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Preface

This volume covers a broad range of contemporary topics in statistical mod-

eling and inference. There have been many exciting developments in the

field of Statistics over the last quarter century, stimulated by the rapid

advances in computing and data-measurement technologies. The increased

computing power and availability of large datasets have led to considerable

new research in flexible modeling, semiparametric and nonparametric meth-

ods, and computationally-intensive techniques. These developments have

allowed us to move away from parametric techniques that rely on restrictive

assumptions to much more flexible methods for modeling and analysis of

data. There is also extensive use of simulation and Monte Carlo techniques

for doing statistical inference. This book provides an overview of some of

these advances as well as description of new research in methodology and

theory.

There are 32 chapters written by leading international researchers on

a broad range of topics: semiparametric methods, transformation models,

nonparametric regression, rank-based inference, mixture models, survival

and reliability analysis, Bayesian inference, resampling methods, and infer-

ence under constraints. Researchers, graduate students, as well as practi-

tioners will find the volume to be useful.

The book was prepared in honor of Professor Kjell A. Doksum to cel-

ebrate his 65th birthday. Authors include Kjell’s friends, colleagues, and

former students from all over the world. In recognition of Kjell’s passion

for soccer, the volume begins with a chapter by Brillinger that deals with

modeling ordinal data and application to Norwegian soccer.

Part 1 covers topics in survival analysis. Aalen and Gjessing provide a

modern perspective on the role of stochastic processes in modeling random

phenomena in survival and event history analysis. Jewell examines the

correspondence between complex survival models and categorical regres-

sion models for polytomous data, generalizing earlier connections between

binary regression models and survival analysis. Borgan and Langholz de-

v
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velop methods for assessing the goodness-of-fit for sample risk set data

using martingale residuals.

Part 2 deals with reliability techniques and related applications.

Singpurwalla examines relationships between reliability/survival analysis

and the mathematical theory of finance and uses them to characterize asset

pricing formula, model interest rates, etc. Block, Dugas, and Samaniego

study new applications of the “system-signature” concept to reliability anal-

ysis of system lifetimes. Li and Shaked review generalizations of the total-

time-on-test transforms, stochastic orders based on these transforms, and

their applications.

Part 3 includes five chapters on advances in semiparametric meth-

ods. Beran develops a very flexible modeling and estimation strategy,

called Adaptive Shrinkage on Penalty bases, for discrete two-way layouts

and studies its large-sample behavior. You and Jiang consider varying-

coefficient partially-linear models and propose a penalized spline-based

least-squares estimation methodology for serially correlated data. In re-

lated work, Chong, Wang, and Zhu develop a semi-linear index model for

flexible dimension reduction that incorporates both discrete and continuous

predictors. Chaudhuri explores extensions of semiparametric single-index

models for multivariate lifetime data and related inference methods. The

chapter by Samarov and Tsybakov proposes and examines a data-based

method for selecting the best estimator from a collection of arbitrary den-

sity estimators.

Part 4 is concerned with the related area of transformation models.

Klassen considers a general class of semiparametric transformation models

and determines the semiparametric information for the Euclidean param-

eter in the model. Scheike also considers semiparametric transformation

models and examines the modified partial likelihood estimators in this con-

text. Taylor and Liu examine the effect of embedding a standard model in

a larger family of models indexed by an additional parameter and discuss

parameter interpretations, variance inflation, predictions, and so on.

The three chapters in Part 5 cover topics in nonparametric regression.

Müller examines smooth nonparametric estimation of conditional moments

and correlation functions and proposes a general linear unbiased estima-

tion scheme. Hallin, Jureckova and Koul study the asymptotic properties

of rank score statistics for regression and serial autoregression. Støve and

Tjøstheim develop a new convolution smoother for nonparametric regres-

sion that outperforms standard kernel estimators.
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Part 6 deals with clustering and mixture models. Zou, Yandell, and Fine

review gene mapping in the context of semiparametric and nonparametric

inference for mixture models and discuss estimation and model selection

issues. Lau and Lo consider model-based clustering and Bayesian nonpara-

metric methods for mixture models, and develop Monte Carlo methods

using a weighted Chinese restaurant process for inference. James describes

a class of species-sampling mixture models that can be derived from Dok-

sum’s neutral-to-the-right processes.

The two chapters in Part 7 develop Bayesian nonparametric inference

for quantiles using Dirichlet process priors. Johnson and Sim obtain an

asymptotic expansion for the posterior distribution of a percentile with a

leading normal term. Hjort and Petrone develop Bayesian inference for

the quantile function and related quantities such as the Lorenz curve and

Doksum’s shift function.

Part 8 is concerned with rank-based methods. Aaberge studies empirical

rank-dependent family of inequality measures, motivated by applications to

modeling income distributions. Zheng and Lo develop a modified Kendall

rank-order test for evaluating repeatability of studies with very large data

sets when only a small proportion of ”interesting or important” objects.

Miura uses rank statistics of the geometric Brownian motion to define some

new concepts in finance and studies their stochastic properties.

Part 9 covers inference based on Monte Carlo and resampling methods.

Lindqvist and Taraldsen review and extend a general approach for Mote

Carlo computations of conditional expectations given a sufficient statis-

tic. Kong, McCullagh, Meng, and Nicolae explore the use of a likelihood-

based theory for Monte Carlo integration, following up on their earlier work.

Schweder studies confidence nets, a family of nested confidence regions, and

uses bootstrapping to get product confidence nets for high-dimensional pa-

rameters.

Part 10 deals with topics in constrained inference. Koenker and Mizera

examine a unified approach to density estimation using total variation regu-

larization and develop methods that are capable of identifying features such

as sharp peaks. Fan and Zhang study the bounded normal mean problem

and develop a better approximation to the minimax risk. The final chapter

by Rojo and Batún-Cutz examines estimation of symmetric distributions

under a peakedness constraint.

The volume spans a broad range of areas in statistical modeling and in-

ference. It is worth noting that Professor Kjell Doksum has made significant

contributions to all of these topics.
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Several people have made important contributions during the prepara-

tion of this volume. First, I want to thank the authors for their enthusiastic

support for a volume to honor Kjell Doksum and for their patience during

the editing and publication process. The initial plans for a festschrift for

Kjell were conceived in collaboration with Dorota Dabrowska. I am greatly

indebted to Dorota for the tremendous amount of time and effort she in-

vested on the original project. I wish we could have completed it. Thanks

are also due to the many referees for their help with the reviewing process.

Anupap (Paul) Somboonsavatdee did an extraordinary job with the techni-

cal aspects of editing and proof-reading this volume. He really rescued me!

Sheela Nair, Aijun Zhang, Mary Ann King, and Matthew Linn also helped

out with editing at various points. I am grateful to Joan Fujimura and

Teresa Doksum for background information, pictures, and encouragement.

I have known Kjell Doksum for more than 30 years as a teacher, mentor,

and, best of all, friend. On behalf of his friends, colleagues, and students,

I am pleased to dedicate this volume in Kjell’s honor and to celebrate his

65-th birthday!

Vijay Nair

Ann Arbor, MI, USA

August 15, 2006
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Kjell Doksum: Family, Career, and Contributions

Kjell Doksum: May, 2006

Family Background

Kjell Doksum was born in Sandefjord, Norway on July 20, 1940. His
family had gone there from Oslo to get away from the ravages of World War
II. Kjell has many hair-raising stories to tell of his first few years under the
Nazi occupation. The family soon returned to Oslo, and Kjell grew up in
an apartment across from the Frydenlund brewery, in downtown Oslo close
to the Bislett stadium, where he watched and developed his passion for
soccer. He attended Vestheim gymnasium (high school) and moved to the
U.S after graduation.

Kjells father, Filip Doksum (born Filip Karlsen), was a mathematics
teacher in Oslo. His mother Elise Olsen died when Kjell was four years
old. Kjells stepmother Astrid helped raise him. Kjell has two brothers.
Older brother Olav lives in Tomter, Norway, and worked for the intelligence
branch of the Norwegian defense department. Younger brother Sigmund

xv
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Kjell with daughters: Kathryn, Teresa, and Margrete

lives in Birkerød, Denmark, and is a poet and novelist.
Kjell is married to Joan Fujimura, a sociology professor at the University

of Wisconsin, Madison. Their daughters are Kathryn Doksum of Newport,
Oregon, Teresa Doksum of Stoneham, Massachusetts, and Margrete Dok-
sum (deceased). Kathryn is a certified public accountant, and Teresa is a
health services researcher. Kjell and Joan have four lovely grandchildren:
Matthew, Kevin, Emma, and Calvin.

Why Statistics?

Kjells original career plan and lifelong passion was soccer. He started
playing in the streets of Oslo. Had it worked out, he would have been a
professional soccer player. But, alas, his skills on the cobblestones did not
transfer to soccer played on grass fields. Nevertheless, Kjell has been an
avid soccer fan and played recreational soccer until the ripe age of 64. Gen-
erations of students, faculty, and visitors at Berkeley, Stanford, Madison,
and at other campuses Kjell has spent time will fondly recall his presence
on the soccer field and his organization of soccer teams, games, and parties.

His second career was fishing, which lasted all of two weeks. In the
Spring of 1959, Kjell was about to graduate from high school in Oslo. He
had not paid much attention in high school and had no plans to attend a
university. He was drafted into the Norwegian military and was supposed
to report to bootcamp up by the North Pole on July 1st. But in April, his
aunt and uncle from San Diego visited Oslo and invited Kjell to come to
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Berkeley soccer team in the mid-1970s: Front row, from left – Kjell is second and Vijay
Nair is fourth

Kjell and Joan’s wedding, Berkeley, 1987: Right to left – Kjell, Joan, Teresa, Kathryn,
and Margrete

San Diego. Kjell saw this as a clear sign that he should move to California.
All of Kjell’s relatives and their friends in San Diego were fishermen, so

Kjell had no choice. He spent two weeks on a 36 foot boat, fishing alba-
core tuna off the coast of California in July 1959. But something unusual
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Kjell (right) with Chuck Bell (left) and other friends

Kjell (far left background) with Jerzey Neyman (jacket and tie), David Blackwell (bow
tie), and Elizabeth Scott (far right) and others at Berkeley

happened. Southern California was hit by the only July storm in recorded
history. It lasted two weeks and produced waves bigger than the boat. Kjell
was seasick every minute of those two weeks. It was clear that he is not cut
out to be a fisherman. So he signed up to become a student at San Diego
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At the Olympics soccer game between Norway and Brazil, 1996 (score 2-2): Right to
left: Kjell, Joan, Teresa, and Kathryn

State College (SDSC).
After about a year in college, Kjell got a telegram saying he had been

drafted into – this time – the American military and he was to go to boot-
camp in Los Angeles the following day. Kjell showed the telegram to the
professor he knew best, the chair of the Math department. Professor Smith
said, ”You can either go to bootcamp or become a math major.” Again,
the choice was clear – so Kjell became a math major.

How did he end up in Statistics? The story starts with the international
club at SDSC. The club’s talent show was very popular, mainly because of
a Middle-Eastern math student who performed an Arabian Harem Dance
with minimum wardrobe. (At the end of her performance, she would in-
variably have a wardrobe malfunction.) One day, the dancer/math student
cornered Kjell and started grilling him about his social life. Upon learning
of its non-existence, she tried to arrange a blind date for him with her Nor-
wegian roommate. When Kjell went to the address, no one answered. After
a few minutes he started to leave, but then a math professor (Dr. Gindler)
came out of the next apartment and asked what he was doing there. When
Kjell explained, he offered him a ride home. As they were driving, he asked
Kjell about his plans for Spring break. Kjell said he was scrubbing floors
to make money to pay for room and board and nonresident tuition. So
Gindler introduced him to the statistician Dr. C. B. Bell, who had an NSF
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After Berkeley-Stanford soccer game to celebrate Kjell’s 65th Birthday, October 28,
2005 – Right to left (Kjell, Emma, Calvin, Teresa, Friend Tom, Matthew, Kathryn,

Vijay, and Friend Debbie)

grant and support for students. Kjell was at another crossroad: Should
he scrub floors or study Statistics? Again, the optimal decision was clear.
That is how Kjell Doksum ended up as a statistician.

Career and Research Contributions

Kjell received his Masters from SDSC in 1963 and became a Ph.D.
student in the Berkeley Statistics department. He finished his Ph.D. in
1965 with Erich Lehmann, spent a year as a post-doc with Professor Bell
in Paris, then returned to Berkeley as an assistant professor in 1966.

Most of Kjell’s academic life was spent at the University of California-
Berkeley Statistics Department where he became associate professor in 1973
and full professor in 1978. He took early retirement from Berkeley in 2002
and has been Professor at the Statistics Department in the University of
Wisconsin, Madison since 2003. Kjell has also visited the Universities of
Paris, Oslo, Trondheim, Harvard, Hitotsubashi in Tokyo, and Columbia as
well as the Bank of Japan in Tokyo.

Kjell has made pioneering contributions to statistical theory, methodol-
ogy and applications. He has worked on randomization methods, nonpara-
metric and rank-based inference, survival and reliability analysis, semipara-
metric techniques and transformation models, probability measures, and
Bayesian inference. Almost all of these areas are covered in the various
chapters in this volume.
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His early work, joint with C. B. Bell starting in 1964, was on the use of
randomization in statistical inference. The idea was to replace subsets of
the data from an experiment by standard normal random samples placed in
the same order as the data subset. These Gaussian randomized tests were
asymptotically as efficient as the classical tests they were derived from
under normality and more efficient in non-normal cases. They also have
connections with Monte Carlo and bootstrapping methods.

Much later, he revisited this topic when he proposed a Monte Carlo
approach to rank (partial) likelihood methods for semiparametric models
and developed its properties. In this approach, the data in a likelihood are
replaced by random samples put in the same order as the original data,
then a Monte Carlo average of these randomized likelihoods that estimate
the partial likelihood is computed.

Kjell and his collaborators have studied the asymptotic power of rank
tests for nonparametric classes of alternatives. They developed asymptot-
ically minimax tests for 0-1 loss functions for alternatives separated from
the null hypthesis by a certain distance. In particular, they found minimax
tests for the two-sample, matched pair, and independence problems as well
as for reliability and life-testing problems.

In the early 1970’s, Kjell introduced the concept of a shift function and
developed inference procedures. This is a general measure of the differ-
ence between populations and is closely related to the population version
of quantile-quantile plots. In joint work with Sievers, he developed a gen-
eral class of simultaneous confidence regions for the shift function that are
useful in formal model selection. In related work, he introduced measures of
location and symmetry and developed simultaneous confidence procedures
for inference. His contributions to simultaneous inference also include con-
fidence procedures for nonparametric regression curves.

In one of his most cited papers, Kjell proposed and developed the prop-
erties of “neutral-to-the-right” processes that are very useful in nonpara-
metric Bayesian inference. He introduced a general class of probabilities on
the class of all probability measures and showed that the posterior distri-
bution given a sample is also in the same class. The Dirichlet process is a
special case of these neutral processes. In other work related to Bayesian in-
ference, he and Lo showed that conditioning on robust estimates produced
consistent Bayes estimates even when the original Bayes estimates based
on all the data are not.

Kjell has also made seminal contributions, jointly with Bickel, to trans-
formation models and semiparametric inference. Their work has provided
deep insights into the statistical properties of procedures based on trans-
formed data. In joint work with Bjerve and others, he introduced and
analyzed the concept of local correlation in the nonparametric regression
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framework and, with Samarov, a global measure of correlation in the non-
parametric framework with multiple covariates. The latter is a nonpara-
metric version of “R-squared” and provides a measure of explanatory power
in a nonparametric context. He has studied, jointly with Chaudhuri and
Samarov, quantile regression methods to investigate general relationships
between a response and covariates.

His research also covers reliability and survival analysis. He has intro-
duced and studied, with Høyland , new classes of degradation models for
reliability and life testing. His work in survival analysis includes modeling
time of infection (joint with Normand) and graphical methods for checking
treatment effects and model assumptions with censored survival data (joint
with Dabrowska and others).

Kjell has supervised over 20 PhD students from all over the world. He
has also contributed to the statistics education of a large number of other
students who have taken courses from him or have used his text book
with Peter Bickel Mathematical Statistics: Basic Ideas and Selected Topics
(Bickel and Doksum 1977, 2001, 2007, Pearson Prentice Hall).

Kjell was Vice-Chair of the Statistics Department (1987-88) and As-
sistant Dean of the College of Letters and Science (1978-80). He has also
provided extensive service to the statistical profession. He has served on
the editorial boards of (and as guest editor for) the Journal of the Amer-
ican Statistical Association, Scandinavian Journal of Statistics, Life Data
Analysis, and Sankya. He has been Executive Secretary of the Institute of
Mathematical Statistics. Together with Ingram Olkin and Bruce Trumbo,
he played a role in the founding of the IMS journal Statistical Science.

Kjell is a Fellow of the Institute of Mathematical Statistics, Fellow of
the American Statistical Association, and Elected Member of the Interna-
tional Statistical Institute. He is an Elected Foreign Member of The Royal
Norwegian Society of Sciences and Letters, Trondheim.
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Reminiscences of a 40-year Friendship

Peter J. Bickel

Department of Statistics
University of California, Berkeley, CA

Kjell and I have run on parallel courses in many ways. First, we were
both students of Erich Lehmann at Berkeley, obtaining our PhDs within
2 years of each other: 1963 and 1965. We both followed Hodges and
Lehmann’s research campaign in nonparametric and robust statistics in
our theses and a little after. We both stayed on in the Berkeley faculty for
many years.

From left to right: Peter Bickel, Juliet Shaffer, Erich Lehmann, and Kjell Doksum

We started collaborating early on with a paper (1969) applying Le
Cam’s contiguity ideas in testing for constant failure rate. Our temper-
aments were well suited from the beginning: I going off into vague general-
ities with great ease, and Kjell bringing us back to concrete examples. We
dared venture out of our theoretical cocoon together in 1981, challenging
George Box and David Cox on their analysis of transformations. We were

xxiii
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vigorously slapped down for speaking of effects on unspecified scales. In
retrospect I, at least, admit our conceptual error, but still maintain that,
in pretending that variability in estimation of the scale and of the effect on
that scale have nothing to do with each other, our distinguished colleagues
and their defenders erred just as much. I can’t resist stating the correct
conclusion noted by our friend Bill van Zwet. One must always talk of joint
estimation of scale and effects on the scale revealing the compatibility of
possibly quite variable scales and differing effects on these.

Passing from these old battles, I want to focus on our largest and, I
think, most effective collaboration: our textbook, Mathematical Statistics,
in its first (1976) edition and second (2001) edition for which volume I
has appeared and Volume II is being readied for publication in 2007. In
both endeavors, Kjell and I were sufficiently different on one score but
not sufficiently so on another. I have already mentioned the counterpoint
between generality and concreteness between us, which has served us well.
The point on which we are more similar (and not good) is carelessness. I’m
by far the worse sinner there but Kjell isn’t innocent either, as readers of
the first printings of both editions have learned to their and our sorrow!

Kjell and I have both passed the 65-year mark. I have every expectation
that our friendship and collaboration will continue and BD Edition Three,
not to speak of Volume II of the second edition, will all see the light of day.
If I had a glass, I’d raise a toast to Kjell. Many happy returns!
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PART 0

Statistics and Soccer

1
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Chapter 1

MODELLING SOME NORWEGIAN SOCCER DATA

David R. Brillinger

Statistics Department
University of California, Berkeley, CA, U.S.A.

E-mail: brill@stat.berkeley.edu

Results of Norwegian Elite Division soccer games are studied for the year
2003. Previous writers have modelled the number of goals a given team
scores in a game and then moved on to evaluating the probabilities of a
win, a tie and a loss. However in this work the probabilities of win, tie
and loss are modelled directly. There are attempts to improve the fit by
including various explanatories.

Key words: Binary data; Empirical process; Football; Generalized lin-
ear model; Ordinal data; Residuals; Soccer.

1 Introduction

Kjell Doksum has been a steady contributor to the theory and practice
of nonparametric statistics and soccer. In former case he has studied the
quantile function, probability plotting and, what is most pertinent to this
article, the introduction of randomness to ease analyses. In the latter case
he has potted lots of goals during his lifetime.

Previous studies have modelled the number of goals a team of interest
scores in a soccer game as a function of explanatories such as site of game,
opponent, and FIFA rating. References include Lee (1997), Dyte and Clarke
(2000), Karlis and Ntzoufras (2000, 2003a, 2003b) and references therein.
In our work the respective probabilities of win (W), tie (T), and loss (L) are
modeled directly and are examined as a functions of possible explanatories.
A reason for employing W, T, L is the thought that the ultimate purpose
of a game is to decide a winner. It is felt that the response W, T, L better
represents this event than the number of goals scored. The latter may be

3
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inflated by a team’s “giving up” or be deflated by a team’s moving to a
defensive strategy.

To an extent the approach is that taken in Brillinger (1996) for hockey
data. The sections of the paper after the Introduction are: Some previous
soccer modeling, Norwegian soccer, Ordinal data, Results, Assessing fit,
Another model, Uses, Extensions, Discussion and summary.

2 Some previous soccer modelling

There has been previous work on modelling the number of goals scored
by each team in a game. For example Lee (1997) employs independent
Poissons for the number of home and away goals, with

E{home goals by team i} = exp{α+ ∆ + βi + γj}
E{away goals by team i} = exp{α+ γi + βj}

respectively, where ∆ represents the home effect, βi refers to team i playing
at home and γi refers to team i playing away, and j refers to any arbitrary
team. On the other hand Dyte and Clarke (2000) employ the expected
value

exp{α+ βUi + γVj + ∆}
where Ui is i’s FIFA rating, Vj is j’s and ∆ is again a home team effect.
Karlis and Ntzoufras (2000, 2000a, 2000b) employ the Poisson and bivariate
Poisson in their work. In each case the model is used to determine resultant
win, tie, loss from the goals scored. In this paper the focus is on the win-
tie-loss result as the basic response.

Panaretos(2002) adopts a “game viewpoint” employing explanatories
such as: fouls committed, off-sides, and shots on goal. Brillinger (2005)
employs mutual information as a measure of the strength of association of
the effect of playing at home and the number of goals scored for various
premier leagues around the world.

3 Norwegian soccer

Table 1 lists the Norwegian Elite Division teams for the 2003 season, and
Figure 1 is a map displaying their locations. One notes the two northerly
teams and wonders whether travel and weather might not play important
roles in their games. Also listed are identifiers for the map showing loca-
tions. (The reason for switching the last five teams from numbers to letters
is to have less overprinting in the figure.) The teams are listed in the table
in order of their final standings for 2003.
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Table 1 The 2003 Elitserien teams. The identifier
provides their location on the map of Figure 1. The
teams are in the order of their 2003 finish

Team identifier Team

1 Rosenborg
2 Bodo-Glimt
3 Stabaek
4 Odd-Grenland
5 Viking
6 Brann
7 Lillestrom
8 Sogndal
9 Molde

10(a) Lyn
11(b) Tromso
12(c) Valerenga
13(d) Aalesund
14(e) Bryne

5 10 15 20 25
58

60

62

64

66

68

70

1

2

345

6
7

8

9

a

b

c

d

e

Figure 1 Locations of the 2003 Elitserien Teams. Table 1 lists the team names corre-
sponding to the identifiers. The x-axis is longitude east and the y-axis latitude.

The Elitserien has 14 teams, each playing all the others, home and
away. There were 182 games in the 2003 season and the season goes on 26
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weeks with a break in the summer. There are 7 games each week and the
design is balanced. The data employed in the analyses came from the
url http://www.soccerway.com/national/norway/tippeligaen/2003/round-
1/results

Table 2 The results of the first week’s games as
an illustration

Home Visitor Result

Rosenborg Valerenga 1 - 0
Lillestrom Bodo/Glimt 1 - 0
Aalesund Tromso 2 - 3
Viking Bryne 3 - 0
Sogndal Stabek 2 - 1

Odd Grenland Molde 1 - 0
Lyn Brann 0 - 0

To show the character of the original data the first week’s results are
displayed in Table 2. Table 3 provides the final 2003 season results. The
left hand columns give the at-home results and the right hand the away for
the complete season.

Table 3 The season’s results for 2003. The left hand
columns are home games and the right hand columns away
games

Identifier W T L W T L

1 9 2 2 10 2 1
2 7 2 4 7 3 3
3 6 4 3 5 5 3
4 6 4 3 5 1 7
5 6 3 4 3 7 3
6 7 1 5 3 6 4
7 7 4 2 3 3 7
8 7 4 2 2 4 7
9 6 2 5 3 2 8

10(a) 4 3 6 4 3 6
11(b) 4 4 5 4 1 8
12(c) 4 5 4 2 5 6
13(d) 4 5 4 3 2 8
14(e) 7 1 5 0 0 13
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4 Ordinal data

This section motivates and lays out the analysis approach taken in the
paper.

4.1 The cut-point approach

The random variables of principal concern are ordinal-valued namely
loss, tie, win. These will be denoted by

0, 1, 2

respectively.
A number of different models have been proposed for the analysis of or-

dinal data. These include: continuation ratio (see Fienberg (1980)), stereo-
type (see Andersen (1984)) and grouped continuous (see McCu1lagh and
Nelder (1989)). This last is the one employed in the analyses presented.

The approach to be followed starts by supposing that there exists a
latent variable, Λ, whose value in some sense represents the difference in
strengths of two teams in a game. It further assumes the existence of
cutpoints θ1 and θ2 such that

Y = 0 if Λ < θ1, Y = 1 if θ1 < Λ < θ2 and Y = 2 if θ2 < Λ

so for example

Prob{Y = 1} = FΛ(θ2) − FΛ(θ1) (1)

where FΛ is the c.d.f. of Λ. In practice the choice of FΛ is sensibly based
on the subject matter of the problem. The complimentary loglog link cor-
responds to situations in which of an internal variate crosses a threshold.
It may be based on an extreme value distribution. In the present context
this may be reasonable, with a win for a particular team resulting from the
team members putting out maximum efforts to exceed those of the oppo-
nent. What is basic though is that its choice makes standard generalized
linear model programs available via the Pregibon trick.

The extreme value distribution of the first type is given by

Prob{Λ ≤ η} = 1 − exp{−eη}, −∞ < η < ∞ (2)

One can write

log(−log(1 − Prob{Λ ≤ λ})) = λ

and see the appearance of the cloglog link. Pregibon (1980) noted that one
could employ standard statistical packages in analyses of such multinomial
data when one proceeded via conditional probabilities. Here the distribu-
tions involved in the modelling are Prob{Y = 2} and Prob{Y = 1|Y 6= 2}.
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Explanatory variables, x, may be introduced directly by writing

Λ = E + β′x

where E has the standard extreme value distribution. Now (1) becomes

FE(θ2 − β′x) − FE(θ1 − β′x).

4.2 Some formulas

To begin consider Prob{Y = 2}, as opposed to Prob{Y 6= 2}, and
Prob{Y = 1|Y 6= 2}, as opposed to Prob{Y = 0|Y 6= 2}. The response
is binary in each case. In the work the following parametrization will be
employed,

Prob{Y = 2} = 1 − exp{−eη−θ2}

Prob{Y = 1|Y 6= 2} = 1 − exp{−eη−ψ} (3)

with η = β′x. The other probabilities of interest may be obtained from
these. The advantage of this parametrization is that θ2, ψ and β may be
estimated directly via the function glm() of R and S. See Pregibon (1980)
and McCullagh and Nelder (1989). The pertinent material is in McCullagh
and Nelder (1989) on page 170. One sees there a multinomial probability
mass function being represented as the product of binomials. One follows
that representation in setting up the response and explanatory matrices for
glm.

Now the basic probabilities are parameterized as

Prob{Y = 2} = 1 − exp{−eη−θ2}

Prob{Y = 1} = exp{−eη−θ2} − exp{−eη−θ1}

Prob{Y = 0} = exp{−eη−θ1}
This fits in with (3) via the connection

e−ψ = e−θ1 − e−θ2 .

4.3 The setup

Suppose that:

βi is the “strength” of team i when playing at home

and

γi is the “weakness” of team i when playing away
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These will be assumed constant.
Now consider the model

Prob{i wins at home playing j} = 1 − exp{−eβi+γj−θ2}
and

Prob{i loses at home playing j} = exp{−eβi+γj−θ1} (4)

with the probability of a tie 1 minus the sum of these two.
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Figure 2 The estimated home effects, β̂i, are denoted “o” and the away, γ̂i, are “*”.

In the fitting the results of the individual games will be assumed statis-
tically independent. The fixed effects are meant to handle the connections
amongst teams.

5 Results

The parametrization employed is (3). The estimation method is maximum

likelihood. Figure 2 shows the resulting β̂i and γ̂j of (4). The values have

been anchored by setting β̂1, γ̂1 = 0. One sees γ̂14 sitting near -6.15 in
an attempt to get to −∞ following losing all its away games. The residual
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Table 4 Fitted values. The left hand columns refer to home games
and the right hand to away. The fitted values are the number of games,
13, times the fitted probability

Team W T L W T L

1 8.35 3.10 1.55 10.10 1.52 1.38
2 5.96 3.26 3.78 6.73 2.95 3.32
3 6.40 3.25 3.36 5.56 3.31 4.13
4 6.91 3.20 2.89 3.73 3.65 5.62
5 5.96 3.21 3.83 3.87 3.63 5.50
6 5.76 3.19 4.06 3.83 3.63 5.54
7 7.44 3.13 2.43 2.79 3.67 6.55
8 6.96 3.21 2.83 2.44 3.61 6.95
9 5.41 3.14 4.45 2.45 3.60 6.95

10(a) 4.31 2.78 5.91 3.74 3.67 5.59
11(b) 4.60 2.90 5.51 3.36 3.68 5.96
12(c) 5.44 3.14 4.41 2.47 3.60 6.92
13(d) 5.42 3.14 4.44 2.47 3.61 6.92
14(e) 5.41 3.50 4.09 0.00 0.00 13.00

deviance is 334.8 with 182− 26− 2 = 154 degrees of freedom. The degrees
of freedom here and later in the paper are those as if the model were fitted
directly, i.e. the Pregibon trick was not employed. The away performances
values stand out.

Table 4 gives the fitted wins-ties-losses for home and away. These num-
ber. Figure 3 plots fitted versus actual. One notes that the fitting definitely
picks up Bryne losing all its away games. One also sees a clustering about
the diagonal line in Figure 3.

6 Assessing fit

There is an issue of how to assess the fit of an ordinal response model.
The link function may be checked by nonparametric regression, see Figure
11 in Brillinger et al (1980). Figure 4 shows the kernel estimate based
on the data (η̂i, yi) where η̂i is the fitted linear predictor and yi is the
observed Bernouli value. The smooth curve is the extreme value cumulative
distribution function. The two follow each other.

6.1 Chi-squared statistics

It was indicated that the residual deviance of model (4) was 334.8 with 154
degrees of freedom, but the interpretation must be made with care. Further,
one cannot simply interpret a chi-squared statistic based on the values of
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Figure 3 Fitted counts of wins, ties, losses against corresponding actual.

Tables 3 and 4 because the entries are negatively correlated following the
competitive character of the variates - one wins, another loses.

6.2 Uniform residuals

“The idea is to obtain randomized rank-sum statistics for the
independence, randomness, k-sample and two factor problems
analogous to the statistics of ... others.” “... one essentially
replaces the original data ... by a random sample ... known
to have distribution ... advantage ... of having a continuous
distribution ...”

Bell and Doksum (1965)

In the case of a continuous variate, Y , the random variable F (Y ) has a
uniform distribution, see Fisher (1932). Supposing the distribution depends

on an unknown parameter θ with estimate θ̂, the Û = F (Y |θ̂) may be
anticipated to have an approximate uniform distribution. The variates
Ûi = F (Yi|θ̂) were employed in Brillinger and Preisler (1983) to examine
the overall fit of a model. They are an aid in various nonstandard cases,
such as for random effect models.
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Figure 4 Prospective probabilities. The smooth curve is expression (2). There is a rug
plot giving the linear predictor values.

In the present case the response employed is binary, Y = 0, 1 so various
of the classical model effect procedures appear not particularly effective. In
this binary case uniform residuals may be computed as follows.

Suppose

Prob{Y = 1|explanatories} = π

and that U1 and U2 denote independent uniforms on the intervals (0, 1 −
π), (1 − π, 1), respectively . Then the variate

U = U1(1 − Y ) + U2Y (5)

has a uniform distribution on the interval (0, 1). An effect of constructing
these values is that the data that are 1’s will become spread out in the
upper interval and those that were 0’s in the lower.

In the null case E{U} = 1/2 whereas when

Prob{Y = 1|explanatories} = π0

then E{U} = (1 + π − π0)/2.
In practice one has π̂ an estimate of π and forms

Û = Û1(1 − Y ) + Û2Y

where Û1 and Û2 are uniform on (0, 1− π̂) and (1− π̂, 1) respectively. When
an estimate of π̂ is employed, we refer to Û , as a uniform residual.
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One can equally employ normal residuals, Φ−1(Ûi). Working with these
has the advantage of spreading the values out in a familiar manner in the
null case. We refer to Φ−1(Û) as a normal residual. Doksum (1966) uses
the term “normal deviate” in the situation referred to at the beginning
of this section. Various traditional residual plots may now be constructed
using the Û or Φ−1(Û), e.g. normal probability plots involving the normal
residual, Φ−1(Û) versus an appropriate normal quantile and of Φ−1(Û)
versus explanatories.

Discrete response cases were considered in Brillinger (1996) and Dunn
and Smyth (1996).

6.2.1 Results

The normal residuals, Φ(Û) were computed fitting the model (4) as dis-
cussed in Section 4. The idea is that they should have an approximate
N(0, 1) distribution if the model is fitting well.
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Figure 5 A normal probability plot of the “normal residuals”.
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Figure 7 Normal residuals versus day of game for the home wins. A loess line has been
added.
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Figure 8 Actual number of wins versus week into season. There are typically 7 games
a week.

The plots are shown in Figures 5 and 6. There are some indications
of asymmetry. Next consideration turns to seeking to improve the fit by
including possible explanatory variables. Available variables include: day
of year, distance between cities, and results of the preceding game for the
teams. Figure 7 provides a plot of normal residuals vs. day in year. A
loess line, see Cleveland, Grosse and Shyu (1992) has been added. There
is an indication of departure in the earlier part of the season. Figure 8
seeks to confirm this. It plots weekly totals of home wins by week of the
season. There is a trend downwards as the season progresses. Figure 9
plots the residuals against the distance between the towns involved in the
game. There is an indication of a bowing upwards.

An analysis of deviance was carried out fitting for the pair of teams
in the game the explanatories of: the home team, the away team, day
of game, distance between the towns involved and the results (W, T or
L) of the teams’ preceding game. The results are presented in Table 5.
One sees that the visiting team and their previous week’s result appear
most important. The final deviance is 297.99 on 182-32-2 = 148 degrees
of freedom. The degrees of freedom are less than in the previous case
because, in order to include the previous week’s result, a week of data must
be dropped.
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Figure 9 Normal residuals versus distance between towns. A loess line has been added.

Table 5 Analysis of deviance table for the inclu-
sion of explanatories successively

Term Df Deviance change

Home team 13 8.76
Away team 13 42.59

Previous home 2 1.77
Previous away 2 4.26

Day 1 2.33
Distance 1 1.00

7 Another model

A simpler model is next considered. Let δi denote the strength of team i
whether playing at home or away, i.e. assume β = γ.

In the computations expressions (4) are replaced by

Prob{i wins at home playing j} = 1 − exp{−eδi−δj−θ2}
and

Prob{i loses at home playing j} = exp{−eδi−δj−θ1}. (6)

The fitted values, δ̂i, are given in Figure 10.
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Figure 10 The δ̂i, of the model (6), are indicated by “*”.

One sees in the figure that δ̂1, the champion’s strength, is particularly
large while δ̂14, the lowest team’s is particularly small. This result is con-
sistent with Figure 2.

The residual deviance of the model (6) is 357.36 with 182-14-2 = 166
degrees of freedom to be compared with the previous 334.8 with 154 degrees
of freedom.

8 Uses

The fitted models obtained may be put to some uses. For example one could
run Monte Carlos to estimate the probability of each team being champion
or of being relegated, as in Lee (1997). Alternately one could examine the
effects of a switch from 2 to 3 points for a win, again via simulation, if every
thing else remained fixed.

Further, one could use the fitted models to assess various betting strate-
gies. In that connection one referee mentioned that one could fit the model
to say the first 20 week’s data and then see how well that model predicts
the next week’s results. The other referee brought up the idea of using the
model to rank the teams, but backed away because the design was com-
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pletely balanced. I can add that if some explanatory with teeth could be
found to include in the model, then ranking could proceed. The referee also
added that if desired one could fit a single home advantage parameter for
all the teams.

9 Extensions

A study was made of the effect of handling omitted variables by including
additive random effects in the linear predictor. The resulting model cor-
responds to a different link function, for example the inverse link function
becomes

1 −
∫
exp{−eη+σz}φ(z)dz

instead of (2) if the effects are assumed to be IN(0, σ2). The resulting σ̂
turned out to be near 0.

Harville (2003) and Stern (2004) are recent papers concerned with re-
lated problems for other sports and might be consulted by the interested
reader.

10 Discussion and summary

Conditioning was employed to take the ordinal-valued case to a pair of con-
ditionally independent cases. The advantage was that standard statistical
packages became available for the analyses.

One could have modeled the goals and then obtained W-T-L results
afterwards but the choice was made to try something different.

The fine away performance of Rosenborg and poor away performance
of Bryne are perhaps the most notable features noted.
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Chapter 2

STOCHASTIC PROCESSES IN SURVIVAL ANALYSIS

Odd O. Aalen and H̊akon K. Gjessing
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The objects studied in survival and event history analysis are stochas-
tic phenomena developing over time. It is therefore natural to use the
highly developed theory of stochastic processes. We argue that this
theory should be used more in event history analysis. Some specific ex-
amples are treated: Markov chains, martingale-based counting processes,
birth type processes, diffusion processes and Lévy processes. Some less
well known applications are given, with the internal memory of the pro-
cess as a connecting issue.

Key words: Counting process; Markov chain; Diffusion process; Lévy
process; Exploding process; Frailty; Survival analysis.

1 Introduction

The objects studied in survival and event history analysis are stochastic
phenomena developing over time. It seems rather obvious that the large
body of theory of stochastic processes should have a bearing on the sta-
tistical theory. There is probably a wide agreement on this view, but the
connection between survival and analysis and stochastic processes should
be made much stronger than has so far been generally accepted.

Important parts of stochastic process theory can in fact be connected
to survival analysis. These include

• Markov chains

23
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• birth processes
• counting processes and martingale theory
• Wiener processes and more general diffusion processes
• Lévy processes

We shall have a look at these types of processes with a view as to their
applicability in survival analysis.

Indeed, the work of Kjell Doksum contains several examples on the
use of stochastic processes. He has written a number of papers where an
underlying risk process has been modeled as a Wiener process, see e.g.
Doksum & Høyland (1992). Furthermore, Doksum was a pioneer in the
nonparametric Bayesian approach to survival analysis and introduced the
“neutral to the right” prior distributions, which means that the cumulative
hazard rates are in fact Lévy processes (Doksum, 1974).

There are two important general aspects of survival analysis which are
connected to the use of stochastic processes. One is the issue of time. The
common regression method in survival analysis, the proportional hazards or
Cox regression, is based on an assumption of proportionality. This in effect
decouples the statistical analysis from the development over time, implicitly
assuming that no changes take place when time passes. Time is relegated
to a nuisance parameter instead of being in fact the major parameter of
survival data. This has numerous implications for the actual practice of
survival analysis, since it de-emphasizes the fact that changes over time,
e.g. in the effect of covariates, are likely to occur and should be examined
and understood. We believe that the time aspect should play a much more
central role in survival analysis.

The second general aspect is whether survival and event history data
should be analyzed just as they present themselves, or whether one should
try to look behind the data even though it may be speculative. The
major tradition, like in most of statistics, is very pragmatic. One com-
putes Kaplan-Meier survival curves and runs regression analyses, which are
straightforward analyses of the actual observed data. However, there are
also attempts at looking below the surface. One example is frailty theory,
based on the recognition that some individuals have higher risk than oth-
ers. Such models will rarely be identifiable for univariate survival data, but
nevertheless it may yield considerable insight to speculate about the frailty
effects that may be present. We believe that models which allow fruitful
speculations on underlying mechanisms should be applied much more than
is presently the case. Indeed, speculation is part of the scientific creativity,
and statisticians should contribute to this aspect too.

Two types of models for underlying mechanisms will be presented,
namely first-passage models and extended frailty models (with stochastic
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hazard rates). An issue running through several of the models studied is the
question of the memory of the process; how well does it remember the past.
The distinction between short-term and long-term memory is important in
stochastic process theory, and plays a special role in the extended frailty
models presented below. Models with long range dependence often result
in distributions that are sub-exponential, that is, an eventually declining
hazard rate, see e.g. Samorodnitsky (2002).

Why are stochastic processes of importance in survival analysis? The
main reason is of course that event histories and the associated covariate
histories develop over time, and the theory of stochastic processes is our
tool of analyzing such development. The processes mimic some underlying
structure, maybe in a superficial fashion. The models are usually not correct
descriptions of the phenomena in great detail. They are rather some kind
of coarse analogues that may still yield important insights.

However, stochastic processes have a function beyond more or less ap-
propriate mimicking of event and covariate histories. An almost unavoid-
able aspect of event history observations is the occurrence of censoring. The
martingale concept, and associated stochastic integrals, are ideally suited
for handling censored processes. This is due to the martingale property
being invariant to certain operations that would destroy more classical re-
lations like independence.

2 Probabilistic or statistical assumptions

The common stochastic processes fall into two categories, those that are
amenable to detailed probabilistic calculations, and those where the as-
sumed structure gives rise to results of a more conceptual nature. A typical
example of the former ones are the Markov processes where probabilistic
calculations can be carried out precisely because of the Markov property.
An example of the second category would be the martingales, where the
basic results are less computational. For example, a major result is the in-
variance of the martingale property under optional stopping and stochastic
integration.

From a statistical point of view, one will sometimes need the probabilis-
tic computational power of a stochastic process. However, quite often this
is not relevant. In many cases the dependence, say, on past observations
can be arbitrarily complex, that is far from Markov or similar assumptions,
and with a possible long-term memory. The important thing is the depen-
dence of the model on statistical parameters, which needs to be tractable.
This statistical dependence is an entirely different matter than probabilis-
tic dependence. Then martingale results guarantee (possibly approximate)
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unbiasedness and asymptotic normality and produces variance formulas.

3 Stochastic processes modelling observed data

3.1 Markov chains

The Markov chain is in many ways the simplest type of stochastic process
and has long played a major role in biostatistical modelling. In fact, the
simplest Markov chain in survival analysis is the competing risks model
which goes back to Bernoulli in 1760 and his assessment of the importance
of smallpox on mortality. A more recent example of major importance is
the Armitage-Doll model for the development of cancer (i.e. carcinogen-
esis), which appeared in 1954 (Armitage and Doll, 1954). This so-called
multi-stage model, is really a simple Markov chain which describes how a
cell moves through a number of different stages before becoming cancer-
ous. The model has been a considerable inspiration for understanding the
development of cancer.

It is interesting to note that the Armitage-Doll model is quite primitive
from a biological point of view. It is rather doubtful that the changes of a
cell really constitute a Markov process on a set of well-defined states. Above
all, the model ignores cell division and cell death, that is, the whole dynamic
process taking place in the tissue. Nevertheless, the model has been quite
important, with 555 citations as of 2004. A number of further developments
of this model have arisen, incorporating issues like cell division and cell
death. Still these models are of Markov type, being related to branching
processes. An interesting example is the model of Portier et al (2000).
These approaches really constitute complex survival models since the aim
is to compute the distribution of time to malignancy, that is the cancer
incidence. Hence they demonstrate the application of complex stochastic
processes in survival analysis.

A general difficulty with the Markov process is the basic Markov as-
sumption which may appear unrealistic in many cases. For instance, one
may not actually believe in the lack of memory property (conditional on
the present state). It is important to note, however, that the Markov prop-
erty may be much less of a restriction than one thinks. This point has
been made by Datta and Satten (2001) and Glidden (2002). In fact, the
basic Markov tool of multiplying transition matrices often has a validity
beyond the Markov framework. Basically, the multiplication of transition
matrices is simply a description of the movements of individuals on the
chain and does not necessarily depend on probabilistic assumptions. This
is connected to the fact that the Markov assumption is really made on
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the level of individuals. The statistical estimation, on the other hand, is
usually taking place on a more aggregate level. One often does not follow
individuals, but the estimation is merely dependent on the numbers of indi-
viduals present in the various states at any given time, and the transitions
that occur for them. Hence, much estimation for Markov chains will have
a broader validity than one might think.

3.2 Counting processes

The Markov chain assumption implies a highly specific stochastic frame-
work. The details are specified in such a way that explicit probabilistic
calculations can be made. For many statistical purposes, however, one is
not dependent on such detailed calculations. Rather, the main thing is
how the statistical parameters enter the model, and whether features like
incomplete observation, often termed censoring in the survival case, can be
incorporated. The counting process structure (Aalen, 1978) takes care of
precisely these issues; for event histories the basic observations are counts
of transitions or events that take place over time. A very fruitful model
for such counting processes is defined by considering the intensity processes
given the entire past.

Consider for now just a single counting processes N(t), and its intensity
process λ(t). The intensity process generalizes the intensity of a Poisson
process, by letting the intensity be a function of happenings in the past.
The interesting probabilistic feature here is not how λ(t) depends on the
past in a detailed fashion, as it would be for a Markov chain, but the fact
that

N(t) −
∫ t

0

λ(s)ds

is a (local) martingale. This is a very different kind of assumption, it does
not allow explicit calculation of probabilities like the Markov assumption
does, but it has other properties, like the fact that the martingale property
is preserved under stochastic integration of predictable processes. Censor-
ing may be represented as a stochastic integral with respect to a censor-
ing process, and so one has that the all-important martingale property is
preserved under the fundamental operation of censoring. In addition, the
martingale property in many cases implies asymptotic normality. Usually,
asymptotic theory is associated with some underlying independence struc-
ture, or a modification of this. The martingale property is a more robust
assumption which achieves more or less the same.

The second basic assumption concerns how the parameters enter the
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model, and a common formulation is the multiplicative intensity model

λ(t) = Y (t)α(t)

where α(t) is the statistical part in a parametric or non-parametric version,
while Y (t) is an observable quantity. Again, Y (t) may have an arbitrarily
complicated dependence on the past (with some qualification to be dis-
cussed below). No assumption of the Markovian or any similar type is of
relevance here. The martingale property enters into the estimation and
testing since it forms the basis for proving unbiasedness, for computing and
estimating variances, and for asymptotic theory.

In the counting process theory there is no difficulty with a long term
memory in the process. The martingale property is compatible with com-
plex dependence on the past. It may be useful to model such dependence
more explicitly, however, and we shall illustrate this in the next section.

3.2.1 Counting beyond 1

In spite of counting process theory now having an almost 30 years history
in event history analysis, the actual applications have been very limited in
scope. Mostly, the individual counting processes have been counting at most
a single event each, which have then been aggregated into a larger counting
process. The multivariate survival data, where each individual experiences
several events or where related groups of individuals are lumped together,
have only to a slight extent been included in the theory. Rather, the multi-
variate data have been handled by mixed models of the frailty type (see e.g.
Hougaard, 2000), which are certainly useful, but which, for instance, have
little ability to include changes over time. What has been missing from this
picture are individual intensity processes which depend in a more detailed
fashion on the past of the individuals. Again the type of dependence is not
of the probabilistic type, but of the statistical type. What matters is the
type of dependence on statistical parameters, the probabilistic dependence
may, in principle, be arbitrarily complex and have long-term memory.

One possibility is to define a model with dynamic covariates. The dy-
namic covariates may be quantities like the number of previous events for
the individual (or for the group), or the time since last event. Numerous
possibilities exist along these lines and can be alternatives to the mixed (or
frailty) models. Dynamic models have been suggested by several authors
(Kalbfleisch and Prentice, 2002; Aalen et al, 2004; Peña and Hollander,
2004; Gandy and Jensen, 2004; Miloslavsky, Keleş and van der Laan, 2004).

The existence of dynamic models follows from a general theorem for
submartingales, namely the Doob-Meyer decomposition which states, es-
sentially, that any submartingale can be decomposed into a martingale and
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a compensator. Since a counting process is a submartingale, there is es-
sentially always an intensity process however the counting processes comes
about. For instance, there might be an underlying random effects, or frailty
model, of a possibly complex and general nature, nevertheless the whole
thing can be reformulated by intensity processes depending on the past.

Simple examples of dynamic models are the Cox type model (e.g.
Kalbfleisch and Prentice, 2002):

λi(t) = α(t) exp(βNi(t−)) (1)

or the additive model (Aalen et al, 2004):

λi(t) = α(t) + β(t)Ni(t−) (2)

where the index i refers to individual process i, and Ni(t−) are the num-
ber of occurrences prior to time t in this process. Methods for statistical
analysis of such models may be found in Aalen et al (2004) and Fosen et al,
(2005). Here we shall focus on a particular aspect of these models which is
related to stochastic process theory.

3.2.2 Dynamic models and explosion

When introducing more complex dependence on the past into the model,
as illustrated above, one has to be careful. Actually, what one is doing
is to specify stochastic processes with a particular dynamic structure, e.g.
similar to birth processes. Then the question arises whether the process in
question is well defined. It turns out that in this respect the two models
defined in equations (1) and (2) behave very differently.

Considering first the model (2), then it is clear that this defines a birth
process with immigration. If α(t) and β(t) are constant, then such a process
is well defined and even has explicit solutions. Certainly the process is well
defined even for time-varying parameters under weak conditions, and so
there is no conceptual difficulty with the additive model.

The Cox type model (1), on the other hand, may run into difficulties.
When defining dynamic models one should be aware of the phenomenon
of “explosion”. A large intensity process leads to many new events in a
short interval of time. These events are fed back into the intensity process
through the contribution of Ni(t−). This again leads to even more events
and eventually the process explodes, i.e. Ni(t) → ∞ when t→ τ−, where τ
is a random time which is finite with positive probability. Such processes are
sometimes called “dishonest” processes; Cox and Miller (1965, p. 163) point
out that for instance by defining the intensity process as λi(t) = Ni(t−)2

one gets a dishonest process. Clearly, this also creates potential problems
for applying model (1) where the growth in the intensity process due to
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increasing number of events is stronger than for the square function. In
general, let us define the intensity by

λi(t) = h(Ni(t−), t)

for some non-negative function h(x, t) of two arguments. The question is
what kind of functions h will lead to a well-defined process Ni, and which
functions will cause explosions. Mathematically, this is related to the Lip-
schitz condition used in differential equations theory (Birkhoff and Rota,
1989). Typically, a local Lipschitz condition in the first argument of h guar-
antees a unique solution up to a certain point in time, but does not exclude
the possibility of explosion at a later time. A global Lipschitz condition,
however, sets a growth restriction on the behavior of h, and guarantees a
unique non-explosive solution. Similar conditions exist for stochastic differ-
ential equations driven by Wiener or Poisson processes, that is, including
the counting processes considered here (Protter, 1990). Additive processes
usually satisfy global Lipschitz conditions, whereas exponentially based pro-
cesses only satisfy local conditions. In general one has to be careful when
defining dynamic models to ensure that they are actually well defined, and
this may be a non-trivial issue.

Another general criterion for models to be non-explosive is the Feller
condition which can be used on processes where the intensity is only de-
pendent on the number of previous occurrences, i.e.: λi(t) = h(Ni(t−)) for
a nonnegative function h(x) (not depending on t). Then non-explosiveness
on finite intervals is guaranteed if and only if

∞∑

i=1

1

h(i)
diverges,

see, for instance, Allen (2003). The intuitive justification for this criterion
is that when the process is in state i its intensity is constant until the next
jump, and thus the expected time in that state is 1/h(i). The above sum
then represents the total expected time used spent in all states. If this
quantity converges it seems clear that the process moves faster and faster
to new states, and that it will explode in finite time. The Feller condition
immediately holds for a linear function h(·), so the linear or additive model
will be a safe choice. For a quadratic function h(i) = i2, on the other hand,
it is clear that the above sum converges, and there will be explosion with
a positive probability. Also for an exponential form λi(t) = exp(βNi(t−))
it is clear that

∑∞
i=1 exp(−βi) converges for all positive β, implying once

more a positive probability for explosion on finite time intervals.
The situation is more difficult when h also depends on t. For instance,

one may have a Cox model of the type λi(t) = α(t) exp(βNi(t−)/t), i.e.
h(x, t) = α(t) exp(βx/t). This is a sensible model since it implies that it is
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the average number of events per time unit that is of importance. We will
return to this model shortly, after some general considerations.

Assume that h is a convex function in the first argument. By counting
process theory and Jensen’s inequality we have

ENi(t) = E

∫ t

0

h(Ni(s−), s)ds =

∫ t

0

Eh(Ni(s−), s)ds ≥
∫ t

0

h(ENi(s−), s)ds.

Consider a function f(t) satisfying

f(t) =

∫ t

0

h(f(s), s)ds. (3)

A general comparison theorem for differential equations can be applied
(Birkhoff & Rota, 1989, Chapter 1, Section 11). From the theorem it
follows that ENi(t) ≥ f(t). Hence, we may solve (3) and study whether
the solution is explosive. Differentiating the equation we get

f ′(t) = h(f(t), t), (4)

with initial condition f(0) = 0. If the solution to this differential equation
explodes, then the expectation of the process will explode. (The oppo-
site direction is more complex; the process may explode even though the
equation above has a non-explosive solution).

Note that the solution to (4) is just what is often termed the deter-
ministic solution, as opposed to the stochastic solution determined by a
counting process with intensity process λi(t) = h(Ni(t−), t). The relation-
ship between deterministic and stochastic solutions is of much interest in
areas like population dynamics and the mathematical theory of epidemics
(see e.g. Allen, 2003). Often the relationship between stochastic and de-
terministic solutions is close, but this is not always the case.

Let us first consider the Cox type model λi(t) = α(t) exp(βNi(t−))
defined in (1). The special case of (4) relevant here is

f ′(t) = α(t) exp(βf(t)).

A solution to this equation with initial condition f(0) = c yields

f(t) = − 1

β
log(e−βc − β

∫ t

0

α(s)ds).

If β ≤ 0 there is no explosion. For β > 0 we see that the deterministic
solution explodes if

∫ t
0
α(s)ds reaches e−βc/β at some finite time. In par-

ticular, for c = 0 this means that if β
∫ t
0
α(s) ds = 1 has a solution with t

finite, f(t) explodes.
We shall consider in somewhat more detail the special case of (4) corre-

sponding to the Cox type model λi(t) = α exp(βNi(t−)/t). We will assume
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that the process starts at time 1 (just to avoid the singularity at 0), and
that EN(1) = c ≥ 0 is the initial value. The relevant equation is

f ′(t) = α exp(βf(t)/t), t ≥ 1,

with f(1) = c. When β ≤ 0 no explosion occur, so we will focus on β > 0.

Aided by Mathematica (Wolfram, 1999), or by substituting a(t)
def
= f(t)/t

and separating the equation, we find the following implicit solution:

∫ f(t)
t

c

1

g(u)
du = log(t), (5)

where g(u)
def
= αeβ u − u, u ≥ 0. The solution fulfills the initial condition

f(1) = c. From (5) one may decide whether f(t) explodes or not, by
observing that we cannot necessarily solve this equation for f(t) for all
values of α, β and t. For some combinations of α and β the left hand side
may remain bounded as t→ ∞.

To analyze equation (5) in detail, consider the auxiliary function g(u),
the denominator of the integrand. We have g′(u) = αβeβu− 1 and g′′(u) =
αβ2eβu. Note that g(0) = α > 0. Since g′′ is strictly positive g is convex
and has a unique minimum, which we denote u0. By setting g′(u0) = 0 we
find that u0 = − log(αβ)/β and g(u0) = 1/β − u0. There are now three
possibilities:

(1) g(u) > 0 for all u ≥ 0. Then the integrand of (5) is non-singular and∫∞
c 1/g(u) du < ∞. For large enough t (5) cannot have a solution for
f , and explosion occurs.

(2) g(u0) = 0, i.e. g is tangential to the x-axis. Then 1/g(u) has a non-
integrable singularity at u = u0. If 0 ≤ c < u0 there will be no
explosion, if c > u0 an explosion will occur. In the very special case
c = u0 the solution (5) is not valid but is replaced by the simple solution
f(t) = ct, and no explosion.

(3) g(u0) < 0. Then g has two zeros u1 and u2, u1 < u2, and the integrand
has non-integrable singularities at these two values. Accordingly, if
0 ≤ c < u1 or u1 < c < u2 there is no explosion. If c > u2 the solution
explodes. If c = u1 or c = u2 there is no explosion, as above.

In conclusion: There is explosion if g has no zero, or if c is larger than
the largest zero of g. This translates into saying that there is an explosion
in finite time if either g(u0) > 0 or (g(c) > 0 and g′(c) > 0), i.e. that
αβ > e−1 or (α eβ c > c and αβ eβ c > 1). Note in particular that when
the starting level c is large enough, then the second condition is necessarily
fulfilled. As a numerical illustration, put c = 1 and α = 1. Then explosion
in finite time occurs if β > e−1 = 0.368.
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4 Stochastic processes modelling underlying developments

In statistics one often assumes the existence of unobserved random vari-
ables or processes. For instance, the latent variables of mixed models are
useful conceptual and practical tools. The corresponding concept in sur-
vival analysis is termed frailty models. Thinking in terms of frailty is useful
even in cases where the frailties are completely unobservable (Aalen, 1994).
We shall present a considerable extension of the frailty model below.

Another example of unobserved, latent concepts in survival analysis are
the underlying processes in first-passage time models. Here the time of the
event in question is assumed to correspond to a process crossing a certain
level. In particular, models of this nature are of importance when one
attempts to understand the shape of a hazard rate, see Aalen and Gjessing
(2001). Here we shall focus on the concept of quasi-stationarity.

4.1 First-passage time models. Quasi-stationarity

One may think of the occurrence of an event as resulting when some un-
derlying risk process crosses a certain limit. This has been suggested by a
number of authors, including Doksum (Doksum and Høyland, 1992), but
we shall here focus on an aspect of these models which is not well known.

Consider a number of independent individuals moving on some (unob-
served) state space. The space is divided in two parts, the transient space
prior to the event occurring, and the absorbing space the entrance into
which means that the event in question has occurred. Clearly the popula-
tion of individuals on the transient space will diminish as more and more
become absorbed. However, in many cases a phenomenon termed quasi-
stationarity will occur, that is, the expected distribution of individuals on
the transient space will converge to a limiting distribution. This is not a
stationary distribution since absorption of probability mass takes place all
the time, and so it is termed quasi-stationary.

4.1.1 Quasi-stationarity for diffusion processes

We shall consider a first-passage time for a diffusion process, which leads
to a useful and different view of the hazard rate. Consider a Markovian
diffusion process X(t) on the positive half line with zero as the absorbing
state, and let the event time be defined as T = inft≥0{t : X(t) = 0}, the
time until absorption. Let ϕt(x) be the density on the transient state space,
i.e P (X(t) ∈ dx) at time t, x > 0, and let σ2(x) and µ(x) be the variance
and drift diffusion coefficients respectively. The evolution forward in time
is described by Kolmogorov’s forward equation (Karlin and Taylor, 1981,
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p. 220):

∂

∂t
ϕt(x) =

1

2

∂2

∂x2

[
σ2(x)ϕt(x)

]
− ∂

∂x
[µ(x)ϕt(x)] .

Assume that the process is in a quasi-stationary state. Then one can
write ϕt(x) = e−θtψ(x), where θ is the constant hazard rate and ψ(x) is
the quasi-stationary distribution. Insertion into the above equation yields

−θψ(x) =
1

2

∂2

∂x2

[
σ2(x)ψ(x)

]
− ∂

∂x
[µ(x)ψ(x)] .

This is an eigenvalue equation which in some instances can be solved ex-
plicitly for the quasi-stationary distribution and the corresponding constant
hazard rate θ.

Consider the process prior to quasi-stationarity, and let θt denote the
hazard rate of the time to absorption. Let ψt(x) = P (X(t) ∈ dx|X(t) > 0)
denote the density on transient space, conditioned on non-absorption, so
that

∫∞
0 ψt(x) dx = 1. We can write

ϕt(x) = exp(−
∫ t

0

θs ds) ψt(x)

for the connection between the non-conditioned and conditioned densities.
The following result holds under suitable regularity assumptions:

θt =
σ2(0)

2
ψ

′

t(0)

that is, the hazard rate is proportional to the slope of the normalized density
at zero (Aalen and Gjessing, 2001), see Figure (1). Note that ψt(x) can
be considered the risk distribution of survivors in the context of survival
analysis.

Hence this diffusion model gives a different representation of the hazard
rate than the common one. The derivative of ψt(x) at time zero depends on
the absorption and the diffusion in the process. We can say that the shape of
the hazard rate is created in a balance between two forces: the attraction of
the absorbing state and the general diffusion within the transient space. It
turns out that the various common shapes of hazard rates occur naturally
depending on how the starting distribution on the transient state space
relates to the quasi-stationary distribution. Simplifying quite a bit, one
could say that the shape of the hazard rate depends on the distance between
the starting point, or starting distribution, and the state of absorption. A
great distance leads to an increasing hazard rate, an intermediate distance
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Figure 1 The hazard rate of time to absorption is proportional to the derivative at 0
of the distribution of survivors.

leads to a hazard rate that is first increasing and then declining, and a small
distance leads to an (essentially) decreasing hazard rate.

We shall illustrate this by considering the special case of a Wiener pro-
cess with drift and absorption in state 0. In this case the variance and drift
coefficients σ2 and µ are independent of x. We assume µ < 0, that is, a
drift towards zero. The first-passage time till absorption given start in a
fixed state follows the well known inverse Gaussian distribution.

It is known that in this case there is a whole class of quasi-stationary
distributions. One of those is the limiting distribution of survivors given
a fixed initial state, sometimes called the canonical quasi-stationary distri-
bution. This is given by the following gamma distribution:

φcan(x) =
µ2

σ4
x exp

(
−µx
σ2

)

and yields a constant hazard of absorption equal to θ0 = (µ/σ)2/2. The
more general quasi-stationary distributions are given by:

φ(x; θ) =
θ

η

(
exp

(
−µ− η

σ2
x

)
− exp

(
−µ+ η

σ2
x

))

for 0 < θ < θ0, where we define η =
√
µ2 − 2 σ2 θ. Here the constant

hazard of absorption equals θ.
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Figure 2 Hazard rates for time to absorption when process starts out in c=0.2 (upper
curve), c=1 (middle curve) and c=3 (lower curve). In all cases µ = 1 and σ2 = 1.
(Reprinted from Aalen and Gjessing (2001) by permission of the authors).

Starting out at some level c it is well known that the time to absorption
is determined by the inverse Gaussian distribution. The shape of the haz-
ard rate of this distribution for various values of c is shown in Figure 2. The
values of c are placed at the beginning of the quasi-stationary distribution,
close to the mode of the distribution, and in its tail. We see the following
from the figure: If c is close to zero compared to the quasi-stationary distri-
bution one gets, essentially, a decreasing hazard rate; a value of c far from
zero gives essentially an increasing hazard rate; while an intermediate value
of c yields a hazard that first increases and then decreases. The wording
”essentially” is used here because the continuous nature of the model and
the non-compact state space yield hazard rates that will, strictly speaking,
always increase to a maximum and then decrease, but for c small or large
they can be seen as just decreasing or just increasing for most practical
purposes.

This relationship is a quite general phenomenon (Aalen and Gjessing,
2001, 2003). It explains the various shapes of the hazard rate in an alter-
native fashion to that derived from e.g. frailty considerations.
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4.2 An extended frailty model: Frailty as a stochastic

process

A basic fact of life is that individuals are dissimilar. From a medical view-
point there is considerable variation in the risk of developing various dis-
eases, and in the prognosis for patients. This variation may be due to
genetics, lifestyle or other factors. Some of these factors may be controlled
in a statistical analysis, while others are unknown. Such unknown factors
are usually counted as a part of the error terms, but when considering pro-
cesses developing over time, selection effects and artefacts may appear as
a result of the unexplained variation (see e.g. Aalen, 1994). In particu-
lar, the shape of hazard functions may be strongly influenced, so that, for
instance, the observed hazard may be pulled down to increase much more
slowly, or even decrease, compared to what would have been observed in a
homogenous group.

In the standard frailty model, frailty is assumed to be given at time
zero, and to follow an individual throughout life. No changes in frailty takes
place. This is clearly a gross simplification, and it might be interesting to
try models which are more flexible. From a biological point of view one
would think that some aspects of frailty are given early in life and stays
with the individual throughout life, as for instance genetic factors. Other
aspects of frailty may be determined by more or less random developments
and events happening later in life, i.e. the general stresses of life.

One flexible generalized frailty model is discussed by Gjessing et al
(2003), where frailty is generated by a stochastic process. More precisely,
we consider frailty distributions defined by a nonnegative Lévy process Z(t)
(also called a “subordinator”) the Laplace transform of which is given by
the Lévy–Khintchine formula

L(c; t) = E exp{−cZ(t)} = exp{−tΦ(c)}.

The function Φ(c) is called the Laplace exponent of the Lévy process. The
family of Lévy processes contains a number of important special cases,
like compound Poisson processes, gamma processes, stable processes etc.
In fact, all nonnegative Lévy processes are limits of compound Poisson
processes.

To consider processes with a varying “rate”, define the nonnegative
deterministic rate function r(t) with integral R(t) =

∫ t
0
r(u) du, and let

Z(R(t)) be the time-transformed subordinator. Conditional on Z, we define
our hazard rate processes h as

h(t) = λ(t)

∫ t

0

a(u, t− u) dZ(R(u)), (6)
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where a(u, t−u) is a nonnegative weight function, and λ(t) is a basic hazard
rate.

A number of results have been proven for this model in Gjessing et al
(2003). An important quantity is the population hazard rate µ(t), by which
we mean the average hazard rate among survivors at a given time. If T is
the lifetime of an individual, we define µ(t) = E[h(t)|T > t]. In our model
we may derive the following expressions for the population survival and
hazard functions:

S(t) = exp(−
∫ t

0

Φ(b(u, t)) r(u) du)

µ(t) = λ(t)

∫ t

0

Φ′(b(u, t) ) a(u, t− u) r(u) du, (7)

where b(u, t) =
∫ t
u λ(s) a(u, s− u) ds.

Another important result concerns quasi-stationarity. We shall make
the following conditions:

(1) λ(∞) = limt→∞ λ(t), r(∞) = limt→∞ r(t) and a(∞, v) =
limt→∞ a(t, v) all exist and are finite.

(2) E[Z(1)] <∞ and a(t, v) ≤ ã(v) for some function ã with
∫∞
0
ã(s) ds <

∞.

Under these conditions, a quasi-stationary distribution exists for h(t), con-
ditional on T > t, as t→ ∞. This implies that µ(t) converges to a limit.

We shall consider now some important special cases. The first is a
formulation of the standard frailty model, by which we mean that frailty is
determined at the beginning, and then not changing later on. To fit in the
present framework, we let frailty be generated over some initial finite time
interval. Our next model generalizes this frailty model by letting the weight
function a(u, v) be only dependent on the first argument u. This means
that frailty contributions are accumulated along the way and nothing is
forgotten. In fact, both these models preserves the memory of previous
frailty.

Our third model is a moving average formulation defined by letting
a(u, v) be only dependent on the second argument v. Under an integrabil-
ity assumption on the weight function, the moving average model implies
that the past is gradually forgotten, and quasi-stationarity is achieved as
indicated above.

In fact the memory of past events is a major issue in frailty models. In
medicine and biology properties determined by genetics would be expected
to have a long term effect, while many other events throughout life may
have a more limited effect and be “forgotten” over time. It is reason to
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believe that the standard frailty models, with all frailty placed at time zero
and perfectly remembered, exaggerates the effects of frailty. We shall give
examples illustrating this issue.

4.2.1 Special case 1: Standard frailty model

We assume a(t, v) ≡ 1. Let r(t) be equal to ρ up to time T and 0 after this
time, and assume that λ(t) is equal to 0 up to time T . From the general
model (6) it follows that the hazard process equals

h(t) = λ(t)Z(ρ T ), t ≥ 0.

The population hazard rate is µ(t) = ρ λ(t)Φ′(Λ(t)), t ≥ 0, where

Λ(t)
def
=
∫ t
0 λ(s) ds. We recognize the hazard rate of the standard frailty

model, where the frailty distribution is generated by a Lévy process, as
are almost all common frailty distributions. For instance, the very broad
PVF distributions described in Hougaard (2000) are distributions of Lévy
processes.

4.2.2 Special case 2: Cumulative frailty model

Let a(t, v) ≡ a1(t) depend only on the first argument, let r(t) ≡ λ(t) ≡ 1.
We have

h(t) =

∫ t

0

a1(u) dZ(u),

so that frailty is accumulated as time passes. This is a reasonable model
for a situation where frailty is gradually building up throughout life and all
previous frailty contributions are remembered.

For an explicit result, consider the gamma Lévy process with Laplace
exponent Φ(c) = ρ{log(ν + c) − log ν}. Assume r(t) ≡ λ(t) ≡ 1 and
a1(t) = a/t. Then µ(t) can be computed from (7) to yield:

µ(t) = ρ
log a− log ν

a− ν

which is seen to be a constant rate.
In general, however, it seems that µ(t) will eventually decrease. Exam-

ples are given below.

4.2.3 Special case 3: Moving average frailty model

Let a(t, v) ≡ a2(v) depend only on the second argument, let r(t) ≡ λ(t) ≡ 1.
We have

h(t) =

∫ t

0

a2(t− u) dZ(u) =

∫ t

0

a2(v) dZ(t − v)
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which is seen to be a moving average process. Note that here the past will be
gradually forgotten if a(v) decreases over time. Define A(v) =

∫ v
0
a2(u) du.

Then b(u, t) = A(t− u) and

S(t) = exp(−
∫ t

0

Φ(A(v)) dv) and µ(t) = Φ(A(t)).

Note that µ(t) is increasing. It is clear that if either Φ is bounded (i.e. Z

is compound Poisson,) or A(∞)
def
= limt→∞A(t) < ∞, then limt→∞ µ(t) =

Φ(A(∞)) < ∞, so that the hazard converges to a limit, which means that
there is a quasi-stationary distribution for the hazard of survivors.

Let us now consider the special case a2(v) = ae−κv. Then A(v) =
a(1 − e−κv)/κ and we can prove that

µ(t) = Φ(A(t)),

V ar[h(t)|T > t] = aΦ′(0) − a2(t)Φ
′(A(t)) − κΦ(A(t))

= µ′(0) − µ′(t) − κµ(t).

4.2.4 Special case 4: Frailty model with no memory

Here we shall assume that the frailty equals instantaneous jump of the Lévy
process. Assume that a(t, v) depends only on the argument v, and that it
equals the Dirac delta function in this argument. Then it can be proven
that

µ(t) = r(t)Φ(λ(t)).

Clearly, this is a model where there is no recollection of past frailty. Notice
that frailty nevertheless has an influence on the shape of the hazard rate,
since in general µ(t) will have a different shape from λ(t).

4.2.5 Example

We shall give illustrations for special cases 2 and 3. Assume that a1(t) =
exp(−t) and a2(v) = exp(−v). Thus both weight functions are exponen-
tially decreasing, but with the difference that the first one starts from time
0 and weights the process forward in time, while the second one starts
from the present time and weights the process backwards in time. We con-
sider two different forms for the basic hazard rate, namely a constant one
(λ(t) = 1) and an increasing one (λ(t) = t2). We use the Gamma process
as the driving frailty process. Population hazard rates for these models are
shown in Figures 3 and 4.

One sees that shapes of the population hazard rates for the cumulative
frailty model (left panels in the figures) is very different from the basic
hazard rate. After reaching a top, the population hazard rate turns down
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Figure 3 Population hazard rates for cumulative frailty model (left panel) and moving
average frailty model (right panel). Constant basic hazard (λ(t) = 1). Gamma frailty
with shape parameter 0.5 and scale parameter 1; a1(t) = e−t; a2(v) = e−v.
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Figure 4 Population hazard rates for cumulative frailty model (left panel) and moving
average frailty model (right panel). Increasing basic hazard (λ(t) = t2). Gamma frailty
with shape parameter 0.5 and scale parameter 1; a1(t) = e−t; a2(v) = e−v.

in both cases. This feature is similar to what is often seen in standard
frailty models and is due to the long term memory of the cumulative frailty
model.

The right panels show the population hazard rates for the moving av-
erage model. In Figure 3 the population hazard converges to a constant,
hence assuming eventually the same shape as the basic hazard rate. This
is due to quasi-stationarity. In Figure 4 the population has a continuous
increase, but much more slowly than the basic hazard rate t2.

We see clearly that the effects of frailty on the hazard rates depend
strongly on the degree of memory in the frailty process. The very strong
effects often seen in standard frailty models is due to the long-term memory
of such models and might be considerably weaker in frailty models with less
memory.

A general result on asymptotic constancy of the hazard rate, due to
quasi-stationarity, was given already by Keilson (1966). As he points out,
the phenomenon is closely related to the process losing its memory when
time passes. This is true for Markov processes and regenerative processes,
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and also for the model presented here. If the process preserves the memory
of early events, the hazard will generally not become constant. Hence, the
asymptotic behavior of hazard rates depends on whether previous effects
are retained in the system, and our example illustrates this.

5 Conclusion

We have illustrated how theory from stochastic processes may illuminate
various aspects of survival analysis. Both practical statistical methods and
useful qualitative insights may be derived.
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Chapter 3

CORRESPONDENCES BETWEEN REGRESSION MODELS

FOR COMPLEX BINARY OUTCOMES AND THOSE FOR

STRUCTURED MULTIVARIATE SURVIVAL ANALYSES

Nicholas P. Jewell

Division of Biostatistics, School of Public Health
University of California, Berkeley, CA 94720, U.S.A.

E-mail: jewell@stat.berkeley.edu

Doksum and Gasko (1990) described a one-to-one correspondence be-
tween regression models for binary outcomes and those for continuous
time survival analyses. This correspondence has been exploited heavily
in the analysis of current status data (Jewell and van der Laan 2004),
Shiboski (1998)). Here, we explore similar correspondences for complex
survival models and categorical regression models for polytomous data.
We include discussion of competing risks and progressive multi-state sur-
vival random variables.

Key words: Competing risk; Current status data; Multinomial logit
model; Proportional odds; Sequential logit model.

1 Introduction

Consider a continuous time survival response T that is measured on an
individual with a known p-dimensional set of covariates Z = (Z1, . . . , Zp).
A survival regression model focuses on the relationship between the (condi-
tional) distribution function Fz, of T , given Z = z, and z. Examples of such
models include the Cox model (Cox 1972) and the proportional odds model
(Bennett 1983); in each of these, the model can be made fully parametric
if both the regression relationship and a baseline version of F are para-
metrically described, semi-parametric if only one of these is parametrically
modeled, or nonparametric if both are only loosely specified.

At a fixed value t, a binary characteristic is defined by the event T < t
which occurs with probability pt = Pr(T < t). A survival time regression
model for T automatically induces a binary regression model relating pt;z =
Pr(T < t|Z = z) to both t and z. Doksum and Gasko (1990) examine this

45
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correspondence in detail for several familiar survival models including those
noted above. One simple example is the proportional odds model for which

Fz(t) =
eα(t)+βz

1 + eα(t)+βz
(1)

where α(t) is a non-decreasing function with α(0) = −∞, α(∞) = ∞, and
where β is a p-dimensional vector of regression coefficients. With this model

log
pt;z

1 − pt;z
= α(t) + βz,

a logistic regression model in z with ‘intercept’ α(t). As noted, if F0 is
assumed to follow a parametric model (for example, the log-logistic dis-
tribution, Kalbfleisch and Prentice 2002, Chapter 2.2.6), then this logistic
model is also fully parametric (with α(t) = a + b log t in the log-logistic
distribution case with a and b > 0 suitably chosen).

This correspondence between survival time and binary outcome regres-
sion models has been heavily exploited in the analysis of current status
data. Current status observation refers to a form of incompleteness in
that the data consists of independent observations on the random variable
(C,∆ = I(T < C),Z) instead of (T,Z). Here, C can be random or deter-
ministic, and is usually referred to as the monitoring time; it is typically
assumed that C is independent of T (conditionally on Z in the regression
setting) and is uninformative. The variable ∆ indicates the current status
of an individual at time C, namely whether T < C or not. A review of
various forms and examples of current status data is given in Jewell and
van der Laan (2004) and the references contained therein.

As follows from the work of Doksum and Gasko (1990), a regression
model for the (unobserved) T immediately leads to a binary regression
model for the observed binary outcome ∆ with C included as an additional
covariate along with Z. For example, with the proportional odds model for
T in (1), the model for ∆ is given by the logistic regression

log
pc;z

1 − pc;z
= α(c) + βz, (2)

where pc;z = Pr(∆ = 1|C = c,Z = z), and α(c) is necessarily non-
decreasing in c with α(0) = −∞ and α(∞) = ∞.

There are two primary properties of this correspondence of regression
models for current status data that make it particularly useful. First, for
many standard survival models, the effects of C and Z are additive in the
binary regression setting when the appropriate link function is used. This
is illustrated by the proportional odds model when a logistic link is used for
∆ as shown in (2). A similar property holds for the proportional hazards
model with the complementary log-log link for ∆ (see Jewell and van der



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Complex Binary and Survival Regression Models 47

Laan 2004). Second, the parameter β in the binary regression model for
the observed ∆ has an immediate interpretation in the survival regression
model for the unobserved T . For example, in the logistic regression model
(2), the regression coefficient βk is nothing more than the log odds ratio of

failure by time t, associated with a unit increase in the kth component of
Z (holding other component variables constant), as given by the original
proportional odds model (1). Although this assumes no interaction terms
in Z, the ideas and interpretations immediately generalize to more complex
models. For more detail on the application of the proportional odds model
in the context of current status data see Rossini and Tsiatis (1996).

The purpose of this article is to examine analogous correspondences be-
tween regression models for more complex survival data and their current
status counterparts. We pay specific attention to two settings: (i) com-
peting risks survival models which naturally lead to unordered polytomous
current status outcomes (Section 2), and (ii) progressive multi-state sur-
vival models, corresponding to ordinal categorical current status outcomes
(Section 3). While such correspondences naturally extend to these more
complex settings, we show that the attractive features of additivity in C
and Z, and interpretability of regression coefficients, only can be guaran-
teed with additional assumptions, at least in the models considered here. In
Section 4, we therefore briefly discuss the advantages (and disadvantages)
of modeling marginal distributions separately using the simpler survival
and binary regression connections for standard current status data.

2 Competing Risks Survival Models and Polytomous

Regression Models

Competing risks survival data arise in situations where, in addition to ob-
servations on the failure time T , there is also information on a categorical
variable J which takes on the values 1, . . . ,m, and represents the cause or
type of failure at time T . It is standard to assume that all failures are
associated with one and only one value of J . The joint distribution of the
random variable (T, J) is of primary interest. See Crowder (2001) for a
recent treatment of the topic.

The cause-specific hazard function for cause J = 1, . . . ,m, (Kalbfleisch
and Prentice 2002) is defined by

λj(t) = lim
h→0

h−1Pr[t ≤ T < t+ h, J = j|T ≥ t].

Related to these cause-specific hazards are the sub-distribution functions
of primary interest given by

Fj(t) = Pr(T < t, J = j), j = 1, . . . ,m
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with the overall survival function then

S(t) = 1 −
m∑

j=1

Fj(t).

Note that the cause-specific density function

fj(t) = lim
h→0

h−1Pr[t ≤ T < t+ h, J = j],

is the derivative of Fj . Finally, these functions are related through

fj(t) = λj(t)F (t)

where F (t) = 1 − S(t) = F1(t) + · · · + Fm(t).
We now introduce the covariate Z into the notation, writing for example

Fj(t; z) = Pr(T < t, J = j|Z = z),

for j = 1, . . . ,m, with

F0(t; z) = Pr(T ≥ t|Z = z) = S(t; z).

Before further discussion of regression models, it will be helpful to intro-
duce an alternative description of the joint distribution of (T, J). For each
j, let αj be a non-decreasing function on [0,∞) for which αj(0) = −∞ and
αj(∞) = ∞. Further, assume that these m functions are commensurate in
the sense that the functions

eαj(t)

1 +
∑m
k=1 e

αk(t)
(3)

are non-decreasing, for j = 1, . . . ,m. Then

Fj(t) =
eαj(t)

1 +
∑m

k=1 e
αk(t)

(4)

define sub-distribution functions for m competing risks. Note that solving
(4) yields the inverse relationships

αj(t) = log

[
Fj(t)

S(t)

]
(5)

for j = 1, . . . ,m. We can thus characterize the joint distribution of (T, J)
equally well in terms of either {α1, . . . , αm} or {F1, . . . , Fm}, with the ap-
propriate constraints on either set of functions.

We are now in a position to describe a natural regression model for
F1, . . . , Fm. For each j = 1, . . . ,m and each covariate value z we write

Fj(t; z) =
eαj(t)+βjz

1 +
∑m

k=1 e
αk(t)+βkz

, (6)
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where βj is a 1 × p vector of regression coefficients. This model introduces
the key additive separation of the effects of t and z on the sub-distribution
functions that we noted was valuable in the standard setting. We refer
to this model as the proportional odds model with competing risks as it
generalizes the model of the same name in the single risk setting (Bennett
1983). Before proceeding further, however, for (6) to describe a set of
sub-distribution functions, we need the functions {α∗

j = αj(t) + βjz : j =
1, . . . ,m} to satisfy the constraints, described by (3), assuming that {αj :
j = 1, . . . ,m} do. Trivially {α∗

j ; j = 1, . . . ,m} possess the same limits as
{αj ; j = 1, . . . , αm} at both 0 and ∞. In considering the constraints (3),
we consider the case where m = 2 for simplicity.

Differentiating (3) with respect to t shows that (3) is equivalent to

α′
1(t) + eα2(t)[α′

1(t) − α′
2(t)] ≥ 0,

α′
2(t) + eα1(t)[α′

2(t) − α′
1(t)] ≥ 0,

for all t. Therefore, for (6) to correspond to a survival model for competing
risks for any value of β and z, we need

α′
1(t) + ea2eα2(t)[α′

1(t) − α′
2(t)] ≥ 0,

α′
2(t) + ea1eα1(t)[α′

2(t) − α′
1(t)] ≥ 0,

for all t and any value of a1 = β1z and a2 = β2z. Without further re-
strictions on α1 and α2, this holds if and only if α′

1(t) − α′
2(t) = 0 for all

t. Noting that α′
1(t) = [F1S]−1[f1 − f1F2 + f2F1] (where F1(t) = F1(t;0),

etc), with an analogous expression for α′
2(t), it follows that

α′
1(t) − α′

2(t) =
f1
F1

− f2
F2

=

(
log

F1

F2

)′
.

Thus α′
1(t) − α′

2(t) = 0 is equivalent to F1 and F2 being proportional, in
turn, equivalent to proportionality of the two cause-specific hazard func-
tions λ1 and λ2.

In sum, we have shown that the proportional odds regression model
(6) only yields proper sub-distribution functions Fj for all values of β and
z if the cause-specific hazards are proportional for all values of z, a very
restrictive condition. With this assumption, however, the parameters αj
and βj have specific interpretations as follows. First, it follows from (5)
that, for individuals at the baseline level of Z = 0, αj(t) is just the log
odds, at time t, that a failure of type j has occurred as against no failure.
Further, from (6) it follows that

Fj(t; z)

S(t; z)
= eαj(t)+βjz,

so that the kth component of the regression coefficient βj is the log odds
of failure by time t, due to cause j, as against no failure, associated with a
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unit increase in the kth component of Z (holding other component variables
constant). This is the case at all values of t. Similarly, note that

Fj(t; z)

Fk(t; z)
= eαj(t)−αk(t)e(βj−βk)z,

showing that the log odds of failure by time t due to cause j, as against
failure by time t due to cause k, is linear in z with slope βj−βk, again true
for all t.

Given the restriction of proportional cause-specific hazards, why is the
model (6) appealing in the first place? The answer is in its relationship
to a regression model for a polytomous outcome generated by a current
status observation scheme. Specifically, suppose that, for each individual,
information on survival status, and, if relevant, cause of failure, is available
only at a single time C. Thus, the observed data can be represented as
(C,∆), where ∆ = 0 if T ≥ C, ∆ = j if T < C with J = j, for 1 ≤
j ≤ m. It is therefore assumed that if an individual is known to have
failed at the observation time C, the cause of failure is also available. As
before, we assume that the monitoring time C is independent of T and is
uninformative.

Note first that the distribution of ∆ is related to that of (T, J) simply
as follows:

Pr(∆ = j|C) = Fj(C), (7)

for j = 1, . . . ,m with Pr(∆ = 0|C) = S(C).
For a fixed C, it is natural to consider a regression model which links

the distribution of ∆ to covariates Z. A natural model is the multinomial
logistic model which describes the dependence of Pr(∆ = j|C,Z = z) on
the explanatory variables. In particular, the model states that

Pr(∆ = j|C,Z = z) =
eαj+βjz

1 +
∑m
k=1 e

αk+βkz
, j = 1, . . . ,m, (8)

with necessarily

Pr(∆ = 0|C,Z = z) =
1

1 +
∑m

k=1 e
αk+βkz

.

See, for example, McCullagh and Nelder (1989), Chapter 5.2.4.
Extending this model to allow for varying C, while ensuring additivity

of effects of C and Z, immediately suggests replacing αj with αj(C) in
(8), where the functions αj satisfy the constraints given in (3) along with
appropriate limits. Through (7) and (8), this immediately corresponds
to the proportional odds model (6) for (T, J). As a consequence of our
analysis of (6), this shows that we can only ‘properly’ use the multinomial
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logistic model for current status competing risks data, with additive effects
of C and the covariates, if we are willing to assume that the underlying
cause-specific hazards are proportional. Even in this restrictive case, it is
important to note that practical issues remain for joint estimation of α and
β1, . . . , βm, particularly when α is treated nonparametrically.

2.1 The Proportional Hazards Model

Extending the ubiquitous Cox proportional hazards model (Cox 1972), the
proportional hazards model for competing risks (Crowder 2001, Chapter
1.4.1; Kalbfleisch and Prentice 2002, Chapter 8.12) specifies that the con-
ditional cause-specific hazard functions satisfy

λj(t; z) = λ0j(t)e
βjz, (9)

for j = 1, . . . ,m, where λ0j is the baseline cause-specific hazard function
for cause j for individuals with z = 0. This should not be confused with
the assumption of proportional cause-specific hazards, at any fixed value
of Z, that we discussed earlier in Section 2, and that we return to briefly
below.

It is of interest to determine the form of polytomous regression model
that the proportional hazards model for (T, J), given in (9), induces on
current status observations (C,∆). First, without covariates, note that

Pr(∆ = j|C) =

∫ C

0

λj(u) exp

[
−
∫ u

0

(
m∑

k=1

λk(t)

)
dt

]
du.

Now introducing the covariates Z, under (9), we have

Pr(∆ = j|C,Z = z) =

∫ C

0

λ0j(u)eβjz
m∏

k=1

exp

[
−
∫ u

0

λ0k(u)eβkzdt

]
du.

(10)
This explicitly links the proportional hazards model for (T, J) to a multi-
nomial regression model for the current status observation (C,∆), albeit a
rather cumbersome one. In particular, there appears to be no convenient
link function which separates the right hand side of (10) into additive ef-
fects for C and z. It is plausible that further assumptions might lead to
a simpler relation than (10). Suppose, for example, we now additionally
assume proportional cause-specific hazard functions, so that, in particular,
λ0j(t) = ajλ0(t) for all t and j = 1, . . . ,m, where the aj ’s are positive
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constants and λ0 is an unspecified hazard function. Then (10) simplifies to

Pr(∆ = j|C,Z = z)

= aje
βjz

∫ C

0

λ0(u)

m∏

k=1

exp

[
e−ake

βkz

∫ u

0

λ0(t)dt

]
du

=
aje

βjz

∑m
k=1 ake

βkz

[
1 − exp

{(
−

m∑

k=1

ake
βkz

)∫ C

0

λ0(t)dt

}]
. (11)

Note that, for simplicity, we can absorb the constants a1, . . . , am into the
regression terms so long as a constant is included in Z, yielding

Pr(∆ = j|C,Z = z) =
eβjz∑m
k=1 e

βkz

[
1 − exp

{(
−

m∑

k=1

eβkz

)∫ C

0

λ0(t)dt

}]
,

where we adjust our definition and interpretation of β1, . . . , βm. However,
the main point is that the effects of C and z remain inextricably linked in
(11), even when further restrictions are placed on the shape of λ0. The
closest analogue, arising from (11), to the univariate correspondence of the
proportional hazards model to a complementary log-log regression model
for ∆, is that

log [− log {Pr(T > C|J = j, C, z)}] = log

[
− log

{
1 − Fj(C; z)

Fj(∞; z)

}]

= log

(
m∑

k=1

eβkz

)
+ log Λ0(C), (12)

where Λ0 is the integrated hazard function associated with λ0. Unfortu-
nately, Pr(T > C|J = j, C, z), in the left hand side of (12), does not obvi-
ously correspond to any (conditional) expectation of an observable random
variable with current status data (except where the cause of failure is also
observed for those for whom the failure event has not occurred at time C).
Even then, the right hand side, while showing additivity of the effects for
C and z, does not yield a simple linear term in z when m > 1.

