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Preface

This book is the successor of several other books that I wrote on (roughly)
the same topic. My first book consisted of two volumes, and was published
in 1974/1975 (and translated into Russian in 1978). Its successor was pub-
lished in 1987. In 1992, Willem van Groenendaal and I wrote a more general
book on simulation, which included an update of parts of my 1987 book.
So I thought that it was high time to write down all I know about the
statistical Design and Analysis of Simulation Experiments, which I abbre-
viate to DASE (and pronounce as the girl’s name Daisy). This acronym
is inspired by DACE, which stands for Design and Analysis of Computer
Experiments; the acronym DACE is popular in deterministic simulation.

In this book, I will focus on those DASE aspects that I have a certain
expertise in—I think.

Though I focus on DASE for discrete-event simulation (which includes
queueing and inventory simulations), I also discuss DASE for deterministic
simulation (applied in engineering, physics, etc.).

I discuss both computationally expensive and cheap simulations.
I assume that the readers already have a basic knowledge of simulation;

e.g., they know concepts such as terminating simulation and steady-state
simulation. They should also have a basic understanding of mathematical
statistics, including concepts such as distribution functions, averages, and
variances.

This book contains more than four hundred references. Yet, I have tried
to eliminate older references that are mentioned in more recent references—
unless the older reference is the origin of some important idea (so the
readers may get a historical perspective). To improve the book’s readability,



viii Preface

I try to collect references at the end of paragraphs—as much as seems
reasonable.

I recommend that the first three chapters be read in their implied order.
The next chapters, however, are independent of each other, so they may be
read in the order that best suits the interest of the individual reader.

I wrote this book in a foreign language (namely English, whereas Dutch
is my mother tongue), so style, spelling, etc. may sometimes not be perfect:
my apologies. Concerning style, I point out that I place redundant infor-
mation between parentheses; the em-dash (or —) signals nonredundant,
extra information. To enable readers to browse through the various chap-
ters, I repeat the definition of an abbreviation in a given chapter—even
if that abbreviation has already been defined in a preceding chapter. The
book contains paragraphs starting with the word “Note”, which upon first
reading may be skipped.

Each website address is displayed on a separate line, because a website
address may be so long that it either runs over into the right margin of the
page or it must be hyphenated—but then the hyphen may be interpreted
as part of the address. A comma or a period at the end of the address is
not part of the address!

I wrote this book in Scientific Workplace, which also helped me (through
its MuPAD computational engine) to solve some of the exercises that I for-
mulated in this book. Winfried Minnaert (Tilburg University) introduced
me to the basics of that text processor; Jozef Pijnenburg (Tilburg Univer-
sity) helped me with some more advanced features.

I received valuable comments on preliminary versions of various chap-
ters from the following colleagues: Ebru Angűn (Galatasaray University,
Istanbul), Russell Barton (Pennsylvania State), Victoria Chen (University
of Texas at Arlington), Gabriella Dellino (Politecnico di Bari), Dick den
Hertog (Tilburg University), Tony Giunta (Sandia), Yao Lin (Georgia In-
stitute of Technology), Carlo Meloni (Politecnico di Bari), Barry Nelson
(Northwestern), William Notz (Ohio State), Huda Abdullah Rasheed (al-
Mustansiriyah University, Baghdad), Wim van Beers (Tilburg University),
Willem van Groenendaal (Tilburg University), Jim Wilson (North Carolina
State), and Bernard Zeigler (Arizona State).

I used a preliminary draft of this book to teach a course called “Simula-
tion for Logistics” for the “Postgraduate International Program in Logistics
Management Systems” at the Technical University Eindhoven. This helped
me to improve parts of the book. Students solved the exercises 1.6, 2.13,
2.15. The names of these students are: Nicolas Avila Bruckner, Olla Gabali,
Javier Gomes, Suquan Ju, Xue Li, Maŕıa Eugenia Martelli, Kurtulus Öner,
Anna Otáhalová, Pimara Pholnukulkit, Shanshan Wang, and Wei Zhang.
I especially thank Xue Li and Shanshan Wang.

For that course, I also prepared PowerPoinT (PPT) slides that may also
be downloaded in Portable Document Format (PDF) format from my web
page:
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http://center.uvt.nl/staff/kleijnen/simwhat.html.
My website also offers an update of this book, including corrections, new
references, new exercises: visit

http://center.uvt.nl/staff/kleijnen/
and click “Publications”.
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1
Introduction

This chapter is organized as follows. In Section 1.1, I define various types
of simulation. In Section 1.2, I define the DASE approach. In Section 1.3,
I define DASE symbols and terms. I finish with solutions for the exercises
of this chapter.

1.1 What is simulation?

In this section, I give

1. a definition of “simulation models”

2. a simple example of a deterministic simulation model, namely the
Net Present Value (NPV) calculation of a loan

3. two simple examples of random or stochastic simulation, namely a
single-server queueing model and an inventory management model.

Definition 1.1 A simulation model is a dynamic model that is meant
to be solved by means of experimentation.

This definition deserves some comments.
A simulation model may be a physical model—e.g., a miniature air-

plane in a windtunnel (other examples are automobiles and ships). I, how-
ever, ignore such physical models; i.e., I focus on mathematical models.
These models are usually converted into computer programs—also called
computer codes.
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The term dynamic means that time plays an explicit and special role;
i.e., the variables in the mathematical model have a time index—e.g., the
variable x becomes x(t) where t denotes a point in time. Static models,
however, may also be solved through experimentation. For example, the
well-known Newton-Ralphson method may be used to find the roots of an
equation, and Interior Point (IP) methods may be used to find the optimum
solution of a Linear Programming (LP) model (also see Chapter 4).

Closely related to simulation are Monte Carlo methods, which I define as
methods that use PseudoRandom Numbers (PRNs). PRNs are generated
by means of a computer program, so they are not really random, and yet
they are assumed to be independently and uniformly distributed on the
interval [0, 1]—so Monte Carlo methods involve chance, which explains the
name. Monte Carlo methods are used to solve multiple integrals, which
arise in physics, mathematical statistics, etc.

All the methods discussed in the preceding comments are numerical
methods. In this book, I focus on dynamic, random simulation, but I also
discuss deterministic simulation explicitly (see the next example). More-
over, many DASE methods also apply to static Monte Carlo methods. Also
see my previous publications, starting with my 1974 book [181], pp. 3–22
and ending with my 2005 contribution [193].

Example 1.1 Assume that the following data are given: θ the discount
factor used by the decision maker; n the length of the planning period mea-
sured in years, and xt the cash flow in year t with (t = 0, . . . , n). Then
the NPV—also called the Present Value (PV)—(say) y may be computed
through the following equation (engineers often use an alternative formula,
assuming continuous time—so

∑
becomes

∫
, etc.):

y =

n∑

t=0

xt

(1 + θ)t
. (1.1)

This NPV formula may be used to compare alternative cash flow patterns.
For example, different patterns are caused by different loan types. One loan
type may require a fixed amount paid back, at the end of each year (say)
zt = z with t = 1, . . . , n and z0 = 0, and interest payments determined by
the interest rate c and the loan amount at the end of the year t, namely wt:

xt = −[min(zt, wt) + cwt] with t = 1, . . . , n. (1.2)

where the loan amount is determined by

wt = wt−1 − zt with t = 1, . . . , n. (1.3)

and
x0 = w0 (1.4)

where w0 is the original loan amount, so x0 is the positive cash flow at
the start of the planning period, whereas xt with t = 1, . . . , n are negative
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cash flows (I have already specified the initial condition z0 = 0). Finally,
the stopping conditions of the simulation run must also be given; in this
example, the end of the planning period must be reached. Obviously, this
is a simple deterministic dynamic model, including the first-order differ-
ence equation (1.3). It is easy to program such a model, e.g., by means of
spreadsheet software such as Excel (a recent reference is [340]; also see [92]
and [299]).

Exercise 1.1 Derive that NPV = 6.238 in case the original loan is w0

= 100, n =2, c =0.10, and θ = 0.15 (so the loaner expects to achieve a
higher return on investment or ROI than the bank can).

This deterministic simulation example may be augmented to a random
simulation, if (for example) the discount factor θ or the cash flows xt are
unknown so their values are sampled from distribution functions. This type
of simulation is called Risk Analysis (RA) or Uncertainty Analysis (UA);
see [44], [313], [327], [340], and also recent textbooks such as [110] and [392].
I shall return to risk analysis in Section 4.5.

Complicated examples of deterministic simulation are provided by mod-
els of airplanes, automobiles, TV sets, chemical processes, computer chips,
etc.—applied in Computer Aided Engineering (CAE) and Computer Aided
Design (CAD)—at Boeing, General Motors, Philips, etc. Recent surveys
are [65], [66], [254], [280], and [357]. (Note that [254] was published in the
AIAA Journal, where AIAA stands for American Institute of Aeronautics
and Astronautics.) In the last decade, Multidisciplinary Design Optimiza-
tion (MDO) has emerged as a new discipline; see, e.g., [5].

Note: Deterministic simulation may show numerical inaccuracies, which
make this type of simulation related to random simulation. The latter type,
however, uses PRNs inside its model.

Another type of (primarily) deterministic simulation is System Dynam-
ics (SD), originated by Forrester under the name “Industrial Dynamics”;
see his 1961 textbook [113]. SD is more than a simulation method; it
is a world view. A crucial concept in this view is feedback ; i.e., com-
pare an output with a norm, and react if there is an undesirable devia-
tion. Feedback often generates counterintuitive behavior. Applications of
SD include simulations of companies, industries (including supply chains),
countries, and the whole globe (including the warming-up of the earth’s
atmosphere). In 2000, Sterman wrote a SD textbook with more than 1,000
pages; see [364].

In summary, these simulation types are usually deterministic, but their
parameters (e.g., θ in (1.1)) or input variables (e.g., xt in (1.2)) may be sam-
pled from a given “prior” distribution so they become random. Mathemati-
cally, these simulation models are difference equations, which are nonlinear
and possibly stochastic, so simulation is used to “solve” these equations.
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In the preceding paragraph, I implicitly used the following two defini-
tions, based on Zeigler’s famous textbook; see [413] and Section 1.3 below.

Definition 1.2 A (model) parameter has a value that must be inferred
from data collected in the real world; it can not be observed directly in the
real world.

Definition 1.3 An input variable of a model can be directly observed in
the real world.

Exercise 1.2 Consider the following two applications involving the dis-
count factor for a NPV calculation as in Example 1.1: (a) a student wishes
to select the lowest NPV for several loan alternatives—each with the same
interest rate, but with different amortization schemes; (b) a company wishes
to select the highest NPV among several investment alternatives, such that
the company maintains the ROI that it has realized during the last five
years. Is the discount factor a parameter or a variable in (a); and in (b)?

Opposed to the preceding (mainly deterministic) simulation types are
Discrete-Event Dynamic Systems (DEDS) simulations (the name DEDS
has been made popular by Ho and his collaborators; see [147]). This type
of simulation is inherently stochastic; i.e., without randomness the prob-
lem would change completely. For example, a queueing (waiting) problem
is caused by the randomness of the arrival or the service times. If these
times were deterministic, the problem would become a so-called scheduling
problem. A well-known building block of DEDS simulation (which I will
also use repeatedly in this book) is the so-called M/M/1 model.

Definition 1.4 An M/M/1 model is a queueing model with one server,
and Markovian interarrival and service times.

These Markovian times are “independently” exponentially distributed;
i.e., the interarrival times are mutually independent, and they are indepen-
dent of the service times. The exponential distribution has the memoryless
property; the exponential distribution implies that the number of events
(say, arrivals) has a Poisson distribution. Implicit in this M/M/1 notation
is that the server’s priority rule is First-In-First-Out (FIFO), the waiting
room has infinite capacity, etc. An M/M/1 model may be simulated as
follows.

Example 1.2 Let ai+1 denote the interarrival time between customers i
and i + 1; si the service time of customer i; and r a PRN. Assume that
the outputs of interest are wi, the waiting time of customer i, and that this
output is characterized by the average waiting time w defined as

w =

∑n
i=1 wi

n
(1.5)
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where n denotes the number of customers that stops the simulation run
(so this example is a terminating simulation, not a steady-state simulation;
in the latter case, n would not be prefixed or would be a “very large” num-
ber). Furthermore, assume that the simulation starts in the empty state (no
customers in the system), so the customer who arrives first does not need
to wait: w1 = 0. The dynamics of the single-server system are specified by
the so-called Lindley recurrence formula

wi+1 = max(0, wi + si − ai+1). (1.6)

The random input variables s and a in this equation are sampled (or
generated) such that these variables have a service rate µ and an arrival
rate λ (so the mean or expected service and interarrival times are 1/µ and
1/λ respectively). To sample these variables s and a, simulation may use
the PRN r as follows:

si =
− ln r2i−1

µ
(1.7)

and

ai+1 =
− ln r2i

λ
(1.8)

where a single PRN stream (r1, r2, . . . , r2n−1, r2n) is used (each of the
n customers needs two PRNs, namely one PRN for the arrival time and
one PRN for the service time). To program this simulation model, the an-
alysts can choose from many simulation software packages; e.g., Swain’s
[373] seventh biennial survey of DEDS simulation software lists 48 soft-
ware products. I think that the package that is most popular worldwide is
Arena, which is very well documented in [174].

Exercise 1.3 Consider the waiting time equation (1.6). Is it straightfor-
ward to derive a similar equation for the queue length?

Exercise 1.4 What are the advantages of using two separate PRN streams
for a single-sever simulation with a given server priority rule (not neces-
sarily FIFO), which has two input processes—namely the service and the
arrival processes —compared with the single PRN stream in Eqs. (1.7) and
(1.8)?

Mathematical analysis of the M/M/1 model reveals that the fundamental
input parameter is the so-called traffic rate—also called traffic intensity or
traffic load—(say) ρ = λ/µ where λ and µ were defined above (1.7). In
other words, the M/M/1 model has a single input parameter (namely, ρ),
whereas its computer code has two parameters (λ and µ). In this book, I
shall often use the M/M/1 model as an example—but I shall also need an
example with multiple inputs. Therefore I now present another well-known
building block for DEDS simulation models, namely the so-called (s, S)
model.
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Definition 1.5 An (s, S) model (with s < S) is a model of an inventory
management (or control) system with random demand (say) D. The inven-
tory I is replenished whenever the inventory decreases to a value smaller
than or equal to the reorder level s. The order quantity Q is

Q =

{
S − I if I ≤ s
0 if I > s.

(1.9)

There are several variations on this basic model. For example, review
of the inventory (I in Eq. 1.9) may be either continuous (in real time) or
periodic. The lead time of the order may be either a nonnegative constant
or a nonnegative random variable. Demand that exceeds the inventory at
hand (D > I) may be either lost or backlogged. Costs may consist of inven-
tory, ordering, and out-of-stock costs. These cost components are specific
mathematical functions; e.g., inventory carrying (or holding) cost may be
a constant per item unit, per time unit. In practice, out-of-stock costs are
hard to quantify so a service (or fill rate) constraint may be specified in-
stead; e.g., the total stockout quantity per (say) year should be smaller
than 10% of the total sales during that same period.

Programming this inventory model is harder than programming the
M/M/1 model; the latter has dynamics specified by the simple Eq. (1.6).
For a thorough discussion of this programming, I refer to simulation text-
books such as Law’s well-known textbook; see [227], pp. 48–61.

DEDS simulation and continuous simulation—which solves differential
and difference equations numerically—may also be combined into so-called
hybrid simulation. This type of simulation is also discussed by textbooks
on DEDS simulation; also see the 2006 paper [125].

In summary, simulation is a widely used methodology that is applied
in many disciplines. It provides a flexible, powerful, and intuitive tool for
the analysis of complicated processes. The resulting insight may be used to
design better systems.

Much more could be said about simulation. There are many more text-
books besides the ones I mentioned above; e.g., other well-known (recently
updated) textbooks on DEDS simulation are [22] and [293] ([293] also dis-
cusses SD). For the most recent publications on DEDS simulation, I rec-
ommend the yearly proceedings of the Winter Simulation Conference; see
its web page

http://www.wintersim.org/.
The INFORMS top journals Management Science and Operations Research
publish fundamental articles on DEDS simulation; see [271] and

http://www.informs.org/.
Many other journals on Management Science/Operations Research (MS/OR)
also publish on simulation—both DEDS and other types of simulation. I
also refer to the recent reviews in [146] and [315]. Sensitivity analysis of
simulation models is the focus of the Sensitivity Analysis of Model Output
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(SAMO) conferences that have taken place every three years, since 1995;
see

http://samo2007.chem.elte.hu/.

Exercise 1.5 Do entertainment games (such as America’s Army; see
[373]), business games (such as the beer game in SD; see [354]) and gam-
ing models (using concepts such as the Nash equilibrium discussed in [351])
meet the definition of “simulation”?

1.2 What is DASE?

This book is about DASE, which is my acronym (introduced in the Preface)
for the Design and Analysis of Simulation Experiments. These terms require
definitions—especially because simulation is a method applied in many
different scientific fields, which have their own terminologies.

Simulation implies that the analysts do not solve their model by math-
ematical calculus; instead, they try different values for the inputs and pa-
rameters of their model in order to learn what happens to the model’s
output. For example, in the NPV example (Example 1.1) the analysts may
experiment with different values for the parameter θ (discount factor) and
the input variable z (amount paid back every year); see again Eqs. (1.1)
and (1.2). In the M/M/1 simulation, the analysts may experiment with
different traffic rates and priority rules (replacing the implicit FIFO rule).
In the (s, S) inventory simulation, they may try different combinations of
the control limits s and S.

The goals of such a numerical experiment are (see [280] and also [31])

• Verification and Validation (V & V)

• Sensitivity Analysis—either global or local—or “What If” analysis

• Optimization

• Risk Analysis.

These goals require that the simulation analysts pay attention to the
design of their experiments. For example, if the experimenters keep an
input of the simulation model constant, then they cannot estimate the
effect of that input on the output. In practice, however, many analysts keep
many inputs constant, and experiment with a few factors only. In Chapter
6 (on Screening), I shall show that there are better ways to run simulation
experiments with many factors. Another example of inferior practice is
changing only one input at a time (while keeping all other inputs fixed
at their so-called base values). In the next chapter, I shall prove that this
approach is inefficient and does not enable the estimation of interactions
among inputs.
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The design of the experiment is intimately related to its analysis; in-
deed, I consider it a chicken-and-egg problem. An example is provided by
analysts assuming that the input has a “linear” effect on the output; i.e.,
they assume a first-order polynomial approximation (remember the Taylor
series in mathematics) or main effects only (mathematical statistics ter-
minology). Given this assumption, it suffices to experiment with only two
values of that input. Moreover, the analysts may assume that there are
(say) k > 1 inputs that have main effects only. Then their design requires
a relatively small experiment (of order k). For example, changing only one
input at a time does give unbiased estimators of all the main effects. The
next chapter, however, will show that minimizing the variances of these
estimators requires a different design—with approximately the same size
of the experiment as the one required by the one-factor-at-a-time design.

Such a polynomial approximation may be called a metamodel (see my
1975 article [182]).

Definition 1.6 A metamodel is an approximation of the Input/Output
(I/O) function that is defined by the underlying simulation model.

Metamodels are also called response surfaces, surrogates, emulators, aux-
iliary models, repromodels, etc. There are different types of metamodels.
The most popular type is a polynomial of first or second order (degree),
which I shall discuss in Chapters 2 and 3. In deterministic simulation,
another metamodel type is popular, namely Kriging (also called spatial
correlation) models, discussed in Chapter 5. Less popular are (in alpha-
betical order): Classification And Regression Trees (CART), Generalized
Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS),
(artificial) neural networks, nonlinear regression models, nonparametric re-
gression analysis, radial functions, rational functions, splines, support vec-
tor regression, symbolic regression, wavelets, etc.; for details I refer to [16],
[19], [25], [65], [66], [80], [87], [105], [129], [145], [156], [166], [237], [252],
[312], [334], [339], [357], [355], [365], [370], and [390]; also see Sandia’s Surf-
pack software

http://endo.sandia.gov/Surfpack
and the European Commission’s Joint Research Centre (JRC) SIMLAB
software

http://simlab.jrc.cec.eu.int/.

In theory, the analysts may combine several types of metamodels, weigh-
ing each type with its estimated accuracy. In practice, such a combination
is rare, because the analysts are familiar with one or two types only. Com-
bining different metamodel types is further discussed in [133].

The term “response surface” is used for local metamodels in Response
Surface Methodology (RSM) and for global metamodels in deterministic
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simulation. Local means that only a small subarea of the total experimental
area is considered. The limit of this “small” subarea is an area with a size
that goes to zero, so partial derivatives are considered. These derivatives
are the components of the gradient (gradients will be discussed further on
in this chapter and in Chapter 4). RSM was introduced in 1951 by Box
and Wilson (see [51]) as an iterative heuristic for optimizing real (physi-
cal) systems, namely chemical systems (a recent textbook is [268]). I shall
discuss RSM for the optimization of simulated systems in Chapter 4. The
oldest references to the term “response surface” in deterministic simula-
tion that I could find quickly, are a 1985 American article ([97]) and a 1984
European monograph ([284]); more recent references—including additional
references—are [25], [168], [314], and [327].

DASE has strategic and tactical aspects. Traditionally, researchers in
discrete-event simulation have focused on tactical issues, such as the run-
length of a steady-state simulation, the number of runs of a terminating
simulation, and Variance Reduction Techniques (VRTs); see the classic
1963 article by Conway [83] and the current literature mentioned above (at
the end of the preceding section, especially Nelson’s review article [271]). In
deterministic simulation—where these tactical issues vanish— statisticians
have been attracted to strategic issues, namely which factor combinations
(scenarios) to simulate and how to analyze the resulting data; see the clas-
sic 1996 publication by Koehler and Owen [222] and the 2003 textbook by
Santner, Williams, and Notz [333]. Few statisticians have studied random
simulations. Only some simulation analysts have focused on strategic is-
sues. I will focus on strategic issues; I will discuss only those tactical issues
that are closely related to strategic issues.

The statistical theory on Design Of Experiments (DOE, also spelled
DoE) was developed for real, nonsimulated experiments in agriculture in
the 1920s ([65] refers to a 1926 publication by Fisher), and in engineering,
psychology, etc. since the 1950s. In real experiments it is impractical to in-
vestigate many factors; ten factors seems a maximum. Moreover, it is then
hard to experiment with factors that have more than a few values; five
values per factor seems the limit. In simulated experiments, however, these
restrictions do not apply. Indeed, computer codes may have hundreds of in-
puts and parameters—each with many values. Consequently, a multitude of
scenarios may be simulated. Moreover, simulation is well-suited to sequen-
tial designs instead of “one shot” designs, because simulation experiments
are run on computers that typically produce output sequentially (apart
from parallel computers, which are rarely used in practice) whereas agri-
cultural experiments are run during a single growing season. So a change
of mindset of simulation experimenters is necessary. For a more detailed
discussion of simulated versus real experiments I refer to a 2005 survey
article that I coauthored, [210].

In summary, DASE is needed to improve the efficiency and effectiveness
of simulation; i.e., DASE is crucial in the overall process of simulation.
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1.3 DASE symbols and terms

I must define some symbols and terms because DASE is a combination of
mathematical statistics and linear algebra that is applied to experiments
with deterministic and random simulation models; these models are applied
in many scientific fields—ranging from sociology to astronomy. An excellent
survey of this spectrum of simulation applications is Karplus’s classic 1983
paper [173].

I had a problem when deciding on the notation in this book. Mathe-
maticians use capital letters to denote matrices, whereas statisticians use
capitals to denote random variables. To be consistent, I would have to de-
note the error term in a regression model by (say) E and the matrix of
explanatory variables by x. I have indeed used that notation in [191], but
now I feel that such a notation is too orthodox. So I follow most other
authors in simulation and regression analysis; i.e., I do not always use
capitals for random variables; the readers should infer from the context
whether a variable is random or not. I do use bold letters to denote matri-
ces and vectors. Whenever I think that readers may be misled, I explicitly
discuss the randomness of a particular variable. For example, in Chap-
ter 3, I shall discuss Generalized Least Squares (GLS) using the covari-
ance matrix of the simulation responses—which is estimated in practice;
this estimated matrix creates statistical problems—which needs explicit
discussion.

Furthermore, I use a “big hat” (instead of a “small” hat) when needed;
e.g., in (3.14a) some indices are under that “hat”, whereas some are not.
I also use a “big bar” when I think it is needed; (2.27) gives an
example

I use Greek letters to denote parameters, which are model quantities
that have values that cannot be directly observed in the real world so
these values must be inferred from other real data; see Definition 1.2. For
example, the service rate µ in the M/M/1 model is estimated from the
(say) n observations on the service time s (a classic estimate is µ̂ = 1/s
with s =

∑n
i=1 si/n). Note that an estimator (e.g., the sample average) is

a random variable, which has a specific value—once it has been computed;
this value is called an estimate.

Unlike a parameter, a variable can be directly observed in the real world.
For example, the input variable service time s can be measured in a straight-
forward way (s is the realization of the random variable S). A variable may
be either an input or an output of a model. For example, besides the input
s, the M/M/1 model may have the output w, waiting time.

Both parameters and input variables may be changed in a simulation
experiment; i.e., they have at least two values or levels in the experiment.
Parameters and input variables together are called factors, in DOE. For
example, a simple design in DOE is a 2k factorial experiment; i.e., there
are k factors, each with two levels; all their combinations are simulated.
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These combinations are often called scenarios in simulation and modeling.
Scenarios are usually called design points or runs by statisticians. I reserve
the term “run” for a simulation run, which starts the simulation program
in the initial conditions (e.g., the empty state in an M/M/1 simulation) and
stops the simulation program once a specific event occurs (e.g., n customers
have been simulated; see the discussion below Eq. 1.5).

Factors (inputs) and responses (outputs) may be either qualitative or
quantitative. In the M/M/1 example, quantitative factors are the arrival
and service rates; the traffic rate is the fundamental quantitative factor. In
a single-server queueing simulation, a qualitative factor may be the priority
rule—which may have (say) three levels, namely FIFO, LIFO (Last-In-
First-Out), or SPT (Shortest-Processing Time first).

Simulation inputs and outputs may be measured on five types of scales:

1. Nominal: This is the only scale that applies to a qualitative (or cate-
gorical) factor. One example was the priority rule with its three nomi-
nal values (FIFO, LIFO, SPT). Another example is a simulation with
two types of customers, namely A (emergencies) and B (regular). In-
terpolation or extrapolation makes no sense (so regression analysis
must be applied with care, as I shall show in Chapter 2).

2. Ordinal: This scale ranks the input or output. For example, this scale
sorts (say) n observed output values from lowest to highest, and as-
signs them ranks from 1 to n. Order statistics uses such a scale;
see Conover’s excellent textbook on nonparametric (distribution-free)
statistics [81] (I shall use order statistics in later chapters). Another
example is a survey that assigns ranks from 1 to 5 in order to mea-
sure how strongly the respondent agrees with a statement (completely
agree, agree, neutral, disagree, strongly disagree).

3. Interval: This scale assigns numbers that are unique except for a lin-
ear transformation; i.e., this scale has an arbitrary zero point. An
example is temperature measured in Celsius or Fahrenheit degrees.
Analysts should prefer mathematical and statistical methods that are
not sensitive to the scale that is used to quantify inputs or outputs.
In Section 4.2, I shall discuss a scale-independent alternative for the
steepest ascent method; the latter method is standard in RSM.

4. Ratio: This scale has a unique zero, so “2x” means “twice as much
as x”. Examples are length measured in centimeters or inches, and
cash flow measured in euros or US dollars. Other examples are the
arrival and the service rates, which depend on the time unit (e.g.,
seconds). Like the interval scale, the ratio scale should not change
“the” conclusions of mathematical and statistical analyses.
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5. Absolute: No transformation applies. An example is the number of
customers arriving during the simulation run of an M/M/1 model;
this is a discrete (not a continuous) variable.

A more detailed discussion of types of variables and measurement scales
is given in my 1987 book; ([184], pp. 135–142).

Exercise 1.6 Because “simulation” involves experimenting with a com-
puter model, you are asked to program the M/M/1 defined in Example 1.2,
using any software you like (e.g., Arena, C++, Pascal). Select “the” per-
formance measure; e.g., average waiting time. Next you should experiment
with your simulation model; here are some suggestions:

1. Change the run length (symbol n in Example 1.2) from (say) n =
10 (terminating simulation) to n large enough to reach the steady
state; try these two n values for a “low” and a “high” traffic rate.
Runs “several” replicates; e.g., m = 10 replicates. Ensure that the
replicates are Identically and Independently Distributed (IID); i.e.,
use nonoverlapping PRN streams. Use either a single PRN stream for
service and arrival times or use two separate streams for the arrival
and service times respectively. Compare your simulation estimate with
the analytical steady-state mean; use graphical plots and mathematical
statistics.

2. Change the traffic load (ρ = λ/µ) to estimate the I/O function. Apply
either the same or different PRN seeds when comparing traffic loads:
do Common Random Numbers (CRN) give better results?

3. Replace the exponential service time distribution by a different distri-
bution (e.g., an Erlang distribution, namely the sum of two exponen-
tial distributions, each with a mean equal to half the original mean, to
keep the traffic load constant when changing the distribution). Select
some fixed value for the traffic rate, the number of customers per run,
and the number of replicated runs respectively; e.g., select one of the
values used above. Does the switch from an exponential to an Erlang
distribution change the selected performance measure significantly?

1.4 Solutions for exercises

Solution 1.1

t payback interest NPV
0 100 0 100

1 -50 -10 −(50+10)
1+0.15 = −52.174

2 -50 -5 −(50+5)
(1+0.15)2 = −41.588

100 − 52.174 − 41.588 = 6.238
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Solution 1.2 (a) For the student the discount factor is a variable, quoted
by the bank; (b) for the company it is a parameter to be estimated from its
investments during the last five years.

Solution 1.3 No.

Solution 1.4 Separate PRN streams improve the performance of two well-
known Variance Reduction Techniques (VRTs), namely Common Random
Numbers (CRN) and Antithetic Random Numbers (ARN); see any textbook
on DEDS simulation.

Solution 1.5 Games such as entertainment games and the beer game are
simulation models; gaming models are solved analytically so they are not
simulation models.

Solution 1.6 Many answers are possible; compare your results with the
results that you will obtain, once you will have read the next chapter(s).





2
Low-order polynomial regression
metamodels and their designs: basics

This long chapter is organized as follows. In Section 2.1, I discuss black-box
versus white-box approaches in DASE. In Section 2.2, I cover the basics of
linear regression analysis. In Section 2.3, I focus on first-order polynomial
regression. In Section 2.4, I present designs for such first-order polynomi-
als, namely so-called resolution-III designs. In Section 2.5, I augment the
first-order polynomial regression model with interactions (cross-products)
among the factors. In Section 2.6, I discuss resolution-IV designs, which
give unbiased estimators of the main effects—even if there are two-factor
interactions. In Section 2.7, I present resolution-V designs, which also esti-
mate these individual two-factor interactions. In Section 2.8, I extend the
regression model to second-order polynomials. In Section 2.9, I present de-
signs for these second-degree polynomials, focussing on Central Composite
Designs (CCDs). In Section 2.10, I briefly examine “optimal” designs and
other designs. In Section 2.11, I discuss validation of the estimated regres-
sion model, including the coefficient of determination R2 and the adjusted
coefficient R2

adjusted, Pearson’s and Spearman’s correlation coefficients, and
cross-validation. In Section 2.12, I summarize more simulation applications
of linear regression metamodeling. In Section 2.13, I summarize my con-
clusions. I finish with an appendix and solutions for the exercises in this
chapter.
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2.1 Introduction

In Chapter 1, I introduced the statistical theory on Design Of Experiments
(DOE) and design of simulation experiments (DASE). That theory views
the simulation model as a black box—not as a white box.

Definition 2.1 A black-box view implies that the simulation model trans-
forms observable inputs into observable outputs, whereas the values of in-
ternal variables and specific functions implied by the simulation’s computer
modules are unobservable.

To explain the difference between black-box and white-box approaches, I
now return to the M/M/1 example in Chapter 1. A white-box view was pre-
sented in (1.5) through (1.8); for convenience, I reproduce those equations—
replacing the symbol n by c because n is a reserved symbol for another
quantity in this chapter:

w =

∑c
i=1 wi

c
(2.1)

where w denotes the average waiting time, wi the waiting time of customer
i, and c the number of customers that terminates the simulation run.

Note: An alternative output may be the estimated 90% quantile (also
called percentile) of the waiting times, denoted by w(⌈.90c+0.5⌉) where w(i)

denotes the order statistics—so w(1) ≤. . . ≤ w(i) ≤ . . . ≤ w(c)—and
⌈0.90c + 0.5⌉ means that 0.90c is rounded to the next integer (recent articles
on estimating quantiles in simulation are [21] and [63]). Another alterna-
tive output may be the estimated variance of the waiting time in the steady
state, denoted by v̂ar(w) or s2(w)—not to be confused with v̂ar(w), which
quantifies the accuracy of the estimator defined in 2.1 (a recent article on
estimating v̂ar(w) is [64]).

The dynamics of any single-server queueing simulation with First-In-
First-Out (FIFO) queueing discipline is specified by the so-called Lindley
recurrence formula:

wi+1 = max(0, wi + si − ai+1). (2.2)

where ai+1 denotes the interarrival time between customers i and i+1, and
si denotes the service time of customer i. Suppose, the simulation starts
in the empty state, so w1 = 0.

An M/M/1 simulation model samples the random input variables s and
a such that these variables have exponential (Markovian, symbol M) ser-
vice and interarrival times. A possible implementation of such an M/M/1
simulation—with a service rate µ and an arrival rate λ−using the inverse
distribution function transformation of a single stream of PseudoRandom
Numbers (PRNs) r with seed (initial PRN) r0 is

si =
− ln r2i−1

µ
(2.3)
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and

ai+1 =
− ln r2i

λ
. (2.4)

Such a white-box representation is used by Perturbation Analysis (PA)
and the Score Function (SF) or likelihood ratio (LR) method (to estimate
the gradient for local—not global—sensitivity analysis and for optimization
using infinitesimal perturbations). PA and SF are discussed in (for example)
Spall’s recent textbook [360]; also see Rubinstein and Shapiro’s classic SF
book, [319], and Ho and Cao’s classic PA book, [147]. Recent reviews are
[117] and [377]. (I will return to the estimation of the gradient further on
in this chapter and in Chapter 4.)

In DASE, however, I do not follow a white-box approach; instead, I use
a black-box approach. Such a black-box approach is also used by DOE
for real-world experiments (see, e.g., [268]) and by Design and Analysis of
Computer Experiments (DACE) for deterministic simulation experiments
(see, e.g., [333]).

I now give a black-box representation of any single-server simulation
model with output w (average waiting time) and inputs λ and µ (arrival
and service rates) and r0 (PRN seed)—and a fixed queueing discipline (e.g.,
FIFO), a fixed waiting room capacity, etc.:

w = w(λ, µ, r0) (2.5)

where w(.) denotes the mathematical function implicitly defined by the
computer program that implements (2.1) through (2.4).

My general black-box representation is

Θ̂ = s(d1, . . . , dk, r0) (2.6)

where
Θ̂ is the vector of simulation outputs (see the next paragraph);
s(.) denotes the mathematical function that is implicitly defined by the

simulation program (computer code) that implements the given simulation
model;

dj with j = 1, . . . k is the jth input variable (factor) of the simulation
program (so D = (dij) is the design matrix for the simulation experiment,
with i = 1, . . . , n and n the number of factor combinations in that experi-
ment),

r0 is the vector of PRN seeds (r0 is a vector because each simulation
process may have its own PRN seed to improve the effectiveness of Variance
Reduction Techniques (VRTs); see [227], p. 588).

I point out that d in (2.6) determines the original input variable z and the
corresponding standardized input variable x; see (2.33) below. The design
matrix D is usually standardized; e.g., a two-level (fractional) factorial has
elements that are either −1 or +1.
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The simulation output Θ̂ is a multivariate random variable that is meant
to estimate Θ, which denotes the interesting characteristics of the output
distribution (obviously, Θ is not random). One example is that Θ̂1 = w

estimates the mean of the output distribution, and Θ̂2 = w(⌈0.90c+0.5⌉)

estimates the 90% quantile of that same distribution. Another example, is
that Θ̂1 = w estimates the mean waiting time, and Θ̂2 = v estimates the
mean queue length. A complicated case study is a nuclear waste simulation
model with 13 output variables; see the recent survey in [145].

One possible metamodel of the black-box model in (2.5) is a first-order
polynomial in the two input variables λ and µ augmented with the noise e:

y = β0 + β1λ + β2µ + e (2.7)

where
y is the metamodel predictor of the simulation output w in (2.5);
β0, β1,and β2 are the parameters of this metamodel—which may be

collected in the vector β = (β0, β1, β2)
′;

e is the residual or noise—which includes both lack of fit of the meta-
model (this metamodel is a Taylor series approximation cut off after the
first-order effects) and intrinsic noise (caused by the PRNs).

Besides (2.7), there are many alternative metamodels. For example, a
simpler metamodel is

y = β0 + β1x + e (2.8)

where x is the traffic rate—in queueing theory usually denoted by ρ (statis-
ticians often use this symbol to denote a correlation coefficient; in this book,
the context should clarify what the symbol ρ means):

x = ρ =
λ

µ
. (2.9)

This combination of the two original factors λ and µ into a single fac-
tor ρ (inspired by queueing theory) illustrates the use of transformations.
Another useful transformation may be a logarithmic one: replacing y, λ,
and µ by log(y), log(λ), and log(µ) in (2.7) makes the first-order polyno-
mial approximate relative changes; i.e., the regression parameters β become
elasticity coefficients.

Definition 2.2 The elasticity coefficient of (say) y with respect to x is
(∂y/y)/(∂x/x).

Exercise 2.1 Prove that (∂y/y)/(∂λ/λ) = β1 if y is replaced by log(y)
and λ by log(λ) in (2.7).

Elasticity coefficients are popular in econometrics, but also in other dis-
ciplines. In an econometric case study, Van Schaik and I used the loga-
rithmic transformation for some—but not all—explanatory variables; see
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[389]; in this study we use data that are obtained through passive obser-
vation instead of active simulation experimentation. An analytical (not a
simulation) software engineering study that also uses relative changes in
the explanatory variables is [59].

The use of transformations illustrates that simulation analysts should
be guided by knowledge of the real system and corresponding analytical
models.

2.2 Linear regression analysis: basics

It is convenient to use the following general matrix representation for a
linear regression model with multiple inputs and a single output (in case
of multiple outputs, it would be necessary to use multivariate regression,
which is discussed in the next chapter; the univariate regression model may
be applied to each individual output):

y = Xβ + e (2.10)

where
y = (y1, . . . , yn)′ denotes the n-dimensional vector with the regression

predictor (or dependent variable) y with n the number of simulation runs
(or observations);

X = (xij) denotes the n × q matrix of explanatory (independent) re-
gression variables with xij the value of explanatory variable j in run i
(i = 1, . . . , n; j = 1, . . . , q) (e.g., in (2.7) q = 3 and in (2.8) q = 2 including
the dummy variable or constant xi0 = 1 corresponding with β0);

β = (β1, . . . , βq)
′ denotes the q regression parameters—including the

effect of a possible dummy variable (if there is such a dummy variable,
then β1 denotes the intercept in the general regression model, whereas the
symbol β0 denoted the intercept in the specific regression model (2.8));

e = (e1, . . . , en)′ denotes the residuals in the n runs.

To select specific values (say) β̂ = (β̂1, . . . , β̂q)
′ for the regression param-

eters, the criterion of Least Squares (LS)—also called the ordinary LS (I

shall discuss generalized LS in the next chapter)—is often used; i.e., β̂ is
selected such that it minimizes the Sum of Squared Residuals, SSR:

min
β̂

SSR =
n∑

i=1

(êi)
2

=
n∑

i=1

(ŷi − wi)
2

= (ŷ − w)′(ŷ − w) (2.11)

where êi = ŷi − wi is the estimated residual for input combination i,

ŷi =

q∑

j=1

xij β̂j = x′
iβ̂, (2.12)

and wi denotes the simulation output of run i (e.g., the average waiting
time of that run; see (2.5)).
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The solution of (2.11) gives the LS estimate β̂ of the regression parameter
vector β in the regression model (2.10); it can be derived to be

β̂ = (X′X)
−1

X′w. (2.13)

Obviously, this LS estimate exists only if the matrix X is not collinear, so
the related inverse (X′X)

−1
does exist or this inverse is stable in numerical

computations. For example, X is collinear in (2.7) if the two inputs λ and
µ change simultaneously by the same amount; X is collinear in (2.9) if the
input ρ is kept constant. The selection of a “good” X in (2.10)—and hence
in (2.13)—is the focus of the next sections on various designs.

The computation of the LS estimate β̂ does not need to use (2.13);
i.e., better numerical accuracy may result when solving the set of normal
equations

X′y = X′Xβ̂,

which follows from (2.10). However, the next sections provide such good
design matrixes that the computation of the LS estimates becomes trivial
and numerical problems are negligible.

I emphasize that the LS criterion, which is used in (2.11), is a mathemat-
ical (not a statistical) criterion. This criterion is also known as the L2 norm
(other popular mathematical criteria are the L1 and the L∞ norms; also see
[269]). However, adding statistical assumptions about the simulation I/O
data implies that the LS estimator has interesting statistical properties.
Therefore I now introduce the following definition, where σ2

u denotes the
variance of the random variable u.

Definition 2.3 White noise (say) u is Normally, Independently, and Iden-
tically Distributed (NIID) with zero mean: u ∼ NIID(0, σ2

u).

This definition deserves some comments:

• There seems to be no standard definition of white noise; i.e., some
publications (e.g., [191]) do not require normality.

• The simulation output w may indeed be normally (or Gaussian) dis-
tributed if this output is an average computed from a long enough
time series of individual simulation data. These individual data are
autocorrelated (serially correlated), so the classic Central Limit The-
orem (CLT) does not apply. Yet it can be proven that—under specific
conditions—this average tends to be Gaussian distributed. A counter-
example is a simulation with the estimated quantile w(⌈0.90c+0.5⌉) as
the output. For such a quantile, I do not expect normality—unless
the simulation run c is very long. Also see Section 3.3.1.

• The simulation outputs wi and wi′ with i �= i′ are indeed independent
if they use PRN streams that do not overlap. So Common Random
Numbers (CRN) violate this assumption (see Chapter 3).
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• “Identically distributed” implies a constant variance (denoted by
σ2

u). However, I expect that the simulation outputs do not have the
same variance when the input combinations change; i.e., the vari-
ances are heterogeneous or heteroskedastic instead of homogeneous
or homoskedastic (the literature also uses the alternative spellings
heteroscedastic and homoscedastic). For example, for the M/M/1 it
is well-known that the variance increases as the traffic rate increases
(actually, the variance increases much more than the mean). There-
fore I will return to this practical problem (see Chapter 3).

For the time being, I assume that the simulation outputs w are indeed
normally and independently distributed with the same variance (say, σ2

w);
obviously, the simulation outputs may have different means. I further as-
sume that the linear regression model (2.10) is a valid metamodel, defined
as follows.

Definition 2.4 A metamodel is valid if and only if its residuals have zero
means: E(e) = 0.

Furthermore, I introduce the following related definition.

