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Preface

With the consistent progress of computer technology, computational acoustic
simulation is now becoming a popular, indispensable, and powerful tool for sound
environmental design of architectural and urban spaces. Indeed, there are high
expectations for a wide variety of applications for prediction of room acoustics and
noise propagation, development of building materials/components and audio
equipment, and visualization and auralization of sound environment, among other
effects. In the first decade of this century, remarkable advances have been made in
wave-based acoustic simulation techniques, which are steadily increasing their
practicality and applicability.

In the meantime, the Subcommittee of Computational Acoustics on Built
Environment of the Architectural Institute of Japan proposed a book in Japanese to
review a variety of numerical methods for wave-based acoustic simulation and
recent applications to architectural and environmental acoustics, and it was
published by the institute in 2011. Following the original concept and enriching
the contents, this present book was composed in English for international publi-
cation by the editorial board and new authors were added.

This book has two main parts, following an introduction providing an overview
of computational simulation of sound environment. Part I explains the funda-
mentals and advanced techniques for three popular methods, namely, the finite-
difference time-domain method, the finite element method, and the boundary
element method, as well as alternative time-domain methods. Part II demonstrates
various applications to room acoustics simulation, noise propagation simulation,
and acoustic property simulation for building components, and auralization.

All authors willingly contributed the latest fruits of their own research, which
led to the successful completion of this edition. The editors have tried to make
terminology and mathematical notation consistent to some extent; however, we
beg the readers’ pardon if incomplete descriptions remain. We hope that this book
will be helpful to researchers, engineers, and students in deepening their interests
and knowledge of computational acoustic simulation.
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The editors sincerely thank Dr. Yuko Sumino of Springer Japan for her advice
and assistance, and we are grateful to all authors for their cooperation. As a final
word, we deeply regret that one of the authors, Dr. Tomonao Okubo, passed away
during the pre-publication editorial process. This book is one of his posthumous
works and also serves as our tribute to the memory of a distinguished acoustician
and great friend.

Tokyo, March 2014 Tetsuya Sakuma
Shinichi Sakamoto

Toru Otsuru
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Chapter 1
Introduction

Tetsuya Sakuma and Toru Otsuru

Abstract This chapter introduces the significance of computational simulation for
sound environmental design, and overviews the progress of computational acoustics
for the last 5 decades. At present and in the future, computational acoustic simula-
tion will be more and more widely used in the practice of room acoustics, building
acoustics, noise control engineering, and so on. In the state of the art where a variety
of numerical methods have been developed, it is important to select a suitable method
for one’s application, with understanding the features of each method.

Keywords Sound environment ·Computational acoustics ·Architectural acoustics ·
Environmental acoustics · Room acoustics · Noise propagation · Wave-based
acoustic simulation

1.1 Computational Simulation for Sound Environment Design

In the late nineteenth century, W. C. Sabine started his study on the improvement of
acoustics in a lecture hall of the old Fogg Art Museum in Harvard University, USA.
After confirming that optical instruments, e.g., dancing flame, were of no help for
measuring sound pressure in ordinary room acoustics cases, Sabine used his own
ear and an organ pipe of 512 Hz and showed that the duration of the sound (known
today as “reverberation time”) decreases smoothly with the addition of lengths of
seat cushions. Then, in the fall of 1898, he could have found the “Sabine formula
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for reverberation time.” The formula marked the beginning of the science of archi-
tectural acoustics and its application to Boston Symphony Hall achieved satisfactory
results [1, 2].

Still now, Sabine formula is used widely. Sabine formula is simple and easy to use
especially for practical applications. However, it is also well-known that the formula
contains a contradiction in an extreme case: if the mean absorption coefficient equals
unity, reverberation time should equal zero because there is no reflections, physically;
but the formula does not become zero, mathematically.

To overcome the contradiction, in 1930, Eyring published a paper on reverberation
time in “DEAD” rooms [3]. At that time, radio broadcasting and sound pictures
(records or CDs at this time) were one of the most important and popular appliances
for people’s daily life world widely. With the poor microphones and other electrical
instruments at that time, better acoustics with short reverberation time, i.e., very
“dead,” in studios helped them to improve the quality of the radio broadcasting as well
as of sound picture recording, and the prediction of their reverberation times were of
significant importance for the modern society. In such cases, Sabine formula results
overestimations for absorptive materials which might cause economical losses.

Eyring introduced a discretely decaying absorption model with the concept of
“mean free path p,” and he developed Eyring formula. When a room is acoustically
“live,” the values calculated by Eyring formula come close to those by Sabine for-
mula. While, if the room is acoustically “dead,” the former gives shorter reverberation
times; even if in the extreme case with the mean absorption coefficient equals unity,
Eyring formula results reverberation time of zero correctly.

Though Eyring could have established the general formula for reverberation time,
the formula contains a constant k the magnitude of which is controlled by the mean
free path p. The formula loses its effectiveness if one needs to change the value k
depending on the rooms’ shapes. If a room’s shape is simple like cubical, cylindrical,
or spherical, the value of p can be calculated without much difficulty using the method
of images. However, if the shape is complicated to some extent, the problem would
become “unmanageable.”

To handle such unmanageable problems with unmanageably complicated shapes
and/or with unmanageably huge degrees-of-freedom, S. Ulman and von Neumann
had an idea to use random number and named it “Monte Carlo method.” In 1946,
the first electronic general-purpose computer Electronic Numerical Integrator and
Computer (ENIAC) was announced, and von Neumann was also one of the members
of its development team.

Thus, it is around 1950 when effective environments enough for solving such
unmanageable problems have been set up. Then, in 1958, utilizing Monte Carlo
method with a digital computer firstly on acoustics, Allred and Newhouse calculated
sound reflections up to 9,000 times in various rectangular rooms, i.e., unmanageably
complicated problems, and they examined the relationship between the mean free
paths and the proportions of rectangular rooms [4].

The wave equation governs any sound field and a room’s acoustics is given by
solving the equation with appropriate boundary conditions. If the sound field is
too complicated to be dealt with by any analytical approach, a numerical method
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would be effective to solve the wave equation. The effectiveness generally depends
on the balance of the complexity and the specification of a computer, speed, and
memory. The complexity and the degrees-of-freedom of an ordinary sound field on
architectural/environmental acoustics frequently arise so huge that we needed to wait
for next 50 years for computers with appropriate specifications to come.

Meanwhile, using computers with less specifications, various methods, like image
methods, ray methods, energy-based methods, and so on, have been developed and
applied to solve rooms’ sound fields. Although they are helpful especially for practical
application stages, their physical modelings of sound wave are not always appropri-
ate. Then, scale model techniques have also been developed and successfully applied
to many acoustic design of music halls, noise barriers, etc. Still now, the techniques
are helpful tools, but there remains some difficulties like finding materials that satisfy
similitude within required frequency ranges.

In these days of the 2nd decade in the twenty-first century, acoustic designs of
rooms in music halls, lecture rooms, hospitals, schools, public spaces, etc., are impor-
tant and the social demand for better acoustics is increasing; acoustic designs of
outside environments are also of growing importance. Whereas, the specifications
of computers have almost come to satisfy the requirements for wave-based acoustic
simulations. Therefore, various applications of wave-based simulations are expected
to be executed effectively. Such simulations can result more than thousands and mil-
lions of values of sound pressure and/or particle velocity. The values enable us to
investigate the sound fields in far more details than what Sabine or Eyring formula
gives us.

Note that the boundary conditions of the sound fields on architectural and envi-
ronmental acoustics are generally not only complicated but also miscellaneous. In
ordinary situations, atmospheric conditions, e.g., temperature and humidity, might be
unstable. One needs to be careful enough to bring such unmanageably complicated
and miscellaneous conditions to stay within the manageable ranges for meaningful
simulation results. The following chapters present useful explanations of fundamen-
tals as well as practical examples of computer simulations for sound environment
design.

1.2 Progress of Computational Acoustics

1.2.1 Advent of Wave-Based Acoustic Analysis

Just after the age of computers began in the 1950s, early studies on geometrical
acoustic analysis, based on the ray tracing method and the image source method,
had gone ahead for room acoustics. Geometrical acoustic analysis is that follows
energy propagation disregarding the wave nature of sound. With less computational
resources, it can apparently predict transient responses in large rooms such as concert
halls. Through various improvements in the methods, up to now commercial software
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Fig. 1.1 Schematics of FDM, FEM, and BEM

for geometrical analysis has been widely used in practical acoustic design. Never-
theless, it is no more than energy-based approximation, and in principle, different
from wave-based computation.

Researches on wave-based acoustic analysis appeared in the middle 1960s, and
then a variety of methods have been developed with the rapid progress of compu-
tational mechanics. Wave-based acoustic analysis is that models a sound field as a
discrete system in the time or frequency domain on the basis of the wave equation.
Since it has the potential to accurately simulate wave phenomena, high expectations
have been placed in the field of acoustics from the early stage. However, at the time,
its application to indoor and outdoor living spaces in the audible frequency range was
far from realization, due to the requirement of enormous computational resources.

As numerical methods, the three major techniques, the finite difference method
(FDM), the finite element method (FEM) and the boundary element method (BEM)
are well known. In the field of acoustics, following the pioneers’ work for those meth-
ods [5–7], the fundamental algorithms have been mostly established in the 1970s.
The three methods have respective features, which led to somewhat different expan-
sion of techniques and applications with the exponential increase of computational
resources.

1.2.2 Features of Numerical Methods

The three numerical methods, FDM, FEM, and BEM (Fig. 1.1), respectively have
advantages and disadvantages, depending on the object and purpose of simulation
such as for room acoustics, noise propagation, acoustic materials and components,
visualization, auralization, and so on [8]. In the following, the features of the three
methods are briefly described from the viewpoints of target space, frequency and
time domains, computational load, program coding, and applicability.

The FDM is a means of discretizing partial differential equations by using a nodal
grid system for a finite space. Although frequency domain analysis is possible based
on the Helmholtz equation [9], time-domain analysis is quite popular with explicit
schemes based on the Euler equations and the equation of continuity, called the finite-
difference time-domain (FDTD) method. In the FDM, orthogonal grids are widely
used for simple and easy coding, however requiring staircase approximation for
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boundaries. It can be applied to vibro-acoustic coupled systems and inhomogeneous
sound fields, but not directly for modal analysis. A usual way of computing frequency
domain responses is to apply the Fourier transform to the responses calculated in the
time domain.

The FEM is a means of discretizing domain integral equations that originate in the
weighted residual method, by subdividing a finite space into elements. The result-
ing system is composed of mass, stiffness, and damping matrices, which enables
both frequency and time-domain analysis, and also modal analysis in the eigen-
value problem of the system. For computing time-domain responses, a step-by-step
integration scheme is used in the time-domain analysis; otherwise, a superposition
technique is applied through the modal analysis. The FEM uses a similar number of
nodes to the FDM, however requiring more computational resources to solve a band
matrix system. There have been developed many general-purpose FEM codes, and
its applicability to vibro-acoustic coupled systems and inhomogeneous sound fields
is superior.

The BEM is a means of discretizing boundary integral equations by subdividing
boundaries into elements, regardless of exterior or interior space. Although time-
domain analysis is possible based on the boundary integral equation in the corre-
sponding domain, frequency domain analysis is more widely used. Nodes are placed
only on the boundaries, so that the number of nodes is considerably smaller than the
other two methods. However, the BEM is not always advantageous in computational
resources, because it requires solving a dense matrix system. In numerical compu-
tation, special treatments are required for singular integrals and the non-uniqueness
problem, and it is not feasible for analysis of inhomogeneous sound fields. Never-
theless, the strongest point is that exterior problems, such as scattering and radiation
problems in the free field, can be efficiently analyzed.

1.2.3 Application to Sound Environmental Simulation

The FDTD method was proposed in the field of electromagnetics in the late 1960s [5],
however until the 1990s, it had not been actively applied to acoustics due to the limita-
tion of computational resources. After that, the simplicity of coding was again recog-
nized with the need of time-domain analysis, and its application to room acoustics
simulation was started [10, 11]. In the early 2000s, simulation of concert halls was
realized up to the middle frequency range [12], and its practical use in room acoustics
design will be achievable in the near future. Recently, it is also applied to a variety
of noise propagation simulations, extending to vibro-acoustic coupling analysis of
sound insulation and floor impact noise [13, 14].

In the 1970s, the FEM has been intensively developed in various fields such as
structural mechanics, thermodynamics and fluid dynamics, and then commercial
software has widely spread as a general-purpose method. In the filed of acoustics, it
was used for analysis of frequency responses and normal modes in ducts, cavities,
and rooms [6, 15], and moreover for optimization of room shape regarding modal
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distribution in the low frequency range [16]. From the early stage, it has been also
applied to vibro-acoustic coupled systems and inhomogeneous sound fields [17, 18],
which is currently useful for evaluation of sound insulation, floor impact noise,
acoustic materials and components. With the recent progress of iterative solvers for
linear systems, its application to concert halls is being challenged [19].

In the 1960s, the boundary integral equation method [7] has begun to be applied
in the field of acoustics, and later, it was called the BEM with the use of boundary
elements in the late 1970s [20]. For the need of analysis of exterior problems, numer-
ical techniques in the BEM have been developed, and it has been mainly applied to
analysis of scattering and diffraction by obstacles, radiation from noise sources and
loudspeakers. Recently, owing to the development of iterative solvers and the fast
multipole algorithm [21, 22], acceleration of computation and reduction of memory
requirements were drastically achieved, and large-scale analysis becomes more and
more popular. Up to now, characteristics of diffusers and loudspeakers, and head-
related transfer functions can be simulated in the full audible frequency range [23],
and its practical application is spreading in detailed shape design of acoustic com-
ponents.
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Chapter 2
Finite-Difference Time-Domain Method
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Abstract In this chapter, analysis of sound and vibration using the Finite-Difference
Time-Domain method (FDTD method) is illustrated. In Sect. 2.1, the fundamentals
of the FDTD method are described. In the FDTD method, several error factors caused
by discretization of sound field are pointed out. As methods to solve such problems,
in Sect. 2.2, the compact finite difference is described in detail. The FDTD method
can not only be applied to acoustic problem of air-borne sound, but also vibroacoustic
problems such as a floor impact sound and a sound insulation problem through a wall
structure. In Sect. 2.3, therefore, application of the FDTD method to vibroacoustic
problems is focused on, and the theoretical background and its numerical formulation
are described in detail.
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Domain

Fig. 2.1 Discretization of sound field

2.1 Fundamentals

2.1.1 Basic Equations

Sound propagation in the air is described by two kinds of differential equations,
Euler’s equation and the equation of continuity.

ρ
∂u

∂t
+ ∂p

∂x
= 0, (2.1)

ρ
∂v

∂t
+ ∂p

∂y
= 0, (2.2)

ρ
∂w

∂t
+ ∂p

∂z
= 0, (2.3)

∂p

∂t
+ κ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0, (2.4)

where p, u, v, w are the sound pressure [Pa] and the particle velocities [m/s] in x, y, z
directions, respectively, κ, ρ are volume elastic ratio [N/m2] and density [kg/m3] of
the air, respectively.

By the Finite-Difference Time-Domain (FDTD) method, discrete physical
acoustic quantities, sound pressure, and particle velocity are approximately updated
based on finite difference schemes to which differential terms included in governed
Euler’s and continuity equations are substituted. For this purpose, in the first step,
as shown in Fig. 2.1, sound field under test should be discretized in rectangular
grids. Definition points of the sound pressure and the particle velocities are set at the
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appropriate positions in the discretized grids, and the difference equations regard-
ing the physical quantities are constructed. The difference equations based on the
governed differential equations are called as “difference scheme”. The most repre-
sentative difference scheme is “Yee algorithm” which is described in the following
section [1].

In order to approximate a value of first-order derivative of Eqs. (2.1)–(2.4) by a
central difference, definition points of sound pressure and particle velocities are set
at a half grid apart from each other as shown in Fig. 2.2. Such a kind of grid system
where different two kinds of physical quantities are defined at different points of
which distance is equal to a half of the grid size is called the staggered grid system.
In the same manner as the spatial grid their temporal definition points are also a half
time step apart from each other, as shown in Fig. 2.3.

Suppose that a spatial grid size and a discrete time interval are h and Δt , and that
a physical quantity q at spatial grid point (x, y, z) = (ih, jh, kh) at a time nΔt is
described as qn

i, j,k , then a sound pressure and particle velocities are expressed as,

pn+1/2
i, j,k , un

i+1/2, j,k , vn
i, j+1/2,k , wn

i, j,k+1/2. Using these expressions, differential terms

in space and time appearing in Eqs. (2.1)–(2.4) become

∂u

∂t

⎛⎛⎛n+1/2

i+1/2, j,k
= un+1

i+1/2, j,k − un
i+1/2, j,k

Δt
,

∂u

∂x

⎛⎛⎛n

i, j,k
= un

i+1/2, j,k − un
i−1/2, j,k

h
,
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∂p

∂t

⎛⎛⎛n

i, j,k
= pn+1/2

i, j,k − pn−1/2
i, j,k

Δt
,

∂p

∂x

⎛⎛⎛n+1/2

i+1/2, j,k
= pn+1/2

i+1, j,k − pn+1/2
i, j,k

h
.

Substituting these into Eqs. (2.1)–(2.4) leads to following difference scheme:

un+1
i+1/2, j,k = un

i+1/2, j,k − Δt

ρh

⎝
pn+1/2

i+1, j,k − pn+1/2
i, j,k

⎧
, (2.5)

vn+1
i, j+1/2,k = vn

i, j+1/2,k − Δt

ρh

⎝
pn+1/2

i, j+1,k − pn+1/2
i, j,k

⎧
, (2.6)

wn+1
i, j,k+1/2 = wn

i, j,k+1/2 − Δt

ρh

⎝
pn+1/2

i, j,k+1 − pn+1/2
i, j,k

⎧
, (2.7)

pn+1/2
i, j,k = pn−1/2

i, j,k − κΔt

h

⎨ ⎝
un

i+1/2, j,k − un
i−1/2, j,k

⎧

+
⎝
vn

i, j+1/2,k − vn
i, j−1/2,k

⎧
+

⎝
wn

i, j,k+1/2 − wn
i, j,k−1/2

⎧ ⎩
.

(2.8)

From Eqs. (2.5)–(2.8), we can find features of the FDTD method.

• A future value of particle velocity in each direction (at a time step n + 1) is
calculated by a known value of that (at a time step n) and a present values of sound
pressure (at a time step n + 1/2).

• A future value of sound pressure (at a time step n + 1/2) is calculated by a known
value of that (at a time step n − 1/2) and a present values of particle velocities in
all directions (at a time step n).

Therefore, after an initial distribution of sound pressure and particle velocities, the
distribution of sound pressure and particle velocity at the following time steps can
be calculated successively.

2.1.2 Boundary Conditions

Reflection or absorption characteristics of boundaries are generally provided by
surface acoustic impedance,

zn = p

un
, (2.9)

where zn is normal acoustic impedance and un is normal particle velocity.
In the simplest case where surface is perfectly reflective (rigid), the surface

impedance becomes infinite and it is easy to adapt this condition to the FDTD scheme
by making the particle velocity on the boundary nodes zero. On the other hand, for
perfectly absorbing condition, the situation is not so simple. In a special case where
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Fig. 2.4 Sound pressure and particle velocity near a boundary

a plane wave is incident perpendicularly to the absorbing boundary, the surface
acoustic impedance becomes equal to the specific impedance of air. In such a case,
zn = ρc (c is speed of sound). However, if this absorbing condition is applied to a
general case where the input sound is not plane wave but a cylindrical or spherical
wave and its incidence angle is not perpendicular, theoretically there exists some
reflection. More accurate perfectly absorbing boundary condition will be discussed
in a latter part (Fig. 2.4).

In the Yee algorithm, both physical quantities of sound pressure p and particle
velocity u, v, w are obtained successively in the calculation steps. Therefore, the
surface acoustic impedance can be roughly approximated as [2],

un+1
I+1/2,J,K = pn+1/2

I,J,K

zn
nx , (2.10)

vn+1
I,J+1/2,K = pn+1/2

I,J,K

zn
ny, (2.11)

wn+1
I,J,K+1/2 = pn+1/2

I,J,K

zn
nz, (2.12)

where n = (nx , ny, nz) is the normal vector of surface. Because the definition points
of sound pressure and particle velocity are a half grid size apart from each other, note
that this impedance is a rough approximation.

One of the most representative indeces describing absorption characteristics of
materials is the absorption coefficient α. The absorption coefficient, which is obtained
on energy-base, is generally used in building acoustics, room acoustics, and environ-
mental noise. The absorption coefficient is categorized into three kinds; normal inci-
dence absorption coefficient α0, reverberation absorption coefficient α, and oblique
incidence absorption coefficient αθ . Among them, the normal incidence absorption
coefficient α0 is related to the normal acoustic impedance as

α0 = 1 −
⎛⎛⎛⎛ zn − ρc

zn + ρc

⎛⎛⎛⎛ . (2.13)
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Therefore, if normal incidence absorption coefficient of the material is known, normal
acoustic impedance can be estimated as

zn = ρc
1 + √

1 − α0

1 − √
1 − α0

. (2.14)

Acoustic impedance is generally treated in frequency domain and is expressed by
complex values. By the above method, however, only real values can be treated for
expressing the acoustic impedance because the FDTD method deals with physical
quantities in real number, and such a treatment corresponds to a situation that acoustic
impedance is a constant real value for all the frequency range under the calculation.
In order to treat more complicated characteristics such that the acoustic impedance
is dependent on frequency, another physical model is necessary. For such a compli-
cated impedance model, some calculation models have been proposed. Sakamoto has
proposed the mechanical substitution model in which the acoustic boundary surface
has been substituted by an equivalent mechanical model being composed of mass,
spring, and resistance [3]. In order to treat more general impedance characteristics,
D. M. Sullivan has used Z transform to deal with a linear system in sound reflection
by boundary surface [4]. Escolano has used digital signal processing, in which an
acoustic admittance was modeled with IIR or FIR filters [5]. For a case where homo-
geneous porous materials such as glass fibrous board or urethane form are used as a
surface absorption material, Suzuki has proposed a calculation method by which the
inner space of the material was digitized and sound propagation was obtained based
on the Rayleigh model [6].

2.1.3 FDTD(2, 4) Method

In the Yee algorithm, central difference using two reference points secures
second-order accuracy. In order to raise the accuracy, various efforts have being
made. In this section, as the simplest method for the implementation, FDTD(2, 4)
method [7, 8] is introduced. FDTD(2, 4) means the second-order accuracy in time
and the fourth-order accuracy in space. The spatial accuracy is raised by adopting
the fourth-order scheme using four points central difference. For temporal deriv-
ative, however, the method remains to use two points central difference with the
second-order accuracy in order to avoid increase of computational memory usage.

The difference scheme with fourth-order accuracy using four reference points is
deduced from Taylor expansion of a function. Values of a function f at points x ±h/2
and x ±3h/2, f (x ± h/2) and f (x ± 3h/2), are expressed as follows, by using the
Taylor expansion around x .

f

(
x + h

2

)
= f (x) + 1

2
f (1)(x)h + 1

8
f (2)(x)h2 + 1

48
f (3)(x)h3 + 1

384
f (4)(x)h4 + · · ·,

(2.15)
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f

(
x − h

2

)
= f (x) − 1

2
f (1)(x)h + 1

8
f (2)(x)h2 − 1

48
f (3)(x)h3 + 1

384
f (4)(x)h4 + · · ·,

(2.16)

f

(
x + 3h

2

)
= f (x) + 3

2
f (1)(x)h + 9

8
f (2)(x)h2 + 9

16
f (3)(x)h3 + 27

128
f (4)(x)h4 + · · ·,

(2.17)

f

(
x − 3h

2

)
= f (x) − 3

2
f (1)(x)h + 9

8
f (2)(x)h2 − 9

16
f (3)(x)h3 + 27

128
f (4)(x)h4 + · · ·.

(2.18)

In order to deduce ∂ f
∂x from the above four equations, let us calculate {(2.15) −

(2.16)} × 27− {(2.17) − (2.18)}, then

f (1)(x) = − f (x + 3h/2) + 27 f (x + h/2) − 27 f (x − h/2) + f (x − 3h/2)

24h
+ η,

(2.19)

where η is an error term and it becomes fourth-order accurate as

η = 3

640
f (5)(x)h4. (2.20)

An FDTD scheme where temporal and spatial derivatives are approximated in
the second-order and fourth-order accuracy, respectively, is called the FDTD(2, 4)
method, and the schemes are expressed as

un+1
i+1/2, j,k = un

i+1/2, j,k − Δt

ρh

1∑
m=0

Cm

⎝
pn+1/2

i+m, j,k − pn+1/2
i−m, j,k

⎧
, (2.21)

vn+1
i, j+1/2,k = vn

i, j+1/2,k − Δt

ρh

1∑
m=0

Cm

⎝
pn+1/2

i, j+m,k − pn+1/2
i, j−m,k

⎧
, (2.22)

wn+1
i, j,k+1/2 = wn

i, j,k+1/2 − Δt

ρh

1∑
m=0

Cm

⎝
pn+1/2

i, j,k+m − pn+1/2
i, j,k−m

⎧
, (2.23)

pn+1/2
i, j,k = pn−1/2

i, j,k − κΔt

h

⎨ 1∑
m=0

Cm

⎝
un

i+1/2, j,k − un
i−1/2, j,k

⎧

+
1∑

m=0

Cm

⎝
vn

i, j+1/2,k − vn
i, j−1/2,k

⎧

+
1∑

m=0

Cm

⎝
wn

i, j,k+1/2 − wn
i, j,k−1/2

⎧ ⎩
. (2.24)

where C0 = 9
8 and C1 = 1

24 .
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2.1.4 Stability and Dispersion Error

Whereas the FDTD method is easy to be implemented, the method has a sensitive
nature in which a solution unexpectedly diverges or fluctuates depending on a calcu-
lation condition. Such natures as unexpected divergence and fluctuation are caused
by violation of stability condition and dispersion error, respectively. Among them,
the stability condition is simpler and it is provided by relationship between discrete
time step Δt and spatial grid size h as,

Δt ≤ h

c
(1 dimension), (2.25)

Δt ≤ h√
2c

(2 dimension), (2.26)

Δt ≤ h√
3c

. (3 dimension), (2.27)

for the Yee algorithm using temporal second-order. This condition is called the
Courant condition. As shown in the above equation, for appropriate parameter set-
ting, a discrete time step is proportional to a spatial grid size. Therefore, more precise
modeling or raising upper limit frequency by shortening a spatial grid size leads to
a temporal high resolution. In this section, this stability condition is theoretically
explained.

A simple technique for analyzing the stability and the dispersive phase error of
a finite difference scheme has been given by Von Neumann and Richtmyer [9].
Consider a plane wave with wave number k traveling in the (θ, ϕ) direction in polar
coordinates shown in Fig. 2.5. The sound pressure at a point (x, y, z) with a wave
number k (= ω/c) and an amplitude of 1 is assumed to be

p0(x, y, z, t) = e jkx x e jky ye jkz ze− jωt , (2.28)

where kx , ky , kz are directional component of the wave number k and they are
expressed as kx = k sin ϕ cos θ , ky = k sin ϕ sin θ , kz = k cos ϕ.

Sound pressure and particle velocity at their definition points on the staggered
grid system are expressed as

un
i+1/2, j,k = u0 Zn · e jkx (i+1/2)he jky( jh)e jkz(kh), (2.29)

pn+1/2
i, j,k = p0 Zn+1/2 · e jkx (ih)e jky( jh)e jkz(kh), (2.30)

where u0, v0, w0, p0 are initial values, Z is a complex amplification ratio per time
step. Substituting the above expressions into Eqs. (2.5)–(2.8) leads to
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Fig. 2.5 Traveling direction of a plane wave

u0

⎝
Z

1
2 − Z− 1

2

⎧
− Δt

ρh
· 2 j p0 sin

kx h

2
= 0, (2.31)

v0

⎝
Z

1
2 − Z− 1

2

⎧
− Δt

ρh
· 2 j p0 sin

kyh

2
= 0, (2.32)

w0

⎝
Z

1
2 − Z− 1

2

⎧
− Δt

ρh
· 2 j p0 sin

kzh

2
= 0, (2.33)

p0

⎝
Z

1
2 − Z− 1

2

⎧
− Δt

ρh

(
2 j sin

kx h

2
u0 + 2 j sin

kyh

2
v0 + 2 j sin

kzh

2
w0

)
= 0.

(2.34)
In a matrix form of Eqs. (2.31)–(2.34),

⎡
⎢⎢⎢⎢⎢⎣

Z
1
2 − Z

−1
2 0 0 −Δt

ρh 2 j sin kx h
2

0 Z
1
2 − Z

−1
2 0 −Δt

ρh 2 j sin
ky h

2

0 0 Z
1
2 − Z

−1
2 −Δt

ρh 2 j sin kzh
2

−κΔt
h 2 j sin kx h

2
−κΔt

h 2 j sin
kyh

2
−κΔt

h 2 j sin kzh
2 Z

1
2 − Z

−1
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u0
v0
w0
p0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

(2.35)

A value of determinant of the 4 × 4 matrix which appears in Eq. (2.35) should be
zero, in order that the vector [u0 v0 w0 p0]T is non-zero vector. This condition leads
the following equation regarding the complex amplification ratio Z as follows:

Z2 − 2AZ + 1 = 0, (2.36)
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A = 1 − 2

(
cΔt

h

)2 (
sin2 kx h

2
+ sin2 kyh

2
+ sin2 kzh

2

)
. (2.37)

A solution of Eq. (2.36) is

Z =
{

A ± √
A2 − 1 (A < −1)

A ± j
√

1 − A2 (−1 ≤ A ≤ 1).
(2.38)

If an absolute value of Z in Eq. (2.38) is greater than 1, the solution increases
with advance of time steps and diverges at last. Accordingly, −1 ≤ A ≤ 1 is a
necessary condition for the solution being stable. Actually in this case, |Z | is equal
to 1 and arg Z = arctan A/

√
1 − A2. The fact means that the wave amplitude does

not change and the phase of the wave shifts with the progress of time steps. Then,
Eq. (2.37) leads to

sin2 kx h

2
+ sin2 kyh

2
+ sin2 kzh

2
≤

(
h

cΔt

)2

. (2.39)

For arbitrary k,

Δt ≤ h√
3c

(2.40)

can be obtained because sin(kx h/2) ≤ 1, sin(kyh/2) ≤ 1, sin(kzh/2) ≤ 1. A value
of A is dependent on the wave number k (see Eq. (2.37)) and therefore the degree
of the numerical phase shift is also dependent on the wave number k. This error of
phase shift owing to frequency is called dispersion error. Figure 2.6 shows an example
of a pulse propagation with dispersion error. At a center point in a cubic room of
201 h ×201 h ×201 h, a pulse source is emitted and its pulse propagation is detected
at a corner point. Comparing with a theoretical solution reveals that dispersion error
accumulates in 10,000 time steps to raise numerical fluctuations. The influence of
dispersion error on calculation results of sound propagation becomes severer as size
of sound field under test is larger. Therefore, various efforts have being made to
reduce such dispersion error heretofore as shown in the following section.

2.1.5 Absorbing Boundary Condition

When the FDTD method, which is categorized in a domain-type is applied to a free
field, a special treatment is required to reduce reflection sound from field termina-
tions. As a concept of absorbing boundary condition (ABC), we can choose two
kinds; Differential-based Absorbing Boundary Condition (D-ABC) and Material-
based Absorbing Boundary Condition (M-ABC). The former deals with progressive
and regressive waves at a terminating surface, and the latter absorbs sound energy
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Fig. 2.6 Numerical fluctuation caused by dispersion error appearing in a numerical result

inside a numerically lossy media with sufficient thickness installed along surround-
ing boundary. As representative D-ABC and M-ABC, hereafter, the Mur ABC and
the perfectly matched layer (PML), respectively, will be introduced.

2.1.5.1 Mur Absorbing Boundary Condition

The simplest and most commonly used grid truncation technique for open-field
FDTD modeling is the Mur ABC [10]. The Mur ABC is based on a concept in which
only progressive wave outgoing to an absorbing boundary exits and there exists no
regressive wave inbound sound field at truncation mesh of the boundary. Now, let us
consider one-dimensional wave equation in x-direction regarding x-component of
particle velocity.

(
∂2

∂x2 − 1

c2

∂2

∂t2

)
u = 0. (2.41)

The above second-order differential equation is transformed as

∂u

∂x
− 1

c

∂u

∂t
= 0, (2.42)

∂u

∂x
+ 1

c

∂u

∂t
= 0, (2.43)

then the solutions of Eqs. (??)–(2.43) mean a progressive and a regressive plane
waves, respectively. For example, in the case of Fig. 2.7, in which absorbing boundary



22 S. Sakamoto et al.

Fig. 2.7 A plane wave incidence to an absorbing boundary

is set at x = h/2, there exists a progressive wave in negative x-direction, Eq. (2.43)
should be applied at x = h/2. With adopting the grid system to the Yee’s staggered
system, discretization of Eq. (??) at a time step (n + 1/2)Δt by,

∂u

∂x

⎛⎛⎛⎛
n+ 1

2

i, j,k
= 1

c

∂u

∂t

⎛⎛⎛⎛
n+ 1

2

i, j,k
, (2.44)

leads,

⎝
un+1

3/2, j,k + un
3/2, j,k

⎧
−

⎝
un+1

1/2, j,k + un
1/2, j,k

⎧
2h

=
⎝

un+1
3/2, j,k + un+1

1/2, j,k

⎧
−

⎝
un

3/2, j,k + un
1/2, j,k

⎧
2cΔt

. (2.45)

By arranging Eq. (2.45) regarding a particle velocity at a truncation boundary
grid, the Mur ABC is obtained as

un+1
1/2, j,k = un

3/2, j,k − cΔt − h

cΔt + h

⎝
un

1/2, j,k − un+1
3/2, j,k

⎧
. (2.46)

Note that the above formulation is premised that a plane wave is normally inci-
dent on the absorbing boundary. Therefore, its accuracy deteriorates for an oblique
incidence or a spherical wave incidence.

2.1.5.2 Perfectly Matched Layer

By D-ABC, a nonreflective boundary is approximated by a concept that only outward
wave through a truncation boundary propagates and there exists no inward wave
propagating to the problem region.

On the other hand, by M-ABC, sound wave penetrates into a lossy media with
a certain thickness, which is adjacent to a problem region, and the sound energy
vanishes in the lossy media, and consequently, reflecting sound from the truncation
boundary is decreased. The PML developed by Berenger [11], which utilizes such a
sound absorbing process, is the most flexible and efficient M-ABC.
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Fig. 2.8 Setting of PML
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The following equations to which resistance terms specified by Rx , Ry and Rz

are introduced are basic equations of the acoustic PML.

ρ
∂u

∂t
+ Rx u + ∂p

∂x
= 0,

∂px

∂t
+ Rx

ρ
px + κ

∂u

∂x
= 0, (2.47)

ρ
∂v

∂t
+ Ryv + ∂p

∂y
= 0,

∂py

∂t
+ Ry

ρ
py + κ

∂v

∂y
= 0, (2.48)

ρ
∂w

∂t
+ Rzw + ∂p

∂z
= 0,

∂pz

∂t
+ Rz

ρ
pz + κ

∂w

∂z
= 0, (2.49)

p = px + py + pz . (2.50)

As shown in Eqs. (2.1)–(2.4) and Eqs. (2.47)–(2.50), governed equations in the
PML are different from those in the air, and therefore, discontinuity of sound propa-
gation media might cause sound reflection. The PML, however, contrives treatment
of resistance terms so that the specific impedance of the PML media becomes equal
to that of the air, and consequently, the impedance matching ensures no reflection
from the interface-surface between the air and the PML media. As a special case,
Rx = Ry = Rz = 0 leads Eqs. (2.1)–(2.4), which describe sound propagation in
the air.

Figure 2.8 shows how to set PML layer for two-dimensional field. In the figure,
upper PML diminishes a wave going in positive y-direction by introducing Ry as a
positive value. Resistance term in x-direction does not contribute to reduction in the
wave, so Rx is made to be zero. On the other hand, the right-hand side layer which
weakens a wave going in positive x-direction has a positive value as a parameter of
Rx and zero value as that of Ry .



24 S. Sakamoto et al.

Fig. 2.9 Setting of a
cubic sound field modeling
a free field
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When medium changes between two layers, the discontinuity of the medium
results in a reflection from the interface, and the reflection may cause a numerical
error. In the PML calculation, such a numerical error is usually reduced by smooth
change of value of R in the PM layer. When total number of grids of a PM layer is N ,
for example, the value of R is given with a function of distance from the interface as

R(ih) = Rmax

(
ih

Nh

)m

, (2.51)

where m is a constant determining spatial distribution pattern of R. As is shown in
the equation, when i = 0, R is made to be zero and a sound wave smoothly penetrates
through the PM layer. As i is increased, the value of R becomes rapidly larger. The
PML calculation gradually decreases the amplitude of the traveling wave in the lossy
media with a certain depth, and therefore the calculation method is robuster for the
incidence angle than D-ABC. In order to see a difference in absorption characteristics
between D-ABC and M-ABC, transition of sound pressure distribution for a cubic
sound field shown in Fig. 2.9 with perfect absorption on all six walls was calculated
for the following two cases—1: Mur-ABC, 2: PML with N = 20. Comparison of the
calculation results are shown in Fig. 2.10. The figure shows every 64Δt snapshot of
sound pressure distribution on a center x-y plane where a sound source exists. In a
calculation result of Mur-ABC, slight reflection is seen, especially, amplitudes of the
reflection from corners are larger than those from centers of boundary surfaces. On
the other hand, in the case of the PML, penetrating wave gradually diminishes in the
absorbing layer. As is seen in the figure, highly efficient perfectly absorbing boundary
condition is realized by using the PML, but it should be noted that computational
load becomes much larger than that of D-ABC from viewpoints of both of computer
storage necessity and computational time.
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Fig. 2.10 Snapshots of sound pressure distribution in horizontal plane which includes a source

2.2 Techniques for High Accuracy

When accurate values of differentiations by finite difference are required, a grid
spacing should be small compared to a typical wave length in the problem. Therefore,
for a high frequency problem, the grid spacing has to be small and the degree of
freedom amounts to a huge value. In order to resolve this problem, a higher order
or a compact difference method can be applied. Since the time integration must be
fulfilled after evaluating spatial differentiations, the accuracy of the time marching
procedure must be maintained. In order to carry out the time integration accurately,
a symplectic integration can be applied in the acoustic problem.

2.2.1 Compact Finite Difference

In the acoustic FDTD simulation, the variables are usually defined on a staggered grid.
On the staggered grid the scalar variables (pressure, mass density, sound speed, etc.)
are stored in the cell centers of the control volumes, whereas the particle velocities
are located at the cell faces.

Since small grid spacing compared to the typical wavelength is required to obtain
an accurate differential value when a conventional finite difference scheme is used,
the grid spacing has to be small and the degree of freedom becomes huge for high
frequency problems. In order to resolve this problem, a higher order explicit or a
compact finite difference has been applied [12]. In the compact finite difference,
differential values are coupled and fewer grid points are required for constructing
the difference formula than the explicit finite difference. The differential value is
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Fig. 2.11 Evalutation points of differential and difference values on the uniform staggered grid

determined by the linear coupled equations whose coefficient matrix is a band matrix.
A fast algorithm can be applied to solve the linear equations with a tridiagonal
coefficient matrix.

The numerical dispersion of a compact finite difference on a uniform staggered
grid can be minimized by adjusting the coefficients. The evaluation points of the
differentiation and the difference values on staggered the uniform staggered grid
are illustrated in Fig. 2.11. Introducing a parameter α, we consider a compact finite
difference on a grid with a uniform spacing h,

α f ′
i+1 + f ′

i + α f ′
i−1 = b

fi+3/2 − fi−3/2

3h
+ a

fi+1/2 − fi−1/2

h
+ η. (2.52)

Here, the coefficients a, b and the error term η are related to α by

a = 3

8
(3 − 2α), b = 22α − 1

8
,

η = 9 − 62α

1920
h4 f (5) + O(h6). (2.53)

The differential values are calculated by solving a linear equation with a tridiagonal
coefficient matrix. When α = 1/22, the coefficient b vanishes and the compact
finite difference is represented by a least number of grid points. Thus, this case
is convenient for the simulation of the wave propagation in a region of complex
configuration. When α = 9/62, the fourth-order error term in η vanishes and the
difference equation becomes sixth order. We evaluate effective wave number k′ which
is defined by the function f (x) = sin(kx) and its first-order differentiation k′ cos(kx)

evaluated by a finite difference. The grid wave number w = hk and the effective grid
wave number w′ = hk′ are defined by the grid spacing h. For example, w = π/2
means that 4 grid points exist per one wavelength (4 PPW: point per wavelength).
By the second-order explicit finite difference on the staggered grid, the effective grid
wave number becomes w′ = 2 sin(w/2). This deviates from the exact value when
the grid wave number is not very small. On the other hand, for the compact finite
difference with α, we obtain

w′(w, α) = 2a sin(w
2 ) + 2

3 b sin( 3w
2 )

1 + 2α cos(w)
. (2.54)
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Fig. 2.12 Effective grid wave number error for various α

The exact value is w = w′ and the deviation from the exact value causes numerical
dispersion error. Some properties of w′, i.e.,

w′(0, α) = 0, w′(π, α) = 7 − 10α

3(1 − 2α)
, (2.55)

w′(π, α) < π, when α <
3π − 7

6π − 10
≈ 0.27, (2.56)

are derived. Therefore, when α is less than 0.27, there exists a point w1 (0 < w1 < π)

where w = w′, i.e.,
w′(w1, α) = w1. (2.57)

Furthermore, w′ > w holds in the interval (0, w1), and w′ < w in (w1, π ). If
α > 9/62 then w′(w, α) is larger than the exact grid wave number in the vicinity
of w = 0. General tendency is that, when α is small, the effective wave number
becomes less than the theoretical value even if the PPW is not so small. On the other
hand, when α is large, the effective wave number can approximate the theoretical
value well up to the region of short wavelength (w ≥ π/2). The effective grid wave
number error is shown in Fig. 2.12. For w1 in (0, π ), w1 and α are related by

α = 27 sin( 1
2w1) − sin( 3

2w1) − 12w1

18 sin( 1
2w1) − 22 sin( 3

2w1) + 24w1 cos(w1)
. (2.58)

Therefore, adjusting α can improve the accuracy of the finite difference in a given
interval of w. In order to optimize α, we have adopted the following strategy. First,
we set the maximum wave number w0 to be analyzed. Next, α is determined so that
the maximum absolute value of relative error in the interval (0, w0) is minimized.

The maximum absolute value of relative error in the interval of (0, w0) is plotted
in Fig. 2.13 where the abscissa means α. We see that the minimization is attained
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Table 2.1 Maximum wave number w0, optimized α and maximum relative error. The optimization
of α reduces the maximum absolute value of relative error below 10−5

w0 Point per wave Optimized Maximum
length (PPW) α relative error

0.25π 8 0.14905 4.5 × 10−6

0.3π 6.67 0.1508 1.4 × 10−5

0.4π 5 0.15555 8.1 × 10−5

0.5π 4 0.1621 3.3 × 10−4

0.55π 3.64 0.16625 6.1 × 10−4

by adjusting the parameter α. In Table 2.1, maximum wave number, optimized α,
and maximum absolute value of relative error are shown. The maximum absolute
value of relative error is reduced even when the PPW is not so large. This estimation
has been done using a local property of coefficients, only. However, in the compact
finite difference, the differential values are coupled with those of the adjacent points.
Therefore, the differential value computed by the compact scheme is influenced by
those of neighboring grid points. When the interval is finite and non periodic, the
boundary difference scheme must be also considered.

There are two types of boundary differences in the staggered grid. The first type is
that the evaluation point of the differential value is outside of the interval of difference
value estimation. This type corresponds to the boundary difference of the pressure
which is utilized for time evolution of the velocity. However, this differential value
need not to be evaluated for a rigid boundary condition in the acoustic problem
because the velocity on the rigid boundary is always zero. The evaluation points of
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Fig. 2.14 Evaluation points of differential and difference values on boundary grid

the differentiation and the difference values on the boundary grid are illustrated in
Fig. 2.14. The compact finite difference formula on the boundary is

f ′
0 + αb f ′

1 = 1

h
(ab f1/2 + bb f3/2 + cb f5/2 + db f7/2 + eb f9/2) + η. (2.59)

Here, coefficients are related to αb by

ab = −22αb + 93

24
, bb = 17αb + 229

24
, cb = 3αb − 75

8
,

db = −5αb + 111

24
, eb = αb − 22

24
, (2.60)

and η is the error term,

η = (
71αb

1920
− 563

640
)h4 f (5) + O(h5). (2.61)

For a function f (x) = cos(kx) + j sin(kx), its differential value approximated by
a finite difference, f ′(x) = jk′[cos(kx) + sin(kx)] is evaluated. Using grid wave
number w = hk, w′ is given by

jw′ = abe jw/2 + bbe j3w/2 + cbe j5w/2 + dbe j7w/2 + ebe j9w/2

1 + αbe jw
. (2.62)

Global consideration must be executed because the differential values on the inner and
boundary grid points are coupled. As an attempt to investigate the nonlocal property
of the compact finite difference scheme, a spatial distribution of the amplitude error
in a whole interval of a given grid is calculated by solving a system of linear equations
with the tridiagonal coefficient matrix. The spatial distribution of the amplitude error
in the interval with n = 60 grid points is demonstrated in Fig. 2.15. The wavelength
is set to be 6 grid spacing (6 PPW). For the estimation of the compact difference, α

of inner interval (2 ≤ i ≤ n − 2) is set to be the optimum value for the frequency
range below 6 PPW. For the evaluation of differentiation on the grid points next to
the boundary (i = 1, n−1), α is set to be 1/22. At the grid points on both boundaries,
αb is set to be 21.88. The error is the largest on each boundary grid point i = 0, n.
We evaluate the maximum absolute value of amplitude error on the boundary grid
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20 20.5 21 21.5 22 22.5 23.5 24 24.5 25 25.5 26
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

23
αb

Maximum Error for Minimum 6 PPW
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point in the frequency range to be considered. The dependence of the error on αb is
demonstrated in Fig. 2.16. The absolute value of the relative error is not small in this
case. Moreover, when αb is near 22, the inverse of 1/22, the maximum amplitude
error diverges. Thus, we can conclude that the optimization may not work well for
this type of boundary difference when the value of PPW is not large.

The second type of boundary difference is that the evaluation point of
differentiation lies between grid points for difference estimation. This case corre-
sponds to the boundary difference of velocity in acoustic FDTD which is utilized
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Fig. 2.17 Evaluation points of differential and difference values on boundary grid

for time evolution of the pressure at the boundary cell. The evaluation points of
the differentiation and the difference values on the boundary grid is illustrated in
Fig. 2.17. Its compact difference equation is

f ′
0 + αb f ′

1 = 1

h
(ab f−1/2 + bb f1/2 + cb f3/2 + db f5/2 + eb f7/2) + η. (2.63)

Relations among coefficients are

ab = αb − 22

24
, bb = −27αb + 17

24
, cb = 9αb + 3

8
,

db = −αb − 5

24
, eb = 1

24
, (2.64)

and

η =
⎝

− 3αb

640
+ 71

1920

⎧
h4 f (5) + O(h5). (2.65)

By the similar consideration, we obtain the effective grid wave number w′ for this
type as

jw′ = abe− jw/2 + bbe jw/2 + cbe j3w/2 + dbe j5w/2 + ebe j7w/2

1 + αbe jw
. (2.66)

The absolute value of amplitude error of the compact difference in the interval with
60 grid points is illustrated in Fig. 2.18. Here, the grid wave number is set to be
π/3 (6 PPW). The parameter αb in Eq. (2.64) for the inner grid points also is set
to be the optimum value for the frequency range below 6 PPW. At the grid point
on each boundary, αb is set to be 8.21. Though the absolute value of the error is
large at the grid point on each boundary, it is less than the other case. The maximum
absolute value of relative amplitude error is also estimated on the boundary point in
the frequency range below a specified upper bound. By a similar procedure to the
previous case, the amplitude error is minimized to 2.68 ×10−2 when αb takes a value
around 8.212. However, the efficacy of the optimization is not large for 6 PPW.

From the discussions above, the dispersion error in the finite difference at the
boundary grid point cannot be greatly improved when the grid spacing is not small
enough compared to the wavelength to be considered.
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Fig. 2.18 Distribution of absolute value of relative amplitude error on the grid with 60 points. The
grid wave number is set to be π/3 (6 PPW)

2.2.2 Improvement of Time Integration

Since the time integration must be fulfilled after evaluating spatial differentiations
in FDTD, the next aim is to improve the time marching procedure. For the long
time integrations, a symplectic integration method is an excellent scheme when the
dynamics of the system possesses a Hamiltonian structure. The symplectic integra-
tion scheme is developed for the last few decades and is applied to particle dynamics
and celestial mechanics. Higher order schemes of symplectic integration are consid-
ered by many authors. Extensions of the theory to a partial differential equation have
been investigated recently. Here, we do not go far into theoretical details of the sym-
plectic integration. Instead, the acoustic simulation is carried out by the symplectic
integration keeping higher accuracy during long time steps.

We describe the outline of the symplectic integral method. When a set of ordinary
differential equations for variables p and q are described by the following form:

dp

dt
= f (q),

dq

dt
= g(p), (2.67)

the time marching by a time step Δt is carried out through m intermediate stages.
The operations at i-th stage are

Pi = Pi−1 + Δtbi f (Qi−1),

Qi = Qi−1 + Δt b̃i g(Pi ), (2.68)
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Table 2.2 Coefficients for Ruth’s formula

i = 1 i = 2 i = 3

bi 7/24 3/4 −1/24
b̃i 2/3 −2/3 1

where

P0 = p(t), Q0 = q(t),

Pm = p(t + Δt), Qm = q(t + Δt). (2.69)

The coefficients bi and b̃i for Ruth’s formula [13] are shown in Table 2.2.
For sound wave propagation, p and q are considered as acoustic pressure and velocity
vector v, respectively. Also, f (q) and g(p) are described by the compact finite
differences in velocity vector v and pressure p, respectively.

Simulations of one-dimensional wave propagation have been carried out. We have
chosen the initial wave form f (x) as

f (x) = 1

2
exp[− ln 2(

x

3
)2] (2.70)

on the grid whose spacing h = 1.0. The sound speed c is supposed as unity. We let the
initial Gaussian form travel up to 10,000 time steps by using three different schemes.
The shapes of the waves at several time steps simulated by various schemes are
illustrated in Fig. 2.19. In each figure, the abscissa is x ′ = x −ct . The result obtained
by the combination of optimized fourth-order compact finite difference (α = 0.1475)
and Ruth’s time integration scheme is excellent. Even at the time step of 10,000, the
wave shape almost retains the initial form by this scheme. Therefore, the symplectic
method is an effective integration technique for long time step computations.

2.3 Application to Vibroacoustic Problems

In this section, application of the FDTD method to vibroacoustic problems such as
a sound radiation problem and a structure-borne sound problem is presented. Herein
two types of modeling methods for solid part like walls and floors, solid modeling
and beam-plate modeling, are considered. The former is a straightforward method
where longitudinal and shear waves are considered and solid part is discretized
with many small volumes. Using the solid modeling, physical phenomena can be
relatively well expressed but the computational cost will become huge. On the other
hand, the latter considers solid part as a composition of plate elements. Therefore,
longitudinal and bending waves are taken into account with plate theories. Although
there are some limitations in applicability, this modeling has an advantage of the
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Fig. 2.19 Comparison of the wave forms at several time steps obtained by a the conventional
FDTD scheme (explicit second-order finite difference and leap frog time integration) with CFL
number 0.9, b the fourth-order compact finite difference and the leap frog time integration with
CFL number = 0.25, and c the optimized fourth-order compact finite difference (α = 0.1475) and
Ruth’s time integration with CFL number = 0.5
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small computational load. The following introduce the formulations of vibroacoustic
FDTD method according to the modeling method. Numerical examples of this section
are shown in Sect. 7.6.

2.3.1 Solid Modeling

2.3.1.1 Basic Equations

To analyze vibrations of solid, consider equations of motion and constitutive equa-
tions of three-dimensional elastic bodies [14]. When probing vibration, one of the
most important phenomena is damping. Many formulations and implementations
have been suggested from various viewpoints, regardless if the medium is solid or
fluid [15–18]. Herein two types of damping terms, which give distinct damping
characteristics, are considered [19]. Then, under the conditions of small deforma-
tion, adiabatic transition, and athermic medium, the motion equations and constitu-
tive equations with two types of damping terms can be expressed in tensor notation
as [20]

ρ
∂vi

∂t
+ ζvi = ∂Ti j

∂a j
, (2.71)

Ti j = ci jklηkl + ξi jkl ekl , (2.72)

where i, j, k, l = x, y, z. ρ is the density, v is the velocity vector, and t is time. ζ is
a constant to describe the damping force proportional only to the velocity, while T
is the stress tensor. a (= [x, y, z]) is the position vector, c is the stiffness tensor, and
Φ is the strain tensor. ξ is the viscosity tensor, which describes the damping force
proportional to the second-order space derivative of the velocity, and e (= ∂Φ/∂t) is
the strain velocity tensor. It should be noted that combining the two types of damping
terms ζ and ξ yields similar characteristics to Rayleigh damping [21]. Considering
the reciprocities of stiffness and viscosity, stiffness tensor c and viscosity tensor ξ can
be abbreviated to their six-by-six matrix forms, each of which has 21 independent
constants.

Additionally, if an orthotropic medium is considered, the constants can be reduced
to nine independent ones. In this case, the relationship between the stiffness matrix
C and Young’s modulus E , shear modulus G, and Poisson’s ratios υ can be given by

C = S−1, (2.73)
υyz

Ey
= υzy

Ez
,
υzx

Ez
= υxz

Ex
,
υxy

Ex
= υyx

Ey
, (2.74)

http://dx.doi.org/10.1007/978-4-431-54454-8_7
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex
−υxy

Ex
−υxz

Ex
0 0 0

−υyx

Ey

1

Ey
−υyz

Ey
0 0 0

−υzx

Ez
−υzy

Ez

1

Ez
0 0 0

0 0 0
1

G yz
0 0

0 0 0 0
1

Gzx
0

0 0 0 0 0
1

Gxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.75)

where S is the compliance matrix. When dealing with vibroacoustic problems,
behaviors of a fluid should be described with its basic equations. Interestingly,
although Eqs. (2.71) and (2.72) with a stiffness matrix are derived for a solid,
they can also express governing equations of a fluid with an appropriate stiffness
matrix, i.e., the bulk modulus κ and zero should be substituted for c11 = c22 =
c33 = c12 = c21 = c13 = c31 = c23 = c32 and the other components of c,
respectively[22]. In this case, Eq. (2.72) can be interpreted as the constitutive equa-
tion of a Newtonian fluid. The linearized Navier–Stokes equation where the con-
vection term and volumetric force are neglected can be derived by neglecting the
term ζvi of Eq. (2.71) and substituting Eq. (2.72) into Eq. (2.71). As for damping
terms, χ ≡ ξ12 = ξ21 = ξ13 = ξ31 = ξ23 = ξ32 mean the second viscosity [23] and
γ ≡ ξ44 = ξ55 = ξ66 mean the shear viscosity, then ξ11 = ξ22 = ξ33 can be written
as χ + 2γ . Note that the dilatational viscosity can be expressed as χ + (2/3)γ . The
sound pressure can be obtained by calculating −κ∇ · u, where u is the displacement
vector that can be calculated by integrating the velocity vector v over time.

For discretization with a difference scheme of the leap-flog algorithm, Eqs. (2.71)
and the time-derivative form of (2.72) are rewritten as

ρ
∂vx

∂t
+ ζvx = ∂Txx

∂x
+ ∂Txy

∂y
+ ∂Tzx

∂z
, (2.76)

ρ
∂vy

∂t
+ ζvy = ∂Txy

∂x
+ ∂Tyy

∂y
+ ∂Tyz

∂z
, (2.77)

ρ
∂vz

∂t
+ ζvz = ∂Tzx

∂x
+ ∂Tyz

∂y
+ ∂Tzz

∂z
, (2.78)

∂Txx

∂t
= c11

∂vx

∂x
+ c12

∂vy

∂y
+ c13

∂vz

∂z

+ ξ11
∂2vx

∂x∂t
+ ξ12

∂2vy

∂y∂t
+ ξ13

∂2vz

∂z∂t
, (2.79)

∂Tyy

∂t
= c12

∂vx

∂x
+ c22

∂vy

∂y
+ c23

∂vz

∂z
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+ ξ12
∂2vx

∂x∂t
+ ξ22

∂2vy

∂y∂t
+ ξ23

∂2vz

∂z∂t
, (2.80)

∂Tzz

∂t
= c13

∂vx

∂x
+ c23

∂vy

∂y
+ c33

∂vz

∂z

+ ξ13
∂2vx

∂x∂t
+ ξ23

∂2vy

∂y∂t
+ ξ33

∂2vz

∂z∂t
, (2.81)

∂Tyz

∂t
= c44

∂vz

∂y
+ c44

∂vy

∂z
+ ξ44

∂2vz

∂y∂t
+ ξ44

∂2vy

∂z∂t
, (2.82)

∂Tzx

∂t
= c55

∂vx

∂z
+ c55

∂vz

∂x
+ ξ55

∂2vx

∂z∂t
+ ξ55

∂2vz

∂x∂t
, (2.83)

∂Txy

∂t
= c66

∂vy

∂x
+ c66

∂vx

∂y
+ ξ66

∂2vy

∂x∂t
+ ξ66

∂2vx

∂y∂t
, (2.84)

where vx is the x-directional velocity, vy is the y-directional velocity, and vz is the
z-directional velocity. Txx is the x-directional normal stress, Tyy is the y-directional
normal stress, and Tzz is the z-directional normal stress. Tyz is the shear stress defined
in the yz-plane, Tzx is the shear stress defined in the zx-plane, and Txy is the shear
stress defined in the xy-plane.