In sum, although the proportional hazards model for competing risks
data necessarily induces a multinomial regression model for the categorical
data produced by current status observation, the resulting model does not
simply correspond to a recognizable multinomial regression model which
might allow the use of existing software (possibly adapted to allow for
monotonicity constraints in the nonparametric case). Similarly, application
of a ‘standard’ generalized linear model for nominal multinomial outcomes
to current status observations of competing risks data cannot be simply
interpreted in terms of an underlying proportional hazards model even with
additional restrictive assumptions.
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2.2 Mixture Models for Competing Risks

Larson and Dinse (1985) suggested a mixture model for competing risks
data which, in its simplest form, is as follows. First, a multinomial logistic
regression model is assumed for Fj(∞; z), the fraction of all eventual events
from cause j, so that

Fj(∞; z) =
eαjz∑m
k=1 e

αkz
,

for some set of regression coefficients α1, . . . , αm, where a constant term
is included in Z, and for identifiability we assume, for example, α1 = 0.
The second part of the model specifies regression relationships for the con-
ditional distribution functions H(T ; J) that determine properties of event
times associated with each specific cause. In particular, a proportional haz-
ards model for these distribution functions yields 1 −H(t; J = j,Z = z) =
exp

(
Λj(t)e

βjz
)

for some set of integrated hazard functions Λj, j = 1, . . . ,m,
so that

Pr(∆ = j|C,Z = z) =
eαjz∑m
k=1 e

αkz

[
1 − exp

(
−eβjz

∫ C

0

λ0(t)dt

)]
. (13)

Note the similarity with (11). Again we can rewrite (13) to obtain the
analogue of (12), namely

log [− log {Pr(T > C|J = j, C, z)}] = log

[
− log

{
1 − Fj(C; z)

Fj(∞; z)

}]

= βjz + log Λ0(C).

This yields additive effects for C and z, and now a linear term in z on the
right hand side, but, of course, suffers from the same drawback as (12) in
that the left hand side does not correspond to the (conditional) expectation
of an observable random variable with current status data.

3 Progressive Multi-State Survival Models and Ordinal

Polytomous Regression Models

We now turn to generalizations of a simple survival random variable in a
quite different direction. Suppose interest focuses on a finite state survival
process where individuals have to successively progress through each of
m + 1 states over time. The illness-death model is a special case of this
scenario with m = 2. Specifically, let X(t) be a counting process with m
jump times denoted by the random variables T1, . . . , Tm, where necessarily
T1 ≤ T2 ≤ · · · ≤ Tm. We wish to understand the joint distribution, F ,
of (T1, . . . , Tm) and the influence of explanatory variables on its properties.
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We focus here solely on models for the marginal distributions of F , denoted
by F1, . . . , Fm since only these marginals are identifiable from current status
data. One immediate consequence of this is that the constraint Pr(T1 ≤
· · · ≤ Tm) = 1 does not imply a stronger constraint on the marginals
other than that F1 ≥ · · · ≥ Fm. This follows, since for any set of marginal
distributions F1, . . . , Fm with F1 ≥ · · · ≥ Fm, there exists anm-dimensional
distribution with Pr(T1 ≤ · · · ≤ Tm) = 1 that has marginals F1, . . . , Fm.
To keep things simple, we also assume throughout that F1, . . . , Fm are all
continuous.

As in Section 2 we first consider the scenario absent covariates, and
introduce a useful parameterization of F . For j = 1, let α1(t) be defined
by

α1(t) = log

[
1 − F1(t)

F1(t)

]
. (14)

Now consider the conditional probabilities of Tj , given Tj−1, for j > 1. In
particular, define

αj(t) = log

[
Gj(t)

(1 −Gj(t))

]
, (15)

where

Gj(t) = Pr(Tj ≥ t|Tj−1 < t) =
Fj−1(t) − Fj(t)

Fj−1(t)
= 1 − Fj(t)

Fj−1(t)
, (16)

for 1 < j ≤ m. We can solve (14)–(16) for Fj , giving

Fj =

j∏

k=1

1

1 + eαk
. (17)

The functions αj re-express the marginal distributions F1, . . . , Fm, and
necessarily have to satisfy appropriate conditions for (17) to yield proper
distribution functions. The conditions for α1 are straightforward in that
α1(0) = ∞, α1(∞) = −∞ and α1 is non-increasing. For αj with j > 1, the
constraints are more complex. Formally, αj(∞) = −∞, and the αjs possess

the mutual properties that the functions
∏j
k=1

1
1+eαk are all non-decreasing

for j = 1, . . . ,m. For example, with j = 2, this requires that

α1
′eα1 + α2

′eα2 + (α1
′ + α2

′)eα1+α2 ≤ 0, (18)

with analogous conditions for the other αjs for j > 2. Note that, along with
the conditions on α1, α2 being non-increasing is a sufficient condition for
(18); in general, αj being non-increasing for all j implies proper distribution
functions Fj (along with the appropriate limit conditions). However, it is
not necessary that αj be non-increasing. For example, with m = 2—
the standard nonparametric illness-death model—α2 being non-increasing
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is equivalent to F2/F1 being non-decreasing. However, suppose that, for
small t, progression to illness (the first transition) is immediately followed
by the second transition (to death), but for large t, there is a much longer
gap between the two transitions. Then, initially F2/F1 is close to 1 and
then decreases as t gets larger.

We now introduce regression effects of Z on each of T1, . . . , Tm. In
principal, we cannot simply postulate separate unlinked regression models
for each of T1, . . . , Tm in turn, as this may lead to violations of the stochastic
ordering of T1, . . . , Tm for certain values of regression coefficients and/or Z.
Suppose, alternatively, that we focus on the effects of Z on the functions
α1, . . . , αm, and assume that these are linear,

αj(t;Z = z) = αj(t;Z = 0) + βjz, (19)

or equivalently,

Fj(t;Z = z) =

j∏

k=1

1

1 + eαk(t;z)
=

j∏

k=1

1

1 + eαk(t;Z=0)+βkz
, (20)

for j = 1, . . . ,m. For (20) to correspond to proper distribution functions,
it is necessary that the constraining conditions, exemplified by (18)—when
Z = 0— imply that the same conditions hold for αj(t;Z = z) in (19).
However, this is not guaranteed for all values of βj and z except in particular
circumstances. One such is the additional assumption that αj(t;Z = 0) is
non-increasing for all j, or equivalently that Fj(t;Z = 0)/Fj−1(t;Z = 0) is
non-decreasing in t for j > 1. This additional condition implies that the
regression model (20) always yields a set of proper distribution functions
Fj(t;Z) for all j, βj , and any value of Z.

We call the model (20) a proportional odds model for T1, . . . , Tm because
of the interpretation of the regression coefficient vectors βj . Note that a

unit increase in the kth component of Z (holding other components fixed)
increases the log odds of being in state j, conditional on being in state j

or higher, by βjk, the kth component of βj . As in the other cases we have
studied, the functions αj(t;Z = 0) determine the shape of the baseline
distribution functions Fj(t;Z) for Z = 0, j = 1, . . . ,m.

We now relate these ideas to current status observation on T1, . . . , Tm,
at a monitoring time C. Here, the observed data can be represented as
Y = (C,Φ), where Φ = j if Tj−1 < C ≤ Tj for j = 1, . . . ,m + 1, where
T0 ≡ 0 and Tm+1 ≡ ∞. As before, we assume that observation times are
independent of T1, . . . , Tm, and are uninformative.

For a fixed C, we again focus on models for pj;z = Pr(Φ = j|Z = z).
Note that, suppressing the dependence on z for the moment, p1 = Pr(T1 ≥
C) = 1 − F1(C), pm+1 = Pr(Tm < C) = Fm(C), and

pj(C) = Pr(Tj−1 < C ≤ Tj) = Fj−1(C) − Fj(C), (21)
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for j = 2, . . . ,m. Note that pj+1(C) + · · · + pm+1(C) = Fj(C) for j =
1, . . . ,m.

A natural regression model here is the so-called sequential logit model
for ordinal categorical data that is defined by logistic regression models for
the sequential probabilities pj;z/(pj;z + · · ·+ pm+1;z). In terms of log odds,
this yields

log
pj;z

pj+1;z + · · · + pm+1;z
= αj + βjz, (22)

for j = 1, . . . ,m. This is also referred to as the continuation ratio logit
model; see, for example, Agresti (2002, Chapter 7.4.3).

We now want to incorporate varying monitoring times C, again with the
idea of assuming that the effects of C are additive to those of the covariates.
This is achieved by assuming that only the intercept terms αj depend on
C, and not the slope coefficients βj, in (22). The final model is therefore

log
pj;z(C)

pj+1;z(C) + · · · + pm+1;z(C)
= αj(C) + βjz. (23)

Using (21), the model (23) therefore corresponds exactly with the pro-
portional odds model (20). The consequence again is that the sequential
logistic model for ordered multi-state current status data, with additive ef-
fects of C and the covariates, corresponds with the proposed proportional
odds model for T1, . . . , Tm so long as the intercept functions in C satisfy
the constraints induced by the functions in (20) being non-decreasing, as
discussed earlier, and the associated limit conditions.

The situation is therefore somewhat more satisfying than in the compet-
ing risks situation where the multinomial logistic model for current status
data, with additive effects, implied that the underlying competing risks
model is only proper if the intercept functions have identical derivatives
(corresponding to the restrictive condition of proportional cause-specific
hazards). With ordered multi-state current status data, the sequential
logistic model (23) corresponds to any set of marginal distributions for
T1, . . . , Tm, albeit with cumbersome monotonicity conditions on the in-
tercept functions. As previously noted, the simple conditions that αj be
non-increasing for all j may be more useful in practice, but requires the ad-
ditional assumption that the distribution functions Fj(t; z)/Fj−1(t; z) are
non-decreasing in t for j = 2, . . . ,m.

The regression model (20) has been previously suggested in an example
concerning transitions of women from a disease-free state, to onset of pre-
clinical fibroids, to diagnosis of fibroids (i.e. m = 2) in Dunson and Baird
(2001), as part of a richer data structure where T2 is often observed directly
(for the single group setting for such data, see van der Laan, Jewell and
Petersen 1997). Although Dunson and Baird (2001) developed the model
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in an ad hoc fashion, they also invoked the assumption that F2/F1 be non-
decreasing to simplify semiparametric estimation strategies, arguing that
this assumption is reasonable in the fibroid example. For previous work on
current status data for multi-state stochastic processes in the single group
setting, see Jewell and van der Laan (1995,1997) and van der Laan and
Jewell (2003).

We note here that there is an obvious alternative sequential logistic
model which focuses on conditional probabilities in the alternative ‘direc-
tion’ from (23). Specifically, we could sequentially use a logistic model for
the probabilities pj;z/(p1;z + · · ·+ pj;z) for j = 1, . . . ,m+ 1 which is linear
in z with an additive term in C. In analogous fashion this leads to the
regression model

Sj(t;Z = z) =

m∏

k=j

1

1 + eγk(t;Z=0)+βkz
, (24)

where the new intercept functions γk(t;Z = 0) again determine the shape of
the baseline distribution functions Fj(t;Z). This proportional odds model
again requires appropriate constraints on the functions γ1, . . . , γm for (24)
to yield proper survival functions. Although the model (24) differs from
(20) there is no a priori reason to prefer one over the other.

4 Unlinked Regression Models for Current Status Data

In the competing risks and multi-state survival scenarios of Sections 2–3, we
avoided the use of simple unlinked regression models for the sub-distribution
functions in the former case, and the marginal distribution functions in the
latter, since the use of such may not lead to a proper joint distribution
function. However, as we have now explored, correspondences between a
full data regression model and a multivariate binary regression model for
incomplete current status observations are not as straightforward as in the
univariate setting, at least when additive effects of the monitoring time and
covariates are desired. Further, Jewell, van der Laan and Henneman (2003)
show that, in the competing risks setting, smooth functionals of the sub-
distribution functions can be efficiently estimated—asymptotically—using
separate unlinked nonparametric maximum likelihood estimators of the in-
dividual sub-distribution functions. The advantage of this approach is that
the unlinked estimators are much simpler than the full nonparametric max-
imum likelihood estimator while they retain consistency. A similar result
was established for nonparametric estimators of the marginal distributions
for finite multi-state counting processes in van der Laan and Jewell (2003).
This suggests that there may be little or no asymptotic precision gained
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by estimating regression relationships jointly rather than separately, and
that the simpler estimators may, in fact, outperform, the more complex
simultaneous modeling investigated in Sections 2–3 with small or moderate
sample sizes. While this opinion is speculative and remains to be more fully
addressed elsewhere, both in theory and simulations, we give a brief outline
of this strategy here.

4.1 Competing Risks Models

We continue to use the notation of Section 2. Recall that current status
data is represented by (C,∆), where ∆ = 0 if T ≥ C, ∆ = j if T < C with
J = j, for 1 ≤ j ≤ m. Define the observed binary random variables Ψj = 1
if ∆ = j and Ψj = 0 otherwise. Note that

E(Ψj |C,Z = z) = Fj(C; z), (25)

for 1 ≤ j ≤ m. Thus, taking each j separately, (25) allows construction of
a regression model for Fj(t; z) in correspondence with a binary regression
model for Ψj as for standard univariate current status data. For example,
a logistic regression model for Ψj with covariates Z leads to a proportional
odds relationship between Z and Fj(t; z) as in (1), the only difference be-
ing that Fj(∞; z) may be less than 1 so that the corresponding incidence
function αj(t) potentially has a finite limit at ∞.

The advantage to using these separate models is their simplicity, with
the consequence that they can be fit using standard software for univari-
ate current status data, leading to semi-parametric estimators F̂j(t; z) for
j = 1, . . . ,m and any t and z. The disadvantage, as previously noted, is
that, even though F̂j(t; z) is non-decreasing in t for any fixed value of z

as desired,
∑m
j=1 F̂j(t; z) may exceed 1 for some values of t and z, violat-

ing the requirement that F (t; z) =
∑m

j=1 Fj(t; z) is a distribution function.
This, however, may not be a major drawback in large samples as the es-
timator

∑m
j=1 F̂j(t; z) will consistently estimate the true F (t; z) so long as

appropriate semiparametric estimation procedures are used for the separate
regression models.

A slight variant on this strategy can be described as follows. First,
we use standard univariate current status regression methods to yield an
estimator F̂ (t; z), based on the observations (Ci, (Ψ)i) where Ψ =

∑m
j=1 Ψj

indicates only whether the outcome event has occurred by time C without
regard to failure type.

Now, for each j, consider the constructed variable Wj = F (C)Ψj , and
note that E(Wj |C,Ψ = 1) = Fj(C). This suggests using current status type
regression techniques (that is, isotonic dependence on C and additive linear
dependence on Z with an appropriate link function) for the constructed
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outcomes (Wj)i = F̂ (Ci; zi)(Ψj)i against Ci, using only observations with
(Ψ)i = 1, that is, observations where an event of any type has occurred by
the monitoring time. This yields estimators F̂j(t; z) for each j.

While this approach still does not guarantee estimators F̂j(t; z) which
sum to less than 1, this may be somewhat less likely than the first unlinked
method since, for each j, the constructed outcomes (Wj)i are smaller than
the respective outcomes (Ψj)i for the previous estimators. In the single
sample setting, this approach is related to the full nonparametric maximum
likelihood estimator of F1, . . . , Fm—see Jewell et al. (2003).

4.2 Multi-State Survival Models

With the notation of Section 3, current status data is given by (C,Φ), where
Φ = j if Tj−1 < C ≤ Tj for j = 1, . . . ,m+ 1, where T0 ≡ 0 and Tm+1 ≡ ∞.
In this setting define Ψj = 1 if Φ > j, and Ψj = 0 otherwise. Note that

E(Ψj |C,Z = z) = Fj(C; z), (26)

for 1 ≤ j ≤ m. Thus, we can separately estimate marginal regression
models for Fj(t; z) for each j using univariate current status methods on the
data (C,Ψj). Again, the advantages of this approach are simplicity, use of
standard current status methods only, and direct regression modeling of the
marginal distributions, presumably the primary relationships of interest.
But once more, although estimates of Fj(t; z) obtained in this way are each
distribution functions they are not guaranteed to be stochastically ordered,
as required by the structure of the data. Again, this is unlikely to be a
serious problem in large samples for similar reasons to those discussed with
competing risks data.

Finally, there are variants to this approach similar to the one sug-
gested in Section 4.1 for competing risks data. For example, suppose we
obtain the estimator F̂1(t; z) using the data on Ψ1 as described. Now,
consider the constructed variable W2 = F1(C)Ψ2, where again it imme-
diately follows that E(W2|C,Ψ1 = 1) = F2(C). As before, this sug-
gests using current status regression techniques for the constructed out-
comes (W2)i = F̂1(Ci; zi)(Ψ2)i, against Ci, using only observations with
(Ψ1)i = 1, thereby yielding an estimator F̂2(t; z). This process then is re-
peated to yield estimators F̂3(t; z), F̂4(t; z), and so on. Again this approach
does not guarantee stochastic ordering of the estimated marginals of F ,
although it may be more likely since, for each j, the constructed outcomes
(Wj)i are smaller than the respective outcomes (Ψj)i for the previous esti-

mators (and smaller than F̂j−1(Ci; zi)).



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

60 N. P. Jewell

5 Motivating Examples

We briefly describe illustrations of competing risks and multi-state sur-
vival data where the need for practical regression models for current sta-
tus data motivated the development in the earlier sections. In the com-
peting risks case, Krailo and Pike (1983) discuss data from the National
Center for Health Statistics’ Health Examination Survey, originally anal-
ysed by MacMahon and Worcester (1966). In particular, they focus on the
menopausal history of 3,581 female respondents from 1960-1962 who pro-
vided cross-sectional information on their age and their menopausal status.
For those who had experienced menopause, further retrospective informa-
tion on the exact age when their periods stopped was deemed unreliable by
McMahon and Worcester because of extreme digit preference. Thus, Krailo
and Pike (1983) concentrated on the simple current status information on
menopausal status, in addition to the response on whether menopause had
occurred due to an operation or not. Thus natural and operative menopause
provide the two causes of ‘failure’ (here, menopause) in the context of com-
peting risks. Jewell et al. (2003) analyze this current status data with a
nonparametric model. To extend these ‘one-sample’ models to allow for
regression effects requires the kinds of models introduced in Section 2.

This example suggests interesting extensions to simple current status ob-
servation of competing risks data. According to MacMahon and Worcester
(1966), the original data from the Health Examination Survey contained re-
liable information about the exact age at operative menopause, despite the
concerns about information about age at natural menopause. This raises
the problem of estimation of regression models for the subdistribution func-
tions F1 and F2 in the case where exact times of failures are observed when
a failure due to the first risk has occurred before the observation time but
where only current status information is available regarding failures due
to the second risk. Jewell et al. (2003) consider this problem in the ‘one
sample’ case.

We now turn briefly to examples of regression based on current status
observation of a multi-state survival process, namely the onset and diagno-
sis of uterine fibroids. The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin,
commonly known as TCDD or dioxin, is a toxic hydrocarbon and environ-
mental contaminant. It has a half-life of approximately 8 years in humans
and, in addition to being a carcinogen, has been shown to disrupt endocrine
pathways. On July 10, 1976, an explosion at a chemical plant in Seveso,
Italy, exposed local residents to the highest known environmental dioxin
levels in a residential area of about 18 km2 around the plant. A number of
health assessments were launched soon after the explosion and many blood
samples were collected from residents with sera stored for subsequent anal-
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yses. The Seveso Womens’ Health Study (SWHS) was initiated in 1996,
assembling a historical cohort of more than 500 women who were under 40
years of age at the time of the explosion, who were resident in the most
heavily exposed areas, and who had sufficient stored sera from the period
1976–1980 available for analysis. Individual level of dioxin exposure was
evaluated using the stored sera. For a detailed description of the study see
Eskenazi et al. (2000).

Uterine fibroids are noncancerous growths in the uterus, commonly re-
ferred to as fibroids. Although uterine fibroids may be present in up to 75%
of all women, about a half of these women do not have symptoms. Symp-
toms, leading to a diagnosis, may develop slowly over a period of several
years or rapidly over a period of several months and may include abnormal
menstrual bleeding, pelvic pain and pressure and urinary problems. During
the period 1996–98 eligible women—still menstruating—in the SWHS were
interviewed and received a transvaginal ultrasound, a screening instrument
that can detect the presence of fibroids in women without symptoms. Prior
diagnosis of fibroids was determined at interview and medical records used
to calculate the age at diagnosis. With age as the time scale of interest,
all women included in the analysis contributed current status data on on-
set of the disease with medical records potentially providing exact ages at
diagnosis where this had occurred. If only the prior existence of a diagno-
sis of fibroids is known, then the data structure corresponds with what is
envisioned in Section 3 where the monitoring time corresponds with age at
screening. Here, regression effects may focus on dioxin exposure informa-
tion although other covariate effects may also be of substantial interest. As
in the case of the competing risks example, right-censored information on
the age at diagnosis at the time of screening provides an interesting variant
to the ‘pure’ current status form of data structure considered in Section 3.
van der Laan et al. (1997) consider a ‘one sample’ version of this kind of
data structure. Dunson and Baird (2001) consider a regression model in
this context, with their approach also applied to the analysis of fibroids data
arising from a National Institute of Environmental Health Sciences cross-
sectional study of the premenopausal incidence of uterine fibroids. The
primary covariate of interest in their regression analysis was race. Young
and Jewell (2006) compare Dunson and Baird’s (2001) model to an exten-
sion of the approach of van der Laan et al. (1997) to the regression setting
using data examples and simulations.

Multi-state examples occur in quite different contexts than disease pro-
gression. For example, in cross-sectional life/sexual history surveys ques-
tions are often asked about the number of distinct sexual partners expe-
rienced by the respondent by their age at survey. Similarly, employment
history questionnaires may focus on the number of distinct employment
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(or unemployment) experiences of the respondent. Often, with such data,
there may be little or no information on the exact ages where a respondent
transitions between ‘states’ that describe the current cumulative number of
partners or experiences. This therefore produces current status data of ex-
actly the sort considered in Section 3. Although such data precludes study
of association between the time spent in various states, there is often still
considerable interest in investigating and comparing marginal regression
models for times until specified transitions.

6 Discussion

We have considered correspondences between regression models for multi-
nomial outcomes and various multivariate survival models that extend those
developed by Doksum and Gasko (1990) in a univariate setting. While this
suggests some useful regression survival models that can be identified from
current status observation, the correspondences are not generally straight-
forward. This motivates the simpler approach of examining several unlinked
univariate regression models as suggested in Section 4. However, there are
a wider range of multinomial models that can be considered here so that
this should only be considered as a preliminary investigation. Doksum
and Gasko (1990) also consider correspondences with linear transformation
models. It is natural to consider extensions of these ideas to the multivari-
ate setting in which multivariate survival regression models correspond to
multivariate binary anlaogues. Space does not permit further discussion
of results in this area and details will appear elsewhere. It is important
to note that several approaches to multivariate current status data with
a common monitoring time have already appeared (Wang and Ding 2000,
Dunson and Dinse 2002, Ding and Wang 2004, Jewell, van der Laan and
Lei 2005).
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Standard use of Cox’s regression model and other relative risk regres-
sion models for censored survival data requires collection of covariate
information on all individuals under study even when only a small frac-
tion of them die or get diseased. For such situations risk set sampling
designs offer useful alternatives. For cohort data, methods based on
martingale residuals are useful for assessing the fit of a model. Here
we introduce grouped martingale residual processes for sampled risk set
data, and show that plots of these processes provide a useful tool for
checking model-fit. Further we study the large sample properties of the
grouped martingale residual processes, and use these to derive a formal
goodness-of-fit test to go along with the plots. The methods are illus-
trated using data on lung cancer deaths in a cohort of uranium miners.

Key words: Chi-squared test; Cohort sampling; Counter-matching;
Counting process; Cox’s regression model; Martingale; Matching; Nested
case-control study; Relative risk regression; Survival analysis.
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1 Introduction

Cox regression is central to modern survival analysis, and it is the method
of choice when one wants to assess the influence of risk factors and other
covariates on mortality or morbidity. A number of methods, both graphical
methods and formal tests, have been proposed to assess the goodness-of-fit
of Cox’s model; see e.g. the recent textbooks by Hosmer and Lemeshow
(1999), Klein and Moeschberger (2003), and Therneau and Grambsch
(2000).

One important tool for checking the fit of Cox’s regression model is
the martingale residuals introduced by Barlow and Prentice (1988). Ther-
neau, Grambsch and Fleming (1990) proposed to use a smoothed plot of
these residuals versus a covariate as a means to detect its correct functional
form, while Grambsch, Therneau and Fleming (1995) suggested a similar,
improved plot; see Section 5.7 in Therneau and Grambsch (2000) for a re-
view and further discussion. Another approach was taken by Aalen (1993).
In the context of his additive model (see Aalen 1989), he proposed to plot
martingale residual processes, aggregated over groups of individuals, versus
time as an omnibus procedure to check the fit of a model. Aalen’s idea was
implemented for Cox’s regression by Grønnesby and Borgan (1996), who
also derived a formal goodness-of-fit test to go along with the graphical
procedure.

The commonly used methods for inference in Cox’s regression model,
including the methods for goodness-of-fit, require collection of covariate
information on all individuals under study. This may be very expensive
in large epidemiologic cohort studies of a rare disease. Risk set sampling
designs, where covariate information is collected for all failing individuals
(cases), but only for a sample of the non-failing ones (controls) then offer
useful alternatives which may drastically reduce the resources that need to
be allocated to a study for data collection and checking.

In the present paper we use the counting process framework of Borgan,
Goldstein and Langholz (1995) to generalize the martingale residual pro-
cesses to sampled risk set data. In this context it does not seem feasible to
obtain graphical procedures analogous to the smoothed martingale residual
plot of Therneau et al. (1990) or the related plot of Grambsch et al. (1995).
However, we may still generalize the grouped martingale residual processes
plots of Grønnesby and Borgan (1996) and the accompanying goodness-
of-fit test. In doing this we will not restrict ourselves to Cox’s regression
model, but consider a general class of relative risk regression models.

The outline of the paper is as follows. In Section 2 we introduce the
class of relative risk regression models, describe the type of failure time data
considered for the cohort, and review how the cohort data may be formu-
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lated by means of counting processes. Then we outline how the martingale
residuals and grouped martingale residual processes follow naturally from
the counting process formulation. Section 3 is devoted to risk set sam-
pling. We first introduce the general framework for risk set sampling of
Borgan et al. (1995), describe how it specializes for simple random and
counter-matched sampling, and review methods for inference for sampled
risk set data. Then we outline how sampled risk set data can be described
by processes counting jointly the occurrence of failures and the sampling
of controls, and we use this counting process formulation to generalize the
grouped martingale residual processes and accompanying goodness-of-fit
test of Grønnesby and Borgan (1996) to sampled risk set data. An illus-
tration for a study of lung cancer death in a cohort of uranium miners is
provided in Section 4, while proofs are collected in Section 5. In Section 6
we briefly explain how the results extend to matched risk set sampling de-
signs, while some concluding comments are given in the final Section 7.
Throughout the paper we will without further references use standard re-
sults for counting processes (e.g. Andersen et al. 1993).

2 Cohort data

We consider a cohort of n individuals, and denote by α(t; zi) the haz-
ard rate at time t for an individual i with vector of covariates zi(t) =
(zi1(t), . . . , zip(t))

T. Here the time-variable t may be age, time since em-
ployment, or some other time-scale relevant to the problem at hand, where
we throughout assume that t ∈ (0, τ ] for a given terminal study time τ . A
covariate may be time-fixed or time-dependent; in the latter case its value
at time t is assumed to be known “just before” time t, i.e., the covariate is
assumed to be predictable. We assume that the covariates of individual i
are related to its hazard rate by the relative risk regression model

α(t; zi) = c(β0, zi(t))α0(t). (1)

Here c(β0, zi(t)) is a relative risk function, β0 = (β01, . . . , β0p)
T is a vec-

tor of regression coefficients describing the effect of the covariates, while
the baseline hazard rate α0(t) is left unspecified. Throughout we use β0

to denote the vector of true regression coefficients, while we use β as an
argument in the partial likelihood and similar quantities. We normalize the
relative risk function by assuming c(β0,0) = 1. Thus α0(t) corresponds to
the hazard rate of an individual with all covariates identically equal to zero.
For the exponential relative risk function c(β0, zi(t)) = exp(βT

0 zi(t)), for-
mula (1) gives the usual Cox regression model. Other possibilities include
the linear relative risk function c(β0, zi(t)) = 1 + βT

0 zi(t) and the excess
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relative risk model c(β0, zi(t)) =
∏p
j=1(1 + β0j zij(t)).

The individuals in the cohort may be followed over different periods
of time, i.e., our observations may be subject to left-truncation and right
censoring. It is a fundamental assumption throughout that the left trun-
cation and right censoring are independent in the sense that the additional
knowledge of which individuals have entered the study or have been cen-
sored before any time t do not carry information on the risks of failure at t;
see Sections III.2-3 in Andersen et al. (1993) and Sections 1.3 and 6.2 in
Kalbfleisch and Prentice (2002) for a general discussion on the concept of
independent censoring.

We let t1 < t2 < · · · be the times when failures are observed and, as-
suming that there are no tied failures, denote by ij the individual who fails
at tj . The risk set Rj is the collection of all individuals who are under
observation “just before” time tj . In particular the case ij is a member
of Rj . Then the vector of regression parameters in (1) is estimated by

β̂, the value of β maximizing Cox’s partial likelihood, while the cumula-
tive baseline hazard rate A0(t) =

∫ t
0 α0(u)du is estimated by the Breslow

estimator

Â0(t) =
∑

tj≤t

1
∑

l∈Rj
c(β̂, zl(tj))

,

e.g. Section VII.2 in Andersen et al. (1993).
In order to define the martingale residuals, we first need to review some

basic facts on counting processes, (cumulative) intensity processes and mar-
tingales. To this end, introduce the processes

Ni(t) =
∑

tj≤t
I{ij = i}; i = 1, 2, . . . , n; (2)

counting the number of observed events for individual i in (0, t] (which is 0
or 1 for survival data). The intensity processes λi of the counting process
Ni is given heuristically by λi(t)dt = P (dNi(t) = 1 |Ht−), where dNi(t) is
the increment of Ni over the small time interval [t, t+dt), and Ht− denotes
all information available to the researcher “just before” time t. Then by
(1) and the independent censoring assumption,

λi(t) = Yi(t)α(t; zi) = Yi(t) c(β0, zi(t))α0(t), (3)

with Yi(t) a left-continuous at risk indicator for individual i. Thus R(t) =
{i |Yi(t) = 1} is the risk set at time t, and n(t) = |R(t)| is the number at
risk “just before” time t. Note that Rj = R(tj).

Corresponding to λi, we define the cumulative intensity process

Λi(t) =

∫ t

0

λi(u) du =

∫ t

0

Yi(u) c(β0, zi(u))α0(u) du. (4)
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By standard results on counting processes, it then follows that Mi(t) =
Ni(t) − Λi(t); i = 1, 2, . . . , n; are local square integrable martingales. If we

insert the maximum partial likelihood estimator β̂ for β0 and the increment

dÂ0(u) of the Breslow estimator for α0(u)du in (4), we get the estimated
cumulative intensity processes

Λ̂i(t) =

∫ t

0

Yi(u) c(β̂, zi(u)) dÂ0(u) =
∑

tj≤t

Yi(tj) c(β̂, zi(tj))∑
l∈Rj

c(β̂, zl(tj))
,

and the martingale residual processes M̂i(t) = Ni(t) − Λ̂i(t). Evaluating
these processes at the terminal study time τ , we obtain the martingale
residuals M̂i = M̂i(τ) first considered by Barlow and Prentice (1988).

Following Aalen (1993), Grønnesby and Borgan (1996) considered the
grouped martingale residual processes, obtained by aggregating the individ-
ual martingale residual processes M̂i(t) over groups of individuals. Specif-
ically, assume that we have some grouping of the individuals, typically
based on the values of one or two covariates, and denote the groups by
J = 1, . . . , G. We will allow the grouping of the individuals to depend on
time. Thus an individual may move from one group to another as time
passes, as will often be the case when the grouping is performed on the ba-
sis of one or more time-dependent covariates. It is a prerequisite, however,
that the information used for grouping at time t is available “just before”
time t, i.e., the grouping must be based on the “history” Ht−. Then, if we
denote by J (u) the set of all individuals who belong to group J at time u,
the group J martingale residual process takes the form

M̂J(t) =

∫ t

0

∑

i∈J (u)

dM̂i(u) = NJ(t) −
∑

tj≤t

∑
i∈Rj∩J (tj)

c(β̂, zi(tj))
∑
l∈Rj

c(β̂, zl(tj))
. (5)

Here NJ(t) =
∫ t
0

∑
i∈J (u) dNi(u) is the observed number of failures in

group J in (0, t], while the last term on the right-hand side of (5) is an
estimate of the expected number of failures in that group if the relative risk
regression model (1) holds true. In Section 4 we illustrate how a plot of the
grouped martingale residual processes provides a useful tool for checking
the fit of the model.

For the special case of an exponential relative risk function, Grønnesby
and Borgan (1996) studied the large sample properties of the grouped mar-
tingale residual processes. The corresponding results for a general relative
risk function, may be obtained as a special case of the results for sampled
risk set data given in Section 3.5 below. There we also derive a formal
goodness-of-fit test based on the grouped martingale residual processes.
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3 Risk set sampling designs

In Sections 3.4 and 3.5 below we will see how martingale residuals may
be defined for risk set sampling designs. Before we do that, however, we
will review the framework for risk set sampling of Borgan et al. (1995) and
generalize some of their results to the situation with a general relative risk
function.

3.1 A model for risk set sampling

For risk set sampling one selects, whenever a failure occurs, a (typically
small) number of controls for the failing individual. The set consisting
of these controls together with the failing individual (the case) is called a
sampled risk set. In order to describe in general terms how the sampling
of controls is performed, we need to introduce the “cohort and sampling
history” Ft−, which contains information about events in the cohort (i.e.
Ht−) as well as on the sampling of controls, up to, but not including, time t.
Based on the parts of this history that are available to the researcher, one
decides on a sampling strategy for the controls. Such a strategy may be
described in probabilistic terms as follows. Let P be the power set of
{1, 2, . . . , n}, i.e. the set of all subsets of {1, 2, . . . , n}, and let Pi = {r : r ∈
P , i ∈ r}. Then, given Ft−, if an individual i fails at time t, we select the
set r ∈ Pi as our sampled risk set with (known) probability πt(r | i). Thus,
if Yi(t) = 1, then πt(r | i) is a probability distribution over sets r ∈ Pi. For
notational convenience we let πt(r | i) = 0 whenever Yi(t) = 0.

It turns out to be useful to have a factorization of the sampling proba-
bilities πt(r | i). To this end we introduce

πt(r) = n(t)−1
∑

l∈r

πt(r | l), (6)

and note that

∑

r∈P
πt(r) = n(t)−1

n∑

l=1

∑

r∈Pl
πt(r | l) = n(t)−1

n∑

l=1

Yl(t) = 1.

Thus πt(r) is a probability distribution over sets r ∈ P . We also introduce

wi(t, r) =
πt(r | i)
πt(r)

, (7)

and get the factorization

πt(r | i) = wi(t, r)πt(r). (8)
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Note that the above framework allows the sampling probabilities to
depend in an arbitrary way on events in the past, i.e., on events that are
contained in Ft−. The sampling probabilities may, however, not depend
on events in the future. For example, one may not exclude as a potential
control for a current case an individual that subsequently fails. Also note
that the selection of controls is done independently at the different failure
times, so that subjects may serve as controls for multiple cases, and cases
may serve as controls for other cases that failed when the case was at
risk. A basic assumption throughout is that not only the truncation and
censoring, but also the sampling of controls, are independent in the sense
that the additional knowledge of which individuals have entered the study,
have been censored or have been selected as controls before any time t do
not carry information on the risks of failure at t.

3.2 Two common sampling designs

The most common risk set sampling design is simple random sampling;
the classical nested case-control design (Thomas 1977). For this design, if
individual i fails at time t, one selects m − 1 controls by simple random
sampling from the n(t) − 1 non-failing individuals at risk. In probabilistic
terms the design is given by

πt(r | i) =

(
n(t) − 1

m− 1

)−1

I { |r| = m, r ⊂ R(t)}

for any set r ∈ Pi. Here the factorization (8) applies with

πt(r) =

(
n(t)

m

)−1

I { |r| = m, r ⊂ R(t)} ; r ∈ P ;

wi(t, r) =
n(t)

m
I{i ∈ r}. (9)

To select a simple random sample, the only piece of information needed
from Ft− is the at risk status of the individuals. Often, however, some
additional information is available for all cohort members, e.g., a surrogate
measure of the exposure of main interest may be available for everyone.
Langholz and Borgan (1995) have developed an “exposure” stratified design
which makes it possible to incorporate such information into the sampling
process in order to obtain a more informative sample of controls. For this
design, called counter-matching, one applies the additional piece of infor-
mation from Ft− to classify each individual at risk into one of say, S, strata.
We denote by Rs(t) the subset of the risk set R(t) which belongs to stratum
s, and let ns(t) = |Rs(t)| be the number at risk in this stratum just before
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time t. If individual i fails at t, we want to sample our controls such that
the sampled risk set contains a prespecified number ms of individuals from
each stratum s; s = 1, . . . , S. This is obtained as follows. Assume that the
failing individual i belongs to stratum s(i). Then for s 6= s(i) one samples
randomly without replacement ms controls from Rs(t). From the case’s
stratum s(i) only ms(i) − 1 controls are sampled. The failing individual i
is, however, included in the sampled risk set so this contains a total of ms

from each stratum. Even though it is not made explicit in the notation, we
note that the classification into strata may be time-dependent. A crucial
assumption, however, is that the information on which the stratification is
based has to be known “just before” time t.

In probabilistic terms, counter-matched sampling may be described as
follows. For any set r ∈ Pi which is a subset of R(t) and satisfies |r ∩
Rs(t)| = ms for s = 1, . . . , S, we have

πt(r | i) =





(
ns(i)(t) − 1

ms(i) − 1

) ∏

s6=s(i)

(
ns(t)

ms

)


−1

.

For counter-matched sampling the factorization (8) applies with

πt(r) =

{
S∏

s=1

(
ns(t)

ms

)}−1

I(|r ∩Rs(t)| = ms; s = 1, . . . , S); r ∈ P ;

wi(t, r) =
ns(i)(t)

ms(i)
I{i ∈ r}.

Other sampling designs for the controls are discussed in Borgan et al.
(1995) and Langholz and Goldstein (1996). Note that also the full cohort
study is a special case of our general framework in which the full risk set is
sampled with probability one, i.e., πt(r | i) = I{r = R(t)} for all i ∈ R(t),
and πt(r | i) = 0 otherwise.

3.3 Inference for sampled risk set data

As in Section 2 we denote by t1 < t2 < · · · the times when failures are
observed, and let ij be the individual who fails at tj . As described above,

the sampled risk set R̃j is selected according to a sampling distribution
πtj (r | ij) specified by the researcher, and it consists of the case ij and its
controls. Covariate information is collected on the cases and their controls,
but are not needed for the other individuals in the cohort. It was shown
by Borgan et al. (1995) that from sampled risk set data one may estimate



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Martingale Residuals for Sampled Risk Set Data 73

the vector of regression parameters in (1) by β̂, the value of β maximizing
the partial likelihood

L(β) =
∏

tj

c(β, zij (tj))wij (tj , R̃j)∑
l∈R̃j

c(β, zl(tj))wl(tj , R̃j)
. (10)

We note that (10) is similar to the full cohort partial likelihood. In fact, the
full cohort partial likelihood is the special case of (10) in which the entire
risk set is sampled with probability one and all weights are unity. Note that
for simple random sampling, the weights (9) are the same for all individuals
and hence cancel from (10) giving the partial likelihood of Oakes (1981).

The maximum partial likelihood estimator β̂ enjoys similar large sample
properties as ordinary maximum likelihood estimators. Specifically β̂ is
approximately multinormally distributed around the true parameter vector
β0 with a covariance matrix that may be estimated as I(β̂)−1, the inverse
of the expected information matrix

I(β̂) =
∑

tj





S
(2)

R̃j
(β̂, tj)

S
(0)

R̃j
(β̂, tj)

−




S
(1)

R̃j
(β̂, tj)

S
(0)

R̃j
(β̂, tj)




⊗2



. (11)

Here

S
(0)

R̃j
(β̂, tj) =

∑

l∈R̃j

c(β̂, zl(tj))wl(tj , R̃j), (12)

S
(1)

R̃j
(β̂, tj) =

∑

l∈R̃j

ċ(β̂, zl(tj))wl(tj , R̃j), (13)

S
(2)

R̃j
(β̂, tj) =

∑

l∈R̃j

ċ(β̂, zl(tj))
⊗2

c(β̂, zl(tj))
wl(tj , R̃j),

where ċ(β, zi(t)) = ∂c(β, zi(t))/∂β, and v⊗2 of a column vector v equals
the matrix vvT. The main steps in the proofs of these properties for the
situation with a general relative risk function are given in Section 5.1. For
the special case of Cox’s regression model, detailed proofs are provided by
Borgan et al. (1995).

3.4 Counting process formulation and martingale residuals

To derive the partial likelihood (10) and study the asymptotic properties of
the maximum partial likelihood estimator, Borgan et al. (1995) expressed
the sampled risk set data by means of the processes

N(i,r)(t) =
∑

j≥1

I{tj ≤ t, (ij, R̃j) = (i, r)} (14)
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counting the observed number of failures for individual i in (0, t] with asso-
ciated sampled risk set r. These counting processes are also key for deriving
the martingale residual processes for sampled risk set data.

From the counting processes N(i,r)(t) we may aggregate over sets r ∈ Pi
to recover the counting process (2) registering the observed failures for the
ith individual, i.e., Ni(t) =

∑
r∈Pi N(i,r)(t). In a similar manner we may

for a set r ∈ P aggregate over individuals i ∈ r to obtain the process

Nr(t) =
∑

i∈r

N(i,r)(t) =
∑

j≥1

I{tj ≤ t, R̃j = r} (15)

counting the number of times in (0, t] the sampled risk set equals the set r.
The assumption that not only truncation and censoring, but also the

sampling of controls, are independent ensures that the intensity processes
of the counting processes Ni are given by (3), not only w.r.t. the “cohort
history” Ht−, but also w.r.t. the “cohort and sampling history” Ft−. From
this and (8) it follows that the intensity processes λ(i,r)(t) of the counting
processes (14) take the form

λ(i,r)(t) = λi(t)πt(r| i) = Yi(t)c(β0, zi(t))wi(t, r)πt(r)α0(t). (16)

Therefore by general results for counting processes

M(i,r)(t) = N(i,r)(t) − Λ(i,r)(t) (17)

with

Λ(i,r)(t) =

∫ t

0

Yi(u)c(β0, zi(u))wi(u, r)πu(r)α0(u)du (18)

are local square integrable martingales. As for cohort data, we will insert
estimates for β0 and α0(u)du in (18) to obtain estimated cumulative inten-

sity processes Λ̂(i,r)(t). For β0 we insert the maximum partial likelihood

estimator β̂, and for α0(u)du we insert dÂ0r(t), where

Â0r(t) =
∑

tj≤t,R̃j=r

1
∑

l∈r c(β̂, zl(tj))wl(tj , r)πtj (r)
. (19)

Thus we get the estimated cumulative intensity processes

Λ̂(i,r)(t) =

∫ t

0

Yi(u)c(β̂, zi(u))wi(u, r)πu(r)dÂ0r(u)

and the corresponding martingale residual processes

M̂(i,r)(t) = N(i,r)(t) − Λ̂(i,r)(t). (20)

The martingale residual processes (20) are of little use in their own right,
in fact most of them will be identically equal to zero. But they provide the
building blocks for the grouped martingale residual processes for sampled
risk set data.
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3.5 Grouped martingale residual processes and a

chi-squared goodness-of-fit test

As in Section 2, we assume that we have a grouping of the individuals into
G groups, and denote by J (u) the set of all individuals who belong to
group J at time u; J = 1, . . . , G. Then the group J martingale residual
process for sampled risk set data corresponding to (5) is given by

M̂J(t) =

∫ t

0

∑

i∈J (u)

∑

r∈Pi
dM̂(i,r)(u)

=

∫ t

0

∑

i∈J (u)

dNi(u) −
∫ t

0

∑

r∈P

∑

i∈r∩J (u)

dΛ̂(i,r)(u),

which may be rewritten as

M̂J(t) = NJ (t) −
∑

tj≤t

∑
i∈R̃j∩J (tj)

c(β̂, zi(tj))wi(tj , R̃j)
∑
l∈R̃j

c(β̂, zl(tj))wl(tj , R̃j)
(21)

with NJ(t) =
∫ t
0

∑
i∈J (u) dNi(u). As for cohort data, these grouped mar-

tingale residual processes may be interpreted as observed minus expected
number of events in the given groups.

In Section 5.2 we note that, if we could have used the true value β0

instead of its estimate β̂ in (21), then the grouped martingale residual
processes would have been martingales. However, since the regression co-
efficients have to be estimated, the grouped martingale residual processes
are only approximately martingales. In Section 5.2 we also show that,
properly normalized, the vector of grouped martingale residual processes
(M̂1, . . . , M̂G)T converges weakly to a mean zero multivariate Gaussian pro-

cess. Further the covariance between M̂I(s) and M̂J(t) can be estimated by

σ̂IJ (s, t) = φ̂IJ(0, s ∧ t, β̂) − ψ̂I(0, s, β̂)T I(β̂)−1 ψ̂J(0, t, β̂), (22)

where

φ̂IJ (s1, s2, β̂) =
∑

s1<tj≤s2

S
(0)

R̃jI
(β̂, tj)

S
(0)

R̃j
(β̂, tj)



δIJ −

S
(0)

R̃jJ
(β̂, tj)

S
(0)

R̃j
(β̂, tj)



 (23)

with δIJ a Kronecker delta, and

ψ̂J(s1, s2, β̂) =
∑

s1<tj≤s2





S
(1)

R̃jJ
(β̂, tj)

S
(0)

R̃j
(β̂, tj)

−
S

(0)

R̃jJ
(β̂, tj)S

(1)

R̃j
(β̂, tj)

S
(0)

R̃j
(β̂, tj)2



 . (24)

Here S
(0)

R̃jJ
(β̂, tj) and S

(1)

R̃jJ
(β̂, tj) are given by expressions similar to (12)

and (13), but with the summation restricted to individuals l ∈ R̃j ∩ J (tj).
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As will be illustrated in Section 4, a plot of the grouped martingale
residual processes is a useful tool for assessing the fit of the relative risk
regression model (1). In addition the grouped martingale residual processes
may be used to derive formal goodness-of fit tests. In Section 7 we briefly
discuss different possible goodness-of-fit tests. Here we restrict our atten-
tion to a simple chi-squared test based on a comparison of observed and
expected number of events in the G groups in K disjoint time intervals. To
this end let 0 = a0 < a1 < · · · < aK−1 < aK = τ be a partitioning of the
study time interval, and introduce (for H = 1, 2, . . . ,K and J = 1, 2, . . . , G)

M̂HJ = M̂J(aH) − M̂J(aH−1) = OHJ − EHJ . (25)

Here OHJ = NJ(aH)−NJ (aH−1) is the observed number of events in group
J in time interval H , while

EHJ =
∑

aH−1<tj≤aH

∑
i∈R̃j∩J (tj)

c(β̂, zi(tj))wi(tj , R̃j)
∑

l∈R̃j
c(β̂, zl(tj))wl(tj , R̃j)

is the corresponding expected number under model (1). The martingale
residual processes (21) sum to zero at any given time t. To derive a chi-
squared goodness-of-fit test, we therefore disregard the contribution from
one of the groups, say the first group, and consider the K(G − 1)-vector

M̂ with elements M̂HJ for H = 1, 2, . . . ,K; J = 2, 3, . . . , G. By the large
sample distributional results for the grouped martingale residual processes

summarized in connection with (22), it follows that M̂ is approximately
mean zero multinormally distributed in large samples when model (1) holds

true. Its covariance matrix may be estimated by the matrix Σ̂ = {σ̂LI,HJ}
with elements

σ̂LI,HJ = Ĉov(M̂LI , M̂HJ)

= δLH φ̂IJ (aH−1, aH , β̂) − ψ̂I(aL−1, aL, β̂)TI(β̂)−1ψ̂J (aH−1, aH , β̂);

H,L = 1, 2, . . . ,K; J, I = 2, 3, . . . , G; where δLH is a Kronecker delta.
Therefore a goodness-of-fit test may be based on the statistic χ2 =

M̂T Σ̂−1 M̂, which is approximately chi-squared distributed with K(G− 1)
degrees of freedom in large samples when model (1) holds true.

Large sample results for the grouped martingale residual processes and
the goodness-of-fit test for full cohort data, are the special cases of the
above results in which the sampled risk set equals the full risk set with
probability one and all weights are unity. In particular for cohort data with
exponential relative risk function and only one time interval (i.e. K = 1),
the test statistic χ2 specializes to the goodness-of-fit statistic of Grønnesby
and Borgan (1996).
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May and Hosmer (2004) showed how the test of Grønnesby and Borgan
(1996) can be obtained as the score test for the addition of categorical
grouping variables. A similar result holds here as well. More specifically,
consider the extension of model (1) where an individual i who belongs to
group J at time t ∈ (aH−1, aH ] has a hazard rate of the form

α(t; zi) = c(β0, zi(t)) e
γHJ α0(t); (26)

J = 2, 3, . . . , G. Then by some straightforward, but tedious algebra along
the lines of Appendix A in May and Hosmer (2004) one may show that the
goodness-of-fit statistic χ2 is algebraically equivalent to the score test for
the hypothesis that all the additional K(G−1) parameters γHJ in (26) are
equal to zero.

4 An illustration

To illustrate the use of the grouped martingale residual processes and the
accompanying goodness-of-fit test, we will use data on lung cancer death
among a cohort of uranium miners from the Colorado Plateau. The cohort
was assembled to study the effects of radon exposure and smoking on lung
cancer risk and has been described in detail in earlier publications; e.g.
Hornung and Meinhardt (1987). The cohort consists of 3,347 Caucasian
male miners recruited between 1950 and 1960 and was traced for mortality
outcomes through December 31, 1982, by which time 258 lung cancer deaths
were observed. Exposure data include radon exposure, in working level
months (WLM), and smoking histories, in number of packs of cigarettes
(20 cigarettes per pack) smoked per day. We consider age as the basic time
scale and summarize radon and smoking data into cumulative exposures
lagged by two years. Thus we consider the covariates z(t) = (zi1(t), zi2(t))

T,
where zi1(t) is cumulative radon exposure measured in working level months
(WLM) up to two years prior to age t, and zi2(t) is cumulative smoking
in number of packs smoked up to two years prior to t. Although covariate
information is available on all cohort subjects, in order to illustrate the
methods we selected simple random and counter-matched samples with
three controls per case. These data sets are denoted 1:3 simple random
and counter-matched samples, respectively. The 23 tied failure times were
broken randomly so that there was only one case per risk set. Counter-
matching was based on radon exposure grouped into four strata according
to the quartiles of the cumulative radon exposure for the cases (Langholz
and Goldstein 1996, Section 5), and one control was sampled at random
from each stratum except the one of the case.

As has been the case in previous analyzes of these data (cf. Langholz
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Table 1 Observed and expected number of lung cancer deaths.

Exposure Observed Expected numbers

groupa numbers 1:3 simple 1:3 counter-matched

Below 60 years of age

Group I 30 30.7 35.5
Group II 39 45.9 48.4
Group III 81 73.4 66.1

Above 60 years of age

Group I 27 27.7 25.3
Group II 45 36.1 36.9
Group III 36 44.2 45.8

a) Group I: below 500 WLMs; group II: 500–1500 WLMs;

group III: above 1500 WLMs.

and Goldstein 1996 and their references), the excess relative risk model was
used. Thus the hazard rate for miner i is assumed to take the form

α(t; zi) = [1 + β01 zi1(t)] [1 + β02 zi2(t)]α0(t). (27)

For the 1:3 simple random data, the estimated radon excess relative risk
(with standard error) is β̂1 = 0.556 (0.215) per 100 WLMs cumulative radon

exposure, while the smoking excess relative risk is β̂2 = 0.276 (0.093) per
1000 packs of cigarettes smoked. For the 1:3 counter-matched data, the
estimates become β̂1 = 0.420 (0.137) and β̂2 = 0.205 (0.068).

Figure 1 shows the grouped martingale residual processes (21) for both
data sets when the individuals are aggregated over groups defined by cu-
mulative radon exposure (group I: below 500 WLMs; group II: 500–1500
WLMs; group III: above 1500 WLMs), while Table 1 summarizes the ob-
served and expected number of lung cancer deaths in the three radon ex-
posure groups for ages below and above 60 years. From the plots and the
table it is seen that more lung cancer deaths than expected occur in the
high exposure group (group III) below the age of 60 years, while fewer cases
than expected occur above this age, the pattern being most pronounced for
the counter-matched data. The chi-squared goodness-of-fit statistic with
2(3 − 1) = 4 degrees of freedom based on the observed and expected num-
bers of Table 1 takes the values 10.5 and 14.2, respectively, for the 1:3 simple
random sample and the 1:3 counter-matched sample, with corresponding
P-values 0.032 and 0.007. Thus our analysis shows that the excess relative
risk model (27), where the effect of radon depends linearly on cumulative
exposure, is too simplistic.

The lack of fit is further illustrated in Table 2 for the 1:3 simple random
sample. The table shows relative risks within radon exposure categories for
individuals below and above 60 years of age, as well as the relative risks
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Figure 1 Grouped martingale residual processes for the uranium miners based
on a 1:3 simple random sample (upper panel) and a 1:3 counter-matched sam-
ple (lower panel). Grouping is done according to cumulative radon exposure:
Group I: below 500 WLMs; group II: 500–1500 WLMs; group III: above 1500
WLMs.
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Table 2 Relative risks within categories of cumulative radon exposure by
age at lung cancer death and relative risks predicted by the excess relative
risk model (27). 1:3 simple random sampling.

Radon Mean exposure Relative risks Relative risksc

exposure within for categorical predicted by
categorya categoryb model model (27)

Below 60 years of age

Group I 180 1 1
Group II 896 2.35 2.99
Group III 2885 10.91 8.51

Above 60 years of age

Group I 187 1 1
Group II 923 3.89 3.01
Group III 3034 5.61 8.76

a) Group I: below 500 WLMs; group II: 500–1500 WLMs;

group III: above 1500 WLMs.

b) Mean among controls.

c) Computed at category mean, normalized to mean of first category.

predicted by the excess relative risk model (27). Prior to age 60 years,
lung cancer mortality rates increase faster than linear with radon exposure
level while after age 60, the dose response is quite a bit slower than linear.
There are a number of possible ways one might choose to accommodate
this pattern of rates. One could simply accommodate the variation in a
model that allows for changing shape of the dose response curve with age.
But, since miners tended to experience the larger exposures at earlier ages,
the observed change in exposure response curve shape with age may well
be due to the time since exposure. Thus, a biologically appealing approach
would be to summarize the exposure history in a way that accounts for the
time since exposure (latency) and, perhaps, rate of exposure. In fact, it has
been found that latency effects are a significant component in describing
radiation exposure and lung cancer risk in the Colorado Plateau miners, e.g.
Lubin et al. (1994) and Langholz et al. (1999). It is, however, beyond the
scope of this paper to pursue such alternative models. Here we are content
with the above illustration of how the grouped residual process plots play
a useful role by identifying model lack of fit and by suggesting candidate
changes that may yield a better fitting model.

5 Outline of proofs for sampled risk set data

In this section, we give an outline of the proofs of the large sample properties
of the maximum partial likelihood estimator β̂ and the grouped martingale
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residual processes for sampled risk set data when we have a general relative
risk function. Formal proofs may be written out along the lines of Borgan
et al. (1995), who give detailed proofs of the large sample properties of the
maximum partial likelihood estimator for the special case of an exponential
relative risk function.

5.1 Large sample properties of β̂

The estimator β̂ is the solution to U(β) = 0, where U(β) = ∂ logL(β)/∂β
is the vector of score functions, and L(β) is the partial likelihood (10).
Using counting process notation, the vector of score functions may be ex-
pressed as

U(β) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β, zi(u))

c(β, zi(u))
− S

(1)
r (β, u)

S
(0)
r (β, u)

}
dN(i,r)(u),

where τ is the terminal study time, and

S(0)
r (β, u) =

∑

l∈r

Yl(u) c(β, zl(u))wl(u, r), (28)

S(1)
r (β, u) =

∑

l∈r

Yl(u) ċ(β, zl(u))wl(u, r). (29)

Further the observed partial information matrix I(β) = −∂U(β)/∂βT be-
comes

I(β) =
∑

r∈P

∑

i∈r

∫ τ

0

∂

∂βT

{
S

(1)
r (β, u)

S
(0)
r (β, u)

− ċ(β, zi(u))

c(β, zi(u))

}
dN(i,r)(u). (30)

If we evaluate the score function at β0, we find by some straightforward
algebra [using (17) and (18)]:

U(β0) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β0, zi(u))

c(β0, zi(u))
− S

(1)
r (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u). (31)

Here the integrands are predictable processes. Thus the score function is
a sum of (vector-valued) stochastic integrals when evaluated at the true
value of the regression coefficients. If, on the right hand side of (31), we
replace the upper limit of integration by t, we get a stochastic process. This
stochastic process is a martingale with a predictable variation process that
evaluated at τ becomes

〈U(β0)〉 (τ) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β0, zi(u))

c(β0, zi(u))
− S

(1)
r (β, u)

S
(0)
r (β, u)

}⊗2

λ(i,r)(u)du.
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Using (16), we get after some straightforward algebra that

〈U(β0)〉 (τ) =
∑

r∈P

∫ τ

0

Vr(β0, u)S(0)
r (β, u)πu(r)α0(u)du, (32)

where

Vr(β, u) =
S

(2)
r (β, u)

S
(0)
r (β, u)

−
(

S
(1)
r (β, u)

S
(0)
r (β, u)

)⊗2

(33)

with S
(0)
r (β, u) and S

(1)
r (β, u) given by (28) and (29), respectively, and

S(2)
r (β, u) =

∑

l∈r

Yl(u)
ċ(β, zl(u))⊗2

c(β, zl(u))
wl(u, r).

If we insert dN(i,r)(u) = λ(i,r)(u)du + dM(i,r)(u) [cf. (17)] and use (16)
in (30), we find after some algebra that the observed information matrix
evaluated at β0 may be decomposed as

I(β0) = 〈U(β0)〉 (τ)

+
∑

r∈P

∑

i∈r

∫ τ

0

∂

∂βT

{
S

(1)
r (β0, u)

S
(0)
r (β0, u)

− ċ(β0, zi(u))

c(β0, zi(u))

}
dM(i,r)(u).

Thus, at the true value of the vector of regression coefficients, the observed
information matrix equals the predictable variation process of the score
function plus a stochastic integral.

By the martingale central limit theorem, we may now show, under suit-
able regularity conditions, that n−1/2U(β0) converges weakly to a multi-
normal distribution with mean zero and a covariance matrix Σβ that is
the limit in probability of n−1 〈U(β0)〉 (τ). We may also show that both

n−1I(β0) and n−1I(β̂) converge in probability to Σβ. From these results

the large sample properties of β̂ follow in the usual way. The main steps
in the derivations are as follows. Since β̂ is the solution to the score equa-
tion U(β̂) = 0, a Taylor expansion of the score equation around β0 gives

0 = U(β̂) ≈ U(β0) − I(β0)(β̂ − β0). From this we obtain

√
n
(
β̂ − β0

)
≈
(
n−1I(β0)

)−1
n−1/2U(β0) ≈ Σ−1

β n−1/2U(β0), (34)

and it follows that
√
n(β̂ − β0) converges weakly to a multinormal distri-

bution with mean zero and covariance matrix Σ−1
β ΣβΣ−1

β = Σ−1
β . Thus,

in large samples, β̂ is approximately multinormally distributed around β0

with covariance matrix n−1Σ−1
β .

In order to estimate the covariance matrix of β̂ we may use I(β̂)−1,
the inverse of the observed information, or we may use the inverse of the
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(estimated) expected information matrix. The (estimated) expected infor-

mation is obtained from (32) by inserting β̂ for β0 and the increment

dÂ0r(u) =
dNr(u)

S
(0)
r (β̂, u)πu(r)

of the Breslow type estimator (19) for α0(u)du to get

I(β̂) =
∑

r∈P

∫ τ

0

Vr(β̂, u) dNr(u), (35)

where Vr(β, u) is given by (33). This justifies (11) of Section 3.3. By
(35) and (30) we note that while the expected information matrix de-
pends only on quantities that are aggregates over each sampled risk set,
the observed information matrix depends specifically on the covariates of
the cases. Therefore the expected information matrix tends to be the most
stable of the two, and it is the one we recommend. For Cox’s regression
model the observed and expected information matrices coincide.

5.2 Large sample properties of the grouped martingale

residual processes

We will derive similar large sample properties for the grouped martingale
residuals for sampled risk set data as those of Grønnesby and Borgan (1996)
for Cox regression with cohort data. To this end we first note that the
grouped martingale residual processes (21) may be given as

M̂J(t) =
∑

r∈P

∫ t

0

∑

i∈r∩J (u)

dN(i,r)(u) −
∑

r∈P

∫ t

0

S
(0)
rJ (β̂, u)

S
(0)
r (β̂, u)

dNr(u), (36)

where S
(0)
r (β, u) is given by (28) and

S
(0)
rJ (β, u) =

∑

l∈r∩J (u)

Yl(u)c(β, zl(u))wl(u, r).

We also note that the intensity process of the counting process Nr(t) given
by (15) takes the form

λr(t) =
∑

i∈r

λ(i,r)(t) = S(0)
r (β0, t)πt(r)α0(t), (37)

where we have used (16) and (28) to get the last equality. We also introduce
the martingales

Mr(t) =
∑

i∈r

M(i,r)(t) = Nr(t) −
∫ t

0

λr(u)du. (38)
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Then, using (17), (18), (28), and (36) – (38), we find after some straight-
forward algebra that the normalized grouped martingale residual processes
may be decomposed as

n−1/2M̂J(t) = (39)

X∗
J(t) − n−1/2

∑

r∈P

∫ t

0

{
S

(0)
rJ (β̂, u)

S
(0)
r (β̂, u)

− S
(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dNr(u),

where

X∗
J (t) = n−1/2

∑

r∈P

∑

i∈r

∫ t

0

{
δiJ (u) − S

(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u)

with δiJ (u) = 1 if i ∈ J (u), i.e. if individual i belongs to group J at time
u, and δiJ (u) = 0 otherwise. Note that X∗

J(t) is a stochastic integral, and
hence itself a martingale. Thus the grouped martingale residual processes
would have been martingales if we could use the true value β0 instead of

its estimate β̂ in (36).
We now take a closer look at the last term in (39). By a Taylor series

expansion, one may show that this term is asymptotically equivalent to

−n−1
∑

r∈P

∫ t

0

∂

∂βT

{
S

(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dNr(u)

√
n
(
β̂ − β0

)
.

Now, using (37) and (38), the latter expression may be shown to be asymp-

totically equivalent to −ψJ (0, t,β0)
T
√
n (β̂ − β0), where ψJ (s1, s2,β0) is

the uniform (in s1 and s2) limit in probability of

n−1
∑

r∈P

∫ s2

s1

{
S

(1)
rJ (β0, u)

S
(0)
r (β0, u)

− S
(0)
rJ (β0, u)S

(1)
r (β0, u)

S
(0)
r (β0, u)2

}
S(0)

r (β0, u)πu(r)α0(u)du,

(40)
and

S
(1)
rJ (β, u) =

∑

l∈r∩J (u)

Yl(u)ċ(β, zl(u))wl(u, r).

Further, using (31) and (34), one may show that
√
n (β̂−β0) is asymptot-

ically equivalent to Σ−1
β X∗∗(τ), where

X∗∗(t) = n−1/2
∑

r∈P

∑

i∈r

∫ t

0

{
ċ(β0, zi(u))

c(β0, zi(u))
− S

(1)
r (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u)

Combining all this, we get from (39) that, for J = 1, . . . , G, the normalized

martingale residual processes n−1/2 M̂J(t) are asymptotically equivalent (as
stochastic processes in t) to

XJ(t) = X∗
J(t) −ψJ(t,β0)

TΣ−1
β X∗∗(τ). (41)
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Now X∗
J(t) and X∗∗(t) are linear combinations of stochastic integrals, and

hence themselves martingales. For given groups I, J = 1, . . . , G we find
after some algebra that the predictable (co)variation process of the first of
these martingales takes the form

〈X∗
I , X

∗
J〉(t) = (42)

n−1
∑

r∈P

∫ t

0

S
(0)
rI (β0, u)

S
(0)
r (β0, u)

{
δIJ − S

(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
S(0)

r (β0, u)πu(r)α0(u)du,

with δIJ = 1 if I = J , and δIJ = 0 otherwise, while 〈X∗
J ,X

∗∗〉(t) equals
(40) and 〈X∗∗〉(τ) = 〈U(β0)〉 (τ) is given by (32). If, on the right hand
side of (42), we integrate over (s1, s2] instead of (0, t], one may show that
the resulting integral converges uniformly (in s1 and s2) to a limit function
φIJ (s1, s2,β0), say. By (41) and the above results we may now conclude,
using the martingale central limit theorem, that the normalized vector of
grouped martigale residual processes n−1/2(M̂1, . . . , M̂G)T converges weakly
to a mean zero Gaussian process U = (U1, . . . , UG)T. The (I, J)-th entry
of the covariance matrix Σ(s, t) = E{U(s)TU(t)} between U(s) and U(t)
becomes

σIJ (s, t) = Cov(UI(s), UJ(t))

= φIJ(0, s ∧ t,β0) −ψI(0, s,β0)
TΣ−1

β ψJ(0, t,β0), (43)

where ψJ (s1, s2,β0) and φIJ (s1, s2,β0) are defined just above (40) and just
below (42), respectively. For estimation of the covariances (43), we may
estimate Σβ consistently by 1/n times the expected information matrix
(35). Further, using (37) and (38), one may prove that φIJ(s1, s2,β0) can
be estimated uniformly (in s1 and s2) consistently by 1/n times (23), while
ψJ(s1, s2,β0) can be estimated uniformly consistently by 1/n times (24).
Combining this, it follows that the asymptotic covariances (43) may be
estimated uniformly consistently by n−1σ̂IJ (s, t), where σ̂IJ (s, t) is given
by (22) in Section 3.4.

6 Matched risk set sampling

In order to keep the presentation simple, we have so far considered the
relative risk regression model (1), where the baseline hazard rate is assumed
to be the same for all individuals in the cohort. Sometimes this may not be
reasonable, e.g., to control for the effect of one or more confounding factors,
one may want to adopt a stratified version of (1) where the baseline hazard
differs between (possibly time-dependent) population strata generated by
the confounders. The regression coefficients are, however, assumed the same
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across these strata. Thus the hazard rate of an individual i from population
stratum h is assumed to take the form

α(t; zi) = c(β0, zi(t))α0h(t). (44)

When the stratified proportional hazards model (44) applies, the sampling
of controls should be restricted to those at risk in the same population stra-
tum as the case. We say that the controls are matched by the stratification
variable. In particular for simple random sampling, if an individual in pop-
ulation stratum h fails at time t, one selects at random m−1 controls from
the n(h)(t) − 1 non-failing individuals at risk in this population stratum.
Similarly one may combine matching and counter-matching by selecting the
controls among those in the sampling strata used for counter-matching who
belong to the population stratum of the case. Note the distinction between
the population strata, which form the basis for stratification in (44), and
the sampling strata used for the counter-matched sampling of the controls.

In general, matched risk set sampling may be described as follows. Given
Ft−, if an individual i in population stratum h fails at time t, we select our
sampled risk set according to a probability distribution πt(r | i) over sets
r that contain i and where all individuals in r belong to population stra-
tum h at time t. (Note that the sampling distribution will depend on
the population stratum h of the failing individual, even though this is not
made explicit in the notation.) For such sampling distributions we have the
factorization πt(r | i) = wi(t, r)πt(r), where πt(r) is given by (6) with n(t)
replaced by n(h)(t), and wi(t, r) is obtained from (7) as before. In particular
for matched risk set sampling with simple random sampling of the controls,
the weights are wi(t, r) = [n(h)(t)/m]I{i ∈ r} for individuals in popula-
tion stratum h, while for matched risk set sampling with counter-matched

sampling of the controls the weights are wi(t, r) = [n
(h)
s(i)(t)/ms(i)]I{i ∈ r}.

Here s(i) denotes the sampling stratum of individual i, while n
(h)
s (t) is the

number of individuals at risk “just before” time t in population stratum h
who belong to sampling stratum s.

The general theory of Sections 3 and 5 goes through almost unchanged
for matched risk set sampling. In particular the partial likelihood (10)
and the formula (11) for the expected information matrix apply without
modification provided one uses the appropriate weights as just described.
Also the expressions (21) and (22) for the grouped martingale residuals and
their estimated covariances, as well as the chi-squared goodness-of-fit test
derived from these expressions, remain valid for matched risk set sampling.

In order to prove these extensions of the results of Sections 3 and 5,

we have to consider the processes N
(h)
(i,r)(t), counting the observed number

of failures for individual i with associated sampled risk set r while being a
member of population stratum h, and their associated (cumulative) intensity



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Martingale Residuals for Sampled Risk Set Data 87

processes and martingales. The proofs follow step by step the arguments
of Sections 3 and 5, and we omit the details.

7 Discussion

We have shown how plots of grouped martingale residual processes and
the accompanying chi-squared goodness-of-fit test provide useful tools for
checking the fit of relative risk regression models based on sampled risk set
data. However, a number of questions remain to be better understood in
relation with these methods.

To use the methods one has to define a (possibly time-dependent) group-
ing of the individuals, and it is then a question how this best can be done.
If the grouping is based on current covariate values, one has to decide which
covariates to use for the grouping and how the cut points should be chosen.
Another option is to follow the approach of Grønnesby and Borgan (1996)
and group the individuals according to their values of the estimated relative
risks c(β̂, zi(t)). As these depend on β̂, such a grouping will violate our
assumption that the grouping at time t should only depend on informa-
tion available “just before” time t. We conjecture, however, that the large
sample distributions of the grouped martingale residual processes and the
accompanying chi-squared goodness-of-fit test can still be used as approxi-
mations in large samples, but simulation studies are needed to investigate
this further.

A useful feature of the grouped martingale residual process plots is
that they show how deviations from the model may change over time. For
instance, in the uranium miners example, we saw how the highest radon
exposure group had more observed lung cancer deaths than expected for
ages below 60 years and fewer thereafter. Such deviations give useful hints
as to how the model may be modified to obtain a better fit. However, a
better understanding is needed on how various deviations from the relative
risk regression model (1) will turn up in the plots.

For the special case of an exponential relative risk function, one may
use standard software for Cox regression to maximize the partial likelihood
(10), formally treating the label of the sampled risk sets as a stratification

variable in the Cox regression and including the logwl(tj , R̃j) as offsets in
the model. The package Epicure fits a wide variety of relative risk functions
c(β, zi(t)) and was used to estimate the parameters for the uranium miners
data in Section 4. But available statistical packages are in general not able
to perform all the computations needed for the grouped martingale residual
process plots and accompanying chi-squared goodness-of-fit test, and the
computations in Section 4 were done in separate programs written by the
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authors for SAS and for S-Plus. However, for the special case of Cox’s
regression model, the extended model (26) becomes a Cox model as well,
and our chi-squared goodness-of-fit test can be computed as the score test
for the addition of categorical grouping variables using standard software
for Cox regression.

Our chi-squared goodness-of-fit test is based on a comparison of ob-
served and expected number of failures in cells obtained by partitioning
the space of covariates and time. This is in line with the test suggested
by Schoenfeld (1980) for Cox’s regression model with cohort data. In fact,
apart from details in the estimation of covariances, Schoenfeld’s test is the
special case of ours in which the relative risk function is exponential and
the entire risk set is sampled with probability one.

In order to use our chi-squared test, one has to decide on a grouping ac-
cording to both covariates and time. As an alternative one may group only
according to covariates and consider the maximum value of the chi-squared
statistic over a time interval [τ1, τ2] ⊂ (0, τ ]. P-values for such a supre-
mum type test statistic should be obtainable by the simulation approach
of Lin, Wei and Ying (1993) based on the asymptotic representation (41)
of the grouped martingale residual processes. It should even be possible
to avoid the grouping according to covariates by using the individual mar-
tingale residual processes M̂(i,r)(t) [cf. (20)] to derive cumulative sum of
martingale-based residuals along the line of Lin et al. (1993).
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Chapter 5

RELIABILITY AND SURVIVAL IN FINANCIAL RISK

Nozer D. Singpurwalla

Department of Statistics
The George Washington University, Washington, DC, U.S.A.

Email: nozer@gwu.edu

The aim of this paper is to create a platform for developing an interface
between the mathematical theory of reliability and the mathematics of
finance. This we are able to do because there exists an isomorphic rela-
tionship between the survival function of reliability, and the asset pricing
formula of fixed income investments. This connection suggests that the
exponentiation formula of reliability theory and survival analysis be re-
interpreted from a more encompassing perspective, namely, as the law
of a diminishing resource. The isomorphism also helps us to charac-
terize the asset pricing formula in non-parametric classes of functions,
and to obtain its crossing properties. The latter provides bounds and
inequalities on investment horizons. More generally, the isomorphism
enables us to expand the scope of mathematical finance and of mathe-
matical reliability by importing ideas and techniques from one discipline
to the other. As an example of this interchange we consider interest rate
functions that are determined up to an unknown constant so that the
set-up results in a Bayesian formulation. We may also model interest
rates as “shot-noise processes”, often used in reliability, and conversely,
the failure rate function as a Lévy process, popular in mathematical fi-
nance. A consideration of the shot noise process for modelling interest
rates appears to be new.

Key words: Asset pricing; Bayesian analysis; Failure rate; Interest
rate; Non-parametric classes; Risk-free bond; Shot-noise process; Zero
coupon bond.
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1 Introduction

An area that has recently experienced an outburst of activity in the math-
ematical sciences is what is known as “financial risk analysis”. However
reliability theory, and survival analysis, which are some of the stalwart
tools of risk analysis, have played little or no role in mathematical finance.
There are many plausible causes behind the absence of a synergism be-
tween these two fields. One reason could be that the term “financial risk”
needs to be better articulated and defined. Whereas mathematical finance
has benefitted from topics in stochastic processes, statistical inference, and
probabilistic modelling, the constructive role that reliability theory is able
to play here remains to be exploited. The aim of this paper is to point
out some avenues via which the above can be done. To do so, we use the
well known asset pricing formula of a fixed income instrument (like a risk-
free zero coupon bond) as a “hook”. Underlying this formula is the use
of an unknown (future) interest rate function. This can be a deterministic
function or the realization of a stochastic process. We liken the interest
rate function to a (deterministic or stochastic) failure rate function, and
then using results from reliability theory explore its consequences on as-
set pricing. Among these consequences are bounds and inequalities on the
investment horizon.

Associated with any failure rate function is a survival function. As cur-
rently interpreted, this function encapsulates the risk of failure of an item
over time. By risk we mean here probability of failure. Since a risk-free
zero coupon bond cannot (by definition) default, the survival function that
results from looking at the interest rate as a failure rate cannot encapsulate
the risk of a bond’s default. This dilemma motivates us to seek alternate,
more global, ways of interpreting the survival function. Our view is that
the survival function be viewed as one that describes the phenomenon of a
diminishing resource over time. In mathematical finance, this resource is a
bond’s present value; in reliability theory this resource is an item’s “hazard
potential” [cf. Singpurwalla (2004)] With the above perspective on a sur-
vival function the failure rate can be seen as the rate at which the item’s
hazard potential gets depleted, and the interest rate as the rate at which
a bond’s present value shrinks. This interpretation of the interest rate ap-
pears to be new and can be seen as one of the merits of the isomorphism
between survival analysis and mathematical finance.

The remainder of this paper is organized as follows. In Section 2 we
give an overview of the derivation of the asset pricing formula under both
constant and varying interest rates and point out the relationship between
this formula and the survival function of reliability theory. The material of
this section is standard and can be found, for example, in Ross (1999). In
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Section 3 we present arguments that attempt to give a unifying perspective
for the present value and the survival functions. Drawing from an analogy
in physics about the decay of radioactive material, we claim that the two
formulae in question describe the law of diminishing resource. In Section
4 we invoke several ideas and results from reliability theory to characterize
present value functions into non-parametric classes and show how some of
these results can be exploited for practical purposes. Section 5 pertains to
a discussion of interest rate functions with unknown parameters, or as real-
izations of stochastic processes. In both cases we draw upon known results
in reliability with a view of enhancing the state of the art in mathemat-
ical finance. Section 6 concludes the paper with some pointers for future
research.

2 Asset Pricing of Risk Free Bonds: An Overview

The material of this section is for the benefit of those working in reliability
and survival analysis whose familiarity with the various instruments of fi-
nance may be limited. The focus here is the derivation of the asset pricing
formula for a risk free bond assuming a deterministic and known interest
rate function. The section ends by pointing out the isomorphism between
the asset pricing formula and the exponentiation formula of reliability and
survival analysis.

A risk free zero coupon bond pays, with certainty, the buyer of the
bond—the bondholder— $1 at time T after the time of purchase; T is
known as the holding period (of the buyer) or maturity. The bondholder
purchases the bond at some calendar time t at a price P (t, T ), known as the
present value at t. Clearly, P (T, T ) = 1, and P (t, T ) decreases in T . Risk-
free bonds are generally issued by governments and do not default because
governments can always honor payments by “printing” their currency. The
present value P (t, T ) depends on what the bond holder and the bond issuer
think of the interest rate that will prevail during the period (t, t+ T ].

2.1 Interest Rates and Present Value Analysis

To keep matters simple, suppose that an amount P is borrowed now, at time
t = 0, for a period T with the understanding that at time T the amount
returned is P + rP = P (1 + r). The amount P is known as the principal
and r the simple interest rate per time T . When T is taken to be one
year, r is the simple annual interest rate, and the compounding of interest
is once per year. If the interest rate is compounded semi-annually, then the
amount paid at the end of the year is P (1+r/2)2. In this case r is called the
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nominal interest rate. If the compounding is done n times per year then
the amount paid at the end of the year is P (1+ r/n)n and with continuous
compounding the amount paid at year’s end is P lim

n→∞
(1 + r/n)n = Per.

With present value analysis we consider the reverse of the above process.
Specifically, what should P be at time t = 0 so that at the end of the i-th
period of compounding the amount paid (or payoff ) is V , supposing that
the nominal interest rate is r? it is easy to see that the principal V (1+r)−i

would yield V at time i. The quantity V (1 + r)−i is known as the present
value at time t = 0 of the payoff V at time t = i.

2.1.1 Present Value Under Varying Interest Rates

Suppose that the nominal interest rate changes with time continuously,
as r(s), s ≥ 0. The quantity r(s) is called the spot (or instantaneous)
interest rate at s. Consequently, an amount x invested at time s becomes
x(1 + r(s)h) at time s+ h—approximately—assuming that h is small. Let
D(T ) denote the amount one has at time T if one invests one monetary
unit at time 0. Then for h small and interest rate r(s), 0 ≤ s ≤ T

D(s+ h) ≈ D(s)(1 + r(s)h),

or that the rate of change of the amount at time s is

D(s+ h) −D(s)

h
≈ D(s)r(s).

Taking the limit as h ↓ 0, we have

lim
h↓0

D(s+ h) −D(s)

h
= D(s)r(s),

or that

r(s) =
D′(s)

D(s)
,

where D′(s) is the derivative of D(s) at s, assuming it exists at any s.
Integrating over s from [0, T ], we have

log (D (T )) − log(D(0)) =

T∫

0

r(s)ds.

Since D(0) = 1, the above can be written as

D((T ))−1 = exp


−

T∫

0

r(s)ds


 .
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But (D(T ))−1 is P (0, T ), the present value at time 0 of a bond that pays
one monetary unit at time T . Thus in general we have the relationship

P (t, T ) = exp


−

T+t∫

t

r(s)ds


 , (1)

whereP (t, T ) is the present value, at time t, of a risk free bond yielding
one monetary unit at time t + T , under a continuously changing interest
rate r(s), s≥ 0. If we let R(t, T ) denote the exponent of the expression for
P (t, T ), then

P (t, T ) = exp(−R(t, T )).

The average of the spot interest rate r(s) is

R̃(t, T ) =
1

T

T+t∫

t

r(s)ds; (2)

it is called the yield curve.

2.2 Isomorphism with the Survival Function

Mathematically, Equation (1) is identical to the exponentiation formula of
reliability theory and survival analysis with r(s) as the failure rate function,
and P (t, T ) as the survival function. Observe that P (t, 0) = 1 and P (t, T ) is
a decreasing function of T , which asymptotes to 0 as T increases to infinity.
Similarly R(t, T ) can be identified with the cumulative failure (or hazard)

rate at T , and R̃(t, T )—yield curve—with the failure rate average.
As two special cases, suppose that r(s) = r, a constant, for s ≥ t, or

that r(s) = αr(rs)α−1, for s ≥ t and some constant α ≥ 1. Then P (t, T ) =
exp(−r(T − t)) in the first case, and P (t, T ) = exp(−r(T − t)α) in the
second. These present value functions would correspond to the exponential
and the Weibull survival functions, respectively.

3 Re-interpreting the Present Value and Survival Functions

In what follows, we set t = 0, so that P (t, T ) becomes P (0, T )
def
= P (T ),

R(0, T )
def
= R(T ), and R̃(0, T )

def
= R̃(T ). In the context of reliability and

survival analysis the interpretation of P (T ) as a survival function, r(s)

as the failure rate function, and R̃(T ) as the failure rate average have an
intuitive import that is embedded in the context of ageing and wear. How
can one justify looking at P (T ), the present value function as a survival
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function and the interest rate r(s) as a hazard function? Alternatively put,
how can one see the relationships

P (T ) = exp


−

T∫

0

r(s)ds


 , (3)

and

R(T ) =

T∫

0

r(s)ds, (4)

from the perspective of hazard, risk and failure, especially since risk-free
bonds do not default? More specifically, we may ask if there is a common
theme—different from the ones in reliability and finance—that drives the
likes of Equations (3) and (4)? The aim of this section is to show that there
is indeed a common theme that is able to provide meaning to the above
equations in a unified manner. This common theme causes us to look at the
exponentiation formula of Equation (3) as encapsulating the phenomenon
of a depleting resource. However, in order to do so, we need to first re-
visit the derivation of the exponentiation formula from first principles. The
material that follows is standard and found in Barlow and Proschan (1975).

To keep our notation distinct, let X denote the time to failure of an item
and let F (x) = Pr(X ≤ x). Suppose that F (x) is absolutely continuous

so that its derivative dF (x)
dx

def
= f(x) exists (almost everywhere). We now

consider

Pr(x < X ≤ x+ dx|X > x) =
F (x+ dx) − F (x)

F (x)
,

where F (x) = 1− F (x). If we divide both sides of the above expression by
dx, we get a rate in the sense that

1

F (x)

F (x+ dx) − F (x)

dx

is the rate at which F (x) increases at x, multiplied by (F (x))−1. Taking
the limit as dx ↓ 0, we have

lim
dx↓0

F (x+ dx) − F (x)

F (x)dx
=
f(x)

F (x)

def
= h(x). (5)

The right hand side of Equation (5) is defined as the failure (or hazard)
rate function, denoted here as h(x). The qualifier “failure” is added because
the function F (x) whose rate of increase is being discussed represents the
probability of failure by x. A motivation for referring to h(x) as a rate has
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been given above. Namely, it is the rate at which the distribution function
F (x) increases in x. The exponentiation formula of Equation (3) is an
immediate consequence of the relationship h(x) = f(x)/F (x) .

It is important to note that the development above is not contingent
on the fact that F (x) necessarily be a probability distribution function.
All that we require is for F (x) to be absolutely continuous with respect
to Lebesgue measure, and that for h(x) to be non-negative F (x) be non
decreasing. To underscore this point, and also to pave the path for looking
at the asset pricing formula from the point of risk and reliability, we turn
to a scenario from physics, a scenario that does not involve failure nor does
it involve the probability of failure. What we have in mind is the decay
of radioactivity (as a function of time) of certain materials, say carbon 14.
But before we do so, it is useful to note that Equation (5) may also be
written as

lim
dx↓0

1

F (x)

F (x+ dx) − F (x)

dx
= −h(x),

so that −h(x) encapsulates the rate at which F (x) decreases in x.

3.1 The Exponentiation Formula as the Law of a

Diminishing Resource

Turning to the problem of radioactive decay, it has been claimed that
for certain materials the amount of radioactivity decreases exponentially
over time, so that if H(t) denotes the level of radioactivity at time t,
then H(t) = exp(−λt), for some λ > 0. Note that H(t) is absolutely
continuous and behaves like a survival function. The rate at which this
function decreases is −λ exp(−λt), and so now our analogue of h(t) is
λ exp(−λt)/H(t) = λ, a constant. The exponentiation formula of Equation
(3) holds here as well, though it does not have the interpretation used in re-
liability. Our position here is that the exponentiation formula is ubiqutious
in any scenario involving an absolutely continuous monotonically decreas-
ing function, the interpretation of the function being context dependent. In
reliability, it is the item’s survival function; in radioactivity it is the amount
of radioactivity that is remaining, and in finance it is the present value at
any time T .

3.1.1 Interest Rate as a Proportion Loss in Present Value

In the context of reliability, the quantity h(x)dx is, approximately, the con-
ditional probability of failure at x. In the context of radioactive decay, λdt
is the proportion of radioactive loss in the time interval t, t + dt. This
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interpretation will hold irrespective of the functional form of H(t). The
interpretation has a broader ramification in the sense that when P (T ) de-
notes the present value at time T and r(s) is the interest rate, then r(s)ds
is the proportion loss of present value at time s in the interval s, s + ds.
Thus one may liken the interest rate as a form of a hazard or risk posed to
the present value of the function vis a vis its failure to maintain a particular
value at any time. We now have at hand a point of view that unites the
failure rate function and the interest rate function.

Our theme of interpreting interest rate as a proportion loss in present
value has a synergetic effect in reliability. Specifically, since the survival
function F (x) decreases in x from F (0) = 1, the exponentiation formula
of Equation (3) can be seen as a law which prescribes life-times as a con-
sequence of some diminishing resource, with F (0) = 1 interpreted as an
item’s initial resource. This resource gets depleted over time, with the pro-
portion depleted at x being of the form h(x)dx. The amount of resource at
x is given by the exponentiation formula of Equation (3).

Thus to recap, the well known exponentiation formula of reliability and
survival can also be seen as a law governing a depletion of a resource, with
the proportion loss at x governed by the failure[interest] rate h(x)[r(x)].
This interpretation is a consequence of the isomorphism between the sur-
vival and present value functions. We have now established a platform for
discussing financial risk from the point of view of more traditional tools
of risk analysis, namely, reliability theory and survival analysis. In what
follows we show how this common platform enables us to import some ideas
and notions from the latter to the former, and vice versa.

4 Characterizing Present Values Under Monotone Interest

Rates

This section is mainly directed towards those working in mathematical fi-
nance. Its aim is to describe the qualitative behavior of the present value
function P (T ) when the underlying interest function r(s), s ≤ T , or the

yield curve R̃(T ), is monotonic (increasing or decreasing) in T . By increas-
ing (decreasing) we mean non-decreasing (non-increasing); thus a constant
interest rate function is both increasing and decreasing. When a bond is
issued, the precise nature of the interest rate that will prevail during the
life of the bond will not be known. However, one can speculate its gen-
eral nature as being edging upwards or downwards depending on ones view
about the strength of the economy. Thus the objective here is to charac-
terize the behavior of P (T ) when the interest rate function, or the yield
curve is monotonic but not precisely known. The practical motivation for
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characterizing present value functions will become clear in what follows.
For now it suffices to say that such characterizations facilitate a compari-
son with present value functions under constant interest rate functions and
enable one to obtain bounds and inequalities for investment horizons. The
exercise here parallels that in reliability theory wherein comparison against
the exponential survival function has proved to be valuable.

4.1 Non-parametric Classes of Present Value Functions

By a non parametric class of present value functions, we mean a class of
functions whose precise form is unknown (i.e. they are not parametrically
defined) but about which some general features can be specified.

Definition 1. The present value function P (T ) is defined to be IIR
(DIR)—for increasing (decreasing) interest rate—if for each τ ≥ 0, P (T +
τ)/P (T ) is decreasing (increasing) in T ≥ 0.

A consequence of Definition 1 is that when P (T ) is absolutely continuous
the interest rate function r(T ) is increasing (decreasing) in T . Conversely,
when r(T ) is increasing (decreasing) in T , P (T ) is IIR (DIR). When r(t) =
λ, a constant greater than 0, P (T ) = exp(−λT ), which is both IIR and DIR.
All present value functions that display the IIR (DIR) property constitute
a class that we label “IIR (DIR) class”.

Interest rate functions are often not monotonic even though they may
reflect a tendency to edge upwards. They may contain aberrations (or
kinks) that are not too severe, in the sense that their average is monotone.

