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Preface

This book combines two related topics which are usually covered in separate texts,
namely logic and integer programming (discrete optimisation). These two subjects
have close connections and each is applicable to the other.

Much of the work which makes up this book is due to others as well as the
present author, in particular John Hooker and the late Robert Jeroslow. John Hooker
has written a number of comprehensive books on the subjects which are referenced
in the appropriate places.

This book is shorter than these and intended to give a readable and succinct
coverage of the subjects. It is intended for students (and practitioners and academics)
in operational research, computer science and mathematics.

Logic, by definition, involves a high level of abstraction as it is intended to sep-
arate interpretations of logical systems from the structure of those systems. This
can make for difficulties in comprehension as understanding is usually motivated by
using concrete examples. In this book we have placed the emphasis on comprehen-
sion by motivating the discussion by interpretations while pointing out when we are
doing this.

We avoid the usual format of definitions, theorems and proofs by introducing
concepts and results within the text (usually italicised) by examples. References are
given at the end of each chapter to further (often more mathematical) papers and
texts on topics.

Optimisation problems (in practice linear and integer programming) are not usu-
ally presented in a logical context. However, doing this enables one to give their
statement, as models, a greater precision. This often throws greater insight into
their mathematical nature and properties. In addition logic is a valuable tool for
modelling, and sometimes solving such models.

Chapter 1 gives a basic introduction to logic and its aims as well as explain-
ing the propositional and predicate calculus. Chapter 2 explains linear and integer
programming (LP and IP) using the machinery of logic. It also explains the funda-
mental structural and mathematical properties of these types of models. The main
methods of solving IP models are described. The most common types of IP model
restrict the variables to 0 or 1 (with the obvious logical false/true interpretation).
The major areas of practical application are explained. Also a section is devoted
to the attempt to distinguish between computationally ‘easy’ classes of problem
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viii Preface

and ‘difficult’ classes of problem under the subject of ‘computational complexity’.
Chapter 3 applies logic to the formulation of IP models using the methods explained
in Chapter 1. There are often ‘good’ and ‘bad’ ways of modelling IPs (from both the
explanatory and ultimately solvability points of view). Also the deeper mathematical
concepts involved (e.g. ‘convexification’) are covered here. Chapter 4 covers the
fundamental problem of computational logic, namely the ‘satisfiability problem’.
This problem lies at the heart of most of what is covered in this book. Methods
of solving this problem through both logic and integer programming are given and
their connections described. Applications are given in a number of diverse fields. It
is also shown how IP models can be expressed as satisfiability problems and solved
as such.

Readers familiar with either logic or IP or with both may be able to skip
appropriate sections. However, it is expected that all chapters will contain mate-
rial not familiar to everybody and they are recommended to read the book in its
entirety. If it is desired to pursue a particular topic in greater depth then it is hoped
that the references at the end of each chapter will provide a route into the topic.
The references are therefore intended for this purpose. I am aware that there are
many research papers not referenced, covering significant work. I apologise, in
advance, to any authors who might feel slighted, but the intention of the book is
to explain and provide pursuable introductions to topics rather than comprehen-
sively cover all work done. Exercises are given at the end of each chapter. These
are intended to reinforce, and sometimes expand on, the material in the chapter. As
with many mathematical subjects attempting the exercises is often the best way of
understanding.

An obvious question, which a reader might sensibly ask, is “what is prescribed
as the best method of solving a practical problem”. No definitive answer is given
in this book. Different problems demand different approaches. However, what is
needed is a thorough knowledge of basic logic for the purpose of clarifying and
modelling discrete optimisation problems. Also needed is a knowledge of how linear
and integer programming can be used to solve the resultant models, often enhanced
by using logical methods. It is hoped that the material in this book will help in both
these areas.

I am indebted to a number of friends and colleagues for reading and commenting
on sections of this book. In particular I would like to mention Gautam Appa, Nikos
Argyris, John Hooker and John Wilson.

Also I would like to acknowledge the help I have received from Carol Hewlett,
Nikos Argyris and Mara Airoldi in the use of the software Scientific Workplace,
Latex and IPE in the preparation of this book.

Finally I would like to acknowledge the help which resulted from Lever-
hulme Research Fellowship RF&G/10185 and EPSRC Overseas Travel Grant
EP/C530578/1 in preparing this book.

Winchester, UK H. Paul Williams
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Chapter 1
An Introduction to Logic

1.1 The Purpose of Logic: Philosophical: Computational

Traditionally logic has been concerned with the form of statements as opposed to
their content. The aim is to produce a system in which it is possible to deduce true
statements from other ‘true’ statements independently of what one is talking about,
i.e. independently of the interpretation of the statements. The usual approach is
to start with a set of axioms and rules of deduction and produce statements which
are true if the axioms are true. Such statements are said to be analytically true,
as opposed to statements which are regarded as true on the basis of experimental
evidence in, e.g. sciences such as physics, biology, psychology, etc. A major
philosophical aim in the late 19th and early 20th centuries was to use logic to put
mathematics on a rigorous footing. It was then hoped that mathematical statements
could be regarded as having an absolute truth in this sense. The pattern which it was
hoped to follow was that done by Euclid for geometry which was very successful.
Russell and Whitehead devoted an enormous amount of time to trying to axiomatise
mathematics. They regarded mathematics as simply an extension of logic. Unfortu-
nately their efforts were largely in vain as a result of two discoveries, mainly due to
Gödel.

First it was shown that it was impossible to prove the consistency of the axiom
system without using methods which went beyond the mathematical system itself.
A meta system was needed which was richer than the original system. If a system is
not consistent then, in any worthwhile form of logic, one can prove any statement
(and its negation) rendering the system vacuous.

Second it was shown that, however, many axioms one had there would always
be ‘true’ statements which could not be proved (unless one added new axioms in
which case further ‘true’ statements could be found).

The confusion between ‘truth’ and provability was responsible for the difficul-
ties in formalising mathematics. The former is a less well-defined concept than
the latter. As a result of the failure of Russell and Whitehead’s agenda, attention
turned to less ambitious aims of only putting ‘parts’ (fragments) of mathematics
on a rigorous footing (e.g. restricted forms of set theory). Some of these fragments
have proved useful in a computational setting (e.g. arithmetic without multiplication
and the Theory of dense linear order). The purpose of this book is to use logic for

H.P. Williams, Logic and Integer Programming, International Series in Operations
Research & Management Science 130, DOI 10.1007/978-0-387-92280-5 1,
C© Springer Science+Business Media, LLC 2009
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2 1 An Introduction to Logic

modelling and computational purposes. The methods of logic can be used to solve
less ambitious problems than the formalisation of all mathematics. The problems
which we use it for, in this book, arise mainly in operational research and computer
science. They are often (but not always) optimisation problems.

However, the efficiency of the computational methods used depends first on how
the models are built and second the methods used, some of which rely on logic.
We will mainly be concerned with discrete optimisation, i.e. where some quanti-
ties are restricted to taking discrete values, as opposed to a continuum of (say) the
real or rational numbers. It is not always obvious, with any one problem, to what
extent one uses logic or to what extent one uses more traditional methods. There is
great advantage, however, in being able to move between the two and recognise the
relationships between them. In this sense discrete optimisation (usually known as
integer programming) and logic are symbiotic.

1.2 Logical Inference and Consistency

As already stated logic is concerned with deducing statements from other state-
ments. This is the process known as inference. We formalise this in Sects. 1.3 and
1.4 where we represent statements symbolically and show how to manipulate them.
Sometimes this is referred to as symbolic logic.

For example

I s i t valid to make the f ollowing in f erence ? (1.1)

Glasgow is in Scotland and England and Scotland are part of Britain

Manchester is in England or Scotland (1.2)

Therefore

Manchester and Glasgow are both in Bri tain (1.3)

Note that (1.1) is a question which depends on the structure of the sentences and
rules of deduction to be used, i.e. it is not a question which needs a knowledge of
geography to answer. Also it is a question about the system of statements we are
working with, not a statement within the system we are dealing with (which (1.2)
and (1.3) both are). It is said to be a statement within the meta system as opposed to
the system. The meta system is the language for talking about the system. Attempts
to encompass a meta system within the language of the system is what led to a lot of
the paradoxes (e.g. Russell’s paradox) in mathematics. In order to distinguish meta
statements from statements we will use the symbol ‘⇒’ to represent inference. By
saying A =⇒ B we are meaning that from the statement (or set of statements) A
we can infer the statement B. The set of premises in (1.2) can be represented by A
and the conclusion (1.3) represented by B. Consistency is concerned with whether
a system can ever produce a contradiction, i.e. can we infer both a statement and
its negation? Again consistency is a meta concept. It is a property of a system not
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a statement within a system. Consistency and inference are closely related to each
other. A set of statements is only consistent if we cannot infer a contradiction from
them. A conclusion can only be inferred from a set of premises if the negation of
the conclusion is inconsistent with the premises.

Another important property of a logical system consisting of statements, axioms
and rules of deduction is completeness. A system is complete if every statement in
the system can either be proved to be true or false.

As a result of Gödel’s work it was found that a system rich enough to encompass
full arithmetic could not be shown to be either consistent or have an axiom system
which makes it complete. However, the system that we will be using most, in this
book, namely the propositional calculus (also known as Boolean algebra) is both
consistent and can be given an axiom system which makes it complete. Also the
richer system, known as the Predicate Calculus is consistent and has a complete
axiomatisation.

In this book we will not be using an axiomatic treatment. As we are more con-
cerned with applying logic and integer programming for practical (as opposed to
philosophical, important though this is) purposes we will not be concerned with
proving the above properties or otherwise. We will use more intuitive methods when
necessary.

There is a way of viewing inference which connects with another theme of
this book. That is optimisation. Linear and integer programming (introduced in
Chapter 2) are concerned with maximising or minimising linear expressions subject
to linear constraints (in real or integer numbers, respectively). As such they are
attempting to find the strongest linear constraints which can be inferred from the
original constraints. Therefore, optimisation can be viewed as a method of infer-
ence. When a logical verification problem is cast into the form of an optimisation
problem it can be solved as such. This is done in Chapter 3. Alternatively integer
programming models can be cast as logical inference problems as done in Chapter 4.

A mathematical or logical system is said to be decidable if there exists a ‘mechan-
ical’ procedure for deciding the truth or falsity of a statement in the system. Such a
procedure is known as a decision procedure or an algorithm. Again the methods of
Gödel and others demonstrate that full arithmetic is not decidable. Some ‘smaller’
systems are also undecidable. However, the propositional calculus, which we are
mainly concerned with in this book, is decidable. The predicate calculus is not
decidable although there are decision procedures for always deciding if a statement
is false (but not if a statement is true). Also appending elements to the predicate
calculus can produce decidable systems as described in Sect. 1.5.

1.3 The Propositional Calculus

1.3.1 Connectives and Truth Tables

This system is sometimes called ‘Boolean algebra’. It combines atomic statements,
which can take truth values true (T) or false (F) , into compound statements whose
truth depends, by the rules of this calculus, on the truth values of the component
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atomic statements. We will represent atomic statements by literals A, B, X1, X2,
etc. and their negations by A, B, X1, X2, etc. (the former set of literals will be
said to have ‘positive sign’ and the latter set of literals ‘negative sign’). Both the
individual letters and their negations are known as literals. The atomic statements
and compound statements are combined by connectives to produce more compound
statements whose truth value depends on the truth values of the component state-
ments. The connectives which we will initially consider are ‘∨’ (‘or’) , ‘·’ (‘and’) ,
‘−’ (‘not’) , ‘−→’ (‘implies’) and ‘←→’ (‘if and only if’). The effects of these are
given in the truth table below.

Table 1.1 The Truth Table for Common Connectives
A B A ∨ B A · B A A −→ B A ←→ B
T T T T F T T
T F T F F F F
F T T F T T F
F F F F T T T

Table 1.1 can be taken as the definition of these connectives. When the truth table
is applied to a compound statement we have a decision procedure for determining
the truth or otherwise of the statement. We use this as an alternative to the axiomatic
approach. However, there are often more efficient decision procedures (e.g. integer
programming) for particular problems which are discussed in subsequent chapters of
this book. Some discussion should be given to the nature of the connectives defined
in Table 1.1. Since these are the definitions they need not, necessarily, totally con-
form to common usage. ‘∨’ is sometimes called the ‘inclusive or’ since it is also true
when both the component statements are true (as opposed to the ‘exclusive or’ which
is not true if both components are true). ‘−→’ does not represent implication in any
causal sense. In particular it is defined as true when neither component statement is
true, when in practice it might be thought to be inapplicable. It is only false when
the first statement is true and the second false. The connective ‘←→’ is sometimes
called ‘equivalent to’ since the two component statements must have the same truth
value for it to be true. It must be emphasised again that these connectives are within
the system. For example ‘=⇒’ is a meta relation about statements in the system
although it obviously has a semantic correspondence with ‘−→’. Similarly ‘←→’
should not be confused with the meta relation ‘≡’ which means two statements
within the system are equivalent to each other.

Apart from ‘−’ (which can be regarded as a connective applying to one state-
ment, which is written above the statement) all the other connectives in Table 1.1
connect two component statements. Obviously there are 16 (24) possible ways of
assigning the two truth values T and F to the four rows of a truth table connecting
two statements. One of these is to assign T to each row indicating what is known
as a ‘tautology’ (always true). Another is to assign F to each row indicating what
is known as a ‘contradiction’ (always false). There are, however, a number of other
connectives (9 in total) which we have not defined in Table 1.1 but which may be
useful in some circumstances.
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1.3.2 Equivalent Statements

It is easy to verify, by means of truth tables (and is left as Exercise 1.7.2), that the
following equivalences hold:

A · B ≡ B · A (1.4)

A ∨ B ≡ B ∨ A (1.5)

A · (B ∨ C) ≡ (A · B) ∨ (A · C) (1.6)

A ∨ (B.C) ≡ (A ∨ B) · (A ∨ C) (1.7)

A · B ≡∼ (A ∨ B) (1.8)

A ∨ B ≡∼ (A · B) (1.9)

A −→ B ≡ A ∨ B (1.10)

A ←→ B ≡ (A −→ B) · (B −→ A) (1.11)

A −→ B ≡ B −→ A (1.12)

A · A ≡ F (1.13)

A ∨ A ≡ T (1.14)

A ≡ A (1.15)

A · T ≡ A (1.16)

A · F ≡ F (1.17)

A ∨ T ≡ T (1.18)

A ∨ F ≡ A (1.19)

A · A ≡ A (1.20)

A ∨ A ≡ A (1.21)

Note the use of the meta symbol for the equivalence between statements.
Equations (1.4) and (1.5) are known as the commutative laws and (1.6) and (1.7)

as the distributive laws. (They are analogous to similar laws for addition and multi-
plication in arithmetic, although if ‘∨’ is analogous to addition and ‘·’ to multipli-
cation (1.7) does not apply.) Equations (1.8) and (1.9) are known as De Morgan’s
laws. They demonstrate a symmetry between the ‘∨’ and ‘·’ connectives. These laws
enable one to manipulate expressions into equivalent expressions and standardise
them into normal forms as described below. Repeated application of De Morgan’s
laws to a statement, in order to negate it, changes all the ‘∨’ connectives to ‘·’ and
vice versa and negates the unnegated literals and unnegates the negated ones. The
resultant statement is said to be the logical dual of the original and vice versa.
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Equation (1.12) is known as the contrapositive. Intuitively it makes sense.
B is True only if A is true. Therefore it B is not true then A cannot be true.
This transformation is very useful in certain integer programming applications as
described in Chapters 3 and 4.

Compound statements that are always true for any truth settings of the atomic
statements (such as (1.14) ) are known as tautologies. In contrast compound state-
ments that are always false (such as (1.13)) , for any truth settings of the atomic
statements, are known as contradictions.

In order to aid readability it is convenient to regard the ‘·’ connective as more
binding than the other connectives. This enables one to dispense with the brackets
in the right-hand expression in (1.6) and the left-hand expression in (1.7). Note that
in many texts the symbol ‘∧’ is used instead of ‘·’ and negation of a statement
A is indicated by ∼ A instead of A. We use our notation to aid readability but
sometimes use ∼ instead of − when we wish to negate a compound statement
instead of a literal and wish to avoid long cumbersome bars across the top of an
expression.

1.3.3 Disjunctive and Conjunctive Normal Forms

Let us consider a truth table for a statement S with n component statements referred
to as A1, A2, . . . , An . We represent this in Table 1.2.

Table 1.2 A General Truth Table
A1 A2 An S
T T . . . T –
T T F –

...
...

...
F F . . . F –

Let S have the value T for rows i1, i2, . . . , ir and F for all the other rows and
the entries for A1, A2, . . . , An in row i j are T for columns ki j ,i1

j
, ki j ,i2

j
, . . . , k

i j ,i
pi j
j

and F for columns k
i j ,i

pi j
+1

j

, k
i j ,i

pi j
+2

j

, . . . , ki j ,i n
j
. Then we can represent row i j by the

statement

Aki j ,i
1
j
· Aki j ,i

2
j
· · · · · Ak

i j ,i
pi j
j

· Ak
i j ,i

pi j
+1

j

· Ak
i j ,i

pi j
+2

j

· · · · · Aki j ,i
n
j

(1.22)

This is easily verified by the truth table for ‘·’ since, for it to be true, the atomic
statements Aki j ,l

must take the values specified for this row of the truth table.
Equation (1.22) is known as a conjunctive clause since the ‘·’ connective is also
known as a ‘conjunction’.
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Since S takes the value T for each of the rows i1, i2, . . . , ir S will be true if

Aki1 ,i11
· Aki1 ,i21

· · · · · Ak
i1 ,i

pi1
1

· Ak
i1 j ,i

pi1
+1

1

· Ak
i1 ,i

pi1
+2

1

· · · · · Aki1 ,in1

∨ Aki2 ,i12
· Aki2 ,i22

· · · · · Ak
i2 ,i

pi2
2

· Ak
i2 ,i

pi2
+1

2

· Ak
i2 ,i

pi2
+2

2

· · · · · Aki2 ,in2

...

∨ Akir ,i1r
· Akir ,i2r

· · · · · Ak
ir ,i

pir
r

· Ak
ir ,i

pir +1
r

· Ak
ir ,i

pir +2
r

· · · · · Akir ,inr
(1.23)

i.e. if any of the conjunctive clauses is true. Statement (1.23) is known as a disjunc-
tion of the clauses since they are combined by the ‘∨’ connective and ‘∨’ is also
known as a ‘disjunction’.

Statement (1.23) is said to be in extended disjunctive normal form (EDNF). For
a statement to be in EDNF it is made up as a disjunction of conjunctive clauses
each of which contains literals (atomic statements which are negated or unnegated)
for all atomic statements in the original statement (1.23) serves to prove that any
statement in the propositional calculus can be written using the connectives ‘−’,
‘∨’ and ‘·’. Of course there are many other ways of writing a statement either using
just these connectives or other connectives. However, EDNF also provides a stan-
dard (if sometimes uneconomical) and unique way (up to the order of the literals
and clauses) of expressing any statement. The following example demonstrates its
use

Example 1.1 Express statement S as defined in Table 1.3 using EDNF.

Table 1.3 A Function Defined by a Truth Table

A B C S
T T T F
T T F F
T F T T
T F F F
F T T T
F T F T
F F T T
F F F T

Taking rows 3, 5, 6, 7 and 8 of the table gives the statement

A · B · C ∨ A · B · C ∨ A · B · C ∨ A · B · C ∨ A · B · C (1.24)

Often we can be content with (non-extended) disjunctive normal form (DNF).
Here we again express a statement as a disjunction of conjunctions but do not insist
that each conjunction contains literals for each atomic statement in the original state-
ment. Such a form lacks uniqueness but will generally be more compact. Converting
it into the simplest form is addressed in Chapter 4.
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Example 1.2 demonstrates how the laws (1.4) – (1.21) can be used to convert a
statement into EDNF.

Example 1.2 Convert the following statement into EDNF:

(A −→ B) · A · C (1.25)

Using the equivalencies given above we can successively convert (1.25) to

(A ∨ B) · A · C (1.26)

A · C ∨ A · B · C (1.27)

This statement is in DNF but not in EDNF since the first clause does not contain
the literal B. We can expand it to

A · B · C ∨ A · B · C (1.28)

using equivalence (1.14). Equation (1.28) also contains the second conjunctive
clause in (1.27) and is therefore the equivalent statement to (1.25) in EDNF.

There is another normal form which is widely used. This is extended con-
junctive normal form (ECNF). It consists of a conjunction of disjunctive clauses
(each containing literals for all atomic statements in the extended case). We
can use De Morgan’s laws to convert a statement from EDNF to ECNF and
vice versa. However, there is a more straightforward way of giving a truth
table representation of a statement in ECNF as well as one in EDNF. We
observe that the negation of the statement is represented by those rows of
the truth table corresponding to the rows for which the statement is false. For
example, for Table 1.3, this corresponds to rows 1, 2 and 4 giving rise to the
statement

A · B · C ∨ A · B · C ∨ A · B · C (1.29)

Negating this statement gets us back to the original statement which we wish to
represent. We can negate (1.29) using De Morgan’s laws (1.8) and (1.9). The effect
is to create the logical dual of (1.29) which is

(A ∨ B ∨ C) · (A ∨ B ∨ C) · (A ∨ B ∨ C) (1.30)

It can be checked (Exercise 1.7.3) that this statement (in ECNF) also represents
Table 1.2. The rule for converting a truth table representation to a statement in ECNF
is therefore to take each row of the truth table for which the statement is false,
create a disjunction of the literals in it by negating those literals corresponding to a
T entry and not negating those entries corresponding to an F entry and then taking
the conjunction of the resultant (disjunctive) clauses.
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If a statement is in non-extended DNF or CNF (i.e. each clause does not nec-
essarily contain all literals) it is cumbersome to expand it into EDNF or ECNF in
order to use the truth table representation to create the other normal form. Instead
we can use De Morgan’s laws to convert to the other form. We demonstrate this by
the following example.

Example 1.3 Convert the following statement in DNF into CNF:

A · B · C ∨ B · D ∨ A · D (1.31)

Using the distributive law (1.7) we combine one literal from each conjunctive
clause into a disjunction in all possible ways and form the conjunction of these
disjunctions (also using the simplifications (1.14) and (1.21)). This gives

(A ∨ B) · (A ∨ B ∨ D) · A · (A ∨ B ∨ D) · (A ∨ B ∨ C) · (A ∨ C ∨ D) (1.32)

This statement is in far from its simplest form but the topic of ‘simplification’ is
postponed until Chapter 4.

It is often much more economical to express in either DNF or CNF depending on
the statement and application. Obviously, in order to do the reverse transformation
and convert a statement in CNF into DNF, we can use the (logically dual) form of
De Morgan’s laws (see Exercise 1.7.4).

In order to show the potential complexity of such transformations we consider
another example.

Example 1.4 Convert the following statement in DNF into CNF:

X1 · X2 ∨ X3 · X4 ∨ X5 · X6 ∨ · · · ∨ X2n−1 · X2n (1.33)

This results in the following conjunction of disjunctions:

(X1 ∨ X3 ∨ X5 . . . ∨ X2n−3 ∨ X2n−1)

· (X1 ∨ X3 ∨ X5 . . . ∨ X2n−3 ∨ X2n)

...

· (X2 ∨ X4 ∨ X6 . . . ∨ X2n−2 ∨ X2n−1)

·(X2 ∨ X4 ∨ X6 . . . ∨ X2n−2 ∨ X2n) (1.34)

It can be seen that instead of the n (conjunctive) clauses of 2 literals each we now
have 2n disjunctive clauses of n literals each. What’s more no simplification is pos-
sible. Clearly, in this case, DNF is more compact. Also the amount of computation
necessary to carry out the transformation is an exponential function of the number
of variables. However, in other cases (e.g. the dual of (1.34)) CNF may be more
compact. This is obviously an ‘extreme’ example but in more general cases the two
forms may be very unbalanced in the size of their representations.
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There is another, ingenious, approach to transforming statements in DNF to CNF
and vice versa which reduces the computational complexity by introducing new
literals. We demonstrate this by again using Example 1.4.

We introduce new literals Xi, j representing the conjunctions Xi · X j in (1.33).
Equation (1.33) can now be written as

X1,2 ∨ X3,4 ∨ X5,6 ∨ · · · ∨ X2n−3,2n−2 ∨ X2n−1,2n (1.35)

i.e. as a disjunctive clause.
We must also model the conditions

Xi, j −→ Xi · X j (1.36)

These may be written as

(Xi, j ∨ Xi ) · (Xi, j ∨ X j ) (1.37)

Hence we have the conjunction of (1.35) with all the pairs of disjunctive clauses
in (1.37) for each pair of i and j in each literal in (1.35). This is clearly a statement
in CNF. It contains 3n literals and 2n + 1 disjunctive clauses. One of them has n
literals and the rest 2 literals each.

Exercise 1.7.6 involves converting the dual expression to (1.33), i.e. a statement
in CNF, to a statement in DNF in an analogous manner.

1.3.4 Complete Sets of Connectives

We have shown that, by means of EDNF or ECNF, we can express any statement
using only the connectives ‘−’, ‘∨’ and ‘·’. They are said to be a complete set of
connectives in the sense that any compound statement can be written using them
alone. It is, in fact, possible to suffice with only the set of connectives {−, ∨}.

In order to show this we can apply De Morgan’s law (1.8) in order to replace all
occurrences of ‘·’ in a statement by − and ∨.

Similarly the set of connectives {−, ·} form a complete set as can be
seen by eliminating all occurrences of ‘∨’ in a statement using De Morgan’s
law (1.9).

However, it is also possible to represent all statements using a single connec-
tive. There are two such complete connectives (of two atomic statements). They are
represented by the symbols ‘↓’ and ‘|’ and are referred to as the connective arrow
and the Sheffer stroke, respectively. They are defined in the following truth table
(Table 1.4).

In intuitive terms ‘↓’ and ‘|’ represent the logical connectives ‘nor’ and ‘nand’
(‘not and’), respectively. They are sometimes manufactured as logical ‘gates’ for
electrical circuits, as discussed in Chapter 4, in view of their completeness.
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Table 1.4 Truth Tables for the Connective Arrow and Sheffer Stroke

A B A ↓ B A | B
T T F F
T F F T
F T F T
F F T T

In order to demonstrate their completeness we can show, by means of truth
tables, that ‘−’ , ‘·’ and ‘∨’ can be expressed using them. We can demonstrate
(Exercise 1.7.7) the following equivalences:

A ≡ A ↓ A (1.38)

A · B ≡ (A ↓ A) ↓ (B ↓ B) (1.39)

A ∨ B ≡ (A ↓ B) ↓ (A ↓ B) (1.40)

A ≡ A|A (1.41)

A · B ≡ (A|B)|(A|B) (1.42)

A ∨ B ≡ (A|A)|(B|B) (1.43)

Exercise 1.7.8 is to prove that these are the only possible complete connec-
tives combining two variables. There are, however, many more complete connec-
tives for combining three, four and more variables, but this is beyond the scope of
this book.

1.3.5 The Calculus of Indications

This is an ingenious method of constructing the propositional calculus using one
symbol only. The method has found some application in the design of electrical
circuits. It also leads to great notational economy. The single symbol which we use
is ‘�’. The originator of the method intended it to stand for a ‘distinction’ which he
felt was the most fundamental useful concept possible. From this primitive notion he
constructed his calculus. We will not discuss the philosophical aims of the originator
but we will describe the mechanics of the system.

The symbol ‘�’ can be combined with itself in two ways:

�� ≡� (1.44)

�� ≡ (1.45)

The ‘empty’ symbol in (1.45) is deliberate. Writing the symbol above itself in
(1.45) cancels it out, whereas juxtaposing it in (1.44) results in itself.
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If we have a structure such as

(1.46)

we can reduce it down to ‘�’ or ‘ ’ (the empty symbol). Any expression can be
simplified down to one of these two symbols. Exercise 1.7.9 involves simplifying
this and other expressions.

We can represent general expressions built up from ‘�’ by (meta symbols)
a,b, . . . . If known these expressions will simplify to ‘�’ or ‘ ’. We can give them the
interpretations F and T, respectively, i.e. a,b, . . . can be interpreted as statements
which are false or true according to whether they reduce to ‘�’ or ‘ ’.

The expressions a,b, . . . can be incorporated into enhanced expressions, e.g.

a b c (1.47)

Here the symbol ‘�’ can be interpreted as a connective applying to any number
of statements. For example a � is a connective applying to one statement.

a b (1.48)

is a connective applying to two statements.

a b c (1.49)

is a connective applying to three statements.
Since the expressions a,b,c,. . . each reduce to ‘�’ (F) or ‘ ’ (T) we can create

truth tables for the application of ‘�’.
It can be verified that

a a�
T F

F T

since if a reduces to (empty) (T) then a� reduces to � (F). However, if a reduces to
� (F) then a� reduces to (T). Clearly, applied to one statement, � performs to role of
the − connective.
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Applying � to two statements it can be verified that

a b a b
T T F
T F T
F T T
F F T

This is the ‘|’ (Sheffer stroke) (nand) connective defined above. As demonstrated
there, it is a complete connective. It can be verified (Exercise 1.7.10) that ‘�’ applied
to any number of statements yields a complete connective for that number of state-
ments. Identities (1.41) – (1.43) show how any statement can therefore be modelled
using ‘�’. For example instead of modelling ‘·’ in the form of (1.42) we can write it

as ab .‘∨’ can be modelled as in contrast to (1.43).
Exercise 1.7.11 involves using this ‘multivalued’ connective to represent a num-

ber of statements. It has the advantage that it is not always necessary to repeat the
same literal (which also does not need to be negated) , as is necessary in expres-
sions such as (1.42) and (1.43). One can also develop normal forms for compound
statements using this symbol.

1.3.6 Venn Diagrams

These are a useful way of interpreting and representing compound statements. Each
atomic statement corresponds to a region of the plane. We represent all statements
by a ‘universal’ region drawn as the rectangle in Fig. 1.1.

A.BA B

AvB

Fig. 1.1 A Venn diagram

The left-hand circle represents the statement A being true. The ‘complementary’
region to this circle represents A being true, i.e. A being false. The right-hand circle
represents the statement B being true. The intersection of these circles represents A ·
B being true and the union of the circles represents A∨ B being true, i.e. ‘∨’ models
the union (∪) operation of Elementary Set Theory and ‘·’ models the intersection
(∩) operation, while – models the complement operation.
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Using Fig. 1.1 it is easy to verify, for example, De Morgan’s laws. The region
outside the two circles is modelled by A ∨ B. It is easy to see that this is also the
intersection of the complement of A with the complement of B which is modelled
by A · B.

Figure 1.2 demonstrates how extended disjunctive normal form can model a
statement.

A.B.C

A.B.C

A.B.C

A.B.C

A.B.C

A.B.C

A.B.C CA.B.

Fig. 1.2 A second Venn diagram

All eight disjoint regions are modelled by the eight conjunctive clauses made
up from A, B, C and their negations. A is represented by the top circle, B by the
left circle and C by the right circle. We have used the symbols A, B, C in two
senses. On the figure they represent regions with the set operations ‘∪’, ‘∩’ and
‘−’ (complement) applied. In the propositional calculus statements they represent
atomic statements (indicating membership of the corresponding region) with the
corresponding connectives ‘∨’, ‘·’ and ‘−’ (‘not’) (using the same symbol as for the
set complement).