2.3.1.2 Averaging of Material Parameters

Figure 2.20 shows the arrangement of reference points for the stress and velocity on a
nonuniform staggered-grid system [24–27]. Δx , Δy, and Δz are the spatial intervals
between the reference points of shear stress and velocity for the x , y, and z directions.
Point locations of normal stress are expressed as i , j , and k, while point locations
of shear stress and velocity should shift according to the staggered-grid system. For
example, the point locations of the xy-shear stress are expressed as i + 0.5, j + 0.5,
and k, whereas those of the x-velocity are expressed as i + 0.5, j , and k. Δt is the
time interval for the calculation, and the elapsed-time counter is given by superscript
n for normal and shear stresses and n + 0.5 for velocities.

The target region of a vibroacoustic problem can be filled with a heterogeneous
orthotropic material, which is governed by Eqs. (2.71) and (2.72). Herein, all the
material parameters are defined at the reference points of normal stress, and the
mean values are used as reference points for shear stress and velocity [28–32].
The weighted arithmetic averages are employed at the reference points of veloc-
ity [33], for example,

ρ (i + 0.5, j, k) = ρ (i, j, k) Δx (i) + ρ (i + 1, j, k) Δx (i + 1)

Δx (i) + Δx (i + 1)
. (2.85)

At the reference points of shear stress, the weighted harmonic averages are employed
[33], for example,



38 S. Sakamoto et al.
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. (2.86)

Additionally, the damping constants are given by their arithmetic averages at the
velocity points and by their harmonic averages at the shear-stress points.

2.3.1.3 Boundary Conditions

A general method should accommodate a variety of boundary conditions such as
a fixed boundary, free boundary, and perfectly absorptive boundary. For absorptive
boundary, PML would be the most reliable option [34]. Implementation of the PML
to this method is introduced in reference [19, 20]. Hence, this section focuses on two
boundaries: a fixed boundary and a free boundary [33].

A fixed boundary is considered to be the boundary with the rigid body, which
has infinite density and infinite shear modulus. Therefore, the averaged density as
shown in Eq. (2.85) becomes infinite and then the velocity normal to the fixed sur-
face becomes zero. This condition can be directly satisfied for the reference points
of velocity located on the boundary. However, because the reference points of the
velocity components parallel to the boundary surface are not defined just on the
boundary, virtual reference points are assumed outside the boundary, and their val-
ues are determined so that the mean velocities on the boundary are zero. For example,
if the plane i + 0.5 = I + 0.5 is assumed to be a fixed boundary, then

vx (I + 0.5, j, k) = 0, (2.87)
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vy (I, j ± 0.5, k) + vy (I + 1, j ± 0.5, k) = 0, (2.88)

vz (I, j, k ± 0.5) + vy (I + 1, j, k ± 0.5) = 0. (2.89)

Additionally, in Eq. (2.86), the related term to the rigid body in the denominator
becomes zero. For example, the averaged shear modulus on the fixed boundary with
a uniform mesh becomes 4G/3 when one of the adjacent four media is the rigid body
and the others have the same shear modulus G.

On the other hand, a free boundary is considered to be the boundary with vacuum,
where the density and shear modulus are zero. The averaged shear modulus as shown
in Eq. (2.86) becomes zero and then the shear stress defined in the free surface
becomes zero. Although the normal stress to the boundary surface must be zero as a
matter of course, the reference points of normal stress, which should be zero, are not
arranged on the boundary. Therefore, virtual reference points are assumed outside
the boundary, and their values are determined such that the mean normal stresses on
the boundary are zero. For example, if the plane i + 0.5 = I + 0.5 is assumed to be
a free boundary, then

Txy (I + 0.5, j ± 0.5, k) = Tzx (I + 0.5, j, k ± 0.5) = 0, (2.90)

Txx (I, j, k) + Txx (I + 1, j, k) = 0. (2.91)

Additionally, the related term to vacuum in the numerator in Eq. (2.85) becomes
zero. For example, the averaged density on the free boundary with an uniform mesh
becomes ρ/2 when one of the adjacent two media is vacuum and the other has a
density ρ.

2.3.1.4 Discretization

For example, Eq. (2.76) is discretized with a central difference as

ρ (i + 0.5, j, k)
vn+0.5

x (i + 0.5, j, k) − vn−0.5
x (i + 0.5, j, k)

Δt

+ ζ (i + 0.5, j, k)
vn+0.5

x (i + 0.5, j, k) + vn−0.5
x (i + 0.5, j, k)

2

≈ T n
xx (i + 1, j, k) − T n

xx (i, j, k)

{Δx (i + 1) + Δx (i)} /2

+ T n
xy (i, j + 0.5, k) − T n

xy (i, j − 0.5, k)

Δy ( j)

+ T n
zx (i, j, k + 0.5) − T n

zx (i, j, k − 0.5)

Δz (k)
. (2.92)
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Eq. (2.84) is discretized with a backward difference for time derivation of the viscosity
term and central difference for other terms as

T n+1
xy (i + 0.5, j + 0.5, k) − T n

xy (i + 0.5, j + 0.5, k)

Δt

≈
{

c66 (i + 0.5, j + 0.5, k) + ξ66 (i + 0.5, j + 0.5, k)

Δt

}

× vn+0.5
y (i + 1, j + 0.5, k) − vn+0.5

y (i, j + 0.5, k)

{Δx (i + 1) + Δx (i)} /2

− ξ66 (i + 0.5, j + 0.5, k)

Δt

× vn−0.5
y (i + 1, j + 0.5, k) − vn−0.5

y (i, j + 0.5, k)

{Δx (i + 1) + Δx (i)} /2

+
{

c66 (i + 0.5, j + 0.5, k) + ξ66 (i + 0.5, j + 0.5, k)

Δt

}

× vn+0.5
x (i + 0.5, j + 1, k) − vn+0.5

x (i + 0.5, j, k)

{Δy ( j + 1) + Δy ( j)} /2

− ξ66 (i + 0.5, j + 0.5, k)

Δt

× vn−0.5
x (i + 0.5, j + 1, k) − vn−0.5

x (i + 0.5, j, k)

{Δy ( j + 1) + Δy ( j)} /2
. (2.93)

Transforming these discretized equations, updating formulas for vn+0.5
x (i +0.5, j, k)

and T n+1
xy (i +0.5, j +0.5, k) can be obtained. Updating formulas for other variables

can be obtained by a similar procedure.

2.3.1.5 Stability Condition

This section focuses on stability conditions considering orthotropic media. An arbi-
trary wave can be expressed as a superposition of plane waves. Hence, the stability
conditions for a plane wave of an arbitrary propagation angle are derived here [35].
The velocities and stress for a plane wave can be expressed as

vn+0.5
x (i + 0.5, j, k) = vn+0.5

x0 ei{kx (i+0.5)Δx+ky jΔy+kzkΔz}, (2.94)

T n
xx (i, j, k) = T n

xx0ei(kx iΔx+ky jΔy+kzkΔz), (2.95)

T n
xy(i + 0.5, j + 0.5, k) = T n

xy0ei{kx (i+0.5)Δx+ky( j+0.5)Δy+kzkΔz}, (2.96)
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where i is an imaginary unit, and kx , ky , and kz are x , y, and z-directional wave
numbers, respectively. Substituting Eqs. (2.94)–(2.96) into Eqs. (2.76)–(2.84) yields
a homogeneous state-difference equation, which is expressed as

xn+1 = Axn, (2.97)

where

[
xn]∗ =

[
vn−0.5

x0 vn−0.5
y0 vn−0.5

z0 T n
xx0 T n

yy0 T n
zz0 T n

yz0 T n
zx0 T n

xy0

]
, (2.98)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx 0 0 Rx hx 0 0
0 ry 0 0 Ryhy 0
0 0 rz 0 0 Rzhz

b11x hx b12yhy b13zhz 1 − B11x h2
x −B12yh2

y −B13zh2
z

b12x hx b22x hy b23x hz −B12x h2
x 1 − B22x h2

y −B23x h2
z

b13x hx b23x hy b33x hz −B13x h2
x −B23x h2

y 1 − B33x h2
z

0 b44x hz b44x hy 0 −B44x hyhz −B44x hyhz

b55x hz 0 b55x hx −B55x hzhx 0 −B55x hzhx

b66x hy b66x hx 0 −B66x hx hy −B66x hx hy 0

0 Rx hz Rx hy

Ryhz 0 Ryhx

Rzhy Rzhx 0
−(B12y + B13z)hyhz −(B13z + B11x )hzhx −(B11x + B12y)hx hy

−(B22y + B23z)hyhz −(B23z + B12x )hzhx −(B12x + B22y)hx hy

−(B23y + B33z)hyhz −(B33z + B13x )hzhx −(B13x + B23y)hx hy

1 − B44zh2
y − B44yh2

z −B44zhx hy −B44yhzhx

−B55zhx hy 1 − B55x h2
z − B55zh2

x −B55x hyhz

−B66yhzhx −B66x hyhz 1 − B66yh2
x − B66x h2

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.99)

θ = Δt

2ρ
ζ, (2.100)

r = 1 − θ

1 + θ
, (2.101)

R = iΔt

ρ (1 + θ)
, (2.102)

bα = iΔt

{
cα (1 − θ) − 2ξαθ

1 + θ

}
, (2.103)

Bα = cαΔt2 − ξαΔt

ρ (1 + θ)
, (2.104)



42 S. Sakamoto et al.

hd =
2 sin

⎝
kd

Δdmin
2

⎧
Δdmin

, (2.105)

where the asterisk denotes the transpose, α = 11, 22, 33, 12, 13, 23, 44, 55, and
66, d = x, y, z, and subscript min means the minimum value. To obtain stable
solutions from Eq. (2.97), all eigenvalues must be equal to or less than one for
an arbitrary propagation angle, i.e., for the arbitrary coupling of kx , ky , and kz .
Therefore, assigning hx , hy , and hz to their maximum values of 2/Δxmin, 2/Δymin,
and 2/Δzmin, respectively, should yield Δt such that all eigenvalues of matrix A are
one or less.

2.3.1.6 Initial Condition and Excitation

Herein all initial values of velocities and stresses are set to zero and an input excitation
is assumed to be a point force F(t) at the cell indicated by i , j , and k. In this
case, F(nΔt)/ΔS (i, j, k) should be added to the normal stress in the excitation
direction, which belongs to the spatial difference term in the updating formula of
velocity. ΔS (i, j, k) is the unit area normal to the excitation direction, for example,
ΔS (i, j, k) = Δy ( j)Δz (k) for x-directional excitation.

2.3.2 Plate Modeling

2.3.2.1 Basic Equations

Governing equations for the bending wave and the quasi-longitudinal wave on a
plate model are described as follows. Equation (2.106) describes the bending wave
propagation on the plate existing in the x − y plane, and Eqs. (2.107) and (2.108)
describe the in-plane wave for the x and y direction.

D

(
∂2

∂x2 + ∂2

∂y2

)2

w + ξ D
∂

∂t

(
∂2

∂x2 + ∂2

∂y2

)2

w + ρhμ
∂w

∂t
+ ρh

∂2w

∂t2 = q,

(2.106)
E

1 − γ 2

(
∂2u

∂x2 + γ
∂2v

∂x∂y

)
+ G

(
∂2v

∂x∂y
+ ∂2u

∂y2

)
− ρ

∂2u

∂t2 = 0, (2.107)

E

1 − γ 2

(
∂2v

∂y2 + γ
∂2u

∂x∂y

)
+ G

(
∂2u

∂x∂y
+ ∂2v

∂x2

)
− ρ

∂2v

∂t2 = 0. (2.108)

Here, w is the displacement of the out-of-plane bending vibration, u and v are those of
the in-plane vibration in the x and y directions, ξ and μ are coefficients for modeling
the damping characteristics of the material, q is an external force, D is the flexural
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w1 w2 w3 w4 w5wi-2 wi-1 wi wi+1 wi+2

boundary

w1 w2 w3

(a)

(b)  
wiwi-1 wi+1

Virtual cells on the boundary

Fig. 2.21 Schematic figure for the finite-difference approximation nearby the boundary part in case
of fourth-/second-order differentials. a 4th-order differential, b 2nd-order differential

rigidity (D = Eh3/12(1 − γ 2) ), and E , ρ, h, γ and G are the Young’s modulus,
density, thickness of the plate, the Poisson’s ratio, and the elastic shear modulus,
respectively.

2.3.2.2 Discretization

The basic equations of Eq. (2.106)/Eq. (2.107) and (2.108) for the bending/

in-plane wave has fourth-order/second-order differential system. Finite-difference
approximation of the fourth-order/second-order differential for a function w(x) is
described as

∂4wi

∂x4 = wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

Δx4 + O
⎝
Δx2

⎧
, (2.109)

∂2wi

∂x2 = wi+1 − 2wi + wi−1

Δx2 + O
⎝
Δx2

⎧
, (2.110)

where i is the discrete grid number in space. Equation (2.109) indicates that a
parameter wi is calculated using the neighboring five parameters including itself,
as show in Fig. 2.21. As for Eq. (2.110) wi is calculated using the neighboring three
parameters. When we calculate the parameter w3 in Fig. 2.21a or w2 in Fig. 2.21b
defined at the boundary part, two or one virtual cells must be considered for each
situation. A boundary condition of the plate can be modeled by setting appropriate
values for the virtual parameters. For example, the fixed edge condition for bending
motion of a plate can be simulated by setting 0 for both virtual parameters on the
boundary.

In case a vibration model is composed of two plate elements which are rigidly
connected with each other, the vibration transmission through each element can be
simulated by considering the relationship between the virtual parameters defined at
the boundary belonging to each plate. Then, the relationship of the parameters is
defined based on the continuity conditions concerning the bending and the in-plane
wave motion of each plate. Detailed procedure is described in the next section. Spatial
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and time differential terms in the governing equations described above are approx-
imated by finite difference, and time development of the bending/in-plane wave is
calculated by an implicit method. The procedure of the approximation for the basic
equations are shown herein. The space derivative of the parameter is approximated by
central difference method, and time derivative of that is approximated by following
one-sided differencing approximation:

∂2wn+1

∂x2 = 2wn+1 − 5wn + 4wn−1 − wn−2

Δt2 + O
⎝
Δt2

⎧
, (2.111)

where n indicates the time step. As a result of the approximation, a discretized
equation is obtained. Transforming the equations, updating formula for the out-of-
plane displacement is described as follows. In this equation, the parameters at the
time step of n +1 in the left side are unknown, and those at the time steps of n, n −1
and n − 2 on the right side are already known parameters.

(2 + μΔt) +
(

1 + ξ

Δt

)
Δt2 D

ρh
An+1 = qn

i, j

ρh
Δt2 + (5 + μΔt)wn

i, j

−4wn−1
i, j + wn−2

i, j + ξ D

ρh
Δt An, (2.112)

where

An =
(

wn
i+2, j − 4wn

i+1, j + 6wn
i, j − 4wn

i−1, j + wn
i−2, j

Δx4

+ wn
i, j+2 − 4wn

i, j+1 + 6wn
i, j − 4wn

i, j−1 + wn
i, j−2

Δy4

+ 2

⎝
wn

i+1, j+1 − 2wn
i+1, j + wn

i+1, j−1

⎧
− 2

⎝
wn

i, j+1 − 2wn
i, j + wn

i, j−1

⎧
Δx2Δy2

+
⎝
wn

i−1, j+1 − 2wn
i−1, j + wn

i−1, j−1

⎧
Δx2Δy2

⎞
⎠ . (2.113)

Following the same procedure, the discretized equations of the quasi-longitudinal
wave for the x and y directions derived from Eqs. (2.107) and (2.108) are described as
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− 2un+1
i, j + EΔt2(

1 − γ 2
)
ρ

(
un+1

i+1, j − 2un+1
i, j + un+1

i−1, j

Δx2

+ γ

⎝
vn+1

i+1, j+1 − vn+1
i+1, j−1

⎧
−

⎝
vn+1

i−1, j+1 − vn+1
i−1, j−1

⎧
2Δx · 2Δy

⎞
⎠

+ GΔt2

ρ

(
un+1

i, j+1 − 2un+1
i, j + un+1

i, j−1

Δy2

+
⎝
vn+1

i+1, j+1 − vn+1
i+1, j−1

⎧
−

⎝
vn+1

i−1, j+1 − vn+1
i−1, j−1

⎧
2Δx · 2Δy

⎞
⎠

= −5un
i, j + 4un−1

i, j − un−2
i, j , (2.114)

−2vn+1
i, j + EΔt2(

1 − γ 2
)
ρ

(
vn+1

i, j+1 − 2vn+1
i, j + vn+1

i, j−1

Δx2

+ γ

⎝
un+1

i+1, j+1 − un+1
i+1, j−1

⎧
−

⎝
un+1

i−1, j+1 − un+1
i−1, j−1

⎧
2Δx · 2Δy

⎞
⎠

+ GΔt2

ρ

(
vn+1

i+1, j − 2vn+1
i, j + vn+1

i−1, j

Δx2

+
⎝

un+1
i+1, j+1 − un+1

i+1, j−1

⎧
−

⎝
vn+1

i−1, j+1 − vn+1
i−1, j−1

⎧
2Δx · 2Δy

⎞
⎠

= −5vn
i, j + 4vn−1

i, j − vn−2
i, j , (2.115)

where i and j indicate the discrete grid number in the x and y direction. To protect
symmetry, discretization for the first-order differentiation in Eqs. (2.114) and (2.115)
are performed based on the following equation:

∂wi

∂x
= wi+1 − wi−1

2Δx
+ O

⎝
4Δx2

⎧
. (2.116)

Finally, the obtained discrete equations and the continuity conditions for the junctions
between elements are solved as simultaneous equations. Details of the procedure are
described in the following section.
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Fig. 2.22 Schematic figure and one-dimensional discrete form of a plate model

2.3.2.3 Composite Model with Multiple Plate Elements

In order to simulate a vibration model in which multiple plates are rigidly connected
to each other, continuity conditions for vibration propagation at the joint part should
be considered. In this section, the connecting method is described.

In Fig. 2.22, an axonometric view of the target plate model and a schematic figure,
in which the three-dimensional model is illustrated in a one-dimensional discrete
form, are shown. In the figure of the one-dimensional discrete form, w

n,P1
1, j , w

n,P1
2, j ,

w
n,P1
3, j and w

n,P1
4, j indicate the out-of-plane displacements in the time step of n, caused

by bending deformation of Plate 1, and they are defined nearby the junction part.
w

n,P2
1, j , w

n,P2
2, j , w

n,P2
3, j and w

n,P2
4, j indicate the out-of-plane displacements of Plate

2. un,P1
1, j , un,P1

2, j and un,P2
1, j and un,P2

2, j indicate the in-plane displacements caused by
in-plane deformation of Plate 1 and Plate 2, respectively. The parameter j attached
in the subscript of each parameter indicates the grid number in the y−direction.
In the simulation, continuity conditions described below are considered. First, the
physical parameters of the displacement and the rotation angle at the boundary of
Plate 1 are made to be equal to those of Plate 2. Second, the bending moments acting
at the boundary of both Plate 1 and 2 are balanced. Lastly, the shear force acting
at the boundary of Plate 1 and the in-plane force acting at the boundary of Plate 2
are also balanced. Totally, four conditions are considered. Here, the rotational angle
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θb, bending moment Mx , shear force Fx , and in-plane force Tx are described by the
following equations.

θb = ∂w

∂x
, (2.117)

Mx = −D

(
∂2w

∂x2 + γ
∂2w

∂y2

)
, (2.118)

Fx = −D

(
∂3w

∂x3 + (2 − γ )
∂3w

∂x∂y2

)
, (2.119)

Tx = Eh

1 − γ 2

(
∂u

∂x
+ γ

∂v

∂y

)
. (2.120)

These equations are transformed to discrete forms, and are rewritten by considering
the continuity conditions.

1. Displacement:

3

2
w

n,P1
2, j − 1

2
w

n,P1
1, j = un,P2

1, j + un,P2
2, j

2
, (2.121)

3

2
w

n,P2
2, j − 1

2
w

n,P2
1, j = −un,P1

1, j + un,P1
2, j

2
. (2.122)

2. Rotational angle:

w
n,P2
2, j − w

n,P2
1, j

ΔxP2
= w

n,P1
2, j − w

n,P1
1, j

ΔxP1
. (2.123)

3. Bending moment:

w
n,P2
3, j − 2w

n,P2
2, j + w

n,P2
1, j

Δx2
P2

+ γ
w

n,P2
2, j+1 − 2w

n,P2
2, j + w

n,P2
2, j−1

Δy2
P2

+w
n,P1
3, j − 2w

n,P1
2, j + w

n,P1
1, j

Δx2
P1

+ γ
w

n,P1
2, j+1 − 2w

n,P1
2, j + w

n,P1
2, j−1

Δy2
P1

= 0.

(2.124)

4. Shear force and in-plane force:
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−D

(
w

n,P2
4, j − 3w

n,P2
3, j + 3w

n,P2
2, j − w

n,P2
1, j

Δx3
P2

+ (2 − γ )

⎝
w

n,P2
3, j+1 − 2w

n,P2
3, j + w

n,P2
3, j−1

⎧
−

⎝
w

n,P2
2, j+1 − 2w

n,P2
2, j + w

n,P2
2, j−1

⎧
ΔxP2Δy2

P2

⎞
⎠

− Eh

1 − γ 2

(
un,P1

2, j − un,P1
1, j

ΔxP1
+ γ

un,P1
2, j+1 − un,P1

2, j

ΔyP1

⎜
= 0, (2.125)

− D

(
w

n,P1
4, j − 3w

n,P1
3, j + 3w

n,P1
2, j − w

n,P1
1, j

Δx3
P1

+ (2 − γ )

⎝
w

n,P1
3, j+1 − 2w

n,P1
3, j + w

n,P1
3, j−1

⎧
−

⎝
w

n,P1
2, j+1 − 2w

n,P1
2, j + w

n,P1
2, j−1

⎧
ΔxP1Δy2

P1

⎞
⎠

+ Eh

1 − γ 2

(
un,P2

2, j − un,P2
1, j

ΔxP2
+ γ

un,P2
2, j+1 − un,P2

2, j

ΔyP2

⎜
= 0. (2.126)

Here, Pm shown in each superscript indicates Plate m, the spatial intervals ΔxP1
and ΔyP1 indicate the spatial intervals of Plate 1, and ΔxP2 and ΔyP2 indicate
those of Plate 2. In these equations, each parameter indicates the in-plane or out-
of-plane displacement shown in Fig. 2.22. Solutions of the six unknown parameters
(wn,P1

1, j ,wn,P1
2, j ,wn,P2

1, j ,wn,P2
2, j ,un,P1

1, j and un,P2
1, j ) at the junction are solved by consider-

ing the six equations above. Then, these continuity equations and the discrete forms
of Eqs. (2.112), (2.114), and (2.115) are solved together as simultaneous equations.
These equations are solved in every time step, and time development of vibration
is simulated. To solve the simultaneous equations, PARDISO [36], built in the Intel
Math Kernel library, was used.

2.3.2.4 Vibroacoustic Coupling Method

To couple the vibration field on the plate and the sound field as shown in Fig. 2.23a,
the following continuity conditions should be considered. First, the external pressure
to the plate described in Eq. (2.112) is given as the difference of the sound pressure
on both sides of the plate; pn

i, j,k and pn
i−1, j,k , as shown in the Step 1 of Fig. 2.23b.

qn
j,k = pn

i, j,k − pn
i−1, j,k . (2.127)

In the next step, the bending motion of the plate is calculated based on the external
pressure, and the displacement of the plate is obtained. Then, the velocity is calculated
using the displacement and is given to the particle velocity in the sound field.
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Fig. 2.23 Coupling method between the vibration and the sound

un+1/2
i, j,k = wn+1

j,k − wn
j,k

Δt
, (2.128)

where wn
j,k is the displacement of the plate. In case the normal impedance Zn on

the receiving side of the plate is considered, following relationship is used instead
of Eq. (2.128).

un+1/2
i, j,k = wn+1

j,k − wn
j,k

Δt
− pn

i, j,k

Zn
. (2.129)

To update the sound pressure and particle velocity in the sound field, high-order
scheme using eight reference points is applied. Detailed method is described in the
Ref. [37].
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Chapter 3
Finite Element Method

Toru Otsuru, Takeshi Okuzono, Noriko Okamoto and Yusuke Naka

Abstract Finite element method (FEM) is widely used in various engineering fields
to solve problems with too many complexities to be dealt with by certain conven-
tional approaches. In 1943, Courant proposed the theoretical basis of the method,
and, in 1956, Turner et al. published both fundamental theory and application of
FEM, namely “Stiffness deflection analysis”, to solve structural problems [1, 2]. A
decade and several years latter, FEM has been come to be applied to solve various
acoustic problems [3–5]. Compared with other numerical techniques, FEM is advan-
tageous in its broad range of applicability. However, FEM requires discretization of
the domain, which results in huge amount of degrees-of-freedom especially when
a three-dimensional domain is analyzed. Nevertheless, the matrices constructed in
a standard FEM procedure have rather simple mathematical structures with sparse-
ness. The simplicity makes their computation more efficient especially when they are
processed on a parallel/vector processors. Generally speaking, the iterative methods
are suitable for solving such a sparse matrix equation efficiently with far less memory
space on a computer. In this chapter, fundamentals, improvements, and applications
of FEM on acoustic problems are explored.
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Keywords Finite element method (FEM) ·Acoustic finite elements ·Discretization
error · Large-scale analysis · Iterative method · Domain truncation · Dirichlet-to-
Neumann (DtN) map

3.1 Fundamentals

The fundamental idea of FEM is to approximate a potential in a system with com-
plicated shapes and/or boundary conditions by dividing the system into discretized
elements that are easier to deal with on a digital computer. Then, a potential at an arbi-
trary point in an element is interpolated by using the potentials on discretized points
(nodes) multiplied by a interpolation function. Since the function is also utilized to
model the shape of the element’s boundary, it is frequently called “shape function”.
In the following subsection, an outline of FEM formulation of three-dimensional
sound field is explained.

3.1.1 Sound Field Formulation by FEM

In a three-dimensional sound field Ω with sound pressure distribution p(x, y, z) as is
illustrated in Fig. 3.1, kinetic energy T and potential energy U of sound at an angular
frequency ω are in the forms of:

T = 1

2

1

ρω2

∫
Ω

(∇p · ∇p)dV , (3.1)

U = 1

2

1

ρc2

∫
Ω

p2dV . (3.2)

In the equations, ρ and c, respectively, denote air density and speed of sound.
Furthermore, the work W done by an external force at a surface area Γ is obtained
by

W =
∫

Γ

unpdS, (3.3)

where un denotes normal displacement at Γ .
Then, total energy Π in the system becomes

Π = U − T − W , (3.4)

and, based on the principle of minimum potential energy, i.e. δΠ = 0, one can derive
the sound field. Note that it is also possible to derive the same result as a weak form
solution by applying Galerkin’s method onto the wave equation.
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Fig. 3.1 Sound field Ω

At this point, let us discretize the system by FEM: following the standard FEM
procedure, Ω is divided into a number of elements and sound pressure p(x, y, z) at
an arbitrary point Q(x, y, z) in an element e can be approximated as

p(x, y, z) = N(x, y, z)T pe. (3.5)

Here, pe and N(x, y, z) are element nodal sound pressure vector and interpolation
(shape) function vector, respectively. With the equation, we can rewrite Eqs. (3.1),
(3.2), and (3.3) as

T =
∑

e

⎛
⎝1

2

1

ρω2

∫
e

⎧⎨
⎩
(

∂NT pe

∂x

)2

+
(

∂NT pe

∂y

)2

+
(

∂NT pe

∂z

)2
⎫⎬
⎭ dV

⎞
⎠ (3.6)

=
∑

e

(
pT

e
1

2

1

ρω2

∫
e

[
N,xN,x

T + N,yN,y
T + N,zN,z

T
]

dVpe

)
,

U =
∑

e

(
pT

e
1

2

1

ρc2

∫
e

[
NNT

]
dVpe

)
, (3.7)

W =
∑

e

(
pT

e un

∫
Γe

NdS

)
. (3.8)

In the equations, N,x = ∂N/∂x, N,y = ∂N/∂y, N,z = ∂N/∂z stand. Then, the
following discretized equation can be derived for each element e,

:

Πe = 1

2ρω2 pT
e Kepe − 1

2ρ
pT

e Mepe − pT
e unWe. (3.9)

Herein, element matrices, Ke, Me and We, are respectively defined by

Ke =
∫

e

[
N,xNT

,x + N,yNT
,y + N,zNT

,z

]
dV , (3.10)
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Me = 1

c2

∫
e

[
NNT

]
dV , (3.11)

We =
∫

Γe

NdS. (3.12)

The total energy Π in Ω equals the summation of energies in all the elements.
Therefore, by performing δΠ = 0, one can obtain the discretized equation of motion
with global matrices K, M and W as

(K − ω2M)p = ρω2unW. (3.13)

When Ω contains a dissipative wall Γ ′ which has normal impedance Zn, one can
derive Eq. (3.14) for the dissipative system through the same procedure as above with
the help of adjoint system [6].

(K + jωC − ω2M)p = ρω2unW. (3.14)

Here, C denotes global dissipation matrix which is constructed using all the element
dissipation matrices Ce in Ω . The matrix Ce for the element with Γ ′ is given by

Ce = 1

c

∫
Γ ′

1

Zn

[
NNT

]
dS. (3.15)

One can solve the sound field by applying the modal analysis onto Eqs. (3.13) and
(3.14), whereas the direct solution is also possible and efficient when the dissipation
is not very small. For practical cases on room acoustics, good agreements of both
the techniques are confirmed [7].

On the other hand, the semi-discrete equation in the time-domain can be obtained
with inverse Fourier transform of Eq. (3.14) as

Mp̈ + Cṗ + Kp = ρv̇nW(= f ), (3.16)

where ·, ··, vn, and f , respectively, signify first-order and second-order derivatives
with respect to time, particle velocity, and external force vector. Applying a direct
time integration method such as Newmark β method [8] to Eq. (3.16), sound pressure
p at all nodes in time domain is calculable. In the Newmark β method, if p, ṗ and p̈
at time t are known, then pt+Δt and ṗt+Δt at time t + Δt can be approximated as

pt+Δt = pt + Δtṗt + (Δt2)(
1

2
− β)p̈t + (Δt2)βp̈t+Δt, (3.17)

ṗt+Δt = ṗt + Δt(1 − γ)p̈t + Δtγp̈t+Δt, (3.18)
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where Δt is time interval between t and t + Δt, and γ, β are parameters related
to the accuracy and stability of the method, in which γ is commonly set to 1/2 to
maintain the second-order accuracy. Substitution of Eqs. (3.17) and (3.18) into the
semi-discrete equation at t + Δt yields

[
M + Δt

2
C + β(Δt2)K

]
p̈t+Δt = f t+Δt − CP − KQ, (3.19)

with

P = ṗt + Δt

2
p̈t, Q = pt + Δtṗt +

(
1

2
− β

)
(Δt2)p̈t . (3.20)

The linear system of equations of Eq. (3.19) can be solved using a direct method
or an iterative method, to compute p̈t+Δt at time t + Δt. Then, pt+Δt and ṗt+Δt
at time t + Δt are calculable by substituting the p̈t+Δt into Eqs. (3.17) and (3.18),
respectively.

Several Newmark methods exist with different values of parameter β [9]. The
following three special cases of the Newmark methods are well known: constant
average acceleration method with β = 1/4, linear acceleration method with β = 1/6,
and Fox-Goodwin method with β = 1/12. Here, if β ≥1/4, then the Newmark
method is unconditionally stable. For linear acceleration method and Fox-Goodwin
method, the stability condition is given as

Δt ≤ 1

ωmax
√

1/4 − β
. (3.21)

Here, ωmax is the maximum natural frequency of system, which is obtainable by
solving generalized eigenvalue problem (Ke − ω2Me)pe = 0 for all elements.

3.1.2 3-D Acoustic Elements

When a three-dimensional sound field is solved by FEM, both tetrahedron and hexa-
hedron elements are rather simple to construct finite element meshes. Hereafter,
the formulation procedures of hexahedron 8-node (Fig. 3.2) and 27-node (Fig. 3.3)
elements are briefly explained.

In general, Lagrange polynomials given by Eq. (3.22) are frequently used for
constructing a finite element. When the shape of an element is interpolated by using
the same function as is used for the approximation of the inner potential dealt with,
the element is called “isoparametric element.”

Li(ξ) =
kξ∏

j′=1,(j′ �=i′)

ξ − ξj′

ξi′ − ξj′
. (3.22)
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Fig. 3.2 Hexahedron 8-node element; (left) In the global coordinate system eight nodes are located
at Pi(xi, yi, zi) on corners; (right) In the local coordinate system nodes are located at Pi(ξi, ηi, ζi)

on corners, where ξi, ηi, ζi = 1 or −1

Fig. 3.3 Hexahedron 27-node element; (left) In the global coordinate system, (right) In the local
coordinate system. Twenty-seven nodes are located at Pi(ξi, ηi, ζi), where ξi, ηi, ζi = 1 or −1 (edge
or corner), = 0 (otherwise)

Equation (3.22) stands only for a local coordinate ξ, and i denotes the global node
number in ξ-direction. The corresponding local node number and its local coordinate
are, respectively, written as i′ and ξi′ . The number of nodes used for the interpolation
in ξ-direction is expressed as kξ . Likewise, one can obtain equations Li(η) and Li(ζ),
respectively, for η- and ζ-directions.

Thus, a shape function for a local coordinate system (ξ, η, ζ) can be defined by

Ni(ξ, η, ζ) = Li(ξ)Li(η)Li(ζ). (3.23)
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One can formulate an isoparametric hexahedron 8-node element by setting kξ =
kη = kζ = 2, or an isoparametric 27-node element by setting kξ = kη = kζ = 3.
Therefore, a shape function vector N becomes

N = {N1, N2, · · · , Ni, · · · , Nkξkηkζ }T . (3.24)

Note that N acts as a “weight” function of nodal potentials in the following equation:

p(ξ, η, ζ) = NT pe =
kξkηkζ∑

i=1

Ni(ξ, η, ζ)pi. (3.25)

Once N is formulated, element matrices K, M and W can be calculated by Eqs. (3.10)–
(3.12). In a practical calculation of the matrices, one needs to transform the coordinate
system from local (ξ, η, ζ) to global (x, y, z) using Jacobian matrix, and to perform
numerical integrations, e.g. Gauss-Legendre quadrature, especially when an element
with some complicated shape is dealt with. The mathematics for the procedure can
be found in standard textbooks on FEM [10].

The elements constructed above employs Lagrange polynomials as shape func-
tions and are widely used in many FEM applications. On the other hand, it is also well
known that the resulting accuracy of a FEM application depends strongly on the type
of shape function used in the formulation of the elements. To compare the difference,
another type of acoustic element with different kind of shape function is introduced
below. The element is formulated by Otsuru and Tomiku [11] using natural cubic
spline of degree 3 with continuity C2 defined by the following equations:

(if ξi = ±1) Si(ξ) =
{

0.25ξ3 + 0.75ξ2 + 0.5ξiξ : ξ ∈ [−1, 0]
−0.25ξ3 + 0.75ξ2 + 0.5ξiξ : ξ ∈ [ 0, 1] (3.26)

(if ξi = 0) Si(ξ) =
{−0.5ξ3 − 1.5ξ2 + 1 : ξ ∈ [−1, 0]

0.5ξ3 − 1.5ξ2 + 1 : ξ ∈ [ 0, 1] (3.27)

The shape function Ni obtained by Eq. (3.23) can be rewritten as

Ni(ξ, η, ζ) = Si(ξ)Si(η)Si(ζ), (3.28)

and related element matrices can also be obtained through the above-mentioned
procedure. Figure 3.4 shows a comparison of the forms of the two shape functions
and the difference might not be very obvious.

To examine the resulting differences more clearly, especially when the shape
functions are practically applied, the relative errors ε in eigenfrequency computation
of a one-dimensional sound field are computed to compare each other using three
types of elements with different kinds of shape functions: hexahedron 8- and 27-
node elements with Lagrange polynomial functions (Lin8, Lag27) and hexahedron
27-node element with spline polynomial function (Spl27).
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Fig. 3.5 Comparison of relative errors (ε) in eigenfrequency computation between element types,
and between spatial resolutions. Hexahedron 8- and 27 node elements with Lagrange polynomial
functions (Lin8, Lag27) and hexahedron 27-node element with spline polynomial function (Spl27)
are compared. Spatial resolution is defined by wavelength (λ)/nodal-distance(d). The parameter lx
denotes the number of elements in x-direction (lx = 1 ∼ 20) [11]

Figure 3.5 shows that the relative error at the spatial resolution of “λ/d ≤ 4”
becomes large and unstable regardless of element types. The relative error decreases
as the increase of the number of element’s node from 8 to 27, and the values of Spl27
are smaller and stabler than those of Lin27 in the region of “λ/d > 4”.

In practical application stages of FEM, one needs to choose the solver technique
as well as the element type considering the balance of the efficiency and resulting
accuracy so that the results satisfy one’s primary purposes. Although spatial reso-
lution λ/d gives a rough but practical estimation, note that the resulting accuracy
clearly depends on the element type employed.
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3.2 Efficient Computation with Iterative Solvers

The iterative methods, which are a technique to obtain a solution by converging the
value that results from iterative calculations made with an arbitrary initial value given
at the beginning, have been used recently in various fields to solve large systems
of linear equations that result from the large-scale analysis model with complex
geometrical structures because the method might accomplish rapid computation and
reduce the required memory size. Numerical sound fields analyses using FEM have
the same aspects, and therefore it can also be expected by applying the method. This
section presents numerical aspects of the linear system of equations in finite-element
sound field analysis in both frequency and time domains and actual convergence
behaviors of applied iterative methods. For the details of iterative methods, see Refs.
[12–14].

3.2.1 Linear System of Equations and Solvers

3.2.1.1 Numerical Aspects of The Linear System of Equations

As presented in the previous section, the discretized matrix equation in frequency
domain for sound field with a sound source of an angular frequency ω is formulated
as

(K + jωC − ω2M)p = jωρv0W(= f ). (3.29)

On the other hand, the following linear system of equations needs to be solved at
each time step for time domain analysis:

[
M + Δt

2
C + β(Δt2)K

]
p̈t+Δt = f t+Δt − CP − KQ. (3.30)

For simplicity, the above-presented equations represent as

Ax = b. (3.31)

For either formulation, the coefficient matrix A has sparse structure with many
zero elements as shown in Fig. 3.6. The maximum number of nonzero elements of
a row in a matrix is dependent on finite-elements used for spatial discretization.
In the discretization using hexahedral 27-node isoparametric elements, the number
becomes 125, whereas 27 nonzero elements appear for 8-node isoparametric el-
ements. Further, A is a complex symmetric matrix, i.e. a non-Hermitian matrix
A �= AH , because stiffness matrix K and mass matrix M are real symmetric ma-
trices and dissipation matrix C is a complex matrix. Here, if the lumped dissipation
matrix is used, the complex number appears in only diagonal part of A. However,
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Fig. 3.6 An example of
structure of coefficient matrix
A with degrees of freedom of
25,641

normalized acoustic impedance in real number is given for impedance boundary
condition in time domain analysis, A becomes real symmetric matrix with dissipa-
tion matrix having elements of real number. This feature is different from frequency
domain analysis, in this case, numeric operation with only real number is possible. In
room acoustics computation, external force is typically given at a node or some nodes
assuming the omnidirectional point source. Consequently, most of the elements in
external force vector f has zero elements.

3.2.1.2 Solution of The Linear System of Equations

The solution technique of the linear system of equations is classified into two types,
namely direct methods and iterative methods. The direct methods, which are based
on Gauss elimination or LU/Cholesky decomposition, yield unique solution and are
robust. However, the methods produce nonzero elements, called fill-in, in a matrix
after factorizations. Due to the property, application of direct methods to large-scale
problem is generally not suitable from the perspective of memory requirement.

On the other hand, the iterative methods require merely the retention of nonzero
elements of the coefficient matrix of calculation according to the algorithm. For the
sparse matrix, it can greatly reduce the required memory compared to direct methods.
There are many sparse storage formats such as CRS (Compressed Row Storage) or
CCS (Compressed Column Storage) formats [12]. Further advantage of iterative
methods is easiness of parallelization, and this feature is also suitable for large-scale
analysis. However, a problem is the uncertainty [12] by which the convergence differs
for every type of iterative methods used and for every object of analysis. Because of
that uncertainty, it is necessary to know how each iterative method converges.
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There are two types of iterative methods, namely stationary iterative methods
and Krylov subspace methods. Stationary iterative methods represented by SOR
(Successive Over Relaxation) method have a long history. They are easy to un-
derstand and to implement, but generally not effective [12]. On the other hand,
Krylov subspace methods are a relatively recently developed technique [12], and
approximate solution of linear system of equations are searched in Krylov subspace
(Kn(A; r0) = Span{r0, Ar0, ..., An−1r0}). Here, r0 represents initial residual b−Ax0
defined with initial approximate solution x0.

The CG (Conjugate Gradient) method is the best known Krylov subspace methods
having superior convergence property for sparse matrix, and theoretically converges
within n iterations where n is dimension number. However, CG method cannot be
applied in a straightforward way to linear system of equations with non-Hermitian
coefficient matrix that arise from finite-element sound field analysis because it is
only applicable for linear systems with Hermitian coefficient matrix.

There exist the extended methods of the CG method, namely iterative methods
based on Arnoldi process or based on Lanczos process, which are applicable to
linear system with non-Hermitian coefficient matrix, and these are still area of ac-
tive research. The iterative methods based on the Arnoldi process such as GMRes
(Generalized Minimal Residual) method [15] have considerable disadvantages in
computational costs due to long recurrence formula, i.e., memory and operations
required per iteration increase linearly with the iteration count. The Lanczos process
is viewed as a simplification for the case when the Anoldi process is applied to Her-
mitian matrix. In iterative methods based on Lanczos process, Bi-Conjugate Gradient
(BiCG) method [16] is the most popular. Since these types of methods do not increase
memory and operations per iteration with the number of iterations, it is favorable
from the perspective of computational costs.

3.2.1.3 Preconditioning

In the use of the iterative methods, a preconditioning is generally adopted to the linear
system Ax = b to improve the convergence of the iterative method. Preconditioning
is a process to transforming the Ax = b into another more suitable linear system
to solve, but has same solution. Using a preconditioning matrix M, the Ax = b is
transformed into

M−1Ax = M−1b. (3.32)

In designing of preconditioning matrix, it is said that M must be a good approxima-
tion to A in some measure. The simplest preconditioning is a diagonal scaling with
M = diag(A). Other sophisticated preconditionings are incomplete LU/Cholesky
factorization with M that approximates A or sparse approximate inverse with M that
approximates A−1 [12, 13]. For sound field analysis using FEM, absolute diagonal
scaling with M = diag(|A|) has been proposed [17]. This preconditioning does not
require extra memory in construction of preconditioning matrix.
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Fig. 3.7 Required memory for FE analysis in time and frequency domains

3.2.2 Estimation of Required Memory

Estimations of required memories in both frequency and time domains analyses
using the iterative methods based on the Lanzcos process are presented, in which we
assume symmetricity of matrices, use of hexahedral 27-node finite elements, and use
of lumped dissipation matrix based on locally reactive model. For either analysis,
the required memory spaces RM can be estimated roughly using [18, 19]

RM ≈ a · DOF [bytes], (3.33)

where a and DOF, respectively, represent constant and degrees of freedom. For
frequency and time domains analyses, a = 1, 000 and a = 1, 600, respectively.
Further, assuming the analysis of cubic cavity, the RM is represented with upper
limit frequency fmax Hz, room-volume V m3, and wavelength per nodal distance λ/d
representing spatial resolution of FE mesh as

RM ≈ a · V ·
(

λ/d · fmax

c

)3

[bytes]. (3.34)

Figure 3.7 presents the relationship between V and RM for both domain analyses
as a function of fmax when the FE mesh with λ/d = 5.0 is used. From the figure,
the RM increase significantly with increasing fmax, rather than V . As an example, if
one predicts sound field in a room with volume of 10,000 m3 up to 500 Hz, mem-
ory requirements for frequency and time domain analyses become 4 and 6.4 GB,
respectively.
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3.2.3 Convergence of Iterative Methods

3.2.3.1 Frequency Domain Analysis

Numerical examples of sound field analysis in two existing reverberation rooms and
a small concert hall are presented to demonstrate the convergence characteristics
of the iterative methods applied to frequency domain analysis [18]. The intended
reverberation rooms are a rectangular-shaped reverberation room with the volume of
220 m3 (RR) and a heptahedral irregular-shaped reverberation room with the volume
of the 168 m3 (IR). Also, the small concert hall is listed in the benchmark platform
on computational methods for architectural/environmental acoustics as a benchmark
problem B1-1F [20], and has complicated geometry with a volume of 3,000 m3.

In numerical analysis in the reverberation rooms, omnidirectional point source is
located at corner points of each room, and sound pressures at 125, 250, and 500 Hz
pure tones are analyzed. Two kinds of boundary conditions are assumed, namely
Cond. 1: all boundaries are assumed to be typical concrete walls and Cond. 2 : as a
absorbing material, glass-wool is installed to a part of the wall. On the other hand,
sound pressure at 125 and 250 Hz pure tones from a omnidirectional point source
placed at 1.5 m above the floor are computed in a small hall analysis. For all analyses,
Spl27 is used to discretize the spatial domains, where the respective FE models are
created to satisfy the spatial discretization requirement λ/d ≥ 4.5.

Four iterative methods, namely COCG (Conjugate Orthogonal Conjugate Gra-
dient) method [21], CGS (Conjugate Gradient Squared) method [22], BiCGStab
(Bi-Conjugate Gradient Stabilized) method [23] and GPBiCG (Generalized Product
type Bi-CG) method [24] are selected from the iterative methods based on Lanczos
process. COCG is an effective iterative solver for linear system with complex sym-
metric coefficient matrix, which has iterative schemes equivalent to the BiCG, but
require less memory and few operations per iteration than BiCG. CGS, BiCGStab,
and GP-BiCG are BiCG-like solvers developed to improve irregular convergence of
the BiCG. For the four iterative methods, absolute diagonal scaling [17] is adopted
as a preconditioning method.

In BiCG-like solvers, initial solution p0 and initial shadow residual r∗
0 must be

provided for initial setting. Generally, initial residual r0 is given to the r∗
0, whereas

previous study [25] shows the use of uniform random numbers to r∗
0 yields better

convergence for some problems. Therefore, two initial settings (p0 = 0, r∗
0 = r0)

and (p0 = 0, r∗
0 = random) are used here, and these are represented as BiCG-r0 and

BiCG-random where random is pseudorandom numbers. The p0 for COCG is set to 0.
As the stopping criterions for iterative methods, the iteration process is terminated

when relative residual 2-norm becomes less than εiter or when the iterations is reached
maximum number of iterations, in which εiter is set to 10−12, which is sufficiently
small value, and maximum iteration numbers is set to DOF.

Table 3.1 lists numbers of sparse matrix-vector products of four iterative methods
at 125–500 Hz in two absorbing conditions for RR and IR. Because these iterative
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Table 3.1 The number of sparse matrix-vector products of four iterative methods

Iterative solver-r∗
0 Number of matrix-vector products

RR IR
125 (Hz) 250 (Hz) 500 (Hz) 125 (Hz) 250 (Hz) 500 (Hz)

Cond. 1 COCG 579 4,108 32,215 701 5,126 38,061
CGS-r0 1,242 9,014 70,112 1,448 19,862 236,398
CGS-random 1,274 9,350 70,520 1,496 13,674 78,612
BiCGStab-r0 max max 179 554 4 424 max max
BiCGStab-random max max 170,272 3,628 max 191,282
GPBiCG-r0 div. div. div. div. div. div.
GPBiCG-random div. div. div. div. div. div.

Cond. 2 COCG 566 4,736 34,991 691 5,476 37,663
CGS-r0 1,108 11,800 div. 1,460 13,318 65,160
CGS-random 1,152 8,816 50,878 1,488 11,886 45,118
BiCGStab-r0 max 20,038 91,530 4,486 34,048 77,224
BiCGStab-random 3,416 20,130 82,134 4,184 32,524 70,916
GPBiCG-r0 div. div. div. div. div. div.
GPBiCG-random div. div. div. div. div. div.

DOF (RR): 1,755 (125 Hz), 12,325 (250 Hz), 92,169 (500 Hz)
DOF (IR): 2,475 (125 Hz), 17,661 (250 Hz), 133,209 (500 Hz)

methods have different amounts of operations per iteration, the number of matrix-
vector products, which comprise a large percent of operations, is counted instead
of number of iterations. Also, “max.” and “div.” in the list, respectively, represent
termination of operations by maximum iteration numbers and divergence. From the
table, the number of sparse matrix-vector products for convergence is significantly
different among the iterative methods. Only two iterative methods COCG and CGS-
random have robust convergence characteristics irrespective of room geometries,
absorbing conditions, and frequencies. Also, the use of random numbers to r∗

0 yields
stable and faster convergence in CGS from which importance of proper initial setting
is confirmed.

Further, convergence characteristics of the two methods in small concert hall
analysis are presented to show the effectiveness in large-scale analysis with compli-
cated geometry. Numerical results show that COCG and CGS-random, respectively,
converge with a number of matrix-vector products of 18,945 and 27,076 at 125 Hz.
For 250 Hz, the numbers are 23,440 in COCG and 29,872 in CGS-random. COCG
converges with less number of matrix-vector products irrespective of frequencies
from which it can be said that COCG is an effective solver for frequency domain
analysis. Detailed discussion on convergence property of COCG applied to sound
field analysis is described in Ref. [26].

3.2.3.2 Time Domain Analysis

To demonstrate the convergence characteristics of the iterative methods applied
to time domain analysis, numerical examples of sound field analysis in a small
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Fig. 3.8 Schematic drawing of a small office, b lecture room, and c large-scale multi-purpose hall
to be analyzed

office (V = 70 m3), a lecture room (V = 360 m3) and a large-scale multi-purpose
hall (V = 37, 000 m3) illustrated in Fig. 3.8 are presented [27, 28], in which sound
pressures inside the rooms for band-limited source signals emitted from an omni-
directional point source placed as shown in Fig. 3.8 are computed. First, conver-
gence characteristics of five iterative methods applied to sound field analysis in a
small office are compared where COCG, Conjugate A-Orthogonal Conjugate Resid-
ual (COCR) method [29], Quasi-Minimal Residual for complex symmetric matrix
(QMR) method [30] for linear system with complex symmetric coefficient matrix,
CGS and BiCGStab are adopted. Then, the convergence characteristics in sound field
analysis of a lecture room and a large-scale multi-purpose hall, which can be consid-
ered as more practical application, are presented focusing on only COCG. Finally,
effectiveness of IC factorization preconditioning is demonstrated.

In the all numerical examples, Spl27 is used for spatial discretization where the
respective FE mesh is created to satisfy the spatial discretization requirement λ/d ≥
4.8. As for the boundary conditions of each analysis, the small office and the multi-
purpose hall analyses use normalized acoustic impedance ratio zn corresponding to
absorption coefficient from literatures for each boundary, whereas the lecture room
analysis uses zn measured in-situ. A direct time integration method, namely constant
average acceleration method is adopted for time discretization. Table 3.2 lists DOF
of analysis, time interval Δt, analyzed time length T and total number of time steps
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Table 3.2 Setting of FE analysis of sound field in a small office, a lecture room and a multi-purpose
hall

Room Frequency (Hz) DOF Δt (ms) T (ms) Nstep

Small office 250 15,207 0.023 1,000 44,100
500 94,845 0.023 1,000 44,100
1,000 593,519 0.023 500 22,050

Lecture room 250 50,851 0.023 1,000 44,100
500 275,619 0.023 1,000 44,100

Multi-purpose hall 1,000 4,282,841 0.023 2,000 88,200
125 2,630,435 0.015 2,000 131,072

Table 3.3 Comparison of performance among five iterative methods applied to sound field analysis
in a small office

Iterative solver Average number of matrix-vector products
250 (Hz) 500 (Hz) 1,000 (Hz)

COCG 14.7 13.2 14.4
COCR 14.3 12.9 13.8
QMR 14.3 12.9 13.9
CGS 16.6 15.3 16.0
BiCGStab 18.3 15.3 17.3

Nstep for respective analyses. The iterations of iterative methods are terminated when
the relative residual 2-norm at each time step becomes less than 10−6. The initial
solution for starting iterative process is set to 0 at first time step, and solution before
1 time step is given at subsequent time steps.

Table 3.3 shows a comparison of mean number of sparse matrix-vector products
per iteration among five iterative methods on the analysis of sound field in the small
office. Here, absolute diagonal scaling is used as a preconditioning. The results show
that all iterative methods converge rapidly with the number of matrix-vector products
less than 20 in spite of the use of simple preconditioning. It can be said that application
of iterative methods to time domain analysis is significantly effective because of the
convergence with sufficiently small iteration numbers compared to DOF of problem.
Further, COCG, COCR, and QMR for complex symmetric matrix are more effective
than CGS and BiCGStab with the smaller numbers of sparse matrix-vector products.

Figure 3.9a and b shows the number of sparse matrix-vector products at each time
step of COCG applied to sound field analysis in the lecture room and the multi-
purpose hall where the absolute diagonal scaling preconditioning is adopted. The
solver also converges rapidly irrespective of sound fields with the small number of
matrix-vector products from which application of the iterative method is effective
for practical problems.

Further, improvement of convergence by using more sophisticated precondition-
ing techniques, namely IC factorization preconditionings, is presented in comparison
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Fig. 3.9 Number of sparse matrix-vector products of COCG method applied to sound field analysis
in a lecture room and b multi-purpose hall

Table 3.4 Performance of two IC factorization preconditionings applied to sound field analysis in
a small office and a lecture room

Room Average number of matrix-vector products
Frequency (Hz) COCG IC(0)-COCG DIC-COCG

Small office 250 12.8 2.2 5.2
500 12.8 2.2 5.2

1,000 13.2 2.0 5.0
Lecture room 250 15.5 3.4 5.9

500 12.5 3.4 5.0

with absolute diagonal scaled COCG when the sound fields in the small office and
the lecture room are predicted. Among IC factorization preconditionings, IC(0) fac-
torization without consideration of fill-in and simpler DIC factorization are adopted
here.

Table 3.4 shows a comparison of average number of matrix-vector products per
iteration among the preconditioned iterative methods. IC(0)-COCG and DIC-COCG
show better performance than COCG with smaller number of matrix-vector products.
Specifically, IC(0)-COCG is a powerful preconditioned iterative method for time
domain analysis with a few number of matrix-vector products.

3.3 Application to Exterior Problems

In principle, the finite element method is not applicable to an exterior problem in an
unbounded domain in a normal way, since it is not feasible to discretize an infinitely
large domain. However, the finite element method can be extended to analyze acoustic
field in an unbounded domain by appropriately modeling the infinite, open region
away from the sound sources and scattering objects.
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In this section, some approaches for applying the finite element method to an
exterior problem are briefly reviewed, and then the Dirichlet-to-Neumann (DtN)
method [31–33] is explained as an example of such methods.

3.3.1 Approaches to Exterior Problems

For applying the finite element method to an exterior problem, the infinite domain
is divided into a bounded and an unbounded domain. The finite element method is
applied to the bounded domain, and the unbounded domain, which is the rest of the
whole infinite domain outside of the bounded domain, is modeled in another way.
Several such methods have been proposed [34].

One of such methods is combining the finite element method and the boundary
element method. The finite element method is applied in the bounded domain, and
the boundary element is used for solving the exterior problem in the unbounded
domain.

Another commonly used approach is to use the infinite elements [35–39]. The
infinite elements are extension of the finite elements. The unbounded domains is
discretized into the elements with semi-infinite sizes. As with the finite elements,
the basis functions are associated with the infinite elements. The basis functions are
determined to satisfy the radiation condition.

In some other approaches, the acoustic field in the outer, unbounded domain
is modeled and expressed as the condition on the boundary of the inner bounded
domain, in which the finite element analysis is applied. Such a boundary condition is
called a nonreflecting boundary condition (NRBC), since it is derived to diminish the
reflection back into the bounded domain. Some of the NRBCs are local conditions
[40–42], and the others are nonlocal ones [43–45]. While all of the local conditions
are approximate, some of the nonlocal conditions are approximate and the others are
exact. The DtN boundary condition described below in this section is an example of
a nonlocal, exact boundary condition.

Unwanted reflection into the bounded domain can be reduced also by placing
absorbing layers right outside of the bounded domain. Such a boundary condition is
called an absorbing boundary condition (ABC). The perfectly matched layer (PML)
[46] is an example of such an approach. Although the PML is commonly used with
the finite difference method, it can be used with the finite element method as well.

