

Architectural Patterns

Uncover essential patterns in the most indispensable realm of
enterprise architecture

Pethuru Raj
Anupama Raman
Harihara Subramanian

BIRMINGHAM - MUMBAI

Architectural Patterns

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1211217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-749-5

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Pethuru Raj
Anupama Raman
Harihara Subramanian

Copy Editor
Safis Editing

Reviewer
Dr. Kayarvizhy N

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Francy Puthiry

Content Development Editor
Rohit Kumar Singh

Graphics
Jason Monteiro

Technical Editor
Ketan Kamble

Production Coordinator
Shantanu Zagade

About the Authors
Pethuru Raj holds the PhD degree in computer science and works as the chief architect and
vice-president of the Site Reliability Engineering (SRE) division of Reliance Jio Infocomm.
Ltd (RJIL), Bangalore. He previously worked as a cloud infrastructure architect in the IBM
Global Cloud Center of Excellence (CoE), IBM India, and as a TOGAF-certified Enterprise
Architecture (EA) consultant in the Wipro Consulting Services (WCS) division, Bangalore.
He also had a fruitful stint as a lead architect in the Corporate Research (CR) division of
Robert Bosch, Bangalore. He has more than 17 years of IT industry experience and 8 years
of research experience. He has authored eight books thus far and co-authored the Learning
Docker book by Packt.

Anupama Raman recently joined Flipkart as a senior manager. Prior to this, she worked as
an architect in the IBM Business Analytics Business Unit (smarter cities product lines) in the
IBM Software labs. She has worked extensively on all IBM business analytics product lines,
which include products and technologies on predictive and prescriptive analytics. She is
very passionate about storage area networking, data centers, and cloud technologies.
Anupama is EMC certified as a cloud infrastructure and services management professional,
data center architect, storage and management professional, networking design and
management professional, and EMC Technology Foundation professional.

Harihara Subramanian works for SABRE Corporation as a principal software architect. He
has been evolving and practicing software development and various software architecture
concepts since 1999. He is an energetic and highly focused technology leader with a proven
track record in software development, software architecture principles, and
implementations. He has been an active contributor to various online and offline forums in
different technologies and focuses on technology consulting, software development, SOA,
and more.

About the Reviewer
Dr. Kayarvizhy N is currently working as an associate professor in the computer science
department of BMS College of Engineering, Bangalore. She has over 12 years of experience
in academia. She obtained her bachelor's and master's of technology degrees in computer
science from Pondicherry University. She was awarded her doctoral degree from Anna
University in 2014 for her work in object-oriented metrics. She has published over 17 papers
in various journals and conferences and is actively guiding research scholars in several
emerging areas. She has also helped set up the IoT curriculum and lab in her department
and is pursuing a project sponsored by the Government of Karnataka through the VGST
grant program.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon. com/ dp/ 1787287491.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491
https://www.amazon.com/dp/1787287491

Table of Contents
Preface 1

Chapter 1: Demystifying Software Architecture Patterns 7

Envisioning the software-defined world 8
Software patterns 10

Why software patterns? 11
The prime ingredients of a software pattern 11
The types of software patterns 13

Software architecture patterns 14
Object-oriented architecture (OOA) 14
Component-based assembly (CBD) architecture 15
Domain-driven design (DDD) architecture 16
Client/server architecture 17
Multi-tier distributed computing architecture 18
Layered/tiered architecture 19
Event-driven architecture (EDA) 20

The major issues with EDA 24
Service-oriented architecture (SOA) 24

Service-inspired integration (SOI) 25
Event-driven service-oriented architecture 27

The EDA fundamental principles 29
The ED-SOA composite pattern benefits 31
Microservices architecture (MSA) 32
Event-driven microservices patterns 34
Space-based architecture (SBA) 35
Combining architecture patterns 36
Special-purpose architectures 37
Real-time context-aware prediction architecture 39
Summary 40
Additional reading materials 41

Chapter 2: Client/Server Multi-Tier Architectural Patterns 42

Domain name service (DNS) server and DNS client 45
The workings of a DNS 46

Functional requirements in two-tier client-server patterns 47
Distribution of functional requirements in a client-server pattern 48

Table of Contents

[ii]

The remote data access client-server pattern 48
The remote presentation client-server pattern 49
The split logic data client-server architecture pattern 50

The three-tier pattern / multi-tier pattern client-server 51
The master-slave pattern 51

Issues in the master-slave pattern 53
Peer-to-peer patterns 53
Advantages of two-tier client-server patterns 57
Design considerations - when to use a two-tier client-server pattern? 57
Limitations of two-tier client-server patterns 58

Three-tier client-server architecture 58
Design considerations for using three-tier architecture 60
Design considerations for n-tier architecture 62

An example of n-tier architecture (shopping cart web application) 62
The distributed client-server architecture 63
Motivation for development of web application patterns 65

Workings of the MVC pattern 67
The ASP.Net framework 69

The model view presenter (MVP) pattern 69
The model-view-viewmodel (MVVM) pattern 70

Key advantages of the MVVM pattern 72
Design considerations for using the MVVM pattern 72
Prism 72

Design patterns for web application development 73
The front controller pattern 76
Spring framework 77

Summary 78

Chapter 3: Object-Oriented Software Engineering Patterns 79

Key elements of OOD 80
Additional elements of OOD 81

Design principles 81
Single responsibility principle (SRP) – SOLID 81
Open and close principle – SOLID 82
Liskov substitution principle (LSP) – SOLID 83
Interface segregation principle (ISP) – SOLID 84
Dependency inversion principle (DIP) – SOLID 85
Other common design principles 86

OO design patterns 86
Creational design patterns 87

Factory method (virtual constructor) 87

Table of Contents

[iii]

Abstract factory (kit) 88
Builder 89
Prototype 90
Singleton 91

Structural design patterns 92
Adapter class (wrapper) 92
Adapter (object) 93
Bridge (handle/body) 94
Composite 95
Decorator 95
Façade 96
Flyweight 97
Proxy 98

Behavioral patterns 99
Chain of responsibility 100
Command (action/transaction) 100
Interpreter 102
Iterator (cursor) 103
Mediator 104
Memento 104
Observer (dependents/publish/subscribe) 106
State (objects for states) 107
Strategy (policy) 108
The template method 109
Visitor 110

Concurrency patterns 111
Concurrency design pattern 111

Producer-consumer 111
Active object 111
Monitor object 111

Concurrency architectural pattern 112
Summary 112
References 113

Chapter 4: Enterprise Integration Patterns 115

Need for integration patterns 115
Integration scenarios in enterprises 116

Information portal 117
Data replication 118
Shared business function 118
Service-oriented architecture 119
Distributed business process management 121
The business-to-business integration 122

Main challenges in enterprise integration 123

Table of Contents

[iv]

File transfer 124
Shared database 124
Remote procedure invocation 124
Messaging 125

Getting started with messaging patterns 125
Pipe and filter pattern 127
Message router pattern 128
Message translator pattern 128
Message endpoint pattern 129
Point-to-point channel pattern 130
Publish-subscribe channel pattern 130
Datatype channel pattern 132
Message bus patterns 132
Command message patterns 134
Event message patterns 134
Request-reply pattern 135
Content-based router pattern 136
Message filter pattern 137
Resequencer pattern 137
Polling consumer pattern 138
Channel adapter 139
Mobile integration pattern 139
Request-response pattern 140
Defining a push notification pattern 141
API management pattern 142
Summary 143

Chapter 5: Domain-Driven Design (DDD) Principles and Patterns 144

Principles, characteristics, and practices of DDD 146
Principles 146

Focusing on the core domain 146
Collaborate and learn 146
Model the domain 147
Evolve 147
Talk in ubiquitous language 147

Characteristics 148
Best practices 148

DDD patterns 149
Strategic patterns 149

Ubiquitous language 150
Domain, subdomain, and core domain 150

Table of Contents

[v]

Bounded contexts 151
Integrating bounded contexts 151

Autonomous bounded context 152
The shared-nothing architecture 152
Single responsibility codes 153
Multiple bounded contexts (within a solution) 153
Adoption of SOA principles 154

Integrating with legacy systems 154
The bubble context 154

The anti-corruption layer 157
Expose as a service 157

Distributed bounded context integration strategies 158
Database integration 159
Flat file integration 160
Event-driven architecture and messaging 161

Tactical patterns 161
Patterns to model the domain 161

Entities 162
Value objects 163
Domain services 165
Modules 166
Aggregates 166
Factories 167
Repositories 169

Emerging patterns 170
Domain events 171
Event sourcing 171
Other patterns 172

Summary 173
References and further reading materials 174

Chapter 6: Enterprise Architecture Platforms and Tools 175

Overview of enterprise architecture frameworks 176
Getting started with TOGAF 176
Architecture development method (ADM) 177
Deliverables, artifacts, and building blocks 179
Enterprise continuum 182
Architecture repository 183

Advantages of using TOGAF 185
Limitations of TOGAF 186

Table of Contents

[vi]

Zachman framework for enterprise architecture 186
Advantages 188
Restrictions 188
Guidelines for choosing EAF 189

Enterprise architecture platforms and tools 190
Enterprise Architect from Sparx Systems 191
Dragon1 194
ABACUS from avolution software 196

Architecture of ABACUS 196
Summary 197
References 197

Chapter 7: Service-Oriented Architecture (SOA) 198

Web services and SOA 199
Introduction to SOA 199
Life cycle of SOA 200
Primary characteristics of SOA 201

Service interconnectivity with well-defined interfaces 201
Standard interfaces and Service level agreements 202
Event-driven and messaging 202
Flexible 202
Evolution 204

Principles of SOA 205
Standardized service contract 206
Service interoperability 206
Service abstraction 206
Service autonomy 207
Service composability 207
Service discoverability 207
Service loose coupling 208
Service reusability 208
Service statelessness 209

SOA design patterns 209
Service messaging 210
Message screening 211
Agnostic services 212
Atomic service transaction 214
Authentication broker 215
Message origin authentication 217

Table of Contents

[vii]

Service façade 219
Multiple service contract 222
Service callback 223
Event-driven messaging 227
Service refactoring 229
Metadata centralization 230
Principles and patterns cross reference 233

Summary 234

Chapter 8: Event-Driven Architectural Patterns 235

Service-oriented architecture and event-driven architecture (SOA
versus EDA) 238
Key characteristics of event-driven patterns 241

Components of an EDA pattern 241
Event flow layers 244

Event generators 244
Event channel 244
Event processing 244
Downstream event-driven activity 245

Design considerations for event-driven patterns 245
Implementation variants of EDA patterns 246

Simple event processing patterns 246
Event stream processing patterns 248
Complex event processing (CEP) patterns 248

Types of event-driven patterns 249
Event mediator topology pattern 249
Event broker topology pattern 251

Hub and spoke pattern 252
Broadcast pattern 253
Polling pattern 253

EDA pattern implementation in systems/processes 254
Event log 255
Event collectors 256
Reply queue 256

Improving the performance of EDA-based processes/systems 257
IBM WebSphere MQ 259
Emerging trends in EDA 260

Event-driven microservices 260
Complex event processing 261

Table of Contents

[viii]

Internet of Things (IoT) and EDA 262
References 262
Summary 262

Chapter 9: Microservices Architecture Patterns 263

Microservices patterns 264
Decomposition patterns 264

Decomposition by use case pattern 266
Decomposition by resources pattern 266
Decomposition by business capability pattern 266
Decomposition by subdomain pattern 268

Microservices deployment pattern 269
Multiple service instances per host pattern 269
Single service instance per host pattern 269
Service instance per VM pattern 270
Service instance per container pattern 270
Serverless deployment pattern 271
Service deployment platform pattern 272

Microservices design patterns 273
Aggregator microservice design pattern 273
Proxy microservice design pattern 274
Chained microservice design pattern 275
Microservice chassis pattern 275
Externalized configuration pattern 276

Microservices database patterns 276
Database per service pattern 277
Shared data design pattern 278
Shared database pattern 279
Command-query responsibility segregation (CQRS) pattern 279

Microservices integration patterns 279
Remote procedure invocation (RPI) pattern 280
Messaging design pattern 280

Asynchronous messaging design pattern 281
Domain-specific protocol pattern 281
API gateway pattern 281

Backend for frontend pattern 282
Microservices registration, discovery, and usage patterns 283

Service discovery pattern 283
Service registry pattern 284
Service registration pattern 284
Event-driven architecture (EDA) patterns 285
Event sourcing pattern 286
Transaction log tailing pattern 287

Table of Contents

[ix]

Publishing events using the database trigger pattern 287
Application publishes events pattern 287
Testing and troubleshooting patterns 288
Access token pattern 288
Service component test pattern 289
Log aggregation pattern 289
Application metrics pattern 289

Audit logging pattern 290
Distributed tracing pattern 290

Exception tracking pattern 290
Health check API pattern 291

Microservices composition patterns 291
Server-side page fragment composition pattern 291
Client-side UI composition pattern 292
Messaging-based microservices composition pattern 292

Resilient and reliable microservices patterns 293
Circuit breaker pattern 293

Shared caching layer pattern 294
High availability microservices pattern 295
Concurrent requests for data pattern 295
Event store pattern 296

Event streams and the unified event log pattern 296
Asynchronous command calls pattern 297

Summary 298

Chapter 10: Patterns for Containerized and Reliable Applications 299

Introduction 300
The key drivers for containerization 300
Design patterns for Docker containers 302
Container building patterns 303

Docker image building patterns 305
Multi-stage image building pattern 306
The pattern for file sharing between containers 307

Using bind-mount volumes 307
Pipes and filters pattern 308
Containerized applications - Autopilot pattern 310
Containers - persistent storage patterns 312

The context for persistent storages 313
The persistent storage options 314
Volumes 315

Table of Contents

[x]

Bind mounts 316
The tmpfs mounts 316

Docker compose configuration pattern 316
Docker container anti-patterns 317

Installing an OS inside a Docker container 318
Go for optimized Docker images 318
Storing container images only inside a container registry 319
Hosting only one service inside a container 319
Latest doesn't mean best 320
Docker containers with SSH 320
IP addresses of a container 321
Root user 321
Dependency between containers 321

Patterns for highly reliable applications 322
Resiliency implementation strategies 323

The testing approaches for resiliency 325
The resilient deployment approaches 325
The deployment patterns 326
Monitoring and diagnostics 326
Resiliency realization patterns 327

Circuit breaker pattern 327
Bulkhead pattern 329
Compensating transaction pattern 330
Health endpoint monitoring pattern 332
Leader election pattern 333
Queue-based load leveling pattern 334
Retry pattern 335

Summary 337

Chapter 11: Software-Defined Clouds - the Architecture and Design
Patterns 338

Reflecting the cloud journey 339
Traditional application architecture versus cloud application
architecture 340

The traditional application architecture 340
The cloud architecture 341
The cloud application architecture 341

Cloud integration patterns 344
Tier/Layer-based decomposition 345
Process-based decomposition 345

Table of Contents

[xi]

Pipes-and-filters-based decomposition 345
Service messaging pattern 346
Messaging metadata pattern 348
Service agent pattern 349
Intermediate routing pattern 350
State messaging pattern 351
Service callback pattern 352
Service instance routing 353
Asynchronous queuing pattern 354
Reliable messaging pattern 355

Cloud design patterns 356
Cache-aside pattern 357
Circuit breaker pattern 357
Compensating transaction pattern 358
Competing consumers pattern 359
Compute resource consolidation pattern 360
Command and query responsibility segregation (CQRS) pattern 361
Event sourcing pattern 362
External configuration store pattern 363
Federated identity pattern 363
Gatekeeper pattern 364
Application health monitoring pattern 364
Leader election pattern 364
Materialized views pattern 365
Pipes and filters pattern 366
Priority queue pattern 366
Queue-based load leveling pattern 367
Retry pattern 367
Runtime reconfiguration pattern 368
Scheduler agent supervisor pattern 369
Sharding pattern 369
Throttling pattern 370
Workload distribution pattern 371
Cloud workload scheduler pattern 371

Cloud reliability and resilience patterns 372
Resource pooling pattern 372
Resource reservation pattern 372
Hypervisor clustering pattern 373
Redundant storage pattern 373

Table of Contents

[xii]

Dynamic failure detection and recovery pattern 374
Redundant physical connection for virtual servers pattern 374

Cloud security patterns 375
Cryptographic key management system pattern 375
Virtual private network (VPN) pattern 375
Cloud authentication gateway pattern 376
In-transit cloud data encryption pattern 377
Cloud storage device masking pattern 377
Cloud storage data at rest encryption pattern 377
Endpoint threat detection and response pattern 377
Threat intelligence processing pattern 378
Cloud denial of service (DoS) protection pattern 378

Summary 379
Bibliography 379

Chapter 12: Big Data Architecture and Design Patterns 380

The four V's of big data 381
Big data analysis and technology concepts 381

Data analysis life cycle 381
Big data analysis and data science 382

Data analysis 382
Data science 382

Big data platform 384
Big data engineering 385
Big data governance 386

Big data architecture landscape and layers 387
Big data architecture patterns 389

MapReduce pattern 389
Lambda architecture pattern 389
Data lake architecture pattern 391

Big data design patterns 392
Data sources and ingestion layer 392

Multisource extractor 393
Multidestination pattern 394
Protocol converter 396
Just-In-Time (JIT) transformation pattern 397
Real-time streaming pattern 398

Big data workload patterns 399
Data storage layer 400

ACID versus BASE versus CAP 401
Façade pattern 401

Table of Contents

[xiii]

NoSQL pattern 402
Polyglot pattern 405

Data access layer 407
Connector pattern 408
Lightweight stateless pattern 409
Service locator pattern 410
Near real-time pattern 410
Stage transform pattern 412
Rapid data analysis pattern 413
Data discovery and analysis layer 413
Data queuing pattern 414
Index-based insight pattern 414
Machine learning pattern 414
Converge(r) pattern 415
Data visualization layer 416
First glimpse pattern 417
Portal pattern 417
Mashup view pattern 418
Compression pattern 418
Exploder pattern 419

Summary 419
References 420

Index 422

Preface
Heterogeneity, along with the multiplicity factor, leads to heightened complexity for any
system development and operation. The enigmatic yet exemplary software engineering (SE)
space is being stuffed and sandwiched with innumerable and heterogeneous technologies
and tools. Their intended and insightful use seems a bit challenging, but their contributions
are mesmerizing and meteoric indeed if utilized properly.

Interestingly, every kind of asset and artifact in our personal, professional, and social
environments is being embedded and emboldened by pioneering software libraries. With
continuous software penetration and participation in everything we touch, feel, and use, we
are to have a bevy of sophisticated and smarter applications in plenty. Precisely speaking,
we are heading toward the promised software-defined world. However, the developmental
and operational complexities of next-generation software applications are literally
threatening. That is, leveraging the various delectable advancements in the software
engineering domain actually turns out to be a difficult affair. Therefore, there is a clarion
call for unearthing easy to understand and use approaches to moderate software
engineering complexity.

Accentuating, assimilating, and articulating architecturally sound principles for high-
quality software implementation and delivery has been pronounced by technology experts,
exponents, and evangelists as a workable way out of this dilemma. Elegantly employing
architectural patterns, along with design, deployment, integration, and other specialized
patterns, is the way forward for producing and running next-generation software solutions.
An arsenal of software patterns (architecture, design, deployment, integration, and so on.)
come in handy for the risk-free and rewarding production of highly reliable, scalable,
available, performant, adaptive, and secure software systems. This book has been produced
with the sole and simple aim of enumerating and expressing prominent and dominant
software patterns for its readers. The various chapters and their unique contributions are
briefly explained here.

Preface

[2]

What this book covers
Chapter 1, Demystifying Software Architecture Patterns, illustrates the context for the book
and describes the need for software patterns. The various architectural patterns are listed
and explained in detail in order to convey the what, why, where, and how of architectural
patterns.

Chapter 2, Client/Server Multi-Tier Architectural Patterns, covers the client-server
architecture pattern, which is one of the oldest patterns in the enterprise architecture space.
There are several variants available in this architectural space, such as two-tier client-server
architecture patterns, three-tier patterns, and n-tier patterns. With the evolution of several
new types of architecture for enterprises, client-server architecture has taken a back seat in
enterprise architecture. The second part of this chapter covers web application patterns. The
key types of web application patterns covered in this chapter are MVC, MVP, and MVVM.
Several examples of each type of pattern are also provided in this chapter.

Chapter 3, Object-Oriented Software Engineering Patterns, covers object-oriented (OO)
software engineering patterns. This chapter serves to give you a refresher on the
fundamentals of OO design principles and best practices. We believe that OO programming
patterns are the basis of the modern software design paradigm and help you get a better
understanding of other patterns. This chapter covers various prominent creational,
structural, and behavioral OO patterns, along with concurrency architectural patterns such
as half-sync/half-async, and leader/followers as well.

Chapter 4, Enterprise Integration Patterns, describes the various enterprise integration
patterns. In the modern world, there are a plethora of commercial applications. Some of
them are commercial off-the-shelf applications, while others are legacy applications that are
custom built as per the requirements of the organization. Since there are so many silos of
applications within an enterprise, it becomes necessary to integrate them to ensure they
work seamlessly. This chapter covers the key patterns that are available for enterprise
integration. The key types of enterprise integration patterns that are covered in this chapter
are messaging patterns, mobile integration patterns, and API management patterns.

Chapter 5, Domain-Driven Design (DDD) Principles and Patterns, illustrates domain-driven
design (DDD) principles and patterns. This chapter helps you learn about DDD principles,
practices, and a few critical patterns, and how they support technology and business
excellence brought together to create sophisticated software. We focus on the domain,
ubiquitous language communication, bounded contexts, aggregates, and more DDD
aspects. This chapter covers a few critical and prominent DDD patterns to help you learn
about strategic, tactical, legacy integration, distributed contexts, and also learn about two
emerging patterns, domain events and event sourcing.

Preface

[3]

Chapter 6, Enterprise Architecture Platforms and Tools, presents the unique capabilities of
enterprise architecture platforms and tools. Enterprise architecture helps to map all
software-related processes in an enterprise into a framework in such a way that all the
objectives of the enterprise are fulfilled. This chapter discusses two prominent enterprise
architecture frameworks that are widely used in the IT industry landscape: TOGAF and
Zachman's framework. Some prominent architecture platforms and tools, such as
Enterprise Architect, Dragon, and Abacus, are also discussed in this chapter.

Chapter 7, Service-Oriented Architecture (SOA), demystifies the popular service-oriented
architecture (SOA) patterns that produce service-oriented applications. This chapter
provides details on the principles, best practices, and characteristics of SOA. You will also
learn about the most common SOA patterns that deal with web service security, inter-
service communication, messaging, service versioning, and service refactoring. This chapter
has a table that helps you understand various patterns and their associated SOA principles.

Chapter 8, Event-Driven Architectural Patterns, covers emerging and evolving event-driven
architecture patterns. Modern organizations are agile in nature and want to adopt
architectural styles that permit them to work in an agile manner. Event-driven architectural
patterns were developed mainly to meet this need. This chapter provides exhaustive
coverage of popular event-driven patterns. Recent trends in the event-driven architecture
space are also discussed in this chapter.

Chapter 9, Microservices Architecture Patterns, explains the various microservices
architecture (MSA). With containerization spreading its wings wider, the roles and
responsibilities of microservices in producing enterprise-scale, elastic, extensible, and
dynamic applications is bound to increase. The various architecture and design patterns are
explained, along with use cases.

Chapter 10, Patterns for Containerized and Highly Reliable Applications, talks about the distinct
contributions of various design patterns for producing containerized and highly reliable
applications. The convergence of containers and microservices, along with the arrival of
various container and cluster management and orchestration platforms, guarantees the
realization of highly resilient microservices that in turn lead to reliable applications.

Chapter 11, Software-Defined Clouds - Architecture and Design Patterns, provides information
about cloud application architecture and its various design patterns. As we all know, all
kinds of legacy and monolithic applications are being modernized and migrated to cloud
environments. This chapter prescribes the ways and means of smartly leveraging the
patterns for swift and sagacious cloud adoption.

Preface

[4]

Chapter 12, Big Data Architecture and Design Patterns, provides you with a head start with
big data architecture patterns and big data design patterns. The patterns are grouped by
layers, such as the data ingestion layer, data storage layer, and data access layer, to help you
learn about unified architecture involving data sources, data messaging, data analysis, and
consumption. A few of the prominent patterns covered in this chapter are data lakes,
lambda architecture, short summaries for workload patterns, polyglots, and
connectors. This chapter also covers a few of the fundamentals of big data.

What you need for this book
There are no specific requirements before you start with this book. You will find all the
required information as you go through the chapters.

Who this book is for
This book will empower and enrich IT architects (such as enterprise architects, software
product architects, and solution and system architects), technical consultants, evangelists,
and experts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

package main
import "fmt"
// this is a comment
func main() {
 fmt.Println("Hello World")
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

package main
import "fmt"
// this is a comment
func main() {
 fmt.Println("Hello World")
}

Any command-line input or output is written as follows:

docker run --rm -ti -v $(pwd):/go/src/myapp google/golang go build myapp

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/ files/
downloads/ArchitecturalPatterns_ ColorImages. pdf.

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArchitecturalPatterns_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Demystifying Software

Architecture Patterns
It is going to be the software-defined, digitization-enabled, cloud-hosted, context-aware,
service-oriented, event-driven, and people-centric era. It is a well-known and widely
accepted truth that reactive and cognitive software plays a very vital role in shaping up the
projected and pronounced era of knowledge-filled and insight-driven services and
applications. That is, we need highly responsive, reliable, scalable, adaptive, and secure
software suites and libraries to fulfill the identified goals for the forthcoming era of
knowledge. There are competent information and communication technologies (ICTs),
tools, techniques, and tips emerging and evolving fast to artistically enable the realization of
such kinds of advanced and astute software modules.

The quickly-enlarging domain of patterns has been there for several decades. The
complexity of software engineering is also increasing in an uninhibited fashion. Software
experts, evangelists, and exponents have articulated and accentuated the deft and decisive
leverage of software patterns in order to mitigate the rising complexity of software
engineering. Therefore, software patterns are widely being recognized as one prime and
paramount method for building resilient and versatile software packages and programs.
Professionals and professors have been steady in unearthing newer patterns. As a result, a
bevy of path-breaking and promising architectural, design, deployment, delivery, and
integration patterns are quickly emerging and evolving to speed up and streamline the
increasingly complicated processes of designing, developing, debugging, deploying, and
delivering robust and rewarding software applications.

Demystifying Software Architecture Patterns Chapter 1

[8]

This chapter aims to explain the prominent software patterns, particularly the following
widely deliberated and detailed architecture patterns:

Object-oriented architecture (OOA)
Component-based assembly (CBD) architecture
Domain-driven design architecture
Client/server architecture
Multi-tier distributed computing architecture
Layered/tiered architecture
Event-driven architecture (EDA)
Service-oriented architecture (SOA)
Microservices architecture (MSA)
Space-based architecture (SBA)
Special-purpose architectures

Envisioning the software-defined world
There are newer requirements such as smarter homes, hotels, hospitals, and so on, and the
crucial role and responsibility of information and communication technologies (ICT)
fulfilling the varying business and people needs are growing steadily. There are a variety of
noteworthy trends and transitions happening in the enigmatic ICT space these days. The
prominent ones include the following:

IT industrialization through cloud computing
IT compartmentalization through virtualization and containerization
IT consumerization through handhelds, wearables, mobiles, nomadic devices,
and so on
The extreme and deeper connectivity amongst all kinds of physical, electrical,
mechanical, and electronic systems through the leverage of the Internet of
Things (IoT) technologies, cyber-physical systems (CPSs), and so on
Cognitive IT to empower our everyday systems to be cognitive of their actions
and reactions

Demystifying Software Architecture Patterns Chapter 1

[9]

With everything getting connected with one another, the amount of data getting generated,
collected, cleansed, and crunched goes up exponentially. There are integrated platforms for
big, fast, streaming, and IoT data analytics to extricate useful information and actionable
insights out of data heaps. The database paradigm is going through a slew of changes and
challenges.

The middleware domain is upping the ante as there are heterogeneous and multiple
systems and services to be integrated and made to work together. I can go on and on. In
short, both the IT and business landscapes are changing day by day. Also, businesses expect
their IT service providers to be innovative, disruptive, and transformative in order to
achieve more with less. As the IT budgets are being pruned by businesses across the world,
the IT domain has to pick the latest advancements in order to be right and relevant to their
stakeholders.

As usual, the field of software engineering is also progressing steadily with a dazzling array
of noteworthy progressions. There are agile programming models for enabling the business
agility. In the recent past, there have been DevOps methods germinating for guaranteeing
IT agility. There are newer software infrastructure and platform solutions coming up fast in
order to meet various requirements from different stakeholders. Professionals and
professors are working overtime to ensure process excellence and infrastructure
optimization. Strategically sound architectural paradigms and styles are being assimilated.
Further on, the automation level will pick up and reach greater heights with the adoption of
artificial intelligence (AI) methods.

As we all know, the most powerful domain of software engineering has been accomplishing
grandiose things for the business acceleration, augmentation, and automation. With the
arrival and articulation of the IoT and CPS paradigms, the software field is steadily and
sagaciously veering towards the much-expected people empowerment. Accordingly, there
is a greater demand for software applications and services to intelligently empower not
only business operations and offerings, but also to contribute to everyday decisions, deals,
and deeds of individuals, innovators, and institutions. The currently available
programming models, frameworks, and tools are helping us out in producing applications
that fulfill functional requirements. Hereafter, the crucial challenge ahead for software
professionals and practitioners is to bring forth software libraries and suites that comply
with all kinds of non-functional requirements (NFRs) / Quality of Service (QoS)
attributes. That is, we ought to construct applications that innately ensure various abilities,
such as reliability, scalability, availability, modifiability, sustainability, security, and so on.
Software patterns come in handy here. Precisely speaking, the penetration, participation,
and pervasiveness of software patterns are consistently on the increase.

Demystifying Software Architecture Patterns Chapter 1

[10]

Software patterns
As we all know, patterns are a kind of simplified and smarter solution for a repetitive
concern and recurring challenge in any field of importance. In the field of software
engineering, there are primarily many designs, integration, and architecture patterns. These
patterns come in handy in speedily surmounting some of the routine and fresh issues being
encountered by software architects, developers, and integrators in their everyday
assignments and engagements. Design patterns are very popular and are used for expertly
designing enterprise-class software systems whereas architectural patterns are used for
skilfully deciding the optimized and organized architecture for a system under
development. The changes and complexities are substantially taken care of through the deft
leverage of various architectural patterns. The architectural patterns enable taking a series
of decisions regarding the choice of technologies and tools. The various system components,
their distinct capabilities, and how they connect and collaborate with one another are the
key ingredients in architecting and designing next-generation software systems. The
architectural patterns render their yeoman services here. With system architectures
increasingly becoming complicated, the role and responsibility of architectural patterns are
consistently on the increase. Similarly, as we tend towards the distributed and decentralized
era, the integration patterns are very significant as they bring a lot of praiseworthy
simplifications and delegations.

With the flourishing of the DevOps concept, there are additional patterns emerging in IT
agility. Patterns also assiduously accelerate the process of building newer and powerful
software packages. Besides the development-centric patterns, there are deployment and
delivery-specific patterns also. In the ensuing DevOps and NoOps days, the deployment
patterns are going to be highly beneficial in automating the time-consuming and tedious
tasks. Similarly, there are delivery-enablement patterns. Patterns are fast-evolving and
stabilizing tellingly with more usage and continuous refinements. Patterns are capable of
overcoming the initial hiccups for newer technologies, too. Patterns will be a key ingredient
for IT to survive and shine in the market-driven, knowledge-driven and cut-throat
competitive environment. Precisely speaking, patterns are a crucial enabler in building
sophisticated software by minimizing the workload of software developers. The risks being
associated with constructing enterprise-scale, high-quality, and microservices-based
applications are being substantially moderated by meticulously using the proven software
patterns.

Demystifying Software Architecture Patterns Chapter 1

[11]

Why software patterns?
There is a bevy of noteworthy transformations happening in the IT space, especially in
software engineering. The complexity of recent software solutions is continuously going up
due to the continued evolution of the business expectations. With complex software, not
only does the software development activity become very difficult, but also the software
maintenance and enhancement tasks become tedious and time-consuming. Software
patterns come as a soothing factor for software architects, developers, and operators.

Software systems are becoming extremely complicated and sophisticated in order to meet
up the newer demands of the business. The field of software architecture helps to smoothen
and straighten the path towards producing well-defined and designed software suites.
Software architecture is primarily tuned for moderating the rising software complexities
and changes. Hence, there are purported efforts to bring forth software architecture
patterns to arrive at easy-to-implement and sustainable software architectures. This section
begins with some basics about architecture and goes on to elaborate on some of the widely
used software architectural patterns.

Architecture is essential for systems that are increasingly becoming complex due to the
continuous addition of fresh modules. Architectures generally are decided by three crucial
aspects: the participating components, the distinct capabilities of each of those components,
and, finally, the connectivity between those components. Establishing software
architectures is not an easy job. A variety of factors need to be taken into consideration
while deciding the architecture. A number of architectural decisions need to be
meticulously considered in order to strengthen the final architecture. Not only functional
requirements but also non-functional requirements too need to be inscribed in the
architecture. Typically, the architecture pattern is for designing a generic architecture for a
system, such as a software solution.

The prime ingredients of a software pattern
Several different formats are used in the literature for describing patterns, and no single
format has achieved widespread acceptance. The following elements described will be
found in most patterns, even if different headings are used to describe them. In the
Opengroup.org site, the following terminologies are used:

Name: A meaningful and memorable way to refer to the pattern, typically a
single word or short phrase.
Problem: This is a concise description of the problem at hand. It has to throw
some light on the intended goals and objectives to be reached within the context.

Demystifying Software Architecture Patterns Chapter 1

[12]

Context: The context typically illustrates the preconditions under which the
pattern can be applied. That is, it is a description of the initial state before the
pattern is applied.
Forces: This is for describing the relevant forces and constraints and how they
interact/conflict with each other. It inscribes the intended goals and objectives.
The description should clarify the intricacies of the problem and make explicit the
kinds of trade-offs that must be considered. The notion of forces more or less
equates to the QoS attributes (availability, scalability, security, sustainability,
composability, maneuverability, resiliency, reliability, reusability, and so on) that
architects seek to obtain and optimize besides the concerns they seek to address
in designing architectures.
Solution: This is all about clearly explaining how to achieve the intended goals
and objectives. The description should identify both the solution's static structure
and its dynamic behavior.
Resulting context: This indicates the post-conditions after the pattern is applied.
Implementing the solution normally requires trade-offs among competing forces.
This element describes which forces have been resolved and how, and which
remain unresolved. It may also indicate other patterns that may be applicable in
the new context.
Examples: This is about incorporating a few sample applications of the pattern
for illustrating each of the elements (a specific problem, the context, the set of
forces, how the pattern gets applied, and the resulting context).
Rationale: It is necessary to give a convincing explanation/justification of the
pattern as a whole or of the individual components within it. The rationale has to
indicate how the pattern actually works and how it resolves the forces to achieve
the desired goals and objectives.
Related patterns: There are other similar patterns and hence the relationships
between this pattern and others have to be clearly articulated. These may be
predecessor patterns, whose resulting contexts correspond to the initial context of
this one. Or, these may be successor patterns, whose initial contexts correspond
to the resulting context of this one. There may also be alternative patterns, which
describe a different solution to the same problem, but under different forces.
Finally these may be co-dependent patterns, which may/must be applied along
with this pattern.
Known uses: This has to detail the known applications of the pattern within
existing systems. This is for verifying that the pattern does indeed describe a
proven solution to a recurring problem. The known uses can also serve as value-
added examples.

Demystifying Software Architecture Patterns Chapter 1

[13]

Patterns may also begin with an abstract providing an overview of the pattern and
indicating the types of problems it addresses. The abstract may also identify the target
audience and what assumptions are made of the reader.

The types of software patterns
Several newer types of patterns are emerging in order to cater to different demands. This
section throws some light on these.

An architecture pattern expresses a fundamental structural organization or schema for
complex systems. It provides a set of predefined subsystems, specifies their unique
responsibilities, and includes the decision-enabling rules and guidelines for organizing the
relationships between them. The architecture pattern for a software system illustrates the
macro-level structure for the whole software solution. An architectural pattern is a set of
principles and a coarse-grained pattern that provides an abstract framework for a family of
systems. An architectural pattern improves partitioning and promotes design reuse by
providing solutions to frequently recurring problems. Precisely speaking, an architectural
pattern comprises a set of principles that shape an application.

A design pattern provides a scheme for refining the subsystems or components of a system,
or the relationships between them. It describes a commonly recurring structure of
communicating components that solves a general design problem within a particular
context. The design pattern for a software system prescribes the ways and means of
building the software components. The design pattern articulates how the various
components within the system collaborate with one another in order to fulfil the desired
functionality.

There are other patterns, too. The dawn of the big data era mandates for distributed
computing. The monolithic and massive nature of enterprise-scale applications demands
microservices-centric applications. Here, application services need to be found and
integrated in order to give an integrated result and view. Thus, there are integration-
enabled patterns. Similarly, there are patterns for simplifying software deployment and
delivery. Other complex actions are being addressed through the smart leverage of simple
as well as composite patterns. In the next section, we will discuss the various dimensions of
IT with the intention of conveying the tremendous impacts of software patterns for next-
generation IT.

Demystifying Software Architecture Patterns Chapter 1

[14]

Software architecture patterns
This section is allocated for describing the prominent and dominant software architecture
patterns.

There are several weaknesses associated with monolithic applications:

Scalability: Monolithic applications are designed to run on a single and powerful
system within a process. Increasing the application's speed or capacity requires
fork lifting onto newer and faster hardware, which takes significant planning and
consideration.
Reliability and availability: Any kind of faults or bugs within a monolithic
application can take the entire application offline. Additionally, updating the
application typically requires downtime in order to restart services.
Agility: Monolithic code bases become increasingly complex as features are being
continuously added, and release cycles are usually measured in periods of 6-12
months or more.

As already mentioned, legacy applications are monolithic in nature and massive in size.
Refactoring and remedying them to be web, cloud, and service-enabled is bound to
consume a lot of time, money, and talent. As enterprises are consistently pruning the IT
budget and still expecting more with less from IT teams, the time for leveraging various
architectural patterns individually or collectively to prepare and put modernized
applications has arrived. The following sections detail the various promising and potential
architecture patterns.

Object-oriented architecture (OOA)
Objects are the fundamental and foundational building blocks for all kinds of software
applications. The structure and behavior of any software application can be represented
through the use of multiple and interoperable objects. Objects elegantly encapsulate the
various properties and the tasks in an optimized and organized manner. Objects connect,
communicate, and collaborate through well-defined interfaces. Therefore, the object-
oriented architectural style has become the dominant one for producing object-oriented
software applications. Ultimately, a software system is viewed as a dynamic collection of
cooperating objects, instead of a set of routines or procedural instructions.

Demystifying Software Architecture Patterns Chapter 1

[15]

We know that there are proven object-oriented programming methods and enabling
languages, such as C++, Java, and so on. The properties of inheritance, polymorphism,
encapsulation, and composition being provided by OOA come in handy in producing
highly modular (highly cohesive and loosely coupled), usable and reusable software
applications.

The object-oriented style is suitable if we want to encapsulate logic and data together in
reusable components. Also, the complex business logic that requires abstraction and
dynamic behavior can effectively use this OOA.

Component-based assembly (CBD) architecture
Monolithic and massive applications can be partitioned into multiple interactive and
smaller components. When components are found, bound, and composed, we get the full-
fledged software applications. Components emerge as the building-block for designing and
developing enterprise-scale applications. Thus, the aspects of decomposition of complicated
applications and the composition of components to arrive at competent applications receive
a lot of traction. Components expose well-defined interfaces for other components to find
and communicate. This setup provides a higher level of abstraction than the object-oriented
design principles. CBA does not focus on issues such as communication protocols and
shared states. Components are reusable, replaceable, substitutable, extensible, independent,
and so on. Design patterns such as the dependency injection (DI) pattern or the service
locator pattern can be used to manage dependencies between components and promote
loose coupling and reuse. Such patterns are often used to build composite applications that
combine and reuse components across multiple applications.

Aspect-oriented programming (AOP) aspects are another popular application building
block. By deft maneuvering of this unit of development, different applications can be built
and deployed. The AOP style aims to increase modularity by allowing the separation of
cross-cutting concerns. AOP includes programming methods and tools that support the
modularization of concerns at the level of the source code. Aspect-oriented programming
entails breaking down program logic into distinct parts (concerns, the cohesive areas of
functionality). All programming paradigms intrinsically support some level of grouping
and encapsulation of concerns into independent entities by providing abstractions (for
example, functions, procedures, modules, classes, methods, and so on). These abstractions
can be used for implementing, abstracting, and composing various concerns. Some concerns
anyway cut across multiple abstractions in a program and defy these forms of
implementation. These concerns are called cross-cutting concerns or horizontal concerns.

Demystifying Software Architecture Patterns Chapter 1

[16]

Logging exemplifies a cross-cutting concern because a logging strategy necessarily affects
every logged part of the system. Logging thereby cross-cuts all logged classes and methods.
In short, aspects are being represented as cross-cutting concerns and they are injected on a
need basis. Through the separation of concerns, the source code complexity comes down
sharply and the coding efficiency is bound to escalate.

Agent-oriented software engineering (AOSE) is a programming paradigm where the
construction of the software is centered on the concept of software agents. In contrast to the
proven object-oriented programming, which has objects (providing methods with variable
parameters) at its core, agent-oriented programming has externally specified agents with
interfaces and messaging capabilities at its core. They can be thought of as abstractions of
objects. Exchanged messages are interpreted by receiving agents, in a way specific to its class
of agents.

A software agent is a persistent, goal-oriented computer program that reacts to its
environment and runs without continuous direct supervision to perform some function for
an end user or another program. A software agent is the computer analog of an
autonomous robot. There are a set of specific applications and industry verticals that
require the unique services of software agents. Thus, we have software objects, components,
aspects, and agents as the popular software construct for building a bevy of differently
abled applications.

Domain-driven design (DDD) architecture
Domain-driven design is an object-oriented approach to designing software based on the
business domain, its elements and behaviors, and the relationships between them. It aims to
enable software systems that are a correct realization of the underlying business domain by
defining a domain model expressed in the language of business domain experts. The
domain model can be viewed as a framework from which solutions can then be readied and
rationalized.

Architects have to have a good understanding of the business domain to model. The
development team has too often worked with business domain experts to model the
domain in a precise and perfect manner. In this, the team agrees to only use a single
language that is focused on the business domain, by excluding any technical jargon. As the
core of the software is the domain model, which is a direct projection of this shared
language, it allows the team to quickly find gaps in the software by analyzing the language
around it. The DDD process holds the goal not only of implementing the language being
used, but also improving and refining the language of the domain. This, in turn, benefits the
software being built.

Demystifying Software Architecture Patterns Chapter 1

[17]

DDD is good if we have a complex domain and we wish to improve communication and
understanding within the development team. DDD can also be an ideal approach if we have
large and complex enterprise data scenarios that are difficult to manage using the existing
techniques.

Client/server architecture
This pattern segregates the system into two main applications, where the client makes
requests to the server. In many cases, the server is a database with application logic
represented as stored procedures. This pattern helps to design distributed systems that
involve a client system and a server system and a connecting network. The simplest form of
client/server architecture involves a server application that is accessed directly by multiple
clients. This is referred to as a two-tier architecture application. Web and application servers
play the server role in order to receive client requests, process them, and send the responses
back to the clients. The following figure is the pictorial representation of the client/server
pattern:

The peer-to-peer (P2P) applications pattern allows the client and server to swap their roles
in order to distribute and synchronize files and information across multiple clients. Every
participating system can play the client as well as the server role. They are just peers
working towards the fulfillment of business functionality. It extends the client/server style
through multiple responses to requests, shared data, resource discovery, and resilience to
the removal of peers.

Demystifying Software Architecture Patterns Chapter 1

[18]

The main benefits of the client/server architecture pattern are:

Higher security: All data gets stored on the server, which generally offers a
greater control of security than client machines.
Centralized data access: Because data is stored only on the server, access and
updates to the data are far easier to administer than in other architectural styles.
Ease of maintenance: The server system can be a single machine or a cluster of
multiple machines. The server application and the database can be made to run
on a single machine or replicated across multiple machines to ensure easy
scalability and high availability. The multiple machines eventually form a cluster
through appropriate networking. Lately, the enterprise-grade server application
is made up of multiple subsystems and each subsystem/microservice can be run
on the separate server machine in the cluster. Another trend is each subsystem
and its instances are also being hosted and run on multiple machines. This sort of
single or multiple server machines being leveraged for executing server
applications and databases ensures that a client remains unaware and unaffected
by a server repair, upgrade, or relocation.

However, the traditional two-tier client/server architecture pattern has numerous
disadvantages. Firstly, the tendency of keeping both application and data in a server can
negatively impact system extensibility and scalability. The server can be a single point of
failure. The reliability is the main worry here. To address these issues, the client-server
architecture has evolved into the more general three-tier (or N-tier) architecture. This multi-
tier architecture not only surmounts the issues just mentioned, but also brings forth a set of
new benefits.

Multi-tier distributed computing architecture
The two-tier architecture is neither flexible nor extensible. Hence, multi-tier distributed
computing architecture has attracted a lot of attention. The application components can be
deployed in multiple machines (these can be co-located and geographically distributed).
Application components can be integrated through messages or remote procedure calls
(RPCs), remote method invocations (RMIs), common object request broker architecture
(CORBA), enterprise Java beans (EJBs), and so on. The distributed deployment of
application services ensures high availability, scalability, manageability, and so on. Web,
cloud, mobile, and other customer-facing applications are deployed using this architecture.

Demystifying Software Architecture Patterns Chapter 1

[19]

Thus, based on the business requirements and the application complexity, IT teams can
choose the simple two-tier client/server architecture or the advanced N-tier distributed
architecture to deploy their applications. These patterns are for simplifying the deployment
and delivery of software applications to their subscribers and users.

Layered/tiered architecture
This pattern is an improvement over the client/server architecture pattern. This is the most
commonly used architectural pattern. Typically, an enterprise software application
comprises three or more layers: presentation / user interface layer, business logic layer, and
data persistence layer. Additional layers for enabling integration with third-party
applications/services can be readily inscribed in this layered architecture. There are
primarily database management systems at the backend, the middle tier involves an
application and web server, and the presentation layer is primarily user interface
applications (thick clients) or web browsers (thin clients). With the fast proliferation of
mobile devices, mobile browsers are also being attached to the presentation layer. Such
tiered segregation comes in handy in managing and maintaining each layer accordingly.
The power of plug-in and play gets realized with this approach. Additional layers can be fit
in as needed. There are model view controller (MVC) pattern-compliant frameworks
hugely simplifying enterprise-grade and web-scale applications. MVC is a web application
architecture pattern. The main advantage of the layered architecture is the separation of
concerns. That is, each layer can focus solely on its role and responsibility. The layered and
tiered pattern makes the application:

Maintainable
Testable
Easy to assign specific and separate roles
Easy to update and enhance layers separately

This architecture pattern is good for developing web-scale, production-grade, and cloud-
hosted applications quickly and in a risk-free fashion. The current and legacy-tiered
applications can be easily modified at each layer with newer technologies and tools. This
pattern remarkably moderates and minimizes the development, operational, and
management complexities of software applications. The partitioning of different
components participating in the system can be replaced and substituted by other right
components. When there are business and technology changes, this layered architecture
comes in handy in embedding newer things in order to meet varying business
requirements.

Demystifying Software Architecture Patterns Chapter 1

[20]

As illustrated in the following figure, there can be multiple layers fulfilling various needs.
Some layers can be termed as open in order to be bypassed during some specific requests.
In the figure, the services layer is marked as open. That is, requests are allowed to bypass
this opened layer and go directly to the layer under it. The business layer is now allowed to
go directly to the persistence layer. Thus, the layered approach is highly open and flexible.

In short, the layered or tiered approach is bound to moderate the rising complexity of
software applications. Also, bypassing certain layers, the flexibility is being incorporated
easily. Additional layers can be embedded as needed in order to bring highly synchronized
applications.

Event-driven architecture (EDA)
Generally, server applications respond to clients requests. That is, the request and reply
method is the main one for interactions between clients and servers as per the famous
client-server architectural style. This is kind of pulling information from servers. The
communication is also synchronous. In this case, both clients and servers have to be
available online in order to initiate and accomplish the tasks. Further on, when service
requests are being processed and performed by server machines, the requesting
services/clients have to wait to receive the intended response from servers. That means
clients cannot do any other work while waiting to receive servers' responses.

Demystifying Software Architecture Patterns Chapter 1

[21]

The world is eventually becoming event-driven. That is, applications have to be sensitive
and responsive proactively, pre-emptively, and precisely. Whenever there is an event
happening, applications have to receive the event information and plunge into the
necessary activities immediately. The request and reply notion paves the way for the fire and
forgets tenet. The communication becomes asynchronous. There is no need for the
participating applications to be available online all the time.

An event is a noteworthy thing that happens inside or outside of any business. An event
may signify a problem, an opportunity, a deviation, state change, or a threshold break-in.
Every event occurrence has an event header and an event body. The event header contains
elements describing the event occurrence details, such as specification ID, event type, name,
creator, timestamp, and so on. The event body concisely yet unambiguously describes what
happened. The event body has to have all the right and relevant information so that any
interested party can use that information to take necessary action in time. If the event is not
fully described, then the interested party has to go back to the source system to extract the
value-adding information.

EDA is typically based on an asynchronous message-driven communication model to
propagate information throughout an enterprise. It supports a more natural alignment with
an organization's operational model by describing business activities as series of events.
EDA does not bind functionally disparate systems and teams into the same centralized
management model. EDA ultimately leads to highly decoupled systems. The common
issues being introduced by system dependencies are getting eliminated through the
adoption of the proven and potential EDA.

We have seen various forms of events used in different areas. There are business and
technical events. Systems update their status and condition emitting events to be captured
and subjected to a variety of investigations in order to precisely understand the prevailing
situations. The submission of web forms and clicking on some hypertexts generate events to
be captured. Incremental database synchronization mechanisms, RFID readings, email
messages, short message service (SMS), instant messaging, and so on are events not to be
taken lightly. There can be coarse-grained and fine-grained events. Typically, a coarse-
grained event is composed of multiple fine-grained events. That is, a coarse-grained event
gets abstracted into business concepts and activities. For example, a new customer
registration has occurred on the external website, an order has completed the checkout
process, a loan application is approved in underwriting, a market trade transaction is
completed, a fulfillment request is submitted to a supplier, and so on. On the other hand,
fine-grained events such as infrastructure faults, application exceptions, system capacity
changes, and change deployments are still important. But their scope is local and limited.

Demystifying Software Architecture Patterns Chapter 1

[22]

There are event processing engines, message-oriented middleware (MoM) solutions such
as message queues and brokers to collect and stock event data and messages. Millions of
events can be collected, parsed, and delivered through multiple topics through these MoM
solutions. As event sources/producers publish notifications, event receivers can choose to
listen to or filter out specific events and make proactive decisions in real-time on what to do
next.

EDA style is built on the fundamental aspects of event notifications to facilitate immediate
information dissemination and reactive business process execution. In an EDA
environment, information can be propagated to all the services and applications in real-
time. The EDA pattern enables highly reactive enterprise applications. Real-time analytics is
the new normal with the surging popularity of the EDA pattern.

Anuradha Wickramarachchi in his blog writes that this is the most common distributed
asynchronous architecture. This architecture is capable of producing highly scalable
systems. The architecture consists of single-purpose event processing components that
listen to events and process them asynchronously. There are two main topologies in the
event-driven architecture:

Mediator topology: The mediator topology has a single event queue and a
mediator which directs each of the events to relevant event processors. Usually,
events are fed into the event processors passing through an event channel to filter
or pre-process events. The implementation of the event queue could be in the
form of a simple message queue or through a message passing interface
leveraging a large distributed system, which intrinsically involves complex
messaging protocols. The following diagram demonstrates the architectural
implementation of the mediator topology:

Demystifying Software Architecture Patterns Chapter 1

[23]

Broker topology: This topology involves no event queue. Event processors are
responsible for obtaining events, processing and publishing another event
indicating the end. As the name of the topology implies, event processors act as
brokers to chain events. Once an event is processed by a processor, another event
is published so that another processor can proceed.

Demystifying Software Architecture Patterns Chapter 1

[24]

As the diagram indicates, some event processors just process and leave no trace and some
tend to publish new events. The steps of certain tasks are chained in the manner of
callbacks. That is, when one task ends, the callback is triggered, and all the tasks remain
asynchronous in nature.

The prominent examples include programming a web page with JavaScript. This
application involves writing the small modules that react to events like mouse clicks or
keystrokes. The browser itself orchestrates all of the inputs and makes sure that only the
right code sees the right events. This is very different from the layered architecture where
all data will typically pass through all layers.

The major issues with EDA
The EDA pattern lacks the atomicity of transactions since there is no execution sequence of
the events. This is because event processors are being implemented to be highly distributed,
decoupled, and asynchronous. The results are also expected to be provided at a future time
mostly through callbacks. Testing of the systems with event-driven architecture is not easy
due to the asynchronous nature of the processing. Finally, since the tasks are asynchronous
and non-blocking, the executions happen in parallel, guaranteeing higher performance. This
setup outweighs the cost of queueing mechanisms.

Business enterprises are being bombarded with a large number of simple as well as
complex events every day, and the enterprise and cloud IT teams have to have the
appropriate event capture and processing engines in place to take corrective actions and to
give a pertinent answer in real-time. The well-known examples include all kinds of real-
time and real-world IT systems, such as trade settlement systems, flight reservation
systems, real-time vehicle location data for transportation and logistics companies,
streaming stock data for financial services companies, and so on. Companies empower
these systems to comfortably handle large volumes of complex data in real time.

Service-oriented architecture (SOA)
We have been fiddling with object-oriented, component-based, aspect-oriented, and agent-
based software development processes. However, with the arrival of service paradigms,
software packages and libraries are being developed as a collection of services. That is,
software systems and their subsystems are increasingly expressed and exposed as services.
Services are capable of running independently of the underlying technology. Also, services
can be implemented using any programming and script languages.

Demystifying Software Architecture Patterns Chapter 1

[25]

Services are self-defined, autonomous, and interoperable, publicly discoverable, assessable,
accessible, reusable, and compostable. Services interact with one another through
messaging. There are service providers/developers and consumers/clients. There are service
discovery services that innately leverage both private and public service registries and
repositories. Client services can find their serving services dynamically through service
discovery services.

Every service has two parts: the interface and the implementation. The interface is the single
point of contact for requesting services. Interfaces give the required separation between
services. All kinds of deficiencies and differences of service implementation get hidden by
the service interface. To make the service interface easy to use by other services, it is a good
idea to use a schema definition that defines the structure of the messages. When a service is
used by multiple other services, formalizing the service with a contract is paramount. A
contract bounds the service with schemas, a clear message exchange pattern, and policies.
Policies define the QoS attributes, such as scalability, sustainability, security and so on. SOA
differs from the client/server architecture in the sense that services are universally available
and stateless, while client/server architecture requires tight coupling among the
participants.

Precisely speaking, SOA enables application functionality to be provided as a set of
services, and the creation of personal as well as professional applications that make use of
software services.

Service-inspired integration (SOI)
Services can integrate disparate and distributed applications and data sources. The
Enterprise service bus (ESB) is the service middleware enabling service-based integration
of multiple assets and resources. The ESB facilitates service interconnectivity, routing,
remediation, enrichment, governance, and so on. The ESB is the integration middleware for
any service environment, where the message is the basic unit of interaction between
services. An ESB is lightweight compared with previous middleware solutions, such as the
EAI hub. The ESB is lightweight because it obviates the need of using custom-made
connectors, drivers, and adapters for integrating processes/applications, data sources, and
UIs.

Let us consider a sample scenario. Application A is only capable of exporting files to a
particular directory and application B would like to get some information out of an
exported file in a SOAP message over HTTP. The ESB can implement a message flow that is
triggered by a SOAP request message from application B and read the requested
information of the exported file of application A with a file adapter.

Demystifying Software Architecture Patterns Chapter 1

[26]

The ESB gathers the requested information and transforms it into a SOAP message
corresponding to an agreed upon XML schema. Then the ESB sends the SOAP message
back to application B over HTTP.

The message flow is an important ingredient of any ESB solution. A message flow is a
definition that describes where the message originates from, how it arrives at the ESB, and
then how it lands at the target service/application. Matching is another prominent
functionality provided by the ESB. This function prescribes which message flow must be
executed when a message arrives in the ESB.

There are other key functionalities, routing, translation, and transformation of the message
format. The routing is all about routing messages from one service to another service.
Routing is often used by a message flow module to describe what service will be called for a
particular incoming message. The second core functionality is the protocol translation. There
are many application and message transmission protocols. An ESB can translate the
requester protocol into the provider-compatible protocol. Suppose the requester supports
the HTTP protocol and the provider/receiver supports the FTP protocol. Then, this
functionality of ESB translates the HTTP protocol to the FTP protocol to enable different
and distributed applications to find, bind, and interact. The following figure is the macro-
level SOA:

Demystifying Software Architecture Patterns Chapter 1

[27]

The last core function of the ESB is the message/data format transformation. When a
requestor sends a message in SOAP format, the provider can be called by the ESB with an
EDIFACT message format. The technology behind such message-format transformations
can be the proven XML stylesheet language transformation (XSLT).

SOA is essentially a dynamic collection of services which communicate
with each other. The communication can involve either simple data
passing or it could involve two or more services coordinating some
activity. SOA is based on a conventional request-response mechanism. A
service consumer invokes a service provider through the network and has
to wait until the completion of the operation on the provider's side.
Replies are sent back to the consumer in a synchronous way.

In conclusion, heterogeneous applications are deployed in an enterprise and cloud IT
environments to automate business operations, offerings, and outputs. Legacy applications
are service-enabled by attaching one or more interfaces. By putting the ESB in the center,
service-enabled applications are easily getting integrated to connect, communicate,
collaborate, corroborate and correlate to produce the desired results. In short, SOA is for
service-enablement and service-based integration of monolithic and massive applications.
The complexity of enterprise process/application integration gets moderated through the
smart leverage of the service paradigm. The ESB is the most optimal middleware solution
for enabling disparate and distributed applications to talk with one another in a risk-free
fashion.

Event-driven service-oriented architecture
Today, most of the SOA efforts are keen on implementing synchronous request-response
interaction patterns to connect different and distributed processes. This approach works
well for highly centralized environments and creates a kind of loose coupling for
distributed software components at the IT infrastructure level. However, SOA leads to the
tight coupling of application functions due to the synchronous communication. This being
said, increasingly enterprise environments are tending towards being dynamic and real-
time in their interactions, decision-enablement, and actuation. The SOA patterns may find it
difficult in ensuring the overwhelmingly pronounced requirements of next-generation
enterprise IT.

Demystifying Software Architecture Patterns Chapter 1

[28]

SOA is a good option if the requirement is just to send requests and receive responses
synchronously. But SOA is not good enough to handle real-time events asynchronously.
That is why the new pattern of event-driven SOA, which intrinsically combines the proven
SOA's request-response and the EDA's event publish-subscribe paradigms, is acquiring a lot
of attention and attraction these days. That is, in order to fulfil the newly incorporated
requirements, there is a need for such a composite pattern. This is being touted as the new-
generation SOA (alternatively touted as SOA 2.0). It is based on the asynchronous message-
driven communication model to propagate information across all sorts of enterprise-grade
applications throughout an enterprise. Services are activated by differently sourced events
and the resulting event messages pass through the right services to accomplish the
predestined business operation. Precisely speaking, the participating and contributing
services are fully decoupled and joined through event messages. All kinds of dependencies
get simply eliminated in this new model.

Applications are being designed, developed, and deployed in such a way to be extremely
yet elegantly sensitive and responsive. With enterprise applications and big data mandating
the distributed computing model, undoubtedly the event-driven SOA pattern is the way
forward. The goals of dynamism, autonomy, and real-time interactions can be achieved
through this new pattern. This new event-driven SOA pattern allows system architects and
designers to process both event messages and service requests (RPC/RMI). This enables a
closer affinity and association between business needs and the respective IT solutions. This
invariably results in business agility, adaptivity, autonomy, and affordability.

The following diagram illustrates the traditional request-and-response SOA style. The SOA
pattern generally prescribes the synchronous and pull-based approach:

Demystifying Software Architecture Patterns Chapter 1

[29]

The following diagram depicts the message-oriented, event-driven, asynchronous, and non-
blocking process architecture:

The EDA fundamental principles
In an asynchronous push-based messaging pattern, the EDA model builds on the pub/sub
model to push a variety of real-time notifications and alerts out to the subscribed listeners
in a fire-and-forget fashion. This neither blocks nor waits for a synchronous response. Also,
this is a unidirectional and asynchronous pattern.

Autonomous messages: Events are communicated in the form of
autonomous/self-defined messages. That is, each message contains just enough
details to represent a unit of work and this provides the decision-enablement
capability for notification receivers. Event messages should not require any
additional context. Also, they should not require any kind of dependencies on the
in-memory session state of the connected applications. The event message is
simply intended to communicate the business state transitions of each
application, domain, or workgroup within an enterprise.
Decoupled and distributed systems: As mentioned, the EDA pattern logically
decouples connected systems. SOA guarantees loose and light coupling. That is,
participating applications need not be available online all the time to accomplish
the business tasks. The middleware (ESB) does take care in unobtrusively
delivering the messages to the target application. The issue here is that the sender
system has to know the relevant details of the target application towards service
invocation to process completion.

Demystifying Software Architecture Patterns Chapter 1

[30]

In the synchronous SOA case, connected and dependent systems are often
required to meet the various non-functional requirements/quality of service (QoS)
attributes, such as scalability, availability, performance, and so on. But in the case
of asynchronous EDA, the transaction load of one system does not need to
influence or depend on the service levels of downstream systems. This
decoupling-enabled autonomy allows application architects to be a bit carefree in
designing their respective physical architectures and capacity planning.
Decoupled systems can be deployed independently and are horizontally scalable,
as there are no dependencies among the participating modules.

Receiver-driven flow control: The EDA pattern shifts much of the responsibility
of control-flow away from the event source (or sender system) and
distributes/delegates it to event receivers. The EDA-centric connected systems
have more autonomy in deciding whether to propagate the events further or not.
The knowledge used to support these decisions is distributed into discrete steps
or stages throughout the architecture and is encapsulated where the ownerships
reside. The following diagram is the grandiose mix of both the SOA and EDA
patterns:

Demystifying Software Architecture Patterns Chapter 1

[31]

The ED-SOA composite pattern benefits
A monolithic application puts all of its functionality into a single process. For scaling, it is
mandatory to replicate the whole application. However, the partitioning of an application
into a collection of dynamic application services facilitates the choice and the replication of
one or more application components/services for scaling. Thus, the technique of divide and
conquer is still doing a great job for the increasingly complicated world of software
engineering. This section illustrates the other benefits of SOA and EDA patterns combined.

Effective data integration: In the synchronous request-driven architecture, the
focus is on reusing remotely held functions and implementing process-oriented
integration. That means the data integration, which is the important aspect of
integrated environments, is innately not supported in the SOA environments. But
in the case of EDA, the data integration is intrinsically accomplished as the event
data/message is the base unit of communication and collaboration.
Timeliness and trustworthiness: Events are propagated across all the
participating applications in real-time for real-time data capture, processing,
decision making, and actuation. The timely exchange of event data/messages
enables operational systems to have the most accurate and recent view of the
business state/situation. The decisions being arrived based on the precise and
perfect data are going to be correct and informed.
Improved scalability and sustainability: It is a fact that asynchronous systems
tend to be more scalable when compared with synchronous systems. Individual
processes block less and have less dependency on remote/distributed processes.
Furthermore, the intermediaries (message queues and brokers) can be made more
stateless, thus reducing the overall complexity of distributed systems. Less
dependency ultimately results in them being highly scalable, reliable/dependable,
resilient, responsive, and manageable. Any kind of replacement, substitution, and
advancements can be easily performed in decoupled systems.

Thus, the beneficial combination of SOA and EDA patterns are capable of producing real-
time, adaptive, and extensible enterprises. This hybrid pattern is all set to result in
innumerable innovations, disruptions, and transformations.

Demystifying Software Architecture Patterns Chapter 1

[32]

Microservices architecture (MSA)
We have discussed the unique contributions of the SOA pattern towards establishing and
sustaining service-enabled environments and enterprises. The service-oriented architectural
pattern has evolved over decades to express and expose any legacy, monolithic, and
massive application as a dynamic collection of interdependent services. Services are blessed
with interfaces and implementations. Interfaces are the contacting and contracting
mechanism for any service-enabled application. There are standards, languages, models,
frameworks, platforms, patterns, and a bevy of toolkits to shepherd the service paradigm
towards its logical conclusion. Though SOA has done a lot of things for the IT enterprise,
there are some issues, drawbacks, and limitations.

The popular SOA style majorly relies on a shared data model with multiple hierarchies. The
sharing of databases in SOA tends to create a kind of tight data coupling between services
and other system components. This tight coupling comes in the way of bringing forth
desired changes in the database. That is, if a few RESTful services are tightly coupled with a
backend database and if there is any change mandated and enacted on the database
schema, then there is a need for a retesting of services to verify and validate how the
services work on the altered schema. This dependency is a bit troublesome for the
increasingly automated and dynamic world.

The other challenge is that the services in the SOA style are typically coarse-grained and
hence the aspect of reusability is quite a tough affair. Most of the application components of
legacy applications are fitted with service-oriented interfaces for enabling discovery,
integration, and interactions. At the infrastructure level, there is no dependency problem
because these service-enabled application components can literally run anywhere. There is
no restriction for co-location. SOA uses a kind of tiered organizational architecture that
contains a centralized messaging middleware for service invocation, intermediation, and
coordination. But the prickling issue here is that application components need to know the
corresponding details of one another in order to initiate and bring the required
collaboration, corroboration, and correlation to closure. There are other challenges being
associated with the highly matured and stabilized SOA paradigm.

Let us move over to the MSA pattern, which is growing by leaps and bounds. Microservices
architecture is the new architectural pattern for defining, designing, developing, deploying,
and delivering distributed and enterprise-grade software applications. This fast-emerging
and evolving pattern is being positioned as the one for easily and quickly achieving the
non-functional requirements such as scalability, availability, and reliability for any software
application.

Demystifying Software Architecture Patterns Chapter 1

[33]

The MSA pattern is for producing fine-grained, loosely coupled, horizontally scalable,
independently deployable, interoperable, publicly discoverable, network-accessible, easily
manageable, and composable services, which is not only the optimized unit of software
construction, but also allows enabling quicker software deployment and delivery. In the
past, software companies assembled large teams of engineers to build applications which,
over a period of time, became monolithic and unwieldy. Legacy applications are close,
bulky, tough to maintain, inflexible, and not modern. We need applications that are
adaptive, dynamic, open, easy to modify and enhance, and so on. Having understood the
distinct contributions of the MSA pattern, today corporates across the globe are keenly
strategizing and planning to embrace this new pattern with clarity and confidence. As a
result, enterprise-class cloud, mobile, and embedded applications are being built using the
powerful and pioneering MSA pattern.

The growing ecosystem of tools, engines, platforms, and other software infrastructure
solutions speeds up the process of producing microservices-centric applications. With the
tools-assisted orchestration, microservices are being deftly orchestrated to bring forth
versatile applications for business automation, acceleration, and augmentation.

Microservices are built upon a concept known as a bounded context, which leads to a self-
contained association between a single service and its data. There is no technology or
vendor lock-in as far as the MSA-inspired applications are concerned. Every microservice is
being empowered with its own data source, which can be a filesystem, SQL, NoSQL,
NewSQL, in-memory cache, and so on. There are API gateway solutions to streamline the
end-to-end lifecycle management of microservices. Microservices rely solely on inter-service
communication. Each microservice calls another microservice as required to complete its
function. Furthermore, called microservices may call other services as needed in a process
known as service chaining. Microservices use a non-coordinating API layer over the
services composing an application. As Docker containers are emerging as the most
appropriate runtime for microservices, the MSA pattern is seeing a lot of traction these
days.

Each microservice is being designed as an atomic and self-sufficient piece of software.
Implementing an application will often require composing multiple calls to these single
responsibility and distributed endpoints. Although synchronous request-response calls are
required when the requester expects an immediate response, the integration patterns based
on eventing and asynchronous messaging provide maximum scalability and resiliency. The
microservices approach is well-aligned to a typical big data deployment.

Demystifying Software Architecture Patterns Chapter 1

[34]

We can gain the required modularity, extensive parallelism, and cost-effective scaling by
deploying services across many commodity hardware servers. Microservices modularity
facilitates independent updates/deployments and helps to avoid single points of failure,
which can help prevent large-scale outages.

Event-driven microservices patterns
As mentioned, the microservice architectural style is an approach for developing an
application as a suite of discrete yet self-sufficient services built around specific business
capabilities. Microservices-centric applications are being enabled to be event-driven. There
are a few interesting architectural patterns quickly emerging and evolving. In this section,
we will look at the event stream pattern.

Like polyglot and decentralized persistence, the decentralized polyglot messaging method
should be a key to achieving the intended success in microservices architectures. This
allows different groups of services to be developed in their own cadence. Furthermore, it
minimizes the need for highly coordinated and risky big-bang releases. The microservices
approach gives more flexibility to developers for choosing the optimal messaging
middleware solution. Every use case will have its own specific needs mandating different
messaging technologies such as Apache Kafka, RabbitMQ, or even event-driven NoSQL
data grids, such as Apache Geode / Pivotal GemFire.

In the MSA approach, a common architecture pattern is event sourcing using an append-
only event stream such as Kafka or MapR Streams, which implements Kafka. With MapR
Streams, events are grouped into logical collections of events called topics. Topics are
partitioned for parallel processing. We can think of a partitioned topic as a queue. Events
are delivered in the order they are received. Unlike a queue, events are persisted, even after
they are delivered they remain on the partition, available to other consumers. Older
messages are automatically deleted based on the stream's time-to-live setting; if the setting
is zero, then they will never be deleted. Messages are not deleted from topics when read,
and topics can have multiple different consumers. This allows processing of the same
messages by different consumers for different purposes.