In other words, whereas r(T ) is not monotone, the yield curve R̃(T ) is
monotone. To bring this feature into play we introduce

Definition 2. The present value function P (T ) is defined to be
IAIR (DAIR)—for increasing (decreasing) average interest rate—if
−[logP (T )]/T is increasing (decreasing) in T ≥ 0.

A consequence of Definition 2 is that P (T ) IAIR (DAIR) is tantamount

to R̃(T ) increasing (decreasing) in T ≥ 0. Analogous to IIR (DIR) class, we
define the IAIR (DAIR) class as a collection of functions P (T ) that display
the IAIR (DAIR) property. Verify that the IAIR class, denoted {IAIR},
encompass the IIR class—denoted {IIR}—so that {IIR} ⊆ {IAIR}. Sim-
ilarly {DIR} ⊆ {DAIR}.

A further generalization of Definitions 1 and 2, a generalization whose
merits will be pointed out later, is obtained via Definition 3 below.

Definition 3. The present value function P (T ) is said to display a NWO
(NBO)—for new worse (better) than old—property if for each τ , T ≥ 0,
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P (T + τ) ≤ (≥)P (T )P (τ).

It can be shown—details omitted [cf. Barlow and Proschan (1975)] –
that

{IIR} ⊆ {IAIR} ⊆ {NWO},
and

{DIR} ⊆ {DAIR} ⊆ {NBO},
where the {NWO} and the {NBO} classes contain all present value func-
tions that display the NWO and NBO property, respectively.

4.1.1 Financial Interpretation of NBO (NWO) Feature

Consider the case of equality in Definition 3. Now

P (T + τ) = P (T )P (τ), (6)

and the above relationship holds if and only if P (T ) = exp(−λT ), for some
λ ≥ 0 and T ≥ 0. The interest rate function underlying this form of the
present value function is r(s) = λ. Equation (6) also implies that

P (T ) − P (T + τ)

P (T )
= 1 − P (τ),

and since P (0) = 1, the above relationship can also be written as

P (T ) − P (T + τ)

P (T )
=
P (0) − P (τ)

P (0)
. (7)

Because P (T ) is a decreasing function of T , the left hand side of Equa-
tion (7) describes the proportion loss in present value during a time interval
[0, τ ] at the time T , whereas the right hand side describes the proportion
loss in the same time interval, but at time 0. This is an analogue of the
memoryless property of the exponential distribution in the context of fi-
nance. Its practical consequence is that under a constant interest rate
function, there is no reason to prefer one investment horizon over another,
so long as the holding period is the same.

We now consider the case of strict inequality. Suppose that P (T ) is
NWO, so that

P (T + τ) < P (T )P (τ),

and as a consequence

P (T ) − P (T + τ)

P (T )
<
P (0) − P (τ)

P (0)
. (8)
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This means that under Equation (8) the proportion loss in present value
at some time T > 0 is always less than the proportion loss at time 0.
Vice-versa when P (T ) is NBO and the inequality above is reversed. To a
bondholder, the greater the drop in present value, the more attractive is
the bond. Consequently, for P (T )’s that are NWO, an investment for any
fixed holding period that is made early on in the life of the bond is more
attractive than one (for the same holding period) that is made later on. In
the IIR or the IAIR case, the above claim makes intuitive sense because the
aforementioned properties are a manifestation of increasing interest rates
and increasing yield curves, and {IIR} ⊆ {IAIR} ⊆ {NWO}. A similar
claim can be made in the case of P (T ) that is NBO.

It is of interest to note that our definition of NWO and NBO is a re-
verse of that used in reliability theory, namely, the NBU and NWU classes.
This makes sense, because a decrease of the present value function is a con-
sequence of an earned resource (namely interest) whereas the decrease of
the survival function is a consequence of a depleted resource.

4.2 Present Value Functions that are Log Concave and PF2

Suppose that the present value function P (T ) belong to one of the several
non-parametric classes introduced in Section 4.1, and suppose that the
spot interest rate at time of issue of bond is λ > 0. Were the interest rate
over the investment horizon T to remain a constant at λ, then the present
value function should be of the form exp(−λT ), T ≥ 0. The purpose of this
section is to compare P (T ) and exp(−λT ). Such a comparison could provide
new insights about desirable asset pricing investment horizons. To do so,
we need to introduce the notions of log concavity and Polya Frequency
Functions of Order 2 – abbreviated PF2. These notions have turned out to
be useful in reliability theory.

Definition 4. A function h(x), −∞ < x <∞ is said to be PF2 if: h(x) ≥ 0
for −∞ < x <∞, and

∣∣∣∣∣∣

h(x1 − y1) h(x1 − y2)

h(x2 − y1) h(x2 − y2)

∣∣∣∣∣∣
≥ 0

for all −∞ < x1 < x2 < ∞ and −∞ < y1 < y2 < ∞, or equivalently
log h(x) is concave on (−∞,+∞), or equivalently for fixed ∆ > 0, h(x +
∆)/h(x) is decreasing in x for a ≤ x ≤ b, where

a = inf
h(y)>0

y and b = sup
h(y)>0

y.
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The above equivalencies are given in Barlow and Proschan (1975, p.76).
Log concavity and PF2 enable us to establish crossing properties of P (•).

To start with, suppose that P (•) is IIR (DIR). Then, from Definition 1
we have that for each τ ≥ 0, P (T + τ)/P (T ) is decreasing (increasing) in
T ≥ 0. As a consequence we have:

Claim 1: P (•) IIR is equivalent to P (•) being both log-concave and PF2.
Since P (•) IIR is equivalent to an increasing interest rate function r(•),

and vice-versa, the essence of Claim 4.1 is that increasing interest rate func-
tions lead to log-concave present value functions. What is the behavior of
P (•) if instead of the interest rate function being increasing it is the yield
curve that is increasing? More generally, suppose that P (•) is IAIR (DAIR).
Then, P 1/T ↓ (↑)T , for T ≥ 0; see Definition 4.2. Consequently we have

Claim 2: P (•) IAIR (DAIR) implies that for all T ≥ 0 and any α,
0 < α < 1,

P (αT ) ≥ (≤)Pα(T ). (9)

To interpret Equation (9), let Q(T ) = 1/P (T ). Then Q(T ) is the
amount received at time T for every unit of money invested at time T = 0.
Consequently taking reciprocals in Equation (4.4), we have

Q(T/2) ≤ (≥)(Q(T ))1/2.

Thus, here again, long investment horizons yield more bang for a buck
than short horizons when the yield curve is monotonic increasing, and vice-
versa when the yield curve is monotone decreasing. Claim 2 prescribes how
the investment horizon scales.

To explore the crossing properties of present value functions that are
IAIR (DAIR), we introduce

Definition 5. A function h(x), 0 ≤ x ≤ ∞ is said to be star-shaped if
h(x)/x is increasing in x. Otherwise, it is said to be anti star-shaped.
Equivalently, h(x) is star-shaped (anti star-shaped), if for all α, 0 ≤ α ≤ 1,

h(αx) ≤ (≥)αh(x).

It is easy to verify that any convex function passing through the origin
is star-shaped. [cf. Barlow and Proschan (1975, p.90)]

Since P (•) IAIR (DAIR) implies — see Definition 2 — that
− [logP (T )] /T is increasing (decreasing) in T ≥ 0, it now follows that

Claim 3: P (•) IAIR (DAIR) implies that T (R̃(T )) is star-shaped (anti
star-shaped).
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Figure 1 Star-Shapedness of T (R̃(T )) when P (·) is IAIR

Recall that R̃(T ) is the yield curve. The star-shapedness property, il-
lustrated above, is useful for establishing Theorem 4.1 which gives bounds
on P (•). The essence of the star-shapedness property is that there exists a
point from which a ray of light can be drawn to all points of the star-shaped

function T (R̃(T )) =
∫ T
0 r(u)du, with the origin as the point from which the

rays of light can be drawn.
It is clear from an examination of Figure 1, that a star-shaped function

can cross a straight line from the origin at most once, and that if it does
so, it will do it from below. Thus we have

Theorem 1. The present value function P (•) is IAIR (DAIR) iff for T ≥ 0
and each λ > 0, (P (T )–exp(−λT )), has at most one change of sign, and if
a change of sign actually occurs, it occurs from + to − (from − to +).

A formal proof of this theorem is in Barlow and Proschan (1975, p.
90). Its import is that the present value function under a monotonically
increasing yield curve will cross the present value function under a constant
interest rate λ—namely exp(−λT )—at most once, and that if it does cross
it will do so from above. The reverse is true when the yield curve decreases
monotonically.

Figure 2 illustrates the aforementioned crossing feature for the case of
P (•) IAIR, showing a crossing at some time T ∗. In general, T ∗ is unknown;
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Figure 2 Crossing Properties of an IAIR Present Value Function

it will be known only when a specific functional form is assumed for P (•).

The essence of Figure 2 is that when the yield curve is predicted to be
monotone increasing, and having a spot interest rate λ > 0 at T = 0, then
the investment horizon should be at least T ∗. Investment horizons smaller
than T ∗ will result in smaller total yields than those greater than T ∗. The
investment horizon of T ∗ is an equilibrium point.

The illustration of Figure 2 assumes that P (T ) and exp(−λT ) cross,
whereas Theorem 1 asserts that there is at most one crossing. Thus we
need to explore the conditions under which a crossing necessarily occurs
and the point at which the crossing occurs. That is, we need to find T ∗,
assuming that T ∗ <∞. For this, we need to introduce the notion of “star-
ordering”.

Definition 6. Let F (T ) = 1 − P (T ) and G(T ) = (1 − e−λT ), for λ > 0
and T ≥ 0. Clearly, F (0) ≡ G(0) = 0.Then F (T ) is said to be star-
ordered with respect to G(T ), written F <

∗
G, if G−1[F (T )]is star-shaped;

i.e. G−1[F (T )]/T is increasing in T ≥ 0.

With the above definition in place, we have the following as a theorem.
It is compiled from a collection of results on pages 107-110 in Barlow and
Proschan (1975).

Theorem 2. Let F <
∗
G. Then

i) P (•) is IAIR, and
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ii) P (T ) crosses exp(−λT ) at most once, and from above, as T ↑ ∞, for
each λ > 0. Furthermore if

∫∞
0 P (u)du = 1/λ, then

iii) A single crossing must occur, and T ∗, the point at which the crossing
occurs is greater than 1/λ. Finally a crossing will necessarily occur at
T ∗ = 1/λ, if

iv) P (u) is DIR and

∫ ∞

0

P (u)du = 1/λ.

Under iv) above, the interest rate is monotonically decreasing; in this
case the investment horizon should be no more than T ∗.

In parts ii) and iv) of Theorem 2, we have imposed the requirement
that

∫ ∞

0

P (u)du = 1/λ. (10)

How must we interpret the condition of Equation (10)? To do so, we
appeal to the isomorphism of Section 2. Since P (u) behaves like a survival
function, with P (0) = 1 and P (T ) decreasing in T , we may regard T as a
random variable with distribution function (1 − P (•)). Consequently, the
left hand side of Equation (10) is the expected value of T . With this as
an interpretation, we may regard the investment horizon as an unknown
quantity whose distribution is prescribed by the present value function, and
whose mean is 1/λ.

5 Present Value Functions Under Stochastic Interest Rates

The material of Section 4 was based on the premise that whereas the spot
interest rate over the holding period of a bond is unknown, its general
nature—a monotonic increase or decrease—can be speculated. Such spec-
ulations may be meaningful for small investment horizons; over the long
run interest rates cannot be assumed to be monotonic. In any case, the
scenario of Section 4 pertains to the case of deterministic but partially
specified interest rates. In this section we consider the scenario of inter-
est rate functions that are specified up to some unknown constants, or are
the realization of a stochastic process. An analogue of the above two sce-
narios in reliability theory is a consideration of hazard functions that are
stochastic about which much has been written. A recent overview is given
by Yashin and Manton (1997).
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5.1 Interest Rate Functions with Random Coefficients

Recall [see Equation (3)] the exponentiation formula for the present value
function under a specified interest rate function r(s), s ≥ 0, as

P (T ) = exp(−R(T )), (11)

where R(T ) is the cumulative interest rate function. Suppose now that
r(s), s ≥ 0 cannot be precisely specified. Then the R(T ) of Equation (11)
becomes a random quantity. Let π[R(T )] describe our uncertainty about
R(T ) for any fixed T ≥ 0. We require that π(•) be assessed and specified.
Thus our attention now centers around assessing P (T ;π), the present value
function when π[R(T )] can be specified for any desired value of T . In other
words, P (T ;π) refers to the fact that the present value function depends
on π. In what follows we shall show that

P (T ;π) = Eπ[exp(−R(T ))], (12)

where Eπ denotes the expectation with respect to π (•). To see why, we
may use a strategy used in reliability theory which which begins by noting
that the right-hand side of Equation (11) can also be written as

exp(−R(T )) = Pr(X ≥ R(T )),

where X is a random variable whose distribution function is a unit expo-
nential. Consequently when R(T ) is random

P (T ;π) =

∞∫

0

Pr(X ≥ R(T )|R(T ))π[R(T )]dR(T )

=

∞∫

0

exp(−R(T ))π[R(T )]dR(T )

= Eπ[exp(−R(T ))].

Thus in order to obtain the present value function for any investment
horizon T , when we are uncertain about interest rate function over the
horizon [0, T ], all we need do is specify our uncertainty about the cumula-
tive interest rate at T , via π[R(T )]. What is noteworthy here is that the
functional form of R(T ), T ≥ 0 does not matter. All that matters is the
value of R(T ).

5.1.1 Consideration of Special Cases

As an illustration of how we may put Equation (12) to work, suppose that
r(s) = λ, s ≥ 0, but that λ is unknown. This means that at time 0+, the
spot interest rate is to take some value λ, λ ≥ 0 that is unknown at time 0



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Reliability and Survival in Financial Risk 109

when the bond is purchased and that the interest rate is to remain constant
over the life of the bond.

Suppose further that our uncertainty about λ is described by a gamma

distribution with scale parameter α and a shape parameter β. Then U
def
=

λT has a density at u of the form

π (u;α, β) =
exp(−αu)αβuβ−1

T βΓ (β)
,

from which it follows that the present value function is

P (T ;α, β) =

(
α

T + α

)β
, (13)

which is of the same form as the survival function of a Pareto distribution.
In reliability, such functions are a consequence of doing a Bayesian analysis
of lifetimes.

The argument carries forward to a higher level of sophistication wherein
one assigns a prior to the survival function itself, the classic examples being
the Dirichlet process prior of Ferguson [cf. Ferguson, Phadia and Tiwari
(1992)], the Tailfree and Neutral to the Right Process priors of Doksum
(1974), and the Beta process priors of Hjort (1990). Invoking the above
ideas in the context of financial risk analysis could lead to interesting pos-
sibilities.

It can be verified that the present value function of Equation (13) be-
longs to the DIR class of functions of Definition 11. For this class we are
able to provide an upper bound on P (T ); see Theorem 3 below. The im-
plication for this theorem is that for scenarios of the type considered here,
short investment horizons are to be preferred over long ones.

Theorem 3. [Barlow and Proschan [1], p.116] If P(T) is DIR with
mean µ, then

P (T ;µ) ≤





exp (−T/µ) , for T ≤ µ,

µ
T e

−1, for T ≥ µ;
(14)

this bound is sharp.

The dark line of Figure 3 illustrates the behavior of this bound. It shows
that the decay in present value for time horizons smaller than µ is greater
than the decay in present value for time horizons greater than µ.

The dotted line of Figure 3 shows the behavior of the upper bound had
its decay been of the form exp(−T/µ) for all values of T . Clearly investment
horizons greater than µ would not be of advantage to a holder of the bond.
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µ

Time T

P(T)

1

µ

Time T

P(T)

1

Figure 3 Upper Bound on P (T ) when P (T ) is DIR

For the special case considered here, namely λ unknown with its uncer-
tainty described by π(λ;α, β), P (T ;α, β) = (α/(T +α))β . Were P (T ;α, β)
be interpreted as a survival function, then the µ of Theorem 3 would be of
the form

µ =

∫ ∞

0

(
α

T + α

)β
dT =

α

β − 1
;

it exists if β > 1. Consequently, under this P (T ;α, β) the investment
horizon should not exceed α/(β − 1).

Recall that were λ to be known with certainty, P (T ) would be
exp(−λT ), λ > 0, T ≥ 0, and that there would be no restrictions on
the investment horizon so that a bond holder could choose any value of
T as an investment horizon. With λ unknown, the net effect is to choose
shorter investment horizons, namely those that are at most α/(β − 1). A
similar conclusion can also be drawn in the case wherein π(λ;α, β) be a
uniform over [α, β]. It can be verified that in the uniform case

P (T ;α, β) =
e−Tα − e−Tβ

T (β − α)
,

and that P (T ;α, β) is again DIR.
Whereas the above conclusions regarding uncertainty about r(s), s ≥ 0

causing a lowering of the investment horizon have been made based on
a consideration of a special case, namely r(s) = λ, λ > 0, s ≥ 0, the
question arises about the validity of this claim, were r(s) to be any other
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function of s, say r(s) = αλ(λs)α−1, for some λ > 0, and α > 0. When α
is assumed known, and uncertainty about λ is described by π(λ; •), then
Equation (12) would be a scale mixture of exponentials and by Theorem
4.7 of Barlow and Proschan (1975, p.103), it can be seen that P (T ; •) is
DIR, so that Theorem 5.1 comes into play and the inequalities of Equation
(14) hold. Thus once again, uncertainty about λ causes a lowering of the
investment horizon. Indeed, the essence of Theorem 3 will always hold if
the cumulative interest rate R(T ) is such that any function of T does not
entail unknown parameters.

5.2 Interest Rates as the Realization of a Stochastic

Process

In this section we consider the case of interest rates that are the realiza-
tion of a stochastic process. A consideration of stochastic processes for
describing interest rate function is not new to the literature in mathemati-
cal finance. Indeed much has been written and developed therein; so much
so, that some of the results can be profitably imported for use in reliabil-
ity theory, wherein a consideration of stochastic failure rate functions has
proven to be of value [cf. Singpurwalla (1995)]. One such example, is to
describe the failure rate function by a Lévy process and to explore the hit-
ting time of this process to a random threshold so that survival function
can be introduced; the details are in Singpurwalla (2004).

The focus of this section, however, is to describe the use of a shot-noise
process for modelling interest rates and to explore its consequences on the
present value function. A use of the shot-noise process for describing the
failure rate function has been considered by Singpurwalla and Youngreen
(1993). Given below is the adaptation of this process for describing the
interest rate function and some justification as to why this could be a
meaningful thing to do.

We start by first noting that when the interest rate function is the real-
ization of a stochastic process, say {r(s); s ≥ 0}, then as a consequence of an
argument on “randomized stopping times” by Pitman and Speed (1973), the
present value function P (T ) is of the form E[exp(−R(T )]. Here {R(T );T ≥
0} is the cumulative interest rate process with R(T ) =

∫ T
0 r(u)du, and as in

Equation (5.2) the expectation is with respect to the distribution of R(T ).
Clearly, an evaluation of P (T ) would be dependent on the ease with which
E[exp(−R(T ))] can be computed. With that in mind, we consider below
as a special case a shot-noise process for {r(s); s ≥ 0}.
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Figure 4 Sample Path of a Shot-Noise Process

5.2.1 The Shot-Noise Process for Interest Rates

The shot-noise process of physics is an attractive model for describing the
fluctuations of the interest rate function. Our rationale for doing so is
that interest rates take an upward jump when certain deleterious economic
events occur. Subsequent to their upward jump, the interest rates tend
to come down—or even remain constant—until the next deleterious event
occurs. In Figure 4 the deleterious events are shown to occur at times
T1, T2, T3, .... Such events are assumed to occur at random and are governed
by say a Poisson process with rate m, m > 0. The amount by which the
interest rate jumps upward at time Ti is supposed to be random; let this be
denoted by a random variable Di. Finally, suppose that the rate at which
the interest rate decays is governed by a function, h(s), s ≥ 0; this function
is called the attenuation function. Then, it is easy to see that for any time
T ≥ 0,

r(T ) =

∞∑

i=1

Dih(T − Ti),

with h(u) = 0 whenever u < 0.
In what follows, we suppose that the Ti’s and the Di’s are serially and

contemporaneously independent. We also suppose that the Di’s are iden-
tically distributed as a random variable D.

If D = d, a constant, and if the attenuation function is of the form
h(u) = (1+u)−1—i.e. the interest rate decays slowly, then it can be shown
that the present value function takes the form

P (T ;m) = exp(−mT )(1 + T )m. (15)
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If, on the contrary,D has an exponential distribution with scale parame-
ter b, and h(u) = exp(−au)—that is, the interest rate decays exponentially,
then

P (T ;m, a, b) = exp

(
− mbT

1 + ab

)(
1 + ab− exp(−aT )

ab

)mb/(1+ab)
. (16)

The P (T ) of Equation (15) is the survival function of a Pareto distri-
bution. If in Equation (16) we set a = b = 1, and m = 2, then a change
of time scale from T to exp(T ) would result in the present value function
having the form of the survival function of a beta distribution on (0, 1) with
parameters 1 and 2.

Thus to summarize, the consideration of a shot-noise process for the
interest rate function results in some interesting forms of the present value
function. A possible drawback of describing the interest rate by a shot-
noise process is that except for the random times at which the interest rate
shoots up by a random amount, the process is essentially deterministic.

6 Summary, Conclusions, and Future Work

Equations (13) through (16) were originally obtained in the context of re-
liability under dynamic environments. The isomorphism of Section 2 has
enabled us to invoke them in the context of finance, and what is given in
Section 5 barely scratches the surface. Much more can be done along these
lines. For example, a hierarchical modelling of interest rate is one possi-
bility. Another possibility, and one that is motivated by work of Dykstra
and Laud (1981) is to describe the cumulative interest rate by a gamma
process or to look at the present value functions as Dirichlet or neutral
to the right processes. Another possibility, and one that is motivated by
the enormous literature in survival analysis is to model interest rates as a
function of covariates and markers. The Markov Additive Process of Cinlar
(1972) presents an opportunity for doing the above. The purpose of this
paper is mainly to open the door to other possibilities by creating a suitable
platform, which we feel has been done.

But, as correctly pointed out by a referee, our discussion here has been
one-sided. We have pointed out how results in reliability and survival anal-
ysis can be brought to bear on mathematical finance. It would be a folly
not to acknowledge that the reverse can also be true. Indeed, this is some-
thing that has already been done by us [see Singpurwalla (2004)], where
we capitalize on the several results on hitting times of stochastic processes
– such as the Lévy – that can be used to generate new families of survival
functions for items experiencing dynamic environments.
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Chapter 6

SIGNATURE-RELATED RESULTS ON SYSTEM LIFETIMES
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The performance (lifetime, failure rate, etc.) of a coherent system in iid
components is completely determined by its “signature” and the com-
mon distribution of its components. A system’s signature, defined as a
vector whose ith element is the probability that the system fails upon the
ith component failure, was introduced by Samaniego (1985) as a tool for
indexing systems in iid components and studying properties of their life-
times. In this paper, several new applications of the signature concept
are developed for the broad class of mixed systems, that is, for stochas-
tic mixtures of coherent systems in iid components. Kochar, Mukerjee
and Samaniego (1999) established sufficient conditions on the signatures
of two competing systems for the corresponding system lifetimes to be
stochastically ordered, hazard-rate ordered or likelihood-ratio ordered,
respectively. Partial results are obtained on the necessity of these con-
ditions, but all are shown not to be necessary in general. Necessary and
sufficient conditions (NASCs) on signature vectors for each of the three
order relations above to hold are then discussed. Examples are given
showing that the NASCs can also lead to information about the pre-
cise number and locations of crossings of the systems’ survival functions
or failure rates in (0, ∞) and about intervals over which the likelihood
ratio is monotone. New results are established relating the asymptotic
behavior of a system’s failure rate, and the rate of convergence to zero
of a system’s survival function, to the signature of the system.

Key words: Survival function; Failure rate; Coherent system; Mixed
system; Stochastic ordering; Hazard rate ordering; Likelihood ratio or-
dering; Temporal asymptotics.

115



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

116 H. W. Block, M. R. Dugas & F. J. Samaniego

1 Introduction

Characterizing the relationship between the design of a system of inter-
est and that system’s performance is an important problem in Reliability
Theory. Historically, the tools available for studying such problems have
been rather sparse. While a system’s structure function, which expresses
the state (i.e. the success or failure) of a system in terms of the states of
its components, fully characterizes a system’s design, it has proven to be
an awkward tool when applied to the individual or comparative study of
system performance. The notion of the “signature” of a coherent system
(a monotone system in which every component is relevant), introduced by
Samaniego (1985), provided some fresh possibilities in this area. For the
sake of clarity, we mention here that the signature vector of such a system
is an n-dimensional probability vector whose ith element is the probability
that the system fails upon the ith component failure. For an overview of
system signatures and their applications, see Boland and Samaniego (2004).

The performance of individual components of n-component systems is
typically characterized by the cumulative distribution function F of the
lifetime involved or by equivalent functions such as the survival function
F = 1 − F , the density function f or the failure rate r(t) = f(x)/(F (x)),
the functions f and r being well defined when F is absolutely continuous.
(See, for example, Barlow and Proschan (1981) for further details.) For co-
herent systems whose components have independent, identically distributed
(iid) lifetimes, Samaniego (1985) established useful representations of the
system’s distribution, density and failure rate in terms the system’s signa-
ture vector. We will briefly review these representations below. Further,
we will review the “preservation theorems” obtained by Kochar, Mukerjee
and Samaniego (KMS) (1999) showing that certain properties of system
signatures will ensure similar properties for system lifetimes.

This paper has several purposes. One is to investigate the extent to
which the sufficient conditions in KMS (1999) are in fact necessary. In
brief, we find that they are indeed both necessary and sufficient for very
small systems (e.g., when n = 3) but that the conditions are not necessary
in general. Necessary and sufficient conditions on signatures for various or-
derings of system lifetimes are then obtained. Another line of investigation
followed in the present paper is the study of the limiting behavior of a sys-
tem. Specifically, we are interested in describing the asymptotic behavior
of a system’s failure rate, and the rate of convergence of its survival func-
tion to zero (both as t→ ∞) in terms of the system’s signature. Ratios of
failure rates and survival functions of competing systems are also studied.
In the case of the asymptotics of failure rates, our goal is to explore possi-
ble extensions of recently established results by Block, Li and Savits (2003)
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where conditions which determine the asymptotic behavior of the failure
rate of the mixture of lifetime distributions are identified. One of their
principal results is that if the failure rate of the component lifetimes have
limits, the failure rate of the mixture converges to the limit of the strongest
component. The present work differs from earlier studies in that our focus
and our results are based on signatures of coherent or mixed systems.

The distribution FT of the lifetime T of a system in iid components
is completely determined by its signature and the underlying component
distribution F . An especially useful tool obtained in Samaniego (1985)
was a representation for the failure rate rT of the lifetime T of a coherent
system with iid components in terms of the system’s signature vector and
the underlying component lifetime distribution F . We will display that
representation, as well as Samaniego’s (1985) representations of FT and fT ,
in the next section, and we’ll exploit them in various ways in the sequel.

We will provide the basic background needed in the present study in
Section 2. In Section 3, we will examine the questions of whether, or when,
the sufficient conditions of KMS (1999) for various stochastic relationships
between two system lifetimes are also necessary. We show that the an-
swer is “yes” in low dimensional problems, and give examples showing that
such necessity is not true in general. In Section 4, necessary and sufficient
conditions on system signatures are identified for the lifetime distributions
of two mixed systems in n i.i.d. components to be stochastically ordered,
hazard-rate ordered or likelihood-ratio ordered. An interesting byproduct
of these results is the ability to determine the number and location of cross-
ings of the failure rates or survival functions of the lifetimes of two mixed
systems. We are also able to identify intervals over which the likelihood
ratio is monotone. These latter insights facilitate the definitive comparison
of systems in finite intervals of interest, for example, in the interval (0, T ∗),
where T ∗ is the mission time of the systems in question.

In Section 5, we obtain a new result on the asymptotic behavior of the
failure rates of mixed systems based on coherent systems in n iid com-
ponents. We show that the answer depends on the largest index of the
signature vector’s non-zero elements and the limit of the underlying com-
mon component failure rate. Our results in Section 5 include asymptotic
comparisons of system failure rates in which the systems have their own sig-
natures and underlying failure rates. Results on the rate of convergence to
zero of the survival function of individual mixed systems, and the compar-
ative rates of convergence for the survival functions of two mixed systems
are also obtained.
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2 Sufficient Conditions for the Comparison of System Life

In this section, we give background results on signatures from Samaniego
(1985), on the notion of mixed systems from Boland and Samaniego (2004)
and on the comparison of system lifetimes from Kochar, Mukerjee and
Samaniego (1999). We first give a formal definition of the signature of a
coherent system in iid components. Numerous examples of system signa-
tures are given in the two papers cited above.

Definition 1. The signature of a coherent system with n iid component
lifetimes is the probability vector s = (s1, s2, ..., sn), where si is the proba-
bility the system fails upon the ith component failure.

The computation of an n-component system’s signature typically involves
combinatorial arguments for counting the number of permutations of the
indexes of the n component failure times {X1, X2, . . . , Xn} which result in
system failure upon a given (say the ith) ordered component failure time
X(i). For example, the three-component system in which component 1 is
arranged in series with a parallel system in components 2 and 3 will fail
upon the first component failure if and only if X1 < min{X2, X3}, an event
that occurs with probability 1/3 under an iid assumption. If this event
does not occur, the system will necessarily fail upon the second component
failure. Thus, the signature of this system is (1/3, 2/3, 0). The signatures
of the four remaining coherent systems of order three are easily found to
be (0, 2/3, 1/3), (1, 0, 0), (0, 1, 0) and (0, 0, 1). The signature of the “bridge
system” featured in Barlow and Proschan (1981, p. 9) and elsewhere is s
= (0, 1/5, 3/5, 1/5, 0).

Consider a coherent system with n iid components with survival distri-
bution F , density function f and failure rate r. The following representa-
tions of FT , fT and rT , the corresponding survival function, density and
failure rate of the system lifetime T , in terms of the system’s signature s,
are given in Samaniego (1985):

FT (t) =

n−1∑

j=0

(

n∑

i=j+1

si)

(
n

j

)
(F (t))j(F (t))n−j , (1)

fT (t) =

n−1∑

i=0

(n− i)si+1

(
n

i

)
(F (t))i(F (t))n−ir(t), (2)

and

rT (t) =

n−1∑
i=0

(n− i)si+1

(
n
i

)
(F (t))i(F (t))n−i

n−1∑
i=0

(
n∑

j=i+1

sj)
(
n
i

)
(F (t))i(F (t))n−i

r(t). (3)



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Signature-Related Results 119

In applications of these representations in the sequel, we will typically
utilize forms of these expressions which are written as functions of the ratio

G(t) =
F (t)

F (t)
.

Specifically,

FT (t) = (F (t))n
n−1∑

j=0

(

n∑

i=j+1

si)

(
n

j

)
(G(t))j , (4)

fT (t) = (F (t))n
n−1∑

i=0

(n− i)si+1

(
n

i

)
(G(t))ir(t) (5)

and

rT (t) =

n−1∑
i=0

(n− i)si+1

(
n
i

)
(G(t))i

n−1∑
i=0

(
n∑

j=i+1

sj)
(
n
i

)
(G(t))i

r(t). (6)

The notion of “mixed systems” was introduced in Boland and Samaniego
(2004), and will be utilized here in various ways. A mixed system is sim-
ply a stochastic mixture of several coherent systems, and can be physically
realized through a randomization process that selects a coherent system at
random according to predetermined probabilities. Mixed systems are most
easily understood by picturing an available collection of coherent systems
(perhaps all of them) of order n, where all n components in each available
system have iid lifetimes distributed according to a common F . A mixed
system may be implemented through a randomization process that picks
one of these systems at random according to a fixed mixing distribution.
Repeated use of the mixed system will result in the use of different co-
herent systems, each arising with a relative frequency tending toward the
probability the mixing distribution assigns to that system. The signature
of a mixed system is clearly the corresponding mixture of the signatures
of the systems involved. For example, for n = 3, the 50-50 mixture of a
series and a parallel system results in a mixed system with signature (1/2,
0, 1/2). Intuitively, since the series system is selected with probability 1/2,
the chances that the mixed system fails upon the first component failure
must also be 1/2.

Mixed systems are not arbitrary mathematical artifacts which simply
serve to expand the collection of coherent systems of a given size. Because
they can be easily realized physically through a randomization process,
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mixed systems represent a viable possibility in selecting a system for use.
Their utility in reliability analysis is much the same as that of randomized
rules in decision theory; indeed, there are circumstances in which the best
choice of system, relative to a fixed criterion function, is a non-degenerate
mixture of two or more coherent systems. An immediate example is the
problem of finding an optimal system design in problems in which the crite-
rion function depends on both a system’s cost and its performance. Dugas
and Samaniego (2005) demonstrate that certain mixed systems are optimal
relative to specific criterion functions based on cost and performance. The
representation results above, and all of the results obtained in the sequel,
are established for the class of mixed systems. As a necessary byproduct,
these results hold for coherent systems, which of course can be viewed as
degenerate mixtures.

Suppose s is an arbitrary n-dimensional probability vector. Then there
exists a mixed system with s as its signature. For example, the mixture
of systems which fail with probability one upon the kth component failure
(the so called k-out-of-n systems) according to the probabilities in s is a
mixed system with signature s. Mixed systems are thus indexed by the
class of all n-dimensional probability vectors. Several of our examples in
the sequel will involve mixed systems.

For the reader’s convenience, we give below brief descriptions of the
three stochastic relationships (stochastic, hazard rate and likelihood ratio
ordering) which the developments in this and the following two sections
utilize. Throughout the paper, “increasing” is taken to mean “nondecreas-
ing”. Given the random variables X1 and X2, discrete or continuous, with
corresponding distributions F1 and F2, X1 ≤st X2 if F 1(x) ≤ F 2(x) for all
x. We write X1 ≤hr X2 if the ratio of survival functions F 2(x)/F 1(x) is
increasing in x. Finally, X1 ≤lr X2 if the ratio f2(x)/f1(x) is increasing in
x, where fi represents the density or probability mass function of Xi. For
Y1 and Y2 with distributions G1 and G2, the notation Y1 ≤ Y2 and G1 ≤ G2

will be used interchangeably.
The preservation results below are proven by Kochar, Mukerjee and

Samaniego (1999) for coherent systems, but as stated below, they hold
more broadly, with the same basic proofs, for arbitrary mixed systems.

Proposition 1. Let s1, s2 be signatures of two mixed systems based on
coherent systems with n iid components, and let T1, T2 be the corresponding
system lifetimes. Then

(a): if s1 ≤st s2, then T1 ≤st T2;
(b): if s1 ≤hr s2, then T1 ≤hr T2;
(c): if s1 ≤lr s2, then T1 ≤lr T2.

We will now examine these ordering conditions on s1 and s2 more closely.
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3 On the Necessity of the KMS Ordering Conditions

In this section, we examine the necessity of the sufficient conditions on
signatures which are given in Proposition 1. We show that the conditions
are not necessary in general. Some special cases in which necessity holds
are noted.

The converse of Proposition 1(a) holds for n=2 and n=3. We show this
below for n=3.

Proposition 2. Let T1 and T2 be the lifetimes of two mixed systems of
order n = 3. If T1 ≤st T2, then s1 ≤st s2.

Proof. From (4) for n = 3, for k = 1, 2

FTk(t) = (F (t))3
2∑

j=0

(
3∑

i=j+1

ski)

(
3

j

)
(G(t))j .

Thus FT1(t) ≤ FT2(t) implies

0 ≤ (F (t))3
2∑

j=0

(

3∑

i=j+1

s2i −
3∑

i=j+1

s1i)

(
3

j

)
(G(t))j

which yields the inequality

0 ≤ (

3∑

i=2

s2i −
3∑

i=2

s1i) + (s23 − s13)G(t). (7)

Letting t→ ∞ and t→ 0 shows that the two differences in (7) are positive,
conditions that are equivalent to s1 ≤st s2. �

A similar result holds for hazard rate ordering. The converse of Propo-
sition 1(b) holds for small n; this is true, in particular, for n = 2 and n = 3.
We show this for n = 3.

Proposition 3. Let T1 and T2 be the lifetimes of two mixed systems of
order n = 3. If T1 ≤hr T2, then s1 ≤hr s2.

Proof. Hazard rate ordering for the two system lifetimes implies that

FT2(t)

FT1(t)

is increasing in t or, equivalently,

rT2(t) ≤ rT1 (t) (8)
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for all t. Employing the representation in (6), one may show that s1 ≤hr s2

is implied by the inequality in (8), as the latter, after making the substitu-
tion si1 = 1 − si2 − si3, i = 1, 2, can be reduced algebraically, for all t > 0,
to the inequality:

3(s12s23 − s13s22)(G(t))3 + [2(s23 − s13) + 3(s12s23 − s13s22)](G(t))2

+[(s22 + s23 − s12 − s13) + 2(s23 − s13)]G(t) + (s22 + s23 − s12 − s13)

> 0. (9)

The constant term and the coefficient of G(t)3 in (9) must be greater than
zero for (9) to hold for all t. Thus, 1 < (s22 +s23)/(s12 +s13) and s22/s12 <
s23/s13. But this implies that the coefficients of (G(t))2 andG(t) are greater
than 0. Together, these conditions are equivalent to s1 ≤hr s2. �

The following example shows that the converses of Propositions 1(a)
and 1(b) do not hold for arbitrary n. The algebraic details are omitted.

Example 1. Consider two mixed systems with signatures s1 = (.1, .1, .8, 0)
and s2 = (0, .3, .1, .6). Then s11 + s12 = .2 < s21 + s22 = .3, violating
both s1 ≤st s2 and s1 ≤hr s2. However, T1 ≤hr T2.

Finally, we examine the necessity of the condition on signatures in
Proposition 1(c) for the likelihood ratio ordering of system lifetimes. First,
we note that, as in the situations above, the necessity holds when n = 3.

Proposition 4. Let T1 and T2 be the lifetimes of two mixed systems of
order n = 3. If T1 ≤lr T2, then s1 ≤lr s2.

Proof. Employing (5), the likelihood ratio ordering for the two system
lifetimes implies that

fT2(t)

fT1(t)
=

2∑
i=0

(3 − i)s2,i+1

(
3
i

)
(G(t))i

2∑
i=0

(3 − i)s1,i+1

(
3
i

)
(G(t))i

(10)

is increasing in t. By taking the derivative of the expression in (10) with
respect to G(t), one obtains a condition equivalent to the ratio in (10) being
increasing, namely,

G(t)2(s12s23 − s13s22) +G(t)(s11s23 − s13s21) + (s11s22 − s12s21) > 0

(11)

for all t > 0. The coefficients of G(t)2 and G(t)0 in (11) must be greater
than zero. But this implies that the coefficient of G(t) is greater than 0.
Together, these conditions imply s1 ≤lr s2. �
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Proposition 4 is not true for general n, as the following example shows.

Example 2. Consider two mixed systems with signatures s1 = (.3, .3, .4, 0)
and s2 = (0, .4, .4, .2). s1 is not smaller than s2 in the likelihood ratio
ordering since 4/3 = s22/s12 > s23/s13 = 1. However, T1 <lr T2.

4 Necessary and Sufficient Conditions for Stochastic

Relationships between Systems

As is apparent from Section 3, the characterization of differences between
two coherent or mixed systems with iid components in terms of properties of
the system’s respective signatures is a nontrivial matter. While the various
ordering conditions on signatures of Section 2 (Proposition 1) are sufficient
to imply corresponding orderings of the system lifetimes, we have seen that
such conditions tend not to be necessary. In this section, we provide an
affirmative answer to the question: can necessary and sufficient conditions
(NASC) be identified in any problems of practical interest? These charac-
terization results may be found in Block, Dugas and Samaniego (2006). The
original treatment is augmented here by the addition of formal arguments
establishing Theorem 3 and the addition of an example of the extension
of that theorem to problems in which the monotonicity of likelihood ratios
varies in two distinct intervals.

Theorem 1. Let s1 and s2 be the signatures of two arbitrary mixed systems
based on coherent systems in n iid components, with the same component
lifetime distribution, and let T1 and T2 denote the system lifetimes. Then
T1 ≤st T2 if and only if

g(x) ≥ 0 for all x ≥ 0, (12)

where

g(x) =

n−1∑

j=0

(
n

j

) n∑

i=j+1

(s2i − s1i)x
j for x ≥ 0. (13)

While condition (12) is a complex statement concerning the relationship
between the two system signatures involved, it is an NASC and thus no
essential simplification is possible. The condition is, however, computa-
tionally simple since it reduces to the problem of finding the minimum of
a continuous function over a bounded interval.

Theorem 2. Let s1 and s2 be the signatures of two arbitrary mixed systems
based on coherent systems in n iid components, having the same component
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lifetime distribution, and let T1 and T2 be the respective system lifetimes.
Then T1 ≤hr T2 if and only if

h1(x) − h2(x) ≥ 0 for all x ≥ 0, (14)

where hj represents the rational function

h(x) =

n−1∑
i=0

(n− i)si+1

(
n
i

)
xi

n−1∑
i=0

(
n∑

j=i+1

sj)
(
n
i

)
xi

, (15)

with s = sj, j = 1, 2.

While condition (14) is mathematically complex, after cross multiplying
in the inequality h1(x) ≥ h2(x), checking (14) reduces to verifying that a
certain polynomial of degree 2n− 3 is nonnegative for all x ≥ 0.

Let us now consider the case of likelihood ratio ordering between two
system lifetimes. In this case, it follows from (5) that T1 ≤lr T2 if and only
if for all t ≥ 0, the rational function

(F (t))n
n−1∑
i=0

(n− i)s2,i+1

(
n
i

)
(G(t))ir(t)

(F (t))n
n−1∑
i=0

(n− i)s1,i+1

(
n
i

)
(G(t))ir(t)

(16)

is increasing in t > 0. Define the polynomial m as follows:

m(x) =

n−1∑

i=0

(n− i)si+1

(
n

i

)
xi, (17)

where s is an n-dimensional probability vector (or signature). The desired
result then follows:

Theorem 3. Let s1 and s2 be the signatures of two arbitrary mixed sys-
tems based on coherent systems in n iid components, both with the same
component lifetime distribution, and let T1 and T2 be the respective system
lifetimes. Then T1 ≤lr T2 if and only if the rational function

m2(x)

m1(x)
(18)

is increasing in x ≥ 0, where mj(x) is given by m(x) in (17) with
s = sj, j = 1, 2.
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Our main interest in Theorems 1−3 was the development of NASC for
the ordering of two system failure times. However, when the ordering of
these lifetimes does not hold, the NASCs in these theorems suggest the
possibility of identifying distinct intervals of time in which the orderings
do hold. In all three situations, the type of domination one is interested in
may be found to fail when one concentrates on the whole real line, but it
might nonetheless hold in an important interval such as (0, T ∗), where T ∗

is the mission time of the systems of interest.
We close with an example of two systems in iid components for which

both the survival functions and the failure rates of two competing systems
cross exactly once and whose likelihood ratio changes monotonicity. In
each case, the changes can be identified to occur at a specific quantile
of the common component lifetime distribution F . In all three of these
illustrations, the two systems to be compared are the same, namely, the
three-component systems having signatures s1 = (1/2, 0, 1/2) and s2 =
(0, 1, 0) respectively. The first system results from selecting a series or a
parallel system at random, each with probability 1/2, while the second
system is simply a 2-out-of-3 system (i.e., fails upon the second component
failure).

Example 3. From Theorem 1, it follows that the two survival functions
will cross at the time t0 = F−1(1/2), which leads to the conclusion that
the 2-out-of-3 system is as good as or better than the mixed system if and
only if t ≤ t0. For details, see Block, Dugas, and Samaniego (2006).

Example 4. A comparison of the failure rates of these same two systems
would proceed as follows. It is shown in Block, Dugas and Samaniego (2006)
that the functions h1 and h2 in (15) cross exactly once, as do the failure
rates of the two systems involved. The crossing of the two failure rates
occurs at time to = F−1(1/4). It follows that the 2-out-of-3 system has a
smaller failure rate than the mixed system for t such that 0 ≤ t < F−1(1/4)
and has a larger failure rate than the mixed system if t > F−1(1/4).

The following example describes the behavior of the likelihood ratio for
the two systems above.

Example 5. To compare the likelihood ratio of the two systems, we cal-
culate the polynomials m1 and m2 in this problem from (17).

m1(x) = 1.5x2 + 1.5 (19)

and

m2(x) = 6x (20)

The derivative of the ratio m2(x)/m1(x) has just one positive root, namely
x = G(t) = 1. When x < 1, the ratio of interest is increasing, while it is
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decreasing when x > 1. Since F (t) = .5 when x = 1, the median failure
time of the component distribution F proves to be the pivot around which
the likelihood ratio ordering reverses for these two systems. Thus, the ratio
of the likelihoods of the 2-out-of-3 system to the series-parallel mixture is
increasing for t < F−1(1/2) and is decreasing thereafter.

5 Asymptotics for Failure Rates and Survival Functions of

General Mixed Systems

The results of this section concern the asymptotic behavior of the failure
rate and the survival function of the lifetime T of an arbitrary mixed sys-
tem based on a collection of coherent systems in n iid components. Our
first theorem demonstrates that the asymptotic failure rate of the system
is a particular multiple of the failure rate of an individual component. This
result can also be derived from a result in Block Li and Savits (2003). The
proof presented here, however, is remarkably direct and shows quite clearly
the utility and power of the representation of failure rates via system signa-
tures. The argument requires no adjustments when considering arbitrary
mixed systems, as the argument applies with equal force to coherent sys-
tems or stochastic mixtures of them. We also present two new results on
the rates of convergence to zero of the survival functions of lifetimes of
arbitrary mixed systems.

Theorem 4. Let T be the lifetime of a mixed system based on a set of
coherent systems in n iid components, each component having a common
failure rate r(t). Assume that limt→∞ r(t) = r (0 ≤ r ≤ ∞) exists. If the
system has failure rate rT (t) and signature s = (s1, s2, ..., sn), then

lim
t→∞

rT (t) = (n− k∗ + 1)r (21)

where k∗ = max{i|si > 0}.
Proof. Dividing numerator and denominator of equation (6) by
[G(t)]k

∗−1 and letting t → ∞, we obtain

rT (t) =
o(1) + (n− k∗ + 1)sk∗

(
n

k∗−1

)

o(1) + sk∗
(

n
k∗−1

) r → (n− k∗ + 1)r,

as t → ∞, where r = limt→∞ r(t) and r(t) is the common failure rate of
the components involved in the mixed system. �

Remark 1. Let rj(t) be the failure rate of mixed system with signature sj
and let k∗j = max{i|sji > 0}, j = 1, 2. If k∗1 ≤ k∗2 , then

lim
t→∞

r1(t)

r2(t)
=

(n− k∗1 + 1)

(n− k∗2 + 1)
≥ 1.
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Remark 2. Note that if s1 ≤st s2, then k∗1 ≤ k∗2 .

Remark 3. Regarding the behavior of rT (t) for t near zero, the fol-
lowing conclusion immediately follows from (6). If T is the lifetime of
a mixed system with signature s, then limt→0+ rT (t) = ns1r(0), where
r(0) = limt→0+ r(t).

Remark 4. It follows from Remarks 1 and 3 above that if s11 > s21 and
k∗2 ≤ k∗1 , then the failure rates of the corresponding mixed systems cross at
least once.

The limiting behavior of the survival function of the lifetime of a co-
herent or mixed system has not attracted much attention from the relia-
bility community. Of course all these functions tend to zero, but precise
results concerning their rates of convergence have heretofore been unavail-
able. Simple results, such as the fact that the survival function of a parallel
system in iid components tends to zero much more slowly than the survival
function of an individual component, and that the opposite is true for se-
ries systems, are trivially proven and are intuitively known by virtually all
users of such systems. But what can be said about a general mixed sys-
tem? Using signatures, the following two results provide definitive answers
about rates of convergence of survival functions to zero in the general case.
We note that, at the other extreme, the case of a series system, the ratio
FT (t)/(F (t))n is constant in t, so that the limiting result in Theorem 5 is
automatic.

Theorem 5. Let T be the lifetime of a mixed system with signature s based
on a set of coherent systems in n iid components. Let F be the common
lifetime distribution of the components. Then

FT (t)

[F (t)]n−k∗+1
→
(

n

k∗ − 1

)
sk∗,

where k∗ = max{i|si > 0}.

Proof. Using the representation in (1), the mixed system has lifetime
distribution,

FT (t) =
k∗−1∑

j=0

(
n∑

i=j+1

si)

(
n

j

)
(F (t))j(F (t))n−j

Dividing the above quantity by [F (t)]n−k
∗+1 and letting t→ ∞, one obtains(

n
k∗−1

)
sk∗ as the limit. �
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The result above provides a number of interesting insights. Since the
rate of convergence of FT to zero is only affected by the largest index of a
positive element of the signature vector, it is apparent that mixed systems
can be creatively used to achieve the limiting behavior of T resembling that
of a parallel system. Indeed, the survival function of any system design for
which sn is positive achieves the same basic rate of convergence to zero as
that of the parallel system (which achieves the best possible rate). We see
from the theorem above that all systems corresponding to the same value of
k∗ = max{i|si > 0} have the same rate of convergence but that the survival
functions, for large t, are ordered, with larger values of sk∗ corresponding
to larger survival probabilities for t sufficiently large.

Theorem 6. Let T1 and T2 be the lifetimes of two mixed system, with
signatures s1 and s2 respectively, each based on a set of coherent systems
in n iid components. Let F be the common lifetime distribution of the
components. Then, with k∗i = max{j|sij > 0} for i = 1, 2, the following
limits obtain:

FT2(t)

FT1(t)
→ s2k∗

s1k∗
if k∗

1 = k∗
2 = k∗ (22)

and

FT2(t)

FT1(t)
→ ∞(0) if k∗

1 < (>)k∗
2 (23)

Proof. Using the representation in (4), we obtain

FT2(t)

FT1(t)
=

k∗2−1∑
j=0

(
n∑

i=j+1

s2i)
(
n
j

)
(G(t))j

k∗1−1∑
j=0

(
n∑

i=j+1

s1i)
(
n
j

)
(G(t))j

Since G(t) → ∞ as t → ∞, the result follows by dividing both the numer-
ator and the denominator by (G(t))max(k∗1 ,k

∗
2)−1. �
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Chapter 7
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eralizations. Applications in economics, statistics, and reliability theory,
are described as well.
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1 Introduction

Let X be a nonnegative random variable with a continuous distribution
function F and mean µ ≤ ∞. Denote the corresponding survival function
by F = 1−F . The total time on test (TTT) transform TX of X , is defined
by

TX(p) =

∫ F−1(p)

0

F (x) dx, p ∈ (0, 1), (1)

where F−1 is the right-continuous inverse of F . The TTT transform is a
theoretical version of the empirical TTT transform that is often used in
statistical reliability theory. Roughly speaking, TX(p) gives the average
time that an item spends on a test if the test is terminated when a fraction
p of all the items on the test fail.

Barlow and Doksum (1972) introduced and studied a generalization of

131
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the TTT transform, T
(G)
X , defined by

T
(G)
X (p) =

∫ F−1(p)

0

g[G−1F (x)] dx, p ∈ (0, 1), (2)

where G is an absolutely continuous distribution function with G(0) = 0,
and g = G′ is the corresponding density function. When G is the unit

mean exponential distribution, T
(G)
X reduces to TX . Barlow and Doksum

(1972) noticed that the generalized TTT transform simplifies the study of
the TTT transform. We will later see that it also has useful interpretations
and applications in actuarial science, as well as in reliability theory.

An even more general transform has been introduced and studied in
Li and Shaked (2004). Let H denote the set of all functions h such that
h(u) > 0 for u ∈ (0, 1), and h(u) = 0 for u 6∈ [0, 1]. For h ∈ H, define the

transform T̃
(h)
X by

T̃
(h)
X (p) =

∫ F−1(p)

0

h(F (x)) dx, p ∈ (0, 1). (3)

Obviously T
(G)
X is a special case of T̃

(h)
X . In fact,

T
(G)
X = T̃

(gG−1)
X . (4)

Example 1. (Reliability theory and statistics). Let X be a nonnega-
tive random variable with survival function F . For θ > 0, let X(θ) denote
a random variable with survival function (F )θ. In the theory of statistics,
(F )θ is often referred to as the Lehmann’s alternative. In reliability theory
terminology, different X(θ)’s have proportional hazards. If θ < 1 then X(θ)
is the lifetime of a component with lifetime X which is subjected to im-
perfect repair procedure where θ is the probability of minimal (rather than
perfect) repair (see Brown and Proschan (1983)). If θ = n, where n is a
positive integer, then (F )n is the survival function of min{X1, X2, . . . , Xn}
where X1, X2, . . . , Xn are independent copies of X ; that is, (F )n is the
survival function of a series system of size n where the component lifetimes
are independent copies of X . For θ < 1, choosing h to be

h(u) = (1 − u)θ, u ∈ [0, 1], (5)

it is seen that

T̃
(h)
X (p) =

∫ F−1(p)

0

h(F (x)) dx =

∫ F−1(p)

0

(F )θ(x) dx

and this gives, in the reliability theory setting, the expected total time on
test of an item that is maintained with an imperfect repair procedure, and
which is tested until its pth quantile lifetime or until its first perfect repair,
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whichever comes first. Equivalently, in the theoretical statistics setting, for

θ > 0 with h as in (5), T̃
(h)
X (p) gives the expected total time on test of

an item under the Lehmann’s alternative, if the item runs under the null
hypothesis (that is, when θ = 1) until it fails or until it reaches its pth
quantile lifetime, whichever occurs first. Finally, when θ = n, where n is a

positive integer, then T̃
(h)
X (p) gives the expected total time on test of a series

system of independent and identical components, which runs until it fails
or until it reaches the pth quantile lifetime of its components, whichever
occurs first.

When h(u) = uθ, a similar interpretation can be given to T̃
(h)
X (p) in the

setting of proportional reversed hazard rates; see, for example, Di Crescenzo
(2000) for a study of this model.

Example 2. (Actuarial science and insurance). Let X be the loss of
an insurance contract. Let F be the distribution function of X . Then the
expected loss is

E[X ] =

∫ ∞

0

F (x) dx.

The expected loss can be used as the net premium paid for the insurance
contract. In order to give more loss weight to higher risks, a distortion
pricing principle is sometimes used in practice. Let ψ be a distortion func-
tion; that is, ψ : [0, 1] → [0, 1] is an increasing concave function such that
ψ(0) = 0 and ψ(1) = 1. The distortion pricing principle that is based on
ψ states that

ρψ(X) =

∫ ∞

0

ψ(F (x)) dx (6)

is the premium paid for the insurance contract. See, Wang (1996), Wang,
Young, and Panjer (1997), Hurlimann (1998), and Wu and Wang (2003)
for more details.

Let ψ ∈ H be a distortion function, and define hψ by hψ(u) = ψ(1− u),

u ∈ [0, 1]. Then T̃
(hψ)
X (p) has an important and interesting interpretation

in actuarial science. Suppose that an insurer accepts a random risk X that
has a distribution function F . Suppose further that the insurer arranges
a reinsurance for this risk determined by a retention level ℓ; that is, the
reinsurer will pay any excess of a claim above the level ℓ (in other words,
ℓ may be thought of as a deductible); see, for instance, Waters (1983). If

ℓ is determined as the pth quantile of the claim distribution, then T̃
(hψ)
X (p)

is the expected claim loss below the retention level; this is an important
quantity for the insurer.
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Example 3. (Reliability theory). We now describe another appearance

of T̃
(h)
X in reliability theory. In order to do that, we need to recall the

definition of the reliability function of a coherent system. Consider a co-
herent system (see Barlow and Proschan (1975)) and suppose that each of
its components works with probability u, independently of each other. If
the probability that the system works is φ(u), then φ : [0, 1] → [0, 1] is
called the reliability function of the system. If the lifetimes of the compo-
nents are independent and identically distributed with survival function F ,
then the survival function of the system lifetime, X say, is given by

FX(x) = φ(F (x)), x ≥ 0. (7)

Thus, if h ∈ H is such that h(1 − ·) is a reliability function of a coherent

system then T̃
(h)
X (p) gives the expected total time on test of that coherent

system, when it has independent and identical components, and which runs
until it fails or until it reaches the pth quantile lifetime of its components,
whichever occurs first. This observation generalizes the discussion about
the series system in Example 1.

In this paper, ‘increasing’ stands for ‘nondecreasing’, and ‘decreasing’
stands for ‘nonincreasing.’

2 Stochastic Orders Based on Transforms

Each of the transforms that are described in (1)–(3) can be used to define
a stochastic order. Let X and Y be two nonnegative random variables
with distribution functions F and K, and survival functions F and K,
respectively. Let TX be as defined in (1), and let TY be similarly defined,
with K replacing F . If

TX(p) ≤ TY (p), p ∈ (0, 1),

then, according to Kochar, Li, and Shaked (2002), X is said to be smaller
than Y in the TTT transform order (denoted as X ≤ttt Y or as F ≤ttt K).

For h ∈ H, let T̃
(h)
X be as defined in (3), and let T̃

(h)
Y be similarly defined,

with K replacing F . If

T̃
(h)
X (p) ≤ T̃

(h)
Y (p), p ∈ (0, 1), (8)

then, according to Li and Shaked (2004), X is said to be smaller than
Y in the generalized TTT transform order with respect to h (denoted as

X ≤(h)
ttt Y or as F ≤(h)

ttt K). The transform that is described in (2) can also
be used to define a stochastic order. However since the study of this order

is similar to the study of the order ≤(h)
ttt , we will not study it on its own.

In this section we review some basic properties of the orders ≤ttt and ≤(h)
ttt ,

and some of their consequences.
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2.1 The TTT Transform Order

In this subsection we review some basic properties of the order ≤ttt. Most
of the results below, and their proofs, can be found in Kochar, Li, and
Shaked (2002).

Let X and Y be two nonnegative random variables with distribution
functions F and K, and survival functions F and K, respectively.

A simple sufficient condition for the order ≤ttt is the usual stochastic
order:

X ≤st Y =⇒ X ≤ttt Y, (9)

where X ≤st Y means that F (x) ≤ K(x) for all x ≥ 0 (see, for example,
Shaked and Shanthikumar (1994, Section 1.A)). In order to verify (9) we
just notice that ifX ≤st Y then F−1(p) ≤ G−1(p) for all p ∈ (0, 1). Another
way to verify (9) is indicated after Theorem 3 below.

Using the fact that, for any nonnegative random variable X and for any
a > 0, we have

TaX(p) = aTX(p), p ∈ (0, 1),

it is easy to see that, for any two nonnegative random variables X and Y ,
we have

X ≤ttt Y =⇒ aX ≤ttt aY for any a > 0. (10)

The implication (10) may suggest that if X ≤ttt Y then φ(X) ≤ttt φ(Y )
for any increasing function φ. But this is not true. What is true, however, is
that the order ≤ttt is preserved under increasing concave transformations.

Theorem 1. Let X and Y be two continuous random variables with inter-
val supports, and with 0 being the common left endpoint of their supports.
Then, for any increasing concave function φ, such that φ(0) = 0, we have

X ≤ttt Y =⇒ φ(X) ≤ttt φ(Y ).

If φ : [0,∞) → (−∞,∞) is an increasing concave function such that
φ(0) 6= 0, then the function φ(·) − φ(0) : [0,∞) → [0,∞) satisfies the
conditions in Theorem 1. It follows, for random variables X and Y as
described in Theorem 1, that

X ≤ttt Y =⇒ Eφ(X) ≤ Eφ(Y ) (11)

for every increasing concave function φ on [0,∞), provided the expectations
exist. That is, for random variables X and Y as described in Theorem 1,
we have

X ≤ttt Y =⇒ X ≤icv Y, (12)



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

136 X. Li & M. Shaked

where ≤icv denotes the increasing concave order (see, for example, Shaked
and Shanthikumar (1994, Section 3.A)).

The order ≤ttt is also closed under the formation of series systems.

Theorem 2. Let X1, X2, . . . , Xn be a collection of independent and iden-
tically distributed nonnegative random variables, and let Y1, Y2, . . . , Yn be
another collection of independent and identically distributed nonnegative
random variables. Then

X1 ≤ttt Y1 =⇒ min{X1, X2, . . . , Xn} ≤ttt min{Y1, Y2, . . . , Yn}.

2.2 The Generalized TTT Transform Orders

In this subsection we review some basic properties of the orders ≤(h)
ttt . Most

of the results below, and their proofs, can be found in Li and Shaked (2004).
Let X and Y be two nonnegative random variables with distribution

functions F and K, and survival functions F and K, respectively.

First we note that the order ≤ttt is a member in the class of orders ≤(h)
ttt ,

h ∈ H; it is obtained by letting h be the function h(u) = 1 − u on [0, 1].
We also note that the usual stochastic order ≤st is a member of this

class of orders; it is obtained when h is a constant function on [0, 1]. In
order to see this, suppose that h(u) = c, u ∈ [0, 1], for some c > 0. Then

X ≤(h)
ttt Y means

T̃
(h)
X (p) ≤ T̃

(h)
Y (p), p ∈ (0, 1);

that is,
∫ F−1(p)

0

h(F (x)) dx ≤
∫ K−1(p)

0

h(K(x)) dx, p ∈ (0, 1).

The latter inequality is the same as

F−1(p) ≤ K−1(p), p ∈ (0, 1);

that is, X ≤st Y .

Another common order that is a member of the class of orders ≤(h)
ttt is

obtained by letting h be the function h(u) = u on [0, 1]. Then X ≤(h)
ttt Y

means
∫ F−1(p)

0

F (x) dx ≤
∫ K−1(p)

0

K(x) dx, p ∈ (0, 1).

This defines the so-called location independent riskier order (denoted as
X ≤lir Y or F ≤lir G); this order was introduced in Jewitt (1989) and was
further studied in Fagiuoli, Pellerey, and Shaked (1999) and in Kochar, Li,
and Shaked (2002).
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A useful relationship among the orders ≤(h)
ttt is given in the next theorem.

Theorem 3. Let X and Y be two random variables with continuous distri-
bution functions, having 0 as the common left endpoint of their supports.
Let h1, h2 ∈ H. Suppose that

h2(u)/h1(u) is decreasing on (0, 1).

Then

X ≤(h1)
ttt Y =⇒ X ≤(h2)

ttt Y.

For example, the implication (9) easily follows from Theorem 3. Some
more relationships between the usual stochastic order ≤st and the orders

≤(h)
ttt follow easily from Theorem 3 and are described next.

Theorem 4. Let X and Y be two nonnegative random variables with con-
tinuous distribution functions, having 0 as the common left endpoint of
their supports. Let h ∈ H.

(a) If h is decreasing on (0, 1) then X ≤st Y =⇒ X ≤(h)
ttt Y .

(b) If h is increasing on (0, 1) then X ≤(h)
ttt Y =⇒ X ≤st Y .

The usual stochastic order is a useful tool that yields important in-
equalities (see, for example, Shaked and Shanthikumar (1994) or Müller
and Stoyan (2002); Theorem 4(b) can be used to identify this order. On
the other hand, in instances in which the usual stochastic order is known
to hold, Theorem 4(a) gives conditions under which the generalized TTT
transform order holds, and the inequalities that the latter yields can then
be applied.

The following result is a part of Proposition 1 of Bartoszewicz (1986)
although his notation is different than the notation in the present paper. It
shows that the dispersive order yields a particular form of the generalized
TTT transform order. Recall that a random variableX is said to be smaller
than another random variable Y in the dispersive order (denoted asX ≤disp

Y ) if K−1(p) − F−1(p) is increasing in p ∈ (0, 1), where F and K are the
distribution functions of X and Y , respectively; see, for example, Shaked
and Shanthikumar (1994, Section 2.B).

Theorem 5. Let X and Y be two absolutely continuous random variables
with 0 being the common left endpoint of their supports. Let G be any
absolutely continuous distribution function on [0,∞) with density function
g. Then

X ≤disp Y =⇒ X ≤(gG−1)
ttt Y.
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It is of interest to point out the contrast between Theorem 4(a) and
Theorem 5. Taking h = gG−1, the conclusions of Theorem 4(a) and of
Theorem 5 are the same. For random variablesX and Y that have the same
left endpoint of support, it is known that X ≤disp Y =⇒ X ≤st Y . Thus
the assumption X ≤st Y in Theorem 4(a) is weaker than the assumption in
Theorem 5. However, in Theorem 5 nothing is assumed about G, whereas
in Theorem 4(a), we obtain the implication only for some G’s; that is, for
G’s with decreasing densities.

An extension of Theorem 1 is the following result.

Theorem 6. Let X and Y be two continuous random variables with inter-
val supports, and with 0 being the common left endpoint of their supports.
Let h ∈ H be decreasing on [0, 1]. Then, for any increasing concave function
φ, such that φ(0) = 0, we have

X ≤(h)
ttt Y =⇒ φ(X) ≤(h)

ttt φ(Y ).

Following the argument that leads to (12), we see that as a consequence
of Theorem 6 we get, for random variables X and Y as described there,
that

X ≤(h)
ttt Y =⇒ X ≤icv Y,

whenever h ∈ H is decreasing on [0, 1].
Let G be an absolutely continuous distribution function with G(0) = 0,

and let g = G′ be the corresponding density function. From (4) it follows
that if we take h in (8) to be gG−1, then the order becomes a pointwise
comparison of generalized TTT transforms (see (2)). Let us recall the def-
inition of the convex transform order. Let X and Y be two nonnegative
random variables with continuous distribution functions F and K, respec-
tively, and with supports [0, a) and [0, b), respectively, for some finite or
infinite constants a and b. Then X is said to be smaller than Y in the
convex transform order (denoted as X ≤c Y or F ≤c K) if K−1F is con-
vex. The order ≤c is discussed, for example, in Shaked and Shanthikumar
(1994, Section 3.C). Note that X ≤c Y is denoted in Fernandez-Ponce,

Kochar, and Muñoz-Perez (1998) as X
IFR
� Y . The following result gives

a condition, by means of the convex transform order ≤c, under which a
pointwise comparison of generalized TTT transforms with respect to one
distribution, G1, say, implies the pointwise comparison of generalized TTT
transforms with respect to another distribution, G2, say.

Proposition 1. Let X and Y be two nonnegative random variables with
continuous distribution functions, having 0 as the common left endpoint
of their supports. Let G1 and G2 be two absolutely continuous distribution
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functions with supports [0, a) and [0, b) for some finite or infinite constants a

and b, and density functions g1 and g2. If X ≤(g1G
−1
1 )

ttt Y , and if G1 ≤c G2,

then X ≤(g2G
−1
2 )

ttt Y .

Proof. Note thatG1 ≤c G2 means that g2G
−1
2 (u)/g1G

−1
1 (u) is decreasing

on [0, 1]. The stated result thus follows from Theorem 3. �

Recall that a nonnegative random variable Z is IFR (increasing failure
rate) if Z ≤c E(1), where E(1) denotes a unit mean exponential random
variable. Also, a nonnegative random variable Z is DFR (decreasing failure
rate) if Z ≥c E(1). From Proposition 1 we obtain the following corollary.

Corollary 1. Let G1 with support of the form [0, a) be an IFR distribution
function, and let G2 with support [0,∞) be a DFR distribution function. Let
X and Y be two nonnegative random variables with continuous distribution
functions, having 0 as the common left endpoint of their supports. Then

(a) X ≤(g1G
−1
1 )

ttt Y =⇒ X ≤ttt Y .

(b) X ≤ttt Y =⇒ X ≤(g2G
−1
2 )

ttt Y .

(c) X ≤(g1G
−1
1 )

ttt Y =⇒ X ≤(g2G
−1
2 )

ttt Y .

3 Some Applications

3.1 Reliability Theory and Statistics

Let X be a nonnegative random variable with survival function F . For
θ > 0, as in Example 1, let X(θ) denote a random variable with survival
function (F )θ. Also, let Y be another nonnegative random variable with
survival function K, and let Y (θ) denote a random variable with survival
function (K)θ. Define the function h(θ) by h(θ)(u) = (1 − u)θ, u ∈ (0, 1).
Li and Shaked (2004) proved that

X(θ) ≤ttt Y (θ) ⇐⇒ X ≤(h(θ))
ttt Y. (13)

As a consequence they obtained the following result.

Proposition 2. Let X and Y be two nonnegative random variables with
continuous distribution functions, having 0 as the common left endpoint of
their supports. Let X(θ) and Y (θ) be as described above.

(a) If θ > 1 then X ≤ttt Y =⇒ X(θ) ≤ttt Y (θ).
(b) If θ < 1 then X(θ) ≤ttt Y (θ) =⇒ X ≤ttt Y .
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Proof. Note that

X ≤ttt Y ⇐⇒ X ≤(h(1))
ttt Y. (14)

Now, if θ > 1 then h(θ)/h(1) is decreasing on (0, 1), and part (a) follows
from Theorem 3, (13), and (14). On the other hand, if θ < 1 then h(1)/h(θ)

is decreasing on (0, 1), and part (b) follows, again, from Theorem 3, (13),
and (14). �

If we take θ = n in Proposition 2, where n is a positive integer, we
obtain Theorem 5.1(a) of Kochar, Li, and Shaked (2002); that is, we see
that if the lifetimes of the (identical) components of one series system, are
comparable to the lifetimes of the (identical) components of another series
system, with respect to the order ≤ttt, then the two system lifetimes are
also comparable with respect to the order ≤ttt, where n is the size of the
series systems.

3.2 Actuarial Science and Insurance

Let X be the loss of an insurance contract (see Example 2), and let F
be its distribution function. Let ψ ∈ H be a distortion function (again,
see Example 2), and define hψ, as in that example, by hψ(u) = ψ(1 − u),
u ∈ [0, 1]. Then the premium paid for the insurance contract, with respect
to ψ (see (6)), is

ρψ(X) =

∫ ∞

0

ψ(F (x)) dx =

∫ ∞

0

hψ(F (x)) dx.

Let Y be the loss of another insurance contract, and letK be its distribution
function. Then the premium paid for that contract, with respect to ψ, is

ρψ(Y ) =

∫ ∞

0

hψ(K(x)) dx.

It follows that

X ≤(hψ)
ttt Y =⇒ ρψ(X) ≤ ρψ(Y );

that is, the order ≤(hψ)
ttt gives a sufficient condition for a comparison of

premiums with respect to ψ.

The orders ≤(h)
ttt can also be used to compare premiums of two insurance

contracts X and Y , with respect to two distortion functions ψ1 and ψ2.
We use Theorem 3. Note that ψ2/ψ1 is increasing on (0, 1) if, and only
if, hψ2/hψ1 is decreasing on (0, 1). Therefore, by Theorem 3, if ψ2/ψ1 is
increasing on (0, 1) then

X ≤(hψ1
)

ttt Y =⇒ X ≤(hψ2
)

ttt Y.
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For example, take ψ2(u) = u. Then hψ2(u) = 1 − u, u ∈ [0, 1], and the

order ≤(hψ2
)

ttt is just the order ≤ttt. Since ψ1 is concave (and increasing, and
satisfies ψ1(0) = 0) it follows that ψ1 is anti-starshaped; that is, ψ1(u)/u
is decreasing on (0, 1). In other words, ψ2/ψ1 is increasing on (0, 1). Thus,
for any distortion function ψ1 we have

X ≤(hψ1
)

ttt Y =⇒ X ≤ttt Y.

In words, if a loss X is smaller than a loss Y with respect to any distortion,
then it is also smaller without any distortion.

3.3 Reliability Theory

Let X be the lifetime of a coherent system with reliability function φ
(see Example 3). Suppose that the lifetimes of the components are inde-
pendent and identically distributed with distribution function F and sur-
vival function F . Define hφ by hφ(u) = φ(1 − u), u ∈ [0, 1]. Note that
hφ ∈ H ⇐⇒ φ ∈ H. Using (7) it is seen that the expected lifetime of the
system is

E[X ] =

∫ ∞

0

φ(F (x)) dx =

∫ ∞

0

hφ(F (x)) dx.

Let Y be the lifetime of the same coherent system, but now suppose that
the lifetimes of the components are independent and identically distributed
with distribution function K. Then the expected lifetime of the system is

E[Y ] =

∫ ∞

0

hφ(K(x)) dx.

It follows that

X ≤(hφ)
ttt Y =⇒ E[X ] ≤ E[Y ];

that is, the order ≤(hφ)
ttt gives a sufficient condition for a comparison of the

expected lifetimes of the same coherent system, but with different compo-
nent lifetime distributions.

An interesting preservation result is stated next.

Proposition 3. Let X and Y be two random lifetimes with continuous dis-
tribution functions, having 0 as the common left endpoint of their supports.
Let φ be the reliability function of a coherent system. If

φ(u)

u
is increasing on (0, 1), (15)

then

X ≤ttt Y =⇒ X ≤(hφ)
ttt Y. (16)
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Proof. Let φ1 be the reliability function of the elementary system con-
sisting of one component; that is, φ1(u) = u, u ∈ [0, 1]. Note that

X ≤ttt Y ⇐⇒ X ≤(hφ1
)

ttt Y. (17)

Now, (15) is equivalent to the condition that hφ/hφ1 is decreasing on (0, 1).
Thus, in light of (17), we see that (16) follows from Theorem 3. �

Let F and K denote, respectively, the distribution functions of X and
Y in Proposition 3. The right hand side of (16) can be written as

∫ F−1(p)

0

FS(x) dx ≤
∫ G−1(p)

0

FT (x) dx, p ∈ (0, 1),

where FS and FT are defined, for x ≥ 0, as

FS(x) = φ(F (x)) and FT (x) = φ(K(x));

that is, FS is the survival function of the lifetime of the coherent system
when the components lifetime distribution is F (see (7)), and FT is the sur-
vival function of the lifetime of the coherent system when the components
lifetime distribution is K. This means that if a coherent system repeatedly
runs a test that is terminated when a fraction p of all the components on
test fail, then the average time that the system with lifetime S spends on
test is smaller than the average time that the system with lifetime T spends
on test. This may be a useful observation in some life testing procedures.

Examples of coherent systems with reliability functions that satisfy (15)
are described in Li and Shaked (2004).
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Chapter 8

ADAPTIVELY DENOISING DISCRETE TWO-WAY

LAYOUTS

Rudolf Beran
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The unrestricted least squares estimator for the means of a two-way
layout is usually inadmissible under quadratic loss and the model of ho-
moscedastic independent Gaussian errors. In statistical practice, this
least squares estimator may be modified by fitting hierarchical submod-
els and, for ordinal factors, by fitting polynomial submodels. ASP, an
acronym for Adapative Shrinkage on Penalty bases, is an estimation (or
denoising) strategy that chooses among submodel fits and more general
shrinkage or smoothing fits to two-way layouts without assuming that
any submodel is true. ASP fits distinguish between ordinal and nominal
factors; respect the ANOVA decomposition of means into overall mean,
main effects, and interaction terms; and are designed to reduce risk sub-
stantially over the unrestricted least squares estimator. Multiparametric
asymptotics, in which the number of factor-level pairs tends to infinity,
and numerical case studies both support the methodology.

Key words: Estimated risk; Penalized least squares; Bi-monotone
shrinkage; Bi-flat shrinkage; Annihilator matrix.

1 Introduction

A fundamental data type in the sciences, engineering, and informatics is the
discrete two-way layout. Instances include the data recorded in agricultural
field trials, in DNA microassays, in digital imaging, and in other settings
where regression or ANOVA are established tools. The factors in a two-
way layout may be ordinal or nominal. The levels of an ordinal factor are
real-values that indicate at least order and possibly more. The levels of a
nominal factor are pure labels that convey no ordering information.
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In devising trustworthy fits to discrete layouts, it is essential not to
make strong unsupported assumptions concerning how the mean response
at a grid point depends on the factor levels associated with that grid-point.
On the other hand, the unrestricted least squares estimator tends to overfit
the means to a two-way layout, especially when there is little replication.
A formal theoretical statement of this difficulty is Stein’s (1956) inadmissi-
bility result for the least squares fit to a one-way layout with independent
identically distributed Gaussian errors. Better estimation (or denoising)
techniques for two-way layouts with unrestricted means rely on biased es-
timators, such as those generated by the statistical regularization methods
of this paper.

The acronym ASP stands for Adapative Shrinkage on Penalty bases.
An ASP fit to a discrete two-way layout is constructed in three stages:

1) Devise a candidate class of constrained penalized least squares (PLS)
estimators whose three quadratic penalty terms express tentative notions
about the two main effects and the interactions in the means of the two-way
layout.

2) Estimate the risk of each candidate estimator under a general model
on the means that does not assume any of the prior notions in step one.

3) Define the ASP fit to be a candidate fit that minimizes estimated
risk under the general model—the adaptive aspect of the procedure.

Wood (2000) treated penalized least squares with multiple quadratic
penalties. The present paper differs from his work by constructing the
three penalty terms to address the possible unimportance or smoothness of
some main effects or interactions; by using estimated risk under a general
model rather than cross-validation to select penalty weights and terms;
by treating bi-monotone shrinkage strategies more general than penalized
least squares; and by developing asymptotics for ASP estimators in large
two-way layouts.

An ASP fit is a biased estimator that trades bias against variance so as
to achieve, approximately, the lowest quadratic risk attained over the class
of candidate estimators for the means of the two-way layout. Multipara-
metric asymptotics, in which the total number of cells in the two-way layout
tends to infinity, indicate that the estimated risk of an ASP estimator is a
trustworthy approximation to its risk (Section 4). This asymptotic analy-
sis relies on results that were developed by Beran and Dümbgen (1998) for
abstract shrinkage estimators and were applied by Beran (2000, 2002) to
one-way layouts.

The smoothing spline literature seeks to estimate a mean function that
is deemed to be a function of continuous ordinal factors, using observations
typically made at a scattered set of factor levels (cf. Wahba 1990, Wahba



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Denoising Two-way Layouts 149

et al. 1995, Heckman and Ramsay 2000, Lin 2000). This scattered set
may be viewed as an incomplete subset of the smallest discrete grid that
contains it. The discrete fitting techniques of this paper may be compared
and contrasted with the spline literature as follows:

a) Our aim is to estimate well a possibly large discrete array of means
rather than a smooth mean surface. Risks of competing estimators are
evaluated under a model that puts no restrictions on the unknown means.

b) The factors affecting the discrete means in the two-way layout can be
either ordinal or nominal or one of each. For both factors ordinal, ASP fits
rely on discrete splines that are akin to continuous smoothing splines. For
both factors nominal, ASP yields multiple-shrinkage estimators very close
to those of Stein (1966).

Tukey (1977) experimented with certain smoothing algorithms for fit-
ting one- and higher-way layouts with ordinal factors. In ordinal one-
way layouts where wavelet bases provide a sparse representation of the
means, Donoho and Johnstone (1995) used adaptive shrinkage through soft-
thresholding. Beran and Dümbgen (1998) proposed and studied adaptive
symmetric linear estimators that perform monotone shrinkage relative to
a fixed orthonormal basis. ASP estimators for two-way layouts with ei-
ther ordinal or nominal factors can be represented canonically as a closed
set of bi-monotone shrinkage estimators acting on a tensor product basis
determined by the three penalty terms (Section 2).

This paper considers a complete balanced two-way layout in which the
first factor has p1 distinct levels, the second factor has p2 distinct levels,
and q observations are taken at each combination of factor levels. With-
out loss of generality in the theory, we take q = 1. This corresponds to
using the averages over replications in place of the raw observations. Sub-
scripting is arranged so that, for an ordinal factor, the factor levels are a
strictly increasing function of subscript. The statistical model used in all
risk calculations is

yij = µ(s1i, s2j) + ǫij 1 ≤ i ≤ p1, 1 ≤ j ≤ p2, (1)

where the {yij} are the (averaged) observations, the {ski} are the levels
of factor k, and the errors {ǫij} are independent, identically distributed
N(0, σ2) random variables. Both the function µ and the variance σ2 are

unknown. If factor k is ordinal, then sk1 < sk2 < . . . < skpk . For notational
simplicity, we usually write mij instead of µ(s1i, s2j).

Let M denote the p1 × p2 matrix with elements {mij}. The Frobenius
matrix norm | · | is defined by |C|2 = tr(C′C) = tr(CC′). The normalized
quadratic loss and corresponding risk of any estimator M̂ of M is

L(M̂,M) = (p1p2)
−1|M̂ −M |2, R(M̂,M, σ2) = EL(M̂,M). (2)
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The unrestricted least squares estimator of M is the matrix Y with ele-
ments {yij}. It has risk σ2. This least squares estimator underlies classical
analysis of variance for the two-way layout but is less useful in fitting re-
sponse surfaces or analyzing a digital image. Indeed, Stein (1956) proved
that it is inadmissible whenever p1p2 ≥ 3.

1.1 Penalized least squares and submodels

Estimators of M that may dominate least squares are suggested by the
following class of penalized least squares estimators. For k = 1 or 2, define

the pk × 1 unit vector uk = p
−1/2
k (1, 1, . . . , 1)′. Let Ak be any matrix with

pk columns such that Akuk = 0. Examples of such annihilator matrices
that have additional useful properties are presented in Section 1.2 and are
treated more fully in Section 3. Let A = (A1, A2) and let ν = (ν1, ν2, ν12)
be any vector in [0,∞]3. The candidate penalized least squares (PLS)
estimator of M is defined to be

M̂PLS(ν,A) = argmin
M

S(M, ν,A), (3)

where

S(M, ν,A) = |Y −M |2 + ν1|A1Mu2|2 + ν2|u′1MA′
2|2 + ν12|A1MA′

2|2. (4)

The three penalty terms in (4) are designed to measure departures in
M from certain submodels. The unrestricted model for the mean matrix of
the two-way layout is

• Full Model: M = γ0u1u
′
2 + γ1u

′
2 + u1γ

′
2 + Γ12, where γ0 is a scalar, γk

is a pk × 1 vector such that u′kγk = 0, and Γ12 is a p1 × p2 matrix such
that u′1Γ12 = 0, Γ12u2 = 0 (cf. Scheffé 1959).

The vanishing of one or more penalty terms indicates when M satisfies a
designated submodel of the full model.

• Additive Model: This is the submodel of the full model for which Γ12 =
0. For this submodel, the penalty term |A1MA′

2|2 vanishes.
• Row-effects Model: This is the submodel of the full model for which
γ2 = 0 and Γ12 = 0. For this submodel, the penalty terms |A1MA′

2|2
and |u′1MA′

2|2 both vanish.
• Column-effects Model: This is the submodel of the full model for which
γ1 = 0 and Γ12 = 0. For this submodel, the penalty terms |A1MA′

2|2
and |A1Mu2|2 both vanish.

• Constant Model: This is the submodel of the full model for which each
γk = 0 and Γ12 = 0. For this submodel, the penalty terms |A1MA′

2|2,
|u′1MA′

2|2, and |A1Mu2|2 all vanish.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Denoising Two-way Layouts 151

Thus, if ν12 is very large, the candidate PLS estimator will fit a nearly
additive model. If ν1 and ν12 are both large, the PLS estimator will fit
a nearly row-effects model. If ν2 and ν12 are both large, the candidate
PLS estimator will fit a a nearly column-effects model. Finally, if every
component of ν is large, the candidate PLS estimator will fit a nearly
constant model. Further properties of the PLS fit will depend on the precise
choice of Ak and will be discussed in Sections 2 and 3. The value of ν and
hence the extent of submodel fitting will be chosen to minimize estimated
risk of the candidate PLS estimator.

1.2 Examples of annihilators and fits

The following examples introduce suitable choices of the annihilator matri-
ces Ak and corresponding ASP fits to data.

Example 1. Two ordinal factors. Estimating a response surface or de-
noising a digital image deals with responses indexed by two ordinal factors.
Vague prior information may suggest that the mean function µ(s1i, s2j) be-
haves locally like a polynomial function of the factor levels. Suppose that
each set of factor levels is equally spaced. To have the PLS estimator fa-
vor a fit that is locally polynomial of degree r − 1 in the levels of the first
factor and of degree c − 1 in the levels of the second factor, we take A1

and A2 to be, respectively, the r-th and c-th difference operators of column
dimensions p1 and p2 respectively. More explicitly, consider the (p− 1)× p
matrix ∆(p) = {δi,j} in which δi,i = 1, δi,i+1 = −1 for every i and all other
entries are zero.

Define

D1(p) = ∆(p), Dd(p) = ∆(p− d+ 1)Dd−1 for 2 ≤ d ≤ p− 1. (5)

The annihilators just mentioned are A1 = Dr(p1) and A2 = Dc(p2) respec-
tively.

Subplot (1,1) of Figure 1 displays a greyscale plot of a 70× 50 two-way
layout with one observation per cell. The artificial data was obtained by
adding pseudo-random Gaussian white noise to the means in subplot (2,1).
Section 3.2 provides mathematical details for this example. Both factors
are ordinal. Subplot (3,1) gives an adaptive PLS estimator that uses the
second difference annihilator for each factor. This ASP estimator recovers
major features of the true means far more clearly than the unrestricted least
squares estimator, which coincides with the raw data in subplot (1,1). The
fitting errors displayed in subplot (3,2) are the difference between the ASP
estimator and the true mean matrix. The fitting errors appear homoge-
neously random except at the central dip. Sections 2, 3.1, and 3.2 develop
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Figure 1 ASP fit and diagnostics for the artificial data. Both factors are ordinal. Both
annihilators are second difference.
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this example by discussing adaptive choice of r, c and the penalty weights
and by presenting more general constructions of annihilator matrices.

Example 2. Two nominal factors. Classical analysis of variance deals
with such data. When both factors are purely nominal, permutation of the
subscripts (labels) should not affect the estimator of M . The matrix

Ak = Ipk − uku
′
k (6)

is an annihilator that is invariant under permutations of row and column
labels. We call it the flat annihilator for reasons that will become clear
in Section 3.3. When both Ak are flat annihilators, the corresponding
candidate PLS estimators are equivariant under permutations of row and
column labels.

Subplot (1,1) of Figure 2 displays a linearly interpolated 6 × 8 two-
way layout with one observation by cell. The data comes from p. 238 of
Anderson and Bancroft (1952) and is reprinted on p. 138 of Scheffé (1959).
Cell (i, j) in the layout reports the amount of cooking fat number j that
is absorbed in baking a batch of donuts on day i of the experiment. Both
factors in this example are treated as nominal. Subplot (1,2) gives an
interpolated adaptive PLS estimator that uses the flat annihilator (6) for
each factor. The cross-sections in the second row of Figure 2 show how this
ASP fit, unlike the unrestricted least squares fit, recovers near-additivity
in the dependence of fat-absorption on the day and the oil used. Sections
2 and 3.3 develop this example.

Example 3. One nominal and one ordinal factor. Classical analysis
of covariance deals with such data. If the first factor is nominal with equally
spaced levels while the second factor is ordinal, we may take A1 = Ip1−u1u

′
1

and A2 = Dc(p2). The resulting candidate PLS estimators are equivariant
under permutations of the levels of the first factor, shrink the least squares
estimator for the main effects of the first factor, and favor a fit that is
locally of degree c− 1 in the levels of the second factor.

Subplot (1,1) of Figure 3 displays a linearly interpolated 52×3 two-way
layout with one observation by cell. The data comes from Chatterjee et al.
(1995). Cell (i, j) in the layout reports the grape yield harvested in year j
from row i of a vineyard with 52 rows. Vineyard row in this example is an
ordinal factor. Harvest year is treated as a nominal factor because weather
and viticulture can vary considerably from year to year. Subplot (1,2)
gives an interpolated adaptive PLS estimator that uses the third difference
annihilator for the ordinal factor and the flat annihilator for the nominal
factor. The cross-sections in the second row of Figure 3 show how this ASP
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Figure 2 ASP fit and diagnostics for the data on fat-absorption by donuts. The factors
day and fat number are both nominal. Both annihilators are flat.
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Figure 3 ASP fit and diagnostics for the data on vineyard grape yields. The factor
vineyard row is ordinal while the factor year is nominal. The annihilators are respectively
third difference and flat.
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fit, more clearly than the unrestricted least squares fit, brings out leading
features of the grape yield over the three harvest years. Among these is a
dip in yield at and near vineyard row 33. Sections 2 and 3.4 develop this
example.

1.3 Outline of the paper

Section 2 defines ASP estimators in several stages. Candidate PLS esti-
mators are expressed in canonical form with respect to an orthogonal basis
determined by the three penalty terms in (4). This representation suggests
larger classes of candidate estimators that contain the candidate PLS esti-
mators and have the mathematical advantage of forming closed convex sets.
ASP estimators are then defined as estimators that minimize estimated risk
over the class of candidate estimators being considered. A theorem devel-
ops conditions under which estimated risk is a trustworthy surrogate for the
unknown risk as the number of cells p1p2 tends to infinity. It is shown that
ASP estimators will greatly dominate unrestricted least squares estimators
when the selected penalty basis is economical.

Section 3 discusses algorithmic aspects, including how to devise appro-
priate annihilator matrices that express vague prior information about M
and how to minimize the estimated risk when the factors are both ordinal or
both nominal or mixed. In the case of two nominal factors, a simple closed
form solution exists that essentially coincides with an estimator proposed
by Stein (1966). Section 4 provides proofs of theorems stated in Sections 2
and 3.

The ASP methodology generalizes to k-way layouts. The motivating
PLS estimator uses a separate penalty term for each of the 2k − 1 main
effects and interactions in the ANOVA decomposition of the means.

