter starts by discussing specific ordinary differential equa-

tion (ODE) models, continues to describe more general, axiomatic modeling

approaches, and finally examines a spatially explicit model describing virus

dynamics in relatively simple in vitro settings.

21.1 A basic ordinary differential equation model

This section introduces a simple mathematical model describing the devel-

opment of a growing tumor and an oncolytic virus population over time.

The model is based on [Wodarz (2001b)] and includes three variables: the
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growing, uninfected, cancer cells, x, infected cancer cells, y, and virus par-

ticles, v. It is given by the following set of differential equations which

describe the development of these populations over time [Wodarz (2004)]:

ẋ = rx

(

1− x+ y

ω

)

− dx− βxv,

ẏ = βxv − (d+ a)y, (21.1)

v̇ = ky − uv.

The cancer cells grow at a rate r, and this growth is density dependent,

limited by a maximum size ω. In biological terms, this means that the

cancer cells divide and that this results in exponential growth at small

tumor cell densities, but that growth is slowed down as the tumor reaches

larger sizes and runs out of space, nutrients, and other resources required

for growth. Cancer cells die at a rate d. Therefore, the average life-span of

the cancer cells is given by 1/d. The cancer cells become infected by the

virus proportional to βxv. The rate constant, β, describes the efficacy of

this process, including the rate at which virus particles find uninfected cells,

the rate of virus entry, and the rate of successful infection. The term βxv

multiplied by a time interval gives the number of infection events occurring

during the time interval (if it is assumed to be small). Infected cancer cells

also have a death rate. The death rate of infected cells is a composite of the

natural death rate, d, and the virus-inflicted death rate, a. Therefore, the

average life-time of an infected cell is 1/(d+a). Infected cells produce virus

at a rate k. The total amount of virus particles produced from one infected

cell, or the “burst size”, is hence given by k/(a + d). Finally, the virus

decays at a rate uv. Thus, the average life-span of a virus particle is given

by 1/u. In the context of replicating versus non-replicating viruses, we can

make the following distinction. A non-replicating virus is characterized by

k = 0 (no virus production by the infected cell), while a replicating virus

is characterized by k > 0.

In this model, the tumor expands if its growth rate is greater than its

death rate, i.e., if r > d. In the absence of treatment, the tumor will even-

tually grow to its maximum size given by x(0) = ω(r − d)/r. Treatment in

the model corresponds to the introduction of virus into the system. The

virus has the potential to spread if βx(0) > d+ a, that is if the replication

rate of the virus is fast relative to the death rate of the infected cancer

cells. The virus infection then takes the system to a new equilibrium out-

come which is given by the following expressions. x(1) = (d+ a)/β′; y(1) =
[β′ω(r − d) − r(d + a)/[β′(r + β′ω)]; v(1) = ky(1)/u; where β′ summarizes
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Fig. 21.1 Simulation of therapy using a non-replicating virus. The virus is administered
repeatedly, as indicated by the arrows. The development of tumor load over time is shown
assuming both a strongly cytopathic virus and a weakly cytopathic virus. The strongly
cytopathic virus results in more efficient eradication of the tumor. Parameters were
chosen as follows. r = 0.5, ω = 10, β′ = 1.5, d = 0.01, k = 0, δ = 1. For the strongly
cytopahtic virus, α = 0.4. For the weakly cytopathic virus, α = 0.04.

the overall replication rate of the virus and is given by β′ = βk/u. The size

of the overall tumor cell population during virus therapy is given by the

sum of uninfected and infected tumor cells, x(1) + y(1). The aim of therapy

should be to reduce this population to low levels. If it has been reduced

below a threshold in the model, the tumor population can be assumed to be

extinct (number of tumor cells below one). In the following sections, model

properties will be analyzed. Figures are shown to demonstrate specific
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aspects qualitatively, i.e., parameters were chosen for illustrative purposes

and unites are arbitrary.

21.1.1 Non-replicating viruses

Assume the virus is not replicating (k = 0). If not all cancer cells be-

come infected after the first administration, it has to be given repeatedly

in order to ensure continued presence of the virus and hence remission of
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Fig. 21.2 Simulation of therapy using a replicating virus. The virus is administered
once, as indicated by the arrow. Shading indicates the phase of the dynamics following
administration of the virus. (i) Use of a weakly cytopathic virus results in sustained
cancer remission. (ii) Use of a more cytopathic virus results in long term persistence of
the cancer and the virus. Parameters were chosen as follows: r = 0.5, ω = 10, β′ = 1.5,
d = 0.01, k = 0.1, δ = 1. For (i) α = 0.04. For (ii) α = 0.4.
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the cancer (figure 21.1). The goal is to eradicate the population of unin-

fected tumor cells. Since infected cancer cells do not divide, they do not

pose a threat and will decay to extinction. The dynamics of the uninfected

cancer cell population over time during treatment can be approximated by

xt = x(0)exp[(r − d − βv)t]. This assumes that the tumor is still growing

and has not yet reached levels close to maximum tumor size (x ≪ ω). For

the uninfected cancer cells to decline, the level of virus has to be kept above

a threshold during therapy, given by v > (r−d)/β. Thus, a high infectivity

of the virus, and a low growth rate of the tumor facilitate tumor reduction.

If this condition is fulfilled, the half-life of the uninfected tumor cell popu-

lation is given by t1/2 = ln(1/2)/(r−d−βv). The time to eradication of the

uninfected tumor cells is hence given by t = ln(x0)
ln(2)

ln(1/2)
r−d−βv . After this time

threshold, administration of the virus can be stopped, and the population

of infected tumor cells decays with a half-life of t1/2 = ln(2)/a. Hence,

the faster the rate of virus-induced cell death, a, the faster the population

of infected cells declines towards extinction (figure 21.1). To summarize,

the best strategy is to (i) use a cytopathic virus, (ii) use a virus with high

infectivity, and (iii) reduce the cancer growth rate which might be achieved

by certain chemo- or radio-therapeutic regimes [You et al. (2000)].

21.1.2 Replicating viruses

Now assume a replicating virus (k > 0). If the patient is injected with a

very high inoculum dose of the virus, most or all cancer cells immediately

become infected and the situation is the same as for the non-replicating

virus. If, however, the initial virus inoculum is not that large and does

not immediately overwhelm the cancer, then the dynamics between virus

replication and tumor growth will play out, resulting in an equilibrium

outcome. The size of the tumor load (infected + uninfected cells) at equi-

librium determines the level of success. If equilibrium tumor load in the

model is very low, this corresponds to eradication in practical terms. Higher

equilibrium tumor loads in the model corresponds to persistence of the

tumor in the presence of the virus. Equilibrium tumor load is given by

x(1) + y(1) = ω(a+r)
r+β′ω . An important result is that a lower virus-induced

death rate of infected cells (small a) results in lower equilibrium tumor

load (figure 21.2). If the rate of virus-induced tumor cell killing is too

high, the outcome is persistence of the tumor in the face of ongoing viral

replication (figure 21.2). The reason is as follows. Low viral cytopathicity

increases virus load. Higher virus load results in more infection and in a



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 409

Gene therapy and oncolytic virus therapy 409

greater decline of the uninfected cancer cells. Higher viral cytopathicity

results in lower virus load. Low virus load results in less infection and in

less reduction of the uninfected tumor cells. In addition, equilibrium tumor

load is reduced by other parameters, most notably by a high replication rate

of the virus (high value of β′), and a slow growth rate of the tumor (low

value of r). As expected, the replication rate of the virus (value of β′) has
to lie above a threshold for tumor load to become low enough that tumor

eradication is feasible in a stochastic setting. If the replication rate of the
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Fig. 21.3 Simulation showing the evaluation of potential replicating viruses in culture.
A weakly and a strongly cytopathic virus are compared when the culture is inoculated
(see arrow) with (i) a high MOI and (ii) a low MOI. While under high MOI infection the
more cytopathic virus yields better results, the opposite is true for low MOI infection,
which reflects virus spread conditions in vivo. Parameters were chosen as follows. r = 0.5,
ω = 10, β′ = 1.5, d = 0.01, k = 0.1, δ = 1. For the strongly cytopahtic virus, α = 0.4.
For the weakly cytopathic virus, α = 0.04. Virus inoculum was v = 10 for high MOI
and v = 0.01 for low MOI.
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virus is too low, the virus does not spread sufficiently through the popula-

tion of tumor cells. In summary, if the virus is replicating, the best strategy

is to (i) use a weakly cytopathic virus, (ii) use a fast replicating virus, and

(iii) reduce the growth rate of the tumor by alternative therapeutic means.

21.1.2.1 Evaluation of replicating viruses in culture

The mathematical model has given rise to an important difference in treat-

ment strategy depending on whether the virus replicates or not. If the

virus does not replicate, a high degree of cytopathicity is beneficial because

it speeds up elimination of all tumor cells. On the other hand, if the virus

replicates, success is promoted by using a weakly cytopathic virus. A high

rate of virus-induced cell death is detrimental and leads to the persistence

of both tumor and virus. These findings also have important implications

for the methods used to evaluate potential viruses in culture. If the virus

does not replicate, a high multiplicity of infection (MOI) has to be used.

The virus with the strongest degree of tumor cell killing will remove the

cancer cells fastest. Such a virus will also work best in the physiological

situation, since the aim is to overwhelm the tumor by repeatedly injecting

the agent, resulting in fast killing of as many cancer cells as possible (figure

21.1). On the other hand, if the virus replicates, a low MOI is required

to evaluate the virus. The reason is that in vivo, the replicating virus has

to spread through the cancer cell population, and this has to be mimicked

in culture. Using a high MOI can lead to misleading evaluations. These

notions are illustrated in figure 21.3 with computer simulations. This figure

depicts the dynamics in culture for strongly and weakly cytopathic viruses,

using different MOIs. Figure 21.3(i) shows the dynamics for a high MOI. In

this simulation, the strongly cytopathic virus results in quick elimination

of the tumor cells, while the weakly cytopathic virus is much less effective.

Thus, if viruses are evaluated using a high MOI, the virus with the strongest

degree of tumor cell killing receives the highest grades. Importantly, this is

the virus which is predicted to be least efficient at reducing tumor load in

vivo. The situation is different when viruses are evaluated in culture using

a low MOI (figure 21.3(ii)). The less cytopathic virus results in elimination

of tumor cells in culture, while the more cytopathic virus fails to eliminate

tumor cells in culture. Therefore, the less cytopathic virus gets the better

marks, and this is also the virus which is predicted to be more efficient at

reducing tumor load in vivo.
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21.2 Different mathematical formulations and the

robustness of results

The above described model investigated the dynamics of oncolytic viruses

in the context of specific mathematical formulations that are of uncertain

biological nature. For example, consider the term that describes the infec-

tion of cells, given by βxv. It assumes perfect mixing of cells and viruses,

which is hardly realistic in vivo, where most tumors exhibit intricate spa-

tial structures. The larger the number of tumor cells, the faster the growth

rate of the virus population. Similarly, the larger the number of viruses

available, the more cells become infected, ignoring possible saturation ef-

fects. The “biologically correct” term to describe infection is currently not

known. Other processes assumed in the model are also described by arbi-

trary mathematical expressions, such as the term describing cell growth,

given by the logistic equation. While this is assumed in many models of

tumor growth, the laws underlying tumor growth are likely to be more com-

plex, and this could impact the properties of the virus dynamics model. To

address this issue, we avoided concentrating on a particular model, but took

a more general approach. Processes such as infection and cell growth were

formulated in terms of general functions and results were thus indepen-

dent from biologically uncertain and arbitrary mathematical formulations

[Wodarz and Komarova (2009)]. Through specific restrictions about bio-

logical assumptions, we analyzed a class of mathematical models that aim

to describe viral spread through a tumor in different settings. Details of

the axiomatic analysis are given in [Komarova and Wodarz (2010)].

We found that based on the infection term, we can divide models into

two categories with fundamentally different behavior [Wodarz and Ko-

marova (2009)]. In one group, virus growth is relatively fast, which could

be characteristic of a relatively well mixed system. In these models, there is

a clear viral replication rate threshold beyond which the number of cancer

cells drops to levels of the order of one or less, corresponding to extinction

in practical terms. Under this parameter region, this is the only outcome

in this class of model. In the other category, virus growth is relatively slow,

which could be characteristic of more intricate tumor cell arrangements.

In this class of model, the larger the number of infected cells, the smaller

the proportion of cells that can pass on the virus. In this scenario, virus

therapy is more difficult. Even in the parameter regions where the dynam-

ics can converge to a tumor control or eradication outcome, there can be

the possibility that the cancer can outrun the virus if the number of cancer



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 412

412 Dynamics of cancer: mathematical foundations of oncology

cells lies above a threshold at the start of virus therapy. This is because

of the existence of the saddle node equilibrium which ensures dependence

of the outcome on initial conditions. This might be problematic in clini-

cal settings, because tumors typically become detectable at relatively large

sizes and there is only a relatively small window between the size at which

the tumor becomes detectable (about 1010 cells) and the size at which it

can induce mortality (around 1013 cells).