Demystifying Software Architecture Patterns Chapter 1

[35]

Pipelining is also possible where a consumer enriches an event and publishes it to another
topic:

With the faster proliferation, penetration, and participation of the microservices
architecture, there will be fresh patterns to address its growing and prevailing issues and
limitations. Furthermore, existing patterns can be seamlessly combined to come out with
bigger and better patterns for enabling the realization of microservices-centric applications.
We have detailed the architecture and design patterns in Chapter 9, Microservices
Architecture Patterns.

Space-based architecture (SBA)
Typically, enterprise applications are being blessed with a backend database management
system. These enterprise-scale applications function well as long as the database is able to
keep up with the load. But when usage peaks and the database can't keep up with the
constant challenge of writing a log of the transactions, the application is bound to fail. In
any high-volume application with an extremely large concurrent user load, the database
will usually be the final limiting factor in how many transactions we can process
concurrently. While various caching technologies and database scaling products help to
address these issues, it is still a pipe dream that scaling out a normal application for extreme
loads is a very difficult proposition.

Demystifying Software Architecture Patterns Chapter 1

[36]

The space-based architecture is designed with the aim of empowering software systems to
work even under the heavy load of users. This is being achieved by splitting up both the
processing and the storage between multiple servers. The data is spread out across many
nodes. The space-based architecture pattern is widely used to address and solve scalability
and concurrency issues. Customer-facing applications are quite unpredictable and this
specialized architecture is competent and cognitive enough to support a large number of
users.

High scalability is achieved by removing the central database constraint and using
replicated in-memory data grids instead. Application data is kept in-memory and replicated
among all the active processing units. Processing units can be dynamically started up and
shut down as the user load increases and decreases, thereby addressing variable scalability.
Because there is no central database, the database bottleneck is removed, providing near-
infinite scalability within the application. Most applications that fit into this pattern are
standard websites that receive a request from a browser and perform some sort of action. A
bidding auction site is a good example of this. The site continually receives bids from
internet users through a browser request. The application would receive a bid for a
particular item, record that bid with a timestamp, update the latest bid information for the
item, and send the information back to the browser.

Precisely speaking, the SBA style is primarily for ensuring the goals of higher concurrency.
Next-generation applications have to be scalable, available, and dependable. The SBA
pattern is a great enabler.

Combining architecture patterns
As we all know, it is becoming a software-defined world. Everything is being stuffed with
software to exhibit adaptive behavior. Thus, the buzzwords such as software-defined
networking, storage, compute, security, and environment are acquiring significance these
days. Also, the concept of software-defined everything is becoming prominent and
paramount. The role and responsibility of software, therefore, is increasing. Along with the
faster proliferation, penetration, and participation, the software product is also becoming a
complicated task. Software experts and exponents are recommending the combination of
multiple architecture patterns that we have discussed previously in order to soften and
speed up the realization of next-generation software solutions and services. We have
described how SOA and EDA team up to put a stimulating foundation for producing
dynamic and adaptive applications. Similarly, other architectural patterns can be
synchronized in order to bring forth composite patterns in order to produce competent and
versatile applications.

Demystifying Software Architecture Patterns Chapter 1

[37]

Special-purpose architectures
A context-aware event-driven service-oriented architecture (ALFONSO GARCÍA DE
PRADO and his team).

Context awareness has become a fundamental requirement for realizing people-centric IT
applications. People leave their homes expecting the lights, which they left on, to be turned
off automatically. The mobile phone can warn people if there is traffic congestion on the
way to the office. Windscreen wipers automatically turn on if it is raining. If there is any
possibility of a fire at home, hotel, or hospital, then sensors have to integrate with one
another to do data fusion in time to facilitate any fire, flame, and fall detection. Our current
IT services and systems are not typically context-aware. Every common, casual, and cheap
item has to be self-, surroundings, and situation-aware in order to be unique in their
decisions, deals, and deeds. Software packages, libraries, and suites have to be event-driven
in order to be sensitive and responsive. They have to be designed and deployed in such a
way that they are receptive to any kind of noteworthy events and to answer accordingly.
We have discussed service-oriented and event-driven architectures. They need to be
blended with the new-generation technologies, such as the IoT, in order to be right and
relevant for the increasingly connected world.

The connected things, sensors, actuators, robots, drones, beacons, machines, equipment,
instruments, wares, utensils, and other devices are to empower software services to be
context-aware. There are IoT data analytics platforms, the growing array of different and
distributed event sources, the faster maturity and stability of event processors, streaming
analytics engines, scores of connectors, drivers and adapters, knowledge visualization
dashboards, and other enabling frameworks, patterns, processes, practices, and products
aimed towards producing context-aware applications across industry verticals.

Demystifying Software Architecture Patterns Chapter 1

[38]

The authors have devised with a high-level context-aware event-driven service-oriented
architecture:

With the dawning of the game-changing IoT era, application and data architectures are set
to be synchronized to create versatile architectures for various use cases.

Demystifying Software Architecture Patterns Chapter 1

[39]

Real-time context-aware prediction
architecture
With the setting up of IoT environments across our personal, professional, and social
environments to fulfill the dreams of connected and smarter environments, the amount of
multi-structured data getting generated, collected, cleansed, and crunched is growing
exponentially. With the arrival of a dazzling array of specific and generic, disappearing,
disposable yet indispensable, slim and sleek, handy and trendy, embedded yet networked
devices, the projected big data era has set in. This has opened up fresh possibilities and
opportunities for businesses as well as IT service/solution providers.

With our manufacturing floors, retail stores, warehouses, airports, railway stations, and bus
bays, multi-specialty clinics, shopping complexes, malls and hypermarkets, auditoriums
and stadiums, entertainment centers and cinema theaters, food joints, and so on, slowly yet
steadily tending towards being smarter through the application of pioneering edge
technologies, the long-awaited context-aware computing is becoming a reality. That is,
software applications have to be context-aware to be adaptive, accommodating, and
adjustable.

Considering the trends and transitions happening in the IT space, a few researchers (David
Corral-Plaza and his team) have envisioned a holistic event-driven service-oriented
architecture (ED-SOA) and it has the following important factors:

Data producers should gather data from several sources (databases, IoT sensors,
social networks, and so on) and send them to the data collector.
The data collector follows the necessary transformations so that the information
received can be used in the following phases of their solution. It is an
intermediate layer that performs a process of homogenization since information
will most probably be received in different formats and structures in most
scenarios.
Data processing should provide the complex event processing (CEP), context-
awareness, and prediction module.

Demystifying Software Architecture Patterns Chapter 1

[40]

Data consumers, which can be databases, end users, or additional endpoints,
pave the way for the collaborative architecture. Such data consumers
communicate with the previous module through a REST interface:

We are heading towards the world of real-time applications and enterprises. Real-time data
capture, processing, knowledge discovery and dissemination, decision making, and
actuation turn out to be the new normal. IT systems are being enabled to be real-time. The
preceding architecture spells out the ways and means of achieving real-time predictions.

Summary
We have detailed the prominent and dominant software architecture patterns and how they
are distinctly foundational and fundamental for producing and running any kind of
enterprise-class and production-grade software applications. To accommodate the
evolution and revolutions and to surmount the complications due to constant changes
happening in the business and technology spaces, the smart leverage of a variety of
software patterns is being recommended as the way forward. Increasingly, to design and
develop sophisticated and smarter applications, various architectural patterns are being
meticulously chosen and cognitively clubbed together to produce composite patterns.

Demystifying Software Architecture Patterns Chapter 1

[41]

Besides this, there are several application and domain-specific architectures being formed,
verified, and validated by worldwide researchers and presented as research contributions.
Thus, the domain of architectural patterns is consistently on the growth in order to support
and sustain the software engineering field. The forthcoming chapters will go deep and dig
further to bring forth a lot of useful and usable details on design patterns for existing and
fresh technologies. We have covered the emerging and evolving technologies such as
Docker-enabled containerization, microservices architecture (MSA), big data analytics,
reactive programming, high-performance computing (HPC), and so on.

Additional reading materials
To learn more, you can refer to the following reading resources:

.NET microservices architecture for containerized .NET applications: https:/ /
docs.microsoft. com/ en- us/ dotnet/ standard/ microservices- architecture/

SOA patterns: http:/ / www. soapatterns. org/

Using events in highly distributed architectures: https:/ / msdn. microsoft. com/
en-us/ library/ dd129913. aspx

All about microservices and the design patterns: http:/ /microservices. io/
index.html

Event-driven architecture pattern: https:/ / towardsdatascience. com/ event-
driven-architecture- pattern- b54fc50276cd

Common software architectural patterns in a nutshell: https:/ /
towardsdatascience. com/ 10- common- software- architectural- patterns- in- a-
nutshell- a0b47a1e9013

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
http://www.soapatterns.org/
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
https://msdn.microsoft.com/en-us/library/dd129913.aspx
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
http://microservices.io/index.html
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/event-driven-architecture-pattern-b54fc50276cd
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013

2
Client/Server Multi-Tier

Architectural Patterns
This chapter provides a bird's eye view of client-server architectural patterns. It starts with
the need for the evolution of two-tier client-server patterns and highlights how the
limitations of two-tier client-server patterns led to the evolution of three-tier and
consequently n-tier client-server patterns. The different variants of client-server patterns
like the master-slave pattern, peer-to-peer patterns, and so on are also explained in-depth
with relevant use cases. The second part of the chapter focuses on web application
frameworks. The requirements of web applications are different from that of client-server
applications, the key differentiating factor being the dynamic updates to the UI based on the
changes in the underlying data. All the popular patterns used in web application design are
covered in this part of the chapter.

The major topics covered in this chapter are as follows:

Two-tier, three-tier, and n-tier client-server patterns
The master-slave pattern
The peer-to-peer pattern
The distributed client-server pattern
The model-view-controller pattern
The model-view-presenter pattern
The model-view-model pattern
The front controller pattern
Some common design patterns used for web application development

Client/Server Multi-Tier Architectural Patterns Chapter 2

[43]

The client-server pattern is one of the oldest architectural patterns. In simple terms, how do
we describe a client and a server? It is described as follows:

Client: This is the component that is a requestor of a service and sends requests
for various types of services to the server
Server: This is the component that is a service provider and continuously
provides services to the client as per the requests placed by it

Clients and servers typically comprise of distributed systems, which communicate over a
network.

The following diagram is a simple graphic depicting the client-server architecture:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[44]

There is no upper bound on the number of clients that can be serviced by a single server. It
is also not mandatory that the client and server should reside in separate systems. Both
client and server can reside in the same system based on the hardware configuration of the
system and the type of functionality or service provided by the server. The communication
between client and server happens by exchange of messages using a request-response
pattern. The client basically sends a request for a service and server returns a response. This
request-response pattern of communication which happens between a client and a server is
a very good example of inter-process communication. For this communication to happen
efficiently, it is necessary to have a well-defined communication protocol which lays down
the rules of communication such as the format of request messages, response messages,
error handling, and so on. All communication protocols that are used for client-server
communication work in the application layer of the protocol stack. To further streamline the
process of client-server communication, the server sometimes implements specific
application programming interfaces (APIs) which could be used by the client to access any
specific service from the server. This client-server pattern depicted in the graphic has two
tiers: the client tier and the server tier, and hence it is also called the two-tier client-server
pattern.

The term "service" used in the context of client-server architecture refers to the abstraction
of a resource. The resource could be of any type, and the server is named based on the
resource that is provided by the server (service). For example, if the server provides web
pages, it is called a web server and if the server provides files, it is called a file server, and
so on. A server can receive requests from n number of clients at a specific point in time. But
any server will have its own limitations about its processing capabilities. So, many times, it
becomes necessary for a server to prioritize the incoming requests and service them as per
their priority. The scheduling system present in the server helps the server with the
assignment of priorities. The common applications of client-server patterns for different use
cases are as follows.

Email server and email client: An email server provides emails as per the request received
from the email client. Some commonly used enterprise email solutions are Microsoft
Exchange from Microsoft, Lotus notes from IBM, Gmail from Google, and so on. Working
on an email system is described as follows.

A mail server which is also known as an email server is the server that processes and
delivers emails over the network, which is typically internet. A mail server is also equipped
to receive emails from client computers and deliver them to other mail servers that are
present in the network. An email client is a system in which the emails are read. It could be
a desktop, laptop or a smartphone which can support emails.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[45]

The working of an email system is depicted in the following diagram:

When an email is sent from a client, the email software which is present in the client system
will connect to a server which is present in the network called the simple mail transfer
protocol (SMTP) server. SMTP refers to a protocol which is used to deliver emails from
clients to servers and from one server to another.
When emails are downloaded using the email software present on your client machine, the
email software will connect to another server, which performs a function called a post
office protocol version3 (POP3) server. POP3 server uses a POP3 protocol. This protocol
works like a mail delivery system used in a post office and hence the name. A detailed
discussion of these protocols is beyond the scope of this chapter.

Domain name service (DNS) server and DNS
client
DNS is one of the most important services that is present on the internet. An internet has
thousands of devices that are a part of it and each of these devices is referred to as a host.
Each host could be a printer, router, computer, or any other device. Each host has a unique
IP address associated with it. Apart from the IP address, each host also has a unique
hostname associated with it. For example, if the hostname is LP471 and it is present in a
domain technest.com, then the fully qualified domain name (FQDN) of the host is
LP471.technest.com. The FQDN is used to identify the host uniquely within the DNS
namespace. The DNS namespace contains some commonly used name suffixes; they are as
follows:

.com: Commercial organizations

.edu: Educational institutions

Client/Server Multi-Tier Architectural Patterns Chapter 2

[46]

.gov: Government organizations

.org: Non-profit bodies like IEEE

.net: Networking organizations

Apart from these commonly used name suffixes, there are several others, too.

The workings of a DNS
A DNS works using the concept of distributed databases based on the client-server model.
DNS clients are entities that require a name resolution (mapping of host names to IP
addresses). DNS servers maintain the data that is required for name resolution. The high-
level schematic of a DNS client-server architecture is given in the following diagram:

Suppose the URL www.xyzworks.com is typed into the browser of the DNS client. The
browser gets connected to a DNS server to get the equivalent IP address. The DNS server
performs this task by first connecting to one of the root DNS servers. The root servers will
store the IP addresses of all DNS servers that handle top-level domains such as .edu, .com,
and so on. In this example, the root server after getting the IP address of the top-level
domain .com, sends it a query asking for the IP address of www.xyzworks.com. The DNS
server that handles the .com domain will respond with the IP addresses of the name servers
that handle the www.xyzworks.com domain.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[47]

The name server then sends the query to the www.xyzworks.com DNS server. This DNS
server responds with the entire IP address to the name server, which in turn sends it back to
the DNS client which had initiated the DNS request. The DNS client machine can then use
the IP address to access the required web page.

The salient aspects of this client-server architecture are as follows:

Redundancy: There are multiple DNS servers at each level so that even if one
fails, the other server can take its role.
Caching: Once a DNS request is resolved, the DNS server caches the IP address
received by it. For example, where the IP address of the .com domain server is
cached by the DNS server so that any subsequent requests for a .com domain can
be handled by it without initiating repetitive DNS query mechanisms.

Functional requirements in two-tier client-
server patterns
The key functional requirements in two-tier client-server patterns are classified in the
following table:

Functional requirement Description

Presentation services Provides user interface and dialog control

Presentation logic User interaction and validation of inputs

Business logic Set of business rules that specify how data can be stored,
created, and changed

Distribution service Management of communication

Database logic Data operations and manage integrity of data

Database services Management of various attributes of a database transaction

File services Operations on files and sharing of files

Client/Server Multi-Tier Architectural Patterns Chapter 2

[48]

Distribution of functional requirements in a client-
server pattern
Clients are broadly classified into the following two major categories:

Fat client: Most of the functional services are performed by the client component.
One classic example of a fat client is a file server.
Thin client: If it is a thin client, it relies on the server component for most of its
computational capability.

The choice of the client is made based on the type of client-server pattern, which is planned
and implemented in a system. For example, if the pattern involves a lot of functionality to
be done on the client side, then the choice of client is typically fat client, and vice versa. The
functional requirements that are discussed in this section will give a better idea regarding
the choice of client and server systems for implementing specific client-server patterns.

There are various ways in which functional requirements can be implemented in a client-
server pattern. The following are some of the prominent ways of implementing client-server
patterns:

The remote data access client-server pattern
The remote presentation client-server pattern
The split logic data client-server architecture pattern

The remote data access client-server pattern
In the remote data access client-server pattern, the application resides on the client
component, whereas the data management is done by the server component. The server
that performs data management is typically referred to as database management server
(DBMS) or data server. Most of the relational database management system (RDBMS)
products available in the market are implemented using this pattern. These RDBMS
products typically provide a layer or component of software at the client side, which
handles communication with the data server. This component of the software is called data
manipulation language (DML). Client systems support the presentation and business logic
and interact with the data server using DML. These patterns typically involve the usage of
fat clients as a significant amount of processing is done by the client systems as well.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[49]

The implementation of functional requirements in a remote data access client-server
architecture is depicted in the following diagram:

The remote presentation client-server pattern
In the remote presentation client-server pattern, the graphical user interface (GUI) frontend
is mapped to an existing application's text-based screen. This process is called Remote
mapping or Front ending. The typical mode of operation of this pattern involves the use of
intelligent workstations, which are equipped with the capability to intercept the text screen
streams of data that are sent from a server system, and display them in a windowed system
using a GUI. However, in these systems, most of the processing and computation happens
on the server end only. One ideal example of this implementation is IBM's 3270 (mainframe)
application. In this application, data from the application is sent to 3270's screen program
on the mainframe to be displayed. The data is then sent to the client workstation in the form
of a 3270-data stream. The client workstation receives the data, interprets it, and converts it
to a graphical form to be displayed in a window. If the user enters any data through the
client workstation in the GUI window, the front ware application that runs in the client
workstation converts the data into a 3270-compatible format and sends it back to the server
for the next course of action. The split of functions in a remote presentation client-server
pattern is depicted in the following diagram:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[50]

The split logic data client-server architecture pattern
In the split logic data client-server architecture pattern, the application functionality is split
into two parts: one will be implemented on the client side and the other one will be
implemented on the server side. This pattern is very complex when compared to the other
two patterns because both client and server need separately compiled application programs
for their functioning. Before implementing this pattern, it is very important for developers
to identify the functions to be implemented on the client and the server side and list out the
type of communication dialogs that must happen between the application programs
running on the client and the server side.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[51]

The three-tier pattern / multi-tier pattern
client-server
The following diagram represents a client-server interaction:

We will discuss some of the variants of client-server patterns in this section. Some of the
prominent variants of client-server patterns are as follows:

The master-slave pattern
The peer-to-peer pattern

Let's discuss them in detail.

The master-slave pattern
The master-slave pattern is applied for designing a system if the system involves similar or
identical computations that need to be performed repeatedly with separate set of inputs and
context. The master-slave pattern offers support for fault tolerance and parallel
computation.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[52]

The master-slave pattern is depicted in the following diagram:

The master component distributes the work among all the slave components and calculates
the final result by summing up the results that are returned by each slave. The master-slave
pattern is used for architecting embedded systems and used in the design of systems that
perform massive parallel computations. The following is a sequence diagram of the master-
slave pattern:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[53]

Issues in the master-slave pattern
The master-slave pattern works based on the divide and conquer principle. In the working
of this pattern, the coordination concept is separated from the actual work as all the slaves
work in parallel. Hence, the slaves have not shared state and they work in isolation.
Another issue in the master slave pattern is its latency. This could cause an issue in systems
where the response time is very critical, for example, real-time systems. Moreover, this
pattern can be applied to a specific problem only if it is decomposable.

One of the ways of implementing the master-slave pattern is through a single master
thread, which creates multiple slave threads. Each of the slave threads performs a variant of
the required computation and returns the result to the master. Once the computation is
complete, the master thread accumulates the results and terminates the slave threads.

Client-queue-client patterns
This is also called passive queue architecture. This is a variant of the client-
server architecture in which all components, including servers, are treated
only as client systems. This is because servers were treated as passive
queues by the clients which are present in the system and are used by the
clients for transferring messages to other clients present in the network.
This architecture could be treated as one of the early evolutions of peer-to-
peer architecture, which is discussed in the next section and is obsolete
today.

Peer-to-peer patterns
Peer-to-peer architectural patterns belong to the category of symmetric client-server
patterns. Symmetric in this context refers to the fact that there is no need for a strict division
in terms of client, server, and so on in the network of systems. In a peer-to-peer pattern, a
single system acts as both client and server. Each system, also called a peer, sends requests
to other peers in the network and at the same time receives and services requests from other
peers, which are part of the network. This is a great difference when compared to a
traditional client server network where a client must only send a request and wait for the
server to process.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[54]

In general, this pattern is typically used to implement a decentralized network of systems
using distributed resources that are expected to perform specific function. The distributed
resources could be either processing power, data, or bandwidth which may be used for any
distributed computing task like Sharing of content, communication, and so on. The generic
architecture of a peer-to-peer pattern is depicted in the following diagrams (however, some
variations are possible, which we will discuss later):

Client/Server Multi-Tier Architectural Patterns Chapter 2

[55]

Peer-to-peer patterns are basically implemented in two ways:

A pure peer-to-peer pattern
A hybrid peer-to-peer pattern

In a pure peer-to-peer pattern, all the systems that are part of the network are peers and
they act as both client and server. There is no dependency on a centralized server for
managing the various operations. The main advantage of this architecture is its fault
tolerance. Another advantage is the simplicity and ease of implementation as this
architecture moves away from the concept of centralization. The downside of the
architecture is that the network bandwidth gets overused due to flooding of requests from
all the peers that are part of the network. Gnutella, a popular file sharing protocol, is
implemented using the pure peer-to-peer pattern. The preceding diagram is an example of a
pure peer-to-peer pattern.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[56]

In the hybrid peer-to-peer pattern, there exists a central server to perform certain
administrative tasks that are required for the smooth functioning of P2P services. This can
be better explained with the help of a simple example. Napster, a file sharing protocol is
designed based on hybrid peer-to-peer pattern. In Napster, there is a server whose main
functionality is to help peer systems which are part of the network search for files. Transfer
of files between the systems are then initiated based on the search results which are
returned by the server. In other words, only the catalogue of files is maintained in the server
whereas the actual files which are present in the catalogue are scattered across all the peer
systems which are part of the network. This pattern is less fault tolerant when compared to
the pure peer-to-peer pattern because of the dependency on centralized server component.
However, the main benefit of this pattern is that there is no unnecessary consumption of
network resources and this architecture is highly scalable. The hybrid peer-to-peer pattern
is depicted in the following diagram:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[57]

Though peer-to-peer patterns are very effective for applications like file sharing, they also
provide options for a lot of security threats and malicious code to enter the network and get
propagated to other peer systems which are part of the network. Hence, the TCP ports
which are used by peer-to-peer application should be constantly monitored and kept under
the surveillance of intrusion detection systems / intrusion prevention systems.

Advantages of two-tier client-server patterns
Some of the key advantages of client server systems are as follows:

Security: Data is stored centrally in the server. This offers greater control over the
server and offers higher level of security than protecting the data that will be
spread across a large number of client machines, which may involve offering
special security mechanisms for each client machine.
Centralized access to data: As most of the data is stored centrally in the server, it
is much easier to do updates on the data. This is one of the simplest architectural
styles.
Ease of maintenance: In this architectural pattern, the client is unaware of details
of the server and hence server maintenance activities like repair, upgrade, and so
on do not affect the functioning of the client.

Design considerations - when to use a two-tier
client-server pattern?
Having read so much about the two-tier client-server pattern, the next question which
arises in our mind is when to use two-tier client server pattern for a specific architectural
design. The following points could be used as a guideline to decide that:

If the application under consideration is server based and will support numerous
client, then the two-tier client server pattern is a good choice.
Some of the applications that work well with a two-tier client server pattern are
web applications that are accessed through a web browser or for business process
applications that are likely to be used throughout the organization.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[58]

If you are looking at centralizing data operations like storage, backup, and other
related administration tasks, even then a two-tier client server pattern is an ideal
choice.

Limitations of two-tier client-server patterns
The following are some of the main limitations of client-server patterns:

Limited extensibility, scalability, and reliability: In most of the
implementations, application data and business logic reside on the same central
server. This aspect impacts the system extensibility, scalability, and reliability.
Excessive network bandwidth usage: communication between and the client and
the server consumes excessive bandwidth. Request and response data often need
to be converted to a common format as they might have a different format of
representation on the client side and the server side. This aspect also contributes
to additional traffic.

To overcome these limitations of the two-tier client server pattern, three-tier/multi-tier
client-server architecture was developed. Most of the applications of the present day, which
are developed using the client-server architecture, are based on the three-tire/multi-tier
architectural model, which is discussed in the next section.

Because of the slight difference in their architecture, three-tier and multi-tiered architectures
are handled as separate topics in this chapter, though they may be referred to
interchangeably in many other forums.

Three-tier client-server architecture
The three tiers that are present in this architecture are as follows:

The presentation tier
The application or business logic tier
Data tier

Client/Server Multi-Tier Architectural Patterns Chapter 2

[59]

The diagram depicting the three-tier client-server architecture is as follows:

In a three-tier architecture, the different layers are developed and maintained as different
modules, sometimes on different platforms as well. The following are the functions of each
layer:

Presentation tier: This is the first and topmost layer which is present in the
application. This tier provides presentation services, that is presentation, of
content to the end user through GUI. This tier can be accessed through any type
of client device like desktop, laptop, tablet, mobile, thin client, and so on. For the
content to the displayed to the user, the relevant web pages should be fetched by
the web browser or other presentation component which is running in the client
device. To present the content, it is essential for this tier to interact with the other
tiers that are present preceding it.
Application tier: This is the middle tier of this architecture. This is the tier in
which the business logic of the application runs. Business logic is the set of rules
that are required for running the application as per the guidelines laid down by
the organization. The components of this tier typically run on one or more
application servers.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[60]

Data tier: This is the lowest tier of this architecture and is mainly concerned with
the storage and retrieval of application data. The application data is typically
stored in a database server, file server, or any other device or media that supports
data access logic and provides the necessary steps to ensure that only the data is
exposed without providing any access to the data storage and retrieval
mechanisms. This is done by the data tier by providing an API to the application
tier. The provision of this API ensures complete transparency to the data
operations which are done in this tier without affecting the application tier. For
example, updates or upgrades to the systems in this tier do not affect the
application tier of this architecture.

Benefits of the three-tier architecture are as follows:

Scalability and flexibility: The major advantage of this architecture is its
scalability and flexibility. Each tier of this architecture is a modular component,
that is, any kind of operations like changes or upgrades done to one tier does not
affect or cause downtime to the other tiers. Less functionality performed by the
client and no high-end configuration is required for client systems which are
present in the presentation tier.
Increased security: Splitting of tasks among the various tiers provides increased
security to each tier.

Though three-tier architectural patterns offer several benefits, there are still limits on the
scalability of the architecture when it comes to networks like internet which require massive
scalability.

Design considerations for using three-tier
architecture
The following are some of the scenarios in which the three-tier architecture is a good choice:

If you are developing an application with limited functionality/configuration for
client systems. In this case, other components of the architecture like business
logic and data logic can be distributed to other tiers.
If you are in the process of developing an application to be deployed within an
intranet where all the servers are located within a specific private network.
If you are developing an internet application where there are no security
constraints for deploying the business logic on the public networks of web or
application servers.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[61]

A variant of the three-tier architectural pattern which offers massive scalability is the n-tier
architectural pattern. In an n-tier architectural pattern, the total number of tiers is n, where n
has a value greater than three in order to differentiate it from the three-tier architectural
pattern. In n-tier architecture, the application tier (which is the middle tier) is split into
many tiers. The distribution of application code and functions among the various tiers
varies from one architectural design to another. The diagram of the n-tier architectural
pattern is depicted as follows:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[62]

Design considerations for n-tier architecture
The following are some of the scenarios in which n-tier architecture is a good choice:

If you are architecting a system in which it is possible to split the application logic
into smaller components that could be spread across several servers. This could
lead to the design of multiple tiers in the application tier.
If the system under consideration requires faster network communications, high
reliability, and great performance, then n-tier has the capability to provide that as
this architectural pattern is designed to reduce the overhead which is caused by
network traffic.

An example of n-tier architecture (shopping cart web
application)
We can illustrate the working of an n-tier architecture with the help of an example of a
shopping cart web application which is present in all e-commerce sites. The shopping cart
web application is used by the e-commerce site user to complete the purchase of items
through the e-commerce site.

Hence, the application should have several features which enable the user to do activities
like the following:

Adding selected items to the cart
Changing the quantities of items in the cart
Making payments

The client tier, which is present in the shopping cart application, interacts with the end user
through a GUI. The client tier also interacts with the application that runs in the application
servers present in multiple tiers. Since the shopping cart is a web application, the client tier
contains the web browser. The presentation tier present in the shopping cart application
displays information related to the services like browsing merchandise, buying them,
adding them to the shopping cart, and so on. The presentation tier communicates with
other tiers by sending results to the client tier and all other tiers which are present in the
network.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[63]

The presentation tier also makes calls to database stored procedures and web services. All
these activities are done with the objective of providing a quick response time to the end
user. The presentation tier plays a vital role by acting as a glue which binds the entire
shopping cart application together by allowing the functions present in different tiers to
communicate with each other and display the outputs to the end user through the web
browser.

In this n-tier architecture, the business logic which is required for processing activities like
calculation of shipping cost and so on are pulled from the application tier to the
presentation tier. The application tier also acts as the integration layer and allows the
applications to communicate seamlessly with both the data tier and the presentation tier.
The last tier which is the data tier is used to maintain data. This layer typically contains
database servers. This layer maintains data independent from the application server and the
business logic. This approach provides enhanced scalability and performance to the data
tier.

The distributed client-server architecture
The n-tier client-server architecture used for the shopping cart web application, which is
discussed in the earlier section, is an ideal example of a distributed client-server
architecture. Distributed architectures typically have some kind of backend host
components (such as Mainframe, Database server, and so on), an intelligent client in the
frontend, and multiple agents in the middle, which takes care of all activities pertaining to
transactions like transaction processing, security, handling messages, and so on, and a
network for communication.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[64]

Some of the key concepts associated with distributed architectures are as follows:

Transaction processing: Transaction processing is the automated processing of
transactions in order to update a shared database. A transaction processing
application in general will have many users who are concurrently interacting
with the system in order to process business transactions on a shared database.
Transaction processing monitor (TP monitor): The main task of the TP monitor
is to manage the flow of transactions through a client server system efficiently.
The TP monitor also works to ensure that simultaneous transactions which are
happening on a shared database do not cause any inconsistency to the data which
is present in the database.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[65]

TP monitors also provide the following functions:

They help in setting up back and forth connections between client and server
components
They provide services that help in transaction-tracking, load balancing, and the
capability to restart servers and the queues present in them automatically

Motivation for development of web
application patterns
Most of the web applications are highly interactive in nature. This means that when there is
a change to the data, it should be reflected in the UI instantaneously without any further
delay. To add on to this scenario, different users of the application may demand outputs in
various formats like excel sheets, bar charts, pie charts, dashboards, and so on, as depicted
in the following diagram:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[66]

When there is a change in the functionality of a specific application, the user interface of the
application should also be able to reflect the changes with the addition of new options like
menus, dropdowns, and so on. This emphasizes the fact that user interfaces of web
applications are always subjected to series of change requests. These user interfaces (UIs)
change requests can happen in various circumstances, as follows:

A request from the end user/customer for a change in the UI feature for various
reasons like ease of use, adaptability, and so on
Porting of a system from one platform to another
Upgrades of system to new versions
Changes to database design

From this, we can infer that user interfaces are always a target for changes. Different users
of an application place different types of conflicting requirements on the user interface in
order to make their operations easy. For example, an executive who uses a form-based
interface for data entry may need more ease of use in the form based interface, whereas an
administrator who is in charge of reporting may require more feature addition to the
reporting interface. All this warrants a user interface where the design is flexible enough to
accommodate all types of UI paradigms. It is impossible to build a system with this kind of
flexibility if the UI is tightly tied to the functional core of the application. In such a scenario,
it becomes necessary to develop and maintain several types of software applications, one
for each type of user interface. The following are the main aspects that need to be kept in
mind for the design of design patterns for web applications:

It should be possible to represent the same information in different formats in
different windows, for example, in one window as a pie chart, in another window
as an excel sheet, and so on
It should be possible to change the UI easily even at runtime
It should be possible to provide various look and feel standards and changes to
the user interface should not imply changes to the application code

Client/Server Multi-Tier Architectural Patterns Chapter 2

[67]

All these factors are the motivation for the design of the model view controller (MVC)
pattern, which is predominantly used for the design and development of mobile and web
applications. The following are the main components of the MVC architectural pattern:

Model: The function of the model component of MVC is to encapsulate core data
and functionality. The model component has the capability to function
independently, irrespective of output representations and input behavior. In
design terms, the model essentially represents a set of classes which are used to
depict the business logic.
View: The function of the view component is to display information to the end
user. The view component gets the data to be displayed from the model. A model
can have any number of views depending on the requirements of the application.
In design terms, the view essentially depicts the UI components such as HTML,
jQuery, and so on.
Controller: Each view is associated with a controller. Controllers get inputs,
usually in the form of events from the user. The events could be received in the
form of mouse clicks, keystrokes from the keyboard, and so on. These event are
converted to service requests and are passed on to the model or the view. The
controller is the only component through which the user interacts with the
system.

The separation of model, view, and controller components provide flexibility by allowing
multiple views of the same model. In case the user changes, the model data using the
controller component of one view, all other views which use the same data should be
updated immediately to reflect the new changes. This is taken care of by the model by
notifying all the views whenever its data changes. The view in turn takes the updated data
from the model and updates all relevant views. All these sequences of actions necessitate
the presence of a change propagation mechanism in the MVC model. This change in the
propagation mechanism is explained in the next section.

Workings of the MVC pattern
The model component exports procedures for application-specific processing. These
procedures are called by the controller components in response to inputs received from the
user. The model component also provides functions that can be used by the view
component to access its data.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[68]

View components are used for presenting information to the end user. There may be
different views for providing information in different ways as per the requirements of
users. Each view is associated with an update procedure that is activated by the change
propagation mechanism. The change propagation mechanism works by maintaining a
registry of all the dependent components that are present within the model. All the related
views and controllers that will be impacted by changes to these components also register
their need so that they are kept informed of all the changes. Any change in model state in
turn triggers the change-propagation mechanism. With the help of the update procedure,
the view component retrieves the most updated data values from the model and displays
them on the user interface screens.

The controller component accepts user input in the form of events. The format in which this
event data is delivered to the controller is dependent on the user interface platform. But in
general, each controller executes an event-handling procedure that is associated with an
event. The overall working of the MVC pattern is depicted in the graphic which is given
here:

In the next section, we will discuss a popular programming framework which is developed
using the MVC pattern.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[69]

The ASP.Net framework
In ASP.Net, the patterns for the view component and the controller component are well-
defined. Only the pattern for the model component is left to be designed by the developer
as per the specific application requirements.

View: The files that handle the responsibilities associated with the view component are
ASPX and ASCX. In this design, the view object typically inherits from the controller object.

Controller: The responsibilities of the controller component are split among two
components. The generation and passing of events is done by the framework and, to be
more specific, is done by the Page and Control classes. The event handling is taken care of
by the code-behind class.

Model: ASP.NET does not necessarily require a model. It is left to the choice of the
developer whether to create a model class, or to forgo it. In case a model is not used, the
event handlers in the controller can be used to perform any calculations and also ensure
data persistence.

The model view presenter (MVP) pattern
The MVP pattern is a variant of MVC pattern and is mainly used for the development of
user interfaces for web applications. It was mainly designed to make it easier to perform
automated unit testing. The graphic given here depicts the architecture of the MVP pattern:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[70]

The various components of the MVP pattern are as follows:

Model: This component specifies the data to be displayed/sent from or to the user
interface.
View: The presentation logic lies in the Presenter component. It acts on both the
model and the view components. It is responsible for fetching data from the
model, applying appropriate logic, and sending it back for display in the view.
When compared to the view and controller components in the MVC model, the
view and presenter components present in the MVP pattern are fully decoupled
from each other and they communicate by means of an interface.
Presenter: The view component just acts as a passive interface. It displays data
from the model and sends user inputs and commands to the presenter
component. These user inputs and commands will be used to perform operations
on the data.

The following are some of the key considerations about the MVP pattern:

The end user interacts only with the View
One View component is mapped only to one Presenter component
View references Presenter component but it has no reference to Model
component
The pattern facilitates two way communication between the View component
and the Presenter component

Some of the common applications that use this pattern are ASP.Net forms and Windows
forms.

The model-view-viewmodel (MVVM) pattern
MVVM is a popular pattern used for developing reusable and easily testable web
applications. MVVM is a modern variant of MVC and the core objective is to have true
separation between the Model and the View components. The main components of the
pattern are the following:

Model
View
ViewModel

Client/Server Multi-Tier Architectural Patterns Chapter 2

[71]

The layered architecture of the pattern is depicted in the following diagram:

The various components of the MVVM pattern are as follows:

Model: This component represents business logic and data. This means that the business
logic that specifies how the data should be manipulated is present in the Model component.

View: This component represents the UI components and will essentially contain UI
elements such as CSS, HTML, and so on. It is only responsible for representing the data and
does not perform any manipulations on data. However, unlike MVM, the View in MVVM is
an active component and contains behaviors, events, and data-bindings that require
information about the underlying model and viewModel components.

ViewModel: The ViewModel is a very important component of the architecture as it helps
in presentation separation, that is, it helps to keep the view separate from the model and, at
the same time, acts as a controller that supports interaction and coordination between the
View and the model components. The ViewModel component also contains commands and
methods that help maintain the state of the view and help to manipulate the Model as per
the actions, which are performed on the view. The ViewModel component also helps to
trigger events in the view component itself.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[72]

Key advantages of the MVVM pattern
The following are the key advantages of using the MVVM pattern for design:

Maintainability: In this pattern, the clear separation of the different pieces of
code makes it easier to maintain the code and also ensures quick releases using
the code.
Testability: In this pattern, the different pieces of code are very granular and are
a key away from the core functional logic. This makes unit testing very easy.
Extensibility: The granular pieces of code facilitate the reuse of code and also
allows quick modification of code snippets.

Design considerations for using the MVVM pattern
The MVVM pattern is a right choice for design web applications that require the following
aspects:

Thorough unit testing of various components
Development of applications using the concept of reusable code and
development of applications which can generate reusable snippets of code
Flexibility to change the user interface without changing the code base

In the next section, we will discuss a sample framework that is built using the MVVM
pattern.

Prism
Prism is a framework that is built using the MVVM pattern. It helps in the design and
development of flexible and easy to maintain Windows presentation foundation (WPF)
desktop applications. It also helps to build rich internet applications using the Microsoft
Silverlight Browser plugin. The following are the key features of the Prism framework:

It uses architectural pattern that supports important design concepts such as
separation of concerns and loosely coupled components.
Prism helps in the design of code snippets/components that can be easily
integrated to form an application. Applications of this type which are formed by
integrating components are called composite applications.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[73]

The following are some of the important features of Prism:

Support for the MVVM pattern, which in turn provides a bindable base class.
It has a flexible ViewModelLocator, which allows the View and ViewModel
component to be hooked up in a loosely coupled way. It provides full support for
the development of modular applications as it has several loosely coupled class
libraries. These libraries can be brought together at runtime in the form of an
application for the end user. The code base still remains decoupled.
Supports a rich set of navigation features that supports features like forward
navigation, backward navigation, and so on. The navigation stack of prism allows
ViewModels to be part of the navigation process directly.
Prism supports the concept of Pub/Sub events. These refer to a mechanism of
loosely coupled events where the publisher and subscriber components can
communicate with the help of events. It is not necessary that the publisher or
subscriber components should have explicit references or the same lifetimes.

Design patterns for web application
development
Apart from the MVC, MVP, and MVVM architectural patterns, which were discussed in the
previous sections, there are several design patterns that are used for the design of
applications along with these patterns. In this section, we will discuss some of the
commonly used design patterns for web application design. These patterns and their
functionalities are described in the following table:

Pattern name Functionality

Interpreter
design pattern

This pattern is widely used in the development of menus for applications
like editors and Integrated Development Environments (IDEs). This
pattern works by interpreting instructions that are written in the form of
a language grammar or as notations. This pattern involves the
implementation of an expression interface, which is used to interpret a
given context.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[74]

Mediator
design pattern

The key feature of this pattern is that it allows objects to interact with
each other without knowing their structure. This is made possible by
defining an object by encapsulating how they interact with other objects.
This feature also helps in easy maintainability and the reuse of code. This
pattern is also widely used for developing menus for applications like
editor and IDE.

Memento
design pattern

The key feature of this pattern is that it helps to capture the present state
of an object and store it as is so that it can be used again at a later point in
time when needed without actually breaking the rules associated with
object encapsulation.

Observer
design pattern

This pattern is used in scenarios where there exists a one to many
relationship between objects. In such scenarios, if an object is modified, it
becomes necessary to notify its dependent objects about the changes.
That is the main motivation for the use of observer design pattern. This
pattern allows a single object called subject to notify its state changes to
all other observer objects that are dependent on it.

State design
pattern

This pattern is used in scenarios where there exists a one to many
relationship between objects. In such scenarios, if an object is modified, it
becomes necessary to notify its dependent objects about the changes. This
pattern is primarily used in situations where it is necessary to alter the
behaviour of an object when there is a change in its internal state. This
pattern works by creating an object to represent various states and an
associated context object whose behaviour changes as per the state
changes of the created object.

Strategy
design pattern

This pattern provides flexibility to a client to choose any specific
algorithm from a group of algorithms at runtime. It also provides a
simple way for the client to access the algorithm. This pattern works by
removing an algorithm from its host class and placing it in a separate
class. This will help in the prevention of code-related issues that will arise
if the algorithm is present in the host class.

Template
method design
pattern

This pattern provides the feature to define basic steps of algorithm
execution while allowing specific execution steps to be changed. This is
very similar to the Strategy design pattern; the only difference is that it
allows modification of certain algorithm steps instead of the entire
algorithm.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[75]

Visitor design
pattern

This pattern provides flexibility to create and perform new operations on
a set of objects without altering the structure of the object and its
associated classes. This pattern allows the loose coupling of components
and hence new operations can be done on them without altering the
existing object structure.

Bridge pattern

This pattern provides the flexibility to separate an abstraction from its
implementation. This allows both of them to be modified independently.
The separation of abstraction from implementation is done by means of
an interface that provides a bridge between the abstraction class and
implementer class. This separation also makes the implementer class
functionality independent of the abstraction class functionality.

Composite
pattern

This pattern provides the flexibility to treat a group of objects and a
single object in the same manner. The composite pattern arranges objects
in the form of a tree structure to represent part as well as whole
hierarchies.

Factory
method design
pattern

This pattern provides the flexibility to create an object without exposing
its creation logic. In this pattern, an interface is used for creating an
object. The subclass decides which class needs to be instantiated. The
creation of an object is done only as and when it is required.

Builder design
pattern

This pattern allows us to build a complex object by using a step by step
approach. A specialized interface called the Builder interface specifies the
steps that are required to build the final object. This Builder interface is
independent of the objects creation process. A class known as Director
controls the object creation process. Another speciality of this pattern is
that it specifies a way to separate an object from its construction. The
same construction method can be used to create multiple representations
of the same object.

Adapter
pattern

This pattern is used when it is required to provide a bridge between two
incompatible interfaces. This pattern provides a single class called
adapter that facilitates communication between two independent or
incompatible interfaces.
For example: A card reader acts as an adapter for the memory card
present in the laptop. This is done by plugging in the memory card into
the card reader. The card reader is then plugged into the laptop so that
the memory card can be read through the laptop.

Client/Server Multi-Tier Architectural Patterns Chapter 2

[76]

The front controller pattern
Another architectural pattern that is popular in web application development is the front
controller pattern. This pattern ensures that there is only one point of entry for all incoming
requests. A single piece of code called the controller handles all the incoming requests and
then delegates the processing of each request to other application objects, which are present
in the system. This core feature of the pattern helps the web application developers by
providing necessary flexibility using the reuse of code. The architecture of the front
controller pattern is depicted in the following graphic:

The following are the different components of this pattern:

Front controller: This component handles all types of incoming requests for the
application

Client/Server Multi-Tier Architectural Patterns Chapter 2

[77]

Dispatcher: This component is used to dispatch a request to a specific handler for
further processing

Views: These correspond to the objects for which the requests are made

In the next section, we will discuss a popular framework that is developed using the front
controller pattern.

Spring framework
Spring, a very popular framework for web application development, follows two
architectural patterns for its design: the front controller pattern and the MVC pattern. The
architecture is depicted in the following graphic:

Client/Server Multi-Tier Architectural Patterns Chapter 2

[78]

The Dispatcher Servlet component is the single servlet that functions as the front controller
and handles all incoming requests. The Dispatcher Servlet then calls Handler Mapping in
order to find an object that could service the request. The request is then given to the
controller object so that the Dispatcher becomes free to perform functions associated with
the fulfilment of business logic as per the user's request. The controller object returns an
encapsulated object that contains the model object and view object. This is represented by
the ModelandView class. If the ModelandView contains the logical name of the view, the
Dispatcher Servlet calls the View Resolver to get details of the actual view object from its
logical name. The Dispatcher Servlet then gives the model object to the view object so that it
can be displayed to the end user.

Summary
In this chapter, we started the discussion with a two-tier client-server pattern. This is one of
the earliest and oldest client-server patterns. With the growth of the information technology
industry, this two-tier client server pattern was not sufficient to meet the infrastructure
requirements. This led to the evolution of the three-tier client-server pattern followed by n-
tier client-server pattern. Some other variants of the client-server pattern like the master-
slave pattern, peer-to-peer pattern, and so on were also discussed in this chapter. The
applications and the design considerations for each type of pattern was also discussed in
this chapter.

Web application development, which caught steam later could not use client-server
architecture because of its inherent limitations. This led to the evolution of some patterns
that were custom-made for the development of web applications. These patterns needed the
basic flexibility to be able to change the UI without altering the code base. The second half
of this chapter dealt mainly with these patterns. The main patterns that were discussed in
this part were MVC, MVP, MVVM, and the front controller.

Some of the common design patterns that are used along with these patterns were also
discussed in this chapter.

Additional reference for this chapter: http:/ /www. dotnettricks. com/ learn/
designpatterns/adapter- design- pattern- dotnet

http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet
http://www.dotnettricks.com/learn/designpatterns/adapter-design-pattern-dotnet

3
Object-Oriented Software

Engineering Patterns
Object-oriented (OO) concepts in software engineering are not new, and let's start this
chapter with a brief introduction before we dive into OO design patterns. While you are
reading this chapter, look around you; whatever you see is an object: the book, bookshelves,
reading lamp, table, chair, and so on. Everything around you can be imagined as an object,
and all of them share two primary characteristics, as follows:

State
Behavior

A reading lamp has off and on as states, and turn on and turn off as behaviors. Objects may
also have many states and many behaviors, sometimes even other objects as well.

Object-oriented design (OOD) intends to provide modularity, abstraction (information
hiding), code reuse, and pluggable (plug and play) and easy code debug.

Grady Booch defined OOD in his book titled Object Oriented Analysis and Design with
Application as follows:

"OOD is a method of design encompassing the process of object-oriented decomposition
and a notation for depicting both logical and physical as well as static and dynamic models
of the system under design."

Object-Oriented Software Engineering Patterns Chapter 3

[80]

This chapter covers the following elements of OOD:

Essential and non-essential elements of OOD
Primary characteristics of OOD
Core principles of OOD
Most common design patterns of OOD
Cross-reference of OO design patterns

Key elements of OOD
There are four key elements of OOD. They are as follows:

Abstraction: Hiding the complexity and low-level implementation details of
internals.
For instance, you see electrical switch buttons that can toggle on and off, but how
it is achieving on and off is not shown to outside world, and in fact, it is not
necessary for the common users.
Encapsulation: Bundling of the data with the methods that operate on that data,
preventing accidental or unauthorized access to the data.
For example, switching off function should turn only the targeted element off,
say a reading lamp, and it should not affect any other electrical functions that are
part of the same electrical system.
Modularization: The process of decomposing and making it as modules to
reduce the complexity of the overall program/function.
For example, switch off and on is a common functionality of an electrical system.
Switching a reading lamp on and off may be a separate module and decoupled
from other complex functions such as switching off washing machine and AC.
Hierarchy: It is ordering of abstraction and hierarchy of an interrelated system
with other subsystems. Those subsystems might own other subsystems as well,
so hierarchy helps reach the smallest possible level of components in a given
system.

Object-Oriented Software Engineering Patterns Chapter 3

[81]

Additional elements of OOD
There are three additional elements of OOD. They are as follows:

Typing: Characterization of a set of items. A Class (in object-oriented
programming) is a distinct type. It has two subtypes. They are as follows:

Strong Typing
Weak Typing

Concurrency: Operating system allows Performing multiple tasks or process
simultaneously.
Persistence: Class or object occupies space and exists for a particular time.

Design principles
This chapter and the following sections cover object-oriented design principles, its
characteristics, and the design patterns in detail. Each pattern section covers its need, design
considerations, and best practices so that readers get the idea of patterns and its
applications.

Let's start with a core principle usually referred to as an acronym "SOLID," in detail.

Single responsibility principle (SRP) – SOLID
In object-oriented programming style, the single responsibility enforces that each class should
represent one and only one responsibility and so if it needs to undergo changes, that should
be for only one reason, that is, a class should have one and only one reason to change.

When we design a class or refactor a class and if it needs more than one reason to change,
split the functionality into as many parts as there are classes and so, each class represents
only one responsibility.

Object-Oriented Software Engineering Patterns Chapter 3

[82]

Responsibility in this context is any changes to the function/business rules that causes the
class to change; any changes to the connected database schema, user interfaces, report
format, or any other system should not force that class also to change:

The preceding class diagram depicts a Person class having two responsibilities: one
responsibility is to greet the user with their last name or surname, and another
responsibility is to validate the email. If we need to apply SRP on the Person class, we can
separate it into two; Person has a method greet, and Email has email validation.

The SRP applies not only at the class level, but also on methods, packages, and the modules.

Open and close principle – SOLID
The open and close principle of OO programming suggests that the OO software entities
such as classes, methods or functions, and modules, should be open for extensions, but
closed for any modifications.

Imagine a class that you never need to change, and any new functionality gets added only
by adding new methods or subclasses, or by reusing the existing code, and so we can
prevent any new defects to the existing code or functionality.

Object-Oriented Software Engineering Patterns Chapter 3

[83]

The preceding class diagram shows the application of the open and close principle on the
Account class and its subclasses. The account can be any type, savings or current. A
SavingsAccount may categorize as GeneralAccount, KidsAccount, and so on, so we can
enforce that Account and other subclasses are available for Enhancements but closed for
modifications.

The open and close principle brings benefits of no changes to the code, no introduction of
any new defects but perhaps a disadvantage that the existing defects never get addressed as
well.

Liskov substitution principle (LSP) – SOLID
This principle states that any of the child classes should not break the parent class's type
definitions or, in other words, derived classes should be substitutable for their base classes.

Object-Oriented Software Engineering Patterns Chapter 3

[84]

Let's first understand the violation of substitution principle, and then we see how we can
resolve the same by taking our earlier example of account classes as LSP is a prime enabler
of OCP:

Let's assume that withdrawal from kids account is not allowed, unlike general account. As
you see in the preceding class diagram, a withdraw method in the kids account class is a
breach of LSP, so by introducing other withdrawable and non-withdrawable classes
inherited from SavingsAccount class to handle non-withdrawable behavior, we can get rid
of the breach and the subclass does not change the base class behavior:

So, the behavior of SavingsAccount is preserved while inheriting it for KidsAccount. The
preceding code snippet proves the same.

Interface segregation principle (ISP) – SOLID
Imagine that you are implementing an interface of a class pets, and the compiler complains
about the non-inclusion of bark method in your Cat class; strange, isn't it?

Object-Oriented Software Engineering Patterns Chapter 3

[85]

ISP suggests any interface of a class should not force the clients to include any unrequired methods
by that client; in our example, Cat does not need to implement bark method, and it is
exclusive to Dog class:

The preceding diagram depicts ISP violation and how to get rid of the same by splitting the
<<IPets>> interface to represent the Cat and Dog interface explicitly.

Dependency inversion principle (DIP) – SOLID
The DIP enforces two points, as listed:

Any higher-level modules should not depend on lower-level modules, and both
should depend on abstract modules
Abstraction of modules should not depend on its implementation or details, but
the implementation should depend on abstraction

Please refer to the earlier Interface segregation principle (ISP) – SOLID section, and the
example classes (Figure 3.5) Pets classes and its abstract classes. Dog and Cat depend on
abstractions (interface), and any changes to any of the underlying implementation do not
impact any other implementations.

Object-Oriented Software Engineering Patterns Chapter 3

[86]

Other common design principles
Other common principles are as follows; however, detailing of each principle is not in the
scope of this chapter, and we request you to refer to other materials if you need to read
more information about those principles:

Encapsulate
Always encapsulate the code that you think may change sooner or later
Composition over inheritance
In some cases, you may need the class behavior to change during runtime, and
those cases favor composition over inheritance
Program for interface (not for the implementation)
Bring flexibility to the code and can work with any new implementation
General responsibility assignment software patterns (GRASP)
Guides in assigning responsibilities to collaborate objects
Don't repeat yourself (DRY)
Avoid duplicate codes by proper abstraction of the common codes into one place
Single layer abstraction principle (SLAP)
Every line in a method should be on the same level of abstraction

OO design patterns
Object-oriented design patterns solve many common software design problems, as follows,
that architects come across every day:

Finding appropriate objects
Determining object granularity
Specifying object interfaces
Specifying object implementations
Programming to an interface, not an implementation
Putting the reuse mechanism to work

We will touch upon some of the common problems and how design patterns solve the
mentioned glitches in this section and cover OO design patterns in detail.

Object-Oriented Software Engineering Patterns Chapter 3

[87]

We can categorize the patterns into three types: creational, structural, and behavioral. Refer
to the table at the end of this chapter, which depicts the patterns and its categories as a
simple reference before we move ahead with the details.

Creational design patterns
The creational patterns intend to advocate a better way of creating objects or classes, and its
primary focuses are as follows:

Abstracting the class instantiation process
Defining ways to create, compose, and represent objects and hide the
implementation details from the involving system
Emphasizing avoiding hard code of a fixed set of behaviors and defining a
smaller set of core behaviors instead, which can compose into any number of
(complex) sets

Creational design patterns have two basic characteristics: one is that they encapsulate
knowledge about which concrete class the system use, and the second is that they hide how
the instances of these classes are created and put together.

The class creational pattern uses inheritance for instantiation, whereas object creations
delegates it to another object.

The following section deals with each pattern, its general structure, and sample
implementation diagram in most of the cases.

Factory method (virtual constructor)
This pattern suggests to let the subclasses instantiate the needed classes. The factory
method defines an interface, but the instantiation is done by subclasses:

Object-Oriented Software Engineering Patterns Chapter 3

[88]

The preceding structure depicts a factory method, and an application uses a factory to
create subtypes with an interface.

The benefits of using this are as listed:

Loose coupling: Separates application from the classes and subclasses
Customization hooks: The factory method gives subclasses a hook for providing
an extended version of an object

The impact of using this is that it creates parallel class hierarchies (mirroring each other's
structures), so we need to structure in the best possible ways using intelligent children
pattern or Defer identification of state variables pattern.

Abstract factory (kit)
Abstract factory pattern is intended to provide an interface if we want to create families of
related or dependent objects, but without explicitly specifying their concrete classes:

The preceding class diagram depicts the AbstractFactory class structure and a real-time
implementation of an abstract factory pattern for an application that combines a different
set of (heterogeneous) products from two different groups (<<Bank>> and <<Loan>>).

Object-Oriented Software Engineering Patterns Chapter 3

[89]

The benefits of this are the following:

Isolating concrete classes
Making exchanging product families easy
Promoting consistency among products

Impact is such as; supporting new kinds of the product is difficult.

Builder
The builder is intended to separate the construction of a complex object from its
representation so that the same construction process can create different representations. In
other words, use this pattern to simplify the construction of complex object with simple
objects in a step-by-step manner:

The class diagram depicts a typical builder pattern structure and a sample implementation
classes for the Builder pattern. The Builder (TextConverter) is an abstract Interface that
creates parts of a product page. The Concrete Builder (AsciiConv, TexConv) constructs and
assembles parts by interface implementation, the Director (Reader) constructs an object
with the builder interface, and the Products (AsciiTxt, Text) are under construction
complex objects.

Object-Oriented Software Engineering Patterns Chapter 3

[90]

The benefits are as listed:

Allows changing the internal representation and defines new kind of builder
Isolates code for construction and representation
Provides finer control over the construction process

Impacts are as listed:

Leads to creating a separate concrete builder for each type of product
Leads to mutable Builder classes

Prototype
Prototype pattern suggests copying or cloning the existing object and customizing it if
needed rather than creating a new object. Choose this pattern when a system should be
independent of its products creation, compose, and representation:

We can create a copy of PublicProfile (limited information) or FullProfile at runtime. Those
two classes share a few combination of states, so it is good that we design as a prototype.

Object-Oriented Software Engineering Patterns Chapter 3

[91]

Let's take a look at its benefits:

Adding and removing products at runtime
Specifying new objects by varying values and structures
Reduced subclasses
Dynamic class configuration to an application

The impact is, each subclass must implement clone operation, and it is not possible to clone
circular reference classes.

Singleton
This pattern suggests that you create one and only one instance and provide a global point
of access to the created object:

The DB connection in the preceding diagram is intended to be a singleton and provides a
getter for its only object.

Here are its benefits:

Controlled access to a sole instance
Reduced namespace
Flexibility to refinement of operations and representations
More flexible than class operations

Object-Oriented Software Engineering Patterns Chapter 3

[92]

Impacts are as follows:

Carry states for the whole lifetime of the application, creating additional
overhead for unit tests
Some level of violation of single responsibility principle
By using singleton as a global instance, it hides the dependencies of the
application; rather, it should get exposed through interfaces

Structural design patterns
The structural patterns provide guidelines to compose classes and objects to form a larger
structure in accordance with the OO design principles.

The structural class pattern uses inheritance to compose interfaces or implementations, and
structural object patterns advocate ways to compose objects and realize the new
functionality.

Some focus areas of Structural design pattern are as follows:

Providing a uniform abstraction of different interfaces (Adapter)
Changing the composition at runtime and providing flexibility of object
composition; otherwise, it is impossible with static class composition
Ensuring efficiency and consistency by sharing objects
Adding object responsibility dynamically

The following section describes each structural pattern with standard structure and sample
implementation structure as a diagram as well.

Adapter class (wrapper)
Convert one interface of a class into another interface that the client wanted. In other words,
the adapter makes heterogeneous classes work together:

Object-Oriented Software Engineering Patterns Chapter 3

[93]

The preceding class diagram depicts an adapter called OnlineLinkedAccounts that adopts
a savings account's details and a target interface called credit card details, and combine the
results to show both account numbers.

Adapter (object)
An adapter object relies on object composition, and when we need to use several of the
existing subclasses, we can use object adapter to adapt the interface of the parent class:

The preceding diagram depicts the formal structure of an Adapter.

Object-Oriented Software Engineering Patterns Chapter 3

[94]

These are the benefits:

Saves time during development and testing by emulating a similar behavior of
different parts of the application
Provides easy extensions for new features with similar behaviors
Allows a single adapter works with many adaptees (adapter object)

Impacts are as follows:

Leads to needlessly duplicated codes between classes (less usage of inherited
classes' functionalities)
May lead to nested adaptions to reach for intended types that are in longer chains
Make it more difficult to override adaptee behavior (adapter object)

Bridge (handle/body)
Bridge pattern intent is to decouple the abstraction from its implementation, so abstraction
and implementation are independent (not bound at compile time, so no impact to the
client):

The benefits are as mentioned:

Decoupling interfaces from the implementation
Configuring the implementation of an abstraction at runtime
Elimination of compile-time dependency
Improved extensibility
Hiding implementation details from the client

Object-Oriented Software Engineering Patterns Chapter 3

[95]

The impact is, introducing some level of complexity.

Composite
Composite objects let clients treat individual objects and composition of objects uniformly.
Composite represents the hierarchies of objects as tree structures.

The preceding diagram depicts the standard structure of the Composite pattern and an
implementation of a part-whole hierarchy (employee part of agent, Accountant, and teller),
and to the Client, all objects are Composite and structured uniformly.

These are the benefits:

It simplifies the client code by hiding the complex communications (leaf or
composite component)
It is easier to add new components, and client does not need a change when new
components get added

The impact is such that it makes the design overly general and open as there are no
restrictions to add any new components to composite classes.

Decorator
The decorator pattern attaches additional responsibilities to an object dynamically. It
provides an alternative way (by composition) to subclass and to extend the functionality of
an object at runtime.

Object-Oriented Software Engineering Patterns Chapter 3

[96]

This pattern creates a decorator class by wrapping the original class to provide additional
functionalities without impact to the signature of methods.

Observe the preceding diagram as it depicts invoice functionalities extended by
composition dynamically (runtime).

Let's list the benefits:

It reduces time for upgrades
It simplifies enhancing the functionalities from the targeted classes and
incorporates behavior into objects (changes class responsibilities, not the
interface)

Impacts are as follows:

It tends to introduce more look-alike objects
It leads to debugging difficulties as it is adding functionality at runtime

Façade
Façade suggests providing a high-level interface that unifies set of interfaces of subsystems,
so it simplifies the subsystem usage.

Object-Oriented Software Engineering Patterns Chapter 3

[97]

A sample implementation of a service façade as in the preceding diagram, the session
subsystem are unified with session façade (local and remote).

Let's look at the benefits:

It promotes loose coupling (between clients and subsystems)
It hides complexities of the subsystem from the clients

The impact is such that it may lead to façade to check whether the subsystem structure
changes.

Flyweight
Flyweight suggests using the shared support of a vast number of fine-grained objects. We
can use the Flyweight pattern to reduce the number of objects created (by sharing) and
thereby reduce the memory footprint and improve the performance.

Object-Oriented Software Engineering Patterns Chapter 3

[98]

The preceding diagram depicts the general structure of the Flyweight pattern and a sample
implementation. Consider a massive object that is shared across printer and a screen;
Flyweight is a good option and can be cached as well (say for printing multiple copies).

Here are the benefits:

It leads to good performance due to reduction in the total number of instances
(by shared objects)
It makes implementation for objects cache easy

The impact is such that it may introduce runtime costs associated with transferring, finding,
or computing foreign (extrinsic) state.

Proxy
The proxy pattern suggests providing a placeholder (surrogate) for another object to control
and get access to it. It is the best fit for lazy loading of objects (defer the creation and
initialization until we need to use it).

The preceding diagram shows a sample implementation of a proxy pattern for a payment
class, and the payment can be either by check or by pay order. However, the actual access
would be to DebitAccount object, so PayOrderProxy and CheckProxy are both surrogates
for Debit Account.

Object-Oriented Software Engineering Patterns Chapter 3

[99]

The following are the benefits:

It introduces the right level of indirections when accessing an object (abstraction
of an object that resides in a different space)
Creating objects on demand
Copy-on-write (may reduce the copying of heavy objects if not modified)

The impact is such that it can make some implementations less efficient due to indirections.

Behavioral patterns
Behavioral patterns provide guidelines on assigning responsibilities between objects. It does
help with ways to implement algorithms and with communication between classes and
objects.

Behavioral pattern focuses on the following characteristics:

Communication between objects and classes
Characterizing the complex control flow; flow of control in software
programming (otherwise, it is hard to follow at runtime)
Enforcing object composition rather than inheritance
Loose coupling between the peer objects, and at the same time, they know each
other (by indirections)
Encapsulating the behavior in an object and delegating request to it

There are various design patterns available to enforce the above said behavioral focusses
and characteristics. We will see details of those behavioral patterns in this section . We also
provided a sample implementation structure as a diagram for some of the patterns.

Object-Oriented Software Engineering Patterns Chapter 3

[100]

Chain of responsibility
This pattern suggests avoiding coupling the client object (sender of requests) with the
receiver object by enabling objects (more than one) to handle the request.

The preceding diagram depicts the typical structure of the chain of responsibility; the
handler is the interface to define the requests and optionally express the successors along
with concrete handlers that can handle the requests and forwards the same if needed.

Here's a list of the benefits:

Reduced coupling (objects do not know which other objects handle the requests)
Additional flexibilities in responsibilities assignments (of objects)

The impact is, no handshakes between the request handlers, so no guarantee of handling
the request by other objects, and it may fall off from the chain unnoticed.

Command (action/transaction)
This pattern suggests encapsulation of requests as an object, parameterizing clients with
different requests; it can placed over message queues, can be logged, and supports undo
operations.

Object-Oriented Software Engineering Patterns Chapter 3

[101]

The preceding diagram depicts the structure of a command pattern and a sample
implementation for a stockbroker application classes. <<StockOrder>> interface is a
Command, and Stock concrete class creates requests. Buy and Sell are concrete classes
implementing the <<StockOrder>>. The StockBroker is an invoker, and its objects execute
specific commands depending on the type that it receives.

Here are the benefits:

Encapsulation of object facilitates the changing of requests partially (by changing
a single command) and no impacts to the rest of the flow
Separates the invoking object from the actual action performing object
Easy to add new commands without any impact to the existing classes

The impact is, the number of classes and objects increases over time or depends on the
number of commands (concrete command implementations).

Object-Oriented Software Engineering Patterns Chapter 3

[102]

Interpreter
This pattern suggests defining grammar along with an interpreter that uses representations
so that the system can interpret any given sentences of a language.

Abstract expression or regular expression declares interpret operation, terminal expressions
or literal expressions implements symbols in the grammar, and non-terminal expressions
(alternate, sequence, repetition) has nonterminal symbols in the grammar.

Let's look at the benefits:

It is easy to change and extend the grammar
Implementing the grammar is easy as well
Helps introduce new ways to interpret expressions
Impacts
Introduces maintenance overhead for complex grammars

Object-Oriented Software Engineering Patterns Chapter 3

[103]

Iterator (cursor)
This pattern suggests providing an approach to sequentially access the elements of an
aggregate object and, at the same time, hide the underlying implementations.

The preceding diagram depicts the structure of the iteration pattern in which the iterator
interface defines traversing methods, and the concrete iterator implements the interface.
Aggregate defines an interface for creating an iterator object, while a Concrete aggregate
implements the aggregate interface to create an object.

Here are the benefits:

It supports variations in the aggregate traversals
Iterators simplify the aggregate interfaces
It may have null iterators and helps handle boundary conditions better
Impacts
It may introduce additional maintenance cost (dynamic allocation of
polymorphic iterators)
It may have privileged access and thus introduces complexities to define new
traversal methods in iterators

Object-Oriented Software Engineering Patterns Chapter 3

[104]

Mediator
The Mediator pattern advocates defining ways of interactions between encapsulated objects
without depending on each other by explicit reference.

The preceding diagram is a typical structure of the Mediator pattern, where Mediator or
dialog director defines an interface to communicate with other colleague objects; concrete
mediator implements cooperative behavior by coordinating colleague objects.

Let's look at the benefits:

Limits subclassing (by localizing behavior and restricting the distribution of
behaviors to several other objects)
Enforcing decoupling between colleagues objects
Simplifying object protocols (replaces many-to-many interactions to one-to-one)
Providing clear clarification on how objects should interact

Impacts is centralized control, leading to more complex and monolithic systems.

Memento
This pattern suggests capturing and externalizing an object's internal state without violating
encapsulation principles; so, we can restore the captured object.

Object-Oriented Software Engineering Patterns Chapter 3

[105]

The preceding diagram depicts the structure of the memento pattern and a sample
implementation for a calculator application. The Caretaker interface helps restore the
previous operation that's handled in the <<Calculator>> concrete class.

These are the benefits:

It preserves encapsulation boundaries by exposing information limited to the
originator
It simplifies the originator

Impacts are as follows:

Memento implementation might be expensive, as it needs to copy large amounts
of data to store into the memento
It may be difficult to implement (through some programming languages) and
ensure that only the originator is accessing the memento's state
It might incur hidden storage and maintenance costs at the caretaker
implementations

Object-Oriented Software Engineering Patterns Chapter 3

[106]

Observer (dependents/publish/subscribe)
The Observer pattern suggests that when one object changes the state, it notifies its
dependents and updates automatically. When implementation is in need of one-to-many
dependencies, you would want to use this pattern.

The preceding diagram depicts Observer pattern structure and a sample implementation of
the same for a publications app; whenever an event occurs, subscribers need to be
informed. The subscribers have a different mode of publishing (SMS, print, and emailing)
and may need to support new modes as well in the future, so the best fit is Observer, as we
just saw.

Let's go through its benefits:

Enables easy broadcast of communication
Supports loose coupling between objects as it's capable of sending data to other
objects without any change in the subject
Abstract coupling between subject and observer (changes in the observer do not
impact subject)
Can add or remove Observers any time

Object-Oriented Software Engineering Patterns Chapter 3

[107]

Impacts are as follows:

Accidental or unintended updates impact the system heavily as it cascades to the
observer down the layers
May lead to performance issues
Independent notifications may result in inconsistent state or behavior (no
handshakes)

State (objects for states)
These allow an object to alter its behavior when its internal state changes, and it appears as
the class changes.

Use state pattern when an object's behavior depends on its state and change at runtime
depends on that state.

The diagram depicts both structure of State pattern and a sample implementation; Context
class carries states, and Off and On classes implement State interface so that context can use
the action on each concrete class's off/on.

Listed are the benefits:

Suggest localizes state-specific behavior and partitions behavior for different
states (new states and transitions can be added easily by subclass definitions)
Makes state transitions explicit
State objects are shareable

The impact is, it may make adding a new concrete element difficult.

Object-Oriented Software Engineering Patterns Chapter 3

[108]

Strategy (policy)
Strategy pattern, also known as policy, defines a family or set of algorithms, encapsulates
each one, and make them interchangeable. Strategy lets the algorithm vary independently
of the clients that use it. When a group of classes differs only on their behavior, it is better to
isolate the algorithms in separate classes and provide the ability to choose different
algorithms at runtime.