1.4 The Predicate Calculus

While the propositional calculus is sufficient for many purposes it is not sufficient
to formalise all mathematics. The predicate calculus was created for this purpose.
In this system statements can be made about objects by means of predicates, e.g.
P(x, y). P(x, y) could stand for a statement such as

‘x is the f ather of y′ (1.50)

If the variables x and y are set to constants such as ‘James’ and ‘Mary’ we have
the statement P(James, Mary) , which will be true or false meaning

‘James is the f ather of Mary′ (1.51)
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Predicates can be of one, two, three or any number of variables. The process of
setting variables to constants is known as instantiation. Each variable in a predicate
has a domain of possible values. In addition to the predicates we have the connec-
tives of the propositional calculus for combining them into compound predicates.
Instantiation of all the variables in the predicates of an expression converts it to a
statement in the propositional calculus.

For example if we have the statement

(P(x, y) ∨ Q(z)) −→ R(x, y, z) (1.52)

we might instantiate it to

(P(a, b) ∨ Q(c)) −→ R(a, b, c) (1.53)

so long as a, b and c were in the appropriate domains. Its truth, or otherwise, will
depend on the truth values of the atomic statements in the standard way.

1.4.1 The Use of Quantifiers

A major strength of the enhanced expressive power of the predicate calculus is the
use of quantifiers. These are written as ‘∀’ and ‘∃’. ‘∀’ means ‘for all’ and ‘∃’
means ‘there exists’. If, for example, we have ∀x Q(x) this means ‘for all objects in
the domain of x , Q(x) is true’. This can then be regarded as an atomic proposition
of the propositional calculus. Likewise the statement ∃x Q(x) means ‘there exists an
object in the domain of x for which Q(x) is true’.

The following statements are usually stipulated in the form of axioms of the
predicate calculus but we simply state them as valid deductions and equivalences in
our informal treatment. They obviously accord with the meanings we have given to
the quantifiers. They enable us to manipulate and translate statements in the calculus
(into, for example, normal forms). As before we assume that the objects (constants)
a, b, c, . . . fall within the permitted domains of the variables x, y, z, . . . where they
are substituted

∀x Q(x) =⇒ Q(a) (1.54)

Q(a) =⇒ ∃x Q(x) (1.55)

˜∀x Q(x) ≡ ∃x˜Q(x) (1.56)

˜∃x Q(x) ≡ ∀x˜Q(x) (1.57)

Note that we are using the symbol ‘˜’ as an alternative to ‘−’ solely for nota-
tional convenience. Equations (1.56) and (1.57) are obviously generalisations of
De Morgan’s laws.



16 1 An Introduction to Logic

If the domain of a predicate is finite (e.g. a, b, . . . , n) then we can use the con-
nectives ‘·’ and ‘∨’ in place of ‘∀’ and ‘∃’, e.g.

∀x Q(x) ≡ Q(a) · Q(b) · · · · · Q(n) (1.58)

∃x Q(x) ≡ Q(a) ∨ Q(b) ∨ · · · ∨ Q(n) (1.59)

Besides the ability to quantify over infinite domains (e.g. the natural, real or
rational numbers) the new notation also has great advantages in helping us to create
clear and succinct expressions even if the domains are finite. It can be very useful in
modelling as is illustrated in Chapter 3.

The predicate calculus is sometimes referred to as ‘first-order theory’ since it
allows us to quantify the objects within predicates but not ‘higher order’ objects
such as the predicates themselves.

Each quantifier has a scope over which it applies, e.g.

∃x(T (x, y) ∨ U (x, z)) · ˜W (s, z) (1.60)

is itself a predicate of the variables y, z, s. The scope of ∃x is the first disjunction
of T and U and is indicated by bracketing them. It does not extend to W . The
variable x is said to be bound by the quantifier. It is a dummy variable which could
equally well be replaced by another variable and the meaning be unchanged. To
save confusion it is clearer not to use such a variable elsewhere, beyond the scope
of the quantifier. Variables that are not bound are said to be free. y, z, s are free in
the above expression. Since W does not involve x there would be no ambiguity in
extending the scope of ∃x to the whole expression by moving the last bracket after
U to the end of the expression.

1.4.2 Prenex Normal Form

Using (1.56) and (1.57) we can move all the quantifiers to the beginning of an
expression creating what is known as prenex normal form. We illustrate this by
an example. The expression which is quantified will be known as the core.

Example 1.5 Transform the following expression into prenex normal form and the
core into DNF:

∀x1(∃x2 R(x1, x2)) −→ ∃x3(S(x3, x4, x5) · ∀x6T (x4, x6)) (1.61)

Note that only variables x1,x2,x3 and x6 are bound. Therefore the expression is
itself a predicate of the free variables x4 and x5. We can successively transform
(1.61) into
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∀x1(∃x2(R(x1, x2)) −→ ∃x3(S(x3, x4, x5) · ∀x6T (x4, x6))) (1.62)

∀x1(∃x2(R(x1, x2)) −→ ∃x3∀x6(S(x3, x4, x5) · T (x4, x6))) (1.63)

∀x1∃x2∃x3∀x6(R(x1, x2)) −→ (S(x3, x4, x5) · T (x4, x6)) (1.64)

∀x1∃x2∃x3∀x6(˜R(x1, x2)) ∨ (S(x3, x4, x5) · T (x4, x6)) (1.65)

It is sometimes convenient to allow one quantifier to apply to a group of variables,
e.g. ∃x1∃x2 can be written as ∃x1x2. Similarly for ∀. Also it can easily be verified
that ∃x1x2 means the same as ∃x2x1. Similarly for ∀.

When reading a statement such as (1.65) it must be remembered that the quanti-
fiers should be read from left to right. The left most quantifier applies to the state-
ment (including quantifiers) to its right and so on. However, the order of ∃ and
∀ cannot be reversed. ∃x∀y P(x, y) does not mean the same as ∀y∃x P(x, y). To
illustrate this let us take the domain of x and y as the integers and P(x, y) as the
relation x � y. The first statement is clearly not true in this interpretation since there
is no integer which is smaller or equal to all the rest. However, the second statement
is true in this interpretation since for any integer there is always an integer which is
smaller or equal to it (e.g. itself). One might conveniently represent such an integer
as xy indicating that it depends on the value of y, whereas for the first statement we
were seeking an x which was independent of the value of y.

In all interpretations of the predicate P(x, y) and the domains of x and y,
∃x∀y P(x, y) is stronger than ∀y∃x P(x, y). We prove this below.

Example 1.6 Show that, in general,

∃x∀y P(x, y) =⇒ ∀y∃x P(x, y) (1.66)

If the premise holds then for all y there is an x such that P(x, y), i.e. a particular,
single, x serves the purpose for all the y. (For the positive integers, with the predicate
‘x � y’ for example, 1 serves the purpose.) Hence for a particular y the conclusion
will also be true since the specific x chosen for the premise will also serve the
purpose.

In order to demonstrate the expressive power of the predicate calculus in a non-
mathematical setting we consider the following example.

Example 1.7 Express the following statement using the predicate calculus:

Y ou can f ool all o f the people some of the time (1.67)

and some of the people all o f the time, but

you cannot f ool all o f the people all o f the time

Let the predicate P(x, y) be given the interpretation ‘x can be fooled at time y’.
The statement can then be written as
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∃v∀u P(u, v).∀v ∃ u P(u, v).˜∀v∀u P(u, v) (1.68)

Note the temptation to use the ‘−→’ symbol before the last quantified predicate.
But this would not capture the true meaning.

1.5 Decidable Fragments of Mathematics

When the predicate calculus is used to formalise parts of mathematics it is neces-
sary to append functions (e.g. ‘+’ , ‘log’) and constants (e.g. 2,−1, π) together
with certain rules involving them (sometimes given in the form of extra axioms).
Relations (e.g. ‘=’, ‘ >’, ‘coprime’ ) are represented by predicates.

Although full arithmetic, formalised using the predicate calculus, is not decidable
there are smaller ‘theories’ within it which are decidable. We illustrate this by two
theories which are applicable to linear and integer programming.

1.5.1 The Theory of Dense Linear Order

The theory of dense linear order models order relations between variables and con-
stants in a continuum such as the real or rational numbers. The ‘+’ operation, the
real numbers, the ‘=’ and ‘<’ relations (predicates) together with the transitivity
rule ((x < y) · (y < z) =⇒ (x < z)) are appended to the machinery of the predicate
calculus. It is applicable to linear programming (LP). The constraints of an LP can
be regarded as predicates with the LP variables as variables in these predicates.

It is easy to verify that we can express the ‘�’ relation ((x < y)∨ (x = y)). (Also
we can express ‘>’ and ‘�’ but we choose to suffice with ‘<’ and ‘�’ for simplicity
of exposition.) Repeated addition allows us to multiply variables by integers, e.g. 3x
is given by x + x + x . Besides writing expressions such as 2x + 3y � 5 we can
include subtraction by, for example, writing x − y � 3 as x � 3 + y. Also we
can allow multiplication by rational numbers by, for example, writing 2

3 x < 5 as
2x < 15. For economy of representation we will use these derived relations and
operations directly.

We are now in a position to make statements in this system and ask if they are
true. This is a decidability problem and is illustrated by the following example.

Example 1.8 Is the following statement true ?

∃x∀y(((x + y � 1) ∨ (2x − 3y < 2) ∨ (−x − 2y < −2))·
((−x < −1) ∨ (−2x − y < 2))) (1.69)

x, yεR

We can use (1.56) and (1.57) to transform (1.69) to

∃x˜∃y((−x−y < −1·−2x+3y � −2·x+2y � 2)∨(x � 1·2x+y � −2)) (1.70)
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Expressing this in the form

∃x˜ [∃y(−x − y < −1 · −2x + 3y � −2 · x + 2y � 2)

∨∃y(x � 1 · 2x + y � −2)] (1.71)

y can be eliminated from each of the two conjunctive clauses preceded by ∃y by a
process known as the elimination of existential quantifiers. The first clause can be
written in the form

∃y(−x + 1 < y · y � 2

3
x − 2

3
· y � −1

2
x + 1) (1.72)

We now consider the meaning of the above statement. It is that there exists a
number from a continuum (e.g. the reals or the rationals) that lies strictly between
−x + 1 and both of 2

3 x − 2
3 and − 1

2 x + 1. The condition for this is that

− x + 1 <
2

3
x − 2

3
(1.73)

and

− x + 1 < −1

2
x + 1 (1.74)

Clearly (1.72) implies (1.73) and (1.74). But also (1.73) and (1.74) together imply
(1.72) since we could take y as any number greater than −x+1 and less than or equal
to the minimum of 2

3 x − 2
3 and − 1

2 x + 1. In general we have to consider all pairs of
inequalities where the variable to be eliminated is on opposite sides of the inequality
sign ‘<’ (or ‘�’). If the quantified variable to be eliminated occurs in an equality
relation the elimination is even easier. We can use the equality to substitute it out of
all the other relations. Obviously we modify the resultant inequalities accordingly
when the lower and upper inequalities before the elimination are different combina-
tions of ‘<’ and ‘�’. We rewrite (1.73) and (1.74) as

− 5

3
x < −5

3
(1.75)

and

− 1

2
x < 0 (1.76)

The second conjunctive clause in (1.71) can be written in the form

∃y(x � 1 · y � −2x − 2) (1.77)
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Since there is no lower limit to y the second inequality is true for all x and may
be ignored giving the equivalent statement

x � 1 (1.78)

Statement (1.69) has therefore been reduced to

∃x˜(−5

3
x < −5

3
· −1

2
x < 0 ∨ x � 1) (1.79)

which (using De Morgan’s laws) can be written as

∃x((
5

3
x � 5

3
∨ 1

2
x � 0) · −x < −1) (1.80)

or in CNF as

∃x(
5

3
x � 5

3
· −x < −1) ∨ ∃x(

1

2
x � 0 · −x < −1) (1.81)

We now again eliminate the existential quantifier in both clauses to give

1 < 1 ∨ 0 < −1 (1.82)

Clearly both inequalities are false showing the original statement to be false.

1.5.2 Arithmetic Without Multiplication

We now consider a decision procedure for arithmetic without multiplication and
present this in a form which is applicable to integer programming (IP) as discussed
in Chapter 2.

As in the theory of dense linear order we consider all terms of the form nx as
shorthand for x + x + · · · + x (n times). The theory looks very similar to the above
theory except for the fact that the domain of the variables is now restricted to the
integers. This makes the theory ‘more difficult’ in the sense that a decision procedure
is more complicated. Again the constraints in an IP can be regarded as predicates.
We illustrate the procedure by an example.

Example 1.9 Is the following statement true?

∃xy(−2x − 2y � −7 · 8x + 7y � 28 · −x � −1) (1.83)

x, yεZ

i.e. where the domain of the variables is the integers.
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In order to eliminate y and its existential quantifier we write the inner formula in
the form

∃y(7(−2x + 7) � 14y � 2(−8x + 28) · −x � −1) (1.84)

It is not now sufficient to observe that the expression to the left of the first inequal-
ity is less than or equal to that on the right. There must also be a multiple of 14
between them. This can be captured in a finite way by writing

7(−2x + 7) + s � 2(−8x + 28) · 7(−2x + 7) + s ≡ 0 (mod 14) (1.85)

· − x � −1

where s = 0, 1, . . . , 13
Since the left-hand expressions are multiples of 7 (by the congruence) , s must

be also and can be written as 7t allowing (1.85) to be simplified to

7(−2x + 7) + 7t � 2(−8x + 28) · −2x + t ≡ 1 (mod 2) (1.86)

where t = 0, 1
Clearly the congruence can only be satisfied if t = 1. Hence the inequality

reduces to

2x � 0 (1.87)

Equation (1.83) has therefore been reduced to

∃x(2x <= 0 · −x � −1) (1.88)

which can be written as

∃x(2 � 2x � 0) (1.89)

Strictly following our rules we continue the procedure by eliminating x and its
quantifier to give

2 + w <= 0 · 2 + w ≡ 0 (mod 2) (1.90)

where w = 0, 1.
Clearly the congruence implies w = 0 showing (1.90) to be false. Hence (1.83)

is false.
Exercise 1.7.16 is to show that (1.83) is true when the variables are ‘relaxed’ to

be real (or rational).
It should be pointed out that this is a particularly simple example. In gen-

eral we cannot eliminate the implied congruences at each stage. They have to
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be incorporated in the subsequent eliminations. Full details of the method, when
applied to integer programming models, are referenced in Sect. 2.6.

1.6 References and Further Work

A good introduction to logic is Mendelson [81]. Another text is Shoenfield [101] .
Also Langer [72] is a very clear text. Russell and Whitehead [96] give the results of
their formalisation. Gödel [44] presents his major results. A ‘popular’ description
of Gödel’s work is Nagel and Newman [85].

The propositional calculus (Boolean Algebra) is due to Boole [18]. Truth tables
were invented by Wittgenstein [124] and Post [90] who also investigated complete
connectives. The Sheffer stroke is due to Sheffer [99] and the connective arrow due
to Peirce [89].

The compact way of converting statements from DNF to CNF is due to Tseitin
[107]. Wilson [123] also presents the method.

The calculus of indications is due to Spencer-Brown [103].
The predicate calculus is usually attributed to Frege [39].
The decision procedure for the theory of dense linear order is due to Langford

[73] and that for arithmetic without multiplication is due to Presburger [91].

1.7 Exercises

1.7.1 Use a truth table to show that the following statement is a tautology:

((A ∨ B) · (A −→ C) · (B −→ C)) −→ C

1.7.2 Verify, by means of truth tables the equivalences (1.4) – (1.21).

1.7.3 Check that (1.30) represents the statement in Table 1.2.

1.7.4 Use De Morgan’s laws to convert the following statement to DNF:

(A ∨ B ∨ C) · (B ∨ C ∨ D) · (A ∨ B ∨ D)

1.7.5 Convert the statement in 1.7.4 into DNF by means of the distributive laws and
verify, by means of truth tables, that the statements produced in 1.7.4 and 1.7.5 are
equivalent.

1.7.6 Convert the following statement into DNF by introducing new variables to
represent the disjunctive pairs of statements:
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(X1 ∨ X2) · (X3 ∨ X4) · (X5 ∨ X6) · · · (X2n−1 ∨ X2n)

1.7.7 Verify, by means of truth tables, (1.38) – (1.43).

1.7.8 Show that ‘|’ and ‘↓’ are the only possible complete connectives of two vari-
ables.

1.7.9 Simplify the following expressions:

i.

ii.

iii.

1.7.10 Show that � applied to any number of statements is a complete
connective.

1.7.11 Represent the following statements using only the connective �:

i. (A ∨ B ∨ C) → (D ∨ E)

ii. (A −→ (B ∨ C)) ↔ (B · A)

iii. (A · B · C) ∨ B · A)

1.7.12 Represent the statement 1.7.11 (i) using a Venn diagram.

1.7.13 Represent the following statement using the predicate calculus:

Some animals are mammals but not all animals

are mammals although all mammals are animals.

1.7.14 Represent the following statement by the predicate calculus:
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Every even number greater than 2 is expressible as the sum

of two prime numbers.

Even numbers and prime numbers should be expressed in terms of more elemen-
tary predicates.

1.7.15 Is the following statement true?

∃xy∀z(x + y <= z · 2x − 3y � z · x > z)

if (i) x, yεR (ii) x, yεZ.

1.7.16 Show that (1.83) of Example 1.9 is true if the variables are real (or rational).



Chapter 2
Integer Programming

In this chapter we begin with a brief explanation of linear programming (LP) since
integer programming (IP) is usually regarded as an extension of LP. Also most prac-
tical methods of solving IP models rely on solving an LP model first. However,
our discussion of LP will be brief since this is not the main theme of this book.
Although LP models are often solved in the course of solving IP models we will,
in the main, regard a method of solving LP models in this context as a ‘black box’.
However, we will give a (computationally inefficient) method of solving LP models
which illustrates the use of the predicate calculus as discussed in Sect. 1.5 as well
as demonstrating important properties of LP models which are relevant to IP. In
Sect. 2.4 we discuss the comparative computational complexity of IP compared with
LP. A list of references to the further study of LP is given in Sect. 2.5.

2.1 Linear Programming

A linear programme (LP) is a problem of maximising or minimising a linear expres-
sion subject to a number of linear constraints which take the form of linear expres-
sions being less than or equal to ‘�’, greater than or equal to ‘�’ or equal to ‘=’
given numbers. For example the following is an LP model.

Example 2.1 A linear programme
Maximise

2x1 + 3x2 − x3 (2.1)

subject to

x1 + x2 � 3 (2.2)

−x1 + 2x3 � −2 (2.3)

−2x1 + x2 − x3 = 0 (2.4)

H.P. Williams, Logic and Integer Programming, International Series in Operations
Research & Management Science 130, DOI 10.1007/978-0-387-92280-5 2,
C© Springer Science+Business Media, LLC 2009
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x1, x2, x3 � 0 (2.5)

x1, x2, x3ε R

It is usual, but not necessary, for the variables to be restricted to be non-negative by
the last set of inequalities. Sometimes LPs are expressed in standard form as max-
imisations subject to all ‘�’ constraints (apart from the non-negativity constraints)
or alternatively as minimisations subject to all ‘�’ constraints. The expression to be
maximised or minimised is known as the objective function. Clearly it is possible to
convert a maximisation to a minimisation (and vice versa) by negating the objective
function. ‘�’ constraints can be converted to ‘�’ constraints by negating throughout
(and vice versa). ‘=’ constraints can be converted to a pair of a ‘�’ and a ‘�’ con-
straint simultaneously. We convert Example 2.1 to a standard form by the following
example.

Example 2.2 Convert Example 2.1 to a standard form
This becomes
Maximise

2x1 + 3x2 − x3 (2.6)

subject to

x1 + x2 � 3 (2.7)

x1 − 2x3 � 2 (2.8)

−2x1 + x2 − x3 � 0 (2.9)

2x1 − x2 + x3 � 0 (2.10)

x1, x2, x3 � 0 (2.11)

x1, x2, x3ε R

After converting the ‘=’ to a ‘�’ and a ‘�’, the ‘�’ has been negated throughout
to make it a ‘�’.

While a standard form is useful, for explanatory purposes, in practice models are
usually kept in a more general form such as in Example 2.1.

In order to make an LP model more precise we express Example 2.1 using the
predicate calculus.

Example 2.3 Express Example 2.1 using the predicate calculus and solve it by the
elimination of existential quantifiers

This becomes
Find the maximum value of z such that
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∃zx1x2x3 (z − 2x1 − 3x2 + x3 = 0 (2.12)

· x1 + x2 � 3

·x1 − 2x3 � 2

· − 2x1 + x2 − x3 = 0

· − x1 � 0

· − x2 � 0

· − x3 � 0)

x1, x2, x3ε R

By means of the first equation z has been set equal to the objective function (2.6).
We have deliberately quantified the variable z as we wish to test if the model has

a feasible solution before seeking the maximum z, if it exists, i.e. we are first of all
finding if the statement is true.

Eliminating x1 using the first equation, by the method described in Example 1.8,
we obtain

∃zx2x3(z − x2 + x3 � 6 (2.13)

·z − 3x2 − 3x3 � 4

· − z + 4x2 − 2x3 = 0

· − z + 3x2 − x3 � 0

· − x2 � 0

· − x3 � 0)

Eliminating x2 using the remaining equation

∃zx3(3z + 2x3 � 24 (2.14)

·z − 18x3 � 16

· − z + 2x3 � 0

· − z − 2x3 � 0

· − x3 � 0)

Eliminating x3 between the inequalities (and carrying out some simplification,
including removing obvious redundancies) we obtain

∃z(z � 8 (2.15)

· − z � 0)
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Eliminating z we obtain

0 � 8 (2.16)

which is clearly true, demonstrating that the original statement (2.12) is true (i.e. the
LP is feasible). The maximum value of z satisfying (2.15) is 8. Setting z = 8 the
first inequality in (2.15) is satisfied as an equation. Therefore so must be the first and
last inequalities in (2.14), from which it is derived, making x3 = 0. These inequal-
ities, in turn, are derived from the equation and first inequality in (2.13) making
x2 = 2. These are derived from the two equations in (2.12) making x1 = 1.

Hence we have the optimal solution to the LP in Example 2.1

x1 = 1, x2 = 2, x3 = 0, Objective = 8 (2.17)

The above method of solving LPs by successively eliminating existential quanti-
fiers is not the most efficient algorithm. Other algorithms, in particular the Simplex
algorithm, are mentioned in Sect. 2.5 and references given. It is, however, worth
remarking that the above method shows LP to be a decidable theory, which was
the purpose for which the decision procedure was designed. The simplex algo-
rithm, as originally stated, does not do this as it cannot be guaranteed to termi-
nate. It can, however, be modified to guarantee convergence. References are given
in Sect. 2.5. The method described here is usually referred to as Fourier–Motzkin
elimination. Although not computationally efficient it does prove to be a partic-
ularly clear method of demonstrating important properties of LPs. Further algo-
rithmic discussion is beyond the scope of this book but is fully discussed in the
many texts on LP. We do, however, discuss those aspects of LP which are rel-
evant to our main purpose of modelling and solving integer programming (IP)
models.

2.1.1 The Dual of an LP Model

In Example 2.3 we obtained the optimal objective value by successively adding
or subtracting the equality constraints, in suitable multiples, from the other con-
straints to eliminate variables and adding the ‘�’ inequality constraints in suitable
non-negative multiples. The net effect is to express the objective function as a
linear combination of the constraints in such a way as to eliminate the variables.
It can be verified that this results in multipliers of 1, 8

3 , 0, 1
3 , 0, 0, 2

3 , respectively,
on the constraints which, when added together in these multiples, produces the
constraint z � 8. The effect of the multipliers is to eliminate all the variables
(except z) and produce an upper bound on the possible objective values. We can
formalise this in terms of the original model in Example 2.1, as seeking multipliers
y1, y2, y3, v1, v2, v3 on all the constraints (2.2)–(2.5) so as to
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Minimise

3y1 − 2y2 (2.18)

subject to

y1 − y2 − 2y3 − v1 = 2 (2.19)

y1 + y3 − v2 = 3 (2.20)

2y2 − y3 − v3 = −1 (2.21)

y1 � 0, y2 � 0, v1, v2, v3 � 0 (2.22)

y1, y2, y3, v1, v2, v3ε R

Notice that y2 is constrained to be non-positive and y3 is not constrained in sign.
This is because the second constraint is of the form ‘�’ (and therefore effectively
subtracted from the other constraints if not converted to the ‘�’ form as is done in
Examples 2.2 and 2.3) and the third constraint is an equation which may be added
or subtracted from the other constraints. By minimising expression (2.18) we are
seeking the smallest right-hand side b for expressions of the form z � b which
are implied by the original constraints. This smallest value of b is obviously the
maximum z which can be obtained.

The variables vi (the multipliers on the non-negativity constraints (2.5) stated in
the form of ‘ �’ constraints) are known as surplus variables. We can ignore them if
we rewrite (2.18)–(2.22) as follows:

Minimise

3y1 − 2y2 (2.23)

subject to

y1 − y2 − 2y3 � 2 (2.24)

y1 + y3 � 3 (2.25)

2y2 − y3 � −1 (2.26)

y1 � 0, y2 � 0 (2.27)

y1, y2, y3ε R

The model given by (2.23)–(2.27) is, of course, itself an LP model. It is known
as the dual model. In contrast the original model, given in Example 2.1, is known
as the primal model. If the primal model were in standard form as a maximisation
subject to all the constraints being ‘�’ (apart from the non-negativity constraints on
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the variables) then the dual model would also be in standard form as a minimisation
subject to all ‘�’ constraints.

The decision procedure, which we illustrated in Example 2.3, shows that the
optimal solution to the dual model gives an attainable upper bound on the optimal
objective value of the primal model. Hence, if both the primal and dual models
have finite optimal solutions, their optimal objective values are the same (there is
no ‘duality gap’). The optimal values of the dual variables are known as the dual
values of the corresponding constraints in the primal model. It might be the case
that the dual model is infeasible in which case the primal model may have no bound
on its optimal objective value (it is said to be unbounded) or it might itself be infea-
sible. If the primal model is unbounded then we can produce no upper bound on the
primal objective value and therefore the dual model can have no solution and must
be infeasible. All these results are part of the duality theorem of LP. The variables
in the dual model have important economic interpretations in many applications as
well as having computational applications. Of course duality is also of mathematical
interest since there is a symmetry between the primal and dual models. The dual of
the dual model is the primal model (Exercise 2.6.3).

We should point out that the duality between LP models, which we have exhibited
here, is different from the logical duality which we discussed in Chapter 1.

2.1.2 A Geometrical Representation of a Linear Programme

The variables in an LP model can be interpreted as the coordinates of points in space.
The dimension of the space is equal to the number of variables in the model. We
illustrate this by giving a geometrical representation of the model in Example 2.1.

As all the variables are non-negative we restrict ourselves to the non-negative
orthant. The constraints, in this example, restrict us to the triangular region A, B,
C. This is known as the feasible region. Particular values for the objective function
lie on planes with the orientation of that shown. Increasing values of the objective
function arise as the planes are moved in the direction shown. However, we need
a plane that intersects the feasible region. This happens, for this example, when
an objective plane intersects the vertex B of the feasible region, whose coordinates
x1 = 1, x2 = 2, x3 = 0 therefore give the optimal solution (Fig. 2.1).

In this particular example the feasible region is non-full dimensional, i.e. not of
a dimension equal to the number of variables. It illustrates a number of features of
the geometrical representation of LPs which generalise.

The feasible region is a polytope. These are regions of space, in any number of
dimensions, whose boundaries are hyperplanes, i.e. lines, planes or higher dimen-
sional generalisations. They are of dimension one less than the dimension of the
polytope. In this example the polytope of the feasible region is closed. In general,
however, LP polytopes can be open, as illustrated by Example 2.5. Such polytopes
are sometimes referred to as polyhedra. For an LP polytope the feasible region
can be characterised by its boundaries, known as its facets or, alternatively by its
vertices.
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x2

x3

x1

A (0,0,0)

C (0,3,3)

B (1,2,0)

objective plane

Fig. 2.1 A non-full dimensional LP model

Different values of the objective function will be represented by hyperplanes in
the space. Moving to parallel hyperplanes in a direction orthogonal to the hyper-
planes will increase the objective value and in the other direction decrease the
objective value. As in the example the optimal solution will normally correspond to
where an objective hyperplane intersects a vertex of the feasible region. However,
it may be the case that the orientation of the objective hyperplane is such that there
are alternative optimal solutions not at vertices. But among the alternative optimal
solutions there will still be vertex solutions (so long as the model is not infeasible
or unbounded).

Some of these different features of LP models are illustrated in examples below
and in exercises in Sect. 2.6. We emphasise again that our purpose is to explain the
nature of LP in so much as is necessary for the understanding of IP. There are many
other texts that give a rigorous mathematical derivation of these properties, some of
which are referenced in Sect. 2.5.

We give some other examples of LP models

Example 2.4 A full-dimensional LP model
Maximise

− 4x1 + 5x2 + 3x3 (2.28)



32 2 Integer Programming

subject to

−x1 + x2 − x3 � 2 (2.29)

x1 + x2 + 2x3 � 3 (2.30)

x1, x2, x3 � 0 (2.31)

x1, x2, x3εR

This is illustrated in Fig. 2.2. Note that this model is in standard form.

x1

x2

x3

O(0,0,0)

A(0,0,3/2)

B(3,0,0)

C(0,7/3,1/3)

D(1/2,5/2,0)
E(0,2,0)

Fig. 2.2 A full-dimensional LP model

It can be seen that the feasible region has six vertices O, A, B, C, D and E
with their coordinates marked. The orientation of the objective plane shows that
the (unique) optimal solution arises from vertex C giving the solution x1 = 0, x2 =
7
3 , x3 = 1

3 , objective = 38
3 .

Example 2.5 An LP with an open feasible region
Minimise

− x1 + x2 (2.32)
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subject to

x1 + 2x2 � 5 (2.33)

−2x1 + x2 � −2 (2.34)

x1, x2 � 0 (2.35)

x1, x2εR

Note that this model is also in standard form. It is illustrated in Fig. 2.3. (When
we have a minimisation model we adopt the convention that dual values on ‘�’ con-
straints are non-negative, whereas dual values on ‘�’ constraints are non-positive,
in contrast to these conventions being reversed for maximisation models.)

x1

x2

A(0,5/2)

B(9/5,8/5)

D

C

Fig. 2.3 An LP model with an open feasible region

The optimal solution occurs at vertex B giving x1 = 9
5 , x2 = 8

5 , objective = − 1
5 .

If, however, the objective had been (say)
Minimise

− 3x1 + x2 (2.36)

then the model would have been unbounded since feasible solutions of ever-
decreasing objective value could be found.
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A polyhedron with an open feasible region (in any number of dimensions) is
characterised by its vertices and its extreme rays. In the example AD and BC are
extreme rays. If an LP is unbounded then the unboundedness is represented by an
extreme ray such as BC, for this example, with objective (2.36). Note that points on
this extreme ray give ever-decreasing values for objective (2.36).

It has already been remarked that if an LP is unbounded the corresponding dual
model is infeasible, i.e. the decision procedure illustrated in Example 2.3 will pro-
duce no lower bound (in the case of a minimisation) on the objective (see Exer-
cise 2.6.5). We give the dual model to Example 2.3 (with objective (2.36)).

Example 2.6 An infeasible LP model
Maximise

5y1 − 2y2 (2.37)

subject to

y1 − 2y2 � −3 (2.38)

2y1 + y2 � 1 (2.39)

y1, y2 � 0 (2.40)

y1, y2ε R

In Fig. 2.4 it is shown that the constraints above are self-contradictory.
In order to satisfy constraint (2.38) (and the non-negativity constraints) we have

to lie in the upper open region, but in order to satisfy constraint (2.39) we have to
lie in the lower triangular region. These regions have no points in common.