Another important finding of this study is that the basic results regard-

ing the outcome of oncolytic virus therapy do not depend on the particular

tumor growth terms used in the model [Wodarz and Komarova (2009)]. The

exact kinetics of tumor growth are still poorly understood and a source of

uncertainty [Rodriguez-Brenes et al. (2011)]. We examined straight expo-

nential growth, as well as a number of more realistic options, including

saturated but continued growth at high numbers of cancer cells, as well as

cessation of growth as the number of tumor cells approaches an upper limit

[Komarova and Wodarz (2010)]. While there are minor differences, the

properties of the tumor control equilibrium are largely independent from

the exact way in which tumor growth is modeled.

21.3 A spatially explicit model of oncolytic virus dynamics

Tumors are characterized by intricate spatial structures that cannot be cap-

tured by ordinary differential equations. Other modeling methods have to

be called upon in order to capture this complexity. On the other hand, the

spatial complexity of tumors is enormous and not well understood, which

can undermine the predictive power of such spatial models. As a first step

to tackle this problem, we considered a relatively simple in vitro setting,

in which target cells are arranged in a two-dimensional monolayer and in

which viruses can only spread from the infected source cell to the nearest

neighboring target cells [Wodarz et al. (2012)]. This relatively simple ex-

perimental setting can be described by an agent-based model, and model

predictions can be tested relatively easily by experiments. In the model,

each cell is represented as an “agent” occupying a certain position on a grid,

and interacting with other cells according to some (probabilistic) rules. Our

modeling approach is spatial, that is, it takes into account the spatial dis-

tribution of the uninfected and infected cells. The model, based on [Satō

et al. (1994)], describes target cell-virus dynamics on a two-dimensional

grid that contains N ×N spots [Wodarz et al. (2012)]. Each spot is either
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occupied by a cell (infected or uninfected), or it is empty. We model the

development of the populations in discrete time. Given the state of the

system at time t, a set of rules is applied to each spot, and this gives rise to

the state of the system at time t+1. At each time step, the grid is randomly

sampled N2 times. If the chosen spot is occupied by an uninfected cell, it

can die with a probability D, leaving the spot empty. Alternatively, the

cell can reproduce with a probability R, and a destination spot is randomly

chosen for the offspring from the set of eight nearest neighboring spots. If

the destination spot is empty, the offspring is placed there, otherwise, no

reproduction occurs. If the chosen spot contains an infected cell, it can die

with a probability A, or attempt to transmit the virus with a probability

B. A destination spot is chosen randomly from the eight nearest neighbors,

and infection only proceeds when a susceptible cell is present. Infected cells

are assumed not to reproduce. Typical oncolytic viruses lock the cell in the

S-phase for replication, thus preventing further divisions [Bagheri et al.

(2011)].

21.3.1 Initial virus growth patterns

In this section, we explore the initial virus growth patterns. As starting

conditions we assume that the grid is filled with uninfected cells and that a

relatively small square of infected cells (30×30 spots) is placed in the middle

of the grid (which overall contains 300× 300 spots). The emerging growth

pattern depends on parameters that influence the rate of virus spread, in

particular the probability for an infected cell to die, A, and the probability

for an infected cell to transmit the virus, B. The patterns that we observe

are presented in figure 21.4.

In figures 21.4(a) and (b), the infected cell population expands as a ring

or wave that leaves no cell behind in its core. The two pictures differ in

the death probability of infected cells. In figure 21.4(a), the probability for

infected cells to die is relatively low such that during the time frame of the

simulation a hollow ring has not yet formed and the infected cell population

expands as a relatively solid mass. In figure 21.4(b), the death probability

of infected cells is higher such that during the time frame of the simulation

a hollow ring has formed. The total number of cells is proportional to
e−At−1+At

A2 [Wodarz et al. (2012)], such that for short time-scales (or smaller

death rates) the growth is quadratic in time, and for longer times scales

(or larger death rates) it is linear in time. This is exactly what is observed.

Figure 21.4(a), characterized by smaller values of A, shows a growth law
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of the infected cell population that is close to quadratic. In figure 21.4(b),

where the death rate is larger, the infected cell population grows linearly

once the hollow ring is present. Note that these two scenarios are identical in

principle because in figure 21.4(a), the formation of the hollow ring requires

more time (and a larger grid). The higher the death rate of infected cells,

time 
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Fig. 21.4 Initial virus growth dynamics in the agent-based model. Green indicates
uninfected cells, red infected cells, and grey empty spots. The middle graph shows the
number of infected cells over time. The different lines represent 100 different instances of
the simulation with the same parameter combination. The right graph shows the square
root of the number of infected cells over time, again showing lines for 100 different runs.
Parameter values were chosen as follows. (a) R = 0.5, D = 0, B = 0.6, A = 0.601.
(b) R = 0.5, D = 0, B = 0.6, A = 0.62. (c) R = 0.5, D = 0; B = 0.6, A = 0.628.
(d) R = 0.5, D = 0, B = 0.6, A = 0.7. The small graphs in (d) are characterized by
R = 0.04, leading to fewer target cells in the area of infection and thus to slower viral
spread.
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the faster the ring is formed, and the faster the growth law changes from

square to linear. Lowering the rate of virus spread (decreasing the value of

B and increasing the value of A) gives rise to patterns of a different nature.

In figure 21.4(c), uninfected cells are left behind in the core of the ex-

panding ring. When they grow and become infected by virus, a coupled

expanding ring of uninfected and infected cells forms. This can occur re-

peatedly, giving rise to concentric rings. The persistence of cells in the core

of the ring is probabilistic in nature, and that is reflected in the growth

laws that are observed in multiple runs of the simulation. In cases where

uninfected cells are not left behind inside the ring, the infected cell popu-

lation grows linearly. When concentric rings do occur, the growth becomes

quadratic.

Finally, no expanding ring structure is formed in figure 21.4(d) because

the viral spread kinetics are even slower. Instead, the area of virus growth

is characterized by a mix of infected and uninfected cells that expands over

time. In this case, quadratic growth of infected cells is observed. Note

that if the viral spread kinetics are in the lower end of this spectrum, it is

possible to observe a variation of this pattern, shown in the inset of figure

21.4(d): While the spreading infection leaves uninfected cells behind, the

viral spread kinetics are too low to maintain significant numbers of infected

cells throughout this area. Most of the infected cells will be at the outer

edge of the infection due to a higher density of target cells. In this case,

a relatively thin, ring-like structure can be formed, with a large area of

uninfected cells remaining in its core. This pattern, however, is temporary.

With time, one of two scenarios can be observed. A mixed pattern can

be generated, characterized by a large number of uninfected cells and a

low number of infected cells, because the virus eventually spreads to the

remaining susceptible cells. Alternatively, there is a chance that the virus

population goes extinct due to the slow rate of spread. Long term outcomes

are discussed further below.

21.3.2 Growth patterns and the extinction of cells

Here, we explore the long term dynamics, investigating how the above de-

scribed patterns play out and correlate with the overall outcome if both the

uninfected and infected cell population can expand in space. We seek to

define conditions under which the virus can eliminate the target cell pop-

ulation in this system. All simulations are started with a small number of

infected cells placed in a compact vicinity into a larger space filled with
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uninfected cells, which is in turn embedded into an even larger “empty”

space (for the exact initial conditions for particular cases, see appropriate

figure legends). In contrast to the simulations reported above, here we go

beyond the initial virus growth stage, and focus on time-scales where the

population of target cells experiences significant changes (grows in size in

the absence of infection). The outcomes of this system include extinction of

the target cells and thus the virus; extinction of the virus and persistence

of the target cells; coexistence of virus and target cells. The dependency

of these outcomes on the parameters is shown in figure 21.5, which is the

result of at least 104 instances of the simulation, where the log10 of all the

parameters was varied between -4 and 4. Figures 21.6 and 21.7 show cor-

responding spatial and temporal patterns. We examine the outcomes first

in a relatively small 30 × 30 grid, and subsequently in a larger, 300× 300

grid.

Small grid. In the 30× 30 grid, the following outcomes are found (figure

21.5(a), and figures 21.6 & 21.7).

Two types of target cell extinction can be observed, both associated

with the initial “hollow ring” structure. According to pattern A, virus-

!"#$ !%#$

Fig. 21.5 Dependence of outcomes on parameters in the agent-based model for (a) a
30×30 grid, and (b) a 300×300 grid. Blue means coexistence of virus and cells. Red and
orange indicate extinction of the cells and thus the virus. Red is used if extinction occurs
before the boundary of the system has been reached, while orange is used if extinction
occurs after cells have reached the boundary of the system. Grey indicates extinction of
the virus while cells persist. Above the white line and below the black line, the “local”
equilibrium number of uninfected and infected cells, respectively, is greater than one.
Below the yellow line, the virus can successfully invade its target cell population. The
capital letters indicate different spatial patterns that are described in the text and in
figure 21.6. In these simulations, the probability for an uninfected cell to die was D = 0.
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mediated target cell extinction , both the target cell and the virus pop-

ulations spread outward in space as a wave, but the virus wave overtakes

the target cell wave, leading to extinction of both populations. Pattern B,

boundary-mediated extinction , represents weaker viruses compared to

case A. In pattern B, the virus wave catches up with the target cell wave,

leaves no uninfected cells behind in its wake, but fails to eliminate the tar-

get cell wave. Instead, the two waves travel together with the same velocity

until the boundary in reached. The target cell population can escape the

virus only by spreading outward. Once the boundary is reached, this is

not possible anymore, explaining the extinction. Note that although real

Fig. 21.6 Seven spatial patterns observed in the agent-based model. For each pattern,
four snapshots in time are shown. Green indicates uninfected cells, red infected cells,
and grey empty patches. See corresponding capital letters in figure 21.5, showing in
which parameter regions the individual patterns are observed. The time series that are
associated with the individual patterns are shown in figure 21.7. See text for details.
The simulations were run on a 300 × 300 grid. The simulations were started by placing
a small number of infected cells (5× 5 cells) into a larger space filled with infected cells
(13 × 13 cells). Parameters were chosen as follows: (A) R = 0.013, D = 0, B = 0.14,
A = 0.003, (A1) R = 0.15, D = 0, B = 0.32, A = 0.007, (B) R = 0.014, D = 0,
B = 0.015, A = 0.00056, (B1) R = 0.04, D = 0, B = 0.032, A = 0.0016, (C) R = 0.014,
D = 0, B = 0.032, A = 0.008, (D) R = 0.0002, D = 0, B = 0.019, A = 0.0032, (D1)
R = 0.069, D = 0, B = 0.64, A = 0.18.
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tumors are capable of breaking out of homeostatic control and spreading

beyond the “carrying capacity” of their environment, boundary-mediated

extinction can still take place. Genetic transformations associated with

waves of clonal expansion or induction angiogenesis generally happen on

longer time-scales. Therefore, it is realistic to assume the existence of some

geometric constraints (even temporary). Pattern B represents the situation

where extinction is a consequence of such spatial constraints.

Another type of outcome is the coexistence of infected and uninfected

cells, which is shown in pattern C, constant density coexistence. As

the virus population spreads out in space, it leaves behind uninfected cells

with a high probability, leading to the disperse pattern of initial expansion

and the absence of any clear traveling waves. Instead, the expanding virus

population leaves behind a mix of both populations, which eventually is
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Fig. 21.7 Typical time series corresponding to the spatial patterns presented in figure
21.6, based on a single run of the spatial agent based model, assuming a 300× 300 grid.
See text for details. Parameter values and initial conditions are given in figure 21.6.
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found across the whole space and is characterized by an equilibrium density

that is determined by the parameters of the system, while the populations

settle around a stochastic steady state.

Finally, there are two types of virus extinction patterns. Pattern D,

virus extinction despite invasion , represents a virus extinction regime

where the virus can initially invade the target cell population, but does

not persist in the long term. The virus reduces the target cell population,

and subsequently goes extinct. This leaves the uninfected cell population to

grow unopposed. The stronger the virus (lower value ofA/B), the less likely

this is observed in this regime, because the uninfected cell population is

more likely to be driven extinct before the virus population hits extinction.

The second extinction pattern E, lack of invasion , is observed when the

virus population cannot invade the target cell population and goes extinct

(spatial and temporal pattern not shown).

Although the spatial stochastic predator-prey system studied here ex-

hibits a variety of patterns, its dynamics can be understood by studying

the local interactions of the agents. The idea of a “characteristic scale”

has been proposed in the literature in the context of different predator-

prey models [De Roos et al. (1991)] where the system’s behavior was found

most predictable on an intermediate scale defined by the agents’ motility

and interactions. In [Pascual et al. (2001)], it was shown that in a class

of systems exhibiting oscillatory dynamics, the functional forms governing

the local predator-prey interactions at those characteristic scales are the

same as the ones describing a perfectly mixed, mass-action system, but

contain different parameters. This allowed the authors to approximate the

long-term dynamics of the spatial system at large scales with a temporal

predator-prey model describing local interactions. Here we build on this

idea, and show that the global outcomes of the spatially-distributed system

can be predicted by utilizing the laws of local dynamics.