Definition 2.5 A metamodel fits perfectly if and only if all its estimated
residuals are zero: ∀i : êi = 0 (i = 1, . . . n).

These two definitions also deserve some comments:

• The metamodel is biased if E(e) �= 0; i.e., the metamodel may either
overestimate or underestimate the expected simulation output.

• A perfectly fitting metamodel indicates that n (number of simulation
runs) is too small. (Also see the discussion of the special case R2 = 1
in Section 2.11.1 below.)

If the residuals are white noise, then LS gives the Best Linear Unbiased
Estimator (BLUE) (the condition is not “if and only if”; see the Gauss-
Markov theorem; a recent discussion is given in [378]). The LS estimator is
indeed a linear transformation of the simulation response w:

β̂ = Lw (2.14)

where L is not random—since L = (X′X)−1X′ in (2.13 )—and w is ran-
dom. Such a linear estimator has the following two properties:

E(β̂) = L[E(w)] (2.15)

and

cov(β̂) = L[cov(w)]L′. (2.16)
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Exercise 2.2 Prove that the LS estimator β̂ defined in (2.14) is an unbi-
ased estimator of the true value β if E(e) = 0.

The property in (2.16) implies that in case of white noise the LS estimator
has the following (symmetric and positive semidefinite) covariance matrix
(the noise does not need to be normally distributed):

cov(β̂) = (X′X)−1σ2
w. (2.17)

Exercise 2.3 Prove that the LS estimator β̂ defined in (2.14) has the
covariance matrix (2.17) in case of white noise. (Hint: (X′X)−1 is
symmetric.)

Exercise 2.4 Prove that the variance of the average waiting time of a sim-
ulation run with c customers—defined in (2.1)—would be σ2/c if the indi-
vidual waiting times were Identically and Independently Distributed (IID)
with variance σ2 (actually, these waiting times have different variances and
are autocorrelated).

It can be proven that among all linear unbiased estimators, the LS esti-
mator is best, i.e., this estimator has the minimum variance—still assuming
white noise. Obviously, the variances of the individual regression estimators
β̂j are given by the main diagonal elements of (2.17); their covariances are
given by the off-diagonal elements of the (symmetric) matrix. The matrix
(X′X) is called the information matrix.

Note: Instead of deriving an unbiased estimator, some statisticians min-
imize the Mean Squared Error (MSE)—accepting possible bias. For exam-
ple, in my 1987 book [184], p. 160 I discussed ridge regression. Because I
do not know any applications of such an approach in simulation, I do not
further discuss this issue. Instead, I refer to the literature; e.g., [52].

The linear LS estimator β̂ has another interesting property if the sim-
ulation outputs w are normally distributed: this estimator β̂ is then also
normally distributed. Combining this property with the mean following
from (2.15) and the covariance given by (2.17) gives

β̂ ∼ N [β, (X′X)−1σ2
w]. (2.18)

Consequently, the individual estimated regression parameters β̂j may be
tested through the following t statistic:

tn−q =
β̂j − βj

s(β̂j)
with j = 1, . . . , q (2.19)

where s(β̂j) is the square root of the jth element on the main diagonal of

the covariance matrix for β̂ given in (2.17) with σ2
w estimated through the
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Mean Squared Residuals (MSR):

MSR =
SSR

n − q
=

(ŷ − w)′(ŷ − w)

n − q
(2.20)

where SSR was given in (2.11). The MSR in (2.20) assumes that degrees of
freedom are left over after fitting the regression (meta)model: n > q. (An
alternative estimator of the simulation output’s variance uses replicates
instead of the regression model’s residuals; see (2.26)).

The t statistic in (2.19) may be used to test whether a specific regression
parameter is zero:

H0 : βj = 0. (2.21)

For example, the effect of the arrival rate may be hypothesized to be zero:
β1 = 0 in the first-order polynomial (2.7). This null-hypothesis is rejected
if the computed t value is significant : |tn−q| > tn−q;1−α/2 where tn−q;1−α/2

denotes the 1 − α/2 quantile of the distribution of tn−q (this tn−q;1−α/2 is
also called the upper α/2 critical point of the t distribution).

Besides testing a single parameter, the analysts may hypothesize that
several parameters have specific values; e.g., the effects of both the arrival
rate and the service rate may be hypothesized to be zero: β1 = 0 and
β2 = 0 in (2.7). More generally,

H0 : βj′ = . . . = βq = 0 (2.22)

where I rearranged the q parameters such that the last q−j′+1 parameters
are hypothesized to be zero (which holds in the immediately preceding
example). To test this composite hypothesis, the following F statistic can
be used (see, e.g., Searle’s general regression textbook [345]).

1. Compute the SSR without the null-hypothesis; this is called the SSR
of the full or unrestricted regression model: SSRfull.

2. Compute the SSR under the null-hypothesis, called the SSR of
the reduced or restricted regression model: SSRreduced. (Obviously
SSRreduced ≥ SSRfull because imposing the constraint (2.22) in-
creases the minimum value of SSR.)

3. Compute

Fq−j′+1;n−q =
SSRreduced − SSRfull

SSRfull
. (2.23)

The composite null-hypothesis is rejected if Fq−j′+1;n−q exceeds the
1 − α quantile of the Fq−j′+1;n−q distribution; that quantile is denoted
by Fq−j′+1;n−q;1−α.

The preceding linear regression formulas apply to I/O data obtained
through
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1. passive observation of a real system

2. active experimentation with either a real system or a simulation
model of a real system.

The following formulas, however, apply only if the data are obtained
through controlled experimentation; i.e., at least one combination of the
explanatory variables xi = (xi1, . . . , xiq)

′ in (2.10) is observed more than
once. (In passive observation, the explanatory variables are not controlled,
so they are actually random and the probability of multiple realizations of
the same combination xi is negligible.)

Definition 2.6 A replicate (or replication) means that a given combi-
nation of the explanatory variables xi = (xi1, . . . , xiq)

′ is observed (say)
mi > 1 times (i = 1, . . . n).

The classic assumption is that these replicates are IID. In Discrete-Event
Dynamic Simulation (DEDS), this assumption implies that the replicates
use PRN streams that do not overlap. If the output is the response of a
steady-state (nonterminating) simulation, then IID implies that the subrun
outputs have negligible autocorrelation. If the subruns are actually renewal
(or regenerative) cycles, then the IID assumption is satisfied by definition.
For details on this IID property, I refer to any textbook on DEDS simula-
tion.

Replication implies that at least one input combination xi is repeated in
the matrix of explanatory variables, X. For example, if the first combination
of λ and µ in (2.7) is replicated three times (m1 = 3) and these values are
0.5 and 1.0 respectively, then (say) the first four rows of X are⎡

⎢⎢⎣

1 0.5 1.0
1 0.5 1.0
1 0.5 1.0
1 ... ...

⎤
⎥⎥⎦.

In general, in case of replication the number of rows of X increases from
n to (say)

N =

n∑

i=1

mi (2.24)

with mi identical rows (because the same scenario is simulated mi times).
Consequently, the MSR has more degrees of freedom, namely, N−q instead
of n − q, as I explain now.

But first I point out that it is possible to keep the number of rows in X

limited to the n different combinations. The output of the ithcombination
then becomes the output averaged over the mi replicates (also see (2.27)).
I distinguish two situations:

• The number of replicates is constant over the n factor combinations
(mi = m). The LS estimate may then be computed from the n
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averages,wi (i = 1, . . . n). The MSR can still be computed analo-
gously to (2.20):

MSR =
SSR

n − q
=

(ŷ − w)′(ŷ − w)

n − q
, (2.25)

which uses w instead of w so this MSR has expected value var(w) =
var(w)/m instead of var(w).

• The number of replicates is not constant (mi �= m). The n averages,
wi should then be weighted by the number of replicates; see (2.30)
below (and also [184], p. 195).

If input combination xi is replicated mi > 1 times, then an alternative
for the MSR estimator is the classic variance estimator:

v̂ar(wi) = σ̂2(wi) = s2
i (w) =

∑mi

r=1(wir − wi)
2

mi − 1
(i = 1, . . . n) (2.26)

with

wi =

∑mi

r=1 wir

mi
. (2.27)

Again, I provide some comments:

• The average in (2.27) is computed from the mi replicates; this av-
erage should not be confused with the average computed from the
autocorrelated individual waiting times in a single simulation run;
see (2.1).

• The average in (2.27) and the sample variance in (2.26) are indepen-
dent variables if the simulation outputs wir are NIID (see any basic
statistics textbook).

• The variance estimator is a chi-square variable with mi − 1 degrees
of freedom (see any statistics textbook).

• The denominator mi − 1 in (2.26) makes the estimator unbiased;
the Maximum Likelihood Estimator (MLE) can be proven to use the
denominator mi. However, I shall not use the Maximum Likelihood
(ML) criterion in this book. (Neither will I use a Bayesian criterion.)

Because of the common variance assumption, the n variance estimators
in (2.26) can be pooled using their degrees of freedom as weights:

v̂ar(w) = σ̂2
w = s2(w) =

∑n
i=1(mi − 1)s2

i∑n
i=1(mi − 1)

. (2.28)

So now there are the following two variance estimators:
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• The MSR—defined in (2.20) for nonreplicated combinations (m = 1),
and in (2.25) for an equal number of replicates per input combina-
tion (mi = m > 1)—which uses the fitted regression model. If the
regression model is not valid, then the MSR obviously overestimates
the true variance.

• The pooled variance estimator in (2.28), which uses mi > 1 replicates.
This estimator does not use the fitted regression model; it is unbiased
assuming the simulation outputs for a replicated combination are IID
(not necessarily NIID; however, the F statistic in (2.30) does assume
normality).

These two estimators can be compared through the following so-called
lack-of-fit F -statistic, still assuming each factor combination i is replicated
a constant number of times (mi = m) (also see (3.35):

Fn−q;n(m−1) =
m

(n − q)

(w − ŷ)′(w − ŷ)∑n
i=1 v̂ar(wi)/n

. (2.29)

where (
∑n

i=1 v̂ar(wi)/n)/m is an unbiased estimator of var(w) = var(w)/m,
and (w − ŷ)′(w − ŷ)/(n − q) is an unbiased estimator of the same quan-
tity only if the regression model is correct. If the number of replicates
per combination is not a constant, then this statistic becomes (see, e.g.,
[268], p. 52):

Fn−q;N−n =

∑n
i=1 mi(wi − ŷi)

2/(n − q)∑n
i=1

∑mi

r=1(wir − wi)2/(N − n)
. (2.30)

The numerator uses the MSR computed from the average simulation out-
put per combination; at least one combination is replicated (usually, the
center of the experimental area is replicated when applying classic DOE
to simulation). Obviously, the regression model is rejected if the lack-of-fit
F -statistic is significantly high.

I finish this section with the following notes.

• Alternative tests for the validation of the fitted metamodel will be
presented in Section 2.11.2. Those tests do not assume white noise.
Moreover, they may be applied to other metamodel types, e.g., Krig-
ing models.

• In 2006, [94] discussed plots for assessing lack of fit for linear regres-
sion models under the white noise assumption—assuming no repli-
cates (so the lack-of-fit F test in (2.30) does not apply).

• The LS estimator β̂ is also the MLE under the white noise assumption.
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• There are many—more complex—types of black-box metamodels.
Examples are Kriging models and the other metamodel types men-
tioned in Chapter 1. Now, however, I focus on the simplest—and
hence most popular—type that has established a track record in both
random and deterministic simulations, namely low-order polynomial
regression models.

In summary, in this section I reviewed classic linear regression analysis,
which provides tools that give simple metamodels for simulation.

2.3 Linear regression analysis: first-order
polynomials

To estimate the parameters of whatever black-box metamodel (e.g., β in
the linear regression model (2.10)), the analysts must experiment with the
simulation model; i.e., they must change the inputs of the simulation, run
the simulation, and analyze the resulting I/O data. In this section, I assume
that a first-order polynomial is a valid metamodel.

2.3.1 First-order polynomial with a single factor

I start with the simplest metamodel, namely a first-order polynomial with
a single factor; see (2.8) above, which has q = 2 regression parameters.
Elementary mathematics proves that—to fit a straight line—it suffices to
have only two I/O observations; also see Figure 2.1. This figure displays
the expected value of the number of jobs (or customers) in the system in
the steady state (this number equals the queue length plus the job being
served); i.e., it is the value after “very many” jobs have been simulated (so
the effects of the initial state—namely the empty state—has disappeared;
see, e.g., [227]). The figure further displays two approximations, namely a
first-order polynomial for low traffic rates, and a second-order polynomial
for higher traffic rates.

Note: In [413] , Zeigler et al. call the experimental area (see Figure 2.1)
the experimental frame. I would also call it the domain of admissible
scenarios—given the goals of the simulation study (various goals are
discussed in [211] and [227]).

I now prove that selecting those two values as far apart as possible gives
the “best” estimator of the effect of this factor. I use the following two
standard assumptions:

• The simulation responses have a constant variance; i.e., var(wi) = σ2
w

(i = 1, . . . , n).

• The n simulation responses are statistically independent.
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traffic rate x

# jobs in system

0 1

mean steady-state

local polynomial approximation

Figure 2.1: M/M/1 with first-order and second-order polynomial approxi-
mations of the mean steady-state number of jobs in sytem

These assumptions imply cov(w) = σ2
wI so cov(β̂) = σ2

w(X′X)
−1

; see
(2.17). I denote the lower value of the factor x = ρ in (2.8) by l and the
upper value by u.

Exercise 2.5 Prove that the OLS estimator β̂1 has minimum variance if
l and u (lower and upper factor values) are as far apart as possible.

2.3.2 First-order polynomial with several factors

A first-order polynomial with k > 1 factors (inputs) may be represented
as follows (I use the classic notation, which denotes the dummy factor by
x0 = 1 and its effect by β0):

E(y) = β0 + β1x1 + . . . + βkxk. (2.31)

So in the general linear regression model (2.10) the variable q (number of
regression parameters) now equals k +1. An example of this general model
is the first-order polynomial for the two factors λ and µ in (2.7).

In practice, a first-order polynomial may be very useful when trying
to estimate the optimal values for the inputs of a simulation model. For
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example, the analysts may wish to find the input values that maximize the
profit of the simulated company. There are many methods for estimating
the optimal input combination (see Chapter 4). Some of these methods use
the gradient, which is defined as follows.

Definition 2.7 The gradient of a function w(x1, . . . , xk)—usually denoted
as ∇(w)—is the vector with the first-order partial derivatives: ∇(w) =
(∂w/x1, . . . , ∂w/∂xk).

So the gradient quantifies local marginal effects. To estimate the gradient,
many mathematicians change one factor at a time—using two or three
values per factor (see Section 4.4). From the statistical theory on DOE,
however, it follows that it is more efficient to estimate the gradient through
a (full or fractional) factorial design and to fit a first-order polynomial to
the resulting I/O data.

More general (i.e., not only in optimization), I claim that the LS estima-
tion of the k + 1 parameters β = (β0, β1, . . . , βk)′ in (2.31) often uses one
of the following two design types:

• One-factor-at-a-time designs

• Full factorial designs

In practice, analysts often change each factor one at a time (called the
ceteris paribus approach in econometrics). DOE, however, may use a 2k

design where k denotes the number of factors and 2 denotes the number
of levels (values) per factor. Obviously, two values suffice for the first-order
polynomial metamodel (2.31). Before I further discuss these two design
types (in Section 2.4), I discuss coding.

It is convenient and traditional in DOE to use coded—also called stan-
dardized or scaled—factor values. If each factor has only two levels in the
whole experiment with n factor combinations, then these levels may be de-
noted by -1 and +1. This implies the following linear transformation with
zj denoting the quantitative factor j measured on the original scale, lj the
lower value of zj in the experiment, and uj the upper value:

xij = aj + bjzij with aj =
lj + uj

lj − uj
; bj =

2

uj − lj
; j = 1, . . . , k; i = 1, . . . n.

(2.32)
This transformation implies

xij =
zij − zj

(uj − lj)/2
(2.33)

where z̄j denotes the average value of input j in a balanced experiment,
which means that each input has the lower value in half of the n factor
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combinations (and hence the upper value in the other half); the denomi-
nator (uj − lj) in (2.33) is known as the range of input j (the range is a
well-known quantitative measure for the variation; another measure is the
variance).

Exercise 2.6 Suppose that you simulate an M/M/1 queue with a traffic
rate between 0.2 and 0.5, and that you fit a first-order polynomial; see
(2.8). Code this polynomial metamodel using (2.32). Suppose further that
you wish to use the metamodel (2.8) to predict the simulation output for a
traffic rate of 0.3 and 0.4 respectively. Which x values correspond with the
original traffic rates 0.3 and 0.4?

The original scale of z in (2.32) may be an interval, a ratio, or an absolute
scale (see the discussion of scales at the end of Chapter 1). If the original
variable z has a nominal or ordinal scale and it has only two levels, then the
coding remains simple: arbitrarily associate one level with −1 and the other
level with +1. For example, one level may mean that the FIFO priority
rule applies, whereas the other level means that LIFO (Last-In-First-Out)
applies in a queueing simulation. In another example one level may mean
that some patients have preemptive priority (e.g., emergency patients in a
hospital simulation), whereas the other level means that this priority does
not apply (so all patients are served FIFO); therefore -1 may mean that a
rule does not apply or is switched off.

In practice, simulation analysts also consider inputs with nominal scales
with more than two levels. For example, in [188] I present a simulation
study on the use of sonar to search for mines at the bottom of the sea. This
bottom consists of clay, sand, or rocks—which affects the sonar’s output.
The simulation analysts erroneously coded these three bottom types as −1,
0, and +1. The correct coding of a nominal scale with two or more levels
may be done through multiple binary variables—each coded as 0 and 1—
instead of a single variable that is coded as −1 and +1; see the Appendix.

Standardization such that each factor (either quantitative or qualitative)
varies between −1 and +1 is useful when comparing the effects of multiple
factors. The example in Figure 2.2 shows two quantitative factors with
different ranges (assuming the same scale; if the two scales were different,
then two horizontal axes would be needed). The marginal effect of factor
2 is higher than the marginal effect of factor 1. Nevertheless, because the
range of factor 1 is much bigger, “the” effect of this factor is larger. If the
standardization defined in (2.33) is applied, then the standardized effect of
the first factor exceeds that of the second factor.

Elsewhere (namely [40] and [216], p. 178) I present the following first-
order polynomial model in the original factors centered around their aver-
age values in the experiment:

E(y) = δ0 + δ1(z1 − z1) + . . . + δk(zk − zk). (2.34)

Obviously, this model implies that the marginal effect of factor j is δj (the
average zj is a constant, determined before the experiment is carried out).
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z1, z2

Response w

z11 z12z21 z22

Figure 2.2: Scaling effects when comparing factors

The total effect over the range of this factor is

δj(uj − lj) = 2βj (j = 1, . . . , k)

where βj is the marginal effect of the standardized factor j; all standardized
factors have the same range, namely (1−(−1)) = 2 . The conclusion is that
to rank the factor effects, the absolute values of the standardized effects
βj should be sorted—if a first-order polynomial is a valid metamodel (else,
interactions should also be considered; see Section 2.12 below).

There is a third formulation of the metamodel, namely one using the
original noncentered factors:

E(y) = γ0 + γ1z1 + . . . + γkzk. (2.35)

The intercept in the first-order polynomial with standardized factors es-
timates the simulation output at the center of the experimental area:
E(y) = β0 if xj = 0 for all j. When using the original non-centered factors
in (2.35), the intercept estimates the simulation output when zj = 0 for all
j—which may be very far away from the experimental area!

I point out that a factor may be significant when tested through the
t statistic defined in (2.19), but may be unimportant—especially when
compared with other factors in the experiment. For example, [54] uses
many replicates (namely, m = 500); all factors turn out to be significant.
Reversely, a factor may not be significant, but may still be kept in the meta-
model. For example, [93] kept two nonsignificant main effects in the regres-
sion model, because these two effects correspond to two decision variables
in the simulated Decision Support System (DSS) that is to be optimized.
I point out that a nonsignificant estimated effect is still the BLUE.
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Note: When comparing a metamodel with the underlying simulation
model, the probability that their outputs ŷ and w differ significantly
increases as the number of replicates increases. Their difference may be
important or not—depending on the goals of the metamodel and the
simulation model; see [211].

Now I return to one-factor-at-a-time designs versus factorial designs. I
first discuss the simplest example with multiple factors, in detail.

Example 2.1 I suppose that the number of factors is only two: k = 2.
To select a design type, I compare the variances of the factor effects es-
timated through a one-factor-at-a-time design and a full factorial design
respectively—assuming a first-order polynomial suffices to approximate the
simulation I/O behavior. I assume that there are no replicates: mi = 1.

The one-factor-at-a-time design may be represented by Figure 2.3. This
is only one of the possible designs that belong to this popular design class.
Other designs in this class use three (instead of two) values (but I have
pointed out that two values suffice for a first-order polynomial). Moreover,
I assume that the combination denoted by (1) in this figure, is the so-called
base value (e.g., the current scenario); the other two combinations increase
factor 1 and 2 respectively. Obviously, the design could also be “mirrored”
so the first combination would become (+1,+1) instead of (−1,−1).

This figure corresponds with the following design matrix:

D =

⎡
⎣

−1 −1
+1 −1
−1 +1

⎤
⎦ .

Hence, X in the general linear regression model (2.10) becomes

x1

x2

(1) (2)

(3)

–1 +1

–1

+1

Figure 2.3: A one-factor-at-a-time design for two factors
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X =

⎡
⎣

+1 −1 −1
+1 +1 −1
+1 −1 +1

⎤
⎦.

Assuming (for convenience) that σ2
w = 1 gives

cov(β̂) = (X′X)
−1

=

⎡
⎣

3 −1 −1
−1 3 −1
−1 −1 3

⎤
⎦
−1

=

⎡
⎣

0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

⎤
⎦ .

and

β̂ =

⎡
⎢⎣

β̂0

β̂1

β̂2

⎤
⎥⎦ = (X′X)

−1
X′w=

⎡
⎣

0 0.5 0.5
−0.5 0.5 0
−0.5 0 0.5

⎤
⎦
⎡
⎣

w1

w2

w3

⎤
⎦ =

⎡
⎣

0.5w2 + 0.5w3

0.5w2 − 0.5w1

0.5w3 − 0.5w1

⎤
⎦ .

This LS estimate agrees with common sense; e.g., β2 is estimated by the
difference between the third observation in Figure 2.3 and the base obser-
vation (combination 1). Note that each of the three regression parameters
is estimated from only two of the three outputs.

The 22 design adds a fourth combination to Figure 2.3, namely the com-
bination (+1,+1). Hence X in the general linear regression model ( 2.10)
becomes

X =

⎡
⎢⎢⎣

+1 −1 −1
+1 +1 −1
+1 −1 +1
+1 +1 +1

⎤
⎥⎥⎦.

The LS formulas give

cov(β̂) = (X′X)
−1

=

⎡
⎣

4 0 0
0 4 0
0 0 4

⎤
⎦
−1

=

⎡
⎣

0.25 0 0
0 0.25 0
0 0 0.25

⎤
⎦

and

β̂ =

⎡
⎢⎣

β̂0

β̂1

β̂2

⎤
⎥⎦ = (X′X)

−1
X′w =

⎡
⎣

0.25w1 + 0.25w2 + 0.25w3 + 0.25w4

0.25w2 − 0.25w1 − 0.25w3 + 0.25w4

0.25w3 − 0.25w2 − 0.25w1 + 0.25w4

⎤
⎦ .

This LS estimate again agrees with common sense; e.g., β2 is now es-
timated by subtracting the average of the first and second outputs from
the average of the third and fourth outputs—which agrees with Figure 2.3,
augmented with the fourth combination. Furthermore, each of the three re-
gression parameters is now estimated from all four outputs!

The variances of each estimated parameter is 0.25 in the factorial de-
sign, whereas these variances are 0.5 for the one-at-a-time design. These
variances, however, should be corrected for the number of combinations:
4× 0.25 = 1.0 and 3× 0.5 = 1. 5 so the factorial design is more “efficient”.
(I shall also discuss examples with exactly equal numbers of combinations
for both design types.) Moreover, the estimated parameters are uncorrelated
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in the factorial design; in the one-at-a-time design, the correlations are
0.25/0.5 = 0.5. Under the normality assumption, zero correlation implies
independence; independent estimators simplify the statistical analysis.

I give one more example of a 2k design.

Example 2.2 Consider a 2k design with k = 3. Then the 8 × 3 design
matrix (say) D is as follows, where (as is conventional in DOE) I give
only the signs of the elements (so − means −1, and + means +1):

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− − −
+ − −
− + −
+ + −
− − +
+ − +
− + +
+ + +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to verify that all the columns of this D are orthogonal. Fur-
thermore, each column has the same number of pluses and minuses, namely
2k−1 = 4 , so this design is balanced (this property helps to check for typos).

In general, a 2k design results in an orthogonal matrix of explanatory
variables for the first-order polynomial (2.31):

X′X = nI with n = 2k. (2.36)

This property follows directly from the following general procedure for
constructing a 2kdesign (also see the preceding example with k = 3):

1. Select the first 2 elements of column 1 (factor 1) to be (−1, +1)′;
repeat these two elements—until the column is filled; all columns
have n = 2k elements.

2. The first 22 elements of column 2 are (−1,−1,+1, +1)′ respectively;
repeat these 22 elements—until this column is filled.

3. The first 23 elements of column 3 are (−1,−1,−1,−1,+1, +1,+1,+1)′

respectively; repeat these 23 elements—until this column is filled.

4. Repeat this procedure—until the last column is filled, as follows.

5. The first 2k−1 elements of the last column (column k) consists of 2k−1

consecutive elements −1, followed by 2k−1 consecutive elements +1.

The orthogonality property simplifies the LS estimator: substituting (2.36)
into (2.13) gives

β̂ =(nI)
−1

X′w = X′w/n = (xjw/n) =

(∑n
i=1 xijwi

n

)
(j = 1, . . . q).

(2.37)
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In this equation no matrix inversion is needed. Because—for each j—half
the xij equal −1 and the other half equal +1, the estimate β̂j is simply the
difference between two averages:

β̂j=

∑n
i=1 xijwi/(n/2)

2
=

w1j − w2j

2
(2.38)

where w1j is the average output when factor j is +1; w2j is the average
output when factor j is −1.

Furthermore, the orthogonality property simplifies the covariance matrix
(2.17) to

cov(β̂) = (nI)−1σ2
w = I

σ2
w

n
. (2.39)

So all estimators have the same variance, and they are independent.
Note: To rank the estimated effects in the order of their importance,

either the estimated effects β̂j themselves or their t values can be used
because the estimated effects have the same estimated variances; see (2.19).

Finally, back in 1952, Box ([46]) proved that the variances of β̂j (the
elements on the main diagonal of (2.17)) are minimal if X is orthogonal.
(These orthogonal matrixes are related to so-called Hadamard matrixes;
see [109], [122] and [398] and also [332]).

Altogether, 2k designs have many attractive properties. Unfortunately,
the number of combinations (n = 2k) grows exponentially with the number
of factors (k). At the same time, the number of effects is only q = k + 1, so
these designs become inefficient for high values of k. For example, if k = 7,
then 27 = 128 whereas q = 8. Therefore I shall next present designs that
require only a fraction of these 2k combinations.

Definition 2.8 An incomplete design has fewer combinations than the cor-
responding full factorial design.

This definition deserves the following comments:

• The simplest incomplete designs are 2k−p designs, which are a fraction
2−p of the 2k design. For example, if k = 7, then a 27−4 design
(with only n = 8 combinations) suffices to fit a first-order polynomial.
Details follow in the next section.

• There are also fractions of mixed-level designs; e.g., 2k13k2 designs.
I will not discuss these designs in detail, because they are rather
complicated, and I have never applied them; also see Section 2.10.
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2.4 Designs for first-order polynomials:
resolution-III

Definition 2.9 A resolution-III design gives unbiased estimators of the
parameters of a first-order polynomial, assuming such a polynomial is a
valid approximation.

I provide the following comments.

• My definition goes back to Box and Hunter’s definition in 1961; see
[49] (also see [265]).

• These designs are also known as Plackett-Burman designs, published
back in 1946; see [296].

• Plackett-Burman designs have as a subclass fractional factorial two-
level or 2k−p designs; see Section 2.4.1. Obviously, the latter subclass
has its number of combinations equal to a power of two. Plackett-
Burman designs have their number of combinations equal to a mul-
tiple of four and at least equal to k + 1 (e.g., for 8 ≤ k ≤ 11 the
Plackett-Burman design has n = 12 combinations, which is not a
power of two); see Section 2.4.2.

2.4.1 2k−p designs of resolution-III

I start with the simplest example of a 2k−p design, namely k = 3. A 23

design would require n = 8 combinations; see again Example 2.2. The
number of parameters is only q = k + 1 = 4. Therefore I prefer a 23−1

design, which requires only n = 4 combinations. Because this design has
resolution-III, it is denoted as a 23−1

III design in the literature. Table 2.1
gives one of the two possible 23−1 designs. The heading “Combi.” stands
for “Factor combination”; the heading “3 = 1.2” is a shorthand notation
for xi3 = xi1xi2 with i = 1, . . . n. Hence, the first element (i = 1) in the last
column is x13 = x11x12 = (−1)(−1) = +1 so the entry is a plus (+). The
DOE literature calls “3 = 1.2” a design generator ; I will discuss generators
in more details, after I shall have discussed interactions.

It is easy to verify that Table 2.1 gives an orthogonal X; i.e., (2.36)
is satisfied. The design is also balanced (two minuses and two pluses per
column).

Figure 2.4 shows the design that corresponds with Table 2.1 This figure
has the following geometric property: each factor combination corresponds
with a vertex that cannot be reached via traversing only one edge of the
cube.

Next I discuss Table 2.2. This design belongs to the same family as the
design in Table 2.1. In this simple example, these two designs together form
the full factorial design that was listed in Example 2.2.
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Combi. 1 2 3 = 1.2
1 − − +
2 + − −
3 − + −
4 + + +

Table 2.1: A fractional-factorial two-level design for three factors with gen-
erator 3 = 1.2

The choice between these two designs is arbitrary (random). (The associ-
ation between the three factors and the three columns in the design is also
arbitrary; e.g., factor 1 may be associated with column 3. The association
between the original levels and the + and − signs is also arbitrary; e.g.,
the highest value of a factor may be associated with the minus sign—even
though this may confuse some users.)

Now I present the next simplest example of a 2k−p design, namely a
design with n = 23 = 8 combinations. The number of factors follows from
2k−p = 8 or k − p = 3 with positive integers k and p, and 2k−p > k. The
solution is k = 7 and p = 4. This gives Table 2.3, which is the analogue of
Table 2.1. It is again easy to check that this design gives an orthogonal X,
and it is balanced (27−5 = 4 minuses and pluses per column).

The design in Table 2.3 belongs to a bigger family. This family is formed
by substituting a minus sign for the (implicit) plus sign in one or more gen-
erators; e.g., substituting 4 =−1.2 for 4 = 1.2 in Table 2.3 gives one other
member of the family. All the (27/27−4 =) 16 family members together
form the unique (full-factorial two-level) 27 design.

x1

x2

x3

Combi. 1

Combi. 2

Combi.  3

Combi. 4

Figure 2.4: A fractional-factorial two-level design for three factors with
generator 3 = 1.2
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Combi. 1 2 3 = −1.2
1 − − −
2 + − +
3 − + +
4 + + −

Table 2.2: A fractional-factorial two-level design for three factors with gen-
erator 3 = -1.2

Table 2.3 gives a so-called saturated design for seven factors; Tables 2.1
and 2.2 gave saturated designs for three factors.

Definition 2.10 A saturated design has as many combinations as the num-
ber of parameters to be estimated.

This definition leads to the following comments.

• In symbols, the definition means n = q in (2.10).

• Hence, no degrees of freedom are left for the MSR in (2.20), so the
lack-of-fit F -test in (2.30) cannot be applied. This problem can be
easily solved: select one or more combinations from another member
of the family, and also simulate this combination; the easiest selection
is random.

After discussing the 23−1 and 27−4 designs, I now consider intermediate
k values: 4 ≤ k ≤ 6. Table 2.3 can still be used: for k = 4 delete three
columns (e.g., the last three columns); for k = 5 delete two columns; for
k = 6 delete one column. Obviously, the resulting designs are not saturated
anymore. (Of course, the analysts may also add one or more extra factors
to their original list with 4 ≤ k ≤ 6 factors; these extra factors do not
require a bigger experiment: n remains eight.)

The next example (after Table 2.1 with n = 4 and Table 2.3 with n = 8)
has n = 2k−p = 16. So a saturated design implies k = 15. Hence k − p = 4
implies p = 15 − 4 = 11. This 215−11 design may be constructed through
the following simple algorithm.

Combi. 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3
1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +

Table 2.3: A one-fourth fractional factorial design for seven factors
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Algorithm 2.1 1. Construct the (full factorial two-level) 24 design;
i.e., write down the 16 × 4 design matrix.

2. Add all (4 × (4 − 1)/2 = 6) pairwise generators: 5 = 1.2, 6 = 1.3,
7 = 1.4, ..., 10 = 3.4.

3. Add the following four triplet generators: 11 = 1.2.3, 12 = 1.2.4,
13 = 1.3.4, 14 = 2.3.4.

4. Add the following quadruple generator: 15 = 1.2.3.4.

The final example that I give (after n = 4, 8, 16) has n = 32. So a
saturated design implies k = 31. Hence k − p = 5 (so 25 = 32) implies
p = 31 − 5 = 26. The construction of this 231−26 design remains quite
simple, but tedious. A computer procedure is then helpful. To check the
computed results, the orthogonality and balance of the resulting design may
be verified. It is simple to write such a procedure. I also refer to [332], p. 366
for a different procedure (based on so-called Walsh functions; also see [327]).

2.4.2 Plackett-Burman designs of resolution-III

As I mentioned above, Plackett-Burman designs have 2k−p designs as a
subclass. I speak of a Plackett-Burman design in the narrow sense if its
number of combinations equals a multiple of four, but not a power of two.
Actually, Plackett and Burman published such designs for 12 ≤ n ≤ 96.
In my 1974/1975 book ([181], pp. 332–333), I reproduced these designs
(including a misprint: 38 is obviously not a multiple of four; the correct
value is 36). These designs are also reproduced in [268], p. 170) for 12 ≤
n ≤ 36. The only Plackett-Burman design in the narrow sense that I have
ever applied, is the smallest one; see Table 2.4, which has n = 12 and
k = 11. Plackett-Burman designs are again balanced and orthogonal (but
they are “nonregular”; see [405]).

Combi. 1 2 3 4 5 6 7 8 9 10 11

1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + + + + - + - -
8 - - + + - - + + - + -
9 - - - + + + - + + - +
10 + - - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

Table 2.4: The Plackett-Burman design for eleven factors
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Exercise 2.7 Apply a resolution-III design to a simulation model of your
own choice, provided this model enables you to experiment with (say) be-
tween five and twenty factors. Select the ranges of these factors to be
“small” (e.g., 1% changes from the base values) so that a first-order polyno-
mial is a valid metamodel. If the simulation model is random, then simulate
(say) five replicates. Estimate the main effects of these factors, using the
coded and the original factor values respectively. Test whether these effects
are significantly different from zero. Give a list that sorts the factors in
their order of importance.

2.5 Regression analysis: factor interactions

Definition 2.11 Interaction means that the effect of one factor depends
on the levels of one or more other factors.

I offer the following comments on this definition.

• In analytical terms, interaction means E (w|xj = −1) − E (w|xj =
+1) = f(xj′) with j �= j′.

• If the I/O function is continuous, then the preceding expression im-
plies ∂E(w)/∂dxj = f(xj′) with j �= j′.

• In geometric terms, interaction means that the response curves
E (w|xj , xj′ = c) are not parallel for different c values; see the simple
example in Figure 2.5, which uses the coded values −1 and +1 for
the two factors.

x1

Response E(w| x1)

-1 +1

x2 = -1

x2 = +1

Figure 2.5: Interaction between two factors, x1 and x2
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The analytical expression for the metamodel corresponding with this
example is

E(y) = β0 + β1x1 + β2x2 + β1;2x1x2. (2.40)

This equation implies ∂E(y)/∂x1 = β1 + β1;2x2, so the effect of x1

indeed depends on x2.

• If the interaction between two factors is positive, the factors are called
complementary. If this interaction is negative, the factors are substi-
tutes for each other.

• Sobol’ [358] generalizes these definitions from classic linear regression—
or better, ANalysis Of VAriance (ANOVA)—to nonlinear models—
also called “functional ANOVA”; also see [44], [145], [168], [238], [263],
[279], [327], [329], [333], p. 193, and [341].

In general, augmenting the first-order polynomial in (2.31) with two-
factor (also called two-way or pairwise) interactions yields

E(y) = β0 +

k∑

j=1

βjxj +

k−1∑

j=1

k∑

j′=j+1

βj;j′xjxj′ . (2.41)

It is easy to prove that the total number of interactions in this equation is
k(k − 1)/2, so the total number of parameters is q = 1 + k + k(k − 1)2 =
1 + k(k + 1)/2. The formulation of X (matrix of explanatory variables) for
the metamodel (2.41) follows straightforwardly from D (design matrix):

X = (xij) = (1, di1, . . . , dik, di1di2, . . . , di;k−1dik). (2.42)

In the following case study a first-order polynomial did not give a valid
metamodel, but augmenting this polynomial with two-factor interactions
did give an adequate approximation.

Example 2.3 In 1988, Standridge and I published a case study on a Flex-
ible Manufacturing System (FMS) that we did for Pritsker & Associates
(see [212]). The factors of our simulation experiment determine the ma-
chine mix for our FMS; i.e., z1, z2, and z3 are the number of machines
performing operation #1, #2, and #3 respectively; z4 denotes the number
of flexible machines (robots) that may perform any of these three operations.
It was easy to derive that the experimental domain should be defined by the
following constraints: 5 ≤ z1 ≤ 6, 1 ≤ z2 ≤ 2, 2 ≤ z3 ≤ 3, and 0 ≤ z4 ≤ 2.
This domain is quite small indeed, so a first-order polynomial may result
in a valid metamodel. Originally, Standridge intuitively specified an incom-
plete design with n = 8 combinations (for details see [212]).Now, however,
we select a 24−1 design, which has the same number of combinations; see
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Table 2.3 above with the last three columns deleted (so the generator is
4 = 1.2). Both designs give I/O data, to which we fit first-order polynomi-
als; see (2.31) with k = 4. As is to be expected, the intuitive design gives
bigger variances for the estimated regression parameters; e.g., the variance
for the estimated effect of z4 is nearly four times higher (because we use
the original scales instead of the standardized scales, the 24−1 design does
not give constant variances for these parameters). Further analysis of the
fitted metamodel (based on the data from the 24−1 design) suggests that
the first-order polynomial is not adequate, and that the effects of z1 and z3

are negligible (see cross-validation discussed in Section 2.11.2 below). So
next, we fit a first-order polynomial in the remaining two factors—adding
their interaction; see (2.41) with k = 2. This model is fitted to the “old” I/O
data resulting from the 24−1 design. Our analysis suggests that the resulting
metamodel is valid. From this metamodel we conclude that the machines in
groups #2 and #4 are the bottlenecks of the FMS, and—because the inter-
action has a negative sign—that machine group #4 (the robots) can serve
as a substitute for machine group #2.

This example demonstrates the usefulness of first-order polynomials aug-
mented with two-factor interactions. The ANOVA literature uses higher-
order interactions, e.g., three-factor interactions:

E(y) = β0+

k∑

j=1

βjxj+

k−1∑

j=1

k∑

j′=j+1

βj;j′xjxj′+

k−2∑

j=1

k−1∑

j′=j+1

k∑

j′′=j′+1

βj;j′;j′′xjxj′xj′′

(2.43)

I will not give the definition of these high-order interactions, for two
reasons:

1. High-order interactions are hard to interpret (i.e., difficult to explain
to the simulation clients).

2. High-order interactions are often unimportant in practice.

Throughout this book, I assume that interactions among three or more
factors are unimportant. Of course, this assumption should be checked; see
the “lack of fit” and “validation” discussed throughout this book.

2.6 Designs allowing two-factor interactions:
resolution-IV

Definition 2.12 A resolution-IV design gives unbiased estimators of the
parameters of a first-order polynomial, even if two-factor interactions are
nonzero; all other effects are assumed to be zero.

Back in 1951, Box and Wilson [51] proved the foldover theorem. I formu-
late their theorem briefly as follows (I quoted the full theorem in [181], p. 343):
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Theorem 2.1 If a resolution-III design D is augmented with its so-called
mirror design −D, then the resulting design is a resolution-IV design.

So the price for proceeding from a resolution-III to a resolution-IV design
is that the number of combinations doubles.

I now give the following three examples:

1. Only k = 3 factors, originally investigated through a 23−1
III design

2. k = 7 factors and a 27−4
III design

3. k = 11 factors and a Plackett-Burman design.

Example 2.4 Table 2.1 gave the 23−1design with generator 3 = 1.2. The
mirrored design was shown in Table 2.2 , which is the 23−1design with
generator 3 = −1.2. Combining these two designs into a single design
gives a 23 design. This design results in an X with n = 8 rows and q =
1 + 3(3 + 1)/2 = 7 columns corresponding with the intercept, the three
first-order effects, and the three two-factor interactions. Because all these
columns are orthogonal, X is certainly not collinear, and LS estimation is
possible. The 8− 7 = 1 degree of freedom left, could be used to estimate the
three-factor interaction; see (2.43). However, if this high-order interaction
is assumed to be zero, then this degree of freedom can be used to estimate
the common variance σ2

w through MSR defined in (2.20).

The following example demonstrates that adding the mirror design gives
unbiased estimators of the first-order (or main) effects, but does not always
enable unbiased estimation of the individual two-factor interactions.

Example 2.5 Table 2.3 gave a 27−4 design. Combining this design with
its mirrored design gives a design with n = 16 combinations (namely, a
27−3 design; see below). X corresponding with (2.41) has n = 16 rows and
q = 1+7(7+1)/2 = 29 columns, so this X is collinear. Hence, LS estimation
of the 29 regression parameters is impossible. It is possible, however, to
compute the LS estimator of the intercept and the seven first-order effects;
see the next exercise.

Exercise 2.8 Derive X for the intercept and the seven first-order effects,
using the combined design in Example 2.5. Check that—for example—the
column for the interaction between the factors 6 and 7 is balanced and
orthogonal to the columns for the first-order effects of the factors 6 and 7.

Now I demonstrate some useful manipulations with the generators in Ta-
ble 2.1, which gave the 23−1design with the generator 3 = 1.2. Remember
that 3 = 1.2 stands for xi3 = xi1xi2 with i = 1, . . . , n. So postmultiplying
both sides of this equation by xi3 gives (xi3)

2 = xi1xi2xi3. Because xi3 is ei-
ther −1 or +1 in a 2k−p design, I write (xi3)

2 = +1. Hence, xi1xi2xi3 = +1.
Moreover, the dummy factor (which has the effect β0) implies xi0 = +1.
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So, xi1xi2xi3 = xi0; i.e., the estimates β̂0 and β̂1;2;3 are identical. The

DOE literature calls β̂0 and β̂1;2;3 confounded or aliased. It is quite easy

to prove that E(β̂0) = β0 + β1;2;3; i.e., only if β1;2;3 = 0, the estimator β̂0

is unbiased. But in this book I do assume that high-order interactions are
zero!