Note that the property of infeasibility is independent of the objective function. If
a model is infeasible it has no solutions irrespective of the objective.

It has already been remarked that if a model is unbounded its dual must be infea-
sible. Exercise 2.6.6 is to show that the dual of Example 2.6 (which is infeasible)
is Example 2.5 with objective (2.36) (which is unbounded). It was also, however,
remarked that if a model is infeasible there is another possibility: its dual may also
be infeasible. Exercise 2.6.7 demonstrates this.

The method of solving LP models by the elimination of existential quantifiers,
illustrated in Example 2.3, can be regarded in a geometrical context as a method
of projection. Each time a variable is eliminated the model is projected down to an
equivalent model in a space of one less dimension. The method can be valuable in
reformulating both LP and IP models.

LP models arise in many contexts such as production, distribution, blending,
oil refinery scheduling and chemical processing to name only a few. Models can
involve millions of constraints and variables. In Sect. 2.5 references are given to
comprehensive sources which discuss practical applications.

Before discussing IP we should point out that there are important classes of
apparent IP models which can be solved as LPs as this leads to integer values for the
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x1

x2

1

1 2

2

Fig. 2.4 Constraints defining an infeasible LP model

variables. In particular the minimum cost network flow model (with integer flows in
and out of the network) and special cases such as the transportation and assignment
problems have this property. They will not be discussed further here but references
given in Sect. 2.5 discuss them.

2.2 Integer Programming

If all or some of the variables in an, otherwise, LP model are restricted to take
integer values then we have a pure or a mixed IP (MIP) model, respectively. As in
other branches of mathematics models involving integers are much more difficult
to solve than models only involving real numbers. In Sect. 2.4 we discuss the issue
of computational complexity and point out that IP models are generally much more
difficult to solve than comparably sized LP models.

In Sect. 2.3 we point out that in most practical models the integer variables are
restricted to the two values 0 and 1. Hence the connection with the propositional
calculus. In this section we confine our attention to solving pure IP models with
general integer variables. It will be seen that the methods effectively specialise to
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the pure and mixed 0–1 case. For completeness we solve an illustrative model by the
decision procedure illustrated in Example 1.9. Then we discuss the more efficient
methods employed in practice. We consider the following example.

Example 2.7 Solve the following IP model using the decision procedure for arith-
metic without multiplication

Maximise

x1 + x2 (2.41)

subject to

2x1 + 2x2 � 3 (2.42)

−2x1 + 2x2 � 3 (2.43)

4x1 + 2x2 � 19 (2.44)

x1, x2 � 0 (2.45)

x1, x2ε Z

We write the model in the form
Maximise z
such that

∃zx1x2(z − x1 − x2 = 0 (2.46)

· − 2x1 − 2x2 � −3

· − 2x1 + 2x2 � 3

· 4x1 + 2x2 � 19

· − x1 � 0

· − x2 � 0)

z, x1, x2 ε Z

Eliminating x1using the equation gives

∃zx2(−2z � −3 (2.47)

· − 2z + 4x2 � 3

· 4z − 2x2 � 19
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· − z + x2 � 0

· − x2 � 0)

Since the variable eliminated (x1) has a coefficient of ∓1 in the equation in (2.46)
no congruences are needed in (2.47).

We rewrite this in the form

∃zx2(−2z � −3 (2.48)

· 4x2 � 2z + 3

· 2(4z − 19) � 4x2

· 4x2 � 4z

· 0 � 4x2)

Eliminating x2 reduces the system to

∃z(−2z � −3 (2.49)

· 2(4z − 19) + 2s � 2z + 3

· 2(4z − 19) + 2s � 4z

· 0 � 2z + 3

· 0 � 4z

· 4z − 19 + s ≡ 0(mod 2))

s ε {0, 1}

The congruence demonstrates that s = 1.

Therefore (2.49) (after simplification) can be rewritten as

∃z(2z � 13 · −2z � −3) (2.50)

Eliminating z (and simplifying) gives

3 + t � 13 · 3 + t ≡ 0(mod 2)

t ε {0, 1} (2.51)

In order to satisfy the congruence t = 1. The inequality in (2.51) is then obvi-
ously true showing the IP to be feasible.

The maximum value of z satisfying (2.50) is 6 arising from the first inequality
in (2.50). This inequality arises from the second and third inequalities in (2.48)



38 2 Integer Programming

showing that 10 � 4x2 � 15 making x2 = 3. These inequalities in turn arise from
the equation and third and fourth of the inequalities in (2.47). The (unique) solution
is therefore

x1 = 3, x2 = 3, objective = 6 (2.52)

We now use the above example to illustrate the method usually used in practice
for solving IP models. It is usually called the ‘branch-and-bound’ algorithm for
reasons which will become apparent.

2.2.1 The Branch-and-Bound Algorithm

Example 2.8 Solve the model in Example 2.7 by the branch-and-bound algorithm.

The first step in this method is to remove the integrality requirements and solve
the resultant LP model. This is referred to as the LP relaxation. LP is computation-
ally ‘easy’ compared with IP, as discussed in Sect. 2.5. If the optimal solution to
the LP relaxation turns out to be integral then this will also be an optimal solution
to the IP. There is an important class of models where this will always be the case.
However, for this example, we obtain the fractional solution

x1 = 2
2

3
, x2 = 4

1

6
, objective = 6

5

6
(2.53)

We now choose one of the integer variables (x) whose value has come out frac-
tional (e.g. N + f where N is an integer and 0 < f < 1). There is no loss of
generality in stipulating that either x � N or x � N + 1 since x is not permitted
to take any fractional value between N and N + 1. Both these possibilities rule out
the current fractional solution. For the example we choose the dichotomy x1 � 2 or
x1 � 3. The choice of variable x1 over x2 is arbitrary here. In practice it can be made
heuristically, i.e. according to plausible (but not guaranteed) rules which might be
hoped to produce the optimal integer solution as quickly as possible. For example
it might be thought that since x1 is further from its closer integer than x2 this will
have more effect than choosing x2. It is convenient to represent this process as a
branching in a tree as shown in Fig. 2.5.

At each node we give the solution of the corresponding LP relaxation. Node 2
corresponds to the original model together with the appended constraint x1 � 2.
Node 3 corresponds to the original model together with the appended constraint
x1 � 3. We number the nodes in order of the creation of the corresponding models.
Besides the choice of branching variable there is also a choice of order in which to
solve the LP relaxations of the nodes created. It is convenient to solve each of the
two resultant LP models (the ‘son’ and ‘daughter’) immediately after their creation.
It can be seen that the objective values corresponding to the LP relaxations of the
two nodes have both got ‘worse’ (declined for a maximisation or increased for a
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1

2 3

x1 = 2.67, x2 = 4.16, Objective = 6.83

x1 = 2, x2 = 3.5, Objective = 5.5 x1 = 2, x2 = 3.5, Objective = 6.5

x1> = 3x1< = 2

Fig. 2.5 A branch in the branch-and-bound algorithm

minimisation). This would be expected since extra constraints are being added. In
fact they might not change if there were alternate solutions.

At this stage we have a choice of waiting nodes to ‘develop’, i.e. choose which
node to branch from. This choice can again be made arbitrarily or heuristically.
For example we might choose to develop node 3 in preference to node 1 since its
objective has declined less (and there is therefore more chance of a better integer
solution down this branch). For our example we continue this process and illustrate
it in Fig. 2.6.

At node 5 the LP relaxation (and therefore the corresponding IP) is infeasible.
This result is likely to happen as we are adding progressively stronger constraints
down a branch. Once a node has become infeasible there is no sense in developing
it further. It is said to have been fathomed. Node 4 is then developed in preference to
the other waiting node 2 if we use the heuristic that the objective of the LP relaxation
at node 4 is better than that at node 2. At node 6 we obtain an integer solution with
an objective value of 6. Again there is no sense in developing this node further which
is also said to have been fathomed. Since the objective value is better than that at
node 2 no better integer solution can be obtained by developing that node. It is also,
therefore, said to have been fathomed. The value of the best integer solution found
to date provides a bound (hence the use of this word in the title of the method) on
the optimal objective value which we have used to terminate the branch at node
2. Solving the LP relaxation at node 7 gives an objective value of 5 1

2 which again
is below the current bound allowing us to terminate this branch. Since there are
no more waiting nodes the integer solution found at node 6 has been shown to be
optimal. This is the solution already obtained from Example 2.7 and given in (2.53).

Although we have obtained the optimal integer solution there is no guarantee that
there might not be other (suboptimal) integer solutions if we had developed nodes 2
and 7. Exercise 2.6.8 involves developing these nodes to see if there are other integer
(non-optimal) solutions.
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1

2 3

4

6

x1 = 2.67, x2 = 4.16, Objective = 6.83

x1 = 3.25, x2 = 3, Objective = 6.25

x1 = 3, x2 = 3, Objective = 6

x1 = 4, x2 = 1.5, Objective = 5.5

x1 = 3, x2 = 3.5, Objective = 6.5

Infeasible

x1> = 4

x2> = 4

x1> = 3

x2< = 3

x1< = 3

x1< = 2

x1 = 2,x2 = 3.5, Objective = 5.5

5

7

Fig. 2.6 A branch-and-bound tree

Exercise 2.6.9 is to resolve this model by branching on variable x2 instead of
x1 at the top of the tree. This will result in a totally different tree but it should be
apparent that it must also result in the same optimal objective value and, in this
example, the same (unique) optimal solution (although, in general, there could be
alternate optimal solutions).

A feature of this method, which should be remarked on, is that immediately after
a branch the branching variable takes the value in the added constraint. This will
always happen but there is no reason why the variable will not deviate from this
value further down the tree, as for example happens at node 4. Once an extra con-
straint has been imposed at a branch this extra constraint will apply at all branches
below the relevant node. For example x1 is greater than or equal to 3 at all nodes
from node 3 and below.

If an integer variable is restricted to a finite range of values (as is normally the
case in practice) then it should be apparent that this method must converge. In the
worse case, the branching process will result in fixing the integer variables at all
the (finite number of) possible values at different nodes. This could result in an
exponential number of nodes. The potential number of nodes at each successive
level doubles giving 2n nodes at level n. Exercise 2.6.10 demonstrates this. However,
if some of the integer variables are not restricted to lie in a finite range then there
is no guarantee that the method will terminate. Example 2.9 demonstrates this. This
shows that branch-and-bound is not formally a decision procedure for IP in contrast
to the method illustrated in Example 2.7.
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Notice (for example) that the right branch from node 1 (x1 � 3) and the left
branch from node 4 (x1 � 3) have fixed x1 at 3.

It is useful to illustrate the branch-and-bound method, as performed in Fig. 2.6,
geometrically in Fig. 2.7.

A

B

C

D

E H

I J

L

F G K

Fig. 2.7 A geometrical representation of branch-and-bound

ABCD represents the feasible region of the LP relaxation. The optimal solution
of the LP relaxation corresponds to vertex C. By branching on x1 we create the
two regions ABEF and GHD corresponding to the LP relaxations at nodes 2 and 3.
Vertices E and H correspond to the solutions at those nodes. Branching on x2 at
node 3 creates an empty feasible region for x2 � 4 and the region GIJD for x2 � 3.
The solution at node 4 corresponds to vertex J. Branching on x1 creates the feasible
regions GI (one dimensional) and KLD. The solutions at nodes 6 and 7 correspond
to vertices I and L. I clearly corresponds to the optimal integer solution.

Example 2.9 Demonstrate that branch-and-bound does not terminate with the fol-
lowing model:

Minimise

x2 (2.54)
subject to

3x1 − 3x2 � 1 (2.55)
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4x1 − 4x2 � 3 (2.56)

x1 � 1 (2.57)

x1, x2 ε Z

The resulting branch-and-bound tree is given in Fig. 2.8. It should be apparent
that the tree will never terminate producing LP relaxations with ever-increasing
objective values. Figure 2.9 demonstrates what is happening. The LP relaxation
at node 1 corresponds to point A. After branching on x2 we have alternate (all
fractional) solutions to the resulting LP relaxation and choose (arbitrarily) that cor-
responding to point B. Continuing in this manner we produce solutions at points
C,D,. . . . The problem is that the IP has no integer solution (it is infeasible). But
branch-and-bound cannot detect this as it keeps finding feasible solutions to the LP
relaxations. As mentioned before, in practice, this is unlikely to happen since integer
variables usually have finite bounds. But it can be the case that branch-and-bound
will take an exorbitant amount of time with some models. Exercise 2.6.11 is to solve
this model by the decision procedure demonstrated in Example 2.7. This, of course,
terminates finitely showing that there is no solution.

1

2 3

4 5

6 7

8 9

Infeasible

Infeasible

Infeasible

Infeasible

x2 < = 0

x1 < = 1

x2 < = 1

x1 < = 2
x1 < = 3

x2 > = 2

x1 > = 2

x2 > = 1

x1 = 2, x2 = 1.25, Obj = 1.25

x1 = 2.33, x2 = 2, Obj = 2

x1 = 3, x2 = 2.25, Obj = 2.25

x1 = 1, x2 = 0.25, Obj = 0.25

x1 = 1.33, x2 = 1, Obj = 1 (pointB)

(pointC)

(pointD)

(point E)

(pointA)

Fig. 2.8 A non-terminating branch-and-bound tree

If we apply branch-and-bound to a mixed IP then we only branch on those vari-
ables restricted to take integer values. If the integer variables are restricted to take
the values 0 or 1 (in both the pure and mixed cases), as is most common, then the
branch-and-bound tree becomes simpler. Each branch fixes a variable at 0 or 1 in
the next and all subsequent nodes down the branch.
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A

B
C

D

x1

x2

Fig. 2.9 Geometric representation of non-terminating branch-and-bound tree

2.2.2 The Convex Hull of an IP

In Fig. 2.10 we draw the feasible region of the LP relaxation of Example 2.7 (with
the same lettering as in Fig. 2.7).

We also mark the points with integer coordinates inside this region. These are
the feasible solutions to the IP in Example 2.7. Although the feasible solutions are
disconnected, if we are using LP to help us solve the IP, we can surround these
integer points by the smallest convex region containing them. This is known as the
convex hull of feasible integer points. It is marked by the dotted lines in the figure.
It is obvious that its boundaries must be straight lines in this two-dimensional case.
In higher dimensions they will be hyperplanes. They could therefore be represented
by linear constraints. In this example these are

x1 + x2 � 2 (2.58)

x1 � 1 (2.59)

−x1 + x2 � 1 (2.60)

x2 � 3 (2.61)

2x1 + x2 � 9 (2.62)
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x2

x1

I

Fig. 2.10 The convex hull of a pure IP

x1 � 4 (2.63)

x2 � 0 (2.64)

If we were to use objective (2.41) and replace (or append) the constraints
(2.42)–(2.45) by those above then the IP in Example 2.7 could be solved as a (much
easier) LP. The optimal solution would be given by vertex I in Fig. 2.10.

The boundaries of the convex hull are known as facets and the constraints giving
rise to them are known as facet-defining constraints.

In practice they may be very difficult to calculate. However, it may be possible to
calculate some of them or approximate them by constraints which cut off some of
the feasible points of the LP relaxation feasible region, but are not facets. All such
constraints are known as cutting planes. Appending them to a model, when known,
could be expected to reduce the size of the tree search in branch-and-bound. How-
ever, another problem, which frequently arises, is that there may be an astronomic
number of facets. This is the case with, for example, all known IP formulations of
the famous travelling salesman problem (TSP) (which is discussed in Sect. 2.3). In
practice one may only add them (or other cutting planes) iteratively when they are
known to cut off the current fractional solution.

Formulations that lead to constraints representing the convex hull are known as
‘sharp’ and those which are closer to the convex hull than others are known as
‘tighter’.

Such procedures can be implemented as another method of solving IP models,
i.e. solve the LP relaxation, add cutting plane(s) to remove the fractional solution
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and keep repeating. Alternatively this approach can be implemented in a branch-
and-bound tree (known as branch-and-cut) by applying it to the IPs corresponding
to intermediate nodes in the solution tree.

If a model is a mixed IP then one is only restricted to integer coordinates in
some directions. If, for example, we were only to restrict x1 to take integer values
in Example 2.7 the feasible solutions would be represented by the vertical lines in
Fig. 2.11. The convex hull would be as represented by the dotted lines, and the
optimal solution lies at vertex H.

x1

x2

H

Fig. 2.11 Convex hull of a mixed integer programme

The facet-defining constraints for this example are then

x1 + 2x2 � 2 (2.65)

x1 � 1 (2.66)

−2x1 + 2x2 � 3 (2.67)

2x2 � 7 (2.68)

4x1 + 2x2 � 19 (2.69)

x1 � 4 (2.70)

x2 � 0 (2.71)
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The facet-defining constraints of an IP can be regarded as the strongest bounds on
certain linear expressions which can be inferred from the constraints of an IP. This
is analogous to the way in which LP can be regarded as an inference problem as
mentioned in Sect. 1.1. Hence both types of problem could be regarded as inference
problems. For example suppose we were to choose the objective

Maximise
x2 (2.72)

subject to the constraints of Example 2.7. The answer would clearly be x2 = 3 as a
result of the facet 2, i.e. the constraints imply x2 � 3 but nothing stronger.

It should be obvious that it is not possible to derive the constraint x2 � 3 by an
argument involving only multipliers on the constraints, leading to a dual model. The
best that can be obtained by such an argument is x2 � 4 1

6 . 4 1
6 is the optimal objec-

tive value to the LP relaxation with objective (2.72). Viewed as inference problems
finding the strongest implied constraints of an IP is therefore more difficult than
simply adding constraints in certain multiples (the LP dual values). The difference
between the optimal LP objective value and the optimal IP objective value is some-
times known as the duality gap for an IP because the LP optimal value is the best
that can be obtained by dual multipliers. It is an indication of the difficulty of an
IP. Clearly it is the difference between the objective value for the LP relaxation at
the top of a branch-and-bound tree and the objective value at the node giving the
optimal IP solution. Therefore it is some (albeit crude) measure of the likely size of
the tree.

There is, however, a remarkable procedure for finding the strongest implied con-
straints (the facet-defining constraints) of a pure IP. It consists of the repeated appli-
cation of the following operations. (For simplicity we will consider the case of a
maximisation model with ‘�’ constraints.)

i. Adding constraints together in suitable non-negative multiples.
ii. Dividing through by the greatest common divisor of the left-hand-side coeffi-

cients and rounding down the right-hand-side coefficient.

We illustrate this by reference to the constraints of Example 2.7.
Dividing constraints (2.43) and (2.44) each through by 2 we obtain, respectively

−x1 + x2 � 3

2
(2.73)

2x1 + x2 � 19

2
(2.74)

These imply, since the left-hand expressions are integer,

−x1 + x2 � 1 (2.75)

2x1 + x2 � 9 (2.76)
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Multiplying (2.75) by 2 and (2.76) by 1 and adding we obtain

3x2 � 11 (2.77)

Dividing by 3 we obtain

x2 � 11

3
(2.78)

which, with rounding, implies

x2 � 3 (2.79)

giving the facet-defining constraint.
Unfortunately it is difficult to find a general way of carrying out this process

systematically. Roundings are nested within the combining of constraints to an inde-
terminate depth. The depth of rounding is significant and is known as the Chvátal
rank. Constraint (2.79) has Chvátal rank 2 since we had to apply two roundings to
obtain it.

Since the strongest bound on any objective function for an IP (such as (2.41))
can be obtained as an appropriate linear combination of the facet-defining con-
straints (using LP dual multipliers) we can also obtain this using a nested combi-
nation of rounding and linear combinations of the original constraints. The depth
of the rounding in this case is referred to as the Chvátal rank of the model. This
is often used as a measure of its difficulty. Most of the ‘easy’ problems of IP have
rank 0 (i.e. they can be solved as LPs) or 1. However, most well-known difficult
classes of IP problems have ‘unbounded’ rank, i.e. one can find problems in the
class which have a rank of any number one chooses. Again the rank of the TSP is
unbounded.

It will be shown in Chapter 4 that one of the important methods of logical infer-
ence, i.e. resolution, can be represented in an IP form by rank 1 cutting planes.

Exercise 2.6.14 is to find the optimal bound on the objective of Example 2.7 as a
Chvátal function, i.e. a nested combination of rounding and linear combinations.

In view of the importance of the special case of 0–1 IP models we illustrate the
concept of the convex hull of a (small) pure 0–1 model.

Example 2.10 Find the convex hull of the feasible solutions to the following
constraints:

δ1 + δ2 + 2δ3 � 2 (2.80)

0 � δ1, δ2, δ3 � 1 (2.81)

δ1, δ2, δ3εZ

Figure 2.12 illustrates the polytope associated with the LP relaxation.
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δ1

δ2

δ3

(0,0,1)

(0,0,0)

(0,1,1/2)

(1,0,1/2)

(1,1,0)

(1,0,0)

(0,1,0)

O

A

B

C

D

E

F

Fig. 2.12 The LP relaxation of a 0–1 IP model

Constraint (2.80) is represented by the plane ABCD. It can be seen that the
polytope of the LP relaxation has vertices O,A,B,C,D,E and F. Hence optimis-
ing an objective subject to (2.80) and (2.81) (ignoring the integrality require-
ment) could lead to one of the solutions associated with the fractional vertices
at B or D.

The convex hull of feasible 0–1 integer solutions is shown in Fig. 2.13.
The convex hull of the feasible integer solutions is defined by the constraints

δ1 + δ3 � 1 (2.82)

δ2 + δ3 � 1 (2.83)

together with (2.81).
It can be seen that all the vertices have 0–1 coordinates.
In general the feasible region associated with both the LP relaxation and the

convex hull of a 0–1 IP model is a multidimensional hypercube with some of the
corners sliced off.
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δ1

δ2

δ3

(0,0,1)

(0,0,0)

(1,0,0)

(0,1,0)

(1,1,0)

Fig. 2.13 The convex hull of a 0–1 IP model

2.3 The Use of 0–1 Variables

As has already been stated the majority of integer variables in practical IP models
are restricted to the two values 0 and 1. If there are general integer variables then
they would be restricted to a small integer range in almost any sensible IP model.
Variables that, in reality, should be integer (e.g. number of cars manufactured or
people of a certain category), which could take large values, would be treated as
continuous and their solution values in the optimal solution rounded to give sensible
answers.

2.3.1 Expressing General Integer Variables as 0–1 Variables

It should be pointed out that general (bounded) integer variables can always be
expressed as a combination of 0–1 variables. We demonstrate by the following
example.

Example 2.11 Express the integer variable x (0 � x � U ) using 0–1 variables.

The most compact way of doing this is a ‘binary’ expansion

x = x1 + 2x2 + 4x3 + 8x4 + · · · + 2�log2 U�x�log2 U� + 1 (2.84)
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where x1, x2, . . . , x�log2 U� + 1 are 0–1 variables.
Clearly by considering all possible 0 or 1 settings for these values we can repre-

sent any integer less than 2�log2 U�+1. If necessary we may also impose the bound

x1 + 2x2 + 4x3 + 8x4 + · · · + 2�log2 U�x�log2 U� + 1 � U (2.85)

2.3.2 Yes/No Decisions

The 0–1 variables are usually used to represent yes/no decisions which by their
nature must be ‘discrete’, i.e. ‘do we build this warehouse here or not ?’, ‘do we
make any of this product line or not ?’, etc. Other decisions will be contingent
on these decisions, hence the need for ‘logical modelling’. We illustrate this by a
number of examples. Systematic ways of modelling with 0–1 variables using logic
are discussed in Chapter 3. Our purpose here is to show the modelling potential of
IP and present some of the most common applications.

We cannot do justice to this topic in the short space of one section but we aim
to give a taste for the modelling potential and sketch the major application areas.
Further references are given in Sect. 2.5.

2.3.3 The Facility Location Problem

Example 2.12 Formulate the following (‘capacitated’) facility location problem
as an IP.

We can build warehouses at locations iε I to supply customers (with some com-
modity) at locations jε J . Over the period considered (say a month) a warehouse
at i has capacity Ki and the customer at j has requirement D j . The monthly fixed
cost of a warehouse at i is fi . The cost of supplying a unit of the commodity from
the warehouse at i (if built) to the customer at j is ci j . Choose where to build the
warehouses and how much of the commodity to supply from each of them to each
customer so as to minimise total cost.

We can introduce the following variables:

xi j = monthly quantity sent from warehouse i to customer j .

δi = 1 if a warehouse is built at i.

= 0 otherwise.

Our mixed IP model is then
Minimise

∑

iε I, jε J

ci j xi j +
∑

iε I

fiδi (2.86)
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subject to

∑

jε J

xi j � Kiδi ∀iε I (2.87)

∑

iε I

xi j = D j ∀ jε J (2.88)

xi j � 0, ∀iε I, ∀ jε J, 0 � δi � 1 ∀iε I (2.89)

xi jεR, δiεZ ∀iε I,∀ jε J

Notice this use of the quantifier ‘∀’, but here it is indices which are being quan-
tified over the domains of their index sets. Such a notation is common in certain
modelling languages as discussed in Chapter 3. The use of the Greek letter ‘δ’
for 0–1 variables is common in contrast to the Roman alphabet for continuous
variables.

It is necessary to model this problem as a (mixed) IP because of the discrete
nature of the decision to build, or not build, a warehouse at each location. The
building of a fraction of a warehouse (resulting in an LP model) is not an option.
The fi are fixed costs which will either be incurred in their entirety, or not at all.
These are in contrast to the ci j which are variable costs which can be incurred in
continuously varying fractions depending on the continuously varying values of the
variables xi j .

In (2.89) we have represented the variables δi as general integer variables which
must lie in the range 0–1, so restricting them to the two values 0 and 1. It is more
usual to specify them directly as binary variables δiε{0, 1}.

This problem is an instance of the fixed charge problem, which is further dis-
cussed in Chapter 3. Note that it is not necessary to explicitly model the condition
that if a warehouse is opened (and therefore a fixed cost incurred) one will send a
positive quantity out of it. This must happen by virtue of optimality for to open it
and not send any quantity from it would be non-optimal. Hence this condition is
guaranteed by the objective function.

2.3.4 Logical Decisions

Once we have 0–1 variables we can make logical statements about the correspond-
ing decisions. Example 2.13 illustrates this.

Example 2.13 Model the following extra conditions in the facility location problem.

i. At most n warehouses can be built where n � |I |.
ii. If any warehouses are built at iεP then no warehouses can be built at kεQ but

at least three warehouses must be built at lεL .
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Condition (i) can be modelled by

∑

iε I

δi � n (2.90)

Condition (ii) can be modelled by

δi + δk � 1 ∀iεP, ∀kεQ (2.91)
∑

lεL

δl � 3δi ∀iεP (2.92)

Many variants and extensions of the facility location problem can also be mod-
elled. The problem typifies a whole class of problems involving discrete decisions
which have to be made if other activities are to be carried out.

Example 2.14 A blending problem has been formulated as an LP with variables xi

representing the proportions of ingredients i . In addition it is stipulated that

i. If an ingredient i is included it must be at a proportion of at least αi .
ii. At most n ingredients can be used.

iii. If any ingredient iε I is used then at least one ingredient jε J must also be used.

We introduce 0–1 variables δi representing the presence of ingredient i and the
following constraints:

xi � δi (2.93)

xi � αiδi (2.94)

If xi > 0 then (2.93) forces δi = 1. Then δi = 1 forces xi � αi by (2.94).
Condition (ii) is similar to that in Example 2.13 and is modelled as

∑

i

δi � n (2.95)

Condition (iii) is modelled as

∑

jε J

δ j − δi � 0 ∀iε I (2.96)

Again the above types of constraints may also arise in other contexts than
blending.

It is sometimes natural to model certain conditions as products of 0–1 variables.
Of course such a product is itself a 0–1 quantity which can be represented as a 0–1
variable with a logical dependence on the original variables. Example 2.15 illus-
trates this.
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2.3.5 Products of 0–1 Variables

Example 2.15 A model contains the product δ1δ2 of two 0–1 variables. Convert the
model to a linear form.

We replace this product with a new 0–1 variable γ and the constraints

δ1 + δ2 − γ � 1 (2.97)

δ1 − γ � 0 (2.98)

δ2 − γ � 0 (2.99)

Equation (2.97) forces γ to be 1 if δ1 and δ2 are both 1. Equations (2.98) and (2.99)
force γ to be 0 if either δ1 or δ2 (or both) take the value 0.

2.3.6 Set-Covering, Packing and Partitioning Problems

There is an important class of problems which give rise to pure 0–1 IP models known
as set-covering, packing and partitioning models. We illustrate this by an example
of a set-covering model.

Example 2.16 Cover all the elements {1,2,3,4,5} using the minimum number of
subsets {1,2,3,5}, {1,2,4,5}, {1,3,4}, {2,3,4,5}, {3,4,5}.

We use 0–1 variables δ j which equal 1 if and only if the j th subset is used. Each
element of the original set gives rise to a constraint. In order to cover an element
the sum of the variables representing the subsets containing the element must be at
least 1. The model then becomes

Minimise

δ1 + δ2 + δ3 + δ4 + δ5 (2.100)
subject to

δ1 + δ2 + δ3 � 1 (2.101)

δ1 + δ2 + δ4 � 1 (2.102)

δ1 + δ3 + δ4 + δ5 � 1 (2.103)

δ2 + δ3 + δ4 + δ5 � 1 (2.104)

δ1 + δ2 + δ4 + δ5 � 1 (2.105)

δ1, δ2, δ3, δ4, δ5ε{0, 1}
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This type of model arises in a number of contexts. One of the most important is
crew scheduling (particularly for airlines) where each subset corresponds to a roster
which, if used, must be assigned to a possible crew. The objective is to minimise
the number of crews necessary to cover all the flights. Each flight gives rise to a
constraint. The model also arises in computer circuit design and logic simplification.
This latter application is discussed in Chapter 4.

It is worth pointing out that, in practice such models can have a huge number of
variables. However, they are often amenable to simplification by preprocessing. For
example δ5 is redundant since δ4 covers everything that δ5 does and more at equal
objective ‘cost’. The fifth constraint can then be removed as it is implied by the
second. This reduces the model to

Minimise

δ1 + δ2 + δ3 + δ4 (2.106)

subject to

δ1 + δ2 + δ3 � 1 (2.107)

δ1 + δ2 + δ4 � 1 (2.108)

δ1 + δ3 + δ4 � 1 (2.109)

δ2 + δ3 + δ4 � 1

δ1, δ2, δ3, δ4 ε {0, 1}
(2.110)

Exercise 2.6.17 is to solve this model by branch-and-bound.
Set-covering models look deceptively easy to solve but can be very difficult,

usually on account of their size. They do have important mathematical properties.
In particular there will always be an optimal integer solution which corresponds to a
vertex of the polytope for the LP relaxation (but normally not the vertex associated
with the LP optimum). The Chvátal rank for the class of set-covering models is not
bounded.

Closely related are set packing models where the objective is to ‘pack’ as many
subsets into a given set, as possible, with no overlap. A particularly important case
arises where the set of elements can be represented as the nodes of a graph. The sub-
sets are pairs of nodes which are joined by an edge, The packing problem becomes
that of finding the maximum ‘pairing’ of nodes where each node has a unique ‘mate’
(if it has one at all). This is known as the matching problem. Formulated as an IP
it can be shown to be of Chvátal rank 1. A special case of the matching problem is
to ‘bipartite’ graphs. Here there are two sets of nodes and matchings can only be
between nodes of different sets. This problem is usually known as the assignment
problem. An optimal solution to the LP relaxation is integer. The Chvátal rank is
therefore 0. A set partitioning model is that of partitioning the original elements into
a collection of the given subsets. Packing and partitioning models can be converted
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into one another. In all these types of models, with some applications, objectives
with non-unit coefficients may be used.