3.3.2 Dirichlet-to-Neumann Method

3.3.2.1 DtN Map

The procedure of the DtN method for analyzing the exterior problem shown in
Fig. 3.10 by the finite element method is reviewed here. In the frequency domain,
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Fig. 3.10 Exterior problem

the exterior problem is described as follows:

∇2p + k2p + f = 0 in Ω, (3.35)

p = g on Γg, (3.36)

∂p

∂n
= h on Γh, (3.37)

lim
r→∞ r(d−1)/2

(
∂p

∂r
− jkp

)
= 0. (3.38)

Here, Ω is the entire unbounded domain. Γg and Γh are the parts of the boundary
of the object on which the Dirichlet and Neumann boundary conditions are imposed,
respectively.

Equation (3.38) is the Sommerfeld radiation condition, which describes that the
acoustic wave propagates outward only. In this equation, r is the distance from the
coordinate origin, and d is the spatial dimension (2 or 3).

For applying the DtN method to this exterior problem, the artificial boundary
Γdtn is introduced to divide the entire domain Ω into a bounded domain Ωb and an
unbounded domain Ω∞ as shown in Fig. 3.11. The finite element method is used
only in the bounded domain. The interior problem in Ωb is described as

∇2p + k2p + f = 0 in Ωb, (3.39)

p = g on Γg, (3.40)

∂p

∂n
= h on Γh, (3.41)

∂p

∂n
= Mdtn (p) on Γdtn. (3.42)

The specific expression of Eq. (3.42), which is the condition on the artificial bound-
ary Γdtn, is determined so that Eqs. (3.39)–(3.42) become equivalent to Eqs. (3.35)–
(3.38). Mdtn in Eq. (3.42) is called the Dirichlet-to-Neumann (DtN) map, since it is
a mapping from the Dirichlet datum p to the Neumann datum ∂p/∂n.
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Fig. 3.11 Domain truncation

The general procedure of the DtN method is described in the following:

Step 1 Truncation of Domain
Divide the whole domain Ω into a bounded domain Ωb and an unbounded
domain Ω∞ by introducing an artificial boundary Γdtn as shown in Fig. 3.11.

Step 2 Analysis in Unbounded Domain
Obtain the analytical solution in the unbounded domain Ω∞.

Step 3 Derivation of DtN Map
Derive the DtN map, which is the relationship between the acoustic pres-
sure and its normal derivative on the artificial boundary Γdtn, by using the
analytical solution obtained in Step 2.

Step 4 Numerical Analysis in Bounded Domain
Solve the interior problem in the bounded domain Ωb by a numerical method.
Use the DtN map as the boundary condition on the artificial boundary Γdtn.

By following these steps, the DtN map for a two-dimensional problem is obtained
below:

Step 1 Truncation of Domain
In order to derive the explicit form of the DtN map Mdtn, the analytical
solution in the unbounded domain Ω∞ is needed. To obtain the analytical
solution, the shape of the artificial boundary Γdtn have to be simple. Circular
and spherical boundaries are generally used for two- and a three-dimensional
problems, respectively. Another necessary condition for deriving the analyt-
ical solution in Ω∞ is that no sound sources or objects are located in this
domain. Therefore, the artificial boundary Γdtn needs to be placed such that
all of the sources and objects are involved inside it. In the problem shown in
Fig. 3.11, a circular artificial boundary with the radius of R is introduced to
divide the domain.

Step 2 Analysis in Unbounded Domain
In the cylindrical coordinate system (r, θ) with the origin at the center of
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the circle of the artificial boundary, the exterior problem in the unbounded
domain Ω∞ with the Dirichlet boundary condition on the artificial boundary
Γdtn is described as follows:

∇2p + k2p = 0 in Ω∞, (3.43)

p = p (R, θ) on Γdtn, (3.44)

lim
r→∞ r(d−1)/2

(
∂p

∂n
− jkp

)
= 0. (3.45)

The analytical solution of this problem is obtained as

p (r, θ) =
∞∑

n=−∞

1

2πR

∫
Γdtn

H(1)
|n| (kr)

H(1)
|n| (kR)

ejnθe−jnθ′
p
(
R, θ′) dΓ ′, (3.46)

where
dΓ ′ = R dθ′, (3.47)

and H(1)
n is the Hankel function of the first kind.

Equation (3.46) implies that the solution in the unbounded domain Ω∞ can
be obtained by using the solution on the artificial boundary p (R, θ). The
solution of the artificial boundary is obtained numerically when solving
the interior problem in Ωb. Thus, by using the numerical solution on Γdtn,
the solution in the unbounded domain Ω∞ can be calculated.

Step 3 Derivation of DtN Map
By taking the derivative of Eq. (3.46) with respect to r and evaluate it on the
artificial boundary r = R, the following DtN map is obtained.

∂p

∂n
(R, θ) = Mdtn (p (R, θ))

=
∞∑

n=−∞

1

2πR

kH(1)
|n| ′ (kR)

H(1)
|n| (kR)

ejnθ
∫

Γdtn

e−jnθ′
p
(
R, θ′) dΓ ′, (3.48)

where the prime (′) after the Hankel function indicates the derivative.

The DtN map in a three-dimensional problem can also be derived in the same
procedure:

Step 1 Truncation of Domain
A sphere with the radius of R is introduced as the artificial boundary. The
spherical coordinate system (r, θ,φ) with the origin at the center of sphere
of the artificial boundary is used.

Step 2 Analysis in Unbounded Domain
The analytical solution in the unbounded domain Ω∞ is obtained as
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p (r, θ,φ) =
∞∑

n=0

n∑
i=−n

(2n + 1) (n − |i|)!
4πR2 (n + |i|)!

h(1)
n (kr)

h(1)
n (kR)

×
∫

Γdtn

P|i|
n (cos θ) ejiφP|i|

n

(
cos θ′) e−jiφ′

p
(
R, θ′,φ′) dΓ ′, (3.49)

where
dΓ ′ = R2 sin θ′dθ′dφ′, (3.50)

and h(1)
n is the spherical Hankel function of the first kind, and Pi

n is the
associated Legendre polynomial.

Step 3 Derivation of DtN Map
Taking the normal derivative of Eq. (3.49) leads to the following DtN map:

∂p

∂n
(R, θ) = Mdtn (p)

=
∞∑

n=0

n∑
i=−n

(2n + 1) (n − |i|)!
4πR2 (n + |i|)!

kh(1)′
n (kR)

h(1)
n (kR)

P|i|
n (cos θ) ejiφ

×
∫

Γdtn

P|i|
n

(
cos θ′) e−jiφ′

p
(
R, θ′,φ′) dΓ ′. (3.51)

From Eqs. (3.48) and (3.51), the DtN map can be expressed in a general form as

Mdtn =
∞∑

n=N(d)

I(d)∑
i=−I(d)

zni (k, R) ψ∗
ni (x)

∫
Γdtn

ψni
(
x′) p

(
x′) dΓ ′. (3.52)

In this equation, N and I depend on the spatial dimension d. N = −∞ and I = 0
for d = 2, and N = 0 and I = n for d = 3.

3.3.2.2 DtN Finite Element Method

In Step 4 of the DtN method, the finite element analysis is conducted for the interior
problem in the bounded domain Ωb. The DtN map obtained in Step 3 is used as the
boundary condition on the artificial boundary Γdtn.

By introducing the weighting function w, the weak form of the interior problem
in Ωb is written as

a (w, p) − (w, Mdtn (p))Γdtn
= (w, f ) + (w, h)Γh

, (3.53)
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where

a (w, p) =
∫

Ωb

(
∇w∗ · ∇p − k2wp

)
dΩ, (3.54)

(w, p)Γdtn
=
∫

Γdtn

w∗p dΓ, (3.55)

(w, p) =
∫

Ωb

w∗p dΩ, (3.56)

(w, p)Γh
=
∫

Γh

w∗p dΓ. (3.57)

The finite element discretization of this weak form leads to the following linear
system:

(K − Bdtn) p = f . (3.58)

In this equation, K is the stiffness matrix resulting from the normal finite element
discretization, and Bdtn is the additional matrix associated with the DtN boundary
condition. The (a, b) element of Bdtn is obtained as

[Bdtn]ab = (Na, Mdtn (Nb))Γdtn
, (3.59)

where Na is the basis function of the finite element method. The element is expressed
in the form of Eq. (3.52) as

[Bdtn]ab =
∞∑

n=N(d)

I(d)∑
i=−I(d)

zni (k, R)

∫
Γdtn

ψ∗
ni (x) N∗

a (x) dΓ

∫
Γdtn

ψni
(
x′)Nb

(
x′) dΓ ′.

(3.60)
This equation implies that the elements of Bdtn can be obtained by the integration

in the dimension one less than the spatial dimension of the problem.
Unlike the usual finite element stiff matrix, the (a, b) element of Bdtn is nonzero

when the nodes a and b are both on the artificial boundary, even if these nodes are
not adjacent. Since the number of the nodes on the artificial boundary Γdtn is much
smaller than that in the entire numerical domain Ωb, the matrix on the left-hand side
of Eq. (3.58) is still sparse and the computational penalty due to the DtN method is
not significant in many cases.

Once Bdtn is obtained by Eq. (3.60), the acoustic field in the bounded domain
Ωb as well as on the artificial boundary Γdtn can be calculated by solving the lin-
ear system Eq. (3.58). As with the normal finite element method, iterative methods
can be utilized for solving the linear system efficiently. Some algorithms for the
DtN finite element method suitable for the iterative methods have been proposed
[33, 47, 48].

In practical implementation, the infinite series in the DtN maps in the forms of
Eqs. (3.48) and (3.51) need to be truncated after a finite number of terms. Although
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the DtN maps expressed by Eqs. (3.48) and (3.51) are the exact boundary conditions,
the truncation of the infinite series in practical computation produces some error. With
the increase in the number of terms N , the error decreases, but the computational cost
grows. Therefore, the number of terms N needs to be determined by considering the
trade-off between the accuracy and the computational cost. Since the error converges
to a certain level with increasing N , understanding the convergence behavior helps
determine the truncation criterion.

The number of terms N also affects the uniqueness of the solution [49, 50]. If the
exact DtN map without the series truncation is used, the uniqueness of the solution
is always assured. On the other hand, if the truncated series after N terms is used to
express the DtN map, the solution is unique only when N is larger than kR. Although
the necessary number of terms N and the resulting computational burden increase
as the wavenumber k becomes larger, the unique solution can be obtained by simply
increasing N , without changing the codes.

In this section, the basics of the DtN method are reviewed. Beyond the basics,
the DtN method is being extended in several ways. For instance, the modified DtN
method for reducing the truncation error [51] and the localization of the DtN map [52]
are studies. Also, the application of the DtN method is not limited to an exterior
problem in the frequency domain as described in this section. Not only for an infinite
domain, the DtN method can be used also for a large finite domain with similar
domain truncation [34]. The DtN method can be applied in the time domain as
well [34].
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Chapter 4
Boundary Element Method

Yosuke Yasuda and Tetsuya Sakuma

Abstract This chapter gives an outline of acoustic analysis using the boundary
element method (BEM). In the first section, the fundamentals of the BEM and its
application to sound field analysis are explained. The second section presents two
advanced techniques, the indirect approach with degenerate boundary and the domain
decomposition method. The third section introduces a new application of the fast
multipole method, as a fast solution technique for large-scale problems.

Keywords Boundary element method (BEM) · Boundary integral equation (BIE) ·
Nonuniqueness problem · Indirect method ·Domain decomposition method (DDM) ·
Fast multipole method (FMM) ·Fast multipole boundary element method (FMBEM) ·
Iterative method

4.1 Fundamentals

The boundary element method (BEM) is a method of solving the boundary value
problem for the field with boundary discretization, which is different from the FEM
and the FDTD method that employ spatial discretization. Therefore the BEM requires
fewer elements and nodes, significantly reducing the number of DOFs of problems.
In particular, it is powerful for exterior problems, such as radiation and scattering
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problems, in the free field [1–5]. This section briefly describes the fundamentals of
the BEM in the frequency domain and in the time domain.

4.1.1 Frequency Domain BEM

4.1.1.1 Boundary Integral Equations

We consider sound field ρ and boundary ∂ with inward normal vector n, as shown
in Fig. 4.1. Introducing an arbitrary test function κ to the Helmholtz equation gives
a weak formulation as

∫
ρ

κ(r)
[
√2p(r) + k2p(r)

⎛
dρ = 0. (4.1)

According to the Green’s theorem, the above equation can be transformed as follows:

∫
ρ

κ(r)
[
√2p(r) + k2p(r)

⎛
dρ

= −
∫
∂

κ(r)
∂p(r)
∂n(r)

d∂ −
∫
ρ

κ(r)
[
√κ(r) · √p(r) − k2κ(r)p(r)

⎛
dρ

=
∫
∂

⎝
p(r)

∂κ(r)
∂n(r)

− ∂p(r)
∂n(r)

κ(r)
⎧

d∂ +
∫
ρ

p(r)
[
√2κ(r) + k2κ(r)

⎛
dρ

= 0, (4.2)

where ∂/∂n denotes the inward normal derivative. Here, as the test function, we use
fundamental solutions for arbitrary combinations of observation point p and source
point q, that satisfies

√2G(rp, rq) + k2G(rp, rq) = −δ(rpq), (4.3)

where rpq = |rp −rq|, and δ is the Dirac’s delta function. In three-dimensional space,
the fundamental solution is given as

G(rp, rq) = 1

4π

exp(jkrpq)

rpq
, (4.4)

while in two-dimensional space,

G(rp, rq) = j

4
H(1)

0

⎨
krpq

⎩
. (4.5)
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Fig. 4.1 Domain and
boundary in sound field

interior problem exterior problem

n
nΓ Γ

Substituting the above solution into Eq. (4.2) gives the boundary integral
equation as

ε(rp)p(rp) =
∫
∂

⎝
p(rq)

∂G(rp, rq)

∂nq
− ∂p(rq)

∂nq
G(rp, rq)

⎧
d∂, (4.6)

where ε(rp) represents the proportion of opening angle from observation point p to
domain ρ , normalized by 4π in three dimensions, and by 2π in two dimensions. If
the point p is located inside the domain, ε = 1; on a smooth boundary, ε = 1/2;
and outside the domain, ε = 0. The above equation means that sound pressure at an
arbitrary point is determined by sound pressure and its normal derivative (pressure
gradient) on all boundaries. In the case that the point p is located on the boundary, it
is known as the Kirchhoff-Helmholtz boundary integral equation.

Supposing that the point p is located on a smooth boundary, Eq. (4.6) can be
differentiated with respect to the inward normal direction at the point p, as follows:

1

2

∂p(rp)

∂np
=
∫
∂

[
p(rq)

∂2G(rp, rq)

∂np∂nq
− ∂p(rq)

∂nq

∂G(rp, rq)

∂np

⎡
d∂. (4.7)

Equation (4.6) is called the basic form, while Eq. (4.7) is called the normal derivative
form or hypersingular formulation. The boundary element method is applicable to
each formulation.

4.1.1.2 Sound Source and Boundary Conditions

If a sound source is located in the domain, the direct contribution to observation point
p, pd(rp), is added to the right side of Eq. (4.6) in the basic form, and its gradient,
∂pd(rp)/∂np, is added to the right side of Eq. (4.7) in the normal derivative form. For
a monopole source at point s with the volume velocity Q, the direct sound pressure
is given by

pd(rp) = −jωρQ
exp(jkrps)

4πrps
. (4.8)

When multiple sources exist, each contribution can be simply added.
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Fig. 4.2 Three types of
boundary condition
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Regarding boundary ∂ , as shown in Fig. 4.2, we consider three types of boundary:
rigid boundary ∂0, vibrating boundary ∂v, and absorbing boundary ∂a. Assuming
local reaction on the boundaries, the boundary conditions are given by

∂p(rq)

∂nq
=
⎢⎣
⎤

0 q ≤ ∂0
jωρv(rq) q ≤ ∂v
−jωρY(rq)p(rq) q ≤ ∂a

, (4.9)

where v is the normal vibration velocity (inward is positive), and Y is the normal
acoustic admittance (reciprocal of normal impedance Z).

Reflecting the above boundary conditions, and adding the direct contribution of
sound sources to Eq. (4.6) gives

1

2
p(rp) = pd(rp) +

∫
∂

⎝
∂G(rp, rq)

∂nq
+ aY(rq)G(rp, rq)

⎧
p(rq) d∂

− a
∫
∂

G(rp, rq)v(rq) d∂, (4.10)

where a = jωρ, and the point p is on a smooth boundary. On the other hand, Eq. (4.7)
in the normal derivative form can be transformed into

a

2

⎥
v(rp) − Y(rp)p(rp)

⎦ = ∂pd(rp)

∂np

+
∫
∂

[
∂2G(rp, rq)

∂np∂nq
+ aY(rq)

∂G(rp, rq)

∂np

⎡
p(rq) d∂

− a
∫
∂

∂G(rp, rq)

∂np
v(rq) d∂, (4.11)

where v(rp) = 0 if p ≤ ∂0, ∂a, and Y(rp) = 0 if p ≤ ∂0, ∂v.
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4.1.1.3 Discretization of Integral Equations

To numerically solve a boundary integral equation, it is discretized by dividing the
boundary into elements, and by piecewise approximation of variables with nodal
values. Constructing a linear system of discretized equations with the same num-
ber of nodes, and solving the system gives all nodal values on the boundary. As a
discretization scheme, the collocation method is commonly used, and the Galerkin
method [6, 7] is also used for a special formulation (see Sect. 4.2.1). In general, a
variable on the boundary is approximately given by

x(r) =
N∑

i=1

ϕi(r)xi = ϕT (r)x, (4.12)

where N is the total number of nodes, xi and ϕi are the nodal value and the inter-
polation function of the i-th node, respectively. Based on the above expression, dis-
cretization by the collocation method is explained in the following.

In the collocation method, a discretized equation is given by collocating the obser-
vation point p at each node on the boundary in the boundary integral equation. In the
basic form, Eq. (4.10) is discretized with respect to the i-th node, as follows:

1

2
pi = pd,i +

∫
∂

{
∂G(ri, rq)

∂nq
+ aG(ri, rq)

[
ϕT (rq)y

⎛} [
ϕT (rq)p

⎛
d∂

− a
∫
∂

G(ri, rq)
[
ϕT (rq)v

⎛
d∂. (4.13)

Thus, we can compose the equations for all nodes into a linear system such that

(
−1

2
I + H + D

)
p = Gv − pd, (4.14)

where I is the identity matrix, and the matrices H, G, and D have the following
entries:

Hij =
∫
∂

∂G(ri, rq)

∂nq
ϕj(rq) d∂, (4.15)

Gij = a
∫
∂

G(ri, rq)ϕj(rq) d∂, (4.16)

Dij = a
∫
∂

G(ri, rq)
[
ϕT (rq)y

⎛
ϕj(rq) d∂. (4.17)
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In the case of using constant elements that approximate a constant value in each
element, D = GY , with the diagonal admittance matrix Y .

In the normal derivative form, Eq. (4.11) is discretized as

a

2
(vi − Yipi) = ∂pd,i

∂ni

+
∫
∂

{
∂2G(ri, rq)

∂ni∂nq
+ a

∂G(ri, rq)

∂ni

[
ϕT (rq)y

⎛} [
ϕT (rq)p

⎛
d∂

− a
∫
∂

∂G(ri, rq)

∂ni

[
ϕT (rq)v

⎛
d∂, (4.18)

and then a linear system is composed as

(
H′ + D′ + a

2
Y
)

p =
(

G′ + a

2
I
)

v − p′
d, (4.19)

where p′
d is the pressure gradient vector of the direct sound, and the matrices H′, G′,

and D′ have the following entries:

H ′
ij =

∫
∂

∂2G(ri, rq)

∂ni∂nq
ϕj(rq) d∂, (4.20)

G ′
ij = a

∫
∂

∂G(ri, rq)

∂ni
ϕj(rq) d∂, (4.21)

D′
ij = a

∫
∂

∂G(ri, rq)

∂ni

[
ϕT (rq)y

⎛
ϕj(rq) d∂. (4.22)

In the case using constant elements, D′ = G′Y , as well as in the basic form.
Solving Eq. (4.14) or (4.19) gives nodal sound pressures on the boundary, however,

the basic form is used except for a special case, because the treatment of singular
integrals is complicated in the normal derivative form. For exterior problems, the
nonuniqueness problem occurs at specific frequencies, so that special treatments are
needed as is described later. In principle, the finite element method usually handles
symmetric band matrices, whereas the boundary element method handles nonsym-
metric and non-Hermitian dense matrices.

A post-processing is needed to calculate sound pressure in the domain from nodal
sound pressures on the boundary. Sound pressure at a point, p, in the domain is
expressed by
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p(rp) = pd(rp) +
∫
∂

{
∂G(rp, rq)

∂nq
+ aG(rp, rq)

[
ϕT (rq)y

⎛} [
ϕT (rq)p

⎛
d∂

− a
∫
∂

G(rp, rq)
[
ϕT (rq)v

⎛
d∂. (4.23)

Let the row vectors hT , gT , and dT have the entries replacing the i-th node with point
p in Eqs. (4.15), (4.16), and (4.17), respectively, and the above equation is rewritten
as

p(rp) = pd(rp) +
[
hT (rp) + dT (rp)

⎛
p − gT (rp)v. (4.24)

Therefore, generating the row vectors for the observation point, and substituting the
obtained nodal sound pressures, sound pressure in the domain can be calculated.

4.1.1.4 Boundary Elements and Numerical Integration

In the boundary element method, triangular or quadrangular elements are used in
three-dimensional space. As shown in Fig. 4.3, there exists a variety of elements
such as constant element, linear element, and quadratic element, and particularly,
those using the same set of interpolation functions and shape functions are known
as isoparametric elements. Regarding continuity of variables between elements, the
elements are classified into the conforming or nonconforming type, and the constant
and high-order elements that have no node on the sides are of the latter type. If the
collocation method is applied to the normal derivative form, nonconforming elements
are used since nodes should be located on smooth surface. In the following, a simple
and an easy way to numerically treat constant elements is explained.

The constant element has one node in the center of the element, and the interpo-
lation function, ϕi = 1 or ϕi = 0, if inside or outside the element. Accordingly, in
the matrices generation for the basic form or the normal derivative form, each entry
is calculated as follows:

Hij =
∫
∂j

∂G(ri, rq)

∂nj
d∂ = − 1

4π

∫
∂j

⎨
1 − jkriq

⎩ ∂riq

∂nj

exp(jkriq)

r2
iq

d∂, (4.25)

Gij = a
∫
∂j

G(ri, rq) d∂ = − a

4π

∫
∂j

exp(jkriq)

riq
d∂, (4.26)

or
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Fig. 4.3 Variation of boundary elements: constant and linear elements of nonconforming type, and
linear and quadratic elements of conforming type (in left-to-right)

H ′
ij =

∫
∂j

∂2G(ri, rq)

∂ni∂nj
d∂

= 1

4π

∫
∂j

⎝(
3 − jkriq − k2r2

iq

) ∂riq

∂ni

∂riq

∂nj
+ (1 − jkriq)ni · nj

⎧
· exp(jkriq)

r3
iq

d∂,

(4.27)

G ′
ij = a

∫
∂j

∂G(ri, rq)

∂ni
d∂ = − a

4π

∫
∂j

⎨
1 − jkriq

⎩ ∂riq

∂ni

exp(jkriq)

r2
iq

d∂, (4.28)

where ∂j denotes the element for the j-th node, and ∂r/∂n = n · r/r. For the
above calculations, numerical integration inside each element is needed, and the
Gaussian quadrature [8] is commonly used except for the singular case of i = j.
For example, after the transformation of three-dimensional global coordinates into
two-dimensional local coordinates, the integral inside a quadrangular element is
obtained by

∫
∂j

f (r) d∂ =
1∫

−1

1∫
−1

f (ξ, η) |J(ξ, η)| dξdη

≈
K∑

m=1

K∑
n=1

wmwnf (ξm, ηn) |J(ξm, ηn)| , (4.29)
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where wm and wn are the weights, ξm and ηn are the Gauss nodes, K is the number
of nodes, and the Jacobian determinant is

|J(ξ, η)| =
⎞⎞⎞⎞ dr
dξ

× dr
dη

⎞⎞⎞⎞

=
⎠(

dx

dξ

dy

dη
− dx

dη

dy

dξ

)2
+
(

dy

dξ

dz

dη
− dy

dη

dz

dξ

)2
+
(

dz

dξ

dx

dη
− dz

dη

dx

dξ

)2
.

(4.30)

For triangular elements, Hammer’s quadrature formula [9] is applicable in a similar
way.

In the case of i = j, corresponding to diagonal entries, the Gaussian quadrature is
not applicable due to the singularity of the integral kernels. With constant elements,
Hii = 0 and G ′

ii = 0, whereas a special treatment is needed for Gii and H ′
ii. In polar

coordinates with the origin at the node, letting R be the distance from the origin to
a point on the sides, Eqs. (4.26) and (4.27) are converted to the contour integrals
around the element [10], such that

Gii = ρc

4π

{∮
exp[jkR(θ)] dθ − 2π

}
, (4.31)

H ′
ii = 1

4π

{
2πjk −

∮
exp[jkR(θ)]

R(θ)
dθ

}
. (4.32)

The above integrals include no singularity, and can be calculated by piecewise approx-
imation. Moreover, even if i ≥= j, the use of the Gaussian quadrature yields low accu-
racy for two nearby nodes. For the nearly singular integrals, an advanced scheme
called the projection and angular and radial transformation (PART) method [11] is
available.

4.1.1.5 Nonuniqueness Problem

It is known that the boundary integral equation theoretically involves a nonunique-
ness problem that a solution is not determined for exterior problems at fictitious
eigenfrequencies. In the basic form, it occurs at the interior eigenfrequencies of the
Neumann problems, while at those of the Dirichlet problems in the normal derivative
form. Consequently, in the application of the boundary element method, computa-
tional accuracy becomes considerably worse at the frequencies. To avoid the problem,
the Burton–Miller formulation [12] and the combined Helmholtz integral equation
formulation (CHIEF) [13] are commonly used, and an alternative formulation based
on the indirect method is proposed (see Sect. 4.2.1).

In the Burton–Miller method, two integral equations in the basic form and in the
normal derivative form are linearly combined, and the following system is solved:
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⎝(
−1

2
I + H + D

)
+ α

(
H′ + D′ + a

2
Y
)⎧

p =
[

G + α
(

G′ + a

2
I
)⎛

v − ⎨pd + αp′
d
⎩
,

(4.33)

where α is the coupling factor with an imaginary part, and α = 1/jk is commonly
used [14]. This method is theoretically simple, however, computational cost for
matrices generation becomes greater.

In the CHIEF, multiple points are located inside a body in an exterior problem,
and additional integral equations for the points are given with ε = 0 in Eq. (4.6).
Then, an overdetermined system is constructed as

⎝− 1
2 I + H + D

H̆ + D̆

⎧
p =

⎝
G
Ğ

⎧
v −

{
pd
p̆d

}
, (4.34)

where H̆, Ğ, D̆, and p̆d are the matrices and the vector for additional interior points.
Representing the global matrix in the left side by A, and applying the least squares
method gives (

AHA
)

p = AH
{⎝

G
Ğ

⎧
v −

{
pd
p̆d

}}
, (4.35)

where ( )H denotes the Hermitian matrix. The above system can be solved with
smaller computational cost than the Burton–Miller method, however, some strategies
are required to the location and the number of additional points.

4.1.2 Time Domain BEM

4.1.2.1 Time Domain Boundary Integral Equation

In a similar way to the Helmholtz equation in the frequency domain, a test function
κ is introduced to the wave equation in the time domain, and applying the Green’s
theorem gives

∫
∂

⎝
p(r, t)

∂κ(r, t)

∂n(r)
− ∂p(r, t)

∂n(r)
κ(r, t)

⎧
d∂

+
∫
ρ

p(r, t)

⎝
√2κ(r, t) − 1

c2

∂2

∂t2 κ(r, t)

⎧
dρ = 0. (4.36)

For the test function, we use fundamental solutions of the wave equation Ĝ, that
satisfy
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√2G̃(rp, t|rq, t0) − 1

c2

∂2

∂t2 G̃(rp, t|rq, t0) = −δ(rpq)δ(t − t0), (4.37)

where t and t0 are time at the observation point p and at the source point q. In
three-dimensional space, the fundamental solution is given as

G̃(rp, t|rq, t0) = 1

4πrpq
δ
(

t − t0 − rpq

c

)
. (4.38)

Substituting it into Eq. (4.36), and integrating the equation with respect to t0 give

ε(rp)p(rp, t) =
t∫

0

∫
∂

[
p(rq, t0)

∂G̃(rp, t|rq, t0)

∂nq
− ∂p(rq, t0)

∂nq
G̃(rp, t|rq, t0)

⎡
d∂ dt0

= − 1

4π

∫
∂

[
∂

∂nq
p
(

rq, t − rpq

c

) 1

rpq
+ p

(
rq, t − rpq

c

) 1

r2
pq

∂rpq

∂nq

+ṗ
(

rq, t − rpq

c

) 1

crpq

∂rpq

∂nq

⎧
d∂, (4.39)

where ˙( ) denotes the time differential ∂/∂t.
If a sound source is located in the domain, the direct contribution to observation

point p, pd(rp, t), is added to the right side of Eq. (4.39). For a monopole source at
point s with the volume velocity Q(t), the direct sound pressure is given by

pd(rp, t) = −ρQ̇
(

t − rps

c

) 1

4πrps
. (4.40)

Assuming local reaction on the three types of boundary, rigid boundary ∂0, vibrat-
ing boundary ∂v, and absorbing boundary ∂a, the boundary conditions in the time
domain are given by

∂p(rq, t)

∂nq
=
⎢⎣
⎤

0 q ≤ ∂0
−ρv̇(rq, t) q ≤ ∂v

ρ
∫ t

0 y(rq, τ )p(rq, t − τ ) dτ q ≤ ∂a

, (4.41)

where y(τ ) is the impulse admittance [15], that is, the inverse Fourier transform of the
normal acoustic admittance Y(f ). Considering the frequency characteristics of admit-
tance on the absorbing boundary, the convolution integral with the impulse admit-
tance is involved as expressed above. If a frequency-independent real admittance is
assumed, the boundary condition is simply given by ∂p(rq, t)/∂nq = ρY(rq)ṗ(rq, t).
Reflecting the above boundary conditions, and adding the direct contribution of sound
sources to Eq. (4.39), the following equation is given for the observation point p on
a smooth boundary:
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1

2
p(rp, t) = pd(rp, t)

− 1

4π

∫
∂

∂rpq

∂nq

[
1

r2
pq

p
(

rq, t − rpq

c

)
+ 1

crpq
ṗ
(

rq, t − rpq

c

)⎡
d∂

− ρ

4π

∫
∂

1

rpq

⎝ t− rpq
c∫

0

y
⎨
rq, τ

⎩
ṗ
(

rq, t − τ − rpq

c

)
dτ

− v̇
(

rq, t − rpq

c

)⎧
d∂. (4.42)

4.1.2.2 Discretization of Time Domain Integral Equation

In the spatial domain, an interpolation function of each node ϕi is used as explained
in Sect. 4.1.1.3, while in the time domain, the time interval [0, T ] is discretized with
equal time steps Δt, and a continuous interpolation functions αk is introduced for
each time step kΔt (k = 0, . . . , M). Consequently, a variable on the boundary is
approximately given by

x(r, t) =
N∑

i=1

ϕ(r)xi(t) =
N∑

i=1

ϕ(r)

[
M∑

k=0

αk(t)x
k
i

⎡
=

M∑
k=0

αk(t)
[
ϕT (r)xk

⎛
.

(4.43)
Here, the time domain interpolation functions hold αk(t) = α(t − tk) with a mother
function α, and the use of a high-order piecewise polynomial for the mother function
improves numerical stability [16, 17].

Applying the collocation method in the spatial domain, Eq. (4.42) can be dis-
cretized at the time steps tm = mΔt, as follows:

1

2
pm

i = pm
d,i − 1

4π

m∑
k=0

∫
∂

∂riq

∂nq

[
1

r2
iq

αk

(
tm − riq

c

)
+ 1

criq
α̇k

(
tm − riq

c

)⎡
·
[
ϕT (rq)pk

⎛
d∂

− ρ

4π

m∑
k=0

∫
∂

1

riq

{
α̇k

(
tm − riq

c

) k∑
l=0

Δt
[
ϕT (rq)yl

⎛ [
ϕT (rq)pk−l

⎛

−α̇k

(
tm − riq

c

) [
ϕT (rq)v

k
⎛⎜

d∂, (4.44)

where yl is the vector of impulse admittance at the time step τl = lΔt. In the last
term on the right side, the summation for the absorbing boundary is transformed into

Sa =
m∑

k=0

∫
∂

1

riq

{
m−k∑
l=0

Δtα̇k+l

(
tm − riq

c

) [
ϕT (rq)yl

⎛} [
ϕT (rq)pk

⎛
d∂, (4.45)
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and if a frequency-independent real admittance is assumed, it is simplified as

Sa =
m∑

k=0

∫
∂

1

riq
α̇k

(
tm − riq

c

) [
ϕT (rq)y

⎛ [
ϕT (rq)pk

⎛
d∂. (4.46)

Due to the time shift rule for αk , the integrands in Eq. (4.44) are only dependent
on the relative time tm−k , thus a recursive linear system is constructed as follows:

(
1

2
I + A0 + C0

)
pm = pm

d −
m∑

k=1

(
Ak + Ck

)
pm−k +

m∑
k=0

Bkvm−k, (4.47)

where I is the identity matrix, and the matrices Ak , Bk , and Ck have the following
entries:

Ak
ij = 1

4π

∫
∂

∂riq

∂nq

[
1

r2
iq

α
(

tk − riq

c

)
+ 1

criq
α̇
(

tk − riq

c

)⎡
ϕj(rq) d∂, (4.48)

Bk
ij = ρ

4π

∫
∂

1

riq
α̇
(

tk − riq

c

)
ϕj(rq) d∂, (4.49)

Ck
ij = ρ

4π

∫
∂

1

riq

{
k∑

l=0

Δtα̇
(

tk−l − riq

c

) [
ϕT (rq)yl

⎛}
ϕj(rq) d∂. (4.50)

In boundary integrals, the Gaussian quadrature can be applied to nondiagonal entries,
while regarding diagonal entries, Ak

ii = 0, and a special treatment is needed for Bk
ii and

Ck
ii due to the singularity. In a similar way to the treatment in the frequency domain,

considering polar coordinates with the origin at the node of a constant element, and
letting R be the distance from the origin to a point on the sides convert Eq. (4.49) to
the following contour integral around the element:

Bk
ii = ρ

4π

∮ ⎝
α

(
tk − R(θ)

c

)
− α(tk)

⎧
dθ (4.51)

In the case with constant elements, Ck = ⎟k
l=0 ΔtBk−lY l where Y l is the diagonal

matrix having the entries of the impulse admittance vector yl.
Numerically solving Eq. (4.47) at each time step, nodal sound pressures are recur-

sively obtained. This method is known as the marching-on-in-time (MOT), and sta-
bility of recursive calculations can be improved by using a high-order quadrature
rule with a relatively large time step. For example, good results were reported on
the conditions using the three-order polynomial for α, setting cΔt ≈ Δx for the
element size Δx, and Δt > 1/10fmax for the upper limit frequency fmax [17, 18].
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Furthermore, other time domain methods were proposed for the normal derivative
form and the Burton–Miller formulation, and applied to scattering problems and so
on [15–19].

4.2 Indirect Method and Domain Decomposition Method

This section introduces two advanced techniques in the frequency domain BEM.
In the first half, an indirect method using degenerate boundary for thin bodies is
presented with its applications and advantages in computation [3–5, 10, 20]. In
the latter half, a domain decomposition method that treats sound field as a coupled
system with subdivided domains is presented, giving its effective applications to such
problems connecting closed spaces, hemi-free field, and so on [21–26].

4.2.1 Indirect BEM

4.2.1.1 Degenerate Boundary

If the conventional BEM is applied to thin bodies, computational accuracy is con-
siderably spoiled due to close proximity of elements on the two sides of bodies. To
overcome this difficulty, degenerate boundary is introduced assuming an extreme
condition that a body has zero thickness, as shown in Fig. 4.4. Arbitrarily defining
the front and back sides for degenerate boundary ∂d, the two kinds of boundary
integral equation for the observation point p on a smooth boundary, Eqs. (4.6) and
(4.7), are transformed into

1

2
p̂(rp) =

∫
∂d

[
p̃(rq)

∂G(rp, rq)

∂n+
q

− ∂p̃(rq)

∂n+
q

G(rp, rq)

⎡
d∂, (4.52)

1

2

∂p̂(rp)

∂n+
p

=
∫
∂d

[
p̃(rq)

∂2G(rp, rq)

∂n+
p ∂n+

q
− ∂p̃(rq)

∂n+
q

∂G(rp, rq)

∂n+
p

⎡
d∂, (4.53)

where p̂ = p+ + p−, p̃ = p+ − p−, p± are the sound pressures on the front and back
sides, and ∂/∂n+ denotes the inward normal derivative for the front side.

Giving three types of boundary condition on each side, the above two equations
are expressed as

1

2
p̂(rp) = pd(rp) +

∫
∂d

∂G(rp, rq)

∂n+
q

p̃(rq) d∂
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Fig. 4.4 Degenerate boundary

+ a
∫
∂d

G(rp, rq)
[
Ŷ(rq)p̂(rq) + Ỹ(rq)p̃(rq)

⎛
d∂

− a
∫
∂d

G(rp, rq)v̂(rq) d∂, (4.54)

a

2

[
ṽ(rp) − Ỹ(rp)p̂(rp) − Ŷ(rp)p̃(rp)

⎛
= ∂pd(rp)

∂n+
p

+
∫
∂d

∂2G(rp, rq)

∂n+
p ∂n+

q
p̃(rq) d∂

+ a
∫
∂d

∂G(rp, rq)

∂n+
p

[
Ŷ(rq)p̂(rq) + Ỹ(rq)p̃(rq)

⎛
d∂

− a
∫
∂d

∂G(rp, rq)

∂n+
p

v̂(rq) d∂, (4.55)

where v̂ = v+ + v−, ṽ = v+ − v−, Ŷ = (Y+ + Y−)/2, Ỹ = (Y+ − Y−)/2, v±
and Y± are the normal vibration velocities and the normal acoustic admittances on
the two sides. In the above forms, the sum and the difference of sound pressure are
employed as variables on degenerate boundary, and the application of the BEM is
commonly called as the indirect BEM.

4.2.1.2 Indirect Formulations

Dividing degenerate boundary into two-sided elements, and applying the collocation
method to Eqs. (4.55) and (4.56) give

(
−1

2
I + D̂

)
p̂ +

(
H + D̃

)
p̃ = Gv̂ − pd, (4.56)

(
D̂′ + a

2
Ỹ
)

p̂ +
(

H′ + D̃′ + a

2
Ŷ
)

p̃ = G′v̂ + a

2
ṽ − p′

d, (4.57)
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where the matrices H, G, H′, and G′ correspond to Eqs. (4.15), (4.16), (4.20), and
(4.21), D̂, D̃, D̂′, and D̃′ are given by substituting Ŷ and Ỹ in Eqs. (4.17) and (4.22),
respectively. Each of the above systems has equations of the same number of nodes,
and the double number of unknowns for and. Therefore we cannot solve only either
system in the basic form or in the normal derivative form. An approach to solve the
problem is to couple the two kinds of system, which gives a greater system called
the dual form [3, 10] as

[
− 1

2 I + D̂ H + D̃

D̂′ + a
2 Ỹ H′ + D̃′ + a

2 Ŷ

⎡{
p̂
p̃

}
=
⎝

G 0
G′ a

2 I

⎧{
v̂
ṽ

}
−
{

pd
p′

d

}
. (4.58)

This formulation requires the number of DOFs equal to the double number of nodes,
however, it can be surely solved. In post-processing, sound pressure on each side
of degenerate boundary is immediately obtained by p± = (p̂ ± p̃)/2, while sound
pressure in the domain needs to be calculated in a similar way as Eq. (4.24), by

p(rp) = pd(rp) +
[
hT (rp) + d̃

T
(rp)
⎛

p̃ + d̂
T
(rp)p̂ − gT (rp)v̂, (4.59)

where the row vectors d̂
T

and d̃
T

are given by replacing the i-th node with point p,
and substituting Ŷ and Ỹ in Eq. (4.17), respectively.

As an ordinary case for thin plates, we consider the boundary condition where the
two sides are rigid or vibrating together. In this case, the sum of vibration velocity
on the two sides v̂ = 0, and the difference ṽ = 2v+, thus Eq. (4.57) is simplified in
the following without p̂,

H′p̃ = av+ − p′
d. (4.60)

In a different way from the dual form, the above normal derivative form can be solved
itself, which gives the difference of sound pressure on the degenerate boundary. In
post-processing, sound pressure in the domain can be calculated by

p(rp) = pd(rp) + hT (rp)p̃ − 2gT (rp)v
+, (4.61)

and also, sound pressure on each side of degenerate boundary needs to be calculated
by

p±(rp) = pd(rp) + hT (rp)p̃ − 2gT (rp)v
+ ± 1

2
p̃(rp). (4.62)

As an alternative approach to the above case, the Galerkin method can be applied
in discretization of the boundary integral equation [6, 7]. Reflecting the boundary
condition to Eq. (4.55) gives the following normal derivative form:

av+(rp) = ∂pd(rp)

∂n+
p

+
∫
∂d

∂2G(rp, rq)

∂n+
p ∂n+

q
p̃(rq) d∂. (4.63)
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Introducing the interpolation function of each node ϕi as a test function, the Galerkin
method gives

a
∫
∂d

ϕi(rp)
[
ϕT (rp)v+⎛ d∂ =

∫
∂d

ϕi(rp)
[
ϕT (rp)p′

d

⎛
d∂

+
∫
∂d

ϕi(rp)

⎢⎪⎣
⎪⎤
∫
∂d

∂2G(rp, rq)

∂n+
p ∂n+

q

[
ϕT (rq)p̃

⎛
d∂q

⎪
⎪ d∂p.

(4.64)

Thus, we can compose the equations for all nodes into a linear system such that

H̄′p̃ = E
⎨
av+ − p′

d
⎩
, (4.65)

where the matrices H̄′ and E have the following entries:

H̄ ′
ij =

∫
∂

∫
∂

∂2G(rp, rq)

∂np∂nq
ϕi(rp)ϕj(rq) d∂p d∂q, (4.66)

Eij =
∫
∂

ϕi(rp)ϕj(rp) d∂. (4.67)

The above matrices are symmetric matrices, accordingly the Galerkin method brings
advantages over the collocation method in memory requirements and solution of
linear system, although computational time for matrix generation increases due to
the double integrals. It is noted that the Galerkin method is applicable not only to
the indirect formulation but also to the conventional formulation [7].

4.2.1.3 Application of the Dual Form to Exterior Problems

In the application of the BEM to exterior problems, computational accuracy becomes
considerably worse at fictitious eigenfrequencies of the corresponding interior prob-
lems (see Sect. 4.1.1.5). As common measures to the difficulty, the Burton–Miller
formulation and the combined Helmholtz integral equation formulation (CHIEF)
are well known, while an alternative approach using the indirect method in the dual
form has been proposed. As shown in Fig. 4.5, degenerate boundary is employed
supposing an imaginary space just inside the body, and assuming that the acoustic
impedance on the interior side, Z = ρc as absorbing boundary. This approach is also
able to ensure computational accuracy [27], although a greater amount of memory
storage is required with doubling the number of unknowns. In addition, if an iterative
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Fig. 4.5 Modeling of an exterior problem using degenerate boundary

solver is applied to the linear system, convergency becomes fairly good, resulting in
an advantage in computational time [28].

4.2.2 Domain Decomposition Method

The FEM, FDM, and FDTD method can easily deal with fields composed of two
or more media and temperature-gradient fields, because these methods discretize
the analysis domain itself. On the other hand, the BEM can basically deal only
with uniform-medium fields, because this method discretizes the boundary of the
domain. In order to analyze such fields using the BEM, the domain decomposition
method is applied. In this method, the whole domain is decomposed into subdomains,
and the boundary integral equations for the subdomains are solved by using the
continuity conditions on the interface boundaries. In the field of acoustics, the domain
decomposition method is often applied not only to coupled fields composed of two or
more media, such as air fields with porous-type absorbing materials [21, 25], but also
to single-medium fields, such as coupled interior/exterior fields [22], fields including
exterior half spaces [26] (see Sects. 7.3.3 and 7.5), and fields with thin bodies [23, 24].

4.2.2.1 Formulation

Figure 4.6 shows a sound field decomposed into two subdomains, ρI and ρII. Here
subdomain ρI is bounded by two kinds of boundary: the boundary belonging only to
the subdomain ρI, denoted by ∂I,I, and the interface boundary between subdomains
ρI and ρII, denoted by ∂I,II. The same kind of denotation is used for subdomain
ρII, the sound pressure p and the particle velocity v on boundaries. Numbers NI and
NII denote those of boundary nodes for subdomains ρI and ρII, respectively, and
Na (= NI + NII) denotes the number of unknowns for the whole domain.

Discretizing the boundary integral equation for each subdomain gives the follow-
ing two linear systems, which are other expressions of Eq. (4.14); matrix (− 1

2 I +

http://dx.doi.org/10.1007/978-4-431-54454-8_7
http://dx.doi.org/10.1007/978-4-431-54454-8_7
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Fig. 4.6 Dedomposition of
sound field
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domain ΩII
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H + D) is denoted by A, and matrices and vectors are divided according to kinds of
boundary. ⎥

AI1 AI2
⎦ { pI,I

pI,II

}
= ⎥GI1 GI2

⎦ { vI,I
vI,II

}
− pd,I, (4.68)

⎥
AII1 AII2

⎦ {pII,II
pII,I

}
= ⎥GII1 GII2

⎦ {vII,II
vII,I

}
− pd,II, (4.69)

where pd,I and pd,II denote the direct sound vectors in subdomains ρI and ρII,
respectively. Unknown vectors are pI,I, pI,II, and vI,II in subdomain ρI, and pII,II,
pII,I, and vII,I in subdomain ρII.

The following equations of continuity for sound pressure and particle velocity are
satisfied on the interface boundary:

pI,II = pII,I, (4.70)

vI,II = −vII,I. (4.71)

Applying Eqs. (4.70) and (4.71) to Eqs. (4.68) and (4.69) leads to a single linear
system, including all unknown vectors in the whole domain, as:

⎝
AI1 0 AI2 −GI2
0 AII1 AII2 GII2

⎧
⎢⎪⎪⎣
⎪⎪⎤

pI,I
pII,II
pI,II
vI,II

⎪⎪
⎪⎪

=
⎝

GI1 0
0 GII1

⎧{
vI,I
vII,II

}
−
{

pd,I
pd,II

}
. (4.72)

Solving Eq. (4.72) gives all values of unknowns on all boundaries including the inter-
face boundary. Sound pressure at an observation point in a subdomain is calculated
by substitution of the given values on the boundaries to the linear system obtained
from the integral equation for the corresponding subdomain.

There are some other approaches to solve this type of problem. One approach is
based on elimination of unknown vectors on the interface boundary from Eqs. (4.68)
and (4.69). Another approach is using the iterative domain coupling technique [29],
where separate computation for each subdomain and successive renewal of values on
the interface boundaries between subdomains are performed until the whole domain
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Fig. 4.7 Half space and depressed space under infinite rigid plane

converges. It has been reported that the latter one did not show good convergence for
the acoustic BEM in the frequency domain [26].

4.2.2.2 Analysis of Sound Field Including Half Space

The BEM is a powerful method for half-space problems. When the analysis field is
composed not only of a half space but also of a depressed space beyond an infinitely
large plane, the domain decomposition method is often applied. Some of the appli-
cation examples are analysis of sound propagation from a depressed road [26] (see
Sect. 7.3), and analysis of flanking transmission sound through open windows in a
building (see Sect. 7.5).

Figure 4.7 shows a sound field composed of a depressed space under an infinite
rigid plane (subdomain ρI) and a half space above (subdomain ρII). A linear system
Eq. (4.68) is finally obtained for subdomain ρI by a general domain decomposition
method. As for subdomain ρII, the following fundamental solution for a half space,
G inf , is adopted instead of G in the integral equation Eq. (4.6):

G inf(rp, rq) = G(rp, rq) + G(rp′ , rq), (4.73)

where point p′ is the image of point p with respect to the infinite rigid plane. Equation
∂G inf/∂n = 0 is satisfied when points p and q are on the plane including boundary
∂≡. Since ∂p(rq)/∂nq = 0 when q ≤ ∂≡ and since rpq = rp′q when q ≤ ∂≡, ∂II,I,
Eq. (4.6) can be simplified as the following, where the integration area is limited to
boundary ∂II,I:

p(rp) = −
∫

∂II,I

∂p(rq)

∂nq
G inf(rp, rq) d∂

= −2a
∫

∂II,I

vII,I(rq)G(rp, rq) d∂. (4.74)

http://dx.doi.org/10.1007/978-4-431-54454-8_7
http://dx.doi.org/10.1007/978-4-431-54454-8_7
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Equation (4.74) is satisfied when point p is located in subdomain ρII, on boundary
∂II,I or ∂≡. The left hand side of Eq. (4.74) is not multiplied by 1/2 even when point
p is on ∂II,I or ∂≡, because point p and its image p′ coincide with each other.

The following linear system is obtained by discretizing Eq. (4.74):

pII,I = −2GIIvII,I = ZIIvII,I, (4.75)

where

GII,ij = a
∫

∂II,I

G(ri, rq)ϕj(rq) d∂. (4.76)

Matrix ZII is called an impedance matrix.
Applying Eqs. (4.70) and (4.71) to Eqs. (4.68) and (4.75) leads to a single linear

system, including all unknown vectors in the whole domain, as:

⎝
AI1 AI2 −GI2
0 I ZII

⎧⎢⎣
⎤

pI,I
pI,II
vI,II


 =

⎝
GI1
0

⎧
vI,I −

{
pd,I
0

}
. (4.77)

Solving Eq. (4.77) gives values of unknown vectors pI,II and vI,II on the interface
boundary and pI,I on boundary ∂I,I. Sound pressure at an observation point in a
subdomain is calculated by substitution of the given values on the boundaries to the
linear system obtained from the integral equation for the corresponding subdomain.

4.2.2.3 Coupling Analysis with Sound Field in Porous-Type
Absorbing Material

A sound field in a porous-type absorbing material satisfies the Helmholtz equation
with the corresponding effective sound speed and effective medium density. Hence,
not only an analysis of a sound field in a porous-type material but also a coupling
analysis with such fields using the domain decomposition method can be easily
realized using the BEM [21, 25]. The values of the effective sound speed and effective
medium density in a porous-type material are generally complex numbers, which are
obtained by Delany and Bazley’s formula [30], Miki’s formula [31], or the Rayleigh
model [32] (see Sect. 8.1).

4.2.2.4 Analysis of Sound Field with Thin Bodies

When the standard BEM is applied to sound fields with thin bodies such as muf-
flers and ducts, its computational accuracy may be considerably worse. This is
because boundary elements on both sides of the thin body are much closer to each
other compared to element size, while the kernel function of the boundary element

http://dx.doi.org/10.1007/978-4-431-54454-8_8
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integration is singular or hypersingular. This problem can be avoided by applying
the domain decomposition method, where subdomains are fields of both sides of the
thin body [23, 24]. As mentioned in Sect. 4.2.1, an alternative approach for avoiding
this problem is application of the indirect method in the dual form.

4.3 Application of Fast Multipole Method

In the BEM, a linear system with a dense matrix is required to be solved. This
causes large amount of operation count and memory requirement, making it difficult
to apply the BEM to large-scale problems. On the other hand, the fast multipole
method (FMM) proposed by Rokhlin [33] has been widely applied as a fast solution
for large-scale potential problems in a variety of fields [34–37], and its application
to the BEM has been also progressed [38–54]. The BEM accelerated by the FMM
is called the fast multipole BEM (FMBEM). Many studies have been conducted on
the FMBEM for the Helmholtz equation (i.e., in the frequency domain) in the field
of acoustics [42–55].

The points of the FMBEM are: (i) application of an iterative method to the linear
system obtained from the boundary integral equation and (ii) efficient calculation
of matrix-vector products, which is the largest computational load in the iterative
process, using the FMM without producing the system matrix.

Here we present the outline of the FMBEM for the Helmholtz equation with some
related topics. For more details of the FMM for the Helmholtz equation, refer to a
state-of-the-art book [56].

4.3.1 Application of Iterative Method to BEM

The FMBEM requires an iterative method when solving a linear system obtained
from the boundary integral equation, such as Eqs. (4.14), (4.19), and (4.33). Iterative
methods are techniques that use successive approximations to obtain more accurate
solutions to a linear system at each step, and Krylov subspace methods [57] are
the main type of the methods. In a Krylov method, iterative calculation of matrix-
vector products for the system matrix occupies large amount of total operations. The
operation count for calculation of a matrix-vector product is O(N2), where N is the
number of unknowns, because the system matrix for the BEM is dense. Hence, if
the number of iterations is sufficiently smaller than N , application of an iterative
method simply reduces computation time compared to a classical direct method
such as Gaussian elimination, which requires an O(N3) operation count. However,
the O(N2) memory requirement for storing the system matrix is not reduced.
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Fig. 4.8 Two kinds of steady-state sound field

4.3.2 Fast Multipole Method

4.3.2.1 Multipole Expansions and Local Expansions

Figure 4.8 shows two kinds of steady-state sound field. When all of the source points
are nearer to the origin than an observation point, r (Field 1), the potential U at r can
be represented as a function of r by multipole expansions at the origin as follows:

U(r) =
≡∑

n=0

n∑
m=−n

Mm
n h(1)

n (kr)Ym
n (θ,ϕ), (4.78)

where r = (r, θ,ϕ), h(1)
n are the spherical Hankel functions of the first kind, Mm

n are
the multipole expansion coefficients at the origin, and Ym

n are the spherical harmonics.
On the other hand, when observation point r is nearer to the origin than all source
points (Field 2), the potential U at r can be represented as another function of r by
local expansions at the origin as follows:

U(r) =
≡∑

n=0

n∑
m=−n

Lm
n jn(kr)Ym

n (θ,ϕ), (4.79)

where jn are the spherical Bessel functions, and Lm
n are the local expansion coefficients

at the origin. These two kinds of sound field can be expanded at other points. The
translation of the multipole/local expansion coefficients at one point, r1, to those at
another point, r2, can be generally expressed in a matrix-vector form as follows:

C̃ = W(t)C, (4.80)
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Fig. 4.9 Evaluation of potentials at observation points by: a computing interactions among all
points, b FMM, and c MLFMM

where C and C̃ are the vectors of multipole/local expansion coefficients at expansion
points r1 and r2, respectively, W is the dense matrix for the translation of expansion
coefficients, and t = r2 − r1.

Calculation of matrix-vector products in a iterative method for the BEM is physi-
cally a summation of the potentials from all of the boundary elements. In the FMBEM,
boundary elements and nodes are regarded as sources and observation points, respec-
tively, and contributions from far-field elements are efficiently evaluated using mul-
tipole and local expansions.

4.3.2.2 Multilevel Expansions

Figure 4.9 shows three cases of potential evaluation at observation points. Instead
of computing interactions among all points (Fig. 4.9a), contributions from far-field
elements are evaluated in the FMM as follows (Fig. 4.9b):

• q2M: contributions from source points lying close together are represented by a
multipole expansion at a multipole expansion point, M, where rMq < rpM. Here
the multipole expansion coefficients are calculated.
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level l - 1

level l
level l + 1

level 1

root

level 2

level 3

boundary

2-D 3-D

Fig. 4.10 Hierarchical cell structures

• M2L: contribution from the expansion point M is represented by a local expansion
at a local expansion point, L, where rpL < rLM. Here the multipole expansion
coefficients are translated to the local expansion ones.

• L2p: The potential at each observation point is computed by the local expansion.

As mentioned above, multipole and local expansions can be re-expanded at other
points with translation of expansion coefficients. More rapid evaluation of potentials
can be done by multilevel applications of multipole and local expansions (multilevel
FMM: MLFMM [58, 59]). Hereafter, M2M and L2L denote translations between
multipole expansions and those between local ones, respectively.

4.3.2.3 Grouping with Hierarchical Cell Structure

A hierarchical cell structure is introduced for grouping of sources and observation
points. Multilevel applications of expansions mentioned above are achieved based
on grouping with cells and their parent–child relation. Figure 4.10 shows boundaries
and hierarchical cell structures in two and three dimensions. A cube (a square in two
dimensions) circumscribing the whole boundary, called a root cell (level l = 0), is
divided into eight child cubes (l = 1). Each divided cube is also divided repeatedly
until a specified condition is satisfied; for example, until the average number of nodes
in a cell at the lowest level, M, is less than a predetermined number (l = 2, 3, . . . , L,
where L is the lowest level number). It should be noted that a cube including more
than one element is called a cell.