2 Defining ASP Estimators

We start by studying the form and risk of candidate PLS estimators in
terms of a canonical penalty basis for the regression space.

2.1 Candidate PLS estimators and penalty bases

The PLS criterion may be vectorized as follows. Let y = vec(Y ) =
{{yij : 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2}, the column vector obtained by sequentially
stacking the columns of Y with first column on top and last column at the
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bottom. Similarly, let m = vec(M). Then, from (4),

S(M, ν,A) = |y −m|2 + ν1m
′(u2u

′
2 ⊗A′

1A1)m+ ν2m
′(A′

2A2 ⊗ u1u
′
1)m

+ν12m
′(A′

2A2 ⊗A′
1A1)m. (7)

Let m̂PLS(ν,A) = vec(M̂PLS(ν,A)), the right side being defined through
(3). By calculus,

m̂PLS(ν,A) = [Ip1p2 + ν1(u2u
′
2 ⊗A′

1A1) + ν2(A
′
2A2 ⊗ u1u

′
1)

+ν12(A
′
2A2 ⊗A′

1A1)]
−1y. (8)

This expression for the candidate PLS estimator can be simplified to
reveal its essential structure. Suppose that the pk × pk symmetric ma-
trix A′

kAk has the spectral decomposition A′
kAk = UkΛkU

′
k, where the

eigenvector matrix satisfies UkU
′
k = U ′

kUk = Ipk and the diagonal matrix
Λk = diag{λki} gives the ordered eigenvalues 0 = λk1 ≤ λk2 ≤ . . . ≤ λkpk .
This eigenvalue ordering, the reverse of the customary, is adopted here be-
cause the eigenvectors associated with the smallest eigenvalues play the
greatest role in determining the numerical value and risk of the candidate
PLS estimator. Because the annihilator Ak satisfies Akuk = 0, the eigen-
value λk1 is necessarily zero and has uk as corresponding eigenvector. Thus,
the first column of Uk is uk. It follows from this discussion that

(A′
2A2 ⊗A′

1A1)(U2 ⊗ U1) = U2Λ2 ⊗ U1Λ1 = (U2 ⊗ U1)(Λ2 ⊗ Λ1).

Consequently,

A′
2A2 ⊗A′

1A1 = (U2 ⊗ U1)(Λ2 ⊗ Λ1)(U2 ⊗ U1)
′ (9)

gives a spectral decomposition of the symmetric matrix on the right side.
The pk × pk matrix uku

′
k is symmetric, idempotent, has eigenvalue 1

associated with the eigenvector uk, and has eigenvalue 0 repeated pk − 1
times. Let Ek = diag{eki} denote the pk × pk diagonal matrix that has 1
in the (1, 1) cell and zeroes elsewhere. Because uk is the first column of Uk,
we may write uku

′
k = UkEkU

′
k, a spectral decomposition of the left-hand

side. As in the preceding paragraph,

u2u
′
2 ⊗A′

1A1 = (U2 ⊗ U1)(E2 ⊗ Λ1)(U2 ⊗ U1)
′,

A′
2A2 ⊗ u1u

′
1 = (U2 ⊗ U1)(Λ2 ⊗ E1)(U2 ⊗ U1)

′. (10)

Combining (8), (9) and (10) yields

m̂PLS(ν,A) = U [Ip1p2+ν1(E2⊗Λ1)+ν2(Λ2⊗E1)+ν12(Λ2⊗Λ1)]
−1U ′y (11)

for U = U2 ⊗ U1. Let

fij(ν) = [1 + ν1λ1ie2j + ν2e1iλ2j + ν12λ1iλ2j ]
−1. (12)
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The matrix inverse in (11) is a diagonal matrix whose main diagonal is the
vector f(ν) = {{fij(ν) : 1 ≤ i ≤ p1} : 1 ≤ j ≤ p2}. Let z = (U2 ⊗ U1)

′y.
Then

m̂PLS(ν,A) = (U2 ⊗ U1) diag{f(ν)}z. (13)

The columns of U2⊗U1 constitute the penalty basis generated by the anni-
hilator matrices A1 and A2. Equation (13) shows that the PLS candidate
estimator maps the data-vector y into its coefficient vector z with respect
to the penalty basis, then shrinks z through componentwise multiplication
by f(ν), then maps the result back to the original basis.

To obtain a compact matrix expression for the candidate PLS estimator
of M , define the matrix F (ν) = {fij(ν)}. Because λk1 = 0 and eki = 0 if
i ≥ 2, expression (12) is equivalent to

F (ν) =




1 (1 + ν2λ22)
−1 . . . (1 + ν2λ2p2)

−1

(1 + ν1λ12)
−1 (1 + ν12λ12λ22)

−1 . . . (1 + ν12λ12λ2p2)
−1

...
...

. . .
...

(1 + ν1λ1p1)
−1 (1 + ν12λ1p1λ22)

−1 . . . (1 + ν12λ1p1λ2p2 )
−1


 .

(14)
Let Z = U ′

1Y U2 and let F (ν).Z denote the componentwise product of the
two matrices. Equation (13) is equivalent to

M̂PLS(ν,A) = U1[F (ν).Z]U ′
2. (15)

Note that the least squares estimator Y ofM is the special case of (15) when
every component of F (ν) equals 1, or equivalently, when ν1 = ν2 = ν12 = 0.

2.2 Candidate shrinkage estimators and their risks

A shrinkage class F consists of p1 × p2 matrices F = {fij} such that 0 ≤
fij ≤ 1 for every i and j. The associated candidate shrinkage estimator of
M is defined to be

M̂(F,A) = U1[F.Z]U ′
2. (16)

In this paper we will consider the following shrinkage classes, each of which
is inspired by (14) and each of which generates a class of candidate shrinkage
estimators for M :

The Unrestricted shrinkage class FU consists of all p1 × p2 shrinkage
matrices with elements in [0, 1].

The PLS shrinkage class FPLS is the subset of shrinkage matrices
defined in (14) by {F (ν) : ν ∈ [0,∞]3}. The candidate PLS estimator
M̂PLS(ν,A) described in (15) coincides with M̂(F (ν), A) in the notation
(16).
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The Bi-Flat shrinkage class FBF is the subset of FU defined by fij = 1
if i = j = 1; = c1 if j = 1, i ≥ 2; = c2 if i = 1, j ≥ 2; and = c12 if
i ≥ 2, j ≥ 2, where c1, c2 and c12 are any constants in [0, 1]. This is the
specialization of PLS shrinkage obtained when λki = 1 for i ≥ 2 and every
k.

The Submodel shrinkage class FSM is the subset of FBF in which the
possible values of c1, c2, and c12 are restricted to either 0 or 1. This shrink-
age class is suggested by classical techniques for choosing a hierarchical
submodel.

The Monotone Score shrinkage class FMS is the subset of FU defined
by fij(λ1i, λ2j) = 1 if i = j = 1; = g1(λ1i) if j = 1, i ≥ 2; = g2(λ2j) if
i = 1, j ≥ 2; and = g12(λ1iλ2j) if i ≥ 2, j ≥ 2, where g1, g2, g12 are any
functions nonincreasing in their arguments.

The Bi-Monotone shrinkage class FBM is the subset of FU defined by
f11 = 1; {fi1 : i ≥ 2} is nonincreasing in i; {f1j : j ≥ 2} is nonincreasing in
j; and {fij : i, j ≥ 2} is nonincreasing in i for each fixed j and nonincreasing
in j for each fixed i.

The Bi-Nested shrinkage class FBN is the subset of FBM such that:
f11 = 1; each fi1 is either c1 or 0 for i ≥ 2; each f1j is either c2 or 0 for
j ≥ 2; and each fij is either c12 or 0 for i ≥ 2 and j ≥ 2. Here c1, c2 and
c12 are any constants in [0, 1].

The Flat × Monotone shrinkage class FF×M is the subset of FU defined
by fij = 1 if i = j = 1; = c if j = 1, i ≥ 2; = gj if i = 1, j ≥ 2; and = hj if
i ≥ 2, j ≥ 2, where c is any constant in [0, 1] and {gj}, {hj} are each any
nonincreasing sequence.

Evidently, FSM ⊂ FBF ⊂ FPLS ⊂ FMS ⊂ FBM . Also FBF ⊂ FBN ⊂
FBM and FF×M ⊂ FBM . With the exception of FPLS (in general), FSM ,
and FBN , these shrinkage classes are closed convex subsets of FU . PLS,
monotone score, bi-nested and bi-monotone shrinkage are useful when both
factors are ordinal. Bi-flat shrinkage, a specialization of PLS, is useful
when both factors are nominal. PLS and Flat × monotone shrinkage are
useful when the row factor is nominal while the column factor is ordinal.
However, the unrestricted shrinkage class FU does not generate low risk
ASP estimators. These matters will be developed in the remainder of the
paper.

Let f = vec(F ). The risk of the candidate estimator M̂(F,A) defined
in (16) may be expressed simply through the penalty basis representation

of m̂(f,A) = vec(M̂(F,A)). Let ξ = E(z) = (U2 ⊗ U1)
′m and ξ̂(f) =

diag{f}z. Then

m̂(f,A) = (U2 ⊗ U1)ξ̂(f), m = (U2 ⊗ U1)ξ.
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The normalized quadratic loss (2) thus reduces to

L(M̂(F,A),M) = (p1p2)
−1|m̂(f,A) −m|2 = (p1p2)

−1|ξ̂(f) − ξ|2. (17)

For any vector x, let ave(x) denote the average of its components. From
(17), the risk of candidate shrinkage estimator M̂(F,A) is

R(M̂(F,A),M, σ2) = r(f,A, ξ2, σ2),

where

r(f,A, ξ2, σ2) = ave[f2σ2 + (1 − f)2ξ2]. (18)

Multiplication of vectors on the right side of (18) is done componentwise,
as in the S language.

2.3 Estimated risks and ASP estimators

If the risk function (18) were known, we would seek an oracle estimator of
M—the candidate estimator that minimizes risk over the class of shrinkage
vectors and the class of annihilator matrices under consideration. This
oracular strategy is usually unavailable. Instead, we will estimate the risk
function from the data, then choose the candidate estimator that minimizes
estimated risk. The result is called an ASP estimator of M .

The risk function (18) contains two quantities, σ2 and ξ2, that are usu-
ally unknown. The sampling scheme and the ordinal or nominal character
of the factors both influence methods for estimating σ2. Basic possibilities
include:

Replicated layout. Fundamental in this setting is the least squares esti-
mator of σ2, the normalized residual sum of squares in the ANOVA table
for the two-way layout.

One observation per combination of factor levels. If the penalty basis is
economical in the sense that the coefficients {ξij : q1 < i ≤ p1, q2 < j ≤ p2}
are close to zero, then the high-component estimator is

σ̂2 = [(p1 − q1)(p2 − q2)]
−1

p1∑

i>q1

p2∑

j>q2

z2
ij . (19)

The classical pooled interaction estimator of ANOVA, suitable when the
means approximately follow the additive model described in the Introduc-
tion, is equivalent to (19) with q1 = q2 = 1.

For the variance estimator (19), E(σ̂2 − σ2)2 converges to zero if and
only if (p1 − q1)(p2 − q2) tends to infinity and the sum of squared biases
[(p1−q1)(p2−q2)]−1

∑p1
i>q1

∑p2
j>q2

ξ2ij tends to zero as p1p2 tends to infinity.
When the number of replications is greater than one but not large enough
to make the least squares estimator of variance accurate, it may be useful
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to combine it with a pooled interaction estimator. Robust analogs of these
variance estimators are the medians of the respective sets of {|zij|} divided
by Φ−1(.75). Here Φ−1 denotes the quantile function of the standard normal
distribution.

Having devised a variance estimator σ̂2, we may estimate ξ2 by z2 − σ̂2

and hence the risk function r(f,A, ξ2, σ2) by

r̂(f,A) = ave[σ̂2f2 + (1 − f)2(z2 − σ̂2)] = ave[(f − ĝ)2z2] + σ̂2 ave(ĝ),

where ĝ = (z2 − σ̂2)/z2. Apart from considerations entering into the esti-
mation of σ2, this equation is an application of the Stein (1981) unbiased
estimator of risk or of the risk estimator that underlies Mallow’s (1973)
discussion of Cp.

For fixed annihilator pair A and shrinkage class F , the shrinkage-

adaptive estimator is defined to be M̂(F̂ , A), where

f̂ = vec(F̂ ) = argmin
f∈F

r̂(f,A) = argmin
f∈F

ave[(f − ĝ)2z2]. (20)

Computation of F̂ is a weighted least squares problem that will be discussed
further in Section 3 because the details depend upon the shrinkage class.
When clarity requires, we will add a subscript to F̂ to indicate the shrinkage
class being used.

In general, ASP estimators involve adaptation over annihilators as well
as over the shrinkage vector. Let A be a class of of annihilator pairs. The
ASP estimator of M determined by annihilator class A and shrinkage class
F is defined to be M̂(Â, F̂ ), where

(f̂ , Â) = argmin
A∈A,f∈F

r̂(f,A). (21)

The following theorem gives conditions under which shrinkage adapta-
tion to minimize estimated risk approximately minimizes true risk as p1p2

tends to infinity. Section 4 gives the proof, which draws on abstract results
for shrinkage estimators established by Beran and Dümbgen (1998).

Theorem 1. Fix the annihilator pair A and let F be a subset of FBM that
is closed in [0, 1]p1p2 . In particular, F can be any shrinkage class listed in
Section 2.2 other than FU . Suppose that σ̂2 is consistent in that, for every
a > 0 and σ2 > 0,

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|σ̂2 − σ2| = 0. (22)

a) Let V (f) denote either the loss L(M̂(F,A),M) or the estimated risk
r̂(f,A). Then for every annihilator pair A, every t > 0, and every
σ2 > 0,

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E sup
f∈F

|V (f) −R(M̂(F,A),M, σ2)| = 0. (23)
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b) If f̂ = vec(F̂ ) = argminf∈F r̂(f,A), then

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

|R(M̂(F̂ , A),M, σ2) − min
f∈F

R(M̂(F,A),M, σ2)| = 0.

(24)
c) For W equal to either L(M̂(F̂ , A),M) or R(M̂(F̂ , A),M, σ2),

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|r̂(f̂ , A) −W | = 0. (25)

d) Let #(A) denote the cardinality of the class A. If #(A) ·
min{p−1/2

1 , p
−1/2
2 } and #(A) · E|σ̂2 − σ2| both converge to zero as

p1p2 → ∞, then convergences (23) to (25) to hold for the ASP es-
timator M̂(F̂ , Â), defined in (21).

Because max{p1, p2} ≤ p1p2 ≤ [max{p1, p2}]2, the condition p1p2 → ∞
is equivalent to max{p1, p2} → ∞. By part a, the loss, risk and estimated
risk of a candidate estimator converge together asymptotically. Uniformity
of this convergence over the shrinkage class F makes the estimated risk
of a candidate estimators a trustworthy surrogate for its true risk or loss.
By part b, the risk of the shrinkage adaptive-estimator M̂(F̂ , A) converges
to that of the best candidate estimator. Thus, when F is a closed sub-
set of FBM , shrinkage adaptation works as intended. This covers every
shrinkage class defined in Section 2.2 except FU . Moreover, because the
unrestricted least squares estimator is one of the candidate estimators in-
dexed by these shrinkage classes, its asymptotic risk is at least as large as
that of the best-shrinkage adaptive estimator. In practice, the risk of the
best shrinkage-adaptive estimator is often much smaller than that of the
unrestricted least squares estimator and this is the point. Part c shows that
the loss, risk, and plug-in estimated risk of an adaptive estimator converge
together asymptotically. Part d preserves these conclusions for ASP esti-
mators in which the cardinality of the annihilator class is finite or slowly
growing in the sense described.

The pleasant properties stated in Theorem 1 break down when the
shrinkage class is FU . Then the estimator M̂(F̂ , A) is dominated by the
least squares estimator Y (see Beran and Dümbgen 1998, p. 1829). Adap-
tation works when the shrinkage class is not too large, in a sense made
precise in Section 4.

3 Annihilators and Algorithms

This section treats methods for constructing annihilator matrices and al-
gorithms for minimizing estimated risk so as to construct ASP estimators.
Case studies illustrate what ASP estimators can accomplish on data.
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3.1 Role of basis economy

The following discussion motivates techniques for selecting annihilator ma-
trices. Let Ξ = {ξij} = U ′

1MU2, so that ξ = vec(Ξ). Heuristically, a
penalty basis is economical if all components outside the upper left corner
of Ξ are close to zero. In that case, we need only to identify and estimate
from the data the relatively few non-zero components of ξ, estimating the
remaining components by zero. The quadratic risk then accumulates small
squared biases from ignoring the nearly zero components of ξ but does
not accumulate the many variance terms that would arise in attempting to
estimate these unbiasedly.

An idealized formulation of basis economy facilitates mathematical anal-
ysis of how economy affects estimation risk in the two-way layout. Let S
denote the set of all subsets of {(i, j) : 1 ≤ i ≤ p1, 1 ≤ j ≤ p2}. For given
subset S ∈ S, let F (S) = {fij(S)} where fij(S) = 1 or 0 according to
whether or not (i, j) ∈ S. Define

S0 = {S ∈ S : F (S) ∈ FBM}.
For every S ∈ S0, every a > 0, and every σ2 > 0, consider the projected

ball

B(a, S, σ2) = {ξ ∈ Rp1p2 : ave(ξ2) ≤ σ2a and ξij = 0 for (i, j) /∈ S}.
Formally, we will say that the penalty basis associated with the annihilator
pair A is economical if ξ ∈ B(a, S, σ2) for some finite a > 0 and #(S),
the cardinality of S, is small relative to p1p2. Though this formulation is
too simple to serve as a complete definition of basis economy, it yields the
following quantitative result that shows how basis economy affects the risk
of estimators of M .

Theorem 2. Suppose that S ∈ S0 and

lim
p1p2→∞

(p1p2)
−1#(S) = b.

Then, for every a > 0 and every σ2 > 0, the asymptotic minimax quadratic
risk over all estimators of M is

lim inf
p1p2→∞

inf
M̂

sup
ξ∈B(a,S,σ2)

R(M̂,M, σ2) = σ2[ab/(a+ b)]. (26)

The bi-monotone shrinkage-adaptive estimator M̂(F̂BM , A) satisfies

lim
p1p2→∞

sup
ξ∈B(a,S,σ2)

R(M̂(F̂BM , A),M, σ2) = σ2[ab/(a+ b)]. (27)

The same holds for the bi-nested shrinkage-adaptive estimator M̂(F̂BN , A).
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This theorem reveals substantially more than formal asymptotic min-
imaxity of the bi-monotone shrinkage-adaptive estimator M̂(F̂BM , A).
When b ∈ [0, 1] is close to zero—in which case the penalty basis is highly
economical—the right side of (27) is much smaller than the risk σ2 of the
unrestricted least squares estimator of M . To the extent that the PLS
and other shrinkage-adaptive estimators defined in Section 2 approximate
M̂(F̂BM , A), their performance also benefits strongly from economy of the
basis.

3.2 Both factors ordinal

The ideal choice of penalty basis U2 ⊗ U1 would have its first basis vector
proportional to the unknown mean vector m so that only the first com-
ponent of ξ would be nonzero. Though unrealizable, this ideal selection
suggests that prior information or conjecture about m should be exploited
in devising the annihilator matrices Ak that generate the penalty basis.
The following discussion relates prior notions about the local behavior of
the mean function µ in (1) to constructions of A1 and A2 for two ordinal
factors.

Let t = (t1, t2, . . . , tp) denote the levels of an ordinal factor, where p
may be either p1 or p2. Let g0, g1, . . . , gd−1 be a given set of real-valued
functions defined on the real line such that g0 ≡ 1. We will construct a
sparse matrix Bd = Bd(t, p) to annihilate functions that behave locally like
a linear combination of the {gh : 0 ≤ h ≤ d − 1}. For each i such that
1 ≤ i ≤ p− d, let Gi denote the subspace of Rd+1 that is spanned by the d
vectors {(gh(ti), . . . , gh(ti+d)) : 0 ≤ h ≤ d− 1}. Assume that the dimension
of Gi is d. This condition is satisfied, for instance, when gh(ti) = thi . Define
the (p − d) × p local annihilator matrix Bd = {bij} as follows: In the i-th
row of Bd, the subvector {bij : i ≤ j ≤ i + d} is the unit vector in Rd+1,
unique up to sign, that is orthogonal to Gi. The remaining elements of Bd
are zero.

Theorem 3. Let ḡh = (gh(t1), gh(t2), . . . , gh(tp))
′. Each row vector of the

local annihilator matrix Bd has unit length and

Bdḡh = 0 for 0 ≤ h ≤ d− 1.

Proof: The definition of Bd ensures that its rows have unit length and
that

p∑

j=1

bijgh(tj) =
i+d∑

j=i

bijgh(tj) = 0 for 0 ≤ h ≤ d− 1.

Of frequent utility is the local polynomial annihilator, which is obtained
by setting gh(ti) = thi in the foregoing definition of Bd. If we conjecture that
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the unknown mean function µ(s1i, s2j) behaves locally like a polynomial of
degree r− 1 in the first ordinal factor and like a polynomial of degree c− 1
in the second ordinal factor, we would take the annihilators that generate
the penalty basis to be

A1 = Br(s1, p1), A2 = Bc(s2, p2),

where s1 = (s11, . . . , s1p1)
′ and s2 = (s12, . . . , s1p2)

′. When the factor levels
are equally spaced, the local polynomial annihilator Bd becomes a scalar
multiple of the d-th difference matrix defined in display (5) of Example 1.

We turn next to the computation of shrinkage-adaptive estimators for
the case of two ordinal factors once the annihilators A have been fixed.

Penalized least squares. From Section 2.2 and definition (20), the
shrinkage-adaptive PLS estimator is

M̂(F (ν̂), A) = U1[F (ν̂).Z]U ′
2, (28)

where

ν̂ = argmin
ν∈[0,∞]3

ave[(f(ν) − ĝ)2z2]. (29)

Let ĝij = (z2
ij − σ̂2)/z2

ij . Because of (14), equation (29) is equivalent to

ν̂1 = argmin
ν1∈[0,∞]

p1∑

i=2

[(1 + ν1λ1i)
−1 − ĝi1]

2z2
i1,

ν̂2 = argmin
ν2∈[0,∞]

p2∑

j=2

[(1 + ν2λ2j)
−1 − ĝ1j ]

2z2
1j ,

ν̂12 = argmin
ν12∈[0,∞]

p1∑

i=2

p2∑

j=2

[(1 + ν12λ1iλ2j)
−1 − ĝij ]

2z2
ij . (30)

Calculation of ν̂ = (ν̂1, ν̂2, ν̂12) thus amounts to solving three nonlinear,
weighted least squares problems, each of which can be treated with mini-
mization algorithms for a function of a single variable.

Example 1 (continued) : The data matrix for this example, displayed
in Figure 1, is constructed as Y = M + E with p1 = 70 and p2 = 50. The
components of the error matrixE are pseudo-random independent Gaussian
with mean 0 and standard deviation σ = .15. The mean matrix M has
componentsmij = µ[i−(p1+1)/2, j−(p2+1)/2)] for 1 ≤ i ≤ p1, 1 ≤ j ≤ p2,
where µ(u, v) = 2t−1/4 sin(t) with t =

√
u2 + v2. The penalty basis is

generated by using a second difference annihilator for each factor.
Subplot (1,2) in Figure 1 explores the economy of this basis empirically

by plotting the transformed components {|zij |1/2} of Z as surrogates for



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

166 R. Beran

the likewise transformed components of Ξ. The transformation reduces the
vertical range and makes it easier to see what is happening when zij is close
to zero. The components outside the upper right corner of the matrix Z
are relatively small, supporting the conclusion that the chosen penalty basis
is economical here. The nature of this economy motivates using variance
estimator (19) with q1 = 29 and q2 = 24. The estimated risk of the least
squares estimator is then .0220, in good agreement with the actual risk
.152. The estimated risk .0084 of the shrinkage-adaptive PLS estimator—
the ASP estimator—is much smaller than that of the unrestricted least
squares estimator. In this example, reduction of estimated risk accompanies
visually better recovery of the response surface or image. The actual loss
incurred by the ASP estimator is .0082, in approximate agreement with the
estimated risk. This is to be expected from part c of Theorem 7.

The shrinkage matrix that defines the adaptive PLS estimator is shown
in subplot (2,2). Shrinkage of the interaction coefficients {zij : i ≥ 2, j ≥ 2}
increases pronouncedly with i and j, though is less dramatic than the
shrinkage of the main-effect coefficients {zi1 : i ≥ 2} and {z1j : j ≥ 2}. The
shrinkage matrix reflects the non-additivity of the true means in this exam-
ple. Experimenting with d-th difference annihilators of orders 1 through 4
did not reduce estimated risk below that achieved with second differences.

Bi-monotone shrinkage. The shrinkage-adaptive BM estimator is

M̂(F̂BM , A) = U1[F̂BM .Z]U ′
2,

where vec(F̂BM ) = f̂BM and

f̂BM = argmin
f∈FBM

ave[(f − ĝ)2z2]. (31)

Consider the generic decomposition

p1∑

i=1

p2∑

j=1

a2
ij = a2

11 +

p1∑

i=2

a2
i1 +

p2∑

j=2

a2
1j +

p1∑

i=2

p2∑

j=2

a2
ij . (32)

To evaluate (31), we may proceed as follows:
a) Decompose the left side of (31) into minimizations of three separate

sums formed as in (32). Minimize each of these sums without the constraint
that f ∈ [0, 1]p. Weighted isotonic regression with the pool adjacent viola-
tors (PAV) algorithm accomplishes this for the first two sums. Iterative use
of the PAV algorithm handles the third sum. Roberston, Wright and Dyk-
stra (1988) describe both algorithms. Bril et al. (1984) provide a Fortran
implementation of the latter. Burdakow et al. (2004) review more efficient
algorithms for isotonic regression in several variables.
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b) Then each component of f̂BM is the positive part of the unconstrained
minimizer found in part a. An extension of the argument in Section 5 of
Beran and Dümbgen (1998) establishes this point.

Bi-nested shrinkage. The components of f̂BN = argminf∈FBN ave[(f −
ĝ)2z2] are given by f̂BN,ij = 1(f̂BM,ij ≥ 1/2) or may be found directly by
finite search.

Monotone score shrinkage. The shrinkage-adaptive MS estimator is

M̂(F̂MS , A) = U1[F̂MS .Z]U ′
2,

where vec(F̂MS) = f̂MS and

f̂MS = argmin
f∈FMS

ave[(f − ĝ)2z2].

The components {f̂ij} of the matrix F̂MS may be found as follows:

First step. Set f̂11 = 1.

Second step. Let w = {zi1 : 2 ≤ i ≤ p1} and let ĥ = (w2 − σ̂2)/w2.

Let K = {k ∈ Rq : k1 ≥ k2 ≥ . . . ≥ kq}, where q = p1 − 1. Find k̂ =

argmink∈K ave[(k − ĥ)2w2], using an algorithm for weighted isotonic least

squares such as the PAV. Set f̂i1 = max{k̂i−1, 0} for 2 ≤ i ≤ p1.

Third step. Repeat the second step, letting w = {z1j : 2 ≤ j ≤ p2} and

q = p2 − 1. Having found k̂, set f̂1j = max{k̂j−1, 0} for 2 ≤ j ≤ p2.

Fourth step. Let y = vec({zij : 2 ≤ i ≤ p1, 2 ≤ j ≤ p2}), let q =
(p1 − 1)(p2 − 1), and let v = vec({λ1iλ2j : 2 ≤ i ≤ p1, 2 ≤ j ≤ p2}) be
the vector of corresponding scores. Suppose first that these scores contain
no ties. Let ρ denote the rank vector of v and define the q dimensional
vector w through wρi = yi. Repeat the second step using these definitions

of w and q. Having found k̂, define the vector n̂ to have i-th component
max{k̂ρi , 0}. Let N̂ = {n̂ij} be the (p1 − 1) × (p2 − 1) matrix such that

n̂ = vec(N̂). Set f̂ij = n̂i−1,j−1 for 2 ≤ i ≤ p1, 2 ≤ j ≤ p2. In the presence
of ties among the components of v, we pool the corresponding components
of y2 in constructing w2 and reduce q accordingly.

Monotone score shrinkage, a special case of bi-monotone shrinkage, has
the computational advantage that the PAV algorithm converges in a finite
number of steps.

3.3 Both factors nominal

As was noted after (6), the flat annihilator Ak = Ipk − uku
′
k is invariant

under permutations of row and column labels. This makes A1 and A2 suit-
able for defining candidate PLS estimators when both factors are nominal.
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Let Uk denote any orthogonal matrix whose first column is the vector uk.
We may write Uk = (uk, Ck), where u′kCk = 0 and C′

kCk = Ipk−1. The
columns of Ck are any set of orthonormal contrasts in Rpk . The matrix
Ak is symmetric and idempotent. The eigenvalues of A′

kAk are λk1 = 0,
λk2 = . . . λkpk = 1 and the columns of the matrix Uk defined above give
corresponding eigenvectors.

PLS and bi-flat shrinkage. It follows from Section 2.2 that the class of
candidate PLS estimators generated by the flat annihilators coincides with
the class of BF candidate estimators M̂(c, A) = U1[F.Z]U ′

2 for F ∈ FBF
through the correspondence c1 = (1 + ν1)

−1, c2 = (1 + ν2)
−1 and c12 =

(1 + ν12)
−1.

The adaptive BF estimator M̂(ĉ, A) has components

m̂ij(ĉ, A) = y·· +

[
1 − (p1 − 1)σ̂2

∑p1
i=1

∑p2
j=1(yi· − y··)2

]

+

(yi· − y··)

+

[
1 − (p2 − 1)σ̂2

∑p1
i=1

∑p2
j=1(y·j − y··)2

]

+

(y·j − y··)

+

[
1 − (p1 − 1)(p2 − 1)σ̂2

∑p1
i=1

∑p2
j=1(yij − yi· − y·j + y··)2

]

+

(yij − yi· − y·j + y··).

because, by calculus, ĉ = (ĉ1, ĉ2, ĉ12) with

ĉ1 = argmin
c1∈[0,∞]

p1∑

i=2

[c1 − ĝi1]
2z2
i1 =

[
1 − (p1 − 1)σ̂2/

p1∑

i=2

z2
i1

]
+
,

ĉ2 = argmin
c2∈[0,∞]

p2∑

j=2

[c2 − ĝ1j]
2z2

1j =
[
1 − (p2 − 1)σ̂2/

p2∑

j=2

z2
1j

]
+
,

ĉ12 = argmin
c12∈[0,∞]

p1∑

i=2

p2∑

j=2

[c12 − ĝij ]
2z2
ij =

[
1 − (p1 − 1)(p2 − 1)σ̂2/

p1∑

i=2

p2∑

j=2

z2
ij

]
+
.

Through different reasoning, Stein (1966, p. 358) obtained an estimator
akin to this for the case when σ̂2 is an independent least squares estimator
of variance. In that setting, Stein refined the right side of M̂(ĉ, A) slightly—
subtracting 2 from the three factors (p1−1), (p2−1) and (p1−1)(p2−1)—so
as to reduce risk in estimating M . The effects of his modification decrease
to vanishing as p1 and p2 increase. Devising such improvements to the
other adaptive estimators treated in this paper is an open question.

Example 2 (continued) : A flat annihilator for each nominal factor
generates the penalty basis, whose dramatic empirical economy is revealed
by subplot (3,1) in Figure 2. The nature of this economy motivates using
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variance estimator (19) with q1 = q2 = 3. The shrinkage matrix that defines
the adaptive PLS or BF estimator is shown in subplot (3,2). Shrinkage of
the main effects is slight while shrinkage of the interactions is great, making
this ASP fit nearly additive as noted earlier. The estimated risk of the least
squares estimator is .4616 while the considerably smaller estimated risk of
the ASP estimator is .1522. In this example, reduction of estimated risk
accompanies clarification of how fat absorption depends on fat number and
day.

Submodel shrinkage. The components of f̂SM = argminf∈FSM ave[(f −
ĝ)2z2] are given by f̂SM,ij = 1(f̂BF,ij ≥ 1/2) or may be found directly by
finite search.

3.4 One nominal and one ordinal factor

Suppose that the first factor is nominal while the second factor is ordinal.
A suitable pair of annihilators is then A1 = Ip1 − u1u

′
1 as in Section 3.3

and A2 = Bc(s2, p2) as in Section 3.2.

Penalized least squares. Here the shrinkage-adaptive PLS estimator is
a specialization of (28) and (30) that is obtained by setting λ11 = 0, λ12 =
. . . = λ1p1 = 1. The value of ν̂1 is given by

(1 + ν̂1)
−1 =

[
1 − (p1 − 1)σ̂2/

p1∑

i=2

z2
i1

]
+
.

Calculating ν̂2 and ν̂12 amounts to minimizing the respective nonlinear
weighted least squares criteria in (30).

Example 3 (continued): A third difference annihilator for the ordinal
factor and a flat annihilator for the nominal factor generate the penalty
basis, whose empirical economy is revealed by subplot (3,1) in Figure 3.
The nature of this economy motivates using variance estimator (19) with
q1 = 24 and q2 = 0. The shrinkage matrix that defines this ASP estimator
is shown in subplot (3,2). Shrinkage is negligible for the main effects of the
nominal factor but is pronounced for the higher order coefficients, whether
main effect or interaction, of the ordinal factor. Strong shrinkage of the
highest order interaction coefficients makes the ASP fit roughly additive,
as seen in subplot (2,2). The estimated risk of the least squares estimator
is 1.8751 while the much smaller estimated risk of the ASP estimator is
.3918. In this example, reduction of estimated risk accompanies greater
understanding of how grape yield depends on row number and year.

Experimenting with d-th difference annihilators of orders one through
four on the row factor does not reduce estimated risk below that achieved
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with the third difference annihilator. If the factor year is treated as ordi-
nal rather than nominal, the first difference annihilator on that factor best
controls estimated risk of PLS candidate estimators. However, the corre-
sponding ASP fit virtually coincides with that obtained in the preceding
paragraph.

Flat × monotone shrinkage. Larger than the PLS class is the shrinkage
class FF×M defined previously. The shrinkage-adaptive F × M estimator
is

M̂(F̂F×M , A) = U1[F̂F×M .Z]U ′
2,

where vec(F̂F×M ) = f̂F×M and

f̂F×M = argmin
f∈FF×M

ave[(f − ĝ)2z2].

The components {f̂ij} of the matrix F̂F×M may be found as follows:

First step. Set f̂11 = 1.

Second step. For i ≥ 2, set f̂i1 =
[
1 − (p1 − 1)σ̂2/

∑p1
i=2 z

2
i1

]
+
.

Third step. Let w = {z1j : 2 ≤ j ≤ p2} and let ĥ = (w2 − σ̂2)/w2.

Let K = {h ∈ Rq : k1 ≥ k2 ≥ . . . ≥ kq}, where q = p2 − 1. Find k̂ =

argmink∈K ave[(k − ĥ)2w2], using an algorithm for weighted isotonic least

squares. Set f̂1j = max{k̂j−1, 0} for 2 ≤ j ≤ p2.

Fourth step. Letting w2 = {∑p1
i=2 z

2
ij : 2 ≤ j ≤ p2} and q = p2 − 1, find

k̂ as in the third step. Set f̂ij = max{k̂j−1, 0} for 2 ≤ i ≤ p1, 2 ≤ j ≤ p2.

4 Multiparametric Asymptotics

Adaptation works when estimated risk converges to actual risk uniformly
over the class of candidate estimators. Empirical process theory provides
sufficient conditions for such uniform convergence. For our purpose, the
richness of a shrinkage class F ⊂ FU is characterized through the covering
number J(F) that is defined as follows. For any probability measure Q on
the set T = {(i, j) : 1 ≤ i ≤ p1, 1 ≤ j ≤ p2}, consider the pseudo-distance
dQ(f, g) = [

∫
(f − g)2dQ]1/2 on [0, 1]T . For every positive u, let

N(u,F , dQ) = min{#F0 : F0 ⊂ F , inf
f0∈F0

dQ(f0, f) ≤ u ∀f ∈ F}.

Let

N(u,F) = sup
Q
N(u,F , dQ),
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where the supremum is taken over all probabilities on T . Define

J(F) =

∫ 1

0

[logN(u,F)]1/2du.

Important in proving Theorem 1 is the fact J(FBM ) =

O(min{p1/2
1 , p

1/2
2 }), which follows from Example 5 on p. 1832 of Beran

and Dümbgen (1998) and implies

(p1p2)
−1/2J(FBM ) = O(min{p−1/2

1 , p
−1/2
2 }). (33)

In particular, because max{p1, p2} ≤ p1p2 ≤ [max{p1, p2}]2, the right side
of (33) tends to zero as p1p2 → ∞.

Proof of Theorem 1: Part a. By Theorem 1 in Beran and Dümbgen
(1998), there exists a finite constant C such that

E sup
f∈F

|V (f)−R(M̂(F,A),M, σ2)| ≤ C

[
J(F)

σ2 + σ
√

ave(ξ2)√
p1p2

+E|σ̂2−σ2|
]
.

Limit (23) follows from this, the inclusion of F in FBM , (33), and (22).

Parts b and c. In analogy to f̂ = argminf∈F r̂(f,A), let

f̃ = argmin
f∈F

r(f,A, ξ2, σ2).

Then minf∈F R(M̂(F,A),M, σ2) = r(f̃ , A, ξ2, σ2). Let F̃ be the shrinkage

matrix vectorized by f̃ . We first show that (23) implies

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|W − r(f̃ , A, ξ2, σ2)| = 0, (34)

where W can be L(M̂(F̂ , A),M) or L(M̂(F̃ , A),M) or r̂(f̂ , A).
Indeed, (23) with V (f) = r̂(f,A) entails

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|r̂(f̂ , A) − r(f̃ , A, ξ2, σ2)| = 0,

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|r̂(f̂ , A) − r(f̂ , A, ξ2, σ2)| = 0.

Hence, (34) holds for W = r̂(f̂ , A) and

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|r(f̂ , A, ξ2, σ2) − r(f̃ , A, ξ2, σ2)| = 0. (35)

On the other hand, (23) with V (f) = L(M̂(F,A),M) gives

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|L(M̂(F̂ , A),M) − r(f̂ , A, ξ2, σ2)| = 0,

lim
p1p2→∞

sup
ave(ξ2)≤σ2a

E|L(M̂(F̃ , A),M) − r(f̃ , A, ξ2, σ2)| = 0.
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These limits together with (35) establish the remaining two cases of (34).
The limits (24) and (25) are immediate consequences of (34).
Part d. This conclusion follows by combining the separate results for

F = FMS and F = FST .

Proving Theorem 2 requires a preliminary result. Let E = {c ∈
Rp1p2 : ci ∈ [1,∞], 1 ≤ i ≤ p1p2}. For every c ∈ E , define the ellipsoid

E(a, c, σ2) = {ξ ∈ Rp1p2 : ave(cξ2) ≤ σ2a}.
When ξ ∈ E(a, c, σ2) and ci = ∞, it is to be understood that ξi = 0 and
c−1
i = 0. Let

ξ20 = σ2[(α/c)1/2 − 1]+,

g0 = ξ20/(σ
2 + ξ20) = [1 − (c/α)1/2]+, (36)

where α is the unique positive number such that ave(cξ20) = σ2a. Define

τ(a, c, σ2) = r(f,A, ξ2, σ2) = σ2 ave[ξ20/(σ
2 + ξ20)]. (37)

Evidently, τ(a, c, σ2) ∈ [0, σ2] for every a > 0 and every c ∈ E .
The following theorem, specialized from the argument of Pinsker (1980),

establishes that the linear estimator g0z is typically asymptotically minimax
among all estimators of ξ.

Theorem 4. Suppose that lim infp1p2→∞ τ(a, c, σ2) > 0. Then,

lim
p1p2→∞

[
inf
ξ̂

sup
ξ∈E(a,c,σ2)

(p1p2)
−1E|ξ̂ − ξ|2 − τ(a, c, σ2)

]
= 0 (38)

and

lim
p1p2→∞

[
sup

ξ∈E(a,c,σ2)

(p1p2)
−1E|g0z − ξ|2 − τ(a, c, σ2)

]
= 0. (39)

Proof of Theorem 2: Limit (26) is the specialization of (38) when cij = 1
for (i, j) ∈ S and is infinite otherwise. In that case, limp1p2→∞ τ(a, c, σ2) =
σ2[ab/(a+ b)] by specialization of (36) and (37).

The coefficients of g0 are g0,ij = [1−α−1/2]+ for (i, j) ∈ S and are zero
otherwise. By the definition of S, g0 ∈ FBN ⊂ FBM . Consequently the
oracle estimator f̃z that is defined by (34) when F is either FBN or FBM
satisfies

sup
ξ∈E(a,c,σ2)

(p1p2)
−1E|f̃z − ξ|2 ≤ sup

ξ∈E(a,c,σ2)

(p1p2)
−1E|g0z − ξ|2.

From this, (39), and the preceding evaluation of τ(a, c, σ2),

lim
p1p2→∞

sup
ξ∈E(a,c,σ2)

E|f̃z − ξ|2 = σ2[ab/(a+ b)]. (40)

Limit (27) follows from (40) and limit (24) in Theorem 1.
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Chapter 9

INFERENCES FOR VARYING-COEFFICIENT PARTIALLY

LINEAR MODELS WITH SERIALLY CORRELATED

ERRORS
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Varying-coefficient partially linear (VCPL) models are very useful tools.
This chapter focuses on inferences for the VCPL model when the er-
rors are serially correlated and modeled as an AR process. A penalized
spline least squares (PSLS) estimation is proposed based on the penal-
ized spline technique. This approach is then improved by a weighted
PSLS estimation. We investigate the asymptotic theory under the as-
sumption that the number of knots is fixed, though potentially large.
The weighted PSLS estimators of all parameters are shown to be

√
n-

consistent, asymptotically normal and asymptotically more efficient than
the un-weighted ones. The proposed method can be used to make si-
multaneous inference for the parametric and nonparametric components
by virtue of the sandwich formula for the joint covariance matrix. Sim-
ulations are conducted to demonstrate the finite sample performance of
the proposed estimators. A real data analysis is used to illustrate the
application of the proposed method.

Key words: Varying-coefficient; Partially linear; Serial correlation; Pe-
nalized spline; Asymptotic normality.

1 Introduction

Parametric regression models provide powerful tools for analyzing practi-
cal data when the models are correctly specified, but may suffer from large
modeling biases if the structures of models are misspecified. As an alter-
native, nonparametric smoothing eases the concerns on modeling biases.

175
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However, the nonparametric method is hampered by the so-called “curse
of dimensionality” in multivariate settings (see for example Stone 1985,
Hastie and Tibshirani 1990, and Fan and Gijbels 1996). One of the meth-
ods for attenuating this difficulty is to model covariate effects via a partially
linear structure, a combination of linear and nonparametric parts. It re-
tains nice features of both the parametric and the nonparametric regression
models, which includes partially linear regression model (see Engle et al.
1986),partially nonlinear regression model (see Andrews 1996), single-index
regression model (see Ichimura 1993, Delecroix, Härdle and Hristache 2003),
varying-coefficient partially linear regression model (see Fan, Yao and Cai
2003), and so on. The varying-coefficient partially linear regression mod-
els are useful tools for modeling the relationship between the response and
its covariates, while addressing possible interaction among the covariates
(see Fan and Huang 2005). A general varying-coefficient partially linear
regression model has the following form

Y = βTX +αT (U)Z + ε, (1)

where Y is the response, X, U and Z are the regressors, β = (β1, . . . , βq)T is
a vector of p-dimensional unknown parameters, α(·) = (α1(·), . . . , αq(·))T
is a vector of unknown functions, ε is the random error and the superscript

T denotes the transpose of a vector or matrix.
Model (1) permits the interaction between the covariates U and Z in

such a way that a different level of covariate U is associated with a different
linear model. This allows one to examine the extent to which the effect of
covariate Z varies over different levels of the variable U . When β = 0, model
(1) reduces to the varying-coefficient regression model widely studied in the
literature (see, for example, Hastie and Tibshirani (1993), Carroll, Ruppert
and Welsh (1998), Fan and Zhang (1999), Xia and Li (1999), Brumback and
Rice (1998), Hoover, Rice, Wu and Yang (1998), and Huang, Wu and Zhou
(2002) among others).

The model (1) has been studied by several authors. Zhang, Lee and
Song (2002) developed a procedure for estimation of the linear part and
the nonparametric part. Li, Huang, Li and Fu (2002) considered a local
least squares estimation for model (1). Fan and Huang (2005) studied a
generalized likelihood ratio test based on a profile least-squares estimation.
Zhou and You (2004) employed a wavelet method for estimating model (1).

However, the previous results for model (1) focused only on the assump-
tion that the errors are i.i.d. In practice, the independence assumption may
be inappropriate. For example, when data were recorded over time, such
as daily exchange rates, it is likely that the current response values are
correlated with their past ones. Ignoring the dependence of errors may
deteriorate the efficiency of estimators. It is a good practice to model the
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dependence structure via a stationary process, for instance, an AR process.
In this paper we employ the following model:

εi = ψ1εi−1 + · · · + ψdεi−d + ei, (2)
where ψ’s are unknown parameters, {ei} is a sequence of i.i.d. random
variables with mean zero and variance σ2

e . It should be noted that the AR
process is usually sufficient for modeling serially correlated errors because
an MA or an ARMA process can be well approximated by an AR process
(see Brockwell and Davis 1991 ).

To our knowledge, there is no formal research work for model (1) and
(2) in the literature. We here focus on inference for model (1) and (2). A
penalized spline least squares (PSLS) estimation will be proposed for the
parametric and nonparametric components based on the penalized spline
technique. This approach is then improved by a weighted PSLS estima-
tion. We investigate the asymptotic theory under the assumption that
the number of knots is fixed, though potentially large. It is shown that
the estimators of all parameters are

√
n consistent and asymptotically nor-

mal. Moreover, we show that theoretically and empirically the proposed
weighted estimators of the parametric and nonparametric components are
asymptotically more efficient than the un-weighted ones. The asymptotic
covariate matrix of the estimators is of sandwich form. A consistent esti-
mator is proposed based on the sandwich formula. In addition, we consider
the choice of the smoothing parameters. The advantages of the proposed
estimation method are manifold. The numerical implementation of the esti-
mators is fast and stable. The joint asymptotic normality of the estimators
of all parameters facilitates simultaneous inferences for the parametric and
nonparametric components.

This paper is organized as follows. In Section 2 we first introduce an
un-weighted PSLS estimator of the parametric and nonparametric compo-
nents. Based on the un-weighted estimators, we fit the error structure and
then construct a weighted PSLS estimator. The asymptotic properties of
the proposed estimators are investigated. In Section 3 we discuss imple-
mentation details of the proposed approach related to the penalty terms
and selection of the number and placements of knots. Simulation studies
are conducted in Section 4. A practical data example is analyzed in Sec-
tion 5. Section 6 concludes. The proofs of the main results are collected in
Appendix.

2 Penalized Spline Least Squares Estimation

For theoretic study, we consider only the fixed design points model. The
proposed method can be adapted to the case of random design points with
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a conceptually straightforward extension, conditional on the observed co-
variates.

According to Ruppert and Carroll (1997), Ruppert and Carroll (2001),
and Ruppert (2002), the unknown univariate function αs(·) can be approx-
imated by a penalized spline

αs(u) = δs0 + δs1u+ . . .+ δsmsu
ms +

κs∑

k=1

δs,ms+k(u − ϑsk)
ms
+ , (3)

where, for any number u, u+ equals u if u is positive and equals 0 otherwise,
ms is the spline degree and {ϑsk}κsk=1 are spline knots. Different degrees and
knots could be used for different functions αs(·)’s. However, the number
and location of knots are not crucial and the smoothness can easily be
controlled by a single smoothing parameter λs. For different components
αs(·)’s, we allow different smoothing parameters λs’s. Here the truncated
power basis is used for notational simplicity.

Let δs = (δs0, δs1, . . . , δs,ms+κs)
T and

Bs(u) = (1, u, . . . , ums , (u− ϑs1)
ms
+ , . . . , (u− ϑsκs)

ms
+ ).

Then the mean function of the model (1) can be written as

XT

i β +

q∑

s=1

Zsi(BT (Ui)δs),

where Zsi is the sth element of Zi. Denote by

θ = (βT , δT1 , . . . , δ
T
q )T

and δ = (δT1 , . . . , δ
T
q )T . Then the PSLS estimator of θ minimizes

Qn,λ(θ) =
1

n
(Y − Xβ − Ξδ)T (Y − Xβ − Ξδ) +

q∑

s=1

λsδTsΩsδs (4)

where Ξ = (Ξ1, . . . ,Ξn)T , and Ξi = ZiD(Ui) with
D(u) = blcokdiag{B1(u), · · · , Bq(u)} as a block diagonal matrix with q
rows and

∑q
s=1(ms + 1 + ks) columns. The coefficients λ’s are penalty

parameters for α(·)’s, Ω’s are appropriate semi-definite symmetric matrices.
A common choice for Ωs is

δTΩsδ =

∫ max(Ui)

min(Ui)

[α
′′

s (u)]2du,

which yields the usual quadratic integral penalty (see Ruppert 2002).

By (4) we can obtain a closed form of θ̂n, which is equal to

θ̂n = [(X,Ξ)T (X,Ξ) + blockdiag(0p×p, nΛΩ)]
−1

(X,Ξ)TY,

where Λ = blockdiag{λT1 , · · · ,λTq } with λs being a (1+ms+ks)×1 vector
of each component λs, and the penalty matrix Ω is block diagonal with the
s-th block being Ωs.
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2.1 Asymptotic Development

There are two kinds of asymptotic approaches that one can use for the
penalized splines. The first one is to let the number of basis functions grow
asymptotically as well as a penalty decay asymptotically in a certain order.
The second one is to consider fixed-knot penalized splines.

The first kind of asymptotics is ideal for providing an insight into the
studied problem. Unfortunately, there are few results on this topic, even
for a univariate penalized spline model. The main hurdle lies in that the
penalized splines involve two different features: the number of basis func-
tions and the penalty. They jointly determine the property of a spline.
Recently, Hall and Opsomer (2005) showed that the penalized splines can
achieve the optimal nonparametric rate in a univariate penalized spline re-
gression by taking a white-noise model representation and by assuming the
spline estimator as an integral over a continuously varying set of basis func-
tions, subject to a penalty. However, this white-noise presentation ignores
the effect of the number of basis functions on the properties of the esti-
mator. Therefore, the first kind of asymptotic approach is far from being
completely solved.

The second kind of asymptotics has been adopted by many authors,
e.g. Gray (1994), Wand (1999), Yu and Ruppert (2002), Yu and Ruppert
(2004), Jarrow, Ruppert, and Yu (2004), Wu and Yu (2004), and Carroll et
al. (2004), among others. Assuming a fixed but potentially large number
of knots, the penalized splines enjoy most of the parametric asymptotic
properties, where all the parameters can be jointly estimated at a

√
n-rate.

The large number of knots though fixed allows flexible fits with a roughness
penalty to avoid over-fitting. Ruppert (2002) found that the properties of
the penalized spline estimators are relatively insensitive to the choices of
basis functions, given that enough of them are used and the bias due to
spline approximation is negligible compared to the variance.

We will investigate the second asymptotic properties of the proposed
estimators under the assumption that the number of knots is fixed, though
potentially large. Before presenting the asymptotic properties of θ̂n, we
make the following assumptions.

(A1) limn→∞(X,Ξ)T (X,Ξ) = Σ, where Σ is a [p+
∑q
s=1(ms + 1 + κs)] ×

[p+
∑q

s=1(ms + 1 + κs)] positive definite matrix.
(A2) ψ(ζ) = 1− ψ1ζ − · · · − ψdζ

d 6= 0 for all ζ such that |ζ| ≤ 1 and {ei} is
a sequence of i.i.d. random variables with mean zero and variance σ2

e .

Let λn = max(λ1, . . . , λq). The following theorems establish the asymp-
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totic properties of the PSLS estimator θ̂n.

Theorem 1. Suppose that assumptions (A1) and (A2) hold. If the smooth-

ing parameter satisfies λn = o(1), then P (limn→∞ θ̂n = θ).

Theorem 2. Suppose that assumptions (A1) and (A2) hold. If the smooth-
ing parameter satisfies λn = o(n−1/2), then

√
n(θ̂n − θ) D−→ N

(
0,Σ−1Σ1Σ

−1
)
,

where

Σ1 = lim
n→∞

1

n
(X,Ξ)TV(X,Ξ) and V = (E(εiεj))

n
i,j=1.

As pointed out in Yu and Ruppert (2002), Yu and Ruppert (2004), and
Carroll, et al. (2004), the working assumption here is that the true function
is a spline. More precisely, the spline parameter δ should be called as the
best projection of the true smooth function on the spline space.

Note that the estimator θ̂n does not take the serial correlation in (2) into
the account. Therefore, it may not be asymptotically efficient. However, it
is a consistent estimator. This can be used to build an improved estimator
by fitting the model (2).

2.2 Fitting the Error Model

In this section we will estimate the autoregressive coefficients ψ =
(ψ1, . . . , ψd)T and σ2

e in the error structure (2) based on the residuals from
the model (1).

Yule-Walker’s equation implies that if εi’s were observable, one could
estimate ψ and σ2

e by means of

ψ̃n = Γ̃−1γ̃ and σ̃2
e = γ̃(0) − γ̃T Γ̃−1γ̃,

where ψ̃n = (ψ̃1, . . . , ψ̃d)T , Γ̃ = (γ̃(i− j))di,j=1, γ̃ = (γ̃(1), . . . , γ̃(d))′ and

γ̃(h) =

n−h∑

i=1

εiεi+h/n.

Since the εi’s can not be observed, a natural method for estimating
the parameters is to use the residuals from the model (1) as their pseudo-
observations:

ε̂i = Yi − XT

i β̂n − ZT

i D(Ui)δ̂n, i = 1, . . . , n.

This results in our estimators:

ψ̂n = Γ̂−1γ̂ and σ̂2
e = γ̂(0) − γ̂T Γ̂−1γ̂,
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where Γ̂ = (γ̂(i − j))di,j=1, γ̂ = (γ̂(1), . . . , γ̂(d))T and γ̂(h) =

n−1
∑n−h
i=1 ε̂iε̂i+h.

The following theorems summarize the asymptotic properties of ψ̂n and
σ̂2
e .

Theorem 3. Suppose that assumptions (A1) and (A2) hold. If the smooth-

ing parameter satisfies λn = o(1) and E[e41] < ∞, then ψ̂n and σ̂2
e are

strongly consistent estimators of ψ and σ2
e , respectively.

Theorem 4. Suppose that assumptions (A1) and (A2) hold. If the smooth-
ing parameter satisfies λn = o(n−1/2) and E[e41] <∞, then

√
n(ψ̂n −ψ)

D−→ N(0, σ2
eΓ

−1),

where Γ is the covariance matrix (γ(i− j))di,j=1 of {εi}. Moreover,
√
n(σ̂2

e − σ2
e)

D−→ N(0,Var(e21)).

Theorems 3 and 4 show that the estimators of ψ and σ2
e based on the

residuals ε̂1, . . . , ε̂n are asymptotically equivalent to those based on the
actual errors ε1, . . . , εn.

2.3 Weighted Penalized Spline Least Squares Estimation

Like the weighted least squares estimation, the fitted error structure enables
one to construct the weighted PSLS estimator of θ by minimizing

Qwn,λw(θ) =
1

n
(Y − Xβ − Ξδ)V̂−1(Y − Xβ − Ξδ) +

q∑

s=1

λws δ
T
sΩsδs, (5)

where

V̂−1 = σ̂−2
e (I + ψ̂n1J + · · · + ψ̂ndJ

d)T (I + ψ̂n1J + · · · + ψ̂ndJ
d)

with J =

(
0 In−1

0 0

)
being an n× n matrix. The weighted PSLS estimator

of θ admits the following closed form:

θ̂
w

n =
[
(X,Ξ)T V̂−1(X,Ξ) + blockdiag(0p×p, nΛ

wΩ)
]−1

(X,Ξ)T V̂−1Y,

where Λw is defined in the same way as Λ but with λs replaced by λws . Put

λwn = max(λw1 , · · · , λwq ). The following results reveal that θ̂
w

n is asymptoti-

cally more efficient than θ̂n.

Theorem 5. Suppose that assumptions (A1) and (A2) hold. If the smooth-

ing parameters satisfy max(λn, λ
w
n ) = o(1) and E[e41] < ∞, then θ̂

w

n is a
strongly consistent estimator of θ.
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Theorem 6. Suppose that assumptions (A1) and (A2) hold. If the smooth-
ing parameters satisfy max(λn, λ

w
n ) = o(n−1/2) and E[e41] <∞, then

√
n(θ̂

w

n − θ) D−→ N
(
0,Σ−1

2

)
as n→ ∞

where Σ2 = limn→∞ n−1(X,Ξ)TV−1(X,Ξ) provided that the limit exists.

Remark 1.
Since W ≡ V− 1

2 (X,Ξ)
(
(X,Ξ)TV−1(X,Ξ)

)−1
(X,Ξ)TV− 1

2 is an idempo-
tent matrix with rank p+

∑q
s=1(ms + 1 + κs),

Σ−1Σ2Σ
−1 − Σ−1

3

=
{[

lim
n→∞

1

n
(X,Ξ)T (X,Ξ)

]−1

lim
n→∞

1

n
(X,Ξ)TV(X,Ξ)

×
[

lim
n→∞

1

n
(X,Ξ)T (X,Ξ)

]−1 }
− lim
n→∞

1

n
(X,Ξ)TV−1(X,Ξ)

= lim
n→∞

{
n[(X,Ξ)T (X,Ξ)]−1(X,Ξ)TV

1
2 (I − W)V

1
2 (X,Ξ)

× [(X,Ξ)T (X,Ξ)]−1
}

≥ 0.

This implies that θ̂
w

n is asymptotically more efficient than θ̂n in the sense

that θ̂
w

n has a smaller asymptotic covariance matrix.

Theorem 6 shows that the asymptotic covariance matrix admits a sand-
wich formula, which enables one to construct a consistent estimator of Σ2.
In fact, define

Σ̂2 =
1

n
(X,Ξ)T V̂−1(X,Ξ),

then Σ̂2 is a consistent estimator of Σ2.

Theorem 7. Suppose that assumptions (A1) and (A2) hold. If the smooth-

ing parameters satisfy max(λn, λ
w
n ) = o(1) and E(e41) < ∞, then Σ̂2 is a

consistent estimator of Σ2.

Theorems 6 and 7 can be used to make joint inferences for the parametric
component β and spline coefficients. For example if one wants to test
the null hypothesis H0 : αs(u) ≡ 0 for some s ∈ {1, · · · , q}, which is
equivalent to test H0 : δs = 0. More generally, one can test the hypothesis
H0 : Cθ = 0 based on the following corollary, where C is a known f ×
{p+

∑q
s=1(ms + 1 + κs)} matrix with rank f .
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Corollary 1. Suppose that assumptions (A1) and (A2) hold. If the smooth-
ing parameters satisfy max(λn, λ

w
n ) = o(n−1/2) and E[e41] <∞, then under

the null hypothesis H0

n(Cθ̂
w

n )T
(
CT Σ̂−1

2 C
)−1

(Cθ̂
w

n )
D−→ χ2

f ,

where χ2
f is the chi-square distribution with f degrees of freedom.

If one is interested in the parametric component β, then the upper left
p× p block sub-matrix of Σ̂2 can be used to calculate the test statistic. A
joint confidence region for a set of parametric components can similarly be
constructed.

3 Choice of Smoothing Parameters

Selection of the smoothing parameter is essential in nonparametric regres-

sion. The estimators θ̂n and θ̂
w

n depend on the parameters λ = (λ1, . . . , λp)
and λw = (λw1 , . . . , λ

w
p ). To describe such dependence, we denote by

θ̂(λ) = θ̂n and θ̂
w
(λw) = θ̂

w

n . Motivated by Yu and Ruppert (2002),
and Wu and Yu (2004), we propose to select the smoothing parameter λ
by minimizing the generalized cross validation score

GCV(λ) =

[
Y − (X,Ξ)θ̂(λ)

]
T
[
Y − (X,Ξ)θ̂(λ)

]

(1 − n−1tr(S(λ)))2
,

where the numerator is the model averaged squared residual. The trace of
the smoothing matrix S(λ), often called the degree of freedom of the fit (see
Hastie and Tibshirani 1990), can be calculated as

tr(S(λ)) = tr
{

[(X,Ξ)T (X,Ξ) + nΛΩ]
−1

(X,Ξ)T (X,Ξ)
}
.

Similarly, we choose the smoothing parameter λw by minimizing the
generalized cross validation score

GCV(λw) =

[
Y − (X,Ξ)θ̂

w
(λw)

]
T
[
Y − (X,Ξ)θ̂

w
(λw)

]

(1 − n−1tr(Sw(λ)))2
,

where

tr(Sw(λw)) = tr

{[
(X,Ξ)T V̂−1(X,Ξ) + nΛwΩ

]−1

(X,Ξ)T V̂−1(X,Ξ)

}
.

With q penalty parameters λs in the model (1), a full grid search algo-
rithm for λ might be not practical computationally. However, the two-step
GCV algorithm proposed by Ruppert and Carroll (2001) can be used to
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reduce the burden of calculation. We will use the algorithm in simulations.
See the afore-mentioned paper for details.

One of the outstanding features of the penalized splines is that the
selection of the number of knots as well as knot location is no longer crucial,
where the complicated knot selection problem is reduced to the choice of
a single smoothing parameter λs. Some authors, e.g. Ruppert (2002),
observed that the value of the number of knots κs is not too important,
provided it is large enough. As in Wu and Yu (2004), we can simply choose
approximately min(n/40, 40) knots. Our numerical study shows that it
works well. Given a fixed number of knots, we recommend the knots be
placed at equally-spaced sample quantiles of the index u.

4 Simulations

In this section we carry out simulations to demonstrate the finite sample
performances of the proposed estimators. The two estimators, the un-
weighted and weighted, will be compared to illustrate the efficiency of the
weighted PSLS estimation.

The data are generated from the following varying-coefficient partially
linear regression model

yi = x1iβ1 + x2iβ2 + ziα(ui) + εi, i = 1, . . . , n,

where x1i’s are i.i.d. N(0, 1), x2i’s are i.i.d. Bernoulli(0.45), zi’s are i.i.d.
N(0, 1) and ui’s are i.i.d. U(0, 1); the parameters are set as β1 = 1.5 and
β2 = 2, α(u) is taken as 2 sin(2πu); εi’s satisfy

εi = θ1εi−1 + ei, i = 1, · · · , n.

We consider different levels of correlation with θ1 = 0.7, 0.5, 0.3, 0, −0.3,
−0.5 and −0.7 and two kind of sample sizes with n = 200, 400. In each
case the number of simulated realizations is 1, 000 and the values of the
x1i, x2i, zi and ui are generated only once.

For the coefficient functions, we assess the estimator α̂(·) via the Square-
Root of Averaged Squared Errors (RASE):

RASE =

[
n−1

n∑

i=1

{α̂(ui) − α(ui)}2

]1/2

.

For a given sample size, the estimated biases and the mean and standard
deviation of the RASEs are calculated. The results are listed in Tables 1
and 3. Figure 1 gives the averaged penalized splines estimate of the func-
tion α(·) and the corresponding 2.5% and 97.5% quantiles among 1,000
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simulations, and the estimated 95% confidence intervals based on the nor-
mal approximation in Theorems 2 and 6. Tables 1 and 3 and Figure 1
demonstrate that the true coefficient functions and the averages of their
estimators virtually overlay, which indicates that there is little bias. Fur-
ther, the confidence intervals are very close to the quantile bands. This
again confirms similar findings for the variance estimates in Yu and Rup-
pert (2002). Moreover, Tables 1 and 3 and Figure 1 also show that the
weighted PSLS estimator improves the un-weighted PSLS estimator.
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Figure 1 The estimators of the nonparametric component and its confidence intervals
Left panel: n = 400 and θ1 = 0.7. Right panel: n = 400 and θ1 = −0.7. (a) - from
the Monte Carlo simulation and (b) - the asymptotic confidence band. Dotted: the
un-weighted PSLS estimator; dash-dotted: weighted PSLS estimator.

For the parameters (β1, β2), we compare three estimators: the un-

weighted PSLS estimator β̂n, the weighted PSLS estimator β̂wn , and the
ideal weighted PSLS estimator β̃wn with V being known. The estimators
and their standard deviations (Std) were evaluated along with the aver-
age of the estimated standard error (SE) for the estimators. The coverage
probability (CP) of the 95% confidence intervals for β was also calculated
based on the normal approximation. In addition, we calculated the rela-
tive efficiency (RE) of the estimators with respect to the ideal weighted
PSLS estimator in terms of the ratio of mean squared errors. These re-
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Table 1 The estimators of the nonparametric function with n = 200.

α̂(·) α̂w(·) α̃w(·)
RASE Std(RASE) Bias RASE Std(RASE) Bias RASE Std(RASE) Bias

θ1 = 0.7 0.206 0.054 -0.001 0.127 0.032 0.001 0.127 0.032 0.001
θ1 = 0.5 0.202 0.053 0.001 0.160 0.042 0.002 0.160 0.042 0.002
θ1 = 0.3 0.199 0.054 -0.001 0.182 0.049 -0.001 0.182 0.049 -0.001
θ1 = 0 0.221 0.063 -0.004 0.222 0.064 -0.004 0.221 0.063 -0.004

θ1 = −0.3 0.209 0.052 -0.001 0.193 0.048 -0.001 0.192 0.048 -0.001
θ1 = −0.5 0.209 0.056 -0.001 0.168 0.044 -0.001 0.168 0.044 -0.001
θ1 = −0.7 0.190 0.055 -0.005 0.119 0.032 -0.000 0.119 0.032 -0.000

Table 2 The estimators of the parametric components with n = 200.

β1 β2

Mean Std SE CP RE Mean Std SE CP RE

θ1 = 0.7 β̂n 1.498 0.079 0.075 0.935 3.294 1.990 0.192 0.185 0.932 4.716

β̂w
n 1.499 0.043 0.047 0.958 1.005 1.994 0.090 0.091 0.952 1.046

β̃w
n 1.499 0.043 0.046 0.956 1.000 1.994 0.088 0.090 0.956 1.000

θ1 = 0.5 β̂n 1.501 0.064 0.067 0.958 1.596 1.997 0.148 0.149 0.958 1.837

β̂w
n 1.500 0.051 0.055 0.969 1.005 1.999 0.109 0.111 0.957 1.011

β̃w
n 1.500 0.050 0.054 0.966 1.000 1.999 0.109 0.111 0.949 1.000

θ1 = 0.3 β̂n 1.495 0.070 0.068 0.951 1.232 1.996 0.131 0.129 0.943 1.236

β̂w
n 1.496 0.064 0.063 0.950 1.013 1.996 0.119 0.116 0.937 1.025

β̃w
n 1.496 0.063 0.062 0.950 1.000 1.995 0.118 0.116 0.941 1.000

θ1 = 0 β̂n 1.498 0.073 0.074 0.952 1.000 1.992 0.109 0.107 0.944 1.000

β̂w
n 1.498 0.073 0.074 0.949 1.009 1.992 0.109 0.107 0.945 1.004

β̃w
n 1.498 0.073 0.074 0.951 1.000 1.992 0.109 0.107 0.942 1.000

θ1 = −0.3 β̂n 1.500 0.073 0.074 0.954 1.227 1.996 0.100 0.100 0.956 1.185

β̂w
n 1.501 0.066 0.067 0.953 1.007 1.995 0.092 0.093 0.960 1.013

β̃w
n 1.501 0.066 0.067 0.952 1.000 1.995 0.091 0.092 0.957 1.000

θ1 = −0.5 β̂n 1.501 0.068 0.070 0.956 1.640 1.996 0.090 0.088 0.950 1.514

β̂w
n 1.501 0.054 0.056 0.953 1.011 1.997 0.073 0.074 0.953 1.000

β̃w
n 1.501 0.053 0.056 0.956 1.000 1.997 0.073 0.073 0.951 1.000

θ1 = −0.7 β̂n 1.500 0.084 0.081 0.936 2.675 2.000 0.081 0.082 0.949 2.569

β̂w
n 1.501 0.051 0.053 0.953 1.004 2.000 0.050 0.052 0.951 1.003

β̃w
n 1.501 0.051 0.052 0.952 1.000 2.000 0.050 0.051 0.950 1.000

sults are summarized in Tables 2 and 4. Based on Tables 2 and 4 we make
the following observations: (i) all three methods yield unbiased estimates;
(ii) the proposed variance estimators are consistent; (iii) the nominal 95%
confidence intervals based on the proposed standard errors provide good
coverages for the cases studied; (iv) the weighted PSLS estimator and the
ideal weighted estimator perform almost equally well, and both of them
have smaller standard deviations than the un-weighted PSLS estimator.
This improvement becomes greater when the absolute value of the autore-
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Table 3 The estimators of the nonparametric function with n = 400.

α̂(·) α̂w(·) α̃w(·)
RASE Std(RASE) Bias RASE Std(RASE) Bias RASE Std(RASE) Bias

θ1 = 0.7 0.131 0.034 0.002 0.080 0.020 0.002 0.080 0.020 0.002
θ1 = 0.5 0.133 0.034 -0.001 0.106 0.026 -0.001 0.106 0.026 -0.001
θ1 = 0.3 0.138 0.035 -0.004 0.126 0.032 -0.003 0.126 0.032 -0.003
θ1 = 0 0.153 0.040 -0.0000 0.154 0.040 -0.000 0.153 0.040 -0.000

θ1 = −0.3 0.140 0.035 0.002 0.129 0.033 0.002 0.129 0.033 0.002
θ1 = −0.5 0.141 0.037 -0.002 0.111 0.0289 -0.001 0.111 0.029 -0.001
θ1 = −0.7 0.135 0.038 -0.002 0.080 0.0203 -0.002 0.0802 0.020 -0.002

Table 4 The estimators of the parametric components with n = 400.

β1 β2

Mean Std SE CP RE Mean Std SE CP RE

θ1 = 0.7 β̂n 1.4994 0.0480 0.0486 0.9530 2.4530 1.9933 0.1359 0.1337 0.9420 5.1452

β̂w
n 1.501 0.030 0.031 0.956 1.000 1.996 0.060 0.061 0.951 1.016

β̃w
n 1.501 0.030 0.031 0.956 1.000 1.996 0.059 0.061 0.952 1.000

θ1 = 0.5 β̂n 1.500 0.054 0.053 0.939 1.680 1.998 0.098 0.103 0.953 1.929

β̂w
n 1.499 0.041 0.041 0.950 1.002 1.997 0.071 0.073 0.956 1.005

β̃w
n 1.499 0.041 0.041 0.953 1.000 1.997 0.071 0.073 0.958 1.000

θ1 = 0.3 β̂n 1.499 0.052 0.052 0.945 1.162 1.996 0.090 0.088 0.946 1.209

β̂w
n 1.498 0.048 0.047 0.946 1.001 1.997 0.082 0.079 0.942 1.010

β̃w
n 1.498 0.048 0.047 0.947 1.000 1.996 0.082 0.079 0.943 1.000

θ1 = 0 β̂n 1.498 0.052 0.051 0.944 1.000 2.004 0.074 0.073 0.948 1.000

β̂w
n 1.498 0.052 0.051 0.942 0.999 2.003 0.074 0.073 0.944 0.999

β̃w
n 1.498 0.052 0.051 0.944 1.000 2.004 0.074 0.073 0.947 1.000

θ1 = −0.3 β̂n 1.499 0.049 0.051 0.958 1.149 2.003 0.066 0.067 0.953 1.150

β̂w
n 1.498 0.045 0.047 0.954 0.993 2.001 0.061 0.063 0.955 1.002

β̃w
n 1.498 0.046 0.046 0.952 1.000 2.001 0.061 0.062 0.951 1.000

θ1 = −0.5 β̂n 1.502 0.048 0.049 0.946 1.626 1.995 0.065 0.065 0.950 1.681

β̂w
n 1.501 0.038 0.039 0.965 1.002 1.996 0.050 0.052 0.945 1.001

β̃w
n 1.501 0.038 0.039 0.962 1.000 1.996 0.050 0.051 0.945 1.000

θ1 = −0.7 β̂n 1.498 0.049 0.049 0.947 2.900 2.000 0.069 0.068 0.948 2.870

β̂w
n 1.498 0.029 0.031 0.969 1.004 1.999 0.040 0.041 0.956 0.999

β̃w
n 1.498 0.029 0.030 0.968 1.000 1.999 0.040 0.040 0.953 1.000

gressive coefficient increases.
To explore the sensitivity to the selection of λ in estimation of the finite

parameters, we calculated the estimators for different λ’s over a large range.
Table 5 reports the estimated parameters along with some related statistics
under moderate correlation of the error. It is evident that the estimated
values are quite robust against the selection of λ. This supports the conclu-
sion in Theorems 1 and 6 that the estimators of the finite parameters are√
n-consistent for a large range of the smoothing parameters λn and λwn .
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Table 5 The estimators of the parametric components with n = 400 and different λ.

β1 β2

Mean Std SE CP RE Mean Std SE CP RE

θ1 = 0.5 λ = n−0.5 β̂n 1.504 0.046 0.049 0.950 1.685 2.018 0.103 0.104 0.944 2.009

β̂w
n 1.499 0.036 0.039 0.973 0.998 2.015 0.073 0.076 0.951 1.035

β̃w
n 1.499 0.036 0.038 0.969 1.000 2.015 0.072 0.076 0.951 1.000

λ = n−0.8 β̂n 1.493 0.048 0.048 0.947 1.482 2.012 0.103 0.103 0.945 2.000

β̂w
n 1.492 0.039 0.039 0.944 1.000 2.013 0.073 0.073 0.948 1.011

β̃w
n 1.492 0.039 0.039 0.944 1.000 2.013 0.072 0.073 0.951 1.000

λ = n−1.0 β̂n 1.502 0.053 0.051 0.941 1.550 2.003 0.098 0.101 0.956 1.961

β̂w
n 1.505 0.042 0.041 0.946 1.001 2.005 0.070 0.072 0.955 1.004

β̃w
n 1.505 0.042 0.041 0.940 1.000 2.005 0.069 0.072 0.959 1.000

λ = n−1.2 β̂n 1.499 0.055 0.054 0.946 1.676 1.999 0.104 0.104 0.946 2.002

β̂w
n 1.501 0.043 0.043 0.953 1.005 1.998 0.073 0.073 0.951 1.007

β̃w
n 1.501 0.043 0.043 0.953 1.000 1.998 0.073 0.073 0.948 1.000

θ1 = −0.5 λ = n−0.5 β̂n 1.507 0.049 0.050 0.950 1.635 2.008 0.063 0.063 0.955 1.407

β̂w
n 1.504 0.038 0.042 0.966 1.006 2.015 0.051 0.054 0.953 1.002

β̃w
n 1.504 0.038 0.041 0.960 1.000 2.015 0.051 0.052 0.949 1.000

λ = n−0.8 β̂n 1.502 0.047 0.047 0.951 1.632 1.991 0.067 0.066 0.944 1.628

β̂w
n 1.504 0.037 0.037 0.946 1.002 1.994 0.052 0.052 0.944 0.998

β̃w
n 1.504 0.037 0.037 0.947 1.000 1.994 0.052 0.052 0.943 1.000

λ = n−1.0 β̂n 1.495 0.049 0.048 0.938 1.646 2.001 0.060 0.061 0.949 1.573

β̂w
n 1.496 0.038 0.038 0.950 1.000 2.003 0.048 0.050 0.963 0.999

β̃w
n 1.496 0.038 0.038 0.946 1.000 2.003 0.048 0.049 0.963 1.000

λ = n−1.2 β̂n 1.501 0.048 0.047 0.948 1.519 1.995 0.062 0.062 0.942 1.686

β̂w
n 1.502 0.039 0.038 0.942 1.002 1.995 0.048 0.049 0.954 1.003

β̃w
n 1.502 0.038 0.038 0.943 1.000 1.995 0.047 0.049 0.954 1.000

5 Real Data Analysis

We now illustrate the application of the proposed method in stock market.
In finance and security analysis, the risk of an individual stock is often
measured by its (standardized) regression slope against a market index. If
this slope is greater than 1, the change in the stock price is expected to be
more than that in the index and thus the stock is considered to be more
risky. The data set we considered consists of the daily closing prices of the
common stock price of Microsoft during the first ten months of year 2000
and the Standard & Poor’s (S&P) 100 index for the same time period. Cui,
Zhu and He (2002) employed the following purely parametric regression to
model the relationship between the common stock price and the S&P100
index:

yi = β0I(i ≤ 64) + β1I(i > 64) + xiβ3 + εi, i = 1, · · · , 206, (6)
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where yi is the common stock price at i-th day divided by the price on the
first day and xi denotes the change in the S&P100 index.

Applying the least squares technique, we calculated the parameter es-
timators as β̄n0 = −0.2934, β̄n1 = −0.6160, β̄n2 = 1.2775, ρ̄n = 0.8168
and σ̄2

n = 0.0030. The corresponding error variances were calculated
as 0.0709, 0.0723 and 0.0734, respectively. Moreover, by fitting the esti-
mated error structure, we obtained the weighted least squares estimator
β̄wn0 = −0.0488, β̄wn1 = −0.2667 and β̄wn3 = 0.9600. The corresponding error
variances were computed to be 0.0017, 0.0016 and 0.0017, respectively.

To test if the regression slope changes over time, we fit the dataset using
the semiparametric regression model:

yi = β0I(i ≤ 64) + β1I(i > 64) + xiα(ui) + εi, i = 1, · · · , 206. (7)
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Figure 2 The residual plots. Left panel: dash-dotted - the residuals from model (6),
solid -the residuals from model (7); right panel: the residuals from the AR(1) process.

Applying the PSLS estimation technique, we got the un-weighted PSLS
estimator β̂n0 = −0.3049, β̂n1 = −0.4863. Correspondingly, the autore-
gressive coefficient was calculated as ρ̂n = 0.7410 and the error variance
σ̂2
n = 0.0013. The error variances of β̂n0 and β̂n1 were estimated as 0.0322

and 0.0307, respectively. Moreover, the weighted PSLS estimators were
calculated as β̂wn0 = −0.2429, β̂wn1 = −0.3034, The corresponding error vari-

ances of β̂wn0 and β̂wn1 were computed to be 0.0144 and 0.0139, respectively.
Figure 2 shows the residuals of the models (6) and (7). Obviously, from

Figure 2, we can see that the model (7) has smaller fitted errors. Figure
2 also shows the residuals after fitting the AR(1) process to {εi} for the
model (7). There is no significant difference between the residuals and the
white noise, which validates the specification of the AR(1) model in this
case. Figure 3 shows the estimators of α(·) based on the unweighted PSLS
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Figure 3 The estimated curves α̂(·) with 95% confidence intervals. Left panel: the
un-weighted PSLS estimator; right panel: the weighted PSLS estimator.

and the weighted PSLS methods and the corresponding confidence regions.
Obviously, the regression slope is decreasing over the time. This implies
the risk of this stock is decreasing.

6 Concluding Remarks

The varying-coefficient partially linear regression model provides a useful
tool for statistical modeling. In this paper we have theoretically and em-
pirically studied the statistical inference for the model when the errors are
serially correlated and modeled as an AR process. We proposed a weighted
PSLS estimator. The asymptotic properties were investigated under the
assumption that the number of knots is fixed, though potentially large. We
showed that the proposed estimators of all parameters are

√
n-consistent,

and asymptotically normally distributed. The efficiency of the weighted
PSLS estimator was demonstrated in comparison to several other estima-
tors. Simultaneous inference procedures were proposed for both compo-
nents of the model based on the sandwich formula of the joint covariance
matrix in Theorem 6. The methodology was applied to daily stock price
data of Microsoft.

The success of the weighted PSLS estimator depends on the specifi-
cation of the order d of autoregressive model. A mis-specification of the
parameter d may generally deteriorate the efficiency of the weighted PSLS
estimator, although the resulting estimator is consistent. Fortunately, the
AIC criterion for model selection can be employed to rapidly identify the
value of d, based on the residuals from the model (1).
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Interesting topics for further studies include extending our results to
ARMA error structures, and to nonlinear time series error structures such
as the ARCH and GARCH models.

7 Appendix. Proof of the Main Results

To facilitate the proofs of the theorems in the previous sections, we first
present the following lemma.

Lemma 1. For the autoregressive process {εi} defined in (2), let {ci}ni=1

be a sequence of real numbers and let u(·) be a function defined on integers
such that

lim
n→∞

1

n

n−j∑

i=1

cici+|j| = u(j), j = 0,±1,±2, . . . .

Assume that 0 < v =
∑∞
j=−∞ u(j)γ(j) <∞ with γ(j) = E(ε1ε1+j). Then

(
n∑

i=1

c2i

)−1/2 n∑

i=1

ciεj
D−→ N

(
0, [u(0)]−1v

)
as n→ ∞.

Proof. It is straightforward to prove this result by applying arguments
contained in the proof of Theorem 6.3.4 in Fuller (1976) and Proposition
2.2 of Huber (1973)

Proof of Theorem 1. By the definition of θ̂n, we have

θ̂n = [(X,Ξ)T (X,Ξ) + blockdiag(0p×p, nΛΩ)]
−1

(X,Ξ)TY

= θ + [(X,Ξ)T (X,Ξ) + blockdiag(0p×p, nΛΩ)]
−1

(X,Ξ)T ε.

Note that (A + aB)−1 = A−1 − aA−1BA−1 +O(a2). It follows that
[
n−1(X,Ξ)T (X,Ξ) + blockdiag(0p×p,ΛΩ)

]−1
= lim

n→∞
n−1(X,Ξ)T (X,Ξ)

+o(1).

Moreover, a simple algebra shows that the sth element of n−1(X,Ξ)T ε is
of order o(1) almost surely. The result of the theorem follows.
Proof of Theorem 2. Using the same argument as in Theorem 1, we have

√
n(θ̂n − θ) =

√
n [(X,Ξ)T (X,Ξ)]

−1
(X,Ξ)T ε+ op(1).

Applying Lemma 1, for any nonzero p-vector ζ we have

1√
n
ζT (X,Ξ)T ε

D−→ N(0, ζTΣ1ζ) as n→ ∞,
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where Σ1 is defined in Theorem 2. By Slutsky theorem the proof is com-
plete.
Proof of Theorem 3. It suffices to show that

γ̂(h) − γ(h) =
1

n

n−h∑

i=1

εiεi+h − γ(h) + o(1) a.s.,

where h is a positive integer. It can be rewritten as

γ̂(h) − γ(h) =
1

n

n−h∑

i=1

(ε̂i − εi)(ε̂i+h − εi+h) +
1

n

n−h∑

i=1

(ε̂i − εi)εi+h

+
1

n

n−h∑

i=1

(ε̂i+h − εi+h)εi +
1

n

n−h∑

i=1

(εiεi+h − γ(h)).

By the definition of ε̂i and Theorem 1, it can be shown that

1

n

n−h∑

i=1

(ε̂i − εi)εi+h = o(1) a.s., and

1

n

n−h∑

i=1

(ε̂i − εi)(ε̂i+h − εi+h) = o(1), a.s.

(8)

Thus, the theorem follows.
Proof of Theorem 4. According to Theorem 8.1.1 of Rockwell and Davis
(1989) and the proof of Theorem 3, it is easy to complete the proof of
Theorem 4.
Proof of Theorem 5. Let

θ̃
w

n =
[
(X,Ξ)TV−1(X,Ξ) + blockdiag(0p×p, nΛ

wΩ)
]−1

(X,Ξ)TV−1Y

where

V−1 = σ−2
e (I + ψn1J + · · · + ψndJ

d)T (I + ψn1J + · · · + ψndJ
d)

with J defined in Section 2.3. Using the same argument as in Theorem 1,
one can show that θ̃

w

n is a strongly consistent estimator of θ.
Note that (A+aB)−1 = A−1−aA−1BA−1 +O(a2). It suffices to show

1

n

(
(X,Ξ)T V̂−1(X,Ξ) − (X,Ξ)TV−1(X,Ξ)

)
= o(1) a.s., (9)

1

n

(
(X,Ξ)T V̂−1ε− (X,Ξ)TV−1ε

)
= o(1) a.s.. (10)

Since

max
1≤i≤n

n∑

j=1

|γ(i− j)| ≤ 2

∞∑

l=0

|γ(l)| ≤ 2σ2
e

( ∞∑

k=0

|θk|
)2

= O(1),
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where θ(ζ) = 1+θ1ζ+ · · · = 1/ψ(ζ) with ψ(z) = 1+ψ1ζ+ · · ·+ψdζ
d, there

exists a constant c1 such that λmax(V) < c1. In addition, since

V−1 = σ−2(I + ψ1J + · · · + ψdJ
d)T (I + ψ1J + · · · + ψdJ

d)

there exists a constant c2 such that λmin(V) > c2 > 0. Moreover, by the

definition of V̂ and the strong consistency of ψi, when n is large enough,

0 < c2 < λmin(V̂) ≤ λmax(V̂) < c1 a.s..

This together with Assumption 1 leads to (9) and (10).
Proof of Theorem 6. By the proof of Theorem 5, we have

√
n(θ̂

w

n − θ) =
√
n(θ̃

w

n − θ) + op(1).

In addition, using the same argument as in the proof of Theorem 2, we
obtain

√
n(θ̂

w

n − θ) =
√
n
[
(X,Ξ)TV−1(X,Ξ)

]−1
(X,Ξ)TV−1ε+ op(1).

Applying Lemma 1, for any nonzero p-vector ζ we have

1√
n
ζT (X,Ξ)TV−1ε

D−→ N(0, ζTΣ2ζ) as n→ ∞

where Σ2 is defined in Theorem 6. By Slutsky theorem, the proof is com-
plete.
Proof of Theorem 7. It follows from Theorem 3.
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This chapter develops a flexible dimension-reduction model that incor-
porates both discrete and continuous covariates. Under this model, some
covariates, Z, are related to the response variable, Y , through a linear
relationship, while the remaining covariates, X , are related to Y through
k indices which depend only on X ′B and some unknown function g of
X ′B. To avoid the curse of dimensionality, k should be much smaller
than p. This is often realistic as the key features of a high dimensional
variable can often be extracted through a low-dimensional subspace. We
develop a simple approach that separates the dimension reduction stage
to estimate B from the remaining model components when the two co-
variates Z and X are independent. For instance, one can apply any
suitable dimension reduction approach, such as the average derivative
method, projection pursuit regression or sliced inverse regression, to get
an initial estimator for B which is consistent at the

√
n rate, and then

estimate the regression coefficient of Z and the link function g through
a profile approach such as partial regression. All three estimates can be
refined by iterating the procedure once. Such an approach is computa-
tionally simple and yields efficient estimates for both parameters at the√

n rate. We provide both theoretical proofs and empirical evidence.

Keywords: Partial regression; Single-index; Nonparametric smooth-
ing; Dimension reduction; Projection pursuit regression; Sliced inverse
regression.
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1 Introduction

Kjell Doksum has made seminal contributions to dimension reduction
methods. This includes work on transformation models [Doksum (1987),
Dabrowska and Doksum (1988a), Dabrowska and Doksum (1988b), and
Doksum and Gasko (1990)]. Another line of related research is the aver-
age derivative estimator (ADE) method [Doksum and Samarov (1995) and
Chaudhuri, and Doksum and Samarov (1997)], where the average deriva-
tive approach is shown to be a promising dimension reduction tool. All
these papers employ semiparametric models to accomplish the dimension
reduction goal and to explore inference for the parametric components.

Our objective here is to explore the dimension reduction topic through
a particular semiparametric model. We show that in a simple and special
situation, efficiency for the parametric estimators can easily be achieved by
various dimension reduction tools. The model is motivated by the fact that
many dimension-reduction methods, such as projection pursuit regression
(PPR), average derivative estimation method (ADE), and sliced inverse
regression (SIR), assume implicitly that the predictors are continuous vari-
ables and will not work well when some of the predictors are discrete. One
solution to this problem is the use of a semiparametric model where it is
assumed that the response variable, Y , has a parametric relationship with
some q-dimensional covariates Z (some of which may be discrete), but a
nonparametric relationship with other p-dimensional covariates X. If X is
of high dimension, additional dimension reduction is needed and the most
common approach is to assume that all information contained in X about
Y is carried through a few, say k, indices. More specifically, we assume:

Y = Z ′θ + g(X ′B) + e. (1)

The function g (we call it the link function) and the p×k matrix B describe
the dimension-reduction model through which Y and X are related, θ is
the vector of parameters describing the linear relationship between Y and
Z, and e is an error term. Model (1) is a semi-linear model with k indices
and will be abbreviated as SLIM (semi-linear indices model) hereafter.
Dimension reduction is accomplished because k is usually much smaller
than the dimension p of X. In addition, the other covariate vector Z is
related to Y through a linear relation. When the link function g is unknown,
the matrix B is not identifiable but the linear subspace spanned by it is
identifiable. We thus assume hereafter that the column vectors of B are all
of unit length with nonnegative first components.