2.3.7 Non-linear Problems

Example 2.17 demonstrates how a certain type of non-linearity in an IP model
may be linearised. Non-linear models in general may be remodelled, to a degree
of approximation and an increase in size, as linear IP models. Hence the distinc-
tion between linear and non-linear in IP is less important than in other branches of
mathematics. What’s more the IP formulation has the advantage that global opti-
mal solutions are obtained in contrast to local optimal solutions. This distinction is
illustrated in Fig. 2.14.

y

local optimum
local optimum

global optimum

Fig. 2.14 Local and global optima

If our objective were to maximise y then conventional optimising methods might
find one of the local optima shown and not be able to improve on these. However, an
IP formulation can be guaranteed to find a global optimum (at, possibly, consider-
able computational cost). The next example illustrates how non-linear models may
be formulated as linear IP models.

Example 2.17 Make a piecewise linear approximation to the non-linear function
y = x3 −12x2 +23x +86 for 0 � x � 39 and model the (approximate) relationship
between x and y using an IP model.

Such an expression (together with other non-linear expressions) may occur in the
objective, the constraints or both.

Figure 2.15 gives the graph of y = x3 − 12x2 + 23x + 86.
We evaluate the function at a number of grid points. These need not necessarily

be evenly spaced, but for this example we evaluate the function at integers between
x = 0 and 9 giving Table 2.1.
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Fig. 2.15 A piecewise linear approximation to a non-linear function

Table 2.1 Values for a Non-linear Function
x 0 1 2 3 4 5 6 7 8 9
y 86 98 92 74 50 26 8 2 14 50

Joining these points in Fig. 2.15 gives the piecewise linear approximation
ABCDEFGHIJ to the curve for the function. In order to do this we introduce
(non-negative continuous) variables λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9 which
represent ‘weights’ given to the points A,B,C,D,E,F,G,H,I,J in representing the
function by the following equations:

x = 0λ0 + 1λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5 + 6λ6 + 7λ7 + 8λ8 + 9λ9 (2.111)

y = 86λ0 + 98λ1 + 92λ2 + 74λ3 + 50λ4 + 26λ5 + 8λ6 + 2λ7 + 14λ8 + 50λ9

(2.112)

λ0 + λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 = 1 (2.113)

λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9 � 0 (2.114)

λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9εR
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In addition we need to impose the condition

At most 2 adjacent λi can be non-zero (2.115)

If λi and λi+1 are the two adjacent non-zero λi ’s then (x, y) represents a point on
the line between the points corresponding to the i th and (i + 1)th grid points. For
example if λ0 = 0, λ1 = 0, λ2 = 1

4 , λ3 = 3
4 , λ4, . . . , λ9 = 0 then (x, y) = (2 3

4 , 78 1
2 )

being the point P in Fig. 2.15. On the true curve if x = 2 3
4 then y = 79 19

64 being
the point Q. The piecewise linear approximation has therefore underestimated the
true value of y by 51

64 . Obviously the more refined the grid the more accurate the
approximation, but more λi variables will be needed.

It remains to represent condition (2.115) by constraints. In order to do this integer
variables are needed. We need to model the logical condition that the possible non-
zero pair is either λ0 and λ1, or λ1 and λ2, or λ3 and λ4, etc. This can be done by
0–1 variables δ1, δ2, . . . , δ9 and the constraints

λ0 � δ1 (2.116)

λ1 � δ1 + δ2 (2.117)

λ2 � δ2 + δ3 (2.118)

...

λ8 � δ8 + δ9 (2.119)

λ9 � δ9 (2.120)

δ1 + δ2 + δ3 + δ4 + δ5 + δ6 + δ7 + δ8 + δ9 = 1 (2.121)

Constraint (2.121) ensures that exactly one δi is 1, the others being 0. Then by
constraints (2.116)–(2.120) at most two adjacent λi can be non-zero.

In order to ‘linearise’ expressions such as that above in this way they must
be functions of a single variable or be able to be expressed as the sum of
non-linear functions of single variables. Such functions are known as ‘sepa-
rable.’ The limitation of only being able to model separable functions is not
as restrictive as might, at first, be thought. For most functions arising in prac-
tice it is usually possible to ‘separate’ them by suitable transformations. For
example the product xy of two continuous variables, although not separable,
can be transformed into a separable model by the log transformation since
log xy = log x + log y.

We again discuss how non-linear problems give rise to IP models and the impor-
tant distinction between convex and non-convex models in Chapter 3.
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2.3.8 The Knapsack Problem

This is one of the simplest types of pure IP model involving only one constraint and
takes the form

Maximise

∑

j

c j x j (2.122)

subject to

∑

j

a j x j � b (2.123)

x j � 0 ∀ j (2.124)

x jεZ ∀ j

Like some of the other IP models discussed in Sect. 2.4, under the title of ‘com-
putational complexity’, this type of model is ‘difficult’ to solve but, in one sense,
the easiest of such IP models. Extensions of the knapsack problem are the bounded
variable knapsack problem, the 0–1 knapsack problem and the equality-constrained
knapsack problem. The name arises from the largely fictitious application of trying
to fill a knapsack of limited size with items of maximal total value (although it has
been used to allocate the hardware for different experiments in space exploration
vehicles). More commonly it is used as a subproblem for other combinatorial prob-
lems (e.g. cutting stock and bandwidth allocation).

The LP relaxation of the knapsack problem is trivial to solve (concentrate on
the activity with the greatest ratio of objective coefficient/constraint coefficient)
but the IP involves finding the best combination of items to fill the knapsack
taking account of both this ratio and how well it fits (with other items) into the
knapsack.

2.3.9 The Travelling Salesman Problem

We demonstrate this problem by the following example.

Example 2.18 A routing problem. Find the shortest order to go around cities N =
{1, 2, . . . , n}, returning to the beginning. The distance from city i → j is given
as ci j .

We will assume that the distance from i to j is not, necessarily, the same as the
distance from j to i , i.e. we have an example of the asymmetric travelling salesman
problem (TSP).

We can model this problem as
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Minimise

∑

i, j

ci j xi j (2.125)

subject to

∑

j

xi j = 1 ∀iεN (2.126)

∑

i

xi j = 1 ∀ jεN (2.127)

∑

i, jεS

xi j � |S| − 1 ∀S ⊂ N such that 1 < |S| < n (2.128)

xi jε{0, 1} ∀i, jεN

The 0–1 variables xi j indicate whether a direct link i → j is, or is not, on the
tour. Constraint (2.126) forces each city to be left exactly once and constraint (2.127)
forces each city to be entered exactly once. Constraint (2.128) rules out subtours.
Figure 2.16 demonstrates subtours which would be ruled out by constraints (2.128).
Note that there are 2n − n − 1 subtour elimination constraints, i.e. an exponential
number as a function of n. In practice these constraints are only added on an ‘as
needed basis’, or known facet constraints are added when they cut off fractional
solutions to the LP relaxation.

1

3

2

4
5

6

7

8

Fig. 2.16 Subtours of a TSP

There are other formulations of the TSP, as an IP, with a polynomial number of
constraints although they have weaker LP relaxations (with one exception). Refer-
ences are given in Sect. 2.5.
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2.3.10 Other Problems

In addition to the applications of 0–1 IP discussed above there are a number of other
applications of 0–1 IP not discussed here but which can be followed up through the
references.

Other problems involve networks and graphs (with nodes and arcs) and are nat-
urally modelled with 0–1 variables representing the presence of particular nodes
and the resulting presence of arcs emanating from them. The quadratic assignment
problem is an extension of the assignment problem mentioned above (which can be
treated as an LP) but is naturally modelled with products of 0–1 variables which can
be linearised (with a large increase in model size) in the way shown in Example 2.15
making it a genuine IP. The matching problem that was mentioned above can also be
regarded as an extension of the assignment problem. The matching problem, itself,
has a number of extensions.

Scheduling problems involve deciding in what order to process jobs on machines.
The 0–1 variables can be used to decide, for each pair of competing jobs, which one
is processed first.

Capital investment problems (in addition to facilities location, already discussed)
can incorporate capital limitation constraints and be modelled over periods of time
with resultant cash flows.

2.4 Computational Complexity

2.4.1 Problem Classes and Instances

It is clear that problems in some classes are more difficult to solve than others. For
example LPs are relatively ‘easy’ to solve. Models with thousands of constraints
and variables are now solved routinely on desktop computers. Models with millions
of constraints and variables have also been successfully solved. For IP the picture
is very different. While some large models have been successfully solved some
models, with only hundreds of variables, can prove very difficult. In logic large
satisfiability problems (which are discussed in Chapter 4) can prove very difficult to
solve. The subject of computational complexity is concerned with trying to classify
problems into the easy and difficult categories. According to the method which we
will describe LP is easy but IP, and many of its special cases, and the satisfiability
problem are difficult.

The method which we describe looks at classes of problems rather than instances.
Within a particular ‘difficult’ class there may be easy instances. The categorisation
of classes will be based on the worst cases within that class. In some ways this is
unsatisfactory since in practice the worst cases may seldom arise. However if we
base the categorisation on worst cases then we can give a ‘guarantee’ of difficulty.
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Average case analysis is much more difficult and requires probability distributions
to be defined in order to define what the average cases are.

It is important to recognise that the method uses categorises problem classes
rather than algorithms. There may be ‘good’ and ‘bad’ algorithms for solving prob-
lems in any class. For a problem class to be designated easy it is necessary to show
that there is at least one easy algorithm for solving all problems in the class. A
problem class will be designated ‘easy’ if there is an algorithm for solving problems
in it whose number of steps will never be more than a polynomial function of the
size of the problem (storage spaces required in a computer). On the other hand a
problem class will be designated ‘difficult’ if there is no known such algorithm and
the number of steps in all the algorithms known requires an exponential number of
steps. These definitions will be made more precise later. A rather negative aspect
of the categorisation, in terms of mirroring reality, is that some successful algo-
rithms for problems in the easy class are exponential (in the worst case). The classic
example is the simplex algorithm for LP. Examples can be found (see references)
where the simplex algorithm takes an exponential number of steps although in prac-
tice (‘average cases’) it is known to solve huge models in reasonable periods of
time. However there are known to be polynomial algorithms for LP (one of which
sometimes overtakes the Simplex on ‘huge’ problems). For IP and the satisfiability
problem no algorithms have ever been found which are not exponential or worse.

2.4.2 Computer Architectures and Data Structures

Another aim of this problem characterisation is to make it, as far as possible, inde-
pendent of the computer architecture used. In order to do this fairly crude assump-
tions are made but it turns out that they often do not matter in making the (major)
distinction between polynomial and exponential algorithms. One of the assump-
tions is that ‘elementary’ operations such as addition, multiplication, comparison,
etc. all take the same amount of time on ‘small’ numbers. Of course multiplication
is inherently more difficult than addition, although by how much depends on the
architecture of the computer used.

Also of great significance, in practice, is the data structure used for encoding
instances of the problem. We must, however, restrict ourselves to ‘sensible’ data
structures. We would not encode a number n by a sequence of n 1’s. We would,
rather, encode it using binary notation taking account of the significance of the
position of each digit as well as its value. For example 23 would be written as
10111 (since 23 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20) instead of as a
string of 23 1’s. It is useful (and realistic) to use only two symbols 0 and 1 given
the binary hardware devices used in computers, although representing numbers to a
higher radix would not alter the final analysis. However, what is important is to use
some such representation. Clearly the storage required for a number n will be log2 n
bits (with possibly another bit to represent the sign of n), as opposed to n bits.
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2.4.3 Polynomial and Exponential Algorithms

If the storage required for a problem instance is N bits then we will represent the
number of elementary operations needed to solve it by f (N ). If f (N ) � cNr for
some algorithm and for all instances in the class, for a particular c and a particular r
then the algorithm is said to polynomially bounded and the class of problems is said
to belong to category P (polynomially solvable). We seek the algorithm with small-
est value of r for which this inequality holds. This definition has certain limitations.
First we do not normally take account of the magnitude of c. This means that, in
practice, a very large number of operations might be needed but the growth in the
number of operations needed, as problem sizes increase, will be less than for non-
polynomially bounded classes. This measure is an asymptotic one, measuring rate
of computational growth rather than computational difficulty for particular problem
instances. One of the reasons for paying little attention to the value of c (and, to a
lesser extent, r ) is that these values can be altered by different implementations of
an algorithm and the data structures used.

If the rate of growth of an algorithm cannot be shown to be polynomially bounded
then we could look at gradually higher rates of growth, e.g. N log log... log N ,. . . ,N log N .
However, we do not usually examine these possible bounds on growth but look at
exponential growth rates. If no algorithm, for a particular problem class, can be
found which is polynomially bounded we see if we can find a bound of the form
f (N ) � caN . The number of computational steps is then said to be exponentially
bounded. This does not mean that there does not exist a polynomially bounded
algorithm for problems in the class but, rather, that one has not been found. There
is, however, strong experimental and theoretical evidence that for many of the ‘dif-
ficult’ problems (e.g. IP and many special cases) we consider that no polynomially
bounded algorithm can exist. Before we discuss why this is so it is worth illustrating
the dramatic difference between polynomial and exponential growth by comparing
the growth in r2 operations with that of 2r operations. This is done in Table 2.2
where we assume each elementary computer operation takes 1 ms. Then the com-
putational times are those given.

Table 2.2 Exponential Versus Polynomial Growth

r r2 2r

1 0.000001 s 0.000002 s
10 0.0001 s 0.001 s
20 0.0004 s 1 s
30 0.0009 s 17.9 min
40 0.0016 s 12.7 days
50 0.0025 s 35.7 years
60 0.0036 s 366 centuries

It is worth noting, at this point, why the encoding of the problem data was impor-
tant. Suppose we had not used a binary encoding (or an encoding to some other
radix), but simply a string of digits of length equal to the size of the data. Instead of
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being of size N the data would have been of size M = 2N (since log2(2N ) = N ).
Then an exponential function of N , aN would become M log2 a , i.e. a polynomial
function of M and the distinction between exponential and polynomial growth
would be lost.

If, however, we were to encode to a different radix than 2 then this would simply
alter the value of c for a polynomial growth rate and the value of a for an exponential
growth rate. It would not, therefore, alter the distinction between polynomial and
exponential growth rates.

We should also explain that, in this discussion, we are restricting ourselves to data
and solutions that are integer or rational. Therefore these can be represented exactly
in a computer and we do not have to bring in concepts of solution to some degree of
approximation. Of course it is possible to represent any ‘computable’ number (i.e.
any we might wish to talk about such as, for example,

√
2 or π) in a computer by

an exact ‘formula’ (computer procedure) but such issues of a uniform method of
representability are beyond the scope of this book. We restrict ourselves to the usual
(binary) encoding of numbers to successive multiples of powers to a given radix. If
necessary rational numbers could be represented exactly by storing their numerator
and denominator (reduced to be coprime), it is easy to show that the size of the
denominator is bounded by the maximum determinant of a basis matrix in LP.

It is necessary to distinguish between ‘small’ and ‘large’ numbers in discussing
the encoding. While each ‘number’ in some problems (e.g. the satisfiability problem
and some graph problems) can be represented as a small number and elementary
operations on such numbers assumed to take unit time, this is unrealistic for other
problems. For example LP and IP problems may contain arbitrarily large coefficients
and the time to carry out operations on them will be related to (the logarithm of) their
size. Therefore, for example, we could take the size of the encoding of an LP or IP
to be bounded by (m +1)× (n +1)× log maxi j (|Ai j |, |c j |, |bi |), where m, n, A, c, b
represent the number of constraints, variables, matrix of coefficients and objective
and right-hand-side vectors, respectively. Other ways of measuring the size of the
encodings (e.g. log(�i j (Ai j + c j + bi )) will make no difference to whether they be
classified as polynomial or exponential. With any of these encodings LP becomes
polynomially bounded (by the Ellipsoid and Karmarkar algorithms referenced in
Sect. 2.5). However no polynomial algorithm has ever been found (or seems likely
to be found) which is a function of m and n alone, i.e. which ignores the magnitude
of the coefficients. In contrast there are polynomial algorithms for solving simul-
taneous equations (e.g. by Gaussian elimination) which are functions of m and n
alone. Another reason suggesting why it is usually necessary to take account of
the magnitude of the coefficients is that it is, in principle, possible to reduce many
problems to ‘simpler’ problems with larger coefficients. Any pure IP model, with all
equality constraints, can be converted to a knapsack model by aggregating the con-
straints (but producing very large coefficients in consequence). In one sense the
knapsack problem is ‘easier’ than general pure IP (although both are difficult in
the classification given here). It would therefore be unrealistic to assume the size of
the coefficients in a knapsack problem do not matter. The celebrated work of Gödel,
mentioned in Chapter 1, was carried out (again in principle) by encoding proofs of
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theorems uniquely as numbers and then defining relations between these numbers.
If carried out in practice these ‘Gödel numbers’ would be astronomic. But they do
demonstrate that any ‘problem’ can be represented by a number and the problem
of solving it reduced to a computation on that number. The size of this number (a
‘super-exponential’ function of the numbers in the original problem) must, obvi-
ously, be realistically taken into account when discussing the complexity of solving
the original problem. (What Gödel did was to create a number ‘G’ (in principle)
which represented the formalised statement (in the meta system) ‘The statement
with Gödel number G is not provable’. Hence if G represented a ‘true’ statement (in
the formalisation of the meta system) then it could not be proved within the system
and vice versa. This also demonstrates that there are problems for which there is no
bound on the number of computational steps needed. They are ‘unsolvable’.

2.4.4 Non-deterministic Algorithms and Polynomial Reducibility

In order to analyse the computational complexity of the difficult problems which
we consider in this book we note that the (optimal) solutions to many of them
could be checked in polynomial time if we had a way of checking all the candidate
solutions in parallel. This is a theoretical, but practically unrealisable notion. We
call a ‘machine’ which can carry out such a check of all possible cases in paral-
lel a non-deterministic computer. If each check is polynomially bounded then the
algorithm is said to be non-deterministically polynomially bounded. If there exists
such an algorithm for a class of problems the class is said to belong to the category
NP. It turns out that most of the problems which we consider in this book belong
to NP. Of course problems that are in P are also in NP since a problem that can
solved in polynomial time can trivially have the solution checked in polynomial
time (without even the need for a non-deterministic machine). However, to show
that a problem class is not polynomially bounded we need to show that it is in NP

but not in P. It has never been proved that there are such classes, i.e. that P �= NP.
However, there is strong evidence to suggest it is true. We therefore seek to find
the ‘most difficult’ problem classes in NP. The problems here are referred to as
‘NP complete’ and the category as NPC. It turns out that all the known ‘difficult’
problem classes, which we are considering here, e.g. IP and various applications
such as the TSP as well as the satisfiability problem, are ‘polynomially reducible’
to each other. This means that if we take a problem P1 in a ‘difficult’ category C1,
which is encoded by a string N1, then we can transform it in a number of steps g(N1),
which is polynomially bounded, into a (polynomial) encoding N2 of a problem P2

in a class C2. If there is no polynomially bounded algorithm for the problems in
C1 then there can be no polynomially bounded algorithm for the problems in C2.
Otherwise we could use such an algorithm to construct a polynomially bounded
algorithm for class C1. In Chapter 4 we discuss the satisfiability problem and show
that it can naturally be converted into a set-covering problem (a special case of IP).
The transformation is immediate and, therefore trivially polynomial. Therefore if
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there is no polynomially bounded algorithm for the satisfiability problem (and none
has ever been found) there can be none for the set-covering problem or general IP.
It should be pointed out that such polynomial reductions can be quite ‘radical’ as
their only real purpose is theoretical. The reduced problems may bear little practical
resemblance to the problems from which they are reduced. Historically the satisfia-
bility problem was taken as class C1. No polynomially bounded algorithm has ever
been found for all problems in this class (although there are polynomially bounded
algorithms for specialised cases). It can be transformed into other difficult problem
classes and vice versa. Once we have a polynomial transformations between this
and other problem classes all these classes can be put in NP and any transformation
between another problem class and any class in NP places the new class in NP. It
might be thought that the reformulation of IP models, in terms of their convex hull,
makes them polynomially solvable, as they become LPs. But, in general this will
result in an exponential number of constraints (as a function of the problem size).
Also the amount of calculation needed to produce facet-defining constraints may
not be a polynomial function of the problem size.

There are also ‘more difficult’ problems than those in NP, i.e. problems where
there is no known non-deterministic polynomial-checking algorithm. Such prob-
lems have been named NP hard, i.e. they belong to the NPC class or are ‘harder’
than any problems in this class. While NPC problems may be polynomially
reducible to such problems the reverse will not be the case. It is rather unfortunate
that NP complete problems are sometimes referred to as ‘intractable’. This is falsely
taken, by some people, to imply that there is no point in seeking exact algorithms
for them. Instead (polynomially bounded) heuristics must be sought to produce
approximate solutions (possibly within some error bound). This is false. There are
many problems belonging to ‘difficult’ classes which are reasonably easily solved
for most practical instances. The existence of (sometimes pathological) worst cases
which may take a long time to solve should not deter one from seeking exact
solutions in practice.

2.4.5 Feasibility Versus Optimisation Problems

Some of the problems that we have discussed are optimisation problems (e.g. LP, IP
and the many special cases) and some are feasibility problems (e.g. the satisfiabil-
ity problem and certain decidability problems). It is usual, when doing complexity
classifications, to regard all problems as feasibility problems. Suppose, for exam-
ple, we have an IP model, which is a maximisation, and we know lower (l) and
upper (u) bounds on the optimal objective value. We can test if z0 is the optimal
objective value by checking if the constraint objective � z0, when appended to the
constraints, keeps the model feasible but the constraint objective � z0 + 1 makes
it infeasible. The value of z0 can be found, in a polynomial number of steps, by
dissecting u − l to test z1 = (u − l)/2 (or nearest integer) for feasibility. If feasible
the new interval for dissection is z1to u. If infeasible the new interval is l to z1.
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Proceeding in this way the optimal solution can be found with log2(u − l) feasibility
tests. Hence polynomial tests for optimality imply polynomial tests for feasibility
and vice versa.

2.4.6 Other Complexity Concepts

Our categorisation has been based on the time to carry out computer operations.
There is also interest in the space required, e.g. what is the maximum space require-
ment as a function of the size of the input data? We will not cover such an analysis
here. However, time and space complexity are connected since if we require an
exponential number of storage positions we will require an exponential time to read
them. However, the reverse need not be the case. We may require an exponential
time but be able to carry out the calculation in a polynomial space.

Another indicator of the ‘easiness’ of some problems is an easy check for opti-
mality. For example, for LP, most algorithms provide the optimal dual solution
simultaneously with the primal solution. Primal and dual feasibility (or, alterna-
tively, identical objective values) prove optimality. For IP the analogous method
would be to use the optimal Chvátal function, as discussed in Sect. 2.2. But this
would be, at least, exponentially difficult to calculate.

As mentioned above there are truly ‘intractable’ problems, i.e. those which are
unsolvable as discussed in Chapter 1, e.g. undecidable problem classes such as
establishing the truth or otherwise of all statements in formalised arithmetic. How-
ever, some ‘less ambitious’ problem classes are also unsolvable, e.g. general IP with
quadratic constraints and objective.

A number of other observations about the complexity of the problems discussed
in this book are in order. It has already been remarked in Sect. 2 that ‘easy’ problems
(e.g. LP and matching) appear to have a low Chvátal rank (0 or 1) and ‘difficult’
problems (IP, set covering, TSP, satisfiability) unbounded Chvátal rank. Also poly-
nomially bounded classes usually require only a low-degree polynomial algorithm.
For LP Karmarkar’s algorithm is of degree 7 in the data m, n, A. Matching is of
degree 3 in n (the number of nodes). This may be simply a reflection of the com-
prehensibility of the known algorithms rather than their potential existence. But it
does suggest the possibility of high-order polynomially bounded algorithms for the
‘difficult’ (thought to be NP complete) problems. If this were the case the ediface
would collapse and we have P = NP.

2.5 References and Further Work

The original text on LP is Dantzig [30]. It is still a major valuable text. Chvátal [24]
and Martin [79] are also excellent texts together with many more. The Fourier–
Motzkin method for LP is due to Fourier [38] and is discussed in Williams [114]
and Martin [79]. The original statement of the simplex ‘algorithm’ cannot be guar-
anteed to terminate. The smallest possible example of a non-terminating instance
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is given by Hall and McKinnon [51]. There are a number of ways of modifying
the simplex algorithm to guarantee termination. The simplest such method is due
to Bland [15]. Even when termination is guaranteed the simplex algorithm may
take an exponential number of steps as is shown by examples due to Klee and
Minty [69] and Jeroslow [61]. It is still possible that the simplex algorithm could
be polynomially bounded by a new choice of ‘pivoting rule’. Average case analysis
of the simplex algorithm has been done by Smale [102]. The largest LP reported
(arising in financial planning) and solved has 353 million constraints and 1010
million variables and is due to Gondzio and Grothey [46].

Nemhauser and Wolsey [86] is the standard text on IP. The extension of Fourier–
Motzkin elimination to IP is described by Williams [111]. Schrijver [98] is a major
theoretical text on LP and IP. Williams [110, 113, 119] gives formulations of many
types of LP and IP models. Appa et al. [3] edit a survey of applications of IP
ranging from vehicle routing, the design of telecom networks, supply chain design
and operation, pharmaceutical manufacture, oilfield infrastructure design and plan-
ning, radiation treatment for cancer, multitarget tracking and molecular biology. The
application of the branch-and-bound algorithm to IP is due to Land and Doig [71]
and Dakin [29]. The formalisation and naming of the concepts of relaxation and
fathoming is due to Geoffrion and Marsten [43]. It is possible to ensure that the
branch-and-bound algorithm terminates by placing bounds on the values of the inte-
ger variables derived from vertex or extreme ray solutions of the LP relaxation (so
long as the data are rational).

The concept of a Chvátal function and the fact that it closes the duality gap for a
pure IP is due to Chvátal [23].

Gomory [45] gives the first method of solving PIP models by adding cuts result-
ing from solutions by the simplex algorithm. Marchand and Wolsey [76] discuss
the generation of cuts for MIP models (which we do not discuss here). Tind and
Wolsey [104] give a survey of IP duality. Balas [8] also discusses it. Williams [118]
surveys the concept of duality for mathematics in general.

The set covering, packing and partitioning problems have been extensively stud-
ied by, for example, Balas and Ng [10], Cornuejols and Sassano [27] and Balas and
Padberg [11]. Edmonds and Johnson [35] describe the matching problem, its exten-
sions and complexity. It is also discussed by Pulleyblank [92]. Ryan [97] applies set-
partitioning models to very large aircrew scheduling problems. The practical solving
of non-linear models by IP is discussed by, among others, Beale and Tomlin [13].
The knapsack problem is surveyed in Martello and Toth [77]. Facets of the 0–1
knapsack problem are given by Balas [6], Wolsey [125] and Hammer et al. [52]. The
TSP has been extensively studied. A standard edited volume is Lawler et al. [74].
Orman and Williams [87] give and compare eight different formulations of the TSP
as IPs. Applegate et al. [4] give a comprehensive computational study of the TSP.

Computational complexity is discussed in Aho et al. [1].
The concept of NP completeness is due to Cook [26] and Karp [67]. Garey

and Johnson [41] is the standard text on the subject. Polynomial algorithms for
LP are given by Khachian [68] and Karmarkar [66]. Depending on the exact
implementation, Khachian’s ellipsoid algorithm is bounded by a polynomial
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of degree (n8 log2 max(Ai j , c j , bi )) and Karmarkar’s algorithm is of degree
(n7 log2 max(Ai j , c j , bi )). Jeroslow [60] shows that IP with quadratic constraints is
unsolvable. Fourier–Motzkin elimination is of complexity m(2n)

. The aggregation of
pure IP models with equality constraints into knapsack models is due to Bradley
[20]. A popular discussion of the creation of Gödel numbers is contained in Nagel
and Newman [85].

2.6 Exercises

2.6.1 An LP can be regarded as an inference problem of finding the strongest
inequality on the objective which is implied by the constraints. Express this problem
in the predicate calculus applying it to Example 2.1.

2.6.2 Convert the predicate calculus representation in Exercise 2.6.1 to that of
Example 2.3 using the rules of the predicate calculus.

2.6.3 Convert the dual model (2.23)–(2.27) to a maximisation subject to ‘�’ con-
straints. Create the dual of this model and show it is the same as that in Example 2.1.

2.6.4 Represent the dual model (2.23)–(2.27) geometrically.

2.6.5 Apply the method of Example 2.3 to ‘solve’ Example 2.5 with objective
(2.36).

2.6.6 Create the dual of Example 2.6 and represent it geometrically to show that is
unbounded.

2.6.7 Show that
Maximise

x1 + x2

subject to

x1 − x2 � −1

−x1 + x2 � −1

x1, x2 � 0

x1, x2ε R

and its dual are both infeasible.

2.6.8 Develop nodes 2 and 7 of Example 2.8 and show that they do not produce
integer solutions.

2.6.9 Solve Example 2.8 by branch-and-bound, branching on x2 at the top node.
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2.6.10 Show that the following class of IP models will take an exponential (as a
function of n) number of nodes to ‘solve’

Maximise

x1 + x2 + · · · + xn

subject to

x1, x2, · · · , xn � 0

2x1 + 2x2 + · · · + 2xn = 3

x1, x2, · · · , xn � 0

x1, x2, . . . , xnεZ

2.6.11 Use the method illustrated in Example 2.7 to demonstrate that Example 2.9
has no feasible (integer) solution.

2.6.12 Show by branch-and-bound that statement (1.83) is false.

2.6.13 Answer the following questions. If an answer is negative give a counter
example.

i. If an IP is solvable (not infeasible or unbounded) is the corresponding LP relax-
ation solvable?

ii. If an IP is infeasible is the corresponding LP relaxation infeasible?
iii. If an IP is unbounded is the corresponding LP relaxation unbounded?
iv. If an LP relaxation of an IP is infeasible is the IP infeasible?
v. If an LP relaxation of an IP is unbounded is the IP unbounded?

2.6.14 Derive the optimal objective bound (i.e. optimal objective value) for the IP
Example 2.7 as a combination of rounding and linear combinations of the original
constraints. Give the Chvátal rank for the model.

2.6.15 By means of the class of models
Maximise

y
subject to

y − ax � 0

y + ax � a

y � 0, x, yεZ

show that the class of two-variable pure IP models is of unbounded rank.
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2.6.16 If a pure IP model with all equality constraints can be aggregated into an
equality-constrained knapsack model why is the same not necessarily true for pure
IP models with inequality constraints and a knapsack model with an inequality con-
straint?

2.6.17 Solve the model from Example 2.16 by branch-and-bound.

2.6.18 Show, using the decision procedure described in Example 1.8, that the LP
relaxation of Example 1.9 is true.

2.6.19 Represent Example 1.8 geometrically.



Chapter 3
Modelling in Logic for Integer Programming

3.1 Logic Connectives and IP Constraints

We can regard an LP, or IP, constraint � j ai j x j (� = �)bi as an atomic proposition.
LP is concerned with optimising over a conjunction of such constraints. If, however,
we wish to allow a more general logical statement about such constraints we require
an IP model.