Definition of Cell Relations

Cell sets used in the rest of the chapter are defined as follows (see Fig. 4.11):

• neighbor cell set Nml : a cell set which consists of ml itself and its neighbor cells.
• interaction cell set Tml : a cell set which consists of the cells which are not the

neighbor cells of ml but whose parent cells are neighbor ones of the parent cell of ml .
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Fig. 4.11 Relations between
cells at level l (in 2-D): a
neighbor cell set Nml for cell
ml , and b interaction cell set
Tml for cell ml

cell ml

level l - 1

level l

(a)

(b)

• child cell set Cml : a cell set which consists of the child cells of ml.
• element set Gml : an element set which consists of boundary elements in cell ml.

4.3.2.4 Computational Efficiency

When the truncation number for infinite summations (referred to as p) in Eqs. (4.78)
and (4.79) is set to be constant independent of N and level l, both the operation
count and memory requirement for computation of matrix-vector products using
the MLFMM are O(N) [34]. The O(N) efficiency, however, cannot be achieved in
a high-frequency range because the number p for keeping computational accuracy
increases with the analysis frequency (strictly, the dimensionless wavenumber kD,
where D is the representative length of the problem or the diagonal length of a cell
for grouping) [42, 59, 60]. In addition, since the number of entries of an expansion
coefficient vector is p2, the translation of expansion coefficients in Eq. (4.80) actually
requires multiplication by a p2 ×p2 dense matrix, the computation of which requires
an O(p5) operation count [61]. This results in huge operation count and memory
requirement in total when p is large. Hence, improvement of computational efficiency
for translation of expansion coefficients is critical for the FMM for the Helmholtz
equation. On these backgrounds, two kinds of the FMM have been proposed: the
high-frequency and low-frequency FMMs.

4.3.2.5 Two FMMs

High-Frequency FMM

As mentioned above, in a high-frequency range, the operation count for translation of
multipole and local expansion coefficients is huge due to a large truncation number
p. An efficient translation technique to overcome this problem has been well known,
where the expansion coefficients Cm

n are translated to far-field signature functions
c(s), a kind of direction-dependent functions, using spherical harmonic expansions
or plane wave expansions [62].
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c(s) =
∑
nm

j−nCm
n Ym

n (s), (4.81)

Cm
n = jn

∮
c(s)Y−m

n (s) ds, (4.82)

where s = (θ,φ) is the unit vector, and
∮

ds represents the integral over the unit
sphere. The translation matrices for c(s) is diagonal ones, achieving efficient transla-
tions. Both the operation count and memory requirement for computation of matrix-
vector products using this technique are O(Na logb N), where 1 ∇ a ∇ 2 and b ∗ 0,
depending on the geometry of problem and implementation. However, this technique
has numerical instability at low frequencies, i.e., at small kD. Hence, application of
the high-frequency FMM should be limited in a high-frequency range.

Low-Frequency FMM

In a low-frequency range, an O(N) efficiency is achieved because the truncation
number p can be set constant. However, the operation count for translation of coeffi-
cients is O

⎨
p5
⎩

or O
⎨
p4
⎩
, which spoils the whole efficiency. Some techniques have

been proposed to overcome this inefficiency: techniques based on plane wave expan-
sions [63, 64], those using Taylor expansions or Legendre polynomials [56], and
those using recurrence relations [56, 61]. Many of the techniques are applied in con-
junction with coordinate rotation techniques for efficient translation, making use of
the characteristics of spherical harmonics. These techniques improve the efficiency
of translations of coefficients to O

⎨
p3
⎩
.

4.3.3 Fast Calculation of Matrix-Vector Products

When the representative element size d is not so small compared to the analysis
wavelength λ, for example, 5 ∇ λ/d ∇ 10, the high-frequency FMM can give
high-accuracy results with high efficiency, independent of the analysis frequency.
Here we present the procedures for calculation of matrix-vector products in the basic
form, normal derivative form, and Burton–Miller formulation in the BEM, using the
high-frequency FMM. Refer to Refs. [50, 54], etc., for the low-frequency FMM and
its application to a variety of formulations.

4.3.3.1 Expansions of Matrix Entries

Applying the multipole expansion and spherical harmonic expansion to the funda-
mental solution Eq. (4.4) for the Helmholtz equation in three-dimensional space gives
the following equation [60, 62, 65]:



106 Y. Yasuda and T. Sakuma

G(rp, rq) = jk

16π2

∮
EpL(k)︸ ︷︷ ︸

L2p

TLM(k)︸ ︷︷ ︸
M2L

EMq(k)︸ ︷︷ ︸
q2M

dk̂, (4.83)

where

TLM(k) =
Nc∑

l=0

jl(2l + 1)h(1)
l (krLM)Pl(k̂·r̂LM), (4.84)

EMq(k) = exp(jk·rMq), (4.85)

k is the wave number vector, k = |k|, k̂ = k/k, Pl are the Legendre polynomials,
Nc is the truncation number for infinite summation, and

∮
dk̂ represents the integral

over the unit sphere. Here the fundamental solution Eq. (4.4), a function of rpq, is
expressed by using three functions of vectors rpL, rLM, and rMq, respectively. In addi-
tion, Eq. (4.83) can be transformed into the following expression, which corresponds
to the computational procedures described in Sect. 4.3.3.2 using the hierarchical
cell structure:

G(rp, rq) = jk

16π2

∮
EpλmL

(k)︸ ︷︷ ︸
L2p

L−1∏
l=I

Eλml+1λml
(k)

︸ ︷︷ ︸
L2L

× TλmI λm′
I
(k)︸ ︷︷ ︸

M2L

L−1∏
l=I

Eλm′
l
λm′

l+1
(k)

︸ ︷︷ ︸
M2M

Eλm′
L

q(k)︸ ︷︷ ︸
q2M

dk̂, (4.86)

where m′
I ≤ TmI , and I is the level number to execute Step 3 (described in

Sect. 4.3.3.2), which is determined by the positions of points p and q. The entries of
matrix-vector products (H + D)p and Gv in Eq. (4.14) and (H′ + D′)p and G′v in
Eq. (4.19) are calculated using the following equations, based on Eq. (4.86):

{
(Hij + Dij)pj

Gijvj

}
= jk

16π2

∮
EiλmL

(k)

L−1∏
l=I

Eλml+1 λml
(k)

×TλmI λm′
I
(k)

L−1∏
l=I

Eλm′
l
λm′

l+1
(k)

⎢⎣
⎤
[
βλm′

L
j(k) + γλm′

L
j(k)
⎛

pj

αλm′
L

j(k)vj


 dk̂, (4.87)

{
(H ′

ij + D′
ij)pj

G ′
ijvj

}
= −k2

16π2 (ni · k̂)

∮
EiλmL

(k)

L−1∏
l=I

Eλml+1 λml
(k)
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×TλmI λm′
I
(k)

L−1∏
l=I

Eλm′
l
λm′

l+1
(k)

⎢⎣
⎤
[
βλm′

L
j(k) + γλm′

L
j(k)
⎛

pj

αλm′
L

j(k)vj


 dk̂,

(4.88)

where

αλm′
L

j(k) = a
∫
∂

Eλm′
L

q(k)ϕj(rq) d∂, (4.89)

βλm′
L

j(k) = jk
∫
∂

Eλm′
L

q(k)(nq·k̂)ϕj(rq) d∂, (4.90)

γλm′
L

j(k) = a
∫
∂

Eλm′
L

q(k)
[
ϕT (rq)y

⎛
ϕj(rq) d∂. (4.91)

In the procedures for computation, the integral
∮

dk̂ is calculated numerically,
using the following equation:

∮
f (k̂) dk̂ =

K∑
n=1

wnf (k̂n) =
Nk∑
i=1

2Nk∑
j=1

w
g
i wc

j f (θi,ϕj), (4.92)

where wn = w
g
i wc

j is the weight at the quadrature point k̂n, and K = 2N2
k is the

number of quadrature points. Contributions from/to cells are evaluated using coeffi-
cients at k̂n in Steps 1 to 5. These coefficients correspond to the far-field signature
functions expressed as Eq. (4.81), and are called outgoing, interaction, and incoming
coefficients, denoted by ξ, τ , and ζ, respectively.

4.3.3.2 Computational Procedures

Here we present a concrete procedure for calculating matrix-vector products (− 1
2 I +

H +D)p and Gv in Eq. (4.14) for the basic form, (H′ +D′ + a
2 Y)p and (G′ + a

2 I)v in
Eq. (4.19) for the normal derivative form, and their combined products in Eq. (4.33)
for the Burton–Miller formulation. The computational procedures consist of six steps.
Steps 1 to 5 correspond to evaluation of far influence using the MLFMM, and Step 6
corresponds to that of near influence in the same manner as the conventional BEM.
Refer to Fig. 4.12.
Step 1 (q2M): Compute the outgoing coefficients ξmL of each cell mL at each quadra-

ture point k̂
L
n at the lowest level L, by
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Fig. 4.12 Computational procedures for matrix-vector products in FMBEM

⎢⎣
⎤

ξ
p
mL

(
k̂

L
n

)
ξv

mL

(
k̂

L
n

)

 =

∑
j≤GmL

⎢⎣
⎤
[
βλmL j

(
k̂

L
n

)
+ γλmL j

(
k̂

L
n

)⎛
pj

αλmL j

(
k̂

L
n

)
vj


 , (4.93)

where the superscripts (p) and (v) denote that the coefficients are for the left- and
right-hand sides of Eq. (4.14), (4.19), or (4.33), respectively. In the following, we
omit these superscripts when the two equations become identical.
Step 2 (M2M): Compute the outgoing coefficients ξml of each cell ml at each quadra-

ture point k̂
l
n′ at the next higher level l, by



4 Boundary Element Method 109

ξml (k̂
l
n′) =

∑
ml+1≤Cml

Eλml λml+1
(k̂

l
n′)

Kl+1∑
n=1

Wn′nξml+1(k̂
l+1
n ), (4.94)

where Kl is the number of the quadrature points for the spherical integral at level l, and
Wn′n are the interpolation coefficients. Interpolation for quadrature points is intro-
duced here because the number of the quadrature points for keeping computational
accuracy increases at higher levels (Kl ∗ Kl+1). The interpolation method based on
FFT [66] and Legendre interpolation [59, 67] are often used. This computation is
executed in the upward order at each level (l = L − 1, L − 2, . . . , 2).
Step 3 (M2L): Compute the interaction coefficients τml of each cell ml at each

quadrature point k̂
l
n at each level (l = 2, 3, . . ., L), by

τml

(
k̂

l
n

)
=
∑

m′
l≤Tml

Tλml λm′
l
(k̂

l
n′)ξm′

l

(
k̂

l
n′
)

. (4.95)

Step 4 (L2L): Compute the incoming coefficients ζml+1 of each cell ml+1 at each

quadrature point k̂
l+1
n at the next lower level l + 1, by

ζml+1

(
k̂

l+1
n

)
=

Kl∑
n′=1

wl
n′

wl+1
n

Wn′nEλml+1λml

(
k̂

l
n′
) [

ζml

(
k̂

l
n′
)

+ τml (k̂
l
n′)
⎛
, (4.96)

where ζm2(k̂
2
n′) = 0. Adjoint interpolation [68], a kind of filtering for quadrature

points, is introduced here because the number of the quadrature points for keeping
computational accuracy decreases at lower levels (Kl+1 ∇ Kl). The filtering method
based on FFT [66] is also often used. This computation is executed in the downward
order at each level (l = 2, 3, . . . , L − 1).
Step 5 (L2p): Compute the far influence at each node i, φF,i for the basic form, ϕF,i

for the normal derivative form, or φF,i + αϕF,i for the Burton–Miller formulation,
at the lowest level L, by

φF,i = jk

16π2

KL∑
n=1

wL
n EiλmL

(
k̂

L
n

) [
ζmL

(
k̂

L
n

)
+ τmL

(
k̂

L
n

)⎛
, (4.97)

ϕF,i = −k2

16π2

KL∑
n=1

wL
n (ni · k̂

L
n )EiλmL

(
k̂

L
n

) [
ζmL

(
k̂

L
n

)
+ τmL

(
k̂

L
n

)⎛
, (4.98)
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φF,i + αϕF,i = jk

16π2

KL∑
n=1

wL
n

(
1 +

(
ni · k̂

L
n

))
EiλmL

(
k̂

L
n

) [
ζmL

(
k̂

L
n

)
+ τmL

(
k̂

L
n

)⎛
,

(4.99)

respectively.
Step 6: Compute the near influence at each node i, φN,i for the basic form, or ϕN,i

for the normal derivative form, as the total effect of the elements in the neighbor cell
set at the lowest level L, by

{
φ

p
N,i

φv
N,i

}
=

∑
m′

L≤NmL

∑
j≤Gm′

L

{⎨− 1
2δij + Hij + Dij

⎩
pj

Gijvj

}
, (4.100)

{
ϕ

p
N,i

ϕv
N,i

}
=

∑
m′

L≤NmL

∑
j≤Gm′

L

⎢⎣
⎤
(

H ′
ij + D′

ij + a
2 Yiδij

)
pj(

G ′
ij + a

2δij

)
vj


 , (4.101)

respectively. Regarding the Burton–Miller formulation, the above two equations are
simply combined with the combination factor α.

Finally, compute the total influence on each node i by adding the far and near
influences, φi = φF,i + φN,i, which gives the matrix-vector products in Eq. (4.14),
(4.19), or (4.33).

4.3.4 Implementation Considerations

Here are some considerations when implementing the FMBEM.

4.3.4.1 Parameters for Calculation

Efficient calculation by the FMBEM cannot be achieved with inappropriate setting
for calculation parameters. In addition, its computational accuracy may greatly be
lower than the standard BEM.

Truncation Number for Infinite Summation, Nc

In the numerical procedures, the infinite summation in Eq. (4.84) should be truncated
with a finite number Nc. It should be noted that the summation diverges if the value
Nc is too large. The value Nc for high accuracy depends on the wavenumber k, the
cell size D, and the distance between centers of cells rLM. Empirical formulae have
been proposed [43, 59, 60, 67].
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Number of Quadrature Points for Spherical Integral, K = 2N2
k

The value Nk for high accuracy depends on Nc. A formula Nk = Nc is recom-
mended [43, 60].

Number of Quadrature Points for Interpolation, Q

If Legendre interpolation and adjoint interpolation are adopted in Steps 2 and 4,
respectively, Q is often set to be constant independent of level [43, 67]. Interpolation
and filtering technique based on FFT is known to be highly accurate [66], while its
computational cost is larger than the former one.

Lowest Level Number for Hierarchical Cell Structure, L

When the computation time or memory requirement is almost smallest, the average
number of nodes, M, in a cell at level L is almost constant, independent of N and
geometry of problem [43]. Hence, an appropriate L can be chosen beforehand based
on this constant value of M. This value of M depends on the implementation and
computer used. In general, the optimum M for computation time and that for memory
requirement are different from each other.

4.3.4.2 Iterative Methods

Convergence behavior of an iterative method directly affects the computation time
for the FMBEM. GMRes is often referred to as a robust method, whereas it has been
reported that the convergence of Restarted GMRes is greatly worse [69, 70]. If an
appropriate preconditioner for improvement of convergence is applied, BiCG-type
methods, which do not require to be restarted, often give a good convergence [70].
However, a few preconditioners are applicable to the FMBEM, where the system
matrix is not computed [71].

4.3.4.3 Non-numerical Operations

In order to optimize the computational efficiency of the FMBEM, special considera-
tion should be required not only on numerical operations but also on non-numerical
ones, which include construction of cell data structure, searching interaction cells
and neighbor cells [72].
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4.3.4.4 Application to a Variety of Problems

Some studies on improvement of applicability of the FMBEM to sound field analyses
have been reported, which include efficient techniques for plane-symmetric problems
[47, 53, 55] (see Sect. 7.4.2), application to the domain decomposition method [26]
(see Sect. 4.3.3), coupling analysis with structural models [73], and analysis of sound
fields in porous materials (i.e., complex-wavenumber sound fields) [74, 75].
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Chapter 5
Alternative Time-Domain Methods

Takuya Oshima, Takashi Ishizuka and Kan Okubo

Abstract The finite-difference time-domain (FDTD) method has been the only
choice of time-domain methods for practical applications with its simplicity and
efficiency. However, the simple discretization of the simple wave equation model in
which the method has its basis is not sufficient for modeling more complex wave
propagation phenomena, high-accuracy simulations, or acoustic fields with complex
geometries. In this chapter, alternative time-domain methods that may be applied
to such situations are discussed as follows: the linearized Euler equation (LEE)
method, the constrained interpolation profile (CIP) method, and the finite-volume
time-domain (FVTD) method. The LEE method is applicable to wave propagation
phenomena under the influence of arbitrary background flows. The main applica-
tion of the method is sound propagation simulations outdoors where wind effects
are not negligible. The CIP method is characteristic in that the method is in princi-
ple free from numerical dispersion. The characteristic allows simulations with high
phase accuracy. The FVTD method is constructed on an unstructured grid system.
The method thus has an advantage in modeling complex geometries compared to the
FDTD method where orthogonal structured grid is used.
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5.1 Linearized Euler Equation Method

The linearized Euler equation (LEE) method is an approach to solve sound propaga-
tion under an arbitrary background flow by an addition of the advection effect of the
medium to the basic equations of the finite-difference time-domain (FDTD) method.
The main application of the method is sound propagation simulations outdoors with
wind effects.

5.1.1 Governing Equations

The medium velocity U is represented as a composition of the background flow
component Ū and the acoustic particle velocity component U √ as

U = Ū + U √.

Other physical quantities are similarly represented. For example, pressure deviation
from the average medium air pressure is represented by decomposing into the airflow
component p̄ and the acoustic pressure component p√ as

p = p̄ + p√.

For outdoor acoustic propagation problems, a simplified linearized Euler model under
adiabatic, barotropic, and non-buoyant conditions can be employed. In the simpli-
fied model, the fundamental equations of fluid flow, the equations of motion, and
continuity, are linearized by the background flow components of velocity, pressure,
and density, Ū , p̄ and ρ̄ respectively [1, 2].

∂U √

∂t
= − (

Ū · ≤)
U √ − (

U √ · ≤)
Ū − 1

ρ̄
≤ p√, (5.1)

∂p√

∂t
= −ρ̄c̄2≤ · U √ − Ū · ≤ p√, (5.2)

where ρ̄ and c̄ are the medium air density and the speed of sound respectively.

5.1.2 Discretization

Equations (5.1), (5.2) are discretized using a three-dimensional orthogonal staggered
grid where p√ is located at the cell centroid and each component of U √ is located at the
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cell face of the respective coordinate direction. The pressure and velocity variables
are located at staggered positions in time as well. Hereafter, the components of the
background flow vector and the acoustic velocity vector are denoted as follows:

Ū = { ū v̄ w̄ }T, U √ = { u√ v√ w√ }T.

where T denotes the transpose operator.

5.1.2.1 Temporal Discretization

Time advancement is performed using the prediction-step staggered-in-time (PSIT)
technique [3], which allows a simple implementation and smaller memory footprints.
The technique calculates firstly a predicted value of the acoustic velocity at time step
n, Ũ √n , using the acoustic velocity at time step n − 1/2, U √n−1/2, and the acoustic
pressure at time step n, p√n , with the following equation

Ũ √n = U √n−1/2 − Δt

2ρ̄
≤ p√n, (5.3)

which is a backward Euler discretized form of Eq. (5.1) between time step n − 1/2
to n, but without the contribution of the background flow velocity Ū

∂U √

∂t
= − 1

ρ̄
≤ p√. (5.4)

The predicted value is used to calculate the acoustic velocity at the next time step
n + 1/2, U √n+1/2, using a timewise discretized form of Eq. (5.1).

U √n+1/2 = U √n−1/2 − Δt

ρ̄
≤ p√n − Δt

(
Ū · ≤)

Ũ √n − Δt
(

Ũ √n · ≤
)

Ū . (5.5)

Similarly, for Eq. (5.2) the predicted value of the acoustic pressure at time step n+1/2
is calculated by using the acoustic pressure at time step n, p√n , and the acoustic
velocity at time step n+1/2, U √n+1/2. The predicted value in turn is used to calculate
the acoustic pressure at the next time step n + 1, p√n+1.

p̃√n+1/2 = p√n − ρ̄c̄2Δt

2
≤ · U √n+1/2, (5.6)

p√n+1 = p√n − ρ̄c̄2Δt ≤ · U √n+1/2 − Δt Ū · ≤ p̃√n+1/2. (5.7)
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5.1.2.2 Spatial Discretization

The spatial derivatives in the prediction-step equations, namely Eqs. (5.3), (5.6), are
discretized by the second-order central finite difference scheme that are widely used
in usual FDTD simulations. For example, the x component of ≤ p√n in the right hand
side of Eq. (5.3) is written as

∂p√n

∂x

∣∣∣∣
i+1/2, j,k

≈ p√n
i+1, j,k − p√n

i, j,k

Δx
, (5.8)

where Δx is the x directional grid spacing.
On the other hand, Eqs. (5.5), (5.7) are simplified assuming that the background

flow Ū is a uniform x-directional flow of speed ū

Ū = { ū 0 0 }T.

By substituting this equation to Eq. (5.5), only the x-directional derivative remains in
the third term in the right hand side of Eq. (5.5). Besides, the fourth term in the right
hand side is cancelled out due to the omnidirectional zero gradient of Ū . Hence, by
representing each component of Ũ √ by

Ũ √ = { ũ√ ṽ√ w̃√ }T,

each component of Eq. (5.5) and Eq. (5.7) are written as follows.

u√n+1/2
i+1/2, j,k = u√n−1/2

i+1/2, j,k − Δt

ρ̄

∂p√n

∂x

∣∣∣∣
i+1/2, j,k

− Δt ū
∂ ũ√n

∂x

∣∣∣∣
i+1/2, j,k

, (5.9)

v
√n+1/2
i, j+1/2,k = v

√n−1/2
i, j+1/2,k − Δt

ρ̄

∂p√n

∂y

∣∣∣∣
i, j+1/2,k

− Δt ū
∂ṽ√n

∂x

∣∣∣∣
i, j+1/2,k

, (5.10)

w
√n+1/2
i, j,k+1/2 = w

√n−1/2
i, j,k+1/2 − Δt

ρ̄

∂p√n

∂z

∣∣∣∣
i, j,k+1/2

− Δt ū
∂w̃√n

∂x

∣∣∣∣
i, j,k+1/2

, (5.11)

p√n+1
i, j,k = p√n

i, j,k − ρ̄c̄2Δt

(
∂u√n+1/2

∂x

∣∣∣∣
i, j,k

+ ∂v√n+1/2

∂y

∣∣∣∣
i, j,k

+ ∂w√n+1/2

∂z

∣∣∣∣
i, j,k

)
− Δt ū

∂ p̃√n+1/2

∂x

∣∣∣∣
i, j,k

. (5.12)

The spatial derivatives in Eqs. (5.9)–(5.12) are discretized by two strategies: one is to
apply the second-order central finite difference scheme, which is denoted hereafter
as Type FD-2nd. Another is to apply a compact difference scheme to the third term
in the right hand side of each equation and to apply the second-order central finite
difference scheme to all other terms, which is denoted hereafter as Type FD-Compact.
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Fig. 5.1 Acoustic pulse in a
uniform flow

O

u

p0

x

y

Type FD-2nd. Taking the x-directional momentum equation Eq. (5.9) as example,
the spatial derivative of the second term in the right hand side is discretized by
Eq. (5.8). The third term is discretized using the finite difference of double grid
spacing 2Δx as follows:

∂ ũ√n

∂x

∣∣∣∣
i+1/2, j,k

≈ ũ√n
i+3/2, j,k − ũ√n

i−1/2, j,k

2Δx
.

Type FD-Compact. Taking Eq. (5.9) as example, the spatial derivative of the sec-
ond term in the right hand side is identically discretized to Type FD-2nd by
Eq. (5.8). The third term, on the other hand, is discretized with the Padé scheme
[4], which is a fourth-order compact difference scheme that represents the approx-
imation of ∂ ũ√n/∂x , φ√n , as follows:

1

4
φ√n

i−1/2, j,k + φ√n
i+1/2, j,k + 1

4
φ√n

i+3/2, j,k = 3

4

ũ√n
i+3/2, j,k − ũ√n

i−1/2, j,k

Δx
.

The matrix equation of φ√n obtained by applying the Padé scheme to the entire
grid is solved by a tridiagonal matrix algorithm (TDMA) solver [5].

5.1.3 Computational Setup

A sound propagation problem in a uniform medium under a uniform background flow
within a two-dimensional free space is solved in order to compare the formulations
and the analytical solutions.

An x-directional uniform background flow of speed ū is given as the background
flow. The initial acoustic pressure and acoustic velocity are given as
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p√ = p0exp
{
−α

(
x2 + y2

)}
,

U √ = 0,

as shown in Fig. 5.1. Under the initial conditions, the analytical solution of the
acoustic pressure is given by Ref. [6] as

p√ = p0

2α

∫ ≈

0
exp

(
− ξ2

4α

)
cos (c̄ξ t) J0 (ξη) ξdξ,

η =
√

(x − ūt)2 + y2,

α = log 2

b2 ,

where p0 is the initial pressure amplitude, b is the half width at half maximum of the
initial pressure amplitude, and J0 is the Bessel function of the first kind of order 0.
In the tests, b is set to 3 and p0 and c̄ are set to unity. The Mach number is assumed
to be 0.1, namely

M = ū

c̄
= 0.1.

The computational domain is a square of diagonal points (x, y) = (−100,−100)

and (100, 100), which is divided by an orthogonal uniform grid of 201 × 201 × 1
cells in x × y × z directions. The time step Δt is set to 0.5.

5.1.4 Results

The contours of instantaneous pressure amplitudes |p√| at time t = 40 and 80 for
the analytical solutions and the discretized formulations are shown in Fig. 5.2. Slow
advection in x-direction following the uniform background flow of M = 0.1 is
seen in all cases. At t = 40, all computed results show good agreements with the
analytical case. However, as the propagation distance grows, at t = 80 we see
differences. At the downstream direction, a numerical dispersion is seen in Type
FD-2nd. On the contrary, Type FD-Compact shows no such error and agrees well
with the analytical case.

5.2 Constrained Interpolation Profile Method

The constrained interpolation profile (CIP) method was developed in the field of fluid
dynamics as a kind of the method of characteristics (MOC) [7–9]. This method has
been applied to numerical simulations of sound field in time domain [10–14] as it
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Analytical solution Type FD-2nd Type FD-Compact
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Fig. 5.2 Propagation of acoustic pulse in uniform flow at t = 40 and 80. Dotted, dash-dotted,
dashed and solid iso-contours denote |p√| values defined by a geometric ratio of 4 (which corre-
sponds to about 12 dB in relative SPL) from 6.25 × 10−5 to 0.004

Fig. 5.3 Collocated grid
system in the CIP method

has an advantage of low numerical dispersion over the FDTD method. Additionally,
a spatial grid size, which the CIP method requires for adequate accuracy, is larger
than that the FDTD method requires. High accuracy is achieved by a technique called
“multi-moments” where not only physical values, such as the sound pressure and the
particle velocity, but also their spatial derivatives are explicitly and simultaneously
calculated at all grid points. In the MOC, including the CIP method, a time step
size is free from Courant condition. The CIP method does not require a small time
step size other time-domain methods require for accuracy and stability, resulting in
a reduction of total computational time.

A collocated grid system is employed in the CIP method. All discrete physical
values and their spatial derivatives are defined at the same grid point as shown in
Fig. 5.3.
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Fig. 5.4 Advection of
values in the method of
characteristics

5.2.1 Formulation

The CIP method for acoustic simulation computes advection equations derived from
the governing equations of sound fields. The equation of continuity and the equation
of motion for a lossless linear sound field are transformed into

∂t p + cZ∂xvx = 0, Z∂tvx + c∂x p = 0, (5.13)

where ∂α represents an operator ∂/∂α, and p, vx , c, and Z are the sound pressure,
the particle velocity in the x-direction, the speed of sound, and the characteristic
impedance of a medium, respectively. It should be noted that these equations express
one-dimensional wave propagation in the x-direction. Addition and subtraction of
the two equations in Eq. (5.13) lead to the following advection equations:

∂t fx± ± c∂x fx± = 0, for fx± = p ± Zvx . (5.14)

fx+ and fx−, which are called “characteristic curves”, represent forward and back-
ward components of the sound field in the x-direction and Eq. (5.14) expresses
propagation of them with the velocity of c.

In the MOC, the advection equations expressing wave propagation are computed
by advection calculations schematically illustrated in Fig. 5.4. As shown in the dia-
gram, advecting fx± at points ≥cΔt distant from a grid point xi at a time step n
gives those at xi at the next time step:

f n+1
x± (xi ) = f n

x±(xi ≥ cΔt), (5.15)

whereΔt is the time step size, and the superscripts n and n+1 denote time steps. When
the points xi ≥ cΔt , called advection sources, are not at grid points, f n

x±(xi ≥ cΔt)
are obtained by using interpolations.

In the CIP method, a kind of the MOC, values at advection sources are interpolated
with high accuracy by using the Hermite interpolation [7, 15], normally the third-
order Hermite interpolation. These calculations need spatial derivatives of fx± at each
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(a) (b)

Fig. 5.5 Directionally separated advection of values in the multi-dimensional CIP method.
a x-directional advection. b y-directional advection

grid. Advection equations for the derivatives are derived from the differentiation of
Eq. (5.14):

∂tgx± ± c∂xgx± = 0, for gx± = ∂x p ± Z∂xvx . (5.16)

The CIP method simultaneously computes Eq. (5.14) and (5.16) using the third-order
Hermite interpolation.

Multi-dimensional wave propagation is computed by the directionally separated
advection formulation, where one-dimensional advections for each axis are alternately
computed as shown in Fig. 5.5, for a two-dimensional simulation for example.
Lettig results of x-directional advections be values at an intermediate step, values
at the next time step is obtained by advecting the values at the intermediate step in
the y-direction. This technique requires additional advection calculations for spatial
derivatives with respect to the direction perpendicular to the advection direction. For
the x-directional advection in a two-dimensional field, for example, the CIP method
simultaneously computes the following advection equations as well as Eqs. (5.14)
and (5.16):

∂tηx± ± c∂xηx± = 0 , for ηx± = ∂y p ± Z∂yvx , (5.17)

∂tμx± ± c∂xμx± = 0 , for μx± = ∂x∂y p ± Z∂x∂yvx , (5.18)

where ηx± and μx± are derivatives of fx± and gx± with respect to the y-direction,
respectively. A kind of the CIP method, called the “type-C” CIP method, employs the
third-order Hermite interpolation to obtain the perpendicular derivatives ηx± and μx±
at the advection sources [9, 11, 12]. Additionally, in a three-dimensional simulation,
advection equations for the derivatives of fx±, gx±, ηx±, and μx± with respect to
the z-direction have to be taken into calculations. We can calculate the y-directional
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(and the z-directional in three-dimensional simulations) advections in a similar pro-
cedure to that for the x-direction described above.

Although the type-C CIP method employing the Hermite interpolation for the
perpendicular derivatives has high accuracy, it is computationally expensive.
A simplified scheme, called the “type-M” CIP method, has been proposed [8, 10, 12].
The type-M CIP method calculates advection of the perpendicular derivatives only
for Eq. (5.17) using the first-order Lagrange interpolation, i.e., the upwind scheme.
Omitting calculations of Eq. (5.18), this scheme saves the computer memory and
computational time, but has lower accuracy than that the type-C CIP method has.

5.2.2 Implementation

The followings explain an implementation procedure of the type-C CIP method for
a two-dimensional sound field simulation. We assume here that the sound field is
discretized in the x- and the y-direction by the same grid size of Δl and i and j
denote the grid point number in each direction as shown in Fig. 5.3.

Firstly, we carry out advection calculations in the ±x-direction. At a time step n,
the characteristic curves and their derivatives at a grid point (i , j) are derived from
the physical values and their derivatives at the same point:

f n
x±(i, j) = pn(i, j) ± Zvn

x (i, j), (5.19)

gn
x±(i, j) = ∂x pn(i, j) ± Z∂xv

n
x (i, j), (5.20)

ηn
x±(i, j) = ∂y pn(i, j) ± Z∂yv

n
x (i, j), (5.21)

μn
x±(i, j) = ∂x∂y pn(i, j) ± Z∂x∂yv

n
x (i, j). (5.22)

The third-order Hermite interpolation simultaneously calculates fx± and gx± at an
intermediate step, which are values at the advection sources at the time step n:

f ≡
x±(i, j) = a±ξ3± + b±ξ2± + gn

x±(i, j)ξ± + f n
x±(i, j), (5.23)

g≡
x±(i, j) = 3a±ξ2± + 2b±ξ± + gn

x±(i, j), (5.24)

where superscript ≡ represents the intermediate step and

a± = gn
x±(i, j) + gn

x±(i ≥ 1, j)

(≥Δl)2 + 2
(

f n
x±(i, j) − f n

x±(i ≥ 1, j)
)

(≥Δl)3 , (5.25)

b± = 3
(

f n
x±(i ≥ 1, j) − f n

x±(i, j)
)

(≥Δl)2 − 2gn
x±(i, j) + gn

x±(i ≥ 1, j)

≥Δl
, (5.26)

ξ± = ≥cΔt. (5.27)

Equations (5.23)–(5.27), which are polynomial forms of the third-oder Hermite
interpolation, can be transformed into simple sum-of-product forms for efficient
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computation:

f ≡
x±(i, j) = C1± f n

x±(i ≥ 1, j) + C2± f n
x±(i, j)

+ C3±gn
x±(i ≥ 1, j) + C4±gn

x±(i, j), (5.28)

g≡
x±(i, j) = C √

1± f n
x±(i ≥ 1, j) + C √

2± f n
x±(i, j)

+ C √
3±gn

x±(i ≥ 1, j) + C √
4±gn

x±(i, j). (5.29)

The coefficients will be obtained before starting computations:

C1± = −2χ3 + 3χ2, (5.30)

C2± = 2χ3 − 3χ2 + 1, (5.31)

C3± = ξ±(χ2 − χ), (5.32)

C4± = ξ±(χ2 − 2χ + 1), (5.33)

C √
1± = 6(−χ3 + χ2)/ξ±, (5.34)

C √
2± = 6(χ3 − χ2)/ξ±, (5.35)

C √
3± = 3χ2 − 2χ, (5.36)

C √
4± = 3χ2 − 4χ + 1, (5.37)

where χ = cΔt/Δl. Advection of the perpendicular derivatives ηx± and μx± are
also calculated in the same way:

η≡
x±(i, j) = C1±ηn

x±(i ≥ 1, j) + C2±ηn
x±(i, j)

+ C3±μn
x±(i ≥ 1, j) + C4±μn

x±(i, j), (5.38)

μ≡
x±(i, j) = C √

1±ηn
x±(i ≥ 1, j) + C √

2±ηn
x±(i, j)

+ C √
3±μn

x±(i ≥ 1, j) + C √
4±μn

x±(i, j). (5.39)

Results of advection calculations in the x-direction are restored to the physical values
and their derivatives at the intermediate step:

p≡(i, j) = (
f ≡
x+(i, j) + f ≡

x−(i, j)
)
/2, (5.40)

v≡
x (i, j) = (

f ≡
x+(i, j) − f ≡

x−(i, j)
)
/2Z , (5.41)

∂x p≡(i, j) = (
g≡

x+(i, j) + g≡
x−(i, j)

)
/2, (5.42)

∂xv
≡
x (i, j) = (

g≡
x+(i, j) − g≡

x−(i, j)
)
/2Z , (5.43)

∂y p≡(i, j) = (
η≡

x+(i, j) + η≡
x−(i, j)

)
/2, (5.44)

∂yv
≡
x (i, j) = (

η≡
x+(i, j) − η≡

x−(i, j)
)
/2Z , (5.45)

∂x∂y p≡(i, j) = (
μ≡

x+(i, j) + μ≡
x−(i, j)

)
/2, (5.46)

∂x∂yv
≡
x (i, j) = (

μ≡
x+(i, j) − μ≡

x−(i, j)
)
/2Z . (5.47)
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The particle velocity in the x-direction and their derivatives are directly assigned to
those at the next time step: vn+1

x (i, j) = v≡
x (i, j), for example.

Secondly, advection calculations in the ±y-direction are carried out in a similar
procedure described above. The y-directional characteristic curves and their deriva-
tives are derived from the physical values and their derivatives at the intermediate step:

f ≡
y±(i, j) = p≡(i, j) ± Zv≡

y(i, j), (5.48)

g≡
y±(i, j) = ∂y p≡(i, j) ± Z∂yv

≡
y(i, j), (5.49)

η≡
y±(i, j) = ∂x p≡(i, j) ± Z∂xv

≡
y(i, j), (5.50)

μ≡
y±(i, j) = ∂x∂y p≡(i, j) ± Z∂x∂yv

≡
y(i, j). (5.51)

The third-order Hermite interpolation gives the values at the next time step n + 1:

f n+1
y± (i, j) = C1± f ≡

y±(i, j ≥ 1) + C2± f ≡
y±(i, j)

+ C3±g≡
y±(i, j ≥ 1) + C4±g≡

y±(i, j), (5.52)

gn+1
y± (i, j) = C √

1± f ≡
y±(i, j ≥ 1) + C √

2± f ≡
y±(i, j)

+ C √
3±g≡

y±(i, j ≥ 1) + C √
4±g≡

y±(i, j), (5.53)

ηn+1
y± (i, j) = C1±η≡

y±(i, j ≥ 1) + C2±η≡
y±(i, j)

+ C3±μ≡
y±(i, j ≥ 1) + C4±μ≡

y±(i, j), (5.54)

μn+1
y± (i, j) = C √

1±η≡
y±(i, j ≥ 1) + C √

2±η≡
y±(i, j)

+ C √
3±μ≡

y±(i, j ≥ 1) + C √
4±μ≡

y±(i, j). (5.55)

Results of advection calculations in the y-direction are restored to the physical values
and their derivatives at the time step n + 1:

pn+1(i, j) =
(

f n+1
y+ (i, j) + f n+1

y− (i, j)
)

/2, (5.56)

vn+1
y (i, j) =

(
f n+1
y+ (i, j) − f n+1

y− (i, j)
)

/2Z , (5.57)

∂y pn+1(i, j) =
(
gn+1

y+ (i, j) + gn+1
y− (i, j)

)
/2, (5.58)

∂yv
n+1
y (i, j) =

(
gn+1

y+ (i, j) − gn+1
y− (i, j)

)
/2Z , (5.59)

∂x pn+1(i, j) =
(
ηn+1

y+ (i, j) + ηn+1
y− (i, j)

)
/2, (5.60)

∂xv
n+1
y (i, j) =

(
ηn+1

y+ (i, j) − ηn+1
y− (i, j)

)
/2Z , (5.61)

∂x∂y pn+1(i, j) =
(
μn+1

y+ (i, j) + μn+1
y− (i, j)

)
/2, (5.62)

∂x∂yv
n+1
y (i, j) =

(
μn+1

y+ (i, j) − μn+1
y− (i, j)

)
/2Z . (5.63)
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In the type-M CIP method, the third-oder Hermite interpolation of the perpendic-
ular derivatives, Eqs. (5.38) and (5.54), are replaced with the first-order Lagrange
interpolation as follows:

η≡
x±(i, j) = C L

1±ηn
x±(i ≥ 1, j) + C L

2±ηn
x±(i, j) (5.64)

ηn+1
y± (i, j) = C L

1±η≡
y±(i, j ≥ 1) + C L

2±η≡
y±(i, j), (5.65)

where

C L
1± = χ, (5.66)

C L
2± = 1 − χ. (5.67)

The above equations correspond with the upwind scheme. Advection calculations for
Eqs. (5.39) and (5.55) are omitted and the second derivatives of the physical values,
∂x∂y p, ∂x∂yvx , and ∂x∂yvy , are not defined at the grid points, resulting in reduction
of required computer memory and computational time.

5.2.3 Boundary Conditions

In the CIP method, boundary conditions at the interface between two media are given
using the reflection coefficient [16]. When fx+ and gx+ are incident on the boundary
at xb, for example, the boundary conditions are represented as

fx−(xb) = Γ fx+(xb), (5.68)

gx−(xb) = Γ √gx+(xb), (5.69)

where Γ and Γ √ denote the reflection coefficient of p and vx and that of the spatial
derivatives ∂x p and ∂xvx , respectively.

Here, we designate a medium in the −x side of the boundary as medium-1 and
that in the opposite side as medium-2. The reflection coefficient Γ is given as

Γ = Z2 − Z1

Z2 + Z1
, (5.70)

where Z1 and Z2 are the characteristic impedance of each medium (hereafter, values
with a subscript 1 and 2 denote those in each medium). Eq. (5.70) is derived from
Dirichlet conditions of the sound pressure and the particle velocity on the boundary:

p1 = p2, (5.71)

vx1 = vx2. (5.72)
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Meanwhile, Neumann conditions on the boundary are

1

ρ1
∂x p1 = 1

ρ2
∂x p2, (5.73)

ρ1c2
1∂xvx1 = ρ2c2

2∂xvx2, (5.74)

where ρ1 and ρ2 are the density of each medium. These conditions lead to the
following relation:

Γ √ = − Z2 − Z1

Z2 + Z1
= −Γ. (5.75)

We can explicitly give the reflection coefficients Γ and Γ √ as constants as long as
they satisfy Eq. (5.75). For example, Γ = 1 and Γ √ = −1 are set to a perfectly
reflective surface.

In multi-dimensional simulations, boundary conditions for the perpendicular
derivatives are given in similar forms to Eqs. (5.68) and (5.69). In a two-dimensional
simulation, for example, the boundary conditions for the perpendicular derivatives
are represented as

ηx−(xb) = Γ ηx+(xb), (5.76)

μx−(xb) = Γ √μx+(xb). (5.77)

The equations above are derived from the differentiation of Eqs. (5.71)–(5.74).

5.2.4 Perfectly Matched Layer

The CIP method computes a sound field formed into a finite discrete domain. When
we apply the CIP method to a simulation of an infinite sound filed, such as an outdoor
sound field, an absorption treatment is required to suppress reflection waves from
outer boundaries of the finite simulation domain as the FDTD method requires. The
CIP method computes wave propagation dividing it into forward and backward com-
ponents. Consequently, the CIP method naturally provides an automatic-absorbing
boundary condition (A-ABC) on the outer boundaries letting incoming components
be zero. However, the A-ABC is similar to the Mur’s ABC of the first kind in the
FDTD method [17]. In multi-dimensional simulations, the A-ABC has insufficient
absorption performance for oblique-incident waves on the outer boundaries although
it is effective for a normal-incident wave.

The perfectly matched layer-absorbing boundary condition (PML-ABC) [18] is
often employed in multi-dimensional FDTD simulations to achieve high absorption
performance on the outer boundaries for oblique-incident waves as well as a normal-
incident wave. The followings explain formulation to implement the PML-ABC in
multi-dimensional sound field simulations using the type-C CIP method [19, 20].



5 Alternative Time-Domain Methods 131

Fig. 5.6 Perfectly matched layer surrounding a sound field

Although, for simplicity, two-dimensional formulation is shown below, it can be
simply extended to three-dimensional simulations.

Figure 5.6 schematically illustrates the PML, which surrounds a calculated sound
field to suppress reflection waves from the outer boundaries. In the PML region,
nonzero attenuation parameter reduces sound waves and results in suppression of
incoming waves. Discontinuous change of the attenuation parameter causes reflec-
tion. Therefore, increasing attenuation parameter is given as a function of the distance
from the PML surface, that is the interface between the sound field and the PML:

R = Rmax

(
d

L

)m

, (5.78)

where Rmax is the maximum value of the attenuation parameter, L is the thickness
of the PML, and m decides distribution of the attenuation parameter. d denotes the
distance from the PML surface and can be expressed by coordinates as shown in
Fig. 5.6. It should be noted that nonzero attenuation parameter is given only in the
direction where the PML intends to suppress reflection waves; Rx = R, Ry = 0
in the PML for the x-direction, Rx = 0, Ry = R in that for the y-direction, and
Rx = R, Ry = R in that at a corner of calculated sound field.

In the PML region with nonzero attenuation parameter Rx , the governing equa-
tions for acoustic fields corresponding to Eq. (5.13) are [21]

∂t p + cZ∂xvx = − Rx

ρ
p, Z∂tvx + c∂x p = − Rx

ρ
Zvx . (5.79)

Addition and subtraction of them lead to the following equations letting rx = Rx/ρ:
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∂t fx± ± c∂x fx± = −rx fx±. (5.80)

Although Eq. (5.80) has a non-advection term, that is a dissipation term, in the right-
hand side, it can be computed by separating into advection and non-advection phases
[8]:

∂t fx± ± c∂x fx± = 0, (5.81)

∂t fx± = −rx fx±. (5.82)

Equation (5.81) is a normal advection equation. Therefore, it can be calculated by the
procedure previously described for lossless fields. We let here results of the advection
calculations at a time step n be f n(A)

x± , gn(A)
x± , η

n(A)
x± , and ξ

n(A)
x± .

In the non-advection phase, the analytical solution of Eq. (5.82) gives fx± at the
next time step using f n(A)

x± :

f n+1
x± = f n(A)

x± exp(−rxΔt). (5.83)

The derivatives gx± at the next time step are also analytically obtained by the spatial
differentiation of Eq. (5.83) with respect to x :

gn+1
x± =

{
g

n(A)
x± − Δt (∂xrx ) f n(A)

x±
}

exp(−rxΔt), (5.84)

where the spatial derivative of rx is given by

∂xrx = (∂x d)
m Rmax

ρL

(
d

L

)m−1

. (5.85)

Furthermore, the differentiations of Eqs. (5.83) and (5.84) with respect to y derive
the solutions of the perpendicular derivatives ηx± and μx±:

ηn+1
x± = η

n(A)
x± exp(−rxΔt), (5.86)

μn+1
x± =

{
μ

n(A)
x± − Δt (∂xrx )η

n(A)
x±

}
exp(−rxΔt). (5.87)

As described above, the values at the next time step, that is the results of the non-
advection phase, can be straightly calculated by using those previously obtained in
the advection phase.

We can compute y-directional wave propagations in the PML region in a similar
procedure to the above.

Figure 5.7 exhibits sound pressure distributions in a two-dimensional free field
with and without the PML over the lower outer boundary. The PML consists of 64
layers and the outer boundaries including the lower one behind the PML employ the
A-ABC. The illustrated area is a part of an adequately large calculated field, which
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(a) (b)

Fig. 5.7 Comparison of sound pressure distributions in the two-dimensional free field with and
without the PML over the lower outer boundary. Calculation parameters are: c = 340.5 m/s, Δt =
0.25 × 10−4 s, Δl = 0.025 m, Rmax = 2.0ρc, m = 2, and N = 64. a Without PML. b With
64-layer PML

has dimensions of 65.6 × 27.2 m. Therefore, no reflection waves from the outer
boundaries except the lower one appear in the illustrated area in a time range shown
in Fig. 5.7. In the results without the PML, we can observe the reflection wave from
the A-ABC and find that the amplitude of it increases as the incident angle increases.
In contrast, in the results with the PML, the reflection wave almost disappears.

5.3 Finite-Volume Time-Domain Method

The FDTD approach has widely been accepted as a simple, fast, and proven method
for numerical sound propagation prediction. However, the method requires an orthog-
onal structured grid system for a discretized representation of an acoustic field.
The use of the orthogonal grid system is recognized as one of shortcomings of the
FDTD method because it is generally not suitable for the representation of complex
geometries. Meshing (preprocessing) and postprocessing complex geometries with
orthogonal structured grids often require extensive human works.

The issue is addressed here through an introduction of a full finite-volume time-
domain (FVTD) method meant as a replacement for the FDTD method. The main
strength of the full FVTD approach is the capability to utilize unstructured grids,
which contain arbitrary polyhedral cells. The strength opens possibility of using a
vast variety of general-purpose pre- and post-processors designed for finite volume
or finite element grids.
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5.3.1 Finite-Volume Formulation

The wave propagation equation represented in velocity potential φ is written as
follows.

∂2φ

∂t2 = c2
0≤2φ, (5.88)

where t , c0, ≤2 are time, the propagation speed of the wave, and the Laplacian
operator, respectively. Using φ, pressure p and particle velocity u are written as
follows.

p = ρ
∂φ

∂t
, (5.89)

u = −≤φ. (5.90)

Equation (5.88) is discretized under an unstructured grid system as shown in Fig. 5.8
where the definition point of physical quantities are taken at the barycenter of each
control volume (CV). For the left hand side of Eq. (5.88), by integrating over the CV
with time-invariant volume V and applying central time-differential scheme, we get

∂2

∂t2

∫
V

φ dV ≈ φn+1 − 2φn + φn−1

Δt2 V,

where φn−1, φn , φn+1 denote the values of φ at the (n − 1)th, nth, (n + 1)th steps
of time step Δt . For the right hand side, by integrating Eq. (5.88) within a CV and
applying divergence theorem, we get

∫
V

c2
0 ≤2φdV = c2

0

∫
S

d S · ≤φ

≈ c2
0

∑
f

Sf · (≤φ)f , (5.91)

where Sf denotes the face area vector of the f-th face that constitutes the polyhedral
CV in question as follows:

Sf = Sf nf , (5.92)

where Sf and nf are the area and the unit outward normal vector of the face f,
respectively.

If a vector connecting the centers of the CV P and its adjacent CV N, dP N , is
parallel to S f , Sf (≤φ)f is written in terms of ∂φ/∂nf , the surface-normal gradient
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Fig. 5.8 Unstructured mesh
system
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of φ. Thus, the term within the summation in the rightmost hand side of Eq. (5.91)
is discretized as follows.

Sf · (≤φ)f = Sf
∂φ

∂nf

≈ Sf
φN − φP

|dPN| . (5.93)

However, if dP N is nonorthogonal to Sf , Sf has to be decomposed into its orthogonal
part Δf and nonorthogonal part kf .

Sf · (≤φ)f = Δf · (≤φ)f + kf · (≤φ)f .

The first term of the right hand side of the equation above, the orthogonal part, is
discretized similarly to Eq. (5.93) as follows:

Δf · (≤φ)f ≈ |Δf | φN − φP

|dPN| .

The nonorthogonal part, (≤φ)f in the second term, is given by interpolating the
gradient of φ at the centers of CVs P and N.

(≤φ)f = fx (≤φ)P + (1 − fx )(≤φ)N. (5.94)

Here, the interpolation coefficient fx and the gradient (≤φ)P are given as follows.

fx = fN

|dPN| ,

(≤φ)P = 1

V

∫
S

d S φ

≈ 1

V

∑
f

Sφf ,

where φf is a face-interpolated value of φ at the center of CVs.
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Fig. 5.9 Nonorthogonal mesh
correction vectors sf

δ f

kf

dPN

The orthogonal and nonorthogonal component vectors Δf and kf can be calculated
arbitrarily [22]. An orthogonal correction as follows is applied here.

Δf = dPN

|dPN| Sf , (5.95)

kf = Sf − Δf . (5.96)

The vectors are schematically drawn in Fig. 5.9.

5.3.2 Rigid Boundary Conditions

On acoustically rigid boundaries b, the normal component of particle velocity ub is
fixed to zero.

ub = nb · ub = 0. (5.97)

Substituting the relationship above to Eqs. (5.90) and (5.92) leads to the equation
below, which represents the surface normal gradient of φ being zero.

Sb · (≤φ)b = 0.

5.3.3 Computational Setup

In order to validate the proposed FVTD technique under unstructured meshes, a
comparative test using a sound propagation problem in a closed cube of 1 m × 1
m × 1 m, one of the AIJ-BPCA (Benchmark Platform on Computational Methods
for Architectural and Environmental Acoustics) [23] problems, was carried out. The
detail of the tested cases are shown in Table 5.1.

Case 1 The problem was solved using a conventional FDTD code written in Fortran
77 employing a pressure-particle velocity leapfrog scheme. The case is meant
to be the benchmark case to which the results obtained by the proposed
technique is compared for validation. Each edge of the cube was divided to
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Table 5.1 Computational setup

Case 1 2 3 4

Approach FDTD FVTD
Type of mesh – Hexahedral Unstructured tetrahedral
Number of cells/CVs 813 = 531 441 531 333
Δx [m] 0.0123 –
lc [m] – 0.025 (40 elements per edge)
Δt [ms] 0.02 0.0049
c0 [m/s] 343.7
Courant number 0.96 0.99 (max)
Nonorth. correction – Uncorrected Orthogonal
Initial condition A single wave of offset cosine (Eqs. (5.98), (5.99))

81 subedges to create a mesh of cell width Δx = 0.0123 m and the number
of cells 531,441 (Fig. 5.10b). The time step Δt and the Courant number Co

were set to 0.02 ms and 0.96, respectively.
Case 2 The problem was solved with the proposed technique under a hexahedral

orthogonal mesh and setup both identical to the ones for Case 1.
Case 3 The problem was solved with the proposed technique under a nonuniform

tetrahedral unstructured mesh automatically generated by an open-source
mesher, Gmsh [24]. The characteristic length lc (the length with which each
edge of the cube is divided) is set to 0.025 m, to make a mesh with the number
of CVs 531,333 (roughly the same as Cases 1 and 2). The ratio of maximum
and minimum CV edge lengths of the generated mesh was 6.32. The time
step Δt was set to 0.0049 ms to keep the maximum Courant number to 0.99.
In this case no nonorthogonal techniques was applied.

Case 4 The setups are same as Case 3, except that the orthogonal correction tech-
nique was applied.

For all cases, the initial values of φ were set to represent the pressure and particle
velocity conditions of

p−1/2(r) =
{cos 8πr + 1

2
(r < 0.125)

0 (otherwise)
[Pa], (5.98)

u0(r) = 0, (5.99)

where r [m] is the distance from the center of the cube. All cases were run up to
t = 0.04s.
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Fig. 5.10 a Problem geometry of the benchmark problem AIJ-BPCA B0-1T, b Surface mesh for
Cases 1 and 2 (coarsened by factor of 2 for visibility), c Surface mesh for Cases 3 and 4 (coarsened
by factor of 2) and d Surface and internal mesh (coarsened by factor of 8) for Cases 3 and 4

5.3.4 Results and Discussion

The transient sound pressure waveforms at the receiving point R2 shown in Fig. 5.10a
are plotted in Fig. 5.11, using the result of Case 1 as the benchmark case for compari-
son with other cases. From Fig. 5.11a, one can see that the results of FDTD and FVTD
techniques agree so precisely that they can be regarded as virtually identical results.
From the results one can verify the proposed FVTD technique has the same accu-
racy as the conventional FDTD under identical geometry, mesh, and computational
setups.

On the other hand, from the comparison of Cases 1 and 3 in Fig. 5.11b, the
waveform obtained by the FVTD technique under the tetrahedral mesh is phasing
forward in about 1.5 %. Also, the overall waveform is gradually dispersing over time.
In addition, the results of Case 4 is shown in Fig. 5.11c. Despite the employment of the



5 Alternative Time-Domain Methods 139

-0.4

-0.2

 0

 0.2

 0.4
P

re
ss

ur
e 

[P
a]

Case 1 (FDTD)
Case 2 (FVTD-Hexahedral)

 Cases 1, 2

-0.4

-0.2

 0

 0.2

 0.4

P
re

ss
ur

e 
[P

a]

Case 1 (FDTD)
Case 3 (FVTD-Tetrahedral-Uncorrected)

Cases 1, 3

-0.4

-0.2

 0

 0.2

 0.4

0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

P
re

ss
ur

e 
[P

a]

Time [s]

Case 1 (FDTD)
Case 4 (FVTD -Tetrahedral-Corrected)

Cases 1, 4

(a)

(b)

(c)

Fig. 5.11 Transient sound pressure waveforms at the receiving point R2

Table 5.2 Processor and memory usages

Case 1 2 3 4

Processor [s] 28.0 343 865 2 013
Per time step [s] 0.0140 0.172 0.106 0.247
Memory [MB] 18 301 260 260

correction technique, the drift of the phase did not improve. Even worse, waveforms
started to oscillate and diverged eventually.

From the results one can conclude that while one can expect identical results
between FDTD and FVTD techniques under identical setups, there remains works
for the FVTD technique in reducing the phase error coming from nonorthogonalities
of unstructured grids.

5.3.5 Computational Loads

To compare the proposed technique with the conventional FDTD from the stand-
point of computational loads, processor times and memory usages were instrumented
for Cases 1–4, as shown in Table 5.2. The instrumentations were carried out on an
Opteron 2.4 GHz 64-bit Linux platform. The FVTD computations turned out to
require more than ten times of processor and memory usages. Hence it should be
noted that, from the computational load of view, the proposed FVTD technique is
not meant to completely replace FDTD especially in large cases, but should rather
be used for small to medium cases where rapid preprocessing (case setup) and post-
processing have of particular importance.
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Although Cases 2 and 3 have roughly the same number of cells, one may notice that
Case 3 requires smaller amount of computational time per time step. This is because
the computational load required in calculating the Laplacian term is determined
mostly by the number of faces per CV, as shown in Eq. (5.91). It is also shown that,
from Cases 3 and 4, applying nonorthogonal correction technique more than doubles
the processor usage.
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Chapter 6
Room Acoustics Simlation

Reiji Tomiku, Shinichi Sakamoto, Noriko Okamoto, Yosuke Yasuda,
Yoshinari Horinouchi and Kazuma Hoshi

Abstract This chapter shows examples of numerical simulation results on various
sound fields in the interior of buildings and vehicles, such as auditoria, large space
with seating rows, reverberation rooms, vehicle cabins, and small space with parti-
tions. In each section, the features and problems of each sound field are introduced,
and numerical modeling schemes of the simulation and the calculated results of the
sound fields are described and illustrated. Some of the calculated results are compared
with those obtained by other methods or measured ones to discuss the applicability
and efficiency of the analysis method.
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6.1 Auditoria

Concert hall acoustics is the most attractive topic to many acousticians from both
physical and psycho-acoustical viewpoints. Also, in computational acoustics an audi-
torium has been being an interesting object, but the computation of an auditorium
in wide frequency range has been difficult due to the requirement of huge computa-
tional resource. In recent years, rapid advances in hardware/software technologies are
promoting applications of wave-based numerical methods to analysis of acoustical
phenomena in auditoria. In this section, several applications of the finite-difference
time-domain method (FDTD method), the finite element method (FEM), and the
boundary element method (BEM) to numerical analyses of auditoria are introduced.