The special case p = 1 has vast appeal to econometricians and is called
the “partial linear model” [Engle, Granger, Rice and Weiss (1986), Heck-
man (1986), Rice (1986), Denby (1986), Chen(1988), Speckman (1988),
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Severini and Staniswalis (1994), Bhattacharya and Zhao (1997), Hamilton
and Troung (1997), Mammen and van de Geer (1997) among others]. Model
(1) also includes another popular model when q = 0, k = 1, but p might be
larger than 1, in which case Y and X are related through a single dimen-
sion reduction direction called the index and the resulting model is called
the “single index model” in the economics literature [Stoker (1989), Härdle,
Hall and Ichimura (1993), Chiou and Müller (1998, 1999), and Stute and
Zhu (2005)]. In contrast to partial linear models and single index models,
where hundreds of papers appeared in the literature, the results are sparse
for the SLIM model in (1). Carroll, Fan, Gijbels, and Wand (1997) were
the first to explore this topic, focusing on the case k = 1 with a single
index. Their methods sometimes encounter numerical difficulties and this
was noticed independently by Chong (1999) and Yu and Ruppert (2002).
Yu and Ruppert (2002) circumvented the problem by assuming that (in
addition to k = 1) the link function g lies in a known, finite-dimensional
spline space, yielding a flexible parametric model. The approach in Chong
(1999) is different and completely nonparametric, employing a local poly-
nomial smoother to estimate g. Moreover, the number of indices k is not
restricted to be 1 or even known, and is being estimated along the way.

We consider in this paper that a random sample of n observations are
collected, and use y = (y1, . . . , yn)

′ to denote the vector of observed re-
sponses and

Z =



z11 . . . z1q
...

...
zn1 . . . znq


 and X =



x11 . . . x1p

...
...

xn1 . . . xnp




to represent the observed values of Z and X, with the first subscript repre-
senting the observation number and the second subscript representing the
position in the array of variables. Restating equation (1) to reflect the
observations we obtain,

y = Zθ + g(XB) + ǫ,

where ǫ = (e1, . . . , en)
′ is the n× 1 vector of observed errors.

Our goal is to show that simple and non-iterative algorithms are avail-
able when the two covariates Z and X are independent of each other, and
the procedures yield efficient estimators for parameters θ and β. The inde-
pendence assumption could be fulfilled, for instance, in clinical trials when
Z represents the type of treatments and patients are assigned to treatments
randomly. Other examples of independent Z and X are plentiful such as
in social studies where participants are assigned to different groups ran-
domly and Z represents the group indicators. Specifically in this paper,
we show that our procedures provide adaptive estimates for B, in the sense
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that the asymptotic variance of the estimator for B is equal to that of an
estimator that assumes a known link function. We also show that θ can
be estimated as efficiently as when g and B are both known. Finally, we
illustrate our procedures through simulation studies and show that they
compare favorably with the procedure in Carroll et al. (1997). We note
here that the algorithms in Section 2 were first reported in the Ph.D. thesis
of Chong (1999), and have not been published previously. Moreover, the
asymptotic results reported here are different from and more general than
those obtained in Chong (1999). For instance, Theorem 2 in Section 2 is
for a different and better estimator than the one in Theorem 2 of Chong
(1999), and Theorem 3 in Section 2 is completely new.

2 Main Results

Hereafter, we assume that X and Z are independent. Consequently, we
may consider Z ′θ of equation (1) to be part of the error term and use only
the values of Y and X to obtain an estimate of B. The theorem below
shows that we can obtain a

√
n-consistent estimate for B when we apply

the sliced inverse regression (SIR) method in Li (1991) to Y and X, if the
following linear condition is satisfied:

for any b ∈ ℜp, E(X ′b|X ′B) is linear in X ′β1, . . . ,X
′βk. (2)

Theorem 1. Under condition (2), E(X|Y ) − E(X) ∝ ΣxBa
∗ for some

a∗ ∈ ℜk, where Σx is the covariance matrix of X, and “∝” stands for
“proportional to”.

The proof is similar to the one in Li (1991) and follows from E(X|Y ) =
E(E(X |X ′B,Z ′θ, e)|Y ) = E(E(X|X ′B)|Y ), where the last equality fol-
lows from the fact that X is independent of Z and e. It then follows
that E(X |Y ) − E(X) = E(ΣxBa

∗|Y ) for some a∗ ∈ ℜk. Details of the
proof will not be presented here as they can be found in Section 5.3 of
Chong (1999). We have thus shown that SIR, proposed in Li (1991) and
reviewed in Chen and Li (1998), can be employed to estimate B. Variants
of SIR, such as SIR II [Li (1991)], SAVE [Cook and Weisberg (1991)], PHD
[Li (1992)] etc., are also feasible in case SIR fails. All these SIR based
procedures are simple as they do not involve smoothing and separate the
dimension reduction stage from the model fitting stage. Li (1991) and Zhu
and Ng (1995) states that SIR yields a

√
n-consistent estimate for B, when

Z is not present in model. Zhu and Fang (1996) used kernel estimation,
where the

√
n-consistency also holds. We show in Theorem 3 that these

results continue to hold when Z is independent of X as in our setting.
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By the same token, the average derivative method (ADE) can also be
applied under certain smoothness conditions as described in Härdle and
Stoker (1989) and Samarov (1993). The resulting estimate would be

√
n

consistent like SIR and it has the same advantage as SIR (or its variants) in
that it separates the dimension reduction stage from the model fitting step.
A relevant method, the Outer Product of Gradients estimation proposed by
Xia, Tong, Li and Zhu (2002) can also be applied. While SIR relies on the
linear conditional mean design condition (2), it is simpler to implement than
ADE, as the latter involves the estimation of the derivative of g. These two
different approaches compliment each other as dimension reduction tools.

If the additivity assumption is satisfied in the projection pursuit regres-
sion (PPR) model in Friedman and Stuetzle (1981), one can also employ
the PPR-estimators for B, which were shown to be

√
n-consistent in Hall

(1989). Hristache, Juditsky and Spokoiny (2001) provided a new class of√
n-consistent estimators. These projection pursuit type estimators typi-

cally yield more efficient initial estimators for B than SIR or ADE since
PPR utilizes the additive model structure and attempts to estimate B it-
eratively while estimating the unknown link function. However, ADE and
SIR (or its variants) have the advantage that they rely on no model as-
sumption, separate the dimension reduction stage from model fitting, and
are thus computationally simpler and more robust than the PPR approach.

2.1 Estimation of θ

There are two ways to estimate θ:

(1) Procedures starting with dimension reduction: Start with a dimension-

reduction procedure to obtain an estimate B̂ for B and then follow the
steps of the partially linear model, using X ′B̂ instead of the unknown
X ′B to estimate θ.

(2) Procedures starting with initial estimation of the linear component : Be-
cause Z and X are independent, linear regression of Y on Z will yield
a consistent estimate of θ. The linear regression procedure is compu-
tationally simple, so we may start with this initial estimate of θ and
use it to improve the dimension-reduction step above.

When using the partial linear model to estimate θ, there are two com-
mon approaches based on either partial splines, as in Wahba (1984), or the
partial regression proposed independently by Denby (1986) and Speckman
(1986). The partial regression method is a profile approach so it is also
referred to as the profile estimator in the literature. Simulation results in
Chapter 6 of Chong (1999) suggest that the two procedures provide numer-
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ically equivalent estimators under the independence assumption, but the
partial spline procedure might be biased when the independence assump-
tion is violated as demonstrated in Rice (1986). There is thus no advantage
to employ the partial spline procedure in our setting and we recommend the
use of the partial regression estimator, even though partial spline estima-
tors would be fine when Z and X are independent as reported in Heckman
(1986).

The partial regression stage involves a smoothing method to estimate
the unknown link function g. The choice of smoother can be subjective; we
employed the local polynomial smoother due to its appealing properties as
reported in Fan (1993). This results in a linear smoother in the sense that
we may construct a smoothing matrix S such that Su represents the result
of smoothing a vector of generic observations u using the linear smoother S.
Details are given in Appendix B. Below we use the partial regression pro-
cedure to estimate θ and provide the algorithms for each of the approaches
above.

Algorithm for Procedure 1 which begins with dimension reduction:

(i) Apply a dimension-reduction procedure to X and y to obtain an esti-

mate B̂ of B.
(ii) Use XB̂ to obtain a smoothing matrix S.

(iii) Take θ̂ = (Z′(I − S)′(I − S)Z)−1Z′(I − S)′(I − S)y to be the estimate
for θ.

Algorithm for Procedure 2 which starts with an initial estimator of the linear
component :

(i) Apply least squares to Z and y to obtain an initial estimate θ̂0 of θ.
(ii) Apply a dimension-reduction procedure to X and y − Z′θ̂0 to obtain

an estimate B̂ of B.
(iii) Use XB̂ to obtain a smoothing matrix S.

(iv) Take θ̂1 = (Z′(I − S)′(I − S)Z)−1Z′(I − S)′(I − S)y to be the revised
estimate for θ.

Simulation results in Section 3 suggest that Procedure 2 which uses the
residuals to perform the dimension reduction step is slightly more efficient
than Procedure 1. We thus present the asymptotic distribution of θ̂1 based
on Procedure 2 only. Note that, following Theorem 1 or the discussions
afterwards at the end of Section 1, many initial

√
n-consistent estimators

of B exist. We thus make such an assumption in the following theorem.
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Let Z= (Z1, · · · , Zq)′ be centered at 0.

Theorem 2. Under conditions (1)–(11), listed in Appendix A, and ‖B̂ −
B‖ = OP (n−1/2),

√
n(θ̂1 − θ) ⇒ N(0,E−1σ2)

for the partial regression estimate in Procedure 2 using residuals, where

E =




E(Z2
1 ) · · · E(Z1Zq)

...
...

E(Z1Zq) · · · E(Z2
q )


 ,

and E(Zi) = 0 for all i.

In other words, when we start with a
√
n-consistent estimate for B, the

resulting θ̂1 is consistent for θ with the same efficiency as an estimate that
we would obtain if we knew B and g. This illustrates the adaptiveness of
θ̂1; no iteration is required and many

√
n-consistent estimators for B exist.

2.2 Estimation of B and g

In addition to θ, we may also be interested in estimating B and g. Although
both procedures in Section 2.1 involve the estimation of B, we will generally
want a more refined estimate. For instance, after obtaining θ̂1, we can
obtain a revised estimate B̂2 for B, and then an estimate for g by smoothing
Y −Z ′θ̂1 on X ′B̂2.

(i) Apply a dimension-reduction procedure to X and y −Zθ̂1 to obtain a

revised estimate B̂2 of B.
(ii) Use XB̂2 to obtain a smoothing matrix S.

(iii) Let ĝ(XB̂2) = S(y − Zθ̂1) be the estimate for g.

Next, we present the asymptotic results for the parameters defining the
indices. Theorem 3 below demonstrates optimality in the sense that the
asymptotic variance of B̂2 is equal to the nonlinear least squares estimator
that is obtained when the link function g(·) is known and when the linear
part Z ′θ is absent in the model. That is, the impact of nonparametric
estimation of g(·) and the linear part Z ′θ is negligible asymptotically. Let

W =

∫ {
X − E(X |X ′B)

}{
X − E(X |X ′B)

}′
(g′(X ′B))2fX (X)d X,

and W− denotes its generalized inverse, where fX is the density function
of the p-dimensional vector, X .



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

204 Y. Chong, J. Wang & L. Zhu

Theorem 3. Under conditions (1) – (11) stated in Appendix A, and in
addition for h = O(n−1/(4+k)) and any unit-vector u 6= B, we have

n1/2u′(B̂− B) =⇒ N(0, u′σ2(W−)u).

2.3 Iterated estimate of θ

While the estimator for θ in Section 2.1 is already asymptotically efficient,
it might be improved in the finite sample case by iterating the algorithm.
For instance, following the steps of the previous section and after obtaining
estimates for B and g, one can use partial regression to obtain the revised
estimate for θ.

• Let the partial regression estimate θ̂2 = (Z′(I − S)′(I − S)Z)−1Z′(I −
S)′(I − S)y be the revised estimate for θ.

The simulation studies in Section 3 indicate some improvement by adding
one iteration.

3 Simulations

In this section we check the numerical performance of the procedures in Sec-
tion 2 and compare it to the GPLSIM algorithm of Carroll, Fan, Gijbels,
and Wand (1997). We consider two different models: a linear model,

Y = 2 +X ′B +Zθ + 0.3 e, (3)

and a quadratic model

Y = (2 +X ′B)2 +Zθ + 0.3 e. (4)

In each model, θ is a scalar with value 1. The variable Z will be a single
binary variable with values 0 and 1, and Z = 1 with probability 1/2. The
e’s are standard normal, and B is the vector (0.75, 0.5,−0.25,−0.25, 0.25)′.
The X’s are standard multivariate normal, with mean (0, 0, 0, 0, 0)′ and co-
variance I5. Thus, in these simulations the assumption on the distribution
of X is satisfied for both projection pursuit regression and sliced inverse
regression, and we focus on these two dimension reduction methods. The
average derivative method can also be used at additional computational
cost. Although the simulations shown here use X with independent com-
ponents, we also ran simulations that have a correlation structure on X.
The results for those simulations were not much different from those shown
here.
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We ran N = 100 simulations each on the linear model and the quadratic
model, and the sample size is n = 100 in both cases. The link function is
estimated with a local linear smoother as defined in Appendix B, and the
bandwidths are chosen by a generalized cross-validation method. Here the
generalized cross-validation procedure may be preferred due to its computa-
tional advantage over the least squares cross validation method. Simulation
results not reported here, which can be found in Chapter 6 of Chong (1999),
show that the two-cross validation methods yielded very similar results. We
thus only report the findings based on generalized cross-validation [Craven
and Wahba (1979)], defined in equation (17) of Appendix B.

The performance of the two types of partial regression estimators, with
and without an initial estimate of θ, were compared using two types of
dimensions reduction tools, the PPR and SIR with 2, 5, 20, and 20 elements
per slice. The results of estimating θ for the linear and quadratic model
are reported in Table 1 and Table 2 respectively.

We find that, as expected, PPR generally outperforms SIR, but only
slightly. With only one iteration, the estimators in section 2.3 are nearly as
efficient as the one with B known regardless of which dimension reduction
method has been employed. Iteration helps the estimator without an initial
estimate of θ much more than the one with an initial estimate. This sug-
gests also that further iteration will not improve the estimation of θ much .
We also compared the performance of the dimension reduction estimators
in Section 2.2, but due to space limitation, these results are not reported
here. Details of additional simulations can be found in Chong (1999).

In both simulations we tried to compare our approach with the
GPLSIM algorithm in Carroll et. al (1997) but were unable to obtain
any meaningful results for their procedure due to computational difficul-
ties, triggered possibly by the relatively high dimension of X. The min-
imization in the GPLSIM is now for a five-dimensional vector B and a
scalar θ, whereas it is for a three-dimensional B and a scalar θ in the sim-
ulation model (5) in that paper. We thus instead adopt the simulation
model presented in that article. The simulation has n = 200 with N = 100
simulations based on the model

Yi = sin(π
BXi −A

B −A
) + θZi + ei, (5)

with A =
√

3/2 − 1.645/
√

12, B =
√

3/2 + 1.645/
√

12, X i distributed as a
uniform variable on the cube [0, 1]3, Zi = 0 for i odd, Zi = 1 for i even,
and ei ∼ N(0, σ2 = 0.01). The parameters are B = (1/

√
3, 1/

√
3, 1/

√
3)′

and θ = 0.3.
Since the design is nearly symmetric, we do not use the SIR procedure

here (Li (1991)) and only PPR was employed to estimate B. Again, when
implementing the program for GPLSIM we encountered difficulties. The
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Table 1 Estimates of θ in the linear model (3) with (two columns in the
right panel) or without (two columns in the central panel) initial estimates for
θ. The fourth and sixth columns are the resulting estimates for θ after one
iteration of the estimates on the third and fifth columns respectively. The
subscript for SIR in the first column stands for the number of slices used.

no initial θ̂ iteration with with initial θ̂ iteration with

no initial θ̂ initial θ̂

PPR Bias -0.0411 -0.0029 -0.0013 -0.0007
SD 0.0623 0.0581 0.0603 0.0592

MSE 0.00557 0.00338 0.00363 0.0035

SIR2 Bias -0.0459 -0.005 -0.0058 -0.0024
SD 0.0708 0.0606 0.0618 0.061

MSE 0.00712 0.0037 0.00385 0.00373

SIR5 Bias -0.0447 -0.0047 -0.0008 -0.0007

SD 0.0621 0.0606 0.064 0.0623
MSE 0.00585 0.00369 0.0041 0.00388

SIR10 Bias -0.0423 -0.0034 -0.0023 -0.0003

SD 0.0655 0.06 0.0624 0.0603
MSE 0.00608 0.00361 0.0039 0.00364

SIR20 Bias -0.0441 -0.0032 0.0006 -0.001
SD 0.065 0.0612 0.065 0.0599

MSE 0.00617 0.00376 0.00423 0.00358

B known Bias 0.0025 0.0025
SD 0.0564 0.0564

MSE 0.00318 0.00318

initial estimates for both B and θ seem crucial, so we decided to use our
estimates of B and θ in Sections 2.1 and 2.2 as the initial estimates for the
GPLSIM procedure, and then iterate our procedure once to make both
procedures comparable as GPLSIM utilizes the same initial estimates. We
used only procedure 1 in this simulation since the results in Tables 1 and 2
show no benefit using the initial estimator for θ in procedure 2 if we iterate
once for both estimates of B and θ using our procedures. The results for
the three procedures, (a) our estimator in Section 2.1, (b) GPLSIM using
our estimator as the initial estimator in its iterated algorithm, and (c) one
iteration of our procedure as described in Section 2.3, are reported in the
last three rows of Table 3. For comparison with the optimal procedure, we
also include in the first row the nonlinear least squares (NLS) procedure
available in S-PLUS, which use the true link function g. Relative efficiencies
with respect to this optimal procedure are reported for all three procedures
in the last column of Table 3. To save computing time, we used the same
bandwidth (based on generalized cross-validation) for the iteration as for
the first partial regression step. The GPLSIM procedure uses a plug-
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in method for estimating the bandwidth. The results in Table 3 suggest
that the iterated PPR estimators outperform those from GPLSIM slightly.
Note that both approaches utilize the PPR estimators in the second row as
initial estimators. Our procedures are computationally much more stable
and simpler than GPLSIM.

Table 2 Estimates of θ as in Table except that the quadratic model (4) is used.

no initial θ̂ iteration with with initial θ̂ iteration with

no initial θ̂ initial θ̂

PPR Bias -0.0466 -0.0043 -0.005 -0.0009
SD 0.0625 0.0586 0.0786 0.059

MSE 0.00608 0.00345 0.0062 0.00348

SIR2 Bias -0.0385 -0.0002 -0.002 0.0043
SD 0.0915 0.0767 0.1011 0.077

MSE 0.00985 0.00588 0.0102 0.00595

SIR5 Bias -0.0391 -0.004 -0.0017 -0.0002
SD 0.0731 0.0731 0.0974 0.0707

MSE 0.00688 0.00536 0.00949 0.005

SIR10 Bias -0.0425 -0.0022 -0.0049 0.0001
SD 0.086 0.0815 0.1021 0.0808

MSE 0.0092 0.00665 0.0105 0.00653

SIR20 Bias -0.04 -0.0068 -0.0062 -0.0078
SD 0.0853 0.0887 0.0993 0.0885

MSE 0.00887 0.00791 0.0099 0.00789

B known Bias 0.0006 0.0006
SD 0.0571 0.0571

MSE 0.00326 0.00326

4 Conclusions

We have demonstrated that when X and Z are independent, the estima-
tion of the dimension-reduction direction B is straightforward and much
simpler algorithms than those in the literature are available. Consequently,
the problem to estimate the linear parameter, θ, is equivalent to the corre-
sponding problem in the partially linear model, in the sense that the same
efficiency can be attained as in the partial linear model which assumes a
known B. In addition, we show that the indices, B, in the semiparametric
index components can also be estimated optimally. The theoretical results
presented in Theorems 2 and 3 here improve upon those in Carroll et. al
(1977), where the asymptotic distributions of both estimates for B and
θ were derived under the additional stringent assumption that those es-
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timators are already known to be
√
n-consistent. We show that such an

assumption can be dispensed with when X and Z are independent.

Table 3 Comparison of our procedures with GPLSIM using the model in
Carroll et. al (1997), where the second row corresponding to NLS gives the
results of the nonlinear least square estimates when the link function g is
known. The third row marked by PPR corresponds to the results from our
procedure 1 in section 2.1 when PPR is used to estimate B. This estimate
is also used as the initial estimator for GLPSIM (reported in the fourth
row) and the iterated PPR in section 2.3 (reported in the fifth row). The
last column gives the relative efficiency of NLS to the other three estimates.

Estimate of θ Mean SD MSE Relative efficiency

NLS 0.3007 0.0106 0.000114 1

PPR 0.2945 0.0229 0.000556 4.89

GPLSIM 0.3053 0.0165 0.000302 2.66

PPR- iterated 0.3 0.0165 0.000273 2.4
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APPENDIX A: Proofs

We first present the assumptions for the theorems. When k > 1, a product
kernel with marginal kernels each satisfying the assumed conditions (7)-
(11) below should be employed.

(1) E(e) = 0, V ar(e) = σ2 <∞.
(2) E(Z) = 0, E(‖Z‖2) <∞.
(3) h = const · n−a, where 0 < a < 1

k+2 .
(4) g is twice differentiable, with the second derivative bounded and con-

tinuous.
(5) The density function, fX : ℜp → ℜ, of the p-dimensional random

vector X is twice differentiable with the second derivative bounded
and continuous.

(6) fX is bounded away from zero.
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(7) K is Lipschitz continuous on the real line.
(8) K has support [−1, 1].

(9) K(u) ≥ 0 for all u and
∫ 1

−1
K(u)du = 1.

(10)
∫ 1

−1
uK(u)du = 0.

(11)
∫ 1

−1 u
2K(u)du = MK 6= 0.

Remark: Assumptions (1) and (2) are necessary conditions for the asymp-
totic normality of an estimator. Assumption (3) is commonly used in non-
parametric estimation. Assumptions (4) and (5) are also common con-
ditions. Assumptions (5) and (6) imply that the distribution of X has
bounded support and that fX is bounded from above. With assumption
(4), we can also conclude that g is bounded from above. These conditions
are used to avoid boundary effects when a nonparametric smoother is em-
ployed to construct an estimator of a nonparametric regression function.
All conditions on the kernel function are commonly used in the literature.
Therefore, the imposed conditions are mild.

Without loss of generality and for simplicity, we will focus our proof
on the single-index model with k = 1, although the proof can be extended
to multiple-indices models. For this simplification, we will use a vector β
instead of the matrix B to describe the relationship between Y andX when
k = 1. This is a partially linear single-index model, given by the equation

Y = Z′θ + g(X ′β) + e.

We divide the tedious proof of Theorem 2 into five Lemmas. Suppose we
observe the data (Yj ,Xj ,Zj), j = 1, . . . , n, where Xj ∈ ℜp and Zj ∈ ℜq.
Consequently, β ∈ ℜp and θ ∈ ℜq. For i1 = 0, 1, i2 = 0, 1, 2, and any
β∗ ∈ ℜp define

ξi1,i2j (x,β∗) = Y i1j Kh((Xj − x)′β∗)((Xj − x)′β∗)i2

αi1,i2n (x,β∗) = n−1
n∑

j=1

[ξi1,i2j (x,β∗) − E(ξi1,i2j (x,β∗))].

Lemma 1. Under conditions (1)–(8), for i1 = 0, 1, i2 = 0, 1, 2, and ‖β∗ −
β‖ = O(n− 1

2 ),

sup
x∈ℜp

sup
β∗

:‖β∗−β‖=O(n−1/2)

√
nh|αi1,i2n (x,β∗) − αi1,i2n (x,β)| P→ 0. (6)

Proof. In order to use arguments such as those provided in the proof
of Theorem II. 37 in Pollard (1984, pages 34-35), we first show that for any

ǫ > 0, x ∈ ℜp, β∗ ∈ ℜp, ‖β∗ − β‖ = O(n− 1
2 ), and large n,

P
(√

nh|αi1,i2n (x,β∗) − αi1,i2n (x,β)| > ǫ

2

)
≤ 1

2
. (7)
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This is in preparation to apply the symmetrization approach in Pollard
(1984, pages 14-16). The left-hand side of (7) is equal to

P

(
|αi1,i2n (x,β∗) − αi1,i2n (x,β)| > ǫ

2
√
nh

)
,

which is less than or equal to

4nh

ǫ2
E{[αi1,i2n (x,β∗) − αi1,i2n (x,β)]2}

by Chebychev’s inequality. We now prove that this value is less than or
equal to 1/2. Define

A(β) = Kh((X − x)′β)((X − x)′β)i2

A(β∗) = Kh((X − x)′β∗)((X − x)′β∗)i2 .

Recalling the definition of αi1,i2n and the independence of ξi1,i2j , an elemen-
tary calculation yields that

4nh

ǫ2
E{[αi1,i2n (x,β∗) − αi1,i2n (x,β)]2} =

4h

ǫ2
V ar[ξi1,i2(x,β∗) − ξi1,i2(x,β)]

≤ 4h

ǫ2
E{Y 2i1 [A(β∗) −A(β)]2}. (8)

If i1 = 0, then Y 2i1 = 1. Let MfX be the upper bound of fX . Define

B(β∗) = K((t− x)′β∗/h), B(β) = K((t − x)′β/h), and let T = {t ∈ ℜp :

B(β∗) > 0 or B(β) > 0}. Then the right hand side of (8) is equal to

4h

ǫ2

∫

t∈T

[
1

h
B(β∗)((t − x)′β∗)i2 − 1

h
B(β)((t − x)′β)i2

]2
fX(t)dt

=
4h2i2

hǫ2

∫

x+hu∈T
[K(u′β∗)(u′β∗)i2 −K(u′β)(u′β)i2 ]2fX(x + hu)d(hu)

≤ 4h2i2hp

hǫ2
CMfX

∫

U

(u′(β∗ − β))2du, where U = {u ∈ ℜp : x + hu ∈ T }

=
4h2i2hp

hǫ2
CMfXO(h−p)O(h−2n−1) =

h2i2

ǫ2
O

(
1

nh3

)
. (9)

Then, if i1 = 1, with the independence of X,Z and e, (8) is equal to

4h

ǫ2
E

{
Y

2

[
A(β∗) − A(β)

]2
}

=
8h

ǫ2
E

{
g
2(X ′

β)
[
A(β∗) − A(β)

]2
}

+
8h

ǫ2

[
E(Z ′

θ)2 + E(e2)
]
× E

{[
A(β∗) − A(β)

]2
}

. (10)
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The second term of (10) has the same order as (8), becauseE(Z ′θ)2+E(e2)

is bounded. Similar to (9), the first term of (10) can be bounded as follows:
8

hǫ2

∫

t∈T
g2(t′β)[Kh((t − x)′β∗)((t− x)′β∗/h)i2 −

{
Kh((t − x)′β/h)

× ((t − x)′β)i2
}
]2fX(t)dt =

h2i2

ǫ2
O

(
1

nh3

)
.

Therefore, the left-hand side of (7) has order O(1/(nh3ǫ2)) and is less than

or equal to 1
2 when n is large enough. We have thus proved (7). This

inequality ensures the use of symmetrization arguments. The next step is

to show that conclusion (6) is the maximum value of an empirical process

indexed by a VC class of functions. Hereafter, we will suppress the i1, i2
superscripts.

Let Fn = {fn,x,β∗(·, ·) : ‖x‖ ≤ C and ‖β∗‖ ≤ A} be a class of functions

indexed by x and β∗ consisting of

f i1,i2
n,x,β∗(y, t) = yi1 [K((t−x)′β∗/h)((t−x)′β∗)i2−K((t−x)′β/h)((t−x)′β)i2 ].

Therefore, the left-hand side of (6) is equal to
√
nh sup

f∈Fn

∣∣∑n
j=1 f(Yj ,Xj)

∣∣.
Note that

f i1,i2
n,x,β∗(Yj ,Xj) = h · (ξi1,i2j (x,β∗) − ξi1,i2j (x,β)),

and

A = ‖β‖ +O(n−1/2), since ‖β∗ − β‖ = O(n−1/2).

We next show that Fn is a VC class of functions. That is, for any n ,

N1(ǫn, Pn,Fn) ≤ (const.) · nw, for some w,

where N1(ǫn, Pn,Fn) is the minimum m of the set functions F ◦ consisting

of functions {f◦
1 , . . . , f

◦
m}, each in Fn, such that

min
i∈1,...,m

n−1
n∑

j=1

|f(Yj ,Xj) − f◦
i (Yj ,Xj)| < ǫn for every f ∈ Fn. (11)

The proof goes as follows: For each set F ◦ satisfying (11) and for each

f◦
i in there, we can find a pair (si,βi) such that f◦

i (y, t) ≡ fn,si,βi
(y, t).

Then

|f i1,i2
n,x,β∗(Y,X) − f i1,i2

n,si,βi
(Y,X)|

=|Y i1 [K((X − x)′β∗/h)((X − x)′β∗)i2

−K((X − si)′βi/h)((X − si)′βi)i2
+K((X − si)′β/h)((X − si)′β)i2 −K((X − x)′β/h)((X − x)′β)i2 ]|

≤ |Y i1 |hi2
h

M(|(X − x)′β∗ − (X − si)′βi| + |(X − si)′β − (X − x)′β|)
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=
|Y i1 |hi2

h
M(|X ′(β∗ − βi) − x′β∗ + s′iβi| + |(x − si)′β|)

≤|Y i1 |hi2
h

M(|X ′(β∗ − βi)| + |(si − x)′β∗| + |s′i(βi − β∗)| + |(x − si)′β|)

≤|Y i1 |hi2
h

M(|X ′(β∗ − βi)| + ‖si − x‖A+ C‖βi − β∗‖ + ‖x − si‖‖β‖),

for some constant M . Since K has a compact support, for large n,

n−1
∑n
j=1 |Y i1j |‖Xj‖ and n−1

∑n
j=1 |Y i1j | are bounded by a constant with

probability one. For all x with ‖x‖ < C and all β∗ with ‖β∗‖ < A,

n−1
n∑

j=1

|f i1,i2
n,x,β∗(Yj ,Xj)−f i1,i2

n,si,βi
(Yj ,Xj)| ≤ (const)

hi2

h
(‖β∗−βi‖+‖si−x‖).

That is, for any two functions in Fn, the distance only relates to the

distances of β and x and hi2/h. Letting ǫn = ǫ
8

√
h
n , we thus have

N1(ǫn, Pn,Fn) ≤ (const) · 1

ǫ2

( n
h3

)p
= (const) · nw,

where we let w = p(1 + 3a). Let the constant be M/2. This means that

Fn is a VC-class of functions.

Next, we invoke similar arguments that are used to prove Theorem II.37

(Pollard,1984, p.35) or those of Zhu (1993) and arrive at

P (sup
x

sup
β∗

√
nh|αn(x,β∗) − αn(x,β)| > ǫ)

≤MnwE

(
max

i∈{1,...,N1}
exp

(
−n

2 ( ǫ
2

82 · hn )

n−1
∑n

j=1(fn,si,βi
(Yj ,Xj))2

))

=MnwE

(
max

i∈{1,...,N1}
exp

(
−ǫ2/128

n−1h−1
∑n

j=1(fn,si,βi
(Yj ,Xj))2

))

≤Mnw

(
sup
x

sup
β∗

exp

(
−ǫ2/128

n−1h
∑n
j=1(ξj(x,β

∗) − ξj(x,β))2

))

=Mnw exp

( −ǫ2/128

O(1/nh3)

)
→ 0,

because n−1h
n∑
j=1

(ξj(x,β
∗)−ξj(x,β))2 has the same order as hE((ξ(x,β∗)−

ξ(x,β))2), which in turn has the same order as (8). Therefore,

P (supx supβ∗

√
nh|αn(x,β∗) − αn(x,β)| > ǫ) → 0, for any given ǫ and

relation (6) holds. �
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Lemma 2. Under conditions (1)–(8), for i1 = 0, 1, i2 = 0, 1, 2, and ‖β∗ −
β‖ = O(n− 1

2 ),

sup
x∈ℜp

sup
β∗

:‖β∗−β‖=O(n−1/2)

|n−1
n∑

j=1

[Y i1j A(β∗ − E(Y i1j A(β∗)]| = OP (1/
√
nh).

Proof. Similar arguments as used in the proof of Lemma 1 apply. Readers

are referred to Chong (1999) for details. �

Lemma 3. Under conditions (1)–(8), for i2 = 0, 1, 2 and ‖β∗ − β‖ =

O(n− 1
2 ),

sup
x∈ℜp

sup
β∗

:‖β∗−β‖=O(n−1/2)

|n−1
n∑

j=1

Z ′
j(θ̂ − θ)A(β∗)| = OP (

1

n
√
h

). (12)

Proof. Note that Z ′
j(θ̂− θ) =

∑q
i=1 Zji(θ̂i − θi). The left-hand side of

(12) is equal to

sup
x

sup
β∗

|n−1
n∑

j=1

[

q∑

i=1

Zji(θ̂i − θi)]A(β∗)|

≤
q∑

i=1

sup
x

sup
β∗

|n−1
n∑

j=1

Zji(θ̂i − θi)A(β∗))|

≤
q∑

i=1

|θ̂i − θi| sup
x

sup
β∗

|n−1
n∑

j=1

ZjiA(β∗)|. (13)

Since q ≪ n, the order of (13) is the same as the order of a single term

of the first summation. Without loss of generality, we may take q = 1.

Because θ̂ is obtained through a least squares regression of Y and Z, we

have |θ̂ − θ| = OP (n−1/2). Note that Zj ’s are independent of the Xj ’s.

Similar arguments as in the proof of Lemma 1 can be applied again to yield

sup
x

sup
β∗

|n−1
n∑

j=1

ZjA(β∗)| = OP (1/
√
nh).

For details see Chong (1999). �

Lemma 4. Under conditions (4)–(11), letting Ei1,i2 = E(Y i1A(β∗)), we

have

Ei1,i2 =





f(x′β) +O(h2), i1 = 0, i2 = 0[
E(Z ′θ) + g(x′β)

]
f(x′β) +O(h2),i1 = 1, i2 = 0

O(h2), i1 = 0, i2 = 1

O(h2), i1 = 1, i2 = 1

O(h2), i1 = 0, i2 = 2.
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Also, uniformly over x ∈ ℜp, ‖β∗ − β‖ = O(n−1/2),

|E(Kh((X − x)′β∗)) − f(x′β)|=O(h2 + n−1/2),

|E(Y Kh((X − x)′β∗)) −
(
E(Z ′θ) + g(x′β)

)
f(x′β)|=O(h2 + n−1/2),

|E(Kh((X − x)′β∗)(X − x)′β∗)|=O(h2),

|E(Y Kh((X − x)′β∗)(X − x)′β∗)|=O(h2), and

|E(Kh((X − x)′β∗)((X − x)′β∗)2)|=O(h2).

Proof. The proof follows from Taylor expansions. See Lemma 5 of

Chong (1999). �

Now define ĝ(x′β∗) = Sx′β∗Y , where the smoothing matrix S is based

on the variables, X ′
1β

∗, · · · ,X ′
nβ

∗ is defined in Appendix B and the sub-

script on S denotes the point to which the smoother is applied.

Lemma 5. Under conditions (1)–(11),

sup
x∈ℜp

sup
β∗

:‖β∗−β‖=O(n−1/2)

|ĝ(x′β∗) − E(Z ′θ) − g(x′β)|

= OP

(
1√
nh

+ h2

)
. (14)

Proof. Let Sn,i2(x,β
∗) = n−1

∑n
j=1Kh((Xj − x)′β∗)((Xj − x)′β∗)i2 .

Then

S0=α
0,0
n (x,β∗) + E(Kh((X − x)′β∗))

=OP (1/
√
nh) + f(x′β) +O(h2 + 1/

√
n),

S1=α
0,1
n (x,β∗) + E(Kh((X − x)′β∗)(X − x)′β∗)

=OP (1/
√
nh) +O(h2),

S2=α
0,2
n (x,β∗) + E(Kh((X − x)′β∗)((X − x)′β∗)2)

=OP (1/
√
nh) +O(h2),

by Lemmas 2 and 4. Applying these two lemmas again, we obtain

n−1
n∑

j=1

ξ1,0j (x,β∗)

=α1,0
n (x,β∗) + E(Y K((X − x)′β∗))

=OP (1/
√
nh) +

(
E(Z ′β) + g(x′β)

)
f(x′β) +O(h2 +

√
n), and
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n−1
n∑

j=1

ξ1,1j (x,β∗)=α1,1
n (x,β∗) + E(Y K((X − x)′β∗)(Xj − x)′β∗)

=OP (1/
√
nh) +O(h2).

The bounds for the above five equations are uniform over x and β∗. We

have

ĝ(x′β∗) =
n−1

∑n
i=1 ξ

1,0
i (x,β∗)S2 − n−1

∑n
i=1 ξ

1,1
i (x,β∗)S1

S0S2 − S2
1

,

so

ĝ(x′β∗) − E(Z ′θ) − g(x′β)

=
(
(
E(Z ′θ) + g(x′β)

)
f(x′β) +OP (h2 + 1√

nh
))S2 −OP (h2 + 1√

nh
)S1

(f(x′β) +OP (h2 + 1√
nh

))S2 − S2
1

−

(
E(Z ′θ) + g(x′β)

)
((f(x′β) +OP (h2 + 1√

nh
))S2 − S2

1

(f(x′β) +OP (h2 + 1√
nh

))S2 − S2
1

=
(OP (h2 + 1√

nh
))2

OP (h2 + 1√
nh

)
= OP

(
h2 +

1√
nh

)
,

with bounds uniform over x and β∗, showing (14). �

Proof of Theorem 2. Define En = Ĉov(Z), the sample covariance

matrix of Z, and Ĉov(Z, Y ) the sample covariance between Z and Y . Fur-

ther, let

g =



g(X ′

1β)
...

g(X ′
nβ)


 and ĝ =



ĝ(X ′

1β̂)
...

ĝ(X ′
nβ̂)


 , then

θ̂=(En)
−1Ĉov(Z, ((I − S)Y )

=(En)
−1(Z − Z̄)′(Y − Ȳ − (ĝ − g)

=Z′(g + Zθ + ǫ− ĝ)

=θ + (Z′Z)−1Z′ǫ+ (Z′Z)−1Z′(g − ĝ).

Because E(ǫ) = 0 and ǫ and Z are independent, we have E((Z′Z)−1Z′ǫ) =

0. It is easy to prove that, by the Weak Law of Large Num-

bers, V ar((Z′Z)−1Z′ǫ) → E−1
n σ2 in probability, nE−1

n
P→ E−1, so

√
n(Z′Z)−1Z′ǫ

d→ N(0,E−1σ2) by the Central Limit Theorem.
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Now we need to show that
√
n(Z′Z)−1Z′(g− ĝ)

P→ 0. As stated above,

n(Z′Z)−1 = nE−1
n

P→ E−1 = O(1), it remains to show that 1√
n
Z′(g− ĝ)

P→
0. Towards this, we will show that

sup
β∗

‖ 1√
n

n∑

j=1

Zj(ĝ(X
′
jβ

∗) − g(X ′
jβ))‖ P→ 0. (15)

Using an argument as in Lemma 3, we will let q = 1 without loss of general-

ity. We can thus write Z in place of Z, and the norm becomes an absolute

value.

Note that Z is independent of ĝ(X ′
jβ

∗) − g(X ′
jβ). Using arguments

similar to those found in the first three lemmas, we have

P (sup
β∗

|n−1/2
n∑

j=1

Zj(ĝ(X
′
jβ

∗) − g(X ′
jβ))| > ǫ)

≤4E

[
Dnw sup

β∗

exp

(
−ǫ2/128

n−1
∑n

j=1(Zj(ĝ(X
′
jβ

∗) − g(X ′
jβ)))2

)]
. (16)

Lemma 5 implies that

sup
x∈ℜp

sup
β∗

:‖β∗−β‖=O(n−1/2)

|ĝ(x′β∗) − g(x′β)| = OP

(
1√
nh

+ h2

)
,

so n−1
∑n
j=1 |Zj |2 = OP (1), and

n−1
n∑

j=1

|Zj(ĝ(X ′
jβ

∗) − g(X ′
jβ))|2 = OP (((1/

√
nh) + h2)2).

Therefore, the probability in (16) goes to zero, which implies (15) . The

proof of Theorem 2 is now completed. �

Proof of Theorem 3: Let g(u|β) = E(Y − Z ′θ|X ′β = u). Here

and below, β is always a unit p-vector and g(·) is estimated by a local

polynomial smoother. Let X = (X1, · · · ,Xn)′, Y = (Y1, · · · , Yn)′ and

Z = (Z1, · · · ,Zn)′. The estimator is defined as

ĝ(Xβ|β) = S
Xβ(Y − Zθ̂),

where S
Xβ is the smoothing matrix based on the variables X ′

1β, · · · ,X ′
nβ

similar to the situation right before Lemma 5 . For the convenience of

notations, we define Ỹ = Y − Zθ and g̃(u|β) = S
XβỸ . Since g(u|β) =
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g(X ′β) we may estimate β by selecting the orientation β∗ which minimizes

a measure of the distance g(·|β∗) − g. To this end, define

D̂(β∗, h)=
n∑

i=1

[Yi −Z ′
iθ̂ − ĝ(X ′

iβ
∗|β∗)]2

=(Y − Zθ̂)′(I − S
Xβ∗)′(I − S

Xβ∗)(Y − Zθ̂).

Note that our initial estimator β̃ of β is
√
n-consistent. Therefore, the

minimization only needs to be taken over β∗ such that |β∗−β̃| = O(1/
√
n),

that is, |β∗ − β| = O(1/
√
n). We then define the minimizer β̂ as the

estimator of β.

It is clear that

D̂(β∗, h)= Ỹ
′
(I − S

Xβ∗)′(I − S
Xβ∗)Ỹ

+(θ̂ − θ)′Z(I − S
Xβ∗)′(I − S

Xβ∗)Z(θ̂ − θ)
− (θ̂ − θ)′Z(I − S

Xβ∗)′(I − S
Xβ∗)Ỹ

− Ỹ ′
(I − S

Xβ∗)′(I − S
Xβ∗)Z(θ̂ − θ)

=:D̃(β∗, h) + In1(β
∗, h) + In2(β

∗, h) + In3(β
∗, h).

Invoking the arguments used to prove the Theorem of Härdle, Hall and

Ichimura (1993), we have

D̃(β∗, h) = D̃(β∗) + T (h) +R1(β
∗, h) +R2(h),

where

D̃(β∗)=
∑

(Ỹi − g(Z′
iβ

∗|β∗))2

T (h)=
∑

(ĝ(Z ′
iβ|β) − g(Z ′

iβ))2;

and uniformly over β∗ and h such that ‖β∗−β‖ = O(1/
√
n), h = O(n−1/5),

‖R1(β
∗, h)‖ = op(n

1/5), and ‖R2(h)‖ = op(1).

Furthermore, from their arguments, we have for some constants A1 and

A2,

D̃(β∗)=n
[
W1/2(β∗ − β) − n−1/2(W−)1/2Un

]

×
[
W1/2(β∗ − β) − n−1/2(W−)1/2Un

]
+R3 +R4(β

∗),

T (h)=A1h
−1 +A2nh

4 +R5(h),

where

Un =
∑

[Xi − E(X i|X ′
iβ)]g′(X ′

iβ)ei,

sup
‖β∗−β‖=O(1/

√
n)

‖R4(β
∗)‖ = op(1), sup

h=O(n−1/5)

‖R5(h)‖ = op(n
1/5),
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g′ is the derivative of g, and R3 is a constant independent of β∗ and h.

Note that our initial estimator θ̂ is
√
n-consistent for θ. By the indepen-

dence between Ỹ and Z and the
√
n-consistency of β̃ for β, we obtain easily

that, and uniformly over β∗ and h such that ‖β∗ − β‖ = O(1/
√
n), h =

O(n−1/5),

‖Inl(β∗, h)‖ = op(1), l = 1, 2, 3;

‖ 1√
n
Z ′(I − S

Xβ∗)′(I − S
Xβ∗)Ỹ ‖ = op(1).

Therefore, uniformly over β∗ and h

D̂(β∗, h) = D̃(β∗) + T (h) + op(n
1/5) + Cn,

where Cn is a constant independent of β∗ and h. Hence the minimum of

D̂(β∗, h) within a radius O(n−1/2) of β for the first variable and on a scale

of n−1/5 for the second variable satisfies, for any unit vector u 6= β,

u′(β̂
∗ − β)=n−1/2u′(W−)Un + op(n

−1/2)

=n−1/2u′(W−)
∑

[Xi − E(Xi|β′Xi)]g
′(β′Xi)εi + op(n

−1/2).

In other words,

n1/2u′(β̂
∗ − β) =⇒ N(0, u′σ2(W−)u).

This completes the proof. �

APPENDIX B

Linear Smoother : We first consider the simple case of one-dimensional

smoothing to estimate the mean response, m(x) = E{Y |X = x}, based on

data {(Xi, Yi), i = 1, · · · , n}. For a given scalar point x and bandwidth

h, the local polynomial smoother (Fan and Gijbels (1996)) is based on a

window, (x−h, x+h), and a kernel weight function to fit locally a weighted

polynomial regression, and then uses the fitted value at x as the estimate

for m(x). For instance, a locally linear smoother with a kernel K, using a

linear polynomial to estimate the regression function via the least squares

method, yields the following estimate:

m̂(x) = arg min
a

min
b

n∑

i=1

[yi − a− b(xi − x)]2Kh(xi − x),
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where Kh(u) = h−1K(u/h). Define Qi = Kh(xi−x) and Qj = Kh(xj −x).
The solution to the minimization equation m̂(x) equals

n∑

i=1

Qi[

n∑

j=1

Qj(xj − x)2 − (xi − x)

n∑

j=1

Qj(xj − x)]yi

n∑

i=1

Qi[

n∑

j=1

Qj(xj − x)2 − (xi − x)

n∑

j=1

Qj(xj − x)]

.

This smoother belong to a class called the class of linear smoothers, which

is a linear combination of the observed responses. For a linear smoother, we

may construct a matrix Sx such that the estimated mean response is ŷ =

Sxy, where the subscript x denotes the covariate variables, {x1, · · · , xn},
on which the smoothing is based. We will call Sx the smoothing matrix. It

depends on the type of smoother and kernel function K used, the observed

values of the covariates x, and the smoothing parameter h.

Suppose, for example, that x = (x1, . . . , xn) is observed and that we are

using a kernel K that has support [−1, 1]. Below, let Qrs = Kh(xr − xs)

for two subscripts r and s.The matrix S corresponding to the locally linear

smoother above will have elements

Sij =

Qij [

n∑

k=1

Qki(xk − xi)
2 − (xj − xi)

n∑

k=1

Qki(xk − xi)]

n∑

k=1

Qki[

n∑

l=1

Qli(xl − xi)2 − (xk − xi)

n∑

l=1

Qli(xl − xi)]

.

Automatic bandwidth choices based on Generalized cross validation: The

bandwidth h which minimizes

GCV (h) =
1
n

∑n
i=1(Yi − ĝh(Xi))

2

( 1
n tr(I − Sh))2

, (17)

is the generalized cross-validated bandwidth, where Sh is the smoothing

matrix corresponding to a bandwidth of h and ĝh(Xi) is the estimated re-

gression function corresponding to a bandwidth of h, evaluated at Xi.
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An extension of rank based partial likelihood method of Cox (1975)
for general transformation model was introduced by Doksum (1987), and
Chaudhuri, Doksum and Samarov (1997) introduced average derivative
quantile regression estimates of parameters in semiparametric single in-
dex regression models that generalize transformation models. An impor-
tant requirement for rank and quantile based methods to be applicable
to any such model is an intrinsic monotonicity property of the under-
lying link function. In this note, we explore certain extensions of such
semiparametric single index models for multivariate life time data and
the possibility of estimation of index coefficients by average derivative
quantile regression techniques. Monotonicity properties of the link func-
tions associated with such models are also investigated.

Key words: Frailty model, Log-concave density, Multivariate mono-
tonicity, Quantile regression, Stochastic ordering.

1 Introduction: Semiparametric Regression Models in

Survival Analysis

An intriguing connection between proportional hazard model (see Cox
1972) and general transformation model was pointed out by Doksum
(1987), who extended rank based partial likelihood methods (see Cox 1975)
to general transformation models. If T denotes the survival time and
X = (X1, . . . , Xd) denotes a d-dimensional vector of covariates, Cox’s
proportional hazard model can be described by the equation λ(t) =

λ0(t) exp(
∑d

i=1 βiXi), where λ(.) is the hazard function associated with the
distribution of T , λ0(.) is the baseline hazard function associated with a
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baseline distribution function F0, and the βi’s are the regression coefficients.
Here F0(t) is an absolutely continuous distribution with a continuous and
positive density for t > 0. An equivalent formulation of this proportional
hazard model can be given in the form of a linear regression model with
a transformed response given as h(T ) = −∑d

i=1 βiXi + ǫ, where h(t) =
ln[− ln{1 − F0(t)}], and ǫ has the distribution Fǫ(s) = 1 − exp{− exp(s)}.
Since h(.) is an unknown monotonically increasing transformation, this for-
mulation makes the reason for using the rank based partial likelihood in
the proportional hazard model quite transparent. As ranks remain invari-
ant under strictly increasing transformation, partial likelihood does not de-
pend on the unknown transformation h(.). All these were amply exploited
by Doksum (1987) to investigate extensions of partial likelihood method in
more general linear regression models with transformed response variables.

Another very well known model used in the regression analysis of
survival time data is the proportional odds rate model, and that too
can be viewed as a linear regression model with transformed response :
h(T ) = −∑d

i=1 βiXi + ǫ. Here, h(t) = ln[F0(t)/{1 − F0(t)}], F0(t) is a
continuous and strictly increasing distribution function for t > 0, and ǫ has
the logistic distribution Fǫ(s) = {1 + exp(−s)}−1. Readers are referred to
Doksum and Gasko (1990) for a discussion of this model. The accelerated
failure time model, which is also fairly popular in survival analysis (see
e.g., Kalbfleish and Prentice 2002), is another example of linear regression
model with transformed response, where h(t) = ln(t), and the distribution
of ǫ is unspecified.

Let us now consider the single index model

T=ψ

(
d∑

i=1

βiXi, ǫ

)
(1)

where ψ(., .) is an unknown link function, which is monotonically increasing
in its second argument, and ǫ is a continuously distributed unobserved ran-
dom variable whose distribution is assumed not to depend on X. Clearly,
all of the survival analysis models mentioned in the preceding two para-
graphs are special cases of this more general model with specific choices
for the function ψ(., .). Further, various extensions and variations of those
models available in the literature, like the proportional mean residual time
model studied by Oakes and Dasu (1990), different semiparametric versions
of generalized proportional hazard models considered by Bagdonavicius and
Nikulin (1999) and transformation models investigated by Cai and Cheng
(2004) can be obtained as special cases with appropriate forms of the func-
tion ψ(., .). An interesting feature of the model in (1) is that if the function
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ψ(., .) is completely unspecified except for the fact that it is a monotoni-
cally increasing function of its second argument, one can assume ǫ to have
uniform distribution on [0, 1] without any loss of generality. This is a conse-
quence of the fact that any continuously distributed random variable can be
viewed as a continuous and monotonically increasing function of a uniform
random variable on [0, 1].

An important point to note at this stage is that in the general case with
a completely unknown ψ(., .) in (1), rank based partial likelihood is no
longer useful for estimating the index coefficients βi’s as the distributions
of the ranks now depend on that unknown link function ψ(., .). However,
as shown in Chaudhuri, Doksum and Samarov (1997), one can use local
polynomial quantile regression (see, e.g., Chaudhuri 1991 and Chaudhuri
and Loh 2002) to construct n1/2-consistent and asymptotically normal es-
timates of properly normalized βi’s, which are identifiable only up to a
scalar multiple. Quantiles are equivariant under monotonically increasing
transformation, and consequently, for any 0 < α < 1, the conditional α-th

quantile of T given X is ψ
(∑d

i=1 βiXi, α
)
, assuming ǫ to have uniform

distribution on [0, 1]. This was one of the key ideas used by Chaudhuri,
Doksum and Samarov (1997) in their average derivative quantile regression
estimation of parameters in the single index model in (1). Quantile re-
gression in Cox’s proportional hazard model has been considered earlier by
Dabrowska and Doksum (1987). The equivariance of quantiles under mono-
tonically increasing transformations and a related use of quantile regression
in survival analysis can also be found in Koenker and Geling (2001).

In this paper, we intend to investigate multivariate versions of semi-
parametric index models for survival analysis that retain the above men-
tioned monotonicity property, which is of fundamental importance in rank
or quantile based regression analysis, in some natural sense, even when
the response is multivariate in nature. In particular, we will try to investi-
gate the monotonicity properties of the well-known frailty model of Vaupel,
Manton and Stallard (1979) for general baseline and frailty distributions.
In course of our investigation, we will also indicate possible extensions of
quantile regression and related techniques to estimate the index coefficients
when the response is multivariate in nature.
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2 Single Index Regression Models for Multivariate Survival

Time Data

Dependent multivariate life time data may arise in many situations, and
they have been widely studied in the literature (see e.g., Hougard 2000).
Well known examples of dependent multivariate failure time data include
the time of onset of schizophrenia among family members who are genet-
ically related (see Pulver and Liang 1991, Lin 1994), tumor occurrence
in litter-matched tumorigenesis experiments involving animals (see Man-
tel, Bohidar and Ciminera 1977), occurrence times for multiple tumors in
bladder cancer study (see Wei, Lin and Weissfeld 1989), etc.

Let T = (T1, T2, . . . , Tp) denote a p-dimensional vector of survival times
and Xj = (Xj1, Xj2, . . . , Xjd) be the d-dimensional vector of covariates
corresponding to the j-th component of the multivariate survival time T,
where 1 ≤ j ≤ p. We now state two theorems that lead to some interesting
generalisations of the single index model in (1) for multivariate survival
times.

Theorem 1. Suppose that the conditional distribution of each of the
marginal survival time Tj (1 ≤ j ≤ p) given Xj is the same as the condi-

tional distribution of Tj given the linear function Zj =
∑d
i=1 βiXji. Assume

also that the conditional distribution of each of the Tj’s given Zj is contin-
uous and strictly increasing on its support. Then there exists a functions
ψj(., .) from R2 into R, which is monotonically increasing in its second ar-
gument, and a random vector U = (U1, U2, . . . , Up) with each marginal Uj
(1 ≤ j ≤ p) having a uniform distribution on [0, 1] that does not depend on
Xj such that

Tj = ψj(Zj , Uj) (2)

Theorem 2. Suppose that the conditional distribution of the vector T of
survival times given the covariate vectors Xj for 1 ≤ j ≤ p is the same
as the conditional distribution of T given the vector of linear functions
Z = (Z1, Z2, . . . , Zp), where Zj =

∑d
i=1 βiXji, and the regressor vector

Xj corresponds to the marginal survival time Tj. Assume further that the
conditional distribution of Tj given T1, . . . , Tj−1 for each 1 < j ≤ p as well
as given Z1, Z2, . . . Zp is continuous and strictly increasing on its support,
and conditioned on Z1, Z2, . . . , Zp, the survival time Tj is stochastically
increasing in T1, . . . , Tj−1. Then there exist : (i) a function ψj(., .) from
Rp × Rp into R, which is monotonically increasing in each of its last p
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arguments, and (ii) a p-dimensional random vector U such that

Tj = ψj(Z,U) (3)

where U has uniform distribution on the unit p-dimensional hypercube
[0, 1]p (i.e., the marginals of U are i.i.d uniform random variables), and
it is independent of the Xj’s.

The proofs of both of Theorems 1 and 2 are given at the end of the
paper. For the definition and a thorough discussion of stochastic increasing
properties of random vectors, readers are referred to Barlow and Proschan
(1975). The most interesting aspect of these two theorems is that they
make very little assumption on the type of the conditional distribution of
T or its marginals given Z. As a result, they lead to a very flexible and sub-
stantially distribution free regression modeling for multivariate failure time
data, which includes many of the standard models proposed and studied
in the literature with more restricted distributional assumptions as special
cases.

Both the theorems in the preceding section lead to versions of single
index regression models with some intrinsic monotonicity properties for the
link functions ψj ’s (1 ≤ j ≤ p) in a multi-dimensional set-up. In a sense,
Theorem 1 attempts to model only the marginal life times and leaves the
structure of dependence among these marginals completely unspecified. Av-
erage derivative quantile regression estimates of the index coefficients βi’s
can be be obtained first for each marginal life time separately using the
procedure proposed in Chaudhuri, Doksum and Samarov (1997), and then
those estimates can be combined by suitable weighted averaging. The lo-
cal polynomial estimation (see e.g., Chaudhuri 1991, Chaudhuri and Loh
2002) of the conditional quantile functions and its derivatives for different
marginal life times conditioned on the covariates can be carried out leading
to the average derivative estimates of the index coefficients. This approach
is comparable to marginal modeling and estimation based on “quasi par-
tial likelihood estimating equations” obtained using marginal ranks and
“independence working assumption”, which have been widely used in the
literature (see, e.g., Wei, Lin and Weissfeld 1989, Lin 1994, Spiekerman
and Lin 1998). In particular, this gives a flexible modeling with very weak
assumptions, and this approach of modeling includes marginal proportional
hazard models considered by those earlier authors as a special case. The
n1/2-consistency and the asymptotic normality of the average derivative
quantile regression estimates of the index coefficients βi’s can be estab-
lished in this case using the same asymptotic analysis as in Chaudhuri,
Doksum and Samarov (1997) applied to each of the marginal life times.
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3 Multivariate Monotonicity of the Link Function

Theorem 2 in the preceding section attempts to completely model the joint
distribution of the vector of life times taking into consideration the nature
of dependence among the marginal life times. However, unlike Theorem 1,
this theorem requires an extra condition, namely a stochastic monotonicity
property of the vector of survival times. In this section, we will discuss
this property for some well known models in the literature for dependent
multivariate life time data.

In the frailty model for multivariate failure time data (see e.g., Vau-
pel, Manton and Stallard 1979, Clayton and Cuzick 1985, Hougaard 2000,
Oakes 1989, Nielsen, Gill, Andersen and Sorensen 1992), the dependency
among marginal failure times is induced by a frailty variable ξ, which is
common to all the marginals. Conditional on ξ and the Xj ’s, the marginal
failure times Tj ’s are assumed to follow independent distributions such that

the conditional hazards function of Tj is ξλj(t|Zj), where Zj =
∑d

i=1 βiXji

as before. Let us further assume that each of the hazard functions λj(.|.)’s
satisfies the proportional hazard model (see e.g., Nielsen et al. 1992).
Then the conditional hazard function of the j-th marginal failure time Tj
(1 ≤ j ≤ p) given the regressor Xj and the frailty variable ξ is given as

ξλj(t|Zj) exp(
∑d

i=1 βiXji) = ξµj(t) exp(Zj). In this case, in view of our
discussion in Section 1, it is straight-forward to verify that for 1 ≤ j ≤ p,
there exist monotonic transformations hj(.)’s from R into R such that

hj(Tj) = α0 +
∑d

i=1 βiXji + ǫj = α0 +Zj + ǫj, where the ǫj ’s are i.i.d ran-
dom variables having the common distribution Fǫ(s) = 1− exp{− exp(s)},
as mentioned in Section 1, and α0 = ln ξ. Here ξ and the ǫj ’s are all in-
dependent, and they do not depend on the regressor vectors Xj ’s. This
gives a formulation of the frailty model with a proportional hazard type
model for each marginal life time in terms of a multi-response linear regres-
sion model, where each co-ordinate of the response vector is transformed
by a monotonic transformation. In this formulation, there is a common
random intercept term in the linear regresession that induces the depen-
dence among the marginal failure times, and conditioned on that common
intercept term, the marginal survival times follow independent linear re-
gression models with different transformations for different marginals but
the same regression coefficients β1, β2, . . . , βd and the same error distribu-
tion. We now state a theorem which provides further insights into intrinsic
monotonicity of such general frailty type models for multivariate life time
data.

Theorem 3. Consider the multi-response linear regression model with
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transformed marginals and a common random intercept term given as
hj(Tj) = α0 +

∑d
i=1 βiXji + ǫj = α0 + Zj + ǫj. Here, for 1 ≤ j ≤ p,

the hj(.)’s are monotonically increasing functions from R into R, α0 is a
common random intercept term having an absolutely continuous distribu-
tion for all of the marginal life times, and the ǫj’s are independent with
a common smooth positive density on the real line that is log-concave in
nature. Then, conditioned on Z = (Z1, Z2, . . . , Zp), the survival time Tj
is stochastically increasing in T1, T2, . . . , Tj−1 for all 1 < j ≤ p. In par-
ticular, when the standard proportional hazard model holds for the hazard
function λj(.|.) in the frailty model discussed above, the vector of life times
T satisfies a single index model with link function having the monotonic-
ity property described in Theorem 2 for any absolutely continuous frailty
distribution.

Let us next consider a situation where the marginal life times T1 < T2 <
. . . < Tp are ordered, and they form the order statistics from a common
absolutely continous distribution supported on an interval (0, γ), where γ
may be ∞. For example, when there are multiple occurrences of tumors in
the same subject, and Tj denotes the appearance time of the j-th tumor,
such a model might be appropriate. Here we assume that the vectors of
covariates Xj ’s are the same for different j’s (i.e., Xj = X) as for different
j’s, these are all associated with the same subject. In such a situation,
given X, the Tj ’s may be viewed as order statistics derived from p i.i.d
random samples from the conditional distribution of the life time. In this
case, one can show that the monotonicity property of the link function
described in Theorem 2 will again hold because after we condition on X,
for any 1 < j ≤ p, Tj will be stochastically increasing in T1, T2, . . . , Tj−1.
This is a consequence of the fact the conditional distribution of the j-th
order statistic given the 1st, the 2nd, . . . , the (j − 1)-th oder statistics
satisfies the monotone likelihood ratio property with respect to each of the
conditioning variables, and this can be verified in a straight-forward way
from the joint density of the order statistics from an i.i.d sample. It is a well
known result that monotone likelihood ratio property implies the stochastic
increasing property in our set up (see e.g., Barlow and Proschan 1975).

4 Proofs of Theorems

Proof of Theorem 1 : For any 1 ≤ j ≤ p, let Fj(tj) = Pr(Tj ≤ tj |Zj),
which is the conditional c.d.f. of Tj given Zj. Set ψj(Zj , Uj) to be the
Uj-th quantile of the distribution Fj for any 0 < Uj < 1. Clearly, ψj is
monotonically increasing in its second argument. Now, if we take Uj =
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Fj(Tj), it will be a uniformly distributed random variable on [0, 1] with its
distribution independent of Xj . This completes the proof. �

Proof of Theorem 2 : Let F1(t1) = Pr(T1 ≤ t1|Z1, Z2, . . . Zp), which is
the conditional c.d.f. of T1 given the Zj ’s for all 1 ≤ j ≤ p. Next, define
ψ1(Z,U) to be the U1-th quantile of the distribution F1, where 0 < U1 < 1
is the first co-ordinate of the p-dimensional vector U. Then, if we set
U1 = F1(T1), it will be a uniformly distributed random variable on [0, 1]
with a distribution that is independent of the Xj ’s for all 1 ≤ j ≤ p. Clearly,
ψ1 depends only on the first co-ordinate U1 of U, and it is monotonically
increasing in U1. Now, for 2 ≤ j ≤ p, we sequentially define Uj = Fj(Tj),
where Fj(tj) = Pr(Tj ≤ tj |Z1, Z2, . . . Zp, T1, T2, . . . , Tj−1) = Pr(Tj ≤
tj |Z1, Z2, . . . Zp, U1, U2, . . . , Uj−1), which is the conditional c.d.f. of Tj given
Z1, Z2, . . . , Zp and T1, T2, . . . , Tj−1. This ensures that U1, U2, . . . , Up are
i.i.d random variables uniformly distributed on [0, 1], and their joint dis-
tribution would be independent of X1,X2, . . . ,Xp. Note also that Uj is a
monotonically increasing function of Tj. Finally, we set ψj(Z,U) to be the
Uj-th quantile of the distribution Fj . Then, ψj depends only on the first j
co-ordinates U1, U2, . . . , Uj of U, and it is clearly a monotonically increasing
function of Uj . Further, ψj will be a monotonically increasing function of
each of U1, U2, . . . , Uj−1 if conditioned on Z1, Z2, . . . , Zp, the distribution of
Tj is stochastically increasing in T1, T2, . . . , Tj−1. This completes the proof
of the theorem. �

Proof of Theorem 3 : It is easy to verify that for two independent ran-
dom variables Q and S with absolutely continuous distributions and for
W = Q+S, the conditional distribution of Q given W will have the mono-
tone likelihood ratio property if the density of S is log-concave. One way
to verify this is by considering the conditional density of Q given W . Since
monotone likelihood ratio property implies stochastic increasing property
(see e.g., Barlow and Proschan 1975), the distribution of Q will be stochas-
tically increasing in W in this case. This result can be extended for inde-
pendent S1, S2, . . . , Sp and W1 = Q+ S1,W2 = Q + S2, . . . ,Wp = Q+ Sp
in a straight-forward way to yield the stochastic increasing property of the
conditional distribution of Q (and consequently that of the distribution of
Wj) given W1,W2, . . . ,Wj−1 for any 2 ≤ j ≤ p. This completes the proof
of the first assertion in the theorem. The second assertion in the theorem
is an immediate consequence of the fact that in the linear regression model
with a monotonically transformed response, which is a reformulation the
proportional hazard model of Cox, the residual term has an extreme value
distribution that has a log-concave probability density function. �
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Chapter 12

AGGREGATION OF DENSITY ESTIMATORS AND

DIMENSION REDUCTION
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We consider the problem of model-selection-type aggregation of arbi-
trary density estimators using MISE risk. Given a collection of arbitrary
density estimators, we propose a data-based selector of the best estima-
tor in the collection and prove a general ready-to-use oracle inequality
for the selected aggregate estimator. We then apply this inequality to
the adaptive estimation of a multivariate density in a “multiple index”
model. We show that the proposed aggregate estimator adapts to the
unknown index space of unknown dimension in the sense that it allows
us to estimate the density with the optimal rate attainable when the
index space is known.

Key words: Nonparametric density estimation; Aggregation of esti-
mators; Dimensionality reduction model.

1 Introduction

The problem of aggregation of M arbitrary estimators has been recently
studied by many authors (see, e.g., Nemirovski (2000), Yang (2000), De-
vroye and Lugosi (2000), Catoni (2004), Wegkamp (2003), Tsybakov (2003),
Birgé (2003), Bunea, Tsybakov and Wegkamp (2004), Rigollet and Tsy-
bakov (2004) and the references cited therein). A motivating factor is that
in frequently used statistical models (such as regression or density estima-
tion) there exists a great variety of possible competing estimators, and it is
often difficult to decide which estimator to choose. Assume that a Statis-
tician is given a list of size M of such estimators: p1, . . . , pM . A natural
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idea is then to look for a new, improved, estimator constructed by combin-
ing p1, . . . , pM in a suitable way. A combined “super-estimator” obtained
from p1, . . . , pM is usually called aggregate and its construction is called
aggregation.

One can distinguish between three main types of aggregation: model
selection (MS) aggregation, convex (C) aggregation and linear (L) aggrega-
tion. The objective of (MS) is to select the optimal single estimator from
the list; that of (C) is to select the optimal convex combination of the given
estimators; and that of (L) is to select the optimal linear combination of
the given estimators. The notion of optimality mentioned here is defined
with respect to a given risk function, and it can be formalized in a mini-
max sense leading to the concept of optimal rates of aggregation [Tsybakov
(2003)]. A standard approach to establishing this kind of optimality is to
show that the aggregate satisfies a sufficiently precise oracle inequality.

Most of the currently available results on aggregation were obtained
for the regression model (see a recent overview in Bunea, Tsybakov and
Wegkamp (2004)). The literature on aggregation of density estimators is
not as large: Catoni (2004) and Yang (2000) investigated the (MS) ag-
gregation with the Kullback-Leibler divergence as a loss function; Devroye
and Lugosi (2000) developed a method of (MS) aggregation of density esti-
mators under the L1 loss. Another approach to density aggregation under
the L1 loss was proposed by Birgé (2003). Finally, we mention the recent
paper of Rigollet and Tsybakov (2004) on optimal convex (C) and linear
(L) aggregation of density estimators under the L2 loss, and the work of
Juditsky, Nazin, Tsybakov and Vayatis (2005a, 2005b) where a recursive
aggregation procedure is proposed for various statistical contexts, including
density estimation, classification and regression.

In this paper we consider the (MS) aggregation of arbitrary density
estimators under the L2 loss (MISE). The main precursor of our study is
the paper of Wegkamp (1999) who treated a more particular problem of
bandwidth selection for kernel density estimation, but some of his results
can be interpreted in general aggregation framework. For instance, some
oracle inequalities can be deduced from Wegkamp’s work, although he does
not derive them explicitly. Our first aim is to obtain a ready-to-use oracle
inequality for the L2 (MS) aggregation using techniques that are somewhat
different from those of Wegkamp (1999). Then we consider an example
of application of this inequality, namely, to the adaptive estimation of a
multivariate density in a multiple index model. We show that the proposed
aggregate adapts to the unknown index matrix B in the sense that it allows
to estimate the density with the optimal rate attainable when B is known.
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2 A density aggregation theorem

Let X1, . . . , Xn be i.i.d. random vectors with common probability density
p on Rd. Suppose that we are given M candidate estimators p1, . . . , pM
of the density p based on the sample X1, . . . , Xn. Our goal here is the
model selection (MS) aggregation, that is, we would like to choose Ñ ∈
{1, . . . ,M}, a random index based on the data, such that the aggregate pÑ
satisfies an oracle inequality of the form

E‖pÑ − p‖2 ≤ (1 + δn) min
1≤N≤M

E‖pN − p‖2 + rn, (1)

where the value δn = δn,M > 0 and the remainder term rn = rn,M > 0
are small enough (they tend to 0, as n → ∞; their dependence on M may
be suppressed because M will be chosen to grow with n, see Assumption 1
below), and

‖p‖ =

(∫
p2

)1/2

=

(∫

Rd

p2(x)dx

)1/2

.

We interpret the inequality (1) as the fact that the aggregate pÑ mim-
ics asymptotically the best among the estimators p1, . . . , pM (in the sense
of MISE), up to a small remainder term. Note that here p1, . . . , pM are
arbitrary estimators, not necessarily belonging to a specific family of non-
parametric estimators. In particular, some estimators in the list can be
parametric and others can be nonparametric of different nature (kernel,
spline, wavelet etc.). To apply the inequality (1) in the nonparametric den-
sity estimation context, it is usually sufficient that the remainder rn were
smaller in order than the standard nonparametric MISE rates, for example,
rn = (log n)a/n for some a > 0. This will be the case in the result that we
prove below.

In order to define a specific aggregation algorithm, we split the sample
X1, . . . , Xn into two parts: I1, used for constructing “base” estimators pN ,
and I2, used for their aggregation. Let n1 = Card(I1), n2 = Card(I2),
n = n1 + n2. We select Ñ using the rule:

Ñ = arg min
1≤N≤M

JN , (2)

where

JN = − 2

n2

∑

I2

pN (Xi) +

∫
p2
N . (3)

Here and later we abbreviate
∑

Xi∈I2 =
∑

I2
. Note that, because sub-

samples I1 and I2 are independent,

E

(
1

n2

∑

I2

pN (Xi)

)
= E

(∫
pN (x)p(x)dx

)
. (4)
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Therefore, JN is such that

E(JN ) = E‖p− pN‖2 − ‖p‖2, N = 1, . . . ,M,

i.e. JN is an unbiased estimator of the MISE of pN , up to the summand
‖p‖2 free from N .

To state the aggregation theorem, we need the following assumptions.

Assumption 1. There exist finite positive constants a1, a2, and C1, C2

such that
M∑

N=1

E‖pN − p‖ ≤ C1n
a1 (5)

with M ≥ 2 satisfying

M ≥ C2n
a2 . (6)

Assumption 2. There exists a finite constant C3 and a constant γ0 ≤ 1/12
such that

M∑

N=1

E

[
‖pN − p‖∞ exp

(
−γ0 log7/4M

‖pN − p‖∞

)]
≤ C3 log2M, (7)

where ‖f‖∞ = supx∈D |f(x)| and D ∈ Rd is the support of the density p(·).

Assumption 3. The density p is uniformly bounded: there exists a con-
stant pmax <∞ such that ‖p‖∞ ≤ pmax.

Remark 1. Assumptions 1 – 3 are not very restrictive. First of all, note
that the (MS) aggregation has the largest oracle risk and the smallest
order of the remainder term among the three types of aggregation men-
tioned in the introduction (Tsybakov (2003), see also Bunea, Tsybakov
and Wegkamp (2004), where these issues are discussed for the regression
model). Therefore, it is not crucial to use (MS) aggregation when the
number M of base estimators is small, for example, when M grows as a
power of log n. In this case one can efficiently mimic more powerful convex
or linear oracles (Rigollet and Tsybakov (2004)). However, if the number
M of estimators to aggregate is polynomial in n or bigger, the remainder
terms of convex and linear aggregation become too large as compared to
the typical nonparametric MISE rates. This does not happen for the (MS)
aggregation remainder term. Therefore, the (MS) aggregation is the type
of aggregation which is especially important for polynomial M , explaining
why assumption (6) is natural.
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The assumption (5) is usually satisfied: it suffices to have the risks
E‖pN − p‖ uniformly bounded and M bounded by a power of n. Typically
pN are consistent with rates, and we have even a stronger bound.

Finally, Assumption 2 looks rather technical, but it is also quite a mild
one. For example, it is satisfied if

max
N=1,...,M

E
[
‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4M)

]
≤ log2M

M
, (8)

where I(·) denotes the indicator function. Below we give examples showing
that (8) is not a restrictive condition in density estimation. For instance,
a sufficient condition for (8) is that the probability P(‖pN − p‖∞ > t)
decreases exponentially in t, as t → ∞ (an example is given in Section 3),
but often it suffices to check a weaker and quite natural condition that the
deviation of the stochastic part of the estimator P(‖pN − EpN‖∞ > t) is
exponentially small (see the example below).

To show that (8) implies (7), define the event W = {‖pN − p‖∞ ≤
γ0 log3/4M} and write

E

[
‖pN − p‖∞ exp

(
−γ0 log7/4M

‖pN − p‖∞

)]

≤ γ0

M
log3/4M + E

[
‖pN − p‖∞ exp

(
−γ0 log7/4M

‖pN − p‖∞

)
I(W c)

]

≤ γ0

M
log3/4M + E

[
‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4M)

]
.

Consider a simple example illustrating that (8) is indeed a mild assumption:
let p be supported on [0, 1] and let pN be a kernel density estimator with
bandwidth hN > 0 and with a bounded Lipschitz continuous kernel K ≥ 0
such that

∫
K = 1:

pN (x) =
1

n1hN

∑

i∈I1
K

(
Xi − x

hN

)
, N = 1, . . . ,M.

Then, clearly, ‖EpN‖∞ ≤ pmax and ‖pN‖∞ ≤ D1/hmin where D1 >
0 is a constant and hmin = min{h1, . . . , hM}. Hence ‖pN − p‖∞ ≤
2pmax + ‖pN − EpN‖∞ and ‖pN − p‖∞ ≤ D1/hmin + pmax, so

that we get E
[
‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4M)

]
≤ (D1/hmin +

pmax)P(‖pN − EpN‖∞ > D2 log3/4M) with some constant D2 >
0. Now, using Bernstein’s inequality, the Lipschitz condition on K
and bounding ‖pN − EpN‖∞ by the maximum over a fine enough
grid on [0, 1] with step n−α

1 for some large enough α > 0 we get

the bound on the probability P(‖pN − EpN‖∞ > D2 log3/4M) ≤
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D3n
α
1 exp(−D4n1hN log3/4M) ≤ D3n

α
1 exp(−D4n1hmin log3/4M) with

some constants D3, D4 > 0. Finally, if M ≍ na1 with a > 0 and if

the bandwidths are such that hmin ≥ n−1
1 log3/4 n1 we get the bound

E
[
‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4M)

]
≤ D5M

a′ exp(−D6 log3/2M)

with some constants D5, D6, a
′ > 0, which implies (8) for n1 large enough.

Thus, Assumption 2 holds under quite standard conditions on the kernel
K and on the bandwidths hN .

Theorem 1. If n2 = ⌊ cn
logM ⌋ for some constant c > 0 such that 1 ≤ n2 < n,

then, under Assumptions 1 – 3, we have

E‖pÑ − p‖2 ≤
(

1 +
C∗

log1/4M

)
min

1≤N≤M
E‖pN − p‖2 + C∗ log3M

n
, (9)

where C∗ > 0 is a constant which depends only on pmax, a1, a2, C1, C2, C3, c.

Proof. Note first that, by definition, JÑ ≤ JN for all 1 ≤ N ≤ M . Using
this and (4), we have

E‖pÑ − p‖2 − E‖pN − p‖2

= E

(
−2

∫
ppÑ +

∫
p2
Ñ

)
− E

(
− 2

n2

∑

I2

pN (Xi) +

∫
p2
N

)

= E(JÑ ) − E(JN ) + E

(
2

n2

∑

I2

pÑ(Xi) − 2

∫
ppÑ

)

≤ 2E

(
1

n2

∑

I2

pÑ (Xi) −
∫
ppÑ

)

= 2E[ZÑ ], (10)

where

ZN ,
1

n2

∑

I2

(pN (Xi) − p(Xi)) −
(∫

ppN −
∫
p2

)
.

Set WN = γ(‖pN − p‖2 + r), where r = (logM)2/n2 and γ > 0 will be
chosen later. Denoting by I(A) the indicator of a set A, we have

E(|ZÑ |)≤E(|ZÑ |I(|ZÑ | < WÑ )) + E(|ZÑ |I(|ZÑ | ≥WÑ ))

≤γE[‖pÑ − p‖2 + r] + E(|ZÑ |I(|ZÑ | ≥WÑ ))

≤γE‖pÑ − p‖2 + γr +

M∑

N=1

E(|ZN |I(|ZN | ≥WN )). (11)

Now,

E(|ZN |I(|ZN | ≥WN )) = E{E[|ZN |I(|ZN | ≥WN )|I1]}. (12)
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Note that ZN = n−1
2

∑
I2

[ζiN − E(ζiN |I1)] where, for fixed subsample I1,
the random variables ζiN = pN (Xi) − p(Xi), Xi ∈ I2, are i.i.d., and

E(ζiN |I1)=
∫
ppN −

∫
p2,

E(ζ2
iN |I1)=

∫
(pN (x) − p(x))2p(x)dx ≤ pmax‖pN − p‖2,

by Assumption 3. To evaluate (12) we will use Bernstein’s inequality (see,
e.g., Serfling (1980)):

P(|ZN | ≥ t|I1)≤2ρ(t) for all t > 0,
where

ρ(t) = exp

(
− n2t

2

2pmax‖pN − p‖2 + 2t‖pN − p‖∞/3

)
.

We have

E[|ZN |I(|ZN | ≥WN )|I1]=WNP(|ZN | ≥WN |I1) +

∫ ∞

WN

P(|ZN | ≥ t|I1)dt

≤A0 +A1, (13)
where

A0 = 2WNρ(WN ) and A1 = 2

∫ ∞

WN

ρ(t)dt.

We first bound from above the integral A1. Consider the following two sets:
T1 = {t > 0 : t‖pN − p‖∞ ≤ 3pmax‖pN − p‖2},
T2 = {t > 0 : t‖pN − p‖∞ > 3pmax‖pN − p‖2}.

On T1 we evaluate:

ρ(t) ≤ exp

(
− n2t

2

4pmax‖pN − p‖2

)
, for all t ∈ T1, (14)

while on T2:

ρ(t) ≤ exp

(
− 3n2t

4‖pN − p‖∞

)
, for all t ∈ T2. (15)

Consider first the set T1. Setting u = t
√
n2/(

√
2pmax ‖pN − p‖) and

W
′

N = WN
√
n2/(

√
2pmax ‖pN − p‖), we get

A11,

∫ ∞

WN

exp

(
− n2t

2

4pmax‖pN − p‖2

)
I(t ∈ T1)dt

≤
√

2pmax ‖pN − p‖√
n2

∫ ∞

W
′

N

e−u
2/2du

≤C
√
pmax ‖pN − p‖√

n2

exp(−(W
′

N )2/2)

=C

√
pmax ‖pN − p‖√

n2

exp

(
− n2W

2
N

4pmax‖pN − p‖2

)

≤C
√
pmax
n2

‖pN − p‖ exp

(
−γ

2 log2M

pmax

)
,



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

240 A. Samarov & A. Tsybakov

where we have used WN ≥ 2γ(logM)‖pN −p‖/√n2, and C, here and later,
denotes a positive constant, not always the same.

Consider now the set T2. Setting W
′′

N = 3n2WN/(4‖pN − p‖∞), we find

A12,

∫ ∞

WN

exp

(
− 3n2t

4‖pN − p‖∞

)
I(t ∈ T2)dt

≤4‖pN − p‖∞
3n2

∫ ∞

W
′′

N

e−udu

=
4‖pN − p‖∞

3n2
exp

(
− 3n2WN

4‖pN − p‖∞

)

≤4‖pN − p‖∞
3n2

exp

(
− 3γ log2M

4‖pN − p‖∞

)
,

where we have used WN ≥ γ(logM)2/n2. Therefore we have

A1 ≤ 2(A11 +A12)≤C
√
pmax
n2

‖pN − p‖ exp

(
−γ

2 log2M

pmax

)

+
8‖pN − p‖∞

3n2
exp

(
− 3γ log2M

4‖pN − p‖∞

)
. (16)

We turn now to the evaluation of A0. The argument here is similar to that
used above. If WN ∈ T1, then using (14) and the inequality x exp(−x2) ≤
exp(−x2/2), for all x > 0, we get

A0≤2WN exp

(
− n2W

2
N

4pmax‖pN − p‖2

)

≤4

√
pmax
n2

‖pN − p‖ exp

(
− n2W

2
N

8pmax‖pN − p‖2

)

≤4

√
pmax
n2

‖pN − p‖ exp

(
−γ

2 log2M

2pmax

)
. (17)

Similarly, if WN ∈ T2, then using (15) and the inequality x exp(−x) ≤
exp(−x/2), for all x > 0, we find

A0≤2WN exp

(
− 3n2WN

4‖pN − p‖∞

)

≤8‖pN − p‖∞
3n2

exp

(
− 3n2WN

8‖pN − p‖∞

)

≤8‖pN − p‖∞
3n2

exp

(
− 3γ log2M

8‖pN − p‖∞

)
. (18)
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Returning now to (12) and (13) and using (16) – (18), we obtain

E(|ZN |I(|ZN | ≥WN ))≤E(A0) + E(A1)

≤ C√
n2

exp(−C−1γ2 log2M)E‖pN − p‖

+
C

n2
E

[
‖pN − p‖∞ exp

(
− 3γ log2M

8‖pN − p‖∞

)]
.

This together with (11) gives

2E(|ZÑ |)≤2γ

(
E‖pÑ − p‖2 +

log2M

n2

)

+
C√
n2

exp(−C−1γ2 log2M)

M∑

N=1

E‖pN − p‖

+
C

n2

M∑

N=1

E

[
‖pN − p‖∞ exp

(
− 3γ log2M

8‖pN − p‖∞

)]

,2γE‖pÑ − p‖2 + R. (19)

From (19) and (10) we get

(1 − 2γ)E‖pÑ − p‖2 ≤ E‖pN − p‖2 + R,

and, with 0 < γ < 1/4,

E‖pÑ − p‖2 ≤ (1 + 4γ)E‖pN − p‖2 + (1 + 4γ)R.

Set now γ = (8γ0/3)(logM)−1/4 where γ0 ≤ 1/12 is the constant in As-
sumption 2. Then 0 < γ ≤ 2(log 2)−1/4/9 < 1/4 for all M ≥ 2, and we
have the following bound on the remainder term R defined in (19):

R≤C
{

log7/4M

n2
+

1√
n2

exp(−C−1 log3/2M)

M∑

N=1

E‖pN − p‖

+
1

n2

M∑

N=1

E

[
‖pN − p‖∞ exp

(
−γ0 log7/4M

‖pN − p‖∞

)]}
.

The theorem follows from the last two displays by applying Assumptions 1
and 2.

Remark 2. Inspection of the proof shows that Assumption 2 can be
slightly generalized and the remainder term (logM)3/n in (9) can be re-
duced to (logM)1+ε/n for an arbitrarily small ε > 0. To obtain this, it
suffices to fix an arbitrarily small ν > 0, to replace log2M by (logM)1+ν

in the definition of r, and to take γ ≍ (logM)−ν
′

with ν′ < ν/2,

n2 = ⌊cn/(logM)ν⌋. Then log7/4M and log2M in (7) can be replaced
by (logM)1+ν−ν

′

and (logM)1+2ν−ν′

, respectively. We did not include
these extensions in Theorem 1, because they require more notation but
seem not to be crucial for application of the result.
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3 Application to a dimensionality reduction model

Let X1, . . . , Xn be i.i.d. random vectors with common probability density
p on Rd, d ≥ 2. We consider the problem of nonparametric estimation of
the density p assuming that it has the form

p(x) ≡ fB(x) , φd(x)g(B
T x), x ∈ Rd, (20)

where B is an unknown d×mmatrix with orthonormal columns, 1 ≤ m ≤ d,
the function g : Rm → [0,∞) is unknown, and φd(·) is the density of the
standard d-variate normal distribution. Our goal is to show, using Theorem
1, that one can estimate the density (20), without knowing B and m, with
the same rate as the optimal rate attainable when B and m are known.

Note that the representation (20) is not unique. In particular, if Qm
is an m ×m orthogonal matrix, the density p in (20) can be rewritten as
p(x) = φd(x)g1(B

T
1 x) with g1(y) = g(Qmy) and B1 = BQm. However,

the linear subspace M spanned by the columns of B is uniquely defined by
(20). By analogy with regression models, e.g. Li (1991), Hristache, et al.
(2001), we will call M the index space. In particular, if the dimension of
M is 1, (20) can be viewed as a density analog of the single index model
in regression. In general, if the dimension of M is arbitrary, we call (20)
the multiple index model. The directions where the density of projections
of Xi is standard normal are interpreted as non-interesting (“pure noise”
directions).

The model (20) can be viewed as a modification of the projection pursuit
density estimation (PPDE) model, e.g. Huber (1985). A common PPDE
model corresponds to the special case of (20) where the function g can be
represented as a product of densities corresponding to one-dimensional pro-
jections. In this case, the density can be estimated with one-dimensional
rate (Samarov and Tsybakov (2004)), and thus the dimension reduction
principle is realized. Models similar to (20) also arise in biased, or weighted,
sampling, where a direct sampling from a density f is, for some reason, im-
possible, and an observation X = x from f may be available with a relative
probability proportional to a so-called biasing function w(x). The biased
observations have the density p(x) = f(x)w(x)/

∫
w(x)f(x)dx, and a typi-

cal problem in biased estimation is: having observations from p, estimate f ,
when w(·) is known, e.g. Cox (1969), Patil and Rao (1977). In our setting,
f = φd is known while the biasing function has the form g(BTx) and is
unknown, and our goal is to estimate p(·).

When the dimension m and an index matrix B (i.e. any of the matrices,
equivalent up to an orthogonal transformation, that define the index space
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M) are specified, the density (20) can be estimated using a kernel estimator

p̂m,B(x) =
φd(x)

φm(BTx)

1

nhm

n∑

i=1

K

(
BT (Xi − x)

h

)
, (21)

with appropriately chosen bandwidth h > 0 and kernel K : Rm → R1. We
will assume the following.

Assumption 4. The function g : Rm → [0,∞) in (20) is
bounded on Rm with its gradient ∇g and Hessian ∇2g, so that
max{g(z), |∇g(z)|m, ‖∇2g(z)‖2} ≤ Lg, for all z ∈ Rm, where Lg is a con-

stant, | · |m denotes the Euclidean norm in Rm and ‖A‖2 = Tr1/2(AAT )
denotes the Frobenius norm of the matrix A.

Assumption 5. The kernel K : Rm → R1 is a bounded function supported
on [−1, 1]m and such that

∫
Rm K(t)dt = 1 and

∫
Rm K(t)tjdt = 0, j =

1, . . . ,m, where tj is the jth component of t ∈ Rm.
Kernels satisfying Assumption 5 can be easily constructed as products

of m one-dimensional kernels.
We first suppose that the dimensionm and an index matrix B are known

and establish the rate of convergence of the estimator (21).

Proposition 1. Let the density p be of the form (20) with g satisfying
Assumption 4. Then, for the estimator (21) with kernel K satisfying As-
sumption 5, we have the following bounds on the L2-bias and variance terms

‖E(p̂m,B) − p‖2≤C4h
4, (22)

E
(
‖E(p̂m,B) − p̂m,B‖2

)
≤ C5

nhm
. (23)

Here 0 < h ≤ h0 with some h0 <∞ and any integer n ≥ 1 and C4 and C5

are constants depending only on d, Lg, h0 and on Kmax , supz∈Rm |K(z)|.