In order to systematise the modelling of such conditions it is convenient to intro-
duce 0–1 integer variables to represent the satisfaction, or otherwise, of such con-
straints. When this is done it is usually necessary to know the upper or lower bounds
for the left-hand side of the constraint above, i.e.

mi �
∑

j

ai j x j � Mi (3.1)

Such bounds can usually be derived from knowledge of the problem or known
bounds on the variables. It is important for the bounds not to place unwarranted
restrictions, but computationally desirable for them to be as ‘tight’ as possible. In
fact the derivation of as small ‘big M’ (or large ‘little m’) values as possible is
of central importance, as this affects the strength of the LP relaxation, and conse-
quently the amount of computation in the subsequent IP optimisation by, for exam-
ple, branch-and-bound. This aspect is discussed in Sect. 3.3. If it is desired to get the
tightest values of M and m possible then one could, of course, resort to the, possibly
computationally costly, approach of maximising and minimising

∑
j ai j x j subject

to the LP relaxations of the other constraints in the problem to obtain M and m,
respectively. In the ‘convex’ method of formulation, described in Sect. 3.4, it is
possible to dispense with M and m altogether resulting in the LP relaxation yielding
integer solutions.

If it is impossible to place either one or both bounds on the quantity then the
condition may be MIP unrepresentable as discussed in Sect. 3.2. In order to describe
the necessary modelling we use the following example.

Example 3.1 Represent the following conditions by (mixed) IP constraints involving
the variables in the constraints and the 0–1 variables δi :

H.P. Williams, Logic and Integer Programming, International Series in Operations
Research & Management Science 130, DOI 10.1007/978-0-387-92280-5 3,
C© Springer Science+Business Media, LLC 2009
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i.

∑

j

ai j x j � bi → δi = 1 (3.2)

ii.

δi = 1 −→
∑

j

ai j x j � bi (3.3)

iii.

∑

j

ai j x j � bi ←→ δi = 1 (3.4)

For illustration we are only considering the inequality ‘�’. It is straightforward
to extend to ‘�’ and ‘=’ by converting these (in) equalities to ‘�’.

A convenient way of viewing condition (i) is by the contrapositive statement
discussed in Sect. 1.3. The contrapositive of (3.2) is

δi = 0 → ˜

⎛

⎝
∑

j

ai j x j � bi

⎞

⎠ (3.5)

which, in turn, can be written as

δi = 0 →
∑

j

ai j x j > bi (3.6)

We do not normally use the strict inequalities ‘<’ and ‘>’ in LP and IP. This
is because we wish to find values for variables which give maxima and minima,
which may lie on a boundary. But for strict inequalities we may only be able to
give suprema (least upper bound) or infima (greatest lower bound). However, we
can write, to a degree of approximation, (3.6) (using ‘�’ for convenience) as

δi = 0 → −
∑

j

ai j x j � −bi − ε (3.7)

where ε is a suitable small number. If the left-hand side of the inequality is all integer
ε may be taken as 1 (and there be no approximation).

We wish to impose the condition that if δi = 0 then −∑
j ai j x j + bi + ε � 0.

The largest that the left-hand side of this expression can ever be is −m + b + ε.
Hence we may write
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−
∑

j

ai j x j + bi + ε � (−mi + bi + ε)δi (3.8)

Equation (3.8) is more conveniently written as

∑

j

ai j x j − (mi − bi − ε)δi � bi + ε (3.9)

Therefore condition (i) above has been written as an IP constraint.
Equation (3.3) can be written, using analogous reasoning to that for (i), as

∑

j

ai j x j + (Mi − bi )δi � Mi (3.10)

This gives condition (ii) as an IP constraint.
Finally condition (iii) is modelled by taking both constraints (3.9) and (3.10)

together.
If any of (3.2), (3.3) or (3.4) involve a conjunction of the original constraints then

the single 0–1 variable δi can be used to represent all of these constraints.
It is sometimes unnecessary to model the full equivalence condition (iii) between

the satisfaction of a constraint and the value of a 0–1 variable since one of the
implications may be guaranteed by optimality. For example this happens with the
facility location problem discussed in Sect. 2.3. A facility (e.g. warehouse) will not
be opened if it is not used since this would be a non-optimal thing to do. Hence the
condition

∑
j xi j = 0 → δi = 0 need not be modelled explicitly.

We are now in a position to model all the connectives of the propositional
calculus, applied to LP or IP constraints, by first representing the constraints by
0–1 ‘indicator’ variables δ1 and δ2 and modelling one of the conditions above. In
many situations we may be able to suffice with modelling only condition (i) or
condition (ii), but this will depend on the particular problem.

Because of the results in Sect. 1.3, we can suffice with modelling only a complete
set of connectives. However, for convenience, we will model all the most commonly
used connectives (Table 3.1).

Table 3.1 Connectives as 0–1 Constraints
∨ · − −→ ←→

δ1 + δ2 � 1 δ1 + δ2 = 2 δ1 = 0 δ1 � δ2 δ1 = δ2

For the ‘∨’ connective if we have a disjunction of just two constraints then we
could suffice with one 0–1 variable δ setting it to 0 to imply (or be implied by)
one constraint and 1 for the other constraint. But we have used two 0–1 variables
to demonstrate the generalisation to a disjunction of any number of constraints.
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However if, in general, we have the disjunction of r constraints (or disjunction of
r conjunctions of constraints) we could suffice with �log2 r� (where ‘��’ represents
the integer round-up operation), 0–1 variables since there will then be at least r
settings of these variables. This is the subject of Exercise 3.7.1.

Example 3.2 shows how we may use these modelling devices.

Example 3.2 Model the following condition between LP constraints:

[(
2x1 + x2 � 6

x2 � 4

)
∨

(
x1 + 3x2 � 9

7x1 + x2 � 20

)]
· 2x1 + 2x2 � 9 (3.11)

x1, x2 � 0 (3.12)

x1, x2εR

It can be seen from the constraints above that 0 � x1 � 3, 0 � x2 � 4. Hence
(numbering the five constraints in (3.11) as 1, 2, 3, 4, 5) we can give lower and
upper bounds on their left-hand sides of m1 = m2 = m3 = m4 = m5 = 0,

M1 = 10, M2 = 4, M3 = 15, M4 = 25, M5 = 14. It can be verified that these
bounds apply. Further analysis would allow us to tighten these bounds to com-
putationally beneficial effect. However we use these, easily obtained, bounds for
illustration. This allows us to link 0–1 variables δi to the constraints. We only need
model condition (ii) for each of them since we only need to make an implication in
one direction, for each constraint. This gives

2x1 + x2 + 4δ1 � 10 (3.13)

x2 � 4 (3.14)

x1 + 3x2 + 6δ2 � 15 (3.15)

7x1 + x2 + 5δ2 � 25 (3.16)

2x1 + 2x2 + 5δ3 � 14 (3.17)

(Note that it is unnecessary to use variable δ1 to imply the second constraint since
it applies overall.)

It can be verified that setting a particular δi to 1 forces the corresponding con-
straints to hold. The logical relations between the constraints in (3.11) can then be
written as

[(δ1 = 1) ∨ (δ2 = 1)] · δ3 = 1 (3.18)

The logical condition can now be modelled by

δ1 + δ2 � 1 (3.19)

δ3 = 1
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If we have an objective then we have a MIP model. We solve this below.
Alternative and better ways of formulating such logical problems (including this

example) are described in Sect. 3.3.

3.2 Disjunctive Programming

The logical connective that distinguishes IP from LP is ‘∨’. It has been seen that ‘˜’
simply transforms inequalities to other (strict) inequalities that are usually modelled
by approximating a non-strict inequality. The ‘·’ connective is implicitly present
in all LP models. If one negates an ‘=’ constraint (possibly first writing it as a
conjunction of a ‘�’ and a ‘�’ constraint) one also obtains a disjunction. A dis-
junction is what requires the use of IP rather than LP. Hence the phrase ‘disjunctive
programming’ is sometimes used to characterise this type of modelling.

Although we will be showing, in this chapter, how to model disjunctive pro-
grammes as IPs it would be possible to solve them (inefficiently) using the method
described (for the theory of dense linear order) in Example 2.3. This is the subject
of Exercises 3.7.9 and 3.7.10.

3.2.1 A Geometrical Representation

It is helpful to illustrate such models geometrically. We do this by representing
Example 3.2 geometrically, in Fig. 3.1.

The boundaries of all the inequalities in (3.11) are marked and the feasible region,
defined by the logical statement of inequalities, is OABCDEFGH. Note that this is
really a Venn diagram (discussed in Sect. 1.3) as a result of the conjunctions and
disjunctions. It is non-convex, unlike LP feasible regions that are always convex. A
convex region is one in which any line between two points in the region always,
itself, lies in the region. In Figs. 3.2 and 3.3 we illustrate the distinction.

Non-convex regions arise in a number of contexts. In non-linear programming the
feasible regions may be non-convex and IP used, possibly approximating the feasi-
ble region by piecewise linear segments. IP has the advantage that it finds global,
as opposed to local, optima as discussed in Sect. 2.3. If a region is non-convex,
and approximated to in this way, then the convex region can be partitioned into the
union of convex sets. Each convex set can be represented as the conjunction of LP
constraints. Hence the overall region is a disjunction of these conjunctions giving
us the constraints of a disjunctive programme. Therefore there is a close connection
between IP and (non-convex) non-linear programming.

There is also a distinction to be made between convex and non-convex objectives.
If the region above each contour, representing equal values of the objective function,
is a convex set then the objective function is said to be convex. Minimising a convex
function over a convex region (or equivalently maximising a concave function over
a convex region) guarantees a global optimum from the LP relaxation. We therefore



76 3 Modelling in Logic for Integer Programming

x2

1 2 3

1

2

3

4

4
x1o

A

B

C

D
E

F

G

H

Fig. 3.1 The feasible region of a disjunctive programme
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Fig. 3.2 A convex region
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X

X

Fig. 3.3 A non-convex region

do not need to stipulate, and model condition (2.115) given in Chapter 2, or use
integer variables. Such non-linear convex models arise in a number of contexts,
e.g. when we have decreasing returns to scale.

In order to illustrate disjunctive programming further we solve Example 3.2 with
an objective.

Example 3.3 Given the constraints in Example 3.2

Maximise

3x1 + 2x2 (3.20)

For convenience we restate the MIP constraints we created

2x1 + x2 + 4δ1 � 10 (3.21)

x2 � 4 (3.22)

x1 + 3x2 + 6δ2 � 15 (3.23)

7x1 + x2 + 5δ2 � 25 (3.24)

2x1 + 2x2 + 5δ3 � 14 (3.25)

δ1 + δ2 � 1 (3.26)

δ3 = 1 (3.27)

Solving the LP relaxation of this model gives

x1 = 3.086, x2 = 1.414, δ1 = 0.603, δ2 = 0.397, δ3 = 1,

Objective = 12.086 (3.28)

Proceeding (e.g. by branch-and-bound) to the integer optimum gives

x1 = 2
7

12
, x2 = 1

11

12
, δ1 = 0, δ2 = 1, δ3 = 1,

Objective = 11
7

12
(3.29)
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It is instructive to view these solutions geometrically (in the space of x1 and x2)
as is done in Fig. 3.4.
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H
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Fig. 3.4 A disjunctive programme

The optimal integer solution corresponds to vertex F in Fig. 3.4. Note that if this
had represented a non-linear problem vertex H would have represented a local opti-
mum (with a lower objective value). Traditional non-linear programming algorithms
could well produce this solution. If we use branch-and-bound on the IP formulation
then vertex H will correspond to another integer solution which might well be pro-
duced in the tree search before that at vertex F is found.

3.2.2 Mixed IP Representability

When is a problem representable as a MIP? We are going to restrict our attention
to the possibility of modelling using bounded integer variables. In Chapter 2 it was
shown that bounded integer variables can be expressed using only 0–1 integer vari-
ables. Hence we consider when it is possible to model, using continuous and 0–1
integer variables only. Such problems are sometimes referred to as bounded MIP
representable but we will simply refer to these problems as MIP representable. We
have seen that, in some circumstances, e.g. Example 3.2, it is possible to model a
logical statement involving LP constraints as a conjunction of MIP constraints. But
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we relied on some of the numerical bounds given in (3.1) in order to do this. If we
know such bounds then it is possible to model the conditions in this way (possibly
approximating strict inequalities if necessary). In some circumstances we do not
know such bounds. Also the objective function may make the problem non-MIP
representable. It may still be possible to model as a MIP but only if certain con-
ditions apply, which we discuss here. Before doing this we give a simple logical
condition which is not MIP representable.

Example 3.4 A non-MIP-representable condition

x = 0 ∨ y = 0 (3.30)

x, y ε R

Since we do not have bounds on the values of x and y we cannot, obviously,
model this disjunction by introducing 0–1 variables. Even if we place single bounds
on each variable (e.g. lower bounds of 0) the condition is still not representable.

Example 3.5 A MIP-representable disjunctive programme with an open feasible
region

Minimise

x + 3y (3.31)

subject to

⎛

⎝
2x − y � −3
−x + y � 2

x � 0

⎞

⎠ ∨
⎛

⎝
4x − 2y � 4

−2x + 2y � −2
x + y � 2

⎞

⎠ ∨
⎛

⎝
6x − 3y � 0

−3x + 3y � 1
2x + 3y � 3

⎞

⎠ (3.32)

x, y ε R

The feasible region is illustrated in Fig. 3.5. It can be seen that each clause in
(3.32) gives rise to an open feasible region, as therefore does their union. However,
Example 3.5 is MIP representable, unlike Example 3.4.

A MIP model representing Example 3.5 is
Minimise

x + 3y (3.33)
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Fig. 3.5 Disjunctive constraints with an open feasible region

subject to

−x + y � −1 + 3δ1 (3.34)

x � 0 (3.35)

4x − 2y � −6 + 10δ2 (3.36)

8x + 8y � 9 + 7δ2 (3.37)

6x − 3y � −9 + 9δ3 (3.38)

−3x + 3y � −3 + 4δ3 (3.39)

2x + 3y � 3 (3.40)

δ1 + δ2 + δ3 � 1 (3.41)

δ1, δ2, δ3ε{0, 1}

Constraint (3.41) forces at least one of δ1, δ2, δ3 to take the value 1. It can be ver-
ified that δ1 = 1 forces the constraints in the first clause of (3.32) to hold (but does
not exclude the corresponding constraints holding in the other clauses). Similarly
δ2 = 1 and δ3 = 1, respectively, force the second and third clauses to hold.
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Why is Example 3.5 MIP representable while Example 3.4 is not? The reason
is that the feasible region of Example 3.5 is the union of polyhedra with the same
recession directions. A recession direction of a polyhedron (in this two-dimensional
example) is a direction (p, q) such that for any point (a, b) in the polyhedron all
points (a+λp, b+λq) for all λ � 0 are also in the polyhedron. Recession directions
are drawn for a polyhedron in Fig. 3.6.

C

A

D

B

Fig. 3.6 Recession directions of an open polyhedron

Possible recession directions are those between the extreme rays AB and CD. In
Fig. 3.5 it can be seen that the three polyhedra, whose union makes up the feasible
region, have exactly the same recession directions since they all have extreme rays
pointing in the same directions. We show below why this property makes the cor-
responding optimisation problems MIP representable. Before doing this, however,
observe that Example 3.4 can be regarded as the union of two polyhedra x = 0 and
y = 0 each of which have two, different, recession directions. Hence this example
is not MIP representable.

If all the polyhedra, whose union makes up the feasible region of a problem, are
closed then each of the polyhedra has no recession directions and the conditions are
satisfied vacuously making the problem MIP representable. This is the case with
Example 3.3.

Although all the above discussion has been illustrated by two-dimensional exam-
ples the concepts and results extend to any number of dimensions.

For completeness we solve the model resulting from Example 3.5.

The LP relaxation solution is

x = 0.719, y = 0.521, δ1 = 0.267, δ2 = 0131, δ3 = 0.602,

Objective = 2.281 (3.42)
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The integer optimum is

x = 2

5
, y = 11

15
, δ1 = 0, δ2 = 0, δ3 = 1, Objective = 2

3

5
(3.43)

The integer solution (3.43) corresponds to the point F in Fig. 3.5. Clearly the
third clause in the disjunction (3.32) is true.

We now show that the same recession directions for a set of polyhedra guarantees
their disjunction is MIP representable.

If a set of polyhedra all have the same recession directions then an open facet
of any of the polyhedra must have extreme rays which are contained in each of the
other polyhedra. Consider an open facet from one of the polyhedra defined by the
constraint

∑

j

a1 j x j � b1 (3.44)

Suppose we were to

Minimise

∑

j

a1 j x j (3.45)

subject to the constraints defining each of the other polyhedra in turn. If any of
the resulting LPs were unbounded, then the directions along which (3.45) reduces
indefinitely would define extreme rays of the other polyhedron. But such extreme
rays must also be a recession directions of (3.45) contradicting the unboundedness.
Hence we can determine finite values of mi .

The optimal value of (3.45) is determined by its value at the vertex at the origin
of this extreme ray (so long as the facet is ‘pointed’. If not we can choose a value
at any point in the polyhedron). Hence we can obtain a (finite) lower bound, m1, on
the value of

∑
j , a1 j x j . Similarly we can find finite lower bounds m2 , ..., mn , on

the values of the left-hand sides of the other ‘open’ constraints.
Note that if the number of distinct recession directions, on an open facet, is at

least as great as the dimension of that facet then the corresponding facets must all
be parallel and the mi can be taken as mink �=i (bk) (Exercises 3.7.2 and 3.7.3). This
is the case for Example 3.5.

We can force all of the constraints in each conjunctive clause to hold by setting
the corresponding 0–1 variable δi = 1 in MIP constraints

∑

j

ai j x j − (bi − mi )δi � mi ∀i (3.46)
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together with

∑

i

δi � 1 (3.47)

i.e. the same 0–1 variable is used for each constraint (open and closed) in a conjunc-
tive clause.

Note that we can, in effect, confine ourselves to the same mi (or Mi for ‘�’
constraints) which we would have used in the ‘closed parts’ of the corresponding
polytopes.

For constraints that do not contain extreme rays of the polyhedra we can obtain
bounds on the values of the variables in them and formulate the corresponding MIP
constraints as described in Sect. 3.1.

Conversely, if we have a MIP representation of a model, then a typical constraint
will be

∑

jε J

a j x j −
∑

iε I

biδi � b (3.48)

x jεR, δiε{0, 1} ∀ jε J, iε I

Setting the δi to different values gives a series of parallel constraints.
Some, or all, of these constraints may represent closed hyperplanes. Some may

be redundant in the presence of other constraints. However, if any represent open
facets, of some of the component polyhedra in the implied disjunction, they must
all represent open facets. What’s more they will be bounded by some extreme rays
which must be parallel to the corresponding extreme rays in the other polyhedra
in the implied disjunctions. This argument applies to all the constraints in (3.48).
Hence the constraints in (3.48) represent a disjunction of polyhedra that are either
all closed or, if not, have the same recession directions.

It remains to consider when the objective function, taken in conjunction with the
constraints, still makes a problem MIP representable. If the objective is linear and
expressed in the original variables (not involving the appended 0–1 variables) then
there is no problem. This is the case with Examples 3.3 and 3.5. However, it may
be the case that we wish to model a piecewise linear or a discontinuous objective.
For example the non-linear expression given in Example 2.17 might have occurred
in the objective function. It would then be replaced by a variable, with the necessary
extra variables and constraints added to the model. The representability problem
would then be the same as that for a logical system of constraints. If the objective is
discontinuous then the situation may be more complex. This happens, for example,
in the facility location problem discussed in Example 2.12. This problem is a special
case of the fixed charge problem. We consider this problem in its simplest form in
Example 3.6.
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Example 3.6 Formulate the following fixed charge problem as a MIP.

If an activity is carried out at a level x > 0 then it incurs a fixed cost f , irrespec-
tive of the level. However, if x = 0 then there is no fixed cost (and no revenue). To
be realistic we might give the activity x a (positive) revenue of p.

Since we normally wish to minimise total cost (explicitly, or implicitly by
maximising profit) we minimise z such that

z � 0 if x = 0 (3.49)

z � f − px if x > 0 (3.50)

z, xε R

Equations (3.49) and (3.50) define the polyhedra, in Fig. 3.7, consisting of the
positive z-axis and the region above the line AC. The second polyhedron clearly
has recession directions different to that of the first polyhedron (which has a single
recession direction). Therefore this polyhedron, and therefore the unbounded fixed
charge problem, is not MIP representable. However, if we place an upper (M) bound
on the value of x then the problem is MIP representable as the second polyhedron
has the same, single, recession direction as the first. The union of these two polyhe-
dra is known as the ‘epigraph’ of the cost function. So long as the epigraph is MIP
representable (and the feasible region is MIP representable) then the minimisation
problem is MIP representable. This gives rise to the model

Maximise

px − f δ (3.51)

subject to

x � Mδ (3.52)

x � 0 (3.53)

xεR, δε{0, 1}

Note that for the facility location model, in Example 2.12, both the customer
demands and the warehouse capacities place upper bounds on the x variables, mak-
ing the problem MIP representable.

3.3 Alternative Representations and Tightness of Constraints

Alternative representations of statements in the propositional calculus were dis-
cussed, at length, in Chapter 1. These different representations lead to different IP
formulations. Example 2.10 demonstrates this.
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Fig. 3.7 Cost function for the fixed charge problem

Equation (2.80) models the logical condition

(δ1 = 1 ∨ δ2 = 1) −→ δ3 = 0 (3.54)

This statement is logically equivalent to

(δ1 = 1 −→ δ3 = 0) · (δ2 = 1 −→ δ3 = 0) (3.55)

(Exercise 3.7.4 is to verify this.)

However (3.55) leads, naturally, to the conjunction of constraints (2.82) and
(2.83). Figures 2.12 and 2.13 demonstrate that this latter IP formulation represents
the convex hull of feasible integer solutions, allowing one to use computationally
easier LP.

We now investigate the respective merits of IP formulations resulting from DNF
and CNF representations of logical conditions. Following Chapter 2 we refer to
convex hull formulations as ‘sharp’ and formulations that are closer to the convex
hull as ‘tighter’.
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3.3.1 Disjunctive Versus Conjunctive Normal Form

Example 3.7 Formulate Example 3.2 in DNF and create, and solve, the correspond-
ing IP model.

The logical representation is

⎡

⎣

⎛

⎝
2x1 + x2 � 6

x2 � 4
2x1 + 2x2 � 9

⎞

⎠ ∨
⎛

⎝
x1 + 3x2 � 9

7x1 + x2 � 20
2x1 + 2x2 � 9

⎞

⎠

⎤

⎦ (3.56)

x1, x2 � 0 (3.57)

x1, x2εR

Using objective (3.20) and representing the two clauses in the disjunction by 0–1
variables δ1 and δ2, respectively, give the model

Maximise

3x1 + 2x2 (3.58)

subject to

2x1 + x2 + 4δ1 � 10 (3.59)

x2 � 4 (3.60)

2x1 + 2x2 + 5δ1 � 14 (3.61)

x1 + 3x2 + 6δ2 � 15 (3.62)

7x1 + x2 + 5δ2 � 25 (3.63)

2x1 + 2x2 + 5δ2 � 14 (3.64)

δ1 + δ2 � 1 (3.65)

x1, x2 � 0 (3.66)

x1, x2εR

δ1, δ2ε{0, 1}

If we solve this alternative formulation we first obtain the LP relaxation solution

x1 = 2.759, x2 = 2.795, δ1 = 0.422, δ2 = 0.578, Objective = 13.867
(3.67)

followed by the integer optimal solution given in (3.29).
The difference between the solution in (3.67) and (3.29) (the duality gap) is

greater than that between (3.28) and (3.29). This indicates that this new formulation
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is not as tight as the other formulation. In this sense it is not as good. In general
branch-and-bound would take longer to obtain the integer optimum.

At the opposite extreme to the DNF given in Example 3.7 we consider CNF for
this example.

Example 3.8 Express the logical statement in Example 3.7 (and 3.2) in CNF and
formulate and solve the resultant IP model.

In CNF we have

[2x1 + x2 � 6 ∨ x1 + 3x2 � 9]
· [2x1 + x2 � 6 ∨ 7x1 + x2 � 20]
· [x2 � 4 ∨ x1 + 3x2 � 9]
· [x2 � 4 ∨ 7x1 + x2 � 20]
·2x1 + 2x2 � 9

x1, x2 � 0 (3.68)

x1, x2εR

Introducing 0–1 variables δ11 , δ12 , δ21 , δ22 to distinguish between the constraints
in the disjunctions (i.e. index i j refers to the i th constraint in the j th clause of the
DNF form of problem (3.56)) gives the model

Maximise

3x1 + 2x2 (3.69)

subject to

2x1 + x2 + 4δ11 � 10 (3.70)

x1 + 3x2 + 6δ12 � 15 (3.71)

x2 � 4 (3.72)

7x1 + x2 + 5δ22 � 25 (3.73)

2x1 + 2x2 � 9 (3.74)

δ11 + δ12 � 1 (3.75)

δ11 + δ22 � 1 (3.76)

δ21 + δ12 � 1 (3.77)

δ21 + δ22 � 1 (3.78)

x1, x2 � 0 (3.79)

x1, x2εR

δ1, δ2ε{0, 1}

Solving the LP relaxation of this model (as with the DNF-based formulation)
produces the solution (3.28), i.e. the same as for the DNF formulation showing them,
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in this case, to be of equal strength. It can be shown that a DNF-based formulation
(so long as the same M and m bounds are used for each constraint) will always be at
least as tight, and sometimes tighter, than a CNF-based formulation. The reason for
this is explained below. What’s more the CNF formulation will often involve more
0–1 variables than the DNF formulation since we need r (or strictly �log2 r�) 0–1
variables to model each disjunction. If we have a conjunction of n such disjunctions
then we will require a total of rn (or �log2 r�n ) 0–1 variables, whereas in DNF a
conjunction of m disjunctions could be modelled with m 0–1 variables. In practice
substantial simplifications may be possible in either type of formulation, and the
size of the CNF or DNF representation will depend on the problem, as discussed
in Chapter 1. The tightness of the resultant IP is often of greater importance than
the compactness of the model in terms of number of variables (and constraints).
In Sect. 3.4 we show how it is possible to guarantee the production of a sharp IP
formulation of a disjunctive programme, but often at the expense of a very large
number of 0–1 variables.

In order to show why the LP relaxation associated with a DNF formulation is
always at least as tight as that associated with a CNF formulation we consider
general logical statements of constraints in both forms. For convenience we will
consider all the constraints in the ‘�’ form.

In DNF we have sets (indexed by j) of conjunctive clauses (indexed by i j ) each
consisting of constraints

∑
k ai j k xi j k � bi j for i j = 1, 2, ..., ri j . These will be writ-

ten (for economy of notation) as fi j � 0 .
We introduce 0–1 variables δ j . Each δ j , when taking the value 1, forces all the

constraints in the j th set to hold. The disjunction is formulated as

∑

j

δ j � 1 (3.80)

The constraints are forced to hold by the MIP constraints

fi j + (Mi j − bi j ) δ j � Mi j − bi j ∀ j i j (3.81)

where the Mi j are upper bounds on the values of the fi j + bi j as derived in (3.10) or
(in ‘�’ form) (3.46).

In CNF, using the distributive rule (1.7), each original constraint will appear in
each of the disjunctive clauses. Hence it is necessary to force each of them to hold
by separate 0–1 variables δi j taking the value 1 giving

fi j + (Mi j − bi j ) δi j � Mi j − bi j ∀ j i j (3.82)

together with the constraints (for each disjunctive clause)

∑

i j

δi j � 1 (3.83)
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If we now impose the following extra constraints on this, CNF-based,
formulation

δi j = δ j ∀i j (3.84)

and so eliminate variables δi j we obtain the DNF-based formulation. Hence a DNF-
based formulation is always as tight as a CNF-based one and for some problem
instances will be tighter.

When it is worth moving from CNF to DNF, in order to produce a tighter for-
mulation, may depend on the particular problem. Even if a problem is not naturally
stated in DNF or CNF it is usually better to move the conjunctive connective ‘·’ ‘in’
and the disjunctive connective ‘∨’ ‘out’ (using the distributive laws) in the logical
representation so approximating to DNF.

Exercise 3.7.5 is to reformulate and solve Example 3.5 using CNF. It turns out
that, for that example, we obtain the same LP relaxation solution (in the space of
x and y) as that from the DNF formulation.

However for both Examples 3.2 and 3.5 we will show, in Sect. 3.4, a formula-
tion whose LP relaxation always gives the optimal integer solution for all problem
instances.

3.3.2 The Dual of a Disjunctive Programme

There is no, very satisfactory, dual of a general IP model. The most satisfactory
dual of a PIP is the Chvátal dual discussed in Chapter 2. However, if a disjunctive
programme is written in DNF then it has a fairly obvious dual. In order to illustrate
this we define the dual of Example 3.7.

Example 3.9 Define the dual of Example 3.7.

We take the LP duals corresponding to each of the clauses in (3.56) taken with the
objective (3.58) and take the solution giving the larger objective value. This gives

Minimise

Max(6y1 + 4y2 + 9y3, 9y4 + 20y5 + 9y6) (3.85)

subject to

2y1 + 2y3 � 3 (3.86)

y1 + y2 + 2y3 � 2 (3.87)

y4 + 7y5 + 2y6 � 3 (3.88)

3y4 + y5 + 2y6 � 2 (3.89)

y1, y2, y3, y4, y5, y6 � 0 (3.90)

y1, y2, y3, y4, y5, y6 ε R
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Notice that, for this model to be feasible, the dual models corresponding to each
of the clauses in the primal model must also be feasible. However, the original,
primal, model could be regarded as feasible even if some of its clauses (up to
all except one) were infeasible. As pointed out in Chapter 2 it is possible for an
LP to have both its primal and dual infeasible. If this were the case for the LP
resulting from one of the clauses we could have a feasible disjunctive programme
with an infeasible dual. To get around this we could stipulate a ‘regularity’ con-
dition for the duality theorem to apply, i.e. for no clause should both the primal
and dual LPs be infeasible. Alternatively (and more satisfactorily) we could define
the maximum and minimum objective values for an infeasible LP as −∞ and ∞,
respectively.

There is a useful notation for representing the above dual model. We can repre-
sent the operation Min(a, b) as a⊕b (analogous to ‘+’) and the operation Max(a, b)
as a ⊕′ b. The above dual model can then be written as

Minimise

(6y1 + 4y2 + 9y3) ⊕′ (9y4 + 20y5 + 9y6) (3.91)

subject to

(2y1 + 2y3) ⊕ (y4 + 7y5 + 2y6) � 3 (3.92)

(y1 + y2 + 2y3) ⊕ (3y4 + y5 + 2y6) � 2 (3.93)

y1, y2, y3, y4, y5, y6 � 0 (3.94)

y1, y2, y3, y4, y5, y6 ε R

This can be regarded as an extension of the dual of an LP. There as we ‘pass
over’ a conjunction, looking down a column, the corresponding dual operation is
‘+’. Here we extend this so that when we pass over a disjunction the dual operation
is ‘⊕’. The need to use ‘⊕’ ‘(min)’ and ‘⊕′’ ‘(max)’ arises from the fact that the
right-hand-side coefficients in an LP are conventionally written on the right (!). If
they had been written, together with the variables, on the left then we could have
sufficed with ‘⊕’.

Obviously we have to amend our definition of the dual of a disjunctive pro-
gramme to deal with the case of a minimisation (of the primal model) and ‘�’
constraints. This is straightforward and not covered here.