6.1.1 Application of FDTD Method

Figure 6.1 shows a small hall under investigation. As seen in plan of the figure, this
hall with about 260 seats mainly for lectures and conference, has a unique room shape
consisting of concave curved boundary. Generally, the concave boundary is apt to
raise the concentration of sound and echoes, and so this hall could be acoustically
hazardous. In acoustical design, such concave curved boundaries are substituted by
convex boundaries in order to raise scatter and diffusion of sound. Regarding this
hall, triangular diffusers were attached to side walls and the rear wall was treated
absorptive to avoid the concentration of sound and echoes.

Treatment of absorptive boundary conditions of building walls, floor, ceiling, and
other surface of furniture has become a serious problem to be solved. In many cases,
locally reacting on surfaces is assumed and normal acoustical impedance is taken into
account. In order to treat frequency characteristics of the acoustic impedance, some
contrivances should be done for time-domain solvers such as the FDTD method,
whereas a complex impedance can be introduced for respective frequency for fre-
quency domain solvers. As such contrivances to treat frequency-dependent acoustic
impedance in time-domain solvers, the following methods are proposed; methods
using of z transform [1] and IIR filters [2] to treat transient characteristics of the
acoustic impedance, a method in which absorptive layers are directly discretized and
the internal propagation is calculated based on the Rayleigh model [3]. In this exam-
ple, continuous physical phenomenon of sound absorption and sound reflection by
an absorptive boundary was substituted by an equivalent discrete mechanical system
consisting of masses, springs, and resistances [4]. In this calculation model, hypo-
thetical mechanical model with two degrees of freedom which moves by pressure of
sound is set on the boundaries and their parameters of the mass, spring, and resistance,
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Fig. 6.1 Plan and section of a hall under investigation

m1, m2, k1, k2, c1, c2, are appropriately determined so that the vibration velocity of
the mass, m1, is equal to particle velocity at the surface of the boundary. More many
degrees of freedom were possible to fit the acoustic impedance characteristics, but
in this example two degrees of freedom was adopted because of convenience of the
parameters’ determination (Fig. 6.2).

Among the materials consisting of the hall, seven kinds of materials shown in
Fig. 6.1 were picked up as acoustically principal materials and their normal acoustic
impedance were measured in order to determine the parameters of the hypothetical
mechanical systems. Among them, correspondence of measured acoustic impedance
and modeled ones based on the determined parameters for three kinds of the materials
are shown in Fig. 6.3. For (a) floor carpet and (c) seat of chair, both characteristics
were fairly in good agreement. For (b) side wall, however, the agreement was poor,
especially in real part of the acoustic impedance because the characteristics could not
be appropriately modeled by the hypothetical model having two degrees of freedom.
As indicated in the discrepancy, all of the acoustic impedance characteristics cannot
be always appropriately approximated.

Impulse responses at 10 receiving points shown in Fig. 6.1 were calculated by the
FDTD method. In the calculation, spatial grid size, ρh, and discrete time interval,
ρt , in the FDTD analysis were made to be 0.06 m and 0.05 ms, respectively, and
transient responses of 30,000 steps (1.5 s) were calculated. The calculated responses
were corrected so that their spectral characteristics became flat in the frequency range
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Fig. 6.2 Hypothetical mechanical system which simulates surface acoustic impedance of the
boundary with two degrees of freedom
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Fig. 6.3 Comparisons between measured and modeled surface acoustic impedance

between 88 Hz and 1,414 Hz (4 octave bands from 125 Hz to 1 kHz). To validate the
calculation results, the impulse responses were measured in the hall for the same
sound source and receiving positions by applying the swept-sine method. For this
measurement, a dodecahedral loudspeaker was placed on the stage at a height of
1.5 m and a (1/2)-inch omni-directional microphone was placed at each receiving
point at a height of 1.2 m above the floor. Four examples of the comparison between
the echo diagrams of the calculated and the measured responses—front seat, R3; back
seat, R9; middle seats, R5 and R7—are shown in Fig. 6.4. These echo diagrams were
obtained by passing the impulse response signal through a numerical RMS detector
with a time constant of 1 ms. In these figures, ‘Corr.’ means the cross-correlation
coefficient between the echo diagrams of the calculated and measured responses
calculated for the range of 1 s of the responses. The coefficient is approximately 0.8
for all the results shown in Fig. 6.4. Similar tendencies were observed in the results
obtained for the other receiving points.

To further compare the impulse responses obtained by the FDTD calculation
and the actual measurement more quantitatively, major room acoustic parameters
calculated from the impulse responses were compared. First, the reverberation time
(RT) in each octave band was calculated by the integrated impulse response method
for all the receiving points and the results were averaged for each octave band. The
results for the calculation and the measurement are shown in Fig. 6.5. In the figure, it
is observed that the calculated and measured values are in fairly good agreement in the
250, 500 Hz, and 1 kHz bands, whereas a large discrepancy is observed in the 125 Hz
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Fig. 6.4 Comparison of impulse responses between calculation and measurement

Fig. 6.5 Comparison of
reverberation time obtained
from impulse responses
between calculation and
experiment (averaged value of
10 receiving points)

band. This discrepancy might be attributed to the setting of the boundary condition
at low frequencies in the FDTD calculation. In other words, the sound absorption
effects of panel vibration and Helmholtz resonance in the rib wall at low frequencies
were not considered in the calculation because these effects cannot be measured
by the impedance-tube method. The other room acoustic parameters obtained from
the impulse response-definition D50; clarity C80; and center time Ts (specified in
ISO 3382) were calculated for the frequency range including the 2 octave bands of
500 Hz and 1 kHz in order to reduce the interference effects. For both calculation
and measurement, the parameters were deduced from the impulse responses for 1 s.
The calculations and the measured values of each of these parameters are shown
in Fig. 6.6. Although some discrepancies are observed in the results of C80 at the
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Fig. 6.6 Comparison of monaural acoustic parameters calculated from impulse responses. a D50;
b C80; c Ts for 500 Hz–1 kHz band

receiving points R1, R4, R8, R9, and R10, the calculations and the measured values
are in fair agreement on the whole. In the figures, the dotted lines indicate the range
of the measured value ±J N D (just noticeable difference limen) [5].

Figure 6.7 shows a result of visualization of instantaneous sound pressure distrib-
ution in the hall. We can observe sound propagation process in the hall where sound
wave is scattered by sidewall diffusers and series of chairs.

6.1.2 Application of FEM and BEM

This section is an introduction of sound simulation on a small hall by FEM and
BEM using fast multipole method (FMBEM). The hall to be analyzed is shown in
Fig. 6.8. It is a multi-purpose event hall which can change the stage form and has a
room volume of 3,000 m3 and from 220 to 310 audience seats. Generally, elliptic
geometry is attractive one from the viewpoint of architectural design, however, it
frequently causes room acoustic problems such as sound focus at specific location.
In this hall, many diffusers are installed on the wall to avoid those problems.
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Fig. 6.7 Snapshots of instantaneous sound pressure distribution

The hall is listed as “B1-1F, Task A” of a benchmark platform, i.e., ‘Benchmark
Platform on Computational Methods for Architectural/Environmental Acoustics’ [6],
which has been provided by a committee in Architectural Institute of Japan. The
“B1-1F, Task A” is a problem of computing the sound pressure amplitude at 201 points
(Fig. 6.9), on the line from S:(−7.558, 0, 1.5) to (12.65, 0, 1.5), located at 0.1 m
intervals, in the small hall shown in Fig. 6.8. Computing frequencies are set to the
center frequencies of octave-band from 31.5 Hz to 4 kHz. A point source, S, is located
at (−7.558, 0.0, 1.50), assuming its stationary vibration with volume acceleration
amplitude 1.0 m3/s2. The absorption coefficient of the ceiling is 1.0. Other surfaces
are rigid boundaries. Values c and∂ are set to 343.7 m/s and 1.205 kg/m3, respectively.



152 R. Tomiku et al.

Fig. 6.8 The small hall to be analyzed

Fig. 6.9 Sound source
location and receiving points
on Line-1 of the small hall

In this section, analyses by FEM and FMBEM are, respectively, carried out at
center frequencies 31.5, 63, and 125 Hz, and sound pressure distributions obtained
by both methods are compared.

In the FE analysis, DO F is 8,926,001 regardless of frequency. The elemental
division was determined to satisfy that κ/d exceeds 4.5. The COCG method (stopping
criterion: Δ = 10−4; initial value: x0 = 0), which performs good convergence for
sound field analysis in rooms [7], is adopted. Incidentally, as for the geometry used
in the FE analysis, diffusers on a wall are more simplified than those of FMBEM as
shown in Fig. 6.10.

In the BE analysis, constant elements were employed, and DO F is 6,110 at both
31.5 Hz and 63 Hz, and it is 24,514 at 125 Hz. The elemental division was determined
to satisfy that κ/d exceeds 9.0. The GPBiCG method (Δ = 10−3; x0 = 0; initial
shadow residual: r∗

0 = r0) [8], which performs good convergence, was adopted.
The ILUT preconditioning (the parameter in regard to the number of fill-in element:
p = 10; the relative minimum value of element in a matrix: α = 10−5) [8] was
implemented.
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(a) (b)

Fig. 6.10 Geometry of diffusers used in analyses by a FMBEM; by b FEM

Fig. 6.11 The contour map of sound pressure levels obtained by FEM (63 Hz)

Numerical analyses were carried out using a VT64 Opteron Workstation (CPU:
Opteron (2 GHz), Number of Processors: 2). For numerical experiments of this
section, single processor was used.

Figure 6.11 shows a contour map of relative sound pressure levels at 63 Hz
obtained by FEM, where sound pressure level at the source point is assumed
as 100 dB. From the figure, strong influence of room’s mode can be confirmed.
Figure 6.12 shows a comparison of absolute sound pressure levels between FEM and
FMBEM. The FEM shows good agreement with FMBEM at both 31.5 and 63 Hz.
The correlation coefficients between FEM and FMBEM are, respectively, 0.99 at
31.5 Hz, and 0.97 at 63 Hz. However, in 125 Hz, the sound pressure levels obtained
by FEM are considerably different from those of FMBEM at several dips of those
distributions. Then, the correlation coefficient became 0.81. That difference should
be caused by the difference in diffusers modeling between FEM and FMBEM, as
described previously.

For reference, when the sound field of 125 Hz was analyzed, the computation
time and memory required for FEM were 635,687 s and 9,426 MB, respectively,
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Fig. 6.12 Comparison of sound pressure levels between FEM and FMBEM

and those of FMBEM were 846 s and 571 MB. The computation time and memory
required in FMBEM are smaller than those of FEM. In the case of a problem that has
receiving points located at narrow intervals for wavelengths such as ‘B1-1F, Task A’,
the DO F of FEM that requires a split domain becomes numerous. It is important that
investigations are carried out in detail, including assembling characteristics among
numerical analyses for various acoustic problems.

6.2 Seating Rows

The seating in concert halls has been an interesting subject of research in the field of
room acoustics for a considerable time. The seat dip effect (SDE) [9, 10] is considered
to trigger excessive attenuation, particularly in the low-frequency acoustic range, and
has been examined by numerous researchers.

Seating rows were initially the subject of direct analysis using numeric simula-
tions, with numerous studies conducted to examine their acoustic characteristics and
the occurrence mechanisms of SDE [11, 12]. In recent years, however, the analysis of
space in the dimensional scales of concert halls has become possible with progress in
computing. The boundary surface aspect of seating rows for the analysis of the space
as a whole has become more prominent than the seating rows being an independent
subject of analysis. In other words, the issue of setting the boundary conditions for
the floor area is being raised.
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Fig. 6.13 Layer model of seating rows

In this section, a method for considering the seating rows as a uniform
imaginary sound absorbing surface, for which localized effects can be assumed, will
be introduced in order to set boundary conditions for the floor area for the purpose of
analyzing a large-scale space. In addition, a case study, in which a two-dimensional
analysis was performed, is presented.

6.2.1 Analysis with Layer Model Admittance

In performing an acoustic field analysis of concert halls, the seating sections have
complex forms and are made of different materials with various acoustic characteris-
tics. There are many practical difficulties in breaking them down into finer segments
to understand the boundary conditions for each such segment. For this reason, there
have been analytical methods that replace the seating rows (seat surfaces) with an
imaginary boundary that can be assumed to have a uniform impedance and local reac-
tion [13]. In this section, we shall first present a case study of an analysis performed
using the layer model admittance proposed by Osa et al. [13].

This method sets up the admittance in an imaginary boundary surface, which is
set up with the seat top sections that form a ridge across the rows, and the lower
sections of the imaginary boundary surface is considered to be divided into three
layers (Layer 1: an air layer assumed to extend from the upper section of the seat
to knee height; Layer 2: an acoustic absorption layer equivalent to the seat surfaces;
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(a) (b)

Fig. 6.14 Seat models (seat surface length: 0.6 m). a With underpass; b Without underpass

Fig. 6.15 Cross-sectional diagram of the closed space in which the two-dimensional analysis was
performed

and Layer 3: an air layer extending from the lower seat surfaces to the floor), with
the particle velocities restricted to the z direction (Fig. 6.13).

A case study in which layer model admittance was applied to a two-dimensional
closed spatial acoustic field is shown below. The shape of the seats used for the
analysis is shown in Fig. 6.14, while the cross-sectional diagram and co-ordinate
axes of the space are shown in Fig. 6.15. The length of the floor sections was given
by two patterns of 0.4 and 0.6 m for the purpose of comparison, while the spacing
between seats was 0.8 m, and the height of the top line of the seats from the floor
was 0.8 m. The height of the seat backs was considered to be 0.42 m, while the lower
sections of the seat backs and seat surfaces were considered to be rigid. The acoustic
absorption coefficient for the walls, ceiling, and stage floor was considered to be 0.2.

Seats in Figs. 6.14a and 6.15 were without legs, resulting in acoustic fields in
which the underpass existed. The imaginary boundary surfaces were set uniformly
from the stage to the rear walls along the peak positions of the seats that form the
top ridge lines, as indicated by the dotted lines in Fig. 6.15.

A situation in which the seating row models shown in Fig. 6.14 are arranged is
notated as the “seating row model,” while the case in which the imaginary boundary
surfaces were used is notated as the “imaginary surface model,” with the results from
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Fig. 6.16 Frequency response. a A seat in the 2nd row; b A seat in the 12th row

each model compared to examine the effectiveness of the methods. Furthermore, all
analyses described hereafter were conducted using the BEM of the normal derivative
form.

Furthermore, the method developed by Terai and Kawai [11, 14] was used for
processing the singular term in the two-dimensional analysis.

Direct sound was used to normalize the seat in the 2nd row and the seat in the
12th row (seats 02 and 12 in Fig. 6.15).

The analysis results of the frequency response are shown in Fig. 6.16. The results
of the seating row model and imaginary surface models, one each for the cases of
a seat surface length of 0.4 and 0.6 m, are shown together in the figure. The sound
receiving point was set at a height of 0.95 m from the floor. The sound receiving
point was located roughly at the center of seating the 12th row in Fig. 6.16b with
the results for the seating row model and the imaginary surface model, including
that of the position of the dip, matching up quite well. In the comparison of the
cases in which the seat surface lengths were 0.4 and 0.6 m, the case of 0.6 m showed
excessive attenuation in the low-frequency range, i.e., this case exhibited SDE quite
well. This coincides with the research result [12] indicating that the SDE is more
strongly affected by the seat surface than by the floor surface.

Furthermore, the frequency response at a point on the seat in the 12th row, at a
height of 2 m, is shown in Fig. 6.17. A comparison with Fig. 6.16b reveals that there
is less of an effect due to the seating row. The excessive attenuation also decreased.
It also shows how the attenuation is overestimated in the vicinity of 125 Hz in the
imaginary surface model for the front area of the seating rows. This is believed to
be due to the effect arising from setting the imaginary boundary surface between the
front of the seating rows and the stage.

The number of elements and the CPU time in the two-dimensional analysis
described earlier are shown in Fig. 6.18. Since more element divisions must be made
in the higher frequency ranges, the method of increasing the number of elements
in stages according to the frequency was adopted for our analysis. This meant that
Fig. 6.18 was plotted using the center of the frequency range for the analysis per-
formed using the same number of elements. The figure indicates that the required
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Fig. 6.18 Calculation load. a Number of elements; b CPU time

number of elements and the CPU time both decrease significantly with the imple-
mentation of the imaginary surface model.

Furthermore, the results for the case in which no underpass exists, i.e., where the
seats have legs, are shown in Fig. 6.19. This is a case in which the seats in Fig. 6.15
were replaced by the seats in Fig. 6.14b. The imaginary surface model in this instance,
however, had the imaginary acoustic absorption surface set only on the seat at the
very front and the seat at the very back as well as between the top parts of the
respective seats (it was set uniformly from the stage to the rear walls for the case
with underpass).

The results of Fig. 6.19 indicate that the imaginary surface model is a good approx-
imation of the seating row model for frequencies in the vicinity of 125 Hz. The atten-
uation that occurs in the vicinity of 63 Hz with the seating row model, however, was
not reproduced with the imaginary surface model. Furthermore, it is evident that the
excessive attenuation shown by the imaginary surface model has been suppressed in
comparison with the case where underpass exists.

Furthermore, an analysis of a case in which the shape of the space was changed was
also performed in order to examine the validity of the imaginary surface model. The
shape includes a reflector plate installed on the stage ceiling, as shown in Fig. 6.20.
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Fig. 6.19 Frequency response (no underpass). a A seat in the 2nd row; b A seat in the 12th row

Fig. 6.20 Cross-sectional diagram of space subject to two-dimensional analysis (reflector plate
present on the stage ceiling)
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Fig. 6.21 Frequency response. a A seat in the 2nd row; b A seat in the 12th row

A comparison of results for the seating row model with a seat length of 0.8 and
no underpass and the acoustic absorption surface model with an imaginary acoustic
absorption surface set between the top sections of seats for the seat at the very
front and the seat at the very back is shown in Fig. 6.21. The spatial acoustic pressure
distribution for the case of 31.5 Hz is shown in Fig. 6.22, while the calculated number
of elements and the CPU time are shown in Fig. 6.23. A review of the figure for the
frequency response in Fig. 6.21 reveals that the analysis results for both models vary
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Fig. 6.22 Spatial distribution of acoustic pressure (3.15 Hz). a Seating row model; b Imaginary
surface model
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Fig. 6.23 Calculation load. a Number of elements; b CPU time

significantly depending on the positions of the sound receiving points. When the
spatial acoustic pressure distribution is calculated as shown in Fig. 6.22, however,
there is not much difference between the two models.

6.2.2 Analysis with Seat Top Section Admittance

The analysis performed with the layer model admittance described in the previous
section indicated a rough match in the trends, but inconsistencies arose in the results
for the seating row model and the imaginary surface model, particularly when no
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Fig. 6.24 Frequency response for the seat top section admittance model (with underpass, at the
12th seat)

underpass was present. The seat top section admittance described below was therefore
implemented.

We considered a case in which seating rows existed on a rigid floor of infinite size,
i.e., a field in which only seating rows exist in a semi-free space. We calculated the
velocity potential θ and the differential coefficient to the incident direction ηθ

ηy for the
point in the seat top regions in the case of a plane wave perpendicularly incident on
the seating rows. A, as given by the equation below, was set as the specific acoustic
admittance for the imaginary boundary surface.

A = −
ηθ
ηy

jkθ
, (6.1)

where y is the axis perpendicular to the rigid plane.
In reality, A was calculated at multiple sound receiving points near the center

of the seating rows, and the average value thereof was used as the specific acoustic
admittance for the imaginary boundary surface

This method involves analyzing only the seating rows in advance; the resulting
admittance is given as the boundary condition for the imaginary surface model being
analyzed. This means that more calculation is required in comparison with the case
in which the layer model admittance is used as described in the previous section;
however, there is a reduction in the calculation load in comparison with the method
for simultaneously analyzing the entire space, including seats.

The comparison of the results from the seating row model and the results from
the calculation for the frequency characteristics at the sound receiving point at the
12th row in the imaginary surface model, for which the seat top section admittance
was given as the boundary condition as described previously, is shown in Fig. 6.24.

The tendency of the seating row frequency characteristics is considered to have
been reproduced quite well in the calculated admittance. The attenuation of the SDE
in the vicinity of 125 Hz, in particular, was revealed to have been reproduced with
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Fig. 6.25 Frequency response for seat top section admittance model (without underpass, at the
12th seat)

Table 6.1 Calculation time comparison between the seating row model and the imaginary surface
model

Underpass present Underpass not present
Seating row Imaginary surface Seating row Imaginary surface
model model model model

Seating row potential 0.277 0.327
Admittance calculation 0.091 0.091
Hall boundary potential 1.000 0.273 1.000 0.237
Total CPU time 1.000 0.641 1.000 0.655

much higher accuracy than in the case of the layer model admittance shown in
Fig. 6.16.

Similar calculations were performed for the cases where no underpass was present.
As with the previous section, the acoustic absorption surface was set only between
the top section of the seat backs in the very first row and the very last row.

A comparison of the frequency characteristic calculation results for the sound
receiving point located at the 12th row from the seat arrangement model and the
imaginary surface model is shown in Fig. 6.25. The seat top section admittance was
given as the boundary condition for the imaginary boundary surface, which led to a
good reproduction of the acoustic characteristics for the case in which there was no
underpass; this was not accomplished by the layer model admittance in Fig. 6.19.

A comparison of the calculation time for the seating row model and the imaginary
surface model is shown in Table 6.1. Values in the table represent ratios, and the
total time for seat arrangement models with and without underpass was considered
to be 1.0.

The seat top section admittance calculation method, in comparison with the
seating row model that requires a large amount of calculation elements, can be han-
dled by distributing the calculation loads, and it is evident that the total calculation
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time was also reduced. The impact of load reduction becomes more effective as
the complexity of the seat shape increases; thus, it would be reasonable to apply
the admittance calculation method for seat shapes with no underpass and the layer
model admittance to simplified seat shapes with underpass. A case study of the analy-
sis method involving the replacement of the seating rows with a uniform imaginary
boundary surface in two dimensions was presented. However, further examination
may be required in the future, especially for cases in which three dimensions are
involved.

6.3 Reverberation Rooms

Reverberation rooms are essential for measurements in many kinds of building
acoustics: for instance, the absorption coefficient in reverberation room (ISO 354,
JIS A 1409), sound power of noise source, and transmission loss (ISO 140-3, JIS
A 1416). All measurements in reverberation rooms presume a diffuse sound field.
There remain issues caused by differences in sound fields or diffuseness in rooms
used for measurements. In particular, although the Japanese Industrial Standard (JIS)
approves use of both regularly and irregularly shaped reverberation rooms for these
measurements (e.g., JIS A 1416, 2000), it cannot be inferred that their characteristics
of diffuseness are the same.

Diffuseness of sound fields in reverberation rooms has been widely investigated
by experiments and statistical considerations. In these studies, various descriptors
were applied: sound intensity [15, 16], modal density [17], the coherence function
[18], the spatial correlation function [19], spatial uniformity of sound fields [20],
and so on. On the other hand, numerical analyses based on the wave equation have
been intensively used to explore many kinds of acoustic problems [16, 21–23].
Among the analyses, FEM can be applied to such sound fields as those with complex
absorbent walls and materials, those with temperature distribution, and so on. In this
section, data obtained by the FE-analysis are applied to calculation of descriptors of
diffuseness of sound fields in regularly and irregularly shaped reverberation rooms.

6.3.1 Comparison with Measurement Results

At first, to confirm accuracy of FE analysis, computed sound pressure levels by the
FEM are compared with those of a measurement on the condition that a source is
located in the middle of the room. Figure 6.26 shows schematic drawings of the
irregularly shaped reverberation room (Volume = 165 m3, Surface area = 178 m2) to
be analyzed and finite element division. Sound source location and 378 receiving
points are illustrated in Fig. 6.27. A point source is assumed to be located in the field,
which radiates white noise filtered by 200 Hz in 1/3 octave band and in a steady-state
condition. An omnidirectional speaker is employed for measurement.



164 R. Tomiku et al.

Fig. 6.26 Schematic drawing of an irregularly shaped reverberation room and finite element divi-
sion (13 × 13 × 11)

Fig. 6.27 Measured and
computed points and a sound
source location
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Figure 6.28 shows a comparison of measured values with computed sound pres-
sure level distribution obtained at 378 points. The average residual of computed
sound pressure values to measured values is 0.83 dB. Thus, it can be said that results
obtained by the FE sound field analysis in frequency domain agree well with mea-
sured data in this case.

6.3.2 Descriptors for Diffuseness of Sound Fields

In this section, data obtained by the authors’ FE-analysis are applied to calculate
descriptors of diffuseness of sound fields in irregularly shaped reverberation rooms
analyzed in the former section and regularly shaped reverberation room (Fig. 6.29,
Volume = 220 m3, Surface area = 227 m2). Spatial correlation function of the sound
field and the standard deviation of sound pressure levels are utilized as descriptors
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Fig. 6.28 Comparison of relative sound pressure levels; measurement versus FEM (h = 1.20 [m],
378 points)

Fig. 6.29 Schematic
drawing of a regularly shaped
reverberation room and finite
element division (10×16×17)
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because these are widely employed in many studies and are easily calculated from
results obtained by FEM.

Cook et al. [19] derived the spatial correlation function of a perfectly diffuse
sound field, (sinkr )/kr , and showed good agreement between the function and spatial
correlation values of sound fields in actual reverberation rooms for high-frequency.
It has been noted that if one or some correlation function values of the sound field
correspond with (sinkr )/kr , the field is not ensured to be perfectly diffused.

Then, assuming that sound pressures at two arbitrary points of the sound field
obtained by FEM are expressed as p1_FEM( f ) and p2_FEM( f ); spatial correlation
function values can be calculated as follows:
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(a) (b) (c)

Fig. 6.30 Comparisons of spatial cross correlation in IR, theoretical values (sin kr/kr ) versus FEM
(center frequency = 250 Hz). a 1 octave band; b 1/3 octave band; c 1/12 octave band

(a)
 

(b)
 

(c)
 

Fig. 6.31 Comparisons of spatial cross correlation in RR, theoretical values (sin kr/kr ) versus
FEM (1/3 octave band). a Center frequency 100 Hz; b Center frequency 160 Hz; c Center frequency
200 Hz

SCFEM(r, f ) = Re[p1_FEM( f ) · p∗
2_FEM( f )]

|p1_FEM( f )| · |p2_FEM( f )| . (6.2)

In this equation, *, Re[ ] and Im[ ] denote complex conjugate, real and imaginary
parts, respectively. If the sound field has a band of frequency range, FEM values are
averaged in several octave bands.

Figure 6.30a to c shows comparisons between (sinkr )/kr and SCFEM(r, f ), within
1/1, 1/3 and 1/12 octave band at center frequency 250 Hz in IR when one of the sound
sources in the field is assumed. To make comparisons easier, these figures include
spatially averaged data of SCFEM(r, f ), which are calculated by a moving average
of the same number regardless of frequencies or bandwidths. Among the three, best
agreement is shown in the 1/3 octave band between (sinkr )/kr and SCFEM(r, f ) .

Figure 6.31a to c shows the same comparison within 1/3 octave band at center
frequencies of 100, 160, and 200 Hz in RR when one of the sound sources in the field
is assumed. It is confirmed that SCFEM(r, f ) at higher frequency agrees better with
(sinkr )/kr rather than SCFEM(r, f ) at lower frequency.

Koyasu and Yamashita [24] noted that it is important to observe correlation
function values for all directions in the field. It is also pointed out that quantita-
tive assessments of sound fields are difficult by the correlation function [18, 25].
Then, to characterize sound fields in rooms using the spatial correlation function,
difference between (sinkr )/kr and SCFEM(r, f ) can be calculated as
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Fig. 6.32 DSC ( f ) values
when room shapes, sound
source locations (“SP1”: a
point sound source at one
corner; “SP3”: a point source
in the middle of the room),
frequencies, or bandwidths
are changed

Fig. 6.33 SD( f ) values
when room shapes, sound
source locations (“SP1”: a
point sound source at one
corner; “SP3”: a point source
in the middle of the room),
frequencies, or bandwidths
are changed

DSC ( f̄ ) = 1

M

M∑
i

|SC(ri , f̄ )FEM − (sin kri )/kri |. (6.3)

In this equation, M denotes combination number of SCFEM(r, f ). The descriptor
includes several kr in addition to several directions.

The DSC ( f ) are given to show diffuseness difference in Fig. 6.32 when room
shapes, sound source locations (“SP1”: a point sound source at one corner; “SP3”:
a point source in the middle of the room), frequencies, or bandwidths are changed.
For comparison, standard deviation of sound pressure levels in a room (SD( f )) are
calculated and shown in Fig. 6.33.

Both results correspond to each other in the following aspects: (1) Clear difference
can be found between results using SP1 and those using SP3 in RR while little
difference can be found in the IR; (2) When bandwidth is identical, IR results fall
on intermediate points between results using SP1 and results using SP3 in RR;
(3) Worst characteristics of diffuseness in each room are shown when using SP3
within 125 Hz 1/12 octave band in RR and using SP1 within 100 Hz 1/12 octave
band in IR. Pearson’s correlation coefficient between DSC ( f ) and SD( f ) in 108
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conditions (2 rooms × 3 sound source locations × 3 frequency bandwidths × 6
center frequencies) is 0.92.

6.4 Vehicle Cabins

Quietness, as acoustic environmental property in a vehicle cabin, has been required
so far. in recent years, however, the quietness in a car cabin is highly improving and
the interest will be changing to comfortness such as communication ability between
passengers and intelligibility of electrical audible information from car audio and
car navigation systems in future. Especially, various audible information from car
navigation and collision alarm system is essential for safety of drive. Much detailed
acoustical design technology is indispensable to realize such a comfortable car cabin
environment. The wave-based numerical analysis is one of the promising tools as such
acoustical design technologies. In this section, from such a viewpoint, an example
of sound field analysis in a car cabin using the FDTD method is introduced.

6.4.1 Boundary Conditions

In wave-based numerical analysis of a space having small volume and complicated
boundary shape and condition such as a car cabin, responses with wide frequency
range (from low frequency to high frequency) can be obtained because the mesh size
can be very small. Therefore, the simulation accuracy depends on the modeling of the
boundary shape and the boundary condition. A car cabin consists of variety of parts
such as window glasses, resin boards, leather or cloth seats, floor mats, ceiling panels,
and so on, and their acoustical boundary conditions should be suitably modeled and
the boundary conditions should be quantitatively set at correct values. In this example,
the boundary conditions of many kinds were set as surface acoustic impedance under
the assumption of locally reacting. In detail, the frequency characteristics of the
acoustic impedance were reflected on the calculation by adopting the IIR filtering
technique. For passenger seats, which occupy the largest areas in an inner space of
a car cabin, sound propagation inside the seat materials—leather or cloth sheets and
urethane foams—was treated in detail under the assumption of the extended reacting
because transmitting sound through soft materials of seats might affect the sound
field properties.

6.4.1.1 Expression of Boundary Conditions by Using IIR Filtering Technique

At a surface, its normal particle velocity pointing to outside of the domain is expressed
by a sound pressure p and a normal acoustic impedance zn as,
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Fig. 6.34 Definition of
boundary
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. (6.4)

Absorbing characteristics of boundaries depend on the frequency f , and the acoustic
impedance also depends on the frequency and is expressed as function of f . In case
of steady-state condition with an angular frequency of ϕ, relationship among sound
pressure p, particle velocity un and acoustical admittance an(ϕ) which is the inverse
value of acoustic impedance is

un(ϕ) = an(ϕ)p(ϕ). (6.5)

Based on the convolution theorem, the product in the frequency domain corresponds
to the convolution integral in the time domain. Therefore, the particle velocity in x
direction at a point (I ,J ,K ) can be calculated using the acoustic admittance an

I,J,K
by a digital form as

un
I+1/2,J,K =

Mo∑
m=0

am
I,J,K pn−m

I,J,K , (6.6)

where Mo is the number of the order of the admittance filter (Fig. 6.34). Equation (6.6)
means that detailed boundary absorption characteristics can reflect numerical solu-
tions by acquiring transient characteristics of the boundary admittance as IIR digital
filter coefficients.

Among the variety of parts consisting of a car cabin, several kinds of parts
which have relatively large area, such as a door panel, a floor mat, a ceiling panel,
and a instrumental panel, were picked up and their acoustic impedance measured
by transfer function method using an impedance tube (B&K 4206). Based on the
measurement results, the coefficients of the IIR filters were determined. Figures 6.35
and 6.36 show the comparisons of the acoustic impedance and normal absorption
coefficients calculated from the acoustic impedance, respectively, between the mea-
surement results and set values in the FDTD analysis by determined IIR filters.
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Fig. 6.35 Comparison of acoustic impedance

Fig. 6.36 Comparison of normal absorption coefficients calculated from the acoustic impedance

6.4.1.2 Expression of Boundary Conditions Considering Propagation Inside
Material

Regarding the boundary condition of seats, internal propagation inside the material of
the seats is taken into consideration. As shown in Fig. 6.37, a surface and an internal
material of a seat are modeled as a membrane without tension having area density
of m [kg/m2] and a lossy media with a flow resistance of ω [Ns/m4], respectively.
Then, finite-difference schemes for particle velocity in x direction inside and on the
seat are as follows.

un+1
i+1/2, j,k = ∂0 − ωρt

∂0 + ωρt
un

i+1/2, j,k − ρt

(∂0 + ωρt)ρh

(
pn+1/2

i+1, j,k − pn+1/2
i, j,k

)
, (6.7)

un+1
i+1/2, j,k = un

i+1/2, j,k + ρt

m

(
pn+1/2

i+1, j,k − pn+1/2
i, j,k

)
. (6.8)
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Fig. 6.37 Concept of analysis
of seat

Sound propagation is calculated according to the above schemes and the schemes
in the air described in Sect. 2.1 simultaneously. For the values of the parameters
of the flow resistance of the material of the seat and the area density of the surface
sheet of the seat were determined experimentally. That is, the former was determined
from propagation constants of the material measured using an impedance tube, the
latter was determined from inverse analysis based on frequency characteristics of
normal absorption coefficient. Figure 6.38 shows comparisons of normal absorption
coefficients of the seats in cases where its surface sheet is a leather (left) and a cloth
(right) between their measurement results and calculated values based on the set
parameters in the FDTD analysis. Whereas the respective values vary between the
measurement and calculation, the tendency of the frequency characteristics of the
measurements and of the calculations are similar. Comparing Figs. 6.36 with 6.38
shows that the absorption coefficients of the seats are much higher than the other
materials and therefore the seats are dominant materials determining absorption
characteristics of the car cabin sound field.

6.4.2 Numerical Analysis of Impulse Responses

Figure 6.39 shows an outline of a vehicle under investigation. An omni-directional
sound source was set at a position of a driver’s head and two receiving points were
located at positions of passenger’s heads at a assistant driver’s seat and a rear seat, and
impulse responses between a source and two receiving points were obtained for both
measurement and numerical analysis. In numerical analysis, spatial grid size and
discrete time interval were made 5 mm and 5.2µs, respectively. Figures 6.40, 6.41,
and 6.42 show snapshots of instantaneous sound pressure distribution in a car cabin,
waveforms in time, and frequency characteristics of impulse responses, respectively,
for the case of cloth seats. Regarding correspondence of impulse responses between
calculation and measurement, fair agreement is recognized in transient waveforms.
From frequency characteristics shown in Fig. 6.42, there exists discrepancy of sound
pressure level in higher frequency than 4 kHz. This discrepancy is caused by disagree-

http://dx.doi.org/10.1007/978-4-431-54454-8_2
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Fig. 6.38 Comparisons of normal absorption coefficients between measurement and set values in
the FDTD analysis. Left figure is for a leather seat and right figure is for a cloth seat

Fig. 6.39 A car cabin under investigation, sound source and receiving points

ment of sound absorbing condition between measurement and the FDTD analysis as
shown in Fig. 6.38.

6.5 Partitions

When a person talks over a counter in a small space such as a pharmacy or a bank
located in a city, the contents of the conversation often leak to the waiting area
behind the counter. This problem is known as speech privacy (confidential privacy)
problems. In Japan, partitions such as shown in Fig. 6.43 are often installed on a
counter on both side of a speaker and a listener. These partitions seem to be installed
for visual privacy and focus on the conversation. These partitions have potential to
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Fig. 6.40 Snapshots of sound pressure distribution inside car cabin

Fig. 6.41 Comparison of impulse response—transient wave form

Fig. 6.42 Comparison of impulse response—frequency characteristics
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Fig. 6.43 Parallel partitions on a counter in a pharmacy, Japan

insulate the sound of conversation if the partitions had been designed appropriately.
In this section, numerical studies to obtain the knowledge of these series of partitions
are introduced.

6.5.1 Insulation Effect of Arrayed Partitions

When a counter is separated by a an array of partitions, we should check the variety
of sound pressure level at a listening position in a conversation booth, at listening
positions in other booths, and at waiting areas.

6.5.1.1 Configurations

Figure 6.44 shows the floor plan for the examination. For checking effects of
partitions, the edge of the room drawn in dotted lines is set to absorption bound-
ary. Two types of partitions arrangement are ready for comparison, one is set to only
one booth using two partitions drawn black partitions in Fig. 6.44, the other is set to
five booths using six partitions drawn black and gray partitions in it. Additionally,
two conditions of absorption coefficients of partition are ready. Table 6.2 shows four
examination types that are mentioned above. Figure 6.44 also shows areas to obtain
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Fig. 6.44 Floor plan and
sampling areas to obtain
averaging level
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Table 6.2 Partition types for
examination

Type Number of booths Abs. coeff. of partition

b1π0 1 0
b1π0.6 1 0.6
b5π0 5 0
b5π0.6 5 0.6

averaging sound pressure level. L is the area of listener in a conversation booth,
L1 and L2 are the areas of listener in the other booths. A to F separate the waiting
area. The details of the floor and section plan of a counter, partitions, a speaker, and
a listener are shown in Fig. 6.45.

The FDTD method is used for numerical simulation. Perfect Matched Layers
(PMLs) are set to absorption boundary. Spatial intervals (grid size) ρx = ρy = ρz
are set to 0.02 m. Time interval is determined to 20 µs and the calculations were
carried out 0.1 s. The initial sound pressure is set to sound pressure points whose
values are weighted by the distance from the source point. After numerical simulation,
the impulse responses obtained from each sound pressure point are modified as
follows:

• To get rid of the color of direct sound, the impulse responses are convoluted the
inverse filter made from the direct sound.

• To calculate 1/3 octave band levels, these responses are colored with the charac-
teristics of—3 dB/oct.

• To demonstrate woman’s voice, the characteristics of it are added to each band
[26].

• To make a single number values, the A-weighted level is calculated from the 1/3
octave band levels.

• The sound pressure levels are normalized using the differential level at position P
where the sound pressure level without partitions is equal to 60 dB.
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Fig. 6.45 Floor and section plan around speaker and listener. a Floor plan. b Section plan
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Fig. 6.46 Sound pressure level distribution. a b1π0. b b1π0.6. c b5π0. d b5π0.6
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Fig. 6.47 Level differences due to inserting partitions. a Around conuter. b Waiting area

6.5.1.2 Results

Figure 6.46 shows the results of sound pressure level propagations in each condi-
tion. At first, focusing on Fig. 6.46a, it can seen that partitions insulate the sound
for lateral direction, but the level of longitudinal direction seems to get worse, it
looks partitions works such as a megaphone. What is worse is that the result of par-
titions set to one line shown in Fig 6.46c, the sound levels of other booths get worse.
This result assumed to be caused by multiple reflections of the diffracted sounds
in these booths. Fig. 6.46b and d show the results of absorptive partitions. These
results expect a deterrent effect of these phenomena. Fig. 6.47a shows the level dif-
ference at the listening position in conversation booth and in the other booths. This
result shows us type b5π0—reflective partitions set on a line—is the worst condition,
b5π0.6—absorptive ones set on a line—is however the best one. Figure 6.47b shows
the level difference due to partition installation at the waiting area in each condition.
The increase of level can be appeared in types b1π0 and b5π0 , but cannot be appeared
in types b1π0.6 and b5π0.6 . The results of this examination tell us absorption of
partition is very important, especially when partitions are set on a line.
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Abstract This chapter shows examples of numerical analyses on various noise
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roads, building façades, building windows, and floor impact sound. In each section,

M. Toyoda (B) · Y. Kawai
Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho,
Suita-shi, Osaka 564-8680, Japan
e-mail: toyoda@kansai-u.ac.jp

Y. Kawai
e-mail: kawai@kansai-u.ac.jp

T. Oshima
Faculty of Engineering, Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata-shi,
Niigata 950-2181, Japan
e-mail: oshima@eng.niigata-u.ac.jp

T. Yokota · T. Okubo
Kobayasi Institute of Physical Research, 3-20-41 Higashi-motomachi, Kokubunji-shi,
Tokyo 185-0022, Japan
e-mail: t-yokota@kobayasi-riken.or.jp

T. Okubo
e-mail: okubo@kobayasi-riken.or.jp

S. Sakamoto
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
e-mail: sakamo@iis.u-tokyo.ac.jp

Y. Yasuda
Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku,
Yokohama 221-8686, Japan
e-mail: yyasuda@kanagawa-u.ac.jp

T. Ishizuka · T. Asakura
Institute of Technology, Shimizu Corporation, 3-4-17 Etchujima, Koto-ku, Tokyo 135-8530,
Japan
e-mail: ishiduka@shimz.co.jp

T. Asakura
e-mail: t_asakura@shimz.co.jp

T. Sakuma et al. (eds.), Computational Simulation in Architectural 179
and Environmental Acoustics, DOI: 10.1007/978-4-431-54454-8_7,
© Springer Japan 2014



180 M. Toyoda et al.

considering the features of each problem, methodology of applying the simulation
techniques presented in Part I to the practical problem is introduced and the calculated
results are illustrated. Some of the calculated results are compared with measured
ones and the applicability and efficiency of the analysis method are discussed.

Keywords Outdoor noise propagation ·Noise barriers ·Depressed roads ·Building
façades · Building windows · Floor impact sound

7.1 Outdoor Noise Propagation

In the field of noise control engineering, demand for prediction models that can
precisely calculate outdoor propagation of sound, such as road traffic noise, rail-
way noise and aircraft noise, is increasing every year. Parallel to this, outstanding
progress in computer hardware has made it possible to apply wave-based numerical
simulations to the problems of outdoor noise propagation.

When applying wave-based numerical simulation techniques to outdoor noise
propagation problems, it is necessary to consider the following factors.

1. The sound field under consideration is very large;
2. The sound field has no boundaries at the end of the region (exterior problem);
3. The characteristics of sound propagation vary with the meteorological conditions

such as wind speed and the vertical temperature gradient.

In this section, we will provide examples in which the characteristics of sound
propagation vary due to the meteorological effects, and an effective technique for
analyzing the long-range outdoor noise propagation will be introduced.

7.1.1 Influence of Wind

As an example of the effects of wind on outdoor noise propagation, we introduce
some simulations that use the Parabolic Equation (PE) method. The PE method is
widely used for analyzing the outdoor sound propagation by numerical simulation
[1–4]. This method can take account of atmospheric refraction, which is caused
predominantly by vertical gradients of the temperature and wind speed. We first
outline the calculation method, and then we introduce simulation results for effects
of the wind on variations in the spatial distribution of the sound pressure level.

7.1.1.1 Outline of the PE Method

In the PE calculation, a vertical profile of the effective sound speed is assumed based
on a vertical distribution of the wind speed and temperature in the sound field. Here,
we introduce the formulation of the PE method in a two-dimensional sound field
(Detailed descriptions will be found in the Ref. [3]).
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First, the Helmholtz equation described in Eq. (7.1) is divided into two compo-
nents: an outward propagating part and an inward propagating part. By assuming an
operator Q described in Eq. (7.2), these components can be represented as Eq. (7.3):

(
∂2

∂x2 + ∂2

∂z2 + k2
)

p = 0, (7.1)

(
∂2

∂z2 + k2
)

p = Qp, (7.2)

(
∂

∂x
+ j

√
Q

)(
∂

∂x
− j

√
Q

)
p = 0. (7.3)

Considering only the outward propagating part of Eq. (7.3), the sound propagation
from a source can be calculated as follows:

∂ p

∂x
=
(

j
√

Q
)

p, (7.4)

where k is the wave number (ω/c), which is the variable that changes with the
effective sound speed in the field, and p is the sound pressure.

Next, we define an operator q as in Eq. (7.5), and for convenience, the operator
Q can be written as Eq. (7.6). Here, the right-hand side of Eq. (7.6) is approximately
represented as Eq. (7.7) [5], and the basic formula of the PE method is represented
as Eq. (7.8):
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where k0 is the reference value of k, and it is the value that corresponds to the
temperature under no-wind condition.

Furthermore, if we select the solution of Eq. (7.1) as Eq. (7.9), then Eq. (7.8) can
be rewritten as Eq. (7.10):

p(x, z) = ψ(x, z)exp( jk0x), (7.9)
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Step n.  [Spatial marching solution]
Sound pressure distribution                            is calculated based on                    as in Step 2 

Step 1.    As an initial condition, a spatial distribution of the complex sound pressure is set 
by the function 

Step 2.    Sound pressure distribution                        is calculated based on the function 

Sound Source

x = 0 x = Δx x = 2Δx Δx

Δz

Ground surface x

z

p (x = 0, z)
p (0 + x, z)

p ((n+1). x, z) p (n· x, z) 

p (x = 0, z)

Fig. 7.1 Outline of the calculation method and the discretization of the sound field
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q

)
∂ψ

∂x
= jk0

q

2
ψ. (7.10)

By dividing a sound field into a square grid as shown in Fig. 7.1, the partial
differential terms for the x and z directions of Eq. (7.10) can be calculated by the
central difference formula and by the Crank–Nicholson approximation, respectively.
The vertical distribution of the sound pressure at the (n +1)th step (p((n +1)Δx, z))
can be calculated by using the vertical distribution of the sound pressure at the nth step
(p(nΔx, z)). Consequently, if we set the vertical distribution of the sound pressure
at x = 0 as an initial condition, we can perform a step-by-step calculation to obtain
the distribution of the sound pressure from a source position to the receiving points.

7.1.1.2 Examples

In order to study the variation in the spatial distribution of the sound pressure level
due to the effects of wind, sound propagation in hemi-free field with rigid boundary is
calculated by using the PE method. Figure 7.2 shows the sound field and the vertical
profile of the wind speed under consideration. In the calculations, the downwind
(wind flows from the sound source to the receiver) and upwind (wind flows from
the receiver to the sound source) propagation conditions are assumed. We assumed
three different wind speeds at a height of 1.2 m: 2, 4, and 6 m/s.

Figure 7.3 shows the spatial distributions of the sound pressure level for the con-
ditions of calm, downwind (+6 m/s), and upwind (−6 m/s). It can be seen that the
sound pressure level in areas far from the sound source varies according to the wind
speed. In particular, with different wind speeds, obvious differences can be seen
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Fig. 7.2 Sound field and vertical profile of the wind
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Fig. 7.3 Wind effect on outdoor sound propagation (500 Hz octave band)

near the ground, such that the sound pressure level increases in downwind areas and
decreases in upwind areas.

Figure 7.4 shows the differences in sound pressure level at each receiving point
for conditions with and without wind. It can be seen that variations in the sound
pressure level increase with increasing frequency and propagation distance. We note
that these results are in good agreement with those calculated by using the Linearized
Euler Equation method introduced in Sect. 5.1 [6].

7.1.2 Efficient Calculation of Long-Range Propagation

When applying numerical simulations to long-range outdoor noise propagation pre-
dictions, the computational load becomes very large. In this section, we introduce
an efficient calculation technique that combines two types of numerical simulations,
the FDTD and the PE [7, 8].

http://dx.doi.org/10.1007/978-4-431-54454-8_5
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Fig. 7.4 Differences in the sound pressure level obtained at each receiving point for conditions
with and without wind

7.1.2.1 Outline of the Calculation

In the field of noise control engineering, noise abatement facilities, such as noise
barriers and embankments, are usually installed near noise sources. Therefore, sound
propagation near to the source (the source region) tends to be very complicated,
whereas it becomes less complicated in the far field (the receiver region). It is thus
more efficient to calculate the long-range outdoor noise propagation by dividing the
sound field under consideration into two regions and then applying a suitable numer-
ical simulation method to each region, with consideration of the above-mentioned
characteristics of each region. In the source region, such calculation methods as
the BEM and the FDTD, which can take account of the reflections and diffractions
caused by obstacles, are often applied. On the other hand, the ray model, the analyt-
ical solution, and the PE method, which can take account of ground reflections and
the refraction due to meteorological effects, are often selected.

As an example of a coupled calculation technique, we here outline a coupling of
the FDTD and PE methods:

1. Divide the sound field into two areas
The sound field under consideration is divided into two areas at the position shown
by a broken line in Fig. 7.5. Area 1 is the area near the sound source (the source
region) where the sound propagation characteristics are very complicated due to
the reflections and diffractions caused by noise abatement facilities. Area 2 is the
area far from the noise source (the receiver region), where it can be assumed as
a good approximation that the sound propagation is one way from the source to
each receiver.

2. Perform a numerical simulation in the source region
Sound propagation in Area 1 is calculated using the FDTD method, and the
impulse responses at all grid points on the interface between Area 1 and Area 2
are obtained.
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Fig. 7.5 Outline of the sound field
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Fig. 7.6 Outline of the sound field under consideration

3. Prepare the spatial distribution of the sound pressure for the initial condition of
the far-field simulation
All the impulse responses at the grid points on the interface are converted to fre-
quency response functions by using the FFT technique, and the spatial distribution
of the complex sound pressure for a single frequency is prepared.

4. Perform a numerical simulation in the receiver region
For each frequency, use the resultant spatial distribution of the complex sound
pressure for that frequency as the initial condition, then conduct the PE calculation
for Area 2. The frequency response function at the receiving points can be obtained
by repeating the PE calculation for each frequency individually.

As described in the above four steps, the frequency response function at an arbi-
trary receiving point can be calculated and the impulse response can be obtained by
applying the inverse FFT technique to the resultant frequency response function.

7.1.2.2 Example

As an example of a numerical simulation that applies the coupled FDTD-PE method,
we show the results for the insertion loss due to a noise barrier [8]. Figure 7.6 shows
a sound field and the type of noise barrier under consideration. We assume rigid
boundary conditions at the ground and the barrier. Figure 7.7 shows the areas where
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Fig. 7.7 Calculation area for each simulation method. a FDTD, b PE

the FDTD and the PE methods were applied. In this case, the interface between Area 1
and Area 2, where the impulse responses are calculated by the FDTD method, is set
at a distance of 1 m from the noise barrier. In the FDTD calculation, the boundary
of the computational area is set at a distance of 5 m from the interface and assumed
to be the Perfectly Matched Layer (PML). In the PE calculation, it is not necessary
to set boundary condition along the x-axis because of the assumption of one-way
sound propagation. The size of spatial grids in the sound field was set to be 0.03 m in
both methods. The time interval of 0.03 ms was assumed in the FDTD method and
impulse responses of 245.76 ms duration (8,192 time-interval steps) were calculated.
In the PE method, the calculation was repeated from 4.069 Hz to 10001.628 Hz at a
frequency interval of 4.069 Hz, and the frequency response functions at the receiving
points were obtained. We note that the frequency interval was determined according
to the duration of the impulse responses that were obtained by the FDTD method.

7.1.2.3 Results

The insertion loss due to each noise barrier was calculated by two different methods,
the coupled FDTD-PE method (described above) and the Full FDTD method (sound
propagation was calculated only by the FDTD method). Figure 7.8 shows the spatial
distributions of the insertion loss calculated by each method. It can be seen that the
results are in good agreement, and that there is no obvious decrease in accuracy due
to coupling of the two methods.

Table 7.1 shows the memory size and the computation time for each calculation
by the coupled FDTD-PE method and by the Full FDTD method. Both the memory
size and the calculation time decreased when using the coupled FDTD-PE method.
Although the savings in the memory size were only some MB in this case study, the
required memory size in the coupled FDTD-PE might not increase if the receiving
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Table 7.1 Computation time and required memory size

Coupled FDTD-PE Full FDTD

CPU Pentium 4 2.8 GHz
Memory size FDTD: About 19 MB About 35 MB

PE: About 0.06 MB
Calculation time Total: About 1 h 43 min About 3 h 20 min

FDTD: About 1 h 35 min
FFT: About 2 min
PE: About 6 min

point were 1 km away from the sound source. The Full FDTD would require 650 MB
of memory for the calculation of the long-range propagation. The amount of memory
saved by coupling the two methods increases as the propagation distance increases.

As discussed above, long-range outdoor noise propagation can be calculated more
efficiently by coupling suitable numerical simulation techniques with taking into
consideration the characteristics of the sound field and the numerical simulation
methods.
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7.1.3 Chained Simulation of CFD and LEE Method

Meteorological effects such as the effects of wind and temperature gradients are
factors that should be taken into account in sound propagation outdoors. As a com-
putational method that can take the meteorological effects into account, the linearized
Euler equation (LEE) method is introduced in Sect. 5.1. The LEE method can solve
sound propagation under arbitrary background flow. As a simple background flow
field, a vertical wind velocity profile is used. For more precise reproduction of the
background flow field, computational fluid dynamics (CFD) is used. Using the flow
field generated by a CFD is only possible with the LEE method, whereas using a
vertical wind profile is also possible with the PE method as stated in the previous
subsection. A case shown in this subsection is a conceptual example of using CFD
for LEE background flow generation over a real-life urban area.

7.1.3.1 Outline

The simulated site as illustrated in Fig. 7.9 is a 1 km2 square region of the central
district of Nagaoka City, Japan, which includes Nagaoka railway station and a new
city hall whose construction was scheduled to be finished in autumn of 2011.

Three-dimensional geometries of the buildings within the 1 km2 region were gen-
erated by compositing 2-D digital geographic data in Shapefile format [9] (mentioned
as GIS data hereafter) and aerial lidar scanned digital surface model [10] (mentioned
as DSM data hereafter) except for the city hall whose geometry was created from a
CAD model. The average resolution (the density of the point cloud) of the DSM data
is around 2 m in horizontal direction. The standard error of the DSM data is stated
to be 30 cm in horizontal direction and 15 cm in vertical direction [10]. For details
about the geometry creation technique, see Oshima et al. [11].

7.1.3.2 Computational Fluid Dynamics

Mesh Generation

CFD and mesh generation for the CFD are performed using an open source CFD
software OpenFOAM [12] which is based on unstructured finite volume methods.
The origin and the center of the computational domain is taken at the city hall, and
the x and y axes of the domain are taken so that they align with the façades of the city
hall, with lengths of the domain being (1,024, 1,024, 512) m in (x, y, z) directions.
The domain is meshed with hexahedral cells of edge lengths 8 m at high above the
ground and increasingly refined by split-hex to cell sizes of 4 and 2 m as the mesh
approaches ground. Furthermore, regions adjacent to the ground and to the GIS/DSM
generated buildings are specifically refined to 1 m cell size. The ground is made flat
since the difference of elevation in the district is small. The building façades are
staircased following the geometries generated in Sect. 7.1.3.1. The mesh around the

http://dx.doi.org/10.1007/978-4-431-54454-8_5
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Fig. 7.9 Extracted outline polygons of buildings. SP, RP1 and RP2 denote a source point and two
receiving points

city hall is exceptional in that the cells adjacent to the city hall are refined to 25 cm
and body-fitted since there was another purpose to the CFD of making an assessment
of wind environment around the city hall [13]. The city hall, nearby buildings and
ground portions of the resultant mesh is shown in Fig. 7.10. The number of cells in
the mesh is about 15 million. It should be remarked that the edge display of the cells
adjacent to the city hall in the figure is omitted due to too dense meshing.

Computational Setup

Since acoustic propagation in an urban spatial scale as dealt in the study is a phenom-
enon that has at most an order of several seconds in time, the unsteadiness of the wind
velocity field may be considered sufficiently small to affect the sound propagation.
Hence the steady-state semi-implicit method for pressure linked equation (SIMPLE)
algorithm [14] was chosen as the solution technique. The turbulence model applied
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Fig. 7.10 Unstructured grid for CFD. Edge display of the cells adjacent to the city hall is omitted
due to too dense meshing

in conjunction with the SIMPLE algorithm was the renormalization group (RNG)
k-ε model [15], which turned out to have better overall accuracy and stability among
the standard Reynolds averaged k-ε model and its variants [16] in prediction of urban
wind environments.