Proof. For every x ∈ Rd, the expectation of p̂m,B(x) can be written as
follows:

E(p̂m,B(x))

=
φd(x)

hmφm(BTx)

∫

Rd

K

(
BT (y − x)

h

)
φd(y)g(B

T y)dy

=
φd(x)

hmφm(BTx)

∫

Rd−m

[∫

Rm

K

(
u−BTx

h

)
φm(u)g(u)du

]
φd−m(v)dv

(24)

with new variables u = BT y and v = B̃T y, where B̃ is a d× (d−m) matrix
with orthonormal columns such that (B|B̃) is a d × d orthogonal matrix.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

244 A. Samarov & A. Tsybakov

Making in (24) the change of variables t = (u − BTx)/h, we find that the
bias of p̂m,B(x) equals

E(p̂m,B(x)) − p(x)=
φd(x)

φm(BTx)

∫

Rm

K(t)φm(BTx+ th)g(BTx+ th)dt

− φd(x)g(B
T x), (25)

and, under the above assumptions about g and K, the standard Taylor
expansion argument gives

‖E(p̂m,B) − p‖2 =

∫

Rd

(E(p̂m,B(x)) − p(x))2dx

=

∫

Rd

(
φd(x)

φm(BTx)

∫

Rm

K(t)
h2

2
tTD(BTx+ a∗t)t dt

)2

dx, (26)

where 0 ≤ a∗ ≤ h and D(z) = ∇2(φm(z)g(z)) = [(zzT − Im)g(z) −
∇g(z)zT − z∇T g(z) + ∇2g(z)]φm(z). Here and in what follows Im stands
for the identity matrix of dimension m. Using Assumption 4 and the fact
that a∗ ≤ h0, we get

tTD(BTx+ a∗t)t≤CLg|t|2m(1 + h2
0|t|2m + |BTx|2m)φm(BTx+ a∗t)

≤CLg|t|2m(1 + h2
0|t|2m + |BTx|2m) exp(|BTx|mh0|t|m)

× φm(BTx),

with some constant C > 0. BecauseK(t) has bounded support, (22) follows
from (26). For the variance term, we have

V ar(p̂m,B(x))=
φ2
d(x)

nh2mφ2
m(BTx)

V ar

(
K

(
BT (X − x)

h

))

≤ 1

(2π)d−mnh2m
exp(−xT (Id −BBT )x)

×
∫

Rd

K2

(
BT (y − x)

h

)
φd(y)g(B

T y)dy

≤ Lg
(2π)d−mnh2m

∫

Rd

K2

(
BT (y − x)

h

)
φd(y)dy,

and after making the same changes of variables as for the bias, we obtain

E
(
‖E(p̂m,B) − p̂m,B‖2

)
=

∫

Rd

V ar(p̂m,B(x))dx = O(n−1h−m).

Consider the mean integrated mean squared error (MISE) of the esti-
mator p̂m,B:

MISE(p̂m,B, p) , E‖p̂m,B − p‖2 ≡ E‖p̂m,B − fB‖2. (27)
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Proposition 1 implies that, under Assumptions 4 and 5,
MISE(p̂m,B, p) = O(n−4/(m+4)), (28)

if the bandwidth h is chosen of the order h ≍ n−1/(m+4). Using the standard
techniques of the minimax lower bounds (e.g. Tsybakov (2004)), it is easy
to show that the rate n−4/(m+4) given in (28) is the optimal MISE rate for
the model (20) on the class of densities p defined by Assumption 4, and
thus the estimator p̂m,B with h ≍ n−1/(m+4) has the optimal rate for this
class of densities.

Consider now the case where the dimension m and the index matrix
B are unknown. We will use the procedure of Section 2 to aggregate esti-
mators of the type (20) corresponding to candidate pairs (m,B) = (k,A)
with k = 1, . . . , d and with A that runs over a finite net on the set of all
admissible d×k index matrices. The latter is the set Bk of all d×k matrices
A with orthonormal columns. This set is bounded in the Frobenius norm
‖A‖2 = Tr1/2(AAT ). Consider an ǫ-net Qk on Bk constructed using the
Frobenius norm. Note that orthogonal transformations preserve the norm,
so that both estimators (21) and the ǫ-net Qk are invariant under orthog-
onal transformations, and thus are not affected by the non-uniqueness of
representation (20). The set Bk is bounded and can be imbedded in Rs

with s = k(d− (k+ 1)/2), and therefore we can construct an ǫ-net Qk with
cardinality

Card(Qk) = O(ǫ−k(d−(k+1)/2)), (29)
e.g. Wellner and van der Vaart (1996). Doing this for k = 1, . . . , d, we
obtain a collection Q1, . . . , Qk of ǫ-nets with the property (29) each, and in
what follows we set ǫ = n−a with a > 2/5 for all k = 1, . . . , d.

We can now define the aggregate. As in Section 2, we split the sample
X1, . . . , Xn into two parts, I1 and I2 with n1 = Card(I1), n2 = Card(I2),
n = n1 + n2. From the first subsample we construct estimators

p̂k,A(x) =
φd(x)

φk(ATx)

1

n1hkk

∑

I1

K

(
AT (Xi − x)

hk

)
, k = 1, . . . , d, A ∈ Qk,

(30)
where hk ≍ n−1/(k+4). These estimators are of the form (21), but here we
plug in k and A that are not necessarily equal to the true unknown values
m and B and we use only the first subsample I1. Nevertheless, we preserve
the same notation as in (21) since this will not cause ambiguity.

Let now pÑ be the aggregate defined as in (2) and (3) using as
{p1, . . . , pM} the collection of estimators {p̂k,A, k = 1, . . . , d, A ∈ Qk} of the

form (30) with bandwidths hk ≍ n− 1
k+4 and ǫ-nets Qk such that ǫ = n−a,

a > 2/5. In view of (29), the cardinality M of this set of estimators is

M ≍
d∑

k=1

nak(d−(k+1)/2) ≍ nad(d−1)/2. (31)
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In this case, the aggregate pÑ of (2) and (3) can be written in the form

p̂k̃,Ã where (k̃, Ã) are given by

(k̃, Ã) = arg min
k=1,...,d,A∈Qk

(
− 2

n2

∑

I2

p̂k,A(Xi) +

∫
p̂2
k,A

)
. (32)

We can now state the main result of this section.

Theorem 2. Let Assumptions 4 and 5 hold and let n2 = ⌊ cn
logn⌋ for some

constant c > 0 such that 1 ≤ n2 < n. Assume in addition that the kernel
K(·) is Lipschitz continuous. Then for the aggregate p̂k̃,Ã we have

E‖p̂k̃,Ã − p‖2 = O(n−4/(m+4)), (33)

as n → ∞, so that p̂k̃,Ã estimates p with the best rate attainable when
dimension m and matrix B are known.

Proof. We first verify the assumptions of Theorem 1. Clearly, As-
sumption 4 implies Assumption 3. With a bounded kernel K, ‖p̂k,A− p‖ ≤
Ch−kk = O(nk/(k+4)), so that Assumption 1 holds with a1 = d/(d + 4) +
ad(d− 1)/2 and a2 = ad(d− 1)/2.

In order to verify Assumption 2, we will show that (8) holds for estima-
tors pN = p̂k,A with k = 1, . . . , d and A ∈ Qk.

Proof of (8). For any estimator p̂k,A we have ‖p̂k,A − p‖∞ ≤ ‖p̂k,A −
E(p̂k,A)‖∞ + ‖E(p̂k,A) − p‖∞, so that (25), written with p̂k,A instead of
p̂m,B, implies that ‖p̂k,A−p‖∞ ≤ ‖p̂k,A−E(p̂k,A)‖∞+C for some constant
C > 0 which depends on g but not on k and A. Therefore we have

E[‖p̂k,A − p‖∞I(‖p̂k,A − p‖∞ > γ0 log3/4M)]

≤ E[(‖p̂k,A − E(p̂k,A)‖∞ + C)I(‖p̂k,A − E(p̂k,A)‖∞ > γ0 log3/4M − C)].

(34)

Note that, for any x ∈ Rd,

p̂k,A(x) − E(p̂k,A(x)) = (2π)−(d−k)/2 exp(−xT (Id −AAT )x/2)
∑

I1

ζi,n(z),

(35)
where z = ATx and

ζi,n(z) = ζ′i,n(z) − E(ζ′i,n(z)), ζ′i,n(z) =
1

n1hkk
K

(
ATXi − z

hk

)
.

Introduce the truncated variables

ξi,n(z) = ξ′i,n(z) − E(ξ′i,n(z)),

ξ′i,n(z) =
1

n1hkk
K

(
ATXi − z

hk

)
I(|Xi|d ≤ logn),
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and note that

P(|X1|d > logn) ≤ C(logn)d exp

(
− log2 n

2

)
, (36)

where the constant C depends only on gmax and d. This follows from the
relations

P(|X1|d > logn)=

∫

Rd

I(|x|d > logn)φd(x)g(B
T x)dx

≤gmax

∫

|x|d>logn

φd(x)dx,

followed by evaluation of the tail of d-dimensional standard normal distri-
bution. Consider the random event A = {|Xi|d ≤ logn, i = 1, . . . , n}. In
view of (36), the probability of the complementary event satisfies

P(Ac) ≤ Cn(logn)d exp

(
− log2 n

2

)
. (37)

Using (35) and the fact that Id −AAT ≥ 0 for all matrices A ∈ Bk, we get

‖p̂k,A − E(p̂k,A)‖∞ ≤ (2π)−(d−k)/2 sup
z∈Ek

∣∣∣
∑

I1

ζi,n(z)
∣∣∣,

where Ek is the linear subspace of Rd spanned by the columns of A. Now,
(36) implies that for any D > 0 there exists a constant C depending only
on gmax, Kmax and d, such that E|ζ′i,n(z) − ξ′i,n(z)| ≤ Cn−D. Therefore,

‖p̂k,A−E(p̂k,A)‖∞ ≤ (2π)−(d−k)/2 sup
z∈Ek

∣∣∣
∑

I1

[
ζ′i,n(z)−E(ξ′i,n(z))

]∣∣∣+Cn−D.

(38)
Setting

η , sup
z∈Ek

∣∣∣
∑

I1

[
ζ′i,n(z) − E(ξ′i,n(z))

]∣∣∣,

we note that, in view of the inequalities (31), (34) and (38), to prove (8) it
is enough to show that

P(η > C log3/4 n) + E[ηI(η > C log3/4 n)] ≤ log2M

M
. (39)

We will in fact prove a stronger result, namely, that the left-hand side
of (39) decreases faster than any power of n. Since on the event A it holds
that ζ′i,n(z) = ξ′i,n(z) for all z ∈ Rk, we obtain

P(η > s)≤P(Ac) + P

(
sup
z∈Ek

∣∣∣
∑

I1

ξi,n(z)
∣∣∣ > s

)

=P(Ac) + P

(
sup

z∈S∩Ek

∣∣∣
∑

I1

ξi,n(z)
∣∣∣ > s

)
, (40)



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

248 A. Samarov & A. Tsybakov

where the last equality is due to the fact that ξ′i,n(z) = 0 for all z 6∈ S, with

S = {x ∈ Rd : |x|d ≤ 1 + logn}.
As kernel K is Lipschitz continuous, we get

∣∣∣
∑

I1

(ξi,n(z) − ξi,n(y))
∣∣∣ ≤ CLh

−(k+1)
k |z − y|d, ∀ z, y ∈ Ek, (41)

where CL is a constant. Next, fix some δ > 0, and let z1, ..., zL be a δ-net
in Euclidean metric on the bounded set S ∩ Ek such that L ≤ C( log n

δ )d.
Clearly, a δ-net of cardinality L satisfying the latter inequality exists, since
the cardinality of the minimal δ-net on the larger set S is of the order

( logn
δ )d. In view of (41), we have, for s > 2CLδh

−(k+1)
k ,

P

(
sup

z∈S∩Ek

∣∣∣
∑

I1

ξi,n(z)
∣∣∣ > s

)
≤P

(
max

1≤j≤L

∣∣∣
∑

I1

ξi,n(zj)
∣∣∣ > s/2

)

≤L sup
z∈S∩Ek

P

(∣∣∣
∑

I1

ξi,n(z)
∣∣∣ > s/2

)
. (42)

We have E(ξi,n(z)) = 0 and supz∈S∩Ek |ξi,n(z)| ≤ c1n
−1
1 h−kk , for some

constant c1 > 0. Also, using (20) and Assumption 4, we find

V ar(ξi,n(z))≤Eζ′ 2
i,n(z) =

1

n2
1h

2k
k

∫

Rd

K2

(
AT y − z

hk

)
fB(y)dy

≤ Lg

n2
1h

2k
k

∫

Rd

K2

(
AT y − z

hk

)
φd(y)dy

=
Lg

n2
1h
k
k

∫

Rk

K2(t)φk(thk + z)

[∫

Rd−k

φd−k(u)du

]
dt

with new variables t = (AT y−z)/hk and u = ÃT y, where Ã is a d× (d−k)
matrix with orthonormal columns such that (A|Ã) is a d × d orthogonal
matrix. Therefore we have supz∈S∩Ek V ar(ξi,n(z)) ≤ c2n

−2
1 h−kk , for some

constant c2 > 0.
Choosing now δ = hk+1

k , applying in (42) the Bernstein inequality and
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recalling that hk ≍ n− 1
k+4 , n1 = n− n2 = n(1 + o(1)) we get, for s > 2CL,

P

(
sup

z∈S∩Ek

∣∣∣
∑

I1

ξi,n(z)
∣∣∣ > s

)

≤ 2L exp

(
− (s/2)2

2c2n
−1
1 h−kk + c1n

−1
1 h−kk s/3

)

≤ C

(
logn

δ

)d
exp

(
− s2n1h

k
k

8c2 + 2c1s

)

≤ C(log n)dn
d(k+1)
k+4 exp

(
−s

2n4/(k+4)(1 + o(1))

8c2 + 2c1s

)

≤ C(log n)dn
d(d+1)
d+4 exp

(
−s

2n4/(d+4)

C(1 + s)

)
, (43)

where the last inequality is valid for n large enough. From (40), (37) and
(43) we deduce that, for n large enough,

P(η > C log3/4 n)≤C(log n)d
[
n exp

(
− log2 n

2

)

+ n
d(d+1)
d+4 exp

(
−n

4/(d+4) log3/4 n

C

)]
. (44)

On the other hand, η ≤ 2Kmaxh
−k
k = O(nk/(k+4)) = O(nd/(d+4)), and

therefore E[ηI(η > C log3/4 n)] ≤ O(nd/(d+4))P(η > C log3/4 n). This
inequality and (44) combined with (31) prove that (39) holds for n large
enough. The proof of (8) is thus complete.

All the assumptions of Theorem 1 are therefore satisfied. Applying
Theorem 1 we get the oracle inequality

E‖p̂k̃,Ã − p‖2 ≤
(

1 +
C∗

log1/4 n

)
min

k=1,...,d
min
A∈Qk

MISE(p̂k,A, p) + C∗ log3 n

n
.

To complete the proof of Theorem 2, we now show that

min
k=1,...,d

min
A∈Qk

MISE(p̂k,A, p) = O(n−4/(m+4)). (45)

In fact,

min
k=1,...,d

min
A∈Qk

MISE(p̂k,A, p) ≤MISE(p̂m,B∗ , p), (46)

where B∗ is a matrix in Qm closest to B in the Frobenius norm, and thus
satisfying ‖B∗ −B‖2 ≤ ǫ. We have (recall that p ≡ fB)

‖p̂m,B∗ − p‖2≤2(‖p̂m,B∗ − fB∗‖2 + ‖fB∗ − p‖2)

=2(‖p̂m,B∗ − fB∗‖2 + ‖fB∗ − fB‖2). (47)
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It follows from (27) and (28) that

E‖p̂m,B∗ − fB∗‖2 = O(n−4/(m+4)). (48)

(Note that we proved (28) for the estimator (21), while here the estimator
p̂m,B∗ is defined by (30) and based on the sample of size n1; nevertheless
the result remains valid, since n1 = n(1 + o(1)).) Using (48) and applying
Assumption 4 to bound from above the last summand in (47), we obtain

MISE(p̂m,B∗ , p) ≤ b1n
−4/(m+4) + b2ǫ

2

with some constants b1, b2. Since ǫ = n−a with a > 2/5 ≥ 2/(m+4) we get
MISE(p̂m,B∗ , p) = O(n−4/(m+4)). Together with (46) this implies (45).

Remark 3. The aggregate estimator for model (20) suggested here auto-
matically accomplishes dimension reduction. In fact, if the unknown true
dimension m is small, it achieves the rate O(n−4/(m+4)) that can be much
faster than the best attainable rate O(n−4/(d+4)) for a model of full dimen-
sion. The aggregate can be interpreted as an adaptive estimator, but in
contrast to adaptation to unknown smoothness usually considered in non-
parametrics, here we deal with adaptation to unknown dimension m and
to the index space M determined by a matrix B. The procedure provides
explicit estimates (k̃, Ã) of (m,B) that are optimal in the sense of Theorem
2. The tools of this paper do not allow us, however, to evaluate how close
is (k̃, Ã) to (m,B) (or, equivalently, how close is the estimated index space
to the true one M).
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Chapter 13

A STURM-LIOUVILLE PROBLEM IN SEMIPARAMETRIC

TRANSFORMATION MODELS

Chris A.J. Klaassen

Korteweg-de Vries Institute for Mathematics
University of Amsterdam, Amsterdam, THE NETHERLANDS

E-mail: chrisk@science.uva.nl

A general class of semiparametric transformation models is considered.
A second order differential equation of Sturm-Liouville type is derived
that determines the semiparametric information on the Euclidean pa-
rameter involved. Under quite general conditions properties are proved
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1 Introduction

We will discuss a quite general class of semiparametric transformation mod-
els, which includes the famous Cox proportional hazards model. To describe
this class of models we start out with a model for the random vector (T, Z) ,
the so-called core model. The random variable T lives on the closed inter-
val [a, b] ⊂ R with −∞ ≤ a < b ≤ ∞ . Let Z have distribution Q on some
measurable space Z . The parameter space Θ will be an open subset of R

d .
Denote the conditional distribution function of T at t given Z = z by

F0(t | z, θ) , t ∈ [a, b] , z ∈ Z , θ ∈ Θ . (1)

This conditional distribution function is assumed to be continuous in its
argument t . If the distribution Q of Z is unknown and belongs to some
parametric or nonparametric class Q of distributions, then the core model
is called parametric or semiparametric, respectively.

We observe i.i.d. copies of (Y, Z) with ψ(Y ) = T , where ψ : [a, b] →
[a, b] is a nondecreasing transformation that is onto. Consequently, the
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conditional distribution function F (y | z, θ, ψ) of Y given Z = z at y equals

F (y | z, θ, ψ) = F0(ψ(y) | z, θ) , y ∈ [a, b] , z ∈ Z , θ ∈ Θ . (2)

Both the Euclidean parameter θ and the transformation ψ are unknown to
the statistician. With ψ varying over a nonparametric function class, we
have a semiparametric transformation model here, even if the core model
is parametric. In order to avoid identifiability problems, we have to and
do assume that Z is nondegenerate. Indeed, if Z would be degenerate, the
only observable containing information about the parameters would be Y .
However, the probability integral transform yields a transformation that
turns Y into a uniformly distributed random variable, whatever θ . This
argument shows that θ and ψ would be confounded for Z degenerate and
hence that θ would not be identifiable.

Note that, for

F0(t | z, θ) = 1 − exp
{
−eθTzt

}
, t ∈ [0,∞] , z ∈ R

d , θ ∈ R
d , (3)

our model leads to

F (y | z, θ, ψ) = 1 − exp
{
−eθT zψ(y)

}
, y ∈ [0,∞] , z ∈ R

d , θ ∈ R
d ,

with ψ(0) = 0 , ψ(∞) = ∞ , and ψ nondecreasing. This is the condi-
tional distribution function of the famous Cox proportional hazards model
with regression parameter θ and baseline cumulative hazard function ψ .
In the corresponding core model, T has an exponential distribution with
parameter exp{θT z} , given Z = z . In order to explain population hetero-
geneity, one might introduce an unobservable “frailty” parameter η into
the core model (3), thus T being exponentially distributed with parameter
η exp{θT z} , given Z = z . Clayton and Cuzick (1985) suggested to take η
random with a gamma distribution with mean 1 and variance c ≥ 0 . Of
course, c = 0 leads back to (3), but in general the conditional distribution
function of T given Z = z is Pareto, to wit

F0(t | z, θ) = 1 −
{

1 + ceθ
T zt
}−1/c

, t ∈ [0,∞] , z ∈ R
d , θ ∈ R

d . (4)

Another important model that fits into this framework is a semipara-
metric generalization of the Box-Cox model F0(t|z, θ) = Φ(t− θT z) , where
Φ is the standard normal distribution function. So, if ǫ has a standard nor-
mal distribution we observe i.i.d. copies of (Y, Z) , where ψ(Y ) = θTZ + ǫ
holds with θ and ψ unknown.

A path-breaking analysis of the general transformation model (2) has
been given by Bickel (1986), who showed the connection to a Sturm-
Liouville problem within a hypothesis testing frame work. We shall demon-
strate this connection again within estimation and via a different route. In
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Section 2 we will describe the semiparametric Fisher information and its
natural relation to projection in the generic semiparametric model. Sec-
tion 3 shows that the projection of Section 2 for our transformation models
translates into the second order differential equation that gives rise to the
Sturm-Liouville problem of Bickel (1986). Properties of the solution to this
Sturm-Liouville problem that are relevant to semiparametric inference, are
proved in Section 4. These properties are derived under weaker conditions
than in Bickel (1986) and than in Sections 4.7 and 7.6 of Bickel, Klaassen,
Ritov and Wellner (1993). This is the main result of our paper, which thus
redeems the promises of the last sentences of Example 4.7.3, continuation
1, page 171, and of Section 7.6, page 382, of Bickel et al. (1993). The
final Section 5 applies these results to the Clayton-Cuzick frailty model
introduced above.

Interpretation of an estimate of the Euclidean parameter in our transfor-
mation model has to depend on an estimate of the unknown transformation.
In an unusually heated debate about the parametric Box-Cox model, it has
become clear that there is ample room for disagreement here. See Dok-
sum (1984) for a lucid exposition. Both the Box-Cox model and the Cox
proportional hazards model triggered research on semiparametric transfor-
mation models resulting in a long series of papers; we just mention Bickel
(1986), Doksum (1987), Dabrowska and Doksum (1988a,b), Murphy (1994,
1995), Murphy, Rossini, and van der Vaart (1997), Bickel and Ritov (1997),
Lenstra (1998), Dabrowska (2002), and Gørgens (2003).

2 Semiparametrics

In the preceding section we have introduced a semiparametric class of trans-
formation models. A basic issue in any semiparametric model is minimiza-
tion of Fisher information. We will discuss this issue here by an approach
that slightly differs from the one in Bickel et al. (1993). Consider a gen-
eral semiparametric model P parametrized by (θ,G), where θ ∈ Θ ⊂ R

d is
the Euclidean parameter and G the Banach parameter, which varies over
some large set G . Let X be a random quantity governed by some distri-
bution P(θ,G) ∈ P . By l(X | θ,G) we denote the loglikelihood of X at X
under (θ,G) with respect to some dominating measure and we assume that
we have a so-called regular parametric model in θ for each fixed G ∈ G .
This implies that there exists a score function l̇θ(X | θ,G) , which is a d-
vector of one-dimensional score functions, the derivatives with respect to
the components of θ of the loglikelihood; more precisely,

l̇θ(X | θ,G) =

(
∂

∂θi
l(X | θ,G)

)d

i=1

. (5)
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Regularity of the parametric submodel implies also that Θ is open and that
the Fisher information matrix

I(θ |G) = Eθ l̇θ(X | θ,G)l̇Tθ (X | θ,G) (6)

exists, is nonsingular, and is continuous in θ. Let G′ = {Gη ∈ G | η ∈ Θ} be
a surface in G such that for fixed θ the distributions of X with parameters
(θ,Gη) constitute a regular parametric model in η with score function

l̇η(X | θ, η ;G′) =

(
∂

∂ηi
l(X | θ,Gη)

)d

i=1

. (7)

Under additional regularity conditions

l(X | θ ;G′) = l(X | θ,Gθ) , θ ∈ Θ ,

are the loglikelihoods of a d-dimensional regular parametric family PG′ with
score functions

l̇θ(X | θ ;G′) = l̇θ(X | θ,Gθ) + l̇η(X | θ, η ;G′)
∣∣∣
η=θ

, θ ∈ Θ . (8)

Within PG′ ⊂ P the degree of difficulty for estimation based on X of θ ,
may be measured by the Fisher information matrix

I(θ | G′) = Eθ l̇θ(X | θ ;G′)l̇Tθ (X | θ ;G′) . (9)

Fix θ. A d-dimensional submodel PG(θ) for which the trace of this Fisher
information matrix is minimal at this θ under all d-dimensional submodels
PG′ of the above type that we wish to consider, is called least favorable
at θ , but need not exist. If the class of submodels PG′ is sufficiently rich,
minimization of this trace boils down to minimization in G′ for each j , j =
1, . . . , d , of

Eθ l̇
2
θj(X | θ ;G′) = Eθ

(
l̇θj(X | θ,Gθ) + l̇ηj(X | θ, η ;G′)

∣∣∣
η=θ

)2

. (10)

Note that the terminology ‘least favorable’ is natural for PG(θ) , since for
each component of the Euclidean parameter unbiased estimation at θ is
most difficult within PG(θ) , at least in principle, in view of the Cramér-Rao
inequality; a recent reference for this inequality is Lenstra (2005).

Within the Hilbert space L0
2(P(θ,Gθ)) of random variables with mean

zero and finite variance under (θ,Gθ), minimization of (10) is related to
projection as follows. Consider the closed linear span ṖG within L0

2(Pθ,Gθ )

of the components of the d-dimensional score functions l̇η(X | θ, η ;G′) |η=θ
that correspond to the d-dimensional submodels PG′ that we wish to con-
sider. Projection of l̇θj(X | θ,Gθ) on ṖG yields

Π

(
l̇θj(X | θ,Gθ)

∣∣∣∣ ṖG

)
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and consequently the semiparametric Fisher information matrix for θ sat-
isfies

min
PG′

Eθ l̇
2
θj(X | θ ;G′) ≥ Eθ

(
l̇θj(X | θ,Gθ) − Π

(
l̇θj(X | θ,Gθ)

∣∣∣∣ ṖG

))2

.

(11)
Quite often equality holds here for j = 1, . . . , d and the minimal value of the
trace of the Fisher information matrix may be determined via projection
on ṖG then.

In the i.i.d.-case we consider X = (X1, . . . , Xn) with X1, . . . , Xn i.i.d.
random variables. In view of

l(X | θ,G) =
n∑

i=1

ℓ(Xi | θ,G)

it makes sense to restrict attention to one random variable X that has
the same distribution as each of the Xi . It has loglikelihood ℓ(X | θ,G) .
Proceeding as above and adapting the notation in that the model P and a
submodel PG′ denote collections now of distributions of X in stead of X ,
we see that the minimal value of the trace of the Fisher information matrix
might still be determined via projection on ṖG . One calls the d-vector of
functions

ℓ∗(X | θ,Gθ) = ℓ̇θ(X | θ,Gθ) − Π

(
ℓ̇θ(X | θ,Gθ)

∣∣∣∣ ṖG

)
, (12)

where the projection is componentwise, the semiparametrically efficient
score function for θ. The terminology of ‘least favorable’ and ‘efficient’
is justified asymptotically as n→ ∞ by asymptotic versions of the Cramér-
Rao inequality, like the convolution theorem; see Bickel et al. (1993) for a
comprehensive exposition.

3 Efficient scores in transformation models

In this section the semiparametric transformation model (2) with core
model (1) is studied with T taking values in the interval [a, b] , −∞ ≤
a < b ≤ ∞ . We denote the class of transformations ψ by

Ψ = {ψ : [a, b] → [a, b] |ψ onto, absolutely continuous, derivative ψ′ ≥ 0} .
(13)

We assume that the conditional distribution function F0 has conditional
density p0 with respect to some dominating measure and that the loglike-
lihood

ℓ(t | z, θ) = log p0(t | z, θ) (14)
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is differentiable in θ ∈ Θ , an open subset of R
d, and continuously dif-

ferentiable in t ∈ (a, b) , and we denote the derivatives by ℓ̇(t | z, θ) (a
d-dimensional column vector of functions) and ℓ′(t | z, θ) , respectively. Fur-
thermore, we assume that

Eθ|ℓ̇(T |Z, θ)|2 <∞ , Eθ (ℓ′(T |Z, θ))2 <∞ , (15)

where | · | is the Euclidean norm in R
d . Fix the Euclidean parameter at

θ0 ∈ Θ , the transformation at ψ0 ∈ Ψ , and the distribution of the covariate
Z at Q0 ∈ Q , where Q denotes a class of nondegenerate distributions Q of
Z . The score function for θ at (θ0, ψ0, Q0) equals

∂

∂θ
log p(y | z, θ, ψ0, Q0)

∣∣∣∣
θ=θ0

= ℓ̇ (ψ0(y) | z, θ0) . (16)

Varying in the model (2) ψ ∈ Ψ and Q ∈ Q in a smooth way, one can
obtain ‘score functions’ for these infinite dimensional parameters also. To
this end we choose a smoothing function χ : R → (0, 2) that is differentiable
with derivative χ′ satisfying χ(0) = χ′(0) = 1 , 0 ≤ χ′ ≤ 1 , and with χ′/χ
bounded. Such functions exist. Take χ(x) = 2/(1 + e−2x) , for example.
Let α : R → R be absolutely continuous with derivative α′ satisfying

E0(ℓ
′(T |Z, θ0)α(T ))2 <∞ , E0(α

′(T ))2 <∞ (17)

and let g : Z → R be a measurable function with E0g
2(Z) < ∞ .

Here E0 denotes expectation under P0 , the distribution corresponding to
(θ0, ψ0, Q0) or (θ0, identity, Q0) . We denote the set of possible α’s and g’s
by A and G , respectively. In an approach slightly different from the one in
Section 2, we construct a regular parametric submodel

Pα,g = {p(y | z, θ, ψη)dQζ/dQ0(z) , y ∈ [a, b] , z ∈ Z | θ ∈ Θ , η, ζ ∈ R}
of (2) by defining

dQζ(z) = dQ0(z)χ(ζg(z))/

∫
χ(ζg(z̃))dQ0(z̃) (18)

and by defining for the case −∞ < a < b <∞

ψη(y) = a+ (b − a)

{∫ b

a

χ(ηα′(s))ds

}−1 ∫ ψ0(y)

a

χ(ηα′(t))dt , (19)

for the case −∞ < a < b = ∞

ψη(y) = a+ 1
2

∫ ψ0(y)

a

{1 + χ(2ηα′(t))}dt , (20)

for the case −∞ = a < b <∞

ψη(y) = b+ 1
2

∫ ψ0(y)

b

{1 + χ(2ηα′(t))}dt , (21)
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and for the case −∞ = a < b = ∞

ψη(y) = c+ 1
2

∫ ψ0(y)

c

{1 + χ(2ηα′(t))}dt , (22)

where the constant c is chosen such that α vanishes at c . Furthermore, in
each case the function α has to satisfy α(a) = α(b) = 0 . Indeed, Qζ is a
distribution on Z , ψη belongs to Ψ and the score functions for ζ and η at
(θ0, ψ0, Q0) equal

∂

∂ζ
log

dQζ
dQ0

(z)

∣∣∣∣
ζ=0

=g(z)− E0g(Z) ,

∂

∂η
log p(y | z, θ0, ψη)

∣∣∣∣
η=0

=ℓ′(ψ0(y) | z, θ0)α(ψ0(y)) + α′(ψ0(y)) . (23)

Next we define, for j = 1, . . . , d ,

Ij(θ0)= inf
α∈A,g∈G

E0

(
ℓ̇j(ψ0(Y ) |Z, θ0) − ℓ′(ψ0(Y ) |Z, θ0)α(ψ0(Y ))

−α′(ψ0(Y )) − g(Z) + E0g(Z)

)2

(24)

= inf
α∈A,g∈G

E0

(
ℓ̇j(T |Z, θ0) − ℓ′(T |Z, θ0)α(T ) − α′(T )

−g(Z) + E0g(Z)

)2

.

Note that this infimum is independent of ψ0 and is in fact the minimum
distance, in an L0

2(P0)-sense, of ℓ̇j(T |Z, θ0) to the set

{ℓ′(T |Z, θ0)α(T ) + α′(T ) + g(Z) − E0g(Z) |α ∈ A , g ∈ G} .
Note also that this approach differs from the one in Section 2, in that for
each j separately, j = 1, . . . , d , we minimize the Fisher information in (24)
by considering appropriate parametric submodels Pα,g , whereas in Section
2 we do this for all j simultaneously by minimizing the trace of the Fisher
information matrix and by considering parametric submodels that in this
case would have dimension 3d ; cf. (7).

Denoting as before differentiation with respect to θ and t by ˙ and
′ respectively, we note that under regularity conditions and appropriate

assumptions on α

E0

(
ℓ̇j(T |Z, θ0) |Z

)
=

∫
∂

∂θj
p0(t |Z, θ0)dt = 0 a.s.,

E0 (ℓ′(T |Z, θ0)α(T ) + α′(T ) |Z)=

∫
{α(t)p′0(t|Z, θ0) + α′(t)p0(t|Z, θ0)} dt

=α(t)p0(t |Z, θ0)
]
b

a
= 0 a.s.
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Therefore, we shall assume that

E0

(
ℓ̇j(T |Z, θ0) |Z

)
= 0 a.s., j = 1, . . . , d, (25)

E0

(
ℓ′(T |Z, θ0)α(T ) + α′(T ) |Z

)
= 0 a.s., α ∈ A. (26)

Consequently, ℓ̇j(T |Z, θ0) , j = 1. . . . , d , and ℓ′(T |Z, θ0)α(T ) + α′(T )
are orthogonal to {g(Z) − E0g(Z) | g ∈ G} in the L0

2(P0)-sense and
it suffices to project the ℓ̇j(T |Z, θ0) onto the linear space B =
{ℓ′(T |Z, θ0)α(T ) + α′(T ) |α ∈ A} . Therefore, we will look for αj ∈ A such
that for all α ∈ A

E0

(
{ℓ̇j(T |Z, θ0) − ℓ′(T |Z, θ0)αj(T ) − α′

j(T )}

{ℓ′(T |Z, θ0)α(T ) + α′(T )}
)

= 0 . (27)

We assume that with

χj(t) =

∫

Z

{
ℓ̇j(t | z, θ0) − ℓ′(t | z, θ0)αj(t) − α′

j(t)
}
p0(t | z, θ0)dQ0(z)

we have

χj(t) − χj(a) =

∫ t

a

∫

Z

{
ṗ′0j(s | z, θ0) − p′′0 (s | z, θ0)αj(s)

−2p′0(s | z, θ0)α′
j(s) − p0(s | z, θ0)α′′

j (s)

}
dQ0(z)ds, a ≤ t ≤ b, (28)

and
∫ b

a

∫ t

a

∣∣∣∣α′(t)

∫

Z

{
ṗ′0j(s | z, θ0) − p′′0(s | z, θ0)αj(s) − 2p′0(s | z, θ0)α′

j(s)

−p0(s | z, θ0)α′′
j (s)

}
dQ0(z)

∣∣∣∣dsdt <∞, α ∈ Ã , (29)

where Ã , containing αj , is a subset of A (defined after (17)), such that

αχj vanishes at a and b for all α ∈ Ã , j = 1, . . . , d . Then (28), (29), and
Fubini’s theorem (or, more specifically, partial integration) yield

E0

(
α′(T ){ℓ̇j(T |Z, θ0) − ℓ′(T |Z, θ0)αj(T ) − α′

j(T )}
)

=

∫ b

a

α(s)

∫

Z

{
− ṗ′0j(s | z, θ0) + p′′0(s | z, θ0)αj(s) + 2p′0(s | z, θ0)α′

j(s)

+p0(s | z, θ0)α′′
j (s)

}
dQ0(z)ds
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and consequently (27) holds for all α ∈ Ã , if αj ∈ Ã satisfies the Sturm-
Liouville equation
∫

Z

{
p0(t | z, θ0)α′′

j (t) + p′0(t | z, θ0)α′
j(t) + [p′′0 − (p′0)

2p−1
0 ](t | z, θ0)αj(t)

+[ṗ0jp
′
0p

−1
0 − ṗ′0j ](t | z, θ0)

}
dQ0(z) = 0 , a ≤ t ≤ b . (30)

We have shown

Proposition 1. Consider the model (2) with (13) through (15), and with
Ã as in (17) and as in the line after (29). If the conditions (25) and (26)
are satisfied and if αj ∈ Ã satisfies (28) through (30), then the infimum

Ij(θ0) of (24) with Ã replacing A is attained by αj .

Assume now, for every θ ∈ Θ, that αθj is as in this proposition yield-
ing Ij(θ) > 0 , j = 1, . . . , d , and define αθ,Q = (αθ1, . . . , αθd)

T , α′
θ,Q =

(α′
θ1, . . . , α

′
θd)

T ,

S(t | z, θ,Q) = ℓ̇(t | z, θ) − ℓ′(t | z, θ)αθ,Q(t) − α′
θ,Q(t) , (31)

I(θ,Q) = Eθ,QS(T |Z, θ,Q)ST (T |Z, θ,Q) , (32)

J(y, z | θ, ψ,Q) = I−1(θ,Q)S(ψ(y) | z, θ,Q). (33)

Consider an estimator sequence {Tn} for θ , which is (locally) regular at
(θ0, ψ0, Q0) for a parametric model containing the ‘directions’ given by
αθ01, . . . , αθ0k ; cf. (19)–(22). By the convolution theorem its limit distri-
bution is the convolution of a normal distribution with covariance matrix
I−1(θ0, Q0) and another distribution. The latter distribution is degenerate
at 0 iff {Tn} is locally asymptotically linear at (θ0, ψ0, Q0) with influence
function J(y, z | θ0, ψ0, Q0) . Note that ℓ̇, ℓ′, αθ,Q and hence I(θ,Q) do not
depend on ψ, but they do depend on θ and Q .

In view of this we will call {Tn} an efficient estimator sequence for θ
at (θ0, ψ0, Q0) in the semiparametric model (2), (13), if for every sequence
{θn} with θn = θ0 +O(n−1/2), every sequence {ψn} with ψn ∈ Ψ, ψn(t) →
ψ0(t) , t ∈ R , and every sequence of distributions {Qn} converging weakly
to Q0 in such a way that {Qnn} and {Qn0} are contiguous,

√
n

(
Tn − θn − n−1

n∑

i=1

J(Yi, Zi | θn, ψn, Qn)
)

= OP (1) (34)

under (θn, ψn, Qn). Note that we ask for more regularity here than one usu-
ally does. Note also that if we take Qn = Q0 , ψn = ψηn , ηn = O

(
n−1/2

)
,

with ψη as in (19)–(22) with α any linear combination of the αθ0j , then in
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this parametric model (34) implies (local) regularity of {Tn} at (θ0, ψ0, Q0)
under smoothness conditions on J , and the convolution theorem states
that we cannot do better than (34) with θn = θ0 , ψn = ψ0 , even if we
knew that we were in this parametric submodel. Since I−1(θ0, Q0) is by
(24) a supremum in a certain sense over all α ∈ Ã , the functions αθ0j repre-
sent least favorable directions and it is not a priori impossible that efficient
estimators in the sense of (34) exist. In fact, they do exist in the Cox and
Clayton-Cuzick models. Much more on the theory of efficient estimation in
semiparametric models is presented in Bickel et al. (1993).

In the Cox model (3), (2), the second order differential equation (30)
is trivial, since p′′0 − (p′0)

2p−1
0 vanishes and the equation is in fact of first

order. If we assume existence of a finite C with

P (|Z| ≤ C) = 1 , (35)

straightforward computation shows that

αθ0(t)=

∫ t

0

{∫

Z
zeθ0z exp

(
−eθ0zs

)
h0(z)dµ(z)

}

{∫

Z
eθ0z exp(−eθ0zs)h0(z)dµ(z)

}−1

ds

=

∫ t

0

E0(Z |T = s)ds (36)

satisfies the conditions of Proposition 1 with information (cf. (24))

I(θ0) = E0Var0(Z |T ) . (37)

For the two sample Cox model with another parametrization such a bound
has been derived by Begun and Wellner (1983), and the well-known Cox
estimator has been proved efficient by Begun (1987). Efficiency in the sense
of (34) of the Cox estimator for this model with Q = Q0 known has been
shown by Klaassen (1989), which also contains a less general version of the
present section, namely with Q fixed and known and d = 1 .

In the Clayton-Cuzick model (4), (2) we do not have explicit solutions
αj for the differential equations (30). However, we shall study the existence
and some properties of the solutions for these equations in Section 4 and
roughly indicate construction of an estimator satisfying (34) in Section 5.

4 The differential equation

In this section we will study the Sturm-Liouville equation (30) in more
detail. We suppress the subscripts 0 and j and denote the marginal density
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of T by

fθ(t) = fθ,Q(t) =

∫

Z
p(t | z, θ)dQ(z) . (38)

Under regularity conditions on p , (30) reads as follows

fθα
′′ + f ′

θα
′+

[
f ′′
θ −

∫

Z

(p′)2

p
(· | z, θ)dQ(z)

]
α

+

∫

Z

[
ṗp′

p
− ṗ′

]
(· | z, θ)dQ(z) = 0 . (39)

Let F−1
θ be the quantile function of the distribution function Fθ corre-

sponding to fθ . By the transformation

∆(u) = fθ
(
F−1
θ (u)

)
α
(
F−1
θ (u)

)
, 0 ≤ u ≤ 1 , (40)

F−1
θ (0) = a , F−1

θ (1) = b ,

the differential equation (39) becomes

∆′′(u) − β(u)∆(u) − γ(u) = 0 , 0 ≤ u ≤ 1 , (41)

with

β(u)=f−3
θ

(
F−1
θ (u)

) [∫

Z

(p′)2

p

(
F−1
θ (u) | z, θ

)
dQ(z) − (f ′

θ)
2

fθ

(
F−1
θ (u)

)]

=f−2
θ

(
F−1
θ (u)

)
Var

(
p′

p
(T |Z, θ)

∣∣∣∣T = F−1
θ (u)

)
, (42)

γ(u)=f−2
θ

(
F−1
θ (u)

) ∫

Z

[
ṗ′ − ṗp′

p

] (
F−1
θ (u) | z, θ

)
dQ(z) . (43)

It makes sense to choose the set Ã in such a way that ∆(0) = ∆(1) = 0 ; see
also the sentences after (22) and (29). We have been led to the boundary
value problem

∆′′(u) − β(u)∆(u) − γ(u) = 0, ∆(0) = ∆(1) = 0 , (44)

with

β(u) ≥ 0 . (45)

For the testing problem θ = θ0 versus θ > θ0 in model (2), with Z tak-
ing only two distinct values, Bickel (1986) has suggested a ‘quadratic rank
statistic’, which he proved to be locally asymptotically most powerful, con-
ditionally on Z1, . . . , Zn . This rank statistic is defined in terms of the solu-
tion of the Sturm-Liouville problem (44) with essentially the same function
β , but with a different function γ ; compare (42), (43), (44), and (51) below
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with Bickel’s (1986) formulas (1.14) and (1.16). We extend Bickel’s treat-
ment of the Sturm-Liouville problem (44) to obtain (see also Section 4.7 of
Bickel et al. (1993)) the following bounds.

Lemma 1. If for the Sturm-Liouville problem (44) there exist positive con-
stants β,B, γ and Γ with β + 2γ > 1 , such that

0 ≤ β(u) ≤ B(1 − u)β−2, |γ(u)| ≤ Γ(1 − u)γ−2, (46)

then the unique solution ∆ of (44) satisfies

|∆(u)|≤D
[
(1 − u)(β∧1+1)/2

{
1 − 1[β=1] log(1 − u)

}1/2

+(1 − u)γ
{
1 − 1[γ=1] log(1 − u)

}]
, 0 ≤ u ≤ 1, (47)

and

|∆′(u)|≤D
[
1 + (1 − u)(3β−1)/2 + (1 − u)γ−1

−
(
1[β+γ=1] + 1[γ=1]

)
log(1 − u)

]
, 0 ≤ u ≤ 1 , (48)

for some D > 0 . Moreover ∆ depends continuously on β(·) and γ(·) , where
β(·), γ(·) ∈ L1([0, 1], (1 − t)dt) and ∆ ∈ ℓ∞([0, 1]) .

Proof. If ∆1 and ∆2 are solutions of (44), then ∆0 = ∆1 − ∆2 satisfies

∆′′(u) = β(u)∆(u) , ∆(0) = ∆(1) = 0 . (49)

Since ∆0 is continuous, the set of points where it does not vanish is open
and hence is a countable union of open intervals. Let (x0, x1) be such
an interval with 0 ≤ x0 < x1 ≤ 1 . If ∆0 were positive on (x0, x1) with
∆0(x0) = ∆0(x1) = 0 , then (45) would imply that ∆0 is convex on [x0, x1].
However, a convex positive function on an interval cannot vanish at the
endpoints of this interval and consequently such intervals (x0, x1) do not
exist. Similarly there do not exist intervals where ∆0 is negative and hence
concave. Consequently ∆0(u) = 0 holds on [0, 1] and (44) has at most one
solution.

We use the approach of Lemma 2.2 of Bickel (1986). For K(s, t) =
s ∧ t− st (the autocovariance function of the Brownian bridge), we have

K(s, t) ≤ t(1 − t) , 0 ≤ s , t ≤ 1 . (50)

From (44) it follows that ∆ is continuous and hence bounded on [0,1]. Hence
(44) and (46) imply ∆′′(u) = O

(
(1 − u)β∧γ−2

)
. Together with (46) and

(50) this implies that multiplication of (44) with K(·, ·) and integration over
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(0, 1) are possible and yield the Fredholm integral equation of the second
kind

∆(u)+

∫ 1

0

K(u, s)∆(s)β(s)ds+

∫ 1

0

K(u, s)γ(s)ds = 0 , 0 ≤ u ≤ 1 , (51)

where we note that, by Fubini,
∫ 1

0

K(u, s)∆′′(s)ds =

∫ 1

0

∫ 1

s

[
u− 1[0,u](t)

]
∆′′(s)dtds

=

∫ 1

0

[
u− 1[0,u](t)

] ∫ t

0

∆′′(s)dsdt =

∫ 1

0

[
u− 1[0,u](t)

]
[∆′(t) − ∆′(0)] dt

= −∆(u).

On the other hand, writing (51) as

∆(u)+u

∫ 1

0

(1−s){∆(s)β(s)+γ(s)}ds+
∫ u

0

(s−u){∆(s)β(s)+γ(s)}ds = 0

and noting

lim
s→u

(s− u){∆(s)β(s) + γ(s)} = 0, 0 < u < 1 ,

we see that ∆ is differentiable with

∆′(u) = −
∫ 1

0

(1 − s){∆(s)β(s) + γ(s)}ds+

∫ u

0

{∆(s)β(s) + γ(s)}ds .

Consequently, ∆′(·) is absolutely continuous with derivative ∆(·)β(·)+γ(·) ,
which is just the meaning of (44).

If the Green’s function ∆(·, v) solves

∆(u, v) +

∫ 1

0

K(u, s)∆(s, v)β(s)ds+K(u, v) = 0 , (52)

then we have

∆(u) =

∫ 1

0

∆(u, v)γ(v)dv (53)

as the unique solution of (51) or equivalently (44). With the notation

φ(u, v) =
√
β(u)∆(u, v) , (54)

(52) can be rewritten as

L (φ( · , v)) (u) = −
√
β(u)K(u, v) , (55)

where L : L2(0, 1) → L2(0, 1) is the operator given by L = I +K . Here I
is the identity and

K(χ)(u) =

∫ 1

0

√
β(s)K(s, u)

√
β(u)χ(s) ds . (56)
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In view of (46) we have
∫ 1

0

K2(s, u)β(s)ds≤B
{∫ u

0

(1 − u)2(1 − s)β−2ds+

∫ 1

u

(1 − s)βds

}

=




O((1 − u)β+1) , 0 < β < 1 ,
O((1 − u)2{1 − log(1 − u)}) ,0 < β = 1 ,
O((1 − u)2) , 1 < β .

(57)

The first part of (57) also yields

||K(χ)||2 =

∫ 1

0

{K(χ)(u)}2 du ≤
∫ 1

0

||χ||2
∫ 1

0

K2(s, u)β(s)β(u)dsdu

≤B2||χ||2
∫ 1

0

(1 − u)β−2

{∫ u

0

(1 − u)2(1 − s)β−2ds+

∫ 1

u

(1 − s)βds

}
du

=B2||χ||2
{∫ 1

0

∫ 1

s

(1 − u)βdu(1 − s)β−2ds+ (β + 1)−1

∫ 1

0

(1 − u)2β−1du

}

=B2β−1(β + 1)−1||χ||2 . (58)

We see that the operator K is bounded and nonnegative definite since the
Brownian bridge covariance function is. Consequently (Theorem 12.32 of
Rudin (1973)) the spectrum of K is contained in [0,∞) and hence that of
L in [1,∞) . Therefore L is invertible, the spectrum of L−1 is contained in
(0, 1] , and the Green’s function ∆(·, v) exists by (52), (54) and (55). Since
K is self-adjoint, L and hence L−1 are. Consequently, L−1 is normal and
Theorem 11.28(b) of Rudin (1973) implies that ||L−1|| equals the spectral
radius of L−1 which is bounded by 1 ; a different argument for this is given
immediately after formula (4.7.34) of Bickel et al. (1993). By (55) this
yields

∫ 1

0

φ2(u, v)du=||L−1
(
−
√
β(·)K(, v)

)
||2 ≤

∫ 1

0

K2(u, v)β(u)du . (59)

Combining (52), (54) and (59) we obtain

|∆(u, v)|≤K(u, v) +

∣∣∣∣
∫ 1

0

K(u, s)∆(s, v)β(s)ds

∣∣∣∣

≤K(u, v) +

{∫ 1

0

K2(u, s)β(s)ds

∫ 1

0

φ2(s, v)ds

}1/2

≤K(u, v) +

{∫ 1

0

K2(u, s)β(s)ds

∫ 1

0

K2(v, s)β(s)ds

}1/2

(60)

=K(u, v) +




O({(1 − u)(1 − v)}(β∧1+1)/2) , 0 < β 6= 1 ,

O((1 − u)(1 − v){1 − log(1 − u)}1/2

{1 − log(1 − v)}1/2) ,0 < β = 1 .
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Together with (53) and the condition β+2γ > 1 this implies (47) and with
the help of (52) also

|∆′(u)|=
∣∣∣∣
∂

∂u

∫ 1

0

{
K(u, v) +

∫ 1

0

K(u, s)∆(s, v)β(s)ds

}
γ(v)dv

∣∣∣∣

=

∣∣∣∣
∂

∂u

{
u

∫ 1

0

∫ 1

0

[1 − v + (1 − s)∆(s, v)β(s)] γ(v)dvds

+

∫ u

0

(s− u)

[
γ(s) +

∫ 1

0

∆(s, v)γ(v)dvβ(s)

]
ds

}∣∣∣∣

≤
∣∣∣∣
∫ 1

0

[
1(u,1)(v) − v

]
γ(v)dv

∣∣∣∣

+

∣∣∣∣
∫ 1

0

∫ 1

0

[
1(u,1)(s) − s

]
∆(s, v)β(s)γ(v)dvds

∣∣∣∣ (61)

=O
(
1 − 1[γ=1] log(1 − u) + (1 − u)γ−1

)

+O
(∫ 1

0

∣∣1(u,1)(s) − s
∣∣ [(1 − s)((3β)∧1−3)/2 + (1 − s)β+γ−2

−1[γ=1](1 − s)β−1 log(1 − s)]ds

)

=O
(
1 + (1 − u)((3β)∧1−1)/2 + (1 − u)γ−1

−1[β+γ=1] log(1 − u) − 1[γ=1] log(1 − u)
)
.

Finally, let βn(·) and γn(·) be functions satisfying (46) and converging
to β(·) and γ(·) Lebesgue almost everywhere. Let ∆n(·) be the solution of
(51) with βn(·) and γn(·) replacing β(·) and γ(·) , respectively. In view of
(48) ∆n(·) can be written uniquely as the difference ∆n(·) = ∆+

n (·)−∆−
n (·)

of two nondecreasing bounded functions on [0, 1] with ∆+
n (0) = ∆−

n (0) = 0
and ∆+

n (1) = ∆−
n (1) minimal. By e.g. Helly’s selection theorem there

exists for every subsequence of {∆n(·)} ,∆n(·) = ∆+
n (·) − ∆−

n (·) , a further
subsequence {∆ñ(·)} ,∆ñ(·) = ∆+

ñ (·) − ∆−
ñ (·) , converging pointwise and

hence in the supnorm to ∆̃(·) , say. The boundedness of K(·, ·) and of
∆n(·) uniformly in n, the dominated convergence theorem and the unicity
of a solution of (51) show that ∆̃(·) is the solution of (51). We have shown
that ∆(·) depends on β(·) and γ(·) continuously in the given norms. �
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It is easy to derive from (47) and (48) the inequalities

|α(t)|≤D
[
(1 − Fθ(t))

(β∧1+1)/2
{
1 − 1[β=1] log(1 − Fθ(t))

}1/2

+(1 − Fθ(t))
γ
{
1 − 1[γ=1] log(1 − Fθ(t))

} ]
/fθ(t) , (62)

|α′(t)|≤|α(t)f ′
θ(t)/fθ(t)| +D

[
1 + (1 − Fθ(t))

(3β−1)/2

+(1 − Fθ(t))
γ−1 − (1[β+γ=1] + 1[γ=1]) log(1 − Fθ(t))

]
. (63)

Together with (39) these inequalities yield bounds for

S(t | z, θ,Q) = ℓ̇(t | z, θ) − ℓ′(t | z, θ)α(t) − α′(t) (64)

and its derivatives S′ and S′′. As we will indicate in the next section these
bounds might be relevant when constructing estimators and proving their
semiparametric efficiency (see also (31) and the rest of Section 3).

5 The frailty model of Clayton and Cuzick

In the frailty model (4) for survival data suggested by Clayton and Cuz-
ick (1985) we take the regression parameter 1-dimensional for notational
simplicity, we call it ν in stead of θ , and we are interested in semipara-
metrically efficient estimation of the 2-dimensional Euclidean parameter
θ = (ν, c) where the Pareto shape parameter c is assumed to be positive.
Note that at ν = 0 the Pareto shape parameter c and the transformation
ψ , a nuisance parameter, are confounded. In order to avoid the ensuing
identifiability problems it is assumed that ν does not vanish. Suppressing
again the subscript 0 we note that the conditional core density equals

p(t | z, θ) = eνz(1 + ceνzt)−1−1/c1(0,∞)(t), θ = (ν, c) .

Straightforward verification under (35) shows that the assumptions leading
to (44) are fulfilled with a = 0 and b = ∞ and that,

c−1e−C|ν| ((1 − u)−c − 1
)
≤ F−1

θ (u) ≤ c−1eC|ν| ((1 − u)−c − 1
)
. (65)

By the expansion, as t→ ∞ ,

[
r(1 + crt)−1

]j
=
[
(ct)−1

(
1 + (crt)−1

)−1
]j

=(ct)−j
(
1 − j(crt)−1 + O(t−2)

)

and with the notation

Ij =

∫

Z
e−jνz (1 + ceνzt)

−1/c
dQ(z)
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we have, uniformly in c ∈ [c0, c1] , 0 < c0 ≤ c1 <∞ ,

β (Fθ(t))=(1 + c)2f−4
θ (t)(ct)−4

{[
I0 − 3(ct)−1I1

] [
I0 − (ct)−1I1

]

−
[
I0 − 2(ct)−1I1

]2
+ O

(
t−2−2/c

)}

=O
(
t−2+2/c

)

and, together with (65),

β(u) = O
(
(1 − u)2c−2

)
. (66)

Furthermore, for the projection of the score function for the regression
parameter ν we are led to

γ (Fθ(t))=−f−2
θ (t)(1 + c)

∫

Z
zeνz(1 + ceνzt)−2p(t | z, θ)dQ(z)

=O
(
(1 + t)−1+1/c

)
,

or

γ(u) = O
(
(1 − u)c−1

)
. (67)

From (66) and (67) it follows that Lemma 1 may be applied with β = 2c
and γ = c+ 1 . In this case, some computation and (44), (62) through (64)
yield

∂j

∂tj
α1(t) = O

(
(1 + t)(2c)

−1∨ 1−j {1 + 1[c=1/2] log(1 + t)
}1/2

)
(68)

for j = 0, 1, 2, 3 and hence

∂j

∂tj
S1(t | z, θ,Q)

= O
(
(1 + t)(2c)

−1∨ 1−j−1
{
1 + 1[c=1/2] log(1 + t)

}1/2
)

(69)

for j = 0, 1, 2 or, more crudely,

∂j

∂tj
S1(t | z, θ,Q) = O

(
(1 + t)(2c)

−1∨ 1−j−1+ǫ
)
, ε > 0, (70)

for j = 0, 1, 2 .
For projecting the score function for c we are led to

γ(Fθ(t))=−f−2
θ (t)

∫

Z
eνz(1 − eνzt)(1 + ceνzt)−2p(t | z, θ)dQ(z)

=O
(
(1 + t)1/c

)
,
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or

γ(u) = O
(
(1 − u)−1

)
. (71)

From (66) and (71) it follows that Lemma 1 may be applied with β = 2c
and γ = 1 . Again, by (44) and (62) through (64) we arrive at

∂j

∂tj
α2(t)=O

(
(1 + t)(2c)

−1∨ 1−j {1 + 1[c=1/2] log(1 + t)
}1/2

+(1 + t)1−j {1 + log(1 + t)}
)

(72)

for j = 0, 1, 2, 3 and hence

∂j

∂tj
S2(t | z, θ,Q)=O

(
(1 + t)(2c)

−1∨ 1−j−1
{
1 + 1[c=1/2] log(1 + t)

}1/2

+(1 + t)−j {1 + log(1 + t)}
)

(73)

for j = 0, 1, 2 or, more crudely

∂j

∂tj
S2(t | z, θ,Q) = O

(
(1 + t)(2c)

−1∨1−j−1+ǫ
)
, ǫ > 0 , j = 0, 1, 2 . (74)

Note that both (70) and (74) are uniform in c ∈ [c0, c1] , 0 < c0 ≤ c1 <∞ .
We note that it is not hard to check that the above solutions αj of (44)

make it possible to construct a subset Ã of A such that Ã contains αj and
the conditions of Proposition 1 are satisfied for this frailty model of Clayton
and Cuzick. This means that we have found a linear subspace (correspond-
ing to Ã) of the nuisance parameter score functions onto which we have
been able to project the score functions of the parameters of interest. As
described after Proposition 1 and in Section 2 this gives us a lower bound
for the covariance matrix of limiting distributions of regular estimators.

To show that this lower bound is optimal we have to construct an esti-
mator attaining it. This might be done along the lines of the general sample
splitting procedure of Klaassen (1987) or of Theorem 7.8.1 of Bickel et al.
(1993). This procedure is based on a

√
n-consistent estimator of θ and a

consistent,
√
n-unbiased estimator of the efficient influence function, given

θ .
Here we present a simple way to construct a

√
n-consistent estimator of

θ , assuming without loss of generality that n is even. We define

∆i = 1[Y2i−1≤Y2i], i = 1, . . . , n/2 , (75)

we note that (∆i, Z2i−1, Z2i), i = 1, . . . , n/2 , are i.i.d. and we compute

Pθ(∆1 = 1 |Z1, Z2)=Pθ(T1 ≤ T2 |Z1, Z2)

=

∫ 1

0

(1 + eν(Z2−Z1)[u−c − 1])−1/cdu , a.s. (76)
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In this way we are back in the classical i.i.d. parametric case and a max-
imum likelihood procedure should yield a

√
n-consistent estimator. Note

that the resulting preliminary estimator has a distribution independent of
ψ .

Studying (31), (32), and (33), we see that in order to construct a con-
sistent,

√
n-unbiased estimator of the efficient influence function, given θ ,

we need an estimator of the marginal distribution of the covariates and an
estimator of the transformation ψ. The empirical Q̂n of Z1, . . . , Zn will do
as an estimator of the distribution of the covariates. Let now F̂n be the
empirical distribution function of Y1, . . . , Yn and let Fθ,Q be the marginal
distribution function in the core model (1) of the survival time T under
parameters θ and Q . In view of

Eθ,ψ,QF̂n(y) = EQF0(ψ(y) |Z, θ) = EQFθ,Q̂n(ψ(y)) , 0 < y , (77)

it is natural to estimate, given θ , the transformation ψ by

ψ̂n(y) = F−1

θ,Q̂n

(
F̂n(y) ∧ (1 − n−1)

)
, 0 < y . (78)

It may be shown that these estimators are sufficiently accurate for their
goal, namely to construct a consistent,

√
n-unbiased estimator of the ef-

ficient influence function, given θ . However, the technical details will not
be pursued here. If for fixed known θ this estimator of ψ or another es-
timator is efficient, then Klaassen and Putter (2005) gives a construction
to transform it into an efficient estimator in the full semiparametric model
with θ unknown, using an efficient estimator of θ itself. See e.g. Dabrowska
(2002) and Gørgens (2003) for alternative estimators of the transformation,
the efficiency of which is not discussed there either.
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Chapter 14
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The chapter considers the semiparametric transformation model and
compare the finite sample properties of the modified partial likelihood
estimator with a simple un-weighted estimating equation estimator. For
the semiparametric transformation model, resampling methods may be
used to provide uniform confidence bands for the nonparametric base-
line function and the survival function. It is also shows how a score
process (defined by the estimating equations) may be used to validate
the assumption about constant proportional odds. Sometimes the trans-
formation model will not be sufficiently flexible to deal with for exam-
ple time-varying effects, and an extension of the transformation model
is suggested. The extended model specifies a time-varying regression
structure for the transformation, and this may be thought of as a first-
order Taylor series expansion of a completely non-parametric covariate
dependent baseline. Special cases include a stratified version of the usual
semiparametric transformation model. The method is illustrated by a
simulation study. The added flexibility increases the practical use of the
model considerably.

Key words: Counting process; Estimating equation; Modified par-
tial likelihood; Resampling inference; Survival data; Timevarying effect;
Transformation model; Stratified transformation model.

1 Introduction

The semiparametric transformation model has recently received consider-
able attention. The model extends the Cox regression model (Cox, 1972)
as well as the proportional odds model (Bennett, 1983; Murphy, Rossini

277
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and Van der Vaart 1997). The model may be of interest in its own right
but, but it is not clear how to interpret the regression coefficients in other
than these cases. Some authors have dealt with the model quite generally
by inverse probability weighting techniques Cheng, Wei and Ying (1995,
1997), Fine, Ying and Wei (1998) and Cai, Wei and Wilcox (2000), these
approaches has the drawback that one is forced to model the censoring dis-
tribution. Further in the standard set-up of inverse probability weighting
the censoring distribution is not allowed to depend on covariates, but this
assumption may be relaxed although this lead to a more complicated analy-
sis. Alternatively one may consider an estimating equations approach that
avoids direct modeling of the censoring distribution as in Bagdonavicius
and Nikulin (1999,2001) and Chen, Jin and Ying (2002).

Given the satisfactory apparatus that has been developed to deal with
the Cox model the transformation model is primarily of interest as a method
for dealing with the proportional odds model where there only recently
has been developed estimation procedures that are easy to use. Murphy,
Rossini, and Van der Vaart (1997)non-parametric maximum likelihood es-
timator but from a practical point of view the procedure is difficult to
work with primarily because of the difficulty in getting quick and reliable
standard errors to go along with estimates. Another approach is to use a
partial likelihood estimator Dabrowska and Doksum (1988). In recent work
Slud and Vonta (2004) considers a non-parametric maximum-likelihood es-
timation (NPMLE) procedure for the transformation model. I here review
the modified partial likelihood estimator Bagdonavicius and Nikulin (1999,
2001), and a similar estimating equation approach Chen, Jin and Ying
(2002) and compare their finite sample properties.

To focus ideas, let T be a survival time and Z a covariate vector that
do not depend on time. The transformation model now assumes that

log(H(T )) = −ZTβ + ǫ (1)

where H is an un-specified monotone transformation and the error ǫ has a
known distribution. The two special cases of the Cox and proportional odds
model are obtained when ǫ has an extreme value distribution and when ǫ
is a standard logistic distribution, respectively.

Denoting the survival distribution given covariates as SZ(t). It follows
in the Cox case that

log(− log((SZ(t)))) = log(H(t)) + ZTβ

with cumulative baseline H(t). Similarly for the proportional odds model

logit(1 − SZ(t)) = log(H(t)) + ZTβ

where H(t) is the cumulative baseline odds that corresponds to a baseline
survival for a subject with covariates equal to zero. For this model it is cru-
cial that the covariates lead to constant proportional odds. To examine this
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hypothesis I suggest a simple goodness-of-fit test for checking this assump-
tion. The practical implementation and computation of p-values is based
on resampling techniques. I also suggest a resampling based approach for
approximating confidence bands for the survival function.

The proportional odds model can be written alternatively as

SZ(t) =
exp(−ZTβ)

exp(−ZTβ) +H(t)
.

In the case of stratified sampling the baseline, H(t), may need to be strat-
ified, and more generally the baseline may depend on various covariates.
Also when the effects of covariates are not well described as being constant,
as is illustrated in a worked example in the following, it may be necessary
to extend the model to deal with this. One way of formally extending the
model is to consider

logit(1 − SX,Z(t)) = log(H(t)) +XTβ(t) + ZTγ

where some effects lead to constant proportional effects, modeled by Z, and
some do not, modeled by X . This leads to a survival function on the form

SX,Z(t) =
exp(−ZTβ)

exp(−ZTγ) + exp(XTβ(t))H(t)
.

The term exp(XTβ(t))H(t) gives a covariate dependent baseline. This
model is impossible to identify without smoothness assumptions because
H(0) = 0 and then β(t) can not be identified close to 0.

More generally one may consider a fully unstructured covariate depen-
dent baseline, H(t|X), and such a model may be fitted along the lines
of Dabrowska (1997) assumptions are made and X is continuously vary-
ing. When the dimension of X is large and the baseline is completely
unstructured the model will be difficult to identify and it will be difficult
to summarize the effect of the covariates X .

One practical compromise between bias and variance is to consider a
linear first order approximation of the baseline. We therefore consider a
flexible time-varying regression model where the covariate dependent base-
line is given by

H(t|X) = XTA(s) (2)

where A(t) =
∫ t
0 α(s)ds. One problem when fitting the model is that

H(t|X) must be increasing. This is ignored in the approach taken here
just as for the additive hazards model suggested by Aalen (1989) If the
model provides a good approximation of the true underlying survival func-
tions it will tend to lead increasing baselines and then one can avoid serious
bias on the effects of Z from not correctly modeling the effects of X . The



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

280 T. H. Scheike

model is considered in further details in Scheike (2006). One simple impor-
tant model that is contained in this framework is when X gives a simple
stratification.

The paper is organized as follows. Section 2 reviews some approaches
for the transformation model and extends these ideas with resampling tech-
niques and robust variance estimators. Section 3 outlines the extended
model and presents a simulation study and a worked example. Finally,
Section 4 contains some closing remarks.

2 Estimation

The intensity of T can be written as

λ(t)dt = Y (t) exp(ZTβ)h(t)λ0(exp(ZTβ)H(t−)), (3)

where Y (t) is the at-risk indicator, λ0(t) is the hazard associated with
exp(ǫ), Z is p-dimensional bounded covariate and H is an unknown strictly
increasing function. We assume that the derivative of H(t) exists and is
denoted as h(t) = ∂

∂tH(t).
Assume that i.i.d. triplets (Ni, Zi, Yi()) for i = 1, ...n, representing

survival times, covariates and independent at risk processes, are being ob-
served subject to this generic hazard model over the time-period [0, τ ]. We
here consider the specific assumption that the censoring distribution and
survival time of interest are independent given the covariate and that the
support of the censoring distribution given the covariate does not depend on
the covariate. Define N(t) = (N1(t), .., Nn(t))

T the n-dimensional count-
ing process of all subjects with intensity λ(t) = (λ1(t), ..., λn(t))T . Based

on this we can define the basic martingales Mi(t) = Ni(t) −
∫ t
0 λi(s)ds

i = 1, .., n. We organize the covariates into a matrix of dimension n × p:
Z(t) = (Y1(t)Z1, ..., Yn(t)Zn)

T where Yi(t) i = 1, ..., n are the at-risk indi-
cators and Y (t) = (Y1(t), ..., Yn(t))T . Let dN·(t) =

∑n
i=1 dNi(t).

2.1 Estimating equation approach

We now review the work of Chen, Jin and Ying (2002) where additional
details and asymptotic results can be found. Some new robust variance
estimators as well as resampling techniques for checking the goodness-of-
fit of the model and for describing the the variability of the cumulative
baseline estimator are also suggested.

To estimate β and H(t) one may consider the following estimating equa-
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tions ∫
ZT (t)W (t)(dN(t) − λ(t)dt) = 0, (4)

Y T (t)V (t)(dN(t) − λ(t)dt) = 0, (5)

where W (t) and V (t) are known diagonal weight matrices. The efficient
choice of both these matrices are not simple, and we here consider the case
with W = V = I as in Chen, Jin and Ying (2002).

For known β (5) is solved recursively for

dH̃(t, β) =
1

S0(t,H, β)
dN·(t) (6)

where

Sj(t,H, β) =
n∑

i=1

Zji Yi(t) exp(ZTi β)λ0(exp(ZTi β)H(t−))

for j = 0, 1. Thus leading to

H̃(t) = H̃(t, β) =

∫ t

0

1

S0(t, H̃, β)
dN·(t), (7)

a recursive structure for computing H̃.
Now, with the increment estimator of dH(t) the equation for β reads

Ũ(τ, β) =

n∑

i=1

∫ τ

0

(Zi −
S1(t, H̃, β)

S0(t, H̃, β)
)dNi(t) = 0. (8)

Let the solution to this estimating equation be denoted β̃ and based on this
estimate H(t) by

H̃(t, β̃).

Chen, Jin and Ying (2002) show that the solution is consistent and asymp-
totically normal and provide estimators of the asymptotic variance for a
reparameterized version of the problem that considers β and log(H). We
here just point out that the estimating function can be written

n−1/2Ũ(t, β0) = n−1/2
∑

i

∫ t

0

qi(s, β0)dMi(s) + op(1),

where qi i = 1, .., n are i.i.d. processes (the explicit expression is given in
Scheike (2006) and follows as in Bagdonavicius and Nikulin (1999) or Chen,
Jin and Ying (2002)). Since it is a sum of i.i.d. terms (or a martingale) and
therefore converges to a normal distribution with variance that is estimated
by the robust estimator

Ψ̂ = n−1
∑

i

{∫ τ

0

Yi(t)q̂i(t, β̃)dM̂i(t)

}⊗2

, (9)
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where q̂i and M̂i are estimators of qi and Mi obtained by using the esti-
mates and empirical versions of all covariances. An alternative estimator of
the variance of the estimating function process is given by the (estimated)
optional variation process

n−1
∑

i

∫ τ

0

Yi(t)
{
q̂i(t, β̃)

}⊗2

dNi(t).

This suggest that the variance of β̃ − β is estimated by

I−1(τ, β̃)Ψ̂I−1(τ, β̃)

where I(t, β̃) is the derivative of the estimating function Ũ(t, β) evaluated
at β̃. The derivative is given for an extended model in the next section.
Let I(t, β) denote the limit of n−1I(t, β).

A similar i.i.d. decomposition may be established for H̃(t, β̃), such that

√
n(H̃(t, β̃) −H(t)) = n−1/2

∑

i

Hi(t, β0) + op(1)

where

Hi(t, β) = P (t, β0)I
−1(τ, β0)

∫ τ

0

qi(t, β0)dMi(t) +

∫ t

0

1

so(t, β0)
dMi(s),

where so is the limit of S0 and where P (t, β) the limit of

P̃ (t, β̃) = n−1

∫ t

0

−Dβ{S0(t, H̃(β̃, t−), β̃)}
S2

0(t, H̃, β̃)
dN·(t),

that must be computed recursively, and with the numerator being the
derivative with respect to β, Dβ(S0(t,H(β, t−), β)), evaluated in β̃. There-

fore a robust variance estimator for H̃(t, β̃) is given by

Σ̂(t) =
∑

i

Ĥ2
i (t), (10)

where Ĥi(t) is the obvious estimator of Hi. To construct confidence bands
one may resample the residuals

∆(t) =
∑

i

GiĤi(t)

where G1, ..., Gn are independent standard normals independent of the
counting processes and their covariates Lin, Wei, and Ying (1993)

This may be used to construct a confidence band for the survival func-
tion SZ(t). Consider the situation (without loss of generality) where Z = 0
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then SZ(t) has a confidence band that is expressed directly from the confi-
dence band of H̃(t). To construct a uniform confidence band for H(t) first
compute the 95 % percentile, C95, of

sup
t∈[0,τ ]

|∆k(t)|
Σ̂1/2(t)

among the resampling processes ∆1(t), ...,∆K(t), and then an approximate
95 % confidence band is given as

H̃(t) ± C95Σ̂
1/2(t) = [Hl(t), Hu(t)].

One consequence of this is that the survival function has an approximate
95 % confidence interval given by

[
1

1 +Hl(t)
,

1

1 +Hu(t)
].

To evaluate the constant proportional odds assumption for the covari-
ates consider the estimating function, Ũ , as a function of time. It has al-
ready been established that Ũ(t) could be written as a sum of i.i.d. terms.
When evaluated at β̃ one gets

Ũ(t, β̃) = Ũ(t, β0) + I(t, βo)(β̃ − β0) + op(n
−1/2)

= Ũ(t, β0) + I(t, βo)I−1(τ, βo)Ũ(τ, β0) + op(n
−1/2).

With Ûi(t) =
∫ t
0
q̂i(s, β̃)dM̂i(s) the distribution of Ũ(t, β̃) can be approxi-

mated by the resampling processes
∑

i

Gi

{
Ûi(t) + I(t, β̃)I−1(τ, β̃)Ûi(τ)

}

where G1, ..., Gn are independent standard normals.

2.2 Modified partial likelihood approach

The approach of Bagdonavicius and Nikulin (1999) is based on the par-
tial likelihood. They substitute H with its estimator (7) and use dH̃(t)
to replace h(t) to get a modified partial likelihood, a pseudo profile-
likelihood, for β on the form

PL(β) =




n∏

i=1

∏

t≥0

{
Yi(t) exp(ZTi β)dH̃(t)λ0(exp(ZTi β)H̃(t−))

}∆Ni(t)


 .

The derivative of the log pseudo profile-likelihood is given as

Ũm(β) =
∑

i

∫ {
ẇi(t, β, H̃)

wi(t, β, H̃)
−

∂
∂βS0(t, β, H̃)

S0(t, β, H̃)

}
dNi(t), (11)
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where wi(t, β, H̃) = exp(ZTi β)λ0(exp(ZTi β)H̃(t−, β)) and ẇi(t, β, H̃) =
Dβ(wi(t, β, H̃)). Denote the second derivative of the modified partial like-
lihood as Im(β).

It can be shown that there exist a consistent solution with probability
tending to one. With β̂ the proper root of (11) and with additional reg-

ularity conditions it follows that
√
n(β̂ − β0) is asymptotically zero-mean

normal with covariance matrix that is estimated consistently by

I−1
m (β̂)Ψ̂mI−1

m (β̂)

where Ψ̂m may be estimated using optional variation or robust estimators
as in the previous section.

Further, to estimate H0(t) use the estimator Ĥ(t) = H̃(β̂, t). It can
be shown that

√
n(Ĥ(t) − H0(t)) converges to a Gaussian process with a

variance that can be estimated by expressions similarly to those given in
the previous section. Further, to get uniform bands one may resample the
residuals and one may also resample the estimating-function Ũm(β̂, t) as a
function of time to evaluate the goodness-of-fit with respect to the constant
proportional odds assumption.

2.3 Simulations and data example

In this section compare the performance of the modified partial likelihood
and the simple estimating equation are compared under the semiparametric
proportional odds model.

In this case the Chen, Jin and Ying (2002) estimating equations becomes
(λ0(t) = 1/(1 + t))

n∑

i=1

∫
(Zi −

∑n
i=1 ZiYi(t)/[exp(−ZTi β) + H̃(t−)]∑n
i=1 Yi(t)/[exp(−ZTi β) + H̃(t−)]

)dNi(t) = 0,

and with a baseline odds of failure by time t

H̃(t) =

∫ t

0

1∑n
i=1 Yi(t)/[exp(−ZTi β̃) + H̃(t−)]

dN·(t).

The modified partial likelihood estimation equation becomes

n∑

i=1

∫ {Zi exp(−ZTi β) − ∂
∂β H̃(t−)

exp(−ZTi β) + H̃(t−)
−

∂
∂βS0(t, H̃, β)

S0(t, H̃, β)

}
dNi(t) = 0.

We consider a 4-dimensional covariate Z that consist of independent
standard normals and has constant proportional odds 0.1,−0.1, 0.5,−0.5
and let H(t) = t. All survival times were censored at time 50 to avoid
some numerical problems towards the end of the time-period. This lead to
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approximately 5 % censorings. The modified partial likelihood estimator
converged considerably more quickly than the estimating equation estima-
tor.

We only report the findings for β = 0.1 based on the estimating equation
approach and the modified partial likelihood approach for 3 different sample
sizes and with 1000 repetitions.

We computed the mean of the estimates, the standard error of the esti-
mates (SE), the mean of the estimated standard errors based on the optional
variation estimator (mSE), and the mean of the estimated standard error
based on the robust estimator (mRSE).

Table 1 Independent censoring. Mean of 1000

replications for first covariate (see text), SE of
estimates, mean of SE (mSE) and mean of es-
timated robust standard errors (mRSE). Based
on the two methods and different sample sizes.

Method n β SE mSE mRSE

EE 50 0.10 0.29 0.31 0.29
EE 100 0.10 0.20 0.20 0.20
EE 200 0.10 0.14 0.14 0.15

MPL 50 0.10 0.27 0.26 0.27
MPL 100 0.10 0.18 0.18 0.18
MPL 200 0.10 0.13 0.12 0.13

We see that both approaches lead to essentially unbiased estimates and
that the the standard error was well estimated by both estimators of the
variation. The two variance estimators performed quite similarly. It is also
evident that the modified partial likelihood estimator was more efficient,
with a gain about 7 % for all sample sizes when considering the standard
error.

The baseline showed a similar behavior. That is, the estimators in both
situations where essentially unbiased and its variance where well estimated
by the robust estimator. The resampling based confidence bands also lead
to a coverage close to the true level (95 %). The modified partial likelihood
estimator was superior to the estimating equation approach.

We now consider a more complex situation. We consider a 4-dimensional
covariate Z with the first two components independent standard normals
and the second two components standard log-normals. The aim is to ex-
amine the influence of skewness on the performance. We simulate from a
constant proportional odds with regression coefficients 0.1,−0.5, 0.1,−0.5
and let H(t) = td where d = 0.5, 1, 2. The right-censoring times were drawn
from either an independent proportional odds model with the same baseline
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as the survival time and without covariates or a proportional odds model
with the same 4 covariates and same regression coefficients as the survival
data. All simulations were calibrated by multiplying the censoring times
with a constant to give 40% censorings.

Table 2 contains the results for the dependent censoring and Table 3
the results for the independent censoring. Table 2 contains the mean of the
estimates, the standard error (SE) and the mean of the robust estimated
standard errors (mRSE) based on 1000 replications. Comparing with Table
3 it appears that results are quite similar. I also computed coverage proba-
bilities and these lead to a level close to the nominal level. Standard errors
are well estimated by the robust standard errors. The robust standard
errors were slightly better than those based on martingales (the optional
variation form, not shown). Within the two tables the MPL appears to lead
to slightly smaller standard errors than the EE approach, but the effect is
only marginal compared to the previous simpler simulation study.

Within each of the approaches the shape of the baseline does not appear
to have much influence on the performance of the two non-skew covariates.
For the skew covariates, however, it appears that the timing of events later
rather than early gives smaller SE’s and this is consistent across methods
and does not depend on the type of censoring.

2.4 Veterans data

The methodology is illustrated on the Veterans’ Administration lung cancer
trial consisting of the 97 patients that did not receive any prior treatment.
This data was also considered by Murphy, Rossini and Van der Vaart (1997)
and Chen, Jin and Ying (2002) and is available in the R package.

The 97 survival times contains 37 ties; these ties were broken by adding
a little random noise. The estimates revealed some dependence on how the
ties were resolved.

The considered covariates were the kanofsky score (karno) and celltype
(squamous, small, adeno, large).

The estimating equation function converged after 33 iterations. The
model was also fitted by the modified partial likelihood, that converged
after only 4 iterations.
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Table 2 Dependent censoring. Mean of 1000 repetitions for
4 covariates (see text), SE of estimates and mean of esti-
mated robust standard errors (mRSE). Comparison of esti-
mating equations (EE) and modified partial likelihood (MPL).

Method H(t) n 0.1 −0.5 0.1 −0.5

EE-mean
√
t 100 0.12 −0.49 0.09 −0.53

EE-mean
√
t 200 0.11 −0.53 0.09 −0.52

EE-mean t 100 0.10 −0.51 0.08 −0.51
EE-mean t 200 0.10 −0.51 0.10 −0.51
EE-mean t2 100 0.11 −0.51 0.09 −0.51
EE-mean t2 200 0.11 −0.51 0.09 −0.51

EE-SE
√
t 100 0.22 0.22 0.16 0.17

EE-SE
√
t 200 0.15 0.15 0.11 0.12

EE-SE t 100 0.22 0.23 0.17 0.15
EE-SE t 200 0.15 0.16 0.12 0.11

EE-SE t2 100 0.21 0.22 0.16 0.14
EE-SE t2 200 0.15 0.15 0.11 0.10

EE-mRSE
√
t 100 0.21 0.21 0.15 0.17

EE-mRSE
√
t 200 0.15 0.15 0.11 0.12

EE-mRSE t 100 0.21 0.22 0.16 0.15
EE-mRSE t 200 0.15 0.15 0.11 0.10
EE-mRSE t2 100 0.21 0.21 0.15 0.14
EE-mRSE t2 200 0.14 0.15 0.10 0.10

MPL
√
t 100 0.10 −0.50 0.08 −0.53

MPL
√
t 200 0.11 −0.51 0.09 −0.53

MPL t 100 0.11 −0.51 0.10 −0.52
MPL t 200 0.10 −0.50 0.09 −0.51
MPL t2 100 0.08 −0.51 0.08 −0.52
MPL t2 200 0.09 −0.51 0.08 −0.50

MPL-SE
√
t 100 0.20 0.21 0.15 0.17

MPL-SE
√
t 200 0.14 0.15 0.10 0.11

MPL-SE t 100 0.21 0.22 0.16 0.15
MPL-SE t 200 0.14 0.15 0.11 0.10
MPL-SE t2 100 0.20 0.21 0.15 0.14
MPL-SE t2 200 0.14 0.14 0.10 0.10

MPL-mRSE
√
t 100 0.20 0.21 0.15 0.17

MPL-mRSE
√
t 200 0.14 0.15 0.10 0.11

MPL-mRSE t 100 0.21 0.21 0.16 0.15
MPL-mRSE t 200 0.14 0.15 0.11 0.10
MPL-mRSE t2 100 0.20 0.21 0.15 0.14
MPL-mRSE t2 200 0.14 0.14 0.10 0.09

Both estimators lead to similar estimates. To validate the model I also
show the estimating function process for estimating β with 50 resampled
processes under the null. This reveals that the assumption of constant pro-
portional odds appears somewhat unreasonable for the karnofsky score but
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Table 3 Independent censoring. Mean of 1000 repetitions
for 4 covariates (see text), SE of estimates and mean of es-
timated robust standard errors (mRSE). Comparison of esti-
mating equations (EE) and modified partial likelihood (MPL).

Method H(t) n 0.1 −0.5 0.1 −0.5

EE-mean
√
t 100 0.12 −0.53 0.10 −0.54

EE-mean
√
t 200 0.10 −0.51 0.10 −0.53

EE-mean t 100 0.10 −0.51 0.09 −0.53
EE-mean t 200 0.10 −0.50 0.11 −0.51
EE-mean t2 100 0.09 −0.53 0.12 −0.51
EE-mean t2 200 0.10 −0.50 0.10 −0.51

EE-SE
√
t 100 0.21 0.22 0.11 0.18

EE-SE
√
t 200 0.15 0.15 0.07 0.12

EE-SE t 100 0.21 0.22 0.11 0.17
EE-SE t 200 0.15 0.15 0.07 0.12

EE-SE t2 100 0.21 0.22 0.11 0.17
EE-SE t2 200 0.15 0.15 0.07 0.12

EE-mRSE
√
t 100 0.20 0.21 0.10 0.17

EE-mRSE
√
t 200 0.14 0.15 0.07 0.12

EE-mRSE t 100 0.21 0.21 0.10 0.17
EE-mRSE t 200 0.15 0.15 0.07 0.12
EE-mRSE t2 100 0.21 0.22 0.10 0.17
EE-mRSE t2 200 0.15 0.15 0.07 0.12

MPL-mean
√
t 100 0.10 −0.51 0.10 −0.52

MPL-mean
√
t 200 0.10 −0.51 0.10 −0.52

MPL-mean t 100 0.11 −0.51 0.10 −0.53
MPL-mean t 200 0.10 −0.50 0.10 −0.52
MPL-mean t2 100 0.11 −0.50 0.10 −0.52
MPL-mean t2 200 0.09 −0.51 0.11 −0.51

MPL-SE
√
t 100 0.20 0.21 0.10 0.17

MPL-SE
√
t 200 0.14 0.14 0.07 0.12

MPL-SE t 100 0.20 0.21 0.10 0.16
MPL-SE t 200 0.14 0.14 0.07 0.11
MPL-SE t2 100 0.20 0.21 0.10 0.16
MPL-SE t2 200 0.14 0.14 0.07 0.11

MPL-mRSE
√
t 100 0.20 0.21 0.10 0.17

MPL-mRSE
√
t 200 0.14 0.14 0.07 0.12

MPL-mRSE t 100 0.20 0.20 0.10 0.16
MPL-mRSE t 200 0.14 0.14 0.06 0.11
MPL-mRSE t2 100 0.20 0.20 0.10 0.16
MPL-mRSE t2 200 0.14 0.14 0.06 0.11

acceptable for the celltypes. Karnofsky score lead to a p-value at around 5
% when using the supremum as a test-statistic and comparing to the resam-
ple distribution with 1000 repetitions. The plot is based on the estimating
equations and a similar plot was obtained when using the modified partial



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Transformation Model for Survival Data 289

Table 4 Veterans data. Regression coefficients based on the two different methods.
Estimating Equation Modified Partial Likelihood

β SE Robust SE β. SE Robust SE

karno -0.044 0.007 0.006 -0.053 0.009 0.010
celltype squamous -0.449 0.460 0.502 -0.178 0.592 0.598
celltype smallcell 1.230 0.500 0.543 1.401 0.492 0.464
celltype adeno 1.504 0.568 0.447 1.331 0.498 0.431

likelihood estimator.
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Figure 1 Goodness-of-fit plot for Veterans data with 50 resampled processes under
model.

We conclude that there appears to be a problem with karnofsky score
and how this affects the other estimates is unclear. The next section gives
an extended model.
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3 A flexible semiparametric transformation model

One way of extending the model to become much more flexible is to use a
flexible time-varying regression model to model the baseline given covariates
such that

H(t|X) = XTA(s) (12)

where A(t) =
∫ t
0
α(s)ds.

Now, the intensity of T can be written as

λ(t) = Y (t) exp(ZTβ)(XTα(t))λ0(exp(ZTβ)H(t− |X)), (13)

where λ0(t) is the hazard associated with exp(ǫ). When ǫ has the extreme
value distribution then exp(ǫ) is exponentially distributed (λ0(t) = 1), and
then the model is a Cox-Aalen regression model Scheike and Zhang (2002)

Assume that i.i.d. observations (Ni(), Yi(), Xi, Zi) are are being ob-
served over a time interval [0, τ ] subject to this generic hazard model. Cen-
soring is assumed to be independent given the covariates as in the pre-
vious Section. We organize the covariates into an n × q matrix Z(t) =
(Y1(t)Z1, ..., Yn(t)Zn)

T and an n×p matrix X(t) = (Y1(t)X1, ..., Yn(t)Xn)
T

where Yi(t) i = 1, ..., n are the at-risk indicators and the n×q matrix Ḣβ(t−
|X) = (Y1(t)Ḣβ(t−|X1), ..., Yn(t)Ḣβ(t−|Xn))T where Ḣβ(t−|Xi) is the q×1
vector of derivatives of the estimatorHβ(t|Xi) with respect to β. Define also
diagonal matrices D(β,A) = diag(exp(ZTi β)λ0

{
H(t− |Xi) exp(ZTi β)

}
)

and D∗(β,A) = diag(exp(ZTi β)λ̇0(H(t − |Xi) exp(ZTi β))) with λ̇0(t) =
∂
∂tλ0(t). Also, S0(β,A) = X(t)D(t, β, A)X(t) and X−(t, β, A) =

S−1
0 (β0, A)X(t)T .

3.1 Estimating equations

We now consider estimating equations for β andH(t) based on the counting
processes ∫

ZT (t)(dN(t) − λ(t)dt) = 0, (14)

XT (t)(dN(t) − λ(t)dt) = 0. (15)

For known β the increments of A(t) based on (15) is solved for the
recursive formulae

dÃ(t) = X−(t, β0, Ã)dN(t),

thus leading to

Ã(t) =

∫ t

0

X−(s, β0, Ã)dN(s), (16)
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a recursive formulae for Ã. To simplify the notation let all definitions
depending on of both β and A and evaluated in β and Ã(t) (that is a
function of β be written as a function of only β, such that for example
X−(t, β0) = X−(t, β0, Ã).