These manipulations may also be written in short-hand notation, using
mod(2). I start again with the generator 3 = 1.2. Postmultiplying both
sides with 3 gives 3.3 = 1.2.3 or 32 = 1.2.3. Applying mod(2) to the
exponent gives 30 = 1.2.3 where 30 = I with I a column with n ones. So
1.2.3 = I, which means that β̂0 and β̂1;2;3 are confounded. The literature
calls I = 1.2.3 the defining relation. It can be proven that this relation has
2p members—called words.

Similar manipulations can be used to derive that more effects are con-
founded in this example. I start again with the generator 3 = 1.2 or
I = 1.2.3. So (2.3)I = (2.3)(1.2.3) = 1.22.32 = 1.20.30 = 1.I.I = 1. So

2.3 = 1; i.e., E(β̂1) = β1 + β2;3. However, using Table 2.1 (a 23−1design
with 3 = 1.2) assumes that a first-order polynomial (no interactions) is
valid, so this design is a resolution-III design. Likewise, it is easy to derive
that 1.3 = 2. Summarizing these equations in the order of the main effects
gives 1 = 2.3, 2 = 1.3, and 3 = 1.2.

Table 2.2 gave the 23−1design with the generator 3 = −1.2. It is easy to
derive that this generator implies 1 = −2.3, 2 = −1.3, and 3 = −1.2, so
E(β̂1) = β1 − β2;3, etc.

Similarly, I manipulate the generators of the 27−4 design that were given
in Table 2.3. This design has four generators (in general, a 2k−p design
has p generators): 4 = 1.2, 5 = 1.3, 6 = 2.3, and 7 = 1.2.3. Hence
I = 1.2.4 = 1.3.5 = 2.3.6 = 1.2.3.7. So 1 = 2.4 = 3.5 = 1.2.3.6 = 2.3.7.
Assuming that high-order interactions are zero, the latter equations give
1 = 2.4 = 3.5. Analogously, it follows that the other main effect estimators
are not confounded with any other main effect estimators; the main effect
estimators are confounded with two-factor interaction estimators. So this
is a resolution-III design.

Exercise 2.9 Derive the expected value of the main effect estimator for
factor 2 in a 27−4 design with the generators 4 = 1.2, 5 = 1.3, 6 = 2.3,
and 7 = 1.2.3, assuming that all high-order interactions are zero.

A resolution-IV design for k = 7 factors may be constructed by adding
the mirror design of the preceding 27−4

III design. This gives a design with
n = 16 combinations. In my 1974/1975 book [181], pp. 336–344, I showed

how to derive the generators of a 2k−p
IV design (resolution-IV fractional-

factorial two-level design). I further showed that n = 16 combinations give
a resolution-IV design for eight factors (a 28−4

IV design); i.e., one extra fac-
tor may be studied when augmenting the 27−4

III with its mirror design. In
general, adding the mirror design to a resolution-III design for k factors
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gives a resolution-IV design for k + 1 factors (with nIV = 2nIII and nIII

a multiple of four, possibly a power of two). For example, k = 11 re-
quires a Plackett-Burman (resolution-III) design with nIII = 12 combi-
nations; see (2.4), so a resolution-IV design with nIV = 24 combinations
enables the estimation of k = 12 main effects unbiased by two-factor inter-
actions.

The construction of resolution-IV designs is easy, once a resolution-III
design is available. A DIII design (a Plackett-Burman design) is simply
augmented with its mirror design, −DIII . For the Plackett-Burman sub-

class of 2
(k−1)−p
III designs, the 2k−p

IV designs may be constructed by first
defining the full-factorial design in k − p factors, and then aliasing the
remaining p factors with high-order interactions among these first k − p
factors. For example, k = 8 and n = 16 = 24 leads to a 28−4 design. So first
a 24 design in four factors is written down. Suppose these four factors are
labeled 1, 2, 3, and 4. Next, the following main generators may be used:
5 = 1.3.4, 6 = 2.3.4, 7 = 1.2.3, and 8 = 1.2.4. It can be derived that the
28 two-factor interactions are confounded in seven groups of size four; see
[181], pp. 336–344 and [184]pp. 303–305.

The third (and last) example uses a (resolution-III) Plackett-Burman de-
sign in the narrow sense. These designs do not have the simple confounding
patterns of 2k−p designs. The latter designs use design generators, which
imply that a given column is identical to some other column of X when
that X includes columns for all the interactions among these k factors.
Plackett-Burman designs in the narrow sense lead to an X that also has
q = 1 + k + k(k − 1)/2 columns. Linear algebra proves that n < q im-
plies that this X is collinear. Hence, the columns for the main effects and
the intercept must be orthogonal to the two-factor interaction columns
(since it is a resolution-IV design), but the latter k(k − 1)/2 columns are
not necessarily mutually orthogonal or identical. (The expected value of
a specific two-factor interaction estimator is a linear combination of the
other two-factor interaction estimators; in 2k−p designs these linear com-
binations have weights either zero or one—if the principal generators are
used.)

The resolution-IV designs discussed so far imply that the number of com-
binations increases with jumps of eight (nIV = 8, 16, 24, 32, 40, ...), because
the underlying resolution-III designs have a number of combinations that
jump with four (nIII = 4, 8, 12, 16, 20, ...). Back in 1968, Webb [397] de-
rived resolution-IV designs with n increasing in smaller jumps: nIV = 2k
where k does not need to be a multiple of four. He also used the foldover
theorem. Because I have never seen any applications of these designs in
simulation, I refer to my 1974/1975 book [181], pp.344–348 for details of
these designs and their analysis.

In practice, a single simulation run may require so much computer time
that a resolution-IV design is hardly possible. The following procedure may
help.
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1. Simulate all combinations of the resolution-III design.

2. Use the I/O data resulting from step 1, to estimate the first-order
polynomial metamodel.

3. Use the metamodel resulting from step 2, to predict the simulation
responses of the mirror design of the resolution-III design (the original
resolution-III design plus its mirror design form the resolution-IV
design).

4. Initialize a counter (say) i: i = 1.

5. Simulate combination i of the mirror design.

6. Compare the metamodel prediction from step 3 and the simulation
response from step 5; if the prediction error is not acceptable, then
increase the counter to i+1 and return to step 4; else stop simulating.

I conclude this section on resolution-IV designs with a general discussion
of confounding. Suppose that a valid linear regression metamodel is

E(w) = E(y) = X1β1 + X2β2. (2.44)

An example is an X1 corresponding with the intercept and the main ef-
fects collected in β1, and an X2 corresponding with the two-factor inter-
actions β2. Suppose that the analysts use the simple metamodel without
these interactions. Then they estimate the first-order polynomial coeffi-
cients through

β̂1 = (X′
1X1)

−1X′
1w. (2.45)

So combining (2.45) and (2.44) gives

E(β̂1) = (X′
1X1)

−1X′
1E(w) =(X′

1X1)
−1X′

1(X1β1 + X2β2) =
= β1 + (X′

1X1)
−1X′

1X2β2

(2.46)

where (X′
1X1)

−1X′
1X2 is known as the alias matrix (see [48]). Equation

(2.46) implies an unbiased estimator of β1 if either β2 = 0 or X′
1X2 = 0.

Indeed, resolution-III designs assume that β2 = 0 where β2 consists of
the two-factor interactions; resolution-IV designs ensure that X′

1X2 = 0

(the two-factor interaction columns are orthogonal to the main effects and
intercept columns).

2.7 Designs for two-factor interactions:
resolution-V

Definition 2.13 A resolution-V design enables LS estimation of the first-
order effects, the two-factor interactions, and the intercept; all other effects
are assumed to be zero.
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The FMS case study in Example 2.3 illustrated that estimation of the
individual two-factor interactions may be desirable, in practice. In that
example, the number of factors was small (k was four originally, but reduced
to two after the analysis of the original 24−1

III design; elimination of the two
nonsignificant factors gave a 22 design replicate twice).

In the preceding section, I presented a 28−4
IV design. LS estimation of

the q = 1 + 8(8 + 1)/2 = 37 regression parameters was impossible. Obvi-
ously, n = 64 combinations enables LS estimation of these 37 parameters—
provided these combinations are selected correctly. A correct selection is a
28−2 design. Such a design has p = 2 generators. To avoid aliasing among
the relevant effects (namely, the two-factors interactions, the main effects,
and the intercept), these generators should multiply more than two fac-
tors; e.g., a bad generator is 7 = 1.2 because it gives I = 1.2.7 so 1 = 2.7,
2 = 1.7, and of course 7 = 1.2. Another bad generator is 7 = 1.2.3, be-
cause it implies I = 1.2.3.7 so 1.2 = 3.7, etc. Actually, the construction
of a 28−2 design implies that a full-factorial 26 design is constructed first.
Next, the generators 7 = 1.2.3.4 and 8 = 1.2.5.6 is a good choice, because
it implies I = 1.2.3.4.7 = 1.2.5.6.8 = 3.4.5.6.7.8 where the last equality
follows from multiplying the first two members of the identity relation.
Hence, these generators imply confounding of two-factor interactions with
interactions among three or more factors—the latter (high-order) interac-
tions are assumed to be zero, in this book.

Exercise 2.10 Prove that the following two generators confound main ef-
fects and two-factor interactions (e.g., 5 = 6.7) if there are seven factors:
6 = 1.2.3.4.5 and 7 = 1.2.3.4.

In general, the first-order polynomial augmented with all the two-factor
interactions implies that q (number of regression parameters) becomes 1 +
k+k(k−1)/2 = (k2 +k)/2+1, so the number of parameters becomes order
k2 and many more combinations need to be simulated compared with a
first-order polynomial. Back in 1961, Box and Hunter [50] published a table
with generators for 2k−p designs of resolution V and higher; I reproduced
their table in my 1974/1975 book [181], p. 349, and do so again in Table 2.5.
Note that this table gives some designs with a resolution higher than V;
the definition of these higher resolution is unimportant for DASE.

Recently, Sanchez and Sanchez [332] published a computer procedure
for constructing resolution-V designs in case the number of factors is very
large: k may be as high as 120. An example is a 2120−105

V design. Un-
fortunately, 2k−p designs—except for the 25−1

V design—require relatively
many combinations to estimate the regression parameters. One example is
the 29−2

V I design in Table 2.5, which requires 128 combinations to estimate
q = 1+9(9+1)/2 = 46 parameters so its “efficiency” is only 46/128 = 0.36.
Another example is the 2120−105

V design, which requires n = 32, 768 whereas
q = 7, 261 so its efficiency is only 7261/32768 = 0.22.
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k n generators

5 25−1
V = 16 5 = 1.2.3.4

6 26−1
V I = 32 6 = 1.2.3.4.5

7 27−1
V II = 64 7 = 1.2.3.4.5.6

8 28−2
V = 64 7 = 1.2.3.4; 8 = 1.2.5.6

9 29−2
V I = 128 9 = 1.4.5.7.8; 10 = 2.4.6.7.8

10 210−3
V = 128 8 = 1.2.3.7; 9 = 2.3.4.5; 10 = 1.3.4.6

11 211−4
V = 128 generators for k = 10 plus 11 = 1.2.3.4.5.6.7

Table 2.5: Generators for fractional-factorial two-level designs of resolution
V and higher (VI, VII)

There are resolution-V designs that require fewer runs. For example, [255]
gives a design for 47 factors that requires 2,048 combinations, so its effi-
ciency is 1, 129/2, 048 = 0.55 (whereas [332] requires 4,096 combinations,
so its efficiency is 0.28). And [141] gives a resolution-V design for 64 factors
and 4,096 combinations, so its efficiency is 0.51([332] requires 8,192 com-
binations, so its efficiency is 0.25). For further comparisons among these
three types of designs, I refer to [332], pp. 372–373.

Actually, if a simulation run takes much computer time, then saturated
designs are much more attractive. Back in 1967, Rechtschaffner [311] pub-
lished simple saturated nonorthogonal fractions of two-level (and three-
level) designs; see Table 2.6 (and also [181], p. 352). Their construction is
simple: the generators are permuted in the different factor combinations;
see the design for k = 4 factors in Table 2.7 and for k = 5 factors in
[181], p. 352.

Exercise 2.11 Compute the variances of the estimated regression param-
eters that result from the design in Table 2.7. What would these variances
have been, had there been an orthogonal saturated design of resolution-V
for k = 4?

I applied Rechtschaffner’s design in the following case study.

Example 2.6 The Dutch OR Society organized a competition, challenging
the participants to find the combination of six factors that maximizes the
output of a simulated system. This challenge was accepted by twelve teams
from academia and industry—including one of my graduate students (Pala)
and me. Because each team could run only 32 combinations, Pala and I
used Rechtschaffner’s saturated resolution-V design. So we simulated 1 +
6 + 6(6 − 1)/2 = 22 combinations; see Table 1 in [208].

Effect type Generator
Intercept (−1, . . . ,−1) for all k factors
Main effect (−1,+1, . . . ,+1) for all k factors
Two-factor Interaction (1, 1,−1, . . . ,−1) for k > 3 factors

Table 2.6: Generators for Rechtschaffner’s resolution-V designs
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Combi. Generator 1 2 3 4

1 (−1, . . . ,−1) −1 −1 −1 −1
2 (−1,+1, . . . ,+1) −1 +1 +1 +1
3 +1 −1 +1 +1
4 +1 +1 −1 +1
5 +1 +1 +1 −1
6 (+1,+1,−1, . . . ,−1) +1 +1 −1 −1
7 +1 −1 +1 −1
8 +1 −1 −1 +1
9 −1 +1 +1 −1
10 −1 +1 −1 +1
11 −1 −1 +1 +1

Table 2.7: Rechtschaffner’s design for four factors

2.8 Regression analysis: second-order polynomials

The Taylor series argument implies that—as the experimental area gets
bigger or the I/O function gets more complicated—a better metamodel may
be a second-order polynomial. An example is the M/M/1 simulation: a valid
metamodel for the I/O behavior for higher traffic rates in Figure 2.1 may be

E(y) = β0 + β1x + β2x
2. (2.47)

Obviously, estimation of the three parameters in (2.47) requires the sim-
ulation of at least three input values. Indeed, practitioners often use a
one-factor-at-a-time design with three values per factor (they even do so,
when fitting a first-order polynomial; above, I showed that this practice
is inferior). DOE also provides designs with three values per factor; e.g.,
3k designs. However, more popular in simulation are Central Composite
Designs (CCDs), which have five values per factor (see Section 2.9 below).

I emphasize that the second-order polynomial in (2.47) is nonlinear in x

(explanatory regression variables), but linear in β (regression parameters).
Consequently, such a metamodel remains a linear regression model, which
was specified in (2.10).

The general second-order polynomial in k factors is

E(y) = β0 +

k∑

j=1

βjxj +

k∑

j=1

k∑

j′≥j

βj;j′xjxj′ . (2.48)

So this metamodel adds k purely quadratic effects βj;j to (2.41); conse-
quently, q (total number of effects) becomes (k + 1)(k + 2)/2. In practice,
second-order polynomials are applied either locally or globally. Local fitting
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may be used when searching for the optimum input combination; an exam-
ple is the competition in Example 2.6. I shall return to searching for the
optimum in Chapter 4. Global fitting (for 0 < x < 1 in the M/M/1 queue-
ing example) using second-order polynomials has been applied, but I think
that Kriging provides better metamodels; see Chapter 5 and also [404].

2.9 Designs for second-degree polynomials: Central
Composite Designs (CCDs)

A CCD augments a resolution-V design such that the purely quadratic
effects can also be estimated. Figure 2.6 gives an example for two factors.
In general, a CCD adds the central point and 2k axial points that form
a star design, where—in the coded factors—the central point is (0, . . . 0)′,
and the “positive” axial point for factor j (with j = 1, . . . , k) is the point
with xj = +c and all other k−1 factors fixed at the center (so xj′ = 0 with
j′ = 1, . . . , k and j′ �= j) and the “negative” axial point for factor j is the
point with xj = −c and xj′ = 0. Selecting c = k1/2 results in a rotatable
design; i.e., this design gives a constant variance for the predicted output
at a fixed distance from the origin (so the contour functions are circles).
Note that a CCD does not give an orthogonal X; hence, the estimated
parameters of the second-degree polynomial are correlated. Note further
that if nCCD denotes the total number of combinations in a CCD, then
nCCD = nV + 1 + 2k; e.g., k = 2 implies nCCD = 22 + 1 + 2 × 2 = 9;
see again Figure 2.6. For k = 120, the design in [332] implies nCCD =
32, 768 + 1 + 2 × 120 = 33, 009. Often only the central point is replicated,
to estimate the common variance and to compute the lack-of-fit F -statistic

x1
-1 +1

x2

+1

-1

Center point

Axial point

Resolution-V point

Figure 2.6: A CCD for two factors
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defined in (2.30). For further discussion of CCDs, I refer to Myers and
Montgomery’s classic textbook on RSM [268], and NIST/SEMATECH’s
e-handbook of statistical methods [275].

Exercise 2.12 By definition, a rotatable CCD gives a constant variance
for the predicted output at a given distance from the origin. Will this con-
stant variance increase or decrease as the output is predicted at a distance
farther away from the origin?

CCDs are rather inefficient because they use inefficient resolution-V de-
signs and add 2k axial points so—together with the center point—five
values per factor result. Therefore, in Example 2.6, Pala and I simulated
only half of the star design; e.g., if the better outputs seem to lie in the
southwestern corner of Figure 2.6, then it is efficient to simulate only the
two points (−c, 0)′ and (0,−c)′. I have already emphasized that classic
resolution-V designs are very inefficient, so I prefer Rechtschaffner’s satu-
rated designs. In my 1987 book [184], pp. 314–316, I discuss three other
types of saturated designs for second-order polynomials (due to Koshall,
Scheffé, and Notz respectively), but I have never seen any simulation ap-
plications of these designs. More designs for second-order polynomials are
surveyed in [25], which also references [261].

Exercise 2.13 Select a model with a known (unconstrained) optimum in
your favorite literature (e.g., the Operations Research/Management Sci-
ence literature on inventory management). Fit a second-order polynomial
in the neighborhood of the true optimum, using the coded and the original
input values respectively. To fit that polynomial, use a design that enables
unbiased estimation of all the coefficients of this polynomial (e.g., a CCD
with axial points with a coded value equal to

√
k where k denotes the number

of inputs in your simulation experiment). Replicate only the center point
of this design m > 1 times. Then estimate the optimal input and output
of this simulation model, using the fitted polynomial (again in coded and
original values).

2.10 Optimal designs and other designs

What is an optimal design? I discuss the following optimality criteria, which
include the so-called alphabetic optimality criteria.

• A-optimality : minimize the trace of cov(β̂). Obviously, this criterion
is related to the criterion that I have (implicitly) used so far, namely
minimize the individual variances of the estimated regression param-

eters, var(β̂j) with j = 1, . . . , q. The A-optimality criterion neglects

the off-diagonal elements of cov(β̂); these elements are incorporated
in the following criterion.
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• D-optimality : minimize the determinant of cov(β̂).

• G-optimality: minimize the maximum prediction variance, var(ŷ).

• IMSE-optimality: minimize the MSE integrated over the experimen-
tal area. Note that MSE was defined in (2.20); a related criterion is
the Root MSE, RMSE =

√
MSE.

Optimal designs do not need to be orthogonal.
There is quite some literature on optimal designs. In 1959, Kiefer and

Wolfowitz published their classic article on optimal designs; see [178]. And
in 1972, Fedorov published his famous book on the same topic; see [111].
A standard text is Pukelsheim’s 1993 book, [302]. A recent book is [256];
recent articles are, e.g., [56], [65], [233], [243], and [355]. The recent mono-
graph [265] uses the so-called Minimum Aberration (MA) criterion; also see
[405]. I shall return to the construction of optimal designs in the chapter
on optimization, Chapter 4, and the chapter on Kriging, Chapter 5. All
these criteria assume that n (number of combinations) and q (number of
parameters) are fixed (in Chapter 5, however, n will not be a constant;
i.e., the design is sequential; [320] discusses Bayesian two-stage designs for
low-order polynomial metamodels). References to older literature are given
in my 1987 book [184], pp. 335–336.

The DOE literature gives many more design types.

• Whereas resolution-V designs enable the estimation of all k(k− 1)/2
two-factor interactions, some designs enable the estimation of specific
two-factor interactions only—besides the k main effects and the inter-
cept. In 2005, [2] derived such designs; moreover, these designs enable
the estimation of specific three-factor interactions. These designs are
optimal in the sense that they are orthogonal. The 2006 paper [124]
also assumes that not all two-factor interactions are important; that
paper investigates how to discriminate among regression models with
different subsets of two-factor interactions. I also refer to the 1974
publication [362] and the 2006 publications [167] and [232].

• In mixed-level designs, some factors have two levels, some have three
levels, some have four levels, etc. This happens, e.g., when some fac-
tors are qualitative with more than two levels, and some are quanti-
tative with two levels. A 2005 article that gives an algorithm for the
construction of orthogonal mixed-level designs is [224]. Another 2005
article, namely [242], discusses aliasing among effects. A textbook
that includes these designs is [402].

• I have not discussed blocked designs, because I assume that block-
ing may be important in real-life experiments, but not in simulation
experiments. More specifically, I assume that in real life the environ-
ment cannot be controlled, so undesirable effects may occur. Exam-
ples are learning effects during experiments with humans, and extra
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wear during experiments with car tires (the right-front tire may wear
more than any of the other three tires). In simulation experiments,
such undesired effects simply do not occur, because everything is com-
pletely controlled—except for the PRNs. Antithetic Random Num-
bers (ARN) and CRN can be used as a block factor—as originally
proposed by [343] (for an update see [96]). I shall briefly return to
blocking in a case study discussed in Section 2.12. and in my detailed
discussion of Latin Hypercube Sampling (LHS) in Section 4.5.

Randomization is another issue that I claim to be unimportant in
simulation experiments, whereas in real life the order in which exper-
imental units (such as tires or cars) are assigned to specific treatments
may be important (so this assignment should be in random order, to
reduce systematic effects).

• In weighing designs the factor levels sum-up to 100%, as is the case
in experiments where the factors denote the proportion of chemicals
that are used to produce a product; a recent article is [60], which
provides more references.

• The usual experimental area is a k-dimensional rectangle (or square
if the factors are standardized; see equation 2.32). In some applica-
tions, however, the experimental area does not have simple “box”
constraints, so different shapes result when the factors must satisfy
general constraints. In [215] my coauthors and I study this problem
for classic designs used in random simulation (in our harbor simula-
tion the factors should have values such that the traffic rate remains
smaller than 100%). A more recent publication , namely [367], solves
this problem for maximin designs in deterministic simulation.

• Whereas classic designs keep the factor levels constant during a sim-
ulation run, Frequency Domain Experimentation (FDE) oscillates
these levels during a run. More precisely, each factor has its own
oscillation frequency. FDE tries to find which input oscillations af-
fect output oscillations. Originally (in 1987), Schruben and Cogliano
[342] proposed this approach. Recently (2005), Sanchez et al. [331]
applied FDE for second-order polynomial metamodels with an arbi-
trary number of factors; they also studied a kanban simulation with
34 factors. Unfortunately, FDE requires rather complicated Fourier
spectral analysis.

• The Internet gives information on software for the generation and
analysis of more designs. This software includes Stat-Ease’s “Design-
Ease” and “Design-Expert” and Crary’s “WebDOE”, and generic sta-
tistical software such as Genstat, Minitab, S-Plus, and Statistica; see,
e.g., [136], [227], and
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http://www.scientific-computing.com/scwfebmar06computational.html.
A library of over 200 orthogonal arrays is maintained by Sloane at
A&T; see
http://www.research.att.com/˜njas/oadir/.
More website addresses for metamodeling software are given in [355],
which documents a 2002 panel discussion.

2.11 Validation of metamodels

In practice, the simulation analysts do not know over which experimental
area (say) a first-order polynomial gives a valid metamodel. This validity
depends on the goals of the simulation study. The goal may be to find the
optimal factor combination of the simulation model; a local metamodel may
then be used to estimate the local gradient—which is used to search for the
optimum, in a sequence of steps. A different goal may be to identify the
factors that are important in a given experimental area; a global metamodel
is then needed. Sargent and I discuss this issue in [211].

In Section 2.2, I presented the lack-of-fit F -test, which assumes white
noise. In this section, I present the following alternatives:

1. two related coefficients of determination (including R2) and two re-
lated correlation coefficients

2. cross-validation.

These alternatives may be applied to deterministic and random simula-
tion, and to other metamodels than linear regression models; e.g., neural
networks (see Section 2.12) and Kriging models.

2.11.1 Coefficients of determination and correlation
coefficients

R2 is a very popular statistic in passive observation of real systems; in
active experimentation with replication, the lack-of-fit F -statistic is more
popular (see page 23). Whether or not replications are available, R2 may
be defined as follows (also see, e.g., [98], p. 33):

R2 =

∑n
i=1(ŷi − w)2∑n
i=1(wi − w)2

= 1 −
∑n

i=1(ŷi − wi)
2

∑n
i=1(wi − w)2

(2.49)

where ŷi denotes the metamodel predictor defined in (2.12), widenotes the
simulation response of combination i averaged over its mi ≥ 1 replicates
defined in (2.27), and w =

∑n
i=1 wi/n denotes the overall average simu-

lation response. The right-most equality in (2.49) shows that R2 = 1 if
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ŷi = wi for all i values. R2 measures how much of the variation in the
simulation response is explained by the regression model; see the denom-
inator in (2.49), which is the numerator of the classic variance estimator
computed over the n combinations—analogous to (2.26).

I do not define R2 as a function of the individual outputs wir, because I
accept the metamodel as valid if it adequately predicts the expected output
of the simulation model. Defining R2 as a function of the individual outputs
would decrease the value of R2 because of the larger variability of the
individual outputs per combination.

R2 may also be used in deterministic simulation. In such simulation, the
analysts do not obtain any replicates so wi becomes wi and w becomes w
in (2.49).

Obviously, if n = q (no degrees of freedom left; saturated design), then
R2 = 1. This value is misleading. Therefore R2 adjusted for the number of
explanatory variables is defined as follows:

R2
adjusted = 1 − n − 1

n − q
(1 − R2). (2.50)

Obviously, if q = 1, then R2
adjusted = R2.

Lower critical values for either R2 or R2
adjusted are unknown, because

these statistics do not have well-known distributions. Analysts therefore use
subjective lower thresholds. In 2006, Deflandre and I demonstrated how the
distributions of these two statistics can be obtained through bootstrapping
(or resampling); see [200]. I shall further discuss the bootstrap approach in
the next chapter.

R2 is also called the multiple correlation coefficient. However, R2 should
be distinguished from the Pearson correlation coefficient—usually denoted
by ρ. As any statistics textbook explains, this ρ quantifies the strength of
the linear relationship between two random variables (say) x and w (in
classic DOE, x is deterministic—so regression analysis instead of corre-
lation analysis is used). Like R2, the statistic ρ ranges between −1 and
+1. A value of +1 implies that the two variables are related perfectly by
an increasing (positive slope) linear relationship. A value of −1 implies a
perfect, decreasing linear relationship. Now I present the formal definition
of ρ.

Formally, assume that the (vector) random variable (x,w) is Bivariate
Normally Independently Distributed with parameters E(x) = µx, E(w) =
µw, var(x) = σ2

x, var(w) = σ2
w, and cor(x,w) = ρ(x,w) = ρ (so cov(x,w)

= ρσxσw):

(x,w) ∼ NID2(µ,Σ) with µ = (µx, µw)′, Σ =

[
σ2

x ρσxσw

ρσxσw σ2
w

]
,

(2.51)



56 2. Low-order polynomial regression metamodels and their designs: basics

where the subscript 2 of NID denotes that the vector variate has dimension
2. Then it can be derived that

E (w|x) = β0 + β1x with β0 = µw − β1µx and β1 = ρ
σw

σx
. (2.52)

It may seem that the relationships in (2.52) can be used to validate a
metamodel, as follows. Let the metamodel have output y that approximates
the simulation model’s output w. Then (2.52) seems to imply that a perfect
metamodel has E (y|w) = w if β0 = 0 or µy = µw and β1 = 1 or ρ = 1 and
σw = σy. However, the output w does not have a normal distribution; in
fact, w is a function of the simulation inputs that depend deterministically
on the design D. Nevertheless, this type of validation may be used in trace-
driven simulation; see the Note on page 60.

The parameters µx, µw, σ2
x, and σ2

w can be estimated in the classic
way, analogous to (2.27) and (2.26) respectively. The covariance is then
estimated through

ĉov(x,w) =

∑n

i=1
(xi − x)(wi − w)

n − 1
, (2.53)

so the correlation is estimated through

ρ̂(x,w) = ρ̂ =

∑n

i=1
(xi − x)(wi − w)

√∑n

i=1
(xi − x)2

√∑n

i=1
(wi − w)2

. (2.54)

A special case is ρ = 0. In this case, x and w are independent (zero correla-
tion does not imply independence for nonnormally distributed variables!).
To test H0 : ρ = 0, the following t statistic can be used:

tn−2 =
ρ̂√

1 − ρ̂2

√
n − 2. (2.55)

The general case of confidence intervals for the correlation coefficient is
discussed in [372].

It may happen that the two variables x and w are related, but not
through the linear relationship E (w|x) = β0+β1x in (2.52). An example of
an alternative relationship is E (w|x) = β0x

β1 . Such an increasing mono-
tonic relationship may be quantified through Spearman’s rank correlation
coefficient (say) η. This coefficient is Pearson’s coefficient computed—not
from the original pairs (xi, wi)—but from the ranked pairs (r(xi), r(wi)),
as follows:

1. The smallest value of xi is assigned a rank of 1 (so r(xi) = 1 if
xi = mini′ xi′), . . . , the largest value gets rank n (so r(xi) = n if
xi = maxi′ xi′).
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2. In case of a “tie” (two or more values happen to be the same), the
average rank is assigned to the members of that tie.

3. The ranks for w are computed in the same manner as for x.

To test the null-hypothesis H0 : η = 0, Table A10 in [81] can be used.
If n ≥ 30, then this hypothesis may also be tested through z = η̂

√
n − 1

where z denotes the standard normal variable so z ∼ N(0, 1); again see
[81], p. 456.

Note: Details on the use of the two related correlation coefficients ρ and
η to identify important factors in simulation (not to quantify the adequacy
of a metamodel) are given in my article with Helton, [204]; also see [44]
and [145].

Example 2.7 In [204],Helton and I use Pearson’s and Spearman’s cor-
relation coefficients to identify important factors in a large-scale simula-
tion developed at Sandia National Laboratories in Albuquerque, New Mexico
(NM). This simulation estimates the probability of (low-radiation) leakage
from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM (the radi-
ation may result from nuclear medical treatment; the leakage may be caused
by drilling intrusions into the WIPP; most parts of the simulation model
are deterministic because they represent physical processes, but some parts
are random because they represent human actions). Several performance
measures (over a planning horizon of 10,000 years) are considered, in or-
der to obtain permission for building the WIPP. The number of values per
factor is one hundred (n = 100), which is high compared with the two-level
designs and the CCDs, which use only two or five values respectively (the
WIPP simulation experiment uses LHS, to sample the n values per factor;
see Section 4.5 on Risk Analysis). The two correlation coefficients quantify
the strength of the relationships between an individual factor and a specific
simulation output.

Note: Another measure of dependence (or association) is Kendall’s tau;
this measure is compared with Spearman’s measure in [114].

2.11.2 Cross-validation

Before I discuss cross-validation, I discuss the following type of validation
that is often used for the validation of the predictive adequacy of any model
in any scientific discipline.

1. First, the analysts use the model to compute a prediction (say) ŷ. In
DASE, this ŷ may be the outcome of the metamodel; in other areas
ŷ may be the outcome of a simulation model or some other model.

2. Next, the analysts observe the actual outcome (say) w. In DASE, w
is the simulation outcome; in the other areas, w is the outcome of the
real system.
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3. Finally, the analysts compare the two outcomes; are the outcomes
close? In DASE, this comparison may go as follows.

Assume that the analysts compute their prediction through a linear
regression metamodel with parameters β estimated from n factor com-
binations, each replicated mi times (i = 1, . . . , n). The analysts use this
metamodel to predict the actual simulation outcome for a new combina-
tion xn+1:

ŷn+1 = x′
n+1β̂ (2.56)

where for simplicity I assume that the OLS estimator β̂ is used (a more
complicated estimator would be the Estimated GLS, EGLS; see Chapter 3).

To estimate the expected simulation outcome for the same combination
xn+1, the analysts obtain mi > 1 replicates of the simulation output and
compute the average

wn+1 =

∑mn+1

r=1 wn+1;r

mn+1
. (2.57)

To compare the outcomes of (2.56) and (2.57), the analysts may use the
Studentized statistic

tν =
wn+1 − ŷn+1√

̂var(wn+1) + ̂var(ŷn+1)

(2.58)

where var(wn+1) is estimated through the classic estimator

̂var(wn+1) =

∑mn+1

r=1 (wn+1;r − wn+1)
2

mn+1(mn+1 − 1)

and var(ŷn+1) is estimated through the analogue of (2.16):

̂var(ŷn+1) = x′
n+1

̂
cov(β̂)xn+1.

Because the two variables wn+1 and ŷn+1 have different variances, the
correct value for ν (degrees of freedom) in (2.58) is not so easy to determine
(this is known as the Behrens-Fisher problem; see [100] and also [181]). I
think that a simple solution is

ν = min
1≤i′≤n+1

mi′ − 1.

If the statistic in (2.58) is not significant, then the analysts may accept
the metamodel as being valid. Next, they may use the “new” observa-
tions wn+1;r (r = 1, . . . mn+1) to re-estimate the regression parameters β.
The resulting new estimate is expected not to deviate much from the old
estimate—assuming the metamodel is valid.
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Actually, once the analysts have included the new I/O data in the old
data set, the new and the old data may change roles; e.g., x1 may replace
xn+1 in the preceding equations. This idea leads to cross-validation.

Cross-validation is applied not only in linear regression analysis, but also
in nonlinear regression analysis, Kriging, neural networks, etc.; see, e.g.,
[105] and [382]. The basic idea of cross-validation is quite old; see, e.g.,
Stone’s 1974 article [369]. Here I give the so-called leave-one-out cross-
validation procedure ([355] claims that “leave-k-out cross-validation” may
be better for the validation of Kriging metamodels). For ease of presenta-
tion, I first assume that X has only n rows (not N =

∑n
i=1 mi rows), so I

assume that the number of replicates is constant, possibly one: mi = m ≥ 1.
If the number of replicates is indeed a constant (m > 1), then the LS esti-
mate may replace wir (individual simulation output for combination i) by
wi (average simulation output for combination i); see page 24.

Note: If mi > 1 and mi �= m (different replication numbers), then the
white noise assumption implies var(wi) = σ2

w/mi; i.e., the variance of wi

is not constant. In case of such heterogeneity of variance, the LS formulas
need correction (see the next chapter).

The leave-one-out cross-validation procedure runs as follows.

1. Delete I/O combination i from the complete set of n combinations,
to obtain the remaining I/O data set (X−i,w−i). I assume that this
step results in a noncollinear matrix X−i (i = 1, . . . , n); see (2.59)
below. To satisfy this assumption, the original matrix X must satisfy
the condition n > q. Counterexamples are saturated designs; a simple
solution is to simulate one more combination, e.g., the center point if
the original design is not a CCD.

2. Recompute the LS estimator of the regression parameters:

β̂−i = (X′
−iX−i)

−1
X′

−iw−i. (2.59)

3. Use this recomputed estimator β̂−i to compute the regression predic-
tion for the combination deleted in step 1:

ŷ−i = x′
iβ̂−i. (2.60)

4. Repeat the preceding three steps, until all n combinations have been
processed. This results in n predictions ŷ−i with i = 1, . . . , n.

5. Use a scatterplot with the n pairs (wi, ŷ−i) to judge whether the
metamodel is valid.

Note: It is wrong to proceed as follows. Start with the N × q matrix
XN (instead of the n× q matrix X) and the corresponding N -dimensional
vector of simulation outputs w (instead of w). Next, delete one row of this
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XN and the corresponding w (so XN becomes XN−1). From the remaining
I/O data, recompute the LS estimator β̂ and the regression predictor ŷ. I
emphasize that this predictor uses mi−1 simulation outputs for scenario i,
so it does not challenge the metamodel to correctly predict the mean sim-
ulation output for this scenario! Obviously, if mi = 1, then this procedure
is not wrong.

The following two case studies use the cross-validation procedure outlined
above:

• a deterministic spreadsheet simulation for the economic appraisal of
natural gas projects; see [387]

• a random simulation for the control of animal diseases; see [391].

Note: Scatterplots with (wi, ŷi)—not (wi, ŷ−i)—are used in many de-
terministic simulations; an example is the simulation of the earth’s cli-
mate in [139], not using cross-validation of a linear regression metamodel
but straightforward validation of a Kriging metamodel. These scatterplots
should be distinguished from scatterplots for the validation of trace-driven
simulation models. The former plots use different factor combinations as
inputs; i.e., (wi, ŷi) and (wi′ , ŷi′) use the combinations di and di′ with
i �= i′. The latter plots use the same factor combination but different real-
izations of the random input variables. For example, for M/M/1 queueing
systems the simulation uses the arrival times that are observed for the real
system, in historical order; i.e., the simulated system and the real system
are assumed to have the same arrival rate λ, and both systems use the
same realizations of the random interarrival time a; also see (2.4). In [196],
my coauthors and I prove that this scatterplot gives a line like (2.52) with
a slope β1 < 1 (so the line does not have a 45 degrees tilt) and an intercept
β0 > 0—if the simulation model is valid.

Exercise 2.14 Prove that β1 < 1 and β0 > 0 if the simulation model
with output w is a “valid” model of the real system with output (say) x so
µw = µx and σw = σx, but the simulation model is not “perfect” so ρ < 1.

Back in 1983 (see [183]), I proposed the following alternative for the
subjective judgment in step 5, inspired by (2.58): Compute

t
(i)
m−1 =

wi − ŷ−i√
̂var(wi) + ̂var(ŷ−i)

(i = 1, . . . , n) (2.61)

where ̂var(wi) = ̂var(wi)/m (and ̂var(wi) was given in (2.26)) and ̂var(ŷ−i)
follows from (2.60) and the analogue of (2.16):

̂var(ŷ−i) = x′
i

̂
cov(β̂−i)xi (2.62)
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where
̂

cov(β̂−i) = ̂var(wi)(X
′
−iX−i)

−1
. (2.63)

Because (2.61) gives n values (because i = 1, . . . , n), the regression meta-
model is rejected if

max
i

t
(i)
m−1 > tm−1;1−[α/(2n)] (2.64)

where the right-hand side follows from Bonferroni’s inequality, which im-
plies that the classic type-I error rate (in this case α/2) is replaced by the
same value divided by the number of tests (in this case n)—resulting in the
“experimentwise” or “familywise” type-I error rate α. (Recent references
on Bonferroni’s inequality are given in [135].)

There is a shortcut for the n computations in the cross-validation proce-
dure given above; modern software uses this shortcut. The technique uses
the so-called hat matrix H (see, e.g., [258], pp. 201–202, and also [216], pp.
156–157):

H = (hii′) = X(X
′
X)

−1
X′ with i, i′ = 1, . . . . , n. (2.65)

This H is implicitly used in (2.12) where ŷi = x′
iβ̂, since this equation

implies the vector ŷ = (ŷi) = Xβ̂, which together with (2.13) gives

ŷ = X(X′X)
−1

X′w= Hw. (2.66)

In other words, H projects the vector of observations w onto the subspace
spanned by X. Such a projection matrix is idempotent: HH = H. Obvi-
ously, H is an n× n matrix, so it assumes that the number of replicates is
constant, possibly one.

Note: If mi > 1 and mi �= m (different replication numbers), then the
white noise assumption implies var(wi) = σ2

w/mi; i.e., the variance of wi is
not constant. Then a more complicated definition of the hat matrix becomes
necessary for the shortcut (see the next chapter, and also [216], p. 157))
(Validation of nonlinear regression metamodels including a modified hat
matrix is discussed in [334] and [335].)

From (2.65) it follows that the ith element on the main diagonal of H is
hii. It can be proven (see, e.g.,[19], p. 18, 24) that the numerator of (2.61)
can be written as

wi − ŷ−i =
wi − ŷi

1 − hii

and (2.61) itself can be written as

tmi−1 =
wi − ŷi√

̂var(wi)
√

1 − hii

(i = 1, . . . , n) (2.67)
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so the cross-validation computations can be based solely on the original
I/O data, (X,w), which give ŷi and hii (the subscript is i, not −i).

Note: If the analysts assumed that the metamodel is valid, then ̂var(wi)
could be computed from MSE defined in (2.20); also see [283].

I have already pointed out (see page 31) the difference between signifi-
cance and importance ( a factor may be significant but not important, and
vice versa). In situations with many simulation replications, a metamodel
may give a predicted value that differs significantly from the simulation out-
put, and yet the metamodel may adequately serve its purpose. For example,
[54] uses m = 500 replicates when comparing the outcomes of a first-order
polynomial approximation and the original simulation for a new scenario,
using (2.58). That publication gives a significant difference. Yet the meta-
model adequately helps identify the important factors (even though the
metamodel is not perfect; i.e., it does not give a scatterplot with all pairs
(wi, ŷ−i) on the 45◦ line).

I emphasize that in deterministic simulation, the statistic defined in
(2.64) should not be applied, for the following reason. Deterministic simula-

tion implies that the term ̂var(wi) in (2.61) is set to zero. The term ̂var(ŷ−i)

may be computed from (2.62) where (2.63) uses the factor ̂var(wi), which
may now be computed from the MSR in (2.20). But the worse the meta-
model fits, the bigger this MSR gets—so the smaller the test statistic in
(2.61) becomes, so the smaller the probability of rejecting this false meta-
model becomes! Therefore I propose to compute the relative prediction
errors ŷ−i /wi, and decide whether these errors are acceptable—practically
speaking. (In other words, instead of Studentizing the prediction errors, I
now standardize the prediction errors by using relative errors.) An alter-
native remains the scatterplot described in Step 5 of the cross-validation
procedure above (on page 59).

Cross-validation not only affects the regression predictions ŷ−i, but also

the estimated regression parameters β̂−i; see (2.60). So the analysts may be
interested not only in the predictive performance of the metamodel, but also
in its explanatory performance—as the following example demonstrates.

Example 2.8 In this example, I return to Example 2.3, which concerned
a case study on a FMS. There are four factors in the simulation experi-
ment, denoted by z1 through z4. The experiment uses a 24−1 design. This
experiment gives I/O data, to which Standridge and I fit a first-order poly-
nomial. Moreover, we apply cross-validation. In this deterministic simu-
lation experiment, the first-order polynomial gives high relative prediction
errors (namely, between −38% and +33%), and negligible effects of z1 and
z3. So next, we fit a first-order polynomial in the remaining two factors
augmented with their interaction. We fit this model to the “old” I/O data
from the 24−1 design. Cross-validation of the new metamodel gives smaller
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relative prediction errors (between −16% and +14%) and stable important
main effects and interaction for z2 and z4.