The wind direction applied in the study is south-southwest (the y-direction of the
computational domain) which is the main wind direction of 10 min averaged wind
velocity during a decade of 1999 to 2008 at the Nagaoka automated meteorological
data acquisition system (AMeDAS) station which situates at 23 m height above sea
level. The initial profiles of wind velocity and turbulence kinetic energy were given
using the 10 year average of the 10 min averaged wind speed UH = 2 m/s, such that

U (z) = UH

( z

H

)α
, (7.11)

where α = 0.27 [−] and H = 21.2 [m] (the roof height of the new city hall).
For more details about the CFD conditions, see [13].
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7.1.3.3 Linearized Euler Equation Simulations

Mesh Generation and Flowfield Mapping

The sound propagation simulations by the LEE model require a uniform rectilinear
grid with sufficiently smaller cell size than the characteristic acoustic wavelength in
order to resolve acoustic waves throughout the computational domain, as opposed
to the CFD where coarsened mesh may be applied at high above the ground. The
requirement of the cell size leads to substantially larger number of cells than an
unstructured solver can handle, and hence a necessity arises for a uniform structured
mesh solver which is computationally more efficient than an unstructured solver. Thus
the LEE simulations were conducted with a finite-difference structured algorithm
under another uniform structured mesh than the mesh for CFD using the second-
order scheme as stated in Sect. 5.1. The size of the computational domain without the
absorbing boundary layers as described in the next subsection is (1,000, 1,000, 250) m
which is slightly smaller than the CFD domain but identical to the original polygonal
geometry size in x and y directions, and is halved in z direction than the CFD domain
assuming that acoustic waves propagated to high above the ground no longer affects
acoustic propagation near the ground. Due to constraints in computational resources,
the cell size was set to 1 m which will allow simulations of spectral components up
to around 35 Hz, which is barely within the lower frequency bound of human audible
range. The number of cells was about 246 million. The generated mesh for the LEE
simulations is shown in Fig. 7.11. Comparing to Fig. 7.10, one is able to see that the
building shapes in the CFD mesh are accurately reproduced in the acoustic mesh as
well.

Mapping of airflow velocity field obtained by the CFD to the acoustic mesh is
done by assigning velocity at the corresponding cell in the CFD mesh to a cell in the
acoustic mesh. Furthermore, in the study the velocity was scaled by a factor of 4 in
order to clarify the wind effects.

For more detailed conditions, see [17].

Computational Setup

The boundary conditions for the buildings and the ground were all rigid. A perfectly
matched layer (PML) [18] of 10-cell thickness was added to the sides and the top
of the computational domain. A Gaussian acoustic pulse of wavelength 10 m in full
width at half maximum is placed at (x, y, z) = (−92.5, 80.5, 1.0) [m], which is the
center of the crossing in front of the city hall marked as SP in Fig. 7.9. The Gaussian
pulse contains spectral components up to around the frequency that corresponds to
the wavelength equal to the full width at half maximum, which is around 35 Hz.
The discrete time step was 1.6 × 10−3 s and the simulations was run up to 3.2 s in
simulated time.

Besides the case with south-southwest wind, an additional LEE simulation was
also run under without wind condition for reference. The LEE simulations were run
on a single PC with dual quad-core 2.93 GHz processors and 16 GiBytes of RAM
and took around 4 h per case.

http://dx.doi.org/10.1007/978-4-431-54454-8_5
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Fig. 7.11 Uniform structured grid for LEE simulations

Fig. 7.12 Visualizations of CFD results by particle racing a Right after particle injection, t = 10
[s], b t = 200 [s]

7.1.3.4 Results

CFD

Figure 7.12 shows particle tracking of the computed flow field of the with-wind case
where the wind blows from left to right in the figure. One is able to see that the
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Fig. 7.13 Visualization of acoustic wave propagation. The horizontal contour surface is placed at
1.5 m height above the ground. The vertical surface is a surface for displaying contour

particles which entered the domain from near the ground of the inlet at left weaves
slowly between the buildings, whereas those above the ground flows smoothly to the
right along with the stratified wind velocity profile.

Acoustic Propagation

Figure 7.13 shows snapshots of instantaneous pressure contours taken in 0.4 s interval
obtained by the LEE simulation for the with-wind case. Despite the low frequency
components of the propagating wave up to around 35 Hz, one is able to see com-
plex interference patterns created by reflections between the buildings inside the
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Fig. 7.14 Pressure waveforms at at a RP1 and b RP2

wavefront. From the snapshots, one is able to see that the simulation is producing
reasonable results.

Figure 7.14 shows pressure waveforms of the with- and without-wind conditions
at receiving points RP1 and RP2, shown in Fig. 7.9. At RP1 where the acoustic pulse
propagates upstream from SP along the street without obstruction by buildings, the
acoustic wave of the with-wind case reaches slightly later than the without-wind
case. The amplitude of the with-wind case gradually gets smaller than the without-
wind case over time. At downstream point RP2, no significant difference in arrival
time of the acoustic waves is observed. However, the expansion of the acoustic wave
amplitude is clearer for the with-wind case than the amplitude reduction observed
for RP1.

7.2 Noise Barriers

Barriers have been applied for a long time to reduce noise around surface trans-
portation such as road traffic and railways. There are several ways to predict noise-
shielding efficiency of the barrier. The easiest way is the empirical engineering chart
by Maekawa [19]: the insertion loss of a reflective barrier is calculated by using the
only one parameter, the Fresnel number, defined as a ratio of path-length difference
(between direct and diffracted sound rays) and a half wavelength. When absorption of
barrier surface and/or ground surface is needed to be considered, wave-based analyti-
cal solutions should be applied [20]. In those analytical methods, shapes of the barrier
and neighboring terrain are restricted to be simple shapes. For these decades, acoustic
devices to reduce diffraction are sometimes installed on a top edge of the barrier [21].
The diffraction-reducing device usually has resonance cavities or absorbing materi-
als, therefore bounary conditions on the barrier surface become complicated. When
one develops barriers with such edge devices, efficiency prediction using numerical
analyses should be useful.

In this section, numerical analyses on diffracted sound field behind noise barriers
with arbitrary boundary conditions are described.
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Fig. 7.15 a 2.5-D sound field to be analyzed, and b corresponding 2-D sound field

7.2.1 2.5-D Analysis Using BEM

As shown in Fig. 7.15a, let us consider a sound field with a point source and bound-
aries in a 2-D shape (i.e., the cross-sectional shape is constant infinitely along z
axis). Such a sound field is sometimes referred to as a 2.5-D sound field. The bound-
ary shape can include not only noise barriers but also slopes along embankment or
depressed roads.

With a point source generating stationary pure tones, let us describe the way to
calculate complex sound pressure Φ3D(x, y, z, k) at a receiver. Time factor is defined
as e−iωt with wavenumber k = ω/c. When a point source in Fig. 7.15a is replaced
by a coherent line source parallel to z axis in 2-D sound field as shown in Fig. 7.15b,
complex sound pressure in the 2-D sound field, Φ2D, and complex sound pressure
in 2.5-D sound field, Φ3D, are related by Fourier transform as [22]

Φ3D(x, y, z, k) = 1

2π

+∞∫

−∞
Φ2D

(
x, y,

√
k2 − k2

z

)
eikz(z−zs )dkz . (7.12)

The integral parameter kz is the z-directional component of the wavenumber, and z
and zs is z coordinate for the receiver and point source, respectively. With wavenum-

ber in 2-D field defined as k2D =
√

k2 − k2
z , and considering symmetry of the

integrand, Eq. (7.12) is rewritten as

Φ3D(x, y, z, k) = 1

π

+∞∫

0

Φ2D (x, y, k2D) cos kz (z − zs) dkz . (7.13)

Calculate Φ2D (x, y, k2D) for k2D varying in a way k2D : k → 0 → j ·∞ as a function
of the integral parameter kz , and sum up all Φ2D (x, y, k2D) using Eq. (7.13), then
Φ3D(x, y, z, k) for the 2.5-D field is obtained. In order to approximate integration by
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Fig. 7.16 Geometries of the ground, barrier, point source and receiver (Unit: m)

summation of Φ2D (x, y, k2D) at discrete wavenumbers k2D, intervals of the discrete
k2D should be sufficiently small.

Arbitrary methods can be applied to calculate Φ2D (x, y, k2D): analytical analyses
for simple boundaries or numerical analyses for complicated boundaries. Note that
Φ2D (x, y, k2D) should be calculated for both real and imaginary numbers of k2D.
Boundary element method is introduced in examples in the following Sect. 7.2.2.
Although arbitrary acoustic impedance can be set at boundary surfaces, computation
time increases in case calculation of Φ2D (x, y, k2D) is needed for k2D at a small
intervals. In examples in Sect. 7.3.2, the finite difference method in time domain
is applied. The latter is advantageous because the intervals of k2D are arbitrarily
configured in obtaining Φ2D (x, y, k2D) by Fourier transform of the calculate impulse
response in time domain; in practice, the method is restricted to refletive boundaries
because of difficulties in simulating actual absorbing boundaries.

The advantage of the method with Eq. (7.13) is that the memory size of the
computer for 2-D numerical analyses is quite smaller compared to the direct 3-D
computation for the sound field with infinitely long obstacles shown in Fig. 7.15a.

7.2.2 Numerical Examples

2.5-D analysis is carried out for the sound field shown in Fig. 7.16. A noise barrier
infinite in length with a height of 3 m is standing between a point source and receiver
on the ground surface. The point source simulates a vehicle running on a lane 10 m
distant from the barrier; its position is indicated by zs .

Noise-shielding efficiency against road traffic noise is investigated considering
four kinds of barriers shown in Fig. 7.17 [23]. “Simple” stands for a thin simple
barrier, “Thick” for a thick barrier, “Channels” for barriers with arrayed channels of
180 mm depth, and “Tubes” for barriers with arrayed rectangular tubes of 180 mm
depth. All surfaces of the barriers are reflective. Because a cross-section of the bound-
ary constant in the longitudinal direction in the 2.5-D analyses is assumed, shapes
such as “Tubes” are out of scope of the 2.5-D analyses in nature. Therefore, as shown
in Fig. 7.18, the theoretical acoustic impedance of the open tubes are applied as the



7 Noise Propagation Simulation 197

Channels Tubes

160
500

180

160
500

180

Thick

50030

Simple

180

Fig. 7.17 Barrier shapes investigated by using 2.5-D analyses (Unit: mm)
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boundary conditions to approximate array of open tubes. Meanwhile, in analyses for
the shape “Channels,” rigid boundaries are set along the cross-sectional shape.

2.5-D analyses are carried out based on Eq. (7.13). 2-D analysis frequencies f2D =
k2D ·(c/2π) are set at intervals of 2 Hz or less. Because Φ2D (k2D) diverges at f2D = 0
[24], f2D around zero should be set such as f2D = . . . , 6, 4, 2, 1, 0.5, (0.5)2, . . . ,

(0.5)10, (0.5)10 j, . . . , (0.5)2 j, (0.5) j, 1 j , 2 j, . . . [Hz], avoiding f2D = 0. The 2-D
analyses are done by the boundary element method, where the upper limit of the
boundary element is λ/8. Φ2D (k2D) fluctuates as a function of k2D, so the integration
of Eq. (7.13) is done approximately by interpolation of Φ2D (k2D) at discrete sets of
k2D. The vehicle speed is sufficiently smaller than the sound speed, the point source
is assumed to be resting in the 2.5-D analyses.

For accuracy validation, the numerical analyses are compared to scale-model
experiments. Reduction in sound pressure level by the Channels and Tubes barriers
relative to the Thick barrier are calculated to be compared to results of scale-model
experiments. In the numerical analyses, calculation of Eq. (7.13) is carried out assum-
ing pure tones at intervals of 1/15 octave, then results for five frequencies are averaged
to approximate 1/3 octave band levels. In the scale-model experiments, 1/20-scale
models of the barriers are made with chloroethene boards to measure impulse
responses by using a spark-pulse sound source. Results are shown in Fig. 7.19.
Generally, results of 2.5-D analyses and model experiments agree well. In results
for the Tubes barrier, the analyses and experiments agree in the frequency range
below 800 Hz. Difference between them above 1 kHz is error due to limitation of
approximation shown in Fig. 7.18; the approximation is no longer accurate in the
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Fig. 7.19 Comparison between 2.5-D analyses and scale-model experiments: SPL reduction by
channels and tubes barriers relative to thick barrier

frequency range above 1,060 Hz where the opening width 160 mm exceeds a half
wavelength.

Figure 7.19 implies characteristics of diffraction reduction by the Channels and
Tubes barriers. For the sound source set at zs = 0 [m], the diffraction-reducing effi-
ciencies of both barriers show similar tendency. These efficiencies come maximized
around 472 Hz where depths of channels and tubes correspond to a quarter wave-
length. At lower frequencies, SPL increases due to antiresonance; that is, diffracted
sound increases compared to that for the Thick barrier. For the sound source mov-
ing away the initial position zs = 0 [m], the SPL reduction by the Tubes barrier
is retained around 500 Hz, while the SPL reduction by the Channels barrier shifts
toward high-frequency range. When the sound source reaches to zs = 160 [m], the
SPL reduction disappears around 1 kHz where road traffic noise dominates.

Assuming A-weighted power spectrum to simulate vehicle noise for the point
source, A-weighted sound pressure level L pA [dB] is calculated. The power spectrum
is set by definition described in ASJ RTN-Model 2008 [25], considering passenger
vehicles running at constant speed 80 km/h on drainage pavement. In addition to the
propagation characteristics computed by 2.5-D analyses, atmospheric absorption is
also considered in homogeneous atmosphere with the temperature 15 ◦C, relative
humidity 60 %, and pressure 1 atm.
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Fig. 7.20 Variation of A-weighted sound pressure level as a function of source position: a 500 Hz,
b 800 Hz, c overall

Variation in L pA [dB] as a function of the source position zs [m] is shown in
Fig. 7.20. The Fig. 7.20a is for 1/3 octave band level at 500 Hz. Curves for Simple,
Thick, Tubes barriers decrease monotonically around their peak at zs = 0 [m] closest
to the receiver. Thickness effect makes the curve for the Thick barrier lower than
that for the Simple barrier. The curve for the Tubes is 5 dB less than those two.
Meanwhile, the curve for the Channels barrier is almost the same as the curve for the
Tubes barrier for the source position |zs | ≤ 30 [m], although it exceeds the Simple
for 40 ≤ |zs | ≤ 130 [m] and converges with the Simple and Thick barriers. This
tendency is related to results in Fig. 7.19. In Fig. 7.20b, 1/3-ocvate band level at
800 Hz shown: the source position where the effect of the Channels barrier falls into
negative is different from that for 500 Hz. As shown in Fig. 7.19, the effect in the
low-frequency range disappears at the source positions far from the receiver. Overall
(OA) level is shown in the Fig. 7.20c. Although effect of the Channels relative to the
Simple appears only for the source positions |zs | ≤ 80 [m], the stable effect of the
Tubes appears independently from the source position.

Figure 7.21 shows the equivalent continuous A-weighted sound pressure level
LAeq for the traffic volume of 1,000 vehicles in an hour, integrating L pA for the
source position range |zs | ≤ 1,000 [m]. Difference between curves for the Simple,
Thick, and Channels barriers are quite small; namely diffraction-reducing effect of
Channels is quite small. In contrast, the Tubes barrier reduces LAeq in the frequency
range from 315 to 800 Hz.

It is preferred that the integration range of zs to calculate LAeq should be set where
L pA drops by 10 dB from its maximum. From results shown in Fig. 7.20, L pA for the
range of |zs | ≤ 200 [m] should be integrated at least. In addition, results in Fig. 7.21
indicate that calculation should be made up to 1.25 kHz or more. Whereas direct
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Fig. 7.21 Equivalent continuous A-weighted sound pressure level based on integration for the
range |zs | ≤ 1, 000 [m]

3-D computation requires much computational resources, the 2.5-D computation
described in this section is executable even on general personal computers with less
memory spaces.

7.2.3 Notes on Absorbing Boundaries

In the examples above, barriers without absorbing materials are considered.
Practically, absorbing materials are sometimes installed on the top of the barrier. If
impedance boundary (i.e., locally reacting boundary) is set for the absorbing mater-
ial, diffraction-reducing effect will be overestimated; in other words, diffracted sound
will be underestimated [26]. It is recommended to apply the analyses where sound
fields inside and outside the absorbing material are coupled.

7.3 Depressed Roads

For suburban express ways with heavy traffic volume, depressed or semi-underground
road structures are often used. In these road structures, multiple reflections and dif-
fractions often occur and therefore sound propagation inside and outside the road
structures become very complicated. On noise prediction around these road struc-
tures, enough accuracy cannot be secured by energy-base geometrical acoustics and
the wave-based numerical analysis is needed in order to obtain reliable prediction
results.

7.3.1 2-D Analysis Using FDTD Method

In order to make practical prediction of road traffic noise, noise propagation paths
from sources to a receiver are traced in 3-D space in wide frequency range. To cal-
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Fig. 7.22 A depressed and a semi-underground road structures under investigation. a Depressed
structure without absorption. b Depressed structure with absorption. c Semi-underground structure
without absorption. d Semi-underground structure with absorption

culate A-weighted sound pressure level, which is used for general road traffic noise
assessment, sound propagation in a frequency range from 125 to 2kHz at least is
needed. It seems to be very difficult to obtain such a sound propagation using a
wave-based numerical analysis because huge computational resource is necessary in
order to correspond a 3-D wide area and small wavelength. Considering many road
traffic noises problems exist on almost straight roads, 2-D analysis for a sound field
to which the cross-sectional shape of the road structure is modeled is one of efficient
and smart solutions to simplify the problem. The 2-D model is approximately corre-
spondent with calculation of equivalent continuous A-weighted sound pressure level
by a steady flow of automobiles.

For a depressed road and a semi-underground road shown in Fig. 7.22, numerical
analysis using the finite-difference time-domain method was performed. In the road
structures under investigation, Fig. 7.22a, c have reflective surfaces and Fig. 7.22b, d
have partially absorptive treatment on the wall surfaces. As an absorbing boundary
condition, normal surface acoustic impedance correspondent with 0.8 absorption
coefficient for all frequency range under investigation was given for the parts of the
absorptive treatment.

As a result of the numerical analysis, snapshots of instantaneous sound pressure
distribution every 50 ms after an impulsive source was generated at source point, S,
as shown in Fig. 7.23. As for the depressed structure, in the case where the sidewalls
are assumed reflective shown in the series of Fig. 7.23a, remarkable multiple reflec-
tions are seen between the sidewalls and strong sound waves caused by the multiple
reflections propagate intermittently outside the road structure. On the other hand,
in the case where the sidewalls are absorptive shown in the series of Fig. 7.23b,
the multiple reflection is much reduced and consequently the subsequent reflec-
tions after the direct sound is much diminished compared to the former case. In the
case of semi-underground structure without absorption treatment shown in the series
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Fig. 7.23 Calculation results of sound propagation for a depressed and a semi-underground road
structures road structure. a Depressed structure without absorption. b Depressed structure with
absorption. c Semi-underground structure without absorption. d Semi-underground structure with
absorption

of Fig. 7.23c, very complicated multiple reflections inside the structure and sound
propagation through the opening are seen. In the case where the sidewalls are assumed
absorptive as shown in the series of Fig. 7.23d, the multiple reflections and sound
propagation outside are much diminished in the same manner as in the former case.
In the series of Fig. 7.23d, it should be noted that multiple reflection still remains
between the ceiling and the road surface.

General environmental noise is usually assessed by equivalent continuous sound
pressure level. When assessing the road traffic noise, Since road traffic noise can be
considered to be generated by series of passing automobiles with a certain average
running speed, the sources can be modeled as a 2-D source. Here, it should be noticed
that the source is an incoherent line source and it is different from a coherent cylin-
drical source which is assumed in 2-D numerical analysis. In case of application to
road traffic noise problems, it has been reported by numerical and experimental stud-
ies that the difference between A-weighted sound pressure level from an incoherent
line source and that from an coherent cylindrical line source is relatively small [27].
In the literature [25], a calculus which converts sound pressure level obtained in a
2-D sound field to equivalent continuous sound pressure level in the consistent 3-D
sound field is shown. Here, a 2-D numerical analysis was made for a cross-sectional
shape of a semi-underground road structure and the result was compared with a result
of in-situ experiment [28]
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Fig. 7.25 Discrete points of sound sources

Figure 7.24 shows the cross-sectional shape of the semi-underground road under
investigation. Two vertical receiving lines were set on both sides of the semi-
underground road and six receiving points in each receiving line were distributed
in the height range from 1.5 to 10 m above the ground as shown in Fig. 7.24a. In the
experiment, discrete source points were set along the semi-underground road as
shown in Fig. 7.25, and propagating sound energy from each source point was mea-
sured. All of the energies for all source positions were integrated in energy-base
to simulate incoherent line source. In the calculation, a 2-D finite-difference time-
domain analysis was made under the calculation condition of discrete spatial grid
size of 0.04 m and of discrete time step of 0.05 ms. Comparisons between calculation
and experiment are shown in Fig. 7.26. Sound pressure exposure levels for both of
calculation and experimental results are corrected so that the overall sound energy
level of the line source is 100 dB/m. The results are A-weighted sound pressure level
calculated from band limited sound pressure between 125 Hz and 2 kHz in 1/1 octave
band. The sound pressure exposure levels become higher as the position of receiving
point becomes high. From the figures, it is clearly seen that the calculation results
agree well with the experimental ones.
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7.3.2 2.5-D Analysis Using FDTD Method

As shown in Fig. 7.2, a 3-D sound field which has infinitely continuous homogeneous
cross section and a spherical source can be efficiently solved by following Fourier
integral of a solution with a 2-D sound field to which the cross section is modeled [22].

Φ3D(k) = 1

π

+∞∫

0

Φ2D(k2D) cos kzzdkz, (7.14)

where, Φ3D(k) is a solution with 3-D sound field with k as a wave number, k2D is

2-D wave number and k2D ≡
√

k2 − k2
z , Φ2D(k′) is a solution with 2-D sound field

with k′, z is relative coordinate in z direction of a receiver to a source. Considering
that frequency and time correspond one to one by Fourier transform, Eq. (7.14) can
be applied to solutions in time domain [29]. Let us express Eq. (7.14) by a sum of
two integral equations as follows:

Φ3D(k) = 1

π

k∫

0

Φ2D

(√
k2− k2

z

)
cos kzzdkz+ 1

π

∞∫

k

Φ2D

(
j
√

k2
z − k2

)
cos kzzdkz,

(7.15)

then the first term on the right-hand side involves a real wave number
√

k2 − k2
z . It

means that the integral term is calculated using frequency response of an obtained
solution in time domain. On the other hand, the second term involves a imaginary

wave number of j
√

k2
z − k2 with j as an imaginary unit, and therefore an imaginary

frequency domain should be treated with. Fourier transform of a 2-D solution in time
domain, φ2D(t), is expressed as follows:
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Φ2D(k) =
+∞∫

−∞
φ2D(t)e jωt dt. (7.16)

Here, substitution of a real angular frequency by an imaginary angular frequency
leads to

Φ2D( jk) =
+∞∫

−∞
φ2D(t)e−ωt dt. (7.17)

Equation (7.17) means that the imaginary frequency components of φ2D is obtained
by the Laplace transform of the transient solution. Therefore, the integration transfor-
mation described by Eq. (7.15) can be calculated using the results of the Fourier and
Laplace transforms of a transient solution. In order to adapt the FFT results obtained
from the transient solution, which is defined at discrete frequencies with constant
intervals of Δ f = fs /N , fs and N being the sampling frequency and the number
of FFT points, respectively, to the integration procedure, Eq. (7.16) is transformed
through a change of variables as follows.

In the case of z 	= 0,

Φ3D(k) = 1

π

M−1∑
i=0

Φ2D(α[i]) + Φ2D(α[i +1])
2

· sin
√

k2−α[i]2z−sin
√

k2−α[i +1]2z

z

+ 1

π

M−1∑
i=0

Φ2D( jα[i]) + Φ2D( jα[i +1])
2

· sin
√

k2+α[i]2z−sin
√

k2+α[i +1]2z

z
.

(7.18)

In the case of z = 0,

Φ3D(k) = 1

π

M−1∑
i=0

Φ2D(α[i])+Φ2D(α[i +1])
2

·
(√

k2−α[i]2−
√

k2−α[i +1]2
)

+ 1

π

M−1∑
i=0

Φ2D( jα[i])+Φ2D( jα[i +1])
2

·
(√

k2+α[i +1]2−
√

k2+α[i]2
)

.

(7.19)

A solution of 2.5-D sound field in frequency domain is obtained by the
calculation procedure mentioned above. After the frequency components at equally
placed frequencies are obtained, also the 2.5-D sound field solution in the time
domain can be obtained by the inverse Fourier transform process [29].

The calculation method mentioned above was applied to calculation of noise
radiation from semi-underground road structures shown in Fig. 7.27 [30]. This cal-
culation was aimed at the development of engineering prediction model of road
traffic noise around semi-underground road structure. The width of the mouth part,
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Fig. 7.27 Sectional shape of the semi-underground road structure under investigation

W , the width of road, R and the thickness of the overhangs, T , were varied as the
parameters by which the semi-underground road structures are characterized, and
the effects of the parameters to noise radiation characteristics were studied. In order
to see a directivity of noise radiation, 120 receiving points in total were distributed
on a hemi-spherical surface with radius of 20 m with its center point was positioned
at the center of the mouth part just upper of the point source, as shown in Fig. 7.28.
2-D finite-difference time-domain analysis were performed for a cross section shown
in Fig. 7.27. In the calculation, the spatial grid size, Δh, and discrete time interval,
Δt were set as 0.0025 [m] and 0.01 [ms], respectively, and transient responses for
600,000 time steps (6 s duration) were calculated, since a long reverberation remained
in the road structure caused by multiple reflections. As an example of calculation
results, variation of sound radiation characteristics emitted from the mouth part of the
semi-underground road structure by changing the width of the mouth part, W , from
W = 5 m to W = 15 m are shown in Fig. 7.29. The sound pressure level in the figure
was A-weighted, and was so corrected that the point source positioned on the road
surface has spectral characteristics of vehicle noise of steady running condition with
A-weighted sound power level of 100 dB. We can see that the radiation directivity
varies with the sectional shape. In both cases, the directivity in the x–y plane is sharp
in the upper and oblique directions, whereas that in the longitudinal section of the
y–z plane is rather gentle. In order to validate the result of the numerical analysis, in
this study, 1/20 scale model experiment using a spark discharge impulse source was
performed. The experimental results are also shown in Fig. 7.29 and fair agreement
between results of numerical analysis and of experiment can be seen.

7.3.3 3-D Analysis Using FMBEM

Numerical methods for 2.5-D problems are applicable to straight roads, including
depressed ones, each of which has the same cross section along the road. These
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Fig. 7.28 Geometrical condition of sources and receivers in order to measure noise radiation from
mouth part of the semi-underground road structure

methods, however, cannot deal with many depressed roads with columns and beams,
as shown in Fig. 7.24. In order to know the reflection effect of such structures,
numerical methods for 3-D problems are required. As mentioned above, it has been
practically impossible to solve such large-scale 3-D problems using basic numerical
methods such as the standard BEM. Here we briefly present an efficient numerical
technique based on the fast multipole BEM (FMBEM) for analyzing 3-D depressed
roads (see Sect. 4.3).

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.29 Results of the analysis

7.3.3.1 Numerical Technique

When the BEM or FMBEM is applied to a depressed road problem, the domain
decomposition method is generally required, where subdomains are the depressed
space and half space above (see Sect. 4.2.2). In the domain decomposition method,
two or more linear systems for subdomains are simultaneously solved, while the
FMBEM is basically applicable only to single-domain problems, i.e., to the linear
system for each subdomain in the domain decomposition method. There are some
techniques to solve multi-domain problems based on separate calculation for each
subdomain. One is the iterative domain coupling technique, where separate calcula-
tion for each subdomain and successive renewal of values on the interface boundaries
between subdomains are performed until the whole domain converges [31]. Another
is a technique to obtain the matrix-vector products for the linear system including
all unknown vectors in the whole domain, by adding matrix-vector products for sub-
domains. The latter technique is presented in the following. It has been reported
that a good convergence can be achieved in this technique by consideration of the
ordering of unknowns and application of an effective preconditioner for the iterative
method [32].

A linear system including all unknown vectors in the whole domain is expressed
as Eq. (4.77). This equation can be transformed into the following expression:

⎡
⎣
[

AI1 AI2
] { pI,I

pI,II

}
− [

GI1 GI2
] { 0

υI,II

}

pII,I − ZIIυII,I

⎤
⎦

=
⎡
⎣
[

GI1 GI2
] {υI,I

0

}
− pd,I

0

⎤
⎦ . (7.20)

Each matrix-vector product in this expression can be efficiently calculated by apply-
ing the FMBEM to each subdomain. The total operation counts for the matrix-vector
products are reduced to O(NI log NI) + O(NII log NII) (≈O(Na), if NI and NII are
large enough to be able to regard log NI and log NII almost constant), where NI, NII,

http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.30 Analysis model: depressed road 20 m wide and 100 m long

and Na (= NI + NII) are the numbers of unknowns for subdomains ΩI and ΩII,
and the whole domain, respectively. Highly efficient computation is achieved if the
process of the iterative method for Eq. (4.77) rapidly converges. Since it is not nec-
essary to calculate and store the matrices for subdomains, the memory requirement
is similarly reduced.

7.3.3.2 Numerical Setup

Figure 7.30 shows an analysis model with a depressed road under an infinite rigid
plane. The road is bounded in the length of 100 m, and one point source is located
on the center cross section of the road. Only the real part of the surface impedance is
assumed on both sides of the road corresponding to the normal incidence absorption
coefficient α = 1, and all the other surfaces are rigid. A result for a 1 octave band is
obtained by energy summation of the results at nine single frequencies in the band.
GPBiCG with ILUT(10−5, 50) preconditioner is used as the iterative method, and
its stopping criterion is ε = 10−3.

7.3.3.3 Numerical Results

Figure 7.31 shows radiation directivities from the center point O of the opening. The
directivities at single frequency and for 1 octave band become more complex with
frequency.

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.32 Relations between number of unknowns for the whole domain Na and computational effi-
ciency of FMBEM: a computation time, b number of matrix-vector multiplications, and c memory
requirement

7.3.3.4 Computational Efficiency

Figure 7.32 shows relations between the number of unknowns for the whole domain
Na and the computational efficiency of the FMBEM: (a) the computation time, (b)
the number of matrix-vector multiplications, and (c) the memory requirement. The
computation time per matrix-vector multiplication is about O(Na), whereas the time
for the whole iterative process is about O(N 2

a ), because the number of matrix-vector
multiplications increases with Na. Like this case, the convergence behavior of the
iterative method spoils the rapid computation of the FMBEM; therefore, special
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consideration should be required on the improvement of convergence (see Sect. 4.3.4
for general consideration on convergence). In the domain decomposition method,
the ordering of unknowns of the system matrix in Eq. (4.77) is important for good
convergence. It has been reported that a nearly diagonal ordering (an ordering that
diagonal entries of the system matrix are nearly dominant) is effective [32]. In the
present case, all the numbers of iterations are less than 1/100 of Na, which are
practically rapid convergence for each Na. The memory requirement is O(Na) by
the FMBEM, much more efficient than the standard BEM.

7.4 Building Façades

Form of building façade can affect noise propagating from outdoor into rooms, such
as road traffic noise and railway noise. Noise-shielding efficiency of balconies on
the building façade has been investigated by using field measurements, experimental
models, and numerical calculations [33–38].

Sound field in the balcony is intricate due to diffraction, scattering, and multiple
reflection in a semi-closed field. To predict effect of the balcony taking such complex
factors into consideration, wave based analyses are effective. This section shows
examples of a 2-D analysis using a hybrid method combining the BEM and the
mode expansion method and a 3-D analysis using FMBEM.

7.4.1 2-D Analysis Using BEM

High-rise dwellings often have uniform balconies for intermediate floors, that is, the
façade of the dwelling has a periodical sectional view in the vertical direction. In such
case, a hybrid boundary element and mode expansion method [39] can efficiently
analyze the sound field around the façade taking one floor of the dwelling as one
period of a periodical structure [37]. Calculations in this method will be carried out
for just one period of the strucure, i.e., one floor, by using periodicity. Modeling just
one floor reduces the computer memory and computational time that a full model
of a high-rise façade would require. This enables examinations of the acoustical
performance of various balcony forms saving computational costs.

7.4.1.1 Formulation

Here, the façade of intermediate floors of a high-rise dwelling with uniform balconies
is assumed to be an infinitely periodical structure as shown in Fig. 7.33. Taking one
floor as one period of the structure, the sound field around the façade is expressed
using the mode expansion formulation for the field far from the façade and the
boundary element formulation in one period of the structure for the near field.

http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.33 2-D analysis model
of a sound field around a high-
rise dwelling façade with an
infinitely periodical form
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Figure 7.34 shows the geometry of the calculation model and the definitions of
symbols used in the formulation. Ω0 and Ω1 denote the far (x < 0) and the near
(x > 0) field, respectively. It is assumed that a plane wave is incident at an angle
θ0 upon the structure with periodical length of D. Boundaries Γ1 to Γ4 define the
sound field in one period. Γ1 on the y-axis (−D/2 ≤ y ≤ D/2) divides the field into
the far (Ω0) and the near fields (Ω1). Γ2 and Γ3 on y = ±D/2 (x ≥ 0) are period
boundaries, and Γ4 represents a structure surface. Γi is divided into Ni constant
elements, that is the sound pressure pi,m and particle velocity vi,m are constant on
mth element (i = 1–4, m = 1–Ni ). Positive directions of velocities (υi ) as well as
normal vectors (ni ) are defined by the arrow shown in Fig. 7.34.

In the far field (Ω0), assuming the incident wave to be a sine wave with the angular
frequency of ω and the unit amplitude, the velocity potential is expressed as the sum
of an the incident wave and scattered waves,
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ϕ0(x, y) = e j (α0x+β0 y) +
∞∑

s=−∞
Rse j (−αs x+βs y), (7.21)

where a time factor e− jωt is omitted. Rs is the complex reflection factor of the sth
scattered wave and αs and βs are the directional componet of its wave number letting
the wave number of incident wave be k,

α0 = k cos θ0, β0 = k sin θ0, (7.22)

βs = k sin θ0 + 2πs

D
(s = −∞, · · · ,∞), (7.23)

αs =
{ √

k2 − β2
s (k2 ≥ β2

s )

−√β2
s − k2 (k2 < β2

s )
. (7.24)

Equations (7.23) and (7.24) imply that the directions of the scattered waves are dis-
crete and depend on the periodicity of the structure. Equation (7.23) means a condition
where the sth scattered waves from neighboring periods have the same phase in the
far field. If the scattered waves have different phases, they would cancel each other
and would not propagate in the far field.

The pressure and velocity on Γ1 are derived from Eq. (7.21),

p1(y) = − jωρϕ0(x, y)|x=0 = − jωρ

(
e jβ0 y +

∞∑
s=−∞

Rse jβs y

)
, (7.25)

v1(y) = −∂ϕ0(x, y)

∂x

∣∣∣∣
x=0

= − jα0e jβ0 y +
∞∑

s=−∞
jαs Rse jβs y, (7.26)

where ρ denotes the air density. Integrating both sides of Eq. (7.26) on Γ1 after
multiplying them by e− jβτ y (τ = −∞, . . . ,∞) gives

D/2∫

−D/2

v1(y)e− jβτ ydy =
{− jα0 D(1 − R0) (τ = 0)

jατ Rτ D (τ 	= 0)
. (7.27)

The above equation is transformed to the following expression letting τ → s:

Rs = μs + 1

jαs

N1∑
n=1

v1,nws,n , (7.28)

μs =
{

1 (s = 0)

0 (s 	= 0)
.

where ws,n is an integral on Γ1,n (an−1 ≤ y ≤ an),
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ws,n = 1

D

an∫

an−1

e− jβs ydy. (7.29)

It should be noted that v1,n expresses the velocity assumed to be constant on Γ1,n .
Substituting Eq. (7.28) into Eq. (7.25), the following linear equation related to the
pressure on Γ1 is obtained:

p1,m = −2 jωρe jβ0 y −
N1∑

n=1

v1,n

∞∑
s=−∞

ωρ

αs
ws,ne jβs ym , (7.30)

where ym is the middle point of Γ1,m .
In the near field (Ω1), applying the boundary element formulation, the sound

pressure at r is expressed with an integral equation:

εp(r) = −
3∑

i=1

Ni∑
m=1

⎧⎪⎨
⎪⎩pi,m

∫

Γi,m

∂

∂n
G(r, r′)dΓ + jωρvi,m

∫

Γi,m

G(r, r′)dΓ

⎫⎪⎬
⎪⎭

−
N4∑

m=1

p4,m

∫

Γ4,m

{
∂

∂n
G(r, r′) − jωρ

Z4,m
G(r, r′)

}
dΓ, (7.31)

where Z4,m denotes the surface impedance of Γ4,m . ε = 1 when r lies in Ω1 other
than on Γi,m and ε = 1/2 when r is on Γi,m . r′ is the point on Γi,m and G(r, r′) is
the Green’s function,

G(r, r′) = j

4
H (1)

0 (k|r′ − r|), (7.32)

where H (1)
0 is the Hankel function of the first kind of order zero.

In the case where the boundary elements Γ2,m and Γ3,m are symmetric about the
x-axis, the periodicity D of the structure gives the following equations:

p3,m = p2,me jβ0 D, (7.33)

v3,m = −v2,me jβ0 D. (7.34)

It should be noted that the positive direction of v3,m is opposite that of v2,m .
A set of linear equations for unknown pi,m and vi,m , created by setting r to the

middle points of the boundary elements Γi,m (i = 1–4, m = 1–Ni ) in Eq. (7.31) and
those of Eq. (7.30) for m = 1–N1, is solved for the periodicity shown as Eqs. (7.33)
and (7.34). After solving the linear equations, substituting the solutions into Eq. (7.31)
enables to calculate the sound pressure at any r in the near field around the balcony.
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Fig. 7.35 Cross-sectional views of balconies calculated in 2-D analysis. a Flat ceiling. b Inclined
ceiling

7.4.1.2 Analysis Model

It is assumed that balconies of the same form are installed on the façade of a dwelling
for each floor and that the façade has periodicity equal to a floor height. Figure 7.35
shows cross-sectional views of calculated balconies based on a floor height of 3 m
and a depth of 2 m. The one has a flat ceiling (Fig. 7.35a), and the other has partially
inclined ceiling. We examine here the acoustical performance of the inclined ceiling.

Assuming that the height of the window opening is 2 m, 20 receivers are positioned
at 10 mm from the window surface within a height range 50–1950 mm from the
balcony floor. The calculations are carried out for pure tones at 1/75 octave intervals
and a set of 25 results included in 1/3 octave band is incoherently summed to the
approximate 1/3 octave-band sound pressure level (SPL). The mean SPL at the
window surface is defined as an incoherent average of the reults for all of the receivers.

Balcony surfaces are assumed to be rigid with Z4 = ∞. The order of scattered
waves in Eq. (7.30) is limited as −80 ≤ s ≤ 80.

7.4.1.3 Numerical Results

Figure 7.36 shows the spectra for the reduction in the mean SPL at the window surface
for the balcony with the inclined ceiling compared to the balcony with the flat ceiling,
at incident angles of noise of 30◦, 45◦, 60◦. The spectra illustrate the noise-shielding
effect of the inclined ceiling. The results reveal that the effect of the inclined ceiling
at a larger incident angle is greater than that at a smaller incidnet angle. In the results
at an incident angle of 60◦, the effect increases as the frequency increases. It is
considered that the diffraction effect of the balcony parapet result in these trends as
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Fig. 7.37 A 1/10-scale experimental model of a high-rise dwelling façade consisting of 6 interme-
diate floors × 3 dwelling unit

most of the noise directly incident on the ceiling surface are reflected outside and the
main component of noise incident on the window are waves diffracted at the parapet.

Figure 7.36 also shows result of a 3-D scale-model experiment [37]. A one-tenth-
scale acrylic façade model, shown in Fig. 7.37, consists of six floors × three dwelling
unit that are assumed to be the intermediate floors of a high-rise dwelling. A location
corresponding to the window surface at the center dwelling unit was designated as
the receiving region. SPLs were measured at 21 positions in the receiving region
and were incoherently averaged as the mean SPL at the window surface. A point
source was located at the front of the model. In spite of differences between the
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Fig. 7.38 3-D analysis model for building façade with balconies

2-D numerical analysis and the 3-D experiment, calculated and experimental results
correspond approximately to each other in terms of the effect of the inclined ceiling.

7.4.2 3-D Analysis Using FMBEM

A 2-D sound field analysis in front of a façade with balconies using its cross section
model is presented in Sect. 7.4.1. Here we present a 3-D analysis [36] using the
FMBEM (see Sect. 4.3) for plane-symmetric problems [40, 41]. This enables one to
obtain the time history of the sound energy propagated from moving sources such
as vehicles along a street.

7.4.2.1 Analysis Model

Figure 7.38 shows an analysis model, in which a building façade with balconies and
a straight road are assumed in a 1/4 free space with two semi-infinite rigid planes,
a ground and wall of the building. Five balcony units are settled on the wall of
the building. A receiving point, M, is located on the wall inside the center balcony
unit, 1.5 m height from the floor of the balcony and at the center of the balcony in
the horizontal direction. A point source is located on the ground and its position is
changed along the road at intervals of 0.5 m, to obtain a “unit pattern”, which is the
time history of sound energy from a single moving source.

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.39 Plane-symmetric boundary and hierarchical cell structure of FMBEM

7.4.2.2 Numerical Techniques

FMBEM for Plane-symmetric Problems

Since the analysis field is plane-symmetric with respect to three planes (including the
two infinite rigid ones) that are orthogonal to one another, one can efficiently calculate
this field considering only 1/8 free space. An efficient technique in the FMBEM for
such plane-symmetric problems presented here is based on a symmetrical relation
among multipole expansion coefficients (LF-FMBEM) [41] or far-field signature
functions (HF-FMBEM) [40], and it reduces both the operation count and required
memory to about 1/2nsym of those using the standard LF/HF-FMBEM, where nsym
is the number of planes of symmetry.

Figure 7.39 shows a plane-symmetric boundary and hierarchical cell structure of
the FMBEM. The hierarchical cell structure is arranged symmetrically corresponding
to the symmetry of the boundary. Here we define a unit part of the symmetrical shape
as a unit region for calculation (the upper half region in Fig. 7.39), and the other
parts as image regions. Calculation only in the unit region is sufficient in Steps 1
and 2 in the FMBEM (see Sect. 4.3.3.2), where coefficients/functions for elements
or cells are translated to those of their parent cells, and in Steps 4 and 5, where
coefficients/functions for cells are translated to those of their child cells or elements.
In Steps 3 and 6, contributions from cells in the image regions have to be counted,
only when a cell in the unit region is located near the plane of symmetry, as shown
in Fig. 7.39.

Reciprocity Theorem

The reciprocity theorem allows the exchange of positions of the point source and
receiving point; therefore, many problems to be individually solved, each of which
has a point source on the road line and the receiving point M, can be replaced with
one problem with a point source at M and many receiving points on the road line.

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.40 Chest used for scale-model experiment (1 × 0.45 × 1.35 m3)

This enables one to obtain an entire unit pattern at an analysis frequency through
only one calculation.

7.4.2.3 Numerical Results

Figure 7.41 shows the effect of absorption parts on a unit pattern for 500-Hz 1
octave band at the receiving point M, obtained by (a) the scale-model experiment
and (b) calculation using the HF-FMBEM [40] with the Burton–Miller formulation
[42]. The values for 1 octave bands are obtained by summation of sound energies
calculated at 1/9 octave band center frequencies. A wooden chest of drawers shown
in Fig. 7.40 was used as a 1/16 scale model of the building. The experimental and
numerical results show the similar tendency. The effect of the ceiling absorption is
great against the sound energy from near sources (where D is small). The side wall
absorption is less effective against near sources than the ceiling absorption, whereas
it is greatly effective against far sources (about D > 5).
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7.5 Building Windows

7.5.1 Flanking Propagation Between Apertures

Sound transmission between adjoining rooms is often influenced by flanking sound
passing through open windows in the shared exterior wall of the rooms. It is thought
that such flanking sound might be more influential than sound transmitted through
the partition wall, especially in the summer when the windows are frequently open.
Some experimental studies have been made with respect to the problems of how
sound emitted from the open window of the source room is transmitted to the open
window of the other room [43, 44]. In this paragraph, an example for predicting
flanking sound obtained from 3-D analysis using boundary integral equations is
presented.

Let a source room Ω1, which includes an omnidirectional point sound source
emitting a sinusoidal wave with wavenumber k, be adjacent to a receiving room Ω2
through the partition wall Γt , as shown in Fig. 7.42. Each room has an aperture, A1 or
A2, in its exterior wall, Γ1 or Γ2. The Mflanking sound’ means here the sound which is
emitted from the aperture A1 propagated in the exterior spaceΩo and entering through
the aperture A2 into the receiving room. For simplicity’s sake, in this analysis, the
source room and the receiving room are assumed to be semi-infinite. Though the two
rooms are illustrated as quarter-infinite spaces in Fig. 7.42, this assumption means
that the surfaces of the partition wall between them are both perfectly absorbent.
This assumption also presumes a one-directional sound incidence on the aperture A1
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Fig. 7.42 Flanking sound passing through open windows in the shared exterior wall of the rooms

A1 A2

Ω0

Γ1 Γ2q

p

pi

r

ri

n

n
σ

Γ∞

Fig. 7.43 Derivation of the boundary integral equation for the semi-infinite region Ω0: Ω0 is
bounded by infinite sphere Γ∞ of center P, plane boundaries Γ1, Γ2 and apertures A1, A2; n
denotes inward normal; P and Pi denote a receiving point and the image point of P with respect to
the plane Γ1, Γ2, A1, A2, respectively; Q is a point inside Ω0 or on Γ1, Γ2, A1, A2; σ denotes small
sphere of center P

and no reradiation from the aperture A2. With this assumption, the flanking sound,
which is derived from the energy emitted from aperture A1 and that entering through
the aperture A2, can be precisely estimated. Here, the thickness of the exterior wall
is assumed to be infinitely thin.

Let us consider an infinitely large rigid flat surface, in two parts of which are
apertures A1 and A2. Also, let a semi-infinite space Ω0 bounded by the infinitely
large semi-sphere Γ∞, the rigid surfaces Γ1 and Γ2, and the apertures A1 and A2
include a receiving point P, and let Pi be the image point of P with respect to the
surfaces Γ1, Γ2, A1 and A2 (see Fig. 7.43).

In order to derive an integral formula with respect to the space Ω0, we will use

G(rP, rQ) = e jkr

4πr
+ e jkri

4πri
, (7.35)
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as a fundamental solution, in which the image point Pi is taken into account (see
Eq. (4.73)). Here, r = |r| = |rQ − rP|, ri = |ri| = |rQ − rPi|. We apply Green’s
theorem to the spaceΩ0−σ, whereσ is a small sphere of center P with radius ε. Taking
into consideration (1) the normal component of particle velocity vanishes throughout

Γ1 and Γ2, (2)
∂G

∂n
= 0 throughout Γ1, Γ2, A1 and A2, and (3) Sommerfeld’s radiation

condition [45], we can obtain

Φ(rP) = − 1

2π

∫

A1+A2

∂Φ(rQ)

∂nq

e jkr

r
dΓ, (P ∈ Ω0, A1, A2, Γ1, Γ2), (7.36)

where Φ(rP) denotes velocity potential at P and n the inward drawn normal. Equa-
tion (7.36) is valid when P is located on Γ1, Γ2, A1 or A2 (i.e., P = Pi), since

lim
ε→0

∫

∂σ

dΓ = −Φ(rP) (P ∈ A1, A2, Γ1, Γ2) [46].

As for the space Ω1, considering the point source is located within it and Eq. (7.35)
being used as the fundamental solution, we have

Φ(rP) = ΦD(rP) + ΦD(rPi) + 1

2π

∫

A1

∂Φ(rQ)

∂nq

e jkr

r
dΓ, (P ∈ Ω1, A1, Γ1),

(7.37)

where ΦD denotes the direct sound and n the outward drawn normal. The point Pi
also denotes the image point of P ∈ Ω1 with respect to Γ1 and A1.

Considering that no source is located, we can also obtain an integral formula for
the space Ω2 in the same way: i. e.,

Φ(rP) = 1

2π

∫

A2

∂Φ(rQ)

∂nq

e jkr

r
dΓ, (P ∈ Ω2, A2, Γ2), (7.38)

When P is located on A1 or A2, then Eqs. (7.36), (7.37), and (7.38) are boundary

integral equations with an unknown function
∂Φ

∂n
on A1 and A2. When P is located

on A1, subtracting the difference between Eqs. (7.36) and (7.37) yields

1

π

∫

A1

∂Φ(rQ)

∂nq

e jkr

r
dΓ + 1

2π

∫

A2

∂Φ(rQ)

∂nq

e jkr

r
dΓ = −2ΦD(rP), (P ∈ A1).

(7.39)

Also, when P is located on A2, subtracting the difference between Eqs. (7.36) and
(7.38) yields

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 7.44 A numerical example for a franking sound propagation

1

2π

∫

A1

∂Φ(rQ)

∂nq

e jkr

r
dΓ + 1

π

∫

A2

∂Φ(rQ)

∂nq

e jkr

r
dΓ = 0, (P ∈ A2). (7.40)

Solving the simultaneous integral equations (7.39) and (7.40), we can obtain
∂Φ

∂n
on A1 and A2, which gives the velocity potential Φ in Ω0, Ω1 and Ω2 by substituting
it into Eqs. (7.36), (7.37) and (7.38), respectively.

Under the conditions shown in Figs. 7.44 and 7.45 shows the results of calculation
of the sound pressure distribution near the apertures of the receiving room and the
source room. Figure 7.44 shows a cross section at the center of the apertures. The
sound pressure distribution of the Fig. 7.45 shows a state that the sound emitted from
the aperture A1 is transmitted through the external space Ω0 and enters the receiving
room.

The energy I1 emitted from the aperture A1 and the energy I2 entering through

the aperture A2 can be obtained by the velocity potential Φ and
∂Φ

∂n
on A1 and A2

using the following equations:

p = −iωρΦ, v = − ∂Φ

∂nq
, (7.41)

and

I1 =
∫

A1

1

4
(pv∗ + p∗v)dΓ, I2 =

∫

A2

1

4
(pv∗ + p∗v)dΓ, (7.42)
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Fig. 7.45 The contour representation of sound pressure amplitude [dB], 125 Hz

where p∗ and v∗ are complex conjugates of sound pressure P and particle velocity
v, respectively [47]. The transmission rate (in decibels) of the flanking sound is

obtained by 10 log10
I2

I1
.

For purposes of noise control, it is useful to know the transmission rate of flanking
sound under the condition of 1 octave band random incidence noise. In order to
simulate the above condition, numerical calculations are carried out for 825 plane
waves that are incident on the aperture A1 from all directions at regular solid angle
intervals and for six frequencies taken in the octave band. The energies of both the
emitted wave from A1 and of the incoming one are calculated for each condition and
summed up separately. The transmission rate under conditions of random incidence
can thus be obtained using the resultant values.

Figure 7.46 shows a chart of the distance attenuation of flanking sound calcu-
lated using the above-mentioned method when the dimension of both apertures is
0.5×0.5 m2. The abscissa in this chart denotes the distance between the midpoints
of the apertures. We can see that the transmission rate reduces by approximately 6 dB
for every doubling of distance.
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Fig. 7.46 Attenuation charac-
teristics of the franking sound
with the distance between the
midpoints of the apertures
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7.5.2 Propagation Through Facing Apertures

One sometimes encounters the sound propagation problem in the summer season such
that the sound emitted from the open window of one of the room placed in apartment
and condominium complexes enters the room placed in the opposite building through
the open window. The sound propagation between rooms that are located on both
sides of the middle corridor of such a museum or a hospital ward is also a similar
problem. Though this problem can be considered as a double diffraction, it must also
take into account multiple reflections at the parallel walls, including the respective
aperture. In the following, a method of combining the boundary integral equations
applied to appropriately divided regions is proposed. The effective image method
also introduced which restricts unknown functions to be solved to particle velocity
over the apertures and reduces the computation time.

Let us consider a sound source room Ω1 and a receiving room Ω2 each aperture
is facing as shown in Fig. 7.47. For simplicity, both walls Γ1 and Γ2 are assumed to
spread infinitely, rigid and thinner than the wavelength. In addition, it is assumed that
the diffuse sound field is satisfied in the sound source room and that the plane wave
is incident uniformly from all directions to the sound source room aperture. Also, the
receiving room and the sound source room are supposed to be semi-infinite. Though
the sound source S is displayed as a point sound source in Fig. 7.47, it is assumed to
be far enough and is treated as a plane wave incidence in the analysis.

We apply Green’s formula to the region Ω between the parallel walls where
inward normal is taken. Further, as a fundamental solution, we use Green’s function
considering the mirror images Pm(m = 1, . . . ,∞) of the receiving point P between
parallel walls as shown in Fig. 7.48: i.e.,

G ′(rP, rQ) = e jkr

4πr
+

∞∑
m=1

e jkrm

4πrm
, (7.43)
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Fig. 7.47 Sound propagation between the apertures taken on the wall surface facing

where, r = |r| = |rQ − rP|, rm = |rm | = |rQ − rPm |(m = 1, . . . ,∞). Influence
of the potential Φ on the boundary Γ1 and Γ2 being canceled by the summation of
the integration for the mirror image points, one can obtain the following equation

in which the unknown function to obtain is only the particle velocity
∂Φ

∂nq
over the

apertures:

Φ(rP) = −
∫

A1

∂Φ(rQ)

∂nq
G ′(rP, rQ)dΓ −

∫

A2

∂Φ(rQ)

∂nq
G ′(rP, rQ)dΓ,

(P ∈ Ω, A1, A2). (7.44)

Equation (7.44) holds in the region Ω and the boundary A1, A2 [48].
On the other hand, taking into account that the sound source exists and outward

normal is taken as shown in Fig. 7.43, we have the following boundary integral
equation with respect to the semi-infinite region Ω1 in consideration of the mirror
image Pi of the point P to the boundary A1, Γ1:
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Fig. 7.48 Mirror images of the receiving point P between parallel walls

Φ(rP) = ΦD(rP) + ΦD(rPi) +
∫

A1

∂Φ(rQ)

∂nq
G(rP, rQ)dΓ, (P ∈ Ω1, A1),

(7.45)

where ΦD(rP) denotes the direct wave at P and Green’s function Eq. (7.35) is used
in the region Ω1.

For the region Ω2, taking into account that no sound source exists, we can obtain
the following boundary integral equation in the similar way:

Φ(rP) =
∫

A2

∂Φ(rQ)

∂nq
G(rP, rQ)dΓ, (P ∈ Ω2, A2). (7.46)
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Fig. 7.49 A numerical example

When P ∈ A1, the difference between Eqs. (7.45) and (7.44) yields

∫

A1

∂Φ

∂nq
{G(rP, rQ) + G ′(rP, rQ)}dΓ +

∫

A2

∂Φ

∂nq
G ′(rP, rQ)dΓ = 2ΦD(rP),

(P ∈ A1). (7.47)

Also, when P ∈ A2, the difference between Eqs. (7.46) and (7.44) yields

∫

A1

∂Φ

∂nq
G ′(rP, rQ)dΓ +

∫

A2

∂Φ

∂nq
{G(rP, rQ) + G ′(rP, rQ)}dΓ = 0,

(P ∈ A2). (7.48)

By solving boundary integral equations (7.47) and (7.48) simultaneously, we can

obtain
∂Φ

∂nq
over the boundaries A1, A2. The velocity potential in each region can be

obtained from
∂Φ

∂n
solved above using Eqs. (7.44), (7.45), and (7.46).

The incident energy Ii and the transmitted energy It is obtained as in the case of

Eq. (7.42) [49]. The ratio
It

Ii
yields the transmission rate.

As a numerical example of the method proposed here, the distribution of the sound
pressure amplitude in the shaded region shown in Fig. 7.49 is calculated. In this
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Fig. 7.50 The sound pressure amplitude in the shaded region shown in Fig. 7.49: a bird’s eye view,
b contour representation; the number of images 20; 500 Hz

calculation, the distance between two parallel walls is taken 1 m and the dimensions
of two apertures 1×1 m2 where the central axis of both is the same. Figure 7.50
shows the result at frequency of 500 Hz for plane wave incidence. One finds that the
state in which the sound wave propagates two apertures are captured.