The preceding diagram shows the strategy structure, and implementation of sorting
algorithms (as a family) and depends on the input depends on the volume for sort, then the
client can use the intended algorithm from the Concrete strategy sorting classes.

The benefits are as listed:

Enables open and closed principle
Enables large-scale reusability
Eliminates conditional statements (leads to clean code, well-defined
responsibilities, easy to test, and so on)

Impacts are as follows:

Clients need to be aware of different strategies and how they differ
Communication overhead between strategy and context
Increased number of objects

Object-Oriented Software Engineering Patterns Chapter 3

[109]

The template method
This suggests providing a skeleton of an algorithm in operation, and deferring a few steps
to subclasses. The template method lets subclasses redefine a few specific actions of a
defined algorithm without changing the algorithm structure.

The following are the benefits:

Fundamental technique for code reuse
Allows partial implementation of business process while delegating
implementation-specific portion to implementation objects (flexible in creating
prototypes)
Helps implement the Hollywood principle (inverted control structure, Don't call
us, we will call you)

Impacts are as follows:

Sequence of flow might lead to confusion
High maintenance cost and impacts are high on any changes to the code

Object-Oriented Software Engineering Patterns Chapter 3

[110]

Visitor
The visitor pattern represents an operation performed on the objects. It lets us define a new
operation without changing the class elements on which it operates. In simple words, we
use the visitor class to alter the execution of an algorithm as and when the visitor varies.

>

Here are the benefits:

Adding new operations over an object structure is straightforward and easy (by
adding a new visitor)
Visitor separates unrelated operations and gathers related operations

Impacts are as follows:

The visitor class hierarchy can be difficult to maintain when a new concrete
element class gets added
Implementation often forces to provide public operation that accesses an
element's internal state (leads to compromising its encapsulation)

Object-Oriented Software Engineering Patterns Chapter 3

[111]

Concurrency patterns
In software paradigm, the ability to perform multiple tasks at the same time (concurrency)
by a software application is a critical factor; most software applications have some or other
sort of concurrency. Keeping this in mind, let's briefly touch upon on a few concurrency
patterns here, as other chapters in this book cover many (concurrency) related patterns in
detail.

Concurrency design pattern
In many situations the automated system may have to handle many different events
simultaneously called concurrency. OOP provides an adequate means (abstraction,
reusability, sharing of distributed persistent data, parallel executions and so on) of dealing
with concurrency. This section will cover few concurrency patterns in brief.

Producer-consumer
The producer-consumer pattern decouples the produce consume data processes. The
process may handle data at different rates. Producer and consumer pattern's parallel loops
are broken down into two categories as those that produce data and those that consume the
produced data.

Data queues are used to communicate data between loops in the producer/consumer design
pattern. These queues are offered data buffering between the producer and consumer loops.

Active object
The active object pattern enforces decoupling of method execution from the method
invocation and so enhances the concurrency and simplifies synchronized access to the
objects that reside in their (own) threads of control.

We use this pattern where an application handles multiple client requests simultaneously to
improve its quality of service.

Monitor object
This pattern suggests synchronization on concurrent method execution to ensure that only
one method runs within an object at a time. Monitors also allow an object's methods to
execute scheduled sequences cooperatively.

Object-Oriented Software Engineering Patterns Chapter 3

[112]

We use this pattern (implement synchronization) when multiple threads are invoking
methods of an object that modify its internal state. Contrary to active objects, monitor object
belongs to the groups of passive objects; monitors are not having its (own) thread of control.

Concurrency architectural pattern
Half-sync/Half-async: In concurrent systems, decoupling of synchronous and
asynchronous service processing brings programming simplicity without reducing the
performance. Half-sync/Half-async introduces two intercommunicating layers, one for
synchronous and another for asynchronous service processing, with a queuing layer in-
between.

This pattern enables the synchronous and asynchronous processing services to
communicate with each other and helps those processes to decompose into layers.

Leader/Followers: If we need an efficient concurrency model where multiple threads need
to take turns sharing a set of event sources that detect, de-multiplex, dispatch, and process
event-sources' service requests, then the best choice is to implement the Leaders/Followers
pattern in our system.

The aim of this pattern is to provide an elegant solution to process multiple events
concurrently, such as in multithreaded server applications.

Summary
The design patterns have evolved since 1992, and even today, it is inevitable in solving
many software design problems in a proven technique and practices called design patterns.
It is not difficult to see any specific pattern as a solution or technique that can be analyzed,
implemented, and reused, but it is difficult to characterize the problem it solves and the
context in which it is the best fit. It is critical to know the purpose of the patterns, as it helps
understand the existing design of any given system.

With this chapter, we touched upon the key elements of OOD, abstraction, encapsulation,
modularization, and hierarchy along with a few additional items such as typing,
concurrency, and persistence.

Object-Oriented Software Engineering Patterns Chapter 3

[113]

Also, we discussed the design principles, hoping that the readers get a SOLID
understanding of what OO principles offer to OO software designers. We believe that the
SOLID principles are the fundamental training material for anyone who wants to step into
software design and development even in today's world.

We touched upon three broad categories of OO design patterns: creational, structural, and
behavioral. We also discussed the benefits and impacts of each pattern so that the readers
will be able to easily characterize the problems it solves and the context it best suits as a
software solution.

We also added a section, hoping readers to get a fair amount of introduction about
concurrency (design and architectural) patterns as well.

References
The following table refers to cross-reference of OO software design patterns:

Object-Oriented Software Engineering Patterns Chapter 3

[114]

Reference books are as follows:

Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides
Object-Oriented Analysis and Design with Applications (2nd Edition) by Grady Booch

Other references for this chapter:

http://www. oodesign. com/

https:// www. tutorialspoint. com/design_ pattern

https:// sourcemaking. com/ design_ patterns/

http://www. blackwasp. co. uk/ GofPatterns. aspx

http://www. mif. vu. lt/ ~plukas/ resources/ DPBook/

www.dzone.com

http://www. javaworld. com

https:// sudo. ch/ unizh/ concurrencypatterns/ ConcurrencyPatterns. pdf

http://www. cs. wustl. edu/ ~schmidt/ POSA/ POSA2/ conc- patterns. html

https:// en. wikipedia. org/ wiki/ Concurrency_ pattern

http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
http://www.oodesign.com/
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://www.tutorialspoint.com/design_pattern
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
https://sourcemaking.com/design_patterns/
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.mif.vu.lt/~plukas/resources/DPBook/
http://www.dzone.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
http://www.javaworld.com
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
https://sudo.ch/unizh/concurrencypatterns/ConcurrencyPatterns.pdf
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
http://www.cs.wustl.edu/~schmidt/POSA/POSA2/conc-patterns.html
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern

4
Enterprise Integration Patterns

This chapter is going to cover deeper topics of enterprise integration patterns. These topics
are as follows:

Need for integration patterns
Integration scenarios in enterprises
Main challenges in enterprise integration
Getting started with messaging patterns

Need for integration patterns
Present day enterprises are comprised of thousands of applications. Many of them are
commercial, off-the-shelf applications; some of them are in-house applications, and some
others are legacy applications that have been part of the enterprise for a very long time.
Though there will be thousands of applications, it is impossible for employees to access
each one of them separately using separate consoles.

Why are so many applications required in an enterprise? The answer to that question is that
each enterprise has thousands of business functions that are impossible to be performed by
a single application. Even an application such as an ERP can do very limited functions
when compared to the actual needs of the enterprise.

Another reason for multiple applications is that spreading various functions across multiple
applications ensures a better level of business continuity in the sense that even if one
application fails; others will continue to run without causing impediment to business
functions.

Enterprise Integration Patterns Chapter 4

[116]

Vendors in the market have also learned the art of developing applications that are focused
on catering to the needs of specific business functions. However, with the change in
dynamics of the various business functions, vendors are trying to integrate multiple
functions into a single business application. For example, many billing system applications
started to incorporate additional functions for accounting. So in short, in the present
scenario, it is not possible to define clear boundaries for applications.

Users, such as customers and partners, tend to access various functions without much of a
concern about the underlying applications that are involved in performing the function. All
these parameters warrant the need for a proper integration mechanism across various
applications that are part of the enterprise ecosystem. In the past, integration used to be
confined only to applications that exist within an organization.

In the present-day scenario, there are a host of new paradigms such as social media
applications, Internet of Things (IoT) based applications, cloud-based applications,
microservices-enabled applications, and so on, to name a few prominent ones. To enable
seamless data sharing and support business process across the enterprise, it is necessary for
enterprises to ensure that all the applications are integrated. The diverse types of
applications have created a need for the enterprises to develop a robust set of capabilities
for their integration platform so that they can continue to remain competitive in the present-
day dynamics of agile enterprises that are in a constantly changing mode to suit the
customer demands and expectations.

There is no shortcut for enterprise integration. It is a very broad and difficult area to handle,
but inevitable for the present-day enterprise. Enterprise integration patterns do not provide
any ready-made code that can be used for integrating applications. In fact, they suggest
proven and tested approaches for solving enterprise integration problems. If used correctly,
enterprise integration patterns can help organizations fill up the huge gap that exists
between their integration vision and its actual implementation.

In the next section, we will examine the diverse types of scenarios that demand integration
in enterprises.

Integration scenarios in enterprises
The concept of integration is a very broad area. However, some of the most common
integration scenarios in enterprises are the following:

Information portals
Data replication

Enterprise Integration Patterns Chapter 4

[117]

Shared business functions
Service-oriented architectures
Distributed business processes
Business-to-business integration

There could be several other scenarios in enterprises based on the nature of the business
and the domain handled by them. We will examine some of the prominent integration
scenarios now.

Information portal
Many users in an organization will have the need to access more than one application to
perform a single business function. For example, an HR professional may have to access
several applications, such as talent acquisition, compensation and benefits, learning and
development, talent branding, and so on, to pull out details pertaining to various aspects of
talent management. This scenario makes it extremely difficult for them to carry out their
daily business functions at pace. This is where the concept of information portals comes to
their help. An information portal can access information from diverse systems, aggregate,
and present them in a single view. Simple information portals divide the display screen into
several zones. Each zone will display data from a specific application. These information
portals also have the capability to provide drill down information in one zone based on the
information selected by the user in the other zone. An example of an information portal is
as follows:

Enterprise Integration Patterns Chapter 4

[118]

Data replication
In an enterprise, many applications will have a copy of the same data. For example,
customer details could be there in the order management system, billing system,
advertising and promotions system, and so on. So, if the address is updated in one system,
it is mandatory to ensure that it is updated in other systems also. Replication is one of the
techniques to ensure this required consistency. How is data replication done? Many
organizations define policies that will ensure that there is continuous synchronization and
replication of data at regular intervals of time to ensure that data stays up to date on all the
systems. Another technique is to export data into files and import them to other systems.
Another technique, called message-oriented middleware, is used to embed data records
into messages and send them to other applications for synchronization purposes:

Shared business function
If the same set of data is stored in multiple systems, it leads to redundancy of data. The
functions that are used to handle this data (such as a customer address in the previous
example) could be implemented as a shared business function once and exposed as a
service to other systems that have the same set of data.

Enterprise Integration Patterns Chapter 4

[119]

A shared business function can be used as a good functionality to replace redundant data.
For example, let us take the case of a customer address that is stored in multiple systems
across the organization. Instead of storing the same data in multiple systems, a business
function called GetCustomerAddress could be used by a system to fetch the data from
other systems instead of permanently storing it.

The trade-off between the use of redundant data versus shared business functions is based
on several criteria. Some of the parameters that define the criteria are the following:

Amount of control over the systems where the data is present (in some situations,
invoking a shared function could be a more intensive task than loading data into
the database)
Rate of change of data under consideration (for example, a customer address may
be needed very frequently whereas it may change only infrequently)

The diagram depicting the use of a shared function is as follows:

Enterprise Integration Patterns Chapter 4

[120]

Service-oriented architecture
Shared business functions, which we discussed earlier, are commonly referred to as services.
A service is typically a well-defined function that is universally available to perform a
specific operation. These services are made available for use by other systems that act as
service consumers. Once a set of services are created, it is very important to ensure that they
are maintained and made available to other systems in an appropriate manner. The two
important aspects of service management are the following:

Service discovery: All services are made available in a centralized service
directory through which the other applications can discover them
Service negotiation: Each service must describe its interface in such a way that
other applications in the enterprise can negotiate and set up a communication
contract with them

Service-oriented architecture (SOA) is also a mechanism for application integration, which
in turn blurs the line between integration and distributed applications. The SOA was
discussed in detail in Chapter 7, Service-Oriented Architecture (SOA). The block diagram
depicting SOA is as follows:

Enterprise Integration Patterns Chapter 4

[121]

Another important aspect of service-oriented architecture is the concept of enterprise
service bus (ESB), which provides connectivity between the sender and receiver
components of the SOA in a loosely coupled manner.

Distributed business process management
As we have already discussed, a single business function can be spread across several
applications present in an enterprise. In such situations, it is very important to ensure
coordination between the various applications. This can be done by implementing a
business process management system. The business process management system will
coordinate with all relevant applications that are part of a specific business function and
ensure seamless execution. However, in this context, it is important to remember that there
exists a very blurred line between business process management and SOA. There is always
a possibility that all services are made available as services, and a business process function
can be made available as an application to access all services through SOA. The diagram of
a distributed process management system is depicted as follows:

Enterprise Integration Patterns Chapter 4

[122]

The business-to-business integration
As discussed at the start of the chapter, present-day enterprises need to interact with several
components that are external to their ecosystem, such as customers, partners, and so on.
These external elements need access to many applications that are a part of the enterprise.
For example, in the case of a product organization, there will be several partners who
implement the services that are part of the product. In such cases, it is very important for
partners to get access to some critical enterprise applications to stay up to date with the new
product features, updates, learning resources, product user forums, and groups. The
reverse is also true in the sense that the enterprise also relies heavily on certain external
organizations for some of their functions, and hence it is important to ensure the flow of
data from certain external applications to the enterprise. Such scenarios give rise to
situations that warrant a business-to-business integration. This is not a very straightforward
situation like an integration of applications within an enterprise. This is primarily due to the
fact that when it comes to business-to-business integration, several other aspects of security,
legal implications, and governance need to be considered to enable smooth integration. The
graphic depicting a business-to-business integration scenario is as follows:

In the next section, we will analyze the various challenges that exist while integrating
enterprise applications.

Enterprise Integration Patterns Chapter 4

[123]

Main challenges in enterprise integration
Some of the main challenges associated with enterprise application integration are as
follows:

Networks are slow and unreliable: Enterprise integration applications need to
transfer data from one application to another. These applications may reside in
different states, countries, or continents. In such situations, data needs to be
transferred through a LAN or a WAN, or a combination of both. Transferring
data through diverse network topologies and protocols introduces significant
transmission delays and other types of interruptions that become a stumbling
block in enterprise application integration.
Heterogeneous application platforms: While integrating multiple applications, it
is important to keep in mind that each application will have its own platform and
operating system. To ensure seamless integration between such applications, it is
vital to ensure that data transfer between applications happens in a format that
can be understood by all the applications that are involved. For this to happen,
there should be a middleware component that converts data into a generic format
understandable by all the applications.
Application updates and upgrades: Applications that are integrated will
constantly keep getting upgraded due to system updates. In some situations,
some system upgrades will introduce drastic changes in the overall application.
This may impact all other applications that are involved in the integration. It is
important for integration solutions to minimize dependencies between various
applications that are part of the integration. One of the ways to achieve this is by
ensuring loose coupling between the applications.
Security: Certain applications in domains such as healthcare and insurance are
bound by stringent security policies and frameworks. If such applications are
involved in the integration process, it is important to adhere to the security
guidelines. Otherwise, it will lead to the violation of legal guidelines.

Some of the key techniques that are used to overcome the aforementioned challenges are
the following:

Enterprise Integration Patterns Chapter 4

[124]

Let's discuss these techniques briefly.

File transfer
Here, file is the basic mode for transfer of data between applications that need to be
integrated. One application will perform a write operation on a file that will be read by the
other application. However, for this to happen successfully and create the necessary impact,
it is important for the involved applications to agree upon the following parameters about
the file:

Filename and location
Format of the file
Time at which the file will be written and read
How the file will be deleted

Shared database
In this case, the database becomes the point at which integration happens. Multiple
applications that need to be integrated share a common database schema, which is in the
same database. This prevents duplicate data storage and prevents the need for data transfer
from one application to another.

Remote procedure invocation
In this case, integration of applications happens through some functionality that is exposed
by one application. The other application(s) access these functionalities remotely as a
remote procedure. The process of invoking these functionalities as a remote procedure is
called remote procedure invocation. Remote procedure invocation occurs in real time and
is a synchronous communication.

Enterprise Integration Patterns Chapter 4

[125]

Messaging
In this case, integration of applications happens through messaging. One of the applications
publishes a message to a message channel that can be accessed by all other applications.
Other applications access the message channel and reach the message at some later point in
time. The only criteria here is that the applications that are involved should have a
predefined agreement on the message channel and the format of the message that is sent to
the channel. In the next section, we will dive deep into the concepts of messaging and how
enterprise applications can be integrated using the concept of messaging. In the next
section, we will dwell deep into the various types of messaging patterns.

Getting started with messaging patterns
Messaging is a reliable technique that is used for interconnecting applications using the
concept of packets called messages. These packets are sent to channels, which are logical
pathways providing interconnection between the various applications. These channels are
also called queues. Several messages can be queued up in a channel and can be made
accessible to multiple applications at the same point in time. There are two main types of
applications in messaging, they are:

Sender/producer
Receiver/consumer

A sender is an application that sends a message to the channel. A receiver is an application
that reads the message that is sent to the channel. Messaging is an asynchronous mode of
communication, meaning it is not necessary that the receiver should read the message from
the channel as soon as it reaches the channel.

A message could be any kind of data structure, such as an array, string, or object. Every
message contains two parts:

Header
Body

The header contains metadata about the message, such as details of the sender, receiver,
timestamp, and so on. This information is used by the messaging system but is usually
ignored by the applications. The message body contains the actual data that is sent by the
application. The body of the message is ignored by the messaging system but is used by the
applications.

Enterprise Integration Patterns Chapter 4

[126]

Messaging capabilities are provided to a system by a specialized software application called
message-oriented middleware (MOM). MOM is also called a messaging system. MOM is
required to ensure smooth transmission of messages across applications. One of the main
reasons for the existence of MOM is the unreliable state of networks that interconnect the
systems. Even if a message is sent by an application, it is not necessary that it reaches the
intended destination if the network is not proper. MOM helps to overcome this network-
related limitation and other limitations, and ensures that a message is repeatedly
transmitted until it reaches its destination. The communication of applications through
messaging is depicted in the following diagram:

The following are the five steps involved in message transmission:

In each of these steps, the following activities are performed:

Create: In this step, the sender or producer adds a header and data and creates1.
the message
Send: In this step, the sender sends out the message to the channel2.

Enterprise Integration Patterns Chapter 4

[127]

Deliver: In this step, MOM moves the message from the sender's system to the3.
receiver's system making the message available for the receiver
Receive: In this step, the receiver or consumer reads the message from the4.
channel
Process: In this step, the receiver extracts the data from the message5.

In the next section, we will examine the prominent messaging patterns that are used in the
design of enterprise systems.

Pipe and filter pattern
In many situations, a single event could trigger a series of actions and each will perform a
specific function. So, pipe and filter patterns are used to handle such situations that require
complex processing of messages while maintaining flexibility and independence. A large
task is split into a series of smaller, sequential, independent tasks (filters) that are connected
by channels (pipes). The diagram of the pipe and filter pattern is depicted as follows:

Each filter has a simple interface that consists of an inbound pipe that receives, processes,
and publishes the result to the outbound pipe. The role of a pipe is to connect one filter to
the next. In the case of the pipe and filter pattern, all components use the same external
interface, and hence they can be present in different solutions. These solutions can be
interconnected by means of different pipes. The connection outlet that provides a
connection between the pipe and filter is called a port. Typically, each filter has one input
port and one output port.

Enterprise Integration Patterns Chapter 4

[128]

Message router pattern
This pattern is used in situations where sequential execution of steps may not always be
possible. In some situations, the output of a filter may have to be passed to one of the
several pipes based on the fulfillment of certain criteria or conditions. In such situations,
message router patterns are used. The diagram depicting the message router pattern is as
follows:

Message translator pattern
In the beginning of the chapter, we discussed scenarios where there could be a need to
integrate certain third-party applications/partner applications to some of the applications
that are part of the enterprise. These applications will use diverse data models and may
sometimes use totally different data formats for communication. For present-day agile
enterprises, it is necessary to use patterns that can interconnect diverse types of applications
by converting data from one format to another. This is where the message translator
pattern plays a key role. The message translator pattern acts as a special filter between other
filters or applications and translates data from one format to another. The diagram
depicting the message translator pattern is given as follows:

Enterprise Integration Patterns Chapter 4

[129]

Message endpoint pattern
Applications in an enterprise communicate with each other by sending messages through a
message channel. But the next issue is that there needs to be a mechanism in place that will
help applications to connect to the message channel. This is applicable for the sender
application to send messages and for the receiver application to receive messages. This is
where the message endpoint pattern comes into the picture. The message endpoint acts as a
client of the messaging system, which the sender and receiver application can use to send
and receive messages. Message endpoint code is accessible to both the application and the
MOM's client API. The remaining application knows nothing about message formats,
messaging channels, or any other details of the applications with which it is communicating
through messaging. It just knows that it has sent some data to another application or that it
will receive data from another application. Message endpoint code takes the data, converts
it into a message, and sends it to the correct messaging channel. Similarly, on the receiving
end, the message endpoint receives the message, extracts the contents, and gives it to the
application. The diagram depicting the message endpoint pattern is as follows:

Enterprise Integration Patterns Chapter 4

[130]

Point-to-point channel pattern
Consider the scenario in which an application is using messaging to make a remote
procedure call. In this situation, it is necessary to ensure that only one receiver will perform
the call. This is where the point-to-point channel pattern helps us. If a message is sent
through a point-to-point channel, it ensures that only one receiver will receive the message.
In case the channel has multiple receivers, only one of them will be able to receive the
message. If multiple receivers try to consume the message, the channel will make sure that
only one of them will be successful in their attempts. But this does not prevent the channel
from having multiple receivers and them receiving multiple messages concurrently. The
only criteria here is that only one receiver will receive a specific message:

Publish-subscribe channel pattern
This pattern will be of use for applications that use messaging to announce events. The
announcement of events will involve sending messages to multiple receivers
simultaneously. If the message is sent on a publish-subscribe channel, a copy of the message
will be sent to each receiver:

Enterprise Integration Patterns Chapter 4

[131]

A publish-subscribe channel works basically like a broadcast mechanism. It has one input
channel which is split into several output channels, one for each subscriber. When an event
is published in the channel, a copy of the message is delivered to each of the output
channels that are attached to it. Each output channel has only one subscriber attached to it.
Each subscriber can consume the message only once. In this way, each subscriber gets a
message only once and the message copies disappear from the channel once they are
consumed.

Enterprise Integration Patterns Chapter 4

[132]

Datatype channel pattern
If several types of data are transmitted through a channel, it is important to differentiate the
various formats of data. This is where the datatype channel pattern comes in handy. The
diagram of a datatype channel pattern is depicted as follows:

If a datatype channel is used for each type of data, messages on a specific channel will
contain only the same type of data. The sender should know the type of data and send it
through the appropriate channel for that type of data. The receiver should be able to know
the type of data based on the channel from which it received the data.

Message bus patterns
In enterprises, there will be several disparate systems. These systems should be able to
communicate and share data with one another and operate seamlessly for the effective
functioning of the enterprise. This is where the message bus pattern comes in handy. The
architecture of the message bus pattern is depicted in the following diagram:

Enterprise Integration Patterns Chapter 4

[133]

If the various applications are interconnected using a message bus, it allows them to
communicate seamlessly using messages. The following are the main components of a
message bus:

Common data model
Common command set
Messaging infrastructure: This component allows the various systems to
communicate using a shared set of interfaces

The concept of a message bus is very similar to that of a communication bus which is used
in a computer. The communication bus facilitates communication among the various
components of a computer such as CPU, memory, peripheral devices, and so on.

Enterprise Integration Patterns Chapter 4

[134]

Command message patterns
If an application wants to invoke the functionality provided by another application, the
most commonly used method is remote procedure invocation. But if remote procedure
invocation has to be used along with the concept of messaging, command message patterns
are very useful. The diagram of the command message pattern is depicted as follows:

A command message is a message that is reliably used to invoke a procedure that is
running in another application. There is no specific type for a command message.
Command messages are normal messages that have a command embedded in them.

Event message patterns
Several applications communicate with one another using events. If event-based
communication happens from using messages, then event message patterns are used. The
event message pattern is depicted in the following diagram:

Enterprise Integration Patterns Chapter 4

[135]

In an event message pattern, if the subject has to announce an event, it will first create an
event object. This object is then wrapped in a message and sent on a channel. The observer
will receive the event from the channel and process it. Messaging in events does not alter
the event notification; it just ensures that the notification reaches the observer.

Request-reply pattern
When applications communicate through messaging, it is typically one-way
communication. Suppose if the applications want a two-way communication, then a
request-reply pattern is used. In a request-reply pattern, the request message and the reply
message will have their own channels. The diagram of a request-reply pattern is depicted as
follows:

Enterprise Integration Patterns Chapter 4

[136]

Content-based router pattern
In many enterprises, a single function is spread across several systems. In such situations, it
is important to ensure that the message goes through each of the systems that contain the
function. In such situations, the content-based router pattern becomes very helpful. The
content-based router pattern is depicted as follows:

The content-based router pattern examines the content of the message and then routes the
message onto the correct channel based on the data that is contained in the message. The
parameters on which the message is routed could be one of the following:

Existence of certain data values in specific fields
Presence or absence of certain fields in the message

It is very important to ensure that in a content-based router, the routing function that is
implemented in the router should be easy to maintain. It is also possible to maintain a
content-based router in the form of a rules engine that calculates the destination channel
based on a set of pre-configured rules.

Enterprise Integration Patterns Chapter 4

[137]

Message filter pattern
In many scenarios, there will be situations in which we are interested in receiving some
kind of promotional messages/discounting messages, say for example from an e-commerce
website based on a certain product that you may be interested in buying. But this may not
be applicable to all messages. So in such situations, it is important to ensure that the
unwanted messages get blocked or filtered. In such situations, the message filter pattern
becomes very useful. The diagram depicting the message filter pattern is given as follows:

The message filter has only a single output channel. If the data present in the message
matches the specific output criteria that are mentioned by the message filter, the message is
routed to the output channel, else it is discarded.

Resequencer pattern
When a message routing pattern is used, messages get routed through several systems
based on the fulfillment of certain criteria or rules. But when messages pass through several
systems, there is a likelihood that they get out of order. In these situations, the resequencer
pattern comes in handy. The diagram depicting the resequencer pattern is given as follows:

Enterprise Integration Patterns Chapter 4

[138]

The resequencer is a stateful filter that can be used to reorder messages so that they can be
published in a specific sequence to the output channel. The resequencer contains an internal
buffer that stores a sequence of messages until the complete sequence is obtained. The in-
sequence messages are published immediately to the output channel. The out-of-sequence
messages are kept in the internal buffer until they are placed in sequence and then they are
sent to the output channel. The resequencer just makes the message in-sequence; it does not
generally modify the contents of the message.

Polling consumer pattern
There will be several situations in which the application may not always be ready to
consume messages. In such situations, the application would like to reach a state of
readiness before it starts consuming messages. In such situations, the polling consumer
pattern becomes very helpful. The diagram of a polling consumer pattern is depicted as
follows:

In this pattern, the application uses a polling consumer, which makes a call as and when it
is ready to receive a message. The polling consumer is also known as a synchronous
receiver. This is because the receiver thread is in a blocked state until a message is received.
Most of the messaging APIs provide a receive method, which blocks until a message is
delivered.

Enterprise Integration Patterns Chapter 4

[139]

Channel adapter
If applications communicate with the help of messaging, it is necessary to ensure that the
applications can connect to the messaging system to send and receive messages. This is
where the channel adapter is helpful. The diagram depicting the channel adapter pattern is
shown as follows:

A channel adapter should be able to access the application's API or data and publish
messages on a channel based on this data. It should also be able to invoke the functionality
inside the application and receive messages. The adapter ideally acts as a client to the
messaging system. The channel adapter invokes the functions of the application through an
interface that is supplied by the application. This helps an application to remain integrated
with a messaging system if it has a proper channel adapter. In the next section, we will
focus on mobile integration patterns, that is, patterns that are used for integrating mobile
devices to enterprise systems.

Mobile integration pattern
We need a faster way for mobile devices to integrate with enterprise services, and this
necessitates the need for a mobile integration pattern. When we talk about the integration of
mobile services with enterprises, there are two main possibilities that could arise during the
integration:

A mobile application that is integrated with some function of the enterprise sends
a request message to the enterprise system and gets a response in return
An enterprise system sends a push notification message to a mobile application

Enterprise Integration Patterns Chapter 4

[140]

This flow is shown in the following diagram:

Request-response pattern
To define a request-response pattern, it is necessary to ensure that mobile-ready interfaces
are present in the enterprise services that are created in the ESB. This pattern provides
support for the integration of mobile services in an ESB architecture. A special type of
adapter customized for mobile services called a mobile integration adapter helps to
integrate mobile applications with the mobile-related services that are running in the ESB.
The major steps involved in this mobile integration are depicted in the following diagram:

Enterprise Integration Patterns Chapter 4

[141]

Here is how the integration happens:

As a first step, the mobile adapter sends the inbound request directly to the1.
enterprise service.
Then the enterprise service present in the ESB establishes a connection with the2.
required backend systems to process the inbound request. The ESB also works
with the backend systems to get a response.
At last, the ESB sends the response to the mobile adapter which in turn passes the3.
response back to the mobile application.

Defining a push notification pattern
Push notification patterns are used if an enterprise application wants to send push
notifications to the mobile devices. The steps involved in defining the push notification are
depicted in the following diagram:

Enterprise Integration Patterns Chapter 4

[142]

Enterprise applications typically use a backend service that is running on the mobile
integration server to push the notification messages to devices. The following are the main
steps in the workflow of the process:

The enterprise application sends a push notification to the mobile device using1.
the ESB and mobile backend service
Once the ESB receives the notification, it calls the mobile backend service to send 2.
push notifications to the mobile device
Messages pass through the mobile integration server to reach the mobile3.
application and the mobile device

At the start of the chapter, we discussed several types of external applications getting
integrated with the enterprise systems. In the next section, we will have an overview of the
API management pattern. In this section, we will focus briefly on the integration aspects
while using microservices/API-based design concepts in architecture.

API management pattern
The API management pattern integrates applications with enterprise systems and other
cloud-based services using APIs. The following are the main components of the API
management pattern:

API management portal
API user
Enterprise services

The consumer of each API service first sends a request to the API management portal. The
API management portal interacts with the enterprise service before sending a response to
the consumer. APIs use industry-standard formats for messages such as SOAP for web
services and XML or JSON for representational state transfer. The API management portal
acts as a simple proxy and helps to forward request and response messages to and from the
backend.

Enterprise Integration Patterns Chapter 4

[143]

Summary
At the start of the chapter, we examined several types of integration scenarios that exist in
enterprises. Some of the key integration scenarios that exist in enterprises are the following:

Information portals
Data replication
Shared business functions
Service-oriented architectures
Distributed business processes
Business-to-business integration

After covering these topics, the main challenges faced in application integration were
discussed. The techniques to overcome these challenges were also discussed. In the next
section of the chapter, we discussed several types of messaging patterns at length. After
messaging patterns, prominent mobile integration patterns were discussed. We concluded
the chapter with a brief discussion of the API management pattern, which is the most recent
trend in the industry.

5
Domain-Driven Design (DDD)

Principles and Patterns
Most of the commercial software application is created with a set of complex business
requirements to solve the specific business problems or needs. However, expecting all the
software developers/architects to be experts on business domains and expecting them to
know entire business functions is also impractical. On the other side, how do we create
software that brings value and get consumers with automated business needs to use the
software? Software applications cannot just be a showpiece of technical excellence, but in
most cases, they also have to have a real ease of automated business excellence. The
domain-driven design and models are the answers to our questions.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[145]

This section will cover most of DDD aspects and patterns that can help successful
implementations of DDD-based software.

The preceding diagram is an attempt to visualize a domain-driven software model driven
by collaborated effort from domain and technology experts.

DDD concepts, principles, and patterns bring technology and business excellence together
to any sophisticated software applications that can be created and managed. DDD was
coined by Evan and most of the content of this chapter is the influence of his book Domain-
Driven Design - Tackling Complexity in the Heart of Software and also from the book Pattern-
Principles-And Practices by Scott Millett and Nick Tune.

This section intends to cover a few essential aspects of DDD and also discuss a few common
domain-driven design patterns in detail.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[146]

Principles, characteristics, and practices of
DDD
Before we delve into various design patterns, let us touch upon the fundamental principles
of DDD, then few primary characteristics constituents, and also few best practices that help
teams to adopt and follow DDD.

Principles
The fundamental principles of DDD are described in the following sections.

Focusing on the core domain
This principle suggests product development teams to focus more on the core domain, that
is, the parts that are most important to a business and which need more attention than
others. So, we need to identify the core domain by distilling and decomposing a big
problem domain into subdomains. For instance, when designing a retail banking software,
we should focus on the credit and debit accounting instead of the manufacturing and
distribution of credit cards and debit cards as they support functions and they can be
outsourced as well.

Collaborate and learn
As we mentioned in the introduction section, software experts may not know the domain,
and the domain analysts may not know the technology and software implementations. So,
collaboration and learning from each other is inevitable for DDD aspects, without which the
software design or development won't happen at all. For instance, to develop a back office
software application for an investment bank, the risk management experts and Software
experts need to work together to learn the systems, applicability, usability, banking
customer's intentions, and so on.

In recent days, traditional banks are collaborating with financial technology startups aka
fintech, as they see significant benefits of data analytics, AI, and machine learning into core
banking systems as they would be able to take accurate decisions, innovate faster along
with solving banking industry's everyday problems.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[147]

Model the domain
As we now understand the collaboration and learn principle from the previous section, the
collaboration, deep learning, and get insights of the core domain along with fundamental
functions, this is inevitable. The output expected out of model the domain principle is a
domain model, which is well-organized and structured knowledge of the problem in the
core domain space along with fundamental concepts, vocabulary, issues, and relationships
among the involved entities. You can seek contributions from different stakeholders such as
analysts, domain experts, business partners, tech savvy users, and core developers and
build these domain models, so everyone in a team understands the functional concepts and
definitions and also how the current problem is tackled and solved.

Evolve
Another critical aspect of the domain model is evolution. Domain models need to evolve
over time through iterations and feedback. The design team starts with one significant
problem and traverses through different scopes of the core domain along with generated
models with incremental changes iteratively. It is critical as models need to adjust to
feedback from domain experts while delivering domain models dealing with complexity.

Talk in ubiquitous language
Collaborating, learning, and defining a model brings a lot of initial communication barriers
between software specialists and domain experts. So, evolving domain models by
practicing the same type of communications (discussions, writings, and diagrams) within a
context is paramount for successful implementations, and this sort of conversation is called
ubiquitous language. It is structured around the domain model and extensively used by all
the team members within a bounded context. It should be the medium or mode to connect
all the activities of the team during the development of software.

The design team can establish deep understanding, and connect domain jargons and
software entities with ubiquitous language to keep discovering and evolving their domain
models.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[148]

Characteristics
The following characteristics are the primary constituents and may serve as a glossary of
items that we will discuss in this chapter. You will see that many of these are factored into
the patterns that we present in this section:

Domain model: Organized and structured knowledge related to the specific
problem.
Bounded context: A system fulfils the fundamental goals of the real-world
complex business problems, provides a clear and shared understanding of what
can be consistent, and what can be independent.
Entities: These are mutable objects, which can change their attributes without
changing their identity (for example, the employee's ID doesn't change even
when their email ID, address, and name changes).
Value objects: These are immutable objects (unlike entities), distinguishable only
by the state of their properties. The equality of value objects is not based on their
identity. (Two location objects can be the same by their long and latitude values.)
Encapsulation: Fields of an object are exposed only for private access, in other
words, detected only through accessor methods (setters and getters).
Aggregate: This is a collection of entities (for example, a computer is an aggregate
of entities such as software and hardware). The aggregate may not work without
those objects.
Aggregate root: This is an entry point to aggregates, and only known reference to
any outside object. This helps to create the precise boundary around aggregates.

Best practices
We have listed a few best practices for a team that intends to dwell in DDD for their
software product development:

Gather requirements and capture required behaviors
Focus on what stakeholders want, when, and why
Distill the problem space
Be a problem solver first, technologist comes second
Manage the complexity with abstraction and create subdomains

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[149]

Understand the reality of the landscape with context maps and bounded contexts
Model a solution, tackle ambiguity, and carve out an area of safety
Make implicit concepts explicit

DDD patterns
In this section, we will browse through a set of patterns to build enterprise applications
from the domain models. Applying these design patterns together with OO concepts to a
system helps meet the business needs.

This section covers significant aspects of DDD design patterns grouped as strategic design
patterns and tactical design patterns of DDD.

Strategic patterns
The primary aim of this group is to bring understanding and consensus between the
business and the software development teams with more emphasis on business interests
and goals. The strategic patterns help software development team members focus on what
is more important and critical to the business by identifying a core domain. The core
domain is a particular area of the company or even a specific slice that is critical.

Few primary constituents of strategic patters are ubiquitous language, domain, subdomain,
core domain, bounded context, and a context map. We will see how one can integrate the
disparate systems via the strategic design patterns such as bounded context, messaging,
and REST discussed in this chapter with those constituents.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[150]

Ubiquitous language
A model acts as a universal language to manage communication between software
developers and domain experts. The following table shows the example of ubiquitous
languages and their equivalent pseudo code:

Ubiquitous
language Equivalent pseudo code Comments

We administer
vaccines

AdministerVaccines {}
Not a core
domain—need some
more specific details

We administer flu
shots to patients

patientNeedAFluShot()
Better, may be missing
some domain concepts

Nurse administers
flu vaccines to
patient in standard
doses

Nurse->administer
vaccine(patient,
Vaccine.getStandardDose())

Much better, and may
be good to start with

Domain, subdomain, and core domain
Domain refers to a problem space that software teams try to create a solution for, and
represents how the actual business works. The vaccines example from the table can be seen
as domain, with the end-to-end flow, managing vaccinations, preventive medicines,
dosages, side effects, and so on. Core domain is the core business that the organization does
not want to outsource. So, the core domain here in this context is vaccination, and other
functions like patients management, cost of vaccines, vaccination camps, and so on are
subdomains and are outside of the core domain. Core domains interact with subdomains.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[151]

Bounded contexts
Bounded contexts are distinctive conceptual lines that define the boundaries and separate
the contexts from other parts of the system. A bounded context represents refined business
capabilities, and it is the focus of DDD. It deals with large distributed models and teams by
dividing them into different bounded contexts and being explicit about their
interrelationships.

Before we go deeper into patterns, let's refresh the idea about bounded contexts. The
preceding diagram depicts account in both contexts; though the account doesn't differ, the
contexts do. The following sections deal with patterns that help integrate the bounded
contexts for any DDD solution.

Integrating bounded contexts
The Bounded contexts help in identifying the relationships between subsystems and so one
can choose the communication methods between those subsystems. Selecting appropriate
communication and establishing relationships with the established communication is the
responsibility of the designers, which helps them too to ensure there is no impact on project
delivery timelines and efficiency. An example of integration and establishing
communication reflecting explicit models could be integrating a payment system with an e-
commerce sales system. Choosing the communication method is critical, and we will see
more of integrating bounded contexts in the following sections.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[152]

Autonomous bounded context
To ensure atomicity, design loosely coupled systems with fewer dependencies; solutions
can also be developed in isolation.

The shared-nothing architecture
While guaranteeing bounded contexts to be self-reliant, retaining the integrity of the
bounded context is also critical. The shared-nothing pattern suggests that each bounded
context has its own data stores, codebases, and developers, as shown in the following
diagram:

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[153]

As each bounded context is physically isolated, it can evolve independently for internal
reasons, resulting in uncompromised domain model with super-efficient and faster delivery
of business values.

Single responsibility codes
It's a best practice to partition the software systems according to their business capabilities,
that is, by isolating separate business capabilities into different bounded contexts. For
example, the shipping code of the business is not affected by a new shipping provider that
got added to Sales.

Multiple bounded contexts (within a solution)
Depending on the code (language), deployments, and infrastructure, there are situations
where different bounded context resides in the same code repository or a solution with
combined contexts to depict one big picture of full business use cases.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[154]

To maintain the different contexts within a solution, this pattern suggests keeping
namespaces distinct or recommends projects to keep bounded contexts separate.

Adoption of SOA principles
Build highly scalable systems using DDD with SOA concepts and patterns. Build bounded
context as SOA services to solve the technical and social challenges (integrating teams and
developing at a high velocity) of bounded context integration. Please refer to Chapter 7,
Service-Oriented Architecture (SOA), for more details on SOA's principles and practices.

Integrating with legacy systems
Legacy systems is always a case in the real world, and they come with exciting challenges
while we try to incorporate the latest industry improvements into them. In DDD, this
problem is more interesting to address as there are many handy patterns available that help
limit the impact of the legacy on the other parts of the system, manage complexity, and save
designers from having to reduce explicitness (against DDD philosophy) of their new code to
integrate into legacy modules or components.

We will touch upon bubble context, autonomous bubble context, and expose legacy systems
as services in this section.

The bubble context
If a team wants to start applying the DDD to the legacy systems but it is not yet familiar
with DDD practices, then the bubble context pattern can be considered. As the bounded
context in the legacy may be an isolated codebase, the bubble context pattern provides
clarity, and directions that to the team to create domain models and evolve as well. The
bubble context reflects the best of the DDD philosophy of iteration, and it progresses by
having full control over the domain model.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[155]

It is considered as the best fit to facilitate frequent iterations and get insights even when
legacy code is involved.

When you need to integrate with legacy code but do not want to create any dependency or
tight coupling with a legacy system, as bubble context does, this pattern suggests using an
anonymous bubble called autonomous bubble context. Bubble context gets all its data from
the legacy system, whereas the autonomous bubble context has its own data store and is
able to run in isolation of the legacy code or other bounded contexts.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[156]

The preceding diagram depicts the autonomous bubble context, and you may notice that
the bubble context has dependencies with legacy context. However, the autonomous bubble
context has its own storage, and so it can run in isolation.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[157]

The anti-corruption layer
An isolating layer talks to the other systems through its existing interface with little or no
modifications (to the other systems) and provides clients with the functionality of their own
domain. This layer is responsible for translating communication between the two models in
both directions, as needed.

Expose as a service
It may be a good idea to expose legacy system as a service, especially when the legacy
context needs to be consumed by multiple new contexts. This pattern is also known as the
open host pattern.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[158]

Each new context still has to translate the response from the legacy to its internals; however,
with simplified open host APIs, one can mitigate the translation complexity.

With this pattern, there is a need for some modifications to the legacy context (unlike the
bubble context); also, standardization of consumable API SLAs may be challenging as it has
multiple consumers.

We can clearly justify that a lot of legacy systems in the real world would like to adopt
DDD; however, with the lack of right patterns and given the cost and impacts, there are
genuine reasons and hesitations to move toward DDD. Recognizing and harnessing these
models should ease the situations and encourage organizations to adopt DDD for their
legacy systems and progress toward faster delivery.

Distributed bounded context integration
strategies
Distribution is inevitable in the modern world for various reasons, and primarily for system
abilities such as availability, scalability, reliability, and fault tolerance. This section briefly
touches upon a few integration strategies for the distributed bounded context, such as
Database integration, Flat file integration, Messaging, and REST. We will cover how those
patterns help integeratting distributed bounded contexts. Also, we will see (briefly) how
reactive solutions help in integration strategies.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[159]

Database integration
The database integration pattern is one of the conventional approaches of using a single
data source that lets an application write to a specific database location and lets another
application read from it. The access by another application can be made as polling with
some frequency. This pattern might come in handy for prototypes or even for most viable
product (MVP) delivery.

The preceding diagram depicts an example of database integration, where the sales team
inserts the records and the billing context polls to the same data source. If it finds the sales
record, it processes and updates the same row.

While this pattern has advantages of loose coupling, it also has a few drawbacks, such as
single point of failure, and needs a mechanism for efficient fault handling and so on. DB
down scenario is a SPOF example, and to mitigate, one may need to go with a clustered DB,
buy more hardware to scale, or consider the cloud infrastructure, and so on.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[160]

Flat file integration
The flat file integration pattern is similar to database integration; however, instead of
having a database to integrate two components, it suggests using flat files. The updates,
inserts, and polling are needed just as we would in another pattern, but this is a little more
flexible. However, this comes with some disadvantages like managing the file formats,
concurrency, and locks, among other things, would need more involvement and effort,
leading to scalability and reliability issues.

This diagram is the sample implementation for flat file integration and involves polling,
update, and delete.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[161]

Event-driven architecture and messaging
Messaging and event-driven architecture pattern bring the best out of modeling
communication between bounded contexts with distributed systems. This section under
DDD intends to ensure you understand the significance of EDA and messaging patterns
within the context of DDD. And also to emphasize the benefit of implementing
asynchronous messaging and EDA patterns for communication between the contexts. The
benefits include increased reliability even on failures of subsystems. We have covered most
of the EDA and messaging patterns well and in-depth in Chapter 8, Event-Driven
Architecture Patterns, and Chapter 9, Microservices Architecture Patterns, and we encourage
you to refer to those chapters and get insights about event-driven and messaging patterns.

Tactical patterns
Tactical patterns help manage complexities and provide clarity in behaviors of domain
models. The primary focus of these patterns is to protect models from corruption by
offering protection layers.

In this section, we will touch upon the few of the common patterns that help in creating
object-oriented domain models.

At the end of this section, we will also briefly cover the emerging patterns of event sourcing
and domain events.

Patterns to model the domain
This section will discuss few tactical patterns, and explain how they represent the policies
and logic within the problem domain. They express elements of models in the code, the
relationship between the objects and model rules, and bind the analysis details to the code
implementation.

We will discuss the following patterns in details:

Entities
Value Objects
Domain Services
Modules
Aggregates

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[162]

Factories
Repositories

The following diagram depicts various tactical patterns and their logical flow:

Entities
As stated in the introduction section, an entity is a mutable object. It can change its
attributes without changing its identity. For example, a product is an entity, which is
unique and won't change its ID (distinctiveness) once it is set.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[163]

However, its price, description, and so on, can be changed as many as times it needs to.

The preceding diagram depicts an entity along with an example. An employee ID is unique
and never changes. However, there is a contact detail that can be modified by accessor
methods.

Entities have the following properties:

They are defined by their identity
The identity remains the same throughout its lifetime
They are responsible for equality checks

Value objects
Unlike entities, value objects are immutable and used as descriptors for model elements.
They are known to the system only by their characteristics, and they don't need to have
unique identifiers. They are always associated with other objects (for example, Delivery
Address in the sales order can be a value object) and it is consistently associated with sales
order context; otherwise, it doesn't have any meaning.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[164]

The preceding diagram depicts the basic concept of a value object along with an example,
and the following diagram is a sample class representation of entity and value object:

The following list describes the characteristics of value objects:

They describe the properties and characteristics within a problem domain
They do not have an identity
They are immutable, that is, the content of the object cannot be changed; instead,
properties modeled as value objects must be replaced

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[165]

Domain services
In ubiquitous language, there are situations where actions cannot be attributed to any
specific entity or value object, and those operations can be termed as domain service (not an
application service).

Domain services encapsulate the domain logic and concepts that may not be modeled as
entities or value objects, and they are responsible for orchestrating business logic using
entities and value objects. The following are a few characteristics/features of domain
services:

Domain services neither have identity nor state
Any operation performed by the domain services does not belong to any of the
existing entities
Any domain operation in the domain service carry specific objects of the domain
model

The following class diagram depicts a sample money transfer operation from one account to
another. As we won't be knowing in which object we can store the transfer operation, we
choose domain service for this operation:

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[166]

Modules
Modules are used to decompose the domain model. Naming the modules is part of the
ubiquitous language, and they represent a distinct part of domain models and enable clarity
when in isolation. Modules help developers to quickly read and understand the domain
model in code before deep diving into class development. Note that decomposing domain
models is different from subdomains' decomposition of the domain and bounded context.

The preceding diagram depicts a sample module name and a sample template to follow.

Aggregates
In DDD, the concept of an aggregate is a boundary that helps in decomposing larger
modules into smaller clusters of domain objects, and so the technical complexities can be
managed as a high level of abstraction. Aggregates help in doing the following:

Reducing and constraining relationships between domain objects
Grouping objects of the same business use cases and viewing them as a unified
model

Every aggregate has a specific root and border, and within that particular border, all the
possible invariants should be satisfied. Domain invariants are statements or rules that
always need to be adhered to and help preserve consistency (also known as atomic
transactional coherence).

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[167]

The preceding diagram represents an aggregator sample implementation and brief
information about each class and its characteristics associated with aggregates context as
follows:

CreditReport: This includes user information and links, and saves and stores
external linkage by Customer ID (identifier).
CustomerID: This an independent aggregate that preserves user information
CreditScore: This holds credit rating estimation rule and act as invariants. This
invariant gets modified/impacted based on credit modifications history.
CreditHistoryEntry: This helps achieve transactional coherence when it's
modified.
Inquiry: This can handle specific credit score requests from third-party
organizations.

Factories
Factories are a pattern to separate the use (of the object) from the construction (of the
object). Aggregates, entities, and value objects create some level of complexity within a
domain model, especially with larger domain models. Factories help to express the (creation
and use of) complex objects in a better manner.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[168]

The preceding diagram might help grasp a quick detail about factory creation from the
DDD perspective. The following are some characteristics of factories that we would want to
be refreshed with:

Separating use from construction
Encapsulating internals (and avoid exposing the internals of aggregate)
Hiding decisions on the creation type-domain layer factories to abstract the type
of class to be created
Decluttering complex domain models

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[169]

The preceding class diagram intends to give a sample view of the factory implementation
for car models to be created; the creation complexity is abstract to the domain.

Repositories
Repositories are patterns to manage aggregate persistence and retrieval while ensuring a
clear separation between the data model and the domain model. Repositories are mediators
that act as a collection of facades for storage and persistence.

The preceding diagram depicts a sample structure of a repository model. It shows the client
operation of save and update (persistence) with aggregates, through repository, while there
is a separate access to the repository (Deals with Aggregate in the above diagram); a clear
separation between the domain and data model.

Repositories differ from traditional data access strategies in the following three ways:

They restrict access to domain objects by allowing the retrieval and persistence of
aggregate roots while ensuring that all the changes and invariants are handled by
aggregates
They hide the underlying technology used for persistence and retrieval of
aggregates from the facades
They define a boundary between the domain model and the data model

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[170]

We have the following two types of repositories:

Repositories as collections
Repositories as permanent data storage

The preceding class diagram depicts a sample structure of a repository class and its
underlying layer. The repository is within the infrastructure layer and extends the domain
layer interface (restrict access).

Emerging patterns
In this section, we will cover the following two emerging patterns:

Domain events: They enforce consistency between multiple aggregates of the
same domain
Event sourcing: This is a way of persisting the application's state and finding the
current state by traversing through the history of those saved states

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[171]

Domain events
The domain event pattern is a preferred a way to trigger side effects across multiple
aggregates within the same domain. A domain event is an event that occurs in a particular
domain, which the other parts of the same domain (subdomain) should also be aware of
and may need to react to it as well.

A domain event pattern helps to do the following:

Express the side effects of an event in a domain explicitly
Maintain consistency of the side effects (either all the operations related to the
business task are performed or none of them are)
Enable a better separation of concerns among classes within the same domain

Event sourcing
Event sourcing provides simplification of various events, and it is a way of persisting an
application's state and finding the current state by traversing through the history of those
saved states. An example could be a seat reservation system that scans the completed
bookings and finds out how many more seats are available when a new booking request
arrives.

The seat allocation depends on various events (booking, cancellations, modifications, and so
on), and it can be handled differently with the event sourcing pattern. This is of immense
help in some domains where the audit trail is a critical requirement, (accounting, financial
transactions, flight reservations, and so on), and also the pattern helps achieve better
performance as events are immutable and support append-only operations.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[172]

The following requirements may hint where we need to use event sourcing as a pattern:

A simple standalone object to access complex relational storage module
Audit Trails (these are a critical requirement)
Integration with other subsystems
Production troubleshooting (by storing the events and replaying)

We need to be aware of a few general concerns as follows about event sourcing so that we
can have trade-offs and mitigation plans:

Versioning: As event sourcing systems are append-only models, they face
unique versioning challenges. Imagine we need to read an event that was
created/written years ago into the event-sourcing system. So versioning is
necessary to change the definition of a specific event type or aggregate at some
point in the future, and one needs to have clear and definite plans and strategies
for managing multiple versions for event-source models.
Querying: This is a little expensive as it gets deeper. It depends on the level and
period of the states to be retrieved.
Timeout: This is the time taken to load the domain object state by querying the
event store for all the events related to the state of the aggregate.

Other patterns
Before concluding this chapter, take a look at the following list of patterns that are
important as a part of DDD, however, not covered in this chapter. You are encouraged to
review our references section to get an insight into the following topics:

Layered architecture
Service layers
Application services
Refactoring toward deeper insight
Supple design
Making behavior visible (intention revealing interfaces)
Side-effect-free functions
Representational state transfer (REST)

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[173]

Summary
Sometimes, software design experts get into confusion when to and when not to use
domain models. The following points might help you get an insight into DDD for efficient
decision making and decide to implement DDD or not:

Business cases and requirements are particular, specific to domains, and not
related to technology implementations
As an independent team, they wanted to go to DDD when:

The team has never done earlier that sort of business cases
The team need help from domain experts
The business cases are more complex
The team need to start from ground zero, and there are no previous
models exists

When the given design problem is important to your business
Skilled, motivated, and passionate team to execute
Have greater access to domain experts who are aligned with product vision
Willing to follow iterative methodology
Nontrivial problem domain that is critical to business
Great understanding of vision
Business goals, values, success and failure factors, and how is it going to be
different from earlier implementations

To summarize, this chapter has short introductions to core principles, characteristics, and
best practices for a team to get a head start and adopt DDD. Then, we introduced strategic
patterns such as ubiquitous language, domain, subdomain, core domain, and bounded
context in detail. We also covered the most essential aspects of DDD, such as autonomous
bounded context, shared nothing architecture, single responsibility codes, multiple
bounded contexts, and a bit of thought process about SOA principles concerning DDD
aspects as part of integrating bounded contexts. We also saw the bubble context,
autonomous bubble context, and expose as a service as part of the significant real-world
problem of integrating with legacy systems. We introduced you to database integration, flat
file integration, and event-driven messaging as part of distributed bounded context
integration strategies.

As part of tactical patterns, this chapter covered entity, value objects, domain services,
modules, aggregates, factories, and repositories and also discussed two emerging patterns:
domain events and event sourcing.

Domain-Driven Design (DDD) Principles and Patterns Chapter 5

[174]

References and further reading materials
For more information, you can refer to the following books:

Domain-Driven DESIGN - Tackling Complexity in the Heart of Software - Eric Evans
(Pearson)
Patterns, Principles, and Practices of Domain-Driven Design - Scott Millet with Nick
Tune (Wrox)

You can refer to the following online resources, too:

DDD quickly: https:/ / www. infoq. com/ minibooks/ domain- driven- design-
quickly

Framework and tools: https:/ / isis. apache. org/ documentation. html

Three guiding principles: https:/ /techbeacon. com/get- your- feet- wet- domain-
driven-design- 3- guiding- principles

Getting started with DDD: https:/ /dzone. com/ storage/ assets/ 1216461- dzone-
rc-domain- driven- design. pdf

Model evaluation and management: https:/ / arxiv. org/ ftp/arxiv/ papers/
1409/1409. 2361. pdf

https://www.infoq.com/articles/ddd-in-practice (characteristics of DDD)
https:// www. codeproject. com/ Articles/ 1158628/ Domain- Driven- Design-
What-You- Need- to- Know- About- S

https:// www. codeproject. com/ Articles/ 1164363/ Domain- Driven- Design-
Tactical- Design- Patterns- Part

https:// www. slideshare. net/ SpringCentral/ ddd- rest- domain- driven- apis-
for-the- web

https:// www. infoq. com/ presentations/ ddd- rest

https:// ordina- jworks. github. io/ conference/ 2016/ 07/10/ SpringIO16- DDD-
Rest.html

https:// www. slideshare. net/ canpekdemir/ domain- driven- design- 71055163

https:// msdn. microsoft. com/ magazine/ dn342868. aspx

http://mkuthan. github. io/ blog/ 2013/ 11/ 04/ddd- architecture- summary/

https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://isis.apache.org/documentation.html
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://dzone.com/storage/assets/1216461-dzone-rc-domain-driven-design.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://arxiv.org/ftp/arxiv/papers/1409/1409.2361.pdf
https://www.infoq.com/articles/ddd-in-practice
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1158628/Domain-Driven-Design-What-You-Need-to-Know-About-S
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.codeproject.com/Articles/1164363/Domain-Driven-Design-Tactical-Design-Patterns-Part
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://www.infoq.com/presentations/ddd-rest
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://ordina-jworks.github.io/conference/2016/07/10/SpringIO16-DDD-Rest.html
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://www.slideshare.net/canpekdemir/domain-driven-design-71055163
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
https://msdn.microsoft.com/magazine/dn342868.aspx
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/
http://mkuthan.github.io/blog/2013/11/04/ddd-architecture-summary/

6
Enterprise Architecture

Platforms and Tools
This chapter contains two main sections.The objective of the chapter is to provide an
overview of the two prominent enterprise patterns which are used in the industry
nowadays. Some of the prominent Enterprise Architecture platforms and tools are also
covered in this chapter. The first section focuses on the two popular enterprise
architecture framework that are used nowadays:

The open group architecture framework (TOGAF)
Zachman framework

In the second section, we will focus on the prominent enterprise architecture (EA)
platforms and tools that are used by organizations. We will cover the following popular
platforms:

Enterprise architect
Dragon1
ABACUS

Enterprise Architecture Platforms and Tools Chapter 6

[176]

Overview of enterprise architecture
frameworks
An enterprise architecture framework (EAF) helps to map all the software-related
development processes within an enterprise to fulfill the goals and objectives of the
enterprise. EAF also provides a framework for the organizations to analyze and understand
their weaknesses and inconsistencies. There are many popular and well established EAF
frameworks that exist in the industry today. Some of them were developed for specific
areas, whereas others have a broader scope. Some of the EAF frameworks that exist in the
market are the following:

Department of defense architecture framework (DoDAF)
Federal enterprise architecture framework (FEAF)
Treasury enterprise architecture framework (TEAF)
The open group architecture framework (TOGAF)
Zachman framework for enterprise architecture

Though there are four or five prominent EAFs in the industry, the most popular and widely
used ones are TOGAF and Zachman framework for enterprise architecture. Hence in this
chapter, our discussions will be focused only on these two frameworks.

Getting started with TOGAF
TOGAF is an extremely popular architecture framework that is used to design an enterprise
architecture. It offers all the toolsets and techniques that are used in the design, production,
and maintenance of enterprise architecture. It is developed based on a process model that
uses industry best practices and a set of reusable architecture assets.

As per TOGAF, architecture is defined as the fundamental organization of a system, embodied in
its components, their relationships to each other and the environment, and the principles governing
its design and evolution (you can refer to http:/ /pubs. opengroup. org/ architecture/
togaf9-doc/arch/ for more information). In short, the architecture of a system provides an
elaborate plan for its implementation. The architecture also highlights the various
components that are present in the system and the interrelationships that exist among them.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/

Enterprise Architecture Platforms and Tools Chapter 6

[177]

TOGAF is designed to support four architecture domains of enterprise architecture. These
four domains are highlighted in the following diagram:

Each of the architecture domains listed in the previous diagram plays a vital role in defining
the architecture of an enterprise. The roles are listed as follows:

The business architecture provides a blueprint of the overall business activities,
such as the business strategy, organization, core business processes, and so on.
The data architecture provides a blueprint of the organization's data assets, be it
logical or physical. It also specifies the various data management resources of the
organization.
The application architecture provides a blueprint for the various applications
that must be deployed in the organization, along with their interactions and
dependencies on the various business processes that are present in the
organization.
The technology architecture provides a high-level description of the hardware
and software assets that are required to support the various data, application,
and business services that are needed in the organization. Technology
architecture focuses mainly on the infrastructure components, processing
standards, and so on.

Architecture development method (ADM)
The core of the TOGAF architecture is the ADM. It provides a set of tested and repeatable
processes for developing enterprise architectures.

The following are the key activities that are captured in the ADM:

Establish a framework for architecture
Develop content for architecture
Provide guidance for realization of architectures

Enterprise Architecture Platforms and Tools Chapter 6

[178]

All the ADM activities follow an iterative cycle, which includes both architecture definition
and realization. This helps the organizations to transform their architectures in a step-wise
manner that is aligned with their business goals and opportunities. The phases of an ADM
are shown in the following diagram:

Activities that happen in each phase within the ADM are explained as follows:

Preliminary phase: The main initiation activities that are required for
architecture capability building are done. Some examples of activities that are
done in this phase are customization of TOGAF, the definition of principles to be
used for architecture design, and so on.

Enterprise Architecture Platforms and Tools Chapter 6

[179]

Phase A - Architecture vision: In this initial phase, the key actors are involved in
the definition of scope. Some other activities are stakeholder identification,
getting all necessary approvals for architecture design and development, and so
on.
Phase B - Business architecture: In this phase, an agreement is made to develop a
business architecture that is aligned with the architecture vision of the
organization.
Phase C - Information systems architecture: In this phase, an agreement is made
to develop an information system architecture that is aligned with the
architecture vision of the organization.
Phase D - Technology architecture: It mainly deals with developing a technology
blueprint that is aligned with the architecture vision of the organization.
Phase E - Opportunities and solutions: It deals with doing the initial
implementation planning and identification of different formats of architecture
delivery.
Phase F - Migration planning: It mainly deals with the steps involved in moving
from a baseline to final target architectures. The various steps involved in
migration are generally captured in an implementation and migration plan.
Phase G - Implementation governance: It provides an overview of the
implementation.
Phase H - Architecture change management: It deals with carving out a change
management plan to handle changes that come up in the architecture.
Requirements management: It deals with managing the architecture
requirements that evolve throughout the various phases of ADM.

Deliverables, artifacts, and building blocks
Throughout the execution of an ADM, several types of outputs are produced. Some of them
are process flows, project plans, compliance assessments, and so on. TOGAF provides an
architecture content framework that offers a structural model for the architectural content.
This structural model allows several types of work products to be defined, structured, and
presented in a consistent manner.

Enterprise Architecture Platforms and Tools Chapter 6

[180]

The architecture content framework basically uses three types of categories to denote the
specific type of architectural work product under consideration. They are the following:

A deliverable is a type of work product that is reviewed and agreed upon formally by the
stakeholders. Deliverables are typical outputs of projects and they are in the form of
documents. These deliverables are either archived or transferred to an architecture
repository as a model standard at the time of completion of the project.

An artifact is a type of work product that describes some specific aspect of an architecture.

Some important categories of artifacts are as follows:

Catalogs (list things)
Matrices (show relationship between various things)
Diagrams (depict pictures of things)

Some common examples are a requirements catalog, use-case diagram, interaction diagram,
and so on.

A building block denotes a fundamental component of IT or architectural capability that
can potentially be combined with other building blocks to develop and deliver
architectures.

Building blocks can be specified at various levels of detail based on the stage at which
architecture development of the system has reached. For example, at very initial stages, the
building block could be just a name that may later get involved into a complete
specification of the component and its design.

Enterprise Architecture Platforms and Tools Chapter 6

[181]

There are two types of building blocks, they are:

Architecture building blocks (ABBs): They describe the capability that is
expected from the architecture. This capability then describes the specification
that will be used for making the building blocks of the solution. For example,
customer service could be an example of a capability that is needed within an
enterprise, which may have several solutions blocks such as applications,
processes, data, and so on.
Solution building blocks (SBBs): They denote the various components that will
be used in the implementation of the required capability.

The relationships between deliverables, artifacts, and building blocks are depicted in the
following diagram:

Enterprise Architecture Platforms and Tools Chapter 6

[182]

All the artifacts pertaining to architecture are interrelated in some way or the other. A
specific architecture definition document may refer several other complementary artifacts.
The artifacts could belong to various building blocks which are part of the architecture
under consideration. The following example pertains to the target call handling process.
The various references to other building blocks are depicted in the following diagram:

Enterprise continuum
TOGAF includes a concept called enterprise continuum. This concept explains how certain
generic solutions can be customized and used as per specific requirements of an
organization. Enterprise continuum provides a view of the architecture repository that
provides ways and techniques for classifying architecture and other related artifacts as they
transform from generic architecture to specific architectures that are suitable for specific
needs of the organization. Enterprise continuum has two complementary concepts
associated with it, they are:

Architecture continuum
Solutions continuum

Enterprise Architecture Platforms and Tools Chapter 6

[183]

The architecture of enterprise continuum is depicted in the following diagram:

Architecture repository
Another important concept of TOGAF is architecture repository. This can be used to store
diverse types of architectural outputs, each at varying levels of abstraction; these outputs
are created by ADM. This concept of TOGAF helps to provide cooperation and
collaboration between practitioners and architects who are working at various levels in an
organization.

Both enterprise continuum and architecture repository allow architects to use all
architectural resources and assets that are available in an organization-specific architecture.

Enterprise Architecture Platforms and Tools Chapter 6

[184]

In general, TOGAF ADM can be considered typically as a process lifecycle that operates at
various levels in an organization. ADM operates under a holistic governance framework
and produces outputs that are placed in an architecture repository. Enterprise continuum
provides a very good context for understanding the various architectural models, the
building blocks, and the relationship of the building blocks to each other. The structure of
TOGAF architecture repository is given in the following diagram:

Enterprise Architecture Platforms and Tools Chapter 6

[185]

The following list shows major components of an architecture repository and the
functionalities provided by those components:

Architecture metamodel: This component describes the architecture framework,
which is tailor-made as per the needs of the organization.
Architecture capability: This component describes parameters, processes, and so
on that support governance of the architecture repository.
Architecture landscape: This is the representation of architectural assets that are
deployed within an organization at any point in time. There is always a
possibility that the landscape exists at various levels of abstraction, which are
aligned to different sets of architecture objectives.
Standards information base: This component describes the standards to which
new architectures must comply. Standards in this context may include industry
standards, standards from products and services that are deployed in the
organization, and so on.
Reference library: This component provides guidelines, templates, and so on that
can be used as a reference to create new architectures for the organization.
Governance log: This component maintains a log of governance activity that
happens across the enterprise.

Advantages of using TOGAF
The following are the main benefits of using TOGAF for EA design:

The TOGAF framework provides a good understanding of the techniques to be
used to integrate architecture development with strategies that are aligned with
the objectives of the organization
The framework provides well-defined guidelines on the steps to integrate
architecture governance with IT governance
The framework provides many checklists on how to support IT governance
within the organization
The framework provides a lot of reusable artifacts that can be used to create
diverse types of architecture for organizations based on the varying requirements
The framework provides a lot of options to reduce IT operating costs and helps in
the design of portable applications

Enterprise Architecture Platforms and Tools Chapter 6

[186]

Limitations of TOGAF
There are certain limitations too, which are listed as follows:

The framework plays the role of a design authority in an enterprise and offers
very few features for the architects to maintain enterprise-wide descriptions,
standards, principles, and so on
The framework provides very limited guidance to solution architects
The framework assumes that enterprises will have their own processes that will
be integrated with TOGAF
It is just a framework, not a modeling language or any other component that
could be treated as a replacement for architect skills
It is not very consistent with the metamodels it supports

In the next topic, we will examine the details of the Zachman framework, which has also
gained a lot of popularity and traction in the enterprise architecture domain.

Zachman framework for enterprise
architecture
The Zachman framework was published by John Zachman for EA in 1987. Zachman was
motivated by increased levels of complexity involved in the design of information systems,
which forced him to think of a logical construct for designing the architecture of enterprises,
which in turn led to the development of the Zachman framework for enterprise
architecture. The framework does not focus much on providing any form of guidance on
sequence, process, or implementation. The core focus is to ensure that all views are well
established, ensuring a complete system regardless of the order in which they were
established. The Zachman framework does not have any explicit compliance rules as it does
not belong to the category of a standard written by a professional organization.

Enterprise Architecture Platforms and Tools Chapter 6

[187]

The Zachman framework was initially developed for IBM but now has been standardized
for use across enterprises. The main motivation behind the Zachman framework is to derive
a simple logical structure for enterprises by classifying and organizing the various
components of an enterprise in a manner that enables easy management of enterprises and
facilitates easy development of enterprise systems such as manual systems and automated
systems. The simplest form of the Zachman framework has the following depictions:

Perspectives depicted in the design process, that is owner, designer, and builder.
Product abstractions, such as what (material it is made of) and how (a process by
which it works).
Where (geometry by which components are related to one another), who
(operating instructions) is doing what kind of work, when (timing of when things
happen), why (engineering aspects due to which things happen). In some of the
older versions of the framework, there were some additional perspectives present
such as planner, sub-contractor, and so on.

The various perspectives that are typically used in the Zachman framework, as well as their
roles in the enterprise architecture landscape, are as follows:

Planner: A planner positions the product in the context of its environment and
specifies the scope
Owner: An owner will be interested in the business benefits of the product, how
it will be used in the organization, and the added value it will offer to the
organization
Designer: A designer will carve out the specifications of the product to ensure
that it meets the expectations of the owner. All aspects of product design are
taken care of by the designer
Builder: A builder manages the process of assembling various components of the
product
Sub-contractor: A sub-contractor incorporates out-of-context components that
are specified by the builder

Please note that perspectives with respect to the Zachman framework keep changing as per
the enterprise landscape.