We start from the well-known system of ordinary differential equations

that can be derived for our agent-based model if no spatial restrictions

were in place, and reproduction and infection events were driven by laws

of mass-action:

dS

dt
= RS

(

1− S+I
K

)

− BSI
K , (21.2)

dI

dt
= BSI

K − AI,

where the number of uninfected cells is denoted by S, and the number

of infected cells by I. In these equations, K has the meaning of carry-
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ing capacity. This well-known modified Lotka-Volterra system [Anderson

et al. (1992); Nowak and May (2000)] is characterized by two equilibria:

(i) The uninfected population persists at carrying capacity, while the virus

population is extinct, i.e., S(0) = K, I(0) =0 , (ii) Alternatively, the virus

establishes a successful infection, such that S(1) =AK/B, I(1) =RK(B −
A)/B(R+B). The latter equilibrium is stable if the basic reproductive ratio

of the virus is greater than one, which is equivalent to the inequality A<B.

The approach to the coexistence equilibrium can be either monotonic, or

can involve damped oscillations.

While these properties of the virus-cell system are well-known, it is

usually thought that the ordinary differential equations can only be applied

to a well-mixed system, and fail to describe a spatially-distributed system

of cells. Contrary to this, figure 21.5 demonstrates that, if interpreted

correctly, the above system can explain a lot of the patterns that arise

in the spatial agent-based model. Let us think of the carrying capacity

coefficient, K, as the size of the “local neighborhood” where cell-to-cell

interactions happen in a spatial model. In our case, this neighborhood

consists of K=9 cells (a cell plus its eight nearest neighbors, the relevant

characteristic scale of our spatial model). Model (21.2) with the modified

parameter K is capable of informing us of the local equilibrium density

of the infected and uninfected cells, which in turn is correlated with the

expected long term behavior of the spatial system.

In equations (21.2), the number of uninfected cells at equilibrium S(1) is

proportional to K. In order for this equilibrium to be biologically meaning-

ful, this value must be greater than one cell. The equation S(1) =1 defines

the white line in figure 21.5. Similarly, the number of infected cells in lo-

cal neighborhoods must be greater than one, which yields the black line,

I(1) =1. We can see that the coexistence region in figure 21.5(a) (regime

C) corresponds to the parameters for which both equilibrium values are

larger than one; it is enclosed by the lines S(1) =1 and , I(1) =1 obtained

directly from the cancer-virus equations. The white line S(1) =1 outlines

the lower boundary of the coexistence region, while the black line I(1) =1

defines the upper boundary. (A more precise definition of the upper bound

of the coexistence region is given by the yellow line in figure 21.5(a), below

which the virus is strong enough to invade the cell population.)

Thus, in the spatial system, target cell extinction is observed if the local

equilibrium number of uninfected cells is less than one (regions A & B, figure

21.5(a), below white line). Extinction of only the virus is observed either

following initial invasion if its local equilibrium is less than one (region D,
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figure 21.5(a), area encased by white, black and yellow lines) or if invasion

is impossible (region E, figure 21.5(a), above yellow line). The finding that

equilibrium properties of simple ODE models that describe the dynamics in

a small local neighborhood can predict the outcome of the spatial system

has important practical implications. Note however that this method is

unable to explain all the details of the diagram in figure 21.5. In particular,

the proximity of the black (I(1) =1 ) line to the boundary between regions A

and B is purely coincidental. The equilibrium analysis predicts extinction in

regions A and B, but cannot distinguish between virus-mediated extinction

(A) and boundary-mediated extinction.

Large grid. In a larger, 300 × 300, grid (figure 21.5(b), and figures 21.6

& 21.7), the basic patterns found in a small grid are still in place, but ad-

ditional complexity is observed. In the parameter space where target cell

extinction happens in the smaller grid, regions of coexistence can occur. In

pattern A1, the expanding virus wave proceeds initially as a “hollow ring”

structure, catches up with the target cell wave, leaves no uninfected cells

in its wake, but only partially breaks the target cell wave. The virus is not

efficient enough to eliminate the target cell wave, as observed in pattern

A, but still strong enough not to leave it intact, as observed in pattern B.

The partially broken wave structure allows the uninfected cells to escape

not only outward, but in all directions. Hence, local extinction combined

with continuous target cell movement away from the virus leads to persist-

ing moving fronts, which can go extinct and give rise to new fronts over

time. Thus, more extensive population fluctuations are observed in the

long run (figure 21.7). This is the well-known regime of global persistence

despite local extinction which is an important basis for the argument that

space promotes coexistence [Hassell (2000)]. The levels at which the un-

infected cell population persists, however, are relatively low (figure 21.7).

A sufficiently large grid size is required to observe this behavior, such that

enough space is available for the moving target cell fronts to persist. We

refer to pattern A1 as low-level target cell persistence. Region B1

shows a different reason for target cell persistence at low levels, a pattern

we call concentric rings, which corresponds to the concentric ring pat-

tern of initial virus spread described earlier. When the virus wave expands,

the probability to leave behind uninfected cells is proportional to the local

equilibrium number of uninfected cells. In the region where this equilibrium

number is just slightly below one, this does not occur often enough to be

observed on a small grid. On a larger grid, however, it can be observed.

These infrequent events lead to renewed target cell growth, followed by
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virus growth, and a new wave structure is formed. This can lead to the

occurrence of concentric expanding rings. With time, stochasticity breaks

the ring structure, leading to traveling fronts that eventually go extinct,

but occasionally leave behind uninfected cells to form new fronts, thus per-

sisting in the long term. Consequently, populations show more extensive

fluctuations around characteristic steady state values (figure 21.7). For

lower values of A/B, the local equilibrium number of uninfected cells be-

comes too low for this to be observed in the grid size under consideration.

Finally, in region D1, low-level virus persistence, global persistence of

the virus despite local extinction is observed, leading to relatively strong

population fluctuations (figure 21.7). While the virus invades the target

cell population, it converges to its local equilibrium value that is less than

one. However, movement through space before extinction occurs allows co-

existence if the grid is sufficiently large. For lower values of R/B, the local

equilibrium number of infected cells is too low to observe this outcome even

in the context of the larger grid.

These simulations show that increasing the grid size allows more com-

plex outcomes to occur and increases the parameter region in which the cell

populations persist. The additional patterns that emerge in larger grids are

variations of those found in the smaller grid and involve non-equilibrium

persistence, where extinction occurs locally, but movement through space

allows cells to temporarily avoid extinction. These dynamics are well doc-

umented in the ecological literature [Hassell (2000)]. Besides allowing cells

to move through space, a larger grid size also increases the chances that

certain rare events can occur. For example, boundary-mediated extinction

(pattern B, figure 21.5) is less likely to occur in large grids. The larger the

grid the higher the probability that uninfected cells are left in the core of

the ring before the uninfected cell population has moved to the boundary

and is eliminated by the virus. All these non-equilibrium persistence out-

comes in larger grids, however, are characterized by persistence of the cells

at very low levels, which can be considered controlled persistence and does

not involve uncontrolled cellular growth. Therefore, the outcome can still

be predicted by the “local mass action equilibrium values” discussed above:

if the local equilibrium of uninfected cells, predicted by the ODEs, is less

than one, we can expect either extinction or controlled persistence. If the

local equilibrium of uninfected cells is greater than one, we can expect to see

uncontrolled cellular growth. The lower the local equilibrium of uninfected

cells the less likely controlled persistence occurs and the more likely extinc-
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tion is observed. However, this could not be demonstrated systematically

for larger grids due to the extensive computational costs involved.

The long term outcomes shown in figure 21.6 are obviously related to

the initial growth patterns described in figure 21.4. Patterns A, A1 and B

in figure 21.6 arise out of the hollow-ring structure. Pattern B1 in figure

21.6 emerges from the concentric ring structure. Patterns C, D, and D1 are

consequences of the disperse growth pattern / filled ring structure, which

for faster viral spread rates typically leads to coexistence of the virus and

cell populations, while extinction of the virus population can be observed

for smaller virus spread rates.

(a) (b) 

Fig. 21.8 Experimentally observed spatial patterns of virus infection, using the aden-
ovirus AdEGFPuci on HEK293-mCherry cells [Wodarz et al. (2012)]. (a) Three patterns
were observed: a hollow ring (top), a disperse pattern (middle) and a ring filled with
uninfected cells that is eventually predicted to develop into a disperse pattern (bottom).
Infected cells are shown in green on the right, and all cells (uninfected + infected) in
red on the left. (b) Closer examination of the disperse, or limited, growth pattern, mag-
nified to different degrees (100x and 200x). The top panels show infected cells in green,
the middle panels show all cells in red. Because the mCherry red fluorescent protein
cannot distinguish between infected and uninfected cells, the red and the green images
are merged in the bottom panel, illustrating infected vs. uninfected cells. The arrows in
the right panels point to an infected cell (inf.) and an uninfected cell (un inf.) within
the center of the virus infected region of the cells.
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21.4 Experimentally observed patterns of virus spread

In order to experimentally examine spatial virus spread in a setting corre-

sponding to the assumptions of our model, a recombinant adenovirus type-5

(Ad5) was constructed that expresses enhanced jellyfish green fluorescent

protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney

epithelial (293) cells [Hofacre et al. (2012)]. The experiment was set up such

that cells are arranged in a two-dimensional layer, and virus spread is most

likely to occur to neighboring cells. An agar overlay prevents long-range

spread of the virus away from infected cells in the culture medium. This

set-up allows to quantify not only the number of infected cells over time,

but also the spatial patterns of infected cells that are formed as the virus

population expands [Wodarz et al. (2012)]. In addition, fluorescent markers

were used to visualize the spatial distribution of all cells (infected and uni-

fected) by generating HEK293-H2BmCherry cells, that stably express the

core nuclear histone protein H2B fused to mCherry (a highly photostable,

monomeric red fluorescent protein (RFP)) [Shaner et al. (2004)]. Thus,

using HEK293-H2BmCherry cells allows visualization of all the cell nuclei

(i.e., intact cells) in any particular culture. The culture was infected at a

very low multiplicity of infection (MOI), such that any area of infection re-

sulted from a single “founder” infected cell. Each culture contained several
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Fig. 21.9 Two different experimentally observed time series of adenovirus infection,
fitted with the model. The black middle line through the data represents the time
series predicted by the agent-based model. The upper and lower lines show the standard
deviations. (a) A ring structure (figure 21.8(a)). (b) A disperse pattern (figure 21.8(b)).
The best-fitting values for parameters R, B, and A are given as follows: (a) R = 0.18,
B = 0.26, A = 1.85 · 10−2. (b) R = 0.19, B = 0.52, A = 0.12. The parameter D was
kept constant at D = 0.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 425

Gene therapy and oncolytic virus therapy 425

such founder cells that were sufficiently separated from each other, to allow

tracking multiple growth foci across the dish. The earliest stages of virus

growth starting from a single founder infected cell were described in [Ho-

facre et al. (2012)]. In [Wodarz et al. (2012)], we followed the growth of such

spreading infections and characterized the consequent growth patterns. We

observed three basic patterns of virus spread, which correspond to the pat-

terns predicted by the model. The experimentally observed patterns are

shown in figure 21.8(a) and described as follows. (i) In the first pattern, the

virus infection spreads rapidly outwards as a ring, leaving no cells behind in

the core of the ring (figure 21.8(a), pattern (i)). This classic plaque pattern

is observed in virus growth experiments, and it corresponds to the hollow

ring structure predicted by mathematical modeling above. In the second

and third patters there is viral spread, but it is limited. (ii) In the second

case, a disperse growth pattern is observed, where the virus population

expands as a mixed cluster of infected and uninfected cells (figure 21.8(a),

pattern (ii)). Finally, the virus population expands as a thinner ring, but

(a) 

(b) 

Fig. 21.10 Observed (a) and predicted (b) spatial pattern of adenovirus (AdEGFPuci)
growth for the experiment that exhibits a ring structure (time series given in figure 3a).
The predicted spatial pattern is the result of an individual run of the agent-based model
with the parameter combination obtained from the model fitting procedure. Snapshots
in time are shown, representing days 7, 9, 11, and 13 post infection. (a) The area of
green fluorescence is shown, expressed by the infected cells, thus documenting the spatial
spread of the virus through the population target cells arranged in a two-dimensional
setting. (b) In the computer simulation, green indicates infected cells, red infected cells,
and grey empty spots.
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in contrast to the first case, uninfected cells are left behind in the core of

the ring (figure 21.8(a), pattern (iii)). A limited growth pattern is magni-

fied in figure 21.8(b), in which uninfected cells are visible within the center

of the virus infected population. In the top right panel of figure 21.8(b),

an AdEGFPuci infected (fluorescent) cell is indicated (arrow marked with

“inf.”), whereas an uninfected cell in the center of the spreading infection

does not fluoresce green (arrow, un inf.). The same cells are indicated in

the middle right panel of figure 21.8(b), showing red fluorescence. In the

bottom left panel of figure 21.8(b), images of the top and middle panels are

merged; infected cell (arrow, “inf.”) fluoresces yellow, while the uninfected

cell, (arrow, “un inf.”) remains red. As mentioned, the area over which the

infection spread, remained limited in patterns (ii) and (iii) and persisted

throughout the infection (through 19 dpi). In contrast, in pattern (i), the

ring of infected cells continued to spread outward as long as there was space;

cell clearing in the center of the plaque was apparent at 13 dpi, as shown

in figure 21.8(a). Similar patterns of spreading infection were also seen in

(a) 

(b) 

Fig. 21.11 Observed (a) and predicted (b) spatial pattern of adenovirus (AdEGFPuci)
growth for the experiment that exhibits a disperse growth pattern (time series given in
figure 3b). The predicted spatial pattern is the result of an individual run of the agent-
based model with the parameter combination obtained from the model fitting procedure.
Snapshots in time are shown, representing days 7, 10, 11, and 12 post infection. (a) The
area of green fluorescence is shown, expressed by the infected cells, thus documenting
the spatial spread of the virus through the population target cells arranged in a two
dimensional setting. (b) In the computer simulation, green indicates infected cells, red
infected cells, and grey empty spots.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 427

Gene therapy and oncolytic virus therapy 427

Ad293 cells, a HEK293 cell derivative optimized for adenovirus plaque as-

says. Overall, among 436 scored growth foci, the hollow ring structure was

found in 45%, and the limited patterns in 55% of cases.