Figure 7.51a, b shows the result of transmission losses (TL) in 1 octave band noise
for rondom incidence at 500 and 1 kHz in which they are plotted at the aperture center-
to-center distance. Results of the calculations for a number of conditions, including
a shift of the axis of the two apertures, it has been found that TL is determined
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Fig. 7.51 The transmission loss (TL) in 1 octave band noise for rondom incidence: a 500 Hz, b
1 kHz; dimensions of two apertures are 1×1 m2

approximately by the distance between the centers of the aperture. Also, it appears
regression lines by the least squares method to fit calculated values for various con-
ditions [50].
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Fig. 7.52 Section and plan of the two-story concrete building

7.6 Floor Impact Sound

Sound insulation performance is one of the important factors that dominate building
quality. Among various sound insulation problems, heavyweight floor impact sound
caused by soft and heavy impacts such as a child’s jumping is recognized as a
serious problem because it is strongly affected by a building structure and the insu-
lation performance is difficult to be improved after construction. Therefore precise
prediction for heavyweight floor impact sound at the planning phase is necessary.
The impedance method [51] has been widely used as a practical prediction method,
while the finite element method and the finite-difference time-domain method are
sometimes employed for more accurate prediction. In numerical calculations of floor
impact sound, wave propagation between building components should be taken into
account because the excited components vibrate other walls, floors, and ceilings,
which cause sound to radiate. Vibration-mode transformations can occur in these
propagations, thus it seems that considering only the flexural wave is insufficient for
these analyses. In this section, the predicted results for heavyweight floor impact
sound with the vibroacoustic finite-difference time-domain method as shown in
Sects. 2.3.1 and 2.3.2 are introduced and discussed [52, 53].

http://dx.doi.org/10.1007/978-4-431-54454-8_2
http://dx.doi.org/10.1007/978-4-431-54454-8_2
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Fig. 7.53 Impact forces
for the prediction and the
measurement
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7.6.1 Solid Modeling

7.6.1.1 Configurations

Figure 7.52 shows the cross section and the plan of the two-story concrete building
to be calculated. In the figure, areas enclosed with broken lines are assumed to be
Perfectly Matched Layers (PMLs) and the ground surface is assumed to be a fixed
boundary. In the actual building, there are three doors and two windows, which are
drawn with dotted lines in the figure. In addition, a few plywood boards are sup-
ported by wooden gratings on the walls in the lower story. However, for simplicity,
these doors, windows, plywood boards, and wooden gratings are neglected, and all
walls and floors are assumed to be flat concrete (density 2,400 kg/m3, Young’s mod-
ulus 2.4×1010 N/m2, Poisson’s ratio 0.2) in the calculations. All rooms as well
as outdoors are assumed to be filled with air (density 1.2 kg/m3, bulk modulus
1.4×105 N/m2). The maximum target frequency in the calculations is set to 500 Hz.
Allowing for this, spatial intervals Δx = Δy = Δz are set to 0.05 m. Friction, second
viscosity, and shear viscosity coefficients are respectively set as 5 Ns/m4, 0 Ns/m2,
1.8×10−5 Ns/m2 for air and 25,000 Ns/m4, 1.658×105 Ns/m2, 2.487×105 Ns/m2

for concrete. All initial values of velocities and stresses are set to zero. Considering
the stability conditions, Δt is determined to 0.001465 ms and the calculations were
carried out until 3 s.
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Fig. 7.54 Echo diagrams and impedance levels at vibration receiver points V. R. 1 (left) and V. R.
2 (right)

In the measurements, acceleration pickups and microphones were located at two
vibration receivers (V. R. 1 and 2) and two sound receivers (S. R. 1 and 2). Velocities
in the normal direction were calculated by integrating measured acceleration values
and sound pressures were measured at a sampling frequency of 44,100 Hz. The
excitation point (Exc.) was hit by an impulse hummer and the force history between
the floor and the hummer was measured. The force history used in the calculations
is determined so that the waveforms are similar to the measured data as shown in
Fig. 7.53.

7.6.1.2 Results

Figures 7.54 and 7.55 show echo diagrams at all four receivers, the driving-point
impedance levels at the vibration receiver (V. R. 1), the transfer impedance levels at
the vibration receiver (V. R. 2), and the transfer functions by a unit excitation at the
sound receivers (S. R. 1 and 2). The echo diagrams are obtained by passing the signals
through a low-pass filter with the cutoff frequency of 500 Hz and a numerical RMS
detector with a time constant of 1 ms. In these figures, the maximum value of the
cross-correlation-coefficient vector between the echo diagrams of the predicted and
measured data calculated in a three second range are also shown. The correlation
value at V. R. 2 is lower than that at V. R. 1 and some disagreements between
predicted and measured impedance at V. R. 2 can also be observed. As for transfer
function, relatively significant disagreements both at S. R. 1 and 2 can be seen at low
frequencies. The disagreement between these figures should be due to the following:
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Fig. 7.55 Echo diagrams and transfer functions at sound receiver points S. R. 1 (left) and S. R. 2
(right)

1. Accuracy of shape modeling
2. Using common material constants
3. Accuracy of damping modeling
4. Numerical dispersion of the finite difference method

Items 1 and 2 can be overcome by modeling the object more accurately and using
measured material constants. For example, in this case, the door between rooms in the
lower story is neglected, which is why the velocity at vibration receiver 2 could not
be predicted precisely. Item 3 can be possibly improved by adding more degrees of
freedom to frictional and viscous terms. That however will require more parameters
which are difficult to be measured and make the physical meanings of the terms more
complicated. As for item 4, the prediction accuracy can be typically improved by
discretizing with smaller spatial intervals and employing a higher order difference
scheme. Although some dicrepancies can be seen as discussed above, the correlation
values of echo diagrams at V. R. 1, S. R. 1 and 2 are about 0.8 and therefore it can be
said that the energy decay in the time domain is predicted well. Especially at V. R.
1, predicted results of driving impedance are in good agreement with measured ones
where the first natural frequency and the absolute values can be predicted precisely.

In the FDTD method, responses of stress and velocity in time domain at all
reference points must be calculated. This means visualization and auralization are
easy by saving the step-by-step results in a target volume, on a surfaces, or a point.
Figure 7.56 shows the visualized fields of displacement and sound pressure until
about 15 ms at a section AA’ shown in Fig. 7.52. Displacements are obtained by
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Fig. 7.56 Distributions of displacements and sound pressures at section AA’ until 15 ms
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Fig. 7.58 Schematic illustration of the a one-layered concrete structure and b composition of the
5 plate elements

integrating velocity values and expressed with black arrows at the reference points of
the concrete, whereas sound pressures at the reference points of air are expressed with
the colors shown in the color bar. To aid in understanding, the displacements in the
figure are multiplied by 40,000. From the figures, curved-surface sound radiation by
fast longitudinal-wave propagation can be seen on the left-hand side in the upper room
and in the lower left room, and then, spherical sound radiation by strong and slow
shear-wave propagation can be seen on the right-hand side in the upper room and in
the lower right room. For auralization, downsampling process is necessary in the case
where the time interval of calculation is very small as shown here. Low-pass-filtering
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Fig. 7.59 Impedance levels at vibration receiver points V. R. 1 (upper), V. R. 2 (middle, and V. R.
3 (lower)

process would be sometimes desirable because reliability of the calculated data is low
below the maximum target frequency. Although auralization from frequency domain
data needs a careful treatment in causality, auralization from time domain data does
not need such a careful treatment when the data seems to be stable because the results
will diverge if there is a problem in causality. Such visualization and auralization
would give instinctive understandings of complicated wave propagation and sound
radiation phenomena and also make sound insulation planning more effective and
convincing.
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Fig. 7.60 Transfer functions at sound receiver points S. R. 1 (upper) and S. R. 2 (lower)

7.6.2 Plate Modeling

7.6.2.1 Configuration

Figure 7.57 shows the cross section and plan of a one-story concrete structure. In
the measurement, the driving point of Exc. on the ceiling slab is hit by the impulse
hammer, and the vibration velocities at V. R. 1, V. R. 2, and V. R. 3, and the sound
pressures at S. R. 1 and S. R. 2 are measured. In this study, only the left-side structure
shown as “modeled structure” in the figure is aimed.

Figure 7.58 shows the modeling scheme. A box-type concrete structure, which is
composed of five concrete slabs as shown in Fig. 7.58a, is simulated as a composition
of five plate elements like Fig. 7.58b. As for the basic equation, the bending equation
based on the Mindlin’s thick plate theory was applied on behalf of Eq. (2.106) shown
in Sect. 2.3.2. Excitation by an impulse hammer is modeled in the FDTD by giving the
time-transient force with a Gaussian profile in time domain by following the same
procedure as described in the previous section. The following physical properties
are given for simulating the concrete slab: Young’s modulus of 2.4 × 1010 N/m2,
density of 2,500 kg/m3 and Poisson’s ratio of 0.2. In addition, the spatial intervals
of Δx = Δy = 25 mm, and the time sampling of 48 kHz are adopted.

http://dx.doi.org/10.1007/978-4-431-54454-8_2
http://dx.doi.org/10.1007/978-4-431-54454-8_2
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Fig. 7.61 Deformation of the structure and sound pressure distribution inside

7.6.2.2 Results

Figure 7.59 shows the driving-point and transfer impedance levels at each vibration
receiver obtained from the calculation and measurement. The results show good
agreement, especially from the viewpoint of the frequency characteristics of the
peaks and dips. Figure 7.60 shows the transfer functions at each sound receiver. In
this result, the calculated results also accurately describe the peak-dip characteristics
in the lower frequency range, but the correspondence in the middle and high frequency
ranges is difficult to evaluate. Figure 7.61 visualizes the time-transient characteristics
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of the out-of-plane deformation of the structure, and the sound pressure distribution
inside. It provides easy understanding representation of the excited vibration and the
sound radiation from the structure.
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Chapter 8
Acoustic Property Simulation
for Building Components

Takumi Asakura, Yasuhito Kawai, Hisaharu Suzuki, Naohisa Inoue,
Tetsuya Sakuma, Hirofumi Onitsuka and Takayuki Masumoto

Abstract This chapter shows practical examples of numerical simulation results for
acoustical characteristics of building elements, such as the sound absorption, sound-
scattering, and sound insulation performance. Additionally, radiation characteristics
of speaker systems are also treated. In each section, methodologies and numerical
modeling schemes of the simulation, and the calculated results for practical cases
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are illustrated. The results are validated through comparison with the measurement
results, and the applicability of the numerical methods is discussed.

Keywords Sound absorption coefficient ·Random-incidence diffusion coefficient ·
Sound reduction index · Poler pattern

8.1 Absorbers

There are various absorbing materials used for noise control and room acoustics
design. In the numerical calculation, two methods can be applied in order to take dis-
sipative effects of absorbing materials into account. One is that frequency-dependent
surface impedance is given to the boundary. This method is often used with a rough
approximation of locally reacting boundary. Sound wave is assumed to go through
the material, perpendicularly to the locally reacting surface regardless of incidence
angle. The following sections present the effects of the approximation on numerical
results. The other is that wave propagation within materials is also considered. For
porous materials, wave propagation can be simulated based on the Rayleigh model
or the Biot model. The frame of the porous material is assumed to be rigid in the
Rayleigh model, whereas its elasticity is incorporated in the Biot model. The third
subsection presents a finite-difference time-domain method based on the Rayleigh
model, and the last subsection presents a finite element modeling method of layered
materials based on the Biot theory.

8.1.1 Assumption of Locally Reacting Condition

Let us consider the meaning of the assumption of locally reacting condition for
the case of a semi-infinite sound absorber by using boundary integral equations.
Let semi-infinite sound absorber �a and air � be in contact with boundary � as
shown in Fig. 8.1. In the following, the speed of sound, effective density, and wave
number of the sound absorber are denoted by ca , ρa , and ka = ω/ca , respectively.
Also, the velocity potential at P in the sound absorber is denoted by �(rP).

Using the fundamental solution,

Ga(rP, rQ) = e jkar

4πr
, (8.1)

if P is located on the boundary �, we obtain the bounary integral equation

−
∫

�

[
�(rQ)

∂Ga(rP, rQ)

∂nq
− ∂�(rQ)

∂nq
Ga(rP, rQ)

]
d� = 1

2
�(rP), (P ∈ �), (8.2)
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Fig. 8.1 Semi-infinite sound
absorber: � the air side semi-
infinite region, �a sound-
absorbing side semi-infinite
region, Z = ρc characteristic
impedance of air, Za = ρaca
characteristic impedance of
sound absorber

Z = ρc Za = ρaca

Semi-infinite sound
absorbing material

n

Γ

Ω Ωa

p

r

q

where Q is a point on �, r = |r| = |rQ − rP|, rP and rQ are position vectors of P
and Q, respectively. The time factor exp(− jωt) is omitted here.

Since normal component of particle velocity and sound pressure of both the
medium are equal at the boundary surface, i.e.,

� = ρ

ρa
�,

∂�

∂n
= ∂�

∂n
, (8.3)

where � denotes velocity potential in air. Therefore, substituting Eq. (8.3) into
Eq. (8.2), we have

−
∫

�

[
ρ

ρa
�(rQ)

∂Ga(rP, rQ)

∂nq
− ∂�(rQ)

∂nq
Ga(rP, rQ)

]
d� = ρ

2ρa
�(rP), (P ∈ �).

(8.4)

On the other hand, we also have the normal derivative form of Eq. (8.4):

−
∫

S

[
ρ

ρa
�(rQ)

∂2Ga(rP, rQ)

∂np∂nq
− ∂�(rQ)

∂nq

∂Ga(rP, rQ)

∂np

]
d� = 1

2

∂�(rP)

∂np
,

(P ∈ �). (8.5)

The boundary integaral equation of the normal derivative type is reffered to as NDF
(Normal Derivative Form) and that of the ordinary type as BF(Basic Form) in the
following.

Taking into account that the boundary � is an infinte plane and the attenuation of
the sound waves propagating through sound absorber, we obtain

∫

�

Ga(rP, rQ)d� =
∫

�

e jkar

4πr
d� = 1

4π

⎛
⎝
∮

∂�

e jkar dφ − 2π

jka

⎞
⎠ = − 1

2 jka
.

(8.6)
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Also, since
∂Ga

∂n
= 0 from cos(r, n) = 0, we have

∂�(rP)

∂n
= − jka

ρ

ρa
�(rP) + 2 jka

∫

�

∂[�(rQ) − �(rP)]
∂nq

Ga(rP, rQ)d�

︸ ︷︷ ︸
IB0

[BF].

(8.7)

If it is possible to ignore the second term of the right-hand side IB0, we can obtain
the relational expression of locally reacting condition:

∂�(rP)

∂np
= − jk

ρc

Za
�(rP). (8.8)

If we use Eq. (8.5), since the hyper singular integral becomes [1]

∫

�

∂2Ga(rP, rQ)

∂np∂nq
d� = 1

4π

(
2π jka −

∮
∂�

e jkar

r
dφ

)
= jka

2
, (8.9)

then Eq. (8.5) reduces

∂�(rP)

∂np
= − jka

ρ

ρa
�(rP)−2

ρ

ρa

∫
�

[�(rQ) − �(rP)]∂
2Ga(rP, rQ)

∂np∂nq
d�

︸ ︷︷ ︸
IN0

[NDF].

(8.10)

If the term IN0 is negligibly small, we can obtain the relational expression of the
locally reacting condition Eq. (8.8).

As a result of some numerical analyses for the case of plane wave incidence, the
value of IN0 depends on the angle of incidence and become smaller according as the
frequency decreases and as the flow resistance increases.

8.1.2 Area Effect

Assumption of diffuse sound field is often used in carrying out the acoustic design.
Since sound waves incident from all directions to the peripheral wall under such
a condition, the sound absorption coefficient of the material surface by the ran-
dom incidence conditions is required. A reverberation room is a space for obtaining
approximately a difuse sound field and the random-incidence absorption coefficient
of various wall components is measured by using it. Sound absorption coefficient
obtained there is called reverberation (or reverberation room method) absorbption
coefficient, and is widely used conventionally.
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The reverberation absorption coefficient of the material used for the wall is
calculated by the following equation which was derived using Sabine’s formula
from the difference between the measured values of the reverberation time with and
without the specimen set on the floor of the reverberation room.

A = 55.3
V

c

(
1

T2
− 1

T1

)
, (8.11)

α = A

S
. (8.12)

In this equation, A denotes equivalent absorption area, V room volume, c sound
speed in air, S area of specimen, α reverberation absorbing coefficient, T1 and T2 the
reverberation times with and without the specimen, respectively. It is noted that the
method of measuring reverberation absorption coefficient is standardized and more
detailed information is described in ISO 354, JIS A 1409: 1998 and the literature [2].

By the way, it is known that the random-incidence absorption coefficient increases
when the dimensions of a sound-absorbing surface become as small as the dimension
of wavelength. This phenomenon is usually referred to as area effect, and it becomes
evident when the absorption coefficient is large. Therefore, the random-incidence
absorption coefficient as the value of the material itself is that of the material with
infinite area does not cause the area effect.

In predicting the reverberation time of an auditorium, the total sound absorption is
necessary, and it is calculated as the sum of the product of the area of each peripheral
wall portion and the sound absorption coefficient of each wall material obtained by the
reverberation room method described above. Though it seems that such a calculation
method is reasonable at first glance, area effect is included much on the measurement
of reverberation absorption coefficient. Since area effect varies depending on the
surrounding circumstances, the estimation of the total sound absorption may contain
significant errors if we evaluate by ‘Msound absorption = reverberation absorption
coefficient × area.” In the following, some examples for the analysis of the area
effect by introducing the boundary integral equation method are shown.

Consider the absorbing energy when the plane wave is incident on the sound-
absorbing surface of finite size from a certain direction [3–5]. Let semi-infinite space
�0 bounded by the infinitely large semi-sphere �∞, the rigid surface � and the
sound-absorbing surface A include a point source S at a position of rS and a receiving
point P at a position of rP, and Pi be the image point of P with respect to the surfaces
� and A as shown in Fig. 8.2. Also, Q is a point on � or A at a position of rQ.

In order to derive an integral formula, let us use

G(rP, rQ) = e jkr

4πr
+ e jkri

4πri
, (8.13)

as a fundamental solution in which the image point Pi is taken into account. Here,
r = |r| = |rQ − rP|, ri = |ri | = |rQ − rPi|. We apply here Green’s theorem or
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p

pi

S

q
Γ A

r

ri

n

n Γ∞

σ

σs

Ω0

Fig. 8.2 Definition of symbols: �0 semi-infinite space bounded by rigid surface �, sound-absorbing
surface A, and infinitely large semi-sphere �∞; n normal vector; S point source; P receiving point;
Pi the image of P with respect to � and A; σs and σ small spheres of centers S and P respectively

integration by parts to the space �0 − σs − σ where σs and σ are small spheres of
centers S and P, respectively, with radius ε. Taking into consideration (1) the normal

component of particle velocity vanishes on �, (2)
∂G

∂n
= 0 on � and A, and (3)

Sommerfeld’s radiation condition [6], we can obtain

�(rP) = �D(rP) + �D(rPi) − 1

2π

∫

A

∂�(rQ)

∂nq

e jkr

r
d�, (P ∈ �0, �, A),

(8.14)

where �(rP) denotes velocity potential at P and �D the direct wave. Equa-

tion (8.14) is valid when P is located on � or A (i.e., rP = rPi), since lim
ε→0

∫∫
∂σ/2

d� = −�(rP), (P ∈ �, A).
If the sound-absorbing surface A is assumed to be locally reacting surface, using

Eq. (8.8), we have

�(rP) = �D(rP) + �D(rPi) + jkρc

2πZa

∫

A

�(rQ)
e jkr

r
d�, (rP ∈ �0, �, A)

(8.15)

where Za denotes the specific impedance.1 Morse and Ingard [7] and Thomasson [8]
have also introduced equations similar above.2 When P is located on A, Eq. (8.15) is
a boundary integral equation and � is an unknown surface function. The sound field
in the space �0 can be calculated by substituting � obtained by solving Eq. (8.15)
into the same equation. Sound-absorbing energy and incident energy per unit time
is calculated by the following equations:

1 Since the direction n is different from that in Eq. (8.8), the integral term has opposite sign.
2 The former deals with the two-dimensional problem.
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Ii =
∫

A

1

4
(piv

∗
i + p∗

i vi)d�, (8.16)

Ia =
∫

A

1

4
(pav∗

a + p∗
ava)d�, (8.17)

where pi and vi are sound pressure and the normal component of particle velocity of
incident sound, and pa and va are those on A, respectively. The superscript ∗ denotes
complex conjugate.

In order to determine the flow of sound energy (intensity) within the space�0, each
direction component of the particle velocity is required. By differentiating Eq. (8.15)
with respect to rP in np direction, we have

∂�(rP)

∂np
= ∂�D(rP)

∂np
+ ∂�D(rPi)

∂npi

+ jkρc

4πZa

∫

A

�(rQ)

(
∂

∂np

e jkr

r
+ ∂

∂npi

e jkri

ri

)
d�. (8.18)

It should be noted that the direction of the differentiation with respect to the mirror
image point Pi is taken in the npi which is the the mirror image of np. Since each
direction component of the particle velocity can be obtained from Eq. (8.18), we can
calculated the time-average flow of sound energy at a point P in the same way as
Eqs. (8.16) and (8.17).

The flow of sound energy (intensity) near the edge of the sound-absorbing surface
calculated from the method described above is shown in Fig. 8.3. In the calculation,
the size of the sound-absorbing surface is 2 × 2 m, sound pressure reflection coef-
ficient rp = 0.2 exp(iπ/12) and the plane wave of 63 Hz is incident vertically on it.
In Fig. 8.3, in the vicinity of the absorber’s edge sound energy flow from adjacent
space to the absorber can be seen. This is because the sound pressure at the rigid sur-
face � increases but decreases the sound-absorbing surface area A. Particle velocity
v = −grad � is determined by the sound pressure gradient, we can therefore under-
stand that the energy flows into the sound-absorbing surface from the adjacent area
outside the edge. Accordingly, it is the factor of area effect that the energy flowing
into absorbing surface from the adjacent area is added to the absorbing energy of the
incident sound. In addition, it can be considered that, if other sound-absorbing area
exists near sound-absorbing surface under consideration, flow energy is distributed to
the other and the area effect will decrease. The term ‘Minterference” or “interaction”
is appropriate for this phenomenon.

To simulate random incidence noise, the numerical calculations were carried out
for m plane waves that are incident on the sound-absorbing surface from all directions
at regular solid angle (m = 213 in this calculation). The energy of the incident wave
and of the absorbed one are calculated for each condition and summed up separately.
The random-incidence absorption coefficient α can be obtained by:
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Fig. 8.3 Sound intensity near
a locally reacting surface
(2 × 2 m) in case of normal
incidence of a plane wave,
63 Hz

α =
m∑

l=1

(Ia)l /

m∑
l=1

(Ii)l . (8.19)

For value of a frequency band would be calculated from the average of the values of
several frequenies within the band.

In order to verify the effectiveness of the method introduced above, reverberation
absorption coefficients of glass wool patches (25 mm thickness, 32 kg/m3, no air
space) are measured in the reverberation room in the General Building Research Cor-
poration (GBRC). The reverberation room used for the measurements has a volume of
317.4 m3. Six curved polyvinyl chloride panels with dimensions of 915×1830 mm2

are hung in the room in order to diffuse sound. Since the thickness of the absorbing
layer is relatively thin, it will be possible to assume the locally reacting condition in
the frequency band considered.

Figure 8.4 shows the results of the measurements for 25 mm thick glass wool with
dimensions of 0.5 × 0.5 m and 3.0 × 4.0 m, respectively,3,4. In these figures dashed
dotted lines denote experimental results for one-third octave band noise, dotted lines
the values obtained from the numerical calculations of the boundary integral equation,
dashed lines normal incidence absorption coefficients α0 and solid lines statistical
random-incidence absorption coefficients αs for infinitely large absorbing surface.
Normal impedances used for obtaining the above-calculated absorption coefficients
were measured by using the tube method (B & K 4206 Two-microphone impedance

3 Since the specimen with dimensions of 0.5 × 0.5 m has little absorption, measurement error
becomes large. Therefore, four specimens were set sufficiently apart from each other in the rever-
beration room in the measurement.
4 Since the averaged absorption coefficients within one-third octave band have approximately same
values as those for the center frequencies of the bands, the latter values are used in Fig. 8.4.
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Fig. 8.4 Comparison of measured sound absorption coefficient of finite absorbing surfaces with
the theoretical ones: a 0.5 × 0.5 m, b 3.0 × 4.0 m; α0 denotes normal incidence sound absorption
coefficient, αs statistical sound absorption coefficient

Table 8.1 Measured values of absorption coefficient α0, sound pressure reflection coefficient rp ,
phase shift δ, and impedance ratio z at normal incidence for glass wool with density of 32 kg/m3,
25 mm thickness and no air space

Frequency (Hz) α0 |rp| δ (deg) Re(z) Im(z)

125 0.116 0.94 7.393 6.557 12.658
250 0.098 0.95 15.086 1.333 7.289
500 0.226 0.88 31.233 0.787 3.410
1000 0.496 0.71 57.646 0.664 1.615

measurement tube) (see Table 8.1). We can see that the area effect becomes evident
when the absorption coefficient is large and the dimensions of the specimens are
small, and also that the theoretical values are in good agreement with the experimental
values. Though reverberation absorption coefficient should have a value close to
statistical absorption coefficient with no area effect, it can be seen that even in the
results for the size of 3.0 × 4.0 m considerable area effect occurs.

Consider the sound absorption coefficient of an open window as a topic related
to the area effect. Such an opening is usually treated as the perfectly absorbing
surface [9, 10]. If it is assumed that there is an opening in the plane rigid wall with
thin thickness, the relational expression of sound source side semi-infinite space
is Eq. (8.14) and that of the other side semi-infinite space is a similar expression
with no source term. Solving ∂�/∂n on the opening by coupling at the opening
above two boundary integral equations, we can obtain random-incident absorption
coefficient (=random-incidence transmission coefficient) in a manner similar to the
above. Figure 8.5 shows the result of an opening with dimensions of 0.5 × 0.5 m. It
can be seen that the sound absorption coefficient is greater than 1 at low frequency
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Fig. 8.5 Random-incidence
absorption coefficient of
an open window with the
dimensions of 0.5 ×0.5 m
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range. Note, it is not possible to explain such a phenomenon by Kirchhoff’s diffraction
theory [11] that are often used conventionally.

8.1.3 Simple FDTD Model

8.1.3.1 Rayleigh Model

The Rayleigh model is quite popular as a theoretical and qualitative model for porous
materials [10]. The Rayleigh model is defined as simple differential equations which
have a flow resistance term in the momentum equation. This model is not enough to
simulate real porous material, but an easy-to-use model for the FDTD method. Some
examples will be introduced in this section, these enable us to analyze an internal
element of acoustic material and extended reaction of acoustic boundary.

In the Rayleigh model, a porous material is simplified as the set of thin and rigid
pipes shown in Fig. 8.6. In the pipe, air viscosity causes flow resistance and friction
which depends on the flow speed.

In that condition, the momentum equation of the Rayleigh model is defined as:

∂ p

∂x
+ ρ

∂ux

∂t
+ σux = 0, (8.20)

and the continuous equation is

∂ p

∂t
+ κ

(
∂ux

∂x
+ ∂uy

∂y

)
= 0, (8.21)
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Fig. 8.6 Rayleigh model

where p is the sound pressure, ux is particle velocity in the x direction, ρ is the
density of air, and κ is the bulk modulus of the air. In the momentum equation, the
direction x is assumed, because the acoustic wave only propagate in the direction of
the pipe.

In a porous material the medium density for acoustic wave is larger than air’s
value, the effective density is required to perform this property. By the same token,
the effective bulk modulus is necessary to describe that the sound speed is low in
a material. The flow resistance in the momentum equation describes the resistance
of air viscosity in a thin tube. On the other hand, the relaxation coefficient could be
introduce to the continuous equation. Finally, the expanded momentum equation is

ρe
∂ux

∂t
+ ∂ p

∂x
+ σx ux = 0, (8.22)

ρe
∂uy

∂t
+ ∂ p

∂y
+ σyuy = 0, (8.23)

and the expaneded continuous equation is

∂ p

∂t
+ κe

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
+ σp p = 0, (8.24)

where σy is flow resistance in y direction, ρe is the effective density of the material,
κe is the effective bulk modulus of the material, and σp is relaxation coefficient.
In the Ralyleigh model, flow resistance is assumed in the direction of pipe, but it
could be assumed in any direction, the σy is added in this formulation. In a porous
material, thermal and viscous diffusion are appeared as relaxation process [12] and
it reduces the sound pressure over time. If the plane wave solution p = e( jω+σp)t−kx

is assumed in nondissipative wave equation, Eq. (8.24) can be obtained easily.
Then it also can be understood that the σp performs as a decay of sound pressure in
time.

Now we assume a two-dimensional staggered-grid mesh as shown in Fig. 8.7 to
investigate the finite difference forms of the proposed model. Each sound pressure
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Fig. 8.7 Spacial placement of FDTD cells in two dimensions. p is sound pressure and ux and
uy are particle velocities in the x , y direction, respectively. ρe is the effective density, κe is the
effective bulk modulus, σp is a relaxation coefficient, and σx and σy are flow resistances in the x ,
y directions, respectively

and particle velocity is placed alternately, and the medium constants are defined at
the same points as the sound pressures.

In this mesh, the finite difference equations of Eqs. (8.22), (8.23) and (8.24) can
be written as:

un+1
x (i + 1

2
, j) =

(
1 − �tσx (i + 1

2 , j)

ρe(i + 1
2 , j)

)
un

x (i + 1

2
, j)

− �t

�xρe(i + 1
2 , j)

(
pn+ 1

2 (i + 1, j) − pn+ 1
2 (i, j)

)
, (8.25)

un+1
y (i, j + 1

2
) =

(
1 − �tσy(i, j + 1

2 )

ρe(i, j + 1
2 )

)
un

x (i, j + 1

2
)

− �t

�xρe(i, j + 1
2 )

(
pn+ 1

2 (i, j + 1) − pn+ 1
2 (i, j)

)
, (8.26)

pn+ 3
2 (i, j) = (

1 − �tσp(i, j)
)

pn+ 1
2 (i, j)

− �tκe(i, j)

�x

(
un+1

x (i + 1

2
, j) − un+1

x (i − 1

2
, j)

)
, (8.27)

where pn(i + 1
2 ) is the sound pressure at a discrete time n at the discrete spatial

position i + 1
2 , un

x (i) is particle velocity in the x direction at time n and position
i , �t is a discrete time width, and �x is a discrete spatial width in the x direction.
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σx (i + 1/2, j), σy(i, j + 1/2), ρe(i + 1/2, j) and ρe(i, j + 1/2) are defined as
averaged values such as

σx (i + 1

2
, j) = σx (i + 1, j) + σx (i, j)

2
, (8.28)

σy(i, j + 1

2
) = σy(i, j + 1) + σy(i, j)

2
, (8.29)

ρe(i + 1

2
, j) = ρe(i + 1, j) + ρe(i, j)

2
, (8.30)

ρe(i, j + 1

2
) = ρe(i, j + 1) + ρe(i, j)

2
. (8.31)

In these finite-difference forms, it can be seen that the terms 1−�tσp, 1−�tσx/ρe

and 1 − �tσy/ρe are just added to the finite-difference forms of the air, these forms
therefore maintain coding simplicity.

8.1.3.2 Characteristic Impedance

In this section, a one-dimensional sound field is assumed to confirm the normal
incident characteristic impedance of the proposed model.

The one-dimensional momentum equation can be written as:

ρe
∂u

∂t
+ ∂ p

∂x
+ σx u = 0, (8.32)

and the continuous equation is

∂ p

∂t
+ κe

∂u

∂x
+ σp p = 0. (8.33)

The plane wave solutions are assumed to be

p = Pe j (ωt−k′x), ux = UX e j (ωt−k′x), (8.34)

where ω is the angular frequency and k′ is a complex wave number. Equations (8.32)
and (8.33) are simplified by substituting Eq. (8.34) thus

[− jω + σp,−κe jk′
− jk′,− jωρe + σx

]{
p
ux

}
= 0. (8.35)

By setting the determinant of coefficient matrix in Eq. (8.35) equal to zero, k′ can
be solved as:
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k′ = ω

ce

√
1 + j

ρeω

(
ρeσp + σx

)− σpσx

ρeω2 , (8.36)

and the characteristic impedance Z is obtained as:

Z = ρece

√
1 + j

ρeω

(
ρeσp + σx

)− σpσx

ρeω2 , (8.37)

and no normalization is performed by the characteristic impedance of the air.

8.1.3.3 Stability Analysis

To derive the stability condition of finite-difference forms, we again assume a
one-dimensional plane wave solution, because an arbitrary wave can be decomposed
into a number of plane waves.

In a one-dimensional scenario, the finite-difference forms at i can be written as:

un+1
x (i) =

(
1 − �tσx (i)

ρe(i)

)
un

x (i) − �t

�xρe(i)

(
pn+ 1

2 (i + 1

2
) − pn+ 1

2 (i − 1

2
)

)
,

(8.38)

pn+ 3
2 (i) = (

1 − �tσp(i)
)

pn+ 1
2 (i) − �tκe(i)

�x

(
un+1

x (i + 1

2
) − un+1

x (i − 1

2
)

)
.

(8.39)

Now if we assume L p(i) = 1 − �tσp(i), Lv(i) = 1 − �tσx (i)/ρe(i), Z =
ρe(i)c(i), and the Courant number C(i) = c(i)�t/�x , then Eqs. (8.38) and (8.39)
can be simplified

un+1
x = Lvun

x + C

Z
2 j Spn, (8.40)

pn+ 3
2 = L p pn + C Z2 j Sun+1

x , (8.41)

where S = sin(�x/2).
Finally, the vector matrix form can be obtained by

xn+1 = Axn, (8.42)
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where xn and A are defined
xn = [pn+ 1

2 un
x ]T , (8.43)

A =
[

L p − 4C2S2 2 jC Z Lv S

2 j Lv

C

Z
Sx Lv

]
. (8.44)

To obtain stable and nontrivial solutions, all eigenvalues λ of A have to be |λ| ≤ 1.
In that condition, the stability condition in one-dimensinal case can be solved as:

�t ≤ 1
ce
�x + max(σp,σx/ρ)

. (8.45)

In two- or three-dimensional cases, the matrices A can be obtained as

�t ≤ 1

ce

√
1

�x2 + 1
�y2 + max(σp,

σx
ρe

,
σy
ρe

)
, (8.46)

�t ≤ 1

ce

√
1

�x2 + 1
�y2 + 1

�z2 + max(σp,
σx
ρe

,
σy
ρe

,
σz
ρe

)
. (8.47)

8.1.4 Layered Material FE Model

8.1.4.1 Basic Equations for Poroelastic Material

For a multilayer structure consisting of porous materials with elastic frames, a model
based on the Biot theory [13, 14] is preferable. The poroelastic model describes the
interactive propagation of elastic waves in solid and fluid phases of porous media.
There are several representation on the Biot theory with regard to physical variables.
For a time-harmonic analysis, a mixed displacement-pressure (us-p) formulation
[15] is advantageous in terms of computational efficiency. According to the (us-p)
formulation, poroelastic wave propagation is described by simultaneous equations
composed of an equivalent elastodynamic equation and an equivalent Helmholtz
equation with volumetric coupling terms as follows:

divσs(us) + ω2ρ̃sus + γ̃gradp = 0,

∇2 p + ω2 ρ̃22

R̃
p − ω2 γ̃ρ̃22

φ2 divus = 0. (8.48)

The following notation is introduced for the physical parameters; in the fluid-
phase:
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• ρ̃f and K̃f: effective density and bulk modulus of equivalent fluid,
• ρ̃22: Biot’s inertial coefficient for fluid-phase defined by: ρ̃22 = φρ̃f,
• R̃: Biot’s elastic coefficient for fluid-phase dilatation defined by: R̃ =

φ2 Ks

1−φ−Kb/Ks+φKs/K̃f
,

in the solid-phase:

• ρb and Kb: the bulk density and the bulk modulus of the poroelastic material,
• Ks: the bulk modulus of the material of which the skeleton is made,

• ρ̃s: effective solid-phase density defined by: ρ̃s = ρb + φρ0

(
1 − ρ0

ρ̃f

)
,

• λ and μ: the Lamé’s coefficients,
• εs(us): strain tensor of the solid-phase of poroelastic material defined by: εs

i j =
1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
,

• σs(us): stress tensor of the poroelastic material in vacuo; It is related to the strain
tensor by Hooke’s law together with the unit tensor I by σs(us) = λdivusI +
2μεs(us),

• σt: total stress tensor of the solid-phase of the poroelastic material defined by:
σt = σs(us) − (1 − φ − Kb

Ks
)pI,

and in both phases:

• φ: porosity of the poroelastic material,
• γ̃: volumetric coupling coefficient defined by: γ̃ = φρ0

ρ̃f
+ Kb

Ks
− 1

Note that the values with tilde are complex and frequency dependent. ρ̃f and K̃f
may be estimated by different general semi-phenomenological models taking into
account the viscous and thermal losses of the acoustic compression wave. In the
following, isotropic and homogenous materials are discussed.

8.1.4.2 Finite Element Formulation for Poroelastic Material

The weak forms of the us-p equations are written as

∫

�P

εs(δus) : σs(us)dV − ω2
∫

�P

ρ̃sδus · usdV

−
∫

�P

γ̃δus · gradpdV −
∫

�P

δus · σs · nd S = 0, (8.49)

1

ω2

∫

�P

φ2

ρ̃22
gradδ p · gradpdV −

∫

�P

φ2

R̃
δ p · pdV

−
∫

�P

γ̃gradδ p · usdV +
∫

�P

δ p

(
γ̃us · n − φ2

ω2ρ̃22

∂ p

∂n

)
d S = 0, (8.50)
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where δus and δ p are admissible variations of the solid-phase displacement and
the fluid-phase pressure, respectively. Based on the Galerkin’s method, the above
integrals are discretized with the interpolation

us = [Ns]{us
e} and p = [Nf]{pe}, (8.51)

for volume integrals in the solid-phase,

∫

�P

εs(δus) : σs(us)dV =
∑

e∈�P

⎛
⎜⎝{δus

e}
∫

�P
e

[Bs]T [D][Bs]dV {us
e}
⎞
⎟⎠

= {δus}[Ks]{us}, (8.52)

∫

�P

ρ̃sδus · usdV =
∑

e∈�P

⎛
⎜⎝{δus

e}
∫

�P
e

ρ̃s[Ns]T [Ns]dV {us
e}
⎞
⎟⎠

= {δus}[Ms]{us}, (8.53)

∫

�P

γ̃δus · gradpdV =
∑

e∈�P

⎛
⎜⎝{δus

e}
∫

�P
e

γ̃[Ns]T [Bf]dV {pe}
⎞
⎟⎠

= {δus}[C]{p}, (8.54)

and for volume integrals in the fluid-phase,

∫

�P

φ2

ρ̃22
gradδ p · gradpdV =

∑
e∈�P

⎛
⎜⎝{δpe}

∫

�P
e

φ2

ρ̃22
[Bf]T [Bf]dV {pe}

⎞
⎟⎠

= {δp}[Kf]{p}, (8.55)

∫

�P

φ2

R̃
δ p · pdV =

∑
e∈�P

⎛
⎜⎝{δpe}

∫

�P
e

φ2

R̃
[Nf]T [Nf]dV {pe}

⎞
⎟⎠

= {δp}[Mf]{p}, (8.56)
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∫

�P

γ̃gradδ p · usdV =
∑

e∈�P

⎛
⎜⎝{δpe}

∫

�P
e

γ̃[Bf]T [Ns]dV {ue}
⎞
⎟⎠

= {δp}[C]T {us}, (8.57)

with the introduction of strain matrices

[Bs] =
⎡
⎢⎣

∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1

⎤
⎥⎦

T

[Ns], and [Bf] =
⎡
⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎦ [Nf], (8.58)

and the elastic moduli matrix,

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8.59)

where [Ns] and [Nf] are the corresponding shape functions, {us
e} and {pe} are element

nodal displacement and pressure vectors, and {us} and {p} are global nodal displace-
ment and pressure vectors respectively. It is noted that Eq. (8.52) is arranged accord-
ing to the Voigt notation of stress and strain tensor and Hooke’s law for isotropic
materials.

Finally, the following global matrix equation is obtained:

[[Ks] − ω2[Ms] −[C]
−[C]T 1

ω2 [Kf] − [Mf]
]{{us}

{p}
}

=
{{Fs}
{Ff}

}
, (8.60)

where

{{Fs}
{Ff}

}
denotes an external force vector which depends on how the poroelastic

material is excited; the details can be found in reference [16]. The surface integrals
in Eqs. (8.49) and (8.50) are omitted here for simplicity.

8.1.4.3 Coupling Conditions on Interfaces Between Different Media

This subsection briefly presents coupling conditions on the interfaces between
different media. In the following, it is assumed that the material of which the frame
is made is incompressible, accordingly, γ̃ is reduced, by taking the limit as Ks
approaches to infinity, into

γ̃ ≈ φ
ρ0

ρ̃f
− 1. (8.61)
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Fig. 8.8 Domain notation for a coupled problem

Moreover, in the finite element implementation, coupling treatments on interfaces
depicted in Fig. 8.8 also become simple.

It is noted that coupling conditions involved in poroelastic media are expressed
together with fluid-phase displacement in order to make the physical meaning of the
condition clear; the fluid-phase displacement is related to solid-phase displacement
and fluid-phase pressure by

uf = φ

ρ̃22ω2 gradp −
(

ρ0

ρ̃f
− 1

)
us. (8.62)

Let σE and uE denote stress tensor and displacement of elastic domain, pA denote
sound pressure of acoustic domain, and n denotes the normal direction on the inter-
face, respectively.

In-Contact Condition

In-contact condition can be considered as a situation where two materials are bonded
at the interface. The surface integrals in weak form are rearranged in accordance with
following coupling conditions.

Elastic–Acoustic Interface: �AE

The coupling conditions involved on the interface between elastic and acoustic
domains are given as: ⎧⎨

⎩
σE · n = −pAn,

1

ρ0ω2

∂ pA

∂n
= uE · n.

(8.63)

First equation ensures the continuity of normal stress and second equation does
the continuity of normal displacement. In the finite element implementation, these
conditions are attained by using coupling matrix obtained as following.
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[Q] =
∑
e∈�

∫

�e

[Ns]T [n][Nf]d S. (8.64)

Poroelastic–Acoustic Interface: �PA

The coupling conditions involved on the interface between poroelastic and acoustic
domains are given as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σt · n = −pAn,

p = pA,

1

ρ0ω2

∂ pA

∂n
= (1 − φ)us · n + φuf · n.

(8.65)

First and second equations ensure the continuity of normal stresses between the solid
and fluid phases, respectively, and third equation refers to the continuity between the
acoustic displacement, and the effective displacement of the poroelastic medium.
Under the incompressible frame assumption, poroelastic, and acoustic domains are
coupled naturally by using common unknowns in accordance with the second equa-
tion at the assembly step of the finite element implementation.

Poroelastic–Elastic Interface: �PE

The coupling conditions involved on the interface between poroelastic and elastic
domains are given as ⎧⎪⎨

⎪⎩
σt · n = σE · n,

us = uE,

uf · n − us · n = 0.

(8.66)

First and second equations ensure the continuity of normal stress and three-
dimensional displacement between the solid-phase of poroelastic domain and elas-
tic domain, respectively. Third equation states that relative mass flux in normal
direction does not appear due to the impervious nature of the elastic domain.
In the finite element implementation, two procedures are carried out to impose these
conditions. First, the common unknowns are eliminated in accordance with the sec-
ond equation. Next, a similar coupling matrix to Eq. (8.64) is considered for the
fluid-phase pressure and solid-phase displacement (uE or us).

Poroelastic–Poroelastic Interface: �PP

The coupling conditions involved on the interface between different poroelastic
domains are given as
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Fig. 8.9 Out-of-contact conditions: a Poroelastic–Elastic interface and b Poroelastic–Poroelastic
interface

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σt1 · n = σt2 · n,

p1 = p2,

us1 = us2,

φ1(uf1 · n − us1 · n) = φ2(uf2 · n − us2 · n),

(8.67)

where superscripts 1 and 2 are used in order to represent attribution of the value to
the primary or secondary poroelastic domain. First two equations reflect the normal
stress continuity of each phase between poroelastic domains. Third equation ensures
the continuity of solid displacements, and fourth equation does the continuity of
the relative mass flux. Poroelastic domains are naturally coupled by using common
unknowns in accordance with the second and third equations at the assembly step of
the finite element implementation.

Out-of-Contact Condition

Out-of-contact condition can be considered as a situation where two materials are
coupled through thin air gap as depicted in Fig. 8.9. In case the thin air gap exists
between a poroelastic material and another material, it is convenient to handle such
a situation as the boundary condition without creating any volumetric meshes for the
thin gap.

In the thin air gap, sound pressures and their normal derivatives on the forward
and the backward face would coincide, respectively, if the thickness of air gap, ε,
tends to zero. ⎧⎨

⎩
pA− ≈ pA+,

∂ pA−

∂n
≈ ∂ pA+

∂n
.

(8.68)
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Poroelastic-Elastic Out-of-Contact Interface: �PAE

The out-of-contact condition between poroelastic and elastic domains can be induced
with the combination of Eqs. (8.63), (8.65) and (8.68) as

⎧⎪⎨
⎪⎩

σt · n = −pn,

σE · n = −pn,

uE · n = (1 − φ)us · n + φuf · n.

(8.69)

First two equations state that all associated normal stresses are equal on this
interface. Third equation states that the normal displacement of elastic domain is
continuous to the normal effective displacement on the interface of the poroelastic
domain. In the finite element implementation, a similar coupling matrix to Eq. (8.64)
is considered for the pressure of the poroelastic domain p and the displacement of
the elastic domain uE.

Poroelastic–Poroelastic Out-of-Contact Interface: �PAP

Similarly, the out-of-contact condition between two poroelastic media can be induced
with the combination of Eqs. (8.65) and (8.68) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σt1 · n = −p1n,

σt2 · n = −p2n,

p1 = p2,

(1 − φ1)us1 · n + φ1uf1 · n = (1 − φ2)us2 · n + φ2uf2 · n.

(8.70)

First three equations state that all associated normal stresses are equal on this inter-
face. Fourth equation ensures the continuity of the normal effective displacements
on the interface between two poroelastic domains. Differently for the in-contact con-
dition, two poroelastic domains are coupled by using common unknown only for the
pressures at the assembly step of the finite element implementation.

8.1.4.4 Calculation Scheme of Sound Absorption Coefficient

This section presents a model for predicting the oblique incidence absorption
coefficient of absorbers with arbitrary shape, size, and material composition. A
schematic of the model is depicted in Fig. 8.10 and the features are summarized
as follows:

• a test sample is mounted in a cavity on the rigid baffle,
• the FEM is employed for the materials and air space in the cavity, and coupled

with sound fields out of the baffle by the BEM on the imaginary interface,
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Fig. 8.10 Schematic of a calculation model for oblique incidence absorption coefficient

• absorption coefficient is calculated from the geometrical incidence power and the
absorption power on the imaginary interface.

Acoustic FEM-BEM Coupling

For the acoustic field above the rigid baffle, boundary integral equation on the imag-
inary interface �IF is given by

pB(rp) + 2 jωρ0

∫

�IF

vB(rq)
exp( jk|rp − rq|)

4π|rp − rq| d S = 2pD(rp). (8.71)

For the acoustic field within the cavity, integral equation in weak form is given by

∫

�A

∇δ pF · ∇ pFdV − k2
∫

�A

δ pF pFdV + jωρ0

∫

�IF

δ pFvFd S = 0. (8.72)

There are two approaches to couple acoustic fields formulated by the BEM and
the FEM according to the interpolation scheme of physical variables in the BEM ele-
ments. One is interpolation element formulation. Coupling condition in this approach
is attained by the elimination of degree of freedom in common on the interface bound-
ary. The other approach is constant element formulation. In this approach, unknowns
are generally defined at different points in the BEM and the FEM, thus the elimi-
nation of nodal unknowns cannot be applied. Alternatively, the following coupling
conditions are imposed to each element.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫

�IF
e

pBd S =
∫

�IF
e

pFd S,

∫

�IF
e

vBd S = −
∫

�IF
e

vFd S.
(8.73)
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These equations ensure the continuity of the forces and the volumetric velocity
across an interface element, respectively.

Example 1: Single Layer Porous Material

Figure 8.11 shows the random and field incidence absorption coefficients calculated
for a single layer porous material set on the bottom of a rectangular cavity with
different depths. Figure 8.12 shows the polar angle-dependent absorption coefficients
in the same conditions. The Craggs’ method [17] was employed for the porous
material domain, thus the frame vibration of the porous material was not taken
into account here. The effective density and bulk modulus of porous material was
evaluated by Kato’s model [18] with the material density ρM = 1 186 [kg/m3], the
bulk density ρb = 50 [kg/m3] and the fiber diameter D = 21 [μm]. In Fig. 8.11, there
are also plotted one-third octave band values measured at two small reverberation
rooms with the volume 6.5 and 36 [m3]. In the measurement, different height fences
are placed in the perimeter of the material. Furthermore, transfer matrix method
(TMM) [14] is employed for the calculation of theoretical values to the infinite area
material.

Calculated absorption coefficients remarkably exceed the theoretical values at
mid-frequency range due to the area effect. As the cavity becomes deeper, the values
approach the theoretical one from high frequency range, which support the validity of
a deep-well approach in the measurement by reverberation room method. However
for deeper cavities, fluctuations also appear in the absorption coefficients due to
the resonance to opposed faces of the cavity. In general, absorption coefficients in
random incidence become higher than those in field incidence. Figure 8.12 shows the
reason that the discrepancies between the calculated and theoretical values become
remarkable at grazing incidence in particular.

Compared to the measurement values, calculated values in field incidence give
satisfactory results particularly for the material set in the shallow cavity. The primary
factor of the discrepancy seen in the deeper well is considered to be the difference
of the geometrical condition around the absorbing material.

Example 2: Layered Poroelastic Materials

Figure 8.13 shows the normal, random and field incidence absorption coefficients
calculated for double and triple-layer materials set on the bottom of the cavity. The
material properties are listed in Table 8.2. Kato’s model was used to evaluate the
effective density and bulk modulus of the poroelastic materials. The membrane
is limp and impervious. In the finite element formulation, the coupling condition
between a poroelastic material and a membrane can be attained by an analogy with
the poroelastic–elastic interface. There is thin air gap between the layered material
and bottom of the cavity. This boundary condition is attained naturally in the us − p
formulation. For P2AMP1 and P2MAP1, there are also plotted one-third octave band
values measured at the same reverberation rooms as mentioned in the Example 1.
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for the same condition as in Fig. 8.11. The incidence azimuths ϕ are 0◦ and 45◦ shown in solid and
dotted lines, respectively

Fences with 30mm height are placed in the perimeter of the layered material. TMM
is also employed for the calculation of theoretical values to the infinite area material.

Remarkable peaks appear at the low- and mid-frequency range when a membrane
is stacked between two poroelastic materials. First peaks in triple-layer materials are
caused by the mass-spring resonance; the spring is that of the air saturated in PEM1.
The second peak in P2MP1 is also caused by the mass-spring resonance; however, in
this case the spring is that of the frame of PEM1. In case the membrane is in contact
with the poroelastic material on the incidence side (PEM2), absorption coefficients
decrease at high frequency range because the impervious layer becomes heavier and
stiffer.

In general, tendencies of discrepancy between calculated and theoretical values are
similar to those of the single layer material. Accordingly, normal incidence absorption
coefficients agree well with the theoretical ones, whereas field and random incidence
values exceed the theoretical ones due to the remarkable area effect at the grazing
incidence. Compared to measured values, calculated values show similar trend for
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Table 8.2 Physical
properties and dimensions of
layered materials for the
calculation

PEM 1 and 2 Material Density ρM = 1186 (kg/m3)

Fiber Diameter D = 21 (µm)

Poisson’s Ratio ν = 0
PEM 1 Bulk Density ρb = 50 (kg/m3)

Young’s Modulus E = 2.2 × 104 (N/m2)

Loss Factor η = 0.24
Thickness t = 20 (mm)

PEM 2 Bulk Density ρb = 200 (kg/m3)

Young’s Modulus E = 1.5 × 105 (N/m2)

Loss Factor η = 0.45
Thickness t = 5 (mm)

Membrane Area Density ρm = 0.04 (kg/m2)

both of P2AMP1 and P2MAP1. Quantitative discrepancies may be caused by the lack
of diffusivity in the measurement field and/or the difference of contact condition.

8.2 Diffusers

In room acoustics design, scattering properties of architectural walls and components
are important factors. However, measurement of the scattering properties is not easy
because it is required to observe a complicated scattering phenomenon in spatial and
temporal aspects. Numerical simulation enables detailed examinations on transient
scattering, frequency characteristics of reflection directivity, and so on. Furthermore,
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it is applicable to estimate the two typical indicators, diffusion coefficient and scatter-
ing coefficient. This section introduces application of the boundary element method
to the estimation of scattering properties [19].

8.2.1 BE Analysis of Surface Scattering

8.2.1.1 Indicators of Surface Scattering

When a sound wave impinges on a surface, reflected waves spread over the space
with directivity, as shown in Fig. 8.14. The reflected waves are divided into a specu-
larly reflected component that obeys Snell’s law, and a nonspecularly reflected com-
ponent that is scattered in other directions. To characterize surface scattering, two
kinds of indicators were proposed: diffusion coefficient as a measure of uniformity of
reflection directivity and scattering coefficient as the ratio of nonspecularly reflected
energy to total reflected energy. The diffusion coefficient is defined as the average of
directional autocorrelation coefficients in reflection directivity under arbitrary plane
wave incidence [20, 21], which is represented by

dθ =

(
n∑

i=1

Ei

)2

−
n∑

i=1

E2
i

(n − 1)

n∑
i=1

E2
i

, (8.74)

where Ei is the reflected energy to the i th direction, and n is the total number of
directions. In the case of perfectly specular reflection, dθ = 0, while, in the case
of perfectly diffuse reflection, dθ = 1. The scattering coefficient is defined as the
ratio of nonspecularly reflected energy to total reflected energy [22, 23], which is
represented by

sθ = 1 − Espec

Etotal
= αspec − α

1 − α
, (8.75)
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where Etotal is the total reflected energy, Espec is the specularly reflected energy, α
is the absorption coefficient of a surface, and αspec is the specular absorption coef-
ficient that considers nonspecularly reflected energy to be apparently dissipated. In
the case of perfectly specular reflection, sθ = 0, whereas sθ = 1 merely represents
no energy in specular reflection direction. For a surface of finite size, the above two
indicators can be numerically estimated in a free field. Regarding scattering coef-
ficient, specularly reflected energy cannot be directly determined due to diffracted
waves from the edge of the surface. As an alternative way, the directivity correlation
method [24] was proposed to determine a scattering coefficient from two reflection
directivities for a test sample and for a flat reference surface. Under arbitrary plane
wave incidence, the directional scattering coefficient is given by

sθ = 1 −

∣∣∣∣∣
n∑

i=1

pi · p̂∗
i

∣∣∣∣∣
2

n∑
i=1

|pi |2
n∑

i=1

∣∣ p̂i
∣∣2

, (8.76)

where pi and p̂i denote the complex sound pressure of reflection wave in the i th
direction for the sample and for the flat surface, respectively.

8.2.1.2 Calculation of Reflection Directivity

The boundary element method (BEM) is effective for the free field analysis of
reflection directivity of a surface. If a test sample is considered as a rigid thin panel
with zero thickness, the indirect BEM using degenerate boundary can be applied
more efficiently (see Sect. 4.2.1). Applying the indirect method to a sample with
plane wave incidence as shown in Fig. 8.15, the following equation is derived from
Eq. (4.60):

H ′ p̃ = − p′
d, (8.77)

where p̃ is the sound pressure difference vector for the two sides of the sample, and
p′

d is the pressure gradient vector of the incident wave. Considering a plane wave
incidence with unit amplitude and wave number vector kd, the entries of p′

d are
given by

p′
d,i = ∂

∂ni
exp ( j kd · ri ). (8.78)

After the nodal sound pressure differences are obtained by solving the above linear
system, the sound pressure of reflected wave at an observation point p is calculated
in the postprocessing by

http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 8.15 Schematic for
reflection directivity analysis
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Fig. 8.16 Reflection directivities of the 1D and 2D sinusoidal surfaces (diameter: 3 m, period: 20,
height: 6 cm), with plane wave incidence of θ = 31.5◦ and ϕ = 181.5◦, at 2 kHz. a 1D sinusoidal,
b 2D sinusoidal

p(rp) = hT (rp) p̃. (8.79)

In the calculation of reflection directivity, observation points should be arranged
on a hemisphere sufficiently far from the center of the sample. For typical samples
with a width of 3 m, the angular resolution should be less than 5◦ for 2 kHz, and 3◦
for 4 kHz [25]. For example, Fig. 8.16 shows reflection directivities for two kinds of
sinusoidal surfaces under a plane wave incidence.