Enterprise Architecture Platforms and Tools Chapter 6

[188]

The simplest depiction of the framework has the following components:

Advantages
The following are the main advantages of the Zachman framework:

It provides a framework for improving several types of professional
communication within the organization
It provides details about the reasons and risks of not using any architectural
perspective
It provides options to explore and compare a wide variety of tools and/or
methodologies
It has options that will suggest the development of new and improved
approaches for producing various architectural representations

Restrictions
The Zachman framework has the following limitations:

It can lead to a process-heavy/documentation-heavy approach as there is a lot of
data that needs to be filled out in the cells that are used to capture the data
pertaining to the framework
It does not provide a step-by-step process for designing a new architecture

Enterprise Architecture Platforms and Tools Chapter 6

[189]

It does not provide any guidelines for assessing the suitability of a future
architecture for an organization
It does not provide a framework for implementing governance in an architecture

Guidelines for choosing EAF
Given an option to choose the architecture that is best suited for your enterprise, what are
the parameters you will use to make a decision? The following table helps you to choose
one based on some common parameters that are prominent in the industry landscape (in a
five-point scale):

Enterprise Architecture Platforms and Tools Chapter 6

[190]

Some key terms used in the table are as follows:

Process completeness: This criterion helps to find the level of step-by-step
guidance provided by the framework for architecture implementation
Business focus: This criterion helps us to find the technology choice flexibility
which in turn will help in alignment with business objectives
Partitioning guidance: This criterion helps to judge the flexibility offered by the
framework for partitioning of the enterprise to manage complexity effectively
Time to value: This criterion provides guidance on the time taken by a solution
built using this framework to deliver business value to the organization

In the next section, we will examine the prominent platforms and tools that are available for
deployment/design of enterprise architecture.

Enterprise architecture platforms and tools
The following are some of the main parameters to be considered by enterprise architects
while choosing an enterprise architecture platform:

Innovation: Enterprise architects will need a lot of features that will enable them
to think and work in an innovative manner. At the same time, they should have
access to all tools and features that are available in any EA environment.
Visualization: Most of the EA tools also perform the function of business support
tools. In such a scenario, it becomes necessary that the tool offers a lot of rich
visualization and animation features, which are expected as a part of normal
business support activities.
Mapping and modeling: One of the most important feature requirements of EA
tools is modeling. The tools should be able to provide diverse types of modeling
such as contextual modeling, logical modeling, and physical modeling. The need
for advanced modeling capabilities becomes more prominent in the context of
present-day digital businesses with a lot of customer centricity.

Enterprise Architecture Platforms and Tools Chapter 6

[191]

Analysis and design: One of the key requirements of any EA tool is to support
analysis and design. Now, because of the changes in the enterprise landscape, it
becomes necessary for the tools to support advanced features such as business
intelligence.
Speeding time to value: EA tools should be able to provide features that enable
easy integration with a lot of third-party tools and interfaces. These capabilities
will help them to deliver business value quickly.
Business architecture design: EA tools should offer features that help in
accommodating rapidly changing features as a part of architecture design. They
should also provide features to develop new types of business models quickly.

In the next section, we will examine some popular platforms and tools that are available for
the design and development of enterprise architectures.

Enterprise Architect from Sparx Systems
It is a comprehensive enterprise architecture platform that offers the following core
capabilities pertaining to enterprise architecture design:

Analysis
Modeling
Design
Construction
Testing and management

This tool offers integrated support and full traceability between all tasks, phases,
components, domain, and lifecycle management of enterprise architecture. Enterprise
Architect combines the rich UML toolset with a high performance and interactive user
interface to provide an advanced toolset for the enterprise architects.

Enterprise Architecture Platforms and Tools Chapter 6

[192]

The intuitive user interface of the Enterprise Architect tool is depicted in the following
screenshot:

The following are the main industries supported by the Enterprise Architect tool:

Aerospace
Banking
Web development
Engineering
Finance
Medicine
Military
Research and academia
Transport
Retail
Utilities

Enterprise Architecture Platforms and Tools Chapter 6

[193]

Enterprise Architect is also a tool that is widely used by standard organizations across the
world to organize their knowledge, models, and messages. This tool has been continuously
updated as per the changes in the UML standards.

Enterprise Architect is a proven, scalable, effective, and affordable full life cycle
development platform for:

Strategic modeling
Requirements gathering
Business analysis
Software design
Software profiling
Software testing and debugging
Modeling and simulation of business processes
Systems and software engineering
enterprise architecture design
Database design and engineering
Design and development of XML schemas
Project management activities for various stages of enterprise architecture design
and development
Testing and maintenance of applications
Reporting

Enterprise Architect is optimized for the following activities, which are involved as a part of
enterprise architecture design:

Creating, capturing, and working with a rich and diverse set of architecture
requirements from multiple stakeholders
Modeling, designing, and architecting a wide range of software systems as per
the requirements of the organization
Business analysis, modeling the business process, and strategic modeling as per
the needs of the organization
Modeling of systems, modeling of system architecture, and component design
Comparing, designing, constructing, modeling, and updating database systems
Defining and generating schema based on XSD and other standards
Creating architecture designs based on domain-specific modeling languages such
as UML

Enterprise Architecture Platforms and Tools Chapter 6

[194]

Simulating and visualizing a wide range of systems, tasks, and associated
processes
Designing, developing, executing, debugging, and testing codes written in a wide
variety of software languages
Simulating behavioral processes and designing state machines and their various
interactions
Building executable codes for types of state machines based on the architectural
design and providing an environment that supports simulation of these
executables
Collaborating and sharing information
Providing the capabilities for quality control and testing of complex architectural
systems
Project managing tasks that are associated with enterprise architecture design
and development
Team-based collaboration features using the concept of cloud-based repositories
that are optimized for access over diverse types of LAN and WAN networks

Dragon1
Dragon1 is a very popular enterprise architecture platform that offers the following
features, which are mandatory for the design and development of enterprise architecture:

Technology roadmaps that can be used to derive architectures aligned to business
objectives of the organization
Heat maps that show the pain points for architecture design in an organization
Capability maps that provide a blueprint of the capabilities that exist in an
organization
Glossary of terms used in architecture design and development
Architecture description document
Decision matrix sketches of total concepts
Drawing on architecture principles
enterprise architecture blueprints
Application landscapes
Models atlas

Enterprise Architecture Platforms and Tools Chapter 6

[195]

Dragon1 offers features that can be used by individuals at various levels of an organization.
The main groups that will benefit from using Dragon1 in an organization are:

Analysts: Helps them to do impact analyses
Architects: Helps diverse types of architects such as business, enterprise,
information, IT, and so on, for creating architecture designs as per their domain
Designers: Helps them to create both functional and technical designs
Managers (IT and business): Provides toolsets that help them to monitor and
manage operations visually through features such as dashboards
Program and project managers: Monitoring and managing changes in their
schedules on a real-time basis visually
CxOs (CIO, CEO, CFO, and so on): Dashboard view of various organization
domains in an easy to understand manner

Some of the core capabilities of Dragon1 are the following:

Publishing and reporting: Any type of document/information can be uploaded,
stored, and published using Dragon1
Data management: Provides support for storage, updating, and deletion of any
type of data
Requirement management: Provides exhaustive features for requirements
gathering from diverse types of stakeholders
Process, application, and metamodelling: Offers capabilities and features to
build models for any type of entity class, such as process, application, and so on
System design: Provides a rich set of features that allows systems to be designed
at conceptual, logical, or physical level
User management: Provides role-based features that can be used by employees at
various levels in an organization
Architecture visualization: Offers extensive graphical features that help in the
creation of rich visualizations
Dashboards and scenarios: Offers rich features that enable the creation of
dashboard features and scenario analysis

Enterprise Architecture Platforms and Tools Chapter 6

[196]

To learn more, you can visit https:/ /www. dragon1. com/products/
enterprise- architecture- tool- comparison.

ABACUS from avolution software
Avolution's ABACUS suite is one of the best EA modeling tools as per Gartner's magical
quadrant. It comes with a large library of architecture frameworks and patterns for most of
the common platforms. It also provides support for data imported from a broad range of
modeling solutions and third-party sources.

ABACUS comes in two variants; they are as follows:

Standard
Professional

ABACUS's standard suite of products offers only architecture modeling functionality,
whereas ABACUS's professional suite provides architecture modeling and scenario analysis
capability. ABACUS provides enterprise modeling capability based on components,
constraints, and connection framework. It also has features for assigning properties for
connections and components that can be accessed through a tabular view in the user
interface.

Architecture of ABACUS
ABACUS consists of metamodels and multiple architectures along with a view for each
architecture. The solution provides a large set of libraries that are derived from industry
standard frameworks such as TOGAF and several others. ABACUS has an XML-based file
format that acts as an objects database. Any new file format that is added to ABACUS is
stored as another object in an objects database. This feature is extremely helpful for the
creation of new architecture models or adding enhancements to the existing metamodels,
because these aspects can be done with the help of right-clicks and do not need any changes
to the internal database as required by several other EA tools in the market.

https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison
https://www.dragon1.com/products/enterprise-architecture-tool-comparison

Enterprise Architecture Platforms and Tools Chapter 6

[197]

The ABACUS approach that is used to define metamodels basically uses three key units,
they are:

Component
Connection
Constraints

These key units conform to the IEEE1471 standard. ABACUS ships with different libraries
that contain these key units. The list of libraries that are present in ABACUS includes more
than 50 prominent architectural patterns. The flexibility of Avolution provides support for a
larger number of architectural frameworks when compared to other EA platforms that are
available in the market. ABACUS has features that allow users to create new libraries or
merge existing libraries to create a new one within a matter of minutes.

Apart from the tools that were discussed in this section, Gartner's magic quadrant, shown in
the following image, provides the list of enterprise architecture platforms that are
prominent in the enterprise architecture landscape. This could be used by any Enterprise
Architect as a basis for decision making. For more on this, visit https:/ / www.gartner. com/
doc/reprints?id= 1- 2Q45NIB ct= 151020 st= sb.

Summary
In the first section of the chapter, we discussed the Zachman framework and the TOGAF
framework, which are prominent nowadays. The components of these frameworks and the
advantages and disadvantages of each of them were examined. Finally, we provided a set of
metrics that could be used to evaluate and choose the best EA framework for an
organization based on various parameters. Next, we examined the various popular EA
platforms and tools that are used for the design and development of enterprise architecture.
We concluded the chapter by providing a list of EA tools that are supported by Gartner's
magical quadrant.

References
https://www.sparxsystems. com. au/ products/ ea/

https://www.avolutionsoftware. com/ downloads/ ABACUS%20TA001910ITM. pdf

https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.gartner.com/doc/reprints?id=1-2Q45NIB&ct=151020&st=sb
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.sparxsystems.com.au/products/ea/
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf
https://www.avolutionsoftware.com/downloads/ABACUS%20TA001910ITM.pdf

7
Service-Oriented Architecture

(SOA)
You might have wondered about many websites having different kinds of dashboards
showing distinct yet relevant contents, and how in this world it is possible to combine a
weather report and stock market quotes in one display.

Weather reports and stock quotes are functionally different systems; one is the
meteorological area and the other one is the national stock exchange, yet they can be
combined and shown in a single dashboard.

So, if we need to define what a web service is, then any reusable, custom-developed software
code that lets heterogeneous applications talk to each other and disparate systems get integrated in a
cost-effective manner could be our definition.

We can design a software system that integrates disparate data sources and different
ecosystems that can evolve and mature over time in a better and cost-effective way by
adopting fundamental SOA principles and characteristics in every service design.

In this chapter, we will cover the following topics as part of SOA:

Web services and SOA
Introduction to SOA
Life cycle of SOA
Primary characteristics of SOA
Principles of SOA
SOA design patterns

Service-Oriented Architecture (SOA) Chapter 7

[199]

Web services and SOA
The first step for any web service design is to start with strict adherence to SOA
characteristics and principles. Basic building blocks and stepping stones for any web service
design are the SOA architecture patterns.

SOA is the most favorable and proven architectural design style that helps to solve a few
key problems within modern software systems to handle ever-changing user expectations
efficiently.

Recently, in many real-time cloud applications, SOA has become the foundation of cloud
efforts, and a lot of convergence with the private and public cloud as well. Certainly, SOA is
playing a significant role in the background with virtualization, event processing, business
process management, and much more in real-world applications.

Introduction to SOA
SOA is an architectural style of services and not a technology or any programming
language. It defines standards and ways to design and develop a service.

Service-Oriented Architecture (SOA) Chapter 7

[200]

Service is the logical representation of repeatable business activities* that have a specified
outcome. It is self-contained, Provides guidelines to combine a service with other services. It
is also an abstract or black box to the consumer who consumes it.

*The following are a few examples of business activities with specific outcomes:

Get city's weather report
Get stock quote of given stock code
Get hotel booking details by booking ID
Get user profile information for given user ID

In short, SOA is essentially a collection of services, and those services communicate with
each other, and a service is an operation or a function that is well-defined, self-contained,
and independent of other service contexts and states.

Life cycle of SOA
Let's first touch upon the life cycle of SOA, and briefly discuss each stage in the life cycle,
before we get into the characteristics of SOA.

Service-Oriented Architecture (SOA) Chapter 7

[201]

Any services are discoverable by having a clear set of communication standards such as
WSDL, SOAP, REST, and so on, and therefore they are picked up for consumption.

Service design is the next critical item in which we need to find a proper pattern and deliver
services as model-driven, business function-specific, testable in isolation, and so on, and the
most common patterns are discussed in detail later in this chapter.

For any business or organization, after the functional design phase, it is important to have
services that are developed, deployed, and consumed. However, unlike waterfall
methodology (customer waits until all the components are developed), it is better if the
service development and deployment happen in an iterative and agile fashion, so customers
meet ROI in short-term.

Governance and feedback are crucial for any evolving service, as they play a critical role in
service adoption and help businesses to achieve ROI as soon as possible.

Primary characteristics of SOA
Any functional system or component that is SOA-based has its unique characteristics.
However, in this section, we will cover fundamental elements that are uncompromising in
any SOA-based designs.

Service interconnectivity with well-defined
interfaces
Interoperability or interconnectivity between the two involving systems is a critical aspect
of SOA. To achieve interoperability, architects should analyze the system deeper and come
up with a greater level of detail so that they can define well-defined interfaces. Those
interfaces in SOA embody interaction points between the system and its boundaries, which
should be standardized, explicit, behavior predictable, scalable, and sustainable.

Service-Oriented Architecture (SOA) Chapter 7

[202]

Standard interfaces and Service level agreements
The interfaces should be well-thought and standardized. The response of a weather report
can evolve faster without any changes in the client's request (payload). In the weather
forecast web service, the city name can be a key element; however, the city can have
different climatic conditions within the city, and to get precise weather conditions, the
interface needs longitude and latitude along with the city name.

Event-driven and messaging
Loose coupling is one of the essential primary characteristics of SOA, and it can be easily
achieved by having event-driven and messaging as part of a service's design. The services
that we design should represent a business function or domain and consider an application
that needs to send an email to the user immediately after booking a hotel and assume we
have a hotel booking service that can book a hotel and send a confirmation email to the
user. As per the business functions, we can have two different services; one that takes care
of the hotel booking, and another one that takes care of the post-booking process such as
email, mobile confirmations, and so on. The email service can receive events from the
booking service, or it can listen for any messages from other systems, depending on its
event-driven design or message-driven design.

Flexible
 Repeatable and Reusable is another essential characteristic of SOA, so services should be
flexible with fewer constraints in the policies and accomplish reusability and repeatability
with no impact on the clients who are already consuming the services. In these situations,
designers would get concerns about service optimizations and performance improvements.
However, the flexibility should be given preference over optimizations.

Service-Oriented Architecture (SOA) Chapter 7

[203]

Let’s get some insights about flexibility. Consider a client (consumer) access a weather
report for a given city by its name, there are chances that the given city can respond with
more than one results (City’s airport, downtown and so on), so potentially the results can be
more than one. In that situation how do we design a payload to respond with only one row,
maybe the request payload should have a placeholder to accept longitude and latitude as
seen in the below XML snippet and so the response of the service shows only one result, not
many?

In another scenario, assume the consumer wanted to search weather conditions for a city
called Dover, which is a duplicate name across the world (more than 50 cities name is Dover
around the world), so to find unique Dover, the payload should also have the flexibility to
mention State and Country or Zip code.

To achieve flexibility, one should not hard-wire any elements in the client payloads that are
prone to change, and also evaluate alternate approaches that yield advantages and greater
flexibility for the services and its’ centralized functions.

Service-Oriented Architecture (SOA) Chapter 7

[204]

How do we justify flexibility over service optimization? If we consider the service need to
respond with weather conditions for the city name Dover, there may be multiple calls
involved; one to find a list of cities by name Dover, the second one to call specific Dover
with intended State, and Country or Zip code. So expected results for the consumer is vital
than reducing the number of calls to the services. So in this kind of situations, considering
the flexibility over optimization is a better approach.

Evolution
The beauty of software product development is that any software product can be given for
consumption once it reaches the minimum viable stage in real quick while product development keeps
introducing more and more features.
This seamless feature usage may not be possible in other major industries. For instance, in
the automobile sector, we may not have the luxury of releasing the product before its
completion in all the aspects. As we cannot manufacture wheels or engines and start using
them, we have to wait until it comes out as a car and is quality certified.
In software development, it is so beautiful that we can create financial systems with just a
few features for a customer to use, while we keep developing and deploying new features
into production so that more and more functionalities can be consumed by the customers
seamlessly. SOA designs can create a perfect example of software and system evolution.

Service-Oriented Architecture (SOA) Chapter 7

[205]

Let's pick our same weather report example; the services can start by accepting a city name
and zip code, later enhanced with longitude and latitude, then with IP addresses, and then
the location from where it is searched, with not just current weather details, but with
hourly, daily, and weekly forecasts. In our introduction section, we mentioned that to handle
the ever-changing and high demand of user expectations very effectively, services should be
evolved and flexible in order to manage the demands and not force the client to modify
their way of consuming services.

Other common characteristics of evolution are as follows:

Services are transport independent
Services are software platform independent
Choreography versus orchestration of services
Explicit calls
Services represent a business function or domain
Location of services are transparent, discoverable, and support introspection

However, we are not covering all of those in detail, and we encourage readers to refer to
other materials on all these design principles for more detailed discussions.

Many authors and references point out that service orientation can be related to the
separation of concern principles, and that is true as long as it does not share the states
between the entities and maintains the atomicity of the services.

One must have faced challenges implementing these practices especially with legacy, non-
service based monolithic systems. They may be still consumable and making money.
However, they are not scalable and incurs high maintenance. So how can we change those
legacy systems into independent, scalable, high-performance services?; It can be done by
following SOA principles, practices and with suitable SOA patterns. So let us learn deeper
and get insights into SOA principles and Patterns in the following sections.

Principles of SOA
Though there are no specifications or standards that are comprehensive of SOA principles,
we can define some tenets as a core principle of SOA that helps to realize all the
characteristics of SOA. Adherence to these principles is evident to stand up any service and
for its consumptions.

Service-Oriented Architecture (SOA) Chapter 7

[206]

We will touch upon those principles rather briefly in this section, and in addition to that,
there is a handy matrix that depicts relationships of the SOA life cycle, characteristics, and
principles at the end of this chapter.

Standardized service contract
Standardization is a fundamental principle of any SOA. Services exhibit their functions and
their capabilities through a service contract, forcing the SOA designer to focus on service
granularity, data types to be exposed, purposes of services, service optimization, service
versions to be exposed, service endpoints, and more, of all service standardizations. Service
level agreement (SLA) for any services are established with this principle to provide clear
vision and direction of consumptions, governance, security, versioning, requests, and
responses. Standardization ensures, service contracts are well defined and way the path for
rest o f the principles and leads to more and more service consumptions.

Service interoperability
Interoperability is another important principle of SOA. The ability to share information
between services is interoperability, and it helps applications to realize efficient
communications across distributed services on various software platforms. Interoperability
applies on different levels such as operational (business process), informational, and
technical architecture stages that determine how systems can communicate with each other
at each level.

Service abstraction
Providing a simplified view of services by hiding internal details (complexity) helps better
explain the function and operation of services, helps the consumer to focus on the core
business logic of the services, and protects internal implementations from unintentional
changes. Abstractions can be applied at every level from language implementation to the
service level. Earlier in this chapter, the stock quote services talked only about getting
quotes of a given stock ID and nothing else, it does not say how it interacts with details of
the company that the customer asked for, neither how it connects to the stock exchange's
dynamic data, nor how new business details get added to the system. What they all need to
know as a consumer of a service is whether the service can pick the quote for their favorite
company, not how you get it.

Service-Oriented Architecture (SOA) Chapter 7

[207]

Service autonomy
Autonomy is a way of achieving isolations of a service's executions from its shared
resources, and releasing the services with no impact on the client who is already using the
earlier version of the service. Services can be developed, versioned, tested, and deployed,
while consumers continue to use previous versions or seamless changes to the service that
they consume, and this brings enormous benefit to the customers.

Service composability
Services are useful composition participants regardless of size and complexity of the
composition. Services can be the orchestrator of different other services, and that
orchestrator service adheres all the SOA characteristics.

Service compositions are often applied to legacy software applications to avoid the risk of
retrofit; applying customized solutions and continuous operation of the production by
retaining the existing software solutions.

If you observe this principle, it warrants a separation of concern to be exercised. In the life
cycle of services, we understand clearly that the services evolve with more and more
functionalities. With applying loose coupling as well as service reusability, it is inevitable
that we need to keep providing more and more additional requirements or solve more and
more problems for the customer. Recall the point of our evolution characteristic, and this
principle is related to evolution.

Service discoverability
Services lose their purpose if they are not exposed or published to internal or external
entities. Services are rated by their usage and by the number of customers using the service,
regardless of its consumption by external or internal customers. It is challenging to find the
available services even within internal teams, but with utmost care and effort, we can bring
best practices on discoverability. Standardization of services also helps to achieve better
discoverability.

Service-Oriented Architecture (SOA) Chapter 7

[208]

If the services are not exposed or published to internal or external entities, then they have
lost their purpose. Services evaluated by their usage and number of customers using the
service could be internal or external. Challenges still exist in finding the available services to
consume even within internal teams, and utmost care and effort to bring best practices to
ensure this principle is followed is the key so that the services evolve and the organization
keeps getting its ROI iteratively.

Service loose coupling
Loose coupling is one of the core design principles that help the services to realize
automaticity, test in isolation, and so service can evolve with no impact on the service
functionalities. This principle intends to apply various aspects of loose coupling at different
levels, and it may vary according to the application contexts as well.

Let's take our email service as an example. The booking service sends a notification to the
email service once it completes the hotel reservation, and regardless of the email server
status (it may be even down, but the booking service doesn’t need to wait until the email
servers come up). So, the email service can decide when to send an email; it may be during
off-peak hours, there may be different scheduled times, maybe once the email server is up
and running after its scheduled maintenance, perhaps resending the failed deliveries, and
so on.

So, the design of email services handles the loose coupling principles as in this context, it is
most elegant and preferable. Most of us would agree that it is not always in all the designs
and at all the levels that we can bring this principle, as it may not help the business
functions. For instance, in the email service and booking service, the booking and email
services can be independent and loosely coupled; the email service is dependent on the
email server and applying the loose coupling principle is not feasible. Our other service that
provides the weather report is dependent on the location service, and in this context,
coupling may be an acceptable design.

Service reusability
Service reusability is one of the core principles and brings a realization of flexible and
evolution characteristics of services-oriented architecture. The design aspects should
consider a set of business functions or logic that can be made available without duplicating
the code to numerous internal or external clients.

Service-Oriented Architecture (SOA) Chapter 7

[209]

Reuse is a strong OO principle, and it is imperative in the service level as well. With
agnostic functional contexts, the services are resources, and so can be reused at maximum
level; more the reuse, more the ROI.

In our examples, location services, email services, weather report services, and stock quote
services are all reusable and logical separations of business functions.

Service statelessness
Services should be stateless as much as they can. Statelessness is another important
principle that helps services to lower the consumption of resources, test in isolation, and
reusability. To implement statelessness in the email service, it needs all the necessary
information explicitly for sending emails, and so it does not need to pick up additional
information from a database or any other resources as its focus is on the business logic of
setting up schedules to send emails. The schema can have more details (message, email IDs,
subject) explicitly, rather that just booking ID, and make an email service to pick up
additional information from the database for that booking ID.

SOA design patterns
In the current software design world, we already have time-tested software solutions for
specific recurring problems. Best practices and the way that software design solves the
repeatable problems in a quick and cost-effective manner creates reusable patterns over
time, and it is a rule of thumb that we should be able to pick up and use the right ones for
our design problems.

SOA deals with a number of design patterns, and numerous materials discuss each one in
depth. We would like to touch upon a few of the most important ones that real-time
software solutions often require.

We will deal with the following patterns in this chapter:

Service messaging
Message screening
Agnostic services
Atomic service transaction
Authentication broker

Service-Oriented Architecture (SOA) Chapter 7

[210]

Message origin authentication
Service façade
Multiple service contracts
Service callback
Event-driven messaging
Service refactor
Metadata centralization

Service messaging
Service messaging provides a communication platform through which messages are
transmitted and routed as independent units. It brings the efficient execution of loosely
coupled service interactions and data exchanges.

Off the shelf, message-oriented middleware (MOM) queues are the best example of service
messaging. MOM queues can have a single sender or receiver or multiple senders and
receivers, and some applications even require to use of multiple Queues will help in
decoupling discreet and distinct components of a system.

Most SOA implementations use MOM queues, and it is hard to find an SOA-compliant
system without a messaging system.

The benefits of service messaging are as follows:

A service messaging pattern in your design makes your design solution a best fit
and elegant for any clients who want to communicate to services asynchronously
It is an implementation of loose coupling and one of the core principles of SOA
With service messaging, the following are made easy and elegant:

Fail-safe and loop back in services
Versioning of services
Record, defer, and replay
Multiplexed messages

Best fit for concurrency models as immutable messages are thread safe

Service-Oriented Architecture (SOA) Chapter 7

[211]

The impacts of service messaging are as follows:

Asynchronous communications lead to reliability concerns in some cases, unlike
the services that receive the client response immediately
As service messaging involves Asynchronous communication to other systems,
there may be a need to engage further systems that manage and supports the
service process and executions (more systems to be operated and maintained).
Need to rely more on messaging systems (dependency on messaging systems)

Message screening
The services are susceptible to injection attacks: injecting malicious data into services that
leads to undesirable behavior. The services can prevent any harmful message content by
screening data when it is received at the server side, even before the service uses it.

The services should assume that all input messages it receives are harmful, and therefore all
those messages should undergo various checks to find any presence of malicious content
and protect the services from any harmful content.

Service-Oriented Architecture (SOA) Chapter 7

[212]

The benefits of message screening are as follows:

Eliminates different types of injection attacks
Prevents resource exhaustion due to injection attacks
Service is protected from malicious content even before its consumption
Service validates messages regardless of whether the client validated it or not

The impacts of message screening are as follows:

Screening logic for each message incurs additional runtime
Processing binary messages or binary attachments needs to have specialized logic
for screening
It is hard or even impossible to find and limit all potentially harmful content by
message screening

Agnostic services
Consider various functions of financial banking such as account management, life
insurance, lending or loan management, wealth management, and so on. Each service might
need to share the abilities of other services, rather having them as duplicated rather then
reused.

Service-Oriented Architecture (SOA) Chapter 7

[213]

Consider a home loan management service that needs to know the savings account details
of the borrower, other retail lending information for credit reports, and mortgage
information from property management. So, those capabilities are common concerns for
any lending service that can be defined and used by not only the home loan systems but by
any other major system such as credit cards, life insurance products, account management
services, investment management services, and so on.

Implementing business logic for a set of well-defined capabilities that address major
common concerns and are certainly not specific to one problem but common to multiple
business problems, are called agnostic services.

The separation of agnostic business logic or capabilities into discrete services helps
enterprises with service reuse and composability.

As the preceding example depicts, having the services explicitly state that they are agnostic
helps the imminent consumers and designers to reuse the existing agnostic services.

The benefits of agnostic services are as follows:

Exercising service reusability and composability
Consumers benefit from iterative refinements of service capabilities beyond
initial service definitions
Enables multi-purpose capabilities, and those would be the most preferred
conventional capabilities

Service-Oriented Architecture (SOA) Chapter 7

[214]

The impacts of agnostic services are as follows:

Improvement of a service's abilities through its advantages of preliminary
analysis takes a lot of time and considerations, and more iterations are needed for
development
Arriving at a universal consensus on service functions might be challenging as
business functions of services might be too vague or too generic
Need more design planning and considerations, as agnostic services design push
us to consider many design parts those are not necessarily need to be deliberated
for short-term or mid-term delivery, and so may lead us to end up in missing
delivery commitments

Atomic service transaction
The rollback of operations is so important in a distributed environment. When any one of
the runtime activities that span across multiple services fails, then all the transactions that
have happened so far should be rolled back, otherwise the distributed services may
compromise the integrity of the software solution.

Service-Oriented Architecture (SOA) Chapter 7

[215]

In a typical online savings account transaction, the banking system would have withdrawal
and deposit services, and if either one of the service calls fail for any reason, the bank
system would end up in an inconsistent state regardless of the sequence of the service calls
(first withdrawal or deposit, or vice versa).

The preceding diagram shows a failed transaction of credit to the target account, which
leads to the rollback of a debit transaction from the source account.

So, as an implementation, the runtime service activities are wrapped in a transaction with
explicit reversal logic, ensuring all actions and changes are rolled back in case of the current
operations failing.

The benefits of atomic service transactions are as follows:

Helps to propagate the rollback mechanism across message-based business
services
Effective implementation of the stateless principle

The impacts of atomic service transactions is that it might need more memory resources
depending on the number of transactions to be preserved its original state until commit or
rollback notification.

Authentication broker
A service consumer uses a mechanism to validate an identity to the called resource, and a
caller's identity is verified based on the credentials presented by that caller. Credentials can
be passwords, the digital certificate provided by a certificate authority, biometrics, ATM
PIN, or combinations of any of these types.

In most cases, authentication is the first step to determine the eligibility of access to the web
service, and the second phase is to verify that the user is authorized to access the web
service.

Service-Oriented Architecture (SOA) Chapter 7

[216]

For identity-based authorization, one can verify the claims contained within the
authenticated user's credentials. Depending on the privileges provided to the client, the
service can either grant or deny access to the underlying resources. The token
authentication mechanism is a useful authentication model of fine-grained authorization.

The preceding diagram depicts an online banking user who gets access to online banking
debit transactions by contacting the authentication services, which authenticates against the
central identity store. Then, the service responds with the token so that the user can
consume the withdrawal service and the deposit service.

The authentication broker pattern helps to realize the authentication and authorization by a
centralized identity store. The authentication services assume complete responsibility and
provide a token that the consumer can use to access the service.

Service-Oriented Architecture (SOA) Chapter 7

[217]

The following example shows a digital signature and x509 information and messages to be
validated for authentication and authorization of its content. The authentication service
uses that information and validates the messages for any tampering, then the authentication
service will not generate a valid token, and so the application denies access to the feature:

The benefits of the authentication broker are as follows:

Centrally managed trust (authentication) and so helps to eliminate the need for
each client and service to manage their authentication independently
Easy to accomplish agreements and updates happen at one place without
impacting any clients
Participants of brokered authentication do not require prior knowledge of one
another to communicate
Security tokens can be used across organizational boundaries and provide
autonomous security domains

The impact of the authentication is, it sometimes create a single point of failure, and any
security breach could impact the entire service across inventory.

Message origin authentication
Imagine a situation where Rose is doing an online money transfer from her bank account to
Jack's account. However, Jack did not receive the amount to his account, but Rose's account
is showing that the amount is deducted. So, what would've happened to the money that
Rose transferred?

It is possible that Jack's account number got modified or tampered with by an intruder's
account number in intermediate layers, and so all the money got credited to the different
account.

Service-Oriented Architecture (SOA) Chapter 7

[218]

The message sent by a service consumer gets processed by one or more intermediate layers
such as routers, message queues, and so on. The attacker could manipulate the messages in
any of the intermediate layers and influence the service behavior for the evil purpose.

Message origin authentication (or data origin authentication) suggests to use a digital
signing mechanism for transmitting sensitive messages, and so the service can verify the
signature to ensure received messages are initiated by the originator, and has not been
tampered with on the way.

Applying the digital signature algorithm to the payload as proof of origin provides tamper-
proof messages. Services that receive this information verify the signature by using an
algorithm, and it should match. If it does not match, then the service rejects the messages.

Service-Oriented Architecture (SOA) Chapter 7

[219]

So, the message origin authentication validates two important aspects of security:

Data integrity: The message has not been modified or tampered with on the way
to the service

Authenticated: The received message at the service side is originated from the
intended sender and not from anyone else

The benefits of message origin authentication are as follows:

Detect tampering of received messages
Trace the origin of the messages to an identifiable source

The impacts of message origin authentication are as follows:

Performance issues due to cryptographic implementations
Choice of digital signing algorithm and variations in number and type of the key
would be an additional overhead
Selection of digital signing algorithm can affect the level of security achieved as it
varies according to the degree of security the application needs

Service façade
Imagine a building that needs to undergo maintenance work. The outer wall of the building
is replaceable without impacting the internal structure, and it is called a façade. The exterior
walls are torn off and replaced at one wing of the building at a time, while the other wing is
in use.

Roughly, we can relate the same concept to the service façade in SOA. While some clients
use the existing services, any enhancements to the services can be carried over with no
impacts to consumer contracts as they continue to use an older service version.

Service-Oriented Architecture (SOA) Chapter 7

[220]

The pattern of segregating the core logic of services from the service contracts is called the
service façade. The service façade facilitates loose coupling between the client contracts,
thereby, in case of any changes to the services, it does not affect its customers and they do
not need to modify their code.

When designing a service, the architect needs to watch out for any negative coupling, such
as the contract to logic that creates dependencies upon the contract, and so whenever the
service changes, the contract is also likely to change, so impacting all the service consumers
who do not expect any impact.

The service façade eliminates this sort of coupling by establishing an interface between the
core service logic and the service contract. The service façade logic allows contracts to
remain decoupled from the underlying logic and further shields it from its core business
logic. It applies to both functional and behavioral changes and so helps the services to
evolve.

Service-Oriented Architecture (SOA) Chapter 7

[221]

The service façade sits between the service and the service contract. Service façades can
support multiple contracts. Note that multiple service contracts talk to the same service
façade and only the service façades are coupled to the contract, not actual services, thus the
services are independent and loosely coupled. If a contract changes, it minimizes the
changes to the service.

The preceding diagram depicts a service that serves multiple contracts for different business
functions. The user info summary search and user info partial update are good examples of a
contract-specific service façades having specific business logic to serve the clients without
having any impacts on the client or services.

The benefits of the service façade are as follows:

Façade shields the services and consumers of the services from the changes in the
canonical model
Façade hides the complexities of the canonical model
Façade returns data representations agreed by the consumer
Façade makes your design elegant

Service-Oriented Architecture (SOA) Chapter 7

[222]

The impacts of the service façade are as follows:

Due to the service façade having very user-specific business logic, it incurs
additional development and maintenance costs
Façades tend to create an extra physical distribution of services that lead to more
complexity and additional processing overhead

Multiple service contract
One standard contract may not be suitable or applicable for all the potential service
consumers. For instance, one service contract should be allowed to update complete profile
information, while another contract should not be allowed a full update, but only partial
updates are allowed. Though a profile update is one single service, two different consumers
need two separate contracts. The multiple service contract pattern helps to exercise the
preceding options. The service façade and the multiple service contract are related, and the
service façade helps the systems to realize multiple or concurrent contracts.

Multiple contracts or concurrent contracts serve two purposes. One is to support backward
compatibility of a service, and the other one is to bring different views of a service for
various uses.

Service-Oriented Architecture (SOA) Chapter 7

[223]

The encircled rectangles in the preceding diagram represent multi-service contracts, and
both connect to the same service but for two different purposes. In the preceding example,
one service contract is allowed to update only a few fields of a profile, while another
contract can update all the fields of a profile. So, multiple contracts for the same service
helps different consumers use the services for distinct purposes.

The benefits of the multiple service contract are as follows:

Can support backward and forward compatibility
Multiple version management keeps the customer end with no impact on any
new changes to the services

The impact of the multiple service contract is such as this pattern considers as many
contracts, however, each new contract, ends up in new service endpoint to inventory and
might hamper the service governance and high maintenance.

Service callback
Assume you are calling a customer care center from your telephone. Once connected, you
hear an automated message saying that all of their customer care executives are busy, and
so ask you to wait on the line. You may even be one of many waiting for the same service
executive (concurrency and multiple threads). Now, you have two options to choose from;
one is to hold the line and wait for someone to speak to, and two is to hang up and try again
after some time. However, trying again after some time may have you ending up in the
same situation.

How about the customer care executive calls you back? You dial the number, the system
picks up your number, and says that it will call you back automatically when the customer
care executive is free so that you do not need to wait.

Service-Oriented Architecture (SOA) Chapter 7

[224]

Imagine a web service that takes a longer time to complete its tasks, but the caller or the
consumer of the service does not want to wait for all the tasks to be completed, and also the
consumer needs to know once all the process/tasks get completed. This is similar to our
earlier example of a client calls a customer care executive but do not want to wait in the
queue either.

Service callback pattern implementation is the best approach to fulfil such requirements.

Service-Oriented Architecture (SOA) Chapter 7

[225]

The preceding diagram depicts various calling systems (a web page, telephone, and contact
center app) using a callback app that exercises the service callback pattern.

The service callback pattern suggests that the consumers of services communicate
asynchronously with the services and make sure to provide callback addresses in the
message, with which services can use the same callback address to communicate back with
the client.

The preceding diagram depicts a scenario of a consumer calling the service asynchronously
through the message. The message contains the callback address, so once the service
completes its process, it uses the callback address to communicate and respond back. The
service callback address can be a phone number, an email address, or it can be another
service endpoint that can do further business logic and respond to consumers.

Service-Oriented Architecture (SOA) Chapter 7

[226]

In our first example, the callback address is the client's phone number, which the service
would call. The second example may contain an email address or callback URL (of the same
or even another service) with the status of upload as a response.

The benefits of the service callback are as follows:

Extremely useful in cases where the request needs to wait for a longer response
time
Best implementation of loose coupling of services
Best choice for message broadcast requirements

The impacts of the service callback are as follows:

As this patterns mostly deals with asynchronous communication, it may
introduce reliability concerns
May require more infrastructure upgrades to support the necessary callback
correlation
Handling request and response errors is usually more challenging

More examples of a service message with the service callback pattern design are as follows:

A software system that needs a service to load a large file and read its content line
by line then upload to the database probably after validating each line. As it is
typically massive in size and the caller of the system cannot wait for the longer
process to complete, at the same time, a notification is sent to the caller once the
upload is complete.

Service-Oriented Architecture (SOA) Chapter 7

[227]

Stock trading system and stock quote ticker services.
Booking complete status, email notifications, and so on.

Event-driven messaging
One of the core patterns of event-driven architecture is event-driven messaging; services
(publishers) notify their consumers (subscribers) with relevant events when they happen,
while customers are not necessarily waiting or aware of that event.

Imagine a stock trading service notifying its users whenever a particular stock price goes
up:

Service-Oriented Architecture (SOA) Chapter 7

[228]

The preceding diagram depicts a cycle of notification process kicks in when a stock price hit
a particular threshold; the subscriber lets event manager knows the intention, and the
publisher publish (informs) when the event occurs. The $X is the predefined limit or sale
price, and it is the event here. The following diagram depicts a sample pay load of the same.

The benefits of event-driven messaging are as follows:

Best pattern for integration intentions between cross-functional boundaries and
services
Achieve a higher degree of automation of process with less complexity

The impacts of event-driven messaging are as follows:

Creates additional complexity while incorporating message exchanges as part of
atomic services
Depends on publisher and subscriber services availability
Needs to address ripple effects of reliability issues by combining other relevant
patterns in event-driven messaging design

Service-Oriented Architecture (SOA) Chapter 7

[229]

Service refactoring
In many situations, the services undergo many changes without any impact to the service
contracts. It could be a simple software update improving the performance of a system,
database updates, programming version upgrades, and so on.

Service refactoring helps to improve the service by changing the internals without changing
its behavior, and so causing no impact on service contracts.

Service-Oriented Architecture (SOA) Chapter 7

[230]

In the preceding diagram (encircled at the top-right as service refactor), the identity
management system has undergone refactoring to improve the performance of its response
time and has been upgraded with fail fast capabilities. There is no impact on the banking
client, and it continues to use the same authentication services but with improved service
capabilities.

The benefits of service refactoring are as follows:

Easy update of heavily dependent services without affecting any of its consumers
No changes to functional behavior after upgrades
With limited scope minimizes adverse impacts to the service consumers

The impacts of service refactoring are as follows:

May lead to add more governance efforts
Might introduce potentially adverse side effects (improved performance but
handling of concurrent requests could lead to lower availability)

Metadata centralization
Having a centralized service catalog and providing a formal process of service registration
and discovery is inevitable to any organization, and so limiting the risk of building services
or functionality that already exists, or that is already under development.

Service-Oriented Architecture (SOA) Chapter 7

[231]

The following diagram depicts a service registry that holds the information of published
services, and so the service consumers would look up and bind those registered services for
a runtime bind and invoke:

The information of the services and its functionalities are available to benefit the enterprises
with

Services discoverability
Inventory normalization
Standardization for service reusability
Provide ways to minimize the risk of redundancy.
Publish services with functional and QoS meta-data.

Service-Oriented Architecture (SOA) Chapter 7

[232]

This pattern applies to one-domain service inventories, or even to several inventories.

The benefits of the sample catalog are as follows:

Minimizes the risk of building functionality that already exists
Helps in service normalization
Helps in compelling discovery and interpretation
Runtime discovery and binding
Ensures metadata standardization

Service-Oriented Architecture (SOA) Chapter 7

[233]

The impacts of the sample catalog are as follows:

Due to metadata standardization, the documentation and registration need to be
part of the service delivery lifecycle (additional governance)
Service registry needs to be adequately mature and reliable to lead to strict
governing and maintenance

Principles and patterns cross reference
The following table has references to SOA principles and related SOA patterns for each
principle. This matrix might come in handy when you want to refer to a common design
pattern and its associated SOA design principle:

Principles Patterns

Standardized service contract/service interoperability

• Service messaging
• Message screening
• Agnostic services
• Multiple contracts
• Event-driven messaging
• Service callback
• Service façade
• Service refactoring

Service abstraction • Service refactoring

Service autonomy
• Event-driven messaging
• Service messaging

Service composability

• Agnostic services
• Message origin authentication
• Service callback
• Authentication broker

Service discoverability • Metadata centralization

Service loose coupling

• Service messaging
• Event-driven messaging
• Service callback
• Service façade
• Multiple contracts

Service-Oriented Architecture (SOA) Chapter 7

[234]

Service reusability
• Agnostic services
• Multiple contracts

Service statelessness • Atomic service transaction

Summary
In this chapter, we have learned about what SOA is, and its fundamental characteristics
such as service interconnectivity, event-driven and messaging, flexible, service evolution,
along with a few other common characteristics. In later sections, we covered SOA principles
such as service contract standards, interoperability abstraction, service autonomy, service
composability, reusability, and statelessness in detail.

We also learned about the most common SOA design patterns and where those patterns can
be applied so that one can build SOA-compliant services. The patterns that we touched
upon are service messaging, message screening, agnostic services, atomic service
transaction, authentication broker, message origin authentication, service façade, multiple
service contract, service callback, event-driven messaging, service refactoring, and metadata
centralization.

8
Event-Driven Architectural

Patterns
Why do organizations need event-driven architecture (EDA)? Organizations across the
world are operating in an agile manner and changing their structure frequently. They are
evolving into business structures that can operate as independent service providers and
consumers. These service providers and consumers need not necessarily exist within the
organization. Some business services are outsourced to external business partners and other
business services within the organization are looking to provide their services to external
organizations in addition to internal business lines. All these emerging trends necessitate
process architectures that have high levels of autonomy, or in other words, loose coupling
between various application components that exist within an organization. The need for
loosely coupled architecture with high levels of autonomy led to the evolution of EDA.
Using EDA, organizations can rapidly reorganize their structure without changing their
application constructions. Now, let us get started with the details of EDA.

Event-Driven Architectural Patterns Chapter 8

[236]

An event in a generic sense refers to any change in state that is of interest to an
organization/business/end user. The signal in a car indicating that the gas is low, the ringing
of a mobile phone, and the ringing of a smoke alarm in a house are all examples of some
real-world events that we come across in our everyday lives. Understanding the concept of
an event is easier with the help of an example, as depicted in the following diagram:

The diagram depicts the flow of actions in an order management system. As soon as an
order management system receives an order from a website or from an order entry system,
the next step would be to notify other systems about the order. In this step, receiving an
order is an event. This event needs to be published to other systems that would be
interested in this event. In this example, the other systems that would be interested in this
event are a warehouse management system that would check the order item in the
inventory stored in the warehouse to ensure its availability and a finance system that would
check the credit balance or the payment mechanism that is associated with the order.

Event-Driven Architectural Patterns Chapter 8

[237]

Each of these systems will, in turn, publish an event to other systems that are required to
complete the next step in order processing. Accordingly, the warehouse system may
publish an inventory allocated event and the financial system may publish a payment
validated event to the shipping system. The shipping system will, in turn, make necessary
arrangements to ship the order to the customer. In this specific flow of events, these are the
component systems that are a part of the event flow. But there could be several other
systems that could form a part of the event flow based on the outcomes of event processing
at each step. For example, if the warehouse management system detects low inventory
levels for the item placed in the order, it will trigger an event to the procurement system to
procure the item. Similarly, if the financial system detects a low credit balance or an
incorrect payment option, it will trigger an email notification to the customer that the credit
balance is low or the payment was not completed successfully.

From this example, we understand that the crux of EDA is the concept of
publish/subscribe. In the preceding example, the order management system publishes the
order event to two other interested parties that have subscribed to the event warehouse
management system and financial system. These two systems, in turn, publish events to
shipping systems and so on. The three important definitions in the context of the EDA
pattern are the following:

Event: An event is a runtime operation, executed by a software element to make
some information (including the information that it occurred) available for
potential use by software elements not specified by the operation.
Publisher: To trigger (or publish) an event is to execute it. A software element
that may trigger events is a publisher. A software element that may use the
event's information is a subscriber.
Context: In event-driven design, a context is a Boolean expression specified by a
subscriber at registration time, but evaluated at triggering time, such that the
registered action will only be executed if the evaluation yields true.

The event-driven pattern is a class of patterns that has gained a lot of traction of late
because of the rapidly changing industry paradigm. Many folks get easily confused
between service-oriented architecture (SOA) and EDA patterns. In the next section, we will
try to analyze and understand the differences between the two.

Event-Driven Architectural Patterns Chapter 8

[238]

Service-oriented architecture and event-
driven architecture (SOA versus EDA)
Organizations across the world are changing their structures rapidly and are moving
toward on-demand business models. There is an increase in the movement toward setting
up network-oriented business structures that will have autonomous service providers and
consumers. Outsourcing is also very prominent as many parts of the business process will
also be outsourced to external business partners. Various departments and business units
who are present within organizations are taking on the role of service providers. The focus
of these service providers is to increasingly provide services to the external market entities.
This necessitates organizations being agile enough to quickly respond to changes or events
that happen in the external environment. All these aspects demand a paradigm shift from a
command-driven, tightly coupled, service-driven SOA concept to a more loosely coupled
model that is driven by events. EDA is a publish/subscribe type of pattern. In the context of
EDA, the publisher is completely unaware of the subscriber, and vice versa. Components of
the EDA pattern are so loosely coupled that only the semantics of the message is shared
between them. Now, the decision that needs to be made is when to use SOA and when to
use EDA.

There is a common tendency to use EDA and SOA interchangeably because of the nature of
their working. But that should not be the case. There are clear differentiators between the
two architectural options. For situations that demand a strong cohesion in the business
processes, SOA is the ideal choice of architecture. The following are the various scenarios in
which a command/control style of SOA could be an ideal choice of architecture for
organizations:

If there exists a vertical interaction between the various hierarchical layers of
functions that exist in an organization
If there are functional request-and-reply processes such as man-machine
dialogues where the user feeds a question and waits for an answer
If there are processes that are transactional in nature that requires commit and
rollback features
If data enrichment is required in a message for it to be published to its full
content in a formal format

Event-Driven Architectural Patterns Chapter 8

[239]

EDA is the preferred style for organizations that require a loose coupling between their
various processes. EDA is the choice of architecture in federated and autonomous
processing environments. The following are some of the scenarios in which EDA is an ideal
choice of architecture for organizations:

If there exists a horizontal communication between various tiers that are part of
process chain
If there are workflow types of processes in an organization
If there exist processes that involve cross-functional borders of organizations, for
example, a B2B process

Aiming for loose coupling in architecture always provides the flexibility and the agility that
is necessary for present-day organizations. So, the rule of thumb to be followed while
designing architectures for organizations is use loose coupling whenever possible and use
tightly coupled architectural options only if required. Other aspects of design, such as
performance, response time, and so on, should also be taken into consideration while
making architectural design choices. In a typical enterprise-level organization, the
bifurcation and the relationship of processes with regard to EDA and SOA architecture are
depicted in the following diagram:

Event-Driven Architectural Patterns Chapter 8

[240]

In the diagram, the circles at the top denote loosely coupled systems, which are good
candidates to be chosen as decoupling points or events. At these decoupling points, the
various system components can be connected or disconnected without altering the
connected peer systems. Data exchange between various domains in an organization takes
place only at these decoupling points and not at the lower levels of systems that are tightly
coupled. Within the reuse domain (indicated at the bottom of the figure), a fine-grained
EDA implementation would be required to decouple the components because of their tight
integration. The more fine-grained the EDA implementation is, the greater the flexibility of
IT systems will be, but this would also reduce the scope of reuse of domains.

In the preceding diagram, if web services technology is used at decoupling points along
with a common infrastructure backbone such as an enterprise service bus, it is very easy to
establish connectivity between heterogeneous systems. Systems that are present
downstream need not be SOA alone; they can also be SOAP-wrapped legacy systems,
commercial off-the-shelf software (COTS), or other applications such as ERP. The
following diagram shows the integration of EDA and SOA . In this diagram, components
are connected through decoupling points, which are events:

Event-Driven Architectural Patterns Chapter 8

[241]

Now, we have clearly learned the differences between EDA and SOA. In the next section,
we will learn the components of an EDA pattern. These components should be part of any
architecture that uses EDA patterns.

Key characteristics of event-driven patterns
If there is a component in a system that publishes and accepts events, can you consider that
as an example of an EDA pattern? The answer to the question is a clear no. In this section,
we will examine the characteristics of EDA patterns. Their main characteristics are the
following:

Multicast communications: The publishers or the participating systems have the
capability to send events to multiple systems that have subscribed to it. In other
words, it is not a unicast communication in which one sender can send data only
to one receiver.
Real-time transmission: Publishers publish the events as and when they occur in
real time to the subscribers. In other words, the mode of processing or
transmission involved here is real time and not batch processing.
Asynchronous communication: The publisher does not wait for the receiver to
process an event before sending the next event.
Fine-grained communication: Publishers keep publishing individual fine-
grained events instead of waiting for a single aggregated event.
Ontology: EDA systems always have a technique to classify events in terms of
some form of a group/hierarchy based on their common characteristics. This
gives flexibility to the subscribers to subscribe to a specific event or specific
category of events.

Components of an EDA pattern
The main components of the EDA pattern are the following:

Event specifications
Event processing
Event tooling
Enterprise integration
Sources and targets

Event-Driven Architectural Patterns Chapter 8

[242]

All these components and the various other subcomponents are summarized in the
following diagram:

The core component of any EDA is strong metadata architecture. The core components of
event metadata architecture are the following:

Event specifications: These event specifications should be made available to
event generators, event processing engines, and event transformers. There is no
industry-approved standard for event definition and processing at the moment;
they are just in the evolving phase.
Event processing: This is a technique for processing and analyzing streams of
data about events with an objective of deriving some kind of a conclusion from
them, for example, a weather prediction system whose main function is to predict
the onset of cyclones. For the system to derive this conclusion, it should take into
consideration several patterns, such as wind speed, the direction of flow,
atmospheric pressure, moisture content, and so on. All these parameters
constitute the event data, and this data should be processed by an event engine in
order to arrive at specific conclusions. So, the essential components that are
required for any event processing are the following:

Event engine
Event data

Event-Driven Architectural Patterns Chapter 8

[243]

Event tooling: Event development tools provide the following key functions with
regard to the processing of events:

Define event specifications
Define event processing rules
Manage event subscriptions

They also provide add-on functions such as monitoring of event processing
infrastructure and event flows.

Enterprise integration: This has a pivotal role to play in EDA design. Some of the
necessary integration services that are required are the following:

Event preprocessing
Event channel transport
Service invocation
Publication and subscription
Enterprise information access

Sources and targets: Sources refer to the components of the enterprise that
generate events. This could refer to systems, services, automated agents, or even
people who are responsible for creating events. Targets refer to the components
that perform an action based on the occurrence of events or based on the event
outcomes. The topology of sources and targets of events are governed by several
parameters, such asthe following:

Event flows
Event occurrence volumes
Location of sources and targets and so on

Event flows are a very important component of EDA architecture. In the next section, we
will see the various logical layers that are present in an event flow. These logical layer
components need to be carefully chosen and designed for successful implementation of
EDA patterns.

Event-Driven Architectural Patterns Chapter 8

[244]

Event flow layers
The four logical layers present in the event flow are the following:

Event generators
Event channel
Event processing
Downstream event-driven activity

Event generators
The sources from where events are generated are called event generators. The source could
be an application, service, business process, sensor, database, or even a human being. An
event that is generated is evaluated for notability by an event filter, and if the evaluation is
successful, leads to the generation of a notable event. Since there are diverse sources for the
generation of events, not all generated events will be in a format that is suitable for
processing. For such events, it is necessary to ensure that they are converted into a
compatible format before they are sent to the event channel.

Event channel
This acts a transmission medium and messaging backbone for EDA. It receives standard
formatted events from the event generator and sends them to other event generators, event
processing engines, and downstream subscribers.

Event processing
Once the events are received, they are processed and evaluated based on some rules that are
stored in the event processing engine. Based on the results of the evaluation, a specific
course of action is initiated. The event rules are created based on the criteria specified by the
organization and/or other interested parties. Event processing could result in several
courses of action, such as notifying a certain system/agency, taking an alternate course of
action, initiating a business process, and so on.

Event-Driven Architectural Patterns Chapter 8

[245]

Downstream event-driven activity
Any event can trigger a sequence of downstream activities that could be a response to the
event. The event could be a push notification by the event processing engine or pull
notifications by the subscribers. Subscribers in this context could refer to an application,
humans, services, or business processes.

Design considerations for event-driven
patterns
In this section, we will explain the various design considerations that need to be kept in
mind before choosing EDA patterns for architecture implementation. The main
considerations are the following:

Agility: Agility refers to the ability to cope with the rapid changes that happen in
the environment. In the EDA pattern, components are loosely coupled. This
ensures that changes that happen to one component do not affect the other
components in the system. Hence, the degree of agility offered by the EDA
pattern is high, making it an ideal choice for the design of systems that require
continuous changes without any downtime.
Ease of deployment: The EDA pattern components are loosely coupled in nature,
which makes their deployment very easy. For solutions that require maximum
ease of deployment, event broker topology is a better option than event mediator
topology. This is due to the fact that in event mediator topology, there exists a
relatively tight coupling between the event mediator and event processor.
Testability: Unit testing of EDA pattern components is difficult because of the
fact that it requires special test clients and test tools to generate events that are
required for testing purposes.
Performance: EDA has the capability to perform asynchronous operations in
parallel, which provides very high performance for the architecture, irrespective
of the time lag involved in queuing and dequeuing messages.
Scalability: EDA offers a high level of scalability because of the highly decoupled
nature of the components.
Ease of development: Ease of development using this pattern is low because of
the asynchronous nature of the pattern.

Event-Driven Architectural Patterns Chapter 8

[246]

Though there are well-defined components for an EDA pattern, the implementation style of
the pattern varies based on the type of system functionality and complexity. In the next
section, we will learn about the various styles in which EDA patterns are implemented.

Implementation variants of EDA patterns
The various styles in which EDA patterns are implemented are the following:

Simple event processing patterns
Event stream processing patterns
Complex event processing patterns

Simple event processing patterns
These patterns are used to measure events that are related to specific measurable changes in
conditions. These patterns are used in scenarios that demand real-time flow of work to be
triggered without any other constraints or considerations. Parameters such as lag time and
costs related to business are not taken into consideration while using simple event
processing patterns in architecture. Some scenarios for usage of this type of pattern could be
a detection of temperature/pressure changes by a sensor. Let us explain simple event
processing with the help of the order management system example we used at the
beginning of the chapter. The diagram is repeated here for quick reference:

Event-Driven Architectural Patterns Chapter 8

[247]

In this example, after the order enters the order management system, the first event is
triggering a notification to the warehouse management system for checking inventory levels
and to the financial system for payment validation. For simplicity, we will consider only
one flow of events: the events related to the warehouse management (related to inventory
check). Once the order enters the warehouse management system, the items in the order are
checked against the inventory present in the warehouse using the check inventory service.
The check inventory service allocates the inventory pertaining to the items present in the
order and then checks the remaining inventory for optimal levels of inventory threshold. If
the stock in the warehouse falls under the available threshold, the check inventory service
generates a low inventory threshold event. This event is received by the simple event
processing engine, as depicted in the following diagram. The event processing rules in this
example will initiate two sets of events to handle the low inventory threshold situation: the
first one would be a process to reorder the inventory, and the second one would be for
publishing the event for consumption by the subscribers. In this particular example, the
subscribers are inventory buyers and a notification to the inventory controller would also be
generated. All these activities are depicted in the following diagram:

Event-Driven Architectural Patterns Chapter 8

[248]

Event stream processing patterns
In event stream processing, ordinary events that occur are filtered for notability and sent to
subscribers. This style is used in order to ensure that real-time information flows in and
around the enterprise. This pattern facilitates real-time decision-making.

Let us demonstrate this type of event further with the help of the order processing example
that we have been discussing in this chapter. In the order processing example, if we
consider the sequence of events at the warehouse, the RFID sensor generates an event for
each product that moves out of the warehouse. In this scenario, suppose, for example, a
retailer wants to be informed when high-value products leave the warehouse. To meet this
requirement, a local event filter has been designed, which has rules to filter out events for
items priced less than $5,000. Suppose there is a purchase of a high-value item for $6,000.
This event, which is a high-value event, is reformatted to a standard event format and
placed in the event channel. The event processing engine receives the event maps it to the
rules for high-end products leaving the warehouse, and publishes it. The subscribers who
have subscribed to this event receive it; in this example, it could be an inventory manager’s
dashboard.

Complex event processing (CEP) patterns
In CEP, a combination of simple and ordinary events is taken into consideration in order to
judge it a complex event has happened. The various events that are taken into consideration
may be evaluated over a long period of time. The event correlation between the various
events may occur in various dimensions, such as temporal, causal, and spatial. For this
evaluation to happen, CEP requires the following components:

Event interpreters
Event pattern definition
Event pattern matching
Event correlation techniques

CEP is generally used to respond to anomalies in business, and in order to assess the
opportunities and threats.

Event-Driven Architectural Patterns Chapter 8

[249]

EDA patterns come in two different flavors or topologies. Each topology needs to be
implemented only in specific scenarios as their features and characteristics are different.
Hence, it is very important to understand these topologies so wise decisions can be made
regarding their choice and implementation. In the next section, we will understand the
various EDA pattern topologies.

Types of event-driven patterns
There are two types of topologies for event-driven patterns:

Event mediator topology pattern
Event broker topology pattern

The mediator topology pattern is used when it is required to orchestrate multiple steps that
are part of an event with the help of a central mediator. The broker topology is used when it
is required to chain multiple events together without the need for a central mediator. The
architecture and components of each of these patterns are discussed next.

Event mediator topology pattern
The mediator topology pattern is used to design systems/processes that will need some
level of coordination/orchestration in order to process the event. The ideal example of this
scenario could be the order processing example, where there are multiple steps, such as
order entry, inventory validation, finance validation, and so on. All these steps require
some level of orchestration in order to assess whether they can be performed serially or in
parallel. There are four main components within the mediator topology:

Event queue
Event mediator
Event channels
Event processors

Event-Driven Architectural Patterns Chapter 8

[250]

All these components are depicted in the following diagram:

The client sends an event, which is then received by the event queue. The event queue
transfers the event to the event mediator. The event mediator receives the event and
orchestrates it. This is done by sending additional asynchronous events to the various event
channels, which in turn will execute each step of the process. Event processors receive the
event from the event channel and apply business logic to process the event. There can be
any number of event queues in an EDA. An event queue can be implemented as a message
queue, web service component, or in any other form that is suitable for the system under
consideration. There are two types of events that are provided by this pattern:

Initial event: This refers to the original event that is received by the mediator
Processing event: This refers to the events that are generated by the mediator and
are sent to the event processing components

Event-Driven Architectural Patterns Chapter 8

[251]

The event mediator is mainly responsible for performing orchestration of the various steps
that are present within the initial event. In order to perform each step in the initial event,
the event mediator sends a specific processing event to the event channel. This processing
event is received and processed by the event processor. Event channels are used to pass
processing events associated with each step to the event processors. Event channels can
either be in the form of message queues or in the form of message topics. The application
logic that is required for processing the events is present in the event processor. Event
processors are typically highly decoupled architectural components that are associated with
a specific task in the system.

Event broker topology pattern
The event broker topology pattern is used in scenarios where the event flow is relatively
simple in nature and does not require any central event orchestration. The two main
components of the event broker topology pattern are the following:

Broker
Event processor

The components of an event broker topology pattern are depicted in the following diagram:

Event-Driven Architectural Patterns Chapter 8

[252]

The event broker component contains all the event channels and can be designed in a
centralized or federated manner. The main difference between the event broker topology
pattern and the event mediator topology pattern is the absence of an event mediator
component which controls and orchestrates the event. Instead of an event mediator, the
event processor performs that role of processing and publishing each event, indicating that
the particular action is just completed. The broker component can be centralized or
federated and contains all of the event channels that are used within the event flow. The
event channels contained within the broker component can be message queues, message
topics, or a combination of both.

In the next section, we will discuss some of the variants of event-driven patterns.

Hub and spoke pattern
The hub and spoke pattern is a variant of the event broker topology pattern. In the hub and
spoke architecture, the hub acts as the centralized broker and the spoke act as adapters that
connect applications to the hub. The spoke establishes a connection with an application and
converts application data into a format that the hub understands. The hub translates the
incoming data into a format that is understood by the destination system and performs
routing of messages accordingly. The presence of a single hub makes this architecture easy
to manage, but at the same time imposes limits on the scalability of the architecture:

Event-Driven Architectural Patterns Chapter 8

[253]

In order to overcome this limitation, the concept of the federated hub and spoke
architecture has evolved. In the federated hub and spoke architecture, multiple hubs are
present. Each hub has a local metadata and rules, as well as global metadata. Any changes
to the global metadata and rules are automatically propagated to other local hubs. The
federated hub and spoke architecture provides scalability and also flexibility by facilitating
centralized management of hubs.

Broadcast pattern
In a broadcast pattern, also a called publish/subscribe broadcast pattern, information is
sent to all the parties that are present in the network. Only interested parties receive the
message; the others discard the message. If the systems in a network have the efficiency to
discard unwanted messages, then this pattern works very well for the design of such
systems. When it comes to implementation of this pattern at the network level, a variant
of Internet Protocol (IP) called User Datagram Protocol (UDP) allows us to send a piece of
information to all computers that are part of a network. This is a variant of the event
broadcast pattern that is applicable to networks.

Polling pattern
In this pattern, subscribers contact the publishers to find out whether they have anything
that is of interest to them. This is not used much as it involves a lot of wastage of system
resources. Imagine a subscriber polling a publisher 50 times when it has nothing new for
them.

Event-driven patterns of late are implemented in a slightly different manner in an attempt
to adapt to the changing technology landscape. In the next section, we will understand the
actual implementation of event-driven patterns in systems.

Event-Driven Architectural Patterns Chapter 8

[254]

EDA pattern implementation in
systems/processes
In this section, we will discuss the implementation of event-driven patterns in processes.
The main components that are involved in this implementation are the following:

Event queue
Event log
Event collectors
Reply queue
Read versus write events

Each of these components and the overall functioning of this architecture will be explained
in this section. The core component for this implementation is a central event queue. All
events are inserted into a central event queue before they are processed. The following
diagram depicts this queue-based architecture:

Event-Driven Architectural Patterns Chapter 8

[255]

Events are placed in an order when they are inserted into the queue so that it is possible to
track the sequence in which the system responds to events.

Event log
There needs to be a backup and recovery mechanism for the messages that are added to the
central event queue. This is done by writing all the event details to an event log, which is
typically placed in a disk. In the event of a system crash, the system's state can be rebuilt by
recovering its state from the event log. So, the main purpose of an event log is to ensure that
events persist. In order to make the backup mechanism stronger, backups of the event log
can be taken, which is equivalent to taking a backup of the system's state. These backup
copies can also be used to do pilot performance tests on new releases before they are
actually deployed in production. The diagram of the event log is as follows:

Event-Driven Architectural Patterns Chapter 8

[256]

Event collectors
Event requests originate from different types of sources, and they reach the system through
some network in the form of HTTP requests or in some other formats. These events are
collected from diverse sources using event collectors. The following diagram depicts the
EDA with collectors:

Reply queue
In some scenarios, it is required to send a response back to an event request. In such
situations, it is required to have a response or reply queue to provide support. The
following diagram depicts one such example. From the diagram, it is clear that the response
needs to be sent back to the appropriate event collector. For example, if the incoming
request is in HTTP format and is sent by the HTTP collector into the event queue, then the
response has to be sent back to the source through the HTTP collector only. The point to be
noted here is that the responses are not recorded in the event log:

Event-Driven Architectural Patterns Chapter 8

[257]

Improving the performance of EDA-based
processes/systems
In the case of persisting events, all events that are pushed to the event queue are persisted
to the event log. This makes the system slow. In order to improve the performance of the
system, there should be a mechanism to persist only events that have the capability to alter
the state of the system, that is, read events do not alter the state of the system whereas write
events will alter the state. So, there should be a mechanism in place to persist only write
events.

Event-Driven Architectural Patterns Chapter 8

[258]

This can be made possible with the event collectors by differentiating read events and write
events. There should also be separate queues to handle read and write events. Using this
mechanism, it is easy to ensure that events in the read event queue are not persisted and
only the events in the write event queue are persisted. This concept is depicted in the
following diagram:

So in practice, there will be three queues: the read event queue, the write event queue, and
the reply queue. Though it looks complex, from the implementation perspective it is fairly
simple.

The ability to recreate system state from the event log is the most important benefit of
systems that use EDA.

Most of the EDA pattern implementations are done in the form of COTS products and/or
home-grown solutions. In the next section, we will see IBM WebSphere MQ, which is one of
the most prominent EDA products on the market.

Event-Driven Architectural Patterns Chapter 8

[259]

IBM WebSphere MQ
IBM WebSphere MQ is used to provide messaging support for applications. It has the
capability to transmit messages across diverse networks. The application can connect to
IBM WebSphere MQ whenever there is a need to send or receive a message. IBM
WebSphere MQ can handle diverse types of processors, operating systems, subsystems, and
other communication protocols while transferring the message between systems. Another
feature is that while transferring a message, if it finds that a processor is not available, it can
place the message in a queue and transfer it later once the processor or system becomes
available. The following are the different modes of operation supported by IBM WebSphere
MQ, which is considered a messaging and queuing application:

Point-to-point transfer
Publish/subscribe
File transfer

The key features of WebSphere MQ are explained as follows:

Messaging: Processes communicate with each other by sending messages, and
not by means of calls.
Queuing: Messages that are sent are placed in queues and then processed in
order so that the different processes can work independently without having any
direct connection and the associated overhead.
Point-to-point: It is possible to send multicast/broadcast messages to a list of
queues. So it is necessary for the sender to know the destination name, but not
necessarily the location of the destination.
Publish/subscribe: All the applications that are interested in specific types or
categories of messages will subscribe to those messages that are published by
specific applications/processes.
Multicast: This speeds up the pace at which messages are transmitted. It gives
the capability to a publisher to send messages to multiple subscribers in the
network at the same time.

Event-Driven Architectural Patterns Chapter 8

[260]

Telemetry: IBM WebSphere MQ Telemetry is designed to support messaging for
devices. It sets up a connection between device and application messaging. It
provides connectivity between the various components, such as the application,
internet, services, and so on, with networks of instrumented devices. IBM
WebSphere MQ Telemetry comes with a very efficient protocol that provides
messaging support for a large number of devices that are connected over a
network. This messaging protocol is published so that it can be added to the
devices.

Emerging trends in EDA
In this section, we will examine some of the very recent advancements in the field of event-
driven architectural patterns.

Event-driven microservices
Most organizations are moving away from the present siloed monolithic applications to the
concept of microservices in order to achieve agility and also gain a competitive edge in the
market. One of the main issues that arise with the use of microservices is distributed data
management. Each microservice has its own private database. Designing business
transactions that update entities that are owned by multiple microservices in multiple
diverse databases is a major concern. This poses great difficulties in maintaining the
consistency of data that is present in databases. This is depicted in the following diagram:

Event-Driven Architectural Patterns Chapter 8

[261]

EDA provides a solution for this issue that occurs in distributed databases while using
microservices. In an EDA, a service publishes events when there is a change. Other services
that would be of interest would have subscribed to these events. As and when an event is
received, the service typically updates its own state and also publishes more events that in
turn might get consumed by other services. The event-driven approach provides the
features to implement consistent transactions. The following diagram depicts how EDA
helps in the implementation of consistency in business transactions that are used by
multiple services. The example in the diagram refers to the order management example that
we used at the start of the chapter:

Complex event processing
Of late, many interesting use cases have evolved around complex events. Statistical
functions such as event correlation and aggregation along with computational algorithms
are being applied to event data to uncover meaningful patterns that provide valuable use
cases for several domains/industries. One of the prominent use cases is in the field of
banking to detect frauds in transactions. Another promising use case is in weather
forecasting, where several atmospheric parameters are correlated to predict cyclones,
earthquakes, and so on. Many of the command centers that are used for weather forecasting
across the world work on the basis of EDA.