In order to go beyond the qualitative comparison of model and data, we

fit the model to two sets of experimental data, one showing an expanding

hollow ring, and the other the disperse growth pattern, see figure 21.9. The

number of cells was experimentally determined by measuring the fluores-

cent area of the infected cell population, divided by the fluorescent area

of individual infected cells, using Photoshop. Each graph in figure 21.9

is based on a single experimental run. The area however, was measured

independently four times, giving rise to the plotted error bars. The black

middle line through the data represents the time series predicted by the

agent-based model, using a parameter combination that was obtained by a

least squares fitting procedure. Since the model is stochastic, the predicted

time series represents the average over 1000 instances of the simulation.

The upper and lower lines show the standard deviations added to and sub-

tracted from the average. The experiment fitted in figure 21.9(a) shows

virus growth characterized by the formation of a ring structure. Conse-

quently there is a relatively short phase of quadratic growth, followed by a

transition to linear growth. The experiment fitted in 21.9(b) shows disperse

virus growth characterized by quadratic growth throughout time. The cor-

responding observed and predicted spatial patterns are shown in figures

21.10 and 21.11. The types of spatial patterns that emerged matched the

observed ones qualitatively (figures 21.10 and 21.11). Note that although

this procedure found best fitting parameter values, their biological meaning

remains questionable, since different parameter combinations can give rise

to similarly good fits.

While the experimentally observed spatial patterns correspond to pre-

dicted ones, the experiments give rise to further observations that are not

seen in the model and that are likely due to additional biological process

that are at work in this in vitro system and that are not part of the model.

The most puzzling observation was that identical experimental conditions,

using the same virus-target cell system, gave rise to different patterns of

virus growth. This indicates the existence of so far unidentified factors

that influence virus spread in this in vitro system. It is possible that ini-

tial events, stochastic in nature, might determine the remaining fate of the

virus population. One hypothesis is that infection of cells triggers the pro-

duction of anti-viral factors such as interferon, by the infected cell, which

could induce an anti-viral state in neighboring cells.
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21.5 Conclusions

This review summarized various modeling approaches that we have em-

ployed to study the dynamics of oncolytic viruses. Ordinary differential

equations have been heavily employed in the field of virus dynamics in

general, and have given rise to many biologically useful results [Nowak and

May (2000)]. The same applies to oncolytic virus dynamics, especially with

respect to some very fundamental concepts and predictions. At the same

time, this modeling approach has weaknesses that limit the predictive power

of such models in more advanced settings where precise treatment regimes

need to be worked out in the context of specific viruses and cancers. One

of the problems with the ODE approach is that equations contain arbitrary

mathematical expressions that could be equally well described by alterna-

tive terms that change the properties of the model. In most cases, the

“biologically correct” formulation is not known. Thus, a general, axiomatic

modeling approach can be useful, where analysis does not focus on specific

models, but on classes of models characterized by biological constraints.

Another important limitation of the ODE approach is that spatial aspects

of tumors cannot be accounted for explicitly. To do so, alternative modeling

techniques need to be utilized, and we have described a spatially explicit

agent-based model in this respect. In all modeling approaches, it is im-

portant to realize that the biological complexity of the system is enormous

and largely not well understood, which again limits the predictive power of

models. A reasonable strategy described here is to first focus on relatively

simple settings, such as in vitro systems, in which most assumptions are

relatively well understood. This allows the model to be tested and validated

by specific experiments [Wodarz et al. (2012)]. Once the simplest setting

can be described adequately with a model, additional biological complex-

ities can be incorporated one step at a time. The ultimate goal of this

work is to generate a biologically realistic model for the treatment of tu-

mors in vivo, which has solid predictive power and can be used to optimize

treatment strategies.

Problems

Problem 21.1. Take the basic ordinary differential equation model for on-

colytic virus therapy and modify it to include simultaneous treatment with

a chemotherapeutic agent that either slows down the division rate of tumor
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cells or increases the death rate of tumor cells (both uninfected and infected).

Does it make sense to combine oncolytic virus therapy with chemothera-

pies? Explore with a combination of analytical techniques and numerical

simulations.

Problem 21.2. Research project. Find out about different types of on-

colytic viruses, what types of clinical trials have been performed, and what

outcomes have been observed in these trials.

Problem 21.3. Numerical project. In the basic ODE model of on-

colytic virus replication, take the parameter sets explored in figure 21.2 and

numerically explore the dynamics as the carrying capacity of the tumor cell

population, ω, is increased to higher values. What happens in the extreme

case of unbounded, exponential virus growth? What do you conclude about

the model structure? How do the dynamics depend on slight modifications

of the model, such as the assumption of an infection term that saturates in

the number of uninfected cells?
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Chapter 22

Immune responses, tumor growth,

and therapy

The immune system defends organisms from intruders such as pathogens

which would otherwise kill them. It does so by specifically recognizing

proteins derived from the pathogens (for example, viruses, bacteria, or par-

asites). Through complicated mechanisms which will be discussed briefly

later on, the immune system knows that these proteins are foreign and

that they are not derived from the organism that it is supposed to protect.

What about cancer? As discussed throughout this book, carcinogenesis in-

volves the accumulation of multiple mutations and in general often exhibits

genetic instability. This means that many mutated proteins are produced

which are different from the organism’s own proteins and should thus ap-

pear foreign. In principle, these should be visible to the immune system

which could potentially remove tumor cells and prevent the development

of cancer.

A role of the immune system in the fight against cancer was first sug-

gested in 1909 by Paul Ehrlich [Ehrlich (1909)]. It was not, however, un-

til the 1950s, when the idea was pursued more vigorously and the im-

mune surveillance hypothesis was formulated by Burnet [Burnet (1957)]. It

stated that while cancers continuously arise, they are eliminated by specific

immune responses. The successful establishment of cancer was thought

to come about by the occasional escape of cancer cells from the immune

responses.

Following a lot of enthusiastic research, clinical and experimental data

cast doubt on the immune surveillance hypothesis [Dunn et al. (2002)], and

indeed this concept has been subject to much controversy over the years

and decades. Around the early 1990s, the immune surveillance hypothesis

431
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was largely ignored and immune-mediated extinction of tumor cells was not

considered relevant [Vesely et al. (2011)]. This notion, however, started to

change by the mid 1990s when additional research established more clearly

the role of immune responses (both innate and adaptive) for protecting

the organism against cancer. This was solidified significantly by work per-

formed over the last decade, which demonstrated that the immune system

has the ability to protect mice from the growth of different types of tumors

[Dighe et al. (1994); Kaplan et al. (1998); Shankaran et al. (2001); Smyth

et al. (2000b,a); Street et al. (2002); Girardi et al. (2001)]. A compelling

piece of evidence for the occurrence of immune surveillance are paraneo-

plastic diseases, which are neurological disorders that arise from immune

responses directed against cancers [Darnell (1996); Albert et al. (1998a)].

Interestingly, it was shown that tumors that emerged in the absence of a

functional immune system were more immunogenic (i.e., generated more ef-

ficient anti-tumor responses) than tumors that arose in immunocompetent

organisms. This means that besides protecting the organism, the presence

of the immune system can also shape the nature of an emerging tumor, i.e.

select for cells that are less susceptible to immune-mediated attack. This

has been called immunoediting [Vesely et al. (2011)].

In general, a picture has emerged according to which the interactions

between the immune system and newly generated tumor cells can lead to

three qualitatively different outcomes [Vesely et al. (2011)]. (i) The immune

system can eliminate the founding tumor cell population, thus preventing

the development of disease. (ii) The dynamics between the founding tumor

cells and immune responses can converge towards an equilibrium at which

the tumor cell population remains present at sub-clinical levels, controlled

by the immune response. (iii) The tumor can escape the immune responses,

thus giving rise to clinical disease.

The tumor-fighting ability of immune responses has also been explored

from a therapeutic perspective [Palucka and Banchereau (2012)]. In this

respect, the induction of adaptive immunity, especially T cells, seems cru-

cial. Different approaches have been taken. On the one hand, immune

cells from a patient can be isolated, stimulated in vitro, and re-infused into

the patient. On the other hand, tumor proteins (antigens), together with

immuno-stimulatory factors (adjuvant) can be injected into patients with

the aim to stimulate tumor-specific immune responses. In these respects,

dendritic cells are crucial for the induction of tumor specific immunity. The
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overall goal of many immunotherapeutic approaches is to establish a solid

immune response against the tumor that generates “immunological mem-

ory”, i.e., the persistence of the immune cells at elevated levels following

tumor control/clearance, conveying long term protection against relapse of

the disease. While these approaches are still under development, promis-

ing outcomes have been observed in clinical trials in the context of several

cancers [Palucka and Banchereau (2012)].

This chapter has two parts. The first part considers a mathematical

model describing basic interactions between a growing tumor cell popula-

tion and a tumor-specific immune response. This model will be used to

examine the states of clearance, controlled persistence, and uncontrolled

tumor growth. The second part of the chapter considers applications in

the context of therapies, especially combining the use of small molecule

inhibitors with immuno-therapeutic approaches. Before diving into these

topics, however we will briefly review some basic facts about immune re-

sponses, which forms the necessary background.

22.1 Some facts about immune responses

This section will briefly review some basic immunological principles which

form the basis for the rest of the chapter. More extensive descriptions of

the immune system can be found in any standard immunology textbook,

for example [Janeway et al. (2005)]. We can distinguish between two basic

types of immune responses. Innate immune responses provide a first line of

defense. They do not recognize foreign proteins specifically. They provide

environments which generally inhibit the spread of intruders. While they

may be important to limit the initial growth of a pathogen, they are usually

not sufficient to resolve diseases. On the other hand, adaptive immune

responses can specifically recognize foreign proteins, and they tend to be

crucial for resolving diseases. We concentrate on this type of response here,

although it is important to note that a complex interplay occurs between

the innate and adaptive branches of the immune system, which enables the

adaptive response to effectively carry out its functions. Adaptive immunity

includes antibody and T cell responses. The T cell responses can in turn be

subdivided into helper T cells and killer T cells. Helper T cells largely have

regulatory functions, contributing to the activation of the effector responses

that directly fight infectious agents: antibodies and killer T cells. Roughly
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speaking, antibodies recognize proteins outside the cells, such as free virus

particles, extracellular bacteria or parasites, although they can also attach

to proteins found on the cell surface. Killer T cells recognize foreign proteins

which are displayed on cells. For example, viruses replicate inside cells.

During this process, the cell captures some viral proteins and displays them

on the cell surface. When the killer T cells recognize the foreign proteins on

the cell surface, they release substances which kill. Mutated cancer proteins

are displayed on the surface of cancer cells. Therefore, killer T cells are an

important branch of the immune system in the fight against cancer. The

rest of this chapter will discuss only the role of killer T cell responses. The

scientific term is cytotoxic T lymphocyte, abbreviated as CTL. They can

also be referred to as CD8+ T cells because they are characterized by the

expression of the CD8 molecule on the cell surface.

The CTL are able to recognize the cell which displays a foreign protein

in the following way. When proteins inside the cell are captured for dis-

play on the cell surface, they are presented in conjunction with so–called

major histocompatibility complex (MHC) molecules. The MHC genes are

highly variable, and different MHC genotypes present different proteins.

This accounts for the variability between different people in immune re-

sponses against the same pathogen. The CTL carries the so–called T cell

receptor or TCR. The TCR recognizes the protein-MHC complexes. This

triggers the release of specific molecules such as perforin or FAS, which

induce apoptosis in the cell that displays the foreign proteins. In immunol-

ogy, the foreign protein which is recognized by the immune cells is also

referred to as antigen. It is important to note that all proteins of a cell are

processed and displayed in this way, not just the ones which are supposed

to be recognized by the immune system. However, self-reactive immune

cells are normally deleted, leaving only immune cells that are specific to

invaders or to cells that bear altered proteins, such as products of mutated

genes in cancer cells.