Now, with the increment estimator of dA(t) the equation for β reads

Ũe(β) =

∫ {
ZT − ZTD(β)XS−1

0 (β)XT
}
dN. (17)

The estimating equation has a strong similarity with the estimating equa-
tion for the related Cox-Aalen survival model Scheike and Zhang (2002,
2003), that it reduces to in the Cox case. For the proportional odds model
the estimating equation considered earlier is achieved.

The derivative of the estimating function is

Ie(β) = −
∫
ZTD∗(β)dΛ̂

{
diag(exp(ZTi β))Z + Ḣβ(t− |X)

}
(18)

+

∫
ZTD(β)XS−1

0 (β)XD∗(β)dΛ̂
{
diag(exp(ZTi β))Z + Ḣβ(t− |X)

}

−
∫
ZTD(β)dΛ̂Z +

∫
ZTD(β)XS−1

0 (β)XD(β)dΛ̂Z,

with dΛ̂(t) = diag(X(t)S−1
0 (t, β)X(t)T dN(t)).

Similarly, to the one-dimensional case and by following the proofs in
this case it follows that with β̂ the proper root of (17) and with additional
regularity conditions then a consistent solution exist with probability tend-
ing to one. Further,

√
n(β̂ − β0) is asymptotically zero-mean normal with

covariance matrix that is estimated consistently by

nI−1
e (β̂)Ψ̂eI−1

e (β̂)

where an expression for Ψ̂e is on a similar form the one given in the one-
dimensional case.

Further, to estimate A0(t) use the estimator Â(t) = Ã(β̂, t). It follows
that

√
n(Â(t)−A0(t)) converges to a Gaussian process with a variance that

can be estimated by a formula similar the one given in the one-dimensional
case. Further, to get uniform bands one may resample the residuals.

To evaluate the the goodness-of-fit of the model consider the observed
estimating function process Ue(β̂, t), and this process can be approximated
by

Ue(t, β0) + Ie(t, β0)I−1
e (τ, β0)Ue(τ, β0)

based on which resampling is possible.
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3.2 Simulations

Consider a two-dimensional covariate Z, with Z1 Bernoulli with p = 0.5 and
Z2 standard normal with mean Z1 and variance Z1+1 , now based on these
X1 is Bernoulli with p = 0.3+0.2∗Z1 and X2 is log-normal with mean Z2 ∗
0.3 and standard deviation 0.4. This implies a positive correlation between
X and Z, and positive correlation within the pairs as well. Now assume
that data is generated from the flexible proportional odds model where
the survival function is given as S(t|X,Z) = exp(−ZTβ)/(exp(−ZTβ) +
H(t|X)) where H(t|X) = 0.1 ∗ t+

√
tX1 + 0 ∗X2. The proportional odds

effects are β = (0.1,−0.1). Subjects are censored at time 10 and this leads
to approximately 11 % censorings.

First I censored all observations at time 8 and this lead to results similar
to those presented below for the estimates of β but with a small bias and
a small bias for the estimates of the three nonparametric effects. The
censoring was approximately 40 %. The results that I will present are based
on censoring at time 5. This lead to approximately 50 % censorings. The
simulations were done based on a sample size of 200 and 400 respectively
and were repeated 1000 times.

Table 5 Flexible proportional odds model.
Mean of 1000 repetitions for proportional
odds regression, SE of estimates and mean
of estimated robust standard errors (mRSE).

n β SE mRSE

200 0.08 0.30 0.30
200 -0.11 0.14 0.13

400 0.10 0.21 0.21
400 -0.10 0.09 0.09

For sample size 200 the estimates were slightly biased but their vari-
ability were well estimated, and the bias was removed when the sample size
increased to 400.

To illustrate the performance of the baseline components I plot the
estimates in 50 simulations. Figure 2 shows that the estimates were almost
unbiased with the mean of all 1000 estimates thick broken lines) being
almost equivalent to the true functions (thick full line). Some slight bias
remained for the first and third component, and this disappeared when the
sample increased further. The variability were reasonably well described by
the suggested estimator, but further analysis will take place before these
findings are reported. It is evident that the estimates show an erratic
performance in some of the simulations.
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Figure 2 50 randomly chosen estimates of the non-parametric components of the model
and the average of 1000 repetitions (thick line) and true functions (thick broken line).

3.3 PBC data

I also consider the PBC data of Fleming and Harrington (1991) a Mayo
Clinic trial in primary biliary cirrhosis (PBC) where the proportional odds
model does not provide a good fit. The PBC data comprises of 418 patients
that are followed until death or censoring and is also available in the R
survival package. Again ties were broken by adding a little random noise.
The considered covariates were age, edema, albumin, and protime. This
data set has been analyzed for various models and it is known that the Cox
model does not fit it well. For simplicity I grouped protime in four groups
based on the quartiles. Edema and protime are known to have strongly
time-varying effects.

I first fitted a normal semiparametric proportional odds model with a
simple baseline. The goodness of fit plots revealed that there were a serious
lack of fit of the model. Figure 3 shows the goodness-of-fit processes based
on the estimating equation function.

The p-values and the plots for edema and grouped protime indicated
that the constant proportional odds model did not describe the data well.
Age and albumin, however, indicated no lacking fit. Thus indicating severe
problems with the fit for the model, and suggesting that edema and protime
is the cause of these problems. The edema component shows a estimating
function that rises quickly, thus indicating more deaths than described by
the model initially and less later in time.

To deal with the strongly time-dependent effects of edema and protime
I included edema and protime in the baseline. This lead to a model that
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Figure 3 Goodness-of-fit plot for PBC data with 50 resampled processes under model.

indicated no problems with the fit for the two components age and albumin.
The baseline components of this model further summarizes how the fit is
lacking for edema and the protime quartiles.

In Figure 4 I have plotted the baseline components of the model with
flexible modeling of edema and grouped protime. Edema, for example,
shows an increase in the odds-ratio initially that is diminishing over time
and is followed by a drop after about 5 years of study. Each baseline
component is shown with 95 % pointwise confidence intervals (solid lines)
and a 95 % confidence band (broken lines).

To illustrate that the added flexibility has important consequences for
the models fit and ability to predict important quantities such as survival
probabilities I consider the survival predictions for the flexible model and
the standard semiparametric proportional odds model. In Figure 5 I have
plotted the survival functions for a subject with mean albumin and mean
age and depending on edema and protime for the two models. The pro-



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Transformation Model for Survival Data 295

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

Time

C
u

m
u

la
ti
v
e

 r
e

g
re

s
s
io

n
 f

u
n

c
ti
o

n

(Intercept)

0 2 4 6 8

−
0

.5
0

.0
0

.5
1

.0
1

.5

Time

C
u

m
u

la
ti
v
e

 r
e

g
re

s
s
io

n
 f
u

n
c
ti
o

n

edema

0 2 4 6 8

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

Time

C
u

m
u

la
ti
v
e

 r
e

g
re

s
s
io

n
 f
u

n
c
ti
o

n

gprot(−0.732,−0.132]

0 2 4 6 8

0
.0

0
.5

1
.0

Time

C
u

m
u

la
ti
v
e

 r
e

g
re

s
s
io

n
 f
u

n
c
ti
o

n

gprot(−0.132,0.368]

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

Time

C
u

m
u

la
ti
v
e

 r
e

g
re

s
s
io

n
 f
u

n
c
ti
o

n

gprot(0.368,7.27]

Figure 4 Odd-ratio baseline components for PBC data with 95 % pointwise confidence
intervals (solid lines) and resampling based confidence bands (broken lines).

portional odds model corrects for the effects of age, albumin, edema and
protime in quartiles (2., 3. and 4.) log-proportional odds parameters (sd) at
0.030, (0.0106), -1.570 (0.2890), 1.070 (0.334), 0.190 (0.296), 0.916 (0.304)
and 1.450 (0.2990), respectively. For the extended model the estimated
log-proportional odds effect of age and albumin were 0.0284 i(0.0106) and
−1.510(0.3210), respectively.

This leads to estimates of the survival function for the 8 groups depend-
ing on edema and protime. Figure 5a shows the survival function estimates
for the proportional odds model. Similarly, Figure 5b gives the estimated
survival based on the flexible proportional odds model that gave a much
improved fit. The added flexibility is noticeable in the Figure 5b, where the
presence of edema leads to survival curves with an initial steep slope that
flattens considerably out towards the end of the considered time-period.
Similarly, the different quartiles of protime leads to a markedly different
behavior over time. The 4. quartile also has an initial strong effect reduc-
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Figure 5 Estimated survival for proportional odds model (a) and for extended model (b)
for for subjects with mean level of albumin, no edema (edema=0) and protime in quar-

tiles (thin lines, full=1. quartile, dashed=2. quartile, dotted=3. quartile,dotdash=4.
quartile), and for subjects with edema and protime in the quartiles (thick lines).

ing survival and then flattens out, in contrast to this the 2. and 3. quartiles
on the contrary starts out with almost no effect and then increases towards
the end of the time-period.

4 Discussion

I have reviewed two recent approaches for estimation in semiparametric
transformation models and compared their finite sample properties in a
simulation study. The modified partial likelihood estimator appears to be
slightly more efficient than the one based on estimating equations. This
has to do with the choice of the weight function. An alternative is to use
the maximum-likelihood score with respect to β with dH̃(t) instead of h(t).
The resulting pseudo-score equation is quite similar to the modified partial
likelihood estimator. The only differ because the modified partial likelihood
leads to a score for β that also includes the derivative of H̃ with respect to
β. For known H the two approaches would be equivalent.

A simple goodness-of-fit test was suggested and was easy to implement
by the use of resampling techniques. One practical limitation of the the
models are that all covariate effects must lead to constant regression ef-
fects and to deal with this an extension of the model was suggested. In
the simple case with just one baseline the estimate will automatically be
increasing over time, but in the general regression situation the odds-ratio
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baseline may show some non-monotone behavior thus leading to negative
hazards, this is similar to what happens in the additive hazard model and
one may remedy the problem by similar techniques. Additional work is
needed to fully understand the asymptotic properties and performance of
the estimators of the extended partly proportional odds model.

All the methods are implemented in an R package available at the au-
thors homepage (http://staff.pubhealth.ku.dk/~ts/).
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In this paper we discuss, via some specific examples, some of the
issues associated with embedding a standard model in a larger family of
models, indexed by an additional parameter. The examples considered
are the Box-Cox transformation family, a family of models for binary
responses that includes the logit and complementary log log as special
cases, and a new family that includes two formulations of cure models as
special cases. We discuss parameter interpretations, inflation in variance
due to the addition of the extra parameter, predictions on an observable
scale, ratios of parameters and score tests. We review the literature on
these topics for the Box-Cox and binary response models and provide
more details for the cure model.

Keywords: Cure models; Transformation; Variance inflation.

1 Introduction

There are a number of situations in statistics where standard models can
be generalized by embedding the model in a family of models indexed by
an additional scalar parameter. A well known example of this is the Box-
Cox transformation family in which standard linear regression Y = Xβ+e,
e ∼ N(0, σ2), is generalized to Y (λ) = Xβ+ e where Y (λ) = (Y λ− 1)/λ for
λ 6= 0 and Y (λ) = log(Y ) for λ = 0.

The usual reason for considering families of models is because of the
potential that the model may fit the data better. However such model
extension raises a number of interesting statistical issues. Some of the issues
are specific to the particular family, whereas others have a common theme
in many of the families. Some of these common themes are concerned
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with interpretation of parameters, ratios of parameters, how to estimate
variances, predictions on the original scale, the inflation in variance due to
the addition of an extra parameter and score tests.

Having a model that fit the data substantially better would nearly al-
ways trump other concerns that may arise when an extra parameter is
added to a model. However, these other concerns may be non-trivial. For
example, in the above Box-Cox example the interpretation of β depends
on the value of λ. But not all extensions of standard models lead to such
difficulties. For example, for the standard regression model Y = Xβ + e,
e ∼ N(0, σ2), a different one parameter extension is to assume that e has
a T distribution with ν degrees of freedom (Lange et al, 1989). Such an
extension does not alter the interpretation of β, and estimates of ν and β
are asymptotically orthogonal.

The set of possible examples of extending standard models is obviously
very large. We will limit ourselves to nice fully parametric models in a
regression setting with independent observations, for which the parameters
can be estimated at a

√
n rate.

2 Power transformation family

One of the earliest papers in which the idea of transforming data was for-
mulated as a statistical model was Box and Cox (1964). They described

estimation methods for the model Y
(λ)
i = Xiβ + ei, where ei ∼ N(0, σ2).

They formulated both maximum likelihood and Bayesian estimation tech-
niques for the parameters (β, σ, λ). A key point is that the log-likelihood

logL = −(n/2)log(2πσ2) − (1/2σ2)Σ(Y
(λ)
i −Xiβ)2 + (λ − 1)Σlog(Yi)

includes the Jacobian. Thus standard least squares estimation methods to
find the maximum likelihood estimate can’t be applied.

There are different philosophies on the role of the Box-Cox model and
the associated likelihood. One is that the likelihood is a method to find a
transformation of the data, then standard linear model techniques are ap-
plied to these transformed data. A different philosophy is that the addition
of λ is simply a means of making the model more flexible. Rewriting the
model in the non-linear form Yi = 1+λ(Xiβ+ei)

1/λ makes this philosophy
more obvious.

An important aspect of this model is that, except for β = 0, interpreta-
tion of β depends on the value of λ. For this reason some have suggested
that one only considers a small number of convenient values for λ, such as
-1, 0, 1/3, 1/2, 1 and 2. The calculation of the variance of β̂ has been the
most controversial. Box and Cox(1964) and others (Box and Cox(1982),
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Hinkley and Runger(1984)) took the position that the model is a way to
determine how the data should be transformed, but after it is transformed
the estimate of β is obtained conditional of that value of λ as if it were
known beforehand. With this conditional view the estimate of the variance
of β̂ can be obtained from a Hessian that does not include a row and column
for the parameter λ. This closely mimics what is done in practice. Bickel
and Doksum (1982) pointed out that this method does not incorporate the
uncertainty associated with the estimation of the parameter λ. When one
calculates the variance of β̂ using a Hessian that does include a column and
row for λ, then the variance of β̂ can be an order of magnitude larger. This
inflation in variance was quite controversial and there is not a satisfactory
solution to this day. The problem is somewhat similar to that of inference
after variable selection or model selection (Faraway 1992). Some variables
are selected to include in a model, whereas others are removed, then the
final inference is based on the selected model. It is well recognized that this
tends to give fits that are too optimistic and standard errors that are too
small, yet it remains the common practice.

A different way to approach this issue is in a prediction framework, by
retransforming back to the original scale of the observations (Carroll and

Ruppert 1981, Taylor 1986). Consider Ŷ = 1 + λ̂(X0β̂)1/λ̂, when λ̂ 6= 0 or

exp(X0β̂) when λ̂ = 0, which is the predicted median of the distribution of
Y given X0. This has an interpretation irrespective of the value of λ. It
has been shown that the V ar(Ŷ ), calculated considering λ as a parameter,
tends to be larger than but not substantially larger than V arλ̂(Ŷ ) calculated

treating λ as if it were fixed and known to equal λ̂.
While the individual parameters β1 and β2 in the model Y (λ) = β0 +

β1X1 + β2X2 + e can be hard to interpret, it is interesting to note that
the ratio of two parameters, such as β1/β2, does have an interpretation as
the substitutability of one variable for another, irrespective of the value of
λ. In particular, if X1 is increased by one unit, then β1/β2 is the amount
by which X2 would need to be decreased to give the same response. This
property that the ratio of parameters can be interpreted and more robustly
estimated is a general result in statistics (Brillinger 1983, Li and Duan
1989). It is also the case that the inflation in variance of this ratio due to
the estimation of λ is close to 1 (Taylor 1989).

A more recent article on Box-Cox transformations is provided in Chen
et al (2002). They and the discussants address many issues concerned with
Box-Cox transformations. They argue for reparametrization in terms of
parameters β/σ and λσ/(1 + λµ), whose estimates are more stable with
respect to λ. This parametrization is useful for asymptotics and related to
the orthogonality developed by Cox and Reid (1987). A more demanding
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discussion of parametrization is given by McCullagh (2002) who argues that
the source of the problem is that β and σ are not identifiable parameters.

The value of β = 0 is a special case, in that the interpretation is the
same irrespective of the value of λ. One consequence of this is that tests of
the null hypothesis β = 0, do not suffer from the same inference problems
as those associated with estimation of β (Doksum and Wong 1983).

Score tests can be applied as a general strategy to assess whether a
standard model needs to be extended. A score test of λ = 1, would be
a simple way to assess whether transformations might be needed. An ap-
proach to obtain a confidence interval for λ is via profile likelihood. It is
not uncommon for small sample sizes, for this profile likelihood to be far
from quadratic, suggesting that Wald tests for λ may be unreliable.

3 Binary response regression models

Aranda-Ordaz (1981) suggested a family of regression models for binary
outcomes, which included the logit and complementary log log link func-
tions as special cases. The model for pi = P (Yi = 1) takes the form

log(((1 − pi)
−λ − 1)/λ) = Xiβ, for λ 6= 0,

log(− log(1 − pi)) = Xiβ, for λ = 0.
The well known special cases are the logit link for λ=1 and the comple-

mentary log log link for λ=0.
A graphical way to think about this model is that the probability of

response follows a sigmoid shape as a function of the covariates. With
λ=1, this sigmoid curve is symmetric, and other values of the parameter λ
index the amount of left or right asymmetry of the sigmoid curve. With
binary data the ability to distinguish between symmetric and asymmetric
link functions will obviously be difficult unless the sample size is large.

A number of the statistical issues that arise for the Box-Cox model, also
arise for this model. Writing the model as p = 1 − (1 + λ exp(Xβ))−1/λ

makes it clear that the model can simply be viewed as a more flexible way
to describe the relationship between a binary response and covariates.

The variance of β̂, calculated from the information matrix, will be much
larger if the uncertainty in λ is incorporated, compared to assuming λ is
known.

Again for this model the coefficients β have interpretations that depend
on the value of λ, for β 6= 0; but β = 0 has the same interpretation for all
values of λ. Also the ratios of two β’s have a substitutability interpretation
independent of λ.

The model can be used for estimating a predicted probability for a fixed
X0 using the equation
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p̂ = 1 − (1 + λ̂ exp(X0β̂))−1/λ̂ for λ̂ 6= 0 and

p̂ = 1 − exp(− exp(X0β̂)) for λ̂ = 0.
It has been shown (Taylor 1988) that the average inflation in variance

of this predicted probability due to estimation of λ, when summarized in a
specific way has a nice algebraic result. In particular

Σni=1wiV ar(p̂i)

Σni=1wiV arλ̂(p̂i)
= 1 + 1/q

where wi = (pi(1 − pi))
−1.

In this expression the variance in the numerator is based on the full
Hessian, while the Hessian used in the denominator ignores the row and
column corresponding to λ, and q is the dimension of X. This result is
intuitively appealing because it says the inflation in variance is on average
proportional to the number of parameters. It has also been shown that
this result generalizes to broader families of models (Taylor, Siqueira and
Weiss, 1996).

Another use of this family of models is as a basis of a score test to assess
goodness-of-fit of a particular model. For example, to assess if the logit
link is appropriate, one could fit the model assuming a logit link, calculate
∂log(L)/∂λ and apply the score test. The advantage of this approach is
that it doesn’t require estimation of λ, which could be computationally
cumbersome.

4 Cure models

A common situation, particularly in cancer research, is that the event of
interest will never happen, even if the person were to be followed for a long
time. For example, if the person is treated for cancer and cured by the
treatment, and if the event of interest is recurrence of the disease, then this
event will never occur. A good example of this is in head and neck cancer.
The typical treatment for localized disease is either radiation therapy or
surgery. Both of these are effective in eradicating the tumor cells, however
if any tumor cells do remain they will tend to divide and grow quickly, such
that within three years they will be clinically detectable. Thus if a person
is followed for more than three years after treatment without detectable
recurrence of the disease, there is a high likelihood that they are actually
cured of the cancer. Models to analyze data in this situation have been
called cure models.

One formulation of a model for such a situation is as a mixture model
(Farewell 1982) or equivalently as a special case of a frailty model. In such a



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

304 J. Taylor & N. Liu

model a person is in the cured group with probability p and in the non-cured
or susceptible group with probability 1− p, and conditional of being in the
susceptible group the survival distribution is given by S0. Observations for
which the event has occured are in the susceptible group, but observations
that are censored could be in either group.

The overall, non-proper, survival distribution for this model is given by
S(t) = p + (1 − p)S0(t). Covariates X, could be allowed to affect both p
and S0(t). The model has a number of nice features (i) it has a sensible
interpretation in many applications, (ii) the probability p can depend on
covariates and these can be interpreted as being associated with whether
the event will occur, (iii) the model for S0(t) can depend on different co-
variates, which might be important factors in determining when the event
occurs, given that it is not cured. A logistic model is frequently assumed
for p, although below we will be using a log-log link function, and Weibull
(Farewell 1977), accelerated failure time (Yamaguchi 1992, Li and Taylor
2002), non-parametric (Taylor 1995) and semi-parametric proportional haz-
ards models (Sy and Taylor 2000, Peng and Dear 2000) have been suggested
for S0. There are some well known potential identifiability problems with
this model (Fare! well 1986, Li et al 2001), due to the improper survival
distribution. This can lead to estimates of intercept parameters in p being
highly collinear with estimates of shape parameters in S0. Thus care is
needed in estimation and interpretation.

A different class of cure models has been suggested (Yakovlev and
Tsodikov 1996, Chen, Ibrahim and Sinha 1999) and recently reviewed
(Tsodikov et al 2003). The easiest representation of this class of cure mod-
els is via the cumulative hazard, H(t), which is a non-decreasing function.
For a cure model, H(t) must be bounded as t becomes large, thus H(t) can
be written as H(t) = θF0(t), where F0(t) has the form of a distribution
function of a positive random variable. But we note that F0(t) is not the
distribution function of T. The survival distribution of T can be written as
S(t) = exp(−θF0(t)). Note that the probability of eventual cure is given by
p = exp(−θ), thus S(t) can be written as S(t) = exp(log(p)F0(t)). Covari-
ates can be included in the model in both θ(X) and F0(t,X). Note that if
F0 does not depend on covariates, then a proportional hazards assumption
is satisfied.

An alternative derivation for this cure model comes from the consid-
eration of recurrence after cancer therapy. Suppose the treatment leaves
N independent clonogenic cells, and that N has a Poisson(θ) distribution.
Each cell grows independently and becomes large enough to be detected at
a time that has a distribution F0(t). The recurrence is recorded when the
first of these N clonogens becomes detectable, ie T = min(T1, T2, ..., TN ).
Thus P (T > t) = P (N = 0) + Σ∞

n=1P (N = n)(1 − F0(t))
n. After some
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algebra it can be shown that this simplifies to P (T > t) = exp(−θF0(t)).
This provides a nice motivation, although in most cases the biological as-
sumption implied by T = min(T1, T2, ..., TN) is not realistic. Never-the-less
this algebraic motivation has proved useful in suggesting an algorithm for
Bayesian estimation that has been utilized by some authors (Chen, Ibrahim
and Sinha 1999).

The following more general model has both the above two cure models
as special cases. Let S(t) be the survival probability of all subjects. The
model can be written as

S(t)λ − 1

λ
=
pλ − 1

λ
F0(t) (1)

Or equivalently,

S(t) = [1 + (pλ − 1)F0(t)]
1
λ . (2)

The extra parameter λ in this model has no real interpretation, its role
is to provide a more flexible model to apply to real data. We note that
a similar generalization has recently been proposed by Yin and Ibrahim
(2006), although they only apply the power transformation to the left hand
side of equation 1.

From equation 2 it is clear that S(t) → p as t → ∞, thus p is the
probability of eventual cure irrespective of the value of λ.

We can see that

S(t) = e(log(p))F0(t)

when λ = 0, and

S(t) = p+ (1 − p)S0(t)

when λ = 1, where F0(t) = 1 − S0(t).
We can allow covariates to affect both p and F0. For example, using a

log-log link with two covariates we could assume

prob(cure) = p = exp(−exp(α0 + α1X1 + α2X2)).

Assuming a Weibull form for S0(t) gives

S0(t) = exp(−τtγexp(β1X1 + β2X2)).

Assuming n independent observations, let Ti be the event time and Ci
be the censoring time for each subject. Suppose we observe (ti, δi) where
ti = min(Ti, Ci) and δi = I(ti = Ti). Under standard assumptions about
independent censoring, the likelihood function is

L(α, β, τ, γ, λ) =

n∏

i=1

[(1 − pλi )f0(ti)]
δiλ−δiS(ti)

1−λδi
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Table 1 Estimates and standard errors for simulated datasets.
Parameters Estimate (SE) Estimate (SE) Estimate SE SE

(True values) assuming assuming with λ assuming assuming
λ = 0 λ = 1 estimated λ known λ unknown

Dataset 1, True λ = 0

α0 0.05 0.02 0.05
(0.0) (0.13) (0.12) (0.13) (0.13)
α1 -1.34 -1.30 -1.37

(-1.5) (0.23) (0.24) (0.24) (0.25)
α2 -0.92 -0.83 -0.94

(-1.0) (0.24) (0.23) (0.24) (0.24)
α1/α2 1.46 1.57 1.46
(1.5) (0.40) (0.47) (0.39) (0.40)

β1 0.76 0.12 0.67
(1.0) (0.27) (0.21) (0.25) (0.33)
β2 1.23 0.64 1.14

(1.5) (0.29) (0.20) (0.27) (0.35)
β2/β1 1.62 5.33 1.70
(1.5) (0.70) (12.14) (0.78) (0.81)

λ 0 1 0.12
(0) — (0.26)

log-likelihood -234.07 -235.61 -233.95 — —

Dataset 2, True λ = 1

α0 0.03 0.08 0.07
(0.0) (0.10) (0.14) (0.14) (0.14)
α1 -0.98 -1.11 -1.10

(-1.5) (0.20) (0.25) (0.25) (0.25)
α2 -0.52 -0.77 -0.77

(-1.0) (0.21) (0.29) (0.28) (0.28)
α1/α2 1.88 1.43 1.42
(1.5) (0.89) (0.49) (0.48) (0.48)

β1 1.43 0.96 0.88
(1.0) (0.24) (0.22) (0.21) (0.36)

β2 1.98 1.70 1.62
(1.5) (0.23) (0.23) (0.22) (0.35)
β2/β1 1.38 1.76 1.84
(1.5) (0.32) (0.45) (0.49) (0.57)

λ 0 1 1.23
(0.0) — (0.87)

log-likelihood -224.49 -222.80 -197.51 — —

where f0(t) is the density corresponding to distribution function F0(t).
For all values of λ in these cure models the probability of eventual cure

is given by p. Since we assume log(−log(p)) = α0 + α1X1 + α2X2, the
interpretation of the α’s is the same in all models, and this is independent
of λ. The parameter λ determines the shape of the distribution of time to
event, amongst those who are not cured. This distribution is associated
with covariates X through the linear combination β1X1 + β2X2, thus the
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Figure 1 Predicted survival distribution for two values of (X1,X2) and the three values
of λ (0, 1 and λ̂), for dataset 1.

interpretation of β1 and β2 will depend on λ. The ratio of parameter
estimates α1/α2 and β1/β2 again have interpretation as the substitutability
of one covariate for another, however the fact that there are two ratios
makes this a less useful concept.

Many of the statistical issues that arose for the Box-Cox model and
the Aranda-Ordaz model, also arise for this more general cure model. As
discussed above, interpretation of the regression coefficients β depend on
the value of λ, score tests can be used for testing λ = 0 and λ = 1, the



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

308 J. Taylor & N. Liu

Survival Times

P
re

d
ic

te
d

 S
u

rv
iv

a
l 
P

ro
b

a
b

il
it
ie

s

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1 = -0.1, X2= -0.5, lambda = 0

X1 = -0.1, X2= -0.5, lambda = 1

X1 = -0.1, X2= -0.5, lambda = 1.23

X1 = 0.1, X2= 0.5, lambda = 0

X1 = 0.1, X2= 0.5, lambda = 1

X1 = 0.1, X2= 0.5, lambda = 1.23

Figure 2 Predicted survival distribution for two values of (X1,X2) and the three values
of λ (0, 1 and λ̂), for dataset 2.

inferences about the regression parameters can differ depending on whether
one regards λ as fixed or as an unknown parameter, and the model allows
predictions back to the original scale of the observations. To address these
issues, we conducted a small simulation experiment that investigated the
properties of estimates from this model. We simulated two datasets each of
size n=300, one with λ = 0 and one with λ = 1. There were two covariates
and uniform censoring was included. The distribution of the covariates,
X1 and X2, are both Uniform(-1,1). The values of τ and γ are 0.1 and
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3.0 respectively. For each dataset we estimated the parameters under three
scenarios, one with λ fixed at 0, one with λ fixed at 1 and one with λ
estimated. When λ is estimated we consider two different standard errors,
one based on the Hessian without a row and column for λ (labelled as
SE assuming λ known) and one based on the full Hessian (labelled as SE
assuming λ unknown).

The true values of the parameters along with estimates, standard errors
and log-likelihoods are given in Table 1. The results show that the estimate
of α are not sensitive to the value of λ, but the estimates of β are sensitive
to the choice of λ. There appears to be almost no inflation in variance of α̂
due to estimation of λ, and as expected, the inflation in variance of β̂ due to
estimation of λ is more substantial. The results for the ratios of parameters
α1/α2 and β2/β1 are also presented. There is a slight suggestion that these
ratios are less dependent on λ than the parameters themselves, but a more
thorough evaluation is required.

Profile likelihood confidence intervals and score tests were calculated for
each dataset. The 95% confidence intervals for λ are (-0.5,1.2) and (-0.1,4.2)
for the two datasets respectively. Both these are quite wide, suggesting it
will be hard to obtain precise estimates of λ unless the sample size is large.
The p-values from the score tests of λ = 0 and λ = 1 are 0.79 and 0.009 for
dataset 1 respectively, and 0.0001 and 0.94 for dataset 2 respectively. These
are broadly compatible with the log-likelihood differences as seen in Table
1, but in general we found that there could be differences between score
tests and tests based on likelihood ratios at the sample sizes we considered.

The predicted survival distribution is given by equation 2. These pre-
dictions are of the marginal distribution of T given X. They are on an
observable scale and have the same interpretation, irrespective of the value
of λ. We calculated this survival distribution at two values of (X1, X2) for
each of the datasets. The results are presented graphically in Figures 1
and 2. There are 6 lines on each figure, corresponding to the two values of
(X1, X2) and the three values of λ (0, 1 and λ̂). The three lines for each
value of λ are close to each other, suggesting that one would get similar
interpretations from the various models.

The results from this specific small simulation study, suggest that the
distinction between the two cure models formulations are not so great. An
interesting research question is what type of designs and sample sizes would
be needed to see a practical difference between the two formulations.

Overall we see that adding an extra parameter to a standard model
can lead to difficulties in parameter interpretation and inference. However,
many of these difficulties are less important if the results of fitting the model
are presented on the original scale of the observations.
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Chapter 16

LINEARLY UNBIASED ESTIMATION OF CONDITIONAL

MOMENT AND CORRELATION FUNCTIONS

Hans-Georg Müller

Department of Statistics
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We consider a random-design regression model with vector-valued ob-
servations and develop nonparametric estimation of smooth conditional
moment functions in the predictor variable. This includes estimation of
higher order mixed moments and also functionals of the moments, such
as conditional covariance, correlation, variance, and skewness functions.
Our asymptotic analysis targets the limit distributions. We find that
some seemingly reasonable procedures do not reproduce the identity or
other linear functions without undesirable bias components, i.e., they
are linearly biased. Alternative linearly unbiased estimators are devel-
oped which remedy this bias problem without increasing the variance. A
general linearly unbiased estimation scheme is introduced for arbitrary
smooth functionals of moment functions.

Key words: Covariance function; Moment functional; Identity repro-
ducing estimation; Local linear fitting; Mean squared errors; Nonpara-
metric regression; Skewness; Smoothing; Variance function.

1 Introduction

We consider the situation of a nonparametric regression model with a ran-
dom predictor X and a vector of dependent variables Y ∈ ℜp, p ≥ 1. It
is assumed that one observes a sample of n pairs (Xi, Yi), i = 1, ..., n, of
independent and identically distributed (i.i.d.) bivariate data, drawn from
a joint distribution F (u, v). Extending the basic problems of estimating the
mean regression function E(Y |X = x) for univariate responses Y [Fan and
Gijbels (1996), Wand and Jones (1995)] or of estimating a variance function
var(Y |X = x) [Müller and Stadtmüller (1993)], we consider estimation of

315
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mixed conditional moment functions of the type

µα(x) = E(Y α|X = x) = E(Y β1

1 Y β2

2 ...Y βpp |X = x), (1)

where α = (β1, ..., βp) is a multi-index of nonnegative integers and
Y = (Y1, ..., Yp)

T . Given a number of k ≥ 1 such conditional moments
µα1 , ..., µαk , and a smooth mapping G from ℜk to ℜ, our main object of
interest is the functional

g(x) = G (µα1(x), ..., µαk (x)) . (2)

Interest in estimating the function g(·) is motivated by the following
examples. (Whenever p = 1, we write Y for Y1.)

Example 1. Conditional Moment Function.
For k = 1, p = 1, α1 = 1, and G(x) = x, one has the conditional moment
function

µℓ(x) = E(Y ℓ|X = x), (3)

which includes the classical regression function for ℓ = 1.

Example 2. Conditional Variance Function.
For k = 2, p = 1, α1 = 2, α2 = 1 and G(x, y) = x − y2, we obtain the
conditional variance function

g(x) = v(x)=var(Y |X = x) = E(Y 2|X = x) − {E(Y |X = x)}2

=µ2(x) − (µ1(x))
2. (4)

Example 3. Conditional Skewness Function.
The choices k = 3, p = 1, α1 = 1, α2 = 2, α3 = 3 and G(x1, x2, x3) =
(x3 −3x1x2 +2x3

1)/((x2 −x2
1)

3/2) lead to the conditional skewness function

g(x) = s(x) = E{(Y − µ(x))3|X = x} =

{
µ3 − 3µ2µ1 + 2µ3

1

(µ2 − µ2
1)

3/2

}
(x). (5)

Example 4. Conditional Covariance Function.
For k = 3, p = 2, α1 = (1, 1), α2 = (1, 0), α3 = (0, 1) and G(x1, x2, x3) =
x1 − x2x3, we arrive at the conditional covariance function

g(x) = v12(x) = E(Y1Y2|X = x) − E(Y1|X = x)E(Y2|X = x). (6)
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Example 5. Conditional Correlation Function.
For k = 5, p = 2, α1 = (1, 1), α2 = (1, 0), α3 = (0, 1), α4 = (2, 0),
α5 = (0, 2) and G(x1, x2, x3, x4, x5) = (x1 − x2x3)/((x4 − x2

2)(x5 − x2
3))

1/2,
we obtain the conditional correlation function

g(x) = ρ12(x) =
v12(x)

{v11(x)v22(x)}1/2
, (7)

where vkℓ(x) = E(YkYℓ|X = x) − E(Yk|X = x)E(Yℓ|X = x).

Conditional moment functions, especially for the first moment, are nat-
urally of interest in applications of nonparametric regression. The variance
function has long been recognized as a valuable tool in applied statistics.
Applications include the construction of confidence regions, adjustments of
least squares estimators in parametric regression models to heteroscedas-
ticity, local bandwidth selection, and volatility modeling [see, e.g., Dette
and Munk (1998), Eubank and Thomas (1993), Fan and Yao (1998), Müller
and Stadtmüller (1987) and Picard and Tribouley (2000)].

For example, the estimation of a conditional skewness function will be
of particular interest in cases where the skewness of responses Y changes
sign for varying predictors x, in which case an overall skewness estimate is
less meaningful. In an obvious manner, conditional curtosis functions, con-
ditional cumulant functions and conditional moment generating functions
can be defined along the same lines. Conditional covariance and correlation
functions are of particular interest. These functions are relevant whenever
the response is multivariate, and when the relation between any two re-
sponse variables changes as a predictor variable varies.

Another type of conditional correlation function has been introduced
by Bjerve and Doksum (1993) and was further analyzed in Doksum et al.
(1994) and Doksum and Samarov (1995). The topic of these papers is
measuring the local strength of a relation between a univariate dependent
variable Y and a univariate predictor variable X , which is modeled as vary-
ing with predictor value. In contrast, our focus here is on the dependency
of the correlation between two response variables, conditional on the level
of a predictor variable. This dependency could be characterized as a condi-
tional partial correlation function, which we will model nonparametrically
in the following.

A criterion which has been shown to be of practical as well as theoret-
ical interest for discriminating between various possible function estimates
focuses on whether an estimator can reproduce a linear function with a
zero leading (first order) bias term. This is a desirable feature, as then
bias is controlled irrespective of the locations and design of the predictors.
Different aspects of this property with regard to the comparison of specific
smoothers have been pointed out by various authors, among them Chu
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and Marron (1991), Jennen-Steinmetz and Gasser (1987), Jones and Park
(1994), and Müller (1997). Specifically, the notion of an identity reproduc-
ing function estimator was introduced in Müller and Song (1993), where it
was shown how given function estimators can be modified by incorporating
an identity reproducing transformation in such a way that they become
identity reproducing. Additional results along these lines were obtained by
Mammen and Marron (1997) and Park, Kim and Jones (1997). A defining
feature is that scatterplot data (Xi, Xi), fed into an identity-reproducing
estimator of E (Y |X = x), will return the identity function as function es-
timate, which is of course the true underlying function in this situation.

We formalize here the notion of vanishing leading bias terms in the fol-
lowing way: We call a function estimator ĝ(x) of g(x) linearly unbiased,
if the leading term of its asymptotic bias is proportional to the second
derivative g(2)(x) and does not involve any further terms depending on
g(·) or the joint distribution F (·, ·) of X and Y . This notion is motivated
by several appealing properties of linearly unbiased estimators: not only
do they reproduce the identity function, but they also are associated with
a bias structure that is predictable from the curve estimate itself, since
bias depends only on the second derivative of the function g that is to be
estimated; in particular the bias does not depend on properties of the un-
derlying design such as the density of the design points. For example, for
Nadaraya-Watson quotient type kernel estimators of the mean regression
function it is well known that these estimators are linearly biased, while
convolution type kernel estimators and local polynomial smoothers are lin-
early unbiased [Bhattacharya and Müller (1993)].

The paper is organized as follows. In Section 2, we provide further
details on linearly unbiased curve estimators. We then state the main
results and obtain a general construction for linearly unbiased estimates
of conditional moment functionals in Section 3. In Section 4, we provide
examples of linearly unbiased estimators, including estimators for skewness,
covariance and correlation functions. A simulation example is included in
Section 5, while proofs, auxiliary results and assumptions can be found in
Section 6.

2 Preliminaries on linearly unbiased curve estimators

A generalized version of the concept of linear unbiasedness is r-th order
polynomial unbiasedness, which would imply that the leading term of the
asymptotic bias is proportional to g(r+1)(x). Examples of such estimators
are provided by local polynomial fitting of polynomials of degree (r + 1),
applied for estimating functions that are (r + 1) times continuously differ-
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entiable, and also by convolution kernel estimators using kernels of order
(r+1) [see Gasser, Müller and Mammitzsch (1985)]. When targeting shapes
other than linear or polynomial, other notions of target unbiasedness might
be of interest, extending the concept of polynomial unbiasedness to other
functional shapes which one desires to estimate without leading bias terms.
For the sake of simplicity, we consider here only the case r = 1, correspond-
ing to linear unbiasedness.

Note that linear or first order unbiasedness implies that the bias, when
estimating linear functions g(·), corresponds to a relatively small remainder
term. This is of course a highly desirable requirement in nonparametric
curve estimation, since parametric estimates based on the assumption of a
linear underlying function will be unbiased when the underlying function
to be estimated is indeed linear. If this is not the case, however, then such
parametric estimates will be inconsistent. The idea is that the price one
pays in terms of bias in nonparametric estimation, which is much more
flexible than parametric modeling and yields consistent estimates as long
as the underlying function is smooth, should be kept reasonably small when
estimating functions with common parametric shapes.

If linear unbiasedness is not satisfied, curve estimates will show unpre-
dictable systematic deviations that are often dependent on the underlying
design, whereas under linear unbiasedness, the leading bias term depends
only on the local curvature of the function to be estimated. This bias can
then be at least roughly assessed from the estimated function. For the spe-
cial case of estimating a variance function, the need for a bias correction
of this sort has been recognized in Ruppert et al. (1997) and accordingly
included in their estimation procedure by dividing smoothed squared resid-
uals by a constant.

The analysis in Ruppert et al. (1997) also provides one of many
examples of the commonly adopted conditional approach, where one fo-
cuses on the behavior of the conditional mean squared errors E{(ĝ(X) −
g(X))2|X1, ..., Xn}. While such conditional measures of performance are
valuable in their own right, they can only provide partial reassurance to a
user who encounters new data with different designs. For instance, it is well
known, and indeed corresponds to a practical problem, that unconditional
mean squared error does not even exist for local polynomial smoothers,
including the Nadaraya-Watson kernel estimator, while it does exist for
convolution type kernel estimators (Seifert and Gasser (1996) discuss these
issues in great detail). Unconditional asymptotics for local polynomial fit-
ting and related estimation methods can still be achieved by discarding
moment based criteria such as mean squared error and instead focussing
on asymptotic bias and variance, defined as the bias and variance obtained
from an asymptotic limiting distribution; this is the approach we adopt
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here. In fact, a prime example where the large sample limit of conditional
bias and variance differs from asymptotic bias and variance defined in this
sense is provided by local polynomial fitting.

Assume a sample of i.i.d. random vectors (Xi, Yi) ∈ ℜp+1, i = 1, ..., n,
is given, and consider the problem of estimating the conditional moment
function µα(x) = E(Y α|X = x) for a fixed x in the domain of g. Given a
sequence of bandwidths b > 0 and a kernel or weight function K ≥ 0, we
define kernel weights

wi(x) = (nb)−1K{b−1(x−Xi)}, (8)

usually assuming that for the sequence of bandwidths b→ 0, nb→ ∞ as
n → ∞, and that the kernel K is a square integrable probability density
function with finite variance that is centered around 0.

The most common estimators are linear smoothers of the form

µ̂α(x) =

n∑

i=1

Wi(x)Y
α
i , (9)

i.e., weighted averages of the responses, where the Wi(·) are weight func-
tions which characterize a particular smoothing method. Linear smoothers
include splines and kernel estimators. For Nadaraya-Watson kernel esti-
mators which are of quotient type, the smoothing weights Wi are explicitly
given by

Wi,NW (x) = wi(x)/

n∑

j=1

wj(x), (10)

leading to estimates µ̂α,NW .
A second form of kernel estimation is local linear fitting by weighted

least squares. Here the smoothing weight functionsWi are obtained by solv-
ing the weighted least squares problem (compare Fan and Gijbels (1996))

µ̂α,LS(x) = argmin
a0

[
min
a1

{
n∑

i=1

wi(x) [Y αi − (a0 + a1 (Xi − x))]
2

}]
, (11)

for which the explicit smoothing weights are found to be

Wi,LS(x) =
wi(x)∑n
j=1 wj(x)

−
∑n

j=1 wj(x)(Xj − x)∑n
j=1 wj(x)

×
[

wi(x)(Xi − x)
∑n

j=1 wj(x) − wi(x)
∑n

j=1 wj(x)(Xj − x)∑n
j=1 wj(x)

∑n
j=1 wj(x)(Xj − x)2 − (

∑n
j=1 wj(x)(Xj − x))2

]
. (12)

One obtains the asymptotic distributions of both of these estimates
under suitable regularity conditions (compare Bhattacharya and Müller
(1993)) as

(nb)
1/2

[µ̂α(x) − µα(x)] → N (B, V ) (13)
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in distribution. Here the expression for the asymptotic variance is the same
for both estimators µ̂α,NW and µ̂α,LS, and is given by

V = f−1
X (x) [µ2α(x) − (µα(x))2]

∫
K2(u) du, (14)

where fX(·) denotes the marginal density of X . However, the asymptotic
bias terms B differ between Nadaraya-Watson and local least squares esti-
mators. Assuming nb5 → d2 for a constant d ≥ 0, we find for the asymptotic
bias term BNW of Nadaraya-Watson kernel estimators and for the bias term
BLS for local linear fitting that

BNW =
d

2

µ
(2)
α (x)fX(x) + 2µ

(1)
α (x)f

(1)
X (x)

fX(x)

∫
K(u)u2 du (15)

and

BLS =
d

2
µ(2)
α (x)

∫
K(u)u2 du. (16)

We conclude that Nadaraya-Watson estimators µ̂α,NW are linearly bi-
ased for µα, while local linear estimators µ̂α,LS are linearly unbiased. This
is not entirely surprising, given that Nadaraya-Watson kernel estimators
can be derived as the local weighted least squares solutions of fitting local
constants, which naturally leads to less flexible biases as compared to fitting
local least squares lines.

3 Main results on linearly unbiased estimation

For the following, we assume that regularity conditions (C1)-(C8), listed
in section 6, are in force. Relevant for the formulation of the following
result on the estimation of functionals of moment functions is the condi-
tion nb5 → d2, as n → ∞ for a d > 0. We consider functionals (2),
g(x) = G (µα1(x), ..., µαk (x)) , as described in the Introduction. In order to
estimate g(x), a natural approach are the plug-in estimators

ĝ(x) = G{µ̂α1,LS(x), ..., µ̂αk ,LS(x)}. (17)

As the following result demonstrates, these estimators generally do not
possess the desirable property of linear unbiasedness. Specifically, writing
µ = (µα1 , ..., µαk), and using the abbreviations cB = 1

2d
∫
K(u)u2du and

cV =
∫
K2(u)du, we have the following.

Theorem 1. Under regularity conditions (C1)-(C8),

(nb)1/2{ĝ(x) − g(x)} → N (B̃, Ṽ )
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in distribution, where

B̃=cB

k∑

m=1

{
dG

dxm
|µ

d2

d2x
µαm(x)

}
,

Ṽ=
cV

fX(x)




k∑

l,m=1

dG

dxl
|µ
dG

dxm
|µ


 {µαl+αm(x) − µαl(x)µαm(x)}.

The proof of this and the next theorem can be found in Section 6.
As a simple illustration of this result, consider the conditional covariance
function (Example 4, eq.(6))

v12(x) = E(Y1Y2|X = x) − E(Y1|X = x)E(Y2|X = x).

The plug-in estimator is v̂12(x) = µ̂11(x) − µ̂10(x)µ̂01(x) and Theorem 1
leads to

(nb)1/2{v̂12(x) − v12(x)} → N (B̃12, Ṽ12)

in distribution, where

B̃12=cB(µ
(2)
11 − µ01µ

(2)
10 − µ

(2)
01 µ10)(x),

Ṽ12=
cV

fX(x)
{µ22 − µ2

11 + µ2
01(µ02 − µ2

01) + µ2
10(µ20 − µ2

10)

−2µ01(µ21 − µ11µ10) − 2µ10(µ12 − µ11µ01)

+2µ10µ01(µ11 − µ10µ01)}(x).
As

v
(2)
12 (x) = {µ(2)

11 − (µ
(2)
10 µ01 + 2µ

(1)
10 µ

(1)
01 + µ10µ

(2)
01 )}(x),

this estimator is found to be linearly biased. The problem is that in the

asymptotic bias B̃12 the term −2µ
(1)
10 µ

(1)
01 (x) is missing.

In order to achieve linear unbiasedness for the general case, one needs
to target the asymptotic bias term

B∗=cB g
(2)(x)

=cB

k∑

m=1

{
dG

dxm
|µ

d2

d2x
µαm(x)

}

+ cB

k∑

l,m=1

d2G

dxldxm
|µ

d

dx
µαl(x)

d

dx
µαm(x). (18)

Therefore the problem of linear bias in estimates ĝ arises because the second
summand in the desirable asymptotic bias term B∗ is missing from the
actual bias term B̃.
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To remedy this problem, we introduce the bias correction term,

∆̂(x) =
1

2
s2x

k∑

l,m=1

{
d2G

dxldxm
|µ̂ δ̂αl(x)δ̂αm (x)

}
, (19)

where

δ̂α(x) = (20)∑n
i=1 wi(x)(Xi − x)Y αi

∑n
i=1 wi(x) −

∑n
i=1 wi(x)(Xi − x)

∑n
i=1 wi(x)Y

α
i∑n

i=1 wi(x)(Xi − x)2
∑n

i=1 wi(x) − [
∑n
i=1 wi(x)(Xi − x)]

2

and

s2x =

∑n
i=1 wi(Xi − x)2∑n

i=1 wi
−
{∑n

i=1 wi(Xi − x)∑n
i=1 wi

}2

. (21)

We then propose the bias corrected estimators

ĝ∗(x) = ĝ(x) + ∆̂(x) = G(µ̂α1 , ..., µ̂αk) + ∆̂(x). (22)

Interestingly, this bias correction has no effect on the variance, and the
modified estimator ĝ∗ is justified by the following result.

Theorem 2. Under regularity conditions (C1)-(C8),

(nb)1/2{ĝ∗(x) − g(x)} → N (B∗, V ∗)

in distribution, where

B∗ = cBg
(2)(x), V ∗ = Ṽ .

Continuing the example of the covariance function, the bias-corrected
estimator is given by

v̂∗12(x) = µ̂12(x) − µ̂10(x)µ̂01(x) − s2xδ̂01(x)δ̂10(x).

According to Theorem 2, this estimator has the desirable asymptotic bias

term B∗
12 = cBv

(2)
12 (x) and therefore is linearly unbiased.

4 Variance, skewness and correlation function estimation

We resume the discussion of the examples given in the Introduction in the
light of Theorem 2. Multi-indices are replaced by single indices if only one
coordinate of the response vector Y needs to be considered; for simplicity
the first coordinate is chosen by default. Regarding the simple moment
functions (3), µℓ(x) = E(Y ℓ1 |X = x), we find that δ̂ ≡ 0, so that according
to Theorem 2, the plug-in estimators µ̂α,LS defined in (11), (12) are linearly
unbiased. This can also be seen from the fact that G is the identity function
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in this case. Indeed, applying Theorem 1 yields an asymptotic normal
distribution with

Bℓ = cBµ
(2)
ℓ (x), Vℓ =

cV
fX(x)

[µ2ℓ(x) − {µℓ(x)}2]. (23)

We note that in the general case, the asymptotic quantities B∗, V ∗ or
B̃, Ṽ are useful for the construction of approximate asymptotic confidence
intervals for estimates ĝ∗(x) (22) or ĝ(x) (17). There exist various possi-
bilities for the actual construction of such asymptotic pointwise confidence
intervals. Common approaches include to simply ignore the asymptotic
bias, centering the asymptotic confidence intervals symmetrically around
the curve estimates, or to use undersmoothing for the construction of con-
fidence intervals, so as to justify that bias becomes asymptotically negligi-
ble and can be safely ignored. Other approaches are to approximate the
asymptotic variance in the limiting normal distribution by the square root
of mean squared error, while centering the intervals around the curve esti-
mates, in an effort to make the intervals wider to account for the bias, or
bootstrapping (see, e.g., Claeskens and van Keilegom (2003), Eubank and
Speckman (1993), Hall (1992) and Picard and Tribouley (2000)).

Continuing Example 2 concerning the nonparametric estimation of vari-
ance functions v(x) = var(Y1|X = x) (4), the plug-in estimator is

v̂(x) = µ̂2,LS(x) − {µ̂1,LS(x)}2. (24)

With the local weighted least squares smoothing weight functions Wi,LS(x)
(12) we may write

v̂(x)=

n∑

i=1

Wi,LS(x)Y 2
1i −

{
n∑

i=1

Wi,LS(x)Y1i

}2

=
n∑

i=1

Wi,LS(x){Y1i − µ̂(x)}2, (25)

so that this estimator is seen to be equivalent to smoothing squared resid-
uals obtained from an initial local linear fit.

Another proposal for variance function estimation that is closely related
to the work of Doksum et al. (1994) and Doksum and Samarov (1995)
is to estimate the variance function by using the error mean square as
in classical regression, but now formed from properly weighted residuals
within the local smoothing window. The starting point is the well-known
classical formula for the mean square due to error, MSE = (s̃2y− b̂21s̃2x)(n−
1)/(n− 2) in simple linear regression, where s̃2y = (n− 1)−1

∑n
i=1(Yi− Ȳ )2,

s̃2x = (n − 1)−1
∑n

i=1(Xi − X̄)2 and b̂1 is the least squares estimate of the
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slope parameter of the regression line. Since E(MSE) = σ2 = var(Yi),
this relationship can be exploited for estimating a local variance function.
Localizing and introducing weights, this motivates the estimate

v̂MSE(x) =

∑n
i=1 wi(x)Y

2
i∑n

i=1 wi(x)
−
{∑n

i=1 wi(x)Yi∑n
i=1 wi(x)

}2

− δ̂1(x)
2s2x, (26)

with wi, δ̂1 and s2x as defined in (8), (20) and (21).
Finally, the bias-corrected version of estimator (25) is obtained as

v̂∗(x) = v̂(x) + ∆̂(x) = µ̂2(x) − {µ̂1(x)}2 − s2x{δ̂1(x)}2. (27)

We note that for all three estimators v̂, v̂MSE and v̂∗, we obtain the same
asymptotic variance term

VV = f−1
X (x)cV {µ4 − µ2

2 + 4(µ2 − µ2
1)µ

2
1 − 4µ1(µ3 − µ1µ2)}(x). (28)

For v̂ and v̂∗ this follows from Theorems 1 and 2, and for v̂MSE it is
shown in Section 6. For these estimators, a more interesting comparison
concerns the leading asymptotic bias terms. According to Theorems 1, 2,
we find for v̂ and v̂∗,

B̃ = cB{v(2) + 2µ
(1)2
1 }(x), B∗ = cBv

(2), (29)

the latter being the desired expression for linearly unbiased estimation. As
seen in Section 6, the asymptotic bias term for v̂MSE is

BMSE = cB{v(2) + 2v(1) f
(1)
X

fX
}(x). (30)

The estimator v̂MSE thus is seen to suffer from the drawback that the bias
depends on the marginal density fX which means artificial curvature in the
curve estimates may be introduced by just replacing a uniform marginal
distribution of the predictor variable X by a normal marginal distribution.

Continuing now the discussion of the conditional skewness function (5)
in Example 3, the straightforward “plug-in” estimate is

ŝ(x) =




µ̂3,LS − 3µ̂2,LSµ̂1,LS + 2µ̂3

1,LS(
µ̂2,LS − µ̂2

1,LS

)3/2





(x).

This estimate is linearly biased. According to Theorem 2, the linearly un-
biased skewness function estimate is obtained by introducing an additional
bias correction,

ŝ∗(x)=ŝ(x) +
(3/2)s2x

(µ̂2 − µ̂2
1)

7/2

[(
µ̂2µ̂3 + 4µ̂2

1µ̂3 − 5µ̂2
2µ̂1

)
δ̂21

]

+
(
µ̂2

2 + 4µ̂2µ̂
2
1 − 5µ̂1µ̂3

)
δ̂1δ̂2 −

1

4

(
3µ̂1µ̂2 + 2µ̂3

1 − 5µ̂3

)
δ̂22

+2
[(
µ̂1µ̂2 − µ̂3

1

)
δ̂1δ̂3 −

(
µ̂2 − µ̂2

1

)
δ̂2δ̂3

]
,
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where the argument x has been omitted in terms on the r.h.s., and all
µ̂ℓ = µ̂ℓ,LS(x). Analogously one can construct linearly unbiased estimators
for kurtosis functions, etc.

Of some interest for applications is Example 5, the estimation of the
conditional correlation function (7). The plug-in estimate is

ρ̂12(x) =
v̂12(x)

{v̂11(x)v̂22(x)}1/2
=

µ̂11 − µ̂10µ̂01

[{µ̂20 − µ̂2
10}{µ̂02 − µ̂2

01}]1/2
,

where µ̂lm = µ̂lm,LS(x). This estimate is linearly biased. The construction
of the bias correction requires estimation of the mixed partial derivatives
∂G

∂xl∂xm
, 1 ≤ l,m ≤ 5 of G(x1, x2, x3, x4, x5) = (x1 − x2x3)/{(x4 − x2

1)(x5 −
x2

3)}1/2. These derivatives are easiest calculated by using a package that
includes symbolic calculus. According to Theorem 2, the linearly unbiased
estimator is found to be, setting A = {µ̂(20),LS(x) − µ̂2

(10),LS(x)}−1/2, B =

{µ̂(02),LS(x) − µ̂2
(01),LS(x)}−1/2 and omitting arguments x on the r.h.s.,

ρ̂∗12(x)=ρ̂12(x)

+
1

2
s2x[2A

3Bµ̂(10)δ̂(11)δ̂(10) + 2AB3µ̂(01)δ̂(11)δ̂(01) −A3Bδ̂(11)δ̂(20)

−A3Bδ̂(11)δ̂(02) +A5B{−3µ̂(10)µ̂(01)µ̂(20) + µ̂(11)(2µ̂
2
(10) + µ̂(20))}δ̂2(10)

+2A3B3(µ̂(11)µ̂(10)µ̂(01) − µ̂(02)µ̂(20))δ̂(10)δ̂(01)

+A5B{−3µ̂(11)µ̂(10) + µ̂(01)(2µ̂
2
(10) + µ̂(20))}δ̂(10))δ̂(20)

+A3B3(−µ̂(11)µ̂(10) + µ̂(01)µ̂(20))δ̂(10)δ̂(02)

+A5B{−3µ̂(10)µ̂(01)µ̂(02) + µ̂(11)(2µ̂
2
(01) + µ̂(02))}δ̂2(01)

+A3B3(−µ̂(11)µ̂(01) + µ̂(10)µ̂(02))δ̂(01)δ̂(20)

+A5B{−3µ̂(11)µ̂(01) + µ̂(10)(2µ̂
2
(01) + µ̂(02))}δ̂(01)δ̂(02)

+
3

4
A5B(µ̂(11) − µ̂(10)µ̂(01))δ̂

2
(20) +

1

2
A3B3(µ̂(11) − µ̂(10)µ̂(01))δ̂(20)δ̂(02)

+
3

4
AB5(µ̂(11) − µ̂(10)µ̂(01))δ̂

2
(02)].

5 A simulation example

The finite sample behavior of estimators v̂ (24), v̂MSE (26) and v̂∗ (27) was
investigated in a small scale simulation study. Since according to (28), these
estimators behave identically with respect to asymptotic variance, and as
the bias behavior is the focus of this paper, only the bias was investigated.
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This was done graphically by averaging estimated variance functions for
the various methods over 200 Monte Carlo runs.

According to (29) and (30), asymptotic biases for v̂, v̂MSE and v̂∗ are

determined by the behavior of v(2) +2µ
(1)2

1 , v(2) +2v(1)f (1)/f , respectively.
The following example was used to investigate the influence of these terms
and Monte Carlo runs were made assuming that n = 50, 250, 1250 obser-
vations were available.

Pseudo-random pairs (Xi, Yi), i = 1, ..., n were generated according to

Xi =
√

0.25Zi, Yi = (Xi + 2)2 + Ziσi,

with

σi = 0 for Xi ≤ −0.5, and σi = (Xi + 0.5)1/2 for Xi > −0.5,

where Zi are independent standard normal pseudo random numbers. The
relevant functions are seen to be

µ1(x)=(x+ 2)2, µ
(1)
1 (x) = 2(x+ 2),

v(x)=(x+ 0.5), v(1)f (1)/f = −8x, x ≥ −0.5.

Several bandwidths and also other variance functions were chosen, and the
results were qualitatively the same for a broad range of cases. We report
the results for the bandwidth b = 0.4 and sample size n = 250.

A typical data sample is shown in Figure 1, while Figure 2 displays the
average curve estimates from 200 Monte Carlo runs for the three estimators
considered along with the target variance function which is linear in this
example.

As expected, the asymptotic bias term 2µ
(1)2

1 is so large that as a con-
sequence the estimators v̂ are unacceptable. The differences between v̂MSE

and v̂∗ are more subtle. It is obvious that v̂MSE exhibits an upward bias
for small predictor levels below 0, and a downward bias for larger predictor
levels above 0. This behavior is expected from the asymptotic bias expres-
sion (30). The linearly unbiased estimator v̂∗ has a very small, more or less
constant bias. It emerges as the clearly preferred estimator, as predicted
by theory.

6 Technical details and proofs

6.1 Assumptions and auxiliary results

We first list the necessary regularity conditions. For a given x in the domain
of the predictor variable X , let N(x) be a neighborhood of x. We denote

convergence in distribution by
L→ and convergence in probability by

p→, as
n→ ∞.
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Figure 1 Sample points (Xi, Yi) for n = 250.

(C1) The joint distribution F (·, ·) of (X,Y ) has a density f(u, v), which is
continuous on N(x) ×ℜp.

(C2) f(u, v) is twice continuously differentiable in the first argument on
N(x) ×ℜp.

(C3) The marginal density fX of X is twice continuously differentiable on
N(x) and satisfies fX(x) > 0.

(C4) The function g(x) = G{µα1(x), ..., µαk (x)} is twice continuously dif-
ferentiable on N(x); this implies corresponding differentiability con-
ditions for G and moment functions µαm(x).

(C5) The bandwidth sequence satisfies

b→ 0, nb→ ∞ and nb5 → d2 as n→ ∞ for a d ≥ 0.

(C6) The kernel function K satisfies

K ≥ 0,

∫
K = 1,

∫
Ku = 0,

∫
Ku2 <∞,

∫
K2 <∞.

Consider now weighted averages

Ψλn = (nb)
−1

n∑

i=1

ψλ (Xi, Yi)K
(
b−1 (x−Xi)

)
, λ = 1, ...,m,

where the real valued functions ψλ satisfy:
(C7) All ψλ are bounded and continuous on {x} × ℜp.
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Figure 2 Variance function estimators averaged over 200 Monte Carlo runs for n = 250
data pairs: Target variance function (solid), linearly biased estimators v̂ (24) (dash-
dotted), v̂MSE (26) (dotted) and linearly unbiased estimator v̂∗ (27) (dashed).

(C8) The second derivatives with respect to the first argument exist for all
ψλ and are continuous on {x} × ℜp.

Define

ζλ(x)=

∫
ψλ(x, v)f(x, v) dv (31)

σκλ(x)=

∫
ψκ(x, v)ψλ(x, v)f(x, v)dv (32)

−
∫
ψκ(x, v)f(x, v)dv

∫
ψλ(x, v)f(x, v) dv,

and let H : ℜq → ℜ be a function with continuous second derivatives and
ζ = (ζ1, ..., ζq). The following auxiliary result is a direct consequence of
Theorem 4.1 in Bhattacharya and Müller (1993); the proof is omitted.

Lemma 1. Under (C1)-(C8),

(nb)1/2 [H (Ψ1n, ...,Ψqn) −H (ζ1, ..., ζq)]
L→ N (B, V ) ,

where

B = cB

q∑

λ=1

dH

dxλ
|ζ

d2

d2x
ζλ(x), V = cV

q∑

κ,λ=1

dH

dxκ
|ζ
dH

dxλ
|ζ σκλ(x).
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Note for the following that in the case where
H (x1, ..., xq) = H (zx1, ..., zxq)

for all z 6= 0, a simple chain rule argument shows that σκλ in (33) can be
replaced by

σ̃κλ =

∫
ψκ(x, v)ψλ(x, v)f(x, v)dv.

6.2 Proof of Theorem 1

For δ̂ as defined in (20), it follows from Corollary 4.3 in Bhattacharya and
Müller (1993) that

(nb)1/2
{
δ̂e1(x) − µ(1)

e1 (x)
}

p→ 0,

where e1 = (1, 0, ..., 0). This generalizes easily to

(nb)1/2
{
δ̂α(x) − µ(1)

α (x)
}

p→ 0 (33)

for any multi-index α. Define the function

H1(x1, x2, x3) =
x1 − x2µ

(1)
α (x)

x3
.

Choosing xq = Ψqn, q = 1, 2, 3, with ψ1(u, v) = vα, ψ2(u, v) = u −
x, ψ3(u, v) = 1, we find that (33), Slutsky’s Theorem and Lemma 1 imply
that

(nb)
1/2 {µ̂α(x) − µα(x)} L→ N (Bα, Vα) , (34)

with Bα = cB µ
(2)
α (x), Vα = cV {µ2α(x) − µ2

α(x)}/fX(x).
Furthermore, for any given constants c1, c2 6= 0, and any multi-indices

α1, α2 with |α1| > 0, |α2| > 0, generalizing (34), one obtains
(nb)1/2{c1 (µ̂α1(x) − µα1(x)) + c2 (µ̂α2(x) − µα2(x))} (35)

→ N (Bα1,α2 , Vα1,α2)
where

Bα1,α2=cB{c1µ(2)
α1

(x) + c2µ
(2)
α2

(x)},
Vα1,α2=cV {c21µ2α1(x) + c22µ2α2(x) + 2c1c2µα1+α2(x)

− (c1µα1(x) + c2µ2α2(x))
2}/fX(x).

This follows from Lemma 1, choosing

H2 (x1, x2, x3, x4) = c1
x1 − x2µ

(1)
α1 (x)

x3
+ c2

x4 − x2µ
(1)
α2 (x)

x3
,

with xq = Ψqn, q = 1, ..., 4, ψ1(u, v) = vα1 , ψ2(u, v) = u− x, ψ3(u, v) =
1, and ψ4(u, v) = vα2 . Extending (35) to a linear combination of more than
two estimators and a Taylor expansion

ĝ(x)−g(x) =

k∑

m=1

dG

dxm
|µ {µ̂αm(x) − µαm(x)}+o

[
k∑

m=1

{µ̂αm(x) − µαm(x)}
]

conclude the proof.
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6.3 Proof of (28) and (30) for estimators v̂MSE

Let p = 1 and set

H3 (x1, x2, x3) = (x1/x2) − (x2
3/x

2
2), xq = Ψqn, q = 1, 2, 3

with

ψ1(u, v) = v2, ψ2(u, v) ≡ 1, ψ3(u, v) = v.

Applying Lemma 1, we obtain

(nb)1/2

{∑n
i=1 wi(x)Y

2
i∑n

i=1 wi(x)
−
(∑n

i=1 wi(x)Yi∑n
i=1 wi(x)

)2
}

L→ N (B̄, V̄ ), (36)

with

B̄ = cB(v(2) + 2µ
(1)2

1 + 2v(1) f
(1)
X

fX
(x), V̄ = VV

as in (34).
We note in passing that (36) provides a result for plug-in variance func-

tion estimation based on the Nadaraya-Watson quotient type kernel esti-
mator. Furthermore, by (33),

δ̂1(x)
p→ µ

(1)
1 (x). (37)

Note that s2x (21) can be equivalently written as

s2x =

∑n
i=1 wi(x)X

2
i∑n

i=1 wi(x)
−
(∑n

i=1 wi(x)Xi∑n
i=1 wi(x)

)2

.

Therefore, (36) applies, with Yi replaced by Xi, and analogous changes in
the definition of v(·) and µℓ(·). This leads to B̄ = 2cB and V̄ = 0, so that

(nb)1/2s2x
p→ 2cB. (38)

The result now follows by combining (37)-(38) and applying Slutsky’s the-
orem.

6.4 Proof of Theorem 2

Using analogous arguments as in (37) and (38), we find

(nb)1/2∆̂(x)
p→ cB




k∑

l,m=1

d2G

dxldxm
|µ


 δαl(x)δαm(x).

The result follows from Theorem 1 and Slutsky’s theorem.
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Chapter 17

SERIAL AUTOREGRESSION AND REGRESSION RANK

SCORES STATISTICS
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This paper establishes an asymptotic representation for regression and
autoregression rank score statistics of the serial type. Applications in-
clude rank-based versions of the Durbin-Watson test, tests of AR(p)
against AR(p + 1) dependence, or detection of the presence of random
components in AR processes.

Key words: Time series; Robustness; Serial autoregression rank score;
Rank test.

1 Introduction

1.1 Rank tests

Rank tests are known to be robust, distribution-free yet powerful alterna-
tive to Gaussian testing methods under a broad set of model assumptions.
These models include a class of semiparametric models under which the
distribution Pn;θ;f of the observation vector Xn := (Xn1, · · · , Xnn)

′ be-
longs to a family Pn := {Pn;θ;f ; θ ∈ Θ, f ∈ F}, where θ ∈ Θ ⊆ R

k is some
parameter of interest, and F is a class of densities f on R. More specifically,
rank tests can be constructed whenever

(A) for all n, there exists a (θ,Xn)-measurable residual function

(θ,Xn) 7→ εn(θ,Xn) := (εn,1(θ,Xn), · · · , εn,n(θ,Xn))′

335
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such that the distribution of Xn is Pn;θ;f iff the components of the
vector εn(θ,Xn) are i.i.d. with common density f . Henceforth, we
shall write εn,t(θ) instead of εn,t(θ,Xn), t = 1, · · · , n.

Let Rn,t(θ) denote the rank of the residual εn,t(θ) and Rn(θ) :=
(Rn,1(θ), · · · , Rn,n(θ))′. The rank tests for the simple null hypothesis
H0 : θ = θ0, where θ0 is a given value of θ, are based Rn(θ0).

The use of the rank tests can be justified by several main arguments.

(a) The vector of ranks is a maximal invariant with respect to the group of
order-preserving transformations of residuals for a broad class of den-
sities over R. In such invariant situations, every invariant statistic and
test depend only on the maximal invariant, and hence are distribution-
free under the null hypothesis.

(b) The rank tests are more robust with respect to some outliers than their
parametric counterparts.

(c) In linear regression or ARMA models where semiparametric and para-
metric efficiencies coincide, asymptotically most powerful tests against
contiguous alternatives at a given f can be found among rank tests,
cf. Chernoff and Savage (1958), Hajék and Šidák (1967), Hallin (1994),
Paindaveine (2004, 2005), among others.

A general result by Hallin and Werker (2003) shows that under Le Cam
LAN formalism with central sequences ∆n;f (θ) and under some conditions
on F , a semiparametrically efficient inference about θ, at given (θ0, f), can
be based on the rank-based efficient central sequence obtained by condition-
ing ∆n;f (θ0) on the vector Rn(θ0), under H0. In linear regression models
where for some known non-random p × 1 design vector {cn,t; 1 ≤ t ≤ n},
εn,t(θ) = Xn,t − c′n,tθ are i.i.d., rank-based efficient central sequences take
the form of linear rank statistics vectors

Sn,ϕ(θ) :=

n∑

t=1

ϕ
(Rn,t(θ)
n+ 1

)
cn,t,

where ϕ is a score-generating function from (0, 1) to R. Under some general
conditions and under Pn,θ,f , one obtains

Sn,ϕ(θ) =

n∑

t=1

ϕ
(
F (εt(θ))

)
cn,t + oP (n1/2), n→ ∞, ∀ θ ∈ Θ,

where F is the distribution function associated with f .
In ARMA models, rank-based central sequences can be expressed

(Hallin, Ingenbleek and Puri 1985; Hallin and Puri 1988; Bentarzi and
Hallin 1996) as linear combinations of serial linear rank statistics

Sn,ϕ1ϕ2(θ) :=

n∑

t=i+1

ϕ1

(Rn,t(θ)
n+ 1

)
ϕ2

(Rn,t−i(θ)
n+ 1

)
, i = 1, 2, · · · , (1)
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where ϕ1 and ϕ2 are adequately centered and scaled score generating func-
tions. In more general problems– detection of random coefficients (Akharif
and Hallin 2003), detection of nonlinearities (Benghabrit and Hallin 1992;
Allal and El-Melhaoui 2005, among others)– rank-based efficient central
sequences involve more complex serial linear rank statistics of the form

Sn,ϕ1···ϕm(θ) :=

n∑

t=im−1+1

ϕ1

(Rn,t(θ)
n+ 1

)
· · ·ϕm

(Rn,t−im−1(θ)

n+ 1

)
, (2)

1 ≤ i1 ≤ · · · ≤ im−1,where ϕ1, ϕ2 · · · , ϕm are m score functions. Hallin et
al. (1985) show under some general conditions that ∀ θ ∈ Θ, as n→ ∞,

Sn,ϕ1···ϕm(θ) =

n∑

t=im−1+1

ϕ1

(
F (εt(θ))

)
· · ·ϕm

(
F (εt−im−1(θ))

)
+ oP (n1/2).

In most problems of practical interest, however, one is interested in
testing the composite null hypothesis H̃0 : θ ∈ Θ0, where Θ0 is a subset of
Θ. It is then natural to first obtain an estimate θ̂ of θ under H̃0 and use the
aligned ranks test statistics Sn,ϕ(θ̂) or Sn,ϕ1···ϕm(θ̂), cf., e.g., Koul (1970)
and Jurečková (1971) for linear regression models; Hallin and Puri (1994)
for the ARMA models. These statistics are not asymptotically distribution-
free (ADF), and thus are unsuitable for testing purposes.

1.2 Autoregression and regression rank scores

The lack of robustness of aligned rank statistics motivated Gutenbrunner
and Jurečkovà (1992) to introduce regression rank scores in the context of
linear regression models with independent observations, as an alternative
to the aligned ranks. The regression rank scores are n functions ân(u) =
(ân,1(u), · · · , an,n(u))′ with ân,t : [0, 1] 7→ [0, 1], t = 1, · · · , n, obtained
from the observations as the solution of a linear programming problem
itself depending on H̃0; see Section 2.1 below for details. The regression
rank score statistic (RSS) corresponding to a function ϕ is defined as

S̃n,ϕ := −
n∑

t=1

∫ 1

0

ϕ(u)dân,t(u) cn,t.

Note that this is like Sn,ϕ(θ) but where ϕ(Rn,t(θ)/(n+ 1)) are replaced by

−
∫ 1

0 ϕ(u)dân,t(u). These scores remedy the lack of invariance of aligned

ranks. If not exactly (for fixed n) distribution-free, S̃n,ϕ, indeed, contrary to

Sn,ϕ(θ̂), is asymptotically equivalent to Sn,ϕ(θ) in probability under Pn,θ,f ,
for each θ, hence asymptotically invariant with respect to the group of order-
preserving transformations acting on residuals and, therefore, ADF. Being
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moreover regression-invariant over Θ0, it is robust against the influence
of possible outliers—if not against the possible leverage effect of certain
regression constants. And, the asymptotic performance of tests based on
S̃n,ϕ is matching that of the tests based on Sn,ϕ(θ), for all θ ∈ Θ0; see
Gutenbrunner et al. (1993).

Koul and Saleh (1995) and Hallin and Jurečková (1999) developed sim-
ilar ideas for linear autoregressive models where θ′ = (ρ0, ρ1, · · · , ρp), and
εt(θ) = Xi − ρ0 − ρ1Xt−1 − · · · − ρpXt−p are i.i.d. innovations with mean
zero. The autoregression rank score statistics are of the form

S̃∗
n,ϕ1

:= −
n∑

t=i+1

∫ 1

0

ϕ1(u)dân,t(u)Xt−i,

where ân,t(·) are the autoregression rank scores defined in Section 2.1 below
and ϕ1 is a function like ϕ.

Unlike the linear regression models, in autoregressive models the out-
liers in the errors affect the leverage points Xt−i also. This fact renders
the statistics S̃∗

n,ϕ1
non-robust against outliers in the errors. Genuine au-

toregression rank scores statistics are the serial autoregression rank score

statistics obtained from S̃∗
n,ϕ1

after replacing Xt−i by −
∫ 1

0 ϕ2(v)dân,t−i(v),
yielding

S̃n,ϕ1ϕ2 :=

n∑

t=i+1

∫ 1

0

∫ 1

0

ϕ1(u)ϕ2(v)dan,t(u) dân,t−i(v), (3)

(when the lag is to be emphasized, we write S̃n,ϕ1ϕ2;i) or, more generally,

S̃n,ϕ1···ϕm (4)

=(−1)m
n∑

t=im−1+1

∫ 1

0

...

∫ 1

0

ϕ1(u1)...ϕm(um)dân,t(u1)...dân,t−im−1(um),

analogous to the serial rank statistics (1) and (2). Here ϕj ; 1 ≤ j ≤ m are
m functions from (0, 1) to R.

The main objective of this paper is to obtain an asymptotic represen-
tation of these serial regression or autoregression rank score statistics for
possibly unbounded functions ϕj ’s, which so far have not been considered in
the literature. This result is useful in obtaining their limiting distributions
and in showing that the tests based on them are ADF.

This paper is organized as follows. Section 2 provides the precise con-
ditions under which serial regression or autoregression rank score statistics
can be used in hypothesis testing. Section 2.2 describes three potential
applications: a version of the classical Durbin-Watson test based on regres-
sion rank scores, a test of AR(p) against AR(p + 1) dependence based on
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autoregression rank scores, and a test, based on serial autoregression rank
scores, detecting the presence of a random component in the autoregres-
sive coefficient of an AR(1) model. Technical assumptions are collected
in Section 2.3. The main result of this paper is Proposition 1 giving an
asymptotic representation result for a class of serial autoregression rank
score statistics.

2 Notation and basic assumptions

2.1 Autoregression and regression quantiles and

rank scores

We shall now recall the definition of autoregression and regression quantiles
and rank scores. First consider the stationary linear autoregressive time
series model, where starting with an observable p-vector X1−p, · · · , X0,
one observes the process

Xt = ρ0 +

p∑

j=1

ρjXt−j + εt, (ρ0, ρ1, · · · , ρp)′ ∈ R
1+p. (5)

The errors εt are assumed to be i.i.d. with zero mean and variance σ2. The
parameters ρ∗ := (ρ1, · · · , ρp)′ are such that all solutions of the equation
1−∑p

t=1 ρiz
i = 0 lie outside the unit sphere and for each t, εt is independent

of the vector y∗t−1 := (Xt−1, · · · , Xt−p)′. Note that this model satisfies the
assumption (A) with k = 1 + p, θ′ = (ρ0, ρ

∗′), X ′
n = (y∗′0 , X1, X2, · · · , Xn),

and εn,t(θ) = Xt − ρ0 − ρ′y∗t−1. Now, let y′t−1 := (1, y∗′t−1), and

hα(z) := |z|
(
αI[z > 0] + (1 − α)I[z ≤ 0]

)
, z ∈ R, α ∈ (0, 1).

Then αth autoregression quantiles ρn(α)′ = (ρn0(α), ρ∗n(α)′), for an 0 <
α < 1, are defined as an argminr0∈R, r∈Rp

∑n
t=1 hα

(
Xt − r0 − y∗′t−1r

)
. The

corresponding autoregression rank scores are defined to be an n-vector
ân(α) := (ân,1(α), · · · , ân,n(α))′ in [0, 1]n maximizing

∑n
t=1Xtat with

respect to vectors a ∈ [0, 1]n, subject to the conditions

Y ′
n(a− (1 − α)1n) = 0, (6)

where Yn is the n × (1 + p) matrix whose tth row is y′t−1, t = 1, · · · , n,
1n := (1, · · · , 1)′, an n× 1 vector of 1’s, and 0 in the right hand side is the
(1 + p) × 1 vector of zeros.

These autoregression quantiles and rank scores are the analogs of their
counterparts in linear regression model Xn,t = β0 + c′n,tβ + εt, as defined
in Koenker and Bassett (1978) and Gutenbrunner and Jurečková (1992).
Let Cn denote the n × (1 + p) matrix whose tth row consists of (1, c′n,t),
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1 ≤ t ≤ n. An αth regression quantile vector θ̂n(α) := (β̂0n(α), β̂n(α)′), for
an α ∈ (0, 1), is defined as a minimizer vector of

∑n
t=1 hα

(
Xn,t−b0−c′n,tb

)
,

w.r.t. b0 ∈ R, b ∈ R
p. The corresponding regression rank scores are defined

to be an n-vector ân(α) := (ân,1(α), · · · , ân,n(α))′ in [0, 1]n maximizing∑n
t=1Xtat w.r.t. vectors a ∈ [0, 1]n, such that C′

n(a− (1 − α)1n) = 0.

2.2 Examples

2.2.1 The Durbin-Watson problem

The objective of the classical Durbin-Watson test is the detection of first-
order autocorrelation in the noise of a traditional regression model; its
extension to higher-order dependencies is straightforward.

The general overarching model is a linear regression with AR(1) errors

Xt=β0 + c′n,tβ + et, et = ρet−1 + εt, t = 1, · · ·n,
where ρ ∈ [0, 1), β0 ∈ R, β′ := (β1, · · · , βp) ∈ R

p, and ε1, · · · , εn are i.i.d.
with density f . The null hypothesis of interest here is H0 : ρ = 0, against
the alternatives of the form H1 : ρ > 0. Thus, here Θ = R

1+p × [0, 1) and
Θ0 = R1+p×{0}. The regression parameters β0, β play the role of nuisance

parameters. Let θ̂′ := (β̂0, β̂
′) be the least square estimators of (β0, β

′) un-

der the above null hypothesis, and let ε̂t := εt(β̂0, β̂) = Xt − β̂0 − c′n,tβ̂.
The traditional Durbin-Watson test is based on the first-order residual au-
tocorrelation r̂n1 :=

∑n
t=2 ε̂tε̂t−1

/∑n
t=1 ε̂

2
t . When F (x) ≡ Φ(x/σ), nr̂n1

coincides with

σ2
∑n

t=2 Φ−1(F (ε̂t))Φ
−1(F (ε̂t−1))

n−1
∑n
t=1 ε̂

2
t

=

n∑

t=2

ϕ1(F (εt))ϕ2(F (εt−1)) + oP (
1√
n

).

with ϕ1 = ϕ2 = Φ−1, provided n−1
∑n

t=1 cn,tc
′
n,t = O(1), and

max1≤t≤n
1√
n
‖cn,t‖ = o(1). The aligned rank based version of nr̂n1 is

the serial statistic Sn,ϕ1ϕ2(θ̂) defined in (1), with i = 1 and the van
der Waerden scores ϕ1 = ϕ2 = Φ−1; an asymptotic representation re-
sult of Hallin, Ingenbleek and Puri (1985) establishes the equivalence

Sn,ϕ1ϕ2(θ̂) = Tn,ϕ1ϕ2 + oP (n1/2), where

Tn,ϕ1ϕ2 :=
n∑

t=2

ϕ1(F (εt))ϕ2(F (εt−1)).

By Proposition 1 below it follows that the autoregression rank score statistic
S̃n,ϕ1ϕ2 of (3) is also asymptotically equivalent in probability to Tn,ϕ1ϕ2 ,

under the above H0. An advantage of using S̃n,ϕ1ϕ2 is that one does not
need any preliminary estimates of the nuisance parameters.
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In the case of non-Gaussian errors one uses the above serial au-
toregression rank score statistics with ϕ2(v) = F−1(v) and ϕ1(u) =
−ḟ(F−1(u))/f(F−1(u)), to perform an asymptotically optimal test of H̃0,
see, e.g., Hallin and Werker (1998).

2.2.2 AR order identification

The objective here is to test AR(p) against AR(p + 1) dependence. The
overarching model is thus the AR(p+ 1) model, where

Xt = ρ0 +

p+1∑

i=1

ρiXt−i + εt,

with ρ1, · · · , ρp+1 being such that the corresponding characteristic poly-
nomial has all its roots outside the unit disc, ρp 6= 0, and ε1, · · · , εn are
i.i.d. with density f . The null hypothesis of interest here is H0 : ρp+1 = 0,
against the alternatives of the form H1 : ρp+1 6= 0. The autoregressive
parameters ρ1, · · · , ρp play the role of nuisance parameters.

The classical Gaussian test for this problem is based on a Lagrange
multiplier type statistic

r̂ni :=

n∑

t=i+1

ε̂tε̂t−i
/ n∑

t=1

ε̂2t , i = 1, 2, · · · ,

where the estimated residuals ε̂t are computed from fitting an AR(p) model
to the data: see Garel and Hallin (1999) for details. Arguing as in the
previous example, a rank-based version of this test statistic is obtained by
substituting the aligned serial rank statistics (n−i)−1Sn,ϕ1ϕ2;i(θ̂)’s of (1) for
the residual autocorrelations r̂ni into the quadratic test statistic. But such
tests are not ADF, while by Proposition 1, the tests based on the analogous
quadratic form using serial autoregression rank score statistic S̃n,ϕ1ϕ2;i will
be ADF. Here again, asymptotically optimal tests at non-Gaussian errors
case can be handled by an adequate choice of ϕ1 and ϕ2.

Contrary to the previous case, Sn,ϕ1ϕ2(θ̂) and S̃n,ϕ1ϕ2 are no longer

asymptotically equivalent: Sn,ϕ1ϕ2(θ̂) suffers from an alignment effect

(which is not distribution-free), whereas S̃n,ϕ1ϕ2 remains unaffected. Hallin
and Jurečková (1999) constructed ADF tests of H0 against H1 based on
non-serial autoregression rank score statistics of the type S̃∗

n,ϕ(θ)’s. A sim-
ulation study of these tests can be found in Hallin et al. (1997) and an
application to meteorological data in Kalvová et al. (2000).
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2.2.3 Detection of random coefficients in AR models

The general overarching model is the autoregressive model (for simplicity,
a first-order one) with random coefficients, of the form

Xt = (ρ+ τut)Xt−1 + εt,

where ρ ∈ (0, 1), τ ≥ 0, u1, · · · , un are i.i.d. standardized r.v.’s with den-
sity g, and ε1, · · · , εn are i.i.d. with density f , independent of the ut’s.
The null hypothesis of interest here is H0 : τ = 0 (ordinary AR(1) depen-
dence), against the alternatives of the form H1 : τ > 0. The autoregres-
sion parameter ρ and the densities g and f are nuisance parameters. Here
Θ = {θ = (ρ, τ)′ ∈ (0, 1)×[0, 1); ρ2+τ2 < 1}, Θ0 = {θ = (ρ, 0)′; 0 < ρ < 1},
and ε(θ) = Xt − ρXt−1, for a θ ∈ Θ0.

Ramanathan and Rajarshi (1994) provide aligned rank tests for this
problem. In the more general AR(p) case, Akharif and Hallin (2003) have
studied this problem from a pseudo-Gaussian point of view. The locally
asymptotically optimal Gaussian test statistic for this problem is the com-
bination

n−1∑

k=1

ρ̂2(k−1)(n− k)−1/2
n∑

t=k+1

(
1 − ε̂2t

σ̂2

)( ε̂t−k
σ̂

)2

+2
∑

1≤k

∑

<ℓ≤n−1

ρ̂k−1ρ̂ℓ−1(n− ℓ)−1/2
n∑

t=ℓ+1

(
1 − ε̂2t

σ̂2

)( ε̂t−k
σ̂

)( ε̂t−ℓ
σ̂

)
(7)

of the statistics of the form

1√
n− k

n∑

t=k+1

(
1 − ε̂2t

σ̂2

)( ε̂t−k
σ̂

)2
,

1√
n− ℓ

n∑

t=ℓ+1

(
1 − ε̂2t

σ̂2

)( ε̂t−k
σ̂

)( ε̂t−ℓ
σ̂

)
,

where ρ̂ is an arbitrary root-n consistent (under H0) of ρ, ε̂t := Xt− ρ̂Xt−1,
and σ̂2 := n−1

∑n
t=1 ε̂

2
t . Just as in the Durbin-Watson case, the diagonality

of the information matrix (relative to ρ and σ2) implies that the impact of
estimating ρ in (7) is oP (1), under H0. In the case F (x) = Φ(x/σ), these
statistics coincide, respectively, up to oP (1) terms, with

1√
n− k

Tϕ1,ϕk;1 :=
1√
n− k

n∑

t=k+1

(
1 − (Φ−1(F (εt)))

2
)(

Φ−1(F (εt−k))
)2
,

1√
n− ℓ

Tn,ϕ1,ϕk;2,ϕℓ

:=
1√
n− ℓ

n∑

t=ℓ+1

(
1 − (Φ−1(F (εt)))

2
)
Φ−1(F (εt−k))Φ

−1(F (εt−ℓ),
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respectively, with ϕ1(u) := 1 − (Φ−1(u))2, ϕk;1(u) := (Φ−1(u))2, and
ϕk;2(u) = ϕℓ(u) := Φ−1(u). Asymptotic representation results for se-
rial aligned rank statistics again imply the asymptotic equivalence, up to
oP (n1/2), of Tn,ϕ1,ϕk;1 and Tn,ϕ1,ϕk;2,ϕℓ with the serial rank statistics

Sn,ϕ1,ϕk;1(ρ):=

n∑

t=k+1

[(
1 −

(
Φ−1

(Rn,t(ρ)
n+ 1

))2)(
Φ−1

(Rn,t−k(ρ)
n+ 1

))2]
,

Sn,ϕ1,ϕk;2,ϕℓ(ρ):=
n∑

t=ℓ+1

[(
1 −

(
Φ−1

(Rn,t(ρ)
n+ 1

))2)
Φ−1

(Rn,t−k(ρ)
n+ 1

)
×

× Φ−1
(Rn,t−ℓ(ρ)

n+ 1

)]
,

respectively, where Rt(ρ) is the rank of εt(ρ) = Xt−ρXt−1. These statistics,
based on exact residual ranks, cannot be computed from the observations.
However, in view of Proposition 1 below, Snϕ1,ϕk;1 and Sn,ϕ1,ϕk;2,ϕℓ in turn
are asymptotically equivalent to their autoregression rank score counter-
parts S̃n,ϕ1,ϕk;1 and S̃n,ϕ1,ϕk;2,ϕℓ , which are measurable with respect to the
observations.