Event-Driven Architectural Patterns Chapter 8

[262]

Internet of Things (IoT) and EDA
IoT refers to the interconnection of all objects around the computing devices that are
embedded in them, which in turn helps them to send and receive data. In this scenario, any
object around us will become a smart object and can keep sending messages to other objects
that have subscribed to receive its messages. Using IoT, 3 trillion objects are expected to be
interconnected by 2020. All these objects in turn function with the help of EDA architecture.
This goes to show the huge potential that EDA has in years to come.

References
http://tutorials. jenkov. com/ software- architecture/ event- driven- architecture.
html

https://www.ibm. com/ support/ knowledgecenter/ en/ SSFKSJ_ 7.5. 0/com. ibm. mq.pro. doc/
q001020_.htm

Summary
In this chapter, we discussed the various aspects of EDA patterns. We started with the
definition and description of the event and event-driven patterns. Then we discussed in
detail the various components of EDA. EDA patterns have two topology variants and each
of them has specific usage scenarios based on the system requirements. These patterns and
their components were discussed in detail.

There are multiple variants of EDA patterns. These patterns and their features were
discussed in detail in the chapter. EDA patterns have multiple layers in which they work.
These layers and the components that are present in each layer were discussed in the
chapter. SOA and EDA are related concepts and they complement each other. Their
similarities, differences, and usage scenarios were discussed in detail in this chapter. The
chapter concluded with a discussion about the emerging trends in the EDA space.

http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
http://tutorials.jenkov.com/software-architecture/event-driven-architecture.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_7.5.0/com.ibm.mq.pro.doc/q001020_.htm

9
Microservices Architecture

Patterns
Microservices architecture (MSA) is being proclaimed as the most powerful architectural
pattern for designing, developing, deploying, and delivering next-generation software
applications. Microservices are clearly emerging as the prime building block for
constructing enterprise-grade and mission-critical applications. Microservices are fine-
grained, typically single-purpose, and loosely-coupled services facilitating easy and
independent deployment and horizontal scalability. Microservices are self-defined, cleanly
isolated, and autonomous, and intrinsically support the popular polyglot model. The
polyglot paradigm represents multiple programming languages, data transmission
protocols, and persistence mechanisms. The idea is to build and run highly reliable,
scalable, available, resilient, message-driven, and secure microservices. Microservices are
interoperable, technology-agnostic, and composable to produce process-centric
applications. Microservices and the Docker-enabled containerization go hand in hand in
agile software engineering and rapid IT service delivery. There are a variety of best
practices, key guidelines, design and evaluation metrics, and enabling patterns being
unearthed by many accomplished professionals in order to speed up the process of
migration from monolithic workloads to microservices-based workloads. Besides, there are
API gateways, integrated platforms for service integration and orchestration, deployment
and delivery environments such as Docker containers, and so on for increasing the MSA
adoption rate. Product vendors, system integrators, cloud service providers, DevOps
engineers, and other IT professionals are teaming up for accelerating the use of services in
realizing highly flexible, extensible, elastic, and sustainable applications. This chapter is
dedicated to illustrating all the existing and emerging patterns in this new field for our
readers.

Microservices Architecture Patterns Chapter 9

[264]

Microservices patterns
Several IT professionals, based on their extensive experiences, have come out with a
number of enabling patterns for producing microservices-based applications. Further on,
there are patterns exclusively for building fresh services from the ground up. Not only for
development, but also for testing, deployment, and delivery, exquisite patterns are being
unearthed and popularized. One strategic impact of MSA is on the risk-free translation of
legacy applications into MSA-based modern applications. There are facilitating patterns of
decomposition of massive and monolithic applications into several microservices. In the
following sections, we will discuss the prominent patterns in detail. There are mainly two
patterns: architecture and design patterns.

Decomposition patterns
Patterns are vital for any new paradigm to thrive. The microservices paradigm too has to be
accordingly enabled with many novel and value-adding patterns in order to sustain and
simplify its long and arduous journey. Whether designing, developing, deploying, and
delivering newer microservices, or dismantling legacy and monolithic applications into a
myriad of interactive microservices, the role and relevance of architecture and design
patterns is extremely high. Without an iota of doubt, the IT team of every company across
the world is burdened with a number of inflexible, closed, expensive to maintain, and
largely sized software applications. Having understood the significant benefits being
envisaged through the MSA proposition, worldwide corporates are keenly exploring the
possibility of leveraging it with all the clarity and confidence for modernizing current
applications. This technology-induced transition and transformation empower every
business house to be ready for the digital economy and era. Microservices are being touted
as the way forward to realize the dream of digital enterprises, and there is a clarion call for
unearthing powerful and game-changing patterns to speed up the setting up and sustaining
microservices-centric applications. Let us start with a few interesting decomposition
patterns.

The microservices architecture pattern corresponds to the y axis scaling of the scale cube,
which is a 3D model of scalability as shown in the following diagram:

Microservices Architecture Patterns Chapter 9

[265]

The x axis scaling is for running multiple cloned copies of an application behind a load
balancer. This is the most common way of achieving horizontal scalability. The y axis
scaling represents an application that is split by a function, service, or resource. Each service
is responsible for one or more closely related functions. The z axis scaling is commonly used
to scale databases because the data is partitioned across a set of servers. Each server runs an
identical copy of the code and each service request is routed to the appropriate server. The z
axis scaling, like x axis scaling, improves the application's capacity and availability.
However, to solve the problems of increasing development and application complexity, the
y axis scaling is recommended. The y axis scaling splits the application into multiple
services.

Microservices Architecture Patterns Chapter 9

[266]

Decomposition by use case pattern
There are many bases and causes for segmenting big applications into a dynamic pool of
smaller and cooperative components. As we all know, software packages and libraries are
being constructed in order to automate and accelerate multiple use cases. Hence, this
pattern unambiguously specifies the ways and means of expertly partitioning massive
applications into many small modules; each of them will accomplish at least one use case.
We know that there are breakthrough business and technical cases for any technology to
survive by beating all kinds of competitions at the increasingly knowledgeable market.
However, use cases are typically the benefits being accrued by users (humans), user
agents/services (software), or IoT and I/O devices while using any technology-sponsored
applications and services. In this pattern, it is all about starting, identifying, and prioritizing
use cases. Use cases are definitely the crucial factor and the turning point for developing
new applications as well as modernizing existing applications. This pattern helps to
produce next-generation applications by producing fresh services and by extracting the
hidden microservices encapsulated inside big applications.

Decomposition by resources pattern
In this pattern, it is defining microservices based on the resources (server machines, storage
appliances, network components, software infrastructures, databases, and so on) that they
access or control. This allows the creation of a set of microservices that function as channels
for access to individual resources. We are envisioning the days of application-aware
infrastructures and infrastructure-aware applications. For microservices to exhibit their
special capabilities, the underlying resources play an important role, which cannot be
sidestepped.

Decomposition by business capability pattern
Functionality is another option to decompose monolithic applications into many
interoperable microservices. These functions or responsibilities are generally business-
specific or agnostic. That is, these vertical, as well as horizontal functions, can be easily used
by more than one part of the application. These functions are coarse-grained in the sense
that many fine-grained services can be born out of these bigger
functionalities/responsibilities. This is an interesting pattern for the MSA era.

Microservices Architecture Patterns Chapter 9

[267]

Increasingly, business applications are becoming sophisticated and complicated. A myriad
of third-party applications is getting integrated. Monolithic and massive-scale applications
are the most prevalent and prominent these days. Service-oriented architecture (SOA)
patterns are majorly leveraged for establishing and sustaining seamless and spontaneous
integration between different and distributed applications using specific wrappers and
service-oriented interfaces. That is, enterprise and cloud application integration is being
enabled through SOA techniques and tips. Having understood the strategic significance of
the MSA pattern, business behemoths are strategizing to smoothly go in the MSA way to be
right and relevant to their customers and clients. Besides partitioning the large-scale
application into a dynamic collection of easily manageable, lightly coupled, and relatively
simple services, the MSA paradigm is to accelerate software development by enabling
continuous delivery/deployment.

For achieving the aforementioned benefits, the decomposition of the application into
microservices has to be done very carefully. A useful guideline for the object-oriented
design (OOD) world is the single responsibility principle (SRP) that defines a
responsibility of a class as a reason to change and states that a class should only have one
reason to change. Another useful principle from OOD is the common closure principle
(CCP); things that change together should be packaged together to ensure that each change
affects only one service.

The promising solution approach is as follows. Define services corresponding to business
capabilities. A business capability is something that a business does in order to generate
value. A business capability often corresponds to a business object, for example:

Order management is responsible for orders
Customer management is responsible for customers

This sort of business capability-based decomposition of monolithic applications is to benefit
businesses in the long run. Also, bigger and better business capabilities can be realized
through the orchestration of business capability services. There are API gateways,
partitioning best practices, Docker containers to host microservices, orchestration tools, and
governance engines in order to derive process-aware composite applications at runtime on
a need basis.

Microservices Architecture Patterns Chapter 9

[268]

Decomposition by subdomain pattern
For bringing up modular software applications, application components and services need
to be loosely coupled (each service has an API that encapsulates its implementation, the
implementation can be changed without affecting its clients) and cohesive (a service should
implement a small set of strongly related functions). With component-based software
assembly and service-oriented architecture (SOA) approaches, setting up and sustaining
modular applications has been the case. These components and services are typically
coarse-grained. With the surging popularity and pervasiveness of service architectures,
creating fine-grained services is gathering momentum. The principal goal of MSA is to
quickly take software solutions to the market by enabling continuous integration,
deployment, and delivery. Hence, the systematic and sagacious decomposition of
applications and coarse-grained services is acquiring special consideration. In the
aforementioned pattern, we discussed that business capability is the base for disintegrating
applications.

This pattern recommends decomposing by subdomains. It is recommended to define
services corresponding to domain-driven design (DDD) subdomains. DDD refers to the
application's problem space (the business) as the domain. A domain consists of multiple
subdomains. Each subdomain corresponds to a different part of the business. The
subdomains of an online store application include:

Product catalogue
Inventory management
Order management
Delivery management

The resulting service architecture is quite stable since the subdomains are relatively stable.
The challenge is to precisely identify the subdomains. Decomposition follows the Divide and
Conquer paradigm. With the digital era all set to dawn, the software complexity is to rise,
and hence bring the technique of decomposition into the picture. Big and packaged
applications need to be divided in order to gain a decisive and deeper understanding.

Microservices Architecture Patterns Chapter 9

[269]

Microservices deployment pattern
There is a myriad of ways and means for deploying microservices. There are a few runtime
and execution environments including bare metal (BM) servers, virtual machines (VMs),
and containers. Therefore, the deployment options have increased. Then, there are one or
more instances of the same microservice to be accommodated in one server. The
deployment pattern choices are not straightforward and instead depend on various
parameters.

Multiple service instances per host pattern
Microservices are generally small in size and hence are quickly built, tweaked, composed,
and deployed. The availability and throughput of microservices are important. Redundancy
is one widely used aspect for guaranteeing high availability and throughput. That is, each
service is deployed as a set of service instances.

The beauty of microservices is that services can be implemented using different
programming languages and frameworks. As articulated in the beginning, microservices
can be independently deployable and horizontally scalable. Service instances have to be
clearly isolated from one another to ensure the safety and security of services. The resources
(processors/cores/threads, memory, storage, and so on) consumed by service instances need
to be minutely monitored, measured, and managed in order to ensure the optimized
utilization of different IT resources.

It is possible to run multiple instances of different services on a physical or virtual server. It
is possible to deploy each service instance as a JVM process, and it is also possible to deploy
multiple instances in the same JVM. With higher density, the utilization of resources, as
well as services, is bound to go up. The issues alluding to this pattern are the competition
for resources, resource dependencies, and resource monitoring.

Single service instance per host pattern
This is another service deployment pattern. There are requirements and scenarios wherein
multiple instances of a service are deployed on a single server. On the other hand, there are
needs for deploying only one instance and running it on a host machine. The benefits of this
approach include:

Service instances are fully isolated from one another
There is no competition for resources and the issues being associated with
dependencies are no more

Microservices Architecture Patterns Chapter 9

[270]

A service instance can consume at most the resources of a single host
It is easy to monitor, manage, and redeploy each service instance

The drawback is that the resource utilization may decrease.

Service instance per VM pattern
There are a few options for service instance deployment. BM servers,VMs, and in the recent
past, Docker containers are the mainstream deployment and runtime environments. This
pattern specifies the deployment of a service in a VM. Cloud environments are increasingly
virtualized and hence VM-hosted services are flourishing. The auto-scaling facility being
supplied by cloud service providers (CSPs) helps to provision fresh VMs quickly and
concurrently to scale the number of service instances horizontally. This mechanism ensures
the required performance level and the service availability. The service isolation happens at
the VM level. The typical issue here is that VM provisioning consumes a couple of minutes.

Service instance per container pattern
Every software module is being containerized through the Docker packaging format and
the open-source platform, and the resulting Docker image of that particular application or
service is being stocked in publicly discoverable and accessible hubs. When a Docker image
gets committed, it automatically becomes a Docker container that can be immediately
deployed and run. The container starts to deliver the implemented service to the outside
world to be subscribed and consumed. The original and open-source Docker platform is
being speedily strengthened through a host of pioneering tools, engines, and frameworks to
bring all-around automation. There are Docker machines, container cluster management
platforms, orchestration and networking tools, container monitoring tools, and so on in
order to proclaim the Docker-enabled containerization as a production-level technology.
The pivotal convergence of microservices and Docker paradigms is to lay a solid and
stimulating foundation for producing bigger and better software applications.

Unlike VMs, container creation and running is quite fast. That means, through the leverage
of containers, it is possible to achieve real-time scalability. As a best practice, every
container is to host a service instance. Through multiple containers, it is possible to have
multiple instances of a service. Generally, due to the lightweight nature of containers, there
can be tens or even hundreds of application containers running comfortably on a physical
host.

Microservices Architecture Patterns Chapter 9

[271]

Serverless deployment pattern
Serverless computing, alternatively termed as Function as a Service (FaaS), is attracting a
lot of mind and market shares. Development, debugging, deployment, delivery, and
decommissioning of application services are the major portion of any application lifecycle
management (ALM) process. That is, there is a need for operational guys to set up and
sustain optimized infrastructures for deploying and running software applications.

This serverless deployment pattern recommends a kind of deployment infrastructure that
hides the concept of servers (whether physical or virtual). The infrastructure takes the
application service's code and runs it. The user has to pay for each of his requests based on
the resources consumed. The performance, scalability, and availability requirements are
being automatically met. Almost all the established cloud service providers are providing
this new deployment pattern. This is a new cloud service ensuring every function is being
delivered as a service.

For an example, start with an AWS Lambda function, which is a stateless component to
handle events. To create an AWS Lambda function, the user has to package his NodeJS,
Java, or Python code for his service in a ZIP file and upload it to AWS Lambda. When an
event occurs, AWS Lambda finds an idle instance of the function and launches one if none
are available and invokes the handler function. AWS Lambda can run more instances
automatically on a need basis to handle extra users and payloads.

There are four ways to invoke a lambda function. One option is to configure the lambda
function to be invoked in response to an event generated by an AWS service. The examples
of events include the following:

An object being deposited in an S3 bucket
An item is created, updated, or deleted in a DynamoDB table
A message is available to read from a Kinesis stream

Another way to invoke a lambda function is to configure the AWS Lambda Gateway to
route HTTP requests to the lambda function. AWS Gateway transforms an HTTP request
into an event object, invokes the lambda function, and generates an HTTP response from
the lambda function's result.

Microservices Architecture Patterns Chapter 9

[272]

It is also possible to invoke the lambda function using the AWS Lambda Web Service API.
The application that invokes the lambda function supplies a JSON object, which is passed to
the lambda function. The web service call returns the value returned by the lambda. The
final and fourth way to invoke a lambda function is periodically using a cron-like
mechanism. It is possible to tell AWS to invoke the lambda function every five minutes.

The advantages are many; the infrastructure provisioning, setting up and administering
time, and treasure and talent get reduced significantly. Software engineers can coolly focus
on their core strengths without any botheration of the readying infrastructure to run their
applications. However, there are a few limitations. AWS Lambda at this point in time
supports a few languages. It is only suitable for deploying stateless applications that run
quickly and respond to requests. Running long-running stateful applications such as a
database or message broker in the serverless model is not possible. If an application takes a
long time to start, then the application is not a good fit for serverless deployment. Similarly,
legacy monolithic and massive applications are not suitable for serverless computing.
Serverless deployment is typically reactive, not proactive, and hence the issue of high
latency can arise.

Service deployment platform pattern
There are a few automated software deployment tools on the market. IBM UrbanCode
Deploy is an application release automation solution. This software allows for seamlessly
deploying to distributed data centers and cloud environments on demand or on schedule. It
is possible to scale up to enterprise-class deployments handling thousands of servers. The
other popular software deployment automation solutions include:

Docker orchestration frameworks including Docker swarm and Kubernetes
(http:/ /kubernetes. io/)
Serverless platforms such as AWS Lambda
PaaS including Cloud Foundry

Deployment, release, and delivery activities are increasingly being automated through a
bevy of tools. For faster software delivery to the market, the tools-supported continuous
integration, deployment, and delivery are indispensable, and the aforementioned patterns
come in handy for software architects and designers.

http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/

Microservices Architecture Patterns Chapter 9

[273]

Microservices design patterns
Designing competent microservices that can work with other services seamlessly and
spontaneously is essential for the intended success of the MSA. Similarly, designing the
architecture of cloud, enterprise, mobile, IoT, analytical, operational, and transactional
applications through the power of microservices has to be done elegantly and expediently.
As enunciated previously, microservices can be realized through multiple technologies and
tools. Also, the resplendent MSA paradigm is futuristic in the sense that any new
technology can be easily used for producing next-generation microservices that are easily
findable, accessible, assessable, maneuverable, replaceable, substitutable, and so on. The
ensuing section will list all the dominant design patterns for progressively journeying
toward the projected MSA era.

Design patterns are typically fine-grained and immensely contribute to building individual
as well as composite microservices. Not only business logic, but also design patterns help in
attaching data connectivity and persistence logic. Design patterns are therefore
comprehensive for supplying the envisaged success of the MSA paradigm. The following
section enumerates and explains the key design patterns.

Aggregator microservice design pattern
Service and data aggregation are very vital for the intended success of the MSA pattern. As
services are relatively micro in size and typically a microservice implements a single task,
multiple distributed and decentralized services need to be identified and aggregated to
serve a fully-fledged business functionality and feature. The aggregator pattern is therefore
essential for the MSA era. Since each service is exposed using the lightweight RESTful
interface, an application, which comprises many microservices, can retrieve the data from
different services and process/display it accordingly by using this aggregator pattern.

Microservices Architecture Patterns Chapter 9

[274]

There are viable options to bring in the required business logic if there is a requirement for a
kind of processing on the retrieved data before the data gets displayed:

If the aggregation has to happen at the service level to create composite services, then the
aggregator would just collect the data from each of the participating services, apply the
ordained business logic to it, and aggregate and publish it using a composite REST
endpoint. This process-centric composite service can then be consumed by other services
that need it. All the microservices may have their own cache and database. The composite
service can also be blessed with its own caching and database layer. An aggregator can scale
independently on the x axis and z axis as well.

Proxy microservice design pattern
This pattern is a slight variation of the aggregator. In this case, the client is not involved in
the aggregation activity. Based on business needs, different microservices can be invoked.
The proxy pattern can scale independently on x axis and z axis as well. The idea is that each
microservice need not be exposed to the consumer. The proxy may be a dumb proxy, in
which case it just delegates the request to one of the services. Alternatively, it may be a
smart proxy where some data transformation is applied before the response is served to the
client. With the explosion of different IoT and I/O devices, this proxy pattern is a beneficial
one.

Microservices Architecture Patterns Chapter 9

[275]

Chained microservice design pattern
This is for producing a single consolidated response to a request. In this case, the request
from the client is received by Service A, which is then communicating with Service B, which
in turn may be communicating with Service C. All the services are likely using a
synchronous HTTP request/response message. The key concern here is that the client is
blocked until all the services in the chain finish the processing. That is, the chain of Service
A to Service B and then Service B to Service C gets completed. The chain has to be short and
small, otherwise, the synchronous communication may lead to a delay.

Microservice chassis pattern
Cross-cutting concerns are many and also repeated across the source code of any
application. The aspect-oriented programming model through a unique fashion was the
first one to tackle these cross-cutting concerns that are prevalent in an enterprise-class
application. The well-known examples include identity and access, network locations of
databases and messaging platforms, logging, data encryption, evaluation metrics, and so
on. As we all know, microservices are small in size and quick in development, testing,
debugging, deployment, and delivery. That is, a small team of developers can build a
service in a day or two. As per the MSA pattern, such small-scale services from multiple
development teams are picked up purposefully and blended to form mission-critical
applications instantaneously. The whole process of generating process-aware,
microservices-based applications are completed in a short span of time. Herein, wasting a
lot of additional time to attach all kinds of cross-cutting concerns is not a logically sound
proposition. Therefore, the microservices chassis framework gets formulated and
recommended to build microservices in the application perspective. Developers, when
leveraging the MSA pattern, also have to incorporate the MSA-specific cross-cutting
concerns, such as service registration and discovery and circuit breakers for reliably
handling partial failure. Therefore, the best solution approach is that when creating a
microservice, it is crucial to add the lean and clean code for handling the aforementioned
cross-cutting concerns. This way of embedding cross-cutting concerns is the smartest way
forward for the MSA world.

Microservices Architecture Patterns Chapter 9

[276]

Externalized configuration pattern
Any enterprise-grade application typically uses one or more infrastructures and third-party
services. For example, the application has to use a few common infrastructure services such
as service registry, authentication, authorization and audit services, message broker and
queue, filesystem, database, knowledge visualization platform, security, and so on. Further
on, there are several third-party applications and services such as payment gateway, email
server, and so on. Thus, any production-grade application has to be directly or indirectly
attached to local as well as remote services to exhibit a highly integrated capability. Another
pertinent question is, how do we enable a service to run in multiple environments without
any modification?

Generally, a service must be provided with configuration data that tells it how to connect
with other services. For example, for connecting to a database, the database network
location and credentials have to be attached to the configuration data. Also, there are
variations such as a QA database versus a production environment database. The
prominent solution approach is to externalize all application-centric configuration
information so that a service reads the configuration details from the external source to
complete its functionality perfectly. The advantage of this pattern is that application
services run in multiple environments without modification and/or recompilation.

Microservices database patterns
Data persistence is an important factor in any microservice. There have been new database
management systems in the recent past for stocking raw and processed data. There are big,
fast, streaming, IoT data, and various data processing types such as batch, real-time,
interactive, and iterative processing. Fresh data capture, ingestion, storage, processing,
mining, analytics, and visualization technologies and tools are emerging and evolving in
order to support data-driven insights and insight-driven decisions. There are several data-
related patterns in the MSA world, and this section is specially prepared for discussing
them.

Microservices Architecture Patterns Chapter 9

[277]

Database per service pattern
The MSA pattern is being embraced by mission-critical applications, and such MSA-
compliant applications invariably provide a variety of business, technical, and user
advantages. Having realized the strategic significance of the MSA idea, worldwide
businesses, organizations, and institutions are keenly formulating workable and winning
strategies and plans for leveraging the distinct capabilities of the MSA paradigm. As we
know, microservices can be coded using multiple languages, and the data persistence needs
of microservices can be served by multiple systems including database management
systems (DBMS), filesystems, and so on. Further on, there are SQL, NoSQL, NewSQL, in-
memory, in-database database management systems. Thus, microservices support the
polyglot capability. This pattern recommends the leverage of a database for each service.

There is a growing family of data-intensive applications such as e-commerce, business,
supply chain management, and so on, and these get segmented into a pool of interacting
services. Herein, each service needs to persist its own data. Therefore, each microservice has
to be accordingly enabled through its own data persistence mechanism. There are
challenges when each microservice uses its own database. Complex business transactions
have to work across multiple services, and hence, multiple databases. Further on, some
business operations must update data owned by multiple services. There are occasions
wherein there is a demand to query data that is owned by multiple services. Databases
must sometimes be replicated and shared in order to scale.

For ensuring the much-needed isolation for utmost data security, API-driven access is being
insisted. The service's database is effectively a part of the implementation of that service.
The database cannot be accessed directly by other services. APIs are the way forward for
database access. There are a few different ways to keep a service's persistent data private.
Firstly, a separate table can be built and allocated for each microservice. Secondly, a
separate schema can be generated for each microservice. Finally, a separate database server
can be allocated for each service. Having a database per service ensures that microservices
are loosely coupled and the best database solution can be chosen for every service based on
its task. For example, a microservice performing text searching can be given a text mining
and search engine. Similarly, a microservice performing social media analytics can be
empowered with a graph database such as Neo4j.

Microservices Architecture Patterns Chapter 9

[278]

However, as we all know, NoSQL databases do not support the ACID properties, and hence
distributed and nested transactions are not suitable for microservices that involve NoSQL
backend systems. The option here is to use an eventually consistent and event-driven
architecture (EDA). Service producers publish their messages into message queues in the
form of topics, whereas service consumers subscribe to those topics and use them. Some
queries mandate to join data from multiple databases. The way forward is to empower
applications to do the join operation rather than being accomplished at the database. For
example, the API gateway or a kind of composition service could retrieve a customer, and
his/her orders from the customer and order microservices. Then, the join action can be done
by the API gateway or the composition service. Another option is to leverage the command
query responsibility segregation (CQRS) pattern.

Shared data design pattern
Microservices are self-defined and autonomous. That is, microservices have all the modules
(presentation logic, business logic, integration logic, data connectivity, and persistence
logic) to run in an independent fashion. Further on, services can easily draw upon the
strength of proven technologies and tools to be fully polyglot. That is, nowadays, there are
several database management systems such as SQL, NoSQL, NewSQL, and so on, and
microservices can choose any one of them for the data persistence they need to be extremely
and elegantly contributory to the originally expressed and envisaged business goal.

Organizations modernize their legacy applications to become microservices-enabled,
modern applications. One standout challenge here is the database normalization. That is,
each microservice has to have the right amount of data. In this design pattern, some
services, likely in a chain, may share caching and database stores. This is logical if there is a
strong coupling between the two services. This pattern may be categorized as an anti-
pattern because microservices postulate and propose the share-nothing phenomenon. For
greenfield microservices-centric applications, this pattern is undoubtedly an anti-pattern.
This pattern can be leveraged as a temporary aspect during the transition phase from the
monolithic to microservice.

Microservices Architecture Patterns Chapter 9

[279]

Shared database pattern
There are several unique factors for the runaway success of microservices architecture. We
have been well-versed with shared databases. Now, in the big data and webscale
applications era, a variety of new and differently abled databases have emerged and are
doing well for several new-generation applications. The previously discussed pattern,
therefore, has recommended dedicated databases for different services. However, there are
certain requirements such as the ACID-centric transactions and transactional applications.
The solution approach is to use a single database that is shared by multiple microservices.
Every microservice is comfortably and conveniently able to access data owned by other
microservices. The shared database ensures utmost data consistency. The management and
operational complexities of a single shared database are on the lower side.

As usual, there are a few drawbacks being associated with the shared database pattern. The
first and foremost is the tight coupling between services and the database. The second one
is the issues associated with the data sharing. The traditional SQL databases do not support
horizontal scalability, and hence, the surge in data volumes cannot be handled by SQL
databases that are shared across.

Command-query responsibility segregation (CQRS)
pattern
In the microservices world, implementing queries that join data from multiple services and
their own databases is a real challenge. The solution approach is to split the application into
two parts; the command side and the query side. The command side handles create, update,
and delete requests and emits events when data changes. The query side handles queries by
executing them against one or more materialized views that are kept up to date by
subscribing to the stream of events emitted when data changes. The advantages are many.
This pattern is especially necessary for an event-driven architecture (EDA) environment.
This gives improved separation of concerns and supports multiple denormalized views.

Microservices integration patterns
Microservices are autonomous and self-defined. Still, distributed and decentralized services
ought to talk to each other in order to produce powerful process-centric and business-
critical applications. This section is specially allocated for letting you know about the
brewing integration patterns in the MSA environment.

Microservices Architecture Patterns Chapter 9

[280]

Remote procedure invocation (RPI) pattern
Microservices have to interoperate with multiple microservices in order to complete any
complex functionality. For this purpose, services use an inter-process communication
protocol. The solution approach is to leverage the RPI for any inter-service communication
and collaboration. The client uses a request/reply-based protocol to make requests to a
service. The well-known RPI technologies include REST, gRPC, and Apache Thrift. This
pattern is easy to implement and there is no need for any intermediate broker for facilitating
the intended communication. However, there are a few critical drawbacks being associated
with this pattern. That is, services are tightly coupled and have to be online to find, bind,
and interact. Other prominent interaction types such as notifications, request/asynchronous
response, publish/subscribe, and publish/asynchronous response are not supported here.

Messaging design pattern
Messaging is typically asynchronous in nature and is used extensively for inter-service
communication. Services talk to one another by exchanging standardized messages over
messaging channels. There are message brokers, hubs, and queues (Apache Kafka,
RabbitMQ, and so on) in the market. This pattern has the following benefits:

Messaging enables loose and light coupling between participating and
contributing services. The dependency hell gets eliminated here.
Message brokers typically buffer messages until the subscriber/consumer is able
to receive and process them. This intermediary-based message storage enhances
the message availability. This pattern supports a variety of communication
patterns such as fire and forgets, polling, publish, and subscribe.

Asynchronous communication through messaging middleware solutions turns out to be the
messiah for the distributed computing era.

Microservices Architecture Patterns Chapter 9

[281]

Asynchronous messaging design pattern
Message-based asynchronous communication is insisted on setting up and sustaining
reliable and resilient microservices. The loose and light coupling between microservices and
the interactions happening through passing standardized messages are being touted as the
success formula for the MSA pattern. The highly popular REST design pattern is typically
synchronous and hence blocks the client service. The much-needed asynchronous
interaction is still possible through the RESTful protocol, but it has to be achieved at the
application level. Therefore, the leverage of message brokers and queues has gone up
significantly in the MSA world. Further on, there is a mix of both synchronous and
asynchronous communications. For example, Service A may call Service C synchronously,
which is then communicating with Service B and D asynchronously using a shared message
queue. By using WebSockets, Service A can talk to Service C in an asynchronous manner to
achieve the mandated scalability. Precisely speaking, a combination of the request/response
(REST) and pub/sub messaging may be used to accomplish any unique business needs.

Domain-specific protocol pattern
There are a wider variety of inter-process communication protocols. For certain scenarios,
domain-specific protocols are being recommended for inter-process communication. For
email services, SMTP and IMAP are the preferred ones. For media streaming requirements,
RTMP, HLS, and HDS are being used.

API gateway pattern
There are several challenges in the MSA world. Microservices are generally fine-grained
and each of them is blessed with a granular API. The other characteristics include different
services are being coded using different languages and many data transmission protocols
and data persistence methods. In short, services support the polyglot architecture. Further
on, there are several client options such as desktop, mobile, wearable, portable, and fixed
devices. There are telling scenarios that consume data and application logic from different
and distributed microservices and data services. Precisely speaking, we are heading into the
days of distributed computing. Microservices need to find the appropriate services to
interact with and contribute to completing the desired business functionality and goals in a
time-bound and SLA-compliant manner.

Microservices Architecture Patterns Chapter 9

[282]

Network topologies and technologies also play a vital role in shaping up MSA applications.
The latency of different methods such as WAN, MAN, LAN, CAN, PAN, and BAN differs.
That is, the latency is lower in personal area networks, whereas it is on the higher side for
wide area networks. Microservices can quickly access nearby microservices multiple times,
whereas, in the case of remote services, the number of service access is lower and time-
consuming.

The viable and value-adding solution approach is to have an API gateway as the single
point of contact (SPOC) for all kinds of services in order to interact with local as well as
remote services. All kinds of connectivity, mediation, brokerage, aggregation, message
enrichment, protocol and data format translations, and so on are being taken care of by this
standardized API gateway solution. Multiple services and data sources are neatly found
and composed by this API gateway service that can also expose a unique API for each
client. The security requirements of the data and messages flowing through the network
channels are also accomplished by this product.

Backend for frontend pattern
This pattern recommends and defines a separate API for each kind of client. Typically, apart
from the traditional web interface, mobile and management interfaces are common these
days. An API gateway has the capability of providing different APIs for different client
types. The API gateway insulates the clients from the application, which can be partitioned
into multiple cooperative microservices. This way, any kind of application refactoring, re-
platforming, and retrofitting does not have any sinister impact on approaching clients. The
optimal APIs can be chosen and used for the appropriate client. The API gateway enables
clients to retrieve data from multiple services and sources with a single round-trip
operation. Fewer requests also mean less overhead and improve the user experience.
Multiple backend microservices and data sources can be orchestrated on a need basis to
produce bigger and better applications. This transformation gives a unique experience for
user agents. The API gateway intrinsically takes care of all kinds of data and protocol
translations.

Microservices Architecture Patterns Chapter 9

[283]

Microservices registration, discovery, and usage
patterns
Services need to be registered in a publicly available service registry in order to enable
services to be found at runtime and leveraged accordingly. In a dynamic and distributed
environment, services move around, so the task of runtime service discovery has to be
facilitated through such network-accessible registries and repositories. Not only services,
but also their instances, have to be registered to simplify the goal of high availability of
services.

Service discovery pattern
Microservices have to find one or more appropriate microservice to initiate a kind of
conversation towards fulfilling the identified business functionality. As we all know, there
are several service discovery mechanisms, service registries, and repositories. In the
traditional web service world, we used to play around with WSDL and UDDI for service
interfacing, discovery, and initiation. In the earlier era too, we were tinkering with RPC,
RMI, CORBA, EJB, Jini, and so on. In the recent past, RESTful service interactions are the
most common way of establishing service connectivity and service fulfillment.

However, microservices are quite distinct in the sense that they are more dynamic, varied,
and versatile and many in numbers. Further on, services are predominantly made to run
inside virtual machines and containers. Virtualized and containerized environments are
dynamic with the inherent ability to provide live-in migration of virtualized resources and
workloads. The API gateway is one solution for appropriately enabling services to discover
services to correspond and complete the business functionality. The service registry is to
have all the required information such as location, host, port, and so on of all the
participating and contributing services. This sort of mechanism aids in sharply reducing the
number of network hops for services trying to involve other services.

For enterprise-class services, the connectivity typically happens through a clustered load
balancer. The location of the load balancer is predefined and determined. Services send the
request to the load balancer, which in turn queries a service registry, which may be built
into the load balancer. The load balancer then forwards the service request and query to an
available instance of the particular service.

Microservices Architecture Patterns Chapter 9

[284]

The popular clustering solutions such as Kubernetes (https:/ /github. com/
GoogleCloudPlatform/ kubernetes/ blob/ master/ docs/ services. md) and Marathon
(https://mesosphere. github. io/ marathon/ docs/ service- discovery- load- balancing.
html) run a proxy on each host. The proxy actually functions as a server-side discovery
router/load balancer. In order to access a service, a client service connects to the local proxy
using the port assigned to that service. The proxy then forwards the request to a service
instance running somewhere in the cluster. Routers, application delivery controllers
(ADCs), load balancers, and other network solution modules are made available in large-
scale IT environments such as clouds.

Service registry pattern
Service registries and repositories are very vital for any software development organization.
With microservices emerging as the next-generation application building block, the
relevance of services and their one-stop registry is on the climb. A service registry has all
the right references for each of the services in the environment. That is, each service, once
developed, has to be registered with the service registry in order to be found, bound, and to
contribute immensely. Thus, any service wanting to connect with other services has to first
connect to the service registry to collect all the discovery, access, and leverage details of the
services. A service registry might invoke a service instance's health check API to verify that
it is able to handle requests. The well-known service registry technologies are:

Apache Zookeeper
Consul
Etcd

A service registry is very critical in the service world and it has to be highly available. If it is
not available even for a short time, then the business continuity is in danger.

Service registration pattern
We have discussed the importance of the service registry. Because of the dynamism being
exhibited by microservices, the role of the service registry acquires special significance.
Every single service has to be registered with the service registry in order to be extremely
beneficial for businesses. That is, the details of each service instance must be registered with
the service registry when each instance begins its long and arduous journey. On the other
hand, the service instance gets unregistered on getting decommissioned or shut down.

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html

Microservices Architecture Patterns Chapter 9

[285]

Microservices can register themselves or a third-party solution can be assigned to register
each service instance. For the first case, microservices are solely responsible for registering
themselves with the service registry. On start-up, the service registers itself (host and IP
address) with the service registry and makes itself available to be discovered and hooked.
Not only services, but also each instance of those services has to register methodically with
the service registry. If one service instance fails, the other service instances come in handy in
sustaining the business operations, offerings, and outputs. For the second case, third-party
solution and service providers can be contracted to set up a service registry to register each
service instance.

Event-driven architecture (EDA) patterns
With the emergence of legions of digitized items/smart objects/sentient materials, along
with the scores of connected devices in our everyday environments, everyone is going to be
significantly sagacious in his or her decisions, deeds, and deals. In the projected IoT world,
a lot of decisive and deeper automation is bound to happen. Any tangible thing in our
midst is internally as well as externally empowered in time to proactively and pre-
emptively act on all kinds of noteworthy events. That is, every single entity in and around
us is going to be event-driven. The role of IT in the projected event-driven world is
paramount and path-breaking. The IT systems and business applications/services have to
capture, buffer, process, mine, and analyze all incoming events to spit out insights. The
days ahead are definitely digital, and our everyday systems ought to be adequately and
adroitly empowered to be sense and react. Herein, the role and responsibility of EDA in
enabling our IT and business systems to be innovative, disruptive, and transformative are
bound to grow further.

Database per service is the predominant solution approach in the MSA world. But there are
specific requirements wherein the ACID transaction is mandatory for guaranteeing the goal
of data consistency. The way forward is to use the proven and potential event-driven
architecture to attain the data consistency. That is, each service publishes an event
whenever it updates its data. Other services subscribe to those published events and
accordingly update their own databases. This guarantees data consistency across multiple
microservices without going through the traditionally distributed transactions.

To fulfil the promise of faster delivery cycles, teams need autonomy. Dependence across
teams is a recipe for slow progress. This is why monolithic architectures progress slowly.
Isolation between services is how teams can retain autonomy - maintaining this isolation is
critical.

Microservices Architecture Patterns Chapter 9

[286]

Each team must be empowered to make independent decisions even about their data layer
without impacting or becoming dependent on any other team. Even the choice of the types
of data store should be independent—this concept is known as polyglot persistence. How
the data is modeled should also be an autonomous decision, local to each service. The team
should have full control over making schema changes, that is, adding or dropping tables
and entities, or columns and attributes. What about modifying, adding, or deleting classes
and objects? In autonomous teams, these need to be non-breaking changes for other teams,
to protect each team's autonomy. The safest way to ensure that each team has the
independence to make their own data layer choices is to not share the data store across
microservices.

The isolation between services sets boundaries around each microservice, while the event-
driven mechanism addresses how services communicate. The role of the event-driven
system is critical to the overall operation of the architecture.

Event sourcing pattern
Event sourcing is an architectural pattern in which the state of an application is determined
by a sequence of events. Each event in the sequence is recorded in an append-only event
store or stream. Conventionally, most software applications work with data and the
application has to maintain the current state of the data by updating it as users work with
the data. A typical data process is to read data from the store, make some modifications to
it, and update the current state of the data with the new values. The transaction is one that
changes the data value. However, this way of data update and keeping up the data
consistency has many inherent limitations. It requires a two-phase commit (2PC) when
accomplishing distributed transactions. Any 2PC commit reduces the throughput of
transactions substantially. When there are many concurrent users, there is a possibility for
data update conflicts because the update operations take place on a single item of data.
Further on, there is a need for an additional auditing mechanism, which records the details
of each operation in a separate log, otherwise, the history is lost.

Event sourcing achieves the much-needed atomicity without the complex 2PC process by
using the event-centric approach. Rather than storing the current state of an entity, the
application stores a sequence of state-changing events. That is, whenever the state of a
business entity changes, a new event is created and appended to the list of already captured
and stored events. Since saving an event is a single operation, it is inherently atomic. The
software application can then easily reconstruct an entity's current state by replaying the
events.

Microservices Architecture Patterns Chapter 9

[287]

Software applications and services classically are persisting events in an event store (a
database of events) and the event store exposes an API for adding and retrieving a business
entity's events. The event store also behaves like a publish and subscribe message broker.
Subscribers can subscribe to particular events. Whenever there is a new event, the event
store delivers it to all the rightful subscribers. Further on, an application can periodically
save a snapshot of an entity's current state. To reconstruct the current state, the application
takes the most recent snapshot and the events that have occurred since that snapshot. Thus,
sourcing and storing events acquires special significance in the event-driven world.

Transaction log tailing pattern
This is another option for achieving distributed transactions. The idea is to tail the database
transaction log and publish each change as an event. The benefit with this pattern is that
there is no change required at the application level; everything happens at the database
level. Avoiding duplicate publishing is a bit difficult. This pattern ensures low-level DB
changes, but it is quite difficult to determine the business-level events.

Publishing events using the database trigger
pattern
This is another solution approach for the challenge and concern of distributed transactions
among multiple microservices. One or more database triggers insert events into an EVENTS
table, which is polled by a separate process that publishes the events to a message broker,
and the required microservices and their databases consume them and get updated
accordingly.

Application publishes events pattern
The application inserts events into an EVENTS table as a part of the local transaction. A
separate process polls the EVENTS table and publishes the events to a message broker. The
key concerns being associated with this pattern is that appropriate changes have to be
enacted on the application.

Microservices Architecture Patterns Chapter 9

[288]

It is going to be an event-driven world. Events in formalized and standardized forms are
going to be the real differentiators for the futuristic systems to be sensitive, responsive, and
resilient in their actions and reactions. With the IoT era fast dawning, there will be trillions
of events and the IT systems, plus the business applications, that have to be accordingly
defined and designed. Herein, the role of microservices in setting up and sustaining such
kinds of adaptive, people-centric, process-optimized, service-oriented, and event-driven
applications is remarkably growing. The EDA pattern is turning out to be an extremely
rightful entity for the IoT world. Microservices are capable of capturing and processing
event messages for producing rightful outputs. The message-based asynchronous
communication model is also supported by microservices.

Testing and troubleshooting patterns
Performing service verification and validation for understanding its ability to provide its
assigned functionality, as well as the non-functional requirements (NFRs), is an important
parameter and factor for the proclaimed success of microservices. This section will throw
some light on service testing, debugging, and troubleshooting.

Access token pattern
We talked about the contributions of the API gateway for attaining the intended success of
the microservices architecture pattern. The API gateway is the first entry point for client
services and it works thereafter on behalf of the client services. However, the challenge is
how to do user identification, authentication, and authorization. That is, how to
communicate the identity of user agents/requesting services to the requested services to
kick-start the task as per the expressed intention.

The API gateway authenticates the request and passes an access token (for example, JSON
Web Token, https:/ /jwt. io/) that securely identifies the requestor in each request to the
services. A service can include the access token in requests it makes to other services.

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/

Microservices Architecture Patterns Chapter 9

[289]

Service component test pattern
Testing microservices and their instances is very important for service verification and
validation. Writing exemplary test cases and leveraging automated testing tools comes in
handy in checking whether services function as intended. The end-to-end testing of
applications that in turn involve many distributed and decentralized microservices is not an
easy affair indeed. The solution approach is to use a proven test suite. Microservices pass
the test in isolation but testing microservices-based applications present a few challenges.

Log aggregation pattern
Each instance of any microservice writes information about what it is doing to a log file in a
standardized format. The log file typically contains errors, warnings, information, and
debug messages. The challenge is to understand the application behavior and to
troubleshoot the application using the individual logs. The way forward is to use a
centralized logging service that innately aggregates all the logs being produced by each
service instance. There are automated tools for log analytics. In general, log analytics
prewarn if there is any substantial deviation in the functioning of both software and
hardware components. Administrators and users separately visit the log store and search
for any useful information out of the logs to ponder about the next course of action.

Application metrics pattern
This is another way prescribed to understand and articulate application behavior. All along,
we have been bombarded with a number of software design and evaluation metrics.
Finalizing all the right and relevant metrics for microservices is a good starting point in
order to reach the goal of getting to know application behavior. The recommended solution
is to have a centralized metrics service that gathers and stocks the decision-enabling
statistics of each of the service operations. Microservices can push their metrics information
to the metrics service. On the other side, the metrics service can pull metrics from the
microservice. Metrics services are emerging as an important ingredient in the MSA world.

Microservices Architecture Patterns Chapter 9

[290]

Audit logging pattern
The auditability of services is very essential. This helps in understanding the behavior of
users as well as applications. Keeping an audit of all the user interactions is going to be
helpful in setting up and sustaining the microservices environment. The auditing code has
to be intertwined with the business logic.

Distributed tracing pattern
The currently available techniques and tools for software testing and troubleshooting are
being found obsolete and incompetent, especially for microservice-based applications. As
we move from the monolithic era to the promising microservices era, there is a need for a
bunch of versatile tools for checking services in isolation as well as microservice-centric
applications in totality. As individual services cannot give the big picture, the new-
generation testing and debugging tools have to have the distinct capability to do the same
at the application level. That is, the tools must present the complete picture of application
performance along with how the application delivers its functionality.

Therefore, this pattern recommends the leverage of a distributed tracing tool, which can
track every request and capture the associated data as it scans through multiple
microservices. The tool then aggregates the collected details to give an integrated and 360-
degree view of the application behavior and performance. The solution approach is to
instrument each microservice with code that assigns each external request a unique ID. The
code enables to pass the ID to all the services involved in handling the request, to include
the ID in all the log messages, and finally to record the value-adding information such as
start and end times. This pattern enables developers to see how an individual request is
being handled by searching across aggregated logs.

Exception tracking pattern
Microservices and their various instances are made to run on multiple BM servers, VMs,
and even inside Docker containers. Errors may occur when services handle requests from
other services. Typically, services throw an exception with an error message and a stack
trace. The need here is to de-duplicate the exceptions, record, and investigate them
consciously to understand and resolve the issue. The approach is to report all exceptions to
a centralized exception tracking service. Developers and debugging professionals can view
exceptions and ensure their resolution in time.

Microservices Architecture Patterns Chapter 9

[291]

Health check API pattern
The health check has been an important part of the IT industry. All kinds of software and
hardware systems are being regularly checked for their health. It is the same with
microservices. Services are running, but sometimes, they are unable to handle service
requests due to various reasons. In these circumstances, the service monitoring system has
to generate an alert and send it to the operational team to act upon in real time. The load
balancer also understands any failed service instances and accordingly routes requests to
the live services in order to guarantee business continuity. The service registry also has to
take note of the failing instances so that any client service is given the access details of
functioning services. The solution mechanism is to have a health check API endpoint for
each of the services to perform various health check-ups.

Microservices composition patterns
The composition activity is being achieved through two ways: orchestration and
choreography. The composition task goes beyond service composition. That is, process, UI,
and data composition is also very much important for service engineering. Service mesh is a
new buzzword in the industry and there are platforms, practices, and patterns for creating
service meshes in order to envision hitherto unknown service compositions that are
business and process-aware.

Server-side page fragment composition pattern
There are customer-facing applications such as B2C e-commerce web applications and
corporate portals. These are being designed and developed by using multiple services
(purpose-specific and agnostic). There are proven mechanisms such as business capability,
technology superiority, cross-cutting concerns, domain-centricity, quality of service (QoS),
and so on to partition the original application into many microservices or to build
microservices from the ground up. One aspect here is some UI screens/pages services have
to display data from multiple services. UI designers sketch the overall look whereas web
application developers focus on different HTML fragments that implement the particular
region of the web page. The UI team is responsible for developing the page templates that
build pages by performing server-side aggregation of the service-specific HTML fragments.

Microservices Architecture Patterns Chapter 9

[292]

Client-side UI composition pattern
The challenge, as articulated previously, is to implement a UI screen or page that displays
data aggregated from multiple services. The web developers construct client-side UI
components that ultimately implement the region of the web page. A UI team is responsible
for implementing the page skeletons that build pages/screens by composing multiple,
service-specific UI components.

Messaging-based microservices composition pattern
Some communication between services is a requirement, even when they're isolated. Since
applications consist of several microservices, the microservices will need to function
together as an application in some way. Changes in the state of a given service may be of
interest to other microservices. Data from one microservice may be needed by another
microservice. There are many reasons for services to communicate. Good architectures
manage communications by making the microservice API the only entry point for accessing
its services.

Microservices APIs can be either synchronous or asynchronous. Synchronous patterns can
be problematic because of network latencies and intermittent connectivity. Hence,
asynchronous, non-blocking messaging is on the rise because it lets microservices continue
processing without waiting for each other. These messages form a basis of the loose
coupling between microservices. Asynchronous messaging requires a small compromise in
consistency—it is an eventually consistent model. The loose coupling and performance
gained, as a result, makes this a good trade-off.

An asynchronous, message-based, event-driven system honors the need for isolation
between microservices by making the required communications between them non-
intrusive. Microservices can produce events without needing to be aware of which services
are consuming these events and how the events are being handled. For microservices
development teams, an event-driven architecture allows each team to focus on their own
problem domain.

Microservices Architecture Patterns Chapter 9

[293]

Microservices generally comprise the full technology stack including the UI, the middle-tier
application, and the last tier of data persistence. Composition patterns are being used in
every tier and layer separately based on the business needs. An integrated view is one such
requirement. Similarly, data stores need to be logically integrated in order to retrieve data
to give a consolidated view. Finally, there are certain situations and scenarios wherein
multiple discrete and atomic services ought to be integrated and orchestrated to create
powerful composites. Thus, the involvement of composition patterns is growing great and
grandeur in shaping up and propping up the era of microservices.

Resilient and reliable microservices patterns
Instead of replicating the application, one or more services, which are the part of the
application, can be scaled out independently. That is the power of microservices. The
scalability feature is insisted for tackling extra user and data loads. Microservice instances
can easily fit into Docker containers. Creating additional containers is quite easy and fast
and hence, for achieving real-time scalability, microservices embedded inside containers are
turning out to be the appropriate approach. In this section, we are going to discuss the
various patterns for readying reliable, resilient, elastic, and available microservices-centric
applications.

Circuit breaker pattern
Microservices-based application design has wrought in a subtle and smart change in the
way software applications are being designed, deployed, and delivered. Applications now
become a dynamic collection of services that rely on each other to perform various tasks.
Highly complicated and sophisticated applications are bound to involve a large number of
interdependent microservices. More dependencies mean more complications and
complexities. This pattern acquires prominence because it contributes immensely for
avoiding cascading service failure. The idea of the pattern is to continuously monitor the
application's microservices and the traffic flowing among them in order to prevent failures.
When failures do happen, this pattern comes handy in minimizing the impact of those
failures on the application. This pattern also attempts to prevent failure in the first place.
For some types of error conditions such as running out of memory, it is possible to
recognize that failure is imminent and to take appropriate measures to prevent it.

Microservices Architecture Patterns Chapter 9

[294]

This is typically accomplished by the service signaling that it is becoming unhealthy and the
circuit breaker then gives the service a chance to recover by throttling back the number of
requests or rerouting them completely. Once the service gets recovered, the circuit breaker
slowly ramps up requests to the service so as not to immediately overwhelm it and risk it
becoming unhealthy again.

For microservices, the circuit breaker pattern guarantees the bottom‑up resilience. If this
pattern is implemented correctly, it can help in avoiding cascading failures by ensuring
continuity of service even when services are unavailable. Precisely speaking, it is possible to
build MSA applications that use this pattern to gracefully degrade functionality when a
method call fails.

Shared caching layer pattern
All the instances of any microservice at any point in time have the same data requirements,
so it makes a lot of sense to have and share a caching layer across these instances. This
practice is often not followed when each instance has its own internal cache in its memory
for storing session state. This sort of arrangement fragments data across different instances
that should be treated as a whole. Sharing a caching layer eliminates the operational
complexity that results from this otherwise fragmented data tier, but it places requirements
on the shared caching layer.

The application layer has a single view of user data and it is accessible through any
instance. When using a shared cache, updates to data are available to all microservice
instances. If the data layer is not shared, then each service would have a myopic view of the
data and the architecture would have to be set up so that any given user is always routed to
the same instance. Thus, having a shared caching layer gives an integrated and uniform
view of data. A shared caching layer provides an isolation layer to the backing store(s).
Changes to the backing store can be done in just one place, and these changes benefit all the
microservice instances.

As indicated previously, adding additional instances instantaneously gives cloud-native
applications an effective and efficient way of scaling the application logic and improving
performance. For the overall system to benefit from this, the data layer also has to get this
capability. The application performance and scalability can be significantly eroded if the
data layer is a bottleneck. The introduction of a shared cache and its real-time scalability
comes in handy in ensuring the application performance. The data latency is very low also.
The scalability of the cache layer can be achieved through data distribution and replication.

Microservices Architecture Patterns Chapter 9

[295]

High availability microservices pattern
Scaling out microservices by adding their instances ensures the service availability and
resilience. If a microservice instance goes down, then another instance of the same
microservice can simply come forward to replace the failed one so that the business
continuity is being ensured through such kinds of technological solutions. Microservices
instances can be added or removed at will depending on the evolving capacity needs. By
running every instance in a different container/virtual machine/bare metal server, an added
degree of availability can be assured. Fault tolerance is another attribute in the cloud era
and this is accomplished simply by running each instance on a different server within the
cloud center or on a geographically distributed cloud server. The shared data cache should
provide a similar degree of fault tolerance from server failures or site outages.

High availability and fault-tolerance requirements are essential for services to be beneficial
for enterprise-grade business applications. Microservices in association with Docker
containers can fulfil the need for horizontal scalability by automatically adding additional
instances of microservices in the case of an emergency and urgency. That is, the formation
of service clusters and meshes is the key differentiator for the digital world. Google tinkers
with millions of containers every day in order to keep up its business obligations to the
consumers, customers, and clients. Server failures are proactively identified and resolved in
order to ensure the business continuity. Reliability and resilience of microservices go a long
way in their adoption and adaption.

If a server running a microservice fails, the system automatically re-routes work to an
alternate instance of the microservice, spins up a new instance to restore capacity, and
provides access to the same data from the new instance. This recovery scenario has several
implications for how the data layer is set up for accommodating various types of failures.

Concurrent requests for data pattern
Running multiple application instances will have a solid impact on the shared caching layer
because there will be a rise in the number of concurrent requests to avail data. Therefore,
the shared caching layer also needs to be strengthened by adding instances on a need basis.
That is, the cache layer also has to have the elasticity capability to meet the additional
requests.

Microservices Architecture Patterns Chapter 9

[296]

Event store pattern
A key component of the solution is an event store. The event store system is immutable,
sequential, and serves as the destination for the event streams from each service.
Consumers of these events can then subscribe to and read the events of interest. The event
store essentially serves as an event source for each consumer. Consumers maintain their
own logic related to the filters that will be applied to determine whether an event is of
interest. Each consumer also maintains their own pointer/offset into the event store to
serially process the events.

Events can be generated either from the application layer or directly from the data layer.
Generating events from the application layer provides visibility into and control over the
flow of events, but this comes at the cost of having to manage and maintain the flow of
events across all the producers and consumers. Having the events emanating from the data
layer frees the application layer, and developers, from having to essentially build major
pieces of an event-driven system within the application.

Event streams and the unified event log pattern
A unified event log is the collection point/storehouse for all events (state changes, threshold
break-ins or any noteworthy deviations, deficiencies, disturbances, and so on) that occurred
in any participating microservice. Each participating service can also opt to retain a local log
of its own state changes. However, collecting and stocking all kinds of event logs in a single
and unified event store is capable of opening up a host of fresh possibilities and
opportunities. The complete and 360-degree view of all the events presented in the unified
event log can be used to play back selected events and create a projection of the information
in any way desired. A variety of data analytics can be done on the event data in real time in
order to extract actionable insights. The microservices' performance/throughput, scalability,
availability, auditability, security, operational status, and so on can be easily deduced from
the event store. The predictive and preventive maintenance of microservices can also be
achieved through such a centralized and consolidated event log data.

A unified log can have demanding requirements for performance and scalability given a
large number of microservices that can potentially source event streams. Apache Kafka's
design for speed, scale, durability, and massive concurrency, together with its model
allowing only immutable records to be written to it, makes it an increasingly popular choice
as a unified log. Kafka maintains message feeds in distributed and replicated partitions.

Microservices Architecture Patterns Chapter 9

[297]

Due to the continuous explosion of multifaceted, networked, and embedded devices, the
number of events getting generated and captured is growing rapidly. The need is
undoubted to have a highly scalable messaging platform that is able to receive a very high
number of events emanating from different and distributed sources. We all know that the
Apache Kafka messaging platform has the inherent ability to receive millions of events per
second. The events are then partitioned so that both batch and real-time processing
requirements can be met. Since service architecture patterns call for smart endpoints and
dumb pipes, Kafka will do just enough for most application and system integration use
cases.

Asynchronous command calls pattern
Composing services' atomic calls into complex flows often require proper orchestration
over asynchronous actions. These are usually local integration use cases, connecting related
microservices that must exchange messages with a delivery guarantee. The messaging layer
in this use case has substantially different needs from an event firehose since its messages
are point-to-point (queues instead of topics). This usually requires a delivery guarantee and
most are short-lived (albeit still asynchronous) and conversational. It's a traditional broker-
centric use case, reliably connecting endpoints through asynchronous communication. The
communication flows through atomic messages exchanged between parties, instead of a
constant stream of events potentially handled by multiple processes.

In summary, the highly distributed nature of microservices-based applications introduces
several lingering questions about how the data layer should be handled. Microservices
facilitate complete isolation and autonomy. The dependency-related issues simply
disappear here. But how multiple microservices can be found, connected, and aggregated to
produce composite services is a challenge in a truly distributed environment. The
performance and security queries pop up in a distributed environment, leveraging
powerful and pioneering design practices, patterns, and processes to produce next-
generation modernized applications. An in-memory caching layer brings fast response
times for both read and write access to data needs:

Asynchronous updates and event-driven architecture protect the autonomy
between teams and allow for high-velocity software development
The elasticity and scalability of a service's architecture are inextricably tied to the
elasticity and scalability of the data layer
Legacy systems can be modernized and carried forward into the world of
microservices with the help of a caching isolation layer

Microservices Architecture Patterns Chapter 9

[298]

This is the age of digital transformation. Everything in and around us is systematically
getting digitized to enable every kind of physical, mechanical, electrical, and electronic
system to join in the mainstream computing. The digital economy and era are staring at us.
We need competent information technologies, agile development platforms, practices, and
patterns. Microservices architecture (MSA) is an offshoot of the fully matured and stabilized
SOA paradigm and is emerging as the way forward for developing, deploying, and
delivering digital services and applications. This chapter is specially crafted and drafted for
discussing the prominent and dominant patterns for risk-free adoption and acceleration of
the promising MSA paradigm. Patterns are recognized as one indispensable ingredient for
any paradigm to be conveniently and confidently used. Readers will be trustfully inspired
to formulate fresh patterns to make MSA penetrative, participative, and pervasive.

Summary
In this chapter, we got a brief about microservice architecture patterns and we also learned
about the uniqueness of the fast emerging and evolving MSA and the associated
architectural patterns. We also covered the architectural and design patterns being
associated with the raging MSA.

Bibliography and additional resources for this chapter:

http://microservices. io/ patterns/ microservices. html</ agt;

https:// dzone. com/ articles/ microservice- design- patterns

https:// azure. microsoft. com/ en-us/ blog/ design- patterns- for-
microservices/

https:// www. sumologic. com/ blog/devops/ top- patterns- building-
successful- microservices- architecture/

https:// mapr. com/ blog/ event- driven- microservices- patterns/

https:// content. pivotal. io/ blog/ messaging- patterns- for- event- driven-
microservices

http://soapatterns. org/ design_ patterns/ microservice_ deployment

http://blog. christianposta. com/

https:// blogs. oracle. com/ developers/ getting- started- with-
microservices- part- three

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://dzone.com/articles/microservice-design-patterns
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://www.sumologic.com/blog/devops/top-patterns-building-successful-microservices-architecture/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://mapr.com/blog/event-driven-microservices-patterns/
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
https://content.pivotal.io/blog/messaging-patterns-for-event-driven-microservices
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://soapatterns.org/design_patterns/microservice_deployment
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
http://blog.christianposta.com/
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three
https://blogs.oracle.com/developers/getting-started-with-microservices-part-three

10
Patterns for Containerized and

Reliable Applications
The Docker-enabled containerization paradigm is on the right track to becoming an
impactful and insightful technology with a number of crucial advancements being brought
in by a growing array of third-party products and tool vendors. Especially, the future
belongs to containerized cloud environments with the ready availability of proven
container development, deployment, networking, and composition technologies and tools.
The Docker-enabled containers in association with orchestration, governance, monitoring,
measurement, and management platforms such as Kubernetes, Mesos, and so on, are to
contribute immensely to setting up and sustaining next-generation containerized cloud
environments that are very famous for delivering enterprise-class, microservices-based,
event-driven, service-oriented, cloud-hosted, knowledge-filled, insights-attached, AI-
enabled, people-centric, carrier-grade, production-ready, and infrastructure-aware
applications. Besides containers, the concepts of microservices and microservices-centric
applications acquire special significance. The basic requirement for building reliable
applications lies with the faster realization of resilient microservices, which are being
positioned as the standard and optimized building-block and deployment unit for the next-
generation applications. This chapter focuses on the following topics:

The containerization patterns
Resilient microservices patterns
Reliable applications patterns

Patterns for Containerized and Reliable Applications Chapter 10

[300]

Introduction
Undeniably, Docker is the most popular and powerful technology these days in the
information technology (IT) sector. There are two principal trends in the Docker landscape.
Firstly, the open-source Docker platform is being continuously equipped with more right
and relevant features and functionalities in order to make it the most exemplary IT
platform, not only for software developers, but also for on-premises as well as off-premises
IT operational teams. The second trend is the unprecedented adoption of the Docker-
inspired containerization technology by various IT service and solution providers across the
globe in order to bring forth a growing array of premium offerings to their venerable
consumers and clients. The enhanced simplicity in developing fresh software applications,
the automated and accelerated deployment of Docker containers, and the extreme
maneuverability of Docker containers are being widely touted as the key differentiators for
its unprecedented success.

We would like to shed more light on Docker and show why it is being touted as the next
best thing for the impending digital, idea, API, knowledge and insightful economy.

The key drivers for containerization
The first and foremost driver for Docker-enabled containerization is to competently and
completely overcome the widely expressed limitations of the virtualization paradigm.
Actually, we have been working on the proven virtualization techniques and tools for quite
a long time now in order to realize the much-demanded software portability. That is, with
the goal of decimating the inhibiting dependency between software and hardware, there
have been several initiatives that incidentally include the matured and stabilized
virtualization paradigm. Virtualization is a kind of beneficial abstraction, which is
accomplished through the incorporation of an additional layer of indirection between
hardware resources and software components. Through this freshly introduced abstraction
layer (hypervisor or virtual machine monitor (VMM)), any kind of software application
can run on any underlying hardware without any hitch or hurdle. In short, the software
portability is being achieved through this middleware layer. However, the much-published
portability target is not fully met even by the virtualization technique. The hypervisor
software and different data encapsulation formats from different vendors come in the way
of ensuring the much-needed application portability. Furthermore, the distribution, version,
edition, and patching differences of operating systems and application workloads hinder
the smooth portability of workloads across systems and locations.

Patterns for Containerized and Reliable Applications Chapter 10

[301]

Similarly, there are various other drawbacks being attached with the virtualization
paradigm. In data centers and server farms, the virtualization technique is typically used for
creating multiple VMs out of physical machines and each VM has its own operating system
(OS). Through this solid and sound isolation enacted through automated tools and
controlled resource-sharing, multiple and heterogeneous applications are being
accommodated in a physical machine. That is, the hardware-assisted virtualization enables
disparate applications to be run simultaneously on a single physical server. With the
virtualization paradigm, various kinds of IT infrastructures (server machines, storage
appliances, and networking solutions) become open, programmable, remotely monitorable,
manageable, and maintainable. However, because of the verbosity and bloatedness (every
VM carries its own operating system), VM provisioning typically takes a few minutes. This
is a big setback for real-time and on-demand scalability.

The other widely expressed drawback that is being closely associated with virtualization is
that the performance of virtualized systems also goes down due to the excessive usage of
precious and expensive IT resources (processing, memory, storage, network bandwidth,
and so on). The execution time of virtual machines is on the higher side because of multiple
layers ranging from a guest OS, a hypervisor, and the underlying hardware.

Finally, the compute virtualization has flourished, whereas the other closely associated
network and storage virtualization concepts are just taking off. Precisely speaking, building
distributed applications and fulfilling varying business expectations mandate for the faster
and flexible provisioning, high availability, reliability, scalability, and maneuverability of all
the participating IT resources. Compute, storage, and networking components need to work
together in accomplishing the varying IT and business needs. With more virtualized
elements and entities in an IT environment, the operational complexity is bound to grow
rapidly.

Move over to the world of containerization; all the preceding barriers get resolved in a
single stroke. That is, the evolving concept of application containerization coolly and
confidently contributes to the unprecedented success of the software portability goal. A
container generally contains an application/service/process. Along with the primary
application, all of its relevant libraries, binaries, files, and other dependencies are stuffed
and squeezed together to be packaged and presented as a comprehensive yet compact
container. The application containers can be readily shipped, run, and managed in any local
as well as remote environments. Containers are exceptionally lightweight, highly portable,
rapidly deployable, extensible, horizontally scalable, and so on. Furthermore, many
industry leaders have come together to form a kind of consortium to embark on a decisive
and deft journey towards the systematic production, packaging, and delivery of industry-
strength and standardized containers.

Patterns for Containerized and Reliable Applications Chapter 10

[302]

This conscious and collective move makes Docker deeply penetrative and pervasive. The
open-source community is simultaneously spearheading the containerization conundrum
through an assortment of concerted activities for simplifying and streamlining the
containerization concept. The containerization life cycle steps are being automated through
a variety of third-party tools.

The Docker ecosystem also grows fast in order to bring in as much automation as possible
in the IT landscape. Container clustering and orchestration are gaining a lot of attention,
thereby geographically distributed containers and their clusters can be readily linked up to
produce bigger and better process-aware and composite containers. The new concept of
containerization assists with distributed computing. Containers enable the formation of
federated cloud environments in order to accomplish specialized business targets. Cloud
service providers and enterprise IT environments are all set to embrace this unique
compartmentalization technology in order to escalate the resource utilization and to take
the much-insisted infrastructure optimization to the next level. On the performance side,
there are sufficient tests showcasing Docker containers achieving the bare metal server
performance. In short, the IT agility through the DevOps aspect is being guaranteed
through the smart leverage of the Docker-enabled containerization and this, in turn, leads to
business agility, adaptivity, and affordability.

Design patterns for Docker containers
The Docker-enabled containerization is fast emerging and evolving. With the complexity of
the container lifecycle management escalating, the need for enabling patterns is being felt.
The concerned professionals and pundits are working in unison to formulate and firm up
various container-specific patterns. In the days ahead, we will come across many more
patterns. Whatever is widely articulated and accepted is concisely presented in this section
and in the forthcoming sections.

With the unprecedented proliferation of the Docker-enabled containers in cloud
environments (public, private, and fog/edge), Docker enthusiasts, evangelists, and experts
consciously bring forth a bevy of enabling patterns. The readers can find them in this
section. Let us start with container building patterns. Building Docker images and
containers is constrained with a number of challenges and concerns. The Docker patterns
need to reach a level of stability.

Patterns for Containerized and Reliable Applications Chapter 10

[303]

Container building patterns
This section describes a few common ways to build Docker images. As per Alex Collins
(https://alexecollins. com/ developing- with-docker- building- patterns/), there are
several choices: scratch + binary, language stack, and distribution+ package
manager. The scratch + binary - scratch is the most basic base image and it does not
contain any files or programs at all. We must build a standalone binary application to use this.
Here is an example. Firstly, we will build a standalone binary application using Docker. The
steps are as follows:

Create an empty directory and then create a main.go application:1.

package main
import "fmt"
// this is a comment
func main() {
 fmt.Println("Hello World")
}

Compile the application:2.

docker run --rm -ti -v $(pwd):/go/src/myapp google/golang go
build myapp

Create a Dockerfile for the application:3.

FROM scratchADD myapp /CMD ["myapp"]

Finally, build and run the image:4.

docker build -t myapp:1 .docker run --rm -ti myapp:1

This outputs Hello World in the terminal.

This is suitable for applications that can be packaged as standalone binaries. As there is no
language runtime, larger applications are bound to consume more disk space.

https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/
https://alexecollins.com/developing-with-docker-building-patterns/

Patterns for Containerized and Reliable Applications Chapter 10

[304]

Docker provides a number of pre-built base images for the runtime for common languages.
Here is an example as follows:

Create a new empty directory and detail the Main.java application:1.

public class Main { public static void main(String[] args) {
System.out.println("Hello World"); }}

Now, compile this application using the Java Development Kit (JDK):2.

docker run --rm -ti -v $(pwd):/myapp -w /myapp java:8-jdk javac
Main.java

Create the following Dockerfile with the Java Runtime Environment (JRE):3.

FROM java:8-jreADD Main.class /CMD ["java", "-cp", "/", "Main"]

Finally, build and run this Docker image:4.

docker build -t myapp:1 .docker run --rm -it myapp:1

It is faster to deploy this application once the base image is downloaded, and if the same
base image is used for many other applications, then the additional layer needed is very
small.

To build an image that is not on a supported language stack, it is necessary to roll your own
image starting with a distribution, and then it is all about using a package manager to add
the mandated dependencies. Linux always contains a package manager.

This comment installs the JRE:

FROM ubuntu:15.10 RUN apt-get update && apt-get install --no-install-
recommends -y openjdk-8-jre ADD Main.class / CMD ["java", "-cp", "/",
"Main"]

Now, build and run this base image:

docker build -t myapp:1 .docker run --rm -it myapp:1

The advantage is that we can build an application and it is possible to put multiple
applications into a single image (using systemd).