In order to induce CTL killing activity, however, they first need to be

activated. Before CTL that are specific to a certain antigen have been ex-

posed to that antigen, they exists at relatively low numbers and are not

able to perform effector function, e.g. to kill target cells. They are said to

be in a naive state. Contact with the antigen activates the CTL and leads

to a phase of clonal expansion or proliferation, which significantly increases

the size of this specific CTL population. This process also leads to the

generation of effector cells, which are able to kill their target cells. Fol-
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lowing this effector phase, a portion of the CTL die, while another portion

differentiates into memory CTL that can persist at elevated levels in the

absence of their specific antigen for relatively long periods of time. They

have the capacity to protect against a secondary occurrence of the disease.

Activation and proliferation of CTL is not induced by contact with the

target cells. Instead, it is induced by contact with so-called professional

antigen-presenting cells or APCs, most notably dendritic cells. Dendritic

cells internalize free antigens and display them on their cell surface. Con-

tact between an antigen-presenting dendritic cell and a CTL leads to the

activation and proliferation of the CTL. These interactions also involve the

T helper cells or CD4+ T cells, which do not have significant effector ac-

tivity, but are crucial in the generation of CTL and antibody responses.

Because CTL are stimulated not directly by the target cells, but indirectly

via dendritic cells, this process of stimulation is also called cross-stimulation

or cross-priming [Heath and Carbone (2001); Carbone et al. (1998)]. These

concepts are explained in more detail schematically in figure 22.1.

In the context of tumor-specific immune responses, an important ques-

tion is how the tumor cell population can escape CTL-mediated elimina-

tion. Various processes have been proposed [Rabinovich et al. (2007)] It is

possible that the tumor cells evade CTL-mediated activity. In this case,

the CTL response is present but ineffective. Other, more direct modes of

immune impairment are also possible, leading to the disappearance of the

appropriate CTL response, a state that can be called tolerance towards the

tumor. Understanding the dynamical interactions between a CTL response

that fights tumor cells and a tumor cell population that impairs the CTL

response is central to elucidating the conditions that lead to tumor elimina-

tion, controlled tumor persistence, and uncontrolled tumor growth. In the

following section, this will be investigated in the context of a mathematical

model.

22.2 The model

Here, we construct a mathematical model that describes the dynamics

between a growing tumor cell population and a tumor-specific CTL re-

sponse [Wodarz and Jansen (2003)]. This model is related to other models

that describe the relationship between tumors and the immune system, e.g.
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Kill
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Fig. 22.1 Schematic representation of the concept of cross-priming, which is central to
this chapter. So-called “antigen presenting cells” can take up antigen (proteins derived
from pathogens or cells) and display them on their surface. Before the APCs can function,
they need to be activated. This is achieved by so-called helper T cells (Th) which can
recognize the antigen on the APC. The activated APC can subsequently interact with
CTL. CTL can also specifically recognize the antigen on the APC. This interaction
activates the CTL which can then turn into effector cells and kill the troubled target
cells which display the antigen. These target cells are different from APCs and can be for
example virus-infected cells or tumor cells. This process is called cross-priming because
the CTL do not get activated directly by the troubled cells which need to be killed, but
indirectly by the APCs which can take up and display the antigen.

[De Pillis and Radunskaya (2001); DePillis et al. (2013); Ledzewicz et al.

(2011)]. It takes into account the cross-priming pathway described above

and further assumes that while the CTL fight the tumor cells, the tumor

can fight back by impairing the CTL response. The model contains four

variables: cells directly displaying antigen such as tumor cells, T (which

we will also refer to as “target cells”); non-activated APCs which do not

present the antigen, A; loaded and activated APCs which have taken up

antigen and display it, A∗; CTL, C. The model is given by the following

system of differential equations which describe the development of these

populations over time,

Ṫ = rT

(

1− T

k

)

− dT − γTC,

Ȧ = λ− δ1A− αAT,

Ȧ∗ = αAT − δ2A
∗,

Ċ =
ηA∗C

ǫC + 1
− qTC − µC. (22.1)
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The tumor cells grow at a density dependent rate rT (1−T/k). The parame-

ter k denotes the maximum size the tumor can achieve, limited for example

by spatial constraints. The cells die at a rate dT , and are in addition killed

by CTL at a rate γTC. APCs, A, are produced at a constant rate λ and die

at a rate δ1A. They take up antigen and become activated at a rate αAT .

The parameter α summarizes several processes: the rate at which antigen

is released from the cells, T , and the rate at which this antigen is taken up

by APCs and processed for display and cross-presentation. Loaded APCs,

A∗, are lost at a rate δ2A
∗. This corresponds either to death of the loaded

APC, or to loss of the antigen-MHC complexes on the APC. Upon cross-

presentation, CTL expand at a rate ηA∗C/(ǫC + 1). The saturation term,

ǫC + 1, has been included to prevent excessive expansion of CTL in the

presence of strong cross-stimulation, which can lead to unstable dynamics.

The activated and expanding population of CTL can kill the infected cells

upon direct presentation. In addition, it is assumed that direct presenta-

tion can result in removal of CTL at a rate qTC. This can be brought

about, for example, by antigen-induced cell death, or over-differentiation

into effectors followed by death. Finally, CTL die at a rate µC.

Thus a central assumption of the model is that cross-presentation can

induce CTL expansion, while direct presentation does not have that ef-

fect; instead it can result in the decline of the CTL population. This

assumption implies that the magnitude of cross-presentation relative to di-

rect presentation could be a decisive factor which determines the outcome

of a CTL response: activation or tolerance. In the model, the ratio of

cross-presentation to direct presentation is given by cA∗/qT .
We assume that r > a. That is, the rate of increase of the target

cells, T , is greater than their death rate. This ensures that this population

of cells can grow and remain present. If this is fulfilled, the system can

converge to a number of different equilibria (figure 22.2). The expressions

for the equilibria will not be written out here since most of them involve

complicated expressions.

(1) The CTL response fails to expand, i.e., C = 0. The population of target

cells grows to a high equilibrium level, unchecked by the CTL. The

populations of unloaded and loaded APCs, A and A∗, also equilibrate.

(2) The CTL response expands, i.e., C > 0. In this case, the system can

converge to one of two different outcomes. (a) The number of CTL is

low and the number of target cells is high. This outcome is qualitatively
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Fig. 22.2 Different outcomes of the model shown as time series. (a) Tolerance; CTL
go extinct. (b) Tolerance outcome where CTL do not go extinct but are maintained at

very low levels. (c) Immunity outcome. Parameters were chosen as follows: r = 0.5,
k = 10, d = 0.1, γ = 1, λ = 1, δ1 = 0.1, δ2 = 1.5, η = 2, ǫ = 1, q = 0.5, µ = 0.1. α = 0
for (a) and α = 0.2 for (c). For (b) α = 0.05, r = 10, η = 10.

similar to (1), because the CTL population does not fully expand, and

the population of target remains high. (b) The number of CTL is high

and the number of target cells is low. This can be considered the im-

mune control equilibrium. If the population of target cells is reduced to
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very low levels, this can be considered equivalent to extinction (number

of cells below one).

These equilibria therefore fall into two basic categories: (a) Tolerance;

this is described by two equilibria. Either the immune response goes extinct,

or it exists at low and ineffective levels. However, the latter equilibrium

only occurs in a restrictive and biologically unrealistic parameter regime

[Wodarz and Jansen (2003)] and will not be considered further here. For

further details regarding this equilibrium, see [Wodarz and Jansen (2003)].

Therefore, when quoting the tolerance equilibrium, we from now on re-

fer to the outcome where the CTL response goes extinct. (b) Reactivity;

this is described by only one equilibrium. The immune response expands

to higher levels and exerts significant levels of effector activity. The fol-

lowing sections will examine which outcomes are achieved under which

circumstances.

22.3 Properties of equilibria and parameter dependencies

The two most important parameters in the present context are the rate

of antigen uptake by APCs, α, and the growth rate of the target cells,

r. This is because variation in these parameters can significantly influence

the ratio of cross-presentation to direct presentation which is the subject of

investigation. Hence, in the following sections we will examine the behavior

of the model in dependence of these two parameters.

The rate of antigen uptake by APCs. The rate of antigen uptake by

APCs comprises two processes: (i) the degree to which the antigen is made

available for uptake; this can be determined for example by the amount

of antigen released from the target cell, or the amount of apoptosis going

on [Albert et al. (1998b)]. (ii) The rate at which the APCs take up the

available antigen and process it for presentation. As the rate of antigen

uptake by APCs, α, decreases, the ratio of cross-presentation to direct

presentation decreases (figure 22.3(a)). When the value of α is high, the

outcome is immunity. If the value of α is decreased and crosses a threshold,

we enter a region of bistability (figure 22.3(a)): both the immunity and the

tolerance equilibria are stable. Which outcome is achieved depends on the

initial conditions. If the value of α is further decreased and crosses another

threshold, the immune control equilibrium loses stability. The only stable

outcome is tolerance (figure 22.3(a)).
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Fig. 22.3 Bifurcation diagram showing the outcome of the model as a function of (a)
the rate of antigen presentation by APCs, α, and (b) the growth rate of target cells, r.
Tumor cell load and the ratio of cross-presentation to direct presentation at equilibrium
are shown. Parameters were chosen as follows: r = 0.5, k = 10, d = 0.1, γ = 1, λ = 1,
δ1 = 0.1, α = 0.5, δ2 = 1.5, η = 2, ǫ = 1, q = 0.5, µ = 0.1.

In the region of bistability, the dependence on initial conditions is as

follows. Convergence to the immune control equilibrium is promoted by low

initial numbers of target cells, high initial numbers of presenting APCs, and

high initial numbers of CTL. This is because under these initial conditions,

the dynamics start out with a high ratio of cross-presentation to direct

presentation and this promotes the expansion of the CTL. On the other

hand, if the initial number of target cells is high and the initial number of

presenting APCs and CTL is low, then the initial ratio of cross-presentation

to direct presentation is low and this promotes tolerance. There are some
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slight variations to this general picture. As they do not alter the basic

results, however, the reader is referred to [Wodarz and Jansen (2001)] for

details.

In summary, as the rate of antigen uptake by APCs is decreased, the

ratio of cross-presentation to direct presentation decreases, and this shifts

the dynamics of the CTL response in the direction of tolerance. This can

include a parameter region in which both the tolerance and the immunity

outcome are stable, depending on the initial conditions. If the CTL respon-

siveness to cross-presentation is very strong, tolerance becomes an unlikely

outcome.

The growth rate of target cells. An increase in the growth rate of

target cells, r, results in a decrease in the ratio of cross-presentation to

direct presentation in the model. Hence an increase in the growth rate of

target cells shifts the dynamics of the CTL from a responsive state towards

tolerance. The dependence of the dynamics on the parameter r is shown

in figure 22.3(b). The growth rate of target cells needs to lie above a

threshold to enable the CTL to potentially react. This is because for very

low values of r, the number of target cells is very low, not sufficient to trigger

immunity. If the growth rate of target cells is sufficiently high to potentially

induce immunity, we observe the following behavior (figure 22.3(b)). If the

value of r lies below a threshold, the only stable outcome is immunity.

If the value of r is increased and crosses a threshold, we enter a region

of bistability. That is, both the immunity and the tolerance outcomes are

possible, depending on the initial conditions. The dependence on the initial

conditions is the same as explained in the last section. If the value of r is

further increased and crosses another threshold, the immunity equilibrium

loses stability and the only possible outcome is tolerance. Again, there are

some slight variations to this general picture. As they do not alter the basic

results, however, the reader is referred to [Wodarz and Jansen (2001)] for

details.

In summary, an increase in the growth rate of target cells has a similar

effect as a decrease in the rate of antigen uptake by APCs: the ratio of cross-

presentation to direct presentation becomes smaller, and the outcome of the

dynamics is driven from immunity towards tolerance. Again, this includes

a parameter region where both the immunity and tolerance outcomes are

stable and where the outcome depends on the initial conditions. The higher

the overall responsiveness of the CTL to cross-stimulation, the less likely it

is that a high growth rate of target cells can induce tolerance.
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22.4 Immunity versus tolerance

The models have investigated the topic of CTL regulation from a dynami-

cal point of view. We showed that the immune system can switch between

two states: tolerance and activation. Which state is reached need not de-

pend on the presence or absence of signals, but on the relative magnitude

of cross-presentation to direct presentation. This shows that regulation can

be accomplished without signals but in response to a continuously varying

parameter. This relies on the assumption that cross-presentation stimu-

lates immunity, while direct presentation can lead to removal of CTL. Such

effects have been documented to occur, e.g. through antigen-induced cells

death [Baumann et al. (2002); Budd (2001); Hildeman et al. (2002)]. This

mechanism can account for various phenomena of tolerance vs reactivity,

which is outlined as follows.