This dual of a disjunctive programme obviously captures many of the features of
the dual of an LP, stated in Sect. 2.1, i.e. equal objective values if both are solvable
(subject to the proviso discussed) and symmetry (it can be shown that the dual of
the dual is the primal: see Exercise 3.7.7).

An algebra, known as ‘minimax’ algebra has been developed around the use of
symbols ‘⊕’ and ‘⊕′’. References are given in Sect. 3.6.
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3.4 Convexification of an IP Model

The concept of a convex hull can be extended beyond that of the smallest convex
region containing feasible integer points. If we restrict ourselves to considering
the disjunctions of constraints in the original space in which they are stated
(i.e. x1 and x2 in the case of Example 3.2 and x and y in the case of Example 3.5)
then we can define the convex hull of the disjunction of the resultant polyhedra. It
is the smallest convex set containing all the polyhedra making up the disjunction.
We draw the convex hulls corresponding to the disjunction of polyhedra in Figs. 3.4
and 3.5 in Figs. 3.8 and 3.9, respectively.
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Fig. 3.8 The convex hull for Example 3.2

If we could append the extra constraints to represent the convex hulls then we
could solve these examples as LPs producing the vertex solutions at F and F, respec-
tively. In general (when there is no visualisable geometrical representation), the
creation of constraints representing convex hulls is very difficult. We have given
different IP formulations involving the 0–1 variables. These have different convex
hulls (in these higher dimensional spaces). It is sometimes possible to project their
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Fig. 3.9 The convex hull for Example 3.5

LP relaxations down (using the method described in Sect. 2.1) into the spaces of the
original problems to give approximations to the convex hulls.

However, there is another, powerful, method of reformulating a disjunctive pro-
gramme to give its convex hull representation by introducing (possibly a very large
number of) new variables.

3.4.1 Splitting Variables

Example 2.10 demonstrates that ‘disaggregating’ constraints can improve the tight-
ness of the LP relaxation. This can be taken further if we first split variables, in
the original space of a disjunctive programme, into components. We demonstrate
this by using Example 3.5 to produce what has become known as a ‘disjunctive’
formulation (although all the formulations involving ‘∨’ are, in a sense, disjunctive).

Example 3.10 Formulate Example 3.5 as a MIP by splitting the variables
into components for each clause in the disjunction to produce a ‘disjunctive’
formulation.
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Each of the variables x and y is split into a component for each of the three
(conjunctive) clauses in (3.32) by the constraints

x1 + x2 + x3 = x (3.95)

y1 + y2 + y3 = y (3.96)

Three 0–1 variables are used to apply the clauses of the disjunction in the follow-
ing way:

2x1 − y1 � −3δ1 (3.97)

−x1 + y1 � 2δ1 (3.98)

x1 � 0 (3.99)

4x2 − 2y2 � 4δ2 (3.100)

−2x2 + 2y2 � −2δ2 (3.101)

x2 + y2 � 2δ2 (3.102)

6x3 − 3y3 � 0 (3.103)

−3x3 + 3y3 � δ3 (3.104)

2x3 + 3y3 � 3δ3 (3.105)

δ1 + δ2 + δ3 = 1 (3.106)

By virtue of (3.106) exactly one of δ1, δ2, δ3 will take the value 1, the others
taking the value 0. Hence one of the clauses will hold for the corresponding com-
ponent variables. For the other clauses the right-hand sides of the constraints (in the
corresponding component variables) will become 0.

Suppose, for example, δ1 = 0, δ2 = 1, δ3 = 0 then the first of the extreme ray
constraints in each clause are

2x1 − y1 � 0 (3.107)

4x2 − 2y2 � 4 (3.108)

6x3 − 3y3 � 0 (3.109)

Adding these constraints together (in suitable multiples), and using (3.95) and
(3.96) gives

4x − 2y � 4 (3.110)

i.e. the first extreme ray constraint in the second clause, in the space of the original
variables.

Similarly, adding together the second extreme ray constraints in each clause gives

− 2x + 2y � −2 (3.111)
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i.e. the second extreme ray constraint in the second clause, in the space of the origi-
nal variables.

Since the extreme ray constraints corresponding to δ1 = 0 and δ3 = 0 go through
the origin they form a cone in the space of the appropriate component variables. The
non-extreme ray constraints, in the components corresponding to these clauses, also
go through the origin. They are

x1 � 0 (3.112)

x2 + y2 � 0 (3.113)

2x3 + 3y3 � 0 (3.114)

We illustrate the situation, for the third clause, in Fig. 3.10.

x3

y3

Fig. 3.10 Representation of third clause in split variables

This implies that the component variables in the clauses for which δi = 0 are 0
when these constraints are satisfied as equalities. Therefore, as a result of (3.95) and
(3.96), the appropriate constraints apply for the relevant clause in the space of the
original variables. For this example we would have

x + y � 2 (3.115)
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The constraints of (3.34)–(3.41) are therefore relaxations of (3.97)–(3.106).
Hence our new (disjunctive) formulation is at least as tight as the DNF formulation.
Solving the LP relaxation of this new formulation gives the integer solution (3.43)
showing it to be sharp.

If all the component polyhedra of a disjunction are closed then all except one of
the polyhedra, in the component variables, reduce to the point at the origin, when
the corresponding δi variables are 0. Therefore the clause corresponding to δi = 1
applies in the space of the original (non-split) variables.

Although this type of formulation introduces many new variables (a component
for each variable in each clause, whether or not the clause contained the variable
in the first place), in practice many of them can often be shown to be redundant
leading to a vast reduction in the size of the model. Such reductions depend on the
individual type of model and are difficult to generalise.

A ‘disjunctive’ formulation is always sharp (it models the convex hull). We now
show why this is the case. In order to do this we consider the dual of the LP relax-
ation of the model in Example 3.10.

Example 3.11 Create the dual of the LP relaxation of the model created in
Example 3.10, together with objective (3.31) (written in the component variables).

Representing the dual variables on constraints (3.97)–(3.106) as u1, u2, u3,

v1, v2, v3, w1, w2, w3, z we obtain the model
Maximise

z (3.116)

subject to

z ≤ −3u1 + 2u2 (3.117)

z � 4v1 − 2v2 + 2v3 (3.118)

z � w2 + 3w3 (3.119)

2u1 − u2 + u3 � 1 (3.120)

−u1 + u2 � 3 (3.121)

4v1 − 2v2 + v3 � 1 (3.122)

−2v1 + 2v2 + v3 � 3 (3.123)

6w1 − 3w2 + 2w3 � 1 (3.124)

−3w1 + 3w2 + 3w3 � 3 (3.125)

u1, u2, u3, v1, v2, v3, w1, w2, w3 � 0 (3.126)

u1, u2, u3, v1, v2, v3, w1, w2, w3 ε R

Using the notation introduced in Sect. 3.3 we can write the above model as
follows:
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Maximise

(−3u1 + 2u2) ⊕ (4v1 − 2v2 + 2v3) ⊕ (w2 + 3w3) (3.127)

subject to

(2u1 − u2 + u3) ⊕′ (4v1 − 2v2 + v3) ⊕′ (6w1 − 3w2 + 2w3) � 1 (3.128)

(−u1 + u2) ⊕′ (−2v1 + 2v2 + v3) ⊕′ (−3w1 + 3w2 + 3w3) � 3 (3.129)

u1, u2, u3, v1, v2, v3, w1, w2, w3 � 0 (3.130)

u1, u2, u3, v1, v2, v3, w1, w2, w3 ε R

This is obviously the dual of the disjunctive programme stated in Example 3.5. It
therefore has the same optimal objective value (so long as both models are feasible).
Hence the LP dual of the model above, namely the LP relaxation of the MIP model
created in Example 3.10, is an LP representation of the disjunctive programme in
Example 3.5, i.e. our ‘disjunctive’ formulation (by splitting variables) is sharp. This
demonstration is entirely general and applies to any disjunctive programme. We
have represented the convex hull of the disjunctive formulation (in a higher dimen-
sional space). It is possible (but often of exponential complexity) to project this
formulation back into the space of the original variables (e.g. using Fourier–Motzkin
elimination, as described in Chapter 2).

We should also point out that the possibility of this type of formulation does
not affect the issue of MIP representability, discussed in Section 3.2. This type of
formulation is possible if and only if the problem is MIP representable.

3.5 Modelling Languages Based On Logic

3.5.1 Algebraic Languages

The use of modelling languages to aid the building of LP and IP models has now
become widespread. These languages typically use index sets to refer to variables
and constraints in the model, so allowing classes of variables and constraints to be
referred to once. They also allow the structure of the model to be separated from
the data. It then becomes possible to generate variables, constraints and objectives
conditional on the data, e.g. if particular numerical conditions hold or entities are
members of particular sets. In order to do this logic, in the form of the propositional
calculus, is usually incorporated into the language.

Full details of any one language are specific to the software system used and
described in the appropriate manual. However, we illustrate typical logical facilities
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by means of the commonly used language AMPL (A Mathematical Programming
Language).

This language allows data to be defined in terms of numerical scalars, vectors
and arrows as well as index sets. It is then possible to make statements about the
data which may be true or f alse. Compound propositions can then be constructed
from these statements. In AMPL the possible ‘connectives’ which may be used are

or, not, and, i f . . . then . . . else, exi ts, f orall (3.131)

obviously representing ‘∨’,‘−’,‘·’,‘−→’,‘∃’,‘∀’, respectively.
A typical statement in AMPL might be

subject to (3.132)

Capacity{i in M AC H I N E S} : sum( j in P RO DUCT S)

T ime[i, j] ∗ x[i, j]

< = (exists (T ime[i, j] > 0)

and not{i in P REC LU DE})
Cap[i]

This statement generates a number of constraints indexed by the set M AC H I N E S.
The number of each product (indexed by P RO DUCT S) produced is represented
by an LP (or IP) variable x[i, j]. Each variable has a coefficient T ime[i, j] taken
from a data array. The capacity (in hours) of each machine is given in the data
vector Cap[i].

However, the constraint will only be generated if the following statement is true:

exists (T ime[i, j] > 0) and not{i in P REC LU DE} (3.133)

i.e. both at least one of the products takes a positive time on the relevant machine
and the machine is not one of a precluded set for which no capacity constraint is
needed.

(Note that the names of the sets and data arrays have been chosen to make the
statement meaningful. They have no significance in the language.)

This language is typical of the ‘state of the art’ in such algebraic languages. It is
also possible, in some languages, to generate constraints using the rich language of
constraint logic programming, as described in Chapter 4.

We now describe a language and method of generating IP models which goes
beyond what can be achieved by purely algebraic modelling languages.
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3.5.2 The ‘Greater Than or Equal’ Predicate

We define the predicate ge(r, P1, P2, . . . , Pn) as meaning greater than or equal to r
of the statements P1, P2, . . . , Pn are true. (This predicate could equally well have
been called ‘at-least’.) This predicate is itself a statement which will be true or false.
(Obviously if r > n it must be false.)

If r = 1 it represents the disjunction

P1 ∨ P2 ∨ · · · ∨ Pn (3.134)

and if r = n it represents the conjunction

P1 · P2 · · · · · Pn (3.135)

By taking values of r between 1 and n we can represent compound statements
between (multivalued) ‘∨’ and ‘·’. Such statements could, of course, be written
in terms of the conventional connectives but such representations would be more
cumbersome.

What’s more the statements using ‘ge’ can be nested, i.e. the component state-
ments Pi can themselves be ge predicates.

We illustrate this by an example

Example 3.12 Represent the following statement in DNF using conventional con-
nectives:

ge(2, ge(1, P1, P2), P3, ge(2, P4, P5)) (3.136)

we can progressively reexpress (3.136) (from ‘the bottom up’) as follows:

ge(2, P1 ∨ P2, P3, P4 · P5) (3.137)

(P1 ∨ P2) · P3 ∨ (P1 ∨ P2) · P4 · P5) ∨ P3 · P4 · P5 (3.138)

P1 · P3 ∨ P2 · P3 ∨ P1 · P4 · P5 ∨ P2 · P4 · P5 ∨ P3 · P4 · P5 (3.139)

At the bottom level the component statements will be LP or IP constraints or
0–1 variables which can individually be true or false. The representation entirely
in terms of nested ge predicates gives a ‘normal form’ (although it is not unique)
into which all models can be put. The translation into an IP model can then be
automated. We describe how this may be done below. Before doing this, however,
we point out that nested ge predicates are not a natural way of modelling a problem.
Instead we use a richer set of predicates, together with the conventional connectives
of the propositional calculus. Then we translate into the ge form before translating
into an IP model.

Useful predicates which we use (in addition to the conventional connectives and
ge itself) are as follows:
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le(r, P1, P2, . . . , Pn) meaning less than or equal to r of P1, P2, . . . , Pn

are true.
eq(r, P1, P2, . . . , Pn) meaning exactly r of P1, P2, . . . , Pn are true.
ge f (r, P1, P2, . . . , Pn) meaning greater than or equal to r of P1, P2, . . . , Pn

are false.
le f (r, P1, P2, . . . , Pn) meaning less than or equal to r of P1, P2, . . . , Pn

are false.
eq f (r, P1, P2, . . . , Pn) meaning exactly r of P1, P2, . . . , Pn are false.
le(r, P1, P2, . . . , Pn) meaning less than or equal to r of P1, P2, . . . , Pn

are true.
at least(r, P1, P2, . . . , Pn) meaning at least r of P1, P2, . . . , Pn are true,

i.e. ge(r, P1, P2, . . . , Pn).
at most(r, P1, P2, . . . , Pn) meaning at most r of P1, P2, . . . , Pn are true,

i.e. le(r, P1, P2, . . . , Pn).
all(P1, P2, . . . , Pn) meaning all of P1, P2, . . . , Pn are true, i.e. ge(n, P1,

P2, . . . , Pn).
none(P1, P2, . . . , Pn) meaning none of P1, P2, . . . , Pn are true, i.e. ge(0, P1,

P2, . . . , Pn).
These predicates are for modelling purposes. Ultimately they will be converted

(automatically) into the ge form, within the system, by rules given below. In addition
we may wish to use the rich variety of predicates available from constraint logic
programming, as described in Chapter 4.

The conversion of the above predicates to ge form is straightforward and
left as Exercise 3.7.7. For illustration, however, we consider the le predicate
le(r, P1, P2, . . . , Pn) converts to ge(r + 1, P1, P2, . . . , Pn).

Negations of a ge can always be moved inwards (a generalisation of De Morgan’s
laws), i.e. ˜ge(r, P1, P2, . . . , Pn) converts to ge(n − r + 1, P1, P2, . . . , Pn).

Models resulting from this approach to IP formulation may, sometimes, be
simplified. We point out two obvious simplifications here which we refer to as
‘flattening’

ge(1, ge(1, P1, P2, . . . , Pm), (3.140)

Pm+1, Pm+2, . . . , Pn)

can be rewritten as
ge(1, P1, P2, . . . , Pn) (3.141)

and
ge(n + 1, ge(m, P1, P2, . . . , Pm), (3.142)

Pm+1, Pm+2, . . . , Pn)

can be rewritten as
ge(n, P1, P2, . . . , Pn) (3.143)

so removing one level of nesting in each case.
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These two simplifications are the result of the associativities of ‘∨’ and ‘·’,
respectively.

We demonstrate how to use the ‘ge’ predicate to create an IP model by the fol-
lowing example.

Example 3.13 Model the following condition among constraints by a MIP model:

∑

j

a1 j x j � b1 ∨
∑

j

a2 j x j � b2 ↔
∑

j

a3 j x j � b3 ∨
∑

j

a4 j x j � b4 (3.144)

It is convenient to represent the four inequalities by P1, P2, P3, P4. At the ‘top
level’ we model the ‘↔’ by

ge(2, (P1 ∨ P2) → (P3 ∨ P4), (P3 ∨ P4) → (P1 ∨ P2)) (3.145)

Proceeding down the component statements give

ge(2, ge(1, ˜(P1 ∨ P2), (P3 ∨ P4)), (3.146)

ge(1, ˜(P3 ∨ P4), (P1 ∨ P2)))

ge(2, ge(1, ge(2,(P1, P2)), (3.147)

ge(1, P3, P4)),

ge(1, ge(2, (P3, P4),

ge(1, P1, P2))))

By flattening we can simplify (3.147) to

ge(2, ge(1, ge(2, (P1,P2)), (3.148)

P3, P4),

ge(1, ge(2, (P3,P4)),

P1, P2))

At the bottom level we introduce variables δ1, δ2, δ3, δ4 and model the conditions

δi = 1 ↔ Pi (3.149)

Assuming suitable bounds are known for the expressions in the inequalities then
we can model these conditions by the methods given in Sect. 3.1. Otherwise we can
use the method for open polyhedra described in Sect. 3.2 (so long as the problem is
MIP representable). Assuming the bounds are known this gives
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∑

j

a1 j x j + (M1 − b1)δ1 � M1 (3.150)

∑

j

a2 j x j + (m2 − b2)δ2 � m2 (3.151)

∑

j

a3 j x j + (m3 − b3)δ3 � m3 (3.152)

∑

j

a4 j x j + (M4 − b4)δ4 � M4 (3.153)

Since the predicates ge(2, (P1, P2)) and ge(2, (P3, P4)) are of the form (3.135)
(conjunctions) each can be represented by single 0–1 variables using the conditions

δ5 = 0 ↔ P1 (3.154)

δ5 = 0 ↔ P2

δ6 = 0 ↔ P3 (3.155)

δ6 = 0 ↔ P4

giving

∑

j

a1 j x j − (m1 − b1 + ε)δ5 � b1 + ε (3.156)

∑

j

a2 j x j − (M2 − b2 + ε)δ5 � b2 − ε (3.157)

∑

j

a3 j x j − (M3 − b3 + ε)δ6 � b3 − ε (3.158)

∑

j

a4 j x j − (m4 − b4 + ε)δ6 � b4 + ε (3.159)

Moving up one level we model

ge(1, ge(2, (P1, P2)), P3, P4) (3.160)

by
δ3 + δ4 − δ5 � 0 (3.161)

and
ge(1, ge(2, (P3, P4)), P1, P2) (3.162)

by

δ1 + δ2 − δ6 � 0 (3.163)
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No 0–1 variable is necessary at the top level since we have a predicate of the
form (3.135). Therefore the full condition (3.144) is modelled by (3.150) to (3.153)
together with (3.156) to (3.159) and (3.161) and (3.163).

3.6 References and Further Work

Williams [117] presents the relationship between connectives in the propositional
calculus and IP constraints. This is also covered in Williams [112, 115, 119].
Other authors have also written on the subject such as Barth [12], Hürlimann
[58], Dietricht et al. [33], Chandru and Hooker [22], Hooker [54, 56] and Wilson
[121, 122] .

Balas [5, 7, 9] was the first to develop the theory of disjunctive programming and
the resultant cutting planes in [6]. Sherali and Shetty [100] also cover the subject.

The theory of MIP representability was developed by Meyer [82] and Jeroslow
[62, 63]. Jeroslow also (stemming from the work of Balas) produced the idea of the
splitting of variables to lead to convex formulations (under the slightly misleading
title ‘convex formulations’). Jeroslow and Lowe [64] describe modelling techniques
based on these methods. Martin[78] obtains a number of IP reformulations by means
of new variables.

Improved (tighter) IP formulations, by means of splitting variables, exist for a
number of applications. Sometimes it is possible to (fictitiously) introduce ‘multiple
commodities’ into a problem where there is only one commodity to increase tight-
ness. Wolsey [126] does this for the lot-sizing problem and Wong [127] and Claus
[25] for the network flow formulation of the travelling salesman problem.

Williams [116] gives the duality-based proof to show that the convex formulation
is always sharp. Minimax algebra (using the operators ‘⊕’ and ‘⊕′’) was developed
by Carré [21] and Cunningham Green [28].

Modelling languages have been developed by a number of authors such as Fourer
et al. [37] for the AMPL system and Day and Williams [32]. McKinnon and
Williams [80] developed the modelling system based on the recursive use of the
‘greater-than-or-equal-to’ predicate. They also show how to avoid introducing a
component for every variable in every disjunction. Hadjiconstantinou et al. [50]
present another way of systematically converting a logical expression into an IP
model. Greenberg and Murphy [48] compare different modelling systems.

3.7 Exercises

3.7.1 Model the disjunction of r constraints using �log2 r� 0–1 variables as
described in Sect. 3.1. Is the LP relaxation weaker than that for the formulation
using r constraints?
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3.7.2 Show that if the open facets of a disjunction of polyhedra contain at least as
many extreme rays as the number of variables then they represent parallel facets.

3.7.3 Give an example of a set of polyhedra with the same recession directions
whose open facets are not parallel. Give a MIP representation of the disjunction of
these polyhedra without splitting the variables.

3.7.4 Show that statement (3.54) is equivalent to (3.55).

3.7.5 Reformulate Example 3.5 in CNF and solve the resultant IP.

3.7.6 Formulate the dual of Example 3.5.

3.7.7 Show that the dual of the dual of a disjunctive programme is the primal.

3.7.8 Convert the predicates in Sect. 3.5 into ‘ge’ form.

3.7.9 Solve Example 3.2 with objective (3.20) using the method described in
Example 2.3.

3.7.10 Solve Example 3.5 using the method described in Example 2.3.



Chapter 4
The Satisfiability Problem and Its Extensions

Given a statement in logic can it ever be true? This is the satisfiability problem. We
will confine our attention to the propositional calculus. However, the problem also
arises in the predicate calculus where it is necessary to consider if there are instan-
tiations of the variables which make a statement true. The problem is equivalent to
the inference and consistency problems mentioned in Chapter 1.

Suppose we want to decide if

P =⇒ Q (4.1)

i.e. can we infer Q from P , where P and Q are logical statements or sets of logical
statements. Equation (4.1) is equivalent to the logical statement

P −→ Q (4.2)

(which could also be written as P ∨ Q).
We simply need to test if (4.2) is always true, i.e. if its negation can never be true.

The negation can be represented by

P · Q (4.3)

using De Morgan’s laws.
Hence is (4.3) ever true?, i.e. is it satisfiable? If it is then the inference (4.1) does

not hold, otherwise it does hold.
Conversely if we have a satisfiability problem of testing if a statement, or set of

statements, P is satisfiable we can (trivially) convert it to the inference problem

P =⇒ F (4.4)

If this inference is not true then P is sometimes true, i.e. it is satisfiable.
If we wish to check if a set of statements

P1, P2, P3, . . . , Pn (4.5)
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is consistent then we simply need to test if the statement

P1 · P2 · P3 · · · Pn (4.6)

is satisfiable.
Conversely saying P is satisfiable is the same as saying it is consistent.
Satisfiability problems with a small number of literals could be solved by the use

of truth tables as follows.

Example 4.1 Is the following statement satisfiable?

(X1 −→ (X2 ∨ X3)) → (X1 · X3) (4.7)

We can successively fill in the columns of the following truth table (Table 4.1)

Table 4.1 A Truth Table for Satisfiability

X1 X2 X3 X2 ∨ X3 X1 −→ X2 ∨ X3 X1 · X3 (X1 −→ X2 ∨ X3) −→ (X1 · X3)
T T T T T F F
T T F T T F F
T F T T T F F
T F F F F F T
F T T T T F F
F T F T T T T
F F T T T F F
F F F F T T T

This demonstrates that the statement is satisfiable. It is satisfiable for the three
truth table settings

X1 = T, X2 = X3 = F

X1 = F, X2 = T, X3 = F

X1 = X2 = X3 = F

It can be seen that the number of rows in such a truth table will be 2n , where n is
the number of literals. 2n grows exponentially rendering such an approach impracti-
cal for other than small problems. We present practical alternatives (although in the
‘worst-case’ satisfiability problems are of exponential complexity, as discussed in
Section 2.4).

4.1 Resolution and Absorption

In order to carry out a more efficient procedure we write a logical statement in
conjunctive normal form (CNF). Therefore we consider statements written as a
conjunction of disjunctive clauses. We will use the following, larger, example.
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Example 4.2 Is the following statement satisfiable?

X1 ∨ X3 ∨ X4 (4.8)

·X2 ∨ X3 ∨ X4 (4.9)

·X1 ∨ X3 (4.10)

·X3 ∨ X4 (4.11)

·X1 ∨ X3 ∨ X4 (4.12)

·X1 ∨ X2 (4.13)

·X2 ∨ X3 (4.14)

·X2 ∨ X4 (4.15)

·X3 ∨ X4 (4.16)

i.e. we have a conjunction of the (disjunctive) clauses which are written on each line.
If it turns out that a conjunction of clauses, such as that above, is not satisfiable

then there is also interest in finding the maximum number of clauses which are,
together, satisfiable. This is known as the maximum satisfiability problem. We will
show how to solve it as an IP model in Sect. 4.5.

Before solving Example 4.2, in Sect. 4.2, we define two procedures needed.
Resolution consists of choosing two clauses which have exactly one literal which

is negated in one clause and unnegated in the other (they may or may not have other
literals in common, but if so they must have the same sign).

An example is provided by clauses (4.9) and (4.12).

X2 ∨ X3 ∨ X4 and X1 ∨ X3 ∨ X4 (4.17)

Two such clauses can be combined by forming their disjunction and deleting the
common literal (in this case X4 ) which is negated in one and unnegated in the other.
The resultant clause is referred to as their resolvent. In the case of (4.17) we obtain
the resolvent

X1 ∨ X2 ∨ X3 (4.18)

Clearly the resolvent is implied by the original two clauses since the eliminated
common literal (X4) is either true or false. If it is true the remaining part of one of the
clauses is true and if it is false the remaining part of the other clause is true. Hence
either way the disjunction of them is true giving the resolvent, i.e. the resolvent is
an implication of the original statement.

Absorption involves looking for clauses that contain all the literals of another
clause and the common literals have the same sign. The smaller clause is said
to absorb the larger. For example (4.16) absorbs (4.8). Clearly the smaller clause
implies the larger which may therefore be removed (obviously if there are duplicate
clauses either one can be removed).
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To simplify a logical statement in CNF we repeatedly apply absorption and reso-
lution, appending the resolvent to the set of clauses and removing absorbed clauses,
until no further simplification is possible. The result is a ‘simpler ’ but equivalent
statement.

Applying these procedures to the example we finally obtain the conjunction

X2 · X4 · (X1 ∨ X3) · (X1 ∨ X3) (4.19)

The individual clauses obtained (in this example X2, X4, X1 ∨ X3, X1 ∨ X3) are
known as prime implications. They are the smallest (i.e. least number of literals)
disjunctive clauses that are implied by the original statement.

This procedure delivers us the complete sum of prime implications, i.e. every
possible minimal clausal prime implication. All other clausal implications would be
absorbed by a prime implication (and therefore not be prime).

In order to show this suppose we were to have a disjunctive clause C which is
implied by the original statement and is the longest clause not absorbed by any of the
prime implications. We can, without loss of generality, assume that all the literals
in C are unnegated (by, if necessary, replacing the negated literals throughout by
unnegated ones). Therefore let

C = X1 ∨ X2 ∨ · · · ∨ Xr (4.20)

In order for C to be false X1 = X2 = · · · = Xr = F. Therefore C cannot
contain all the literals in the original statement as the only way for the original
statement to be false would be for all the literals in the prime implications to be
unnegated. This would cause them each to absorb C . Therefore C must not contain
some variable, say Xi . In this case, since C is the longest clause not absorbed Xi ∨C
and Xi ∨ C which are both implied must be absorbed by prime implications. The
prime implication which absorbs Xi ∨C must contain Xi otherwise it would absorb
C . The prime implication which absorbs Xi ∨ C must contain Xi for a similar
reason. The resolvent of these two implications would be a prime implication which
absorbs C contradicting the definition of C .

The complete sum of prime implications is not, however, necessarily the simplest
equivalent statement. There might be a proper subset of the prime implications, the
conjunction of which is still an equivalent statement. The finding of the minimal
equivalent set of prime implications is, however, another (difficult) problem. We
address this problem in Sect. 4.6. For the small example above, the four derived
prime implications also form the minimal set. However, we will now use resolution
and absorption, together with a branching procedure, for the more modest aim of
determining if a statement in CNF is satisfiable.
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4.2 The Davis–Putnam–Loveland (DPL) Procedure

If a statement is not satisfiable then the empty clause is a prime implication (which
absorbs all other implications rendering it the only one) and this will be obtained by
successively applying resolution and absorption. Otherwise, if the empty clause is
not obtained, then the statement is satisfiable. A satisfiable set of truth values can be
obtained as follows:

1. (a) If a clause consists of a single literal X then set X = T. Similarly if a clause
consists of a single literal X set X = F. Note: There will be no other clauses
containing X or X by the application of absorption.

(b) If a literal is unnegated in all clauses within which it occurs set X = T and
delete the clauses within which it occurs. (There may be alternative satisfy-
ing settings but this is sufficient if we are content only to find a satisfiable
setting.) Similarly if a literal is negated in all clauses within which it occurs
set X = F and delete all clauses within which it occurs. (Again there may be
alternatives.)

(c) If a literal X is unnegated in some clauses and negated in others partition the
clauses into two sets (i) and (ii).

(i) Set X = T and delete the clauses in which it is unnegated.
(ii) Set X = F and delete the clauses in which it is negated.

Each of the sets (i) and (ii) after this ‘branching’ is then treated as before by
procedures (a), (b) and (c). It can be shown (Exercise 4.12.3) that at least one of
the branches will result in a satisfiable set of truth values.

For, comparatively simple, Example 4.2 resolution and absorption resulted in
(4.19): (a) sets X2 = F, X4 = T; (b) does not apply and (c) creates the settings
(branching on, say, X1): (i) X1 = T, X3 = T and (ii) X1 = F, X3 = F.

After applying (b) we obtain the alternative sets of satisfying truth values

X1 = T, X2 = F, X3 = T, X4 = T (4.21)

X1 = F, X2 = F, X3 = F, X4 = T (4.22)

4.3 Representation as an Integer Programme

The satisfiability problem can be represented as the problem of deciding if an integer
programme (IP) is feasible using the modelling methods described in Chapter 3.
However, the satisfiability problem has a special structure as an IP which should be
explained.

If the satisfiability problem is expressed in CNF then each (disjunctive) clause
gives rise to a constraint. As in Chapter 2 we represent the truth or falsity of a literal
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X by a 0–1 variable x taking the value 1 or 0, respectively. If X occurs unnegated in
a clause then x appears in the constraint. If it occurs negated then (1 − x) appears.
The sum of these terms in the constraint must be � 1.

For example the clause

X1 ∨ X3 ∨ X4 (4.23)

gives rise to the constraint

(1 − x1) + x3 + x4 � 1 (4.24)

In more usual form this is written as

− x1 + x3 + x4 � 0 (4.25)

For Example 4.2 the full set of constraints is therefore

−x1 + x3 + x4 � 0 (4.26)

−x2 + x3 + x4 � 0 (4.27)

x1 − x3 � 0 (4.28)

−x3 + x4 � 0 (4.29)

−x1 + x3 − x4 � −1 (4.30)

−x1 − x2 � −1 (4.31)

−x2 + x3 � 0 (4.32)

x2 + x4 � 1 (4.33)

x3 + x4 � 1 (4.34)

The general form of such constraints is

−
r∑

i=1

xi +
r+s∑

i=r+1

xi � (1 − r ) (4.35)

Models with such constraints are a special case of generalised set-covering
problems (GSCPs). (GSCPs, in contrast to the set-covering problem mentioned in
Chapter 2, have all coefficients 0, ±1 and general integer right-hand sides, with all
constraints ‘�’.) This special sort of GSCP can easily be converted to a set-covering
problem (SCP) where all the coefficients and right-hand sides are 0–1 by substitut-
ing (1 − yi ) for xi in the first summation in (4.35). This then gives the constraints

r∑

i=1

yi +
r+s∑

i=r+1

xi � 1 (4.36)
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Together with the extra constraints

xi + yi = 1, i = 1, . . . , r (4.37)

If (4.37) were converted to the ‘�’ form then solutions satisfying the ‘=’ form
could be sought by the choice of suitable objective function such as

Minimise
r∑

i=1

(xi + yi ) (4.38)

If this objective can be minimised to r then (4.37) must be satisfied and the
original problem is satisfiable.