Patterns for Containerized and Reliable Applications Chapter 10

[305]

Docker image building patterns
As we all know, Docker containers are a fantastic way to optimally and organically
encapsulate complex build processes. Typically, any software package requires a host of
dependencies. As indicated in Chapter 9, Microservices Architecture Patterns, every
microservice is being developed and delivered as a Docker image. Each microservice has its
own code repository (GitHub) and its own CI build job. Microservices can be coded using
any programming language. Let us focus on the Java language here. If a service is built and
run using a compiled language (Java, Go, and so on), then the build environment can be
separated from the runtime environment. A Java service's Dockerfile.build is from the
openjdk-7-jdk directory and its Dockerfile is from the openjdk-7-jre directory which is
substantially smaller than JDK.

For the Java programming language, it requires additional tooling and processes before its
microservices become executable. However, the JDK are not required when a compiled
program is running. Another reason is that the JDK is a bigger package when compared
with the Java Runtime Environment (JRE). Furthermore, it seems farsighted to develop
and reuse a repeatable process and a uniform environment for deploying microservices. It is
therefore paramount to package the Java tools and packages into containers. This setup
allows the building of Java-based microservices on any machine, including a CI server,
without any specific environmental requirements such as JDK version, profiling and testing
tools, OS, Maven, environment variables, and so on.

Resultantly, for every service, there are two Dockerfiles: one for service runtime and the
second is packed with the required tools to build the service. First, it is all about crafting
the Dockerfile.build file, which can speed up the Maven build. Now, it is
straightforward to compile and run the microservice on any machine (local or remote). This
segregated approach goes a long way in simplifying the continuous integration (CI)
process.

The recipe is as follows:

Build file: Have one Dockerfile with all the tools and packages required to build1.
any service. Name it Dockerfile.build.
Run file: Have another Dockerfile with all the packages required to run the2.
service. Keep both files along with the service code.
Build a new builder image, create a container from it, and extract build artifacts3.
using volumes or the docker cp command.
Build the service image.4.

https://cdp.packtpub.com/architectural_patterns/wp-admin/post.php?post=271&action=edit

Patterns for Containerized and Reliable Applications Chapter 10

[306]

Thus, segregating the building process from the runtime process stands well for the
intended success of the containerization paradigm. One is to perform a build and another is
to ship the results of the first build without the penalty of the build-chain and tooling in the
first image. Terra Nullius has posted the relevant details at http:/ /blog. terranillius.
com/post/docker_ builder_ pattern/ . The builder pattern describes the setup that
developers have to follow for building a container. It generally involves two Docker images:

A build image with all the build tools installed, capable of creating production-
ready application files
A service image capable of running the application

The basic idea behind the builder pattern is simple: create additional Docker images with
the required tools (compilers, linkers, and testing tools), and use these images to produce
lean, secure, and production-ready Docker images.

Multi-stage image building pattern
The latest Docker release facilitates the creation of a single Dockerfile that can build
multiple helper images with compilers, tools, and tests, and use files from images to
produce the final Docker image, as vividly illustrated in the following section.

The Docker platform can build Docker images by reading the instructions from
a Dockerfile. A Dockerfile is a text file that contains a list of all the commands needed to
build a new Docker image. The syntax and core principle of a Dockerfile is pretty simple
and straightforward as follows:

1 Dockerfile -> 1 Docker Image

That is, every Dockerfile creates a Docker image. This principle works just fine for basic use
cases, but for creating advanced, secure, and lean Docker images, a single Dockerfile is just
not enough.

Multi-stage builds are a new feature incorporated in the latest Docker version, and this is
interesting for anyone who has struggled to optimize Dockerfiles while keeping them easy
to read and maintain. One of the biggest challenges when building Docker images is
keeping the image size down. Each instruction in the Dockerfile adds a layer to the image.
The software engineer has to clean up any artifacts that are not needed before moving on to
the next layer. To write a really efficient Dockerfile, he traditionally needs to employ the
shell tricks and other logic to keep the layers as lean and light as possible and to ensure that
each layer has the artifacts it needs from the previous layer and nothing else.

http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/
http://blog.terranillius.com/post/docker_builder_pattern/

Patterns for Containerized and Reliable Applications Chapter 10

[307]

It is always common to have one Dockerfile for development and a slimmed-down version
of the Dockerfile for production. Maintaining two Dockerfiles is not ideal. With multi-stage
builds, he can use multiple FROM statements in his Dockerfile. Each FROM instruction can use
a different base, and each of them begins a new stage of the build. He can selectively copy
artifacts from one stage to another, leaving behind everything he doesn't want in the final
image. The end result is the same tiny production image as before, with a significant
reduction in complexity.

The pattern for file sharing between
containers
Docker is a popular containerization tool used to package and provide software
applications with a filesystem that contains everything they need to run. Docker containers
are ephemeral in the sense that they can run for as long as it takes for the command issued
in the container to complete. There are occasions wherein applications need access to data,
to share data to, or do data persistence after a container is deleted. Typically, Docker images
are not suitable for databases; user-generated content for a website and log files that
applications have to access to do the required processing. The much-needed persistent
access to data is provided with Docker volumes. At some point, the production-ready
application files need to be copied from the build container to the host machine. There are
two ways of accomplishing that:

Using docker cp
Using bind-mount volumes

Matthias Noback (https:/ /matthiasnoback. nl/ 2017/ 04/docker- build-
patterns/) has supplied the description for both along with an easy-to-
understand example.

Using bind-mount volumes
It is not good to have the compilation step as a part of the build process of the container.
The overwhelming expectation is that Docker images need to be highly reusable. If the
source code is modified, then it is necessary to rebuild the build image, but it is desired to
run the same build image again.

https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/
https://matthiasnoback.nl/2017/04/docker-build-patterns/

Patterns for Containerized and Reliable Applications Chapter 10

[308]

Therefore, the compilation step has to be moved to the ENTRYPOINT (https:/ / docs.
docker.com/engine/ reference/ builder/ #entrypoint) or CMD instruction.
The source/files shouldn't be part of the build context and instead, mounted as a bind-
mount volume inside the running build container.

The advantages are many here. Every time one runs the build container, it will compile the
files in the /project/source/ and produce a new executable in the /project/target/.
Since /project is a bind-mount volume, the executable file is automatically available on
the host machine in target/. There is no need to explicitly copy it from the container. Once
the application files are on the host machine, it will be easy to copy them to the service
image, since that can be done using the regular COPY instruction.

Pipes and filters pattern
An application is required to perform a variety of tasks of varying complexity on the
information that it receives. A monolithic module could do this, but there are several
inflexibilities. Suppose an application receives and processes data from two sources. The
data from each source is processed by a separate module that performs a series of tasks to
transform this data, before passing the result to the business logic of the application. The
processing tasks performed by each module or the deployment requirements for each task
could change. Some tasks might be compute-intensive and could benefit from running on
powerful hardware, while others might not require such expensive resources. Also,
additional processing might be required in the future, or the order in which the tasks are
performed by the processing could change.

The viable solution is to break down the processing required for each data stream into a set
of separate components (or filters), each performing a single task. By standardizing the
format of the data that each component receives and sends, these filters can be combined
together into a pipeline. This helps to avoid duplicating code and makes it easy to remove,
replace, or integrate additional components if the processing requirements change.

The time it takes to process a single request depends on the speed of the slowest filter in the
pipeline. One or more filters could be a bottleneck, especially if a large number of requests
appear in a stream from a particular data source. A key advantage of the pipeline structure
is that it provides opportunities for running parallel instances of slow filters, enabling the
system to spread the load and improve throughput.

https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#entrypoint

Patterns for Containerized and Reliable Applications Chapter 10

[309]

The filters that make up a pipeline can run on different machines, enabling them to be
scaled independently and take advantage of the elasticity that many cloud environments
provide. A filter that is computationally intensive can run on high-performance hardware,
while other less demanding filters can be hosted on less expensive commodity hardware.

If the input and output of a filter are structured as a stream, it is possible to perform the
processing for each filter in parallel. The first filter in the pipeline can start its work and
output its results, which are passed directly on to the next filter in the sequence before the
first filter has completed its work. If a filter fails or the machine it's running on is no longer
available, the pipeline can reschedule the work that the filter was performing and direct this
work to another instance of the component.

By using the proven pipes and filters pattern in conjunction with the compensating
transaction pattern, there is an alternative approach to implement the complex distributed
transactions. A distributed transaction can be broken down into separate and compensable
tasks, each of which can be implemented by using a filter that also implements the
compensating transaction pattern. The filters in a pipeline can be implemented as separate
hosted tasks running close to the data that they maintain, thus there emerge newer
possibilities.

For the container world, the preceding pattern is beneficial. That is, for taking the generated
files out of a container, streaming the file to stdout leveraging the preceding pipes and
filters pattern is being made out as an interesting workaround. This streaming has many
advantages too:

The data doesn't have to end up in a file anymore as it can stay in memory. This
offers faster access to the data.
Using stdout allows sending the output directly to some other process using the
pipe operator (|). Other processes may modify the output, then do the same
thing, or store the final result in a file.
The exact location of files becomes irrelevant. There is no coupling through the
filesystem if we only use stdin and stdout. The build container would not have
to put its files in /target, and the build script would not have to look
in /target, they just pass along data.

Patterns for Containerized and Reliable Applications Chapter 10

[310]

Containerized applications - Autopilot
pattern
Deploying containerized applications and connecting them together is a definite challenge
because typically, cloud-native applications are made up of hundreds of microservices.
Microservice architectures provide organizations with a tool to manage the burgeoning
complexity of the development process, and application containers provide a new means to
manage the dependencies to accelerate the deployment of those microservices. But
deploying and connecting those services together is still a challenge.

Operationalizing microservices-based applications brings forth several challenges.
Developers have to embed several things inside for simplified deployment and delivery.
Autopilot applications are a powerful design pattern for solving these problems. The
autopilot pattern automates in the code the repetitive and boring operational tasks of an
application, including start-up, shutdown, scaling, and recovery from anticipated failure
conditions for reliability, ease of use, and improved productivity. By embedding the distinct
responsibility and the operational tasks into the application, the workload on operational
team members is bound to come down.

The autopilot pattern is for both developers and operators. It is for operators that want to
bring sanity to their lives and for developers who want to make their applications easy to
use. It is primarily for microservices applications and multi-tiered applications. Most
importantly, it is designed to live and grow with our applications at all stages of
development and operations.

The autopilot pattern automates the life cycle of each component of the application. There
can be multiple components in any application. Web and application server, DB server, in-
memory cache, reverse proxy, and so on, are the most prominent components for any
application. Each of these components can be containerized and each container contributing
for the application has its own life cycle. Most autopilot pattern implementations embrace
single-purpose or single-service containers. The autopilot pattern does require developers
and operators to think about how the application is operated at critical points in the life
cycle of each component. The author of this unique pattern has provided some valid
questions at http:/ /autopilotpattern. io/, and those questions come in handy while
designing the autopilot pattern.

http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/
http://autopilotpattern.io/

Patterns for Containerized and Reliable Applications Chapter 10

[311]

There are some applications emerging with at least some of this logic built in. Traefik is a
proxy server with automatic discovery of its backends using Consul or other service
catalogs. Traefik does not self-register in those service catalogs so that it can be used by
other applications. ContainerPilot, a helper written in Golang that lives inside the container,
can help with this.

ContainerPilot provides microservices architectures with application orchestration,
dependency management, health checks, error handling, lifecycle management, and linear
and non-linear scaling of stateful services. Furthermore, it provides a private init system
designed to live inside the container. It acts as a process supervisor, reaps zombies, runs
health checks, registers the app in the service catalog, watches the service catalog for
changes, and runs your user-specified code at events in the life cycle of the container to
make it all work correctly. ContainerPilot uses Consul to coordinate global state among the
application containers.

Using a small configuration file, ContainerPilot can trigger events inside the container to
automate operations on these events, including preStart (formerly onStart), health,
onChange, preStop, and postStop.

Here is a sample scenario (readers can find the details at http:/ / autopilotpattern. io/
example). The author of this example has started with two services, sales, and customers.
Nginx acts as a reverse proxy. Requests for /customers/ go to customer's, and
/sales/ to sales. The sales service needs to get some data from the customer's service to
serve its requests, and vice versa. There are a few crucial problems here. The configuration
is static. This prevents adding new instances and makes it harder to work with a failed
instance. Configuring this stack via configuration management tools means packaging new
dependencies with this application, but configuring statically means redeploying most of
the containers every time a new instance gets added. There is a need for a mechanism to
have the applications self-assemble and self-manage the everyday tasks, and hence there is
a surging popularity for the autopilot pattern.

Engaging autopilot! The author of this autopilot design pattern has come out with the
appropriate Dockerfile for the customer's service. It's a small Node.js application that listens
on port 4000. He uses Consul for service discovery and each service will send TTL
heartbeats to Consul. All nodes know about all other nodes, and hence there is no need to
use an external proxy or load balancer for communicating between the nodes. The diagram
vividly illustrates everything.

http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example
http://autopilotpattern.io/example

Patterns for Containerized and Reliable Applications Chapter 10

[312]

However, there is a need to make each of the services aware of Consul. For that, the author
uses ContainerPilot. The source code and other implementation details are given at https:/
/github.com/autopilotpattern/ workshop.

A re-usable Nginx base image got implemented according to the autopilot pattern for
automatic discovery and configuration. The goal is to create a Nginx image that can be
reused across environments without having to rebuild the entire image. The configuration
of Nginx is entirely through ContainerPilot jobs and watch handlers, which update the
Nginx configuration on disk through consul-template. The relevant details are supplied
at https://github. com/ autopilotpattern/ nginx. Similarly, there are autopilot
implementations for other popular applications such as WordPress. Bringing a bevy of
automation into various microservices-based software applications is gaining a lot of
momentum.

As indicated previously, a number of manual tasks are getting automated at different layers
and levels, especially some of the crucial automation requirements are increasingly
implemented at the application level. With the faster maturity and stability of the Docker
platform, Docker containers are spreading their wings fast and wide. With the widespread
availability of container management software solutions, microservices-based applications
are gaining a lot of market and mind shares. Furthermore, there are a few service mesh
frameworks, and hence the days of resilient microservices and reliable applications are not
too far away. A growing bunch of automation capabilities is being attached to these
applications, and this advancement enables the applications to exhibit adaptive behavior.
Now, the autopilot pattern plays a key role in adding additional automation features and
facilities.

Containers - persistent storage patterns
Typically, the container space originates with application containers that are not for
permanently storing data. That is, when a container collapses, the data stored or buffered in
the container gets lost. However, the aspect of data persistence is insisted for several
reasons, including the realization of stateful applications, and hence fresh mechanisms are
being worked out in order to safely and securely persist data in containers. Therefore, for
persisting data, additional container types, such as data or volume containers were
introduced.

https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/workshop
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx
https://github.com/autopilotpattern/nginx

Patterns for Containerized and Reliable Applications Chapter 10

[313]

The context for persistent storages
There is a concern widely expressed that containers are great for stateless applications, but
are not so good for stateful applications that persist data. Thus, persistent storage patterns
are acquiring special significance in the container world. A brief description about stateless
and stateful applications is given as follows paragraph.

A random number generator is stateless because we get a different value from it every time
we run it. We could easily Dockerize it and if the instance fails, we can have it running in
another host instantaneously to continue the service without any break and lag. The
instance's behavior remains the same in the new host as well. However, that is not the case
with our bank accounts. If the bank account application has to be re-provisioned on a new
server, it has to have the original data from the first server instance.

Here is a stateful data categorization. Typically, configuration data, including keys and
other secrets, is often written to disk in various files. This data is easy to recover when
provisioning instances. User-generated content includes text, video, or bank transactions.
There are dynamic configuration details. The suitable example is of those services A and B
connecting with one another. Connecting an application/service to its backend database
system is another prominent example. Typically, applications/services treat this discovery
and connectivity as configuration data along with other configuration details. In order for
an application to be scalable and resilient, it is necessary to update this configuration
information while the application is running. That is, as we add or remove instances of a
service, we have to update all the other service instances that connect to the service.
Otherwise, the intended performance increment would not happen. Other pertinent
configuration details can include performance-tuning parameters. These configuration
details can be stocked in the application repository in order to facilitate the
application/service versioning and easier tracking. The other option for configuration
information is leveraging the dynamic storage so they can be changed without re-building
and re-deploying the application. It is also possible to do automatic replication of repository
contents to the configuration store using a tool such as git2consul. The best practice is to
keep configuration data and templates in a consistent distributed key/value data store.

Patterns for Containerized and Reliable Applications Chapter 10

[314]

The persistent storage options
Containers are meant to be ephemeral, and so scale pretty well for stateless applications.
Stateful containers, however, need to be treated differently. For stateful applications, a
persistent storage mechanism has to be there for the container idea to be right and relevant.
Containers can be developed and dismantled without the data persistence. The data resides
within the container. If there is any change, then the data gets lost. For some situations, this
data loss is not a big issue. For certain scenarios, the data loss is not accepted; the data
persistence feature has to be there. The solution approach prescribed by Docker is given in
the following section.

It is possible to store data within the writable layer of a container, but there are a few
downsides:

The data won't persist when that container is no longer running, and it can be
difficult to get the data out of the container if another process needs it.
A container's writable layer is tightly coupled to the host machine where the
container is running. Moving the data somewhere else is a difficult affair.
Writing into a container's writable layer requires a storage driver to manage the
filesystem. The storage driver provides a union filesystem, using the Linux
kernel. This extra abstraction reduces performance as compared to using data
volumes, which write directly to the host filesystem.

Docker offers three different ways to mount data into a container from the Docker
host: volumes, bind mounts, or tmpfs mounts. Volumes are almost always the right choice.
Volumes are the preferred mechanism for persisting data generated by and used by Docker
containers. While bind mounts are dependent on the directory structure of the host
machine, volumes are completely managed by Docker. Volumes have several advantages
over bind mounts:

Volumes are easier to back up or migrate than bind mounts
Volumes are easy to manage by using Docker CLI commands or the Docker API
Volumes work on both Linux and Windows containers
Volumes can be more safely shared among multiple containers
Volume drivers allow storing volumes on remote hosts or cloud providers, to
encrypt the contents of volumes, or to add other functionality
A new volume's contents can be pre-populated by a container

Patterns for Containerized and Reliable Applications Chapter 10

[315]

Volumes are often a better choice than persisting data in a container's writable layer,
because using a volume does not increase the size of containers using it, and the volume's
contents exist outside the life cycle of a given container.

If a container generates non-persistent state data, then consider using a tmpfs mount to
avoid storing the data anywhere permanently, and to increase the container's performance
by avoiding writing into the container's writable layer.

All the three options are discussed as follows:

Volumes are stored in a part of the host filesystem that is managed by
Docker (/var/lib/docker/volumes/ on Linux). Non-Docker processes cannot
modify this part of the filesystem.
Bind mounts may be stored anywhere on the host system. They may even be
important system files or directories. Non-Docker processes on the Docker host
or a Docker container can modify them at any time.
The tmpfs mounts are stored in the host system's memory only and are never
written to the host system's filesystem.

Let's discuss more about them.

Volumes
We can create a volume explicitly using the docker volume create command, or Docker
can create a volume during container or service creation. When we create a volume, it is
stored in a directory on the Docker host. When we mount the volume into a container, this
is the directory that is mounted on the container. This is similar to the way that bind
mounts work, except that volumes are managed by Docker and are isolated from the core
functionality of the host machine.

A given volume can be mounted into multiple containers simultaneously. When no running
container is using a volume, the volume is still available to Docker and is not removed
automatically. You can remove unused volumes using docker volume prune. Volumes
also support the use of volume drivers, which allow the storing of data on remote hosts,
cloud providers, and so on.

Patterns for Containerized and Reliable Applications Chapter 10

[316]

Bind mounts
When we use a bind mount, a file or directory on the host machine is mounted on a
container. The file or directory is referenced by its full path on the host machine. The file or
directory does not need to exist on the Docker host already and it can be created on
demand. Bind mounts are very performant, but they rely on the host machine's filesystem
having a specific directory structure available. It is not possible to use Docker CLI
commands to directly manage bind mounts.

The tmpfs mounts
A tmpfs mount is not persisted on disk either on the Docker host or within a container. It
can be used by a container during the lifetime of the container, to store non-persistent state
or sensitive information. For instance, internally, swarm services use tmpfs mounts to
mount secrets into a service's containers.

Docker compose configuration pattern
We are increasingly hearing, reading, and even experiencing multi-container applications.
That is, composite applications are being achieved through multi-container composition.
The composition technique acquires special significance because of two key trends. Firstly,
the powerful concept of microservices is gradually changing the IT industry. That is, large
monolithic services are slowly giving way to swarms of small and autonomous
microservices. Different and distributed microservices are being found, checked and
chained together to create and run business-class, production-ready, process-aware,
mission-critical, enterprise-grade, composite applications. The second is that the Docker-
enabled containerization changes not only the architecture of services but also the structure
of environments used to create them. Now, software gets methodically containerized,
stocked, and distributed and developers gain the full freedom to choose the preferred
applications. Resultantly, even complex environments such as continuous integration (CI)
servers with database backend systems and analytical infrastructure can be instantiated
within seconds. In short, software development, deployment, and delivery become easier
and faster.

Patterns for Containerized and Reliable Applications Chapter 10

[317]

Docker Compose is a tool for defining and running complex applications with Docker. With
Compose, it is possible to define a multi-container application in a single file, and then spin
the application up in a single command that does everything that needs to be done to get it
running. Using Compose is basically a three-step process:

Define your application's environment with a Dockerfile so it can be reproduced1.
anywhere
Define the services that make up the application in docker-compose.yml so2.
they can be run together in an isolated environment
Lastly, run docker-compose up and compose will start and run the entire3.
application

We can pass in environment variables via Docker Compose in order to realize a container
image once and reuse it on any environment (development, staging, and production). With
this approach, it is possible to develop compose-centric containers that require a piece of
configuration management for handling pre-start events based on the values of the
environment variables. The author of this pattern has detailed the source code at https:/ /
github.com/jay-johnson/ docker- schema- prototyping- with- mysql.

The author has built this project for rapid-prototyping a database schema using a MySQL
Docker container that deploys its own ORM schema file and populates the initial records on
startup. By setting a couple of environment variables, it is possible to provide our own
Docker container with a usable MySQL instance, browser-ready phpMyAdmin server, and
our database, including the tables, initialized exactly how we want. Interested readers are
requested to visit the preceding page to get finer details on this unique pattern.

Docker container anti-patterns
We have discussed most of the available container-specific patterns in the previous section.
Many exponents and evangelists of Docker-enabled containerization have brought in a few
anti-patterns based on their vast experience in developing, deploying, and delivering
containerized services and applications. This section is exclusively allocated for conveying
the anti-patterns discovered and disseminated by Docker practitioners.

Container creation and deployment are becoming easier and faster with the ready
availability of both open-source and commercial-grade tools. DevOps team members ought
to learn some of the techniques and tips in order to avoid mistakes when migrating to
Docker.

https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql
https://github.com/jay-johnson/docker-schema-prototyping-with-mysql

Patterns for Containerized and Reliable Applications Chapter 10

[318]

Installing an OS inside a Docker container
There is rarely a good reason to host an entire OS inside a container using Docker. There are
platforms for generating and running system containers. The Docker platform is specially
crafted and fine-tuned for producing application containers. That is, applications and their
runtime dependencies are being stuffed together, packaged, and transmitted to their
destinations.

Go for optimized Docker images
When building container images, we should include only the services that are absolutely
essential for the application the container will host. Anything extra wastes resources and
widens the potential attack vector that could ultimately lead to security problems. For
example, it is not good to run an SSH server inside the container because we can use the
Docker exec call to interact with the containerized application. The related suggestions here
are to create a new directory and include the Dockerfile and other relevant files in that
directory. Also consider using .dockerignore to remove any logs, source code, and so on
before creating the image. Furthermore, make it a habit to remove any downloaded
artifacts after they are unzipped.

It is not correct to use different images or even different tags in development, testing,
staging, and production environments. The image that is the source of truth should be
created once and pushed to a repository. That image should be used for different
environments going forward. Any system integration testing should be done on the image
that will be pushed into production.

The containers produced by the Docker image should be as ephemeral as possible. By
ephemeral, it is meant that it can be stopped and destroyed and a new one can be built and
put in place with an absolute minimum of setup and configuration.

The best practice is to not keep critical data inside containers. There are two prime reasons
for this. When containers collapse inadvertently or deliberately, the data inside them gets
lost immediately. The second reason is that the security situation of containers is not as
good as virtual machines, and hence storing confidential, critical, customer, and corporate
information, inside containers is not a way forward. For persisting data, there are
mechanisms to be used. The popular ELK stack could be used to store and process logs. If
managed volumes are used during the early testing process, then it is recommended to
remove them using the -v switch with the docker rm command.

Patterns for Containerized and Reliable Applications Chapter 10

[319]

Also, do not store any security credentials in the Dockerfile. They are in clear text and this
makes them completely vulnerable. Do not forget to use -e to specify passwords as runtime
environment variables. Alternatively, --env-file can be used to read environment
variables from a file. Also, go for CMD or ENTRYPOINT to specify a script, and this script
will pull the credentials from a third party and then configure the application.

Storing container images only inside a container
registry
A container registry is designed solely for the purpose of hosting container images. It is not
good to use the registry as a general-purpose repository for hosting other types of data.

Hosting only one service inside a container
In the microservices world, applications are being partitioned into a dynamic collection of
interactive, single-purpose, autonomous, API-driven, easily manageable, and composable
services. Containers emerge as the best-in-class runtime environment for microservices.
Thus, it is logical to have one service inside a container. Thus, for running an application,
multiple containers need to be leveraged for running many services. For example, one
container would install and use MySQL, WordPress, possibly even phpMyAdmin, nginx,
and an SSH daemon. Also, multiple instances of a service can be hosted in different
containers. The redundancy capability being achieved through containers goes a long way
in ensuring the business continuity through fault-tolerance, high availability, horizontal
scalability, independent deployment, and so on. Now, with the emergence of powerful
container orchestration platforms, distributed and multiple containers can be linked up to
come out with composite applications. An advantage of containerization is the ability to
quickly re-build images in the case of a security issue, for example, and roll out a whole
new set of containers quickly. And because containers are single-concern, there is no need
to redeploy the cloud infrastructure every time. Similarly, multiple Docker images can be
built from a base image. Furthermore, containers can be also converted to new images.

Patterns for Containerized and Reliable Applications Chapter 10

[320]

We can use the CMD and ENTRYPOINT commands while formulating a Dockerfile. Often,
CMD will use a script that will perform some configurations of the image and then start the
container. It is better to avoid starting multiple processes using that script. This will make
managing containers, collecting logs, and updating each individual process hard. That is,
we need to follow the separation of concerns pattern when creating Docker images. Breaking
up an application into multiple containers and managing them separately is the way
forward.

Latest doesn't mean best
It is incredibly tempting when writing a Dockerfile to grab the latest version of every
dependency. The golden rule though is to create containers with known and stable versions
of the system and dependencies that we know our software will work on.

Docker containers with SSH
A related and equally unfortunate practice is to bake an SSH daemon into an image. Having
an SSH daemon inside a container may lead to undocumented, untraceable changes to the
container infrastructure, but Docker containers are being touted as the immutable
infrastructure.

There are a few use cases for SSHing into a container:

Update the OS, services, or dependencies
Git pull or update any application in some other fashion
Check logs
Backup some files
Restart a service

Instead of using SSH, it is recommended to use the following mechanisms:

Make the change in the container Dockerfile, rebuild the image, and deploy the
container.
Use an environment variable or configuration file accessible via volume sharing
to make the change and possibly restart the container.
As indicated before, use docker exec. The docker exec command starts a
new command in a running container, and hence has to be the last resort.

Patterns for Containerized and Reliable Applications Chapter 10

[321]

IP addresses of a container
Each container get assigned with an IP address. In a containerized environment, multiple
containers have to interact with one another in order to achieve business goals. Also,
containers are terminated often and fresh containers are being created. Thus, relying upon
IP addresses of containers for initiating container communication is beset with real
challenges. The preferred approach is to create services. This will provide a logical name
that can be referred to independent of the growing and shrinking number of containers.
And it also provides a basic load balancing.

Also, do not use -p to publish all the exposed ports. This facilitates in running
multiple containers and publishing their exposed ports. But this comes with a price. That is,
all the ports will be published, resulting in a security risk. Instead, use -p to publish specific
ports.

Root user
This is a security-mitigation tip. Don't run containers as a root user. The host and the
container share the same kernel. If the container is compromised, a root user can do more
damage to the underlying hosts. Instead, create a group and a user in it. Use the user
instruction to switch to that user. Each user creates a new layer in the image. Also, avoid
switching the user back and forth to reduce the number of layers.

Dependency between containers
Often, applications rely upon containers to be started in a certain order. For example, a
database container must be up before an application can connect to it. The application
should be resilient to such changes as the containers may be terminated or started at any
time. In this case, have the application container wait for the database connection to succeed
before proceeding further. Do not use wait-for scripts in a Dockerfile for the containers to
start up in a specific order.

Patterns for Containerized and Reliable Applications Chapter 10

[322]

In conclusion, containers are the new and powerful unit of development, deployment, and
execution. Business applications, IT platforms, databases, and middleware are formally
containerized and stocked in publically available and accessible image repositories so that
software developers can pick up and leverage them for their software-building
requirements. The system portability is a key advantage. The easier and faster
maneuverability, testability, and composability of container images are being touted as the
most promising and potential advantages of containerization. The inevitability of
distributed computing is greatly simplified by the concept of containerization. Multiple
containers across clusters can be easily linked to realizing smart and sophisticated
applications.

Patterns for highly reliable applications
The IT systems are indispensable for business automation. The widely articulated challenge
for our IT and business applications is to showcase high reliability. Systems ought to be
responsive, resilient, elastic, and secure in order to intrinsically demonstrate the required
dependability. Systems are increasingly multimodal and multimedia. Systems have to
capture, understand, and exhibit the appropriate behavior. Also, systems have to respond
all the time under any circumstance. Also, with the dawn of big data, distributed
computing is all set to the mainstream compute model. In this section, we will discuss the
prominent patterns for constructing reliable systems for professional as well as personal
requirements. The promising approaches include:

Reactive and cognitive programming techniques
Resilient microservices
Containerized cloud environments

In a distributed system, failures are bound to happen because of multiple moving parts and
the sickening dependencies between the participating systems' modules. Hardware can fail,
the application may go down, and the network can have transient failures. Rarely, an entire
service or region may experience a disruption. Clouds are emerging as the one-stop IT
solution.

Resiliency is the ability of a system to withstand and tolerate faults in order to function
continuously. Even if it fails, it has the wherewithal to bounce back to the original state.
Precisely speaking, it is all about not avoiding failures but how quickly it can recover from
the failures to serve without any breakdown and slowdown. Also, a fault in a component of
a system should not cascade into other components in order to bring down the whole
system. There are resiliency strategies, patterns, best practices, approaches, and techniques.

Patterns for Containerized and Reliable Applications Chapter 10

[323]

High availability (HA) is the ability of the application to continue running in a healthy
state, without significant downtime. That is, the application continues to be responsive to
users' requests.

Disaster recovery (DR) is the ability to recover from rare but major incidents: non-transient,
wide-scale failures, such as service disruption that affects an entire region. Disaster recovery
includes data backup and archiving, and may include manual intervention, such as
restoring a database from backup.

Resiliency must be designed into the system, and here is a general model to follow:

Define the application availability requirements based on business needs.1.
Design the application architecture for resiliency. Start with an architecture that2.
follows proven practices and architectural decisions, and then identify the
possible failure points in that architecture. Take care of the dependencies. Also,
choose the best-in-class architectural patterns and styles that intrinsically support
resiliency.
Develop the application using the appropriate design patterns and3.
incorporate strategies to detect and recover from failures.
Build and test the implementation by simulating faults and triggering forced4.
failovers and debug the identified issues to the fullest.
Decide the infrastructure capacity accordingly and provision them.5.
Deploy the application into production using a reliable and repeatable process.6.
Monitor the application to detect failures. The monitoring activity helps to gauge7.
the health of the application. The health check comes in handy in providing
instantaneous responses.
Respond if there are incidents that require any kind of manual interventions.8.

Resiliency implementation strategies
As the resiliency requirement is insisted, IT departments of various business enterprises are
exploring various ways and means in order to build and release resilient application
services. At different levels (infrastructure, platform, database, middleware, network, and
application), the virtue of resiliency is being mandated so that the whole system and
environment become resilient.

Patterns for Containerized and Reliable Applications Chapter 10

[324]

In this section, we will dig deeper and describe how the elusive target of resiliency is being
endeavored and enunciated to see the reality. There are a few noteworthy failures. The key
ones are include as follows:

Retry transient failures: Transient failures can occur due to many causes,
deficiencies, and disturbances. Often, a temporary failure can be resolved simply
by retrying the request. However, each retry adds to the total latency. Also, too
many failed requests can cause a bottleneck as pending requests accumulate in
the queue. These blocked requests might hold critical system resources such as
memory, threads, database connections, and so on. A sellable workaround here is
to increase the delay between each retry attempt and limit the total number of
failed requests.
Load balance across instances: This is a common thing happening in IT
environments. A load balancer (LB) instance in front of an application facilitates
adding more application instances in order to improve resiliency.
Replicating data: It has been a standard approach for handling non-transient
failures in a database and filesystem. The data storage technologies innately
provide built-in replication. However, to fulfill the high-availability requirement,
replicas are being made and put up in geographically distributed locations. So, if
one region goes down, the other region can take care of the business continuity.
However, this significantly increases the latency when replicating the data across
the regions. Typically, considering the long distance between regions, the data
replication happens in an asynchronous fashion. In this case, we can not expect
real-time and strong consistency. Instead, we need to settle for eventual
consistency. Corporates have to tolerate for potential data loss if a replica fails.
Degrade gracefully: If a service fails and there is no failover path, the application
may be able to degrade gracefully while still providing an acceptable user
experience.
Throttle high-volume users: Sometimes, a small number of users create excessive
load. This can have a bad impact on other users. The application might throttle
the high-volume users for a certain period of time. Throttling does not imply the
users are acting maliciously. The throttling starts if the number of requests
exceeds the threshold.

Patterns for Containerized and Reliable Applications Chapter 10

[325]

The testing approaches for resiliency
Testers have to test how the end-to-end workload performs under failure conditions that
only occur intermittently, there are two types as follows:

Fault injection testing: This is one way of testing the resiliency of the system
during failures, either by triggering actual failures or by simulating them.
Load testing: There are open source as well as commercial-grade load generation
tools, and through those tools load testing of the application is being insisted.
Load testing is crucial for identifying failures that only happen under loads such
as the backend database being overwhelmed or service throttling. Test for peak
load, using production data or synthetic data that is as close to production data as
possible. The goal is to see how the application behaves under real-world
conditions.

The resilient deployment approaches
Software deployment is an important facet for establishing and sustaining resiliency. After
applications are deployed in production-grade servers, the software updates also can be a
source for errors. Any incomplete and bad update results in system breakdown. There are a
few proven deployment and update methods in order to avoid any kind of downtime. The
proper checks have to be in place before deployment and subsequent updates. Deployment
typically includes provisioning of various server, network, and storage resources,
deploying the curated and refined application code, and applying the required and right
configuration settings. An update may involve all three or a subset of the three tasks. It is
therefore recommended to have a tool-assisted, automated, and idempotent process in
place. There are two major concepts related to resilient deployment:

Infrastructure as code is the practice of using code to provision and configure
infrastructure. Infrastructure as code may use a declarative approach or an
imperative approach, or a combination of both.

Immutable infrastructure complies with the principle that the infrastructure
should not be disturbed or modified after it has gone to production.

Patterns for Containerized and Reliable Applications Chapter 10

[326]

The deployment patterns
Blue-green deployment is a technique where an update is deployed into a production
environment separate from the live application. After the deployment gets validated, then
switch the traffic routing to the updated version.

In the case of canary releases, instead of switching all traffic to the updated version, we can
roll out the update to a small percentage of users, by routing a portion of the traffic to the
new deployment. If there is a problem, back off and revert to the old deployment.
Otherwise, route more of the traffic to the new version, until it gets 100% of the traffic.

Whatever approach is preferred, it is mandatory to make sure that we can roll back to the
last-known good deployment, in case the new version is not functioning as per the
expectation. Also, if errors occur, the application logs must indicate which version caused
the error.

Monitoring and diagnostics
Continuous and tools-assisted monitoring of applications is crucial for achieving resiliency.
If something drags, lags, or fails, the operational team has to be informed immediately
along with all the right and relevant details to consider and proceed with a correct course of
action. As we all agree, monitoring a large-scale distributed system poses a greater
challenge. With the overwhelming acceptance of the divide and conquer technique, the
number of moving parts of any enterprise-scale application has grown steadily and sharply.
Today, as a part of the compartmentalization, we have virtualization and containerization
concepts widely accepted and adopted. The number of VMs in any IT environment is
growing. Furthermore, due to the lightweight nature, the number of containers being
leveraged to run any mission-critical application has escalated rapidly and remarkably. In
short, monitoring bare metal servers, VMs, and containers precisely is definitely a challenge
for operational teams. Also, every kind of software and hardware generates a lot of log files
resulting in massive operational data. It has become common to subject all sorts of
operational data to extract actionable insights. Not only are the IT systems distributed, but
they are also extremely dynamic. The monitoring, measuring, and management
complexities of tomorrow's data centers and server farms are consistently on the climb.

Monitoring is not the same as failure detection. For example, our application might detect a
transient error and retry, resulting in no downtime. But it should also log the retry
operation so that we can monitor the error rate, in order to get an overall picture of
application health.

Patterns for Containerized and Reliable Applications Chapter 10

[327]

The resiliency strategy is essential to ensure the service resiliency of IT systems and
business applications. As enterprises increasingly embrace the cloud model, the cloud
service providers are focusing on enhancing the resiliency capability of their cloud servers,
storage, and networks. Application developers are also learning the tricks and techniques
fast in order to bring forth resilient applications. With the combination of resilient
infrastructures, platforms, and applications, the days of the resilient IT, which is mandatory
towards agile, dynamic, productive, and adaptive businesses, is not too far away.

Resiliency realization patterns
Patterns are always a popular and peerless mechanism for unearthing and articulating
competent solutions for a variety of recurring problems. We will look at a host of promising
and proven design patterns for accomplishing the most important goal of resiliency.

Circuit breaker pattern
The circuit breaker pattern can prevent an application from repeatedly trying an operation
that is likely to fail. The circuit breaker wraps the calls to a service. It can handle faults that
might take a variable amount of time to recover from when connecting to a remote service
or resource. This can improve the stability and resiliency of an application.

The problem description—Remote connectivity is common in a distributed application.
Due to a host of transient faults such as slow network speed, timeouts, the service
unavailability, or the huge load on the service, calls to remote application services can fail.
These faults, being transient, typically correct themselves after a short period of time. The
retry pattern strategy suggests that a robust cloud application can handle these transient
faults easily in order to meet up the service requests.

However, there can also be situations wherein the faults are due to bigger issues. The
severity levels vary from temporary connectivity loss to the complete failure of the service
due to various reasons and causes. Here, it is illogical to continuously retry to establish the
broken connectivity. Instead, the application has to understand and accept the situation to
handle the failure in a graceful manner.

Suppose the requested service is very busy, then there is a possibility for the whole system
to break down.

Patterns for Containerized and Reliable Applications Chapter 10

[328]

Generally, an operation that invokes a service is configured to implement a timeout and to
reply with a failure message if the service fails to respond within the indicated time period.
However, this strategy could cause many concurrent requests to the same operation to be
blocked until the timeout period expires. These blocked requests might hold critical system
resources such as memory, threads, database connections, and so on. Finally, the resources
could become exhausted, causing failure of other associated and even unrelated system
components. The idea is to facilitate the operation to fail immediately and only to attempt to
invoke the service again if it is likely to succeed. The point here is to set up a timeout
intelligently because a shorter timeout might help to resolve this problem but the shorter
timeout may cause the operation to fail most of the time.

The solution approach—The solution is the proven circuit breaker pattern, which can
prevent an application from repeatedly trying to execute an operation that's likely to fail.
This allows it to continue without waiting for the fault to be fixed or wasting CPU cycles
while it determines that the fault is long lasting. The circuit breaker pattern also enables an
application to detect whether the fault has been resolved. If the problem appears to have
been fixed, the application can try to invoke the operation.

The retry pattern enables an application to retry an operation in the expectation that it will
succeed. On the other hand, the circuit breaker pattern prevents an application from
performing an operation that is likely to fail. An application can combine these two patterns
by using the retry pattern to invoke an operation through a circuit breaker. However, the
retry logic should be highly sensitive to any exceptions returned by the circuit breaker and
abandon retry attempts if the circuit breaker indicates that a fault is not transient. Also, a
circuit breaker acts as a proxy for operations that might fail. The proxy should monitor the
number of recent failures that have occurred, and use this information to decide whether to
allow the operation to proceed, or simply return an exception immediately. The proxy can
be implemented as a state machine with the following states:

Closed: This is the original state of the circuit breaker. Therefore, the circuit
breaker sends requests to the service and a counter continuously tracks the
number of recent failures. If the failure count goes above the threshold level
within a given time period, then the circuit breaker switches to the open state.
Open: In this state, the circuit breaker opens up and immediately fails all requests
without calling the service. The application instead has to make use of a
mitigation path such as reading data from a replica database or simply returning
an error to the user. When the circuit breaker switches to the open state, it starts a
timer. When the timer expires, the circuit breaker switches to the half-open state.

Patterns for Containerized and Reliable Applications Chapter 10

[329]

Half-open: In this state, the circuit breaker lets a limited number of requests go
through to the service. If they succeed, the service is assumed to be recovered and
the circuit breaker switches back to the original closed state. Otherwise, it reverts
to the open state. The half-open state prevents a recovering service from
suddenly being inundated with a series of service requests.

The circuit breaker pattern ensures the system's stability while the system slowly yet
steadily recovers from a failure and minimizes the impact on the system's performance. It
can help to maintain the response time of the system by quickly rejecting a request for an
operation that is likely to fail rather than waiting for the operation to time out. If the circuit
breaker raises an event each time, it changes the state. This information can be used to
monitor the health of the part of the system protected by the circuit breaker or to alert an
administrator when a circuit breaker trips to the open state.

The pattern is highly customizable and can be adapted according to the type of the possible
failure. For example, it is possible to use an increasing timeout timer to a circuit breaker. We
can place the circuit breaker in the open state for a few seconds initially and if the failure
hasn't yet been resolved, then increase the timeout to a few minutes, and so on. In some
cases, rather than the open state returning a failure and raising an exception, it could be
useful to return a default value that is meaningful to the application.

In summary, this pattern is used to prevent an application from trying to invoke a remote
service or access a shared resource if this operation is highly likely to fail. This pattern is
not:

For handling access to local private resources in an application, such as an in-
memory data structure
As a substitute for handling exceptions in the business logic of your applications

The circuit breaker pattern is becoming very common with microservices, emerging as the
most optimized way of partitioning massive applications and presenting applications as an
organized collection of microservices.

Bulkhead pattern
The problem description—cloud applications typically comprise multiple and inter-linked
services. A service can run on different and distributed services as service instances. There
can be multiple requests from multiple consumers for each of those service instances. When
the consumer sends a request to a service that is misconfigured or not responding, the
resources used by the client's request may not be freed in a timely manner.

Patterns for Containerized and Reliable Applications Chapter 10

[330]

As requests to the service continue incessantly, those resources may soon be exhausted. The
resources occupied include the database connection. The ultimate result is that any request
to other services of the cloud application gets impacted. Eventually, the cloud application
may not be available to the consumer. This is the case with other consumers too. In short, a
large number of requests originating from one client may exhaust available resources in the
service. This is the cascading effect and this pattern comes in handy in surmounting this
issue.

The solution approach—the solution is to smartly partition service instances into different
groups, based on consumer load and availability requirements. This design helps to isolate
failures, and allows sustaining service functionality for some consumers, even during a
failure. A consumer can also partition resources, to ensure that resources used to call one
service don't affect the resources used to call another service. For example, choosing
different connection pools for different services is a workable option. Thus, the collapse of
one connection pool does not stop other connections.

The benefits of this pattern include the following:

This isolates service consumers and services from cascading failures. This
isolation firmly prevents an entire solution from going down.
The instance-level isolation helps to retain the other instances of the services.
Thus, the service availability is guaranteed and similarly, other services of the
application continue to deliver their assigned functionality.
This helps to identify the demands of consuming applications and accordingly
allows deploying services that offer a different Quality of Service (QoS). That is,
a high-priority consumer pool can be configured to use high-priority services.

In summary, any sort of failures in one subsystem can sometimes cascade to other
components resulting in the system breakdown. To avoid this, we need to partition a
system into a few isolated groups, so that any failure in one partition does not percolate to
others. Containerization in conjunction with polyglot microservices is an overwhelming
option for having partitioned and problem-free systems.

Compensating transaction pattern
This is a transaction that undoes the effects of another completed transaction. In a
distributed system, it can be very difficult to achieve strong transactional consistency.
Compensating transactions are a way to achieve consistency by using a series of smaller
and individual transactions that can be undone at each step.

Patterns for Containerized and Reliable Applications Chapter 10

[331]

The problem description—a typical business operation consists of a series of separate
steps. While these steps are being performed, the overall view of the system state might be
inconsistent, but when the operation has completed and all of the steps have been executed,
the system should become consistent again. A challenge in the eventual consistency model
is how to handle a step that has failed. In this case, it might be necessary to undo all of the
work completed by the previous steps in the operation. However, the data can't simply be
rolled back because other concurrent instances of the application might have changed it.
Even in cases where the data hasn't been changed by a concurrent instance, undoing a step
might not simply be a matter of restoring the original state. This mandates the application
of various business-specific rules. If an operation that implements eventual consistency
spans several heterogeneous data stores, undoing the steps in the operation will require
visiting each data store in turn. The work performed in every data store must be undone
reliably to prevent the system from remaining inconsistent.

In a service-oriented architecture (SOA) environment, an operation could invoke an action
in a service and cause a change in the state held by that service. To undo the operation, this
state change must also be undone. This can involve invoking the service again and perform
another action that reverses the effects of the first.

The solution approach—the solution is to implement a compensating transaction. The steps
in a compensating transaction must undo the effects of the steps in the original operation. A
compensating transaction might not be able to simply replace the current state with the
state the system was in at the start of the operation because this approach could overwrite
changes made by other concurrent instances of an application. Instead, it must be an
intelligent process that takes into account any work done by concurrent instances. This
process will usually be application specific, driven by the nature of the work performed by
the original operation.

A common approach is to use a workflow to implement an eventually consistent operation
that requires compensation. As the original operation proceeds, the system records
information about each step and how the work performed by that step can be undone. If the
operation fails at any point, the workflow rewinds back through the steps it has completed
and performs the work that reverses each step.

It is recommended to use this pattern only for operations that must be undone if they fail. If
possible, design solutions to avoid the complexity of requiring compensating transactions.

Patterns for Containerized and Reliable Applications Chapter 10

[332]

Health endpoint monitoring pattern
The problem description—applications and their services need to be continuously
monitored to gain a firm grip on their availability and performance levels and patterns.
Monitoring services running in off-premises, on-demand, and online environments are
quite difficult compared to any on-premises services. There are many factors that affect
cloud-hosted applications, such as network latency, the performance and availability of the
underlying compute and storage systems, and the network bandwidth between them. The
service can fail entirely or partially due to any of these factors. Therefore, we must verify at
regular intervals that the service is performing correctly.

The solution approach—we need to do health monitoring by sending requests to an
endpoint on the application. The application should perform the necessary checks and
return an indication of its status. A health-monitoring check typically combines two factors:

The assigned checks performed by the application or service in response to the
request to the health verification endpoint
The analysis of the results by the health-monitoring tool that performs the health
verification check.

There are several parameters and conditions being checked by a health-monitoring tool in
order to completely and concisely understand the state of the application.

It is also useful to run these checks from different on-premises or hosted locations to
measure and compare response times. As customers are geographically distributed, the
checks have to be initiated and implemented from those locations that are close to
customers.

Another point is to expose at least one endpoint for the core services that the application
uses and another for lower priority services. This allows different levels of importance to be
assigned to each monitoring result. Also, it is good to consider exposing more endpoints
such as one for each core service for additional monitoring granularity. Increasingly, health-
verification checks are being done on the database, storage, and other critical services. The
uptime and response time decide the quality of applications.

This pattern is extremely useful for checking the health condition of websites, web and
mobile applications, and cloud-hosted applications.

Patterns for Containerized and Reliable Applications Chapter 10

[333]

Leader election pattern
The problem description—a typical cloud application has many tasks working in a
coordinated manner. These tasks could all be instances running the same code and
requiring access to the same resources, or they might be working together in parallel to
perform the individual parts of a complex calculation. The task instances might run
separately for much of the time, but it might also be necessary to coordinate the actions of
each instance to ensure that they don't conflict, cause contention for shared resources, or
accidentally interfere with the work that other task instances are performing.

For example, cloud systems guarantee scalability through scale-up or scale-out. In the case
of scale-out (horizontal scaling), there can be multiple instances of the same task/service.
Each instance serves different users. If these instances write to a shared resource, then it is
necessary to coordinate their actions to prevent each instance from overwriting the changes
made by the others. Similarly, if the tasks are performing individual elements of a complex
calculation in parallel, the results need to be duly aggregated to give the final answer. The
task instances are all peers, so there isn't a natural leader that can act as the coordinator or
aggregator.

The solution approach—a single task instance should be elected to act as the leader, and
this instance should coordinate the actions of the other subordinate task instances. If all of
the task instances are running the same code, they are each capable of acting as the leader.
Therefore, the election process must be managed carefully to prevent two or more instances
taking over the leader role at the same time. The system must provide a robust mechanism
for selecting the leader. This method has to cope with events such as network outages or
process failures. In many solutions, the subordinate task instances monitor the leader
through some type of heartbeat method or by polling. If the designated leader terminates
unexpectedly, or a network failure makes the leader unavailable to the subordinate task
instances, it's necessary for them to elect a new leader. This is like choosing a cluster head in
a sensor mesh.

This pattern performs best when the tasks in a distributed application, such as a cloud-
hosted solution, need careful coordination and there is no natural leader. It is prudent to
avoid making the leader a bottleneck in the system. The purpose of the leader is to
coordinate the work of the subordinate tasks, and it doesn't necessarily have to participate
in this work itself—although it should be able to do so if the task isn't elected as the leader.

Patterns for Containerized and Reliable Applications Chapter 10

[334]

Queue-based load leveling pattern
Applications may experience sudden spikes in traffic, which can bombard backend systems.
If a backend service cannot respond to requests quickly enough, it may cause requests to
queue (back up), or it can cause the service to throttle the application. To avoid this, we can
use a queue as a buffer. When there is a new work item, instead of calling the backend
service immediately, the application queues a work item to run asynchronously. The queue
acts as a buffer that smooths out peaks in the load.

The problem description—for arriving at competent and composite applications that are
business-centric and process-aware, cloud applications ought to interact with one another.
The services can be locally available or accessible remotely. Various enthusiastic software
developers bring modern applications and provide them for worldwide subscribers for a
small fee, or sometimes for free. Similarly, there are independent software vendors (ISVs)
contracting with hosted service providers to run their software to be found and bound. That
is, various cloud services have to connect and collaborate with many others in order to be
right and relevant to their consumers. In this intertwined environment, if a service is
subjected to intermittent heavy loads, it can potentially cause performance or reliability
issues. The predictability of the number of service users at a particular time is also a tough
affair. Thus, static capacity planning is out of the discussion. Dynamism is the new
buzzword in the IT landscape.

As indicated previously, an application can be segmented into multiple services. Each
service can be run in different containers as separate instances. That is, multiple instances of
a service can be run in an IT environment. In the service world, everything is API-enabled
in order to be found and leveraged by other services. A service can be used by many tasks
concurrently. A service could be part of the same application as the tasks that use it or it
could be provided by a third-party service provider. For example, the service can be a
resource service, such as a cache or a storage service.

A service might experience peaks in demand that cause it to overload and be unable to
respond to requests in a timely manner. Flooding a service with a large number of
concurrent requests can also result in the service failing if it's unable to handle the
contention these requests cause.

Patterns for Containerized and Reliable Applications Chapter 10

[335]

The solution approach—it is suggested to refactor the solution and introduce a queue
between the task and the service. The task and the service run asynchronously. The task
posts a message containing the data required by the service to a queue. The queue acts as a
buffer, storing the message until it is retrieved by the service. The service retrieves the
messages from the queue and processes them. Requests from a number of tasks, which can
be generated at a highly variable rate, can be passed to the service through the same
message queue.

This pattern provides the following benefits:

It can help to maximize availability of applications because delays arising in
services will not have an immediate and direct impact on the application, which
can continue to post messages to the queue even when the service is not available
or is not currently processing messages
It can help to maximize scalability because both the number of queues and the
number of services can be varied to meet demand
It can help to control costs because the number of service instances deployed only
has to be adequate to meet the average load rather than the peak load

Retry pattern
Problem description—we have discussed a bit about this pattern previously. Applications
are distributed in the sense that the application components are being expressed and
exposed as a service and delivered from different IT environments (private, public, and
edge clouds). Typically, the IT spans across embedded, enterprise, and cloud domains. With
the fast-growing device ecosystem, the connectivity has grown to various devices at the
ground level. That is the reason that we very often hear, read, and even experience cyber-
physical system (CPS). Also, the enterprise-scale applications (both legacy and modern) are
accordingly modernized and moved to cloud environments to reap the distinct benefits of
the cloud idea. However, certain applications, due to some specific reasons, are being kept
in enterprise servers/private clouds. With embedded and networked devices joining in the
mainstream computing, edge/fog devices are being enabled to form kind of ad hoc clouds
to facilitate real-time data capture, storage, processing, and decision-making. The point to
be noted here is that application services ought to connect to other services in the vicinity
and remotely hold services over different networks. Faults can occur, stampeding the
application calls. As articulated previously, there are temporary faults impacting the service
connectivity, interaction, and execution. However, these faults are typically self-correcting
and if the action that triggered a fault is repeated after a suitable delay, the connectivity and
accessibility may go through.

Patterns for Containerized and Reliable Applications Chapter 10

[336]

The solution approach—in cloud environments, transient faults are common and an
application should be designed to handle them elegantly and transparently. This minimizes
the effects faults can have on the business tasks the application is duly performing. If an
application detects a failure when it tries to send a request to a remote service, it can handle
the failure using the following strategies:

Cancellation: If the fault indicates that the failure is not temporary (that is,
persists for more time), or is likely to be unsuccessful if repeated, the application
should cancel the operation and report an exception.
Retry: If the specific fault reported is unusual or rare, it might have been caused
by some unusual circumstances such as a network packet getting corrupted while
it was being transmitted. In this case, the application can try again as the
subsequent request may attain the required success.
Retry after delay: If the fault is caused by one of the more commonplace
connectivity or busy failures, then the application has to wait for some time and
try again.

The application should wrap all attempts to access a remote service in code that implements
a retry policy matching one of the strategies listed previously. Requests sent to different
services can be subjected to different policies. Some vendors provide libraries that
implement retry policies, where the application can specify the maximum number of retries,
the time between retry attempts, and other parameters. An application should log the
details of faults and failing operations. This information is useful to operators. If a service is
frequently unavailable or busy, it's often because the service has exhausted its resources.
We can reduce the frequency of these faults by scaling out the service. For example, if a
database service is continually overloaded, it might be beneficial to partition the database
and spread the load across multiple servers.

In conclusion, having understood the strategic significance that the resiliency, robustness,
and reliability of next-generation IT systems are to fulfil the various business and people
needs with all the QoS and Quality of Experience (QoE) traits and tenets enshrined and
etched, IT industry professionals, academic professors, and researchers are investing their
talents, treasures, and time to unearth scores of easy-to-understand and useful techniques,
tips, and tricks to simplify and streamline software and infrastructure engineering tasks. I
ask the readers to visit https:/ / docs. microsoft. com/ en- us/azure/ architecture/
patterns/category/ resiliency for further reading.

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency

Patterns for Containerized and Reliable Applications Chapter 10

[337]

Summary
Both legacy and modern applications are remedied to be a collection of interactive
microservices. Microservices can be hosted and run inside containers. There can be multiple
instances for each microservice. Each container can run a microservice instance. Thus, in a
typical IT environment, there can be hundreds of physical machines (also called bare metal
servers). Each physical machine, in turn, is capable of running hundreds of containers.
Thus, there will be tens of thousands of containers. The management and operational
complexities are therefore bound to escalate. This pattern comes handy in successfully
running microservice-hosted containers. There are technologies, such as Istio and Linkerd,
for ensuring the resiliency of microservices. This resiliency ultimately ensures the
application's reliability. Together with software-defined cloud infrastructures, reliable
applications ensure the reliability of cloud environments for hosting and delivering next-
generation business workloads.

The forthcoming chapters will discuss the various software-defined cloud application
design and deployment patterns.

11
Software-Defined Clouds - the

Architecture and Design
Patterns

The cloud paradigm is on the fast track. There are a number of game-changing
advancements in the cloud space, and hence the adoption rate of the cloud concept is
consistently on the rise. Legacy applications are being accordingly modified and migrated
to cloud environments (private, public, and hybrid). There is a bevy of enabling tools for
cloud migration, integration, orchestration, brokerage, deployment, delivery, and
management propping up the strategically relevant cloud journey. There are integrated
processes, best practices, key guidelines, evaluation metrics, highly synchronized platforms,
and so on to make the cloud idea penetrative, participative, and pervasive. Furthermore,
there is a growing family of architectural and design patterns for producing optimized
cloud environments and applications. This chapter is specially prepared for throwing
sufficient light on the patterns emerging and evolving in the cloud landscape. How those
patterns are being used in order to simplify and streamline the cloud adoption will be
articulated in this chapter.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[339]

Reflecting the cloud journey
With the evolutionary and revolutionary traits of cloud computing, there is a major
awareness on the charter of data center optimization and transformation. The acts of
simplification and standardization for achieving IT industrialization are garnering a lot of
attention these days. The various IT resources, such as memory, disk storage, processing
power, and I/O consumption are critically and cognitively monitored, measured, and
managed towards their utmost utilization. The pooling and sharing of IT solutions and
services are being given paramount importance towards the strategic IT optimization. Also,
having a dynamic pool of computing, storage, and network resources enable IT service
providers, as well as enterprise IT teams to meet any kinds of spikes and emergencies in
resource needs for their customers and users.

The mesmerizing cloud paradigm has, therefore, become the mainstream concept in IT
today. And its primary and ancillary technologies are simply flourishing due to the
overwhelming acceptance and adoption of cloud theory. The cloudification movement has
blossomed these days and most of the IT infrastructures and platforms, along with business
applications, are being methodically remedied to be cloud-ready in order to reap all the
originally envisaged benefits of the cloud idea. The new buzzword of Cloud Enablement
has caught up fast and there are collaborative and concerted initiatives to unearth
techniques, best practices, patterns, metrics, products and other enablers to understand the
cloud fitment and to modernize IT assets and software applications to be cloud-oriented for
the ensuing era of knowledge.

Even with all the unprecedented advancements in the cloud landscape, there are a plenty of
futuristic and fulsome opportunities and possibilities for IT professors and professionals to
take the cloud idea to the next level in its long journey. Therefore, the concept of software-
defined cloud environments (SDCEs) is gaining a lot of accreditation these days. Product
vendors, cloud service providers, system integrators, and other principal stakeholders are
keen to have such advanced and acclaimed environments for their clients, customers, and
consumers. The right and relevant technologies for the realization and sustenance of
software-defined cloud environments are fast maturing and stabilizing, and hence the days
of SDCEs are not too far away.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[340]

In conclusion, the various technological evolutions and revolutions are remarkably
enhancing the quality of human lives across the world. Carefully choosing and smartly
leveraging the fully matured and stabilized technological solutions and services towards
the much-anticipated and acclaimed digital transformation is necessary for a safe, smarter,
and sustainable planet.

Traditional application architecture versus
cloud application architecture
As articulated previously, we are heading towards SDCEs that comprise software-defined
compute (SDC), software-defined storage (SDS), and software-defined networking
(SDN). The virtualization and containerization enable software-defined clouds towards
workload-aware and elastic infrastructures. The maneuverability or programmability,
consumability, accessibility, sustainability, and simplicity of software-defined clouds are
greater compared to the inflexible infrastructures. There are new patterns (architecture and
design) being introduced for cloud infrastructures and applications. The emergence of the
cloud idea has brought in telling impacts on the application architectures. In this section, we
will discuss how cloud application architectures differ from the legacy application
architectures.

The traditional application architecture
Most of the traditional applications were built using the matured three-tier application
architecture patterns (presentation tier, middle tier, and data tier). Each tier runs on a
dedicated server and is statically configured with the hostnames and IP addresses of the
servers of the other tiers it depends on. These applications have very little knowledge of the
infrastructure they run on. If the infrastructure changes or fails, these applications also fail.
Therefore, these applications are mandated to be hosted on highly reliable and resilient
networks and servers. When the load (user and/or data) gets increased, these applications
could not automatically scale up or scale out. Scaling is instead done manually through the
purchase and installation of additional server machines. This is a time-consuming process,
aggravating the complexity. Load balancers are being put up in front of web and
application servers in order to bring in the much-needed auto-scaling. However, with the
conventional application architecture, the real scalability could not be achieved.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[341]

The cloud architecture
As articulated previously, the concept of virtualization has brought in a programmable
infrastructure. That is, the scalability of applications is being achieved through the inherent
elasticity of infrastructural components. The resource utilization with the conscious
adoption of virtualized infrastructures has gone up significantly. The virtualization idea has
penetrated into every infrastructural module these days creating waves of innovations,
disruption, transformations, and optimizations for IT environments. That is not only server
virtualization, but also network virtualization, storage virtualization, service virtualization,
database virtualization, and so on, are being systematically realized in order to bring the
originally envisaged virtual, open, flexible, and adaptive IT infrastructures that are
intrinsically ready to anticipate and act upon business changes and challenges. The smart
usage of cloud technologies, tools, and tips are resulting in business-aware IT
infrastructures. The tool ecosystem is steadily growing in order to automate tasks, such as
resource provisioning, software deployment, infrastructure monitoring, measurement and
management, orchestration, security, governance, and so on.

The cloud management layer also provides user interfaces for developers and architects to
programmatically design and build the infrastructure they need to run their applications.
The cloud APIs provided by the cloud management layer also allows applications to take
control of the infrastructure they run on. The cloud applications can dynamically scale up
or scale down, deploying or removing application components on the infrastructure. The
game-changing concept of virtualization and containerization has made it possible to have
programmable infrastructures. That is, hardware modules are being expressed as services to
be found, used, and even composed. The hardware programming is becoming real these
days with the cloud movement. Such a scenario is enabling the days of flexible and
maneuverable infrastructures that guarantee workload-awareness, productivity, and high
utilization.

The cloud application architecture
As indicated previously, the traditional applications need to be accordingly modernized in
order to reap the cloud benefits. The scalability and other requirements of modern
applications need to be inscribed within the application. There are certain programming
languages and architectural patterns in order to attach non-functional requirements
(NFRs) into applications. The traditional applications typically use a single database to store
all the application information. This database provides the information stored in it to
various application clients (users as well as other application components) on a need basis.
However, with the data explosion, the conventional databases could be scaled up.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[342]

The scale-out (horizontal scalability) of SQL databases is beset with a lot of challenges.
However, due to the massiveness of cloud infrastructures, cloud databases have to be
designed and developed using new database types, such as NoSQL, NewSQL, in-memory,
and in-database databases for data storage and analytics. The object storage is very popular
in the cloud era. Every cloud service provider is betting and banking on cloud storage to
meet the fast-rising storage needs. Apart from databases, there are enterprise-grade data
warehouses and data lakes. Data storage options are on the rise. Cache storage is one such
which is garnering a lot of support. Furthermore, there are distributed filesystems, such as
HDFS for big data storage and analytics. There are database abstractions on filesystems in
order to provide several possibilities for developers, database administers, and businesses.
Besides, there are backup and archival options for data in order to ensure data and disaster
recovery (DR). The following diagram vividly illustrates where and how cloud application
architecture deviates and differs from traditional applications. With multi-channel, device,
media, and modal clients, cloud applications are being methodically advanced:

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[343]

Cloud applications are distinctively different. Increasingly, applications are service-oriented
with the faster maturity and stability of service-oriented applications. In the recent past,
there have been further refinements and optimizations in order to tackle newer
requirements. Polyglot programming is picking up. That is, there are several programming
and script languages to bring forth cloud applications as a dynamic collection of
microservices. In addition, there is a myriad of database management systems. Each
database type is appropriate for certain application needs. Thus, the flexibility of linking
multiple technologies, tools, and techniques for bringing forth cloud applications is being
facilitated by the most popular microservices architecture (MSA). With the widespread
adoption of containers (Docker) as the highly optimized application holder and runtime
environment, there is a sharp convergence of multiple technologies in order to enable agile
and accelerated software engineering, deployment, delivery, and management. Multi-
container and multi-host cloud applications spearheaded and shepherded by the
containerization movement is the talk of the town.

In short, with the cloud embarkation, the widely deliberated quality of service (QoS) and
quality of experience (QoE) factors and facets of next-generation applications are being
accurately accomplished. The cloud infrastructures are being astutely tweaked in order to
tackle brewing challenges at the infrastructure level. Another prominent design
requirement is to design cloud applications to handle the latency issue. That is, fault
tolerance is one such important factor for cloud applications, platforms, and infrastructures.
The cascading effect of failures and bugs needs to be arrested in the budding stage itself. As
clouds are being built on commodity servers, the failure rate is quite high. Besides, there can
be network congestion/outages, resource conflicts, request contentions, and IOPS challenges
for storage systems. Furthermore, there can be hardware and software failures. Cloud
environments are becoming hugely complicated, and hence viable complexity mitigation
and moderation techniques need to be in place. Systems have to come out gracefully from
any kind of constricting and cascading issues and limitations. A popular design pattern to
address latency and failure is the request/response queue, where requests and responses are
stored in queues. Also, cloud and application interfaces have to be highly intuitive,
informative, and instructive. The user experience has to be maintained even if cloud
resources and assets are not responsive.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[344]

Cloud integration patterns
There are a number of noteworthy advancements happening in the field of cloud
computing. Patterns are of much use for the complicated and growing subject of cloud
computing. Patterns are being unearthed with the aim of simplifying the deeper
understanding and adoption of the cloud paradigm. A number of prospective areas, such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service
(SaaS), Business Process as a Service (BPaaS), and so on, in the cloud space are being
revisited to bring forth fresh and competent patterns. There are special patterns being
readied for cloud application development. There are cloud integration platforms
(Integration Platform as a Service (IPaaS)) for enabling a kind of seamless and
spontaneous integration among different and distributed cloud applications and data
sources. Therefore, integration-specific patterns are being formed and articulated.

These days, the cloud concept has matured and stabilized beautifully in order to give
hundreds of novel services for business houses and individuals. On the data services side,
we have a Database as a Service (DBaaS), Data Warehouse as a Service (DWaaS), Data
Lake as a Service (DLaaS), and so on. Newer databases have emerged in order to tackle a
different set of requirements. We all hear, read, and even experience NoSQL and NewSQL
databases. Then there are in-memory databases and in-memory data grids (IMDGs). Data
analytics happens within the database itself, and hence we read about in-database analytics.
Similarly, the cloud environments are being prescribed as the best-in-class for various other
application domains. All kinds of operational, transactional, and analytical applications are
being hosted, managed, and delivered through cloud infrastructures and platforms. Then
there are new-generation web, mobile, gaming, wearable, embedded, enterprise, IoT, and
blockchain applications getting developed, deployed, and delivered through cloud
infrastructures and instances. Everything is being expressed and exposed as a service, and
undoubtedly, clouds are the elegant, enabling, and execution environments. In the recent
past, we have heard more about cloud orchestration, configuration, deployment, migration,
governance, and brokerage services. DevOps is another buzzword in the cloud landscape.
With such a legion of cloud services, there is a need expressed widely by many and a
collective call to create beneficial cloud-centric patterns for fulfilling various IT and business
capabilities.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[345]

Tier/Layer-based decomposition
The complex functionality of this application is divided into multiple discrete, easily
manageable, and loosely-coupled components. Each component is ordained to do one task
well. This partition or componentization of application functionality results in a logical
decomposition of the original application. These logically separated components run in
multiple tiers of a server cluster, and this kind of segmentation is done at the infrastructure
level.

Process-based decomposition
The next is process-based decomposition. Enterprise-grade and complicated applications
are typically process-centric. Herein, we can bring in process-based decomposition. Each
process internally comprises many tasks that need to be performed in a certain sequence.
Each task is done separately and aggregated in the desired order to get the application
functionality. There are plenty of automated tools for enabling such decomposition,
automation, and finally, orchestration.

Pipes-and-filters-based decomposition
The third decomposition type is pipes-and-filters-based decomposition, that focuses on the
data-centric processing of an application. Each filter provides a certain function that is
performed on input data and produces output data after processing. Multiple filters are
interconnected with pipes, that is, through messaging.

These layering and decomposition patterns aptly decompose the application into logical
layers, enabling independent deployment and horizontal scalability. The layering of
application and cloud infrastructures is being touted as the most vital need for developing,
deploying, and delivering next-generation distributed applications.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[346]

Service messaging pattern
Messages as the unifying mechanism: Messages are the most unifying factor among
disparate and distributed cloud services. The goals of cloud service integration get
accomplished through message passing. The following section lists and details the various
service message patterns. Service messages can be authenticated, routed, enriched, filtered,
secured, and composed in order to fulfill the expectations of federated clouds. Cloud
intermediation and remediation can be performed through smart messaging. Path-breaking
and hitherto unknown services can be built and deployed through the innovative usage of
service messages.

How do different distributed and decentralized cloud services find, bind, access, and
collaborate with one another in a loosely coupled as well as decoupled manner?