For self antigen displayed on cells of the body, the ratio of cross-

presentation to direct presentation is normally low. This is because these

cells do not die at a high enough rate or release the antigen at a high

enough rate for the amount of cross presentation to be strong. On the

other hand, large amounts of this antigen can be available on the surface

of the cells expressing them (direct presentation). In terms of our model,

this situation can best be described by a low value of α. Hence, in our

model, CTL responses are not predicted to become established against self

antigens. Instead, the outcome is tolerance. In addition, the initial condi-

tions favor tolerance in this scenario. When immune cells with specificity

for self are created and try to react, the number of these immune cells is

very low and the number of target cells (tissue) is relatively high. This pro-

motes failure of the CTL response to expand and to become established.

On the other hand, with infectious agents, free antigen is abundantly avail-

able for cross-presentation. For example, virus particles are released from

infected cells, ready to be taken up by APCs for cross-presentation. There-

fore, the immune responses react and become fully established. In con-

trast, tumors may fail to induce CTL responses because tumor antigens

are largely displayed on the surface of the tumor cells, but relatively little

tumor antigen is made available for uptake by dendritic cells and hence for

cross-presentation.
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22.5 Cancer initiation

According to the model analysis presented so far, when tumor cells are gen-

erated, they can have different fates, depending on the parameters that de-

termine the interactions between the tumor and the immune system. These

are summarized in figure 22.4. If the growth rate of the tumor cells is rela-

tively low or if the rate of cross-presentation of tumor antigen is relatively

high, e.g. due to relatively large amounts of cell death and apoptosis, then

a strong CTL response can develop in the model that reduces the tumor

cell population to very low levels that practically correspond to extinction.

If the growth rate of the tumor cells is faster and less cross-presentation

occurs due to reduced cell death, the CTL response becomes weaker and

this can lead to controlled persistence of the tumor. Finally if the growth

rate of the tumor is sufficiently fast, or the amount of cross presentation is

sufficiently reduced due to loss of cell death, then a CTL response is not

established and the tumor can grow unopposed, causing disease. These are

the types of tumors that are expected to be seen in patients, selected by

the inability of the immune system to become established and control the

tumor cell population. Hence, this corresponds to the concept of immu-

noediting. The following section will take these considerations further from

an evolutionary perspective.

22.6 Tumor dormancy, evolution, and progression

Here, we investigate in more detail the scenario where the growth rate of

the tumor is intermediate, and both the tolerance and the CTL control

outcomes are possible, depending on the initial conditions. Assume the

CTL control equilibrium is attained because the initial tumor size is small

at the time at which the disease is initiated. The number of tumor cells is

kept at low levels, but the tumor is unlikely to be cleared because in this

bistable parameter region the ratio of cross-presentation to direct presen-

tation is already reduced. If the tumor persists at low levels, the cells can

keep evolving over time. They can evolve, through selection and accumu-

lation of mutations, either towards a higher growth rate, r, or towards a

reduced rate of apoptosis which leads to reduced levels of antigen uptake by

dendritic cells, α. Both cases result in similar evolutionary dynamics. This

is illustrated in figure 22.5 assuming that the cancer cells evolve towards

faster growth rates (higher values of r).
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Fig. 22.4 Time series plots showing the different possible outcomes when a tumor
is generated. (a) Reduction of the tumor cell population to very low levels, which in
practical terms corresponds to clearance. (b) Immune control of the tumor at higher
levels, practically corresponding to controlled persistence. (c) Tolerance and uncontrolled
growth. Parameters were chosen as follows: k = 10, d = 0.1, γ = 1, λ = 1, δ1 = 0.1,
α = 0.5, δ2 = 1.5, η = 2, ǫ = 1, q = 0.5, µ = 0.1. (a) r = 0.13. (b, c) r = 1. The
difference between graphs (b) and (c) lies in the initial number of CTL, z.

An increase in the growth rate of tumor cells does not lead to a signifi-

cant increase in tumor load. At the same time, it results in an increase in

the number of tumor-specific CTL. The reason is that a faster growth rate

of tumor cells stimulates more CTL which counter this growth and keep
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Fig. 22.5 Equilibrium tumor load (a) and the number of tumor specific CTL (b) as a

function of the growth rate of tumor cells, r. This graph can be interpreted to show the
effect of tumor evolution towards faster growth rates over time. As evolution increase
the value of r over time, the tumor population and the CTL attain a new equilibrium.
Parameters were chosen as follows: r = 0.5, k = 10, d = 0.1, γ = 1, λ = 1, δ1 = 0.1,
α = 0.5, δ2 = 1.5, η = 2, ǫ = 1, q = 0.5, µ = 0.1.

the number of tumor cells at low levels. When the growth rate of the tumor

cells evolves beyond a threshold, the equilibrium describing CTL-mediated

control of the cancer becomes unstable. Consequently, the CTL response

collapses and the tumor can grow to high levels.
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The dynamics of tumor growth and progression can include a phase

called “dormancy”. During this phase the tumor size remains steady at a

low level over a prolonged period of time before breaking out of dormancy

and progressing further. Several mechanisms could account for this phe-

nomenon. The limitation of blood supply, or inhibition of angiogenesis,

can prevent a tumor from growing above a certain size threshold [Folkman

(2006)]. When angiogenic tumor cell lines evolve, the cancer can progress

further. Other mechanisms that have been suggested to account for dor-

mancy are immune mediated, although a precise nature of this regulation

remains elusive [Uhr and Marches (2001); Page and Uhr (2005)]. As shown

in this section, the model presented here can account for a dormancy phase

in tumor progression. If the overall growth rate of the cancer cells evolves

beyond this threshold, dormancy is broken: the CTL response collapses

and the tumor progresses.

22.7 Immunotherapy against cancers

Assuming that the CTL response has failed and the cancer can grow

unchecked, we investigate how immunotherapy can be used to restore CTL

mediated control or to eradicate the tumor. In the context of the model, the

aim of immunotherapy should be to increase the ratio of cross-presentation

to direct presentation. The most straightforward way to do this is dendritic

cell vaccination. In the model, this corresponds to an increase in the num-

ber of activated and presenting dendritic cells, A∗. We have to distinguish

between two scenarios: (i) The tumor cells have evolved sufficiently so that

the CTL control equilibrium is not stable anymore, and the only stable

outcome is tolerance. (ii) The tumor has evolved and progressed less; the

equilibrium describing CTL mediated control is still stable.

First we consider the situation where the tumor has progressed far

enough so that the CTL control equilibrium is not stable anymore. Upon

dendritic cell vaccination, tolerance is temporarily broken (figure 22.6).

That is, the CTL expand and reduce the tumor cell population. This CTL

expansion is, however, not sustained and tumor growth relapses (figure

22.6). The reason is as follows. Upon dendritic cell vaccination, the ratio

of cross-presentation to direct presentation is increased sufficiently, enabling

the CTL to expand. However, this boost in the level of cross-presentation

subsequently declines, allowing the tumor to get the upper hand and re-

grow. The model suggests, however, that the tumor can be eradicated if the
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Fig. 22.6 Effect of dendritic cell vaccination on tumor dynamics assuming that the
growth rate of the tumor has evolved to high values, where only the tolerance outcome
is stable. (a) A single vaccination event induces a temporary reduction in tumor load,
followed by a relapse. (b) Repeated vaccination events can drive the tumor load below
a threshold which corresponds to extinction in practical terms. Parameters were chosen
as follows: r = 1.5, k = 10, d = 0.1, γ = 1, λ = 1, δ1 = 0.01, α = 0.5, δ2 = 1.5, η = 0.5,
ǫ = 1, q = 0.5, µ = 0.1.

level of cross-presentation is continuously maintained at high levels. This

can be achieved by repeated vaccination events (figure 22.6). The next

vaccination event has to occur before the level of cross-presentation has

significantly declined. This will drive tumor load below a threshold level

which practically corresponds to extinction (figure 22.6).
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Fig. 22.7 Effect of dendritic cell vaccination on tumor dynamics assuming that the
growth rate has not yet progressed beyond a threshold, so that we are in the bistable
parameter region of the model. A single vaccination event can induce immunity which
can control the tumor at low levels. Parameters were chosen as follows: r = 0.3; k =
10; d = 0.1; γ = 1;λ = 1; δ1 = 0.01;α = 0.5; δ2 = 1.5; η = 0.5; ǫ = 1; q = 0.5;µ = 0.1.

Next, we consider the more benign scenario in which the tumor has not

progressed that far and the CTL control equilibrium is still stable. Now a

single vaccination event can shift the dynamics from the tolerance outcome

to the CTL control outcome (figure 22.7). The reason is that an elevation
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in the number of presenting dendritic cells shifts the system into a space

where the trajectories lead to CTL control and not to tolerance. This is

likely to be achieved if the size of the tumor is not very large. The larger

the size of the tumor, the stronger the vaccination has to be (higher A∗) in
order to achieve success. If the tumor size is very large, then an elevated

level of dendritic cells cannot shift the ratio of cross-presentation to direct

presentation sufficiently to induce sustained immunity. A combination of

vaccination and chemotherapy can, however, result in success. This is be-

cause chemotherapy reduces the size of the tumor and also induces death of

tumor cells. Both factors contribute to a higher ratio of cross-presentation

to direct presentation and to induction of immunity. Once a sustained CTL

response has been induced, tumor cells are kept at low levels. However, the

cancer is unlikely to be eradicated. Consequently, it can evolve over time.

Thus, induction of CTL mediated control in the model is likely to result in

a temporary phase of tumor dormancy. This phase is again broken after

the overall growth rate of the tumor has evolved beyond the threshold at

which the CTL control outcome becomes unstable.

These considerations result in the following suggestions. Dendritic cell

vaccination should be administered repeatedly until the last tumor cell has

been eradicated. If the tumor has already progressed relatively far, this

is the only way to prevent immediate relapse of the cancer. If the tumor

is less progressed, temporary tumor dormancy can be achieved by a single

vaccination event. Tumor persistence and evolution will, however, break

this dormancy phase, resulting in renewed cancer growth after a certain

period of time. Thus, in this case, repeated vaccination is also advisable

in order to keep the level of cross-presentation above a threshold and to

avoid tumor persistence. In all cases, the model suggests that a combi-

nation of immunotherapy with conventional therapy is beneficial because

conventional therapy can reduce the growth rate of the tumor. If conven-

tional therapy increases the chances of developing immunological control of

the tumor, conventional therapy would have to be applied only temporarily

which would have significant clinical benefits.

22.8 Case study: immune responses and the treatment for

chronic myeloid leukemia

So far, we have examined general mathematical models describing the in-

teractions among tumor cells and CTL, and also explored general aspects
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of immunotherapy. In the second part of this chapter, we will discuss pos-

sible roles of immune responses in the context of a specific cancer, i.e.,

chronic myeloid leukemia (CML). In this cancer, tumor specific CTL have

been found and could play an important role determining the outcome of

treatment with small molecule inhibitors [Kim et al. (2008)]. In particular,

they might contribute to the dynamics of tumor cell decline during therapy,

which is explored in this chapter.

An introduction to CML biology and therapy has been given in Chapter

16. Average responses to treatment with imatinib display a biphasic decline

of BCR-ABL transcript levels. Initially a first phase of decline is observed,

followed by a second, slower phase of decline. However, there is consider-

able heterogeneity in individual responses among different patients, and in

the rates of tumor cell decline. This can be seen in a variety of treatment

responses published int he context of a German cohort study [Roeder et al.

(2006)]. Consistent with the average picture, in many patients, the dynam-

ics appear to begin with a relatively fast phase of exponential decline. In

some patients, this decline continues for the duration of the study. In most

patients, however, this fast phase of decline is followed by a slower phase of

exponential decline. Finally, in many patients, BCR-ABL transcript num-

bers resurge subsequently. Examples of such patterns are seen in figure

22.8. In most patients, there are three important slopes if the dynamics of

BCR-ABL numbers are documented on a log-scale: (1) The slope of the fast

decline phase, (2) the slope of the slower decline phase, and (3) the slope

of the eventual rise. The value of these slopes was quantified by fitting a

three-phase exponential growth/decline model to the data, using non-linear

least squares regression (figure 22.9(a)). A significant positive correlation

was found between the slopes of the fast and the slow phases of decline.

A significant negative correlation was found between the slopes of the slow

phase of decline and the re-growth. Finally, no significant correlation was

found between the slope of the fast phase of decline and the re-growth.

The negative correlation between the slopes of the slow phase of decline

and the rise implies that both must probably be influenced by the presence

of drug resistant mutants [Shah et al. (2004); Druker (2004)]. The rise of

drug resistant mutants can slow down the decline of BCR-ABL transcript

numbers, and is responsible for the eventual rise of BCR-ABL transcripts.