However, for our purposes it suffices to consider satisfiability problems in the
form of GSCPs.

4.4 The Relationship Between Resolution and Cutting Planes

We could solve the problems described above as IPs using the branch-and-bound
method described in Chapter 2. However, it is worth pointing out that we can often,
with benefit, reduce the size of such models first. The methods of reduction we
use mirror resolution and absorption as described in Sect. 4.1. We illustrate this by
reference to constraints (4.8) and (4.16).

If one constraint is implied by another it can be removed. This happens when one
contains a subset of the variables of another with the same signs on the variables and
a relaxation of the right-hand side. For example

x3 + x4 � 1 clearly implies − x1 + x3 + x4 � 0 (4.39)

i.e. (4.16) implies (4.8). This mirrors the absorption of X1 ∨ X3 ∨ X4 by X3 ∨ X4.

Corresponding to the resolution operation we can add together two constraints
which contain a variable which is negated in one constraint and not in the other.
If all the other common variables have the same sign the resultant constraint is of
significance. Consider the two constraints (4.27) and (4.30). Adding them together
produces

− x1 − x2 + 2x3 � −1 (4.40)

There is also no loss of generality in adding in the conditions (in negated
form) −x1 � −1 and −x2 � −1 in order to make all the coefficients ±2 giving

− 2x1 − 2x2 + 2x3 � −3 (4.41)
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Since the quantity on the left-hand side is a multiple of 2 we can divide through
by 2 (this is one of the operations for creating the Chvátal ‘dual’ as described in
Chapter 2) to produce

− x1 − x2 + x3 � −3

2
(4.42)

and round up the right-hand side to give

− x1 − x2 + x3 � −1 (4.43)

This procedure mirrors resolution applied to X2 ∨ X3 ∨ X4 and X1 ∨ X3 ∨ X4

to produce X1 ∨ X2 ∨ X3 which is represented by the constraint (4.43).
The above procedure, applied to constraints, is very significant. Not only we are

adding constraints to produce a new constraint but we are also applying a rounding
operation. The result of this procedure is a Rank 1 Cutting Plane as explained in
Chapter 2. It therefore cuts off solutions to the linear programming (LP) relaxation
but does not cut off any integer solutions. Hence the reduced model may well have
a tighter LP relaxation than that of the original model. This, almost certainly, makes
the subsequent solution by branch-and-bound shorter.

It might be thought that there is an exact relationship between prime implications
(the smallest implied clauses) and IP facets (the tightest constraints) as discussed in
Chapter 2. This is not, however, the case (see Exercise 4.12.9).

Exercise 4.12.7 involves showing that, in general, the procedure above exactly
mirrors resolution. Exercise 4.12.8 involves showing that if one adds constraints
with more than variable differing in sign no rounding (and hence strengthening)
applies (although the resultant constraint is still valid).

We now apply branch-and-bound to the set of constraints which results from
reducing (4.26) to (4.34) by using the constraint forms of resolution and absorption.
This corresponds to the logical statement (3.19) which was obtained after logical
resolution and absorption applied to the original, logical, statements (3.8)–(3.16).
The corresponding set of reduced constraints is

− x2 � 0, x4 � 1, −x1 + x3 � 0, x1 − x3 � 0 (4.44)

Together with the restriction that these variables be 0–1 and the (arbitrary)
objective

Minimise x1 + x2 + x3 + x4 (4.45)

we obtain the LP relaxation solution

x1 = 0, x2 = 0, x3 = 0, x4 = 1 (4.46)
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This is clearly integral in this, very simple, case demonstrating that the original
(logical) statement was satisfiable. In general we may obtain a fractional solution
and have to resort to branch-and-bound.

Notice that by choice of objective (4.45) we have produced only one of the two
solutions corresponding to (4.22). The choice of objective can be arbitrary if we are
only seeking to prove satisfiability. If we require all satisfying solutions then we
have the much more difficult task of finding all feasible solutions to the IP. We do
not address this task here.

4.5 The Maximum Satisfiability Problem

In order to illustrate further the use of IP we consider an important extension of the
satisfiability problem and illustrate it by an example.

Example 4.3 Is the following statement satisfiable and if not what is the maximum
number of clauses which make it satisfiable?

X11 ∨ X12 (4.47)

· X21 ∨ X22 (4.48)

· X31 ∨ X32 (4.49)

· X11 ∨ X21 (4.50)

· X11 ∨ X31 (4.51)

· X21 ∨ X31 (4.52)

· X12 ∨ X22 (4.53)

· X12 ∨ X32 (4.54)

· X22 ∨ X32 (4.55)

This is a tiny example of the so-called ‘pigeon hole’ problem. This is the problem
of seeing if it is possible to fit n+1 objects into n boxes with no more than one object
in each box. Clearly this is not possible when looked at semantically. However, to
prove that it is not possible syntactically (if we did not know the interpretation) is
very difficult. It can be shown (Exercise 4.12.10) that, for the general problem, the
number of steps needed to do this by resolution is an exponential function of n.

For the above example we interpret Xi j as meaning ‘object i is put in box j’.
Clauses (4.47)–(4.49) impose the condition that each i must be put somewhere.
Clauses (4.50)–(4.55) impose the condition that no more than one object can be put
in each box j . Here we have three objects and two boxes.

It is convenient to illustrate our application of resolution by means of the tree
in Fig. 4.1.
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X22 ∨ X32

X11 ∨ X12

X12 ∨ X21

X12 ∨ X22

X22 ∨ X32

X11 ∨ X21

X12 ∨ X32

X12 ∨ X22

X11 ∨ X31

X21 ∨ X31

X21 ∨ X22

X32

X31

X31

X11

X12

X

X32

X21

X31

X31 ∨ X32

X11 ∨ X12

X21 ∨ X22

Fig. 4.1 A resolution tree

At each level we apply resolution. For example at level 1 we resolve clauses
(4.47) and (4.50) to obtain X12∨ X21 which is then resolved with (4.48). Proceeding
in this way we ultimately resolve X31 with X31 to produce the empty clause
represented by ‘�’ showing that the original statement is not satisfiable.

Note that at the end both X31 and X31 are ‘non-input’ clauses, having been
derived in the course of the calculation. This is of importance in distinguish-
ing between ‘easy’ and ‘difficult’ problems and is addressed in Sect. 4.6 and in
Exercise 4.12.11.

Given that the statement in Example 4.3 is not satisfiable, what is the maximum
number of clauses which can simultaneously be made satisfiable? This is an example
of the maximum satisfiability problem.

If we represent a general (disjunctive) clause as a constraint among 0–1 variables
in the form of (4.35) (indexed as constraint j) we can force its satisfaction by a 0–1
variable y j taking the value 1. In order to do this we write the constraint as (4.56)
using the modelling methods discussed in Chapter 3.

−
r∑

i=1

xi +
r+s∑

i=r+1

xi − y j � −r (4.56)
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By employing the objective

Maximise
∑

j

y j (4.57)

we maximise the number of clauses which are satisfied.
We apply this model to Example 4.3 to give Maximise

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y9 + y9 (4.58)

subject to

x11 + x12 − y1 � 0 (4.59)

x21 + x22 − y2 � 0 (4.60)

x31 + x32 − y3 � 0 (4.61)

x11 + x21 + y4 � 2 (4.62)

x11 + x32 + y5 � 2 (4.63)

x21 + x31 + y6 � 2 (4.64)

x12 + x22 + y7 � 2 (4.65)

x12 + x32 + y8 � 2 (4.66)

x22 + x32 + y9 � 2 (4.67)

xi jε{0, 1}

The LP relaxation produces a fractional solution. Proceeding to an optimal IP
solution the maximal objective value is 8, showing that the model is not satisfiable.
Among the alternative optimal integer solutions is

x11 = x22 = x32 = 1, x12 = x21 = x31 = 0 (4.68)

y1 = y2 = y3 = y4 = y5 = y6 = y7 = y8 = 1, y9 = 0 (4.69)

i.e. we can satisfy at most eight clauses.
(This has the ‘useless’ interpretation that we can put object 1 in box 1 and objects

2 and 3 in box 2 so satisfying the conditions that every object must be put somewhere
but breaking one of the conditions that no more than one object can be put in any one
box.) As a variant of the maximum satisfiability problem we might weight clauses
differently according to their size. For example we might prefer smaller clauses to
larger ones. This could easily be accomplished by giving different weights to the
variables in the objective.

Although resolution and absorption produce the minimal size implied clauses
their complete sum may contain redundancies, i.e. the conjunction of a proper subset
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of the prime implications may be equivalent to the original statement. We illustrate
this by an example.

4.6 Simplest Equivalent Logical Statement

Example 4.4 What is the minimum number of prime (disjunctive) clauses whose
conjunction is equivalent to the following statement?

· X1 ∨ X2 ∨ X4 (4.70)

· X1 ∨ X2 ∨ X4 (4.71)

· X1 ∨ X4 ∨ X5 (4.72)

· X1 ∨ X4 ∨ X5 (4.73)

· X2 ∨ X3 ∨ X5 (4.74)

· X2 ∨ X3 ∨ X5 (4.75)

· X2 ∨ X3 ∨ X4 (4.76)

· X1 ∨ X2 ∨ X3 (4.77)

· X3 ∨ X4 ∨ X5 (4.78)

· X1 ∨ X3 ∨ X5 (4.79)

Applying resolution and absorption successively delivers the following set of
prime implications, giving the following equivalent statement:

X1 ∨ X4 (4.80)

·X1 ∨ X4 (4.81)

·X2 ∨ X5 (4.82)

·X3 ∨ X5 (4.83)

·X1 ∨ X2 ∨ X3 (4.84)

·X2 ∨ X3 ∨ X4 (4.85)

There may be a proper subset of these prime implications, the conjunction of
which is also equivalent to the original statement. We give an IP formulation later.
We can solve this example by means of a truth table with 32 rows. It is sufficient
to find a subset of the clauses the truth of which implies the truth of all the clauses.
(Implication the other way follows from the fact that the clauses are already prime
implications.) Therefore we need to find a subset, the truth of which implies the
truth of the other clauses.

It can be shown that the first five clauses imply the sixth. Also the first four and
the sixth clause imply the fifth. No smaller subset implies the others. Therefore there
are two shortest equivalent statements. They are
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(X1 ∨ X4) · (X1 ∨ X4) · (X2 ∨ X5) · (X3 ∨ X5) · (X1 ∨ X2 ∨ X3) (4.86)

(X1 ∨ X4) · (X1 ∨ X4) · (X2 ∨ X5) · (X3 ∨ X5) · (X2 ∨ X3 ∨ X4) (4.87)

In practice heuristics are often used to find, hopefully good, but suboptimal solu-
tions to this problem. However, in this book, we concentrate on exact methods.

Figure 4.2 demonstrates the dependencies of the prime implications.

X3 ∨ X5

X1∨X4
X2 ∨ X5

X1 ∨ X2 ∨ X3 X2 ∨X3 ∨X4

X2 ∨ X5
X1 ∨ X4

Fig. 4.2 Dependency between prime implications

If a clause has arrows leading into it then it is the result of successive resolutions
applied to the clauses from where the arrows originate and the resultant clauses. It
is therefore redundant when all the clauses at the origins of the arrows are present.
Notice, therefore, that X1∨ X2∨ X3 is redundant if X2∨ X3∨ X4 is present, being
the resolvent of this clause and X1 ∨ X4. However, X2 ∨ X3 ∨ X4 is the resolvent
of X1 ∨ X2 ∨ X3 and X1 ∨ X4. Therefore X1 ∨ X2 ∨ X3 and X2 ∨ X3 ∨ X4 are
each only redundant if the other is present.

We can use the dependency diagram to give an IP formulation of the problem
of finding the minimum sum of prime implications. We introduce 0–1 variables yi

which are 1 if the corresponding clause is present. For each clause we keep track
of which sets (if any) of prime implication clauses give rise to it by successive
resolutions applied to them. Then this clause is redundant if any of the origin sets of
clauses is present. Each origin set of clauses {i1, i2, . . . , ir } is represented by a 0–1
variable zi1,i2,...,ir which takes the value 1 if all the clauses in the set are present.

Clause i may have a number of alternative origin sets S1
i , S2

i , . . . , SM
i . In order to

avoid ignoring any origin set we must suspend the absorption operation when using
resolution for this purpose. Clause i can only be removed if all the clauses in one of
the origin sets is present. Therefore we stipulate

yi +
∑

l

zSl
i
≥ 1 for all i (4.88)

If a clause has no origin sets then it must be present and there is no
∑

l zSl
i

term.
In order to ensure that if zi1,i2,...,ir = 1 clauses i1, i2, . . . , ir are present we have
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zi1,i2,...,ir − yi j ≤ 0 for all i j (4.89)

The objective

Minimise
∑

i

yi (4.90)

enables the minimum sum of prime implications to be found.
For our (simple) example we have the model

Minimise y1 + y2 + y3 + y4 + y5 + y6 (4.91)

y1, y2, y3, y4 � 1 (4.92)

y5 + z1,6 � 1 (4.93)

y6 + z2,5 � 1 (4.94)

z1,6 − y1 � 0 (4.95)

z1,6 − y6 � 0 (4.96)

z2,5 − y2 � 0 (4.97)

z2,5 − y5 � 0 (4.98)

We can simplify a statement in DNF to produce its prime implicants using the
(logical) dual of resolution. A prime implicant is a conjunctive clause which implies
the original statement and is such that no smaller clause containing a subset of the
literals with the same sign implies the statement. The corresponding operation to
resolution is known as consensus. A consensus of two (conjunctive) clauses with
overlapping literals of the same sign, except for one literal, is obtained by taking
their conjunction and deleting the common literal which is negated in one and
unnegated in the other. For example the consensus of

X1 · X2 · X3 ∨ X2 · X3 · X4 (4.99)

is

X1 · X2 · X4 (4.100)

The consensus clearly implies the pair of clauses from which it is derived. It is
added to the set of clauses.

We also apply absorption. If one conjunctive clause contains literals (of the same
sign) which are a subset of the other then the larger clause is redundant and is
removed. If we successively apply consensus and absorption to a statement in DNF
we obtain the disjunction of all the prime implicants. This statement is equivalent
to the original statement. Note the distinction between simplification in DNF and
CNF. In CNF we obtain prime implications but in DNF we obtain prime implicants.
But analogous to the CNF case, the disjunction of a proper subset of these prime
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implicants may also be equivalent to the original statement. In order to illustrate this
let us consider the negation of the statement in Example 4.4. Using De Morgan’s
laws (as described in Chapter 1) this is naturally written in DNF by interchanging
‘·’ and ‘∨’ and changing the sign of each literal. Applying consensus and absorption
delivers us the logical dual of (3.80)–(3.85), i.e.

(X1 · X4)∨ (X1 · X4)∨ (X2 · X5)∨ (X3 · X5)∨ (X1 · X2 · X3)∨ (X2 · X3 · X4) (4.101)

The minimum disjunction of prime implicants, giving an equivalent statement,
consists of either the first five or the first four and the sixth of the above conjunctive
clauses corresponding to the duals of (3.86) and (3.87).

We have confined our attention to minimising the number of clauses in an equiv-
alent statement (whether in CNF or DNF). Alternatively we might wish to minimise
the total number of literals in the equivalent statement. In order to do this we would
weight clauses according to their size in the minimisation. For the example this still
results in (4.86) and (4.87).

It will clearly never be the case that the statement using the minimum number of
literals does not use prime implications (or prime implicants in the DNF case).

CNF and DNF are only two of the normal forms which we might wish to
minimise. As discussed in Chapter 1 there are many ways to represent a logical
statement as well as different connectives which can be used. In practical terms
the relevant form to use depends on the problem being considered. For example
in Sect. 4.10 we discuss different forms of logical circuit design where we might
wish to minimise the number of switches or gates, or some other aspects of the
architecture.

4.7 Horn Clauses: Simple Satisfiability Problems

The satisfiability problem and its extensions are very difficult problems to solve in
the worst case (they are NP hard) whether they are solved by logical or IP methods.

However there are special cases that are comparatively easy to solve. One such
is when all the clauses are Horn clauses. These are statements which can be written
in the form

X1 · X2 · X3 −→ X4 (4.102)

or

X1 · X2 · X3 −→ T (4.103)

i.e. they can be written as implications where the premises are conjunctions of
unnegated literals and the consequents are either single unnegated literals or tau-
tologies (always true). Written as disjunctive clauses (4.102) and (4.103) are
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X1 ∨ X2 ∨ X3 ∨ X4 (4.104)

and

X1 ∨ X2 ∨ X3 (4.105)

Hence Horn clauses, expressed as disjunctions, contain at most one unnegated
literal. This makes such systems particularly easy to solve (the number of steps is
always a polynomial function – which can be made a linear function – of the size of
the problem). A number of logic programming systems restrict themselves to rules
of this form for this reason. Some systems that are not Horn can be made such by
a simple transformation of variables (e.g. replacing unnegated literals by negated
ones, throughout the system, or vice versa). Such systems are called essentially
Horn.

We illustrate the situation by means of the following example.

Example 4.5 From the following set of Horn clauses is it valid to deduce X2 ?

X1 ∨ X2 ∨ X3 (4.106)

· X1 ∨ X2 (4.107)

· X2 ∨ X4 (4.108)

· X1 ∨ X3 ∨ X4 (4.109)

As explained, at the beginning of this chapter, we negate the conclusion, append-
ing

· X2 (4.110)

as an extra Horn clause and test the satisfiability of the system. If it is not satisfi-
able then the conclusion X2 is valid. (Alternatively we could deduce all the prime
implications of the original system to see if X2 is one of them.)

If we apply resolution to the system we obtain the tree in Fig. 4.3.
Notice that one of the two clauses in each resolution operation is one of the input

clauses. This is in contrast to Fig. 4.1 where the last resolution was between two
non-input clauses. If each resolution involves an input clause it is only necessary to
store them and the current resolved clause. This leads to a reduction in the amount
of computation to a polynomial number of steps. (In fact it can be made a linear
number of steps.) In order to see why input resolution is sufficient for delivering all
the prime implications of a Horn clause system we consider the following (totally
general) example of two successive resolutions illustrated in Fig. 4.4.

C1, C2, C3, C4 are disjunctive clauses and the input clauses are at the top level.
In order for the system to be Horn and for the resolutions to be possible we stipulate
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X2 ∨ X3

X1 ∨ X2

X1 ∨ X2

X1 ∨ X2 ∨ X3

X1 ∨ X3 ∨ X4

X1 ∨ X2

X2 ∨ X4

X2

X1 ∨ X2 ∨ X4

X2X2

Fig. 4.3 A resolution tree for a Horn system

C2 ∨ X1 ∨ X3

C1 ∨ C2 ∨ X3

C1 ∨ X1
C4 ∨ X2

C1 ∨ C2 ∨ C3 ∨ C4

C3 ∨ X2 ∨ X3

C3 ∨ C4 ∨ X3

Fig. 4.4 Non-input resolution in a Horn system

that all the literals in C1, C2, C3 and C4 are negated. (Some literals may be shared
in common.)

At the top level we eliminate X1 and X2, respectively, and at the next level we
eliminate X3.

Observe that Fig. 4.4 illustrates a non-input resolution since both clauses at the
second level are non-input. But it is possible to derive the same result by the input
resolution illustrated in Fig. 4.5.

Therefore we can restrict ourselves to input resolution when we have Horn sys-
tems. Another feature of Horn systems, worth remarking on, is that they are closed
under resolution. Each resolved clause is itself Horn.

It also turns out that the corresponding IP model for a Horn system is partic-
ularly easy to solve. We illustrate the combining of constraints in such a model,
corresponding to Example 4.5, in Fig. 4.6.

In order to simplify the presentation we do not explicitly include the constraints
xi � 0 and −xi � −1 which are added, where necessary, to make coefficients equal.
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C3 ∨ X2 ∨ X3

C2 ∨ X1 ∨ X3

C1 ∨ C2 ∨ X3

C1 ∨ X1

C4 ∨ X2C1 ∨ C2 ∨ C3 ∨ X3

C1 ∨ C2 ∨ C3 ∨ C4

Fig. 4.5 Input resolution in a Horn system

− 2x1 − 2x2 − 2x4 >= −5

− 4x2 − 4x2 >= −7

− x1 −x2>=0−− x1 − x2 + x3 >= −1

2(−x1 −x3 −x4>= −2)− 2x2 + 2 x3 >= −1

2 ( − x2 + x4 >= 0 )

4 (x1 − x2>= 0 )

−8x2 >= − 7

Fig. 4.6 Input resolution for an equation system

The final constraint, after rounding, clearly demonstrates that x2 = 0.
Figure 4.6 also shows that, with input resolution applied to constraints, we can

postpone rounding until the end. Consider a constraint representing a Horn clause.

−
n∑

i=1

xi + xn+1 � 1 − n (4.111)
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(the variable xn+1 may or may not be present). After an application of resolution we
still obtain a Horn clause which, with rounding, would produce a clause of the form
(4.111). Therefore before rounding it would take the form

−
n∑

i=1

xi + xn+1 � 1 − n − ε (4.112)

where

0 � ε < 1

A subsequent resolution, involving (4.112), would also involve an input clause
with an integer right-hand side. These clauses, when added together, and divided
by a positive integer p (the left-hand side common coefficient) would result in a
right-hand side of the form

N − ε

p
(4.113)

The result, after rounding, must again be a Horn clause of the form (4.111).
Hence postponing rounding until the end still allows us to deduce a constraint rep-
resenting the final conclusion.

It is therefore a feature of the IP formulation of Horn systems that they can be
solved as LPs together with a final rounding to the optimal objective value. Since
there exist polynomially bounded algorithms for LP this again demonstrates the
computationally easier nature of Horn systems. The feasibility (satisfiability) of a
system can therefore be tested by LP. A system will be satisfiable if and only if the
LP relaxation of the corresponding IP model is feasible.

Here we are effectively applying (the LP form of) Fourier–Motzkin elimination
as explained in Chapter 2.

4.8 Constraint Logic Programming

Constraint logic programming (CLP) is, in many ways, better called constraint satis-
faction and uses relatively little ‘logic’. It is an alternative approach to solving many
of the problems discussed in this book. It is sometimes, but not always, a faster
method. Although it is not based on the methods of LP and IP some of the oper-
ations (e.g. branching) used are similar to those of IP. Since it does not rely on
the rich computational methodology of LP it lacks the mathematical sophistication
of LP and IP. However, it is much richer in its modelling capabilities and more
flexible in its solution strategies. These aspects are discussed in subsequent parts of
this section. One of the reasons it proves powerful for some problems is the rather
mundane one that computers have become very fast. Even complete enumeration
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has become viable for some problems. CLP has many features in common with the
reduce (presolve) procedures now commonly used to preprocess models.

CLP is not designed as an optimisation method although it can be adapted to such
by making the objective, with progressively tighter bounds, a constraint.

So far there has been comparatively little success in combining the two
approaches into ‘hybrid’ systems although there have been a number of designs
for such systems. Some of these are discussed subsequently.

CLP can be regarded as a ‘procedural’ language as it is possible to model condi-
tions, in the statement of the problem, which help to direct the computational search.

4.8.1 Modelling in CLP

LP and IP restrict the modelling to linear expressions of the form ‘�’, ‘�’ and ‘=’.
In many situations it is convenient to model many more conditions. This is usually
done in CLP in the form of predicates. Of course it is possible to convert these pred-
icates into conventional IP constraints but the conversion is often cumbersome. We
discuss some of the most widely used predicates below. These are usually referred to
as global constraints as they are in-built into the computer software used. In contrast
it is also usually possible to define local constraints specific to the problem being
modelled. These constraints may serve the purpose of modelling specific conditions.
They may also serve the purpose of directing or restricting the search for solutions
in a way which will speed the computation. For example constraints that rule out
symmetrically equivalent solutions are often highly effective.

We describe some of the most commonly used predicates below (which may take
different names in different software systems). There are many more which can be
found in the manuals of the relevant software systems. In all cases we are assuming
the variables are restricted to a finite number of discrete values.

4.8.1.1 The �= Constraint

This may take the form

∑

j

a j x j �= b (4.114)

in contrast to LP and IP constraints. Alternatively it may take the form

x �= {v1, v2, . . . , vn} (4.115)

so preventing x taking one of the specified values. We could model (4.114) using
IP (see Section 3.1) as
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∑

j j

a j x j − (M − b + ε)δ ≤ b − ε (4.116)

∑

j

a j x j + (m − b − ε)δ � m (4.117)

where M and m are, respectively, known upper and lower bounds on
∑

j a j x j and
ε is a ‘tolerance’ above or below which the quantity is not regarded as equal to b.

We emphasise, however, that (4.114) is an alternative, less cumbersome, way of
modelling the condition.

Ways of modelling some of the other predicates below are left as exercises in
Sect. 4.12.

4.8.1.2 The ‘All-Different’ Constraint

This condition frequently arises in practical problems and is conveniently written as

all diff (x1, x2, . . . , xn) (4.118)

It means that all the xi must take different values.
For example assignment conditions that arise as part of many problems (apart

from the ‘pure’ form of the ‘easy’ classical assignment problem mentioned in
Chapter 2) can be modelled by (4.118). The value of xi is interpreted as the name
(number) of the position to which i is assigned and (4.118) prevents more than one i
being assigned to any position.

4.8.1.3 The Cardinality Constraint

This condition can be written as

cardm(x1, x2, . . . , xn|v) (4.119)

It means that exactly m of variables x1, x2, . . . , xn must take the value v.

4.8.1.4 The ‘At-Least’ Constraint

This can be written as

at leastm(x1, x2, . . . , xn|v) (4.120)

It means that at least m of variables x1, x2, . . . , xn take the value v.
It was used as a modelling predicate in Sect. 3.5 in the form ‘greater-than-or-

equal’ (‘ge’) where the variables were Boolean and ‘v’ represented ‘True’. There
it was allowed to take a nested form.
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4.8.1.5 The ‘Circuit’ Constraint

This can be written as

circuit(x1, x2, . . . , xn) (4.121)

where (x1, x2, . . . , xn) is a permutation of integers 1, 2, . . . , n. xi is the number
of the integer in the circuit after i . For example circuit(5, 4, 1, 3, 2) represents the
circuit shown in Fig. 4.7.

1

5

24

3

Fig. 4.7 A circuit

But it can easily be checked that the instantiated predicate circuit(6, 4, 7, 1, 3,

8, 5, 2) is false, i.e. the given permutation of numbers makes the predicate false as
it does not represent a circuit (these are the ‘subtours’ illustrated in Fig. 2.16).

This predicate gives, in particular, a very compact formulation of the travelling
salesman problem (TSP) (although the TSP is not efficiently solved by CLP).

4.8.2 Solving CLP Models

In the form of CLP which we are describing each variable in a model will have a
finite domain of discrete values. These may be numbers or names, e.g.

x ε {2, 5, 6,−1, 0} (4.122)

or

town ε {Lewes, Edinburgh, T ruro} (4.123)

Constraints (possibly in the form of predicates) will restrict the values which sets
of variables can together take, e.g. suppose
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x1, x2, x3 ε {1, 2, 3} (4.124)

all diff (x1, x2, x3) (4.125)

2x1 + 3x2 + x3 � 10 (4.126)

Since (4.126) applies we can restrict the domains of some of the variables to
subsets of {1, 2, 3}.

Since

2x1 � 10 − 3x1 − x3 � 10 − 5 = 5 (4.127)

we must have x1 � 2 restricting its domain to {1, 2}.
Similarly since

3x2 � 10 − 2x1 − x3 � 6 (4.128)

we have x2 � 2 restricting its domain to {1, 2}.
Therefore, since x1 and x2 empty the domain {1, 2}, x3 must take the value 3.
This implies

2x1 + 3x2 � 7 (4.129)

Hence

3x2 � 7 − 2x1 � 5 (4.130)

Therefore x2 � 1 forcing x2 = 1 and x1 = 2.

The above type of argument is known as constraint propagation, i.e. using con-
straints, in conjunction with others, to restrict the domains of variables.

As mentioned earlier such an approach is very similar to the presolve proce-
dure found in many traditional IP systems to ‘simplify’ models before solving them
by more sophisticated LP/IP methods. In CLP (and IP) this can be extended to a
dynamic presolve where, after setting certain variables to trial values, in a tree search
one applies the approach to restrict the domains of subproblems down particular
branches of the search tree.

After applying constraint propagation to restrict domains one is generally forced
to try setting variables to values within their domains using a branching procedure.
Then the implications of different trial values will be found, often demonstrating the
impossibility of certain solutions (empty domains for some variables).

4.8.3 Hybrid CLP and IP systems

While CLP offers flexibility in modelling and search strategies IP relies on the
strength of the LP (and possibly other) relaxations. There have been a number of



128 4 The Satisfiability Problem and Its Extensions

proposals to combine the two approaches into ‘hybrid’ systems, most of which have
not been fully realised. We outline possible ways of doing this.

4.8.3.1 Modelling in CLP to Produce IP Constraints

This approach uses the rich modelling capabilities of CLP to state the problem.
The predicates (constraints) are then converted into traditional IP constraints. One
powerful, universal, way of doing this using the ‘ge’ predicate was described in
Sect. 3.5.

4.8.3.2 Transference of Information Between Two Systems

Here the idea is to solve a model using CLP and IP in parallel with exchange of
information between the systems, e.g. CLP would provide restrictions on domains
(akin to a dynamic presolve) while IP would provide increasingly tighter bounds on
the objective by means of the LP relaxation (which could, itself, be used for further
domain restriction).

If a model has a natural decomposible structure CLP can be used to solve sub-
problems whose solutions are incorporated into a master problem which is solved
by IP.

There has been some success with this approach in producing special purpose
methods for particular types of application. For example column generation is a
method of solving important scheduling problems (particularly crew scheduling in
the airline industry). Here columns (‘rosters’) are generated in the course of opti-
mising a large 0–1 set-covering IP. Rather than generate the, potentially astronomic
number of, columns all at once they are usually added in the course of optimisation.
Their generation may effectively be done using CLP. The cutting stock problem
also yields a model amenable to column generation. Here patterns for cutting up
rolls of material can be generated in the course of optimisation (they are knapsack
problems) and solved using CLP. The patterns give rise to columns of the ‘master
problem’ to be solved by LP or IP. Another application is to maximising the through-
put in a telecommunications network. Here different messages are routed through a
network using different frequencies. There is a limit to the capacity of any one path.
Different combinations of frequencies can be incorporated, within a capacity limit,
along any path. Possible combinations can be found by CLP. The overall (discrete)
multicommodity network flow model is then solved by IP.