Problem

Services can be run on one virtual machine or in different virtual machines within a cloud environment. Services can
even be run on geographically distributed clouds. There are public, private, and hybrid clouds and there are a few
communication protocols. The conventional protocols induce a possibility of tight coupling between services. These, in
turn, impose certain restrictions on service reusability, testability, and modifiability.

Solution

Going forward, loose coupling and decoupling are the viable and valuable solution approaches. As even loose
coupling has some constraints, decoupling among services is being touted as the most promising solution, and
messaging is the way forward for establishing decoupled communication, which in turn eliminates the drawbacks of
traditional communication methods

Impacts Messaging technology brings a few QoS concerns, such as reliable delivery, security, performance, and transactions.

Problem: Different applications usually use different languages, data formats, and
technology platforms. When one application (component) needs to exchange information
with another one, the format of the target application has to be respected. Sending messages
directly to the target application results in a tight coupling of sender and receiver since
format changes directly affect both implementations. Also, direct sending tightly couples
the applications regarding the addresses by which they can be reached.

Cloud applications and services communicate using a variety of protocols. Remote
procedure call (RPC), remote method invocation (RMI), Windows Communication
Framework (WCF), and service protocols (SOAP and REST over HTTP) are some of the
leading mechanisms for cloud resources to connect and collaborate purposefully. However,
all these lead to a kind of tight coupling, which in turn becomes a hitch or hurdle for
services to seamlessly and spontaneously cooperate to achieve bigger and better things. The
urgent requirements are therefore loose coupling and decoupling. How can cloud
application services communicate remotely through messages while being loosely coupled
regarding their location and message format? Another brewing requirement is to enable
complete decoupling among services.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[347]

Solution: The context is that distributed applications or their service components exchange
information using messaging. Messaging comes as a viable alternative communication
scheme that does not rely on persistent connections. Instead, messages are being
transmitted as independent units of communication routed through the underlying
infrastructure. That is, simply connect applications through an intermediary; the message-
oriented middleware hides the complexity of addressing and availability of communication
partners as well as supports transformation of different message formats.

Communication partners can now communicate through messages without the need to
know the message format used by the communication partner or the address by which it
can be reached. The message-oriented middleware provides message channels (also
referred to as queues). Messages can be written to these queues or read from them.
Additionally, the message-oriented middleware contains components that route messages
between channels to intended receivers, as well as handle message format transformation.

The messaging framework must have the following capabilities:

Guaranteeing the delivery of each message or guaranteeing a notification of
failed deliveries
Securing message contents beyond the transport
Managing state and context data across a service activity
Transmitting messages efficiently as part of real-time interactions
Coordinating cross-service transactions

Without these types of extensions in place, the availability, reliability, and reusability of
services will impose limitations that can undermine the strategic goals associated with
cloud-hosted services.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[348]

Messaging metadata pattern

Problem

Services generally work in a stateless fashion. That is, they do not store any
state data in order to facilitate the next course of action. As the message is the
intermediary in order to empower different and distributed services to interact
together towards accomplishing business transactions and operations, they
need to have or carry all the state data (metadata).

Solution
The content encapsulated within the message envelope, therefore, has to be
supplemented with activity-specific metadata that can be interpreted and
processed separately at runtime.

Impacts The interpretation and processing of messaging metadata adds to runtime
performance overhead and increases service activity design complexity.

Problem: In the traditional method, the state and context data about the current service
interaction are placed in the memory. However, in a service environment, services are being
designed, developed, and deployed as stateless resources to be highly reusable. Therefore,
the messages that are being transmitted among services are being mandated to carry the
right and relevant data to initiate the correct actions sequentially to accomplish the business
process tasks.

Solution: As messages carry the state data, business rules, and even processing instructions,
services can be designed in a very generic manner. The service complexity will come down,
the reusability level will go up, modifiability will be easier, enrichment will be quicker, and
so on.

Though the overall memory consumption is reduced by avoiding a persistent binary
connection, the performance demands are increased by the requirement for services to
interpret and process metadata at runtime. Agnostic services especially can impose more
runtime cycles, as they may need to be outfitted with highly generic routines capable of
interpreting and processing different types of messaging headers so as to participate
effectively in multiple composition activities. Due to the prevalence and range of
technology standards that intrinsically support and are based on messaging metadata, a
wide variety of sophisticated message exchanges can be designed. This can lead to overly
creative and complex message paths that may be difficult to govern and evolve.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[349]

Service agent pattern
How can event capturing and processing logic be separated and governed independently?

Problem
Service composition (orchestration and choreography) can become large and
inefficient, especially when required to invoke granular capabilities across
multiple services.

Solution

Event-driven service composition is emerging as an important factor for
crafting composite services. Event-driven logic can be easily deferred to event-
driven programs that don't require explicit invocation, thereby reducing the size
and performance strain of service composition.

Impacts
The complexity of composition logic increases when it is distributed across
services, and event-driven agents and reliance on service agents can further tie
inventory architecture to proprietary vendor technology.

Problem: Decomposition and composition are the highly successful methods for
simplifying and streamlining software engineering. In a service environment, applications
are built by assembling a variety of services. In software engineering, the application to be
realized is to start with a series of business processes (simple and compound) and each
process, in turn, gets implemented by leveraging a number of services (process elements).
That is, applications are decomposed into a collection of interoperable and interactive
services and services are smartly composed to form next-generation applications.

Service composition logic consists of a series of service invocations, and each invocation
enlists a service to carry out a segment of the overall parent business process logic. Larger
business processes can be enormously complex, especially when having to incorporate
numerous what if conditions through compensation and exception handling subprocesses.
Therefore, service composition can grow correspondingly large. Furthermore, each service
invocation comes with a performance hit resulting from having to explicitly invoke and
communicate with the service itself. The performance of larger compositions can suffer
from the collective overhead of having to invoke multiple services to automate a single task.

Solution: Separation of concerns has been an interesting technique in software engineering.
Service logic that is triggered by a predictable event can be isolated into a separate program
specially designed for automatic invocation upon the occurrence of the event. This reduces
the amount of composition logic that needs to reside within services and further decreases
the number of service invocations required for a given composition.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[350]

Event-driven agents provide yet another layer of abstraction to which multiple service
compositions can form dependencies. Although the perceived size of the composition may
be reduced, the actual complexity of the composition itself does not decrease. Composition
logic is simply more decentralized as it now also encompasses service agents that
automatically perform portions of the overall task.

Intermediate routing pattern
How can dynamic runtime factors affect the path of a message?:

Problem
The larger and more complex a service composition is, the more difficult it is to
anticipate and design for all possible runtime scenarios in advance, especially
with asynchronous and messaging-based communication.

Solution Message paths can be dynamically determined through the use of intermediary
routing logic.

Impacts
Dynamically determining a message path adds layers of processing logic and
correspondingly can increase performance overhead. Also, the use of multiple
routing logic can result in overly complex service activities.

Problem: A service composition can be viewed as a chain of point-to-point data exchanges
between composition participants. Collectively, these exchanges end up automating a
parent business process. The message routing logic (the decision logic that determines how
messages are passed from one service to another) can be embedded within the logic of each
service in a composition. This allows for the successful execution of predetermined message
paths. However, there may be unforeseen factors that are not accounted for in the
embedded routing logic, which can lead to unanticipated system failures. For example:

The destination service a message is being transmitted to is temporarily (or even
permanently) unavailable
The embedded routing logic contains a catch-all condition to handle exceptions,
but the resulting message destination is still incorrect
The originally planned message path cannot be carried out, resulting in a
rejection of the message from the service's previous consumer

Alternatively, there may simply be functional requirements that are dynamic in nature and
for which services cannot be designed in advance.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[351]

Solution: Generic and multi-purpose routing logic can be abstracted so that it exists as a
separate part of the architecture in support of multiple services and service compositions.
Most commonly, this is achieved through the use of event-driven service agents that
transparently intercept messages and dynamically determine their paths.

This pattern is usually applied as a specialized implementation of a service agent. Routing-
centric agents required to perform dynamic routing are often provided by messaging
middleware and are fundamental components of enterprise service bus (ESB) products.
These types of out-of-the-box agents can be configured to carry out a range of routing
functions. However, the creation of custom routing agents is also possible and not
uncommon, especially in environments that need to support complex service compositions
with special requirements.

State messaging pattern
How can services remain stateless while contributing to stateful interactions?:

Problem
When services are required to maintain state information in memory between
message exchanges with consumers, their scalability can be compromised, and
they can become a performance bottleneck on the surrounding infrastructure.

Solution Instead of retaining the state data in memory, its storage is temporarily
delegated to messages.

Impacts This pattern may not be suitable for all forms of state data and should the
message be lost, any state information they carried may be lost as well.

Problem: Services are sometimes required to be involved in runtime activities that span
multiple message exchanges. In these cases, a service may need to retain state information
until the overarching task is completed. This is especially common with services that act as
composition controllers. By default, services are often designed to keep this state data in
memory so that it is easily accessible and essentially remains alive for as long as the service
instance is active. However, this design approach can lead to serious scalability problems
and further runs contrary to the service statelessness design principle.

Solution: Instead of the service maintaining state data in memory, it moves the data to the
message. During a conversational interaction, the service retrieves the latest state data from
the next input message.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[352]

There are two common approaches for applying this pattern, both of which affect how the
service consumer relates to the state data. The consumer retains a copy of the latest state
data in memory and only the service benefits from delegating the state data to the message.
This approach is suitable for when this pattern is implemented using WS-Addressing, due
to the one-way conversational nature of endpoint references (EPRs).

Both the consumer and the service use messages to temporarily offload state data. This two-
way interaction with state data may be appropriate when both consumer and service are
actual services within a larger composition. This technique can be achieved using custom
message headers.

When following the two-way model with custom headers, messages that are lost due to
runtime failure or exception conditions will further lose the state data, thereby placing the
overarching task in jeopardy. It is also important to consider the security implications of
state data placed on the messaging layer. For services that handle sensitive or private data,
the corresponding state information should either be suitably encrypted and/or digitally
signed, and it is not uncommon for the consumer to not gain access to protected state data.

Furthermore, because this pattern requires that state data be stored within messages that
are passed back and forth with every request and response, it is important to consider the
size of this information and the implications on bandwidth and runtime latency. As with
other patterns that require new infrastructure extensions, establishing inventory-wide
support for state messaging will introduce cost and effort due to the necessary
infrastructure upgrades.

Service callback pattern
How can a service sync up asynchronously with its consumers?:

Problem
When a service needs to respond to a consumer request for the issuance of
multiple messages or when service message processing requires a large amount
of time, it is often not possible to communicate synchronously.

Solution A service can require that consumers communicate with it asynchronously and
provide a callback address to which the service can send response messages.

Impacts
Asynchronous communication can introduce reliability concerns and can
further require that surrounding infrastructure be upgraded to fully support the
necessary callback correlation.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[353]

Problem: When service logic requires that a consumer request is responded to with
multiple messages, a standard request-response messaging exchange is not appropriate.
Similarly, when a given consumer request requires that the service perform prolonged
processing before being able to respond, synchronous communication is not possible
without jeopardizing scalability and reliability of the service and its surrounding
architecture.

Solution: Services are designed in such a manner that consumers provide them with a
callback address at which they can be contacted by the service at some point after the
service receives the initial consumer request message. Consumers are furthermore asked to
supply correlation details that allow the service to send an identifier within future messages
so that consumers can associate them with the original task.

Service instance routing
How can consumers contact and interact with service instances without the need for
proprietary processing logic?:

Problem
When required to repeatedly access a specific stateful service instance,
consumers must rely on the custom logic that more tightly couples them to the
service.

Solution
The service provides an instance identifier along with its destination
information in a standardized format that shields the consumer from having to
resort to custom logic.

Impacts
This pattern can introduce the need for significant infrastructure upgrades, and
when misused can further lead to overly stateful messaging activities that can
violate the service statelessness principle.

Problem: There are cases where a consumer sends multiple messages to a service and the
messages need to be processed within the same runtime context. Such services are
intentionally designed to remain stateful so that they can carry out conversational or
session-centric message exchanges. However, service contracts generally do not provide a
standardized means of representing or targeting instances of services. Therefore, consumer
and service designers need to resort to passing proprietary instance identifiers as part of the
regular message data, which results in the need for proprietary instance processing logic.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[354]

Solution: The underlying infrastructure is extended to support the processing of message
metadata that enables a service instance identifier to be placed into a reference to the overall
destination of the service. This reference (also referred to as an endpoint reference) is
managed by the messaging infrastructure so that messages issued by the consumer are
automatically routed to the destination represented by the reference. As a result, the
processing of instance IDs does not negatively affect consumer-to-service coupling because
consumers are not required to contain proprietary service instance processing logic. Because
the instance IDs are part of a reference that is managed by the infrastructure, they are
opaque to consumers. This means that consumers do not need to be aware of whether they
are sending messages to a service or one of its instances because this is the responsibility of
the routing logic within the messaging infrastructure.

Asynchronous queuing pattern
How can a service and its consumers accommodate isolated failures and avoid
unnecessarily locking resources?:

Problem When a service capability requires that consumers interact with it
synchronously, it can inhibit performance and compromise reliability.

Solution
A service can exchange messages with its consumers through an intermediary
buffer, allowing services and consumers to process messages independently by
remaining temporally decoupled.

Impacts There may be no acknowledgment of successful message delivery, and atomic
transactions may not be possible.

Problem: Synchronous communication requires an immediate response to each request,
and therefore forces two-way data exchange for every service interaction. When services
need to carry out synchronous communication, both service and service consumer must be
available and ready to complete the data exchange. This can introduce reliability issues
when either the service cannot guarantee its availability to receive the request message or
the service consumer cannot guarantee its availability to receive the response to its request.
Because of its sequential nature, synchronous message exchanges can further impose
processing overhead, as the service consumer needs to wait until it receives a response from
its original request before proceeding to its next action. Prolonged responses can introduce
latency by temporarily locking both consumer and service.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[355]

Another problem forced synchronous communication can cause is an overload of services
required to facilitate a great deal of concurrent access. Because services are expected to
process requests as soon as they are received, usage thresholds can be more easily reached,
thereby exposing the service to multi-consumer latency or overall failure.

Solution: A queue is introduced as an intermediary buffer that receives request messages
and then forwards them on behalf of the service consumers. If the target service is
unavailable, the queue acts as temporary storage and retains the message. It then
periodically attempts retransmission. Similarly, if there is a response, it can be issued
through the same queue that will forward it back to the service consumer when the
consumer is available. While either service or consumer is processing message contents, the
other can deactivate itself (or move on to other processing) in order to minimize memory
consumption.

Reliable messaging pattern
How do we enable and ensure services to interact reliably in an unreliable environment?:

Problem
Messages need to reach the right services and should not be tampered within
their path. That is, unreliable communication protocols and service
environments are said to be the main barriers for service reliability.

Solution

An intermediate reliability mechanism has to be in place in order to guarantee
that messages reach the right services and their integrity and confidentiality are
being maintained appropriately. Also, this middleware has to guarantee
message delivery.

Impacts
Using a reliability framework adds processing overhead that can affect service
activity performance. It also increases composition design complexity and may
not be compatible with atomic service transactions.

Problem: When services are designed to activate and act through messages, there is a
natural tendency for the loss of quality of service due to the stateless nature of underlying
messaging protocols, such as HTTP. The binary communication protocols maintain a
persistent connection until the data transmission between a sender and receiver is
completed. However, with message exchanges, the runtime platform may not be able to
provide feedback to the sender as to whether or not the message was successfully delivered
to the target service endpoint. With more services and more network links, the complexity
of service composition grows accordingly.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[356]

If the middleware infrastructure being employed is not able to guarantee reliable message
delivery, then risks erupt. How can messages be exchanged while guaranteeing that
messages are not lost in the case of system or communication failures? Reliability agents
further manage the confirmation of successful and failed message deliveries through
positive (ACK) and negative (NACK) acknowledgment notifications. Messages may be
transmitted and acknowledged individually, or they may be bundled into message
sequences that are acknowledged in groups (and may also have sequence-related delivery
rules).

When messages are exchanged in distributed systems, errors can occur during the
transmission of messages over communication links or during the processing of messages
in system components. Under these conditions, it should be guaranteed that no messages
are lost and that messages can be eventually recovered after a system failure.

Solution: The underlying infrastructure is fitted with a reliability framework that tracks
and temporarily persists message transmissions and issues positive and negative
acknowledgments to communicate successful and failed transmissions to message senders.
Message exchange during communication partners is performed under transactional
context, guaranteeing ACID behavior. In the cloud, there are several messaging systems
that can be accessed as a service, such as Amazon SQS or the queue service part of
Windows Azure Storage.

As articulated previously, cloud integration patterns are very vital for cloud-based
distributed application development, deployment, and delivery. There are specialized
adapters, connectors, drivers, and other plugins to simplify and streamline cloud
integration requirements. The integration patterns are crucial for the success of the cloud
paradigm.

Cloud design patterns
This section will discuss various cloud application design patterns that are highly useful for
building reliable, scalable, and secure applications in the cloud. Readers can find deeper
and decisive details of the patterns on the Microsoft website: https:/ /docs. microsoft.
com/en-us/azure/ architecture/ patterns/ .

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[357]

Cache-aside pattern
The gist of this pattern is to load data on demand into a cache from a data store. This
pattern can improve performance and also helps to maintain consistency between data held
in the cache and the data in the data store. Applications use a cache to optimize repeated
access to information held in a data store. However, it is usually impractical to expect that
cached data will always be completely consistent with the data in the data store.

There are many commercial caching systems providing read-through and write-
through/write-behind operations. In these systems, an application retrieves data by
referencing the cache. If the data is not available in the cache, it is transparently retrieved
from the distant data store and added to the cache. Any modifications to data held in the
cache are automatically written back to the data store as well. For caches that do not
provide this functionality, it is the responsibility of the applications that use the cache to
maintain the data in the cache. An application can emulate the functionality of read-through
caching by implementing the cache-aside strategy. This strategy effectively loads data into
the cache on demand.

Cloud application performance is often questioned by many. Hence, there is a bevy of
performance enhancement techniques and tips being unearthed and promoted. This pattern
is one such breakthrough solution technique in order to supply all the right and relevant
information for application designers to substantially increase cloud performance.

The usage scenarios include:

A cache doesn't provide native read-through and write-through operations
Resource demand is unpredictable

Circuit breaker pattern
We all know that distributed computing is the way forward for new-generation businesses.
Connectivity to remote services and resources is a core requirement in distributed
computing environments. Remote connectivity has the habit of failure. That is, an
application is trying to get connected with a remote service or data source and is not able to
get access due to some transient fault, such as slow network connection, timeouts, the
resources being overloaded, temporarily unavailable, and so on. These faults typically
correct themselves after a short period of time, and a robust cloud application should be
prepared to overcome these by using a well-drawn strategy, such as that described by the
retry pattern.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[358]

However, there may also be situations where faults occur out of unexpected events that are
quite tough to anticipate. Furthermore, those faults may take a longer time to get rectified.
These faults can range in severity, from a partial loss of connectivity to the complete failure
of a service. In these situations, it may be pointless for an application to continually retry
performing an operation that is unlikely to succeed, and instead, the application should
quickly accept that the operation has failed and handle the failure accordingly.

The circuit breaker pattern can prevent an application repeatedly trying to execute an
operation that is likely to fail, allowing it to continue without waiting for the fault to be
rectified or wasting CPU cycles while it determines that the fault is long lasting. The circuit
breaker pattern also enables an application to detect whether the fault has been resolved. If
the problem appears to have been rectified, the application can attempt to invoke the
operation.

The circuit breaker pattern is different from the retry pattern. The retry pattern enables an
application to retry an operation with the expectation that it will succeed, but the circuit
breaker pattern prevents an application from performing an operation that is likely to fail.
An application may combine these two patterns by using the retry pattern to invoke an
operation through a circuit breaker. However, the retry logic should be sensitive to any
exceptions returned by the circuit breaker and abandon retry attempts if the circuit breaker
indicates that a fault is not transient.

A circuit breaker acts as a proxy for operations that may fail. The proxy should monitor the
number of recent failures that have occurred, and then use this information to decide
whether to allow the operation to proceed, or simply return an exception immediately.

Compensating transaction pattern
We all know that any business and financial transaction has to strictly fulfill the ACID
properties. Steadily, transactional applications are being deployed in cloud environments.
Now, in the big data era, distributed computing is becoming the mainstream computing
model. NoSQL databases are very prominent and dominant these days in order to do justice
to big data. Increasingly, there is an assortment of segregated yet connected data sources as
well as stores to perform high-performance data access, processing, and retrieval. In this
case, strong transactional consistency is not being maintained. Rather, the application
should go for eventual consistency. While these steps are being performed, the overall view
of the system state may be inconsistent, but when the operation has completed and all of the
steps have been executed, the system should become consistent again.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[359]

A significant challenge in the eventual consistency model is how to handle a step that has
failed irrecoverably. In this case, it may be necessary to undo all of the work completed by
the previous steps in the operation. However, the data cannot simply be rolled back because
other concurrent instances of the application may have since changed it. Even in cases
where the data has not been changed by a concurrent instance, undoing a step might not
simply be a matter of restoring the original state. It may be necessary to apply various
business-specific rules.

Compensation has been the typical response when a transaction fails. This pattern is mainly
to undo the work performed by a series of steps, which together define an eventually
consistent operation if one or more of the steps fail. A compensating transaction might not
be able to simply replace the current state with the state the system was in at the start of the
operation because this approach could overwrite changes made by other concurrent
instances of an application. Rather, it must be an intelligent process that takes into account
any work done by concurrent instances. This process will usually be application-specific,
driven by the nature of the work performed by the original operation.

A common approach to implementing an eventually consistent operation that requires
compensation is to use a workflow. As the original operation proceeds, the system records
information about each step and how the work performed by that step can be undone. If the
operation fails at any point, the workflow rewinds back through the steps it has completed
and performs the work that reverses each step.

Competing consumers pattern
With the surging popularity of web-scale applications, there can be a large number of
requests from different parts of the world for those applications. The user and data loads
are generally unpredictable. The task/operation complexity is also unpredictable. Because of
heavy loads, cloud applications find it difficult to process every request and deliver the
reply within the stipulated timeline. One option is to add new server instances. There are
some practical difficulties in clustered and load-balanced environments too. However, these
consumers must be coordinated to ensure that each message is only delivered to a single
consumer. The workload also needs to be load balanced across consumers to prevent an
instance from becoming a bottleneck.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[360]

An overwhelming solution approach here is to use a messaging system (message queue or
broker) in between any requesting applications/users and the processing applications. A
message-oriented middleware (MOM) is a way forward for meeting a large number of
concurrent consumers. This middleware approach supports asynchronous communication
and processing, thereby the massive number of requests can be answered quickly.

A message queue/broker/bus is used to establish the communication channel between the
application and the instances of the consumer service. The application posts requests in the
form of messages to the queue and the consumer service instances receive messages from
the queue and process them. This approach enables the same pool of consumer service
instances to handle messages from any instance of the application. The following figure
illustrates this architecture:

This pattern enables multiple concurrent consumers to process messages received on the
same messaging channel. This pattern enables a system to process multiple messages
concurrently to optimize throughput, to improve scalability and availability, and to balance
the workload.

Compute resource consolidation pattern
There are several architectural patterns, such as MVC, service-oriented architecture (SOA),
event-driven architecture (EDA), resource-oriented architecture (ROA), microservices
architecture (MSA), and so on, recommending the application partitioning for various
benefits. However, there are occasions wherein consolidating multiple tasks or operations
into a single computational unit brings forth a number of advantages.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[361]

A common approach is to look for tasks that have a similar profile concerning their
scalability, lifetime, and processing requirements. Grouping these items together allows
them to scale as a unit. The elasticity provided by many cloud environments enables
additional instances of a computational unit to be started and stopped according to the
workload. This pattern can increase compute resource utilization, and reduce the costs and
management overhead associated with performing compute processing in cloud-hosted
applications.

Command and query responsibility segregation
(CQRS) pattern
In traditional database management systems, both commands (updates to the data) and
queries (requests for data) are executed against the same set of entities in a single data
repository. These entities may be a subset of the rows in one or more tables in an RDBMS.
Typically, in these systems, all create, read, update, and delete (CRUD) operations are
applied to the same representation of the entity. Traditional CRUD designs work well when
there is only limited business logic applied to the data operations. There are a few serious
issues being associated with the CRUD approach, as follows:

There may be a mismatch between the read and write representations of the data,
such as additional columns or properties that must be updated correctly even
though they are not required as a part of an operation
It risks encountering data contention in a collaborative domain (where multiple
actors operate in parallel on the same set of data) when records are locked in the
data store, or update conflicts caused by concurrent updates when optimistic
locking is used

This pattern segregates operations that read data from operations that update data by using
separate interfaces. This pattern can maximize performance, scalability, and security,
support evolution of the system over time through higher flexibility, and prevent update
commands from causing merge conflicts at the domain level.

The event sourcing pattern and the CQRS pattern: CQRS-based systems use separate read
and write data models. Each model is tailored to relevant tasks and often located in
physically separate stores. When used with event sourcing, the store of events is the write
model, and this is the authoritative source of information. The read model of a CQRS-based
system provides materialized views of the data as highly denormalized views. These views
are tailored to the interfaces and display requirements of the application and this helps to
maximize both display and query performance.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[362]

Using the stream of events as the write store, rather than the actual data at a point in time,
avoids update conflicts on a single aggregate and maximizes performance and scalability.
The events can be used to asynchronously generate materialized views of the data that are
used to populate the read store.

Event sourcing pattern
Most applications work with data, and the overwhelming approach is for the application to
maintain the current state of the data by updating it as users work with the data. For
example, in the CRUD model, a data process reads data from the store, makes some
modifications to it, and updates the current state of the data with the new values. The
problem with this approach is that performing update operations directly against a data
store may degrade performance and responsiveness. The scalability aspect may also be
affected. In a collaborative environment, there are many concurrent users, and hence there
is a high possibility for data update conflicts because the update operations take place on a
single item of data.

The events are persisted in an event store that acts as the source of truth about the current
state of the data. The event store typically publishes these events so that consumers can be
notified and can handle them if needed. Consumers could, for example, initiate tasks that
apply the operations in the events to other systems. The point to be noted here is that
application code that generates the events is decoupled from the systems that subscribe to
the events.

The solution is to use an append-only store to record the full series of events that describe
actions taken on data in a domain, rather than storing just the current state so that the store
can be used to materialize the domain objects. This pattern can simplify tasks in complex
domains by avoiding the requirement to synchronize the data model and the business
domain. This pattern improves performance, scalability, and responsiveness. Furthermore,
it provides consistency for transactional data and maintains full audit trails and history that
may enable compensating actions.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[363]

External configuration store pattern
The majority of application runtime environments include configuration information that is
held in files deployed with the application, located within the application folders. In some
cases, it is possible to edit these files to change the behavior of the application after it has
been deployed. However, in many cases, changes to the configuration require the
application to be redeployed, resulting in unacceptable downtime and additional
administrative overhead.

Local configuration files also limit the configuration to a single application, whereas, in
some scenarios, it would be useful to share configuration settings across multiple
applications. Managing changes to local configurations across multiple running instances of
the application is another challenge. The approach is to store the configuration information
in external storage. This moves configuration information out of the application
deployment package to a centralized location. This pattern can provide opportunities for
easier management and control of configuration data, and for sharing configuration data
across applications and application instances.

Federated identity pattern
There are many applications hosted by different cloud service providers. Predominantly,
there are email and social networking applications. These applications are being subscribed
to and used by many people from different parts of the world. Typically, users need to
memorize and use different credentials for accessing each of these customer-centric,
collaborative, and cloud applications. Managing multiple credentials is a tough assignment.
The solution is to implement an authentication mechanism that can use the proven concept
of federated identity. This is accomplished by separating the aspect of user authentication
from the application logic code and delegating the authentication requirement to a trusted
and third-party identity service provider. The trusted identity providers can authenticate
users on behalf of application service providers. The identity service providers have, for
example, a Microsoft, Google, Yahoo!, or Facebook account. This identity pattern can
simplify development, minimize the requirement for user administration, and improve the
user experience of the application.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[364]

Gatekeeper pattern
Cloud applications need to be protected from malicious users. Also, some cloud
applications are provided by multiple cloud service providers. Users are therefore in a
position to choose one service provider according to his or her terms. Cloud broker is a new
software product enabling users to zero down the appropriate cloud service providers.
Thus, a kind of gatekeeper software solution is needed to act as a broker between
application clients and application services, validate and sanitize requests, and pass
requests and data between them. This can provide an additional layer of security, and limit
the attack surface of the system.

This pattern minimizes the risk of clients gaining access to sensitive information and
services. This gateway solution contributes as a façade or a dedicated task that interacts
with clients and then hands off the request perhaps through a decoupled interface to the
hosts or tasks that'll handle the request.

Application health monitoring pattern
Cloud applications ought to fulfill the various service and operational expectations that are
formally contracted through an SLA agreement. Hence, it is pertinent to have a competent
health monitoring system to precisely and minutely monitor the functioning and health of
cloud applications, database systems, middleware solutions, and so on. The health check is,
therefore, an important factor in ensuring the agreed quality parameters. The monitoring is
not an easy thing to do. Cloud environments are hugely complicated due to the massive
scale, such as increasingly software-defined, federated, and shared. The way forward here
is to put a health monitoring system in place in order to send requests to an endpoint on the
application so as to capture the right and relevant data to act upon with clarity and
confidence.

Leader election pattern
Cloud applications are extremely complicated yet sophisticated. Multiple instances of cloud
applications can run in a cloud environment. Similarly, different components of an
application can run on clouds. The tasks might be working together in parallel to perform
the individual parts of a complex calculation.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[365]

The task instances might run separately for much of the time, but it might also be necessary
to coordinate the actions of each instance to ensure that they don't create any sort of conflict,
cause contention for shared resources, or accidentally interfere with the work that other task
instances are performing. So, there is a need for adept coordinator software; each action has
to be coordinated.

A single task instance should be elected to act as the leader, and this instance should
coordinate the actions of the other subordinate task instances. If all of the task instances are
running the same code, then one instance can act as the leader. However, the election of the
leader has to be done smartly. There has to be a robust mechanism in place for leader
selection. This selection method has to cope with the events, such as network outages or
process failures. In many solutions, the subordinate task instances monitor the leader
through some type of heartbeat method, or by polling. If the designated leader terminates
unexpectedly, or a network failure makes the leader unavailable to the subordinate task
instances, it is necessary for them to elect a new leader.

Materialized views pattern
When storing data, developers and database administrators are more concerned about how
the data is stored. They are least bothered about how the data will be read. The chosen data
storage format is usually closely related to the format of the data, requirements for
managing data size and data integrity, and the kind of store in use. For example, when
using a NoSQL document store, the data is often represented as a series of aggregates, each
containing all of the information for that entity. However, this can have a negative effect on
queries. When a query only needs a subset of the data from some entities, such as a
summary of orders for several customers without all of the order details, it must extract all
of the data for the relevant entities in order to obtain the required details.

To support efficient querying, a common solution is to generate, in advance, a view that
materializes the data in a format suited to the required results set. The materialized view
pattern describes generating prepopulated views of data in environments where the source
data isn't in a suitable format for querying, where generating a suitable query is difficult, or
where query performance is poor due to the nature of the data or the data store.

These materialized views, which only contain data required by a query, allow applications
to quickly obtain the information they need. In addition to joining tables or combining data
entities, materialized views can include the current values of calculated columns or data
items, the results of combining values or executing transformations on the data items, and
values specified as part of the query. A materialized view can even be optimized for just a
single query. This pattern can help support efficient querying and data extraction, and
improve application performance.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[366]

Pipes and filters pattern
An application is mandated to perform a variety of tasks of varying complexity on the
information that it receives, processes, and presents. Traditionally, a monolithic application
is produced to perform this duty. However, the monolithic architecture and approach are
bound to fail in due course due to various reasons (modifiability, replaceability, reusability,
substitutability, simplicity, accessibility, sustainability, scalability, and so on). Therefore, the
proven and potential technique of divide and conquer has become a preferred approach in the
field of software engineering. Aspect-oriented programming (AOP) is a popular method.
There are other decomposition approaches.

Furthermore, some of the tasks that the monolithic modules perform are functionally very
similar, but the modules have been designed separately. Some tasks might be compute
intensive and could benefit from running on powerful hardware, while others might not
require such expensive resources. Also, additional processing might be required in the
future, or the order in which the tasks are performed by the processing could change.

Considering all these limitations, the recommended approach is to break down the
processing required for each stream of tasks into a set of separate components (filters), and
each component (filter) is assigned to perform a single task. By standardizing the format of
the data that each component receives and sends, these filters can be combined together
into a pipeline. This helps to avoid duplicating code and makes it easy to remove, replace,
or integrate additional components if the processing requirements change. This unique
pattern can substantially improve performance, scalability, and reusability by allowing task
elements that perform the processing to be deployed and scaled independently.

Priority queue pattern
Applications can delegate specific tasks to other services to perform them, such as some
background processing or the integration with third-party or external applications or
services. Employing middleware solutions to perform those intermediary jobs has been a
widely followed activity. The message queue is a prominent one in enterprise and cloud
environments to realize tasks, such as intermediation, enrichment, filtering and funneling,
and so on. Here, the order of the requests is not important. That is, giving a kind of priority
for a particular task is being insisted in certain scenarios. These requests should be
processed earlier than lower priority requests that were sent previously by the application.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[367]

A queue is usually a first-in, first-out (FIFO) structure, and consumers typically receive
messages in the same order that they were posted to the queue. However, some message
queues support priority messaging. The application posting a message can assign a priority
and the messages in the queue are automatically reordered so that those with a higher
priority will be received before those with a lower priority. This pattern is useful in
applications that offer different service-level guarantees to individual clients.

Queue-based load leveling pattern
Cloud applications may sometimes be subjected to heavy loads (user and data).
Applications are being designed and developed accordingly and are made to run on
clustered environments in order to meet sudden or seasonal spikes. When applications are
under heavy loads, the application performance may go down. Especially, some crucial
tasks that are the part of the application may come under heavy bombardment.

The viable approach is to refactor the application and introduce a queue between the task
and the service. The idea here is that the task and the service run asynchronously. The task
posts a message containing the data required by the service to a queue. The queue acts as a
buffer, storing the message until it's retrieved by the service. The service retrieves the
messages from the queue and processes them. Requests from a number of tasks, which can
be generated at a highly variable rate, can be passed to the service through the same
message queue. This pattern can help to minimize the impact of peaks in demand on
availability and responsiveness for both the task and the service.

Retry pattern
Applications are spread across multiple clouds, across continents, countries, counties, and
cities. Not only public clouds are being leveraged as the application deployment, delivery,
and management platform, but also mission-critical, high-performance, and secure
applications and data stores are being deployed and delivered through private clouds.
Some enterprises continue with traditional IT environments. Applications literally have to
connect, access and use nearby, as well as remotely held, applications or databases often as
a part of successfully fulfilling any brewing business process requirements. But applications
connecting and collaborating with other applications in the vicinity or in off-premise
environments are not that straightforward.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[368]

There can be transient faults in the way of accessing other applications. The network
connectivity, the failure of the requested applications due to overload, the temporary
unavailability of the application, and so on, are being touted as the challenges for
applications talking to one another over any network.

Applications ought to be designed in such a way that they try again to connect and proceed
with their task-fulfillment. If the application request fails, the application can wait and
make another attempt. If necessary, this process can be repeated with increasing delays
between retry attempts, until some maximum number of requests has been attempted. The
delay can be increased incrementally or exponentially, depending on the type of failure and
the probability that it'll be corrected during this time.

Runtime reconfiguration pattern
Traditionally, a static configuration has been the way for any application. If there is a need
to make changes in the configuration, then the application has to be shut down and
restarted after incorporating the configuration changes. Now in the web world, the
downtime is not liked. Therefore, there is a need for a workable technique to achieve
runtime configuration. That is, while the application is still running and delivering its
service, the required configuration has to be brought in. The application has to immediately
consider the changes and act on that. Similarly, the application has to convey the
configuration changes to all its components.

The success of this pattern squarely depends on the features available in the application
runtime environment. Typically, the application code will respond to one or more events
that are raised by the hosting infrastructure when it detects a change to the application
configuration. This is usually the result of uploading a new configuration file, or in
response to changes in the configuration through the administration portal or by accessing
an API.

The source code that handles the configuration change events can examine the changes and
apply them to the components of the application. These components have to detect and
react to the changes. The components should use the new values so that the intended
application behavior can be achieved. This helps to maintain availability and minimize
downtime.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[369]

Scheduler agent supervisor pattern
Enterprise-class applications are slated to do many tasks in sequence or in parallel. Each
task is performed by a microservice architecture that can comfortably run inside Docker
containers. Some tasks may have to connect and collaborate with remote application
services or third-party services. As stated previously, the remote connectivity is beset with a
number of challenges because there are other components contributing to the remote
connectivity and access. Now, complex applications are being simplified through process
flows comprising control as well as data flows. That means an application has to orchestrate
all the steps/services in order to ensure its capability for consumers. In the distributed
computing arena, all services have to play their unique role and deliver value to their
application. If anyone fails to transact, then the retry pattern can be leveraged. If that also
fails to take off, then the entire operation has to be canceled.

The solution is to use the scheduler agent supervisor pattern that skillfully orchestrates all
the right and relevant steps to finish the expected job. This orchestration software solution
manages all the participating and contributing steps in a resilient and rewarding fashion in
distributed work environments. The scheduler, which is the principal component of the
scheduler agent supervisor, arranges for the steps that make up the task to be executed and
orchestrates their operation. These steps can be combined into a pipeline or workflow. The
scheduler is responsible for ensuring that the steps in this workflow are performed in the
right order. The self-recovery of services is being termed as one of the paramount properties
of new-generation software services.

Sharding pattern
In the big data world, data stores need to store a humongous amount of data. Due to the
extraordinary growth of data collection, storage, processing, and analysis, there arise
several operational and management challenges including storage space. Furthermore,
interactive querying and data retrieval are also difficult.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[370]

Data is becoming big data that in turn promises big insights. Batch and real-time processing
of big data are also mandated by business houses. The new normal is poly-structured data.
Thus, massive amounts of multi-structured data structurally and operationally challenge
the traditional SQL database management systems. That is, in the new world order, NoSQL
and NewSQL databases are very popular. The prime reason for this new trend is the faster
maturity and stability of sharding, which is unambiguously partitioning big databases into
smaller and manageable databases. These segregated databases are being run in different
and distributed commoditized server machines. The sharding intrinsically supports
horizontal scalability (scale out), whereas the SQL databases support the scale up (vertical
scalability). The runtime incorporation of schema changes is also being supported by
NoSQL databases.

This pattern has the following benefits:

The database system can scale out by adding further shards running on
additional storage nodes
A system can use off-the-shelf hardware rather than specialized and expensive
computers for each storage node
You can reduce contention and improve performance by balancing the workload
across shards
In the cloud, shards can be located physically close to the users that'll access the
data

Throttling pattern
The load on a cloud application typically varies over time based on the number of active
users or the types of activities they are performing. There can be more users during
business hours. During festivities, more users will come to electronic commerce and e-
business applications. There might also be sudden and unanticipated bursts in activity. If
the processing requirements of the system exceed the capacity of the resources that are
available, it will suffer from poor performance and can even fail. If the system has to meet
an agreed level of service, such kinds of failures could be unacceptable.

There are several strategies and workarounds for tackling this important challenge. A viable
solution is to use resources only up to a limit and then throttle them when the assigned
limit is reached. An alternative strategy to auto-scaling is to allow applications to use
resources only up to a limit, and then throttle them when this limit is reached.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[371]

The system should monitor how it's using resources so that, when usage exceeds the
threshold, it can throttle requests from one or more users. This will enable the system to
continue functioning and meet any service level agreements (SLAs) that are in place.

Workload distribution pattern
IT resources and business workloads are sometimes subjected to heavy usage. When the
number of users goes up sharply, the problems, such as performance degradation, reduced
availability, reliability, and so on, can arise and choke the system. There are a few
interesting solutions being recommended for overcoming these issues. Horizontal
scalability and the leverage of load balancers in front of web, application, and database
servers are being widely and wisely implemented in order to fulfill the agreed SLAs
between the providers and the users. Workload instances need to be distributed to tackle
heavy user loads.

Cloud workload scheduler pattern
The cloud workload scheduler automates, monitors, and controls the workload throughout
the cloud infrastructure. This automation usually manages hundreds of thousands of
workloads per day from a single point of control. The cloud scheduler could also be an
orchestration engine automatically scheduling workloads. The scheduler must be provided,
the security level required by the workload.

There are fresh design patterns for accelerating cloud application design. While the cloud
idea is progressing fast and is seeing a surging popularity, there can be additional design
patterns. We will come across exclusive and elegant patterns for cloud brokerage services
and orchestration capabilities. There will be focuses on unearthing competent solutions and
patterns for deeper and decisive automation of cloud activities. Self-service is another
buzzword being given extreme importance so that clouds become business-friendly and
business-aware. Serverless computing is another pragmatic and popular topic of deeper
study and research in the cloud arena. Docker-enabled containerization is the mainstream
topic of deliberations and discourses, and in the near future, we will hear more about
containerized cloud infrastructures, platforms, and application workloads. Highly
beneficial design patterns will emerge and empower next-generation cloud applications.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[372]

Cloud reliability and resilience patterns
The reliability or dependability of cloud applications has to be ensured through
technologically sound solutions. Cloud infrastructures too have to be accordingly
empowered to be reliable. The second aspect is cloud resilience. As business workloads and
IT platforms are being increasingly modernized and moved to cloud environments, the
need for cloud resilience has gone up drastically. Viable mechanisms are being worked by
cloud professionals in order to boost the confidence of people on the cloud paradigm.
Having competent patterns for those recurring requirements and common problems is one
sure way for tackling the QoS and QoE factors. This section is dedicated to illustrating
prominent cloud reliability and resilience patterns.

Resource pooling pattern
For scalability purposes, IT resources have to be pooled in order to provide additional
resources on a need basis. The auto-scaling capability can be realized when the appropriate
resources are pooled. The challenge here is that of manually establishing and maintaining
the level of required synchronicity across a collection of shared resources. Any kind of
variance or disparity among shared IT resources potentially can lead to inconsistency and
sometimes result in risky operations. The solution is to get identical IT resources and pool
them to be leveraged when necessary. The key resources include bare metal (BM) servers,
virtual machines (VMs), and containers. Furthermore, the fine-grained resources include
memory, storage, processing cores, I/O, and so on. There are several monitoring,
measurement, and management tools in place for resource provisioning, replication, and
utilization.

Resource reservation pattern
Capacity planning is an important factor in realizing highly optimized IT infrastructures
and resources for meeting the various tricky demands of applications. If not properly done,
then there is a possibility of getting into the issue of resource constraints. When more cloud
consumers try to access a shared IT resource, which does not have the capacity to fulfill the
consumers' processing needs, then this condition of resource constraint creeps in. The result
may be performance degradation or even the request may not be fulfilled at all. Depending
on how IT resources are designed for shared usage and depending on their available levels
of capacity, concurrent access can lead to a runtime exception condition called resource
constraint.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[373]

A resource constraint is a condition that occurs when two or more cloud consumers have
been allocated to share an IT resource that does not have the capacity to accommodate the
entire processing requirements of the cloud consumers. As a result, one or more of the
consumers will encounter a sort of degraded performance or be rejected altogether.

The solution is primarily dynamic capacity planning and to have an IT resource reservation
system in order to protect cloud service consumers. This reservation system guarantees a
minimum amount of IT resources for each cloud consumer.

Hypervisor clustering pattern
Any kind of IT infrastructures and resources can go down at any point in time. It is good
practice to expect failure of IT systems in order to design IT systems in a better-informed
fashion. Now hypervisors, alternatively touted as virtual machine monitors (VMMs),
represent an additional abstraction in order to emulate underlying hardware. The issue is
that hypervisors too are liable failure. When hypervisors fail, then all the virtual machines
on them are bound to fail. Thus, it becomes critical for the high-availability of hypervisors.

A high-availability hypervisor cluster is created to establish a group of hypervisors that
span physical servers. As a result, if a given physical server or hypervisor becomes
unavailable, hosted virtual servers can be moved to another physical server or hypervisor.

Redundant storage pattern
Cloud storage is gaining a lot of attention these days because of the enhanced flexibility and
extreme affordability. There are block storage, object storage, file storage, and so on. Storage
devices are also subject to failure and disruption due to a variety of causes including
network connectivity issues, storage controller failures, general hardware failure, and
security breaches. When a cloud storage system gets compromised, the result will be
unprecedented. A secondary cloud storage device is incorporated into a system that
synchronizes its data with the data in the primary cloud storage device. When the primary
device fails, a storage service gateway diverts requests to the secondary device
automatically to fulfill the business continuity (BC) requirements.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[374]

This pattern fundamentally relies on the resource replication mechanism to keep the
primary cloud storage device synchronized with secondary cloud storage devices. Cloud
service providers may put secondary storage appliances in a geographically different
location for ensuring data and disaster recovery.

Dynamic failure detection and recovery pattern
Cloud environments comprise a large number of IT infrastructures in a consolidated and
centralized fashion in order to fulfill the variable IT needs of worldwide consumers. Cloud
environments ensure self-service capability. The major portions of the IT infrastructures are
virtualized, shared, and commoditized servers, storage appliances, and networking
solutions. The failure rate is quite high and hence failure detection proactively is turning
out to be a key requirement for successfully running cloud environments.

A resilient watchdog system has to be established to monitor, measure, and respond to a
wider range of predefined failure scenarios. This system is further able to notify and
escalate certain failure conditions that it cannot automatically solve itself.

Redundant physical connection for virtual
servers pattern
A virtual server is connected to an external network through a virtual switch uplink port. If
the uplink fails (due to cable disconnection, port failure, or any other accidents and
incidents), the virtual server becomes isolated and disconnects from the external network.
One or more redundant uplink connections are established and positioned in standby
mode. A redundant uplink connection is available to take over as the active uplink
connection whenever the primary uplink connection becomes unavailable or experiences
failure conditions.

Cloud environments promise to have some unique capabilities, such as infrastructure
elasticity and application scalability. These enhance cloud availability. There are techniques
and patterns being experimented in order to guarantee cloud reliability/dependability.
Furthermore, resiliency is being given the sufficient thrust by cloud professors so that the
goals of reliability and resiliency out of cloud assets can be met quite easily and quickly.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[375]

Cloud security patterns
As widely accepted and articulated, the issue of cloud security has been the principal
barrier for individuals, institutions, and innovators towards readily and confidently
leveraging the cloud environments; especially the public clouds for hosting and delivering
their enterprise-grade, business-critical, and high-performance applications and databases
(customer, corporate, and confidential). In this section, we will discuss some of the
prominent cloud security patterns in order to empower cloud security architects,
consultants, and evangelists with all the right details.

Cryptographic key management system pattern
Cryptography is the unique approach to ensuring data security. Encryption and decryption
are the two major components of this mathematical theory. Keys are generated and stored
securely and are used fluently for securing data while in transit, rest, and being used by
software applications. The worry here is how to safely and securely keep the keys
generated. If the keys are somehow lost, then the encrypted data cannot be decrypted.
Therefore, the industry recommends having a cryptographic key management system
(CKMS), which consists of policies, procedures, components, and devices that are used to
protect, manage, and distribute cryptographic keys and certain specific information, called
metadata. A CKMS includes all devices or subsystems that can access an unencrypted key
or its metadata. Encrypted keys and their cryptographically protected metadata can be
handled by computers and transmitted through communication systems and stored in
media that are not considered to be part of a CKMS.

Virtual private network (VPN) pattern
In the connected world, the internet is the cheap, open, flexible and public communication
infrastructure. The virtual private network (VPN) is a network that uses a public
telecommunication infrastructure, such as the internet, to provide consumers with secure
connections to their organization's network. The VPN ensures privacy through security
procedures and tunneling protocols, including the layer two tunneling protocol (L2TP).
Data is encrypted at the sending end for transmission and decrypted at the receiving end, as
shown in the following figure:

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[376]

The figure shows two firewalls establishing a VPN between two clouds. They first exchange
each other's certificates and use asymmetric encryption to securely exchange keying
material to establish efficient symmetric key encryption. IPsec is a framework of open
standards for private communications over public networks. It is a network layer security
control that is used to create the VPN.

Cloud authentication gateway pattern
Cloud consumers are compelled to support multiple authentications, communication, and
session protocols in order to access and use various cloud services. An authentication
service authenticates cloud consumers to access cloud services. The authentication service
uses the diverse protocols required by cloud service providers for authenticating cloud
consumers.

An authentication gateway service (AGS) can be established as a reverse proxy frontend
between the cloud consumer and the cloud resource. This AGS intercepts and terminates
the consumer's encrypted network connection and authenticates the cloud consumer.
Furthermore, it authenticates itself and the consumer to the cloud provider and then proxies
all communication between the two.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[377]

In-transit cloud data encryption pattern
Data security is an important component for the continued growth of the cloud concept.
With data analytics gaining widespread significance, the need for secure data capture,
transmission, exchange, persistence, and usage has grown greatly. Data transmission
networks, data management systems, data analytics platforms, data storage appliances,
filesystems, and so on, are the prominent ingredients for the next-generation knowledge
era. Encryption is the primary mechanism for securing data interchanged between data
sources and servers.

Cloud storage device masking pattern
As illustrated previously, data security is essential for boosting the confidence of cloud
consumers on cloud-based enterprise applications and databases. Authorized data access is
the foremost thing for ensuring utmost data security. Data stored in a shared cloud
environment can be vulnerable to many security risks, threats, vulnerabilities, and holes.
An LUN masking mechanism can enforce defined policies at the physical storage array in
order to prevent unauthorized cloud consumers from accessing a specific cloud storage
device in a shared cloud environment.

Cloud storage data at rest encryption pattern
Data stored in a cloud environment requires security against access to the physical hard
disks forming the cloud storage device. The solution is to leverage any encryption
mechanism supported by the physical storage arrays to automatically encrypt data stored
on the disks and decrypt data leaving the disks.

Endpoint threat detection and response pattern
Endpoint security refers to the protection of an organization's network when accessed
through remote devices, such as smartphones, tablets, and laptops. Endpoint threat
detection and response (ETDR) focuses on the endpoint as opposed to the network. It is
recommended to leverage integrated security tools in order to understand the security holes
of edge devices in order to strengthen the cloud networks and servers.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[378]

Threat intelligence processing pattern
The act of analytics is becoming pervasive these days. Operational, behavioral, security, log,
and performance data of IT environments are consciously collected and subjected to a
variety of investigations. Deeper and decisive analytics on security-related data emits a lot
of useful information for security analysts, architects, and advisors. The extracted insights
come in handy in proactively putting appropriate security mechanisms in place in order to
ward off any kind of security attacks and exploitations.

A threat intelligence system can be put in place to receive and process external intelligence
feeds as well as to gain intelligence gained from analyzing attacks internally. The details
received and collected can be fed into security-enablement systems, such as security
information and event management systems (SIEMs), network forensics monitors (NFM),
endpoint threat detection and response systems (ETDRs), intrusion detection and
protections systems (IDPSs), and so on. Also, those sensitive details can be shared across
cloud security operational teams to enable them to ponder and proceed with the best course
of action.

Cloud denial of service (DoS) protection pattern
Cloud DoS attacks are multifaceted and prevent consumers of cloud services from accessing
their cloud resources. A cloud DoS protection service has to be incorporated into the
security architecture to shield the cloud provider from DoS attacks. A network DoS
protection service updates the domain name service (DNS) to route all cloud provider
traffic through the protection service, which filters attack traffic and routes only legitimate
traffic to the cloud provider. Alternately, the cloud provider can route traffic to a DoS
protection service when experiencing an attack, or create its own DoS protection service.
Considering the insistence for unbreakable and impenetrable cloud security solutions, fresh
cloud security patterns are being unearthed by security experts and researchers. In the
future, there will be a few more security-related patterns.

Software-Defined Clouds - the Architecture and Design Patterns Chapter 11

[379]

Summary
Patterns have been the principal enabling tools for strategic and simplified design and
engineering of all kinds of business and social systems. The IT domain too has embraced the
proven and potential concept of patterns in order to overcome the inherent limitations of IT
systems and services engineering. This chapter is specially prepared for describing the
various architectural and design patterns being unearthed and articulated by various cloud
computing professionals. The readers can find the right amount of detail for each of the
patterns. With the cloud paradigm on the fast track, there is a need for detailing various and
recently articulated cloud patterns and their correct details. This chapter comes in handy for
interested IT people in understanding cloud-related patterns.

Bibliography
The cloud patterns registry: http:/ /cloudpatterns. org/

Cloud design patterns by Microsoft: https:/ /docs. microsoft. com/ en- us/azure/
architecture/patterns/

Cloud computing patterns: http:/ /www. cloudcomputingpatterns. org/

Cloud design patterns by Amazon Web Services: http:/ /en. clouddesignpattern. org/
index.php/Main_Page

Cloud architecture patterns: http:/ / shop. oreilly. com/ product/ 0636920023777. do

http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
http://cloudpatterns.org/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://www.cloudcomputingpatterns.org/
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do

12
Big Data Architecture and

Design Patterns
Big data is the digital trace that gets generated in today's digital world when we use the
internet and other digital technology. Whatever we do digitally leaves a massive volume of
data. Interestingly, we can do far smarter analysis with those traces and so, therefore, make
smarter decisions and much more. For example, when you log in to any website it shows an
advertisement for a product that you searched or browsed earlier, even if it was on an
entirely different website. So by showing the product that you are interested in, regardless
of the specific product selling site, the results of big data analysis and a smart way of selling
means that the end user might like the product and be more likely to buy it.

This chapter intends to introduce readers to the more common big data architectural
patterns. Some brief details on the core parts of big data, its core principles, and
characteristics are outlined, including analytics principles, big data workload patterns, and
optimal decision-making patterns.

Please be aware that this chapter is a mere introduction to the patterns. Readers need to
refer to other materials (references sections) that are available online and offline.

Big Data Architecture and Design Patterns Chapter 12

[381]

The four V's of big data
Big data has many definitions and many different implementations across various sectors.
However, there are four common elements of any big data definition, which are popularly
referred to as the V's of big data. They are as follows:

Velocity: This refers to the speed of data accumulation
Volume: This refers to the scale of data or the phase that data storage grows
Variety: This refers to the diversity of the data, such as structured, semi-
structured, unstructured, and so on
Veracity: This refers to collected data's accuracy and its reflection of facts

The latest addition to the V's group is value. This refers to our ability and needs to turn
accumulated data into things of value. That is not just business value, but it can also be any
significant added value for social, medical, and common causes.

Big data analysis and technology concepts
Let's start with the technology prerequisites for big data analysis, and then we will cover
the life cycle of big data analysis. The prerequisites are:

Flexible architectures, that supports various data types and patterns
Upstream use of analytics for data relevance optimization
Advanced analytics and real-time visualization to accelerate actions and
understandings
Collaborative approaches for aligning stakeholders

Data analysis life cycle
Big data analysis life cycle provides a step-by-step methodology for organizing the data
activities and tasks related to data acquiring, processing, analyzing and repurposing. The
following are the stages of data analysis life cycle with a brief overview of each of them.

Data discovery: Learn the business domain, frame the business problems as
analytics challenges, and strategize and formulate initial hypotheses to start
learning data.

Big Data Architecture and Design Patterns Chapter 12

[382]

Data preparations: Data Extraction, Load, and Transform (ELT) and data
Extraction, Transform, and Load (ETL) should be used to become familiarized
with the data.
Model planning: Determine and formulate techniques, workflows, and best
practices to follow. Learn about relationships between variables and choose the
most suitable methods.
Model building: Develop datasets for testing, training, and production
deployments. Evaluate tools to run the models and suggests additional tools,
workflows, and execution environments, if needed.
Communicate results: Identify critical findings, quantify the business values of
the current exercise, the success criteria, risks, and mitigations, and present them
to stakeholders.
Operationalize: Deliver proofs of concepts, final reports, and technical
documents.

Big data analysis and data science
Big data is the result of collecting and managing large amounts of diverse data; data mining
is all about searching data for unrecognized patterns.

Data analysis
Data analysis is about breaking the mined data and assessing the impact of those
unrecognized methods. It may even create new patterns over time and help to develop
working applications.

Data science
Data science is the process of cleaning, mining, and analyzing the data to derive insights of
value from it. Extract data insights through a combination of exploratory data analysis and
modeling. Data science is the process of distilling insights from data to inform decisions.

Big Data Architecture and Design Patterns Chapter 12

[383]

Data science creates models that capture the underlying patterns of complex systems and
helps those models to become working applications:

The preceding diagram intends to represent the data science process followed by a data
scientist.

Big Data Architecture and Design Patterns Chapter 12

[384]

Big data platform
Any software or hardware platform should support large datasets; otherwise, it is hard to
support those large datasets with traditional database tools:

The preceding diagram depicts a sample big data platform with supported sample tools,
servers, hardware, and so on.

Big Data Architecture and Design Patterns Chapter 12

[385]

Big data engineering
Big data engineering gets the most value out of the vast amount of disparate data, data
staging, profiling, and data cleansing in any big data platform. Also, it represents optimal
ways of migrating the data from back office systems to the front office to help data analysts
and data scientists:

The preceding diagram accounts for a sample ecosystem of a big data engineering
landscape. One can find numerous tools in each stage of the big data landscape. The
following are some examples of those tools: Hadoop, Oozie, Flume, Hive, HBase, Apache
Pig, Apache Spark, MapReduce, YARN, Sqoop, ZooKeeper, text analytics, and so on.
However, we are not going to discuss all those tools here as it is out side of the scope of this
chapter.

Big Data Architecture and Design Patterns Chapter 12

[386]

Big data governance
Any big data enterprise would need to develop and enhance broader enterprise information
governance by bringing rules or policies for optimization and privacy and also find avenues
for monetizing (value) at the same time as ensuring regulatory compliance and facilitating
prudent risk management:

Big Data Architecture and Design Patterns Chapter 12

[387]

Big data architecture landscape and layers
You should be able to extract valuable, meaningful information (insights) from the
enormous volumes of data to improve an organization's decisions that involve various
challenges, such as data regulations, faster decisions, interactions with customers, dealing
with legacy systems, disparate data sources, and so on. So, to address all those challenges
efficiently, researchers came up with a unified architecture consisting of layers at different
levels:

The preceding pyramid depicts the significant attributes of big data layers and the problems
that are addressed in each layer. As we have mentioned earlier, big data is not a single
technology or a framework solving just a set of use cases; it is a set of tools, processes,
technologies, and a system infrastructure that helps businesses to make much smarter
analysis and take smarter decisions based on the massive volume of data traces.

Unified big data architecture consists of various layers. It provides a way to organize
different components to address problems and it represents unique functions:

Big data sources: Data coming from several channels, such as handheld devices,
software applications, sensors, legacy databases, and so on
Data messaging and storage: Acquires data from the data sources, data
compliance, and storage formatting

Big Data Architecture and Design Patterns Chapter 12

[388]

Data analysis: Data model management, analytics engines, and access to data
message stores
Data consumption: Dashboards, insights, reporting, and so on

The preceding diagram depicts different levels and layers of the big data landscape. These
layers perhaps may be considered as a summary of our earlier introductions of big data
concepts and the realization of values in each layer.

Before we look at patterns, let's summarize the big data architecture principle as follows:

Decoupled data bus
Right tool usage for the job
Data structure, latency, throughput, access patterns
Lambda architecture
Immutable logs, batch/speed/serving layer
Cloud-based infrastructure
System maintenance with low or no admin
Cost-effective

Big Data Architecture and Design Patterns Chapter 12

[389]

Big data architecture patterns
In this section, we will take you through big data design patterns, based on the following
big data architectural patterns, and give a brief overview of the big data architectural
patterns.

MapReduce pattern
MapReduce is a software framework implementation that processes and generates big
datasets by applying parallel and distributed algorithms on a cluster infrastructure.

The primary methods of MapReduce are as follows:

Map: Responsible for filtering and sorting
Reduce: Responsible for operations (for example, counting the number of
records)

Lambda architecture pattern
To address big data challenges (described earlier in this chapter), there needs to be a data
processing architecture to handle massive quantities of data to process rapidly with batch
processing and stream processing methods.

Some fundamental characteristics of the Lambda architecture are as follows:

It is dependent on underlying data principles of append-only, immutable, and
atomic
It thrives on balancing latency, throughput, and fault-tolerance
It correlates with the growth of big data and real-time analytics
It helps to mitigate the latencies of MapReduce

Big Data Architecture and Design Patterns Chapter 12

[390]

The preceding diagram depicts the Lambda architecture with three primary layers called
the batch processing layer, the speed or real-time processing layer, and serving layers for
responding to queries.

The three primary layers are explained here:

Batch layer: This precomputes results, using a distributed processing system
output to the read-only data store, and updates views by replacing the existing
precomputed views. Data accuracy in the views is high with batch jobs (accuracy
over latency).
Speed/Real-time layer: This processes data streams in real time and the views are
almost instantaneous, but maybe with less data accuracy (latency over accuracy).
However, those views can be updated later by batch methods (accuracy over
latency).
Serving layer: This stores outputs from the batch and speed layers to respond to
ad-hoc queries either by precomputed views or new views from the processed
data.

Big Data Architecture and Design Patterns Chapter 12

[391]

Data lake architecture pattern
In established enterprises, the most common business case is to make use of existing data
infrastructure along with big data implementations. The data lake architecture pattern
provides efficient ways to achieve reusing most of the data infrastructure and, at the same
time, get the benefits of big data paradigm shifts.

Data lakes have the following essential characteristics to address:

Manage abundant unprocessed data
Retain data as long as possible
Ability to manage the data transformation
Support dynamic schema

The following diagram depicts a data lake pattern implementation. It is getting raw data
into data storage from different data sources. Also, the received data needs to be retained as
long as possible in the data warehouse. Conditioning is conducted only after a data source
has been identified for immediate use in the mainline analytics:

Data lakes provide a mechanism for capturing and exploring potentially useful data
without incurring additional transactional systems storage costs, or any conditioning effort
to bring data sources into those transactional systems.

Big Data Architecture and Design Patterns Chapter 12

[392]

Data lake implementation includes HDFS, AWS S3, distributed file systems, and so on.
Microsoft, Amazon, EMC, Teradata, and Hortonworks are prominent vendors with data
lake implementation among their products and they sell these technologies. Data lakes can
also be a cloud Infrastructure as a Service (IaaS).

Big data design patterns
This section covers most prominent big data design patterns by various data layers such as
data sources and ingestion layer, data storage layer and data access layer.

Data sources and ingestion layer
Enterprise big data systems face a variety of data sources with non-relevant information
(noise) alongside relevant (signal) data. Noise ratio is very high compared to signals, and so
filtering the noise from the pertinent information, handling high volumes, and the velocity
of data is significant. This is the responsibility of the ingestion layer. The common
challenges in the ingestion layers are as follows:

Multiple data source load and prioritization
Ingested data indexing and tagging
Data validation and cleansing
Data transformation and compression

The preceding diagram depicts the building blocks of the ingestion layer and its various
components. We need patterns to address the challenges of data sources to ingestion layer
communication that takes care of performance, scalability, and availability requirements.

Big Data Architecture and Design Patterns Chapter 12

[393]

In this section, we will discuss the following ingestion and streaming patterns and how they
help to address the challenges in ingestion layers. We will also touch upon some common
workload patterns as well, including:

Multisource extractor
Multidestination
Protocol converter
Just-in-time (JIT) transformation
Real-time streaming pattern

Multisource extractor
An approach to ingesting multiple data types from multiple data sources efficiently is
termed a Multisource extractor. Efficiency represents many factors, such as data velocity,
data size, data frequency, and managing various data formats over an unreliable network,
mixed network bandwidth, different technologies, and systems:

The multisource extractor system ensures high availability and distribution. It also confirms
that the vast volume of data gets segregated into multiple batches across different nodes.
The single node implementation is still helpful for lower volumes from a handful of clients,
and of course, for a significant amount of data from multiple clients processed in batches.
Partitioning into small volumes in clusters produces excellent results.

Big Data Architecture and Design Patterns Chapter 12

[394]

Data enrichers help to do initial data aggregation and data cleansing. Enrichers ensure file
transfer reliability, validations, noise reduction, compression, and transformation from
native formats to standard formats. Collection agent nodes represent intermediary cluster
systems, which helps final data processing and data loading to the destination systems.

The following are the benefits of the multisource extractor:

Provides reasonable speed for storing and consuming the data
Better data prioritization and processing
Drives improved business decisions
Decoupled and independent from data production to data consumption
Data semantics and detection of changed data
Scaleable and fault tolerance system

The following are the impacts of the multisource extractor:

Difficult or impossible to achieve near real-time data processing
Need to maintain multiple copies in enrichers and collection agents, leading to
data redundancy and mammoth data volume in each node
High availability trade-off with high costs to manage system capacity growth
Infrastructure and configuration complexity increases to maintain batch
processing

Multidestination pattern
In multisourcing, we saw the raw data ingestion to HDFS, but in most common cases the
enterprise needs to ingest raw data not only to new HDFS systems but also to their existing
traditional data storage, such as Informatica or other analytics platforms. In such cases, the
additional number of data streams leads to many challenges, such as storage overflow, data
errors (also known as data regret), an increase in time to transfer and process data, and so
on.

Big Data Architecture and Design Patterns Chapter 12

[395]

The multidestination pattern is considered as a better approach to overcome all of the
challenges mentioned previously. This pattern is very similar to multisourcing until it is
ready to integrate with multiple destinations (refer to the following diagram). The router
publishes the improved data and then broadcasts it to the subscriber destinations (already
registered with a publishing agent on the router). Enrichers can act as publishers as well as
subscribers:

Big Data Architecture and Design Patterns Chapter 12

[396]

Deploying routers in the cluster environment is also recommended for high volumes and a
large number of subscribers.

The following are the benefits of the multidestination pattern:

Highly scalable, flexible, fast, resilient to data failure, and cost-effective
Organization can start to ingest data into multiple data stores, including its
existing RDBMS as well as NoSQL data stores
Allows you to use simple query language, such as Hive and Pig, along with
traditional analytics
Provides the ability to partition the data for flexible access and
decentralized processing
Possibility of decentralized computation in the data nodes
Due to replication on HDFS nodes, there are no data regrets
Self-reliant data nodes can add more nodes without any delay

The following are the impacts of the multidestination pattern:

Needs complex or additional infrastructure to manage distributed nodes
Needs to manage distributed data in secured networks to ensure data security
Needs enforcement, governance, and stringent practices to manage the integrity
and consistency of data

Protocol converter
This is a mediatory approach to provide an abstraction for the incoming data of various
systems. The protocol converter pattern provides an efficient way to ingest a variety of
unstructured data from multiple data sources and different protocols.

Big Data Architecture and Design Patterns Chapter 12

[397]

The message exchanger handles synchronous and asynchronous messages from various
protocol and handlers as represented in the following diagram. It performs various
mediator functions, such as file handling, web services message handling, stream handling,
serialization, and so on:

In the protocol converter pattern, the ingestion layer holds responsibilities such as
identifying the various channels of incoming events, determining incoming data structures,
providing mediated service for multiple protocols into suitable sinks, providing one
standard way of representing incoming messages, providing handlers to manage various
request types, and providing abstraction from the incoming protocol layers.

Just-In-Time (JIT) transformation pattern
The JIT transformation pattern is the best fit in situations where raw data needs to be
preloaded in the data stores before the transformation and processing can happen. In this
kind of business case, this pattern runs independent preprocessing batch jobs that clean,
validate, corelate, and transform, and then store the transformed information into the same
data store (HDFS/NoSQL); that is, it can coexist with the raw data:

Big Data Architecture and Design Patterns Chapter 12

[398]

The preceding diagram depicts the datastore with raw data storage along with transformed
datasets. Please note that the data enricher of the multi-data source pattern is absent in this
pattern and more than one batch job can run in parallel to transform the data as required in
the big data storage, such as HDFS, Mongo DB, and so on.

Real-time streaming pattern
Most modern businesses need continuous and real-time processing of unstructured data for
their enterprise big data applications.

Real-time streaming implementations need to have the following characteristics:

Minimize latency by using large in-memory
Event processors are atomic and independent of each other and so are easily
scalable
Provide API for parsing the real-time information
Independent deployable script for any node and no centralized master node
implementation

Big Data Architecture and Design Patterns Chapter 12

[399]

The real-time streaming pattern suggests introducing an optimum number of event
processing nodes to consume different input data from the various data sources and
introducing listeners to process the generated events (from event processing nodes) in the
event processing engine:

Event processing engines (event processors) have a sizeable in-memory capacity, and the
event processors get triggered by a specific event. The trigger or alert is responsible for
publishing the results of the in-memory big data analytics to the enterprise business process
engines and, in turn, get redirected to various publishing channels (mobile, CIO
dashboards, and so on).

Big data workload patterns
Workload patterns help to address data workload challenges associated with different
domains and business cases efficiently. The big data design pattern manifests itself in the
solution construct, and so the workload challenges can be mapped with the right
architectural constructs and thus service the workload.

Big Data Architecture and Design Patterns Chapter 12

[400]

The following diagram depicts a snapshot of the most common workload patterns and their
associated architectural constructs:

Workload design patterns help to simplify and decompose the business use cases into
workloads. Then those workloads can be methodically mapped to the various building
blocks of the big data solution architecture.

Data storage layer
Data storage layer is responsible for acquiring all the data that are gathered from various
data sources and it is also liable for converting (if needed) the collected data to a format that
can be analyzed. The following sections discuss more on data storage layer patterns.

Big Data Architecture and Design Patterns Chapter 12

[401]

ACID versus BASE versus CAP
Traditional RDBMS follows atomicity, consistency, isolation, and durability (ACID) to
provide reliability for any user of the database. However, searching high volumes of big
data and retrieving data from those volumes consumes an enormous amount of time if the
storage enforces ACID rules. So, big data follows basically available, soft state, eventually
consistent (BASE), a phenomenon for undertaking any search in big data space.

Database theory suggests that the NoSQL big database may predominantly satisfy two
properties and relax standards on the third, and those properties are consistency,
availability, and partition tolerance (CAP).