272 T. Asakura et al.

Fig. 8.17 Random-incidence diffusion coefficients of the 1D sinusoidal surface (Type 1: period:
20, height: 6 cm) and the flat panel (Flat) with a diameter of 3 m. Case 1: semicircular evaluation;
Case 2: hemispherical evaluation

8.2.2 Calculation of Surface Scattering Indicators

8.2.2.1 Estimation of Diffusion Coefficient

From the reflection directivity calculated as mentioned above, the directional
diffusion coefficient can be determined by Eq. (8.75), and then the random-incidence
diffusion coefficient is obtained with statistical averaging of directional values.
Figure 8.17 shows random-incidence diffusion coefficients for a 1D sinusoidal sur-
face and for a flat surface [26], where the coefficients are determined in two ways:
semicircular evaluation in the orthogonal section and hemispherical evaluation. The
former evaluation gives values close to the results by 2D BEM [27], whereas the latter
evaluation gives very small values, suggesting that it is unsuitable for single-plane
surfaces. The diffusion coefficient increases at lower frequencies due to edge dif-
fraction regardless of surface profile, and the scattering effect of surface unevenness
appears above about 800 Hz. In the estimation of diffusion coefficient for a sample,
the additional effect of edge diffraction can be excluded by normalizing with the
value of the flat surface dθ,r, such as [21]

dθ,n = dθ − dθ,r

1 − dθ,r
. (8.80)

8.2.2.2 Estimation of Scattering Coefficient

The directional scattering coefficient can be also determined from the reflection
directivity by Eq. (8.74), and the random-incidence scattering coefficient is given with
statistical averaging. For the three types of 1D periodical surface with 3 m2 (Fig. 8.18),
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Fig. 8.18 Three types of surface: Type S: sinusoid, Type T: triangular wave, Type R: rectangular
wave

distributions of directional scattering coefficients are shown in Fig. 8.19. The effect
of surface profile is similar below 1 kHz, whereas above 2 kHz, the rectangular wave
type has low values in wide direction compared with the sinusoid and the triangular
wave types. Figure 8.20 shows random-incidence scattering coefficients for the two
types of sinusoid and rectangular wave, with changing the height to period. In the
low frequency range with d/λ < 1/2, the two types take the greatest values at
h/d = 50 [%]. In the high frequency, the sinusoid type generally has the greatest
values at h/d = 30 [%], while the rectangular wave type has peaks and dips due
to interference between the top and bottom surfaces, and the greatest peak value at
h/d = 20 [%]. As demonstrated above, numerical analysis of diffusers is useful to
investigate effective surface profiles.

8.3 Insulation of Windows

To obtain the sound insulation performance of wall structures in the buildings,
experiments in the laboratory or in-situ measurements are performed following the
standardized methods such as ISO. In such a situation, much more effective designing
of buildings is possible by applying the wave-based numerical simulation technique
in the planning phase. Many researches are performed as follows; the analytical solu-
tion by London [28], four-terminal network theory by Beranek [29], SEA method by
Lyon [30]. On the other hand, the vibroacoustical simulation method based on the
wave-based numerical schemes are also applied to the sound transmission problems
[31–34]. In such a method applying the wave-based scheme, the finiteness of the
plates and the vibration reflection and absorption on the boundary of the plates can be
easily treated, because the method discretizes the vibration field into multiple meshes
and that can model the shape of the field accurately. In this section, as an example
of the numerical simulation for the acoustical performance of the building elements
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Fig. 8.20 Random-incidence scattering coefficients with changing the height of structure (period:
20 cm): a sinusoid, b rectangular wave

based on the wave-based scheme, a simulation study using the finite-difference time-
domain method and the boundary element method are described.
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8.3.1 Analysis Using BEM

8.3.1.1 Detail of Method

A detailed numerical method used in this section is described below. In the case study
of this section, the vibration field on the plate element and two semi-free sound fields
on the both sides of the plate are simulated by applying a coupling method. As for
the sound field, the boundary element method is applied to the integral equation on
the sound pressure difference between the sound field on the both sides of the plate.
Finally, we obtain

� p = 2 pd + 4ω2ρ0Gw, (8.81)

where � p is the vector for the sound pressure difference, pd is that for the incident
sound pressure, w is that for the displacement of the plate vibration, G is the matrix
for the influence function, and ρ0 is the density of the air. As for the vibration field,
the finite element method is applied to the vibration equation of the thin plate theory
by Kirchhoff, and finally we obtain

(K − ω2 M)

⎧⎨
⎩

w

θx

θy

⎫⎬
⎭ = Q� p, (8.82)

where θx ,θy are the vectors for the inclination angle of the plate in the x and y
direction, K , M, Q are the stiffness, mass, and conforming matrix, respectively. As
damping of the plate, the internal damping loss of the plate is considered by setting
appropriate values for the stiffness matrix, and the damping loss at the boundary of
the plate is considered by the edge damping model described in the following section.
Two equations described above are simultaneously solved, and the displacement of
the vibrating plate can be obtained. The vibration velocity and the sound pressure
level in the near filed of the plate surface are also calculated based on the obtained
results.

8.3.1.2 Vibration Energy Loss at Edge of Plate

To predict accurately the sound transmission loss of a glass plate, the vibration
and damping characteristics of the edge supporting parts should be appropriately
considered in the simulation. Especially, the damping loss of the vibration at the
edge of the plate has a great influence on the sound transmission loss. For such a
reason, the vibration mechanism of the edge supporting part is replaced by a simple
mechanical impedance model. A detailed procedure is described below. Based on
the assumption that the sealing materials surrounding and fixing the plate counteract
to the displacement and inclination of the edge part, the translational and rotary



276 T. Asakura et al.

Fig. 8.21 Modeling of
the plate edge part by the
translational and rotary
springs

Fig. 8.22 Random incidence absorption coefficient by the elastic continuum mode (Thickness t =
10 [mm])

spring model equivalent to elastic body is considered. A modeling scheme is shown
in Fig. 8.21. Here, the damping of the vibration energy at the edge is caused due
to the internal damping of the spring. Assuming a one-dimensional longitudinal
wave-motion to the translational deformation of the sealing material, the mechanical
impedance of the edge can be described as:

Zq = 2ρscsd

j tan ωh/cs
, (8.83)

where cs = √
Es(1 + jηs)/ρs is the velocity of the longitudinal wave of the sealing

material, Es, ηs, d, h, ρs are the Young’s modulus, loss factor, width, thickness, and
density of the sealing material. In addition, the moment impedance Zm is described
as
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Zm = M

jωθ
= Km

jω
= 2

jω

Es(1 + jηs)d3

12h
, (8.84)

where Km is the stiffness of the rotary spring, and M is the bending moment.
The vibration energy loss can be theoretically calculated by the equation for the
impedance at the edge part.

To investigate the effect of the glass thickness and the physical parameters of
the sealing material, a calculation example is shown. Then, including the sound
transmission loss calculation in the next section, the physical parameters of the glass
plate are set as follows; the density ρ = 2, 500 [kg/m3], the Young’s modulus
E = 7.5 × 1010 [N/m2], Poisson’s ratio ν = 0.22, the loss factor η = 0.002. The
random incidence absorption coefficient of the vibration at the edge for the situation
that the density of the sealing material is ρs = 1, 000, 2, 000 [kg/m3] is shown in
Fig. 8.22. In situation that the sealing material has relatively low elasticity (Es = 106

[N/m2]), some peaks are seen in relatively higher frequency range. These peaks are
caused by the resonance of the sealing material itself. In the following section, the
numerical simulation considering the impedance model for the edge part described
in this section is performed.

8.3.1.3 Calculation Method for Sound Transmission Loss

Based on the coupling simulation method described above, the distribution of the
vibration velocity and the sound pressure near the plate surface is calculated in every
incident angle (Fig. 8.23), and the intensity for the transmitted sound wave is obtained.
By integration of the transmitted intensity through the plate, transmitted sound power
is calculated, and the transmission rate through the plate in every incident angle is
obtained.

Consequently, the random incidence sound transmission loss is obtained by
weighted summation of the transmission rate in each incident angle.

8.3.1.4 Comparison Between Calculation and Measurement [35]

The calculation results of the random-incidence sound transmission loss
considering the energy loss at the edge parts are compared to the measurement
results with putty mounting are shown in Fig. 8.24. The loss factor of the sealing
material is set as ηs = 0.5 which corresponds to that of the putty. In case of 6 mm
thickness, the calculation results agree well with the measurement ones regardless
of the Young’s modulus of the sealing material. In all the cases of 6 and 10 mm
thickness, the calculation and measurement results in the condition with Es = 107

[N/m2] have the highest correlation.
Next, the measurement and calculation results with silicone mounting are shown

in Fig. 8.25. The loss factor of the sealing material is set as ηs = 0.1 considering
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Fig. 8.23 Three-dimensional sound transmission model

Fig. 8.24 Calculation and measurement results of the random-incidence sound transmission loss
in situation of putty mounting in the surrounding parts of the glass plate. (the plate size 1.25 × 1.5
[m2], the density of the sealing material ρs =1 000 [kg/m3], the loss factor of the sealing material,
ηs = 0.5)

the silicone. The condition with a Young’s modulus of Es = 106 [N/m2] has the
highest correlation, however they have some discrepancy at around the coincidence
frequency. The contacting area between the silicone material and the glass pane is
smaller than that in the case with putty mounting [35], and it is considered as the
primary factor of the discrepancy that the edge supporting model considered in the
simulation is not accurately agreeing with the actual phenomena in that view point.



8 Acoustic Property Simulation for Building Components 279

Fig. 8.25 Calculation and measurement results of the random-incidence sound transmission loss
in situation of silicone mounting in the surrounding parts of the glass plate. (the plate size 0.9 × 0.9
[m2], the density of the sealing material ρs =1 000 [kg/m3], the loss factor of the sealing material,
ηs = 0.1)

8.3.2 Analysis Using FDTD Method

8.3.2.1 Detail of Method

The momentum equations and the continuity equation for three-dimensional sound
field are described as:

∂ p(x, y, z, t)

∂x
+ ρ0

∂ux (x, y, z, t)

∂t
= 0, (8.85)

∂ p(x, y, z, t)

∂y
+ ρ0

∂uy(x, y, z, t)

∂t
= 0, (8.86)

∂ p(x, y, z, t)

∂z
+ ρ0

∂uz(x, y, z, t)

∂t
= 0, (8.87)

∂ p(x, y, z, t)

∂t
+ ρ0c0

2
[
∂ux (x, y, z, t)

∂t
+ ∂uy(x, y, z, t)

∂t
+ ∂uz(x, y, z, t)

∂t

]
= 0,

(8.88)

where p is sound pressure, ux , uy, uz are particle velocities for x, y, z directions, ρ0
and c0 are the density of the air and speed of sound, respectively. A transient response
in a sound field is calculated by solving the discretized equations obtained from the
basic equations through finite-difference approximation. A detailed procedure of the
calculation is described in the reference [36]. As for the bending wave simulation,
the vibration equation based on the thin plate theory by Kirchhoff,

D∇4w + ξD
∂

∂t
∇4w + mμ

∂w

∂t
+ m

∂2w

∂t2 = F, (8.89)
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Fig. 8.26 Frequency
characteristics of the loss
factor simulated in the FDTD
analysis
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Fig. 8.27 Mechanical equivalent impedance model applied in the vibration analysis

D = Eh3

12(1 − ν2)
, (8.90)

F = p1 − p2, (8.91)

are used. Here, w is the displacement, E is the Young’s modulus, h is the thickness,
ν is the Poisson’s ratio, and p is the external force to the plate. The external force
is obtained by the difference between p1 and p2, which are the sound pressures on
both sides of the plate. In Eq. (8.89), ξ and μ in the second and third term of the left
side are the coefficients related to the internal and external damping. The relationship
between the coefficients of ξ and μ, and the loss factor is described as

η = 2π f ξ + μ

2π f
, (8.92)

where η is described as a function of frequency. The frequency characteristics of
the modeled loss factor are shown in Fig. 8.26. As shown in the figure, the exter-
nal/internal damping is in proportion/inverse proportion to the frequency, and the
Rayleigh damping obtained as the superposition of the two damping characteristics
has curved shape convex downward. To model the actual frequency characteristics
of the loss factor, suitable coefficients of ξ and μ are set, and used in the simulation.
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Fig. 8.28 Pair of irregular-shaped reverberation rooms under investigation

8.3.2.2 Vibration Energy Loss at Edge of Plate

As mentioned in Sect. 8.3.1, the energy loss of the bending wave at the elastically
supported edge part of the glass pane should be considered to simulate the sound
insulation accurately. Therefore, a mechanical equivalent impedance model in which
the boundary condition is modeled by an equivalent system comprising masses,
springs, and dampers (see Fig. 8.27) is adopted. The assumed mechanical equivalent
system vibrates when this system is forced by a shear force F or a flexural moment
M , and this vibration is described by the following momentum equations:

F = m F
∂2w0

∂t2 + cF
∂w0

∂t
+ kFw0, (8.93)

M = mM
∂2w0

∂t2 + cM
∂w0

∂t
+ kMw0, (8.94)

where m F , cF , kF , m M , cM and kM are the mass, resistance coefficient, and stiffness
of the assumed mechanical system actuated by M or F , respectively. w0 is the dis-
placement at the edge. The simulation was performed by solving the finite-difference
forms of Eqs. (8.89), (8.93), (8.94) simultaneously. Here, F and M are calculated by:

F = −D

[
∂

∂x

(
∂2w

∂x2 + ∂2w

∂y2

)
+ (1 − ν)

∂3w

∂x∂y2

]
, (8.95)

M = −D

(
∂2w

∂x2 + ν
∂2w

∂y2

)
. (8.96)
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8.3.2.3 Calculation Scheme of Sound Transmission Loss

A pair of irregular-shaped reverberation rooms shown in Fig. 8.28 is simulated.
The both rooms have a volume of 164 m3. In the simulation, 490 receiving points are
set, and the averaged sound pressure levels inside both rooms are calculated. Finally,
the sound transmission loss is obtained by

R = L1 − L2 + 10 log10
S

A2
, (8.97)

A2 = 55.3V2/cT2, (8.98)

where L1, L2 are the averaged sound energy levels in the rooms of source side
and receiving side, S is the total area of the specimen, A2 is the equivalent sound
absorption area, V2 and T2 are the volume of the receiving room and the reverberation
time of the receiving room, respectively. The reverberation time in each 1/3 Oct.
band was calculated by the integrated impulse response method. The absorption
coefficients of all surfaces inside the rooms were set to be 0.026.

8.3.2.4 Comparison with Measurement Results [37, 38]

As a case study, the sound transmission loss of the glass pane and the plasterboard wall
is calculated. Setting conditions in the simulation is described as follows. As for the
glass pane, the vibration energy loss at the elastically supported edge is considered by
the method described in the preceding section, and the density ρ = 2 500 [kg/m3], the
Young’s modulus E = 7.16 × 1010 [N/m2], the Poisson’s ratio ν = 0.22 are given.
The loss factor of the glass pane was neglected. Referring to the measurement data
by Yoshimura [35] shown as broken line in Fig. 8.29, the frequency characteristics
of the normal incidence absorption coefficient at the edge part was simulated as
shown by solid line in the same figure. In the figure, determined parameters are also
shown. As investigated conditions, single glazed glass of 6 and 10 mm thickness,
double-glazed glass (air layer of 6 mm thickness was sandwiched by two sheets
of glass of 6 mm thickness) are treated. As for the plasterboard wall, the boundary
condition is set as clamped edge, and the density ρ = 670 [kg/m3], Young’s modulus
E = 2.1×109 [N/m2] and Poisson’s ratio ν = 0.30 are given. For the loss factor, the
frequency characteristics shown by solid line in Fig. 8.30 were simulated by giving
damping coefficients shown in the same figure. A single plasterboard of 12 mm
thickness, double wall A (air layer of 80 mm thickness was sandwiched by two
sheets of plasterboard of 12 mm thickness), double wall B (air layer and glass wools
of 32 kg/m3 of 80 mm thickness in total was sandwiched by two sheets of plasterboard
of 12 mm thickness) are treated. Calculation results are shown in Fig. 8.31. As for
the single- and double-glazed glasses, the calculation results agree well with the
measurement results. As for the plasterboard, the results of the single wall and the
double walls also agree with the measurement.
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Fig. 8.29 Normal incidence absorption coefficient of the elastically supported edge simulated in
the FDTD analysis

Fig. 8.30 Simulated loss
factor of the plasterboard and
the damping coefficients used
in the simulation
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8.4 Acoustic Radiation from Loudspeakers

A great amount of knowledge about loudspeakers has been acquired and has for a
long time been utilized in design of loudspeakers [39–41]. However, designing based
on this conventional method has recently become more difficult than ever because
of increasing of there various applications and the pursuit of design characteris-
tics, functionality, and cost performance. Accordingly, optimization technology for
high-sound performance, including installation conditions, is becoming increasingly
important. To fulfill these demands and improve sound quality, acoustic simulations
based on wave theory can be an effective way. Therefore, development and appli-
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Fig. 8.31 Comparison of the sound transmission loss between calculation and measurement

cation of this technique is now expanding [42, 43]. The calculation procedure of
the numerical simulations and its application for electrodynamics type loudspeakers
at low frequencies are described herein. Evaluation of the sound characteristics of a
horn speaker at the middle to high frequencies is also described.
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8.4.1 Calculation Procedure

8.4.1.1 Basic Equations

A dynamic cone speaker consists of three systems: the electrical system that changes
the electrical signal to mechanical vibration, the mechanical system that generates the
acoustic wave, and the acoustic system that radiates the acoustic wave. These three
systems are coupled with each other and feed the sound into space, so a numerical
simulation model must be an electrical, mechanical, and acoustic coupled system.
The coupled system is as follows. First, the electrical system is assumed to be one-
dimensional due to the target frequency being limited to low. As a result, the input
force to the mechanical system is also one-dimensional. On the other hand, because
the modal coordinates are employed to model the mechanical motion (the three-
dimensional finite element method is used to calculate the eigenvalues) and the
boundary element method is employed for the acoustic system, the phenomena are
modeled as three-dimensional.
–Electrical model

TE(E − ES) = I. (8.99)

Here, TE is the transfer function between the electric voltage and the current of the
electric circuit. It is also equivalent to the inverse of the electric impedance Ze of
the voice coil. E is the electric voltage, I is the electric current, and ES is the back
electromotive force produced by the vibration velocity V of the cone. By applying
two equations ES = AV where A (=BD) is force factor and FE = AI where FE is
the force produced by the coil Eq. (8.99) is changed to the following form:

TE A(E − AV ) = FE. (8.100)

–Mechanical system
TS(FE − FA) = V . (8.101)

Here, TS is the structural transfer function between the force acting on the cone and
its vibration velocity. FA is the force applied by the acoustic wave.
–Acoustic model

TAV = FA. (8.102)

Here, TA is the acoustic transfer function between the vibration velocity of the cone
and the force applied by the acoustic wave.

8.4.1.2 Calculation Method

–Structural-acoustic coupled model
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Substituting Eq. (8.102) with Eq. (8.101), the following structural-acoustic
coupled system is obtained:

TS−A FE = V . (8.103)

Here, TS−A = TS/(1 − TSTA) is the transfer function of structural-acoustic coupled
system. For this system, the methodology described in the next section is applied.
And TS−A is the vibration velocity V obtained from the system whose input force
FE is equal to 1.
–Electrical–mechanical-acoustic-coupled model

By substituting Eq. (8.103) into Eq. (8.100), the electrical-mechanical-acoustic
coupled system is obtained:

TE−S−A E = FE. (8.104)

Here, TE−S−A = TE A/(1 − A2TETS−A) is the transfer function of the electrical–
mechanical-acoustic coupled system. The transfer function TE−S−A is easily obtained
because TE is one-dimensional and TS−A is obtained by the methodology described in
the next section. For the calculation of TE, T-S parameters opened by the manufacturer
are effectively used.

8.4.1.3 Calculation Method for Transfer Function of Structural-Acoustic
Coupled System

The vibration of the cone and the acoustic field inside and outside the speaker box
have three-dimensional characteristics. Therefore the transfer function TS−A that
considers three-dimensional phenomena should be used for the prediction.
–Acoustic model

For the acoustic model, the boundary element method is applied. Applying the
new boundary �s that couples the structure to the boundary indicated in Fig. 4.2,
Eq. (4.14) is changed to the following form.

(
−1

2
I + H + D

)
p − Gsvs = Gv − pd, (8.105)

where vs is the velocity vector obtained from ϕq at the boundary �s, q is obtained
from Eq. (8.106), and Gsi j = jωρ

∫
�s

G(ri , rq)ϕ j (rq)d�.

–Structural model
The following formulation is obtained by applying the modal coordinates to the

structural vibration equation. Note that eigenvectors must be normalized to the mass
matrix.

(−ω2 + 2 j hωω0 + ω2
0)q = ϕT ( f + sT p), (8.106)

http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
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where h is the diagonal matrix consisting of the viscous damping ratio, ω0 is the
diagonal matrix consisting of eigenvalues, q is the modal participation factor vector,
f is the load vector, s is the area vector that the sound pressure acts on, and p on the
right-hand side is the unknown in Eq. (8.105).
–Coupled model

The structural-acoustic coupled formulation is obtained by using Eqs. (8.105) and
(8.106) simultaneously:

[
E + B + C ω2ρA′ϕ

−ϕT s (−ω2 + 2 j hωω0 + ω2
0)

]{
p
q

}
=
{

jωρAv

−ϕT f

}
. (8.107)

8.4.2 Numerical Examples

8.4.2.1 Characteristics of Closed-Type Loudspeaker at Low Frequency Range

Using a simple model (Fig. 8.32), in which a speaker unit (radius:120 mm) is attached
to the JIS box (940 × 1 240 × 640 mm3), we conducted acoustic simulations with
the boundary element method (Fig. 8.33). The transfer function obtained from these
simulations and input condition of electric voltage (2 V) are used for the coupled
analysis. The frequency response curve at the point 1.0 m distance in front of the
speaker unit and electric impedance are shown in Fig. 8.34. These results correspond
well to the measured data.

8.4.2.2 Sound Characteristics of Bass Reflex Type Loudspeaker at Low
Frequency Range

The bass reflex type loudspeaker is characterized by high-sound performance at the
low frequency range compared with closed-type loudspeaker (Figs. 8.35, 8.36). The
radiated sound at the low frequency range is increased by the sound wave that is
radiated to the inside of the cabinet by the cone and comes through the port (venting
hole). This mechanism makes use of the Helmholtz resonance phenomenon, that can
be approximately modeled resonance system by the air in the cabinet as spring (Kc)
and the air in the port as mass (Mp) (Fig. 8.37).

The analysis case with a model (cabinet: 318×186×186 mm3; port radius: 28 mm;
port length: 80 mm; speaker unit radius: 130 mm) indicated in Fig. 8.38 is addressed
here. The sound pressure response and electric impedance are shown in Fig. 8.39.
There are two peaks in the electric impedance curve at the low frequency range,
the lower one is due to the effect of the electrical–mechanical resonance system
on which the mass of the air in the port has a dominant effect, while the higher is
due to the effect of the electrical–mechanical resonance system on which the spring
of the air in the cabinet has a dominant effect. The transfer function between the
force acting on the cone and the radiated sound pressure on the cone is indicated in
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Fig. 8.32 Analysis model

Fig. 8.33 Spatial distribution of sound pressure
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Fig. 8.34 Results of coupled analysis. a Radiated sound pressure, b Electrical impedance
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Fig. 8.35 Closed-type
loudspeaker and bass reflex
type loudspeaker

Fig. 8.36 Difference in
frequency characteristics
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Fig. 8.38 Analysis model

Fig. 8.40. There are also two peaks at the same frequencies and at three frequencies
including Helmholtz resonance one phase reversal occur. The force acting on the
cone from the electric system and the vibration velocity of the cone in the case of
the constant voltage driving is indicated in Fig. 8.41. At the peak frequencies of the
electric impedance, the force has minimum value and the velocity has the maximum.
This is due to the reverse electromotive force produced by the cone vibration of large
amplitude at the two resonance frequencies.
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Fig. 8.39 Force acting on the
cone and its vibration velocity
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Fig. 8.41 Force acting on the
cone and its vibration velocity        Force
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Fig. 8.43 Spatial distribution
of radiated sound at Helmholtz
resonance frequency. a Loud-
speaker model, b Spatial
distribution of pressure
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Figure 8.42 shows the frequency response curve of the sound pressure level and
phase at the points in front of the cone and the exit of the port. The sound pressures
radiated from the cone and the port have reversal phase at the Helmholtz resonance
frequency. At frequencies above the resonance frequency, the phase of both are the
same, so these two sound components reinforce each other. While at frequencies
below it, the phase is opposite, and then radiated pressure is eventually canceled and
the total sound power becomes poor.

The distribution of the sound pressure at the resonance is shown in Fig. 8.43.
This indicates that the contribution of the cone to the radiated sound is considerably
small because a large amount of energy is radiated from the port, and at the same
time the vibration velocity of the cone is small.

Like the above, by examining the acoustic phenomenon of the bass reflex type
loudspeaker using these numerical simulations, we can predict and evaluate the con-
tribution of the radiated sound from the port and the difference in the acoustic char-
acteristics due to the location or direction of the port.

8.4.2.3 Acoustic Characteristics of Horn Speakers at Middle to High
Frequency Range

This section addresses the case of evaluating the directivity at middle to high
frequency range by wave-based acoustic analysis. A horn speaker(radius: 200 ×
350 mm2; length: 155 mm) indicated in Fig. 8.44 is used. For boundary conditions,
the vibration velocity is applied to the vibrating surface located inside the horn.

The sound pressure distribution in the horizontal plane is shown in Fig. 8.45, and
the directivity of the radiated pressure evaluated on the arc, which has a radius of
1.0 m, is shown in Fig. 8.46. There is good correlation between the simulations and
experimental results.

The frequency-dependent directivity angle (angle of directions in which the
pressure drops less than 6.0 dB compared with pressure of front direction) curves
of different horn shapes are plotted in Fig. 8.47. They are evaluated numerically.
The evaluation of the frequency-dependent directivity angle of loudspeakers with
different specification is quite effective in having design optimization.
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Fig. 8.44 Horn speaker
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Fig. 8.47 Frequency
dependence of directional
angle
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Chapter 9
Auralization

Takatoshi Yokota, Takumi Asakura and Takayuki Masumoto

Abstract This chapter introduces some techniques for the auralization of numerical
simulations and provides an example of calculating the head-related transfer func-
tion (HRTF) which is a function that is fundamental to reproduce stereophonic sound
field. In the first section, we introduce a sound field simulation technique combines
a numerical simulation with a multichannel reproduction technique, and we present
applications of this method to the problem on room acoustics. In the second section,
we discuss an auralization technique that simulates the sound insulation characteris-
tics of the façade of a building. In the final section, we present the results of calculating
the HRTF and discuss the applicability and efficiency of the analysis method.
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9.1 Room Acoustics

The auralization of simulation results is one of the most important topics in room
acoustics. The techniques for the auralization of the results obtained from scale model
experiments or simulations based on the geometrical acoustics have been developed
and have already been put into practical use in the field of acoustical design. In these
techniques, the impulse responses at target positions in the sound field under consider-
ation are obtained by scale model experiments or by geometrical acoustic simulations,
and they are then convolved with a dry source. The resultant signals can be listened to
through headphones or loudspeakers. In recent years, outstanding progress in com-
puter hardware has made it possible to auralize the results obtained from wave-based
numerical simulations. In the finite-difference time-domain (FDTD) calculations,
the impulse response at an arbitrary receiver position can be obtained directly, and
it can then be listened by simply converting the digital signals to analog signals.

In the following section, we introduce a multichannel sound field simulation sys-
tem for auralizing the results of the FDTD method. As applications of the auralization
technique, we conducted a subjective comparison on the effects of sound diffusers
and we also reproduced a particular fluttering echo in a shrine (the world-famous
phenomenon known as the “Roaring Dragon”).

9.1.1 Multichannel Reproduction System with FDTD Method

Figure 9.1 shows the outline of a six-channel sound field simulation system that
combines three-dimensional numerical analysis using the FDTD calculation, with a
six-channel sound reproduction system [1]. This system was originally developed
to simulate the sound field of actual concert halls in an anechoic room [2] and the
technique has been applied to the auralization of numerical simulation results. In this
system, the directional impulse responses in the directions of every 90√ at a receiving
point in three-dimensional sound field are first calculated by the FDTD method.
Next, the calculated impulse response signals are reproduced directly through the
six loudspeakers arranged at every 90√ in an anechoic room. In this way, the acoustical
properties at an arbitrary receiving point set in the virtual space assumed in the FDTD
calculation can be reproduced at the center of the sound reproduction system, and
one can experience them.

In order to calculate the directional impulse responses for the six orthogonal
directions, an arbitrary directivity factor is assumed and set to every 90√ by rotating
its direction at the receiving point. By multiplying the directivity factor and the
instantaneous sound pressure at the receiving point, each of the directional impulse
responses at the receiving point is calculated. Two kinds of directivity factor have
been proposed, as follows:

Type-I (Cardioid):

D1,i = 1 + cos ρi

2
, (9.1)
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Fig. 9.1 Outline of a six-channel sound simulation system

Type-II:

D2,i =
{ cos ρi

A cos ρi ≤ 0
0 cos ρi < 0

, (9.2)

A = 1

2

6∑
i=1

∣∣cos ρi
∣∣, (9.3)

where D1,i or D2,i is the directivity factor (i = 1–6), ρi is the angle between the
front direction of each directivity factor and the incident angle of the sound at the
receiving point. The incident angle is obtained from the sound intensity vector, which
is calculated by the FDTD method as follows:

cos ρi = −dix · Ix − diy · Iy − diz · Iz√(
Ix

)2 + (
Iy

)2 + (
Iz

)2
, (9.4)

where I = (
Ix , Iy, Iz

)
, di = (

dix , diy, diz
)
,
∣∣di

∣∣ = 1, di is the front direction
of each directivity factor, and I is the instantaneous sound intensity vector, which
is calculated by the FDTD method. By reproducing the resultant six-directional
impulse responses, the amplitude of the sound pressure and the direction of the
sound intensity vector at the receiving point can be simulated accurately at the center
of the reproduction system.

9.1.2 Simulation of Room Impulse Responses

In this section, we consider the auralization of the impulse responses for rooms
with different shapes. Figure 9.2 shows the two-dimensional sound fields for the
three different room shapes. The directional impulse responses were calculated by
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Fig. 9.2 Outline of the sound field

(a) (b) (c)

Fig. 9.3 Comparisons of the echo diagrams of the calculations and those of the measurements. a
Rectangle. b Fan-shape. c Ellipse

the two-dimensional FDTD method, and the signals were reproduced through four
loudspeakers that were set at right angles on an arc of 2 m radius in an anechoic room.
In the calculations, the spatial grid size and the time interval were set to be 0.01 m
and 0.02 ms, respectively. It was assumed that the normal acoustic impedance of
the room boundaries consisted only of the real part, and a constant sound absorption
coefficient (∂ = 0.2) was assumed for all boundaries. We used the Type-I directivity
factor, defined in Eq. (9.1), to calculate the directional impulse responses.

The calculated directional impulse response signals were reproduced through the
four-channel loudspeaker system, and the omnidirectional impulse response was
measured at the center of the reproduced sound field. Figure 9.3 compares the echo
diagram of the calculation with that of the measurement. These echo diagrams were
obtained by passing the omnidirectional impulse response signal through a numer-
ical RMS detector with a 1 ms time constant. As seen in the figure, the calculated
results and the measured ones are in very good agreement. The instantaneous sound
intensities at the center of the reproduction system were also measured. Figure 9.4
uses radar charts to compare the sound intensity vector of the calculation with that of
the measurement. In these figures, it can be seen that in all three cases, the calculated
intensity vectors are in fairly good agreement with the measured ones.
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Fig. 9.4 Comparisons between the calculated and measured instantaneous sound intensities. a
Calculated, b measured

9.1.3 Effects of Sound Diffusers in Rooms

As an application to room acoustics of the multichannel sound field simulation
method, we conducted an experiment in which we subjectively evaluated the effect
of sound diffusers to prevent fluttering echoes. Figure 9.5 shows the rectangular room
and two types of sound diffusers attached at the room boundaries (a: Triangular and
b: Column). For each type of diffuser, we used four different sets of dimensions,
as shown in the figure. For the boundary condition, it was assumed that the normal
acoustic impedance at the room boundaries consisted of only the real part, and a
constant sound absorption coefficient was assumed for all the boundaries. In the case
of a bare room (without diffusers), the absorption coefficient was set to 0.2. For the
cases with diffusers, the sound absorption coefficient was assumed to be such that
the equivalent sound absorption length (which, in a three-dimensional room, corre-
sponds to sound absorption area) was equal to that of the bare room. In the FDTD
calculation, we again used a spatial grid size of 0.01 m and a time step of 0.02 ms.
In the experiment, the impulse responses were presented to the subject in a random
order through the four-channel loudspeaker system. After hearing each impulse re-
sponse, the subject judged the strength of the fluttering echo and assigned it to one
of five categories as shown in Fig. 9.6. Figure 9.6 shows the results of the subjective
experiment. In these figures, each plot shows the arithmetic average of the category
number assigned by all of the subjects for each diffuser condition at each receiving
point. In the case of the triangular diffusers, it can be seen that the larger the diffusers,
the better they prevent the fluttering echoes. On the other hand, in the case of the
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(a) (b)

Fig. 9.5 Two-dimensional rectangular room and the two types of sound diffusers that were inves-
tigated

(a) (b)

Fig. 9.6 Results of the judgment test on the strength of fluttering echo: a triangular diffusers; b
column diffusers

column diffusers, the effect was greatest when the column interval was 1.5 m. This
indicates that an optimum scale exists for the prevention of a fluttering echo by a
column diffuser.

9.1.4 Auralization of “Roaring Dragon”

The “Honji-Do” temple located in the “Nikko Toshogu” area of Nikko City, Japan, is
famous for a strange acoustic phenomenon called the “Roaring Dragon.” A dragon
is painted on the ceiling of this building, and when hands are clapped under the head
of the dragon, one can hear a strange fluttering echo. In this section, we present a
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challenging study that attempts to reproduce the “Roaring Dragon” phenomenon of
the “Honji-Do” temple by combining the FDTD with the multichannel reproduction
technique.

9.1.4.1 “Roaring Dragon” Phenomenon in “Honji-Do” Temple

The “Roaring Dragon” phenomenon in the “Honji-Do” temple is a fluttering echo that
is caused by repeated reflections between the ceiling, which has very little curvature,
and the flat floor. The temple was unfortunately destroyed by an accidental fire
in 1961 and was rebuilt in 1969. In the reconstruction work, reproduction of the
“Roaring Dragon” phenomenon was one of the most important items, and a one-
fourth scale acoustic model experiment was conducted to study the cause of the
acoustic phenomenon and to determine how it could be reconstructed. The following
is a summary of the study:

1. The duration time of the fluttering echo becomes longer with increasing curvature
of the ceiling.

2. The arch rise (the difference in height between the center of the ceiling and the
edge) that best reproduces the “Roaring Dragon” phenomenon is 9 cm.

3. When hands are clapped under the head of the dragon, just to the side of directly
below the center of the ceiling, the “Roaling Dragon” pulsates.

9.1.4.2 Three-Dimensional FDTD Simulation
of “Roaring Dragon” Phenomenon

Three-dimensional FDTD simulation was conducted by modeling the room sound
field in the “Honji-Do” temple. Figure 9.7 shows the plan of the “Honji-Do” tem-
ple.The source was positioned just below the painted dragon at a height of 1.2 m. The
receiving point was positioned just above the source position at a height of 1.5 m. As
the arch rise of the ceiling (the difference in height between the center of the ceiling
and the edge) was assumed to be 9 cm. The spatial grid size and the time interval were
set to be 0.02 m and 0.032 ms, respectively. The Type-II directivity factor, defined in
Eq. (9.2), was selected for calculating the directional impulse responses.

9.1.4.3 Reproduction of “Roaring Dragon” Phenomenon by Six-Channel
Sound Field Simulation

Figure 9.8 shows the system used to reproduce the “Roaring Dragon”, based on
a three-dimensional FDTD calculation and the six-channel sound field simulation
technique [3]. The basic concept of this system is the same as that of the multi-
channel sound field simulation system described above. In this system, the sound
of a handclap made at the center of the system was convolved in real time with
the directional impulse responses at the receiving point, which was set in the sound
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Fig. 9.7 Plan of the “Honji-Do” temple

Fig. 9.8 Outline of the six-channel sound field simulation for reproduction of the “Roaring Dragon”

field of the model of the “Honji-Do” temple. The directional impulse responses were
obtained by the FDTD calculation, and the resultant signals were reproduced through
the loudspeakers set in an anechoic room. This system was originally developed to
simulate the sound field on the stage of actual concert halls in an anechoic room
to investigate the acoustic property for music players [4]. The technique has also
been applied to the auralization of numerical simulation results. Figure 9.9 shows
the directional impulse responses obtained by the FDTD calculations. In the figures,
the front direction corresponds to the upward direction in Fig. 9.7. It can be seen that
the fluttering echo persists for a long time in the directional impulse responses of
Up and Down directions. This indicates that there were repeated strong reflections
between the ceiling and the floor. Those who had visited “Honji-Do” temple and
experienced the real “Roaring Dragon” within the previous year reported that the
simulated fluttering echo could be perceived above their heads and that it pulsated as
it decayed. Some subjects also commented that they perceived the duration time of
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Fig. 9.9 Directional impulse responses at the receiving point (the sound pressure is normalized by
the amplitude of the direct sound)

the simulated echo to be longer than that of the real “Roaring Dragon”. One reason
for this might be that there are many objects, such as ritual articles, which reflect or
absorb the sound in the real “Honji-Do” temple. It may also be due to the low level
of background noise in the anechoic room.

9.2 Noise Propagation

The frequency and time-transient characteristics of the leak sound transmitted into the
residential buildings are strongly influenced by the sound insulation characteristics of
the building façade. In this section, an auralization technique [5] in which the sound
insulation characteristics of the façade can be realized through numerical simulation
is described.

9.2.1 Auralization Method

Detailed scheme of the proposed auralization system shown in Fig. 9.10 is described
in this section.

9.2.1.1 Recording of Vehicle Noise

A waveform of a pass-by noise of a vehicle was recorded by an omnidirectional
microphone which was set at a point 7.5 m away from the running lane (waveform
(a), shown in Fig. 9.10), and the waveform was divided into N sections with every



304 T. Yokota et al.

k th section
(Recorded data)

Impulse response
(Result of the analysis)

k th data
(Transmitted sound into the room)

Overlapped data

Step 1 Recording of the vehicle noise
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Time [sec]Pr
es

su
re

  [
Pa

]

Reception point

Glass pane

Source points

Velocity v 1st section

Δt

α

Façade

N th section2nd section 3rd section

1st data

2nd data

k th data

N th data

Δt

Δt

6m

70

0 

α

10

(b)

(a)

(c)• • • • • •

Fig. 9.10 Flow chart of the auralization scheme. a Waveform, b incident angle of the vehicle noise
into the room, c arrangement of the numerical analysis (sound transmission through façade)
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time interval, κt . Signal processing on these divided N sections was carried out in
the following steps.

9.2.1.2 Simulation of Sound Insulation Characteristics of Building Façade

As shown in Step 2 of Fig. 9.10, the incident angle, ∂, of the sound which propagates
from the running vehicle to the building façade, is varying every moment and the
sound insulation characteristics of building façade, especially glass pane, also vary
in correspondence with the angle of sound incidence.

In order to simulate the directional characteristics of sound insulation of the build-
ing façade, vibroacoustic numerical analysis using FDTD method was applied. The
plan of the sound field for the three-dimensional analysis is shown in Fig. 9.10c. Each
of the three-dimensional sound field was analyzed, and the impulse response at the
receiving point was calculated.

9.2.1.3 Synthesis of Vehicle Noise Transmitted into a Room

The incident angle, ∂, of the vehicle noise to the façade was estimated by the geo-
metrical relationship between the positions of the vehicle and the building façade.
The convolution of the kth vehicle noise whose incident angle to the building façade
is ∂ and the impulse response of the same incident angle, ∂, obtained by numeri-
cal analysis was performed for the data of N sections. The transmitted noise into
the room was made by overlapping the convoluted data by shifting every data with
interval, κt as shown in Step 3 of Fig. 9.10.

9.2.1.4 Simulation of Traffic Flow

In order to simulate a road traffic noise with an arbitrary traffic volume, a pass-by
noises of multiple automobiles were overlapped. An example of the simulated road
traffic noise with a traffic volume, 1,500 vehicles/h, is shown in Step 4 of Fig. 9.10.

9.2.2 Simulation Results

In this study, a simulation of the vehicle noise at the point of reception in indoor
spaces was performed using the proposed method. The assumed condition is shown
in Fig. 9.11. The geometrical relationship between the running lane of the vehicle and
the points of reception and the details of the reception room are shown in Fig. 9.11.
It was assumed that a glass plate with dimensions of 1.8 m (W ) × 1.8 m (H) is set in
the opening of a room whose dimensions are 2.7 m (W ) × 2.2 m (H) × 3.6 m (D) ,
as shown in the figure.
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Fig. 9.11 Investigated conditions in the case study

The values of the parameters for the physical properties of the glass plate were set
as follows: density, 2,500 kg/m3; Young’s modulus, 7.16×1010 N/m2; and Poisson’s
ratio, 0.22. In addition, an elastically supported condition as described in Sect. 8.3.2
was applied in the vibration analysis. The absorption coefficient of the ceiling was
set at 0.8, assuming a ceiling with absorption treatment, and that of the surfaces of
the other walls were set at 0.2.

The investigated conditions are as follows: Case 0 (outdoor space), Case 1 (inside
a room with a single glass plate with a thickness of 6 mm in the opening), Case 2
(inside a room with single glass plate of thickness 10 mm), and Case 3 (inside a room
with double-glazed glass composed of two glass plates, each of thickness of 6 mm,
separated by a 6-mm-thick layer of air).

Simulation results of the time-transient characteristics of sound pressure levels at
the reception point caused by one pass-by vehicle is shown in each one-third Octave
band in Fig. 9.12. In this graph, the timing at which the running vehicle reaches the
0 m position in Fig. 9.11 is set at 0 s. The sound pressure levels are calculated so that
the sound exposure level of the pass-by sound is 75 dB. The speed of the vehicle is
assumed to be 60 km/h, and the horizontal axis of the figure describes a relative time
from the timing of the vehicle passing in front of the room.

http://dx.doi.org/10.1007/978-4-431-54454-8_8
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Fig. 9.12 Time-transient characteristics of the pass-by sound in 1/3. Oct. band frequency

In Case 0, the sound pressure level decreases as the position of the running vehicle
moves further from the 0 m position in all frequency bands. However, in Case 1, the
time-variant characteristics for 2 kHz have peaks at −1.2 s and +1.2 s, and the sound
pressure level at 0 m is less than those at the peak positions. It is considered that
a large quantity of sound energy is transmitted through the glass plate when the
incident angle of sound to the plate is larger, in the 2 kHz band, which includes the
coincidence cut-off frequency of a glass plate with a thickness of 6 mm.

In Case 2, the time-variant characteristics for 1 and 2 kHz have the same peak
characteristics as those for 2 kHz in Case 1. It is also considered that this result is due
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Fig. 9.13 Frequency char-
acteristics of the transmitted
sound into the room
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to the coincidence phenomenon. In Case 3, the time-variant characteristics in 250 Hz
have a large value, especially at around 0 s. The reason for this is that a double-glazed
glass plate has a resonant frequency in the low frequency range, which is caused by
the resonant phenomenon that characterizes its composition of mass (glass)-spring
(air layer)-mass (glass).

Based on the obtained time-transient characteristics, the single event sound ex-
posure levels, LE, of the pass-by sounds are calculated, and the results are shown in
Fig. 9.13. Comparing the conditions of Case 1 and 2, the sound energy level of Case
2 in 250 Hz has larger value than that of Case 1, and it is caused by the mass-spring-
mass effect as described above.

9.3 Head-Related Transfer Functions

A wide variety of research fields are discussing the need to reproduce stereophonic
sound fields. To do this, it is necessary to obtain head-related transfer functions
(HRTFs), which are acoustic transfer functions between sound sources located
around the human head and ear. Based on this, several measurements have been
performed [6]. However, when the physical load of the subject is taken into account,
it is extremely difficult to conduct the necessary procedures for obtaining HRTFs.
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Attempts have therefore been made to obtain HRTFs by numerical analysis, resulting
in a number of published reports.

Yet the numerical analysis also has some drawbacks. Huge calculation costs are
required since data for the entire audible frequency range are required for HRTFs.
For example, if analysis at 20 kHz is conducted using the boundary element method
(BEM), the number of degrees of freedom (DOF) to represent a human head is around
100,000, and the required memory will exceed 160 GB. For this reason, upper limit
frequencies have been limited to several kHz if the entire head is taken into account,
or several assumptions have been made to conduct analysis up to 20 kHz (e.g., pinna
is connected to the infinite baffle plane) [7].

Incidentally, in recent years, research has also been conducted on the implementa-
tion of sound field analysis using fast multipole algorithms with the three-dimensional
BEM (see Sect. 4.3). Using this fast multipole BEM (FMBEM) it has been possible
to calculate HRTFs for the entire audible frequency range within feasible memory
sizes and calculation times [8]. This study outlines the results of these calculations.

9.3.1 Basic Examination

9.3.1.1 Checking Uniqueness of Solution

When analyzing the external field using the BEM, the unique solution cannot be
obtained at the eigenfrequencies of an internal field whose boundary is the same
as the target geometry. To avoid this, the proper formulation should be selected by
comparing theoretical solutions with the solution from the BEM. Checked formula-
tions are basic form (BF), normal derivative form (NDF) (see Sect. 4.1.1 for these
formulations), Burton–Miller form (BMF) and dual form (DF) (see Sect. 4.2.1 for
these formulations). A sphere 0.25 m in diameter is used as a simplified shape of
a human head (Fig. 9.14). The angle ρ is introduced to represent locations on the
sphere, starting from 0√ to 180√. The piston oscillation of 1 mm/s is defined in the
range from ρ = 0√ to ρ = 20√. All other parts of the surface are taken to be rigid. In
this case, the theoretical solution can be calculated with Eq. (9.5) [9]:

p(r, ρ) = jΔcV0

2

N∑
n=0

(Pn−1 cos ∂ − Pn+1 cos ∂)
h(1)

n (kr)

h(1)′
n (ka)

Pn (cos ρ) , (9.5)

where j is the imaginary unit, Δ is the medium density, c is the sound speed, k
is the wave number, V0 is the vibration velocity, a is the sphere’s radius, r is the
distance between the sphere’s center and the field point (r > a), Pn are the Legendre

polynomials, h(1)
n are the spherical Hankel functions of the first kind, and h(1)′

n (x) =
h(1)

n−1(x) − ((n + 1)/x)h(1)
n (x). In this study, Δ = 1.225 kg/m3, c = 340 m/s, V0 =

0.001 m/s, a = 0.125 m, ∂ = 20√ are used and response at 20 kHz is calculated.

http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
http://dx.doi.org/10.1007/978-4-431-54454-8_4
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Fig. 9.14 Model used for
checking uniqueness of the
solution V=0.001 m/s

y

x0.125 m

Rigid

z

20 deg

Fig. 9.15 Boundary element
mesh (num. of elements:
31,200)

The mesh used for the boundary element model is shown in Fig. 9.15. The sphere
is discretized with elements whose size is about one-sixth of a wavelength, so analy-
sis can be performed up to 20 kHz and the number of elements is 31,200. The velocity
B.C. (V0 = 0.001) is defined as the part indicated with red in the figure. Only in
the DF case, to avoid the fictitious eigenfrequency problem, the specific impedance
of air is defined as impedance B.C.s to the negative side of all the elements. The
ILUT(1−6,100) [10] was used as a preconditioning technique. The generalized min-
imal residual (GMRes) method was adopted as an iterative solver with the restart
number being set to 2,528 for BF, NDF, and BMF cases, and 325 for the DF case, so
3 GB of memory is required. The machine used in this work is an IBM IntelliStation
with the following specifications; CPU: AMD OpteronTM 2.79 GHz; OS: Windows
XP Professional ×64 edition; memory: 8 GB.

Figure 9.16 shows the sound pressure distributions on the sphere as a function of
the ρ at 20 kHz. The results obtained by BF or NDF differ greatly from the theoretical
solution, which is caused by the deteriorated uniqueness of the solution. With BMF,
this problem does not occur, but analysis precision is poor, especially in the area
of ρ > 90√. With DF, small differences from the theoretical solution were seen in
the area of ρ > 140√, so we regard it as sufficiently accurate. Table 9.1 shows the
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Fig. 9.16 Distribution of sound pressure on sphere

Table 9.1 Calculation cost

Formulation BF NDF BMF DF

Required memory (GB) 1.64 1.64 1.64 2.68
CPU time (min) 51.8 132.4 1432.7 23.6
Number of matrix-vector multiplications 65 166 1 836 18

amount of memory, CPU time, and number of iterations required for analysis. A
larger amount of memory is required since the number of DOFs of the DF is twice
that of other formulations. However, due to the smaller number of iterations, the
analysis time is the shortest. DF is used for HRTF calculation because of its accuracy
and short calculation time.

9.3.1.2 Checking Reciprocity

The reciprocity between the point sound sources and the field points is introduced to
reduce the number of calculation cases. However, in the case of HRTF calculation
using reciprocity, the distance between the point sound source and the boundary
elements tends to be short, so these analysis precision goes down. Caution should
therefore be paid to this point.

This study uses the same geometry as in the previous study. The field point position
is defined 2 mm outside in the ρ = 0√ direction. The point sound source is defined
at 1 m from the spherical center in the ρ = 90√ direction (Fig. 9.17). In analysis
using reciprocity, the source and field point position are set reversed. The boundary
element model is checked in two cases. Case 1 is where the surface is discretized
uniformly with an element size enabling analysis of each frequency. Case 2 is where
the portion of the surface that is assumed to be the range of the pinna (in this case
ρ < 20√) is discretized with 1 mm (half the distance between the point sound source
and the sphere) elements, the lower hemisphere (90√ < ρ < 180√) is discretized
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Receiving point
2 mm

Pinna

0.125 m

1 m

Point source

x

y

z

Fig. 9.17 Model used for reciprocity check

5 kHz 10 kHz 20 kHz

Case 1

Case 2

Fig. 9.18 Boundary element meshes used in checks of reciprocity

with the same condition as in Case 1 and the other part discretized to maintain the
continuity of the elements. Figure 9.18 shows the meshes used in this check.

Table 9.2 shows sound pressure amplitude at the field point at 5, 10, and 20 kHz.
The value indicated as an error is (pr − pn)/pr. pn is the pressure obtained by the
model that does not consider reciprocity, and pr is the pressure obtained by the model
that does consider reciprocity. The reciprocity does not hold because errors in Case
1 are 24 %.
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Table 9.2 Result of reciprocity checking

Frequency Case Pressure in amplitude (Pa) Relative error (%)
(kHz) Taking reciprocity into considerration

No Yes

5 Case 1 1.160 0.874 24.66
Case 2 1.180 1.169 0.932

10 Case 1 1.161 1.057 8.958
Case 2 1.167 1.161 0.514

20 Case 1 1.139 1.127 1.053
Case 2 1.138 1.138 0.000

Fig. 9.19 Picture obtained by
MRI

9.3.2 Simulation Results

9.3.2.1 Generation of Boundary Element Mesh

Individual geometry data is required to calculate the individual HRTF. To this end, the
geometry used in the analysis is created from image data using magnetic resonance
imaging (MRI). Using this geometry (Fig. 9.19), the surface is discretized.

By MRI, 108 pictures are taken with 1 mm clearance in the sagittal direction
(parallel to the body axis z and separating the body into right and left). The format
of these pictures in Digital Imaging and Communications in Medicine (DICOM),
used as a format for medical pictures such as computed tomography (CT) and MRI,
and those are read by a special program. Using this, the image information inside
the eardrum is removed. The new image information is extracted to Standard Tri-
angulated Language (STL), which is a data format to represent three-dimensional
geometry as a cluster of small triangles. Finally, these data are used for the boundary
element mesh. The generated boundary element mesh is shown in Fig. 9.20. Because
the maximum element length is 2 mm (about one-sixth of a wavelength at 27 kHz
when the sound speed is 340 m/s), the number of elements is 186,380.
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Fig. 9.20 Boundary element mesh used for HRTF calculation (num. of elements: 186,380)

9.3.2.2 Settings for Solver

When DF is applied for the calculation using the boundary element mesh obtained by
the described procedure, more than 1 TB of memory is required if conventional BEM
is employed. FMBEM is thereby employed. Moreover, in order to obtain HRTF for
full audible frequency range with a single boundary element mesh, both FMBEM for
low frequency (LF-FMBEM) and high frequency (HF-FMBEM) (see Sect. 4.3) are
used. Detailed settings for LF-FMBEM and HF-FMBEM can be found in [11, 12].
The deepest cell level in the hierarchical cell structure L and the appropriate solver
are selected so as to avoid exceeding the maximum memory requirement (in this case
16 GB). In this study, about 11.0 GB is required by LF-FMBEM below 6.2 kHz, and
about 13.6 GB is required by HF-FMBEM for higher frequencies.

9.3.2.3 Approximation Using Rational Function

An approximated HRTF is evaluated from the response at the limited frequency by an
interpolation with the aid of a rational function. The response at other frequencies can
be obtained by directly evaluating this function. The calculation time was reduced
because the approximated HRTF can be obtained from the limited frequency. The
function is approximated using the following rational function:

f (x) = ax + b

1 + cx
. (9.6)

Coefficients a, b and c are calculated by the responses of the BEM model at three
frequency steps: x = x0 the center frequency, x = x+1 = x0 + κx (where κx
is the difference in frequency between x0 and the next calculated frequency to the

http://dx.doi.org/10.1007/978-4-431-54454-8_4
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center frequency), and x = x−1 = x0 − κx . The frequency x0 is selected through
the following procedure.

1. Two frequencies (the next to lowest frequency [xL ] among the total frequency
range and the frequency next to the highest one [xH ]) are selected as x0.

2. For each x0, calculate the response at three frequencies (x0 − κx , x0, x0 + κx).
Then with coefficients a, b, and c, the approximate functions Eq. (9.6) are defined.
Those are called fn,L(x) and fn,H (x) later.

3. To define the switching frequency between fn,L(x) which is the approximate
function for the lower frequency and fn,H (x), which is the approximate function
for the higher frequency, explore the frequency xk where the error defined below
shows the minimum between xL and xH :

E = 1

p

p∑
n=1

(
min

[
fn,H (xk) − fn,L(xk)

fn,L(xk)
,

fn,H (xk) − fn,L(xk)

fn,H (xk)

])
, (9.7)

where p is the number of field points.
4. If the error at xk is lower than the specified value, fn,L(x) is selected as the

approximation function below xk and fn,H (x) is selected as the approximation
function above xk . In the case of greater than the specified value, first the center
frequency xM between xL and xH is calculated, next xL and xM are again set as
a new variable group of xL and xH , and finally go back to 1. Similarly, xM and
xH are set again as a new variable group and go to 1.

The approximation function for all frequency ranges is obtained by repeatedly exe-
cuting the above procedure.

9.3.2.4 Other Settings

The actual calculation was conducted taking into account the reciprocity between the
evaluation point and the sound source locations. Therefore the evaluation point and
the source locations were switched, enabling the response calculation to be performed
all at once.

The sound source is located 2 mm from the left eardrum (Fig. 9.22), and three field
points are located as indicated by Fig. 9.21 in the horizontal plane, which includes the
ear canal entrance. The sound speed is 340 m/s and medium density is 1.225 kg/m3.
Response is calculated by 50 Hz up to 22.05 kHz. The error indicated in Eq. (9.7)
is 1.0. The Generalized Product Bi-Conjugate Gradient (GPBiCG) was adopted as
an iterative solver. The machine used is a Dell Precision 690 with the following
specifications; CPU: Intel R XeonR, X5355 processor, 2.66 GHz; OS: Windows XP
Professional x64 edition; memory: 32.0 GB. The other settings are the same as in
Sect. 9.3.1.



316 T. Yokota et al.

1 m

45 deg

Point1 Point3

Point2

Fig. 9.21 Field point locations

Fig. 9.22 Point source location (indicated by circle near entrance of ear canal)
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Fig. 9.23 HRTF: (Top) phase shift (value minus the change within distance between sound source
and evaluation points), (bottom) sound pressure level (normalization of sound pressure at a point
1 m from sound source)
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Fig. 9.24 Required amount of memory and calculation time

9.3.2.5 Results

The calculated HRTFs are shown in Fig. 9.23. In this figure, both HRTFs with and
without rational function approximation are shown.

Figure 9.24 shows the required amount of memory and the calculation time of the
case without rational function approximation. In this case it takes about 10.1 days
to acquire the HRTFs for all frequency range, whereas by the case of using rational
function approximation the total calculation time is reduced to 1.6 days because the
number of calculation steps is reduced from 441 to 72.
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Stability condition, 18, 20
Staggered grid, 13, 18, 25, 26, 28, 118
STL, 313
Symplectic integration, 25, 32

T
Taylor expansion, 16
Tensor

strain, 35, 258, 260
strain velocity, 35
stress, 35, 258, 261



324 Index

Test function, 80, 88, 95
Time integration method, 56, 67
Transfer function

method, 169
Transmission

coefficient, 251
field incidence, 266–268
random incidence, 266–268

Tridiagonal matrix algorithm (TDMA), 121
Two-microphone method, 250

V
Velocity potential, 134, 212, 222, 223, 228,

244, 245, 248
Vibro-acoustic analysis, 5
Vibro-acoustic problem, 11, 33, 36, 37

Vibro-acoustic systems, 5, 6
Viscosity

second, 36, 232
shear, 36, 232

Visualization, 150, 192, 193, 234, 237
Volume velocity, 81, 89

W
Wave equation, 2, 21, 88, 163, 253
Wave-based acoustics, 3

Y
Yee algorithm, 13, 15, 16, 18
Young’s modulus, 35, 43, 232, 238, 277, 278,

280, 282
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