4.8.3.3 Benders Decomposition

This is a powerful method of solving (usually mixed IP) structured models. For
mixed IPs the method fixes the integer variables at trial values then solves the resul-
tant LP. The result provides a bound on the optimal objective value of the original
model. This is then incorporated into an IP model for finding the best values of
the integer variables as an extra constraint (a ‘Benders cut’). This IP is sometimes
efficiently solved by CLP. Again the approach is usually problem specific.
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4.9 Solving Integer Programmes as Satisfiability Problems

Most practical IP problems give rise to MIPs and are most efficiently solved using
standard IP algorithms based on the LP relaxation and branch-and-bound augmented
by cutting planes. However, the use of logical methods is very valuable in the for-
mulation of these models. Badly built models may be prohibitively difficult to solve
(even if they are accurately built). Logic provides the rigour and systematisation
necessary.

PIP models arise less frequently although there are a number of classic applica-
tions. Usually the variables are restricted to be 0–1 although, so long as they are
bounded and restricted to small integers, they can be converted to 0–1 variables by
the method described in Chapter 2.

The 0–1 PIP models can always be converted into satisfiability problems, and
sometimes be solved efficiently as such by, e.g. the Davis–Putnam–Loveland proce-
dure. Even if they are not solved in this way their conversion into a logical form pro-
duces cutting planes which may be incorporated into the conventional IP methods.

In order to illustrate the method we consider a small 0–1 PIP example.

Example 4.6 Convert the following model into a satisfiability problem and solve it
by the Davis–Putnam–Loveland (DPL) procedure:

Maximise 21x1 + 32x2 + 45x3 + 15x4 + 19x5 + 42x6 + 15x7

+ 37x8 + 50x9 + 47x10 (4.131)

subject to 20x1 + 34x2 + 42x3 + 11x4 + 48x5 + 39x6 + 53x7 + 23x8 + 46x9

+ 38x10 � 63 (4.132)

19x1 + 35x2 + 23x3 + 23x4 + 39x5 + 35x6 + 45x7 + 61x8 + 47x9

+ 33x10 � 72 (4.133)

x1, x2, . . . , x10 ε {0, 1}

We represent the setting of each 0–1 variable xi to 1 or 0 by the truth or falsity of
an atomic statement Xi . Each of the constraints imposes restrictions on the possible,
combined, values of the xi , which may be stated in compound statements involving
the Xi . For example (4.132) demonstrates that both x2 and x3 cannot be 1 since
the sum of their coefficients in (4.132) exceeds the right-hand side. This can be
represented by the statement X2 ∨ X3.

In order to, systematically, find all such clauses implied by (4.132) it is conve-
nient to place all the variables in ascending order of their coefficients as follows:

11x4+20x1+23x8+34x2+38x10+39x6+42x3+46x9+48x5+53x7 � 63 (4.134)

Working from the left we can see if
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i. There are any single statements which must be false (i.e. whose coefficients
exceed the right-hand side). In this example there are none.

ii. There are any pairs which cannot simultaneously be true. This gives the follow-
ing conjunction of disjunctions:

X4 ∨ X7 (4.135)

·X1 ∨ X9

·X1 ∨ X5

·X1 ∨ X7

·X8 ∨ X3

·X8 ∨ X9

·X8 ∨ X5

·X8 ∨ X7

·X4 ∨ X9

·X2 ∨ X10

·X2 ∨ X6

·X2 ∨ X3

·X2 ∨ X9

·X2 ∨ X5

·X2 ∨ X7

·X10 ∨ X6

·X10 ∨ X3

·X10 ∨ X9

·X10 ∨ X5

·X10 ∨ X7

·X6 ∨ X3

·X6 ∨ X9

·X6 ∨ X5

·X6 ∨ X7

·X3 ∨ X9

·X3 ∨ X5

·X3 ∨ X7

·X9 ∨ X5

·X9 ∨ X7

·X5 ∨ X7

We could now proceed to enumerate all triples, the sum of whose coefficients
exceeds the right-hand side, and give the corresponding logical statement and then
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all subsets of cardinality 4 and so on. Of course it would be redundant to enumerate
sets whose members contain all those already represented by a subset of the set.
The resulting disjunction would be absorbed by the smaller disjunction. If we were
to proceed in this manner we would eventually capture the full import of constraint
(4.132) in a conjunction of disjunctive clauses. However, to avoid the potentially
explosive build up in clauses we will not proceed beyond pairs of cardinality 2 at
this stage.

Carrying out a similar procedure for constraint (4.133) produces some of the
disjunctions in (4.135) together with

X2 ∨ X8 (4.136)

·X6 ∨ X8

·X8 ∨ X10

·X9 ∨ X10

·X1 ∨ X8

·X4 ∨ X8

Again we will, temporarily, content ourselves with disjunctions of pairs of
literals.

In order to deal with the objective we place constraints on its value and formulate
the resulting logical implication.

In this example the maximum possible value of the objective function is 323 (the
sum of the objective coefficients) and the minimum value is 0. An efficient way of
proceeding is to do a ‘binary search’ and progressively dissect the range of values
in which the optimal objective value might lie. Therefore we begin by seeing if half
the maximum objective value is obtainable. This is 161 (with rounding). Therefore
we impose the trial constraint

21x132x2 + 45x3 + 15x4 + 19x5 + 42x6 + 15x7 + 37x8 + 50x9 + 47x10 � 161
(4.137)

In terms of complemented variables (xi = 1 − xi ) this may be written as

21x1 + 32x2 + 45x3 + 15x4 + 19x5 + 42x6 + 15x7 + 37x8 + 50x9 + 47x10 � 162
(4.138)

We treat this constraint, as with the others, and express it in a logical form.
The smallest subsets of these (complemented) variables, which give rise to logi-

cal conjunctions, are of cardinality 4 giving
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X1 ∨ X3 ∨ X9 ∨ X10 (4.139)

·X2 ∨ X3 ∨ X8 ∨ X9

·X2 ∨ X8 ∨ X9 ∨ X10

·X2 ∨ X3 ∨ X6 ∨ X10

·X2 ∨ X3 ∨ X6 ∨ X9

·X2 ∨ X6 ∨ X9 ∨ X10

·X2 ∨ X3 ∨ X9 ∨ X10

·X3 ∨ X6 ∨ X8 ∨ X10

·X3 ∨ X6 ∨ X8 ∨ X9

·X6 ∨ X8 ∨ X9 ∨ X10

·X3 ∨ X8 ∨ X9 ∨ X10

·X3 ∨ X6 ∨ X9 ∨ X10

Again we will not proceed, at this stage, with enumerating the larger clauses.
We take the conjunction of (4.135), (4.136) and (4.139) and see if it is satisfiable.

Since resolution (together with absorption) is a ‘complete refutation procedure’ it is
possible to determine if a statement, such as this, is unsatisfiable without resorting
to the branching in the DPL procedure.

We resolve the fourth disjunction in (4.139), and its successive resolvents, with
each of X6 ∨ X9, X3 ∨ X9, X2 ∨ X9, X10 ∨ X9 in turn to produce X9. Similarly we
resolve the 10th disjunction of (4.139) with each of X6 ∨ X3, X10 ∨ X3, X3 ∨ X9,
X8 ∨ X3 in turn to produce X3. Resolving the fifth disjunction of (4.139) with
X2 ∨ X8, X6 ∨ X8, X6 ∨ X3, X8 ∨ X9 in turn produces X8. Resolving the eighth
disjunction of (4.139) with X2∨X10, X2∨X8, X2∨X6, X2∨X3 in turn produces X2.
These four resolvents resolve with the second disjunction in (4.139) to produce an
empty clause (a contradiction), showing the objective of 161 is unobtainable.

Note that we have managed to show that a ‘relaxation’ (only using some of the
implied disjunctive clauses) is unsatisfiable and that, therefore, the full logical repre-
sentation is unsatisfiable, i.e. it was unnecessary to generate all the implied disjunc-
tive clauses.We could have sufficed with even fewer clauses if we had a judicious
way of choosing them.

We therefore further dissect the possible objective values from 0 to 80 by impos-
ing the constraint

21x1 + 32x2 + 45x3 + 15x4 + 19x5 + 42x6 + 15x7 + 37x8 + 50x9 + 47x10 � 243
(4.140)

From this the smallest clause we can create is

X2 ∨ X8 ∨ X6 ∨ X3 ∨ X10 ∨ X9 (4.141)

Appending this to (4.135) and (4.136) and applying the DLP procedure
(Exercise 4.12.24) shows the compound statement to be satisfiable. A satisfying
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set of truth values corresponds to the solution is

x1 = x4 = x10 = 1, x2 = x3 = x5 = x6 = x7 = x8 = x9 = 0 (4.142)

However, since the logical statement is a relaxation of the full problem we must
check if this solution satisfies the constraints (4.132), (4.133) and (4.140). It clearly
breaks them all. Therefore we must add further disjunctions to rule out this solution.
We begin by appending only

X1 ∨ X4 ∨ X10 (4.143)

The DPL procedure again shows this to be satisfiable with a satisfying set of truth
values

x1 = x3 = x4 = 1, x2 = x5 = x6 = x7 = x8 = x9 = x10 = 0 (4.144)

But it can be seen that this solution breaks (4.134). We therefore append the
disjunction

X1 ∨ X3 ∨ X4 (4.145)

Applying resolution demonstrates that the full statement is not satisfiable, show-
ing that an objective value of 80 is not attainable.

We therefore further dissect the possible objective values to lie between 0 and 40
by logically representing

21x1 + 32x2 + 45x3 + 15x4 + 19x5 + 42x6 + 15x7 + 37x8 + 50x9 + 47x10 � 283
(4.146)

The smallest clauses implied by this constraint are

X1 ∨ X2 ∨ X3 ∨ X6 ∨ X7 ∨ X8 ∨ X9 ∨ X10 (4.147)

X1 ∨ X2 ∨ X3 ∨ X4 ∨ X6 ∨ X8 ∨ X9 ∨ X10

X2 ∨ X3 ∨ X5 ∨ X6 ∨ X7 ∨ X8 ∨ X9 ∨ X10

X2 ∨ X3 ∨ X4 ∨ X5 ∨ X6 ∨ X8 ∨ X9 ∨ X10

Appending (4.147) to (4.135) and (4.136) and applying the DPL method shows
the resulting statement to be satisfiable with the two possible solutions

x1 = x6 = 1, x2 = x3 = x4 = x5 = x7 = x8 = x9 = x10 = 0 (4.148)

and

x1 = x10 = 1, x2 = x3 = x4 = x5 = x6 = x7 = x8 = x9 = 0 (4.149)
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Both these solutions satisfy the constraints of the original IP model.
The first solution results in an objective value of 63 and the second in an objective

value of 68 showing solution (4.149) to be optimal.
If we had only produced one of the satisfying solutions (and not checked if there

were others) we could have proceeded by dissecting the interval between the corre-
sponding objective value and 80 progressively seeking, or showing the absence of
solutions with larger objective values.

The full execution of use of resolution and the DPL procedure in this example is
left as Exercise 4.12.24.

An alternative approach to examples such as this would be to use the LP relax-
ation to obtain upper bounds on the optimal objective value at each stage. These
bounds could then be used as the right-hand side on the (objective) constraint. Also
IP constraints could then be produced as ‘cutting planes’ from some of the resul-
tant logical clauses in the manner described in Sect. 4.3. The application of this
procedure to Example 4.6 is left as Exercise 4.12.26.

4.10 Applications

In this section we describe some practical problems that are particularly suited to
being viewed as satisfiability problems, or extensions of this problem. They are
often most satisfactorily solved using the methods of IP.

4.10.1 Electrical Circuit Design Using Switches

Suppose we wish to allow electric current to pass through a set of wires only if
certain combinations of switches are on. There will be many ways of achieving this.
Normally we will seek an ‘economical’ solution. Possible objectives are as follows:

i. Minimising the number of switches.
ii. Minimising the wire length.

iii. Minimising the number of junctions.

For example, Fig. 4.8 illustrates a circuit, with redundancies, which represents
the logical statement (in DNF):

X1 · X2 ∨ X1 · X2 ∨ X2 · X3 (4.150)

Simplifying (4.150) (by consensus and absorption) we obtain

X1 ∨ X2 · X3 (4.151)
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X2

X1 X2

X3

X1

Fig. 4.8 A redundant electrical circuit

These two prime implicants represent the smallest statement in terms of both
the number of clauses and number of literals. The result translates into the circuit
in Fig. 4.9.

X2 X3

X1

Fig. 4.9 A simplified electrical circuit

For more complicated circuits we would need to specify the exact objective and
use the methods described in Section 4.5.

4.10.2 Logical Net Design Using Gates

Electronic components exist to perform different logic functions. In particular
if one has components which perform one of the complete connectives, dis-
cussed in Chapter 1, then one can construct any logic function out of them
by connecting together a number of these components. For example a com-
mon gate used performs the NOR function (the connective arrow ‘↓’). It is
shown in Fig. 4.10.

This gate gives a signal Y when, and only when, neither input X1 nor input X2

is present, i.e. the logical function X1 · X2. By connecting together such gates one
can perform any logical function. For example the logical statement
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X1

X2

YNOR

Fig. 4.10 A NOR gate

(X1 ∨ X2) · (X1 ∨ X2) (4.152)

(known as ‘exclusive or’) is realised by the net in Fig. 4.11.

NOR

NORNOR NOR

X2

X1 X2

X1

NOR

NOR

Fig. 4.11 The exclusive OR function

The minimum DNF or CNF realisation of (4.152) is of little use in designing
a structure with the minimum number of gates to perform the function. Another
‘normal form’ is needed. However, the problem can be formulated as an IP and is
set as Exercise 4.12.20. In fact Fig. 4.11 is the minimal representation.

It is worth pointing out that gates, such as NOR, can be connected to each other to
give control systems with a ‘memory’. For example Fig. 4.12 represents a ‘flip-flop’.

X1

Y1
Y2

X2

NOR NOR

Fig. 4.12 A flip-flop
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If the X1 signal comes before X2 then the first NOR gate is switched off. The
only output will be Y2. On the other hand if X2 precedes X1 the only output will be
Y1. The logic of optimally designing systems with memory is beyond the scope of
this book but can be achieved by IP.

Many other gates are manufactured in practice performing functions such as
NAND, XOR (exclusive or), OR, etc.

A particularly important class of gates is known as ‘threshold gates’. These have
a number of inputs (n) which multiply the 0–1 input signals by given amounts
a1,a2, . . . , an and only produce an output if the combined input reaches some desig-
nated threshold level b or more. A threshold gate is illustrated in Fig. 4.13.

a2

a1

an

b

Fig. 4.13 A threshold gate

If the inputs are represented by 0–1 variables x1, x2, . . . , xn then the gate pro-
duces only an output if the knapsack constraint

a1x1 + a2x2 + · · · + an xn ≥ b (4.153)

is satisfied.
It is possible to create all the logic functions by individual or combinations of

threshold functions. Exercise 4.12.22 addresses this question but further discussion
is beyond the scope of this book.

All the design problems discussed here are usually considered under the heading
of VLSI (very large-scale integrated circuit) design.

4.10.3 The Logical Analysis of Data (LAD)

A major application of computational logic is to finding ‘economical’ (or minimum
size) logical formulae which can be used to predict a result from certain input data.
Important areas are disease diagnosis, credit scoring, pattern recognition, data com-
pression in order to transmit or store digital data and the design of safety systems.
The data are converted into a finite set of true/false observations. If necessary con-
tinuous measurements are converted into 0–1 statements, e.g.
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Y = True if and only if a � y � b (4.154)

We motivate the discussion by a medical example.

Example 4.7 Create a minimal logical formula to diagnose the occurrence of a dis-
ease as a result of the following observations:

‘T’ and ‘F’ denote positive and negative symptoms, respectively, and ‘–’ indi-
cates irrelevance of the symptom for the particular test.

In order to obtain a logical formula for predicting the disease we first express the
presence of a symptom Si by a literal Xi .

Table 4.2 is represented in DNF as follows:

X1 · X2 · X4 ∨ X1 · X2 · X4 · X5 ∨ X1 · X2 · X3 · X4 ∨ X1 · X3 · X4 (4.155)

Table 4.2 Disease Present
Symptoms S1 S2 S3 S4 S5

Test 1 T T – T –
Test 2 F T – F T
Test 3 F T T T –
Test 4 – T T F –

Applying consensus and absorption we obtain the complete disjunction of prime
implicants as

X1 · X2 · X4 ∨ X1 · X2 · X4 · X5 ∨ X2 · X3 (4.156)

By means of a truth table or IP we can show that none of the prime implicants
is redundant. Therefore (4.156) represents the minimum equivalent statement to
Table 4.2 in DNF. However, we also need to ensure that Table 4.3 is consistent
with Table 4.2.

Table 4.3 Disease Not Present
Symptoms S1 S2 S3 S4 S5

Test 5 T T T F –
Test 6 T F T – F
Test 7 F F – – –

Table 4.3 is represented by

X1 · X2 · X3 · X4 ∨ X1 · X2 · X3 · X5 ∨ X1 · X2 (4.157)

Since this statement needs to be false, if the patient has the disease, we negate it
using De Morgan’s laws to give (in CNF)

(X1 ∨ X2 ∨ X3 ∨ X4) · (X1 ∨ X2 ∨ X3 ∨ X5 ) · (X1 ∨ X2) (4.158)
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If the patient has the disease this statement must be true to be consistent with
(4.156).

Equation (4.158) can be simplified to

(X1 ∨ X2 ∨ X3 ∨ X4) · (X2 ∨ X3 ∨ X5) · (X1 ∨ X2) (4.159)

Expressed in DNF this is (after simplification and taking out redundant prime
implicants)

X1 · X2 ∨ X2 · X3 ∨ X2 · X4 ∨ X1 · X2 · X3 ∨ X1 · X2 · X5 (4.160)

We must now check that the conjunction of (4.160) with (4.156) is consistent
(satisfiable). This is left as Exercise 4.12.23.

Once it is shown to be satisfiable we can use (4.156) to define a new (smaller) set
of tests for diagnosing the disease. This is given in Table 4.4.

Table 4.4 New Tests for the Disease
Symptoms S1 S2 S3 S4 S5

Test 1 T T – T –
Test 2 F T – F T
Test 3 T – T – –

As mentioned in Sect. 4.6 the finding of the minimum logical expression can
be very difficult for larger examples and heuristics often have to be resorted to in
order to find suboptimal solutions. However, the finding of the minimum expression
is highly desirable in many of these problems in view of the cost or utility of the
resulting test regime (in the case of LAD).

4.10.4 Chemical-processing networks

In this situation it is sometimes desirable to represent and analyse the logical
dependence of different processes before solving the associated problem by IP. We
illustrate this by the very small example in Fig. 4.14.

x3 x5

x4

x6
x7x1

x2

P3

P1

P2

Fig. 4.14 A chemical-processing network
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P1, P2 and P3 are chemical processes into and out of which are flows of material
whose quantities are represented by the corresponding xi variables. The processes
have maximum capacities of inputs of M1, M2 and M3, respectively. Their outputs
are their inputs multiplied by α1, α2 and α3, respectively. It is not possible to operate
P1 and P2 simultaneously. If we represent whether each Pi is operating or not by
0–1 variables yi then we have the following constraints:

x1 − x2 − x3 = 0, x6 − x4 − x5 = 0 (4.161)

x4 − α1x2 = 0, x5 − α2x3 = 0, x7 − α3x6 = 0 (4.162)

x2 − M1 y1 ≤ 0, x3 − M2 y2 ≤ 0, x6 − M3 y3 ≤ 0 (4.163)

y1 + y2 ≤ 1 (4.164)

In addition we will have costs on x1, x3 and x5 and a revenue on x7 as well as
(fixed) costs on y1, y2 and y3.

As explained in Chapter 2 the standard version of the branch-and-bound algo-
rithm relies on dichotemies based on branching on 0–1 variables. However in this
type of application there is merit in analysing the logical relationships between
the processes and representing them in a ‘simple’ form allowing more useful
dichotemies. We do this using logical notation. Also it is worth representing, explic-
itly, the obvious condition (which would be satisfied at optimality) that if process
P3 is not used then it is not worth using P1 or P2. The relationships between the
processes can then be modelled as follows:

(Y1 ∨ Y2) · ((Y1 ∨ Y2) ↔ Y3) (4.165)

The 0–1 variables can be used to model the satisfaction of the two clauses.
Branching on these variables before the other variables is advantageous.

4.10.5 Other Applications

Truss design involves designing a structure, at minimum cost, to support objects of
a given weight and size. Some bars in the structure are supported by other bars.
Hence there is a logical dependency of the former on the latter which can be formu-
lated using logical statements. The objective function will be represented as a linear
combination of the literals.

Optimal pit limits involves finding the ‘best’ volume of earth and rock to extract
from an open-cast mine in order to maximise profit. If the mine is ‘discretised’ by
conceptually visualising the volume in discrete blocks there is a logical relationship
between the blocks which should be excavated. In order to be able to extract the
richer ore ‘uneconomic’ blocks above (overburden) must be extracted first. In total
there will be an optimum combination of blocks which should be extracted to max-
imise total profit. An extension of the problem is to find the optimal order within
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which to extract blocks in order to maximise discounted cash flow. Again one must
observe the logical dependency between the blocks to be extracted.

Designing safety precaution measures, e.g. fire prevention, nuclear safety or sen-
sor placement, can be formulated as a logical problem. Certain measures (e.g. lock-
ing or creating barriers and routine inspections) may or may not be implemented in
conjunction with others. The detection of a potential hazardous event will depend
on a logical combination of events. It may be desirable to express the logical rela-
tionship in as economical a manner as possible.

Database access languages (such as the widely used System Query Language
(SQL)) allow the user to make a logical statement involving ‘OR’, ‘AND’ and
‘NOT’ concerning the combination of tables to look up when retrieving information.
In order to make the search of very large databases as fast as possible (and not make
mistakes in the specification) it is desirable to represent the logical statement as
compactly as possible using a normal form. Therefore logical manipulation by the
user, or the system being used, is desirable. Data mining is an area where these
considerations are very relevant.

4.11 References and Further Work

As discussed in Chapter 2 the satisfiability problem is the standard problem used for
comparison in defining a measure of computational complexity since many prob-
lems can be converted to it. The classic reference here is Garey and Johnson [41].
Pardalos et al. [88] edit a book devoted to the satisfiability problem.

Hooker [54] treats IP in the framework of logical inference. The resolution prin-
ciple is due to Robinson [95] (in the form of statements in CNF). However, Quine
[93, 94] was the first to define the method. He applied it to statements in DNF. Davis
and Putnam [31] created the method under their names which was later extended by
Loveland [75]. Jeroslow and Wang [65] give one of the best heuristics for choice of
branching literal.

The representation of logical problems as IPs was presented early on by
Williams [112].

Hooker [54, 53] discusses the similarities (but non-equivalence) of prime impli-
cations and facets.

Quine [95] discusses the problem of finding the minimum sum of prime impli-
cants (the DNF form of finding the minimum sum of prime implications) but does
not provide a viable method for other than very small problems.

Truemper [105] discusses the computational side of solving some of the prob-
lems in this chapter.

Horn clause systems form the basis of a number of logical languages used by
expert systems. One of the earliest is PROLOG (see Kowalski [70]). Dowling and
Gallier [34] describe how to solve the satisfiability problem for Horn clauses in
linear time. Gallo and Scutella [40] discuss ‘easy’ satisfiability problems.



142 4 The Satisfiability Problem and Its Extensions

Constraint logic programming is described in many books such as Tsang [106],
Van Hentenryck [108] and Milano [83]. Hooker [57] discusses the relationship with
IP and lists many of the global predicates used. Yan and Hooker [128] discuss the
formulation of the cardinality constraint as an IP and Williams and Yan [120] discuss
the all different constraint. Hybrid systems are discussed by Hooker [56].

Benders decomposition is due to Benders [14] and discussed in many textbooks
such as Nemhauser and Wolsey [86] and Martin [80]. Geoffrion [42] describes a
practical implementation of Benders decomposition.

Granot and Hammer [47] describe the conversion of PIP models to satisfiabil-
ity problems and Hooker [55] gives the method of appending clauses as needed.
An example of a ‘difficult’ pure 0–1 model (based on the British Petroleum/Shell
demerger over a number of products and sites) and the value of appending ‘cover’
constraints are described in Williams [113].

Problems of circuit design are discussed in, for example, Weste and Harris [109].
Threshold functions are described by Muroga [84].

The logical analysis of data and its applications are described by many authors
such as Boros et al. [19] and Anthony and Hammer [2] to name only a few.

Grossmann et al. [49] describe logical problems arising in chemical engineering
and their solution aided by logical methods. Bollapragada et al. [17] describe the
truss design problem. Williams [110], Jayawardane et al. [59] and Boland et al.
[16] (among others) discuss the optimal pit limits problem.

The Systems Query Language (SQL) is described in Emerson et al. [36].

4.12 Exercises

4.12.1 Test if Example 4.1 is satisfiable using the DPL procedure.

4.12.2 Show by the application of resolution and absorption that the following
statement is not satisfiable:

(X1 ∨ X2) · (X1 ∨ X3 ∨ X4) · (X2 ∨ X3) · (X2 ∨ X3) · (X1 ∨ X3 ∨ X4)

4.12.3 Show that the application of the DPL procedure to a satisfiable statement in
CNF must result in a satisfiable set of truth values.

4.12.4 Apply the DPL procedure to find a satisfiable set of truth values for

(X1 ∨ X2 ∨ X3) · (X1 ∨ X3 ∨ X4) · (X2 ∨ X3) · (X3 ∨ X4)

4.12.5 Convert the problem of determining the satisfiability of

(X1 ∨ X2 ∨ X3) · (X1 ∨ X2 ∨ X4) · (X1 ∨ X2 ∨ X3) · (X1 ∨ X2 ∨ X4)
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to an IP. Solve it by the branch-and-bound method (using the minimisation of the
sum of variables as an arbitrary objective) starting with the LP relaxation. Use a
suitable computer package if desired.

4.12.6 Before solving the model in 4.12.5 by branch-and-bound apply the constraint
form of resolution and absorption to simplify the model. Contrast the LP relaxation
with that of 4.12.5.

4.12.7 Show that, in general, resolution applied to disjunctive clauses is equivalent
to the application of addition and rounding to the equivalent constraints (including,
possibly, the 0–1 bounding constraints).

4.12.8 Show that adding logical constraints, with more than one common variable
differing in sign, and possibly rounding (if necessary adding 0–1 constraints) results
in a valid but redundant extra constraint.

4.12.9 Construct small 0–1 IP examples to show that facets do not exactly corre-
spond to prime implications and vice versa.

4.12.10 Show that, in general, resolution applied to the pigeon hole problem will
result in an exponential number of steps (as a function of the number of variables).

4.12.11 Show that input resolution only requires a linear number of steps (as a
function of the number of variables).

4.12.12 Express constraints (4.59)–(4.67) as a conjunction of disjunctive clauses.

4.12.13 Create the minimum logical statement, in DNF, which represents the fol-
lowing table of truth values:

X1 X2 X3 X4

T F T -
- T F F
F - T -

4.12.14 Create the minimum logical statement, in CNF, which represents the nega-
tion of that in 4.12.13.

4.12.15 Represent all the prime implications of the statement in 4.12.14 as the
nodes of a graph. Draw directed arcs from each pair of prime implications whose
consensus is another prime implication.

4.12.16 Model the condition x �= {v1, v2, . . . , vn} using IP constraints.

4.12.17 Model the predicate all diff (x 1, x2, . . . , xn} using IP constraints in two
different ways.

4.12.18 Represent the following statement:

(A −→ B) −→ [(B −→ (C −→ A)) −→ (B −→ A)]

as an electrical circuit where each literal corresponds to a switch.
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4.12.19 Represent the statement in 4.12.18 by means of a net of NOR gates.

4.12.20 Formulate the problem of minimising the number of NOR gates to represent
the ‘exclusive OR’ function as an IP. Solve this model (using a suitable package
program if desired).

4.12.21 Design an electrical circuit that will only give a positive response when at
least two out of five possible votes (registered by switches) of a committee are cast.

4.12.22 Formulate the general problem of minimising the number of threshold
gates, each with three inputs, connected together to represent a logical statement
in DNF as an IP.

4.12.23 Check that statements (4.156) and (4.160) are consistent (satisfiable).

4.12.24 Carry out all the steps of Example 4.6 using resolution and the DPL
procedure.

4.12.25 Program the method described in Example 4.6 for solving PIP models
as satisfiability problems using all-integer arithmetic in a suitable programming
language.

4.12.26 Solve Example 4.6 using LP relaxations and ‘logical cuts’. Use a suitable
LP package.
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Chvátal cuts, 47
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Józefowska & Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND
MANUFACTURING SYSTEMS

∗A list of the more recent publications in the series is at the front of the book ∗


	Cover.jpg
	front-matter.pdf
	Preface
	Contents

	fulltext.pdf
	1  An Introduction to Logic 
	 The Purpose of Logic: Philosophical: Computational
	 Logical Inference and Consistency
	 The Propositional Calculus
	 Connectives and Truth Tables
	 Equivalent Statements
	 Disjunctive and Conjunctive Normal Forms
	 Complete Sets of Connectives
	 The Calculus of Indications
	 Venn Diagrams

	 The Predicate Calculus
	 The Use of Quantifiers
	 Prenex Normal Form

	 Decidable Fragments of Mathematics
	 The Theory of Dense Linear Order
	 Arithmetic Without Multiplication

	 References and Further Work
	 Exercises


	fulltext_2.pdf
	2  Integer Programming 
	 Linear Programming
	 The Dual of an LP Model
	 A Geometrical Representation of a Linear Programme

	 Integer Programming
	 The Branch-and-Bound Algorithm
	 The Convex Hull of an IP

	 The Use of 0--1 Variables
	 Expressing General Integer Variables as 0--1 Variables
	 Yes/No Decisions
	 The Facility Location Problem
	 Logical Decisions
	 Products of 0--1 Variables
	 Set-Covering, Packing and Partitioning Problems
	 Non-linear Problems
	 The Knapsack Problem
	 The Travelling Salesman Problem
	 Other Problems

	 Computational Complexity
	 Problem Classes and Instances
	 Computer Architectures and Data Structures
	 Polynomial and Exponential Algorithms
	 Non-deterministic Algorithms and Polynomial Reducibility
	 Feasibility Versus Optimisation Problems
	 Other Complexity Concepts

	 References and Further Work
	 Exercises


	fulltext_3.pdf
	3  Modelling in Logic for Integer Programming
	 Logic Connectives and IP Constraints
	 Disjunctive Programming
	 A Geometrical Representation
	 Mixed IP Representability

	 Alternative Representations and Tightness of Constraints
	 Disjunctive Versus Conjunctive Normal Form
	 The Dual of a Disjunctive Programme

	 Convexification of an IP Model
	 Splitting Variables

	 Modelling Languages Based On Logic
	 Algebraic Languages
	 The `Greater Than or Equal' Predicate

	 References and Further Work
	 Exercises


	fulltext_4.pdf
	4  The Satisfiability Problem and Its Extensions 
	 Resolution and Absorption
	 The Davis--Putnam--Loveland (DPL) Procedure
	 Representation as an Integer Programme
	 The Relationship Between Resolution and Cutting Planes
	 The Maximum Satisfiability Problem
	 Simplest Equivalent Logical Statement
	 Horn Clauses: Simple Satisfiability Problems
	 Constraint Logic Programming
	 Modelling in CLP
	 Solving CLP Models
	 Hybrid CLP and IP systems

	 Solving Integer Programmes as Satisfiability Problems
	 Applications
	 Electrical Circuit Design Using Switches
	 Logical Net Design Using Gates
	 The Logical Analysis of Data (LAD)
	 Chemical-processing networks
	 Other Applications

	 References and Further Work
	 Exercises


	back-matter.pdf
	References
	Index