With the ACID, BASE, and CAP paradigms, the big data storage design patterns have
gained momentum and purpose. We will look at those patterns in some detail in this
section. The patterns are:

Façade pattern
NoSQL pattern
Polyglot pattern

Façade pattern
This pattern provides a way to use existing or traditional existing data warehouses along
with big data storage (such as Hadoop). It can act as a façade for the enterprise data
warehouses and business intelligence tools.

In the façade pattern, the data from the different data sources get aggregated into HDFS
before any transformation, or even before loading to the traditional existing data
warehouses:

Big Data Architecture and Design Patterns Chapter 12

[402]

The façade pattern allows structured data storage even after being ingested to HDFS in the
form of structured storage in an RDBMS, or in NoSQL databases, or in a memory cache.
The façade pattern ensures reduced data size, as only the necessary data resides in the
structured storage, as well as faster access from the storage.

NoSQL pattern
This pattern entails getting NoSQL alternatives in place of traditional RDBMS to facilitate
the rapid access and querying of big data. The NoSQL database stores data in a columnar,
non-relational style. It can store data on local disks as well as in HDFS, as it is HDFS aware.
Thus, data can be distributed across data nodes and fetched very quickly.

Big Data Architecture and Design Patterns Chapter 12

[403]

Let's look at four types of NoSQL databases in brief:

Column-oriented DBMS: Simply called a columnar store or big table data store,
it has a massive number of columns for each tuple. Each column has a column
key. Column family qualifiers represent related columns so that the columns and
the qualifiers are retrievable, as each column has a column key as well. These
data stores are suitable for fast writes.

Key-value pair database: A key-value database is a data store that, when
presented with a simple string (key), returns an arbitrarily large data (value).
The key is bound to the value until it gets a new value assigned into or from a
database. The key-value data store does not need to have a query language. It
provides a way to add and remove key-value pairs. A key-value store is a
dictionary kind of data store, where it has a list of words and each word
represents one or more definitions.
Graph database: This is a representation of a system that contains a sequence of
nodes and relationships that creates a graph when combined. A graph represents
three data fields: nodes, relationships, and properties. Some types of graph store
are referred to as triple stores because of their node-relationship-node structure.
You may be familiar with applications that provide evaluations of similar or
likely characteristics as part of the search (for example, a user bought this item
also bought... is a good illustration of graph store implementations).

Big Data Architecture and Design Patterns Chapter 12

[404]

Document database: We can represent a graph data store as a tree structure.
Document trees have a single root element or sometimes even multiple root
elements as well. Note that there is a sequence of branches, sub-branches, and
values beneath the root element. Each branch can have an expression or relative
path to determine the traversal path from the origin node (root) and to any given
branch, sub-branch, or value. Each branch may have a value associated with that
branch. Sometimes the existence of a branch of the tree has a specific meaning,
and sometimes a branch must have a given value to be interpreted correctly.

Big Data Architecture and Design Patterns Chapter 12

[405]

The following table summarizes some of the NoSQL use cases, providers, tools and
scenarios that might need NoSQL pattern considerations. Most of this pattern
implementation is already part of various vendor implementations, and they come as out-
of-the-box implementations and as plug and play so that any enterprise can start leveraging
the same quickly.

NoSQL DB to
Use Scenario Vendor / Application / Tools

Columnar
database

Application that needs to fetch entire
related columnar family based on a
given string: for example, search
engines

SAP HANA / IBM DB2 BLU /
ExtremeDB / EXASOL / IBM
Informix / MS SQL Server /
MonetDB

Key Value Pair
database

Needle in haystack applications (refer to
the Big data workload patterns given in
this section)

Redis / Oracle NoSQL DB /
Linux DBM / Dynamo /
Cassandra

Graph database

Recommendation engine: application
that provides evaluation of Similar to /
Like: for example, User that bought this
item also bought

ArangoDB / Cayley / DataStax
/ Neo4j / Oracle Spatial and
Graph / Apache Orient DB /
Teradata Aster

Document
database

Applications that evaluate churn
management of social media data or
non-enterprise data

Couch DB / Apache Elastic
Search / Informix / Jackrabbit /
Mongo DB / Apache SOLR

Polyglot pattern
Traditional (RDBMS) and multiple storage types (files, CMS, and so on) coexist with big
data types (NoSQL/HDFS) to solve business problems.

Big Data Architecture and Design Patterns Chapter 12

[406]

Most modern business cases need the coexistence of legacy databases. At the same time,
they would need to adopt the latest big data techniques as well. Replacing the entire system
is not viable and is also impractical. The polyglot pattern provides an efficient way to
combine and use multiple types of storage mechanisms, such as Hadoop, and RDBMS. Big
data appliances coexist in a storage solution:

The preceding diagram represents the polyglot pattern way of storing data in different
storage types, such as RDBMS, key-value stores, NoSQL database, CMS systems, and so on.
Unlike the traditional way of storing all the information in one single data source, polyglot
facilitates any data coming from all applications across multiple sources (RDBMS, CMS,
Hadoop, and so on) into different storage mechanisms, such as in-memory, RDBMS, HDFS,
CMS, and so on.

Big Data Architecture and Design Patterns Chapter 12

[407]

Data access layer
Data access in traditional databases involves JDBC connections and HTTP access for
documents. However, in big data, the data access with conventional method does take too
much time to fetch even with cache implementations, as the volume of the data is so high.

So we need a mechanism to fetch the data efficiently and quickly, with a reduced
development life cycle, lower maintenance cost, and so on.

Data access patterns mainly focus on accessing big data resources of two primary types:

End-to-end user-driven API (access through simple queries)
Developer API (access provision through API methods)

In this section, we will discuss the following data access patterns that held efficient data
access, improved performance, reduced development life cycles, and low maintenance costs
for broader data access:

Connector pattern
Lightweight stateless pattern
Service locator pattern
Near real-time pattern
Stage transform pattern

Big Data Architecture and Design Patterns Chapter 12

[408]

The preceding diagram represents the big data architecture layouts where the big data
access patterns help data access. We discuss the whole of that mechanism in detail in the
following sections.

Connector pattern
The developer API approach entails fast data transfer and data access services through
APIs. It creates optimized data sets for efficient loading and analysis. Some of the big data
appliances abstract data in NoSQL DBs even though the underlying data is in HDFS, or a
custom implementation of a filesystem so that the data access is very efficient and fast.

The connector pattern entails providing developer API and SQL like query language to
access the data and so gain significantly reduced development time. As we saw in the
earlier diagram, big data appliances come with connector pattern implementation. The big
data appliance itself is a complete big data ecosystem and supports virtualization,
redundancy, replication using protocols (RAID), and some appliances host NoSQL
databases as well.

Big Data Architecture and Design Patterns Chapter 12

[409]

The preceding diagram shows a sample connector implementation for Oracle big data
appliances. The data connector can connect to Hadoop and the big data appliance as well. It
is an example of a custom implementations that we described earlier to facilitate faster data
access with less development time.

Lightweight stateless pattern
This pattern entails providing data access through web services, and so it is independent of
platform or language implementations. The data is fetched through restful HTTP calls,
making this pattern the most sought after in cloud deployments. WebHDFS and HttpFS are
examples of lightweight stateless pattern implementation for HDFS HTTP access. It uses the
HTTP REST protocol. The HDFS system exposes the REST API (web services) for
consumers who analyze big data. This pattern reduces the cost of ownership (pay-as-you-
go) for the enterprise, as the implementations can be part of an integration Platform as a
Service (iPaaS):

The preceding diagram depicts a sample implementation for HDFS storage that exposes
HTTP access through the HTTP web interface.

Big Data Architecture and Design Patterns Chapter 12

[410]

Service locator pattern
In a big data storage landscape, there are different types of data format (polyglot
persistence), and if one needs to select and analyze a specific storage type from the list of
stored data, then the service locator pattern comes in handy. It provides the flexibility to
manipulate, filter, select, and co-relate services from the service catalog when storage access
is with a SaaS model:

The preceding diagram shows a sample implementation of a service locator pattern.
Observed data from various sources get aggregated and exposed through a service catalog
and is available for visualization, or perhaps for further analysis. Service aggregators can
aggregate services within or outside of enterprises. Different visualization tools can mix and
match these services to show enterprise data alongside social media which is a different
format than the other data source formats.

Near real-time pattern
For any enterprise to implement real-time data access or near real-time data access, the key
challenges to be addressed are:

Rapid determination of data: Ensure rapid determination of data and make swift
decisions (within a few seconds, not in minutes) before the data becomes
meaningless
Rapid analysis: Ability to analyze the data in real time and spot anomalies and
relate them to business events, provide visualization, and generate alerts at the
moment that the data arrived

Big Data Architecture and Design Patterns Chapter 12

[411]

Some examples of systems that would need real-time data analysis are:

Radar systems
Customer services applications
ATMs
Social media platforms
Intrusion detection systems

Storm and in-memory applications such as Oracle Coherence, Hazelcast IMDG, SAP
HANA, TIBCO, Software AG (Terracotta), VMware, and Pivotal GemFire XD are some of
the in-memory computing vendor/technology platforms that can implement near real-time
data access pattern applications:

As shown in the preceding diagram, with multi-cache implementation at the ingestion
phase, and with filtered, sorted data in multiple storage destinations (here one of the
destinations is a cache), one can achieve near real-time access. The cache can be of a NoSQL
database, or it can be any in-memory implementations tool, as mentioned earlier. The
preceding diagram depicts a typical implementation of a log search with SOLR as a search
engine.

Big Data Architecture and Design Patterns Chapter 12

[412]

Stage transform pattern
In the big data world, a massive volume of data can get into the data store. However, all of
the data is not required or meaningful in every business case. The stage transform pattern
provides a mechanism for reducing the data scanned and fetches only relevant data.

HDFS has raw data and business-specific data in a NoSQL database that can provide
application-oriented structures and fetch only the relevant data in the required format:

Combining the stage transform pattern and the NoSQL pattern is the recommended
approach in cases where a reduced data scan is the primary requirement. The preceding
diagram depicts one such case for a recommendation engine where we need a significant
reduction in the amount of data scanned for an improved customer experience.

The implementation of the virtualization of data from HDFS to a NoSQL database,
integrated with a big data appliance, is a highly recommended mechanism for rapid or
accelerated data fetch. We have already seen that in the near real-time implementation
shown earlier in this section.

Big Data Architecture and Design Patterns Chapter 12

[413]

Rapid data analysis pattern
For faster data processing and access, the enterprise can choose any of the following tools in
its data landscape. Each implementation has its own merits and purpose; we suggest
reading each implementation in detail from the references that we have provided and
choose the best for your enterprise needs:

Apache Hadoop
Bash Reduce
Disco (Nokia Research)
Apache Spark
Graph Lab
Apache Storm
Google Big Query

Data discovery and analysis layer
Data discovery and analysis in big data is different from the traditional analysis of
structured RDBMS data from limited sets. Big data analysis needs a more sophisticated
mechanism, as it involves natural language processing, unstructured texts, videos and
images, RFID data, and so on. This section touches upon some data discovery and analysis
patterns and mentions the tools that are supporting these patterns. Readers are encouraged
to read other referenced materials to get a more profound understanding of each pattern:

Big Data Architecture and Design Patterns Chapter 12

[414]

Data queuing pattern
It is a most common situation that a system needs to handle spikes while analyzing data.
This pattern introduces a workflow or process to queue additional chunks of data and then
route them to available nodes:

The preceding diagram depicts a sample implementation of a data queue and processors for
additional workflows and routes to available nodes (of multiple nodes).

Using cloud IaaS is the best option to handle the spikes dynamically and yield better cost
savings. It spins additional virtual machines as needed, with more when there is a spike,
and fewer when traffic is slow or average).

Index-based insight pattern
This pattern defines indexes (keys) based on the inputs from the users who interact with
customers. Iteratively, finding a range of indexes is the mechanism suggested by the index-
based insight pattern. It sets the analysis mechanism or pattern to index a variable and to
provide insight into common behaviors such as parents buying toys, and all children aged
above 13 in a neighborhood. This pattern helps to find a crucial efficient lookup for rapid
scanning but keeps related columns together.

Machine learning pattern
This pattern helps to find a pattern of data inputs generated from heterogeneous devices,
such as RFID devices, energy meters, signal devices, weather-related devices, and so on.

Big Data Architecture and Design Patterns Chapter 12

[415]

Understanding data generated by automated systems, or devices without manual
intervention, is a challenging task, and one needs to rely on algorithms and statistical
methods. Fortunately, there are excellent algorithms that help to analyze this data, and
some of the conventional algorithms are as follows:

Naïve Bayes classifier algorithm
K Means clustering algorithm
Support vector machine algorithm
Apriori algorithm
Linear regression
Hypothesis testing
Clustering
ANOVA
Logistic regression
Neural networks / artificial neural networks
Random forests
Decision trees
Nearest neighbors
Principal component analysis
Conjoint analysis
Ensemble methods

We can use one or more combinations of these algorithms as needed. Readers are
encouraged to refer to other materials to get an insight into each algorithm, as covering
them is not in the scope of this section.

Converge(r) pattern
In most business cases, as we have seen earlier, enterprises need to deal with traditional
(structured) data and at the same time make use of big data to get enterprise-wide insights.
The converge(r) pattern provides an efficient way to merge unstructured data with
structured data and get insights and make decisions.

In some business cases, enterprises may need to understand the sentiments (views and
opinions) of their product from social media. The converge(r) pattern, combining external
data formats with internal enterprise data formats, is one of the best options. This pattern
entails combining those views and opinions from social media with internal data analysis to
get combined data insights.

Big Data Architecture and Design Patterns Chapter 12

[416]

The data convergence needs to happen before the enterprise data is analyzed. So we can use
the façade pattern (refer to the Data storage layer section in this chapter), and also use
machine learning patterns to use the grouped data from the social media (for impacts,
revenues, brand images, churn rates, and so on).

Tools such as DrivenData, TianChi, Crowd Analytics, InfoChimps, Kaggle, and TopCoder
provide out-of-the-box converge(r) implementation, and we can use those tools along with
ETL tools for data transformation, cleansing, and enrichment, and get insights by
combining the data.

Data visualization layer
Data visualization's primary responsibility is to provide more insights from the massive
volume of data by using visual representations, such as statistical reports, charts, and so on.
Visualization of insights is the most visible portion to the stakeholders and sponsors; it is
the most impactful part of the whole big data paradigm.

As visualization is most impactful and considering the vastness of the visualization, this
section aims to provide only a brief introduction to a few of the common visualization
patterns. However, we encourage readers to explore the exclusive visualization materials
that we have provided in the reference sections.

Big Data Architecture and Design Patterns Chapter 12

[417]

The preceding diagram depicts data visualization patterns in a sample big data landscape.
Visualization patterns need to support high-level views and also granular level details as
visual representations. Moreover, visualization patterns can be used in conjunction with
data access patterns to leverage the rapid access of data and its presentation.

First glimpse pattern
As the name suggests, this is an approach that provides primary or minimalistic
visualization data and pulls detailed information only on demand.

This pattern entails fetching only the most critical and essential data (which may be decided
by machine learning patterns, rankings, scores, and so on) as a first glimpse and fetches
drill-down data on demand. An example could be a search application displaying search
results as only one page (the first page) and providing more data when the user needs it on
subsequent pages.

Portal pattern
With most common cases where the enterprise already has reporting applications and
intends to reuse the same for the visualization of big data, then this pattern entails
enhancing the web application (portal) with scripting frameworks to enhance the legacy
visualization, thus saving the enterprise the cost of having a new visualization tool.

The following lists some of the scripting frameworks one may want to include and enhance
with enterprise portal and realize the portal pattern:

D3.js
Chart.js
HighChart.js
ChartList.js
Raphel
Processing.js
Pixi.js
Webix
AnyChart
Flot
Pykcharts
Cytoscape.js

Big Data Architecture and Design Patterns Chapter 12

[418]

Mashup view pattern
Mashup view creates an aggregated mashup view from heterogeneous data stores such as
Hadoop, cache, and RDBMS, thereby reducing the analysis time by aggregating the results
of the queries.

It helps to achieve higher performance for the queries by storing an aggregated mashups
view in the HIVE layer, similar to the traditional data warehouse. The updates to the data
warehouse are made as offline batch jobs:

Some mashup view supported (vendor) tools Some data integration mashup tools

• IBM Netezza
• Cassandra
• Vertica, Cloudera Impala
• Hortonworks Stinger

• Damia
• Yahoo Pipes
• MS Popfly
• Google Mashup Editor (GME)
• Exhibit
• Apatar
• MashMaker

Table 12.2: Mashup view supported tools and data integration tools

Some drawbacks with mashups that you may need to be aware of are text/data mismatch,
object identifiers, schema mismatches, abstract level mismatches, and lower data quality or
accuracy (due to data integration from independent sources).

Compression pattern
Compression is one of the data reduction methods of big data analysis, as reduced data size
is computationally less expensive.

The compression pattern provides a mechanism in situations where the enterprise needs to
access data without aggregation or mashups. The compression pattern can help with faster
data access from data storage by having standardized formats (with the need to transform
to a standardized format regardless of data sources). The advantage of having formats is to
ensure data correctness and consistency.

The most popular compression data analysis platform is R, and one can explore in-memory
compression with ReRams as well.

Big Data Architecture and Design Patterns Chapter 12

[419]

Exploder pattern
This is a pattern to help data analysts to look at different datasets, finding a relation
between different datasets, and also providing different perspectives. The exploder pattern
is a useful pattern in cases where an enterprise need various views (visuals) for the data and
there are no restrictions with the same kind of visual patterns.

It also allows one to drill down from one view to a different chart type or visualization
pattern with a click.

Summary
Although the development field of data analytics is not new, it has become more critical
than ever as it experiences prodigious quantities of data generated by businesses, sensors,
applications, and so on. Once the generated data gets stored, it can give extraordinary
insights and helps not only business enterprises but also government and non-government
enterprises, social communities, the economy, and much more.

In current technology trends, big data has been involved in many evolutions, from just
buzzwords to crunching data from machine learning algorithms. With the exponential
explosion of high velocity, high volume, high variety, and the veracity of data sources and
streams (the four V's), big data has become the inevitable representative of the architectures,
tools, and technologies that handle enterprises increasingly demanding requirements.

In this chapter, we have gone through a brief introduction of the four V's of big data, data
analysis technology, and concepts. We also touched upon the big data life cycle and how it
helps different stakeholders to achieve and realize their data insights. A brief section
covered big data landscapes, and the data layers, as well as most of the architectural
patterns associated with big data, involving data pipelines: that is an ordered combination
of data acquisition, integration, ingestion, fast processing, storage, rapid access, and
analytics stages.

The most crucial theme of this book is architectural patterns, and this chapter reflects it in
its big data architecture, and design patterns section, in a sequence of architecture patterns,
such as MapReduce, Lambda, and data lake. Then we have covered most common big data
(application) design patterns by layers: that is patterns in various big data architectural
layers, such as data sources and the ingestion layer, the data storage layer, the data access
layer, the data discovery and analysis layer, and the data visualization layer.

Big Data Architecture and Design Patterns Chapter 12

[420]

Covering big data architectural patterns in one chapter has been very challenging for us,
and we have tried our best by providing samples of big data concepts and the most
common patterns that help data architects and other data technology stakeholders. We
hope this chapter provides them with a head start on their big data journey. As mentioned
in many places across this chapter, we strongly encourage readers to refer to the citations
section should they need to get exclusive patterns and details of implementations.

References
Citations and reference materials:

Big data: Application Architecture Q&A, A Problem-Solution Approach by Nitin
Sawant and Himanshu Shah (Apress 2013)
Big data governance: An Emerging Imperative by Sunil Soares, (MC Press, October
2012)

Other sources:

http://assured- cloud- computing. illinois. edu/ files/ 2015/ 02/ Cristina_
Abad.pdf

http://bigr. io/ architecture/

http://blog. flutura. com/ /2012/ 08/ 11-core- big- data- workload- design. html

http://ercoppa. github. io/ HadoopInternals/ HadoopArchitectureOverview.
html

http://insightdatascience. com

http://www. bcs. org/ upload/ pdf/enterprise- architecture- patterns- 201016.
pdf

http://www. bigdatapatterns. org/design_ patterns/ automated_ dataset_
execution

http://www. bigdatapatterns. org/overview

http://www. bigdatascienceschool. com/selfstudy

http://www. infoworld. com/ article/ 2616959/ big- data/ 7- top-tools- for-
taming-big- data. html

http://www. pentaho. com/ sites/ default/ files/ uploads/ resources/
forrester_ patterns_ in_ big_ data.pdf

http://www. refcodes. org/ resources/
Big%20data%20processing%20the%20lean%20way%20- %20a%20case%20study%20-
%20v1.7. pdf

http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://assured-cloud-computing.illinois.edu/files/2015/02/Cristina_Abad.pdf
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://bigr.io/architecture/
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://blog.flutura.com//2012/08/11-core-big-data-workload-design.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://ercoppa.github.io/HadoopInternals/HadoopArchitectureOverview.html
http://insightdatascience.com
http://insightdatascience.com
http://insightdatascience.com
http://insightdatascience.com
http://insightdatascience.com
http://insightdatascience.com
http://insightdatascience.com
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bcs.org/upload/pdf/enterprise-architecture-patterns-201016.pdf
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/design_patterns/automated_dataset_execution
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatapatterns.org/overview
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.bigdatascienceschool.com/selfstudy
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.infoworld.com/article/2616959/big-data/7-top-tools-for-taming-big-data.html
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.pentaho.com/sites/default/files/uploads/resources/forrester_patterns_in_big_data.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf
http://www.refcodes.org/resources/Big%20data%20processing%20the%20lean%20way%20-%20a%20case%20study%20-%20v1.7.pdf

Big Data Architecture and Design Patterns Chapter 12

[421]

http://www. yottastor. com/ design- principles- big- data

https:// arxiv. org/ ftp/ arxiv/ papers/ 1201/ 1201. 4479. pdf

https:// bigdatawg. nist. gov/ _ uploadfiles/ M0060_ v1_ 8912129783. pdf

https:// blogs. msmvps. com/ abu/ 2010/ 10/ 16/data- architecture- patterns-
design-patterns- and- solution- patterns/

https:// conferences. oreilly. com/ strata/ big- data- conference- ca- 2015/
public/schedule/ detail/ 38774

https:// conferences. oreilly. com/ strata/ strataeu2014/ public/ schedule/
detail/37305

https:// hackernoon. com/ ingestion- and- processing- of-data- for- big- data-
and-iot- solutions- 659431e37b52

https:// iwringer. wordpress. com/2015/ 08/ 03/ patterns- for- streaming-
realtime- analytics/

https:// link. springer. com/ book/10. 1007%2F978- 1- 4302- 6293- 0

https:// static1. squarespace. com/ static/ 55007c24e4b001deff386756/ t/
564a2b7de4b0c1a8406915fb/ 1447701373291/ Maniyam%2C+Sujee. pdf

https:// vision. cloudera. com/ the- six-principles- of-modern- data-
architecture/

https:// www. datameer. com/ wp- content/ uploads/ pdf/ white_ paper/ Data-
Preparation- Modern- BI- Common- Design- Patterns. pdf

https:// www. dezyre. com/ article/ types- of-analytics- descriptive-
predictive- prescriptive- analytics/ 209

https:// www. ibm. com/ developerworks/ library/ bd-archpatterns1/ index. html

https:// www. import. io/ post/ best- big-data- tools- use/

https:// www. linkedin. com/ pulse/ top- 10- guiding- principles- big-data-
architecture- ram- narasimhan

https:// www. researchgate. net/ publication/ 296634867_ Device_ Data_
Ingestion_ for_ Industrial_ Big_ Data_ Platforms_ with_ a_Case_ Study

https:// www. slideshare. net/ AmazonWebServices/ big- data- architectural-
patterns- and- best- practices

https:// www. slideshare. net/ AsterData/ sas-ny- big- analytics- conference

https:// www. slideshare. net/ cscyphers/ big-data- platforms- an- overview

https:// www. slideshare. net/ ZachGemignani/ 7- design- principles- 44395597

http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
http://www.yottastor.com/design-principles-big-data
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://arxiv.org/ftp/arxiv/papers/1201/1201.4479.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0060_v1_8912129783.pdf
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://blogs.msmvps.com/abu/2010/10/16/data-architecture-patterns-design-patterns-and-solution-patterns/
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/big-data-conference-ca-2015/public/schedule/detail/38774
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://conferences.oreilly.com/strata/strataeu2014/public/schedule/detail/37305
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://hackernoon.com/ingestion-and-processing-of-data-for-big-data-and-iot-solutions-659431e37b52
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://link.springer.com/book/10.1007%2F978-1-4302-6293-0
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://static1.squarespace.com/static/55007c24e4b001deff386756/t/564a2b7de4b0c1a8406915fb/1447701373291/Maniyam%2C+Sujee.pdf
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://vision.cloudera.com/the-six-principles-of-modern-data-architecture/
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.datameer.com/wp-content/uploads/pdf/white_paper/Data-Preparation-Modern-BI-Common-Design-Patterns.pdf
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.import.io/post/best-big-data-tools-use/
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.linkedin.com/pulse/top-10-guiding-principles-big-data-architecture-ram-narasimhan
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.researchgate.net/publication/296634867_Device_Data_Ingestion_for_Industrial_Big_Data_Platforms_with_a_Case_Study
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AmazonWebServices/big-data-architectural-patterns-and-best-practices
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/AsterData/sas-ny-big-analytics-conference
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/cscyphers/big-data-platforms-an-overview
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597
https://www.slideshare.net/ZachGemignani/7-design-principles-44395597

Index

A
ABACUS
 architecture 196
 from avolution software 196
abstract factory (kit)
 about 88
 benefits 89
 impact 89
AbstractFactory class 88
abstraction 80
access token pattern 288
active object pattern 111
adapter object
 about 93
 benefits 94
 impact 94
adapter pattern 75
agent-oriented software engineering (AOSE) 16
aggregates
 characteristics 167
agnostic services
 about 212
 benefits 213
 impacts 214
analysis layer 413
API gateway pattern
 about 281
 backend for frontend pattern 282
 microservices, discovery pattern 283
 microservices, registration pattern 283
 microservices, usage patterns 283
API management pattern
 about 142
 component 142
application delivery controllers (ADCs) 284
application health monitoring pattern 364

application lifecycle management (ALM) 271
application metrics pattern
 about 289
 audit logging pattern 290
application programming interfaces (APIs) 44
application publishes events pattern 287
architecture building blocks (ABBs) 181
architecture development method (ADM)
 about 177
 architecture change management (phase H) 179
 architecture vision (phase A) 179
 business architecture (phase B) 179
 implementation governance (phase G) 179
 information systems architecture (phase C) 179
 key activities 177
 migration planning (phase F) 179
 opportunities and solutions (phase E) 179
 preliminary phase 178
 requirements management 179
 Technology architecture (phase D) 179
architecture pattern 13
architecture patterns, big data
 about 389
 data lake architecture pattern 391, 392
 lambda architecture pattern 389
 MapReduce pattern 389
architecture repository
 about 183, 184
 architecture capability 185
 architecture landscape 185
 architecture metamodel 185
 components 185
 governance log 185
 reference library 185
 standards information base 185
architecture, TOGAF
 reference link 176

[423]

artifact 179, 180
artificial intelligence (AI) 9
ASP.Net framework
 about 69
 controller 69
 model 69
 MVP pattern 69
 MVVM pattern 70
 view 69
aspect-oriented programming (AOP) 15, 366
asynchronous command calls pattern 297
asynchronous messaging design pattern 281
asynchronous queuing pattern 354
atomic service transaction
 about 214
 benefits 215
 impacts 215
atomicity, consistency, isolation, and durability

(ACID) 401
audit logging pattern 290
authentication broker
 about 215
 benefits 217
 impact 217
authentication gateway service (AGS) pattern 376
autonomous bounded context 152
autonomous bubble context 155
autonomous messages 29
autopilot pattern
 about 310
 example 311
 references 312
 URL 310

B
backend for frontend pattern 282
bare metal (BM) 269, 372
basically available, soft state, eventually consistent

(BASE) 401
batch layer 390
behavioral patterns
 about 99
 chain of responsibility 100
 characteristics 99
 command pattern 100

 interpreter pattern 102
 iterator (cursor) pattern 103
 Mediator pattern 104
 memento pattern 104
 Observer pattern 106
 State pattern 107
 strategy pattern 108
 template method 109
 visitor pattern 110
big data analysis
 about 381, 382
 technology prerequisites 381
big data architecture
 data analysis 388
 data consumption 388
 data messaging 387
 data sources 387
 data storage 387
 landscape 387
 layers 387
big data platform
 about 384
 engineering 385
 governance 386
big data
 about 381
 architectural patterns 389
 design layer 392
 value 381
 variety 381
 velocity 381
 veracity 381
 volume 381
bind-mount volumes
 using 307
blue-green deployment 326
bounded contexts
 autonomous bounded context 152
 integrating 151
 multiple bounded contexts 153
 shared-nothing architecture 152, 153
 single responsibility codes 153
 SOA principles, adoption 154
bridge pattern
 about 75, 94

[424]

 benefits 94
 impact 95
broadcast pattern 253
broker topology 23, 24
bubble context
 about 155
 anti-corruption layer 157
builder design pattern 75
builder pattern
 about 89
 benefits 90
 impact 90
building blocks
 ABBs 181
 about 179, 180
 SBBs 181
bulkhead pattern 329
business continuity (BC) 373
business focus 190
Business Process as a Service (BPaaS) 344
business-to-business integration 122

C
cache-aside pattern 357
card reader 75
chain of responsibility
 about 100
 benefits 100
 impact 100
channel adapter 139
circuit breaker pattern
 about 293, 327, 328, 329, 357
 concurrent requests, for data pattern 295
 event store pattern 296
 high availability microservices pattern 295
 shared caching layer pattern 294
client 43
client-server architecture, benefits
 caching 47
 redundancy 47
client-server patterns
 about 51
 master-slave pattern 51
 peer-to-peer patterns 53
client-side UI composition pattern 292

client/server architecture 17
 benefits 18
 higher security 18
 maintenance 18
cloud application architecture
 about 341, 342
 versus traditional application architecture 340
cloud architecture 341
cloud design patterns
 about 356
 application health monitoring pattern 364
 cache-aside pattern 357
 circuit breaker pattern 357
 cloud workload scheduler pattern 371
 command and query responsibility segregation

(CQRS) pattern 361
 compensating transaction pattern 358
 competing consumers pattern 359
 compute resource consolidation pattern 360
 event sourcing pattern 362
 external configuration store pattern 363
 federated identity pattern 363
 gatekeeper pattern 364
 leader election pattern 364
 materialized views pattern 365
 pipe and filter pattern 366
 priority queue pattern 366
 queue-based load leveling pattern 367
 reference link 356
 retry pattern 367
 runtime reconfiguration pattern 368
 scheduler agent supervisor pattern 369
 sharding pattern 369
 throttling pattern 370
 workload distribution pattern 371
Cloud Enablement 339
cloud integration patterns
 about 344
 asynchronous queuing pattern 354
 intermediate routing pattern 350
 messaging metadata pattern 348
 pipes-and-filters-based decomposition 345
 process-based decomposition 345
 reliable messaging pattern 355
 service agent pattern 349

[425]

 service callback pattern 352
 service instance routing 353
 service messaging pattern 346
 state messaging pattern 351
 tier/layer-based decomposition 345
cloud reliability and resilience patterns
 about 372
 dynamic failure detection pattern 374
 hypervisor clustering pattern 373
 recovery pattern 374
 redundant storage pattern 373
 resource pooling pattern 372
 resource reservation pattern 372
 virtual servers pattern, redundant physical

connection 374
cloud security patterns
 about 375
 AGS pattern 376
 CKMS pattern 375
 cloud storage data at rest encryption pattern 377
 cloud storage device masking pattern 377
 denial of service (DoS) protection pattern 378
 ETDR pattern 377
 in-transit cloud data encryption pattern 377
 threat intelligence processing pattern 378
 VPN pattern 375
cloud storage data at rest encryption pattern 377
cloud storage device masking pattern 377
cloud workload scheduler pattern 371
cloud
 about 339, 340
 reliability 372
combining architecture patterns 36
command and query responsibility segregation

(CQRS) pattern 278, 361
command message pattern 134
command pattern
 about 100
 benefits 101
 impact 101
commercial off-the-shelf software (COTS) 240
common closure principle (CCP) 267
common object request broker architecture

(CORBA) 18
compensating transaction pattern 330, 331, 358

competing consumers pattern 359
complex event processing (CEP) patterns 39, 248,

249, 261
component-based assembly (CBD) architecture 8,

15

composite object
 about 95
 benefits 95
 impact 95
composite pattern 75
compute resource consolidation pattern 360, 361
concurrency architectural pattern 112
concurrency design pattern
 active object pattern 111
 monitor object pattern 111
 producer-consumer pattern 111
concurrency patterns 111
concurrent requests
 for data pattern 295
connector pattern 408
consistency, availability, and partition tolerance

(CAP) 401
container images
 storing, in container registry 319
container registry
 container images, storing 319
containerized applications
 autopilot pattern 310
containers
 file sharing pattern 307
 persistent storage patterns 312
content-based router pattern 136
context 237
continuous integration (CI) 305, 316
converge(r) pattern 415
creational design patterns
 about 87
 abstract factory (kit) 88
 builder pattern 89
 factory method (virtual constructor) 87
 prototype pattern 90
 singleton pattern 91
cryptographic key management system (CKMS)

pattern 375
cyber-physical system (CPS) 8, 335

[426]

D
data access layer
 about 407
 analysis layer 413
 compression pattern 418
 connector pattern 408
 converge(r) pattern 415
 data discovery 413
 data queuing pattern 414
 data visualization layer 416
 exploder pattern 419
 first glimpse pattern 417
 index-based insight pattern 414
 lightweight stateless pattern 409
 machine learning pattern 414
 mashup view pattern 418
 near real-time pattern 410
 portal pattern 417
 rapid data analysis pattern 413
 service locator pattern 410
 stage transform pattern 412
data analysis 382
data analysis life cycle
 about 381
 communicate results 382
 data discovery 381
 data preparations 382
 model building 382
 model planning 382
 operationalizing 382
data discovery 413
data lake architecture pattern
 about 391, 392
 characteristics 391
Data Lake as a Service (DLaaS) 344
data manipulation language (DML) 48
data science 382, 383
data sources
 about 392
 Just-In-Time (JIT) transformation pattern 397
 multidestination pattern 394
 multisource extractor 393
 protocol converter 396
 real-time streaming pattern 398

data storage layer
 ACID, versus BASE 401
 BASE, versus CAP 401
 facade pattern 401
 NoSQL pattern 402
 polyglot pattern 405, 406
data visualization layer 416
Data Warehouse as a Service (DWaaS) 344
Database as a Service (DBaaS) 344
database integration 159
database management server (DBMS) 48
database management systems (DBMS) 277
datatype channel pattern 132
decomposition patterns
 about 264
 business capability pattern, using 266
 resources pattern, using 266
 subdomain pattern, using 268
 use case pattern, using 266
decorator pattern
 about 95
 benefits 96
 impact 96
decoupled systems 29
deliverable 179, 180
denial of service (DoS) protection pattern 378
department of defense architecture framework

(DoDAF) 176
dependency injection (DI) 15
dependency inversion principle (DIP) 85
design layer, big data
 about 392
 data access layer 407
 data sources 392
 data storage layer 401
 ingestion layer 392
 workload patterns 399
design pattern 13
design patterns, for web application development
 about 73
 adapter pattern 75
 bridge pattern 75
 builder design pattern 75
 composite pattern 75
 factory method design pattern 75

[427]

 front controller pattern 76
 interpreter design pattern 73
 mediator design pattern 74
 memento design pattern 74
 observer design pattern 74
 Spring framework 77
 state design pattern 74
 strategy design pattern 74
 template method design pattern 74
 visitor design pattern 75
design principles
 SOLID principle 81
DevOps 344
disaster recovery (DR) 323, 342
distributed bounded context integration strategies
 about 158
 database integration 159
 flat file integration 160
 messaging and event-driven architecture 161
distributed business process management 121
distributed client-server architecture
 about 63
 TP monitor 64
 transaction processing 64
distributed tracing pattern
 about 290
 exception tracking pattern 290
Docker 300
Docker building pattern
 reference link 303
Docker building patterns
 reference link 306
Docker compose configuration pattern 316, 317
Docker container anti-patterns
 about 317
 container images, storing in container registry

319

 dependency, between containers 321
 Docker images 318
 IP address 321
 root user 321
 service, hosting in container 319
 with SSH 320
Docker container
 OS, installing 318

Docker image 318
Docker image building patterns 305
Docker-enabled containerization
 about 299
 building patterns 303
 design patterns 302
 drivers 300, 301, 302
domain event pattern 171
domain name service (DNS)
 about 45, 378
 client 45
 server 45
 working 46
domain service 165
domain-driven design (DDD) patterns
 about 149
 strategic patterns 149
domain-driven design (DDD), characteristics
 aggregate 148
 aggregate root 148
 bounded context 148
 domain model 148
 encapsulation 148
 entities 148
 value objects 148
domain-driven design (DDD), principles
 about 146
 collaborating 146
 core domain, focusing 146
 domain model, evolving 147
 domain, modeling 147
 learning 146
 Ubiquitous language, using 147
domain-driven design (DDD)
 about 144, 268
 architecture 16
 best practices 148
 characteristics 146
 practices 146, 149
 principles 146
domain-specific protocols pattern 281
don't repeat yourself (DRY) 86
Dragon1
 about 194
 capabilities 195

[428]

 features 194
 reference link 196
dynamic failure detection pattern 374

E
ED-SOA composite pattern, benefits
 about 31
 effective data integration 31
 improved scalability 31
 sustainability 31
 timeliness 31
 trustworthiness 31
EDA fundamental principles
 about 29
 autonomous messages 29
 decoupled systems 29
 distributed systems 29
 receiver-driven flow control 30
EDA-based processes/systems
 performance, improving 257, 258
email client 44
email server 44
emerging patterns
 about 170, 172
 domain event pattern 171
encapsulation 80
endpoint references (EPRs) 352, 354
endpoint threat detection and response (ETDR)

pattern 377, 378
Enterprise Architect tool
 benefits 193
 from Sparx systems 191
enterprise architecture (EA)
 about 175
 reference link 197
 Zachman framework 186
enterprise architecture framework (EAF)
 about 176
 guidelines, selecting 189
enterprise continuum 182
enterprise integration 243
enterprise integration, challenges
 about 123
 file transfer 124
 messaging 125

 remote procedure invocation 124
 shared database 124
enterprise service bus (ESB) 25, 121, 351
entities
 about 162, 163
 properties 163
event 237
event broker topology pattern
 about 251
 broker 251
 hub and spoke pattern 252
event channel 244
event collectors 256
event flow layers
 about 244
 event channel 244
 event generators 244
 event processing 244
 event-driven activity, downstreaming 245
event generators 244
event log 255
event management systems (SIEMs) 378
event mediator topology pattern 250
 about 249, 251
 event channel 249
 event mediator 249
 event processors 249
 event queue 249
event message patterns 134, 135
event processing 242, 244
event sourcing pattern 171, 286, 362
event specifications 242
event store pattern
 about 296
 event streams 296
 unified event log pattern 296
event stream processing patterns 248
event streams
 about 296
 asynchronous command calls pattern 297
event tooling 243
event-driven activity
 downstreaming 245
event-driven architecture (EDA) pattern, topology
 broker topology 23, 24

[429]

 mediator topology 22
event-driven architecture (EDA) pattern
 about 8, 20, 235, 278, 279, 285, 360
 CEP patterns 248, 249
 complex event processing 261
 design, considerations 245
 event collectors 256
 event log 255
 event stream processing patterns 248
 event-driven microservices 260
 implementation, in systems/processes 254
 IoT 262
 issues 24
 reference link 262
 reply queue 256
 simple event processing patterns 246, 247
 trends, emerging 260
 variants, implementing 246
 versus SOA 238, 239, 240, 241
event-driven architecture (EDA), characteristics
 about 241
 asynchronous communication 241
 fine-grained communication 241
 multicast communication 241
 real-time transmission 241
event-driven architecture (EDA), components
 about 241, 242
 enterprise integration 243
 event processing 242
 event specification 242
 event tooling 243
 sources and targets 243
event-driven architecture (EDA), types
 about 249
 broadcast pattern 253
 event broker topology pattern 251
 event mediator topology pattern 249, 250, 251
 polling pattern 253
event-driven messaging 227
event-driven microservices 260
event-driven microservices patterns 34
event-driven service-oriented architecture (ED-

SOA) 27, 29, 39
events
 publishing, with database trigger pattern 287

exception tracking pattern 290
external configuration store pattern 363
extraction, load, and transform (ELT) 382
extraction, transform, and load (ETL) 382

F
facade pattern
 about 96, 401
 benefits 97
 impact 97
factories
 about 167
 characteristics 168
factory method (virtual constructor)
 about 87
 benefits 88
 impact 88
factory method design pattern 75
fault injection testing 325
federal enterprise architecture framework (FEAF)

176

federated identity pattern 363
file server 44
file sharing pattern
 between containers 307
 bind-mount volumes, using 307
first glimpse pattern 417
first-in, first-out (FIFO) 367
flat file integration 160
Flyweight pattern
 about 97
 benefits 98
 impact 98
front controller pattern
 about 76
 dispatcher component 77
 front controller component 76
 views component 77
fully qualified domain name (FQDN) 45
Function as a Service (FaaS) 271

G
gatekeeper pattern 364
general responsibility assignment software patterns

[430]

(GRASP) 86
Google Mashup Editor (GME) 418
graphical user interface (GUI) 49

H
HDFS 401
health check API pattern
 about 291
 microservices composition patterns 291
 reliable microservices pattern 293
 resilient microservices pattern 293
health endpoint monitoring pattern 332
high availability (HA) 323
high availability microservices pattern 295
hub and spoke pattern 252
hypervisor clustering pattern 373

I
IBM WebSphere MQ
 about 259, 260
 features 259
in-memory data grids (IMDGs) 344
in-transit cloud data encryption pattern 377
index-based insight pattern 414
information and communication technologies (ICT)

7, 8
information technology (IT) 300
Infrastructure as a Service (IaaS) 344, 392
ingestion layer
 about 392
 multidestination pattern 394
 multisource extractor 393
 protocol converter 396
 real-time streaming pattern 398
 responsibility 392
integration patterns
 need for 115, 116
Integration Platform as a Service (IPaaS) 344, 409
integration scenarios, in enterprises
 about 116, 117
 business-to-business integration 122
 data replication 118
 distributed business process management 121
 information portal 117

 shared business function 118, 119
 SOA 120, 121
interface segregation principle (ISP) 84
intermediate routing pattern 350
Internet of Things (IoT) 8, 116, 262
Internet Protocol (IP) 253
interpreter design pattern 73
interpreter pattern
 about 102
 benefits 102
intrusion detection and protections systems

(IDPSs) 378
intrusion detection systems 57
intrusion prevention systems 57
iterator (cursor) pattern
 about 103
 benefits 103

J
Java Development Kit (JDK) 304
Java Runtime Environment (JRE) 304, 305
JSON Web Token
 reference link 288
Just-In-Time (JIT) transformation pattern 393, 397

K
Kubernetes
 reference link 284
 URL 272

L
Lambda architecture pattern
 about 389
 batch layer 390
 characteristics 389
 serving layer 390
 speed/real-time layer 390
layer two tunneling protocol (L2TP) 375
layered/tiered architecture
 about 19, 20
 benefits 19
leader election pattern 333, 364
legacy systems
 bubble context 154, 155

[431]

 exposing, as service 157, 158
 integrating with 154
lightweight stateless pattern 409
Liskov substitution principle (LSP) 83, 84
load balancer (LB) 324
log aggregation pattern 289

M
machine learning pattern 414
MapReduce pattern
 about 389
 primary methods 389
Marathon
 reference link 284
mashup view pattern 418
master-slave pattern
 about 51
 issues 53
materialized views pattern 365
mediator design pattern 74
Mediator pattern
 about 104
 benefits 104
 impact 104
mediator topology 22
memento design pattern 74
memento pattern
 about 104
 benefits 105
 impacts 105
message bus patterns 132
message bus, components
 common command set 133
 common data model 133
 messaging infrastructure 133
message endpoint pattern 129
message filter pattern 137
message flow 26
message origin authentication 217
message router pattern 128
message screening
 about 211
 benefits 212
 impacts 212
message translator pattern 128

message-oriented middleware (MoM) 22, 126,
210, 360

messages 125
messaging and event-driven architecture 161
messaging design pattern
 about 280
 asynchronous messaging design pattern 281
messaging metadata pattern 348
messaging patterns
 about 125, 126, 127
 API management pattern 142
 channel adapter 139
 command message pattern 134
 content-based router pattern 136
 datatype channel pattern 132
 event message patterns 134, 135
 message bus patterns 132
 message endpoint pattern 129
 message filter pattern 137
 message router pattern 128
 message translator pattern 128
 mobile integration pattern 139, 140
 pipe and filter pattern 127
 point-to-point channel pattern 130
 polling consumer pattern 138
 publish-subscribe channel pattern 130
 push notification pattern, defining 141, 142
 request-reply pattern 135
 request-response pattern 140, 141
 resequencer pattern 137, 138
messaging system 126
messaging-based microservices composition

pattern 292
metadata centralization 230
microservices architecture (MSA) 8, 32, 263, 343,

360

microservices composition patterns
 about 291
 client-side UI composition pattern 292
 messaging-based microservices composition

pattern 292
 server-side page fragment composition pattern

291

microservices database patterns
 about 276

[432]

 CQRS 279
 database per service pattern 277
 shared data design pattern 278
 shared database pattern 279
microservices deployment pattern
 about 269
 multiple service instances per host pattern 269
 service deployment platform pattern 272
 service instance per container pattern 270
 service instance per VM pattern 270
 single service instance per host pattern 269
microservices design patterns
 about 273
 aggregator 273, 274
 chained 275
 chassis pattern 275
 externalized configuration pattern 276
 proxy 274
microservices integration patterns 279
microservices patterns
 about 264
 database patterns 276
 decomposition patterns 264
 deployment pattern 269
 design patterns 273
 integration patterns 279
microservices
 discovery pattern 283
 registration pattern 283
 usage pattern 283
mobile integration adapter 140
mobile integration pattern 139, 140
model view controller (MVC) pattern
 about 19, 67
 controllers 67
 model 67
 view 67
 working 67
model view presenter (MVP) pattern
 about 69
 considerations 70
 model 70
 presenter 70
 view 70
model-view-viewmodel (MVVM) pattern

 about 70
 advantages 72
 extensibility 72
 maintainability 72
 model 71
 prism 72
 testability 72
 using, design considerations 72
 view 71
 ViewModel 71
modularization 80
modules 166
monitor object pattern 111
monolithic applications, disadvantages
 about 14
 agility 14
 reliability and availability 14
 scalability 14
most viable product (MVP) 159
multi-stage image building pattern 306, 307
multi-tier distributed computing architecture 18
multi-tier pattern client-server 51
multidestination pattern
 about 394
 benefits 396
 impact 396
multiple service contract 222
multisource extractor
 about 393
 benefits 394
 impacts 394

N
n-tier architecture
 design considerations 62
 example 62
near real-time pattern
 about 410
 challenges 410
network forensics monitors (NFM) 378
non-functional requirements (NFRs) 9, 288
NoSQL pattern
 about 402
 column-oriented DBMS 403
 document database 404

[433]

 graph database 403
 key-value pair database 403
 types 403
 types, using 405

O
object-oriented architecture (OOA) 8, 14
object-oriented design (OOD)
 about 79, 86, 267
 abstraction 80
 behavioral patterns 99
 concurrency 81
 creational design patterns 87
 encapsulation 80
 hierarchy 80
 key elements 80
 modularization 80
 persistence 81
 structural design patterns 92
 typing 81
observer design pattern 74
Observer pattern
 about 106
 benefits 106
 impact 107
open and close principle 82, 83
open host pattern 157
operating system (OS)
 about 301
 installing, in Docker container 318

P
partitioning guidance 190
patterns, for domain modeling
 about 161
 aggregates 166
 domain service 165
 entities 163
 factories 167
 modules 166
 repositories 169
 value objects 163
peer-to-peer (P2P) patterns 17, 53
persistent storage options

 about 314
 bind mounts 315, 316
 tmpfs mounts 315, 316
 volumes 315
persistent storage patterns 312
persistent storages 313
pipe and filter pattern 127, 308, 366
pipes-and-filters-based decomposition 345
Platform as a Service (PaaS) 344
platforms and tools, enterprise architecture (EA)
 about 190
 analysis and design 191
 business architecture design 191
 innovation 190
 mapping 190
 modeling 190
 time to value 191
 visualization 190
point-to-point channel pattern 130
polling consumer pattern 138
polling pattern 253
polyglot pattern 405
port 127
portal pattern 417
post office protocol version3 (POP3) 45
priority queue pattern 366
Prism
 about 72
 features 73
process completeness 190
process-based decomposition 345
producer-consumer pattern 111
protocol converter 396
prototype pattern
 about 90
 benefits 91
 impact 91
proxy pattern
 about 98
 benefits 99
 impact 99
publish-subscribe channel pattern 130
publish/subscribe broadcast pattern 253
publisher 237
push notification pattern

[434]

 defining 141, 142

Q
quality of experience (QoE) 336, 343
quality of service (QoS) 9, 291, 330, 343
queue-based load leveling pattern
 about 334, 367
 benefits 335
queues 125, 347

R
rapid data analysis pattern 413
real-time context-aware prediction architecture 39
real-time streaming pattern
 about 398
 characteristics 398
receiver-driven flow control 30
recovery pattern 374
redundant storage pattern 373
relational database management system (RDBMS)

48, 402
reliable applications patterns 322
reliable messaging pattern 355
reliable microservices pattern 293
remote data access client-server pattern 48
remote method invocation (RMI) 18, 346
remote presentation client-server pattern 49
remote procedure call (RPC) 18, 346
remote procedure invocation (RPI) pattern 124,

280

replication using protocols (RAID) 408
reply queue 256
repositories
 about 169
 types 170
representational state transfer (REST) 172
request-reply pattern 135
request-response pattern 140, 141
resequencer pattern 137, 138
resiliency deployment
 about 325
 immutable infrastructure 325
 infrastructure as code 325
resiliency realization patterns

 about 327
 bulkhead pattern 329, 330
 circuit breaker pattern 327, 328, 329
 compensating transaction pattern 330, 331
 health endpoint monitoring pattern 332
 leader election pattern 333
 queue-based load leveling pattern 334, 335
 retry pattern 335
resiliency testing
 about 325
 fault injection testing 325
resiliency
 about 322
 deployment patterns 326
 diagnostics 326
 implementation strategies 323, 324
 monitoring 326
resilient microservices pattern 293
resource constraint 372
resource pooling pattern 372
resource reservation pattern 372
resource-oriented architecture (ROA) 360
retry pattern 335, 367
runtime reconfiguration pattern 368

S
scheduler agent supervisor pattern 369
server 43
service agent pattern 349
service callback pattern 223, 227, 352
service component test pattern 289
service discovery pattern 283
service facade 219
service instance routing 353
service level agreement (SLA) 206, 371
service locator pattern 410
service management
 service discovery 120
 service negotiation 120
service messaging pattern 346
service messaging
 about 210
 benefits 210
 impacts 211
service refactoring 229

[435]

service registration pattern 284
service registry pattern
 about 284
 Apache Zookeeper 284
 etcd 284
service-inspired integration (SOI) 25
service-oriented architecture (SOA), design

patterns
 about 209
 agnostic services 212
 atomic service transaction 214
 authentication broker 215
 event-driven messaging 227
 message origin authentication 217
 message screening 211
 metadata centralization 230
 multiple service contract 222
 principles and patterns 233
 service callback 227
 service callback pattern 223
 service facade 219
 service messaging 210
 service refactoring 229
service-oriented architecture (SOA)
 about 8, 24, 120, 199, 237, 267, 268, 331, 360
 characteristics 201
 event-driven 202
 evolution 204
 flexible 202
 life cycle 200
 messaging 202
 principles 205
 service abstraction 206
 service autonomy 207
 service composability 207
 service discoverability 207
 service interconnectivity, with well-defined

interfaces 201
 service interoperability 206
 service level agreements 202
 service loose coupling 208
 service reusability 208
 service statelessness 209
 SOI 25
 standard interfaces 202

 standardized service contract 206
 versus EDA 238, 239, 240, 241
serving layer 390
sharding pattern 369
shared business function 119
shared caching layer pattern 294
shared-nothing architecture 152
short message service (SMS) 21
simple event processing patterns 246, 247
simple mail transfer protocol (SMTP) 45
single layer abstraction principle (SLAP) 86
single point of contact (SPOC) 282
single responsibility principle (SRP) 81, 82, 267
singleton pattern
 about 91
 benefits 91
 impacts 92
SOA principles
 adoption 154
software architecture patterns
 about 14
 CBD architecture 15
 client/server architecture 17
 DDD 16
 EDA pattern 20
 event-driven service-oriented architecture 27, 29
 layered/tiered architecture 19, 20
 multi-tier distributed computing architecture 18
 OOA 14
 SOA 24
Software as a Service (SaaS) 344
software pattern, elements
 about 13
 context 12
 examples 12
 forces 12
 known user 12
 name 11
 problem 11
 rationale 12
 related patterns 12
 resulting context 12
 solution 12
software patterns, types
 about 13

[436]

 architecture pattern 13
 design pattern 13
software patterns
 about 10
 need for 11
software-defined cloud environments (SDCEs) 339
software-defined compute (SDC) 340
software-defined networking (SDN) 340
software-defined storage (SDS) 340
software-defined world
 envisioning 8
SOLID principles
 dependency inversion principle (DIP) 85
 interface segregation principle (ISP) 84
 Liskov substitution principle (LSP) 83, 84
 open and close principle 82, 83
 other common design principle 86
 single responsibility principle (SRP) 81
solution building blocks (SBBs) 181
sources, events 243
space-based architecture (SBA) 8, 35
Sparx Systems
 Enterprise Architect tool 191
special-purpose architectures 37, 38
speed/real-time layer 390
Spring framework 77
SSH
 Docker containers 320
stage transform pattern 412
state design pattern 74
state messaging pattern 351
State pattern
 about 107
 benefits 107
 impact 107
strategic patterns, DDD
 about 149
 bounded contexts 151
 core domain 150
 domain 150
 subdomain 150
 Ubiquitous language 150
strategy design pattern 74
strategy pattern
 about 108

 benefits 108
 impact 108
structural design patterns
 about 92
 adapter object 93
 bridge pattern 94
 composite object 95
 decorator pattern 95
 facade pattern 96
 Flyweight pattern 97
 proxy pattern 98
synchronous receiver 138

T
tactical patterns 161
targets, events 243
Telemetry 260
template method design pattern 74
template method
 about 109
 benefits 109
 impact 109
testing pattern 288
the open group architectural framework (TOGAF)
 about 175, 176
 application architecture 177
 business architecture 177
 data architecture 177
 limitations 186
 starting with 176, 177
 technology architecture 177
 using, advantages 185
threat intelligence processing pattern 378
three-tier client-server architecture, benefits
 flexibility 60
 scalability 60
three-tier client-server architecture
 about 58
 application tier 59
 data tier 60
 increased security 60
 presentation tier 59
 using, design consideration 60
three-tier pattern client-server 51
throttling pattern 370

tier/layer-based decomposition 345
time to value 190
traditional application architecture
 about 340
 versus cloud application architecture 340
traditional existing data warehouses 401
transaction log tailing pattern 287
transaction processing monitor (TP monitor)
 about 64
 functions 64
treasury enterprise architecture framework (TEAF)

176

troubleshooting pattern 288
two-phase commit (2PC) 286
two-tier client-server patterns
 about 44
 advantages 57
 data, centralized access 57
 functional requirements 47
 functional requirements, distribution 48
 limitations 58
 maintenance 57
 security 57
 using 57

U
unified event log pattern 296
User Datagram Protocol (UDP) 253

V
value objects
 about 163
 properties 164
variety 381
velocity 381
veracity 381
virtual machine monitor (VMM) 300, 373

virtual machines (VMs) 269, 372
virtual private network (VPN) pattern 375
virtual servers pattern
 redundant physical connection 374
visitor design pattern 75
visitor pattern
 about 110
 benefits 110
 impacts 110
volume 381

W
web application patterns
 development, motivation 65
web server 44
web services 199
Windows Communication Framework (WCF) 346
Windows presentation foundation (WPF) 72
workload distribution pattern 371
workload patterns, big data 399

X
XML stylesheet language transformation (XSLT)

27

Z
Zachman framework
 about 187
 advantages 188
 builder 187
 designer 187
 EAF, guidelines selecting 189
 for ER 186
 owner 187
 planner 187
 restrictions 188, 189
 sub-contractor 187

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Demystifying Software Architecture Patterns
	Envisioning the software-defined world
	Software patterns
	Why software patterns?
	The prime ingredients of a software pattern
	The types of software patterns

	Software architecture patterns
	Object-oriented architecture (OOA)
	Component-based assembly (CBD) architecture
	Domain-driven design (DDD) architecture
	Client/server architecture
	Multi-tier distributed computing architecture
	Layered/tiered architecture
	Event-driven architecture (EDA)
	The major issues with EDA

	Service-oriented architecture (SOA)
	Service-inspired integration (SOI)

	Event-driven service-oriented architecture

	The EDA fundamental principles
	The ED-SOA composite pattern benefits
	Microservices architecture (MSA)
	Event-driven microservices patterns
	Space-based architecture (SBA)
	Combining architecture patterns
	Special-purpose architectures
	Real-time context-aware prediction architecture
	Summary
	Additional reading materials

	Chapter 2: Client/Server Multi-Tier Architectural Patterns
	Domain name service (DNS) server and DNS client
	The workings of a DNS

	Functional requirements in two-tier client-server patterns
	Distribution of functional requirements in a client-server pattern
	The remote data access client-server pattern
	The remote presentation client-server pattern
	The split logic data client-server architecture pattern

	The three-tier pattern / multi-tier pattern client-server
	The master-slave pattern
	Issues in the master-slave pattern

	Peer-to-peer patterns
	Advantages of two-tier client-server patterns
	Design considerations - when to use a two-tier client-server pattern?
	Limitations of two-tier client-server patterns

	Three-tier client-server architecture
	Design considerations for using three-tier architecture
	Design considerations for n-tier architecture
	An example of n-tier architecture (shopping cart web application)

	The distributed client-server architecture
	Motivation for development of web application patterns
	Workings of the MVC pattern

	The ASP.Net framework
	The model view presenter (MVP) pattern
	The model-view-viewmodel (MVVM) pattern
	Key advantages of the MVVM pattern
	Design considerations for using the MVVM pattern
	Prism

	Design patterns for web application development
	The front controller pattern
	Spring framework

	Summary

	Chapter 3: Object-Oriented Software Engineering Patterns
	Key elements of OOD
	Additional elements of OOD

	Design principles
	Single responsibility principle (SRP) – SOLID
	Open and close principle – SOLID
	Liskov substitution principle (LSP) – SOLID
	Interface segregation principle (ISP) – SOLID
	Dependency inversion principle (DIP) – SOLID
	Other common design principles

	OO design patterns
	Creational design patterns
	Factory method (virtual constructor)
	Abstract factory (kit)
	Builder
	Prototype
	Singleton

	Structural design patterns
	Adapter class (wrapper)
	Adapter (object)
	Bridge (handle/body)
	Composite
	Decorator
	Façade
	Flyweight
	Proxy

	Behavioral patterns
	Chain of responsibility
	Command (action/transaction)
	Interpreter
	Iterator (cursor)
	Mediator
	Memento
	Observer (dependents/publish/subscribe)
	State (objects for states)
	Strategy (policy)
	The template method
	Visitor

	Concurrency patterns
	Concurrency design pattern
	Producer-consumer
	Active object
	Monitor object

	Concurrency architectural pattern

	Summary
	References

	Chapter 4: Enterprise Integration Patterns
	Need for integration patterns
	Integration scenarios in enterprises
	Information portal
	Data replication
	Shared business function
	Service-oriented architecture
	Distributed business process management
	The business-to-business integration

	Main challenges in enterprise integration
	File transfer
	Shared database
	Remote procedure invocation
	Messaging

	Getting started with messaging patterns
	Pipe and filter pattern
	Message router pattern
	Message translator pattern
	Message endpoint pattern
	Point-to-point channel pattern
	Publish-subscribe channel pattern
	Datatype channel pattern
	Message bus patterns
	Command message patterns
	Event message patterns
	Request-reply pattern
	Content-based router pattern
	Message filter pattern
	Resequencer pattern
	Polling consumer pattern
	Channel adapter
	Mobile integration pattern
	Request-response pattern
	Defining a push notification pattern
	API management pattern
	Summary

	Chapter 5: Domain-Driven Design (DDD) Principles and Patterns
	Principles, characteristics, and practices of DDD
	Principles
	Focusing on the core domain
	Collaborate and learn
	Model the domain
	Evolve
	Talk in ubiquitous language

	Characteristics
	Best practices

	DDD patterns
	Strategic patterns
	Ubiquitous language
	Domain, subdomain, and core domain
	Bounded contexts

	Integrating bounded contexts
	Autonomous bounded context
	The shared-nothing architecture
	Single responsibility codes
	Multiple bounded contexts (within a solution)
	Adoption of SOA principles

	Integrating with legacy systems
	The bubble context
	The anti-corruption layer

	Expose as a service

	Distributed bounded context integration strategies
	Database integration
	Flat file integration
	Event-driven architecture and messaging

	Tactical patterns
	Patterns to model the domain
	Entities
	Value objects
	Domain services
	Modules
	Aggregates
	Factories
	Repositories

	Emerging patterns
	Domain events
	Event sourcing
	Other patterns

	Summary
	References and further reading materials

	Chapter 6: Enterprise Architecture Platforms and Tools
	Overview of enterprise architecture frameworks
	Getting started with TOGAF
	Architecture development method (ADM)
	Deliverables, artifacts, and building blocks
	Enterprise continuum
	Architecture repository
	Advantages of using TOGAF
	Limitations of TOGAF

	Zachman framework for enterprise architecture
	Advantages
	Restrictions
	Guidelines for choosing EAF

	Enterprise architecture platforms and tools
	Enterprise Architect from Sparx Systems
	Dragon1
	ABACUS from avolution software
	Architecture of ABACUS

	Summary
	References

	Chapter 7: Service-Oriented Architecture (SOA)
	Web services and SOA
	Introduction to SOA
	Life cycle of SOA
	Primary characteristics of SOA
	Service interconnectivity with well-defined interfaces
	Standard interfaces and Service level agreements
	Event-driven and messaging
	Flexible
	Evolution

	Principles of SOA
	Standardized service contract
	Service interoperability
	Service abstraction
	Service autonomy
	Service composability
	Service discoverability
	Service loose coupling
	Service reusability
	Service statelessness

	SOA design patterns
	Service messaging
	Message screening
	Agnostic services
	Atomic service transaction
	Authentication broker
	Message origin authentication
	Service façade
	Multiple service contract
	Service callback
	Event-driven messaging
	Service refactoring
	Metadata centralization
	Principles and patterns cross reference

	Summary

	Chapter 8: Event-Driven Architectural Patterns
	Service-oriented architecture and event-driven architecture (SOA versus EDA)
	Key characteristics of event-driven patterns
	Components of an EDA pattern

	Event flow layers
	Event generators
	Event channel
	Event processing
	Downstream event-driven activity

	Design considerations for event-driven patterns
	Implementation variants of EDA patterns
	Simple event processing patterns
	Event stream processing patterns
	Complex event processing (CEP) patterns

	Types of event-driven patterns
	Event mediator topology pattern
	Event broker topology pattern
	Hub and spoke pattern

	Broadcast pattern
	Polling pattern

	EDA pattern implementation in systems/processes
	Event log
	Event collectors
	Reply queue

	Improving the performance of EDA-based processes/systems
	IBM WebSphere MQ
	Emerging trends in EDA
	Event-driven microservices
	Complex event processing
	Internet of Things (IoT) and EDA

	References
	Summary

	Chapter 9: Microservices Architecture Patterns
	Microservices patterns
	Decomposition patterns
	Decomposition by use case pattern
	Decomposition by resources pattern
	Decomposition by business capability pattern
	Decomposition by subdomain pattern

	Microservices deployment pattern
	Multiple service instances per host pattern
	Single service instance per host pattern
	Service instance per VM pattern
	Service instance per container pattern
	Serverless deployment pattern
	Service deployment platform pattern

	Microservices design patterns
	Aggregator microservice design pattern
	Proxy microservice design pattern
	Chained microservice design pattern
	Microservice chassis pattern
	Externalized configuration pattern

	Microservices database patterns
	Database per service pattern
	Shared data design pattern
	Shared database pattern
	Command-query responsibility segregation (CQRS) pattern

	Microservices integration patterns

	Remote procedure invocation (RPI) pattern
	Messaging design pattern
	Asynchronous messaging design pattern

	Domain-specific protocol pattern
	API gateway pattern
	Backend for frontend pattern
	Microservices registration, discovery, and usage patterns

	Service discovery pattern
	Service registry pattern
	Service registration pattern
	Event-driven architecture (EDA) patterns
	Event sourcing pattern
	Transaction log tailing pattern
	Publishing events using the database trigger pattern
	Application publishes events pattern
	Testing and troubleshooting patterns
	Access token pattern
	Service component test pattern
	Log aggregation pattern
	Application metrics pattern
	Audit logging pattern

	Distributed tracing pattern
	Exception tracking pattern

	Health check API pattern
	Microservices composition patterns
	Server-side page fragment composition pattern
	Client-side UI composition pattern
	Messaging-based microservices composition pattern

	Resilient and reliable microservices patterns

	Circuit breaker pattern
	Shared caching layer pattern
	High availability microservices pattern
	Concurrent requests for data pattern
	Event store pattern
	Event streams and the unified event log pattern
	Asynchronous command calls pattern

	Summary

	Chapter 10: Patterns for Containerized and Reliable Applications
	Introduction
	The key drivers for containerization
	Design patterns for Docker containers
	Container building patterns

	Docker image building patterns
	Multi-stage image building pattern
	The pattern for file sharing between containers
	Using bind-mount volumes

	Pipes and filters pattern
	Containerized applications - Autopilot pattern
	Containers - persistent storage patterns
	The context for persistent storages
	The persistent storage options
	Volumes
	Bind mounts
	The tmpfs mounts

	Docker compose configuration pattern
	Docker container anti-patterns
	Installing an OS inside a Docker container
	Go for optimized Docker images
	Storing container images only inside a container registry
	Hosting only one service inside a container
	Latest doesn't mean best
	Docker containers with SSH
	IP addresses of a container
	Root user
	Dependency between containers

	Patterns for highly reliable applications
	Resiliency implementation strategies
	The testing approaches for resiliency
	The resilient deployment approaches
	The deployment patterns
	Monitoring and diagnostics
	Resiliency realization patterns
	Circuit breaker pattern
	Bulkhead pattern
	Compensating transaction pattern
	Health endpoint monitoring pattern
	Leader election pattern
	Queue-based load leveling pattern
	Retry pattern

	Summary

	Chapter 11: Software-Defined Clouds - the Architecture and Design Patterns
	Reflecting the cloud journey
	Traditional application architecture versus cloud application architecture
	The traditional application architecture
	The cloud architecture
	The cloud application architecture

	Cloud integration patterns
	Tier/Layer-based decomposition
	Process-based decomposition
	Pipes-and-filters-based decomposition
	Service messaging pattern
	Messaging metadata pattern
	Service agent pattern
	Intermediate routing pattern
	State messaging pattern
	Service callback pattern
	Service instance routing
	Asynchronous queuing pattern
	Reliable messaging pattern

	Cloud design patterns
	Cache-aside pattern
	Circuit breaker pattern
	Compensating transaction pattern
	Competing consumers pattern
	Compute resource consolidation pattern
	Command and query responsibility segregation (CQRS) pattern
	Event sourcing pattern
	External configuration store pattern
	Federated identity pattern
	Gatekeeper pattern
	Application health monitoring pattern
	Leader election pattern
	Materialized views pattern
	Pipes and filters pattern
	Priority queue pattern
	Queue-based load leveling pattern
	Retry pattern
	Runtime reconfiguration pattern
	Scheduler agent supervisor pattern
	Sharding pattern
	Throttling pattern
	Workload distribution pattern
	Cloud workload scheduler pattern

	Cloud reliability and resilience patterns
	Resource pooling pattern
	Resource reservation pattern
	Hypervisor clustering pattern
	Redundant storage pattern
	Dynamic failure detection and recovery pattern
	Redundant physical connection for virtual servers pattern

	Cloud security patterns
	Cryptographic key management system pattern
	Virtual private network (VPN) pattern
	Cloud authentication gateway pattern
	In-transit cloud data encryption pattern
	Cloud storage device masking pattern
	Cloud storage data at rest encryption pattern
	Endpoint threat detection and response pattern
	Threat intelligence processing pattern
	Cloud denial of service (DoS) protection pattern

	Summary
	Bibliography

	Chapter 12: Big Data Architecture and Design Patterns
	The four V's of big data
	Big data analysis and technology concepts
	Data analysis life cycle

	Big data analysis and data science
	Data analysis
	Data science

	Big data platform
	Big data engineering
	Big data governance

	Big data architecture landscape and layers
	Big data architecture patterns
	MapReduce pattern
	Lambda architecture pattern
	Data lake architecture pattern

	Big data design patterns
	Data sources and ingestion layer
	Multisource extractor
	Multidestination pattern
	Protocol converter
	Just-In-Time (JIT) transformation pattern
	Real-time streaming pattern

	Big data workload patterns
	Data storage layer
	ACID versus BASE versus CAP
	Façade pattern
	NoSQL pattern
	Polyglot pattern

	Data access layer
	Connector pattern
	Lightweight stateless pattern
	Service locator pattern
	Near real-time pattern
	Stage transform pattern
	Rapid data analysis pattern
	Data discovery and analysis layer
	Data queuing pattern
	Index-based insight pattern
	Machine learning pattern
	Converge(r) pattern
	Data visualization layer
	First glimpse pattern
	Portal pattern
	Mashup view pattern
	Compression pattern
	Exploder pattern

	Summary
	References

	Index