The fact that the slopes of the slow and fast decline phases are positively

correlated means that these two phases share a common mechanism of cell

death that varies over time in strength. One such factor could be the
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Fig. 22.8 Examples of individual treatment response data from the German cohort of
the IRIS study, taken from [Roeder et al. (2006)]. The dots are the actual clinical data.
The line is the model fit to the data, obtained by non-linear least squares regression.
In (A) and (B) immune responses rise temporarily during therapy, contributing to the
overall treatment dynamics. In (C) and (D), the model predicts that immune responses
did not rise during therapy. Drug resistant mutants play a role in (A) and (D), but
not in (B) and (C). Model parameter values for the model fits can be found in [Wodarz
(2010)].

immune system, which has been suggested to play a role in CML therapy

before [Kim et al. (2008); Chen et al. (2008); Wang et al. (2005)]. In

particular, T cell responses (both CD4+ and CD8+) have been implicated.
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Fig. 22.9 Correlations between the slopes of the fast decline, slow decline, and the
re-growth of BCR-ABL transcript numbers. (A) Correlations found in the clinical data
from the German cohort of the IRIS study [Roeder et al. (2006)]. For (i) and (ii), the
correlation is significant (p = 0.009 and p = 0.003, respectively), but not for (iii), p =
0.59. (B) Corresponding correlations as predicted by computer simulations. Simulations
were run 100 times, varying randomly both the rate of specific immune proliferation,
c, and the growth rate of the resistant cancer cells, r. For (i) and (ii), the correlations
are significant (p < 0.0001 in each case), while the correlation is not significant for (iii),
p = 0.32. δ = 1, p = 3, b = 0.5, q = 0.01, ǫ = 1, η = 1 (units are year−1). x0 = 100,
y0 = 0.001, z0 = 0.5.

22.9 Role of immunity and resistance in driving treatment

dynamics

Data indicate that the level of immune responses against CML is low be-

fore treatment, rises as treatment is administered, and declines again as
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the BCR-ABL transcript numbers fall to low levels [Kim et al. (2008);

Chen et al. (2008); Wang et al. (2005)]. These are similar immune response

dynamics as observed in human immunodeficiency virus (HIV) and hep-

atitis C virus (HCV) infected patients that receive anti-viral drug therapy

[Barnes et al. (2002); Kalams et al. (1999); Ogg et al. (1999)], and can

be explained in the same way. While the cancer cells impair immunity,

treatment reduces the amount of impairment, leading to a rise of immu-

nity. As the number of cancer cells declines, withdrawal of antigenic stim-

ulation causes a drop in immune responses. Such impairment dynamics

have been explored extensively with mathematical models in the context

of viral infections [Komarova et al. (2003a); Wodarz (2001a); Wodarz and

Nowak (1999)], and subsequently also in the context of CML [Kim et al.

(2008)]. The following will use a basic mathematical model that captures

these assumptions. Model fitting to individual patient data demonstrates

consistency with clinical observations, and the model further predicts the

correlations found in the data.

A mathematical model is adapted that was previously published in the

context of viral infections [Komarova et al. (2003a)] and that captures the

necessary assumptions. The model contains two variables: a growing virus

population that has the ability to impair the immune system, and a specific

immune response. In the present context, we are interested in CML and

thus consider a population of growing CML cells that have the potential

to impair immunity, and an immune response that reacts against CML

antigens. The equations are the same and are given by [Wodarz (2010)]:

ẋ = Lx(1− x/k)− dx− pxz, (22.2)

ż = cxz/[(z + η)(x + ǫ)]− qxz − bz. (22.3)

The CML population is denoted by x, while the immune cell population is

denoted by z. The CML population grows logistically. That is, at low num-

bers of cells, growth is exponential while growth slows down as the number

of cells increases. The tumor cells die with a rate d and become removed by

the immune response with a rate p. The immune response expands upon

antigenic stimulation by tumor cells with a rate c. Immune expansion satu-

rates if the number of tumor cells and the number of immune cells are high.

The tumor cells impair immunity with a rate q. Finally, immune cells decay

in the absence of antigenic stimulation with a rate b. The mathematical

model is part of a general class of models that share common properties

[Komarova et al. (2003a)]. Results obtained from the model are therefore

not dependent on the particular mathematical formulation used, but are
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robust. The equations that describe the immune response make the very

basic assumptions that cancer cells can both stimulate the specific immune

cells to proliferate, and impair the response, similar to the assumptions

made in the first part of this chapter. Because of the general nature of the

model, this can be applied to any branch of the adaptive immune system

including the T cell responses that are thought to play a role during CML

therapy [Kim et al. (2008); Chen et al. (2008); Wang et al. (2005)]. The

basic model is characterized by the following outcomes, assuming that the

degree of stimulation of immune cells is strong enough to drive immune

expansion: (i) An immune response is successfully established and the sys-

tem converges to a stable equilibrium in which the cancer is controlled at

relatively low levels. (ii) The immune response goes extinct, and the cancer

cell population converges to an equilibrium characterized by a large number

of tumor cells. If the degree of immune impairment is relatively low, only

the cancer control outcome is stable. If the degree of immune impairment

lies above a threshold, both outcomes are stable. To which outcome the

system converges depends on the initial conditions, with a high initial num-

ber of immune cells and a low initial number of tumor cells promoting the

cancer control outcome. Although this model is considerably simpler and

less descriptive of specific biological events that drive the development of

immune responses than the CTL-APC model described in the first part of

this chapter, the properties are very similar.

For the current purposes, this general model was modified to include

two sub-populations of cancer cells: drug sensitive and drug resistant cells.

Denoting drug sensitive tumor cells by x and drug resistant tumor cells by

y, the model is given by the following ordinary differential equations.

ẋ = −δx− pxz, (22.4)

ẏ = ry − pyz, (22.5)

ż = c(x+ y)z/[(z + η)(x+ y + ǫ]− q(x+ y)z − bz, (22.6)

where we denoted

L−D −H ≡ −δ < 0, L−D ≡ r > 0.

Because drug-sensitive cells, x, are susceptible to therapy, this population

of cells is assumed to decline during treatment with a rate δ. As before,

immune responses contribute to cell death with a rate p. On the other

hand, drug-resistant cells, y, are not susceptible to therapy and are thus

assumed to expand exponentially during therapy with a rate r. Because

the initial growth phase of the resistant CML cells is interesting in the
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current context, we ignore growth saturation at high numbers of cells for

simplicity. As with drug-sensitive cells, drug-resistant cells are removed by

immune responses with a rate p. The equation for immune responses is the

same as in the simple model described previously. However, both antigenic

stimulation and immune impairment are now proportional to the number

of drug-sensitive and drug-resistant cells, x+ y.

The model can give rise to treatment dynamics that can describe diverse

clinical data well, shown by non-linear least squares fits of the model to

selected patient data (figure 22.8). Figure 22.8(a) shows a response that

involves a faster, followed by a slower phase of decline, eventually leading

to a resurgence of the cancer. Immunity rises as the number of CML cells

starts to decline during treatment because of reduced immune impairment.

This accounts for the fast phase of CML decline. Immunity subsequently

falls due to lack of antigenic stimulation. This, together with the rise of

a resistant mutant, accounts for the slower phase of decline. The rise of

the resistant mutant eventually leads to resurgence of the cancer. Figure

22.8(b) shows the same kind of profile without eventual resurgence of the

cancer. In this case, a resistant mutant is not present. Figure 22.8(c) shows

a single phase exponential decline of CML cells, while figure 22.8(d) shows

an exponential decline followed by re-growth of the cancer. In these cases,

immunity does not expand during the treatment dynamics according to the

model, correlating with a significantly slower decline rate of the cancer. In

figure 22.8(c), no resistant mutant exists, while in figure 22.8(d), a resistant

mutant grows during therapy.

To examine predicted correlations between the slopes, the simulation

was run many times, randomly varying the growth rate of drug-resistant

CML cells and the rate of immune expansion against CML. Consistent with

the experimental data, the model predicts a significant positive correlation

between the slopes of the fast and slow phase of decline, a significant neg-

ative correlation between the slopes of the slow phase of decline and the

re-growth, as well as a lack of a significant correlation between the slopes

of the fast phase of decline and the re-growth (figure 22.9(b)). The reason

is as follows. The immune response largely drives the fast phase of decline.

Part of the reason for the slower decline is a fall of immune responses as

the number of CML cells drops to low levels. However, the strength of the

declining immunity is still proportional to the strength of immunity at its

peak, hence the positive correlation. Another reason for the slowing de-

cline is the rise of drug-resistant mutants. In addition, growth of resistant

mutants completely determines the eventual rise of CML cells, hence the
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Fig. 22.10 Computer simulation showing the possibility that during therapy, the im-
mune response is maintained at higher levels rather than dropping to insignificant levels,
leading to long-term control of CML. The lower panel shows the CML dynamics sep-
arately for the populations of drug sensitive and drug resistant cells. Parameters were
chosen as follows: r = 5, c = 5, δ = 0.5, p = 1, b = 0.1, q = 0.01, ǫ = 0.1, η = 1, x0 = 80,
y0 = 2.7 · 10−5, z0 = 0.06. The units of the axes are arbitrary, as the parameter set
was chosen for illustrative purposes and is not based on measured parameters that are
currently unknown.

negative correlation. Since the fast phase of decline is mostly determined

by immunity while the initial rise of resistant mutants is mostly determined

by their replication rate, there is no correlation between these slopes.

22.10 Possible role of immune stimulation for long-term

remission

If immune responses that arise during treatment are sustained, they could

in principle suppress the population of drug-resistant cancer cells. Inter-

estingly, it has been found that a set of patients who discontinued imatinib
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treatment after maintaining a complete molecular response for at least two

years remained in remission without relapse [Ross et al. (2013); Deininger

(2011); Mahon et al. (2010)]. It can be hypothesized that in these cases,

immunity became fully established during therapy rather than rising only

temporarily. This possibility is demonstrated by computer simulation in

figure 22.10. Establishment of sustained immune responses during therapy

of immunosuppressive diseases has been found to occur in some experi-

mental HCV and SIV therapy regimes [Barnes et al. (2002); Lifson et al.

(2001)].

22.11 Summary

This chapter explored mathematical models that describe the dynamical

interactions between a tumor cell population and a tumor-specific immune

response. The first model took into account the basic dynamics of CTL

activation and proliferation by dendritic cells via cross-priming, as well

as the ability of the tumor to fight back and impair the immune response

against itself. This model gave rise to all the documented outcomes of these

interactions: clearance, controlled persistence at a stable equilibrium, and

uncontrolled growth of tumor cells that can escape immunity (immunoedit-

ing). The model showed how tumor evolution can shift the balance in this

battle away from controlled persistence towards the breakout of a tumor

cell population that can significantly impair the response and thus achieve

uncontrolled growth. The model was further used to explore implications

for immunotherapeutic approaches. Subsequently, this type of model was

applied to analyze the importance of immune responses in determining the

treatment dynamics of CML during imatinib therapy. Data documenting

the kinetics of tumor cell decline during imatinib therapy were analyzed in

the context of the model, and this suggested that the different phases of the

decline are in part determined by the immune cell dynamics that have been

observed to occur during imatinib therapy of the disease. Based on these

notions, the possibility was explored that specific drug treatment regimes

could boost anti-tumor immunity and lead to efficient long-term immune

control of the tumor after discontinuation of drug therapy.

Problems

Problem 22.1. In equations (22.2)-(22.3), explore how the region of bista-

bility depends on the parameter q.
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Problem 22.2. Research project. Find out more about the concept of

immunoediting in cancer. How does it relate to the concept of antigenic

escape in viral infections such as human immunodeficiency virus (HIV)?
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Chapter 23

Towards higher complexities: social

interactions

This book covered a lot of material that showed how mathematical models

can be used to study the dynamics of cancer. Both, the basic dynamics, and

evolutionary dynamics were covered. In the sections on basic dynamics, we

considered single species growth models, competition dynamics in various

settings, and spatial models of tumor growth in the context of determinis-

tic models. In the evolutionary dynamics section, we investigated how cells

accumulate different types of mutations that are required for uncontrolled

growth, using stochastic models and considering a variety of scenarios in-

cluding well-mixed cell populations, spatially structured cell populations,

and hierarchically structured cell populations. Among advanced topics,

we discussed further, biologically interesting topics that have been inves-

tigated with the types of mathematical methods described before. While

these topics cover many fundamental aspects that are required to study the

dynamics of cancer initiation and progression, it is obvious that there are a

variety of relevant topics that go beyond this basic introduction, but that

are nevertheless biologically important.

23.1 Microenvironment

A very important such topic is the effect of the microenvironemnt on cancer

initiation and progression. A large number of studies support the notion

that the microenvironment plays an important role in tumorigenesis, both

promoting and suppressing the disease through various mechanisms, e.g.

[Rubin (2003); Bhowmick et al. (2004); Kuperwasser et al. (2004); Bissell

et al. (2002); Matrisian et al. (2001); Whiteside (2008); Bissell and Hines

(2011); Polyak et al. (2009)]. The effect on the microenvironment on the

459
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evolutionary dynamics of cancers has been demonstrated mathematically

using spatial, multi-scale models [Anderson et al. (2006); Anderson (2005)].

In particular, it has been shown that the type of the microenvironment can

shape the genetic composition and characteristics of the emerging tumor.