The regression literature proposes several so-called diagnostic statistics
that are related to (2.67); e.g., PRESS, DEFITS, DFBETAS, and Cook’s
D; see [216], p. 157. The simulation literature proposes validation measures
that are related to MSE; e.g., RMSE, Average Absolute Error (AAE),
and Average Absolute Relative Error (AARE). Instead of taking the Mean
(see M in the preceding acronyms) or Average (see A), the analysts may
take the maximum. The mean is relevant for risk-neutral users, whereas
the maximum is for risk-averse users. For further discussion, I refer to my
article with Sargent [211] and to [138], [235] and Chapter 5 (on Kriging).

Outside linear regression analysis, the literature also uses either the ab-
solute value or the squared value of the numerator in (2.61)—and ignores
the denominator. This gives either RMSE or AAE. For details, I refer
to, e.g., [382]. The distribution of such criteria may be estimated through
bootstrapping; see [68].

Exercise 2.15 Simulate the M/M/1 model (also see Exercise 1.6). Pick
a single (scalar) performance measure; e.g., the steady-state mean waiting
time, or the mean waiting time of (say) the first 100 or 1000 customers.
Select two different experimental areas; e.g., the traffic load ρ = λ/µ varies
between 0.1 and 0.3 and between 0.5 and 0.8. Select these two areas such
that you are pretty sure that a first-order polynomial gives good and bad
fit respectively (for “high” traffic rates the first-order polynomial is not a
valid metamodel; see Figure 2.1 above). To select these areas, you may
“cheat” as follows: draw a plot of the analytical steady-state mean against
the traffic rate. Use mi replicated simulation runs (with nonoverlapping
PRN streams). Either ignore the variance heterogeneity within the experi-
mental area or use more replicates for the higher traffic rate; see (3.27) in
the next chapter. You may use either a single PRN stream or two streams
for arrival and service times—whatever you find convenient. To simplify
your analysis, do not apply CRN for different traffic rates. Now validate
your metamodel, using different techniques (e.g., the lack-of-fit F-test and
cross-validation).

2.12 More simulation applications

Besides the case studies that I presented above, there are many more (but
not enough) applications of linear regression metamodels and experimen-
tal designs in simulation (any simulation should use such designs, includ-
ing their analysis). A 2002 panel with five representatives from indus-
try and government presented more applications of metamodels, including
low-order polynomials for deterministic engineering simulations; see [355].
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These applications use various designs and metamodels, e.g., a resolution-
V fractional factorial design for 10 and 30 factors respectively, and a CCD
for 11 factors (built stagewise, starting with a Plackett-Burman design,
followed by a foldover design, etc.).

To further illustrate simulation applications of linear regression meta-
models, I summarize a few recent applications—more or less in random
order.

• Sensitivity Analysis aimed at better understanding (not at predic-
tion) of a simulated automated manufacturing system is performed
in [101]. Its authors are especially interested in interactions and the
relative importance of factors. They select eight factors, and simulate
a 28−2

V design with ten replicates. They standardize these factors as
in (2.33). R2

adjusted is only 0.83 for a first-order polynomial, but in-
creases to 0.96 when adding two-factor interactions. One main effect
turns out to be nonsignificant; nine (out of 28) two-factor interactions
are significant. To validate the fitted metamodel (keeping only sig-
nificant effects), the authors randomly select ten combinations that
are not a part of the original 28−2

V design. They compute the AREs
|wi − ŷi| /wi (with i = 1, . . . 10), and consider both the average and
the maximum of these AREs over the ten combinations—as Sargent
and I propose in [211]. Because interactions are important, a factor’s
relative importance is not measured by the absolute value of its main
effect only. These authors measure this importance in a special way
(see [101], p. 28); I wonder whether a simple overall measure for factor
importance is necessary and possible.

• To perform Sensitivity Analysis of a simulated inventory management
system in Internet retailing, [20] uses a 25 design combined with “de-
sign blocking”. In this application, the block factor is demand corre-
lation, which has four levels (this correlation may be either high or
low, and either positive or negative). Furthermore, the validity of the
metamodel is measured through R2 and R2

adjusted. (The normality
and variance homogeneity assumptions are checked through graphi-
cal analysis of the residuals; see Chapter 3.) This application results
in significant main effects and two-factor interactions; high-order in-
teractions are not significant. Two-factor interactions are illustrated
through plots analogous to Figure 2.5. The blocking effect is signif-
icant, but the authors find it difficult to explain this effect—which
supports my claim that simulation experiments should not use block-
ing, except for the control of ARN and CRN.

• To optimize (also see Chapter 4) a simulated DSS for a production
line, [93] uses a 25 design with m = 5 replicates per combination
(and no CRN). The authors estimate a regression metamodel includ-
ing all interactions (including the five-factor interaction). They keep
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two nonsignificant main effects, because they want to optimize all five
factors (which are decision variables in the DSS). They check the fit of
the metamodel through R2

adjusted. Moreover, they validate the fitted
metamodel by predicting the outputs of eight randomly selected com-
binations that are not a part of the original 25 design. They compute
the ARE to quantify the metamodel’s validity; they average the ARE
over these eight combinations; I point out that an alternative may be
the maximum ARE over these combinations—depending on the risk
attitude of the users. (The authors check the white noise assumptions
through residual plots delivered by Minitab; also see Chapter 3.).

• To predict the performance of a Dial-up Modem Pool (DMP), [339]
uses simulation, and analyzes the resulting I/O data through first-
order polynomials augmented with two-factor interactions—applying
transformations (such as ln(x) and 1/x) of the independent variables.
Its authors also fit two neural networks and a nonlinear data mining
metamodel, using commercial software. They experiment with five
factors; e.g., number of modem pools. Each factor has either three or
four levels. They use twenty replicates, and eliminate the apparent
warm-up period. They select six performance measures; e.g., mean
time in queue. To validate their metamodel’s predictions, they use a
design with the same factors but different levels. To quantify the fit
and the validity of their metamodels, they use R2, the Mean Squared
Deviation (MSD), and the Mean Absolute Deviation (MAD). For
some factor combinations—but not all combinations—the linear re-
gression metamodels perform significantly poorer than the more com-
plicated metamodels (similar results will be given in Chapter 5 for
low-order polynomials versus Kriging). The authors point out that
metamodels might be used not only for prediction, but also for ex-
planation; the low-order polynomials best serve explanation resulting
in insight (as the FMS case study in Example 2.3 demonstrated).

• To explain (understand) and optimize the parameters of evolutionary
search strategies, [26]—also see [27]—applies DOE, linear regression,
and GLM (see page 8). At the start there are nine factors; e.g., one
factor is the number of parent individuals and another factor is the
recombination operator. The output variable (say) w is the quality
of the best solution found by the search strategy. A 29−5

III design finds
the important factors, after transforming the output w into log(w).
Then only five of these nine factors turn out to be significant. Next,
for the four significant quantitative factors, a 24 design is used. The
resulting I/O data give only two important factors. These two factors
are further explored in a CCD design (see my Figure 2.6) with ten
replicates for each factor combination.
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• Like the preceding publication (namely [26]), another publication
(namely [306]) investigates search strategies (including evolutionary
strategies, but also Tabu Search, Simulated Annealing, and a hill-
climbing procedure). The application concerns the location of am-
bulances. Its authors distinguish three qualitative factors (e.g., dis-
tribution type of demand for ambulances) and two outputs (quality
of best solution found by the search strategy, and time to find that
solution). To compare the four heuristics, the authors use DOE, ac-
counting for two-factor and three-factor interactions; fortunately, the
(hard to interpret) three-factor interaction was nonsignificant.

• Manufacturing simulation and DOE are combined in [225]. This ap-
plication has three response variables and seven factors, including
one nominal factor. It uses a 27−1 design augmented with two cen-
tral points. These central points have the nominal factor at its two
levels, while all other coded, quantitative factors are zero. So the
number of simulation runs is 64 (= 27−1) plus the two central points
(all together 66 runs). Obviously, no main effects or two-factor inter-
actions are aliased with each other. Its authors use the Design Ease
and Minitab software. (They test the white noise assumption through
residual plots delivered by Minitab.) Next, they apply RSM—for only
two factors and one response variable.

2.13 Conclusions

In this chapter, I gave a tutorial explaining the basics of linear regression
models—especially first-order and second-order polynomial models—and
the corresponding statistical designs—namely, designs of resolution III, IV,
and V, and CCDs. I also discussed the validation of the estimated regres-
sion model, including the coefficient of determination R2 and the adjusted
coefficient R2

adjusted, Pearson’s and Spearman’s correlation coefficients, and
cross-validation. Throughout this chapter I assumed white noise, meaning
that the residuals of the fitted linear regression model are Normally, Inde-
pendently, and Identically Distributed (NIID) with zero mean. In the next
chapter, I shall drop the white-noise assumption, and explain the conse-
quences.

2.14 Appendix: coding of nominal factors

In my first book ([181] p. 299), I discussed the following example to illus-
trate how to model nominal factors with two or more levels. The example
has two factors, called A and B; A has three levels, and B has two levels;
no replicates are obtained.
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So X (matrix of explanatory variables) in the general linear regression
model (2.10) is

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.68)

where column 1 corresponds with the dummy factor, columns 2 through 4
with factor A, and columns 4 and 5 with factor B. Row 1 means that in the
first factor combination, A is at its first level, and B is also at its first level.
Row 2 means that in the second combination, A is still at its first level,
but B is at its second level. Row 3 means that in the third combination, A
is at its second level, and B is at its lowest level. And so on, until the last
combination (row 6) where A is at its third level, and B is at its second
level.

In this example, the column of regression parameters in (2.10) becomes
β = (β0, β

A
1 , βA

2 , βA
3 , βB

1 , βB
2 )′. If w denotes the simulation output, then β0

is the overall or grand mean:

β0 =

∑3
i=1

∑2
j=1 E(wij)

6
. (2.69)

The main effect of factor A at level i is

βA
i =

∑2
j=1 E(wij)

2
− β0 (i = 1, 2, 3) (2.70)

—also see Figure 2.7—and the main effect of factor B at level j is

βB
j =

∑3
i=1 E(wij)

3
− β0 (j = 1, 2); (2.71)

see Figure 2.8, especially the Legend sub 1. These last three equations
(namely, (2.69), (2.70), and (2.71)) imply the following constraints:

βA
1 + βA

2 + βA
3 = 0 (2.72)

and
βB

1 + βB
2 = 0, (2.73)

because the three main effects of factor A are defined as the deviations
from the average response, as is illustrated in Figure 2.7 where this average
is the dotted horizontal line; for factor B a similar argument applies.

If a factor is quantitative, then interpolation makes sense; see the dashed
line that connects the two responses in Figure 2.8, especially the legend sub
2. (For factor A it seems that a second-order polynomial is a more adequate
approximation.) Then the coding with −1 and +1 of the main text (instead
of 0 and +1 in this appendix) may be used, so β0 becomes the intercept of
the polynomial, βB becomes the marginal effect ∂E(w)/∂B (which is an
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Factor A

Response w

Level 1 Level 2 Level 3

Figure 2.7: Factor A with three levels

Factor B

Response w

Level 1 Level 2

1)

1)

2)
3)

1) Definition for two or more levels

2) Interpolation

3) Revised definition for two levels

Figure 2.8: Factor B with two levels only

element of the gradient) or the slope of the first-order polynomial, etc. If
the factors have two levels only, then an alternative definition also makes
sense; see the legend sub 3 in the figure. This alternative defines “the” effect
of a factor—not as the deviation from the average—but as the difference
between the two mean outputs averaged over all levels of the other factors:

βB =

∑3
i=1 E(wi1)

3
−

∑3
i=1 E(wi2)

3
. (2.74)
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Note that this definition gives values twice as big as the original one.
The 6 × 6 matrix X in (2.68) is not of full rank; e.g., summing the

columns 2 through 4 or the columns 5 and 6 gives column 1. It can be
proven that the rank of X is four. The normal equations together with
the two constraints (2.72) and (2.73) give the unique LS estimate β̂; see,
e.g., [32] and its references to classic textbooks. These computations are
standard in ANOVA software.

2.15 Solutions for exercises

Solution 2.1 log(y) = β0 + β1 log λ + ... so y = eβ0+β1 log λ+.... Hence
d

dλ (eβ0+β1 log λ) = β1e
β0λβ1−1,

which upon substitution into the expression for the elasticity coefficient
(dy/y)/(dλ/λ) = (dy/dλ)(λ/y)
gives

(β1e
β0λβ1−1)(λ/eβ0+β1 log λ) = λβ1

eβ0

eβ0+(ln λ)β1
λβ1−1,

which upon some manipulation reduces to β1.

Solution 2.2 E(β̂) = L[E(w)] = (X′X)−1X′[Xβ] = (X′X)−1(X′X)β =
β.

Solution 2.3 cov(β̂) = L[cov(w)]L′ = [(X′X)−1X′][σ2
wI][(X′X)−1X′]′.

Because (X′X)−1 is symmetric, this expression becomes
[(X′X)−1X′][X(X′X)−1]σ2

w = (X′X)−1(X′X)(X′X)−1)σ2
w = (X′X)−1)σ2

w.

Solution 2.4 (2.1) in matrix notation becomes
w = Lw with L = (1, . . . , 1)/c and w = (w1, . . . , wc)

′.
Assuming that these waiting times are independent with constant vari-

ance σ2 gives
cov(w) = σ2I.
Combining with (2.16) gives var(w) = [(1, . . . , 1)/c][σ2I][(1, . . . , 1)′/c] =
σ2[(1, . . . , 1)/c][(1, . . . , 1)′/c] = σ2[c/(c2)] = σ2/c.

Solution 2.5 From cov(β̂) = (X′X)
−1

σ2
w in (2.17) with (say) σ2

w= 1 and

X =

[
1 l
1 u

]

follows

X′X =

[
1 1
l u

] [
1 l
1 u

]
=

[
2 l + u

l + u l2 + u2

]
so

(X′X)
−1

=

[
2 l + u

l + u l2 + u2

]−1

=

[
l2+u2

−2lu+l2+u2
−l−u

−2lu+l2+u2

−l−u
−2lu+l2+u2

2
−2lu+l2+u2

]
so

var(β̂1) = 2
−2lu+l2+u2 = 2

(u−l)2 .

This variance is minimal if the denominator (u − l)2 is maximal, which
occurs if l and u are as far apart as possible.
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Solution 2.6 The experimental area 0.2 ≤ z ≤ 0.5 implies
a = (0.2 + 0.5)/(0.2 − 0.5) = −2. 333
and
b = 2/(0.5 − 0.2) = 6.667.
Hence
x = −2.333 + 6.667z so
xmin = −2.333 + (6.667)(0.2) = −1
and
xmax = −2.333 + (6.667)(0.5) = 1.
Further, z = 0.3 implies x = −2.333 + (6.667)(0.3) = −0.333.
Likewise z = 0.4 implies x = −2.333 + (6.667)(0.4) = 0.333.

Solution 2.7 The answer depends on the simulation model that you selected.

Solution 2.8 Table 2.3 gives
Combi. 1 2 3 4 5 6 7

1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +

so adding its mirror design and adding the column 6.7 gives
Combi. 1 2 3 4 5 6 7 6.7
1 - - - + + + - -
2 + - - - - + + +
3 - + - - + - + -
4 + + - + - - - +
5 - - + + - - + -
6 + - + - + - - +
7 - + + - - + - -
8 + - - + + + + +
9 + + + - - - + -
10 - + + + + - - +
11 + - + + - + - -
12 - - + - + + + +
13 + + - - + + - -
14 - + - + - + + +
15 + - - + + - + -
16 - - - - - - - +
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Solution 2.9 I = 1.2.4 = 1.3.5 = 2.3.6 = 1.2.3.7 implies 2 = 1.4 = 1.2.
3.5 = 3.6 = 1.3.7. Assuming zero high-order effects gives 2 = 1.4 = 3.6,
so E(β̂2) = β2 + β1;4 + β3;6.

Solution 2.10 6 = 1.2.3.4.5 implies I = 1.2.3.4.5.6.
7 = 1.2.3.4 implies I = 1.2.3.4.7.
So 6.7 = (1.2.3.4.5)(1.2.3.4) = 5.

Solution 2.11 Adding the dummy column for the intercept to Rechtschaff-
ner’s design gives

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
1 −1 1 1 −1
1 −1 1 −1 1
1 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so X′ X =

⎡
⎢⎢⎢⎢⎣

11 1 1 1 1
1 11 −1 −1 −1
1 −1 11 −1 −1
1 −1 −1 11 −1
1 −1 −1 −1 11

⎤
⎥⎥⎥⎥⎦

so (X′ X)
−1

=

⎡
⎢⎢⎢⎢⎣

2
21 − 1

84 − 1
84 − 1

84 − 1
84

− 1
84

2
21

1
84

1
84

1
84

− 1
84

1
84

2
21

1
84

1
84

− 1
84

1
84

1
84

2
21

1
84

− 1
84

1
84

1
84

1
84

2
21

⎤
⎥⎥⎥⎥⎦

,

whereas an orthogonal design matrix would imply var(β̂j) = 1/n =
1/11 = 0.09 < 2/21 = 0.95.

Solution 2.12 The variance of the predicted output increases as the input
combination moves away from the center of the experimental area; also see
the text between the equations (4.3) and (4.4).

Solution 2.13 The answer depends on the simulation model that you se-
lected.

Solution 2.14 A valid simulation model implies σw = σx = σ, which
implies β1 = ρσ/σ = ρ. A less than perfect simulation model implies ρ < 1,
so β1 < 1. A valid simulation model also implies µw = µx = µ, which
implies that β0 = µw − β1µx reduces to β0 = µ − β1µ = µ(1 − β1) =
µ(1 − ρ). So β0 > 0 if 0 < ρ < 1 (not a perfectly valid simulation model)
and µ > 0, which holds for most queuing simulation outputs (e.g., mean
waiting time and mean queue length are positive).

Solution 2.15 The answer depends on the metamodel, experimental area,
etc. that you selected.





3
Classic assumptions revisited

This chapter is organized as follows. In Section 3.1, I define the classic
assumptions. In Section 3.2, I discuss multivariate simulation output. In
Section 3.3, I address possible nonnormality of the simulation output, in-
cluding tests of normality, transformations of simulation I/O data, jack-
knifing, and bootstrapping. In Section 3.4, I cover variance heterogeneity
of the simulation output. In Section 3.5, I discusses cross-correlated sim-
ulation outputs, created through Common Random Numbers (CRN). In
Section 3.6, I discuss nonvalid low-order polynomial metamodels. In Sec-
tion 3.7, I summarize the major conclusions of this chapter. I finish with
solutions for the exercises of this chapter.

3.1 Introduction

In this chapter, I return to the assumptions that I used in Chapter 2,
in which I discussed classic linear regression analysis and its concomitant
designs. These classic assumptions stipulate univariate output and white
noise. In practice, however, these assumptions usually do not hold.

Indeed, my general black-box representation in (2.6) implies that the

simulation output Θ̂ is a multivariate random variable. In one example,
Θ̂1 estimated the mean waiting time and Θ̂2 estimated the 90% quantile
(also called percentile) of the waiting time distribution. Another example

may be that Θ̂1 estimates the mean waiting time, and Θ̂2 estimates the
mean queue length. More examples will follow in Section 3.2.
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For the readers’ convenience, I repeat the definition of white noise that
was given in the preceding chapter.

Definition 3.1 White noise (say) u is Normally, Independently, and Iden-
tically Distributed (NIID) with zero mean: u ∼ NIID(0, σ2

u).

This definition implies the following assumptions.

• Normally distributed simulation responses

• No use of CRN across the (say) n factor (or input) combinations

• Common variance of the simulation responses across the n combina-
tions

• Valid metamodel, so the expected values of the residuals of the fitted
metamodel are zero.

In this chapter, I shall address the following questions, in the order that
they are listed here.

1. How realistic are the classic assumptions, which were used in the
preceding chapter?

2. How can these assumptions be tested, if “needed” (i.e., if it is not
obvious that the assumption is violated; a counterexample is CRN,
which obviously violates the independence assumption)?

3. If an assumption is violated, can the simulation’s I/O data be trans-
formed such that the assumption holds?

4. If not, which statistical methods do then apply?

The answers to these questions are scattered throughout the literature
on statistics and simulation; in this chapter, I try to answer these questions
in a coherent way.

3.2 Multivariate simulation output

In practice, the simulation model often results in multivariate output. A
class of practical examples concerns inventory simulation models with the
following two outputs:

1. the sum of the holding and the ordering costs, averaged over the sim-
ulated periods

2. the service (or fill) rate, averaged over the same simulation periods.
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The precise definitions of these two outputs vary with the applications.
For example, the holding costs may have fixed and variable components;
the service rate may be the fraction of total demand per year that is deliv-
ered from stock at hand. Moreover there may be multiple inventory items or
Stock Keeping Units (SKUs). Inventory simulations are discussed in simula-
tion textbooks such as [227] and in many Management Science/Operations
Research (MS/OR) textbooks (I report on inventory simulations together
with several coauthors; see [12], [162], and [209]).

A case study relevant in this context concerns a Decision Support System
(DSS) for production planning based on a simulation model, in which I was
involved; see [186]. Originally, this simulation model had a multitude of
outputs. However, to support decision making, it turns out that it suffices
to consider only the following two outputs (these two DSS criteria form a
bivariate response):

1. the total production of steel tubes manufactured (which is of major
interest to the production manager)

2. the 90% quantile of delivery times (which is the sales manager’s con-
cern).

I shall return to this case study in the chapter on optimization (Chapter
4).

In (2.6), I have already introduced a general black-box representation.

Now it is convenient to replace the symbol Θ̂ by w to obtain

w = s(d1, . . . , dk, r0) (3.1)

where
w denotes the vector of r simulation outputs, so w = (w0, . . . , wr−1)

′ (it
is convenient to label the r outputs starting with zero instead of one; see
Chapter 4);

s(.) denotes the mathematical function implicitly defined by the com-
puter code that implements the given simulation model;

dj with j = 1, . . . k is the jth factor (input variable) of the simulation
program (so D = (dij) is the design matrix for the simulation experiment,
with i = 1, . . . , n and n the number of factor combinations in that experi-
ment);

r0 is the vector of PseudoRandom Number (PRN) seeds.
Analogous to my assumption in the preceding chapter on univariate out-

put, my current assumption is that the multivariate I/O function s(.) in
(3.1) is approximated by r univariate low-order polynomials (in the pre-
ceding chapter, I assumed r = 1):

yh = Xβh+eh with h = 0, . . . r − 1 (3.2)
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where
yh = (y1;h, . . . , yn;h)′ denotes the n-dimensional vector with the regres-

sion predictor yh for simulation output wh;
X = (xij) denotes the common n×q matrix of explanatory variables with

xij the value of explanatory variable j in combination i (i = 1, . . . , n; j =
1, . . . , q); for simplicity, I assume that all fitted regression metamodels are
polynomials of the same order (e.g., either first order or second order); if
q ≥ 2 (including an intercept), then the metamodel is called a multiple
regression model;

βh = (β1;h, . . . , βq;h)′ denotes the q regression parameters for the hth

metamodel;
eh = (e1;h, . . . , en;h)′ denotes the residuals for the hth metamodel, in the

n combinations.
This multivariate regression model violates the classic assumptions, as

the following simplistic example illustrates.

Example 3.1 Suppose that there are only two factor combinations (n =
2). Suppose further that each input combination gives three outputs (r =
3). No CRN are used. Finally, suppose that the variances and covariances
do not vary with the combinations. These assumptions give the following
covariance matrix, where I show only the elements on and above the main
diagonal because the matrix is symmetric:

cov(e) =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ1;2 σ1;3 0 0 0

σ2
2 σ2;3 0 0 0

σ2
3 0 0 0

σ2
1 σ1;2 σ1;3

σ2
2 σ2;3

σ2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This example illustrates that multivariate residuals e have the following
two properties.

1. The univariate residuals eh have variances that vary with the output
variable wh (h = 1, . . . , r); i.e., σ2

h �= σ2. Practical examples are sim-
ulated inventory costs and service percentages, which have different
variances so σ2

1 �= σ2
2.

2. The univariate residuals eh and eh′ are not independent for a given
input combination i; i.e., σh;h′;i �= 0 for h �= h′ Obviously, if these
covariances (like the variances) do not vary with the combination i,
then this property may be written as σh;h′;i = σh;h′ �= 0 for h �= h′.
For example, “unusual” PRN streams in a given combination i may
result in inventory costs that are “relatively high”—that is, higher
than expected—and a relatively high service percentage, so these two
outputs are positively correlated: σ1;2 > 0.
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Because of these two properties (σ2
h �= σ2 and σh;h′ �= 0 for h �= h′),

the classic assumptions do not hold. Consequently, it seems that the uni-
variate Ordinary Least Squares (OLS) estimators should be replaced by
the Generalized Least Squares (GLS) estimator of the parameter vector in
the corresponding multivariate regression model. Such an approach tends
to be rather complicated, so simulation analysts tend to be daunted; also
see [126]. Fortunately, in 1967 Rao [310] proved that GLS reduces to OLS
computed per output if the same design matrix of independent variables
(denoted by X) is used (as is the case in simulation with multivariate out-
put); i.e., the Best Linear Unbiased Estimator (BLUE) of βh in (3.2) is

β̂h = (X′X)
−1

X′wh (h = 0, . . . , r − 1) (3.3)

where wh was defined below (3.1) and D =(dij)—defined below (3.1)—
determines X in (3.2) and (3.3). More recent references are [244] and [321],
p. 703.

Given Rao’s result, the simulation analysts can easily obtain confidence
intervals and statistical tests for the regression parameters per type of
output variable; i.e., the analysts may use the classic formulas presented in
the preceding chapter.

3.2.1 Designs for multivariate simulation output

To the best of my knowledge, there are no general designs for multivariate
output. I consider a simple, artificial example (inspired by [54]).

Example 3.2 The analysts are interested in two simulation response vari-
ables (so r = 2 in (3.1)). The number of simulation inputs is 15 (so k = 15
in (3.1)). First the analysts try to estimate the first-order effects, so they
use a resolution-III design. Obviously, an attractive resolution-III design is
a 215−11 design (see Chapter 2). After running this design, they find that
the factors labeled 1 through 7 have important main effects for response type
0, while the factors labeled 6 through 15 have important main effects for re-
sponse type 1. In the next stage of their investigation, the analysts want to
estimate the two-factor interactions between those factors that turned out
to have important main effects in the first stage. This approach means that
the analysts (implicitly) use the “strong heredity” assumption in [402]. That
assumption states that if a factor has no important main effect, then this
factor does not interact with any other factor (also see Chapter 6). Because
the number of two-factor interactions is k(k−1)/2, this number sharply in-
creases with the number of factors in the experiment. In this example it is
therefore efficient to estimate the interactions in two separate experiments,
namely one experiment for each simulation response type. So the analysts
split the original group of k = 15 factors into two subgroups, namely one
subgroup with k0 = 7 factors for the simulation response labeled 0 and
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k1 = 10 factors for the simulation response labeled 1 (the factors labeled 6
and 7 are members of both subgroups). The original group with 15 factors
would require 1+15+15×(15−1)/2 = 121 factor combinations at least (but
classic resolution-V designs are often not saturated at all; see Chapter 2).
Now the first subgroup requires at least 1+7+7× (7− 1)/2 = 29 combina-
tions, and the second subgroup requires at least 1+10+10×(10−1)/2 = 56
combinations. So, together the two subgroups require at least 29 + 56 = 85
instead of 121 combinations; i.e., a “divide and conquer” strategy pays off
indeed.

3.3 Nonnormal simulation output

I repeat a remark made in the preceding chapter: Least Squares (LS) is a
mathematical criterion, so LS does not assume a normal distribution. Only
if the simulation analysts require statistical properties—such as BLUEs,
confidence intervals, and tests—then they usually assume a normal (Gaus-
sian) distribution (alternative distributions corresponding with alternative
criteria such as the L1 and the L∞ norms are discussed in [269]). In this
section, I try to answer the following questions (already formulated more
generally in Section 3.1):

1. How realistic is the normality assumption?

2. How can this assumption be tested?

3. How can the simulation’s I/O data be transformed such that the
normality assumption holds?

4. Which statistical methods can be applied that do not assume nor-
mality?

3.3.1 Realistic normality assumption?

By definition, deterministic simulation models do not have a normally dis-
tributed output for a given factor combination; this output is a single fixed
value. Nevertheless, simulation analysts often assume a normal distribution
for the residuals of the fitted metamodel. An example is my case study on
coal mining, using deterministic System Dynamics simulation; see [189].
Another case study models global heating caused by the CO2 greenhouse
effect; my coauthors and I use deterministic simulation in [218]. I also re-
fer to the chapter on Kriging (Chapter 5). Indeed, the simulation analysts
might argue that so many things affect the residuals that the classic Central
Limit Theorem (CLT) applies and a normal distribution is a good assump-
tion. I shall return to the CLT below (immediately after Definition 3.2).
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In this subsection, I focus on random simulation models. In the next
paragraph (and in the Kriging chapter, Chapter 5) I need the following
definition.

Definition 3.2 The time series wt is a stationary covariance process if it
has a constant mean (say) E(wt) = µ, a constant variance var(wt) = σ2,
and covariances depending only on the lag |t − t′| so cov(wt, wt′) = σ|t−t′|.

In practical and academic simulation models the normality assumption
often holds asymptotically ; i.e., if the “sample” size is large, then func-
tions of the simulation data —in particular the sample average of those
data—are nearly normal. Basic statistics books mention that the CLT ex-
plains why an average is often normally distributed. The CLT assumes
that this average has independent components. In simulation, however, the
output of a simulation run is often an average computed over that run so
the components are autocorrelated (serially correlated). Fortunately, there
are (sophisticated) variations of the CLT that explain why and when this
correlation does not destroy the normality of the average in many simula-
tions. For example, [179] discusses the Functional Central Limit Theorem
(FCLT) and gives references including Billingsley’s 1968 classic textbook
[43]. Furthermore, Lehmann’s textbook ([229], Chapter 2.8) implies that
the average of a stationary covariance process remains asymptotically nor-
mally distributed if the covariances tend to zero sufficiently fast for large
lags.

I add that in inventory simulations the output is often the costs averaged
over the simulated periods; this average is probably normally distributed.
Another output of an inventory simulation may be the service percentage
calculated as the fraction of demand delivered from on-hand stock per
(say) week, so “the” output is the average per year computed from these
52 weekly averages. This yearly average may be normally distributed—
unless the service goal is “close” to 100%, so the average service rate is cut
off at this threshold and the normal distribution is a bad approximation.

Finally, I point out that confidence intervals based on the t statistic are
quite insensitive to nonnormality; see the many references in my 1987 book,
[184]. However, the lack-of-fit F -statistic is more sensitive to nonnormality;
again see [184].

In summary, a limit theorem may explain why random simulation out-
puts are asymptotically normally distributed. Whether the actual simula-
tion run is long enough, is always hard to know. Therefore it seems good
practice to check whether the normality assumption holds (as I shall explain
in the next subsection).

3.3.2 Testing the normality assumption

Basic statistics textbooks (also see the recent articles [17],[121], and [170])
and simulation textbooks (see [184] and [227]) propose several visual plots
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and goodness-of-fit statistics—such as the chi-square, Kolmogorov-Smirnoff,
and Anderson-Darling statistics—to test whether a set of observations come
from a specific distribution type such as a normal distribution. These plots
and statistics can also be generated through software that is available as
an add-on to simulation or statistics software (such software is mentioned
throughout this book). A basic assumption is that these observations are
Identically and Independently Distributed (IID). Simulation analysts may
therefore obtain “many” (say, m = 100) replicates for a specific factor com-
bination (e.g., the base scenario) if such an approach is computationally
feasible. However, if a single simulation run takes relatively much computer
time, then only “a few” (say, 2 ≤ m ≤ 10) replicates are feasible, so the
plots are too rough and the goodness-of-fit tests lack power. (To obtain
more observations on an expensive simulation in an inexpensive way, the
analysts may bootstrap a goodness-of-fit test; see [69].)

Actually, the white-noise assumption concerns the metamodel’s residuals
e, not the simulation model’s outputs w. The estimated residuals êi =
ŷi − wi with i = 1, . . . n were defined in (2.11); an alternative definition
was given in (2.25), namely êi = wi − ŷi. These two definitions coincide in
case of passive observation (as is the case in, e.g., econometric studies), so
no replicates are available. I, however, assume that the simulation analysts
obtain at least a few replicates for each factor combination (∀i : mi >
1). For simplicity of presentation, I further assume that the number of
replicates is constant (mi = m). If the simulation outputs w have a constant
variance (σ2

w), then σ2
w (= σ2

w/m) is also constant. Unfortunately, even
if the average simulation outputs have a constant variance (σ2

w) and are
independent (no CRN), the estimated residuals do not have a constant
variance and they are not independent; it can be proven that

cov(ê) = [I − X(X′X)−1X′]σ2
w (3.4)

where X is the n × q matrix of explanatory regression variables; also see
(2.67). This equation uses the well-known hat matrix H = X(X′X)−1X′.

An example of normality testing in simulation is [20]; this publication
checks the normality assumption (and the variance homogeneity assump-
tion; see Section 3.4) through a graphical analysis of the estimated residu-
als (I have already discussed this publication in Section 2.12). Several more
simulation publications apply visual inspection of residual plots, which are
standard output of many statistical packages; see, e.g., [276].

3.3.3 Transformations of simulation I/O data, jackknifing,
and bootstrapping

The simulation output w may be transformed to obtain better normality;
e.g., v = log(w) may be more normally distributed than the original sim-
ulation output w. The logarithmic transformation is a special case of the



3.3 Nonnormal simulation output 81

Box-Cox power transformation:

v =
wλ − 1

λ
if λ �= 0; else v = ln(w) (3.5)

where λ is estimated from the original simulation output data. A compli-
cation is that the metamodel now explains the behavior of the transformed
output, but not the behavior of the original output! See the recent textbook
[19] and the articles [77] and [115].

Note: Outliers may occur more frequently whenever the actual distri-
bution has “fatter” tails than the normal distribution. Robust regression
analysis might therefore be applied; see the recent articles [35] and [325]
and textbook [19]. However, I have not seen any applications of this ap-
proach in simulation.

Normality is not assumed by two general computer-intensive statistical
procedures that use the original simulation I/O data (D,w), namely jack-
knifing and bootstrapping (actually, the jackknife is a linear approximation
of the bootstrap; see the excellent textbook on bootstrapping by Efron and
Tibshirani, [104]). Both procedures have become popular since powerful
and cheap computers have become available to the analysts (the bootstrap
is also used in [325], albeit for robust regression). Special bootstrap pro-
cedures are available in many statistical software packages, including the
BOOT macro in SAS and the “bootstrap” command in S-Plus; see [277].

Jackknifing

In general, jackknifing solves the following two types of problems:

1. How to compute confidence intervals in case of nonnormal observa-
tions?

2. How to reduce possible bias of estimators?

Examples of nonnormal observations are the estimated service rate close
to 100% in inventory simulations, and extreme quantiles such as the 99.99%
point in Risk Analysis (see the nuclear waste simulations in [204], sum-
marized in Example 2.7). Examples of biased estimators will follow in
Section 3.4.

Jackknifing was proposed by Quenouille in 1949 for bias reduction, and
by Tukey in 1969 for confidence interval construction; see Miller’s classic
1974 review article on jackknifing, [260]. To explain jackknifing, I will use
the following linear regression problem.

Suppose the analysts want a confidence interval for the regression co-
efficients β in case the simulation output has a very nonnormal distribu-
tion. So the linear regression metamodel is still (2.10). For simplicity, I
assume that each factor combination i is replicated an equal number of
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times (mi = m > 1). The original OLS estimator (also see (2.13)) is

β̂ = (X′X)
−1

X′w. (3.6)

Jackknifing resembles cross-validation, in the sense that both procedures
drop observations; see Figure 3.1. Leave-one-out cross-validation deletes
I/O combination i from the complete set of n combinations, to obtain the
remaining I/O data set (X−i,w−i); see Section 2.11.2), whereas jackknifing
deletes the rth replicate among the m IID replicates.

The jackknife recomputes the estimator for which a confidence interval
is wanted

β̂−r = (X′X)
−1

X′w−r (r = 1, . . . , m) (3.7)

where the n-dimensional vector with average simulation outputs w−r =
(w1;−r, . . . , wi;−r, . . . , wn;−r)

′ has elements that are the averages of the m−
1 replicates after deleting replicate r:

wi;−r =

∑m
r′ 	=r wi;r′

m − 1
(3.8)

where for the case r = m the summation runs from 1 to m − 1 (not m)
(a more elegant but more complicated mathematical notation would have
been possible).

Obviously, (3.7) gives the m correlated estimators β̂−1, . . . , β̂−m. For
ease of presentation, I focus on βq (the last of the q regression parameters

jackknifecross-validationI/O data, (X, w):

X(1, 1) w(1, 1)

X(n, 1)

X(1, q)

X(n, q) w (n, m)

w(1, m)

w(n, 1)

Figure 3.1: Jackknife and cross-validation
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in the vector β). Jackknifing uses the pseudovalue (say) J , which is defined

as the following weighted average of β̂q (the original estimator) and β̂q;−r

(the qth element of the jackknifed estimator β̂−r defined in (3.7)) with the
number of observations as weights:

Jr = mβ̂q − (m − 1)β̂q;−r. (3.9)

In this example both the original and the jackknifed estimators are un-
biased, so the pseudovalues also remain unbiased estimators. Otherwise, it
can be proven that the bias is reduced by the jackknife point estimator

J =

∑m
r=1 Jr

m
, (3.10)

which is simply the average of the m pseudovalues.
To compute a confidence interval, jackknifing treats the pseudovalues as

if they were NIID:

P (J − tm−1;1−α/2σ̂J < βq < J + tm−1;1−α/2σ̂J) = 1 − α (3.11)

where tm−1;1−α/2 denotes the 1 − α/2 quantile (upper α/2 point) of the
distribution of the t statistic with m − 1 degrees of freedom, and

σ̂J =

√∑m
r=1(Jr − J)2

m(m − 1)
. (3.12)

The interval in (3.11) may be used for testing whether the true regression
parameter is zero; see the null-hypothesis in (2.21).

Applications of jackknifing in simulation are numerous. For example, in
[205].my coauthors and I apply jackknifing to obtain confidence intervals for
a LS estimator that uses the estimated covariance matrix of the simulation
output, ̂cov(w). With other coauthors I apply jackknifing to reduce the
bias and compute confidence intervals for a Variance Reduction Technique
(VRT) called control variates or regression sampling; see [207]. Jackknif-
ing may also be applied in the renewal analysis of steady-state simulation
(renewal analysis uses ratio estimators, which are biased); see the 1992
textbook that Van Groenendaal and I wrote, [216], pp. 202–203.

Exercise 3.1 Apply jackknifing to derive a confidence interval for the av-
erage waiting time of the first (say) c customers arriving into the M/M/1
system with a traffic rate of (say) 0.8. Vary c between (say) 10 (termi-
nating simulation) and 107 (steady-state simulation), and m (number of
replicated simulation runs) between (say) 10 and 102. Does this interval
cover the analytical steady-state value?

Exercise 3.2 Apply jackknifing to derive a confidence interval for the slope
(say) β1 in the simple regression model wir = β0 + β1xi + eir where eir is
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nonnormally distributed (i = 1, . . . n; r = 1, . . . m), e.g., eir is lognormally
distributed with expected value equal to zero. Design a Monte Carlo exper-
iment with (say) β0 = 0 and β1 = 1, xi = 1, 2 (so n = 2), m = 5 and
m = 25 respectively and 1000 macro-replicates; sample eir from a lognor-
mal distribution with standard deviation (say) σe = 0.1 and shifted such
that E(e) = 0.

Bootstrapping

In 1982, Efron published his famous monograph on bootstrapping ; see [103].
In 1993 this monograph was followed by Efron and Tibshirani’s classic
textbook on bootstrapping, [104]. Recent textbooks on bootstrapping are
[73], [90], [134], and [241]; recent articles are [68], [69], and [89] (more
references will follow below).

Bootstrapping may be used to solve two types of problems:

1. The relevant distribution is not Gaussian

2. The statistic is not standard.

Sub 1: Nonnormal distribution
As an example, I consider the same problem as I used for jackknifing;

i.e., the analysts want a confidence interval for the regression coefficients β

in case of nonnormal simulation output. Again I assume that each of the
n factor combinations is replicated an equal number of times, mi = m > 1
(i = 1, . . . , n). The original LS estimator was given in (3.6).

The bootstrap distinguishes between the original observations w and the
bootstrapped observations (say) w∗ (note the superscript). Standard boot-
strapping assumes that the original observations are IID (bootstrapping of
time series is discussed in [68], [151], [226], [250], [288] and [301]). In the
example, there are mi = m IID original simulated observations per factor
combination i, namely wi;1, . . . , wi;m. These observations give the average
simulation output for combination i, namely wi. In turn, these averages
give the vector w, which is a factor in the OLS estimator (3.6).

The bootstrap observations are obtained by resampling with replace-
ment from the original observations. This resampling may result in the
original observation wi;1 being sampled m times, and—because the sam-
ple size is kept constant, at m—all the other m − 1 original observations
wi;2, . . . , wi;m being sampled zero times. Obviously, this sampling outcome
has low probability, but is not impossible. In general, resampling in this
example implies that the bootstrapped observations w∗

i;1, . . . , w
∗
i;m occur

with frequencies f1, . . . , fm such that f1 + . . . + fm = m so these frequen-
cies follow the multinomial (or polynomial) distribution with parameters
m and p1 = . . . = pm = 1/m (for the multinomial distribution, I refer to
any statistics textbook).
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This resampling is executed for each combination i (i = 1, . . . n).
The resulting bootstrapped outputs w∗

i;1, . . . , w
∗
i;m give the bootstrapped

average simulation output w∗. Substitution into the LS formula (3.6) gives
the bootstrapped LS estimator

β̂∗ = (X′X)
−1

X′w∗. (3.13)

To reduce sampling variation (also called “sampling error”), this resam-
pling is repeated (say) B times; B is known as the bootstrap sample size.

A typical value for B is 100 or 1,000. This gives β̂∗
1, . . . , β̂

∗
B , which may

also be denoted as β̂∗
b with b = 1, . . . , B.

As in the jackknife example, I focus on the single regression parameter
βq. The bootstrap literature gives several alternative procedures for con-
structing a two-sided confidence interval (including the double bootstrap;
see [68]). In practice, the most popular confidence interval is

P (β̂∗
q(⌊Bα/2)⌋)

< βq < β̂∗
q(⌊B(1−α)/2)⌋)

) = 1 − α (3.14a)

where β̂∗
q(⌊Bα/2)⌋)

(the left endpoint of the interval) is the (lower) α/2

quantile of the Empirical Density Function (EDF) of the bootstrap estimate

β̂∗
q ; i.e., the values of the bootstrap estimate β̂∗

q are sorted from low to high,

and β̂∗
q(⌊Bα/2)⌋)

and β̂∗
q(⌊B(1−α)/2)⌋)

are the lower and upper limits of the

interval.
Note: The recent article [132] describes bootstrapping as “an artificial

bootstrap world is constructed, conditional on the observed data”.
I have applied bootstrapping in many situations where classic statistics

did not seem appropriate. For example, in [197] my coauthors and I apply
bootstrapping to validate trace-driven simulation models in case of serious
nonnormal outputs (the test statistic is the difference between the average
output of the real and the simulated systems).

Exercise 3.3 Apply bootstrapping to derive a confidence interval for the
average waiting time of the first (say) c customers arriving into the M/M/1
system with a traffic rate of (say) 0.8. Vary c between (say) 10 (terminating
simulation) and 107 (steady-state simulation?), and m (number of repli-
cated simulation runs) between (say) 10 and 102. Does this interval cover
the analytical steady-state value? (Also see Exercise 3.1.)

Exercise 3.4 Apply bootstrapping to derive a confidence interval for the
slope (say) β1 in the simple regression model w = β0 +β1x+ e where eir is
nonnormally distributed (i = 1, . . . n; r = 1, . . . m), e.g., eir is lognormally
distributed with expected value equal to zero. To evaluate this bootstrapping,
design a Monte Carlo experiment with (say) β0 = 0 and β1 = 1, xi = 1, 2
(so n = 2), m = 5 and m = 25 respectively and 1,000 macro-replicates;
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sample eir from a lognormal distribution with standard deviation (say) σe =
0.1 and shifted such that E(e) = 0. (Also see Exercise 3.2.)

Sub 2: Nonstandard statistic
Besides classic statistics such as the t and F statistics, the simulation

analysts may be interested in statistics that have no tables with critical
values, which provide confidence intervals—assuming normality. For ex-
ample, R2 is such a statistic; in [200], Deflandre and I bootstrap R2 to
test the validity of regression metamodels in simulation. (I wonder whether
the Sobol’ variance decomposition—mentioned below (2.40)—could benefit
from bootstrapping.)

In expensive simulation there may be only a few replicates; e.g., m = 1
or m = 2 ([153] uses only two replicates in a Kriging metamodel used
for simulation optimization). In such a situation, the distribution-free boot-
strapping does not work; i.e., resampling with replacement gives the same
result “many” times. However, there is also parametric bootstrapping ; i.e.,
the analysts assume a specific type of distribution (e.g., a Gaussian distri-
bution); they estimate the distribution’s parameters from the original data
(e.g., they estimate the mean and the variance of the assumed Gaussian dis-
tribution). Next they use PRNs to sample bootstrapped observations from
the resulting distribution; i.e., parametric bootstrapping is a specific type
of Monte Carlo experiment. I shall give examples in Sections 4.3 and 5.2.

I emphasize that using bootstrapping to test a null-hypothesis (like H0 :
E(e) = 0) requires some more care than estimating a confidence interval
for some parameter (like βq). Indeed, [348], p. 189 warns: “bootstrap hy-
pothesis testing ... is not a well-developed topic.” A recent discussion of
hypothesis testing versus confidence interval estimation in bootstrapping
is [250]; also see [304]. My coauthors and I give examples of bootstrap-
ping for testing the null-hypothesis of a valid simulation model and a valid
regression metamodel respectively in [197] and [200].

In general, it is better not to bootstrap the original statistic of interest
but the so-called pivotal statistic. A statistic is called pivotal if its distri-
bution does not depend on unknown nuisance parameters; e.g., the sample
average x has the distribution N(µ, σ2/n) with the unknown nuisance pa-
rameter σ, whereas the Studentized statistic (x − µ)/(s/

√
n) has a tn−1

distribution, which does not depend on σ so the latter statistic is pivotal.

Instead of bootstrapping β̂q in (3.14a), it is better to bootstrap the Stu-

dentized version β̂q/s(β̂q); also see (2.19)). For further discussion, I refer
to [68] and [304].

I end this section on nonnormality with the following remarks.

• A Generalized Linear Model (GLM; see page 8) assumes a distribu-
tion from the exponential family (instead of a distribution from the
normal family). A simulation application is [26].
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• More technical details on how to bootstrap in simulation can be found
in the tutorial that Deflandre and I wrote; see [199].

• Recently, [283] presented several asymptotic prediction intervals for
regression models with nonnormal outputs. Its author assumes that
the residuals are IID. That author modifies the classic interval based
on the t statistic; see (2.67). But he also points out that an obvious
alternative method is bootstrapping.

• At the same time, [94] discussed bootstrapping and graphical meth-
ods for assessing lack-of-fit for linear and nonlinear regression models,
allowing nonnormality and heteroskedasticity—assuming that there
are no replicates.

• Bootstrapping is used in [112] to estimate a percentile (proportion)
in the optimization of simulated manufacturing systems

3.4 Heterogeneous simulation output variances

By definition, deterministic simulation models give a single fixed value for a
given factor combination, so the conditional variance is zero: var(w|x) = 0.
Simulation analysts often assume a normal distribution for the residuals of
the metamodel fitted to the I/O data of the deterministic simulation model,
as I discussed at the beginning of Section 3.3.1. Usually, the analysts then
assume a normal distribution with a constant variance (also see the Kriging
chapter, Chapter 5). I do not know a better assumption that works in
practice for deterministic simulation models.

In this subsection, I further focus on random simulation models. I try to
answer the following questions (formulated more generally in Section 3.1):

1. How realistic is the common (homoscedastic) variance assumption?

2. How can this assumption be tested?

3. How can the simulation’s I/O data be transformed such that the
common variance assumption holds?

4. Which statistical analysis methods can be applied that allow non-
constant (heteroskedastic, heterogeneous) variances?

5. Which statistical design methods can be applied that allow noncon-
stant variances?

3.4.1 Realistic constant variance assumption?

In practice, random simulation outputs usually have heterogeneous vari-
ances, as factor combinations change. For example, in the M/M/1 queueing
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simulation not only the expected value (mean, first moment) of the steady-
state waiting time changes as the traffic rate changes—the variance of this
output changes even more (see, e.g., [71], [72], and [404]).

3.4.2 Testing for constant variances

As the previous subsection demonstrated, it may be a priori certain that
the variances of the simulation outputs are not constant at all. In some ap-
plications, however, the analysts may hope that the variances are (nearly)
constant. Unfortunately, the variances are unknown so they must be esti-
mated. If there are mi replicates, then the classic unbiased variance estima-
tor was given in (2.26). This estimator itself has high variance. Using the
classic assumption of normally distributed output, any statistics textbook
gives

var(σ̂2) =
2σ4

m

where (m−1)σ̂2 has a chi-square distribution with m−1 degrees of freedom.
Under the same classic assumption, two independent variance estimators
(say) σ̂1

2
and σ̂2

2
may be compared through the F statistic:

Fm1−1.m2−1 =
(m1 − 1)σ̂1

2

(m2 − 1)σ̂2
2 .

Actually, there are n (> k) combinations of the k factors in the simula-
tion experiment, so n variance estimators σ̂i

2 need to be compared. This
problem may be solved in many different ways (my 1987 book [184], p. 225
shows that at that time there were approximately 60 different tests for the
same problem). Some examples are:

1. In 1950, Hartley [140] proposed

Fmax =
max1≤i≤n(σ̂i

2)

min1≤i≤n(σ̂i
2)

. (3.15)

2. Scheffé proposes ANOVA, treating the data as a one-way layout (an
experiment with a single factor) and n levels. Because the variance
estimators have chi-square distributions (whereas ANOVA assumes
normality), the analysts may apply a normalizing transformation such
as the Box-Cox transformation defined in (3.5). Details are given in
[338].

3. Conover gives a distribution-free test; see [81].

Exercise 3.5 Apply bootstrapping to derive the distribution of Hartley’s
statistic defined in (3.15) for the following simple case: wir ∼ NID(µi, σ

2
i )
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(i = 1, . . . n; r = 1, . . . m) with homogeneous variances (σ2
i = σ2) and n = 3.

Design a Monte Carlo experiment with (say) µi = 0 and σ2
i = 1, m =

25, and 1,000macro-replicates. Compare the results with Table 31 in [290].
Repeat the experiment for heterogeneous variances (σ2

i �= σ2). Repeat for
nonnormally distributed wir.

3.4.3 Variance stabilizing transformations

The logarithmic transformation, which is a special case of the Box-Cox
transformation in (3.5), may be used not only to obtain normal output but
also to obtain outputs with constant variances. A problem may again be
that the metamodel now explains the transformed output instead of the
original output.

3.4.4 LS estimators in case of heterogeneous variances

In case of heterogeneous variances, the LS criterion still gives an unbiased
estimator β̂ of β (vector of regression parameters). To prove this lack of
bias, it suffices to assume that the residuals have zero mean, E(e) = 0; see
again the solution of Exercise 2.2.

The variance of the LS (or OLS) estimator, however, is no longer given
by (2.17). Actually, this variance is given by the main diagonal of the
covariance matrix that follows from (2.16):

cov(β̂) = [(X′
NXN )

−1
X′

Ncov(w)XN (X′
NXN )

−1
, (3.16)

where this time I explicitly show the number of rows N =
∑n

i=1 of XN

(obviously, XN is an N × q matrix). This formula deserves the following
comments.

• The matrix cov(w) in the right-hand side is a diagonal matrix if the
simulation outputs have different variances but are independent (no
CRN used).

• If there are no replicates, then X (matrix of explanatory variables)
is n× q, so cov(w) is also an n×n matrix with the ithelement on its
main diagonal being var(wi) (i = 1, . . . , n).

• If factor combination i is replicated mi times, then XN is N × q so
cov(w) is also an N × N matrix with the first m1 elements on its
main diagonal all being equal to var(w1), ..., the last mn elements on
its main diagonal being var(wn).

• If the number of replicates is constant (mi = m), then the LS esti-
mator may be written as

β̂ = (X′X)
−1

X′w (3.17)
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where X is n × q and w denotes the vector with the n simulation
outputs averaged over the m replicates; see wiin (2.27) with mi = m.

Exercise 3.6 Prove that (3.16) (general formula for the covariance matrix
of the LS estimator) reduces to the classic formula in (2.16) if cov(w) =
σ2

wI.

In [185], I study confidence intervals for the q individual OLS estima-
tors in (3.17). Their standard errors follow from the following corrected
covariance matrix (also see (3.16)):

cov(β̂) = (X′X)
−1

X′[cov(w)]X(X′X)
−1

. (3.18)

Confidence intervals may then be computed through a t statistic with m−1
degrees of freedom. In Section 3.5, I shall present an alternative method
that does not require the estimation of cov(w) in (3.18) (see (3.32))—but
that alternative does require m computations of the OLS estimator. One
more alternative is presented in [399].

Though the OLS estimator remains unbiased, it is no longer the BLUE. It
can be proven that the BLUE is now the Weighted LS (or WLS) estimator

β̃ = (X
′

N [cov(w)]−1XN )
−1

X′
N [covN (w)]−1w. (3.19)

Analogously to (3.17), a constant number of replicates (mi = m) implies
that the WLS estimator may be written as

β̃ = (X
′

[cov(w)]−1X)
−1

X′[cov(w)]−1w (3.20)

where X is n × q (also see (3.2)) and cov(w) = cov(w)/m where cov(w)
is n×n. The covariance matrix of this WLS estimator can be proven to be

cov(β̃) = (X
′

[cov(w)]−1X)
−1

. (3.21)

Furthermore, it can be proven that the WLS estimator can also be com-
puted through classic LS software replacing the original I/O data (xij , wi)
by (xij/σi, wi/σi) where σi is the standard deviation of wi (i = 1, . . . , N
and j = 1, . . . , q). Obviously, the transformed outputs have a constant vari-
ance, which is equal to one. It can also be proven that WLS minimizes the
the sum of squared residuals weighted with 1/σ2

i .
In practice, cov(w) is unknown so this covariance matrix must be esti-

mated. I distinguish two types of situations (as I did on page 23):

1. passive observation of a real system: no replicates

2. active experimentation with either a real system or a simulation
model of a real system: replicates.
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In situations of type 1, the covariance matrix cov(w) is estimated from
the residuals; see any econometrics textbook or the recent article [132]. In
type-2 situations, var(wi) is estimated from (2.26). I focus on the latter type
of situations, because simulation practitioners usually do obtain replicates.

Substituting the estimated response variances into the main diagonal

of cov(w) gives ĉov(w). Substituting this estimated covariance matrix
into the classic WLS estimation formula (3.19) gives the Estimated WLS
(EWLS) or Aitken estimator. For a constant number of replicates this
EWLS estimator is

̂̃
β = (X

′

[ ̂cov(w)]−1X)
−1

X′[ ̂cov(w)]−1w. (3.22)

Obviously, this EWLS is not a linear estimator. Consequently, the sta-
tistical analysis becomes more complicated. For example, the covariance

matrix of
̂̃
β (the EWLS estimator) does no longer follow from (2.16). The

analogue of (3.21) holds only asymptotically (under certain conditions);
see, e.g., [18], [132], and [198]:

cov(
̂̃
β) ≈ (X

′

[cov(w)]−1X)
−1

. (3.23)

Confidence intervals are no longer similar to (2.19). I have already pre-
sented relatively simple solutions for this type of problems, namely jackknif-
ing and bootstrapping (see the subsubsections 3.3.3 and 3.3.3). For EWLS
these two techniques may be applied as follows.

Jackknifing the EWLS estimator is done by my coauthors and myself
in [205]. So we delete the rth replicate among the m IID replicates, and
recompute the EWLS estimator (analogous to the jackknifed OLS estima-
tor (3.7)):

̂̃
β−r = (X

′

[ ̂cov(w)−r]
−1X)

−1
X′[ ̂cov(w)−r]

−1w−r (r = 1, . . . , m)

where w−r consists of the n averages of the m− 1 replicates after deleting

replicate r, and ̂cov(w)−r is computed from the same replicates. From these
̂̃
β−r and the original

̂̃
β in (3.22) we compute the pseudovalues, which give

the desired confidence interval.
Bootstrapping the EWLS estimator is discussed in [200]; also see [132]

and [410].
I recommend that analysts compute both the OLS estimate and the

EWLS estimate, and check whether these two estimates give the same
qualitative conclusions; e.g., which factors are important. EWLS tends to
give more significant estimates (because the standard errors tend to be
smaller).
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3.4.5 Designs in case of heterogeneous variances

If the output variances are not constant, classic designs still give the un-
biased OLS estimator β̂ and WLS estimator β̃ for the vector of regression
parameters β. The DOE literature pays little attention to the derivation of
alternative designs for cases with heterogeneous output variances. A recent
exception is [60], which discusses A-optimal designs for heterogeneous vari-
ances; unfortunately, the article considers situations that are not typical
for simulation applications (it discusses real-life, chemical experiments).

In a 1995 article [217], Van Groenendaal and I investigate designs in
which the n factor combinations are replicated so many times that the
estimated variances of the averages per combination are (approximately)
constant. The definition of these averages wiin (2.27) implies

var(wi) =
σ2

i

mi
(i = 1, . . . , n).

To get a common variance (say) σ2 = 1/c0, the number of replicates should
satisfy

mi = c0σ
2
i (3.24)

where c0 is a common positive constant such that the mi become integers.
In other words, the higher the variability of the simulation output wi is,
the more replicates are simulated. The allocation of the total number of
simulation runs (N =

∑n
i=1 mi; also see (2.24)) according to (3.24) is not

necessarily optimal, but it simplifies the regression analysis and the de-
sign of the simulation experiment (an alternative allocation rule replaces
the variances σ2

i by the standard deviations σi); also see [217]. Indeed
the regression analysis can now apply OLS to the averages wi to get the
BLUE.

In practice, however, the variances of the simulation outputs must be
estimated. A two-stage procedure takes a pilot sample of size (say) m0 ≥ 2
for each factor combination, and estimates the variances σ2

i through

s2
i (m0) =

∑m0

r=1 [wir − wi(m0)]
2

m0 − 1
(i = 1, . . . n) (3.25)

with

wi(m0) =

∑m0

r=1 wir

m0
. (3.26)

Combining (3.25) and (3.24), Van Groenendaal and I propose in [217] to
select additional replicates m̂i − m0 (in the second stage) where

m̂i = m0

⌊
s2

i (m0)

min1≤i≤n s2
i (m0)

⌋
(3.27)

with ⌊x⌋ denoting the integer closest to x (so, in the second stage no
additional replicates are simulated for the combination with the small-
est estimated variance). After the second stage, all m̂i replicates are used
to estimate the average output and its variance. OLS is applied to these
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averages. We estimate the covariance matrix cov(β̂) through (3.16) with
cov(w) estimated through a diagonal matrix with diagonal elements s2

i (m̂i)/m̂i.
We base the confidence intervals for the estimated regression parameters
on the classic t statistic with degrees of freedom equal to m0 − 1.

After the second stage these variance estimates s2
i (m̂i)/m̂i may still dif-

fer considerably. Therefore, the two-stage approach may be replaced by a
(purely) sequential approach. The latter approach adds one replicate at a
time, until the estimated variances of the average simulation outputs have
become practically constant; for details see [217] The sequential procedure
requires fewer simulation responses, but is harder to understand, program,
and implement.

Exercise 3.7 Simulate the M/M/1 model, as follows. Pick a single (scalar)
performance measure; e.g., the steady-state mean waiting time. Select an
experimental area; e.g., the traffic load is 0.3 and 0.5. Fit a first-order poly-
nomial. Use mi replicated simulation runs; each run should be “sufficiently
long”. Simulate more replicates for the higher traffic rate, using (3.27). Do
not apply CRN for different traffic rates. Now estimate the parameters of
your metamodel and the simulation output at a 0.4 traffic load including
a confidence interval; does this interval cover the analytical solution? Also
see Exercise 2.15.

3.5 Common random numbers (CRN)

The use of CRN creates correlation between the simulation outputs wi;r

and wi′;r with i, i′ = 1, . . . , n; r = 1, . . . , m; m = mini mi (obviously,
individual simulation output data—such as individual waiting times—are
autocorrelated or serially correlated, within a simulation run for a given
factor combination). In Figure 3.2, I display the n×q matrix of explanatory
variables X and the two vectors of simulation outputs wr and wr′ with
r, r′ = 1, . . . , m. I assume that two different replicates use nonoverlapping
PRN streams, so their outputs wi;r and wi′;r with r �= r′ are independent
(i.e., I assume that no Antithetic Random Numbers or ARN are used).

The goal of CRN is to reduce the variance of the estimated regression

effects; i.e., to decrease var(β̂j) with j = 1, . . . , q. Actually, the variance of
the intercept increases when CRN are used.

Exercise 3.8 Prove that var(β̂1) increases if CRN are used and β1 de-
notes the intercept (assume that no replicates are used and that CRN does
“work”; i.e., cov(wi;i′) > 0).

So CRN may be useful to better explain the factor effects, as scenarios
are compared under the “same circumstances”. CRN is also useful to better
predict the output of combinations not yet simulated, provided the lower
accuracy of the estimated intercept is outweighed by the higher accuracy
of all other estimated effects.
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Replicate r & r’Scenario iI/O data, (X, w):

X w

Figure 3.2: Common Random Numbers

I again try to answer the following questions (formulated more generally
in Section 3.1):

1. How realistic is it to assume the use of CRN?

2. Which statistical analysis methods can be applied that allow CRN?

3. Which statistical design methods can be applied to account for CRN?

3.5.1 Realistic CRN assumption?

Obviously, simulation analysts apply CRN in random simulation only. In
practice, the analysts use CRN very often; actually, CRN is the default of
much simulation software (e.g., Arena starts with the same PRN seed—
unless the users change the seed).

3.5.2 Alternative analysis methods

Because CRN violates the classic assumptions of regression analysis, the
analysts have two options (which are analogous to the options in the case
of heterogeneous output variances):

1. Continue to use OLS

2. Switch to GLS
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OLS

The variance of the OLS estimator is similar to (3.16), but now cov(w) is
not a diagonal matrix:

cov(β̂) = (X′
NXN )

−1
X′

Ncov(w)XN (X′
NXN )

−1
, (3.28)

which for mi = m (the usual situation in case of CRN) becomes

cov(β̂) = (X′X)
−1

X′cov(w)X(X′X)
−1

(3.29)

with n×q matrix X. The n×n covariance matrix cov(w) may be estimated

by ̂cov(w) with the elements (also see (2.26) and (2.53))

̂cov(wi, wi′) =

∑m

r=1
(wi;r − wi)(wi′;r − wi′)

(m − 1)m
. (3.30)

This ̂cov(w) is singular if the number of replicates is “too small”; i.e., if
m ≤ n; see [102].

In [185], I show that confidence intervals for the q individual OLS esti-
mators may be computed from a t statistic with m−1 degrees of freedom—

provided m > n. In this t statistic, the standard errors s(β̂j) are the square
roots of the elements on the main diagonal of the corrected covariance
matrix in (3.29).

An alternative method does not require the estimation of cov(w) to
derive confidence intervals for the OLS estimators, so it suffices that m > 1.
This alternative requires m computations of the OLS estimator; i.e., from
replicate r, the analysts estimate the (true) vector of regression parameters
β through

β̂r = (X′X)
−1

X′wr (r = 1, . . . , m). (3.31)

The n elements of the vector wr are correlated (because they use CRN)
and may have different variances. The m estimators of a specific regression
parameter βj , however, are independent (because they use nonoverlapping

PRN streams) and have a common standard deviation (say) σ(β̂j). There-
fore (2.19) is replaced by

tm−1 =
β̂j − βj

s(β̂j)
with j = 1, . . . , q (3.32)

with

s(β̂j) =

√√√√
∑m

r=1(β̂j;r − β̂j)
2

m(m − 1)
.

Note: Law’s textbook [227], p. 627 inspired me to derive confidence inter-
vals for regression coefficients estimated with CRN and multiple replicates
through (3.32).
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GLS

It can be proven that CRN implies that the BLUE is not the OLS but the
GLS estimator, which is analogous to (3.19):

β̃ = (X
′

[cov(w)]−1X)
−1

X′[cov(w)]−1w). (3.33)

The covariance matrix of the GLS estimator is analogous to (3.21):

cov(β̃) = (X
′

[cov(w)]−1X)
−1

. (3.34)

Again, in practice cov(w) is unknown so it must be estimated. The

matrix ̂cov(w) has the elements given by (3.30). This matrix is singular if
the number of replicates is “too small”; i.e., if m ≤ n.

Substituting ̂cov(w) (estimated covariance matrix) into the classic GLS
estimation formula (3.33) gives Estimated GLS (EGLS), which is analogous
to EWLS in (3.22). The EGLS estimator can again be analyzed through
jackknifing and bootstrapping. In [185], however, I compare OLS and EGLS
relying on the asymptotic covariance matrix of the EGLS estimator—given

by (3.23) with nondiagonal ̂cov(w). However, [89] claims that “bootstrap
tests ... yield more reliable inferences than asymptotic tests in a great many
cases.”

In conclusion, CRN with EGLS may give better point estimates of the
factor effects than CRN with OLS, but the EGLS estimate requires “many”

replicates—namely m > n—to obtain a nonsingular ̂cov(w).

Exercise 3.9 Simulate the M/M/1 model, as follows. Pick a single (scalar)
performance measure; e.g., the steady-state mean waiting time. Select an
experimental area; e.g., the traffic load is 0.3 and 0.5. Each run should be
“sufficiently long”. Apply CRN for the different traffic rates. Use m repli-
cated simulation runs; vary the number of replicates between its minimum 2
and (say) 10. Fit a first-order polynomial. Now estimate the parameters of
your metamodel, including a confidence interval for the interpolated output
at a traffic rate of (say) 0.4; does this interval cover the analytical solution?
Also see Exercise 3.7.

3.5.3 Designs in case of CRN

The literature pays no attention to the derivation of alternative designs for
cases with CRN. (In [343], Schruben and Margolin do discuss how CRN
and ARN should be combined if classic designs are applied; for an update
see [96].)

In two recent papers [213] and [384], Van Beers and I propose sequential
procedures to select the next factor combination to be simulated. We al-
low the simulation model to be either deterministic or random. However,
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we assume that the simulation I/O data (D,w) are analyzed through a
Kriging metamodel, which allows the simulation outputs of different factor
combinations to be correlated; see Chapter 5.

3.6 Nonvalid low-order polynomial metamodel

In this section, I try to answer the following questions (again, these ques-
tions were formulated more generally in Section 3.1):

1. How can the validity of the low-order polynomial metamodel be
tested?

2. If this metamodel is not valid, how can the simulation’s I/O data be
transformed such that a low-order polynomial becomes valid ?

3. Which alternative metamodels can be applied?

3.6.1 Testing the validity of the metamodel

Definition 2.4 defined a valid metamodel as a metamodel with zero mean
residuals: E(e) = 0. To test this assumption, the classic lack-of-fit F-
statistic was defined in (2.29) and (2.30) for white-noise situations.

If the analysts apply CRN, then they may apply the following variant of
(2.29) derived by Rao in 1959 (see [309] and also [185]):

Fn−q;m−n+q =
m − n + q

(n − q)(m − 1)
(w − ̂̃y)′[ ̂cov(w)]−1(w − ̂̃y) (3.35)

where n > q, m > n, and ̂̃y denotes the EGLS estimator. Obviously,
Rao’s test also allows EWLS instead of EGLS. Normality of the simula-
tion output is an important assumption for both the classic test and Rao’s
test. In case of nonnormality, the analysts may apply jackknifing or boot-
strapping. Deflandre and I bootstrap Rao’s statistic and the classic R2

statistic in [200].
Note: If the number of replicates tends to infinity, then both the classic

test and Rao’s test converge in distribution to χ2
n−q/(n−q) if the metamodel

is valid.
An alternative test uses cross-validation; see (2.64). Now the OLS es-

timator ŷ may be replaced by the estimator ̂̃y to account for EWLS or
EGLS estimation. The t statistic is less sensitive to nonnormality than the
F statistic is; see the extensive Monte Carlo study in my 1992 article [185].
Moreover, this t statistic requires fewer replications, namely m > 1 instead
of m > n if OLS or EWLS is used (see the discussion of (3.30)).
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Besides these quantitative tests, the analysts may use graphical methods
to judge the validity of a fitted metamodel (be it a linear regression model
or some other type of metamodel such as a Kriging model). Scatterplots
have already been discussed in Section 2.11.2. In the 2002 paper [355],
a panel also emphasizes the importance of visualization; also see [145].
(Recently, [138] proposed three other two-dimensional plots for judging the
validity of metamodels in deterministic simulation—but I do not know any
applications of these plots, except for the one application given in that
paper itself.)

If these validation tests give significant approximation errors, then the
analysts may consider the following alternatives.

3.6.2 Transformations of independent and dependent
regression variables

In (2.9), I have already demonstrated that a transformation that combines
two simulation inputs (arrival rate λ and service rate µ) into a single in-
dependent regression variable (x = λ/µ) may give a better metamodel.
Another useful transformation already discussed in (2.7) replaced y, λ, and
µ by log(y), log(λ), and log(µ), to make the first-order polynomial approx-
imate relative changes.

Another simple transformation assumes that the I/O function of the
underlying simulation model is monotonic. Then it makes sense to replace
the dependent and independent variables by their ranks, which results in
so-called rank regression; see Conover and Iman’s 1981 article [82]; also see
[327] and [328].

Note: Spearman’s correlation coefficient also uses the rank transforma-
tion, but for only two correlated random variables; see Example 2.7. In
[204], Helton and I use Spearman’s coefficient and rank regression to find
the most important factors in a simulation model of nuclear waste disposal;
also see Example 2.7.

Transformations may also be applied to make the simulation output (de-
pendent regression variable) better satisfy the assumptions of normality
(see (3.5)) and variance homogeneity. Unfortunately, different goals of the
transformation may conflict with each other; e.g., the analysts may ap-
ply the logarithmic transformation to reduce nonnormality, but this trans-
formation may give a metamodel in variables that are not of immediate
interest.

3.6.3 Adding high-order terms to a low-order polynomial
metamodel

In the preceding chapter, I discussed designs with different resolutions.
Resolution-III designs assume first-order polynomial metamodels, whereas
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resolution-IV and resolution-V designs assume two-factor interactions. More-
over, I discussed designs for second-order polynomials, especially CCDs. If
these designs do not give valid metamodels, then I recommend to look for
transformations, as discussed in the preceding subsection. I do not recom-
mend routinely adding higher-order terms to the metamodel, because these
terms are hard to interpret. However, if the goal is not to better under-
stand the underlying simulation model but to better predict the output
of an expensive simulation model, then high-order terms may be added.
Indeed, (full factorial) 2k designs enable the estimation of all interactions
(e.g., the interaction among all k factors). If more than two levels per factor
are simulated, then other types of metamodels may be considered (see the
next subsection).

3.6.4 Nonlinear metamodels

On page 8, I have already mentioned several alternative metamodel types
(e.g., Kriging models). These alternatives may give better predictions than
low-order polynomials do. However, these alternatives are so complicated
that they do not help the analysts better understand the underlying sim-
ulation model—except for sorting the simulation inputs in order of their
importance.

Furthermore, these alternative metamodels require alternative design
types. I shall discuss Latin Hypercube Sampling in section 4.5.1.

3.7 Conclusions

In this chapter, I discussed the assumptions of classic linear regression
analysis and the concomitant statistical designs (detailed in the preceding
chapter) when these methods are applied in simulation practice. I pointed
out that multiple simulation outputs can still be analyzed through OLS
per output type. I addressed possible nonnormality of simulation output,
including normality tests, normalizing transformations of simulation I/O
data, and the distribution-free methods called jackknifing and bootstrap-
ping. I presented analysis and design methods for simulation outputs that
do not have a common variance. I discussed how to analyze simulation I/O
data that uses CRN, so the simulation outputs are correlated (across dif-
ferent factor combinations, within the same replicate). I discussed possible
lack-of-fit tests for low-order polynomial metamodels, transformations to
improve the metamodel’s validity, and alternative metamodels and designs.
Throughout this chapter, I gave many references for further study of these
issues. (Paraphrasing the old saying “Crime does not pay”, I now claim:
“but assumptions do”.)



100 3. Classic assumptions revisited

3.8 Solutions for exercises

Solution 3.1 The jackknife results for this M/M/1 simulation depend on
the PRN stream; see [199] for examples.

Solution 3.2 The jackknife results for this Monte Carlo experiment de-
pend on the PRN stream; see [216], pp. 141–146 and also [185] and [205]
for examples.

Solution 3.3 The bootstrap results for this M/M/1 simulation depend on
the PRN stream; see [199] for an example.

Solution 3.4 The bootstrap results for this Monte Carlo experiment de-
pend on the PRN stream; see [200] for examples.

Solution 3.5 See Section 3.3.3 on bootstrapping.

Solution 3.6 If cov(w) = σ2
wI, then cov(β̂) =

(X′X)
−1

X′cov(w)X(X′X)
−1

=

= σ2
w(X′X)

−1
(X′X)(X′X)

−1
= σ2

w(X′X)
−1

.

Solution 3.7 The results for this M/M/1 simulation depend on the specific
PRNs, etc.

Solution 3.8 Let the intercept be estimated through β̂1 =
∑n

i=1 wi/n =

1′w/n with 1′ = (1, . . . , 1) assuming no replicates. Then var(β̂1) =
1′cov(w)1/n2 =

∑n
i=1

∑n
i′=1 cov(wi;i′)/n2, which increases if CRN

“works”; i.e., cov(wi;i′) > 0.

Solution 3.9 The results for this M/M/1 simulation depend on the specific
PRNs, etc.



4
Simulation optimization

This chapter is organized as follows. In Section 4.1, I introduce the cen-
tral issues in simulation optimization. In Section 4.2, I summarize classic
Response Surface Methodology (RSM), and the Adapted Steepest Ascent
(ASA) search direction (developed by my coauthors and myself in [201]).
In Section 4.3, I summarize Generalized RSM (GRSM) for simulation with
multiple responses (developed by my coauthors and myself in [12]). In Sec-
tion 4.4, I summarize a procedure for testing whether an estimated opti-
mum is truly optimal—using the Karush-Kuhn-Tucker (KKT) conditions
(developed by coauthors and myself in [13] and [39]). In Section 4.5, I dis-
cuss Risk Analysis (RA), also called Uncertainty Analysis (UA). In Section
4.6, I explore Robust Optimization. In Section 4.7, I present conclusions. I
finish with solutions for the exercises of this chapter.

4.1 Introduction

The practical importance of optimizing engineered systems (man-made
artifacts) is emphasized in the 2006 NSF report on simulation-based en-
gineering, [280] (also see [315]). That report also emphasizes the crucial
role of uncertainty in the input data for simulation models, which—in my
opinion—implies that robust optimization is important. An essential dif-
ference with Mathematical Programming (MP) models is that in simula-
tion models the objective function (which is the function to be minimized
or maximized) is not known explicitly; actually, this function is defined
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implicitly by the simulation model (computer code, computer program).
Moreover, in random simulation these functions give random outputs, which
only estimate the true outputs (e.g., the mean or 90% quantile). The aca-
demic importance of simulation optimization is demonstrated by the many
sessions on this topic at the yearly Winter Simulation Conferences; see
http://www.wintersim.org/.

The simplest optimization problem has no constraints for the input or
output, no uncertain environmental variables, and concerns the expected
value of a single (univariate) simulation output. This expected value may
also represent the probability of a binary variable having the value one (use
the indicator function). The expected value, however, excludes quantiles
(such as the median and the 95% quantile or percentile) and the mode of
the output distribution. Furthermore, the simplest problem assumes that
the inputs are continuous variables (not discrete or nominal; see the various
scales discussed in Section 1.3).

The assumption of continuous inputs implies that there is an infinite
number of systems, so Ranking and Selection (R & S) procedures and Mul-
tiple Comparison Procedures (MCPs) are excluded (since these procedures
assume a limited fixed set of competing systems). R & S procedures use
the so-called indifference zone approach. Recent discussions of these R &
S procedures are [180], [295], and also part of the tutorial review of sim-
ulation optimization in [118]. A historical survey is included in [374]. An
older discussion of R & S and MCPs is given in my 1974/1975 book, [181].
Bootstrapping of R & S procedures is discussed in [68]. Related to R & S
is Ordinal Optimization (OO); see [7], [148], [163], and [285]. Personally,
I have never applied any of these procedures in practice, so I do not give
more details.

An academic example of a simple optimization problem is an (s,Q) in-
ventory management simulation where (say) w0 is the total inventory costs
(the sum of inventory carrying, reorder, and out-of-stock costs), and the de-
cision variables are the reorder level z1 = s and the order quantity z2 = Q.
(Implicit input constraints are that these two decision variables must be
nonnegative; the symbols w0, z1, and z2 are also used in the general problem
formulation later in this chapter.)

In practice, however, simulation models have multiple outputs. Examples
are many practical inventory models that require the inventory system to
satisfy a minimum service rate (or fill rate), because the out-of-stock costs
are hard to quantify (an example is [162]). I shall formalize this type of
problems in Section 4.3.

There are many different methods for simulation optimization; i.e., there
are many approaches to the estimation of the optimal solution of a sim-
ulated system; see [25], [118], [146], and [377]. In Chapter 1, I pointed
out that a simulation model can be either random or deterministic. In the
present chapter, I focus on random simulation (but I shall briefly mention
deterministic simulation).
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Numerous methods have been developed to optimize real, nonsimulated
systems or to find the optimal solution of a mathematical model (such as
a Linear Programming or LP model). Many of these optimization methods
can also be applied to simulated systems; see [116], [360], and also [137].

Simulation optimization methods may be classified as either black-box
or white-box methods. By definition, black-box methods observe only the
inputs and outputs of the simulation model—be it a random or a deter-
ministic model. White-box methods use the explicit mathematical functions
inside the simulation model, to estimate gradients (these gradients are used
to estimate the optimum; see below). Examples of white-box methods are
methods that use Perturbation Analysis (PA) and Score Function (SF)
methods. For details, I refer to [117], [130], [142], [147], [264], [319], and
[377] (also see my discussion of (2.3) and (2.4)).

Examples of black-box methods are metaheuristics; e.g., (Artificial) Ant
Colonies, Evolutionary Algorithms (EAs) and the related Genetic Algo-
rithms (GAs), Scatter Search, Simulated Annealing (SA, not to be confused
with Stochastic Approximation), and Tabu Search (TS). These methods
can also be used to optimize a simulated system. They are global search
methods; i.e., they are meant to escape from local optima. Recent overviews
are [1], [8], [27], [55], [78], [99], [150], [245], [281], [306], [324], [371], [377],
and [406]. For Tabu Search, I also refer to the web

http://www.tabusearch.net/.
Other black-box methods are Spall’s Simultaneous Perturbation Stochas-

tic Approximation (SPSA; see [24], [119], [359], [360], and
http://www.jhuapl.edu/SPSA/,
Rubinstein’s Cross Entropy (see [318] and
http://iew3.technion.ac.il/CE/about.php,
and Wieland and Schmeiser’s method based on the Control Variates (CV)
Variance Reduction Technique (VRT); see [400]. SPSA requires the simu-
lation of only two input combinations to estimate the gradient—whatever
the number of inputs is; an application of SPSA is [344]. The CV-based
method requires a single input combination, but that combination must be
replicated.

Pitchitlamken and Nelson’s procedure in [294] combines Nested Parti-
tioning (see [350]) and Ranking and Selection (R & S). The former com-
ponent is meant to avoid getting trapped in a local optimum.

Instead of applying a simulation optimization method to the simulation
model itself, the method may be applied to a metamodel based on the sim-
ulation model at hand. Any of the metamodeling methods for simulation
mentioned in Chapter 1 may be combined with an optimization method.
If the metamodel is explicit (e.g., the locally or globally fitted second-
order polynomials in Chapter 2, the Kriging metamodels in Chapter 5),
then Nonlinear Mathematical Programming (NMP) may be applied; see
the examples in [42] and [112]. Otherwise (e.g., support vector regression
models), some search method (e.g., a crude grid search, a genetic algorithm,
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a gradient based method) may be used; see the examples of spline meta-
models in [25] and [175]. Recently, Huyet ([159]) applied data mining and
machine learning to simulated systems, in order to both optimize (via evo-
lutionary algorithms) and obtain insight (via so-called induction graphs).
Also see [25] and [133].

Note: Recently, [361] studied the convergence rates and efficiency of a few
stochastic optimization approaches, in a monograph that contains many
more mathematically advanced contributions to Robust Optimization.

Software for optimization based on various types of metamodels is pro-
vided by Sandia’s DAKOTA, which stands for Design Kit for Optimization
and Terascale Applications; see [129] and the website

http://endo.sandia.gov/DAKOTA.
Software for the optimization of System Dynamics models includes DYS-

MOD’s pattern search; see [88]. More references will follow below.
Note: In theory, the analysts may apply several types of optimization

methods, checking whether the estimated optima differ really. In practice,
however, such a combined approach is rare, because the analysts are famil-
iar with one or two optimization methods only.

In summary, there is a bewildering number of methods for simulation
optimization. Nobody seems expert in more than a few methods. In this
chapter, I focus on the black-box method known as RSM, which Box and
Wilson published in 1951; see [51]. This method is often ignored in the
literature on metaheuristics. Nevertheless, RSM is often applied in real-life
experiments; see Section 4.2 and also the Design-Expert software detailed in

www.statease.com.
Note: Some authors outside the discrete-event simulation area speak of

RSM, but mean what I call the what-if regression-metamodeling approach,
not the sequential (iterative) optimization approach; see, e.g., [97] and [284].
Other authors speak of RSM, but use global Kriging metamodels instead
of local low-order polynomials; see [168].

In this chapter, I further focus on expensive simulation, meaning that
it takes much computer time to compute a single realization of the time
path of the simulated system. For example, 36 to 160 hours of computer
time are needed to simulate a crash model at Ford Motor Company; see
the panel discussion reported in [355]. This panel also reports the exam-
ple of a (so-called “cooling”) problem with 12 inputs,10 constraints, and
1 objective function. For such expensive simulations, many simulation op-
timization methods are unpractical. An example is the popular software
called OptQuest, which combines Tabu Search, Neural Networks, and Scat-
ter Search; it is an add-on to simulation software such as Arena, Crystall-
Ball, MicroSaint, ProModel, and Simul8; see [118] and also [1], [27], [150],
and [306]. OptQuest requires relatively many simulation replicates and fac-
tor combinations; see the inventory example in my recent publications with
Wan, [219] and [395]. Genetic Algorithms are also unpractical for expensive
simulations; see [108], [153], and [312]. Fortunately, the mathematical and
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statistical computations required by the RSM and GRSM search heuristics
are negligible—compared with the computer time required by the “expen-
sive” simulation runs.

4.2 RSM: classic variant

Classic RSM started with the 1951 article by Box and Wilson, [51] (the ori-
gin of RSM is nicely discussed by Box himself in [47]). Those authors search
for the combination of quantitative “decision variables” (inputs, factors)
that minimizes the univariate output of a real-world system (or maximizes
that output: simply add a minus sign in front of the output, before minimiz-
ing it). Numerous applications are given in an excellent survey that covers
the period 1966–1988; see [267], pp. 147–151. Recent textbooks on classic
RSM are [177] and [268]. Recent software for classic RSM is Minitab’s “Re-
sponse Optimizer” and Stat-Ease’s “Design-Ease” and “Design-Expert”.
(I also refer back to Sections 1.2 and 2.10.)

This classic RSM has also been applied to simulation—be it random or
deterministic. I refer to several of my own publications; e.g., my 1998 survey
[191], my 1993 case study [186], my 1981 case study with several coauthors
[206], the extensive discussion in my 1974/1975 textbook [181]. Recent case
studies of RSM optimization of random simulations by other authors are
[25], [26], [161], [257], [276], [316], and [407]. A case study of RSM for deter-
ministic simulation is [33]. RSM is also discussed in the classic simulation
textbook by Law,[227], pp. 646–655, and survey articles such as [25] and
[377]. Unfortunately, RSM (unlike Tabu Search and other alternatives) has
not yet been implemented as an add-on to any of the Commercial Off The
Shelf (COTS) simulation software packages. (Nevertheless, in 2007 Google
gives nearly seventeen million hits for “Response Surface Methodology”.)

As I have already stated in Section 4.1, the simplest optimization problem
has no constraints and no uncertain environmental variables, and concerns
the expected value of a univariate simulation output (also see (2.6)):

min
z

E(w0|z) (4.1)

where
z = (z1, . . . , zk)′ where zj (j = 1, . . . k) denotes the jth original (non-

standardized) decision variable of the simulation program;

E(w0|z) is the goal (or objective) output of the simulation model, which
is to be minimized through the choice of z:

E(w0|z) =
∫ 1

0
· · ·

∫ 1

0
s(z, r)dr

where s(z, r) denotes the computer simulation program, which is a mathe-
matical function that maps the inputs z and the PseudoRandom Numbers
(PRNs) r to the random simulation response (output) w0.
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Classic RSM (applied to real-world or simulated systems) has the follow-
ing characteristics.

1. RSM is an optimization heuristic that tries to estimate the input
combination that minimizes a given goal function, like the one in
(4.1) above. Because RSM is a heuristic, success is not guaranteed
(see below).

2. RSM is a stepwise (multi-stage) method.

3. In these steps, RSM uses first-order and second-order polynomial re-
gression (meta)models (response surfaces) locally. RSM assumes that
the responses have white noise locally, so Ordinary Least Squares
(OLS) gives the Best Linear Unbiased Estimator (BLUE); see Chap-
ters 2 and 3.

4. To fit (estimate, calibrate) these first-order polynomials, RSM uses
classic designs of resolution III; for the second-order polynomial,
RSM uses a Central Composite Design (CCD); details on these de-
signs were given in Chapter 2.

5. To determine in which direction the factors will be changed in a next
step, RSM uses the gradient that is implied by the first-order poly-
nomial fitted in the current step. This gradient is used in the math-
ematical (not statistical) technique of steepest descent (or steepest
ascent, in case the output is to be maximized, not minimized).