Thus, a harsh microenvironment (e.g. hypoxia or a heterogeneous extra-

cellular matrix) was shown to lead to the emergence of tumors that are

dominated by one or a few aggressive clones and are invasive, displaying

fingering margins. On the other hand, mild microenvironmental conditions

have been shown to lead to the absence of clonal dominance and to the

coexistence of more and less aggressive tumor cell types. In addition, such

tumors were predicted to display smooth, non-invasive margins. Thus, the

microenvironment can not only promote or prevent the establishments of

tumors, but can also determine their characteristics. This is similar to the

“immunoediting” concept discussed in Chapter 22 where tumor-specific im-

mune responses not only suppress tumor growth, but can shape what types

of tumors do eventually grow when they break out of control. In gen-

eral, the interactions between tumor cells and their microenvironment give

rise to many evolutionary questions, and mathematical models can pro-

vide important insights [Gatenby and Gillies (2008); Gerisch and Chaplain

(2008); Lowengrub et al. (2010); Gatenby et al. (2007); Martin et al. (2010);

Gatenby and Vincent (2003b); Gillies and Gatenby (2007); Alarcón et al.

(2004); Smallbone et al. (2005); Kim et al. (2011)].

23.2 Cooperation and division of labor

The concept of cooperation [Nowak and Highfield (2011)] is often brought

up when studying the interactions between tumors and their microenviron-

ment. The tumor cells and the cells of the microenvironment are said to

conspire in order to enable uncontrolled tumor growth [Hsu et al. (2002);

Lathia et al. (2011)]. However, cooperative interactions are also possible

among different tumor cells. Throughout this book, we concentrated on

the sequential accumulation of mutations in cells. An alternative model

of evolution can involve the accumulation of different mutations not se-

quentially in one cell, but parallel in different cells. Assume that tumor

progression requires the presence of three gene products, call them A, B,

and C. A cell can evolve to accumulate all three mutations, thus achieving

the malignant phenotype. On the other hand, the three gene products can
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arise independently in different cells, and they can share the gene product

as a public good. In this setting, the malignant phenotype arises as an

emergent property from a collection of cooperating cells rather than from

an individual cell. Such evolution through division of labor / cooperation

has been first suggested to be important by [Axelrod et al. (2006)], and

indeed evidence for such cooperative interactions in cancers is mounting

in the literature. It has been suggested that metastatic cells cooperate to

prepare the microenvironment at a distant site by clustered migration and

the release of various signaling factors [Bidard et al. (2008)]. Deisboeck and

Couzin argued in favor of collective, swarm-like behavior of tumor cells that

can confer advantageous properties to the cancer [Deisboeck and Couzin

(2009)]. Angiogenesis and the formation of new blood supply for the tumor

is an obvious situation in which cooperation can occur. If one cell induces

the formation of new blood supply, this benefits other tumor cells that are

located in the vicinity. A variety of possible cooperative interactions in

cancer are summarized in [Sprouffske and Maley (2010)], although in most

cases conclusive evidence for cooperation is still outstanding.

Mathematical models compared the rate at which multi-hit mutants

emerge in the context of sequential evolution and in the context of a divi-

sion of labor scenario where different gene products are acquired in different

cells and shared as a public good [Komarova et al. (2012)]. It was found

that multi-hit mutants emerged significantly faster in the context of divi-

sion of labor than in the sequential evolution scenario, which means that

such interactions could play a vial role in carcinogenesis. Moreover, the

model indicated the occurrence of complex evolutionary processes in divi-

sion of labor scenarios that might be crucially important for the accelerated

emergence of malignant multi-hit cells [Komarova et al. (2012)]. If there is

cooperation, cheaters typically emerge that have the potential to destroy

the cooperative interactions [Nowak (2006)]. If division of labor occurs in

the tumor cell population, and if cheaters can arise, it has been shown

mathematically, that cells can quickly arise that simultaneously harbor all

mutations (i.e. A, B and C in a single cell) [Komarova et al. (2012)]. In

other words, cooperative interactions and the presence of cheaters can lead

to the emergence of multi-hit mutants at a rate that is significantly faster

than in the absence of cooperative interactions [Komarova et al. (2012)].

If such dynamics indeed occur in cancer, this mechanism could be an im-

portant driving force for the emergence of the disease during the natural

life-span on the organism. These explorations showed that the evolution-
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ary processes that might occur in cancer can be significantly more complex

than the relatively simple somatic evolutionary processes outlined in this

book.

23.3 Conclusion

The issues highlighted in this chapter only scratch the surface of the com-

plexities that are at work in the initiation and progression of cancer. Math-

ematical models have been very useful for understanding the process of

carcinogenesis in a variety of settings, and some of this material has been

reviewed in this book. It will be important to solidify the modeling efforts

in relatively simple settings because this framework will form the basis for

the construction of more complex models that will be able to capture the

intricacies of carcinogenesis in more realistic ways as more biological infor-

mation and relevant data become available. While an enormous amount

of data is continuously becoming available in the field of cancer research,

progress in our understanding might be facilitated by a more concerted ef-

fort, spanning different disciplines. Not only should mathematical models

be strongly based on experimental data, but the generation of the data

themselves should be planned in the light of the guidance of predictions

generated by mathematical models. Such tight interactions provide spe-

cific data and information that is required to push the field ahead. This

interdisciplinary approach will help us gain better insights into the highly

complex dynamics of cancer.



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 463

Bibliography

Abdelrahim, M., Konduri, S., Basha, R., Philip, P. A., Baker, C. H. et al. (2010).
Angiogenesis: an update and potential drug approaches (review). Interna-
tional Journal of Oncology 36, 1, p. 5.

Adams, G. and Scadden, D. (2007). A niche opportunity for stem cell therapeu-
tics, Gene Therapy 15, 2, pp. 96–99.

Afenya, E. K. and Calderón, C. P. (2000). Diverse ideas on the growth kinetics
of disseminated cancer cells, Bulletin of Mathematical Biology 62, 3, pp.
527–542.

Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer
dormancy, Nature Reviews Cancer 7, 11, pp. 834–846.

Ahuja, N., Mohan, A. L., Li, Q., Stolker, J. M., Herman, J. G., Hamilton, S. R.,
Baylin, S. B. and Issa, J. P. (1997). Association between CpG island methy-
lation and microsatellite instability in colorectal cancer, Cancer Research
57, 16, pp. 3370–3374.

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke,
M. F. (2003). Prospective identification of tumorigenic breast cancer cells,
Proceedings of the National Academy of Sciences U S A 100, 7, pp. 3983–8,
doi:10.1073/pnas.0530291100.

Alarcón, T., Byrne, H. and Maini, P. (2004). A mathematical model of the ef-
fects of hypoxia on the cell-cycle of normal and cancer cells, Journal of
Theoretical Biology 229, 3, pp. 395–411.

Alarcón, T., Byrne, H. M. and Maini, P. K. (2003). A cellular automaton model
for tumour growth in inhomogeneous environment, Journal of Theoretical
Biology 225, 2, pp. 257–274.

Alarcón, T., Byrne, H. M. and Maini, P. K. (2005). A multiple scale model for
tumor growth, Multiscale Modeling & Simulation 3, 2, pp. 440–475.

Albert, M. L., Darnell, J. C., Bender, A., Francisco, L. M., Bhardwaj, N. and Dar-
nell, R. B. (1998a). Tumor-specific killer cells in paraneoplastic cerebellar
degeneration, Nature Medicine 4, 11, pp. 1321–1324.

Albert, M. L., Sauter, B. and Bhardwaj, N. (1998b). Dendritic cells acquire anti-
gen from apoptotic cells and induce class i-restricted CTLs, Nature 392,
6671, pp. 86–89.

463



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 464

464 Dynamics of cancer: mathematical foundations of oncology

Albertson, D. G., Collins, C., McCormick, F. and Gray, J. W. (2003). Chromo-
some aberrations in solid tumors, Nature Genetics 34, 4, pp. 369–376.

Albini, A. and Sporn, M. B. (2007). The tumour microenvironment as a target
for chemoprevention, Nature Reviews Cancer 7, 2, pp. 139–147.

Alvarez-Buylla, A. and Lim, D. (2004). For the long run: maintaining germinal
niches in the adult brain, Neuron 41, 5, pp. 683–686.

An, X., Tiwari, A., Sun, Y., Ding, P., Ashby, C. and Chen, Z. (2010). BCR-ABL
tyrosine kinase inhibitors in the treatment of Philadelphia chromosome pos-
itive chronic myeloid leukemia: a review, Leukemia Research 34, 10, pp.
1255–1268.

Andea, A. A., Wallis, T., Newman, L. A., Bouwman, D., Dey, J. and Visscher,
D. W. (2002). Pathologic analysis of tumor size and lymph node status in
multifocal/multicentric breast carcinoma, Cancer 94, 5, pp. 1383–1390.

Anderson, A. and Chaplain, M. (1998a). Continuous and discrete mathematical
models of tumor-induced angiogenesis, Bulletin of Mathematical Biology
60, 5, pp. 857–899.

Anderson, A. and Chaplain, M. A. (1998b). A mathematical model for capillary
network formation in the absence of endothelial cell proliferation, Applied
Mathematics Letters 11, 3, pp. 109–114.

Anderson, A. and Quaranta, V. (2008). Integrative mathematical oncology, Na-
ture Reviews Cancer 8, 3, pp. 227–234.

Anderson, A. R. (2005). A hybrid mathematical model of solid tumour invasion:
the importance of cell adhesion, Mathematical Medicine and Biology 22, 2,
pp. 163–186.

Anderson, A. R. (2007). A hybrid multiscale model of solid tumour growth and
invasion: Evolution and the microenvironment, in Single-cell-based Models
in Biology and Medicine (Springer), pp. 3–28.

Anderson, A. R., Chaplain, M. A. and McDougall, S. (2012). A hybrid discrete-
continuum model of tumour induced angiogenesis, in Modeling Tumor Vas-
culature (Springer), pp. 105–133.

Anderson, A. R., Weaver, A. M., Cummings, P. T. and Quaranta, V. (2006).
Tumor morphology and phenotypic evolution driven by selective pressure
from the microenvironment, Cell 127, 5, pp. 905–915.

Anderson, R. M., May, R. M. and Anderson, B. (1992). Infectious Diseases of
Humans: Dynamics and Control, Vol. 28 (Wiley Online Library).

Andreoiu, M. and Cheng, L. (2010). Multifocal prostate cancer: biologic, prog-
nostic, and therapeutic implications, Human Pathology 41, 6, pp. 781–793.

Antonescu, C. R., Elahi, A., Healey, J. H., Brennan, M. F., Lui, M. Y., Lewis, J.,
Jhanwar, S. C., Woodruff, J. M. and Ladanyi, M. (2000). Monoclonality of
multifocal myxoid liposarcoma: confirmation by analysis of TLS-CHOP or
EWS-CHOP rearrangements, Clinical Cancer Research 6, 7, pp. 2788–2793.

Arai, F. and Suda, T. (2007). Maintenance of quiescent hematopoietic stem cells
in the osteoblastic niche, Annals of the New York Academy of Sciences
1106, 1, pp. 41–53.

Araujo, R. and McElwain, D. (2004). A history of the study of solid tumor



March 10, 2014 11:31 BC: 8973 – Dynamics of Cancer 3rd Reading bookx page 465

Bibliography 465

growth: The contribution of mathematical modeling, Bulletin of Mathe-
matical Biology 66, 5, pp. 1039–1091.

Arkus, N. (2005). A mathematical model of cellular apoptosis and senescence
through the dynamics of telomere loss, Journal of Theoretical Biology 235,
1, pp. 13–32, doi:10.1016/j.jtbi.2004.12.016.

Armitage, P. and Doll, R. (1954). The age distribution of cancer and a multi-stage
theory of carcinogenesis, British Journal of Cancer 8, 1, p. 1.

Arrowsmith, D. K. and Place, C. (1990). An Introduction to Dynamical Systems
(Cambridge University Press).

Artandi, S. E. and DePinho, R. A. (2000). A critical role for telomeres in sup-
pressing and facilitating carcinogenesis, Current Opinion in Genetics and
Develpment 10, 1, pp. 39–46.

Ashkenazi, R., Gentry, S. N. and Jackson, T. L. (2008). Pathways to tumorigenesis
– modeling mutation acquisition in stem cells and their progeny, Neoplasia
(New York, NY) 10, 11, p. 1170.

Axelrod, D. E., Baggerly, K. A. and Kimmel, M. (1994). Gene amplification by
unequal sister chromatid exchange: probabilistic modeling and analysis of
drug resistance data, Journal of Theoretical Biology 168, 2, pp. 151–159.

Axelrod, R., Axelrod, D. E. and Pienta, K. J. (2006). Evolution of cooperation
among tumor cells, Proceedings of the National Academy of Sciences 103,
36, pp. 13474–13479.

Bach, S. P., Renehan, A. G. and Potten, C. S. (2000). Stem cells: the intestinal
stem cell as a paradigm, Carcinogenesis 21, 3, pp. 469–76.

Bagheri, N., Shiina, M., Lauffenburger, D. A. and Korn, W. M. (2011). A dy-
namical systems model for combinatorial cancer therapy enhances oncolytic
adenovirus efficacy by MEK-inhibition, PLoS Computational Biology 7, 2,
p. e1001085.
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universal dynamics of tumor growth, Biophysical Journal 85, 5, p. 2948.
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