6. In the final step, RSM applies the mathematical technique of canon-
ical analysis to the second-order polynomial metamodel, to examine
the shape of the optimal (sub)region: does that region have a unique
minimum, a saddle point, or a ridge (stationary points)?

More specifically, I distinguish the following eight steps; also see Figure
4.1 (a more detailed description is given in [25]).

1. The analysts begin by selecting a starting point ; see the point (0)
in Figure 4.1 They may select the factor combination currently used
in practice if the simulated system already exists. Otherwise, they
should use intuition and prior knowledge (as in many other search
strategies).

2. The analysts explore the Input/Output (I/O) behavior of the simu-
lated system in the neighborhood of this starting point; see the dotted
square with the point (0) in the lower-left. They approximate this
behavior through a local first-order polynomial (as the Taylor series
expansion suggests). Hence they need to estimate the intercept β0

and the k main effects βj with j = 1, . . . , k. Therefore they use a
resolution-III design. Unfortunately, there are no general guidelines
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z1

z2 E(w0) = a0;2 (< a0;1)

E(w0) = a0;1

(0)
(1) (2)(3)

azzy =++= 22110
ˆˆˆˆ βββ

Figure 4.1: RSM example

to determine the appropriate size of this local area; intuition and
prior knowledge are again important. (Finite differencing—which re-
places the resolution-III design by a less efficient one-factor-at-a-time
design—also faces the problem of selecting an appropriate size for
the local area; the optimal size depends on the unknown variance
and second-order derivatives; see [53], [327], and [412].)

3. To decide on the next input combination to be explored by simu-
lation, the analysts follow the steepest descent path, which uses the
local gradient. For example, if the estimated local first-order polyno-

mial is ŷ = β̂0 + β̂1z1 + β̂2z2, then a corresponding contour line is
ŷ = a where a denotes some constant (if the goal output w0 denotes
costs, then the contour is also called the iso-costs line). The steepest
descent path is perpendicular to the local contour lines. This path

implies that if β̂1 >> β̂2, then z1 is decreased much more than z2.
(Special designs have been developed to estimate the slope accurately;
i.e., these designs may replace the classic resolution-III designs; see
[267], pp. 142–143. However, D-optimal designs seem good enough to
estimate the steepest descent path; see [375], p. 121.) Unfortunately,
the steepest descent method is scale dependent (see [268], pp. 218–
220). Fortunately, in [202] and [201] my coauthors and I present a
scale-independent variant, which I shall summarize at the end of this
section.
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4. Unfortunately, the steepest descent technique does not quantify the
step size along its path. The analysts may therefore try some value
for the step size; see point (1) in Figure 4.1. If that value yields an
inferior simulation output (i.e., a significantly higher instead of lower
output), then they may reduce the step size; e.g., halve the step size
as in point (2). In the figure, point (2) turns out to be better than the
point (0), so the step size is again increased to point (3). In the figure
it turns out that the best point along the steepest descent path is (2),
after all. (There are more sophisticated mathematical procedures for
selecting step sizes; see [323] and Section 4.3 below.)

5. The preceding step illustrates that after a number of steps along the
steepest descent path, the simulation output will deteriorate (i.e., in-
crease instead of decrease), because the first-order polynomial is only
a local approximation of the implicit I/O function defined by the sim-
ulation model itself. When this deterioration happens, the analysts
explore the subarea around the best point found so far; i.e., they simu-
late the n > k factor combinations specified by a resolution-III design
centered around the current best point. So the analysts may use the
same coded design as in step 2, but translate that design into different
values for the original variables (the current best combination may be
one of the corners of the design—like the lower-right corner denoted
by (2) of the next square in Figure 4.1). Next the analysts estimate
the first-order effects in the new local polynomial approximation And
so their search continues; see the other two arrows in the figure.

6. However, it is intuitively clear that a plane (implied by the most
recent local first-order polynomial) cannot adequately represent a
hill top (when searching for the maximum; the analogue holds for
the minimum). So in the neighborhood of the optimum, a first-order
polynomial shows serious lack of fit. A popular and simple diagnostic
measure is the coefficient of determination R2 (see Section 2.11.1). A
related diagnostic tests whether all estimated first-order effects (and
hence the gradient) are zero (see equation 2.22 and the KKT test
in (4.4) below). Instead of these diagnostics, the analysts might use
cross-validation (see Section 2.11.2). If the most recently fitted first-
order polynomial turns out to be inadequate, then the analysts fit a
second-order polynomial. To estimate this metamodel, they may sim-
ulate the combinations specified by a CCD (see Section 2.9). This is
not shown in the figure.

7. From this second-order polynomial, the analysts estimate the optimal
values of the decision variables by straightforward differentiation or
by more sophisticated canonical analysis to examine the shape of the
optimum; see [268] p. 208.
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8. If time permits, then the analysts may try to escape from a local
minimum and restart their search from a different initial local area—
which brings them back to Step 1; also see [274].

Exercise 4.1 Apply RSM to the following problem:

minzE[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e]

where e ∽ N(0, 1). RSM treats this example as a black box; i.e., you select
the input combination z, sample e, and use these input data to compute the
output (say) w. You (not RSM) may use the explicit function to derive the
true optimum solution, (zo

1, zo
2).

In step 3, I mentioned that my coauthors and I give a variant of steepest
descent in [201] and [202] (also see [291]). I summarize our results as follows.
Adapted Steepest Descent (ASD) accounts for the covariances between the

elements of the estimated gradient β̂−0 = (β̂1, . . . , β̂k)′, where the subscript

−0 means that the intercept β̂0 of the estimated first-order polynomial

vanishes in the estimated gradient so β̂ = (β̂0, β̂−0)
′.

This cov(β̂−0) follows from the (classic) white noise assumption:

cov(β̂) = σ2
w(Z′Z)−1 = σ2

w

(
a b′

b C

)
(4.2)

where
σ2

w denotes the variance of the (goal) simulation output w;
Z is the N × (1+ k) matrix of explanatory regression variables including

the column with N one’s;
N =

∑n
i=1 mi is the total number of simulation runs;

n is the number of simulated input combinations;
mi is the number of Identically and Independently Distributed (IID)

replicates for combination i;
a is a scalar;
b is a k-dimensional vector;

C is a k × k matrix such that cov(β̂−0) = σ2
wC.

Note: Z’s first column corresponds with the intercept β0. Furthermore,
Z is determined by the resolution-III design, transformed into the original
values of the inputs in the local area. To save computer time, only the center
of the local area may be replicated (the center is not part of the resolution-
III design). Replicates use the same input combination zi(i = 1, . . . n) but
different PRNs. For more details I refer back to Chapter 2.

Under this assumption, the variance is estimated through the Mean
Squared Residuals (MSR):

σ̂w
2

=

∑n
i=1

∑mi

r=1(wi;r − ŷi)
2

(
∑n

i=1 mi) − (k + 1)
(4.3)
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where ŷi = z′iβ̂; also see Chapter 2.
It is easy to prove that the predictor variance var(ŷ|z) increases as z

(point to be predicted) moves further away from the local area where the
gradient is estimated. The point with the minimum predictor variance is
the point −C−1b.

The new point to be simulated is

d = −C−1b − λC−1β̂−0 (4.4)

where

• −C−1b is the point where the local search starts, namely the point
with the minimum variance in the local area

• λ is the step size.

• C−1β̂−0 is the (classic) steepest descent direction (namely, β̂−0)

adapted for cov(β̂−0). It is easy to see that if C is a diagonal matrix,
then the higher the variance of a factor effect is, the less the search
moves into the direction of that factor.

Exercise 4.2 Prove that the search direction in (4.4) does not change the
steepest descent direction if the design matrix is orthogonal (so Z′Z = NI).

Accounting for cov(β̂−0) gives a scale independent search direction,
which in general outperforms the steepest descent direction.

Note: A Bayesian approach to gradient estimation is given in [272]; also
see my brief discussion on Bayesian analysis in Section 4.5.

4.3 Generalized RSM: multiple outputs and
constraints

In practice, simulation models have multiple responses (multivariate out-
put; also see Section 3.2). Several approaches to solve the resulting issues
are surveyed in [316]. Furthermore, the RSM literature also offers several
approaches for such situations; see the surveys in [12], [176], [273], and
[286]. However, I find these approaches less attractive than the following
approach—which I call Generalized RSM or GRSM—that my coauthors
and I present in [12].

We assume that one simulation output should be minimized, while all
the other outputs must satisfy given constraints (so we do not use multi-
objective optimization). More specifically, GRSM has the following
characteristics.
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• We generalize the steepest descent search direction (applied in clas-
sic RSM), using the “affine scaling search direction” and borrowing
ideas from Interior Point (IP) methods (a variation on Karmarkar’s
algorithm) in Mathematical Programming; see [23]. Our search di-
rection moves faster to the optimum than steepest descent, since our
search avoids creeping along the boundary of the feasible area (this
feasible area is determined by the constraints on the random outputs
and the deterministic inputs; see below). Moreover, our search tries
to stay inside the feasible area, so the simulation program does not
crash. Finally, our search direction is scale independent, which is an
important characteristic for both practitioners and researchers.

• We use our search direction iteratively (as classic RSM does). Be-
cause we assume expensive simulation experiments, the search should
quickly reach a neighborhood of the true optimum.

• Though we develop our heuristic for random simulations, we can eas-
ily adapt it for deterministic simulations and real-world (nonsimu-
lated) systems—analogous to classic RSM.

Formally, we extend the classic RSM problem formulated in (4.1) to the
following constrained nonlinear random optimization problem:

min
z

E(w0|z) (4.5)

such that the other (r − 1) random outputs (also see equation 3.1) satisfy
the constraints

E(wh′ |z) ≥ ah′ with h′ = 1, . . . , r − 1 (4.6)

and the k deterministic inputs satisfy the so-called box constraints

lj ≤ zj ≤ uj with j = 1, . . . , k. (4.7)

An example is the following inventory simulation. The sum of the ex-
pected inventory carrying costs and ordering costs should be minimized,
The expected service percentage (or fill rate) should be at least (say) 90% so
a1 = 0.9 in (4.6). Both the reorder quantity z1(= Q) and the reorder level
z2(= s) should be nonnegative, so z1 ≥ 0 and z2 ≥ 0; see (4.7). (Note the
similarity of the constraints on the random outputs and the deterministic
inputs.)

Note: Stricter input constraints may be formulated; e.g., the reorder
level should at least cover the expected demand during the expected order
lead time. Input constraints more complicated than these box constraints
(namely, geometry constraints) are discussed in [365] and [368]. Simple lin-
ear constraints for the inputs are used in [93] and [294]. Input constraints
resulting from output constraints are discussed in [273].
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Analogously to the first steps of classic RSM, we locally approximate
the multivariate I/O function (see equation 3.1) by r univariate first-order
polynomials (see equation 3.2):

yh = Zβh+eh with h = 0, . . . r − 1. (4.8)

We assume that locally the white noise assumption holds; i.e., the residuals
e are Normally IID with zero mean and constant variance: e ∼ NIID(0, σ2)
(see Chapter 3). The following OLS estimators are then the BLUEs:

β̂h = (Z′Z)
−1

Z′wh with h = 0, . . . , r − 1. (4.9)

Then β̂0 (OLS estimator for first-order polynomial approximation of goal
function) and the goal function (4.5) itself result in

min
z

β̂0;−0z (4.10)

where β̂0;−0 denotes the OLS estimate of the local regression parameters for
the goal output (which explains the first subscript 0) excluding the intercept

(which explains the second subscript −0); i.e., β̂0;−0 = (β̂0;1, . . . , β̂0,k)′ is
the estimated local gradient of the goal function. (The alternative, more

complicated symbol β̂0;−0(z) would emphasize that the gradient depends
on the local area being explored.)

The r − 1 estimates β̂h′ with h′ = 1, . . . , r − 1 in (4.9) combined with
the original output constraints (4.6) give

β̂h′;−0z ≥ ch′ with h′ = 1, . . . , r − 1 (4.11)

where β̂h′;−0 = (β̂h′;1, . . . , β̂h′,k)′ denotes the estimated local gradient of

constraint function h′, and ch′ = ah′−β̂h′;0denotes the modified right-hand
side of this constraint function.

The box constraints in (4.7) remain unchanged.

Now the (r−1) k-dimensional vectors β̂h′;−0 in (4.11) are collected in the
(r− 1)× k matrix called B. Likewise, the (r− 1) elements ch′ are collected
in the vector c. And the k-dimensional vectors with the nonnegative slack
variables s, r, and v are introduced. Altogether this gives

minimize β̂h′;−0z

subject to Bz − s = c

z + r = u

z − v = l.

(4.12)

This (local) optimization problem is linear in the decision variables z (the

OLS estimates β̂0;−0 and β̂h′;−0 in B use the property that this problem is
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also linear in the regression parameters). We do not solve this LP problem,
but use this problem only to derive the following novel search direction d:

d = −
(
B

′

S−2B + R−2 + V−2
)−1

β̂0;−0 (4.13)

where S, R, and V are diagonal matrixes with as main-diagonal elements

the current estimated slack vectors s, r, and v in (4.12); the factor −β̂0;−0

is the estimated classic steepest descent direction. Our search direction can
be proven to be scale independent; i.e., the linear transformations in (2.32)
do not affect this search direction. For details, I refer to [12].

As the value of a slack variable in (4.13) decreases (so the corresponding
constraint gets tighter), our search direction deviates more from the steep-
est descent direction. Possible singularity of the various matrices in (4.13)
is discussed in [12].

Following the search direction (or path) defined by (4.13), we must decide
on the step size (say) λ along this path. We derive an explicit step size in
[12], assuming that the local metamodel (4.11) holds globally :

λ = 0.8min
h′

⎡
⎣ch′ − β̂h′;−0

′
zc

β̂h′;−0

′
d

⎤
⎦ (4.14)

where the factor 0.8 is chosen to decrease the probability that the local
metamodel is misleading when applied globally; zc denotes the current
input combination, so the new combination becomes zc + λd. Obviously,
the box constraints (4.7) for the deterministic inputs hold globally, so it is
easy to check the solution in (4.14) against these constraints.

Analogously to classic RSM, we proceed stepwise; i.e., after each step
along our search path we test the following two hypotheses:

1. w0(zc + λd) (the simulation output of the new combination) is no
improvement over w0(zc) (the output of the old combination); i.e.
this step increases the goal output w0 (pessimistic null-hypothesis):

H0 : E[w0(zc + λd)] ≥ E[w0(zc)]. (4.15)

2. This step is feasible; i.e., the new solution satisfies the (r − 1) con-
straints in (4.6):

H0 : E(wh′ |zc + λd)) ≥ ah′with h′ = 1, . . . , r − 1. (4.16)

To test these hypotheses, I propose the following simple statistical pro-
cedures (more complicated parametric bootstrapping is used in [12], which
permits non-normality and tests the relative improvement w0(zc + λd)/w0

(zc) and the relative slacks sh′(zc + λd)/sh′(zc); see Section 3.3.3 and the
following exercise).
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Exercise 4.3 Which statistical problem arises when testing the ratio of
the slack at the new solution and the slack at the old solution, sh′(zc +
λd)/sh′(zc)?

Sub 1 : To test the hypothesis in (4.15), the classic t statistic may be
applied. A paired t statistic may be applied if CRN are used to obtain the
two simulation outputs w0(zc + λd) and w0(zc). To estimate the standard
error of their difference, m ≥ 2 replicates suffice: the t statistic has υ = m−1
degrees of freedom. The hypothesis is rejected if significant improvement
is observed. (Note that [171] also uses a t test in a simulation optimization
context, but that article uses the so-called quasi-Newton method instead
of our Interior Point method.)

Sub 2 : Again a t statistic with m−1 degrees of freedom may be applied.
Because r−1 hypotheses are implied by (4.16), Bonferroni’s inequality may
be used (if r > 2).

Actually, a better solution may lie somewhere between zc (the old com-
bination) and zc +λd (the new combination at the “maximum” step size).
We therefore recommend to apply a binary search; i.e., simulate a combi-
nation that lies halfway between these two combinations (and is still on the
search path). We may apply this halving of the stepsize a number of times.

Next we proceed analogously to classic RSM. So around the best combi-
nation found so far, we select a new local area. We again use a resolution-III
design to select the simulation runs to be generated. We again may repli-
cate only the new center m > 1 times. And we fit r first-order polynomials,
which gives a new search direction. And so on.

We apply GRSM to two examples, namely an inventory simulation with
a service-level constraint so the solution is unknown (see [28]), and an
artificial example with known solution (most test functions in simulation
optimization are unconstrained; see, e.g., the seven functions in [274] and
the seven multi-modal functions in [175]). The results of these examples
are encouraging, as GRSM finds solutions that are both feasible and give
drastically lower goal functions.

Figure 4.2 gives an example, which deserves the following comments.

• There are two decision variables; see the two axes labeled z1 and z2.

• There is one goal function; the figure shows only two contour func-
tions, namely E(w0) = a0;1 and E(w0) = a0;2 with a0;2 < a0;1.

• There are two constrained random outputs; see E(w1) = a1 and
E(w2) = a2, which correspond with the boundary of the feasible
area.

• The search starts in the lower right local area, where a 22 design is
executed; see the four elongated points.

• This design and the (not shown) replicates give a search direction;
see the arrow leaving from point (0).
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z1

z2 E(w0) = a0;2 (< a0;1)

E(w0) = a0;1

E(w2) = a2

E(w1) = a1
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(1) (2)(3)

(4)

(5)
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Figure 4.2: GRSM example

• The maximum step size along this path takes the search from point
(0) to point (1).

• The binary search takes the search back to point (2), and next to
point (3).

• Because the best point so far turns out to be point (1), the 22 design
is simulated at the new local area with this point as one of its input
combinations.

• This design gives a new search direction, which avoids the boundary.

• The maximum step size now takes the search to point (4).

• The binary search takes the search back to point (5), and next to
point (6).

• Because the best point so far is now point (4), the 22 design is simu-
lated at the local area with this point as one of its points.

• A new search direction is estimated; etc. (the remaining search is not
displayed).
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Exercise 4.4 Apply GRSM to the following artificial example reproduced
from [12]:

minimize E[5(z1 − 1)2 + (z2 − 5)2 + 4z1z2 + e0]
subject to E[(z1 − 3)2 + z2

2 + z1z2 + e1] ≤ 4

E[z2
1 + 3 (z2 + 1.061)

2
+ e2] ≤ 9

0 ≤ z1 ≤ 3, −2 ≤ z2 ≤ 1

(4.17)

where e0, e1, and e2 are the components of a multivariate normal variate
with mean 0, variances σ0,0 = 1 (so σ0 = 1), σ1,1 = 0.0225 (or σ1 = 0.15),
σ2,2 = 0.16 (or σ2 = 0.4), and correlations ρ0,1 = 0.6, ρ0,2 = 0.3,
ρ1,2 = −0.1.

4.4 Testing an estimated optimum: KKT
conditions

By definition, it is uncertain whether the optimum estimated by a heuristic
(e.g., GRSM) is close enough to the true optimum. In deterministic Nonlin-
ear Mathematical Programming, the KKT first-order optimality conditions
have been derived; see, e.g., [127].

Figure 4.3 illustrates the same type of problem as the one in Figure 4.2.
In the present example there is again a goal function E(w0), for which three

z1

z2

E(w0) = 66

E(w0) = 76

E(w0) = 96

E(w2) = 9

E(w1) = 4

A

D

B

C

Figure 4.3: A constrained nonlinear random optimization problem
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contour plots are displayed corresponding to the values 66, 76, and 96; see
(4.5). There are two constrained simulation outputs, namely E(w1) ≥ 4
and E(w2) ≥ 9. The optimum combination is point A. Points B and C lie
on the boundary E(w2) = 9; point D lies on the boundary E(w1) = 4; also
see (4.6). Obviously, point D is far away from the optimum combination A.
The figure also displays the (local) gradients at these four points for the
goal function and the binding constraint ; i.e., the constraint with a zero
slack value in (4.6). These gradients are perpendicular to the local tangent
lines; those lines are shown only for the binding constraint (not for the
goal function). At the optimum, the gradients for the goal function and the
binding constraint coincide; at point D, these two gradients point in very
different directions.

Let z0 denote a local minimizer for the deterministic variant of our prob-
lem. The KKT first-order necessary optimality conditions for z0 are then

β0;−0 =
∑

h∈A(z0)

λ0
hβh;−0

λ0
h ≥ 0

h ∈ A
(
z0

)
(4.18)

where β0;−0 denotes the k-dimensional vector with the gradient of the goal

function (see (4.10)); A
(
z0

)
is the index set with the indices of the con-

straints that are binding at z0; λ0
h is the Lagrange multiplier for binding

constraint h; βh;−0 is the gradient of the output in that binding constraint
(in Figure 4.3, there is only one binding constraint at the points A through
D). The KKT conditions imply that the gradient of the objective can be
expressed as a nonnegative linear combination of the gradients of the bind-
ing constraints, at z0. Note that there is a certain constraint qualification
that is relevant when there are nonlinear constraints in the problem; see
[127], p. 81. There are several types of constraint qualification, but many
are only of theoretical interest; a practical constraint qualification for non-
linear constraints is that the r − 1 constraint gradients at z0 be linearly
independent.

In Figure 4.3 point A satisfies the KKT conditions; point B has two
gradients that point in different but similar directions—and so does point
C. Point D, however, has two gradients that point in completely different
directions.

Note: If the optimum occurs inside the feasible area, then there are no
binding constraints. The KKT conditions then reduce to the condition that
the goal gradient is zero. In classic RSM, the analysts test for a zero gra-
dient, estimated from a second-order polynomial; see Step 7 in Section 4.2.
This test may use a classic F -test (see Section 4.2 and Chapter 2). Recently,
[172] considered an unconstrained optimization problem, and estimated the
gradient of the goal function through the SF method. I do not consider such
situations any further.
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Unfortunately, in random simulation the analysts must estimate the gra-
dients. Moreover, to check which constraints are binding, the analysts must
estimate the slacks of the constraints. This estimation turns the KKT con-
ditions (4.18) into a problem of nonlinear statistics.

Angün and I derive an asymptotic test in [13] to check whether the
optimum has indeed been found. Together with two other coauthors, I
derive an alternative, bootstrap test in [39]. I focus on the latter test,
because it is simpler (the former test uses the so-called Delta method and
a generalized form of the so-called Wald statistic) and it allows a small
number of replicates (as is the case in expensive simulation). Both tests
assume a problem like the one formulated in the preceding section; i.e.,
there is one random simulation output to be minimized and there are r−1
constrained random simulation outputs; see (4.5) and (4.6).

We assume that estimators of the gradients are available. Some (itera-
tive, heuristic) simulation optimization methods do estimate these gradi-
ents; some do not. For example, RSM, PA, and the SF method do give
estimated gradients (using either multiple input combinations like RSM
does or a single run like PA and SF do; also see [400]); most metaheuris-
tics do not estimate gradients. However, when the analysts apply a meta-
heuristic, then they may follow-up with a local experiment to estimate the
gradients at the estimated optimum and use these gradients as a stop-
ping criterion—instead of using rather arbitrary criteria such as a prefixed
computer budget.

Note: Whenever a metaheuristic is used to estimate gradients while treat-
ing the simulation model as a black box, the analysts should not change one
factor at a time followed by some type of finite differencing, such as forward
or central finite differences. Nevertheless, such an approach is proposed in,
e.g., [108], [171], [228], [360], and [412]. Instead, the analysts should use
classic designs to fit first-order or second-order polynomials locally; e.g.,
the tangent lines in Figure 4.3 may be interpreted as first-order polynomi-
als. To fit such polynomials, classic RSM uses highly efficient resolution-III
designs and a CCD (see Section 4.2 and also [53] and [169]). Obviously, the
estimated gradient is biased if second-order effects are important and yet
a first-order polynomial is fitted.

The technical details of the bootstrap KKT test are presented in the re-
mainder of this section (so readers not interested in these details should skip
to Section 4.5). As in classic RSM, I assume locally constant (co)variances
for each of the r simulation outputs; i.e., when moving to a new local area,
the (co)variances may change. For example, the points A through D in
Figure 4.4 do not have the same variance for the goal output. This assump-
tion is part of the white-noise assumption. The latter assumption implies

that OLS applied per univariate simulation output gives the BLUE, β̂h

(h = 0, 1, . . . , r−1) defined in (4.9). Even if the (co)variances do not remain
locally constant, the OLS estimators remain unbiased; see Section 3.4.4.
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However, only under locally constant (co)variances do the OLS estimators
have the following estimated covariance matrix (also see [297]:

̂
cov(β̂h, β̂h′) = ̂cov(wh, wh′) ⊗ (Z′Z)

−1
(h, h′ = 0, . . . , r − 1) (4.19)

where ⊗ is the well-known “Kronecker product” operator (also see [265],

p. 13) and ̂cov(wh, wh′)) is an r × r matrix with the classic estimators of
the (co)variances based on the m replicates at the local center (also see
equation 2.26):

̂cov(wh, wh′) = (σ̂h;h′) = (
m∑

l=1

(wh;l − wh)(wh′;l − wh′))
1

m − 1
. (4.20)

The Kronecker product implies that
̂

cov(β̂h, β̂h′) is an rq × rq matrix
(where q still denotes the number of parameters of the univariate regression
model per simulation output; for example q = 1 + k in a first-order poly-

nomial regression metamodel), formed from the r × r matrix ̂cov(wh, wh′)

by multiplying each of its elements by the entire q × q matrix (Z′Z)
−1

(in

(4.2), Z was an N × (1 + k) matrix). The matrix ̂cov(wh, wh′)is singular if
m ≤ r; e.g., the case study in [186] has r = 2 response types and k = 14
inputs so m ≥ 3 replicates of the center point are required. Of course, the
higher m is, the higher is the power of the tests that use these replicates.

Another reason for replicating the center point is that this point is used
to test whether a constraint is binding in the current local area ; see (4.21)
below. The center point is more representative of the local behavior than
the points of the resolution-III design. Classic RSM also uses replication of
the center point when using a CCD.

I also assume that the r-variate simulation output is multivariate Gaus-
sian. Then (as in classic RSM) the validity of the local metamodel may be
tested through the classic lack-of–fit F -statistic; see (2.30). This test also
assumes that no CRN are applied. In our GRSM variant there are multi-
ple simulation responses, so this classic test is combined with Bonferroni’s
inequality ; i.e., the classic type-I error rate α is replaced by the “experimen-
twise” or “familywise” error rate α/r. (A more complicated, multivariate
variant of this test is given in [317].)

If the metamodel is rejected, then there are two options:

• Decrease the local area; e.g., halve each factor’s range.

• Increase the order of the polynomial; e.g., switch from a first-order
to a second-order polynomial.

I do not explore these options further in this chapter, but refer to the
RSM literature.
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Testing the KKT conditions in random simulation implies testing the fol-
lowing three null-hypotheses, denoted by the superscripts (1) through (3):

1. The current solution is feasible and at least one constraint is binding ;
see (4.6):

H
(1)
0 : E(wh′ |d = 0) = ah′ with h′ = 1, . . . , r − 1 (4.21)

where d = 0 corresponds with the center of the local area expressed
in the inputs standardized through (2.32).

2. The expected value of the estimated goal gradient may be expressed
as the expected value of a linear combination of the estimated gradi-
ents of the simulation outputs in the binding constraints; i.e., in (4.18)
the deterministic quantities are replaced by their random estimators:

H
(2)
0 : E(β̂0;−0) = E

⎛
⎝ ∑

j∈A(z0)

̂λ0
jβj)

⎞
⎠ . (4.22)

3. The Lagrange multipliers in (4.22) are nonnegative:

H
(3)
0 : E(λ̂) ≥ 0. (4.23)

Note: Each of these three hypotheses requires multiple tests, so Bonfer-
roni’s inequality is applied. Moreover, these three hypotheses are tested
sequentially, so it is hard to control the final type-I and type-II error prob-
abilities. However, classic RSM has the same type of problems (multiple
and sequential tests), and nevertheless RSM has acquired a track record in
practice.

Sub 1 : To save simulation runs, a local experiment should start at its
center point including replicates. If it turns out that either no constraint
is binding or at least one constraint is violated, then the other hypotheses
need not be tested so the remainder of the local design is not simulated.

To test the hypothesis (4.21), the following t statistic may be used:

t
(h′)

m−1 =
wh′(d = 0) − ah′√

σ̂h′;h′/m
with h′ = 1, . . . , r − 1 (4.24)

where both the numerator and the denominator are based on the m repli-
cates at the local center point (also see (4.20)).

The t statistic in (4.24) may give the following three different results.

• The statistic is significantly positive. The analysts may then conclude
that the constraint for output h′ is not binding. If none of the (r− 1)
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constraints is binding, then the optimal solution is not yet found (as-
suming that at the optimum at least one constraint is binding; other-
wise, classic RSM applies). The search for better solutions continues
(also see Section 4.3 above).

• The statistic is significantly negative. The analysts may conclude that
the current local area does not give feasible solutions; i.e., the optimal
solution is not yet found. The search should back up into the feasible
area (again see Section 4.3).

• The statistic is nonsignificant. The analysts may conclude that the
current local area gives feasible solutions, and the constraint for out-
put h′ is binding. The index of this gradient is then included in A

(
z0

)
;

see (4.22). And the analysts proceed to test whether they have indeed
found the optimal solution—as follows.

Sub 2 : The hypothesis (4.22) is that the expected value of the goal gra-
dient may be expressed as the expected value of a linear combination of
the estimated gradients of the binding constraints. To estimate this linear
combination, we apply OLS using as explanatory variables the estimated
gradients of the (say) J binding constraints (so the explanatory variables

become random). We collect the latter gradients in the k×J matrix B̂J;−0.

The parameters estimated through OLS are λ̂. Let
̂̂
β0;−0 denote the OLS

estimator of the goal gradient; i.e.

̂̂
β0;−0 = B̂J;−0(B̂J;−0

′
B̂J;−0)

−1B̂J;−0

′
β̂0;−0 = B̂J;−0λ̂ (4.25)

where λ̂ = (B̂J;−0

′
B̂J;−0)

−1B̂J;−0

′
β̂0;−0 is the OLS estimator of the La-

grange multipliers in the KKT conditions. Obviously, if β̂0;−0 and the vec-

tors in B̂J;−0 point in the same direction, then all the components of λ̂ are

positive; if β̂0;−0 and B̂J;−0 are perpendicular, then λ̂ is zero; if β̂0;−0 and

B̂J;−0 point in opposite directions, then λ̂ is negative; also see the points
A through D in Figure 4.3. The expression in (4.25) is highly nonlinear;
bootstrapping is a classic analysis method for nonlinear statistics.

There are several statistics for quantifying the accuracy of a model fitted
through OLS. One of the statistics for quantifying the validity of our linear
approximation is the k-dimensional vector of residuals

e
̂

(
̂̂
β0;−0) =

̂̂
β0;−0 − β̂0;−0. (4.26)

The hypothesis (4.22) implies E(e
̂

(
̂̂
β0;−0)) = 0. Section 3.3.3 focused on

distribution-free bootstrapping. In expensive simulation, however, only the
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center point is replicated a few times so this type of bootstrapping does not
give good results. Therefore parametric bootstrapping should be used; i.e.,
a specific distribution type is assumed and its parameters are estimated
from the simulation’s I/O data at hand (therefore the bootstrap is called
“data driven”). Like in classic RSM, we assume a normal distribution.

Altogether, our KKT test procedure uses three layers of models:

1. The simulation model, which GRSM treats as a black box.

2. The regression metamodel, which uses the simulation I/O data (Z,w)

as input and estimates the gradients of the goal response (β̂0;−0) and
of the constrained responses including the binding constraints col-

lected in B̂J;−0. The regression analysis also estimates
̂

cov(β̂0;−0, B̂J;−0),
the covariance matrix of these estimated gradients.

3. The bootstrap model, which uses the regression output (β̂0;−0, B̂J;−0,

̂
cov(β̂0;−0, B̂J;−0)) as parameters of the multivariate normal distri-

bution of its output β̂∗
0;−0 and B̂∗

J;−0 where the superscript ∗ denotes
bootstrapped values.

More specifically, our bootstrap procedure consists of the following four
steps.

1. Use the Monte Carlo method to sample vec(β̂∗
0;−0, B̂

∗
J;−0), which is

a (k+kJ)-dimensional vector formed by “stapling” or “stacking” the
k-dimensional goal gradient vector and the J k-dimensional vectors

of the k × J matrix B̂∗
J;−0:

vec(β̂∗
0;−0, B̂

∗
J;−0) ∼ N(vec(β̂0;−0, B̂J;−0),

̂
cov[vec(β̂0;−0, B̂J;−0)])

(4.27)

where
̂

cov[vec(β̂0;−0, B̂J;−0)] is the (k + kJ)× (k + kJ) matrix com-
puted through (4.19).

2. Use the bootstrap values resulting from Step 1, to compute the OLS
estimate of the bootstrapped goal gradient using the bootstrapped
gradients of the binding constraints as explanatory variables; i.e., use
(4.25) adding the superscript ∗ to all random variables—resulting in
̂̂
β∗

0;−0 and λ̂∗.

3. Use
̂̂
β∗

0;−0 from Step 2 and β̂∗
0;−0 from Step 1 to compute the bootstrap

residuale
̂

(
̂̂
β∗

0;−0) =
̂̂
β∗

0;−0 − β̂∗
0;−0 analogous to (4.26). Furthermore,
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determine whether any of the bootstrapped Lagrange multipliers λ̂∗

(found in Step 2) is negative; i.e., augment a counter (say) c∗ with
the value 1 if this event occurs.

4. Repeat the preceding three steps (say) 1,000times (this is the boot-
strap sample size, denoted by B in Section 3.3.3). This gives the

Estimated Density Function (EDF) of e
̂

(
̂̂
β∗

0;−0;j) (the bootstrapped
residuals for input j with j = 1, . . . , k), and the final value of the
counter c∗. Reject the hypothesis in (4.22) if this EDF implies a two-
sided (1−α/(2k)) confidence interval that does not cover the value 0
(the factor k is explained by Bonferroni’s inequality). Reject the hy-
pothesis in (4.23) if the fraction c∗/1,000 is significantly higher than
50% (if the true Lagrange multiplier is only “slightly” larger than
zero, then “nearly” 50% of the bootstrapped values is negative). To
test the latter fraction, the binomial distribution may be approxi-
mated through the normal distribution with mean 0.50 and variance
(0.50×0.50)/1,000 = 0.00025.

The numerical examples that we report in [39] are encouraging:

1. The classic t test for zero slacks and the classic F test for lack-of-fit
perform as expected.

2. Our bootstrap tests give observed type I error rates close to the pre-
specified rates; the type II error rate (complement of the power) de-
creases as the input combination tested moves farther away from the
true optimum (see the points A through D in Figure 4.3).

4.5 Risk analysis

In Section 1.1, I mentioned that a deterministic simulation model—such as
Example 1.1 with its Net Present Value (NPV) spreadsheet computation—
may be augmented to a random simulation model—if inputs such as the
discount factor θ or the cash flows xt are unknown so their values are
sampled from distribution functions. The latter type of simulation is called
Risk Analysis (RA) or Uncertainty Analysis (UA); see again [44], [313],
[327], [340], and recent textbooks such as [110] and [392].

In that same section, I also mentioned that complicated examples of
deterministic simulation models are provided by models of airplanes, au-
tomobiles, chemical processes, computer chips, etc.—applied in Computer
Aided Engineering (CAE) and Computer Aided Design (CAD). I referred to
the recent surveys [5], [65], [66], [254], [280], and [357]; additional examples
are [298] and [365].
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Another type of deterministic simulation is used in routing protocols
in telematics and project planning through the “Critical Path Method”
(CPM) and “Programme Evaluation and Review Technique” (PERT). Clas-
sic models assume known values for the components of the total rout-
ing or project respectively. Simulation models allow the input values to
be random; e.g., durations are sampled from beta distributions. See [107]
and [240].

In general, even a deterministic simulation model generates random out-
put if the model’s input variables and parameters are sampled from a (prior)
distribution because their values are not known exactly. This uncertainty is
called subjective or epistemic; see [145]. The latter publication includes ref-
erences to methods for obtaining subjective distributions based on expert
opinions. Alternative representations of this uncertainty—such as fuzzy
sets and evidence theory—are given in [30], [144] and [145].

Random simulations (such as Discrete-Event Dynamic Systems or DEDS
simulations) have objective, aleatory or inherent uncertainty; again see
[145] (that reference also cites publications that use Importance Sampling
for rare events with major consequences). I add that DEDS simulation mod-
els represent real systems that without this inherent uncertainty would have
a completely different character; e.g., a queueing model without uncertain
arrival and service times is not a queueing problem anymore; it becomes
a scheduling problem. I refer to the recent tutorial [69], and also to [10]
and [416].

I claim that RA answers different questions than Sensitivity Analysis
(SA) does. SA answers the question: “Which are the most important factors
in the simulation model of a given real system”? RA answers the question:
“What is the probability of a given event happening; e.g., what is the
probability of a nuclear or a financial disaster happening in the system
under investigation (a nuclear reactor, a bank)”? A nuclear waste example
was discussed in Example 2.7; also see [145]. A financial risk example is
the estimation of the 5% quantile of the NPV distribution in [118]. Food
safety risks (e.g., foot and mouth disease, terrorist food poisoning, natural
disasters such as extreme weather) are discussed in [45].

Note: SA may help identify those inputs for which the distributions in
RA need further refinement; see [145]. (Bayesian approaches are discussed
below). SA may use DASE, because DASE gives better answers; i.e., the
common sense approach changing one factor at a time gives estimators
of factor effects that have higher standard errors, and does not enable
estimation of interactions among factors; see Chapter 2.

RA may proceed as follows.

1. RA uses the Monte Carlo method (briefly discussed in Section 1.1)
to sample a combination of factor values (a scenario) from the joint
distribution of possible factor values. (If the factors are assumed to
be independent, then this joint distribution is simply the product of
the marginal distributions.)
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2. RA uses this combination as input into the simulation model of the
real system.

3. RA uses the given simulation model to transform this input into
output (response), which is also called “propagation of uncertainty’.

4. RA repeats Steps 1 through 3 a number of times (say, 100 or 1,000
times), to obtain an Estimated Distribution Function (EDF) of the
response of interest.

5. RA uses the EDF of Step 4 to estimate the probability that is being
asked. (Also see the discussion of bootstrapping in Section 3.3.3.)

Personally I was involved in the following applications, using both RA
and SA.

• Helton and I report on the probability of leakage of low-radiation
nuclear waste; see [204] and also Example 2.7.

• Van Groenendaal and I report on the NPV distribution of an envi-
ronmental investment in a biogas plant in China. We apply the same
RA and SA as I do with Helton. See [388].

• Gaury and I perform RA using an academic simulation model of a
production line, to estimate the probability of a managerial disaster
(or accident)—for different production pull-control systems such as a
Kanban system; see [203] and Section 4.6 below.

Exercise 4.5 Perform a RA of an M/M/1 simulation, as follows. Suppose
that you have available n IID observations on the interarrival time, and
on the service time respectively: ai and si (i = 1, . . . , n). Actually, you
sample these values from exponential distributions with parameter λ = ρ
and µ = 1 where ρ is the traffic rate that you select. Use bootstrapping
to sample interarrival times and service times, which you use to estimate
the arrival and service rates λ and µ. This pair of estimated rates you use
as input to your M/M/1 simulation. In this simulation, you observe the
output that you are interested in (e.g., the estimated steady-state waiting
time). Perform m replications, to estimate the aleatory uncertainty. Repeat
the bootstrap, to find different values for the pair of estimated rates; again
simulate to estimate the epistemic uncertainty. Compare the effects of both
types of uncertainty.

I further discuss the similarities and dissimilarities between RA and SA
in [187] and [190]; I also refer to [249] and [279].

An expensive simulation model requires much computer time per run.
RA may then sample, not this expensive simulation model, but its meta-
model approximation. For example, [129] uses crude Monte Carlo, Latin
Hypercube Sampling (LHS; see Section 4.5.1 below), and orthogonal ar-
rays to sample from specific metamodel types, namely Kriging models and
Multivariate Adaptive Regression Splines (MARS). It turns out that the
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true mean output can be better estimated through sampling many “cheap”
values from the metamodel; this metamodel is estimated from relatively few
I/O values obtained from the expensive simulation (because that publica-
tion estimates an expected value, it does not perform a true RA); also see
[106]. Another example is [249], which samples a Kriging metamodel to
assess output uncertainty. Kriging is also used for robust design in [220].
The use of Kriging metamodels and Bayesian RA is also briefly discussed
in [346].

This RA resembles the Bayesian approach, since both approaches as-
sume the parameters of the simulation model to be unknown and assume
specific distributions for these parameters. The Bayesian paradigm selects
these prior distributions in a more formal way (e.g., so-called conjugate
priors), obtains simulation I/O data, and calibrates the metamodel’s pa-
rameters; i.e., it computes the posterior distribution (or likelihood) using
the well-known Bayes theorem. Recent references, which include many ad-
ditional references, are [31], [68], [75], [131], [139], [272], [278], [279], [307],
and [416] (also see my own comments in [192]).

Bayesian model averaging formally accounts—not only for the uncer-
tainty of the input parameters—but also for the uncertainty in the form of
the (simulation) model itself; see [74], [307], and [416]. Also see Bayesian
melding in [346].

Sample size determination in Bayesian RA is the focus of [272]; i.e. that
publication focuses on the allocation of the limited sampling budget to the
various input parameters that can be better estimated when additional
data are collected (also see [74]). (For a classic, frequentist approach see
again [145] and also [326].)

I think that the Bayesian approach is very interesting, especially from
an academic point of view. Practically speaking, however, the classic fre-
quentist RA has been applied many more times (see, e.g., the applications
at Sandia).

4.5.1 Latin Hypercube Sampling (LHS)

In 1979, McKay et al. published LHS for the design of experiments with de-
terministic simulation models or “computer codes”; later on, LHS became
so popular that this article was republished in 2000; see [253]. Nowadays,
LHS is applied in both deterministic and random simulation experiments,
analyzed through a metamodel that is more complicated than a low-order
polynomial (examples of such metamodels are Kriging, Bayesian model
averaging, etc.).

Popular software for LHS is “Crystal Ball”, “@Risk”, and “Risk Solver”,
which are add-ins to Microsoft’s Excel spreadsheet software; see the soft-
ware reviews in [149] and [337], and also see

http://www.solver.com/risksolver.htm.
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These RA software packages enable crude Monte Carlo and LHS. LHS
can also be generated through the MATLAB Statistics toolbox subroutine
“lhs” (see [153]), and Sandia’s DAKOTA software (see [106], [129] and

http://endo.sandia.gov/DAKOTA)
and the European Commission’s Joint Research Center (JRC) SIMLAB

software (see [329]) on
http://simlab.jrc.cec.eu.int/.
In their case study (concerning the WIPP, which was also discussed in

Example 2.7), [143] finds that crude Monte Carlo and LHS give similar
results if the common sample size is large enough. In general, however,
LHS is meant to improve results in simulation applications.

Note: Technically, LHS is a type of stratified sampling based on the clas-
sic Latin Square design, which is a square matrix such that each level of the
factor of interest occurs exactly once in each row and each column; the col-
umn and row correspond with two factors that are nuisance or block factors
(also see the discussion of blocking in Section 2.10). An example with 5 lev-
els is Table 4.1; see [385]. Here factor 1 is the factor of interest, whereas fac-
tors 2 and 3 are the nuisance factors. This example requires only 5×5 = 25
combinations instead of 53 = 125 combinations. (For a discussion of Latin
and Graeco-Latin squares, I also refer to [66].) Another Latin square—this
time, constructed in a systematic way—is shown in Table 4.2. This design,
however, may give a biased estimator of the effect of interest. For example,
suppose that the factor of interest (factor 1) is wheat, and wheat comes in
five varieties. Suppose further that this table determines the way wheat is
planted on a piece of land; factor 2 is the type of harvesting machine, and

factor 3’s level
factor 2’s level 1 2 3 4 5
1 1 4 2 5 3
2 4 1 3 2 5
3 3 2 5 4 1
4 2 5 1 3 4
5 5 3 4 1 2

Table 4.1: A Latin square with three factors, each at five levels

factor 3’s level
factor 2’s level 1 2 3 4 5
1 1 2 3 4 5
2 5 1 2 3 4
3 4 5 1 2 3
4 3 4 5 1 2
5 2 3 4 5 1

Table 4.2: A systematic Latin square with three factors at five levels
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factor 3 is the type of fertilizer. If the land shows a very fertile strip that
runs from north-west to south-east (see the main diagonal in this table),
then the effect of wheat type 1 is overestimated. Therefore randomization
should be applied to protect against unexpected effects. Randomization
makes such bias unlikely—but not impossible. Therefore random selection
may be corrected if its realization happens to be too systematic (e.g., LHS
may be corrected to give a “nearly” orthogonal design; see [165]).

In general, LHS software proceeds as follows (see, e.g., [145]).

1. LHS divides the range of each factor into n > 1 mutually exclu-
sive and exhaustive intervals of equal probability. For example, if the
distribution of factor values is uniform on [a, b], then each interval
has length (b − a)/n. However, if the distribution is Gaussian, then
intervals near the mode are shorter than in the tails.

2. LHS randomly selects one value for the first factor x1 from each
interval, without replacement. Hence n values are sampled, namely
x1;1 through x1;n.

3. LHS pairs these n values with the n values of the second factor, x2,
randomly without replacement.

4. LHS combines these n pairs with the n values of the third input, x3,
randomly without replacement to form n triplets.

5. And so on, until a set of n k-tuples is formed.

Table 4.3 and the corresponding Figure 4.4 give a LHS example with
n = 5 combinations of two factors. In the table, each factor has five discrete
levels, which are labelled 1 through 5. If the factors are continuous, then the
label (say) 1 may denote a value within interval 1; see the figure. Some LHS
variations place that value at the middle of the interval instead of sampling
its precise value according to the distribution of the factor values.

I point out that in LHS there is no strict mathematical relationship
between n (number of factor combinations) and k (number of factors),
whereas in classic designs there is such a relationship; e.g., n = 2k−p

with 0 ≤ p < k in a fractional-factorial two-level design (see Chapter 2).

factor 1’s level
factor 2’s level 1 2 3 4 5
1 *
2 *
3 *
4 *
5 *

Table 4.3: LHS example with five combinations of two factors
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z1

z2

Figure 4.4: LHS example with five combinations of two factors

Obviously, more factor combinations do not hurt. Rules of thumb can be
found in the literature; e.g., [144] suggests that n = 100 suffices in LHS and
crude Monte Carlo sampling. This rule of thumb is supported by the results
in [129] for a simple test function (namely the two-dimensional so-called
Rosenbrock function).

Above, I mentioned that a factor combination should be sampled from
the joint distribution for the values of the factors in the experiment. The
most popular assumption is that the factors are statistically independent
so their joint distribution becomes the product of their individual marginal
distributions. The next simplest procedure assumes a multivariate Gaussian
distribution, which is characterized by its covariances and means; see (2.51)
for the bivariate normal distribution. For nonnormal joint distributions,
Spearman’s correlation coefficient was discussed in Section 2.11.1. Iman
and Conover’s procedure uses Spearman’s correlation coefficient for LHS
and crude Monte Carlo sampling; see [145] and [326].

Note: Helton and his coauthors (see, e.g., [143] and [145]) partition their
LHS with sample size n = 300 into three subsamples of equal size (namely,
100), to test the stability of RA and SA results. As an alternative, I would
suggest bootstrapping; i.e., resampling (without replacement) the original
300 observations. A complication, however, is that these 300 observations
are not strictly independent in LHS.

A desirable property of LHS is that if a factor turns out to be unimpor-
tant, then the design may still be space filling in the experimental domain
for the remaining factors; i.e., projecting an LHS point (combination) in the
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original k-dimensional space onto any axis gives a uniform spacing. Such
a design is also called noncollapsing ; i.e., when an unimportant factor is
eliminated, no points become identical. However, projections onto two or
more dimensions may give “bad” designs, so standard LHS is further re-
fined. For details, I refer to [29], [158], [233], [365], and [408]; for projection
properties of non-LHS designs see [381].

Besides LHS there are many other design types, such as minimax, max-
imin designs and orthogonal arrays; see the recent articles [66], [153], [305],
and [386], the classic textbook [333], the recent dissertations [157] and [365],
and the websites

http://lib.stat.cmu.edu
and
http://www.spacefillingdesigns.nl/.
These designs are also popular in Kriging, discussed in Chapter 5.

4.6 Robust optimization: Taguchian approach

The practical importance of Robust Optimization is emphasized in the
2002 panel report [355] (also see [155]). Indeed, I think that robustness is
crucial, given today’s increased complexity and uncertainty in organizations
and their environment.

My approach to Robust Optimization is inspired by Taguchi ’s view, but
I do not use his techniques. Taguchi is a Japanese engineer and statistician;
see his 1987 book [376], the more recent book [402], and
http://en.wikipedia.org/wiki/Genichi Taguchi.
His techniques (which I do not use) include certain experimental designs;
e.g., “orthogonal arrays” (see [1], [242], and [265]). His view distinguishes
between the following two types of factors:

• Decision (or control) factors

• Environmental (or noise) factors

The first type of factors are under the control of the users; e.g., in a
queuing problem the number of servers and their service rates may be con-
trollable; in inventory management, the reorder levels and order quantities
may be controllable. The second type of factors are not controlled by the
users; examples may be the arrival rate of customers in a queuing system,
and demand and lead times in inventory management. In practice, the con-
trollability of a factor depends on the specific situation; e.g., the users may
change the customer arrival rate through an advertising campaign. More
examples of controllable and environmental factors will follow in the case
study presented in Section 4.6.1.
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Note: Other authors distinguish between environmental uncertainty (e.g.,
demand uncertainty) and system uncertainty (e.g., yield uncertainty); see
[266].

Implementation errors may also be a source of uncertainty. These errors
occur whenever recommended (optimal) values of controllable factors are
to be realized in practice; see [366] and also [365]. Continuous values are
hard to realize in practice, since only limited accuracy is then possible. For
example, in a simple inventory model the optimal order quantity may turn
out to be the square root of some expression; in practice, however, only a
discrete number of units may be ordered.

Besides implementation errors, there are validation errors of the simula-
tion model (compared with the real system) and the metamodel (compared
with the simulation model); see [211]. The search for an “optimal” solution
should also account for these errors; see [366].

Ben-Tal and Nemirovsky present an interesting theory for Robust Math-
ematical Programming; see [34]. They assume that all values of the envi-
ronmental factors are equally likely in a given area; that area may be a
multidimensional box or ellipsoid. In other words, they focus on the worst
case within this area. Their solution turns out to be much better than the
standard solution. Stinstra and Den Hertog apply that theory to linear re-
gression and Kriging metamodels of deterministic simulation models; again
see [366]. So, Robust Mathematical Programming finds elegant (tractable)
solutions for its type of robustness problems; also see the recent overview
by Bertsimas and Thiele in [37] (nonuniform input distributions are the
focus of another paper by Bertsimas et al.; see [36]). Its models, however,
are neither dynamic nor stochastic, whereas random simulation models are
(by definition). Moreover, the approach assumes that all points inside the
box or ellipsoid are equally likely and important, whereas a point just out-
side that area is completely unimportant. I assume a distribution function
(e.g., a Gaussian distribution) that decreases the likelihood and importance
smoothly to zero—as points are farther removed from the most likely sce-
nario.

Note: The goal of Robustness Analysis (discussed in this section) is the
design of robust products or systems, whereas the goal of Risk Analysis
(discussed in Section 4.5 above) is to quantify the risk of a given design;
that design may turn out to be not robust at all. Robustness Analysis
should result in (for example) reengineered “flexible”, “agile” or “resilient”
supply chains; see [79] and Section 4.6.1 below. In the section on Risk
Analysis, I also discussed the Bayesian approach. The latter approach may
also be used for Robust Optimization; see [307] and [308]. The Taguchian
approach is related to the six sigma approach; see [220] and [221].

Whereas optimization is a “hot” topic in simulation, Robust Optimiza-
tion is neglected—except for a few publications; see [3], [66], [330], [347],
and [380], which reference several more simulation studies using Taguchi’s
methods. Taguchi’s approach is combined with a Genetic Algorithm (GA)



132 4. Simulation optimization

in [4]. Evolutionary heuristics combined with penalty functions to avoid
constraint violations are discussed in [409]. I, however, will focus on RSM
in the remainder of this section (because I expect that RSM requires rela-
tively few runs with the—possibly expensive—simulation model.)

In [203], Gaury and I derive an optimal solution assuming a specific—
namely the most likely—combination of environmental factor values. Next,
we estimate the robustness of this solution when the environment changes;
technically, we generate these combinations through LHS. In this section,
however, I wish to find a solution that—from the start of the analysis—
accounts for all possible environments, including their likelihood (see be-
low). For example, I wish to select the reorder level (say) s and the order-
up-to level S accounting for the probabilities of different values for demand
D—not only the most likely value (estimated from past demand data);
see (1.9). In other words, whereas Gaury and I perform ex post robustness
analysis, I now wish to perform an ex ante analysis.

As I mentioned above, I use Taguchi’s view but not his statistical meth-
ods. My reason is that simulation experiments enable the exploration of
many more factors, factor levels, and combinations of factor levels than
real-life experiments do. Taguchi and his followers focus on real-life (not
simulated) experiments—for designing robust products (not complete pro-
duction systems such as supply chains). Moreover, I do not use a Taguchian
scalar output (such as the signal/noise ratio); instead I allow a vector of
multiple outputs, using a Mathematical Programming approach (which
minimizes one output, while satisfying the constraints for the remaining
outputs).

My analysis continues a recent research project in which my co-authors
and I applied robustness analysis to a supply chain of the Ericsson com-
pany in Sweden; see [194] and also Section 4.6.1 and Chapter 6. For the
controllable factors we used a second-order polynomial regression meta-
model. This metamodel serves as a quick (inexpensive) predictive model
for optimization. (An alternative metamodel would be a Kriging model,
which has been used by other authors for optimization; see Section 4.1 and
Chapter 5.) For the environmental factors we generate combinations of en-
vironmental factor values through LHS. We use this LHS to quantify the
variability of the simulation output. (LHS is typically a technique not used
by Taguchians.)

Technically, I consider both the expected simulation output and the out-
put’s variance caused by environmental disturbances (like Taguchians, I
assume no input and output constraints—unlike Section 4.3 on GRSM).
The expected value and variance can be managed through the controllable
factors. Unlike Taguchians, I do not propose to combine the mean and vari-
ance into a single criterion (using the signal/noise ratio); i.e., I think that
a Taguchian loss function is too restrictive.

So the (say) k controllable factors are to be optimized. Inspired by RSM,
I propose to approximate the local I/O behavior of the simulation model
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through a second-order polynomial in these factors—once the search for the
optimum seems to have reached the area of the true optimum. To estimate
the coefficients of this polynomial, classic RSM uses a Central Composite
Design (CCD). (Also see again Section 4.2.)

Regarding the environmental factors, I am not interested in their func-
tional relationship with the output; i.e., I do not wish to estimate (say) a
low-order polynomial in these factors. Following Taguchi, I consider these
factors as noise. Unlike Taguchi, I propose to use LHS to sample (say) n
environmental factor combinations. Unlike a CCD, LHS does not impose a
relationship between the number of environmental scenarios and the num-
ber of environmental factors (see Section 4.5.1 above). If there is no apriori
information about the likelihood of the environmental factor values, then
I propose to assume independent uniform distributions per environmental
factor (I also refer to Bayesian uninformative prior distributions; again see
Section 4.5).

Next, I propose to use one of Taguchi’s design techniques; i.e., cross (or
combine) the inner array—namely, the CCD for the controllable factors—
with the outer array—the LHS design for the environmental factors; see
Table 4.4, which implies that the total number of scenarios simulated is
nCCDnLHS . (Instead of such an approach, the controllable and the envi-
ronmental factors may be combined in a single design that enables the
estimation of a low-order polynomial in both types of factors; see [223].)

Whereas classic optimization assumes a single scenario (e.g., the most
likely scenario), I estimate the parameters in the polynomial from the CCD
simulation outputs averaged over all simulated LHS scenarios.

In Robustness Optimization, an important characteristic is the output
variability (besides the output mean). Taguchians often quantify this vari-
ability through the variance; an alternative may be the standard deviation
or (as Gaury and I did) the probability of a specific disaster happening.
Anyhow, I propose to model the estimated mean and variability as two
separate second-order polynomials in the controllable factors.

To evaluate the reliability of the Robust Optimization solution, I propose
to apply bootstrapping (obviously, the estimated solution is a nonlinear
function of the simulation output so standard confidence intervals do not
hold). However, I leave this bootstrapping for future research. Also see
Section 3.3.3.

LHS
CCD 1 2 ... nLHS

1
2
...
nCCD

Table 4.4: A cross design combining CCD and LHS
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In summary, to maximize the mean simulation output, the analysts
should select specific values for the controllable factors. To minimize the
variance of the simulation output, however, they may have to select other
values. The final decision is up to management; they should select compro-
mise values depending on their risk attitude. Note that [347] (p. 3837) also
uses plots to decide on a compromise solution; also see Figure 4.5 where
the horizontal double-pointed arrows denote the (bootstrap) confidence in-
tervals for the optimal solutions for the mean and variance respectively
(which do not overlap in this example).

The resulting “robust”solution may be compared with the “classic” op-
timum solution for the controllable factors; the latter solution assumes a
single scenario, namely the base scenario. More precisely, the mean and
variance of the simulation output for the robust solution and the classic
solution may be estimated. These estimates may be computed from new
environmental scenarios; i.e., the old LHS values are replaced by new sam-
ples (the old scenarios would favor the robust solution, since this solution
uses estimates based on these scenarios). I expect that these results will
show that risk considerations do make a difference!

In future research, Robust Simulation Optimization may be extended to
multiple simulation outputs. I have already discussed GRSM for Simulation
Optimization with constraints for the simulation inputs and outputs, in
Section 4.3.

Controllable factor

E(w)

var(w)

Confidence interval Confidence interval

Figure 4.5: Example of Robust Optimization
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4.6.1 Case study: Ericsson’s supply chain

In this section, I demonstrate “robustness” through a case study, simulat-
ing three supply chain configurations of Ericsson’s mobile communications
industry in Sweden (these three configurations concern the past, present,
and future situations; see [282]). Unfortunately, my co-authors and I could
not finish this case study so I cannot report definitive results.

Note: The supply chain literature distinguishes between robustness and
flexibility. A flexible supply chain can react to a changing environment by
adapting its operations (see [414]). A robust supply chain keeps its de-
sign fixed, but can still accommodate many changes in its environment.
So the two concepts focus on operational and strategic decisions respec-
tively.

The newer the supply chain design is, the fewer operations and tests
that configuration has; i.e., newer designs are “lean and mean”. A crucial
environmental factor is process yield, which is the percentage of products
that passes a test. A defective product is sent to a repair unit, which decides
whether to repair the product or to scrap it.

Each of these three supply chain designs is simulated (these three simula-
tion models are programmed in the Taylor II simulation software; see [160]).
The simulation models include buffers (inventories), located before and af-
ter every test station and operation. Products are transported between all
operations and test stations. More details are given in [195] and [292].

Controllable factors concern the manufacturing processes, logistic part-
ners for transportation, etc. Environmental factors are demand for prod-
ucts, process yield, and scrap percentage at each test station. My coauthors
and I focus on a single output, namely the total weekly costs for the whole
supply chain.

Note: We assume that management is interested in steady-state output
(transient output would be relevant in short-term operational control; our
study, however, concerns strategic design decisions). We select a warm-up
period of four weeks, and an additional run length of sixteen weeks.

Originally there were 92 factors, but after a screening experiment (see
Chapter 6) only three controllable factors remain (all three factors concern
transportation, namely, internal transportation within the circuit board
factory, transportation between factories, and transportation between Sur-
face Mounted Devices and test stations). After this screening, six important
environmental factors remain (namely the demand for the product and the
yields at five different stations).

Because we wish to optimize these three controllable factors, we use a
second-order polynomial for these factors in the experimental area (the
factors typically change by only 5% of their base values). To estimate the
coefficients of this polynomial, we use the following reduced CCD (we re-
duce the CCD because the simulations take much computer time; e.g., the
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whole experiment for one of the three simulation models takes 42 hours on
a Pentium II 600 MHz PC):

1. To estimate the main effects (first-order effects) and two-factor inter-
actions (cross-products), we use a 23 full factorial design.

2. To estimate the purely quadratic effects, we need at least three val-
ues per controllable factor. We decide to simulate the “axial” fac-
tor combinations with coded values −0.5 (besides the values -1 and
+1 of the 23 design). So—unlike a classic CCD—we use only the
“lower” half of the star design. The value −0.5 is rather arbitrary
(a popular value is −

√
k = −

√
3 = −1.7). We select −0.5 instead

of +0.5, because we expect that this choice decreases the costs: we
have reasons to assume that all main effects are nonnegative (also see
Chapter 6).

3. We also simulate the base scenario (the center of the experimental
area).

To sample combinations of the six environmental factors, we use LHS
with a sample size of ten. Because we have no a priori information about the
likelihood of the factor values, we assume independent uniform distributions
for each factor.

Note: To this LHS sample, my co-authors and I add two extreme scenar-
ios, namely an optimistic scenario (all factors at their lowest values) and
a pessimistic scenario (all factors at their highest values). These scenarios
give “extreme” outputs; i.e., their outputs straddle the outputs for the ten
LHS scenarios.

Next we cross the “inner array”—our reduced CCD for the controllable
factors—with the “outer array”—our LHS design for the environmental
factors.

Note: Our crossed design is conceptually related to the design in [396].
However, we cross a reduced CCD and a LHS design, whereas the latter
publication crosses factorial designs with all controllable factors at three
levels, and lattice points for all environmental factors.

We do not replicate the whole crossed design, because we find that the
estimated standard error computed from four replicates at the center point
(with different PRNs) is ten times smaller than the standard error esti-
mated from the ten LHS environmental scenarios combined with the center
point; see again Table 4.4.

When we try to optimize the controllable factors, we account for the box
constraints on these factors; see (4.7). These constraints may be binding;
i.e., the optimal values may indeed turn out to lie on the border of the ex-
perimental area. That border, however, is fixed rather arbitrarily (namely,
to changes of 5%), so we may reconsider these constraints.
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Technically, we account for these constraints through Lagrange multi-
pliers, which quantify the shadow prices of the constraints. Indeed, we
find that the three controllable factors have nonzero shadow prices (–
133,162, -307,731, and –208,537 respectively). These shadow prices are
negative, because the mean costs decrease as the constraints are made less
tight.

We also estimate the output variance (instead of the mean) as a second-
order polynomial function of the controllable factors. Using these esti-
mated effects, we find that one controllable factor again minimizes this
output (estimated variance, not mean) at its lower boundary (which has
a coded value of -1), whereas optimal values for the other two factors
are –0.13 and –0.65. The Lagrange multiplier for the former factor is
22,215 (of course, only the constraint for this factor has a non-zero shadow
price).

Our preliminary conclusion is that both the mean and the variance of
the simulation output (namely, costs) are minimized by selecting the min-
imum value for the first controllable factor. The other two controllable
factors, however, have conflicting optimal values when considering both
outputs (mean and variance). However one of these two factors has es-
timated optimal values –1 and –0.65, so maybe the true optimal values
are the same? To estimate the accuracy of our estimated optimal values,
we might derive a (bootstrap) confidence region. Management may then
use the (bootstrap) confidence region to select a robust solution; see again
Figure 4.5.

Note: Comparing the robust solutions for the three supply chains shows
that the future supply chain gives the lowest expected value and variance
for its costs.

4.7 Conclusions

In this chapter, I first summarized classic RSM, assuming a single response
variable. I added the Adapted Steepest Ascent (ASA) search direction,
which improves the classic direction.

Next, I summarized GRSM for simulation with a multivariate response,
assuming that one univariate response is to be minimized while all the
other responses must meet given constraints. Moreover, the (deterministic)
inputs must satisfy given box constraints.

Then, I summarized a procedure for testing whether an estimated opti-
mum is truly optimal—using the KKT conditions. This procedure combines
classic t and F tests with bootstrapped tests.

Next, I discussed RA.
Finally, I discussed Robust Optimization, focusing on a Taguchian ap-

proach.
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4.8 Solutions for exercises

Solution 4.1 (zo
1, zo

2) = (−5, 15); also see [12].

Solution 4.2 If Z′Z = NI,then (4.2) implies C = I/N . Hence, (4.4) does
not change the steepest descent direction.

Solution 4.3 The ratio of two normal variables has a Cauchy distribution
so its expected value does not exist; its median does.

Solution 4.4 (zo
1, zo

2) = (1.24, 0.52); also see [12].

Solution 4.5 The results depend on your choice of n, etc.
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Kriging metamodels

This chapter is organized as follows. In Section 5.1, I introduce Kriging
(the name refers to the South African mining engineer Krige; Kriging is also
called spatial correlation modeling). In Section 5.2, I present the basic Krig-
ing assumptions and formulas. In Section 5.3, I present some relatively new
results, including Kriging for random simulation and estimating the true
variance of the Kriging predictor through bootstrapping. In Section 5.4,
I discuss one-shot designs such as Latin Hypercube Sampling (LHS) and
sequentialized, customized designs. In Section 5.5, I present conclusions.

5.1 Introduction

In the preceding chapters, I focussed on low-order polynomial regression
metamodels. Such metamodels are fitted to the Input/Output (I/O) data of
the local or global experiment with the underlying simulation model. These
metamodels may be used for the explanation of the simulation model’s be-
havior, and for prediction of the expected simulation output for combina-
tions of factor values (scenarios) that have not yet been simulated. The
final goals of the metamodel may be validation of the simulation model,
Sensitivity Analysis, and Robust Optimization.

In the present chapter, I focus on Kriging metamodels. Typically, Krig-
ing models are fitted to data that are obtained for larger experimental areas
than the areas used in low-order polynomial regression metamodels; i.e.,



140 5. Kriging metamodels

Kriging models are global rather than local. These models are used for pre-
diction; the final goals are Sensitivity Analysis and Robust Optimization.

Kriging was originally developed in geostatistics (also known as spatial
statistics) by Krige. The mathematics were further developed by Matheron;
see his 1963 article [251]. A classic geostatistics textbook is Cressie’s 1993
book [86], which has 900 pages. A more recent textbook was published in
1999; see [363]. I also mention the references 17 through 21 in [248].

Later on, Kriging models were applied to the I/O data of deterministic
simulation models. These models have k-dimensional input where k is a
given positive integer (whereas geostatistics considers only two or three
dimensions); see the classic article [322] published in 1989 by Sacks et al.
More recent publications are Jones et al.’s 1998 summary article [168],
Simpson et al.’s 2001 article [356], and Santner et al.’s 2003 textbook [333].

Only recently, Kriging has also been applied to random simulation mod-
els; see my 2003 article with Van Beers [383]. Although Kriging in random
simulation is still rare, I strongly believe that the track record Kriging
achieved in deterministic simulation holds promise for Kriging in random
simulation! Also see the 2007 paper that I wrote together with three coau-
thors; [42].

Note: Searching for “Kriging” via Google (on February 15, 2007) gave
631,000 hits, which illustrates the popularity of this mathematical method.
Searching for “Operations Research” within these pages gave 81,000 hits.

5.2 Kriging basics

I start with highlighting the differences between linear regression—especially
low-order polynomial regression—and Kriging models. So, I repeat a few
formulas from the previous chapters. I again present my general black-box
representation (2.6), but now I limit myself to a single (univariate, scalar)
simulation output because most Kriging models also assume such output:

w = s(d1, . . . , dk, r0) (5.1)

where
w is the output of the underlying simulation model;
s(.) denotes the mathematical function implicitly defined by the com-

puter code implementing this simulation model;
dj with j = 1, . . . k is the jth input variable (factor) of the simulation pro-

gram, so D = (dij) is the design matrix for the simulation experiment, with
i = 1, . . . , n and n the number of factor combinations in that experiment,

r0 is the vector of PseudoRandom Number (PRN) seeds (which vanishes
in deterministic simulation).

Remember that D determines the original input variables z and the cor-
responding standardized input variables x. The design matrix D is usually
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standardized; e.g., a two-level (fractional) factorial has elements that are
either −1 or +1; also see (2.5).

In practice, a simulation model has multiple outputs, and univariate
Kriging is applied to each output independently.

The first-order polynomial regression metamodel for (5.1) is

yreg = β0 + β1d1 + . . . βkdk + ereg (5.2)

where
yreg is the metamodel predictor of the simulation output w in (5.1); I

now add the subscript reg to distinguish this metamodel from the Kriging
metamodel in this chapter;

β = (β0, β1, . . . , βk)′ is the vector with the parameters of this meta-
model;

ereg is the residual or noise—which includes both lack-of-fit of the meta-
model and intrinsic noise (caused by the PRNs).

The general linear regression model was given in (2.10) and is repeated
here:

yreg = Xβ + ereg (5.3)

where
yreg denotes the n-dimensional vector with the regression predictor;
X = (xij) denotes the n × q matrix of explanatory regression variables

with xij the value of variable j in combination i (i = 1, . . . , n; j = 1, . . . , q)
(e.g., (5.2) implies q = 1 + k including the dummy variable or constant
xi0 = 1 corresponding with β0);

β = (β1, . . . , βq)
′ denotes the q-dimensional vector of regression param-

eters (if there is a dummy variable, then β1 denotes the intercept in the
general regression model, whereas the symbol β0 denoted the intercept in
the specific regression model in (5.2));

ereg is the vector of residuals in the n combinations.

The Least Squares (LS) estimator (say) β̂ of the regression parameter
vector β in the linear regression model (5.3) can be derived to be

β̂ = (X′X)
−1

X′w (5.4)

where w = (w1, . . . , wn)
′
is the n-dimensional vector with “the” output of

the simulation model with input D = (dij); “the” output of combination i
is the average output of a constant number of replications, mi = m:

wi =

∑m
r=1 wir

m
. (5.5)

Obviously, deterministic simulation implies m = 1.
Hence, the regression estimator for a simulation input (say) d = (d1,

. . . , dk)′ is

ŷreg(d) = x(d)
′
β̂ = x(d)

′
(X′X)

−1
X′w (5.6)
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where the vector of explanatory variables x(d) is determined by the vector
of simulation inputs d; e.g., the first-order polynomial model (5.2) implies
x(d) = (1, d1, . . . , dk)′. The input d may be a new or an old combination
(the old combination is one of the rows in D).

I focus on the simplest type of Kriging called Ordinary Kriging, which
assumes

w(d) = µ + δ(d) (5.7)

where
µ is the simulation output averaged over the experimental area;
δ(d) is the additive noise that forms a stationary covariance process with

zero mean (also see Definition 3.2).
Note that this metamodel with its constant µ does not imply a flat

response surface; see [322]. Instead of the constant µ in (5.7), Universal
Kriging uses a regression model. However, Ordinary Kriging often suffices
in practice; see [65], [247], [248]), and [322].

Kriging is used—quite successfully—in deterministic simulation. At first
sight it may seem strange that the random (meta)model (5.7) can be ap-
plied to a deterministic simulation model. My interpretation is that the
deviations of the simulation output w from its mean µ form a random
process—with the characteristics of a “stationary covariance process” (with
zero mean); see δ in (5.7).

Ordinary Kriging—which from now on, I briefly call Kriging—uses the
following linear predictor:

y(d) = λ(d,D)′w(D) = λ′w (5.8)

where the weights λ(d,D)—abbreviated to λ—are not constants (whereas
β in (5.3) remains constant) but decrease with the distance between the
input d to be predicted and the “old” points D (remember that the n × k
design matrix D = (dij) has already been defined below (5.1)). This D

determines the simulation output vector w, so the explicit notation is w(D)
and the simpler notation is w.

To select the optimal values for the weights λ in (5.8), a criterion must
be selected. In linear regression, the Sum of Squared Residuals is the
criterion—which gives the LS estimator (5.4). Kriging selects the Best Lin-
ear Unbiased Predictor (BLUP), which (by definition) minimizes the Mean
Squared Error (MSE) of the predictor:

min
λ

MSE[y(d)] = min
λ

[E{y(d) − w(d)}2] (5.9)

where d may be any point (factor combination) in the experimental area.
Moreover, this minimization must account for the condition that the pre-
dictor be unbiased :

E[y(d)] = E[w(d)]. (5.10)
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Obviously, in deterministic simulation E[w(d)] reduces to w(d). It can be
proven that the solution of the constrained minimization problem defined
by (5.9) and (5.10) implies that the weights of the linear predictor (5.8)
must satisfy the following condition:

n∑

i=1

λi = 1 (5.11)

or (in matrix notation) 1′λ = 1 where 1 = (1, . . . , 1)′ is an n-dimensional
vector with each element being the value 1.

Furthermore, the optimal weights can be proven to have the values

λo= Γ−1[γ + 1
1 − 1′Γ−1γ

1′Γ−11
] (5.12)

where
Γ = (cov(wi, wi′)) with i, i′ = 1, . . . , n is the n×n symmetric and positive

semi-definite matrix with the covariances between the “old” outputs (i.e.,
outputs of input combinations that have already been simulated);

γ =(cov(wi, w0)) is the n-dimensional vector with the covariances be-
tween the n “old” outputs wi and w0, the output of the combination to be
predicted (which may be “new” or “old”).

Note: Many publications use the symbol R instead of Γ; I use Greek
letters to denote unknown parameters (such as the covariances).

Finally, it can be proven (see, e.g., [237]) that (5.7), (5.8), and (5.12)
imply

y(d) = µ̂ + γ(d)′Γ−1(w−µ̂1) (5.13)

with
µ̂ = (1′Γ−11)

−1
1′Γ−1w. (5.14)

and d denoting the input of the output w0 that is to be predicted.

Exercise 5.1 Derive the expected value of the Kriging predictor defined
in (5.13).

Exercise 5.2 Is the conditional expected value of the predictor (5.13)
smaller, equal, or larger than the unconditional mean µ if that condition is
as follows: w1 > µ,w2 = µ, . . . , wn = µ?

Note that ∇(y) = (∂y/∂d1, . . . , ∂y/∂dk)—the gradient of the Kriging
predictor—follows from (5.13) and (5.14), where γ is a function of the in-
put d = (d1, . . . , dk)′ for the output w0. Gradients are used in simulation
optimization. In Exercise 5.5, I shall return to this gradient, after introduc-
ing specific covariance functions such as the Gaussian function.

Obviously, the optimal values for the Kriging weights in (5.12) depend on
the covariances—or equivalently the correlations—between the simulation
outputs in the Kriging model (5.7) (for the correlation concept see (2.51)).
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Kriging assumes that these correlations are determined by the “distance”
between the inputs of the outputs wi and wi′ or wi and w0—or (expressed
more succinctly) between wi and wg with g = 0, 1, . . . , n.

In geostatistics, Kriging often uses the Euclidean distance (say) h be-
tween these simulation inputs:

h = ‖h‖2 = ‖d0 − di‖2 (5.15)

where ‖‖2 denotes the L2 norm; d0 is the input of the “new” simulation
output w0 (to be predicted), and di is the input of the “old” simulation
outputs that have already been simulated. So, cov(w0, wi) = σ(h). The
analogue holds for the correlations between the “old” outputs themselves.

In simulation, however, Kriging assumes that the correlation function for
a k-dimensional input vector is the product of k one-dimensional functions:

ρ(w(di), w(dg)) =
∏k

j=1
ρ(dij , dgj). (5.16)

Moreover, Kriging assumes a stationary covariance process, which implies
that the correlations depend only on

hj(i, g) = |dij − dgj | (j = 1, . . . , k) (i = 1, . . . , n)(g = 0, 1 . . . , n). (5.17)

So, ρ(dij , dgj) in (5.16) reduces to ρ(hj(i, g)). I point out that transforming
the standardized design points dj into the original simulation inputs zj

makes the distances scale dependent; also see [85].
Note: Instead of the correlation function, geostatisticians use the vari-

ogram—which quantifies the same information because it equals the (con-
stant) variance σ0 = σ2 minus the (decreasing) covariance function.

There are several types of stationary covariance processes; Figure 5.1
illustrates three popular shapes for a single input so hj = h in (5.17) with
parameter θ > 0 \:

• Linear correlation function: ρ(h) = max(1 − θh, 0)

• Exponential correlation function: ρ(h) = exp(−θh)

• Gaussian correlation function: ρ(h) = exp(−θh2) (its point of inflec-
tion can be proven to be 1/

√
2θ).

Note: Even a simulation textbook as old as the 1966 book [270], pp.
118–121 discusses the first two types, assuming h denotes the “lag” in a
time series; see Definition 3.2).

In Kriging, a popular correlation function (with h and h defined in (5.15))
is

ρ(h) = exp[−
k∑

j=1

θjh
pj

j ] =
∏k

j=1
exp[−θjh

pj

j ] (5.18)
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Figure 5.1: Three types of correlation functions that depend on distance h

where
θj denotes the importance of factor j; i.e., the higher θj is, the less effect

input j has;
pj denotes the smoothness of the correlation function; e.g., pj = 2 im-

plies an infinitely differentiable function. Figure 5.1 has already illustrated
an exponential and a Gaussian function, which have p = 1 and p = 2
respectively.

Exercise 5.3 What is the value of ρ(h) in (5.18) with p > 0, when h = 0
and h = ∞ respectively?

Exercise 5.4 What is the value of θk in (5.18) with pk > 0, when input k
has no effect on the output?

Exercise 5.5 Suppose there is a single input (so d becomes d) and a Gaus-
sian correlation function. Derive the gradient ∇(y) = (∂y/∂d).

Correlation functions that decrease as the distance increases, imply that
the optimal weights are relatively high for inputs close to the input to be
predicted. Furthermore, some of the weights may be negative. Finally, the
weights imply that for an “old” input (so d is a row within D) the predictor
equals the observed simulation output at that input:

y(di) = w(di) if di ∈ D, (5.19)
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so all weights are zero except the weight of the observed output. This
property implies that the Kriging predictor is an exact interpolator, whereas
the regression predictor minimizes the Sum of Squared Residuals (SSR) so
it is not an exact interpolator—unless n = q; see (2.11). In (5.9), y(d)−w(d)
may be replaced by the residual e(d), which is the analogue of ereg in (5.3).
Because of (5.19), the residuals observed at the old design points are exactly
zero: ei = 0 (i = 1, . . . , n).

A major problem is that the optimal Kriging weights λi depend on the
correlation function of the underlying simulation model—but this correla-
tion function is unknown. Therefore both the type (see Figure 5.1) and
its parameter values must be estimated. Estimators for covariances have
already been shown in (3.30). Now, however, the number of observations
for a covariance of a given distance h decreases as that distance increases.
Given these estimates for various values of h, a correlation function (such
as the ones in Figure 5.1) is fitted. To estimate the parameters of such a
correlation function, the standard software and literature uses Maximum
Likelihood Estimators (MLEs). A MLE requires constrained maximization.
This optimization is a hard problem, because matrix inversion is necessary,
multiple local maxima may exist, etc.; see [246] and [248].

Note: Besides the MLE criterion, [248] uses cross-validation. For the lin-
ear correlation function, Van Beers and I use the LS criterion because this
criterion gives a simpler estimator; see [213].

For the estimation of the correlation functions and the optimal weights
through (5.12), my coauthors and I have been using the MATLAB Kriging
toolbox DACE, which is free of charge; see [239]. Alternative free software
is available via

http://www.stat.ohio-state.edu/˜comp exp/
and

http://endo.sandia.gov/Surfpack.
If the number of simulation inputs does not exceed three, then geographical
Kriging software can also be applied. An example of commercial geograph-
ical software is Isatis; see

http://www.geovariances.com/.
Unfortunately, the DACE software uses lower and upper limits for θj (the
correlation parameters), which the analysts usually find hard to specify.

Different limits may give completely different θ̂j (MLE); see the examples
in [237].

Note: There are also many publications that interpret Kriging models in
a Bayesian way; a recent article is [139]; also see [65], [66], [246], and some
references below.

Note: Kriging seems related to Moving Least Squares (MLS), which is
described in, e.g., [379] and [382]. MLS fits regression models locally with
higher weights given to nearby data points. The weight function seems
related to the stationary covariance function used in Kriging. Like Kriging,
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MLS uses coefficients that change with the point to be predicted. These
relationships deserve further research.

5.3 Kriging: new results

The interpolation property in (5.19) is attractive in deterministic simu-
lation, because the observed simulation output is unambiguous (ignoring
numerical noise that may occur when deterministic simulation software is
executed; see [379]). In random simulation, however, the observed output is
only one of the many possible values. In [383], Van Beers and I study ran-
dom simulation and replace w(di) in (5.9) by the average observed output,
which was also defined in (2.27) as

wi =

∑mi

r=1 wir

mi
(i = 1, . . . , n). (5.20)

These n averages, however, are still random, so the property in (5.19) loses
its intuitive appeal. Nevertheless, Kriging may be attractive in random sim-
ulation because it may decrease the prediction bias (and hence the MSE)
at input combinations close together. In [383], we give examples of Krig-
ing predictions based on (5.20) that are much better than the regression
predictions. (Regression metamodels may be useful for other goals such as
understanding, screening, and validation; see Section 1.2.)

Note: Santner et al’s 2003 textbook [333] has an appendix with a com-
puter program in C, which is called PErK and allows random output. When
using PErK with the “RandomError = Yes” option in the job file, this
software includes a white noise term in the Kriging model. The Kriging
predictor is then no longer an exact interpolator. I have not yet applied
this program, neither do I know any applications in random simulation.
Also see [353].

The Kriging model in (5.7) assumes a stationary covariance process,
which implies a constant variance (say) σ2

δ . However, in experiments with
random simulation models such as queueing models, the analysts know that
the output variances var(wi) are not constant at all! Fortunately, in [214]
Van Beers and I demonstrate that the Kriging model in (5.7) is not very
sensitive to this variance heterogeneity.

I emphasize the following property that is ignored in the Kriging lit-
erature: replacing the weights in (5.8) by the estimated optimal weights

(say) λ̂0 implies that the Kriging predictor becomes a nonlinear estimator
(also see the discussion on EWLS, defined in (3.22)). The literature uses
the predictor variance—given the Kriging weights λ; i.e., this variance is
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conditional on the weights. At a fixed point d, this variance follows directly
from (5.12) (also see [86], p. 122):

var[y(d)|λ)] = 2
n∑

i=1

λicov(w0, wi)−
n∑

i=1

n∑

i′=1

λiλi′cov(wi, wi′). (5.21)

Exercise 5.6 Use (5.21) to derive the variance in case w0 equals one of
the points already simulated; e.g., w0 = w1.

Ignoring the randomness of the estimated optimal weights tends to un-
derestimate the true variance of the Kriging predictor. Moreover, the un-
conditional and the conditional variances do not reach their maxima at the
same factor combination. To solve this problem, I distinguish between de-
terministic and random simulations. Because I focus on random simulations
in this book, I start with that type of simulation.

• In random simulation, each factor combination is replicated a num-
ber of times; also see (5.20) Therefore a simple method for estimating
the true predictor variance solution is distribution-free bootstrapping. I
discussed the general principles of bootstrapping in Section 3.3.3. Van
Beers and I resample—with replacement—the mi replicated observa-
tions. This results in the n bootstrapped averages w∗

i (i = 1, . . . , n).

From these w∗
i , we compute the estimated optimal weights λ̂0

∗
and

the corresponding y∗. To decrease sampling effects, this whole pro-
cedure is repeated B times, which gives y∗

b with b = 1, . . . , B. We
estimate the variance of the Kriging predictor from these B values.
Details are given in [384].

• For deterministic simulation, my coauthors and I apply parametric
bootstrapping in [91]. We assume a Gaussian stationary covariance
process with parameters estimated from the given simulation I/O
data. Our empirical results demonstrate that ignoring the random
character of the estimated Kriging weights may seriously underesti-
mate the true predictor variance. For alternative approaches (namely,
cross-validation and Akaike’s Information Criterion), I refer to [248].

Note: In [91], we focus on the Gaussian correlation function. We use the
DACE toolbox to estimate the parameters θ in (5.18) from the simulation

I/O data (D,w). Next, we substitute these estimated parameters θ̂ into
(5.18). Then we use the Monte Carlo method to sample both old I/O data
(D,w∗) and the new data (d0, w

∗
0) in “a single shot” (from the multivariate

normal distribution with parameters estimated from the simulation data),
because the n old outputs and the new output are correlated. An alternative
method is used in [246], which also finds that ignoring the uncertainty of
the true parameters in the correlation function underestimates the true
variance of the Kriging predictor.
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Note: Kriging metamodels may also be analyzed through functional ANOVA;
see Section 2.5, especially the references to the Sobol’ ANOVA. In such an
approach, the metamodel also helps understand (not only predict) the un-
derlying simulation model: which are the important factors?

5.4 Designs for Kriging

Simulation analysts often use LHS to generate the I/O simulation data to
which they fit a Kriging (meta)model. As I explain in Section 4.5.1, LHS
was not invented for Kriging but for Risk Analysis. (Other designs related
to LHS are mentioned in Section 4.5.1.)

LHS assumes that an adequate metamodel is more complicated than a
low-order polynomial (which is assumed by classic designs such as frac-
tional factorials). LHS, however, does not assume a specific metamodel or
simulation model. Instead, LHS focuses on the design space formed by the
k–dimensional unit cube defined by the standardized simulation inputs.
LHS is one of the space filling types of design: LHS samples that space
according to some prior distribution for the inputs, such as independent
uniform distributions on [0, 1]; see again Section 4.5.1.

As an alternative for LHS, Van Beers and I introduce sequentialized de-
signs —analyzed through Kriging—for deterministic and random simula-
tion respectively, in [213] and [384]. We make our designs sequential for the
following reasons:

• Sequential statistical procedures are known to be more “efficient”; i.e.,
they require fewer observations than fixed-sample (one-shot) proce-
dures; see, e.g., [123] and [289]. Nevertheless, sequential procedures
may be less efficient computationally; e.g., re-estimating the Kriging
parameters may be costly; see [120].

• Computer experiments proceed sequentially (unless parallel comput-
ers are used; our procedure also fits parallel computers).

Our procedure has the following six steps, in both deterministic and
random simulation (details follow after the discussion of Figure 5.2, which
is displayed below).

1. We start with a pilot experiment, using some space-filling design with
only a few factor combinations (see Section 4.5.1 on LHS and related
designs). Its (say) n0 combinations form the input into the simulation
model, and gives the corresponding simulation outputs.

2. We fit a Kriging model to the I/O simulation data resulting from
Step 1.
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Figure 5.2: LHS and sequentialized, customized design for M/M/1
simulation

3. We consider (but do not yet simulate) a set of candidate combinations
that have not yet been simulated and that are selected through some
space-filling design; we select as the next combination to be actually
simulated, the candidate combination that has the highest predictor
variance.

4. We use the combination selected in Step 3 as the input to the sim-
ulation model, run the (expensive) simulation, and obtain the corre-
sponding simulation output.

5. We re-fit a Kriging model to the I/O data that is augmented with
the I/O data resulting from Step 4.

6. We return to Step 3 until we are satisfied with the Kriging metamodel.

Note: In Step 5, we re-fit the Kriging model, using re-estimated corre-
lation parameters θ̂j ; some researchers, however, prefer to save computer
time and do not re-estimate θj ; see [235].

Our designs are also customized (tailored or application-driven, not
generic); i.e., which combination has the highest predictor variance is deter-
mined by the underlying simulation model. For example, if the simulation
model has an I/O function (response surface) that is a simple hyperplane
within a subspace of the total experimental area, then our procedure does
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not select points in that part of the input space; see the one-dimensional
example in Figure 5.2 (reproduced from [384]). This figure displays a LHS
design with n = 10 prefixed values for the traffic rate x in an M/M/1 sim-
ulation with experimental area 0.1 ≤ x ≤ 0.9, and our sequentialized and
customized design that we stop after we have simulated the same number
of observations (namely 10). The figure illustrates that our design selects
more input values in the part of the input range that gives a drastically in-
creasing (highly nonlinear) I/O function. It turns out that our design gives
better Kriging predictions than the fixed LHS design does—especially for
small designs, which are used in expensive simulations.

I point out that “customization” requires “learning”—which is a dynamic
process, so it requires sequential designs.

In the M/M/1 simulation in Figure 5.2 we use Common Random Num-
bers (CRN). Moreover, we take so many renewal cycles that the average
output has reached a “prespecified accuracy”; i.e., the 95% confidence in-
terval for the mean output has a relative error of no more than 15% (this
is a standard procedure, which is also used in, e.g., [227]). We take a small
sample size for our distribution-free bootstrap, namely B = 50.

We also simulate the M/M/1 without CRN, and obtain θ̂ in the Gaussian
correlation function: ρ(h) = exp(−θh2). The simulation outputs at different
traffic rates (between 0.2 and 0.8) are then less correlated, so we expect

that the function in Figure 5.1 decreases faster or θ̂ increases. Indeed, we
find 11 < θ̂ < 16 in five macro-replicates without CRN; with CRN we find
0.05 < θ̂ < 0.10.

Now I present some details on Step 3 in the procedure presented above.
First, I discuss random simulation models; next, I discuss deterministic
simulations.

5.4.1 Predictor variance in random simulation

To estimate the variance of the Kriging predictor in random simulation,
Van Beers and I use bootstrapping. Because a simulation model such as
an M/M/1 model may have output that is not Gaussian distributed, we
use distribution-free (non-parametric) bootstrapping; i.e., we resample the
Identically and Independently Distributed (IID) outputs for a specific input
combination (e.g., a specific traffic value); also see Definition 2.6. To obtain
such IID observations for the simulation of the steady-state waiting time of
the M/M/1 model, we use renewal analysis. For transient-state output, we
would have replicated the simulation run mi times with i = 1, . . . , n where
n now denotes the number of input combinations so far simulated in the
sequential design.

Note: Besides the M/M/1 simulation model, we also investigate an (s, S)
inventory simulation in [384]. Our design analyzed by Kriging gives better
predictions than a 42 full factorial design with four levels per factor (also
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called a 4×4 grid design) analyzed through a second-order polynomial; the
latter design and analysis are also performed by Law in [227], pp. 645–655.
Our design also gives better predictions than a fixed-size (one-shot) LHS
design analyzed by Kriging. Our design again concentrates its combinations
in the steeper part of the response surface (instead of spreading out evenly).

Note: A sequential design is also used in [404], combined with a nonlinear
regression metamodel with a single explanatory variable (so k = 1). That
article builds on previous work that I did with my co-author Cheng in [71].

5.4.2 Predictor variance in deterministic simulation

For deterministic simulation, Van Beers and I do not use bootstrapping;
instead, we use cross-validation and jackknifing. We compare our design
to a sequential design based on (5.21), which approximates the variance
of the Kriging predictor ignoring the random character of the estimated
weights. The latter design selects as the next point the input value that
maximizes this variance; i.e., there is no need to specify candidate points.
It turns out that this approach selects as the next point the input far-
thest away from the old inputs, so the final design spreads all its points
evenly across the experimental area—like space filling designs do. In our
approach, however, we estimate the true predictor variance through cross-
validation. In Section 2.11.2, I discussed cross-validation for linear regres-
sion models. For Kriging, we proceed in an analogous way (for alternative
cross-validation approaches, I refer to [248]). An interesting research issue
is the fast computation of Kriging models in cross-validation—analogous
to the shortcut (2.67) for linear regression that uses the hat matrix; also
see [154] discussing fast cross-validation for Principle Component Analysis
(PCA).

So, we successively delete one of the n I/O observations already simu-
lated, which gives the data set (D−i,w−i).(i = 1, . . . , n). Next, we recom-
pute the Kriging predictor, based on the recomputed correlation function
parameters and the corresponding optimal Kriging weights; see Figure 5.3.
This figure shows the three Kriging predictions for the original data set (no
data deleted), and after deleting observation 2 and 3 respectively, for each
of three candidate points; we do not delete the two extreme inputs (namely
x = 0 and x = 10) because Kriging does not extrapolate very well. This
figure shows that the point most difficult to predict is the output at the
candidate point x = 8.33. To quantify this prediction uncertainty, we use
the jackknifed variance—as follows.

In Section 3.3.3, I discussed jackknifing in general. Now, we calculate the
jackknife’s pseudovalue J for candidate j as the weighted average of the
original and the cross-validation predictors:

Jj;i = nŷj − (n − 1)ŷj;−i with j = 1, . . . , c and i = 1, . . . , n
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Figure 5.3: Cross-validation in fourth-order polynomial example with four
pilot observations and three candidate input values

where c denotes the number of candidate points and n the number of points
that have really been simulated so far and are deleted successively. From
these pseudovalues we compute the classic variance estimator; see (3.12):

v̂ar(Jj) =

∑n
i=1(Jj;i − Jj)

2

n(n − 1)
.

Like in Figure 5.2, our design favors input combinations in subareas that
have more interesting I/O behavior. One artificial example is the fourth-
degree polynomial I/O function with two local maxima and three local
minima in Figure 5.3 (two minima occur at the border of the experimental
area). Figure 5.4 shows the candidate points that are selected for actual
simulation. We start with a pilot sample of four equally spaced points; also
see Figure 5.3. Our design selects relative few input values in the subareas
that generate an approximately linear I/O function; it selects many input
values near the edges, where the function changes much.

Note: In [235], Lin et al. criticize the use of cross-validation for Kriging
in deterministic simulation, but their study concerns the validation of the
Kriging metamodel—not the estimation of the prediction error to select
the next design point.
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Figure 5.4: A fourth-degree polynomial example of a sequentialized and
customized design

5.4.3 Related designs

I finish this section on designs for Kriging with a brief review of the lit-
erature on related sequentialized and customized designs for simulation.
I review these publication, starting with the most recent publications.

• In [152], Huang et al. derive sequential designs for the optimization
of random and deterministic simulation models, using Kriging and
so-called Efficient Global Optimization (EGO), which maximizes the
Expected Improvement (EI) following a Bayesian approach; also see
[153], [168], and [336]. (In [312], Regis and Shoemaker try to balance
local and global search; they use radial basis functions instead of
Kriging, and instead of the EI criterion they require new points to be
a prespecified distance away from old points.)

• In [355], Simpson et al. report on a panel discussion, which also em-
phasizes the importance of sequential and adaptive sampling.

• In [237], Lin et al. use a Bayesian approach to derive a sequential de-
sign based on prediction errors for the optimization of deterministic
simulation models. That publication includes a number of interesting
references. (Moreover, the related publication [236] uses a second
metamodel to predict the predictor errors.)

• In [175], Keys and Rees sequentially re-estimate a spline metamodel.
They use splines for optimization (instead of Sensitivity Analysis),
applying the so-called “Hooke and Jeeves” search method over a grid.
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• In [164], Jin et al. study sequential designs for Kriging metamod-
els, using (5.21), which assumes known parameters of the underlying
covariance process.

• In [84], Crary discusses G-optimal and I-optimal designs, which I also
discuss in Section 2.10.

• In [401], Williams et al. use a Bayesian approach to derive sequential
IMSE designs, which I discuss in Section 2.10.

• In [287], Park and Faraway assume IID residuals and nonparametric
regression metamodels in their sequential designs for response curve
estimation.

• In [61], Chang et al. approximate deterministic nonlinear functions,
focussing on splines and on grid designs (not LHS). They use “an
asymptotic analysis that yields a closed-form relationship” (not small-
sample cross-validation or bootstrap analysis). We find LHS designs
easier to construct and more flexible than grid designs. Note that
these authors also mention the extension of their approach to multi-
variate (instead of univariate) outputs.

In this chapter, I focus on Sensitivity Analysis; other authors, however,
focus on optimization—still using Kriging; see [120], [153], [168], and [336].
They try to balance local and global search (e.g., using the EI criterion)—
assuming a single simulation output (no constrained multiple outputs) and
a Gaussian distribution for the stationary covariance process (instead of
our distribution-free bootstrapping, jackknifing, and cross-validation). Note
that in Figure 5.4 our method selects input values not only near the “top”
but also near the “bottom” of the I/O function; if we were searching for a
maximum, we would certainly adapt our procedure such that it would not
collect data near an obvious minimum.

Note: Sequentialized and customized design procedures may benefit from
asymptotic proofs of their performances; e.g., does the design approximate
the optimal design? (Optimal designs were discussed in Section 2.10; also
see [300].)

Note: In [278], Oakley estimates the 95% quantile of the output of a
deterministic simulation model with uncertain inputs. Because he is inter-
ested in this quantile only, he is not interested in the whole experimental
area. He combines Kriging, the Bayesian approach, and two-stage sampling.

5.5 Conclusions

This chapter may be summarized as follows. I started with a review of the
basic assumption of Kriging, namely “old” simulation observations closer to
the new point to be predicted, should receive more weight. This assumption
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is formalized through a stationary covariance process with correlations that
decrease as the distances between observations increase. The Kriging model
is an interpolator; i.e., predicted outputs equal observed simulated outputs
at old points. Next, I reviewed some more recent results for random simu-
lation, and I explained how the true variance of the Kriging predictor can
be estimated through bootstrapping. I finished with a discussion of one-
shot versus sequential designs for simulation experiments to be analyzed
through Kriging.

5.6 Solutions for exercises

Solution 5.1 Equation (5.13) with the shorthand notation c′ = γ′Γ−1 im-
plies E(y) = E(µ̂)−c′[E(w)−E(µ̂)1] =E(µ̂)−c′[E(µ̂)1]−E(µ̂)1] =E(µ̂)=µ
where the last equality holds because

E(µ̂) = (1′Γ−11)
−1

1′Γ−1E(w) =(1′Γ−11)
−1

1′Γ−1µ1 =

(1′Γ−11)
−1

(1′Γ−11)µ = µ.

Solution 5.2 E(y|w1 > µ,w2 = µ, . . . , wn = µ) > µ because γ′Γ−1 > 0′.

Solution 5.3 When h = 0 then ρ = 1/ exp(0) = 1/1 = 1. When h = ∞
then ρ = 1/ exp(∞) = 1/∞ = 0.

Solution 5.4 When input k has no effect on the output, then θk = ∞ in
(5.18), so the correlation function drops to zero.

Solution 5.5 The Kriging predictor (5.13) implies
∂
∂d

(
µ̂ + γ(d)′Γ−1(w−µ̂1)

)
=

0 +
(

∂
∂dγ(d)′

)
· Γ−1(w−µ̂1) =(

∂e−θ(d0−d1)
2

/∂d, . . . , ∂e−θ(d0−dn)2/∂d
)
· Γ−1(w−µ̂1) =

(
−2θ(d0 − d1)e

−θ(d0−d1)
2

, . . . ,−2θ(d0 − dn)e−θ(d0−dn)2
)
· Γ−1(w−µ̂1).

Solution 5.6 If w0 = w1, then λ1 = 1 and λ2 = . . . = λn = 0 so
var[y(d)|λ)] = 2cov(w1, w1)−[cov(w1, w1) + cov(w1, w1)] = 0.



6
Screening designs

This chapter is organized as follows. In Section 6.1, I introduce “screen-
ing”; i.e., the search for the really important factors in experiments with
simulation models that have very many factors (or inputs). In Section 6.2,
I present a screening method that may be most efficient and effective,
namely Sequential Bifurcation (abbreviated to SB). Subsection 6.2.1 gives
an outline of the simplest type of SB. Subsection 6.2.2 covers some math-
ematical details of this simplest SB. Subsection 6.2.3 summarizes a case
study, namely a supply-chain simulation for Ericsson in Sweden. Subsec-
tion 6.2.4 extends SB, accounting for two-factor interactions. In Section
6.3, I present conclusions.

6.1 Introduction

Why is there a need for screening? The Pareto principle or 20-80 rule
implies that only a few factors (simulation inputs) are really important
(or “active”, as some authors say). The parsimony principle or Occam’s
razor implies that a simpler explanation is preferred to a more complex
explanation—all other things being equal. In the DASE context, screening
means that the simulation analysts are searching for the really important
factors among the many factors (often hundreds or more) that can be var-
ied in the simulation experiment. In other words, effects are assume to be
“sparse”. The curse of dimensionality is also mentioned in many publica-
tions, including the 2002 panel report [355]. In his famous article [259],
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the psychologist Miller claims that people cannot handle more than “seven
plus or minus two” factors when processing information.

For deterministic simulation and random simulation respectively, I give
the following examples of simulation with many factors in which I was
personally involved.

• Deterministic simulation: The Dutch organization RIVM developed
a simulation model (called “IMAGE”), which tries to explain the
worldwide increase of temperatures known as the greenhouse phe-
nomenon. In [41], Bettonvil and I vary 281 factors in a submodel of
this simulation model. After simulating only 154 factor combinations
(scenarios), we identify a shortlist with 15 factors, including some fac-
tors that the ecological experts had not expected to have important
effects! This shortlist was used to support national policy makers in
their decision-making. It is also important to know which factors are
“certainly” unimportant so the decision-makers are not bothered by
details about these factors.

• Random simulation: Originally, Persson and Olhager developed a sup-
ply chain simulation for the Ericsson company in Sweden, and sim-
ulated only nine combinations of factor values; see [292]. In [195],
my coauthors and I revisit this simulation model, and find that this
model actually has 92 factors. Even if we wished to experiment with
the minimum number of values per factor (namely 2), we could not
simulate all combinations; e.g., 292 ≈ 5×1027, which is close to infin-
ity. And changing one factor at a time still requires 93 simulation runs
if not more than two values per factor are simulated; moreover, this
approach does not enable the estimation of any factor interactions.
In Subsection 6.2.3, I shall show how we actually simulate only 21
combinations—each combination replicated five times—to identify a
shortlist with the 11 most important factors among the original 92
factors. Note that one replicate takes 40 minutes in this case study
(after modification of the simulation code, which originally took three
hours per replicate). I also discuss this case study in Section 4.6.1,
focussing on Risk Analysis and Robust Optimization.

The importance of factors depends on the experimental domain (also
called the experimental area or experimental frame; see Section 2.3). The
users should supply information on this domain, including realistic ranges
of the individual factors and limits on the admissible factor combinations
(e.g., some factor values must add up to 100%). Therefore, in practice, user
involvement is crucial for the application of screening methods.

There are several types of screening designs. All these designs treat the
simulation as a black box (see Definition 2.1).

• Classic two-level designs and Frequency Domain Experimentation
(FDE)—discussed in Chapter 2—are often considered to provide
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screening designs. Especially resolution-III designs are often called
screening designs in the literature; see, e.g., [122] and [411]. So-called
conference designs have twice as many combinations as there are fac-
tors (so n = 2k); see [109].

• Supersaturated designs have fewer combinations than factors (so n <
k). (Classic designs are called “saturated” if n = q where q denotes
the number of regression parameters; e.g., q = 1 + k in a first-order
polynomial metamodel.) These supersaturated designs assume that
the designs are not sequential, so they are relatively inefficient as I ex-
plained in Section 5.4. I discuss these designs in [181] (my 1974/1975
book). For recent discussions of supersaturated designs, I refer to [6],
[62], [128], [231], [402], [403], and [415].

Note: [382] also gives a screening procedure with n < k but uses
Moving Least Squares (MLS) and cross-validation; also see Section
3.4.4.

• Group-screening designs aggregate (or confound) individual factors
into groups so that k factors may be evaluated in less than k com-
binations. Consequently, these designs are supersaturated—but they
are executed in two or more steps (stages). There are several types of
these screening designs. Examples are One-factor-At-a-Time (OAT),
Morris’s OAT, Cotter’s design, Andres’s Iterated Fractional Factorial
Design (IFFD), multi-stage group screening, and Sequential Bifurca-
tion (SB); see [57], [58], [95], [181], [262], [327], [329], and [341].

Different designs are based on different mathematical assumptions con-
cerning the smoothness of the I/O function implied by the underlying sim-
ulation model, possible monotonicity of this function, etc. I focus on SB
because it is a very efficient and effective method if its assumptions are
satisfied; see Section 6.2 below. (SB resembles binary search, which is a
well-known procedure in computer science; SB, however, not only estimates
which factors are important, but also estimates the magnitudes of the ef-
fects of the important factors.)

The fixed sample-size assumption of classic and supersaturated designs
does not hold if the next factor combination is selected after the preceding
Input/Output (I/O) simulation data are analyzed. This analysis may give
designs that are purely sequential, multi-stage, or two-stage (also called
double sampling). Moreover, these designs are “customized”; i.e., they ac-
count for the specific simulation model. I also refer to Section 5.4.

In practice, simulation models have multivariate output. This problem
has not yet been touched in the screening literature. As a simple rule, I
propose to declare a (sub)group of factors to be important if at least one of
the multiple outputs changes significantly when changing the level of this
group.
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Note: IFFD is used, e.g., in [11] and identifies 8 important factors among
the 3800 individual factors in 512 simulation runs with a Risk Analysis
model of nuclear waste disposal in Canada. This method assumes a second-
order polynomial metamodel. Also see [9].

Note: A Bayesian analysis of screening experiments is presented in [76].

6.2 Sequential Bifurcation

Originally, Bettonvil developed SB in his doctoral dissertation, [38]. He
and I summarized his dissertation in [41] and [195]. A few other authors
extended SB; see [67], [70], [349], [393], and [394]. The specific SB extensions
made in these publications will be mentioned below.

SB uses the following assumptions, which will be spelled out below:
Assumption 1(a): first-order polynomial metamodel
Assumption 1(b): first-order polynomial augmented with two-factor in-

teractions, which replaces Assumption 1(a)
Assumption 2: known signs of the first-order effects
Assumption 3: strong heredity if Assumption 1(b) holds

6.2.1 Outline of simplest SB

The SB procedure is sequential; i.e., it consists of a sequence of steps. The
first step aggregates all factors into a single group, and tests whether or
not that group of factors has an important effect (this test will be detailed
in Subsection 6.2.2). If the group has indeed an important effect, then the
second step splits the group into two subgroups—bifurcates—and tests each
of these subgroups for importance. The next steps continue in a similar way;
i.e., SB splits important subgroups into smaller subgroups, and discards
unimportant subgroups. In the final steps, all individual factors that are
not in subgroups identified as unimportant, are estimated and tested.

The simplest type of SB uses the following two assumptions.
Assumption 1(a): a valid metamodel is a first-order polynomial plus

noise:
y = β0 + β1x1 + . . . + βkxk + e. (6.1)

Note: I repeat some basic concepts that I have already covered in Chapter
2. The input variables xj (j = 1, . . . , k) are standardized such that they are
either −1 or +1; see (2.32). This scaling implies that the factors may be
ranked (sorted) by their main effects; i.e., the most important factor is the
one with the largest absolute value of its first-order effect or main effect; the
least important factor is the one with the effect closest to zero. The larger
the range of an untransformed (original) factor is, the larger the response
difference and hence the main effect of that factor is (also see the “unit
cost” effects in [70]). The noise e in (6.1) arises from approximation error
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and—in case of random simulation—the use of Pseudo-Random Numbers
(PRNs); also see the comment below (2.7). If the metamodel is valid, then
this noise has zero expected value: E(e) = 0.

To estimate the parameters in this simple metamodel, it is most efficient
to experiment with only two levels (values) per factor (see again Chapter
2). In practice, it is important that these levels are realistic extreme values;
so the users of the underlying simulation model should provide these values.
Also see the discussion of scaling in [393].

Assumption 2 : the signs of all main effects are known and are nonnega-
tive:

βj ≥ 0 (j = 1, . . . , k).

Without Assumption 2, main effects might cancel each other. However,
if Assumption 2 holds, then the analysts can define the two levels of an
individual factor such that changing the level from the standardized value
−1 to +1 does not decrease the expected simulation output (i.e., that
change either increases the output or does not change it at all). For example,
if the arrival rate is increased, then the expected steady-state waiting time
increases. If the queuing discipline changes from FIFO (First-In-First-Out)
to SPT (Shortest-ProcessingTime-first), then the expected waiting time
decreases, so the level −1 should correspond with SPT and +1 with FIFO.

Figure 6.1 illustrates that the “known signs” assumption is related to
the “monotonicity” of the I/O function, defined as follows.

E(w)

-1 +1

x

f(x)

β0 + β1x

Figure 6.1: Known signs and monotonicity
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Definition 6.1 The function w = f(x1, . . . , xk) is called monotonically
increasing if ∂w/∂xj ≥ 0 for all j and all values of xj′ (j, j′ = 1, . . . , k;
j �= j′).

Obviously, the factors can be defined such that if the function is mono-
tonically decreasing in the original factors, this function becomes monoton-
ically increasing in the standardized factors.

My experience is that Assumption 2 is easy to satisfy in practice; i.e., it is
straightforward to define the upper and lower levels of each factor such that
changing a factor from its lower to its upper level does not decrease the
expected response. For example, in the Ericsson supply-chain case-study
some factors refer to transportation speeds: the higher these speeds, the
lower the Work In Process (WIP) and hence the lower the cost—which
is the output of interest in the screening experiment. Other authors give
more examples; see [15], [230], [234], and [352] ([15] proposes wavelet based
estimators; [234] proposes “isotonic regression”, allowing Common Random
Numbers, CRN; both publications assume k = 1 factor).

Note: In unconstrained optimization, the function to be maximized or
minimized is assumed not to be monotonically increasing; otherwise, the
maximum or minimum lies at the limits of the experimental area. This
assumption may still be compatible with the “known signs” assumption,
as Figure 6.2 illustrates. In this figure, switching the standardized factor
value from −1 to +1 increases the output (so this factor will be found

E(w)

-1 +1

x

β0 + β1x

f(x)

Figure 6.2: Known signs and non-monotonicity
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E(w)

-1 +1

x

β0 + β1x

f(x)

Figure 6.3: Non-monotonic I/O function with misleading sign

to have an important effect). Figure 6.3, however, gives a “pathological”
counterexample; i.e., the I/O function is not monotonic, and happens to
give the same output values at the two observed input levels −1 and +1 so
the factor effect seems to be zero and this factor will be eliminated by SB.

Nevertheless, if in a particular case study it seems hard to satisfy As-
sumption 2 for a few specific factors, then these factors should be treated
individually ; i.e., none of these factors should be grouped with other factors
in SB. For example, [95] creates some subgroups of size one in a multi-stage
group-screening design; this design is less efficient than SB, but it also uses
aggregation. Treating such factors individually is safer than assuming neg-
ligible probability of cancellation within a subgroup.

The efficiency of SB—measured by the number of simulated factor com-
binations (and hence simulation time)—improves if the individual factors
are labeled such that factors are placed in increasing order of importance;
see [38], p. 44 (consequently, the important factors are clustered). To real-
ize this efficiency gain, it is crucial to utilize prior knowledge of users and
analysts about the real system being simulated. For example, if they con-
jecture that environmental factors are most important, then these factors
should be placed at the end of the list of factors. Indeed, in the Ericsson
case study we place the environmental factor “demand” at the very end of
the list with 92 individual factors.

The efficiency further improves when placing similar factors within the
same subgroup. In the Ericsson case study, we group all “test yield” factors
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together; our conjecture is that if one yield factor is unimportant, then all
yield factors are likely to be unimportant too.

Finally, the efficiency increases if factor subgroups are split such that the
number of factors for the first new subgroup is a power of two; e.g., we split
the first 48 factors into a subgroup of 32 (= 25) factors and a subgroup
of the remaining 16 factors (so the important factors are placed into the
smallest subgroup, assuming the factors are sorted from unimportant to
most important). However, I do not recommend this splitting if it implies
splitting up a group of related factors. Anyhow, splitting a subgroup into
subgroups of equal size (like some authors do) does not need to be optimal.
Also see [38], pp. 40–43.

The way SB proceeds may be interpreted through the following metaphor ;
also see Figure 6.4. Imagine a lake that is controlled by a dam. The goal of
the experiment is to identify the highest (most important) rocks (actually,
SB not only identifies, but also measures the height of these “rocks”). The
dam is controlled in such a way that the level of the murky water slowly
drops. Obviously, the highest rock first emerges from the water! The most-
important-but-one rock turns up next; etc.. SB stops when the simulation
analysts feel that all the “important” factors are identified. Once SB stops,
the analysts know that all remaining (unidentified) factors have smaller ef-
fects than the effects of the factors that have been identified. (I will further
discuss this figure below.)

The aggregated effect of a given subgroup is an upper limit (say) U for
the value of any individual main effect within that subgroup. If the analysts
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must terminate SB prematurely (e.g., because their computer breaks down
or their clients get impatient), then SB still allows identification of the
factors with the largest main effects. For example, if in Figure 6.4, SB is
terminated after Step 11, then the most important factor has already been
identified and its main effect has been estimated (none of the other factors
has a main effect exceeding that of the factor labeled 92).

SB is extended in [394], improving the control over the type-I error rates
(“false positives”), using either a two-stage approach or a fully sequential
approach. Theoretically, this control does not satisfy the classic statistical
requirements concerning a prespecified experimentwise error rate and a
prespecified power for the final results—after all stages have been executed.
Nevertheless, the numerical results in that publication look very promising.

SB is extended to the so-called polytope method in [14]. The latter
method is more efficient (requiring fewer combinations to be simulated), but
is also more complicated (requiring the solution of a Linear Programming
or LP problem after each additional observation). Moreover this method as-
sumes main effects only (interactions will be discussed in Subsection 6.2.4).
Note that the LP problem arises because this method computes the Ordi-
nary Least Squares (OLS) estimate (i.e., it minimizes the Sum of Squared
Residuals, SSR, defined in (2.11)) under the constraint stipulating that all
regression coefficients be nonnegative (see Assumption 2 above).

6.2.2 Mathematical details of simplest SB

To explain some mathematical details of SB, I use the following additional
notation.

w(j);r: observed simulation output with the factors 1 through j set to
their high levels and the remaining factors set to their low levels, in repli-
cation r;

βj′−j : sum of main effects of factors j′ through j; that is

βj′−j =

j∑

h=j′

βh. (6.2)

A simple estimate (a complicated estimate is given in [14]) of this group
effect based on replication r is

β̂j′−j ; r =
w(j);r − w(j′−1);r

2
. (6.3)

SB starts with simulating the two most extreme scenarios: in scenario 1
all k factors are set at their low levels so xj = −1; in scenario 2 all these
factors are high so xj = 1 (j = 1, . . . , k). If the metamodel in (6.1) is valid,
then

E(w(0)) = β0 − β1 − . . . − βk (6.4a)
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and
E(w(k)) = β0 + β1 + . . . + βk (6.5a)

so
E(w(k)) − E(w(0)) = 2(β1 + . . . + βk), (6.6)

which shows that the group effect estimator defined in (6.3) is unbiased.
Likewise it follows that the individual main effect is estimated through

the analogue of (6.3):

β̂j;r =
w(j)r − w(j−1);r

2
. (6.7)

Analogous to (3.32), the (say) m replicates enable the estimation of the
mean and the variance for each (aggregated or individual) estimated effect.
For example, (6.7) gives

β̂j =

∑m
r=1 β̂j;r

m
and s(β̂j) =

√√√√
∑m

r=1(β̂j;r − β̂j)
2

m(m − 1)
. (6.8)

This variance estimator allows unequal response variances and CRN.
To test the importance of the estimated (either aggregated or individual)

main effects statistically, SB uses a t statistic; see (2.19). Different scenarios
probably produce observations with different variances, and may use CRN;
see (6.8). SB applies a one-sided test because all individual main effects
are assumed to be nonnegative. SB uses a prespecified type-I error rate per
test (e.g., α = 0.05); i.e., SB does not adjust for multiple testing (RSM
is also a sequential procedure that does not control the type-I and type-II
error rates over the whole procedure; see Section 4.2). However, [393] does
use multiple testing procedures in its SB.

To verify (or validate) the shortlist produced by SB, I recommend to
test the effects of the “unimportant” factors through the following two
scenarios, each simulated m times:

1. Set all factors that SB declared to be unimportant at their low levels,
while keeping the important factors fixed (for example, at their base
levels).

2. Switch all these unimportant factors to their high levels, still keeping
the important factors fixed.

Obviously, these two scenarios are not used in SB if verification fixes the
important factors at base values (coded as 0) that are not extreme values
(coded as either -1 or 1). The difference between the outputs of these two
scenarios may be tested through a t ‘statistic; this difference should not
differ significantly from zero.

How SB proceeds sequentially is illustrated in the following case study.
A formal procedure for the SB steps is given in [394].
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6.2.3 Case study: Ericsson’s supply chain

For the Ericsson simulation model my coauthors and I distinguish k = 92
factors and obtain m = 5 replicates. Table 6.1 gives the replicates for the
two extreme scenarios. This table shows that the scenario with all factors at
their low levels has an average output w(0) = 3,981,627. The other scenario
has all factors at their high levels; its average output is w(92) = 34,013,832.
So, the estimated group effect of all 92 factors is obtained from (6.2), (6.6),

and (6.8), and is β̂1−92 = (34,013,832 - 3,983,627)/2 = 15,016,102. The
standard error of this estimated group effect follows from this table and

(6.8): s(β̂1−92) = 94,029.3/
√

5 = 42,051. So this effect is very significant!
Note: On hindsight, this early stage might have used fewer replicates;

e.g., only m = 2 replicates would have shown that one or more factors
among the 92 factors must be important; also see the next exercise.

Exercise 6.1 Derive the value of the t statistic from the first two replicates
only, in Table 6.1.

Note: If this simulation were deterministic without numerical noise, then
m = 1 replicate would have sufficed. The ratio w(92)/w(0) would have clearly
shown that one or more factors must be important.

Figure 6.5 shows the successive SB steps for this case study (a figure
with a different layout for a related Ericsson model is given in [195]). For
example, this figure shows that the next step after the initial step with
its two extreme scenarios, divides the current group of 92 factors into two
subgroups. Into the first subgroup (in the left-hand side of the figure) we
decide to place all the 79 “decision” factors; into the other subgroup we
put all 13 “environmental” factors (controllable and environmental factors
are discussed in Section 4.6). Simulation of this scenario gives an expected
output between the expected outputs of the preceding extreme scenarios

(values are not displayed). Comparison of w(79) and w(0) gives β̂1−79. Sim-

ilarly, comparison of w(92) and w(79) gives β̂80−92. So, this step splits the

Replicate w(0) w(92) β̂1−92

1 3,954,024 34,206,800 15,126,388.0
2 3,975,052 33,874,390 14,949,669.0
3. 3,991,679 33,775,326 14,891,823.5
4 4,003,475 34,101,251 15,048,888.0
5 3,983,905 34,111,392 15,063,743.5
Average 3,981,627 34,013,832 15,016,102.4
Standard Error 18,633 180,780 94,029.3

Table 6.1: First two combinations replicated five times in Ericsson’s supply
chain
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                                         w(0) → β1-92 ← w(92)

                                                    ↓
                        β1-79 ←          w(79) →         β85-92

↓                                                    ↓
            β1-49 ← w(49) → β50-79               β80-84 ←      w(84) →  β85-92

↓                                                                                       ↓
β1-32 ← w(32) → β33-49                       β85-90 ← w(90) → β91-92

↓                                                                ↓                            ↓
          β33-41 ← w(41) → β42-49                       β85-86 ←  w(86) → β87-90 β91 ← w(91) → β92

                                     ↓                                  ↓                          ↓                             ↑
                      β42-45 ← w(45) → β46-49   β85 ← w(85) → β86  β87-88 ← w(88) → β89-90

                      ↓                          ↓          ↑                   ↑      ↑∗                    ↓
      β42-44 ← w(44) → β45  β46-47 ← w(47) → β48-49           β89 ← w(89) → β90

                                 ↑    ↓                        ↓                                      ↑                   ↑
β46 ← w(46) → β47 β48 ← w(48) → β49

                    ↑                         ↑

↑ = important factor

* Factor 87 is a dummy factor

Figure 6.5: SB steps in Ericsson case study
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total effect β̂1−92 into its two additive components. This step decreases the
upper limit U for any individual effect in the first subgroup and the second
subgroup respectively; see again Figure 6.4.

SB does not split a subgroup any further when its estimated aggregated
main effect is nonsignificantly positive (if the estimate were significantly
negative in a two-sided t test, then Assumption 2 would be rejected); e.g.,
the estimated aggregated main effect of factors 50 through 79 turns out to
be a small negative value.

In this case study, SB stops after 21 steps. The upper limit, U(21), for
the main effect of any remaining individual factor is then reduced to 87,759;
see again Figure 6.4. Our shortlist has 11 factors; the most important fac-
tor is factor 92. To improve the SB efficiency, we try to label the factors
from least important to most important; we now conclude that factor 92 is
indeed the most important factor and that no factor labelled smaller than
43 is declared to be important. This figure also shows that the most impor-
tant individual factor (namely, factor 92) has already been identified and
estimated after only ten steps; the next important factor (namely, factor
49) is identified after 16 observations.

6.2.4 SB with two-factor interactions

In this section, I summarize SB for situations in which Assumption 1(a) is
replaced by Assumptions 1(b) and 3.

Assumption 1(b): a valid metamodel is a first-order polynomial aug-
mented with two-factor interactions and noise:

y = β0 + β1x1 + . . . + βkxk + β1;2x1x2 + . . . + βk−1;kxk−1xk + e. (6.9)

Note: The signs of the two-factor interactions are irrelevant as we shall
see.

Assumption 3: if a factor has no important main effect, then this factor
does not interact with any other factor.

Assumption 3 is called the strong heredity assumption; see [402] and
also [327]. Strong heredity is related to functional marginality, which was
recently discussed in [381].

SB enables the estimation of first-order effects unbiased by two-factor
interactions if the foldover principle is applied (in Section 2.6, I applied
Theorem 2.1 to resolution-III designs to obtain resolution-IV designs). This
principle means that SB simulates the “mirror” combination besides the
original factor combination (“mirror” observations will be defined in the
next paragraph). Hence, the number of simulated combinations doubles.
Furthermore, the mirror combinations imply that more combinations are
simulated; however, it may happen that fewer replications per scenario are
needed in random simulation; see [393]. To further improve the efficiency,
CRN may be applied separately to all positive levels and negative levels
respectively; see [394].
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More specifically, let w−(j) be the mirror observation of w(j)); i.e., w−(j)

is the simulation output with the factors 1 through j set to their low levels
and the remaining factors set to their high levels. For example, for j = 48
the analogue of (6.4a) and (6.5a) is

E(w−(49)) = β0 + (−β1 − . . . − β49) + (β50 + . . . + β92) +

+(β1;2 + . . . + β48;49) +

+(−β1;50 − . . . − β49;92) +

+(β50;51 + . . . + β91;92)

and

E(w(49)) = β0 + (β1 + . . . + β49) + (−β50 − . . . − β92) +

+(β1;2 + . . . + β48;49) +

+(−β1;50 − . . . − β49;92) +

+(β50;51 + . . . + β91;92)

so subtracting these two equations cancels all interactions!
The analogue of (6.3) gives the unbiased group estimator

β̂j′−j ; r =
(w(j);r − w−(j);r) − (w(j′−1);r − w−(j′−1);r)

4
. (6.10)

The analogue of (6.7) gives the unbiased individual estimator

β̂j ; r =
(w(j);r − w−(j);r) − (w(j−1);r − w−(j−1);r)

4
. (6.11)

Exercise 6.2 What is the mirror scenario of the extreme scenario with all
factors at their low levels?

SB augmented with mirror scenarios may still give misleading results if
(say) two factors have unimportant main effects but their interaction is
important. Therefore SB assumes strong heredity. If the analysts suspect
that this assumption is violated for a specific factor, then they should
investigate that factor after the screening phase.

SB with mirror scenarios does not enable estimation of individual inter-
actions, but it does show whether interactions are important—as follows.
Estimate the main effects from the original scenarios ignoring the mirror
scenarios. If the analyses of the mirror scenarios and of the original sce-
narios give the same conclusions, then interactions are unimportant. This
happens, e.g., in the ecological simulation reported in [38] and [41]. In that
study, the factor values change relatively little (larger changes give unre-
alistic simulation output), so a first-order polynomial is adequate. In the
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Ericsson case study, however, interactions turn out to be important. (In
a follow-up experiment with the factors declared to be important in SB,
the sizes of the individual interactions are estimated from a resolution-V
design; see [194].) The foldover design may give a different path through
the list of individual factors; e.g., the path in Figure 6.5 may change.

More details on SB using mirror scenarios—applied to the Ericsson model
—are given in [195]; also see Section 4.6.1. These details include program-
ming and validation of the simulation model, the role of two-factor interac-
tions and “dummy” factors (individual factors in SB that do not occur in
the simulation model itself, so they are known to have zero effects; also see
the next exercise), steady-state analysis (including estimation of a warm-up
period).

Exercise 6.3 The Ericsson study concerns three variants of the supply
chain, such that the oldest variant has more factors (namely 92) than the
current variant (which has 78 factors). Hence, applying SB to the current
variant uses 14 dummy factors. Will the group effect after simulating the
two extreme scenarios for the current variant be smaller or larger than for
the old variant?

Note: In [195], we also discuss the need for software that implements
sequential screening of simulation experiments. That software should gen-
erate an input file, once a particular design type (e.g., SB) has been cho-
sen. Such a file can then be executed sequentially (and efficiently) in batch
mode; i.e., no human intervention is required while the computer executes
the sequential design (including rules for selecting the next input combina-
tion, based on all preceding observations). Good computer programming
avoids fixing the inputs at specific numerical values within the code; in-
stead, the computer reads input values so that the program can be run for
many combinations of these values. (Of course, the computer should check
whether these values are admissible; i.e., are these combinations within the
experimental domain?) Such a practice can automatically provide a long
list of potential factors.

6.3 Conclusions

This chapter may be summarized as follows. I started with an overview
of different screening designs, including resolution-III, supersaturated, and
group-screening designs. Then I focused on SB. I detailed the various as-
sumptions of SB. These assumptions may not be too restrictive in practice,
as the Ericsson case study illustrated. If the SB assumptions are satisfied,
then this screening method is a most efficient and effective method that
may be applied to deterministic and random simulations!
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6.4 Solutions for exercises

1. β̂1−92 = (15, 126, 388.0 + 14, 949, 669.0)/2 = 15, 038, 000 and

s(β̂1−92) = 694, 610/
√

2 = 491, 160 so
t = 15, 038, 000/491, 160 = 30.62.
2. The mirror scenario of the extreme scenario with all factors at their

low levels, is the other extreme scenario with all factors at their high levels.
3. The group effect of the two extreme scenarios for the current variant

of the supply chain is smaller than for the old variant.



7
Epilogue

I summarize this book as follows.
In Chapter 1—called Introduction—I first discussed various types of sim-

ulation. Next, I described the DASE approach. Then I defined symbols and
terms for DASE.

In Chapter 2, I gave a detailed tutorial explaining the basics of lin-
ear regression models—especially first-order and second-order polynomial
models—and the corresponding statistical designs—namely, designs of res-
olution III, IV, and V and Central Composite Designs (CCDs). I also
discussed the validation of the estimated regression model, including the
coefficient of determination R2 and the adjusted coefficient R2

adjusted, Pear-
son’s and Spearman’s correlation coefficients, and cross-validation. Through-
out that chapter, I assumed white noise, meaning that the residuals of the
fitted linear regression model are Normally, Independently, and Identically
Distributed (NIID) with zero mean.

In Chapter 3, I dropped the white-noise assumption, and explained the
consequences; i.e., I discussed regression analysis and experimental designs
for simulation practice. I pointed out that multivariate simulation output
can still be analyzed through OLS. I addressed possible nonnormality of
simulation output, including normality tests, transformations of simula-
tion Input/Output (I/O) data, jackknifing, and bootstrapping. I presented
analysis and design methods for heteroscedastic simulation output. I dis-
cussed how to analyze simulation I/O data that uses Common Random
Numbers (CRN), so the simulation outputs are correlated across differ-
ent factor combinations. I discussed possible lack-of-fit tests for low-order
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polynomial metamodels, transformations to improve the metamodel’s va-
lidity, and alternative metamodels and designs.

In Chapter 4, I first summarized classic Response Surface Methodology
(RSM), assuming a single response variable. I added the Adapted Steepest
Ascent (ASA) search direction, which improves the classic steepest ascent
direction. Next, I summarized Generalized RSM (GRSM) for simulation
with multivariate responses, assuming that one response is to be mini-
mized while all the other responses must meet given constraints. Moreover,
the (deterministic) inputs must satisfy given box constraints. Then, I sum-
marized a procedure for testing whether an estimated optimum is truly
optimal—using the Karush-Kuhn-Tucker (KKT) conditions. This proce-
dure combines classic tests and bootstrapped tests. Next, I discussed Risk
Analysis (RA) or Uncertainty Analysis (UA). Finally, I discussed Robust
Optimization, focusing on a Taguchian approach.

In Chapter 5, I started with a review of the basic assumption of Kriging,
namely “old” simulation observations closer to the new point to be pre-
dicted, should receive more weight. This assumption is formalized through
a stationary covariance process with correlations that decrease as the dis-
tances between observations increase. The Kriging model is an interpolator;
i.e., predicted outputs equal observed simulated outputs at old points. Next,
I reviewed some more recent results for random simulation, and I explained
how the true variance of the Kriging predictor can be estimated through
bootstrapping. I finished with a discussion of one-shot versus sequential
designs for simulation experiments to be analyzed through Kriging.

In Chapter 6, I started with an overview of different screening designs,
including resolution-III, supersaturated, and group-screening designs. Then
I focused on SB. I detailed the various assumptions of SB. These assump-
tions may not be too restrictive in practice, as the Ericsson case study
illustrated. If its assumptions are satisfied, then SB is a most efficient and
effective screening method that may be applied to deterministic and ran-
dom simulations.
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