Perhaps it should be emphasized that serial autoregression rank scores
based tests for a given choice of ϕj ’s can be always implemented regardless
of the knowledge of the error density.

2.3 Assumptions on f and the score functions

We shall now state additional assumptions needed for obtaining the asymp-
totic representation result for serial autoregression rank scores. Besides the
structural assumption (A), we also need some technical assumptions on the
density f and the score functions ϕ1, · · · , ϕm. As usual, these assumptions
cannot be separated: stronger assumptions on ϕ’s allow for weaker assump-
tions on the densities, and vice-versa. Therefore, we formulate two sets of
assumptions, (F1)-(F4), (ϕ-1) and (F1), (F5) and (ϕ-2), that can be used
equivalently. We assume that all densities f in the class F are such that

(F1)
∫∞
−∞ xdF (x) = 0, 0 <

∫∞
−∞ x2dF (x) = σ2 <∞;

(F2) The density f is positive on R and absolutely continuous, with a.e.
derivative ḟ , satisfying If :=

∫∞
−∞(ḟ(x)/f(x))2f(x)dx <∞.

(F3) There exists a constant K = Kf ≥ 0 such that, for |x| ≥ K, f has two
bounded derivatives, f ′ and f ′′, respectively.

(F4) As x −→ ±∞, f(x) is monotonically decreasing to 0 and,

lim
x−→−∞

− logF (x)

b|x|r = 1 = lim
x−→∞

− log(1 − F (x))

b|x|r
for some b = bf > 0 and r = rf ≥ 1.
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As for the functions ϕ1, · · · , ϕm, we assume the following:

(ϕ-1) The functions ϕ1, · · · , ϕm from (0, 1) to R are square integrable, non-
decreasing, differentiable, with respective derivatives ϕ̇1, · · · , ϕ̇m, and

satisfy
∫ 1

0
ϕj(u)du = 0, for at least one j = 1, · · · ,m,

|ϕ̇j | ≤ C(u(1 − u))−1−δ, ∀ j = 1, · · · ,m,
for some 0 < C <∞ and 0 < δ < 1/4.

The second set of assumptions consists of (F1), (F5) and (ϕ-2), where

(F5) f is uniformly continuous and a.e. positive on R.
(ϕ-2) The functions ϕ1, · · · , ϕm from (0, 1) to R are nondecreasing bounded

and
∫ 1

0
ϕj(u)du = 0, for some j = 1, · · · ,m.

3 Asymptotic representation

The following main result of the paper gives the asymptotic representation
of the serial autoregression rank score statistics. It enables one to construct
the asymptotic rejection regions of the pertaining tests and their asymptotic
powers against the Pitman alternatives. A similar result holds for serial
regression rank scores of linear regression models with bounded designs.

Proposition 1. Suppose the linear AR(p) model (5) holds. Suppose addi-
tionally either (F1)-(F4) and (ϕ-1) or (F1), (F5) and ( ϕ-2) hold. Then,
under Pn,θ;f , as n→ ∞,

S̃n,ϕ1···ϕm = Tn,ϕ1···ϕm + oP (n1/2) = Sn,ϕ1···ϕm(θ) + oP (n1/2), (8)

where S̃n,ϕ1···ϕm is the serial autoregression rank score statistic (4),
Sn,ϕ1···ϕm(θ) the serial rank statistic (2), and

Tn,ϕ1···ϕm :=
n∑

t=im−1+1

ϕ1(F (εn,t)) · · ·ϕm(F (εn,t−im−1)).

Proof: Without loss of generality, we restrict the proof to the autoregres-
sive case for m = 2 and i1 = 1, hence to statistics of the form S̃n,ϕ1ϕ2 ,
Tn,ϕ1ϕ2 and Sn,ϕ1ϕ2 . Additionally, we shall assume the first set of condi-
tions (F1)-(F4) and (ϕ-1) with the proviso that

∫
ϕj = 0, for both j = 1, 2.

See Remark 1 below for the case when one of the ϕ’s is not centered. The
proof is much simpler under the second set of assumptions. We systemati-
cally drop subscripts n in the proof.

Let 0 < α0 < 1/2 be a fixed number, αn := n−1(log n)2(log log n)2,
and take n large enough so that αn < α0. Define, for a 0 < u < 1,

ρ(u) := ρ+ F−1(u)e1, with e′1 := (1, 0, · · · , 0),
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where ρ := (1, ρ1, · · · , ρp)′ of the model (5). For all 0 < u < 1, put

Dt(u):=I(Xt ≤ y′t−1ρ̂(u)) − I(Xt ≤ y′t−1ρ(u)),

ãt(u):=I(εt > F−1(u)) − (1 − u),

ât(u) − (1 − u):=ãt(u) −Dt(u) + ât(u)I(Xt = y′t−1ρ̂(u)). (9)

Also, for j = 1, 2, let

b̂j,t := −
∫ 1

0

ϕj(u)dât(u), b̂n;j,t :=

∫ 1−αn

αn

[ât(u) − (1 − u)]dϕj(u).

Note that
∫ 1

0
ϕj(u)du = 0 and integration by parts yield that, for all t,

b̂j,t=−
∫ 1

0

ϕj(u)d[ât(u) − (1 − u)] =

∫ 1

0

[ât(u) − (1 − u)]dϕj(u).

Decomposing this further gives, with āt(u) := ât(u) − (1 − u),

b̂j,t=

∫ αn

0

āt(u)dϕj(u) + b̂n;j,t +

∫ 1

1−αn
āt(u)dϕj(u),

b̂n;j,t=

∫ α0

αn

āt(u)dϕj(u) +

∫ 1−α0

α0

āt(u)dϕj(u) +

∫ 1−αn

1−α0

āt(u)dϕj(u)

=ĉn1;j,t + ĉn2;j,t + ĉn3;j,t, say.

We start with analyzing the sum n−1/2
∑n

t=2 ĉn1;1,tĉn1;2,t−1. The anal-
ysis of the similar sum involving ĉn3;j,t’s is exactly similar, while the sim-
ilar sum corresponding to the ĉn2;j,t terms can be analyzed using the
results for bounded scores. The analysis of the cross product sums is
also similar and relatively less involved. For the ease of writing, let
ϕjn(u) := ϕj(u)I(αn < u ≤ α0). Using (9), rewrite

ĉn1;j,t =

∫
ãtdϕjn −

∫
Dtdϕjn +

∫
ât(u)I(Xt = y′t−1ρ̂(u))dϕjn(u).
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Letting Aj,t :=
∫
ãtdϕjn, we thus obtain

1√
n

n∑

t=2

ĉn1;j,tĉn1;j,t−1 (10)

=
1√
n

n∑

t=2

[
A1,tA2,t −

∫
Dtdϕ1nA2,t

+

∫
ât(u)I

(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u)A2,t −A1,t

∫
Dt−1dϕ2n

+

∫
Dtdϕ1n

∫
Dt−1dϕ2n −

{∫
ât(u)I(Xt = y′t−1ρ̂(u))dϕ1n(u)

×
∫
Dt−1dϕ2n

}
+A1,t

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

−
∫
Dtdϕ1n

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

+
{∫

ât(u)I
(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u)

×
∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u)

}]

=C1 − C2 + C3 − C4 + C5 − C6 + C7 − C8 + C9, say.

In order to show that the first term C1 := 1√
n

∑n
t=2A1,tA2,t provides

the approximating terms to the left hand side above, we shall verify that
all of the remaining terms tend to zero in probability. Let djn := ϕj(α0)−
ϕj(αn), j = 1, 2, and dn := max(d1n, d2n). From the linear programming
definition of ât(u)’s, we obtain that for all 0 < u < 1,

n∑

t=2

ât(u)I
(
Xt = y′t−1ρ̂(u)

)
≤ (p+ 1), a.s. (11)

This in turn implies

1√
n

n∑

t=2

∫
ât(u)I

(
Xt = y′t−1ρ̂(u)

)
dϕ1n(u) ≤ 1√

n
(p+ 1)dn, (12)

1√
n

n∑

t=2

∫
ât−1(u)I

(
Xt−1 = y′t−2ρ̂(u)

)
dϕ2n(u) ≤ 1√

n
(p+ 1)dn, a.s.

Now, consider the term C9. The fact that ât ≤ 1 and (12) imply

C9 ≤ d2
n

1√
n

(p+ 1), a.s. (13)



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Serial Regression Rank Scores Statistics 347

Similarly using |Dt| ≤ 1, |Aj,t| ≤ dn, for all t and (12), we obtain

max{|C3|, |C6|, |C7|, |C8|} ≤ d2
n

1√
n

(p+ 1), a.s. (14)

The assumption (ϕ-1) on ϕ1, ϕ2 and the definition of αn imply that

dn≤
∫ α0

αn

(u(1 − u))−1−δdu ≤
∫ α0

αn

u−1−δdu

≤C
δ

(α−δ
n − α−δ

0 ) = O(nδ(log n)−2δ(log log n)−2δ),

so that, because 0 < δ < 1/4, d2
n n

−1/2 = o(1). Hence,

max{|C3|, |C6|, |C7|, |C8|, |C9|} = o(1), a.s. (15)

Note also that, because of the n−1/2 factor, the same conclusions hold if
ϕj , j = 1, 2, is replaced by ϕ̃jn := ϕjI

[
[αn, αn(1 + ǫ)]

]
.

To deal with C4, we need to center the factor involving Dt−1 properly.
For this the r.v.’s involved in the indicators need to be suitably standard-
ized. This standardization is done differently for the u-quantiles in the
tail and in the middle, because in the tail the consistency rate of ρ̂(u)
is different from 1√

n
and also depends on u, as was shown in Hallin and

Jurečková (1999). We need to use these facts in the following analysis.
Accordingly, let q(u) := f(F−1(u)),

σu:=(u(1 − u))1/2/q(u), ∆(u) := σ−1
u n1/2(ρ̂(u) − ρ(u)),

µt(u):=F
(
F−1(u) + σu

1√
n
y′t−1∆(u)

)
− F

(
F−1(u)

)
,

νt(u):=µt(u) − σu
1√
n
y′t−1∆(u) q(u).

Rewrite

Dt(u) = I(εt ≤ F−1(u) +
1√
n
σuy

′
t−1∆(u)) − I(εt ≤ F−1(u)).

Then,

C4:=
1√
n

n∑

t=2

A1,t

∫
Dt−1dϕ2n

=
1√
n

n∑

t=2

A1,t

∫
[Dt−1 − µt−1]dϕ2n +

1√
n

n∑

t=2

A1,t

∫
νt−1dϕ2n

+n−1
n∑

t=2

A1,ty
′
t−2

∫
∆(u)σuq(u)dϕ2n(u)

=C41 + C42 + C43, say. (16)
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But, because σuq(u) = (u(1 − u))1/2,

|C43|≤‖n−1
n∑

t=2

A1,tyt−2‖ ‖
∫

∆(u)σuq(u)dϕ2n(u)‖

=OP (n−1/2) sup
αn<u≤α0

‖∆(u)‖
∫

(u(1 − u))1/2dϕ2n(u).

The first factor of OP (n−1/2) comes from the fact that
∑n

t=2A1,tyt−2 is a
vector of zero mean martingales, and hence

E‖n−1
n∑

t=2

A1,tyt−2‖2=n−2
n∑

t=2

Ey′t−2yt−2EA
2
1,t = O(n−1).

Also, by (ϕ-1),
∫
(u(1 − u))1/2dϕjn(u) ≤

∫ α0

0 u−1/2−δdu < ∞, j = 1, 2.
Next, recall from Hallin & Jurečková (1999) (H-J) that under (F1)-(F4),

sup
αn≤u≤1−αn

‖∆(u)‖ = OP (log log n)1/2. (17)

Upon combining these observations we obtain

|C43|=OP (n−1/2(log log n)1/2) = oP (1). (18)

Next considerC42. Let δn,t,u := n−1/2σu y
′
t−2∆(u), ǫn := C (log n)2/r−2

× (log log n)−1/4, r ≥ 1, and Kn := C (log log n)1/2. We need the fol-
lowing results from H-J obtained under (F1)-(F4). By (A.5) and (A.9) in
there, for any r ≥ 1,

max
1≤t≤n,αn≤u≤1−αn

|δn,t,u| = OP (ǫn), (19)

|ḟ(x)|
f(x)

|x|1−r = O(1), as x→ ±∞. (20)

Let xn = F−1(αn), x0 = F−1(α0), τy = σF (y), ∆̃y = ∆(F (y)), δ̃n,t,y =

δn,t,F (y), and dL(y) = F−1/2−δ(y)dF (y). Since αn < α0 < 1/2, we have

xn < x0 < 0. Also, in the left tail |dϕj(F )| ≤ C F−1−δdF . Let An :=
{supαn≤u≤1−αn ‖∆(u)‖ ≤ Kn}. For xn ≤ y ≤ x0 < 0, on the event An,

|δ̃n,t,y| ≤ 1√
n
(F 1/2(y)/f(y))‖yt−2‖Kn, and

|C42|=| 1√
n

n∑

t=2

A1,t

∫
νt−1(u)dϕ2n(u)|

≤ 1√
n

n∑

t=2

|A1,t|

×
∣∣
∫

[F (y +
τyy

′
t−2∆̃y√
n

) − F (y) − τyy
′
t−2∆̃y√
n

f(y)]dϕ2n(F (y))
∣∣

≤n−1
n∑

t=2

|A1,t|‖yt−2‖Kn

∫ x0

xn

∫ 1

0

|f(y + v δ̃n,t,y) − f(y)|
f(y)

dvdL(y).
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But, on the event max1≤t≤n,xn≤y≤x0 |δ̃n,t,y| ≤ Cǫn, see (19), the double
integral in this bound is further bounded above by Cǫn times the integral

max
1≤t≤n

∫ x0

xn

∫ 1

0

∫ 1

0

v
|ḟ(y + δ̃n,t,yvz)|

f(y)
dvdzdL(y)

≤ max
1≤t≤n

∫ 1

0

v

∫ 1

0

∫ x0

xn

|ḟ(y + δ̃n,t,yvz)|
f(y)

dL(y) dzdv

−→P (1/2)

∫ x0

−∞

|ḟ(y)|
f(y)

dL(y) ≤ C

∫ x0

−∞
|y|r−1dL(y) (by (20))

≤ C
( ∫

|y|p(r−1)dF (y)
)1/p( ∫

F−q( 1
2+δ)(y)dF (y)

)1/q
, (21)

where p, q are positive integers, 1/p+1/q = 1, and such that 1 > q(1/2+δ)
so that the second integral in the above bound is finite. Such a q always
exists since δ < 1. Also note that (2/r) − 2 < 0, because r > 1. Hence

Knǫn = C (log n)
2
r−2(log log n)1/4 = o(1),

n∑

t=2

|A1,t|‖yt−2‖ = OP (n),

and, in view of (19) and (20),

|C42| = OP (Knǫn) = oP (1). (22)

Next, we treat the C41 term. Let an = 1√
n
Kn. Define, for y, a ∈ R and

s ∈ R
m+1 such that ‖s‖ ≤ 1,

C±
41(y, s, a):=

1√
n

n∑

t=2

A±
1,t[I(εt−1 ≤ y + anτy(y

′
t−2s+ ‖yt−2‖a))

−I(εt−1 ≤ y) −mt−1(y, s, a)],

mt−1(y, s, a):=[F (y + anτy(y
′
t−2s+ ‖yt−2‖a)) − F (y)],

where A±
t stand for the positive and negative parts of At. Write C±

41(y, s)
for C±

41(y, s, 0) and let

C41(y, s) := C+
41(y, s) − C−

41(y, s)

=
1√
n

n∑

t=2

A1,t[I(εt−1 ≤ y + anτyy
′
t−2s) − I(εt−1 ≤ y) − µt−1(F (y), s)].

Note that on the event An,

|C41|≤
∫

sup
‖s‖≤1

|C+
41(y, s)|dψ2n(y) +

∫
sup

‖s‖≤1

|C−
41(y, s)|dψ2n(y),
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with ψjn(y) := ϕjn(F (y)). We shall show that
∫

sup
‖s‖≤1

|C±
41(y, s)|dψ2n(y) = oP (1), (23)

which obviously will imply

|C41| = oP (1). (24)

For an s ∈ R
m+1, a, y ∈ R, let

ℓn(y, s, a):=

∫ 1

0

E{‖y0‖f(y + z τyan(y
′
0s+ ‖y0‖a))}

f(y)
dz,

γn(y, s, a):=

∫ 1

0

E{‖y0‖f(y + τyan(y
′
0s− 2‖y0‖a z))}

f(y)
dz.

Arguing as above and conditionally, we have for all y ∈ R, with b = EA2
1,t,

E|C±
41(y, s, a)|2

=E(A±
1,t)

2E
[
I(ε1 ≤ y + anτy(y

′
0s+ ‖y0‖a)) − I(ε1 ≤ y)

−F (y + anτy(y
′
0s+ ‖y0‖a)) + F (y)

]2

≤bE|F (y + anτy(y
′
0s+ ‖y0‖a)) − F (y)|

≤b anτy(‖s‖ + a)

∫ 1

0

E{‖y0‖f(y + z τyan(y′0s+ ‖y0‖a))}dz

=b
1√
n
Kn (‖s‖ + |a|) [F (y)(1 − F (y))]1/2 ℓn(y, s, a). (25)

Similarly, for any s, t ∈ R
p, and y, a ∈ R,

E|C±
41(y, t, a) − C±

41(y, s, a)|2

≤b ‖t− s‖ 1√
n
Kn [F (y)(1 − F (y))]1/2 ℓn(y, s, a),

E|C±
41(y, t, a) − C±

41(y, t, 0)|2

≤b |a| 1√
n
Kn [F (y)(1 − F (y))]1/2 γn(y, t, a). (26)

Since the unit ball is compact, there is an η > 0 and a finite number k of
points s1, · · · , sk in the unit ball such that for any ‖s‖ ≤ 1, there is an sj
in the unit ball with ‖s− sj‖ ≤ η. We will need to choose η to depend on
n and hence so also k. Now,

sup
‖s‖≤1

|C±
41(y, s)|≤ max

1≤j≤k
sup

‖s−sj‖≤η
|C±

41(y, s) − C±
41(y, sj)|

+ max
1≤j≤k

|C±
41(y, sj)|. (27)
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But, ‖s− sj‖ ≤ η implies that for all y ∈ R, 1 ≤ j ≤ k, n ≥ 1, 1 ≤ t ≤ n,

anτy(y
′
t−2sj − ‖yt−2‖η) ≤ anτyy

′
t−2s ≤ anτy(y

′
t−2sj + ‖yt−2‖η).

This, the monotonicity of the indicators and nonnegativity of A±
1,t’s, imply

|C±
41(y, s) − C±

41(y, sj)|
≤ |C±

41(y, sj , η) − C±
41(y, sj , 0)| + |C±

41(y, sj ,−η) − C±
41(y, sj , 0)|

+2
1√
n

n∑

t=2

A±
1,t[mt−1(y, sj , η) −mt−1(y, sj ,−η)] (28)

Moreover, by (26), and the Cauchy-Schwarz inequality,

E
(

max
1≤j≤k

|C±
41(y, sj ,±η) − C±

41(y, sj, 0)|
)

≤ k {2b η 1√
n
Kn [F (y)(1 − F (y))]1/2 max

1≤j≤k
γn(y, sj , η)}1/2.

Let gn(y, η) := max1≤j≤k γn(y, sj , η) and ν(y) :=
∫ y
−∞ F−1/4dL(y).

Note that for δ < 1/4 this is a finite measure. Also note that gn(y, η) →
E‖y0‖ <∞. Arguing as for (21), we thus obtain for all η,

Bn:=

∫
[F (y)(1 − F (y))]1/4 gn(y, η)dψn(y)

≤
∫ x0

xn

F (y)−3/4−δg1/2
n (y, η)dF (y) ≤

∫
g1/2
n (y, η)dν(y) = O(1).

Hence,
∫
E max

1≤j≤k
|C±

41(y, sj ,±η) − C±
41(y, sj , 0)|dψ2n(y) ≤ Bnk(

ηKn√
n

)1/2. (29)

Next, let dn,t,y,s := anτyy
′
t−1s. The third term in the upper bound of

(28) is bounded above by

1√
n

n∑

t=2

A±
1,t

{
F (y + dn,t−1,y,sj + anτy‖yt−2‖η) − F (y)

−[dn,t−1,y,sj + anτy‖yt−2‖η]f(y)
}

− 1√
n

n∑

t=2

A±
1,t

{
F (y + dn,t−1,y,sj − anτy‖yt−2‖η) − F (y)

−[dn,t−1,y,sj − anτy‖yt−2‖η]f(y)
}

+ 2η
1√
n
anτy

n∑

t=2

A±
1,t‖yt−2‖f(y)

= M1,j(y) −M2,j(y) + 2ηKn[F (y(1 − F (y)]1/2n−1
n∑

t=2

A±
1,t‖yt−2‖.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

352 M. Hallin, J. Jurečková & H. Koul

Note that for all ‖sj‖ ≤ 1, and all t, and all y with F (y) close to αn, on
the event {‖yt−2‖ ≤ C(log n)1/r(log log n)1/4),

[dn,t−1,y,sj + anτy‖yt−2‖η]≤anτy‖yt−2‖(1 + η) ≤ ǫn(1 + η).

Hence, by arguing as for (21),∫
max

1≤j≤k
|M1,j(y)|dψ2n(y)

≤
∫

1√
n

n∑

t=2

|A1,t|[dn,t−1,y,sj + anτy‖yt−2‖η]

× max
1≤j≤k

∫ 1

0

|f(y + [dn,t−1,y,sj + anτy‖yt−2‖η]z) − f(y)|dz dψ2n(y)

≤Knn
−1

n∑

t=2

|A1,t|‖yt−2‖(1 + η)

∫
max

1≤j≤k
[dn,t−1,y,sj + anτy‖yt−2‖η]

×
∫ 1

0

z

∫ 1

0

|ḟ(y + [dn,t−1,y,sj + anτy‖yt−2‖η]z v)|dvdz
f(y)

dL(y)

≤Knǫn (1 + η)2 n−1
n∑

t=2

|A1,t|‖yt−2‖2

×
∫

max1≤j≤k
∫ 1

0 z
∫ 1

0 |ḟ(y + [dn,t−1,y,sj + anτy‖yt−2‖η]z v)|dvdz
f(y)

dL(y)

=OP (Knǫn) = oP (1), ∀ η > 0.

Similarly,∫
max

1≤j≤k
|M2,j(y)|dψ2n(y) = OP (Knǫn) = oP (1), ∀ η > 0.

Thus we obtain that the integral of the maximum over 1 ≤ j ≤ k of the
third term in the bound (28) is bounded above by

OP (Knǫn(1 + η)2) + 2Knηn
−1

n∑

t=2

|A1,t|‖yt−2‖
∫
dL(y) (30)

= OP (η Kn) +OP (Knǫn).

Next, let Ln(y) := max1≤j≤k ℓn(y, sj , 0). By (25) applied with a = 0,

E
(

max
1≤j≤k

|C±
41(y, sj)|

)

≤k
{
b

1√
n
Kn [F (y)(1 − F (y))]1/2

k∑

j=1

‖sj‖ℓn(y, sj , 0)
}1/2

≤k
{
b

1√
n
Kn [F (y)(1 − F (y))]1/2 Ln(y)

}1/2
,
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so that

∫
E
(

max
1≤j≤k

|C±
41(y, sj)|

)
dψ2n(y)≤C k n−1/4C1/2

n

∫
Ln(y)

dF (y)

F 3/4+δ(y)
.

All these bounds together with (27), (28) and (29), yield

∫
sup

‖s‖≤1

|C±
41(y, s)|dψ2n(y)

=OP (kη1/2n−1/4K1/2
n ) +OP (η Kn) +OP (ǫnKn),

=OP (η1/2−pn−1/4K1/2
n ) +OP (η Kn).

This in turn implies (23), by choosing η suitably. For example η = K−a
n ,

a > 1, will suffice. The results (24), (22) and (18) together imply

C4 = oP (1). (31)

Similarly one can prove

C2 = oP (1). (32)

Next, consider

|C5|:=
1√
n

∣∣
n∑

t=2

∫
Dtdϕ1n

∫
Dt−1dϕ2n

∣∣

≤
∫ ∫

sup
‖s‖≤1

1√
n

n∑

t=2

{
|I(εt ≤ x+ τxany

′
t−1s) − I(εt ≤ x)|

×|I(εt−1 ≤ y + τyany
′
t−2s) − I(εt−1 ≤ y)|

}
dψ1n(x)dψ2n(y)

≤
∫ ∫

1√
n

n∑

t=2

{
I(x− τxan‖yt−1‖ < εt ≤ x+ τxan‖yt−1‖)

×I(y − τyan‖yt−2‖ < εt−1 ≤ y + τyan‖yt−2‖)
}
dψ1n(x)dψ2n(y),
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so that, by a conditioning argument,

E|C5|≤
∫ ∫

n1/2E{I(y − τyan‖y0‖ < ε1 ≤ y + τyan‖y0‖)

×|F (x+ τxan‖Y1‖) − F (x− τxan‖Y1‖)|}dψ1n(x)dψ2n(y)

≤Kn

∫ ∫ y=x0

y=xn

E
{
I(y − τyan‖y0‖ < ε1 ≤ y + τyan‖y0‖)

×‖Y1‖
∫ 1

−1 f(x+ τxan‖Y1‖ v)dv
f(x)

}
dL(x)dψ2n(y)

≤Kn

∫ ∫ y=x0

y=xn

E1/2|F (y + τyan‖y0‖) − F (y − τyan‖y0‖)|

×E1/2
{
‖Y1‖

∫ 1

−1 f(x+ τxan‖Y1‖ v)dv
f(x)

}2
dL(x)dψ2n(y)

≤Kn

∫ ∫ y=x0

y=xn

E1/2τyan‖y0‖
∫ 1

−1

f(y + τyan‖y0‖v)dv

×E1/2
{
‖Y1‖

∫ 1

−1
f(x+ τxan‖Y1‖ v)dv

f(x)

}2
dL(x)dψ2n(y)

≤n−1/4C2
n

∫ y=x0

y=xn

E1/2
{
‖y0‖

∫ 1

−1 f(y + τyan‖y0‖v)dv
f(y)

}
dL(y)

×
∫ x0

xn

E1/2
{
‖Y1‖

∫ 1

−1 f(x+ τxan‖Y1‖ v)dv
f(x)

}2
dL(x)

=o(1).

The above bounds clearly prove the following

Lemma 1. Under the conditions of Proposition 1, we have

1√
n

n∑

t=2

ĉn1;1,tĉn1;2,t−1

=
1√
n

n∑

t=2

∫ [
I
(
εt > F−1(u)

)
− (1 − u)

]
dϕn1(u)

×
∫ [

I
(
εt−1 > F−1(v)

)
− (1 − v)

]
dϕn2(v) + oP (1).

Next, consider the sum n−1/2
∑n

t=2 ĉn2;1,tĉn2;2,t−1. This is similar to
the above sum with ϕjn replaced with ϕ0

j := ϕj(u)I(α0 ≤ u ≤ 1 − α0).
Thus several calculations are similar to those in the case considered in the
proof of Lemma 1. To begin with, the decomposition (10) remains valid
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with ϕjn replaced by ϕ0
j . Denote these terms by C0

i , i = 1, · · · , 9. That is,

C0
i is the Ci of (10) with ϕ0

j substituted for ϕjn. The bounds (13) and (14)

now hold with djn replaced by d0
j := ϕj(1−α0)−ϕj(α0), so that the analog

of (15) clearly holds here. The places where one uses a different argument
is in the handling of the remaining terms C0

1 , C
0
2 , C

0
4 and C0

5 .
Consider C0

4 . As mentioned earlier, here one needs to standardize the
random variables involved in the indicators of Dt differently. Accordingly,
now let γ(u) := n1/2(ρ̂(u) − ρ(u)), and rewrite

µt(u):=F
(
F−1(u) +

1√
n
y′t−1γ(u)

)
− F

(
F−1(u)

)
,

νt(u):=µt(u) − 1√
n
y′t−1γ(u) q(u).

Then,

C0
4=

1√
n

n∑

t=2

A1,t

[ ∫
[Dt−1 − µt−1]dϕ

0
2 +

∫
νt−1dϕ

0
2

+

∫
1√
n
y′t−2γ(u) dϕ0

2(u)
]

=C0
41 + C0

42 + C0
43, say.

Now recall from Koul and Saleh (1995) that

sup
α0≤u≤1−α0

‖γ(u)‖ = OP (1). (33)

Using this, the fact ϕ0
2 is bounded and arguing as for (18), we have

|C0
43|≤‖n−1

n∑

t=2

A1,tyt−2‖ sup
α0≤u≤1−α0

‖γ(u)‖ = OP (
1√
n

) = oP (1).

Next, consider C0
42. Let ψ0

j (y) := ϕ0
j(F (y)), a0 = F−1(α0), a1 =

F−1(1−α0), γ̃y = γ(F (y)), y ∈ R, ζn := sup1≤t≤n,a0≤y≤a1

1√
n
|y′t−2γ̃y|. The

stationarity of the time series, E‖y0‖2 <∞ and (33) imply that ζn = oP (1),
and n−1

∑n
t=2 |A1,t|‖yt−2‖ = OP (1). Hence,

|C0
42|≤

1√
n

n∑

t=2

|A1,t|

×
∫ ∣∣F (y +

1√
n
y′t−2γ̃y) − F (y) − 1√

n
y′t−2γ̃yf(y)

∣∣dψ0
2(y)

≤n−1
n∑

t=2

|A1,t|‖yt−2‖ sup
|y−x|≤ζn

|f(y) − f(x)| = oP (1).
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Next, we treat the C0
41 term. Define, for s ∈ R

p+1, y, a ∈ R,

mt−1(y, s, a):=[F (y +
1√
n

(y′t−2s+ ‖yt−2‖a)) − F (y)]

C0±
41 (y, s, a):=

1√
n

n∑

t=2

A±
1,t[I(εt−1 ≤ y +

1√
n

(y′t−2s+ ‖yt−2‖a))

−I(εt−1 ≤ y) −mt−1(y, s, a)],

C0
41(y, s):=C

0,+
41 (y, s) − C0,−

41 (y, s)

:=
1√
n

n∑

t=2

A1,t[I(εt−1 ≤ y +
1√
n
y′t−2s)

−I(εt−1 ≤ y) − µt−1(F (y), s)],

where C0,±
41 (y, s) = C0,±

41 (y, s, 0). On the event supα0≤u≤1−α0
‖γ(u)‖ ≤ b,

|C0
41|≤

∫
sup
‖s‖≤b

|C0,+
41 (y, s)|dψ0

2(y) +

∫
sup
‖s‖≤b

|C0,−
41 (y, s)|dψ0

2(y).

We shall show that for every 0 < b <∞,
∫

sup
‖s‖≤b

|C±
41(y, s)|dψ0

2(y) = oP (1) (34)

which together with (33) will imply |C0
41| = oP (1).

Let c = EA2
1,t. Arguing as before and because f is bounded, for all

y ∈ R, 0 ≤ b <∞, s ∈ R
p+1 with ‖s‖ ≤ b and for all a ∈ R, we obtain

E|C0±
41 (y, s, a)|2=E(A±

1,2)
2E
[
I(ε1 ≤ y +

1√
n

(y′0s+ ‖y0‖a)) − I(ε1 ≤ y)

−F (y +
1√
n

(y′0s+ ‖y0‖a)) + F (y)
]2

≤cE|F (y +
1√
n

(y′0s+ ‖y0‖a)) − F (y)|

≤C 1√
n

(b+ a)E‖y0‖. (35)

Similarly, and for any s, t ∈ R
p+1, and y, a ∈ R,

E|C0±
41 (y, t, a) − C0±

41 (y, s, a)|2≤c ‖t− s‖ 1√
n
E‖y0‖,

E|C0±
41 (y, t, a) − C0±

41 (y, t, 0)|2≤c |a| 1√
n
E‖y0‖. (36)

Since the ball {‖s‖ ≤ b‖} is compact, there is an η > 0 and a finite
number of points s1, · · · , sk in the unit ball such that for any ‖s‖ ≤ b,
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there is an sj with ‖sj‖ ≤ b, ‖s− sj‖ ≤ η. Now, because,

sup
‖s‖≤b

|C0±
41 (y, s)| (37)

≤ max
1≤j≤k

sup
‖s−sj‖≤η

|C0±
41 (y, s) − C0±

41 (y, sj)| + max
1≤j≤k

|C0±
41 (y, sj)|;

‖s− sj‖ ≤ η implies that for all y ∈ R, 1 ≤ j ≤ k, n ≥ 1, 1 ≤ t ≤ n,

y′t−2sj − ‖yt−2‖η ≤ y′t−2s ≤ y′t−2sj + ‖yt−2‖η.
This, the monotonicity of the indicators, and nonnegativity of A±

1,t’s, imply

|C0±
41 (y, s) − C0±

41 (y, sj)|
≤ |C0±

41 (y, sj , η) − C0±
41 (y, sj , 0)| + |C0±

41 (y, sj ,−η) − C0±
41 (y, sj , 0)|

+2
1√
n
{
n∑

t=2

A±
1,t[mt−1(y, sj , η) −mt−1(y, sj,−η)]. (38)

Moreover, by (36), and the Cauchy-Schwarz inequality,

E
(

max
1≤j≤k

|C0±
41 (y, sj,±η) − C0±

41 (y, sj , 0)|
)
≤C k η1/2 n−1/4.

Because f is bounded, the third term in the upper bound of (38) is bounded
above by

max
1≤j≤k

1√
n

n∑

t=2

|A1,t|
∣∣[F (y +

1√
n
y′t−2sj +

1√
n
‖yt−2‖η)

−F (y +
1√
n
y′t−2sj −

1√
n
‖yt−2‖η)

]∣∣

≤ Cη n−1
n∑

t=2

|A1,t|‖yt−2‖ = OP (η).

Finally, by (35) applied with a = 0,
∫
E
(

max
1≤j≤k

|C0±
41 (y, sj)|

)
dψ0

2(y)≤d0
2 sup

y
E
(

max
1≤j≤k

|C0±
41 (y, sj)|

)

≤d0
2

k∑

j=1

E
∣∣C0±

41 (y, sj)
∣∣ ≤ C k n−1/4,

All these bounds together with (35), (37) and (38), yield
∫

sup
‖s‖≤b

|C0±
41 (y, s)|dψ0

2(y)=OP (k η1/2 n−1/4) + OP (k n−1/4) +OP (η)

=OP (η−p n−1/4) ∀ η > 0.
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Letting η → 0 at a suitable rate (such as, for instance, η = n−a, with
ap < 1/4), this in turn implies (34), and completes the proof of C0

4 = oP (1).
Similarly one can prove C0

2 = oP (1).
Next, note that for ‖s‖ ≤ b, −‖yt−2‖b ≤ y′t−2s ≤ ‖yt−2‖b. Therefore,

|C0
5 |:=

∣∣ 1√
n

n∑

t=2

∫
Dtdϕ

0
1

∫
Dt−1dϕ

0
2

∣∣

≤
∫ ∫

sup
‖s‖≤b

1√
n

n∑

t=2

{
|I(εt ≤ x+

1√
n
y′t−1s) − I(εt ≤ x)|

×|I(εt−1 ≤ y +
1√
n
y′t−2s) − I(εt−1 ≤ y)|

}
dψ0

1(x)dψ0
2(y)

≤
∫ ∫

1√
n

n∑

t=2

{
I(x− 1√

n
‖yt−1‖b < εt ≤ x+

1√
n
‖yt−1‖b)

×I(y − 1√
n
‖yt−2‖b < εt−1 ≤ y +

1√
n
‖yt−2‖b)

}
dψ0

1(x)dψ0
2(y).

Therefore, a conditioning argument, ‖f‖∞ < ∞ and that ψ0
j , j = 1, 2 are

finite measures on R, imply

E|C0
5 |≤
∫ ∫

n1/2E{|F (x+
1√
n
‖Y1‖b) − F (x− 1√

n
‖Y1‖b)|

×I(y − 1√
n
‖y0‖b < ε1 ≤ y +

1√
n
‖y0‖b)}dψ0

1(x)dψ
0
2(y)

≤C
∫
E
{
I(y − 1√

n
‖y0‖b < ε1 ≤ y +

1√
n
‖y0‖b)‖Y1‖

}
dψ0

2(y)

≤C
∫
E1/2|F (y +

1√
n
‖y0‖b) − F (y − 1√

n
‖y0‖b)|dψ0

2(y)

≤C n−1/4 = o(1).

To summarize, we have proved the following

1√
n

n∑

t=2

ĉn2;1,tĉn2;2,t−1=
1√
n

n∑

t=2

{∫
[I(εt > F−1(u) − (1 − u)]dϕ0

1(u)

×
∫

[I(εt−1 > F−1(v) − (1 − v)]dϕ0
2(v)

}
+ oP (1).

Along the same lines as on page 1412 of Hallin and Jurečková (1999),
one can show that the remaining cross-product terms are negligible. For
example consider

Tn :=
1√
n

n∑

t=2

∫ αn

0

ātdϕ1

∫ αn

0

āt−1dϕ2.
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The Cauchy-Schwarz inequality, the facts that |u− (1 − ât(u)|2 ≤ u+ (1−
ât(u)), and

∑n
t=1(1 − ât(u)) = nu, ∀ 0 ≤ u ≤ 1, imply

1√
n

n∑

t=2

∣∣[ât(u) − (1 − u)][ât−1(v) − (1 − v)]
∣∣

≤ 1√
n

{ n∑

t=2

[u− (1 − ât(u)]2
}1/2{ n∑

t=2

[v − (1 − ât−1(v)]
2
}1/2

≤ 1√
n
{2nu}1/2{2n v}1/2 = 2n1/2u1/2v1/2.

Thus,

|Tn|≤
∫ αn

0

∫ αn

0

1√
n

n∑

t=2

∣∣[ât(u) − (1 − u)][ât−1(v) − (1 − v)]
∣∣dϕ1(u)dϕ2(v)

≤2n1/2
( ∫ αn

0

u−1/2−δdu
)2

= O(n−1/2+δ) = o(1).

The next one is even easier because |
∫
ātdϕ

0
j | ≤ ϕj(1 − α0)) − ϕj(α0),

j = 1, 2, so that

∣∣ 1√
n

n∑

t=2

∫
ātdϕ

0
1

∫ αn

0

āt−1dϕ
0
2

∣∣≤
∫ αn

0

1√
n

n∑

t=2

|u− (1 − ât−1(u)|dϕ2

≤2n1/2

∫ αn

0

u−δdu = O(n−1/2+δ).

Exactly similar arguments can be used to show that the cross-product terms
involving the right tail integrals are also negligible. Putting all these con-
clusions together implies

1√
n

n∑

t=2

b̂tb̂t−1=
1√
n

n∑

t=2

∫
[I(εt > F−1(u) − (1 − u)]dϕ1(u)

×
∫

[I(εt−1 > F−1(v) − (1 − v)]dϕ2(v) + oP (1)

=
1√
n

n∑

t=2

ϕ1(F (εt))ϕ2(F (εt−1)) + oP (1).

This proves the left hand side of the claim (8) while the right hand side
of the claim follows from Hallin and Puri (1988) and Hallin and Werker
(1998). �

Remark 1. Here we indicate the proof when not all ϕ’s are centered at
the origin. For example consider the case m = 2. Assume that µ1 :=
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∫
ϕ1(u)du = 0 and

∫
ϕ2(u)du =: µ2 6= 0. Put ϕ0

2 = ϕ2 − µ2. Let āt(u) :=
ât(u) − (1 − u) and note that integration by parts and µ1 = 0 yields that
∫
ϕ1(u)dât(u)

∫
ϕ0

2(v)dât−1(v)=

∫
ϕ1(u)dāt(u)

∫
ϕ0

2(v)dāt−1(v)

=

∫
āt(u)dϕ1(u)

∫
āt−1(v)dϕ2(v), ∀ t.

Hence S̃n,ϕ1ϕ0
2

= S̃n,ϕ1ϕ2 , and S̃n,ϕ1ϕ2 = S̃n,ϕ1ϕ0
2

= Sn,ϕ1ϕ0
2
(θ) + oP (n1/2),

by Proposition 1. But,

1√
n
Sn,ϕ1ϕ0

2
(θ)=

1√
n

n∑

t=1

ϕ1

(Rt(θ)
n+ 1

)[
ϕ2

(Rt−1(θ)

n+ 1

)
−m2

]

=
1√
n
Sϕ1ϕ2(θ) − n1/2m2[n

−1
n∑

i=1

ϕ1(i/(n+ 1)].

Since ϕ1 is square integrable, the difference between the Rieman sum
n−1

∑n
i=1 ϕ1(i/(n + 1) and its limit

∫
ϕ1(u)du = 0 is o(n−1/2), so that

centering ϕ2 has asymptotically negligible influence on n−1/2Snϕ1ϕ2 , and
the conclusion of Proposition 1 continues to hold.
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Chapter 18

A NEW CONVOLUTION ESTIMATOR FOR

NONPARAMETRIC REGRESSION

Baard Støve and Dag Tjøstheim

Department of Mathematics
University of Bergen, Bergen, NORWAY

E-mails: baards@mi.uib.no & dagt@mi.uib.no

We present a convolution smoother for nonparametric regression. Its
asymptotic behavior is examined, and its asymptotic total squared error
is found to be smaller than standard kernel estimators, such as Nadaraya-
Watson and local linear regression. Results based on some simulation
studies are given, including a comparison with a fourth order kernel.
Asymptotic normality for the proposed estimator is proved.

Key words: Convolution; Kernel function; Mean squared errors; Non-
parametric estimation.

1 Introduction

There are many nonparametric estimators of the conditional mean
E(Y |X = x) for independent identically distributed observations (Xi, Yi),
i = 1, ..., n, with a joint density f(·, ·), and a marginal density f(·) of
Xi. The three most common are the local polynomial estimator; see Stone
(1977), Cleveland (1979), Müller (1987), and Fan (1992) the Nadaraya-
Watson estimator; see Nadaraya (1964) and Watson (1964) and the Gasser-
Müller estimator; see Gasser and Müller (1979). In the case

Yi = m(Xi) + ǫi, (1)

where {Xi} and {ǫi} consist of i.i.d. zero-mean random variables with {ǫi}
independent of {Xi}, E(Y |X = x) = m(x). Neither of the three above-
mentioned estimators require a regression relationship like (1) to work, and
one might think that if one was able to construct an estimator of m(x)
making explicit use of the extra information extra information contained
in (1), then possibly one could improve on the standard nonparametric

363
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regression estimators. This is the basic idea of this paper, and it leads to
what we have called “the convolution estimator”. We will show that this
new estimator generally has a smaller asymptotic total squared error and
also that in a number of finite sample experiments it gives better results,
although in many cases these improvements are not dramatic.

Before we define the new estimator, let us briefly mention that several
authors have proposed adjustments and improvements of the kernel estima-
tors. Both the Gasser-Müller and Nadaraya-Watson estimators have a large
order bias when estimating a curve in its boundary region. Thus the idea
of boundary kernels, which are weight functions that are used only within
the boundary region, were introduced and studied by Gasser and Müller
(1979) and Gasser et al. (1985). Another approach has been the reflection
method; see Schuster (1985) and Hall and Werly (1991). In the papers
Hjort and Glad (1995), Efron and Tibshirani (1996), and Glad (1998), the
possibility of parametrically guided nonparametric density and regression
estimation are examined. Several authors have studied the use of higher
order kernels to improve the asymptotic bias; see e.g. Marron and Wand
(1992) for a quantification of the practical gain, in density estimation.

A brief summary of the paper is as follows: In Section 2 the estimator
is introduced, and its asymptotic behavior is examined and discussed in
Sections 3, 4 and 5. In Section 6 some simulation results are given. Section
7 introduces a variant of the new estimator, and finally, Section 8 gives
some concluding remarks.

2 The estimator

The regression function of interest is

m(x) = E(Y |X = x) =

∫
yf(y|x)dy. (2)

Under the assumption that the equation (1) holds, f(y|x) can be written

f(y|x) = fǫ
(
y −m(x)

)
,

where fǫ is the density of ǫ. Inserting this into (2) gives the convolution
integral equation

m(x) =

∫
yfǫ
(
y −m(x)

)
dy, (3)

where both m(x) and fǫ are unknown. However, m(x) may be replaced by
a standard estimator m̃(x), e.g. the local linear estimator, and fǫ can be
estimated using a kernel estimate of fǫ̂ with ǫ̂i = Yi− m̃(Xi). Based on the
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relation (3), the proposed estimator is

m̂(x)=

∫
yf̂ǫ̂
(
y − m̃(x)

)
dy

=n−1
n∑

i=1

∫
yKhD

(
y − m̃(x) − Yi + m̃(Xi)

)
dy, (4)

where m̃(x) is, as mentioned, a nonparametric regression estimator and
KhD(·) = K(·/hD)/hD, where K is a kernel function. We have chosen the
local linear estimator, that is, the local polynomial estimator of degree 1,
with bandwidth hR and kernel function KL(·),

m̃(x) = n−1
n∑

i=1

{ŝ2(x) − ŝ1(x)(x −Xi)}KL
hR

(x−Xi)Yi

ŝ2(x)ŝ0(x) − ŝ1(x)2
,

where

ŝr(x) = n−1
n∑

i=1

(x−Xi)
rKL

hR(x−Xi), r = 0, 1, 2,

and KL
hR

(·) = KL(·/hR)/hR, see e.g. Fan and Gijbels (1996). The expres-

sion f̂ǫ̂
(
y − m̃(x)

)
in (4) is the kernel density estimator with bandwidth

equal to hD,

f̂ǫ̂
(
y − m̃(x)

)
=

1

nhD

n∑

i=1

K
(y − m̃(x) − ǫ̂i

hD

)

with ǫ̂i = Yi − m̃(Xi), see e.g. Wand and Jones (1995) page 11. Observe
that the new estimator is computationally more demanding than standard
methods.

It is also possible to iterate the estimator (4) using a previous estimate
of m(x) as input for the next iteration. Set m̃0 equal to the local linear
estimator for the regression curve. Then the convolution estimator is

m̂1(x) =

∫
yf̂ǫ̂0

(
y − m̃0(x)

)
dy,

where ǫ̂0i = Yi − m̃0(Xi). Iterating further gives, for j = 1, 2, ...

m̂j+1(x) =

∫
yf̂ǫ̂j

(
y − m̂j(x)

)
dy, (5)

where again ǫ̂ji = Yi − m̂j(Xi). Note that in this estimator x can only be

equal to the observed xi for i = 1, ..., n, because we update ǫ̂ji at each itera-
tion. One would perhaps believe that this “iterated convolution estimator”
will give better results than the convolution estimator. However, this is not
the case, unless one uses a special type of kernel function in the estimation
of f̂ǫ̂j . This special kernel is introduced, and some simulation results are
given in Section 7.
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3 Intuitive discussion of bias reduction

Asymptotic analysis of nonparametric estimators is usually based on the
asymptotic bias and variance of the estimator. It is well known that the
Gasser-Müller estimator has an asymptotic variance 1.5 times that of the
Nadaraya-Watson estimator, but its asymptotic bias is superior; see Mack
and Müller (1989) and Chu and Marron (1991). The local polynomial
estimator of order one and higher has been examined by several authors
and has been found to have better properties than the above mentioned
estimators. In particular, it provides automatic boundary bias correction;
see Fan (1994), Fan and Gijbels (1992), Fan (1993), and Hastie and Loader
(1993). For a more complete discussion of the different estimators and
comparisons, see the books Wand and Jones (1995), Simonoff (1996), Fan
and Gijbels (1996), Fan and Yao (2003) and references therein.

We now discuss the asymptotic properties of the estimator (4). In the
sequel, the bandwidth h refers to both hD and hR, since most of the time
we assume that these two bandwidths are equal. Standard conditions on
the kernels, the random variables and the regression function are assumed
to be fulfilled, see e.g. Wand and Jones (1995) page 120.

The relation (4) can be written as

m̂(x) =

n∑

i=1

∫
y

1

nhD
K
(y − m̃(x) − ǫ̂i

hD

)
dy. (6)

By a simple substitution and using assumptions on K(·), (6) gives

m̂(x) = m̃(x) +
1

n

n∑

i=1

ǫ̂i. (7)

Further,

ǫ̂i = Yi − m̃(Xi) = Yi −m(Xi) +m(Xi) − m̃(Xi)

= ǫi +m(Xi) − m̃(Xi). (8)

Substituting (8) in (7), we obtain

m̂(x) −m(x) = m̃(x) −m(x) − 1

n

n∑

i=1

[m̃(Xi) −m(Xi)] +
1

n

n∑

i=1

ǫi. (9)

From this relation it is possible to find the asymptotic bias of m̂(x).
Let us recall the asymptotic bias formula for the local linear estimator

(e.g. Wand and Jones (1995) page 124). With a slight abuse of notation,

As.Bias
(
m̃(x)

)
= E

(
m̃(x) −m(x)

)
∼ h2

2
m′′(x)

∫
z2K(z)dz. (10)
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Since

E
(
m̃(Xi) −m(Xi)

)
= E[E

(
m̃(Xi)

)
−m(Xi)|Xi]

∼ E
(h2

2
m′′(Xi)

∫
z2K(z)dz

)
,

we obtain

E
( 1

n

n∑

i=1

[m̃(Xi) −m(Xi)]
)
∼ h2

2

∫
z2K(z)dz

∫
m′′(y)f(y)dy.

Further,

E
( 1

n

n∑

i=1

ǫi
)

= 0.

Hence the asymptotic bias of m̂(x) is

As.Bias
(
m̂(x)

)
∼As.Bias

(
m̃(x)

)
− h2

2

∫
z2K(z)dz

∫
m′′(y)f(y)dy

=
h2

2

∫
z2K(z)dz[

∫ (
m′′(x) −m′′(y)f(y)

)
dy]. (11)

Let us consider the following special cases:

(1) m′′(x) = constant (i.e. m(x) = a + bx + cx2). The bias of m̂(x) is of
higher order and improvement of the bias can be expected.

(2) m′′(x) = 0 (linear case). The bias is of higher order, both for m̂(x) and
m̃(x), and it is uncertain whether improvement is obtained.

(3) x close to maximum and minimum values (peaks and valleys). If m̂(x)−
m(x) has one maximum or minimum, even though the bias correction
in (11) is x-independent, visually the reduction will be larger at this
point (cf. Figure 2, which is explained in more detail in Section 6).

Observe, however, that if one has a curve with several peaks and valleys
it may be difficult to gain any bias reduction. This is because the integral∫
m′′(y)f(y)dy can be equal to zero in this case.

As mentioned before, performing iterations of the estimator in equation
(5) will not give any improved bias effect. In this case, the equation (7)
will be

m̂j+1(x) = m̂j(x) +
1

n

n∑

i=1

ǫ̂ji .

For j = 1, the same argument as above gives

As.Bias
(
m̂2(x)

)
= As.Bias

(
m̂1(x)

)
,
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and further

As.Bias
(
m̂j+1(x)

)
= As.Bias

(
m̂j(x)

)
.

However, we introduce a special kernel in Section 7, such that a bias reduc-
tion may occur at each iteration.

Another possible improvement, suggested by a referee, is that instead
of (7) one could think about localized corrections where the average over
all residuals is replaced by a locally weighted average of residuals in the
neighborhood of x only. This could alleviate some of the disadvantages
that are associated with the current global adjustment, and should be a
part of further research.

4 Distributional properties

By (9)

m̂(x) − E
(
m̂(x)

)
=m̃(x) − E

(
m̃(x)

)
−
[ 1

n

n∑

i=1

(
m̃(Xi) −m(Xi)

)

−E
[ n∑

i=1

(
m̃(Xi) −m(Xi)

)]]
+

1

n

n∑

i=1

ǫi. (12)

We have

m̃(x) − E
(
m̃(x)

)
= Op(

1√
nh

)

and

1

n

n∑

i=1

ǫi = Op(
1√
n

).

If we can show that the convergence in probability of the remaining terms in
(12) is of higher order, then the asymptotic distribution of m̂(x)−E(m̂(x))
is the same as m̃(x) − E(m̃(x)), but with a different asymptotic bias.

Although this is not necessary, we do our formal calculations as if all
expectations exist. Let us consider again

E
[ 1
n

n∑

i=1

(
m̃(Xi) −m(Xi)

)]2
= E

[ 1

n2

n∑

i=1

(
m̃(Xi) −m(Xi)

)2]
(13)

+E
[ 1

n2

n∑

i,j=1
i6=j

{(
m̃(Xi) −m(Xi)

)
×
(
m̃(Xj) −m(Xj)

)}]
.

Further

E
(
m̃(Xi) −m(Xi)

)2
= E

[
E
(
m̃(Xi) −m(Xi)|Xi

)2]
= o(1).
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Thus

E
[ 1

n2

n∑

i=1

(
m̃(Xi) −m(Xi)

)2]
= o(n−1).

Let us examine the second term in (13). By independence,

E
[(
m̃(Xi) −m(Xi)

)(
m̃(Xj) −m(Xj)

)]

= E
[
E
[(
m̃(Xi) −m(Xi)

)(
m̃(Xj) −m(Xj)

)
|Xi, Xj

]]

∼
∫

E
[(
m̃(x) −m(x)

)(
m̃(y) −m(y)

)]
f(x)f(y)dxdy. (14)

The expectation in the above integral satisfies

E
[(
m̃(x) −m(x)

)(
m̃(y) −m(y)

)]

= E
[
m̃(x)m̃(y)

]
−m(x)E

[
m̃(y) −m(y)

]

−m(y)E
[
m̃(x) −m(x)

]
−m(x)m(y). (15)

Let us examine the term E[m̃(x)m̃(y)]. By a conditioning argument and
by independence, we obtain

E[m̃(x)m̃(y)]=E
[
n−2

n∑

i=1

{ŝ2(x) − ŝ1(x)(x −Xi)}KL
hR

(x−Xi)Yi

ŝ2(x)ŝ0(x) − ŝ1(x)2

×
n∑

j=1

{ŝ2(y) − ŝ1(y)(y −Xj)}KL
hR

(y −Xj)Yj

ŝ2(y)ŝ0(y) − ŝ1(y)2

]

∼n− 1

n2
E
(
m̃(x)

)
E
(
m̃(y)

)

+E
[
n−2

n∑

i=1

Y 2
i {ŝ2(x) − ŝ1(x)(x −Xi)}KL

hR
(x−Xi)

[ŝ2(x)ŝ0(x) − ŝ1(x)2][ŝ2(y)ŝ0(y) − ŝ1(y)2]

× KL
hR(y −Xi){ŝ2(y) − ŝ1(y)(y −Xi)}

]
. (16)

From Wand and Jones (1995) p. 123, asymptotically

ŝl(x) ∼
{
hl
∫
zlKL(z)dzf(x) + oP (hl) l even,

hl+1
∫
zl+1KL(z)dzf ′(x) + oP (hl+1)l odd.

Therefore the order of the denominator in (16) is

h4
[ ∫

z2KL(z)dz
]2
f2(x)f2(y) + oP (h4). (17)

The only term contributing to the last term of the numerator in (16) is

1

n2h2
ŝ2(x)ŝ2(y)E

[ n∑

i=1

KL(
x−Xi

h
)KL(

y −Xi

h
)Y 2
i

]
,
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since all the other terms are of higher order.
Further, by a simple substitution, Taylor expansion, using the equation

(17) and since

ŝ2(x)ŝ2(y) = h4
[ ∫

z2KL(z)dz
]2
f(x)f(y) + oP (h4),

the last term in (16) becomes asymptotically,

1

n2h2f(x)f(y)
E
[ n∑

i=1

KL
(x−Xi

h

)
KL
(y −Xi

h

)
Y 2
i

]

=
1

nhf(x)f(y)

∫
v2KL(z)KL

(zh+ y − x

h

)
fX,Y (x− zh, v)dzdv

=
1

nhf(y)
KL

2

(y − x

h

)
E(Y 2|X = x),

where KL
2 (w) =

∫
K(z)K(z + w)dz.

Writing

E
(
m̃(x)

)
E
(
m̃(y)

)
=m(x)m(y) +m(x)E[m̃(y) −m(y)]

+m(y)E[m̃(x) −m(x)] +
{
E[m̃(y) −m(y)]

× E[m̃(x) −m(x)]
}
,

the equation (15) becomes

E
[(
m̃(x) −m(x)

)(
m̃(y) −m(y)

)]

∼ (1 − 1

n
)E
[
m̃(y) −m(y)

]
E
[
m̃(x) −m(x)

]

+
1

nhf(y)
KL

2

(y − x

h

)
E(Y 2|X = x).

Inserting this in (14) gives

E
[(
m̃(Xi) −m(Xi)

)(
m̃(Xj) −m(Xj)

)]

∼ (1 − 1

n
)

∫
E[m̃(y) −m(y)]E[m̃(x) −m(x)]f(x)f(y)dxdy

+
1

nh

∫
KL

2

(y − x

h

)
E(Y 2|X = x)f(x)dxdy

= (1 − 1

n
)(
h2

2
)2[

∫
z2KL

2 (z)dz]2[

∫
m′′(x)f(x)dx]2

+
1

n

∫
KL

2 (z)dz

∫
E(Y 2|X = x)f(x)dx. (18)
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Clearly the first term in (18) can be identified with the squared expectation
in the decomposition

E
[ 1
n

n∑

i=1

(
m̃(Xi) −m(Xi)

)]2
=Var

[ 1
n

n∑

i=1

(
m̃(Xi) −m(Xi)

)]

+
[
E
( 1

n

n∑

i=1

[m̃(Xi) −m(Xi)]
)]2

. (19)

The term

1

n

∫
KL

2 (z)dz

∫
E(Y 2|X = x)f(x)dx

=
1

n

∫
KL

2 (z)dz[σ2
ǫ +

∫
m2(x)f(x)dx] (20)

can be identified with the variance. We have

1

n

n∑

i=1

[m̃(Xi) −m(Xi)] − E
( 1

n

n∑

i=1

m̃(Xi) −m(Xi)
)
∼ oP (

1√
n

).

From the equation (12), it follows that m̂(x)−E(m̂(x)) has the same asymp-
totic normal distribution as m̃(x) − E(m̃(x)), i.e., the asymptotic variance
is the same for the estimators m̂(x) and m̃(x), but

As.Bias
(
m̂(x)

)
= As.Bias

(
m̃(x)

)
− h2

2

∫
z2K(z)dz

∫
m′′(y)f(y)dy.

5 Total squared error

We would like to compare the asymptotic total squared error, i.e.

E
[ n∑

i=1

(
m̂(Xi) −m(Xi)

)2]
against E

[ n∑

i=1

(
m̃(Xi) −m(Xi)

)2]
.

From equation (9)

m̂(Xi) −m(Xi)=m̃(Xi) −m(Xi) −
1

n

n∑

j=1

[m̃(Xj) −m(Xj)] +
1

n

n∑

j=1

ǫj.

(21)



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

372 B. Støve & D. Tjøstheim

Further,

[m̂(Xi) −m(Xi)]
2

= [m̃(Xi) −m(Xi)]
2 − 2

n
[m̃(Xi) −m(Xi)]

n∑

j=1

[m̃(Xj) −m(Xj)]

+
1

n2

[ n∑

j=1

(
m̃(Xj) −m(Xj)

)]2
+

2

n
[m̃(Xi) −m(Xi)]

n∑

j=1

ǫj

− 2

n2

n∑

j=1

[m̃(Xj) −m(Xj)]

n∑

k=1

ǫk +
1

n2

n∑

j=1

n∑

k=1

ǫjǫk. (22)

This implies

1

n

n∑

i=1

[m̂(Xi) −m(Xi)]
2=

1

n

n∑

i=1

[m̃(Xi) −m(Xi)]
2 (23)

− 1

n2

[ n∑

i=1

(
m̃(Xi) −m(Xi)

)]2
+

1

n2

n∑

j=1

n∑

k=1

ǫjǫk.

Taking expectation in (23) gives us the total squared error of m̂(x).
Thus the order of the different terms is

E
[ 1
n

n∑

i=1

[m̃(Xi) −m(Xi)]
2
]
∼
∫ [

Var
(
m̃(x)

)
+ Bias2

(
m̃(x)

)]
f(x)dx

=O(
1

nh
+ h4),

from the decomposition (19), and the calculated bias and variance

E
[ 1

n2

[ n∑

i=1

(
m̃(Xi) −m(Xi)

)]2]
= O(h4)

and finally

E
[ 1

n2

n∑

j=1

n∑

k=1

ǫjǫk
]

=
σ2
ǫ

n
.

This means that if E
[

1
n

∑n
i=1

(
m̃(Xi) −m(Xi)

)]
6= 0 asymptotically, then

E
[ n∑

i=1

(
m̂(Xi) −m(Xi)

)2]
< E

[ n∑

i=1

(
m̃(Xi) −m(Xi)

)2]

i.e., the total asymptotic squared error of m̂(x) is smaller than m̃(x).
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6 Simulation study

We compare the estimator (4) with the local linear estimator in several
situations. The comparisons are based on the mean squared error (MSE)
of the estimators. For m̂(x) the MSE, if it exists, is

MSE
(
m̂(x)

)
= E

[
{m̂(x) −m(x)}2

]
.

In the simulation study, we use the empirical mean squared error

ˆMSE(m̂) =
1

n

n∑

i=1

{m̂(Xi) −m(Xi)}2, (24)

with similar expressions for the local linear estimator.
We simulated between 100 and 500 realizations of sample size 100 to

10 000 of (Xi, Yi) and calculated the empirical MSE (24). The bandwidth
choice in the kernel density estimation for fǫ is the Solve-the-Equation
Plug-in approach proposed in Sheater and Jones (1991), while the band-
width used in the local linear estimator is the Direct Plug-In methodology
described in Ruppert et al. (1995) , if nothing else is stated. Gaussian
kernels are always used, both in the regression estimation of m(x) and the
density estimation of fǫ. The integration in the estimator (4) is calculated
using the trapezoidal rule between [2 min(Yi), 2 max(Yi)], when min(Yi) < 0
and max(Yi) > 0. We consider the case where observations of (Xi, Yi) are
independent.

Our first simulation experiment was based on the model Yi = X2
i + ǫi,

where ǫi are i.i.d normal with expectation 0 and variance 0.1 and Xi is
uniformly distributed on [−2, 2]. A hundred realizations each with sample
size 500 were simulated, and the convolution and local linear estimators
were used to estimate the regression curves. In this case, the estimated
MSE for the local linear estimator is: 2.301 · 10−3 and for the convolution
estimator: 1.986·10−3. Thus we obtain an improvement of 13.690%. Figure
1 shows the estimated variance and bias of the two estimators. The Figure
1(a) 1(a) displays the estimated variance; here there is no difference between
the two estimators. Figure 1(b) shows the estimated bias. The dashed
line is the estimated bias for the convolution estimator. This is clearly
smaller than for the local linear estimator; thus our predictions that the
improvement occurs in the bias is supported. The results were similar for
the other simulation experiments. See Table 1 with sample size equal to
100, 1000 and 5000. The improvement is also

The next simulation was based on the same model, except that the
interval is now [−0.5, 0.5]. Only one realization with 500 sample points was
simulated, and the estimated lines are given in Figure 2. The solid line is
the true function, the non-filled points are the local linear estimates and the
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Table 1 The estimated MSE for a parabola using the convolution estimator
Sample size Local linear Convolution type Improvement in %

100 9.086 · 10−3 7.997 · 10−3 11.985
500 2.301 · 10−3 1.986 · 10−3 13.690
1000 1.321 · 10−3 1.120 · 10−3 15.216
5000 3.489 · 10−4 2.957 · 10−4 15.248

Table 2 The estimated MSE for a parabola using the convolution estimator and the

Nadaraya-Watson estimator with a fourth order kernel
Sample size Nadaraya-Watson Convolution type Improvement in %

100 2.448 · 10−2 1.002 · 10−2 59.069
500 5.839 · 10−3 2.175 · 10−3 62.750
1000 3.396 · 10−3 1.243 · 10−3 63.398
5000 1.020 · 10−3 2.978 · 10−4 70.804

black points are the convolution estimates. These results clearly indicate
that the asymptotic bias formula in equation (11) is reasonable. For each
estimated local linear point, the estimated convolution point is below by a
fixed amount, but the visual impression is that the convolution estimator
does much better at the bottom points of the parabola.

As mentioned in the introduction, a common bias reduction technique
in nonparametric estimation is the use of higher order kernels [see e.g.
Wand and Jones (1995), page 32]. Thus we have included a compari-
son between the Nadaraya-Watson estimator with a fourth-order kernel
and the proposed convolution estimator. The fourth-order kernel used is
K4(x) = 0.5(3 − x2)φ(x), where φ(x) is the standard normal distribution.
The bandwidth used in the Nadaraya-Watson estimator is the same as for
the above local linear estimator. It is thus not optimal in this situation, but
other choices of the bandwidth were examined without a large impact on
the results. Again we performed simulations for the parabola model on the
interval [−2, 2]. The results from the simulations are given in Table 2. The
convolution estimator clearly outperforms the fourth order kernel method
when comparing the MSE. Figure 3 may explain these results. Here the
bias and variance of both estimator are plotted for the simulations with
sample size 500. The bias of both estimators seems to be reasonably equal.
But the variance is much larger for the fourth order kernel method , the
solid line, than the variance for the convolution estimator, the dashed line.
This behavior of the fourth-order kernel method is not unexpected [see e.g.
Simonoff (1996) page 60].

The last simulation experiment in this section was based on a straight
line regression Yi = a + bXi + ǫi, with a = 1, b = 1, ǫ as before, and
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Figure 1 The estimated variance (top – (a)) and bias (below – (b)) for the parabola
experiment (dashed line - convolution estimator, solid line - local linear estimator)

Xi uniformly distributed on [0, 2]. From this model, 100 realizations of
sample size 100 to 5000 were simulated. The integration in the estimator
was now performed on the interval [−2 max(Yi), 2 max(Yi)]. The results,
given in Table 3 for the convolution estimator, indicate that the convolution
estimator is almost as good as the local linear estimator. We cannot expect
the convolution estimator to do better here, since m′′(x) is zero if m(x) is
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Figure 2 The solid true line, the estimated local linear points (non-filled) and the
estimated convolution points (black) from one realization for the parabola model

a straight line, thus no bias improvement occurs in the formula (11).

7 A special kernel variant

Let us consider equation (4) again. After a substitution, we obtain

m̂(x) =

∫
yf̂ǫ̂
(
y − m̃(x)

)
dy =

∫
zf̂ǫ̂(z)dz + m̃(x)

∫
f̂ǫ̂(z)dz.

If
∫
f̂ǫ̂(z)dz > 1, the estimator m̂(x) will clearly be closer to the true

function than m̃(x) in locations where the function has a large curvature



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

A Convolution Estimator 377

−2 −1 0 1 2

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

x

v
a
ri
a
n
c
e

−2 −1 0 1 2

−
0
.2

5
−

0
.1

5
−

0
.0

5
0
.0

0
0
.0

5

x

b
ia

s

Figure 3 The estimated variance (top) and bias for the parabola experiment (dashed
line - convolution estimator, solid line - Nadaraya-Watson estimator with fourth order
kernel)

due to the bias formula (10). Of course one could adjust with an estimate
m̃′′(x) of m′′(x), but this increases the variance. Instead we have chosen to
introduce a kernel function with the property

∫
K(z)dz > 1. (25)
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Table 3 The estimated MSE for a straight line using the convolution estimator
Sample size Local linear Convolution type Improvement in %

100 5.675 · 10−3 5.653 · 10−3 0.388
500 1.240 · 10−3 1.246 · 10−3 -0.484
1000 5.627 · 10−4 5.630 · 10−4 -0.053
5000 1.009 · 10−4 1.098 · 10−4 -8.821

Table 4 The estimated MSE for m1(x)

Sample size Local linear Convolution type Improvement in %

100 1.442 · 10−2 1.445 · 10−2 -0.208
500 4.071 · 10−3 4.049 · 10−3 0.540
1000 2.382 · 10−3 2.374 · 10−3 0.336
5000 6.766 · 10−4 6.723 · 10−4 0.636

10 000 4.028 · 10−4 3.988 · 10−4 0.993

This could be considered as an alternative to allowing the kernel to be
negative, which is a known device for reducing bias, as seen in section 6 for
the higher order kernel used there.

In this case, it may pay to perform iterations, as equation 5 suggests.
However, m̂(x) will also be larger than m̃(x) in absolute value in locations
where m′′(x) ≈ 0, and this is not desirable. The following simulation
experiments should therefore be considered just as a part of a preliminary
investigation where at least some promising results are obtained, but where
more work is needed to find a more optimal procedure. In these experiments
we have chosen the kernel K such that

∫
f̂ǫ̂(z)dz = 1.001, a very modest

overestimation indeed, and clearly other choices can be examined.
Two regression functions have been studied: from Härdle (1990) chap-

ter 5, m1(x) = sin3(2πx3) and from Prewitt (2003) m2(x) = sin(2x) +
2 exp(−16x2). See Figure 4 for these curves. The observations were gen-
erated by simulating Xi as uniformly distributed on an interval [0, 1] for
m1(x) and [−2, 2] for m2(x). The response observations have been gener-
ated through Yi = m(Xi) + ǫi where ǫi are i.i.d normal with expectation
0 and variance 0.1. Here 100 realizations of sample size 100 to 10 000 of
(Xi, Yi) have been simulated. Since both functions have at least one peak
and one valley, we may not expect to get much bias reduction. The esti-
mated MSE, using the convolution estimator with the adjusted kernel the
adjusted kernel (25), is shown in Table 4 expected, the results show only a
very modest improvement. The results for m2 were similar.

In Table 5 and 6, the iterated convolution estimator (5) with the adjust-
ment (25) has been used with i = 10 iterations, for the regression of m1(x)
and m2(x). Again 100 realizations were different sample size, and the MSE
has been estimated. Here the normal reference bandwidth selector (see e.g.
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Figure 4 The curve m1(x) at the top, m2(x) at the bottom

Härdle (1990), page 91) has been used for the selection of the bandwidth
in the density estimation.

Both tables show that the iterated convolution type estimator performes
better than the local linear estimator. The results also indicate that per-
forming iterations improves the first order convolution estimator m̂1(x).
Clearly, one cannot improve the estimates indefinitely. The improvement
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Table 5 The estimated MSE for m1(x), using the iteration estimator m̂i(x) with i = 10

Sample size Local linear Iterated convolution type Improvement in %

100 1.438 · 10−2 1.434 · 10−2 0.278
500 4.292 · 10−3 4.235 · 10−3 1.328
1000 2.464 · 10−3 2.387 · 10−3 3.125
5000 6.648 · 10−4 6.319 · 10−4 4.949

Table 6 The estimated MSE for m2(x), using the iteration estimator m̂i(x) with i = 10

Sample size Local linear Iterated convolution type Improvement in %

100 1.773 · 10−2 1.741 · 10−2 1.801
500 4.669 · 10−3 4.531 · 10−3 2.956
1000 2.696 · 10−3 2.576 · 10−3 4.451
5000 7.245 · 10−4 6.887 · 10−4 4.941

Table 7 The estimated MSE for m1(x) on the interval [0.55, 0.7] using the iterated con-
volution estimator with i = 10

Sample size Local linear Iterated convolution type Improvement in %

100 1.373 · 10−2 1.373 · 10−2 0
500 3.273 · 10−3 3.127 · 10−3 4.461
1000 2.241 · 10−3 2.058 · 10−3 8.166
5000 4.766 · 10−4 4.205 · 10−4 11.771

will be smaller and smaller, and at the same time there will be more and
more higher order terms which may lead to trouble unless n is increased.
It is important to carry out more detailed calculations and to find a good
stopping criterion. Possibly some cross-validation type criterion can be
used, but this is left for future research.

The point of the adjustment (25) is to improve results in peaks and
valleys. To check this, 100 simulations with sample sizes from 100 to 5000
were performed for m1(x) and m2(x). However, the MSE has been calcu-
lated only for specific intervals which contain the peaks and valleys of the
curves.

Tables 7 and 8 show the results from simulations of m1(x) using the iter-
ated convolution estimator, with i = 10 and adjusted with (25). The inter-
vals considered are [0.55, 0.7], where the curve has a peak, and [0.85, 0.95],
which is a valley. The curve does not have a very large curvature on the
interval [0.55, 0.7], thus the results in the 7 show a modest improvement.
However, Table 8 8 shows that the new estimator is much better when
parts of the function with high curvature. Similar results were obtained for
m2(x).

The above results show that the proposed estimator is better for parts
of functions with high curvature, and in some cases this improvement is
substantial. This is in contrast to the modest improvement we obtained
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Table 8 The estimated MSE for m1(x) on the interval [0.85, 0.95] using the iterated
convolution estimator with i = 10

Sample size Local linear Iterated convolution type Improvement in %

100 3.621 · 10−2 3.414 · 10−2 5.717
500 1.005 · 10−2 8.802 · 10−3 12.418
1000 5.740 · 10−3 4.849 · 10−3 15.523
5000 1.653 · 10−3 1.229 · 10−3 25.650

when we compared the MSE of the whole curve.
A real data set with peaks and valleys was also examined for complete-

ness. We used the motorcycle data set from Härdle (1989 page 70) where
the X-values represent time after a simulated impact with motorcycles and
the response variable Y is the head acceleration of a post mortem human
test object. Figure 5 shows the results, together with the data points. The
upper graphs show the result from the local linear estimator (solid estima-
tor (solid line) and the estimator in equation (4) (dashed line) with the
adjusted kernel (25). These two approximately the same result. However,
the lower graphs are different. Here the dashed line is the iteration esti-
mator from (5), using 50 iterations and adjusted kernel, the solid line is as
above. Again the convolution estimator is lower in valleys and higher in
peaks compared to the local linear estimator.

8 Concluding remarks

This paper introduced a convolution estimator for nonparametric regres-
sion. Its asymptotic total squared error was proved to be smaller than
standard kernel methods. The bias reduction will be large in cases where
the function of interest has only one maximum (i.e. a peak) or one minimum
(i.e. a valley).

Since the convolution estimator has two bandwidths, their choice is
important. This has not been studied in this paper, and one might believe
that the bias reduction can be larger if one is able to choose more optimal
bandwidths.

An adjusted kernel has also been introduced and simulation results in-
dicate that by using this kernel, even more bias reduction can be achieved.
However, more theoretical analysis is needed here.
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We review gene mapping, or inference for quantitative trait loci, in the
context of recent research in semi-parametric and non-parametric infer-
ence for mixture models. Gene mapping studies the relationship between
a phenotypic trait and inherited genotype. Semi-parametric gene map-
ping using the exponential tilt covers most standard exponential fam-
ilies and improves estimation of genetic effects. Non-parametric gene
mapping, including a generalized Hodges-Lehmann shift estimator and
Kaplan-Meier survival curve, provide a general framework for model se-
lection for the influence of genotype on phenotype. Examples and sum-
maries of reported simulations show the power of these methods when
data are far from normal.

Keywords: Statistical genetics; Empirical process; Exponential tilt;
Mixture model.

1 Introduction

Gene mapping concerns the statistical relationship between a phenotype,
or measured response known as a trait, and the genotype, or heritable
information measured at genetic markers scattered across the genome. Ge-
netic information is incomplete, requiring consideration of mixture models
across unknown genotypes. While gene mapping was initially developed

387
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for normally distribution of traits, the framework extends readily to both
semi-parametric and non-parametric models.

Commonly, individuals in a gene mapping study are sampled from an
experimental cross such as a backcross or intercross. First, two inbred lines
(A and B, say) are crossed to create the F1, which is heterogeneous every-
where. That is, at any selected genetic marker, the inbred parents are AA
and BB, respectively, while the F1 is always AB. An F1 back-crossed to an
inbred line, say A, produces backcross offspring that are either homozygous
(AA) or heterozygous (AB) at every marker, with equal likelihood. The
intercross, or F2, results from brother-sister mating of F1 children, yielding
marker genotypes AA:AB:BB in an idealized 1:2:1 ratio. The backcross
or intercross individuals are genetic mosaics of their inbred grandparents,
due to meioses in the F1 parent(s). Other inbred experimental crosses are
possible but are not considered further here (see Kao and Zeng 1997).

Each individual in a sample from an experimental cross is genetically
unique. The different genetic patterns scored at markers spread across the
genome allow us to associate the phenotype with genomic regions, or quan-
titative trait loci (QTL), where differences in genotype are inferred to affect
the phenotype. QTL have great importance in revealing the genetic basis of
phenotypic differences (Belknap et al., 1997; Haston et al., 2002; Wang et
al., 2003). In plant and laboratory animals, backcross or F2 individuals are
widely used for mapping quantitative traits (see Lynch and Walsh 1998).

The basic model selection problems for QTL mapping are: (i) detecting
the presence of one or more QTLs, (ii) estimating QTL map position(s),
and (iii) estimating the genetic effects of the QTLs. This model selection
process is often referred to as inferring the genetic architecture (Mackay
2001). Complications arise due to lack of genotype data between genetic
markers, leading to a likelihood based on a mixture of distributions across
the possible QTL genotypes. Initially, Weller (1986), and later Lander and
Botstein (1989), assumed the phenotype distribution given the genotype is
normal. A general framework was sketched by Jansen (1992) and others.

The basic problem involves relating observed genetic marker informa-
tion, m, to observed phenotypic trait measurements, y through two coupled
models,

pr(y|m,λ) =
∑

q

pr(y|q)pr(q|m,λ),

with the sum over all possible genotypes, q, at the putative QTL(s), λ. In
this paper, we allow the phenotype model, pr(y|q) , to be semi-parametric
(exponential tilt, including many generalized linear models) or fully non-
parametric. The recombination model, pr(q|m,λ) , can be directly calcu-
lated using the binomial based on markers, m , that flank the QTL, λ , and
plays the role here of mixture weight (Kao and Zeng 1997).
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The first gene mapping study involved single marker t-tests (Sax 1923),
which was essentially the standard until the introduction of interval map-
ping (Lander and Botstein 1989; Haley and Knott 1992; Kruglyak and
Lander 1995; see Doerge et al. 1997). The normal mixture, with a normal
phenotype distribution, is the default in the widely used software Map-
maker/QTL (Lander et al. 1987), QTL/Cartographer (Basten et al. 1995)
and R/qtl (Broman et al. 2003).

Nettleton (Nettleton and Praestgaard 1998; Nettleton 1999; Nettleton
2002) considered hypothesis testing for QTL against ordered alternatives,
assuming an underlying normal model. Several investigators studied other,
non-normal, parametric phenotype models, including binomial and thresh-
old models (Visscher et al. 1996; Xu and Atchley 1996; McIntyre et al.
2000; Rao and Li 2000; Yi and Xu 2000; Broman 2003), Poisson (Mackay
and Fry 1996; Shepel et al. 1998), negative binomial (Lan et al. 2001).
Hackett and Weller (1995) considered ordinal threshold models. Broman
(2003) proposed a two-part parametric model for phenotype with a spike at
one value, including structural zeroes and type I censoring. Parametric Cox
proportional hazard model with a specified baseline function was examined
by Diao et al. (2004).

Inference on the QTL map position(s) is fairly robust to normality.
However, model misspecification may lead to reduced power to detect genes
affecting a trait or to biased estimates of the genetic architecture (Hack-
ett 1997; Wright and Kong 1997). Further, genetic differences may involve
more than a mean shift, as modeled for normal data. Perhaps the phenotype
has a different shaped distribution for individuals with different genotypes,
as opposed to a difference in the means or center of location? While these
issues have been widely studied with single QTL models, there has been lit-
tle work on more complex multigene models. One might expect that naively
using normal models with highly non-normal data might cause greater dif-
ficulty in this set-up, where inferences about subtle gene-gene interactions
may be misleading. Therefore it is useful to consider semi-parametric and
non-parametric generalizations for QTL, providing more robust inference
about the genetic architecture, including insight about possible parametric
models for the phenotype given the genotype.

Semi-parametric QTL were first considered by Zou and coauthors (Zou
et al. 2000; Zou and Fine 2002; Jin et al. 2003) using the exponential
tilt. Lange and Whittaker (2001) investigated QTL using generalized es-
timating equations; however, GEE may be biased for the mixture model
necessary for QTL. Symons et al. (2002) and Epstein et al. (2003) consid-
ered a semi-parametric Cox proportional hazards model and a Tobit model,
respectively, for gene mapping with censored survival data.

Kruglyak and Lander (1995) proposed model-free tests using Wilcoxon
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rank statistics for a backcross, where there are two genotypes. Broman
(2003) considered an omnibus generalization of the Wilcoxon test for the
intercross. Poole and Drinkwater (1996) used the Jonckheere-Terpstra gen-
eralization of the Wilcoxon test to ordered alternatives for the intercross.
Hoff et al. (2002) considered stochastic ordering with respect to genotype
as an alternative to no QTL. Zou et al. (2003) and Fine et al. (2004) pro-
vided non-parametric estimators that generalize the Hodges-Lehman shift
and the Kaplan-Meier survival curve to mixture models.

In this chapter, we present semi-parametric models for QTL in Section
2, and non-parametric inference applied to QTL model selection problems
in Section 3. An example on tumour counts of rats is used to illustrate
both semi-parametric and non-parametric inference for QTL.

2 Semi-parametric Models

It is well known that statistical methods work best when they use all avail-
able information, and in particular here, knowledge about the exact form
of the phenotype model. In the best cases, this arises from extensive knowl-
edge from previous studies and an understanding of the underlying mech-
anism. This ideally focuses attention on a few key parameters, such as the
center (mean) and spread (variance) in a population of individuals with
identical genotype. However, in many cases, a suitable parametric form is
not known. We consider here semi-parametric models that encompass most
common parametric models, allowing us to separate the question of model
form from detection of QTL.

In the best situation, a researcher believes from previous research that
a particular parametric model, such as binomial, is suitable. For instance,
Poisson is often appropriate for counts of instances of some event, such as
the number of offspring, while binomial is pertinent for proportions, such
as germination success or disease resistance. Concentrations often follow
a log-normal distribution. Generalizations that allow dispersion may be
appropriate in other situations. Caution is in order if a model choice is
made on the basis of raw phenotype data, as part of the histogram shape
may be due to genetic variation in the sample.

When considering a model, there are three primary options: (1) just
use the normal and hope it is satisfactory; (2) build a method streamlined
to the ‘correct’ phenotype model; (3) find a transformation that makes the
normal model more tenable. Instead, we propose using semi-parametric
models, leaving validation of parametric form to a later investigation by
the researcher once the genetics is better understood.
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2.1 Exponential tilt models

A natural choice for the phenotype model is a common shape that is slightly
modified by genotype through an ‘exponential tilt’:

pr(Y = y|q, θ) = f(y)γ(y|q, β)

with θ = (β, f), log(γ) a low-order polynomial tilt function that is usually
linear or quadratic in y, β a vector with unknown polynomial coefficients
and f an unknown density. Note that pr(y|q, θ) must be a density for every
genotype q, which places some technical constraints on β. If we estimate f
with ‘point mass’ at the observed phenotypes for a sample of n individuals,
these constraints become

n∑

i=1

f(yi)γ(yi|q, β) = 1

regardless of the genotype q.
A test for QTL with this semi-parametric phenotype model is simply a

test that β = 0 while leaving the shape of f unspecified. Many parametric
models are special cases of this semi-parametric model, including normal,
Poisson and binomial (Anderson 1979). Thus this approach can be used
to aide in selection of a parametric model. Interestingly, we can even ap-
proximate parametric models that do not fit this form, such as negative
binomial.

We draw on empirical likelihoods, which use distributions that have
point mass at the observed phenotypes. Recent work (see Owen 2001)
shows how we can use much of the standard likelihood machinery for point
mass empirical distributions with only slight modification. Thus we can
use already developed QTL interval mapping for normal data once we can
evaluate the likelihood, which is

pr(y|m, θ, λ)=
∏n
i=1

∑
q pr(q|mi, λ)f(yi)γ(yi|q, β)

=
∏n
i=1 w(yi|mi, β, λ)f(yi)

with weights w(yi|mi, β, λ) =
∑
q pr(q|mi, λ)γ(yi|q, β) that rely only on the

phenotype and on flanking markers around the QTL. Ideally, we profile the
likelihood across loci λ in the genome. Unfortunately, the profile empirical
likelihood may not exist for all β in a small compact neighborhood of the
null value. That is, there may be no β that make f(y)γ(y|q, β) a density
for all possible q.

Zou et al. (2002) proposed a partial empirical likelihood, treating mark-
ers m as fixed, by noting that the profile empirical log-likelihood can be
factored as

log(pr(y|m, θ, λ)) = ℓ1(β, α(β)) + ℓ2(β) − n logn.
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The first term involves a nuisance parameter to enforce the density con-
straints. It uses a clever trick concerning the Lagrange multiplier α for the
constraints on β, leading to point mass estimates

f̂(yi|m,β, λ) =

[∑

q

γ(yi|q, β)

n∑

i=1

pr(q|mi, λ)

]−1

.

The second term is the partial empirical likelihood,

ℓ2 =

n∑

i=1

log(w(yi|mi, β, λ)) −
n∑

i=1

log

(∑

q

w(yi|mi, β, λ)ρ(mi)

)
,

with ρ(mi) estimated as the empirical proportion of flanking markers with
the genotype agreeing with mi (for a backcross, there are four possible
flanking marker genotype combinations). Notice that the partial empirical
likelihood ℓ2 does not depend on the shape of the density f .

Zou and Fine (2002) justified this partial empirical likelihood using a
conditioning argument. They assumed that the marker genotypes are ran-
dom, as in breeding experiments, and that the flanking marker probabilities
ρ(mi) may be determined directly by the breeding design, the map function
and the marker map, which are typically known. They then demonstrated
that one may construct a conditional likelihood based on distribution of
flanking marker genotype given phenotype not involving the baseline den-
sity f. The partial empirical likelihood is this conditional likelihood with
ρ(mi) replaced by estimates. Zou and Fine (2002) and Jin et al. (2003)
showed that ℓ2 gives valid inferences regardless whether or not mi are
treated as fixed or random.

Thus we profile ℓ2 with respect to λ, maximizing β for each possible
locus. This semi-parametric profiling yields the same formal behavior as
the normal-based profile likelilhood the maximum profile likelihood (see
Discussion). This semi-parametric approach can be used to examine the
robustness of normal or other parametric phenotype models. First, does the
estimated QTL, at the maximum LOD, agree between normal and semi-
parametric approaches? Second, are the data consistent with a particular
parametric model, using the cumulative distributions conditional on QTL
genotype in a graphical goodness-of-fit test?

Mammary Tumors in Rats
Study has shown that female rats from the Wistar-Kyoto (WKy) strain re-
sistant to carcinogenesis were crossed with male rats from the Wistar-Furth
(WF) strain (Lan et al. 2000). To identify carcinogenesis resistant genes,
383 female BC rats were generated by mating F1 progeny to WF animals.
These backcross rats were scored for number of mammary carcinomas and
were genotyped at 58 markers on chromosome 5. Using Mapmaker/QTL,
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Lan et al. (2000) found that marker D5Rat22 was strongly associated with
lower tumor counts. The mean numbers of counts estimated from the nor-
mal mixture are 2.68 and 5.43 for the WKy/WF and WF/WF genotypes,
respectively at the putative QTL identified.

Zou et al. (2002) applied the semiparametric method to this rat data
and the results are summarized in Figures 1 and 2. In Figure 1, the partial
likelihood ratio statistic is shown as a function of location on chromosome
5. The LOD score calculated from the partial likelihood ratio statistic is
also given. For comparison, the profile from a normal mixture using Map-
Maker/QTL is displayed. Both curves are very similar with peaks near
D5Rat22. The estimated distribution functions for Wky/WF and WF/WF
genotypes were computed at the locus giving the maximum LOD score un-
der the semiparametric and normal mixtures. These are displayed in Fig-
ure 2 along with 0.95 pointwise confidence intervals. The plots exhibit that
WF/WF rats have higher tumor counts. The estimated means for carcino-
mas in WKy/WF and WF/WF rats are 2.69 and 5.45, respectively. The
estimated distributions from the normal mixture are rather different from
the semiparametric estimates and may lie outside the confidence intervals.
Other estimates (not shown) from a negative binomial model (Drinkwater
and Klotz 1981) fall entirely within the 0.95 limits.

2.2 Measuring the shift of center

Another way to generalize the normal model is to suppose that QT geno-
types can shift the center but not otherwise change the shape of the model.
That is,

pr(y|q, θ) = F (y + qβ)

with θ = (β, F ), β consisting of a few parameters and F a completely
unspecified distribution. This semi-parametric shift model has a natural
estimator of shift suggested by Hodges and Lehmann. All one has to do is
divide the phenotypes into groups based on QT genotype q and find β that
shifts the medians of all groups to coincide.

Suppose we knew the shift, say β, and we knew the genotypes q . Then
the shifted values yi(β) = yi+(qi−q̄·)β would all have the same distribution
F . Consider the linear rank statistic

T (b|y, q) =
n∑

i=1

(qi − q̄·)
rank(yi(β))

n+ 1
,

which depends on the phenotypes only through the ranks of their shifted
values. In the next section, we develop this into a formal test for β = 0,
but here we are interested in estimating the shift. If we knew q, then we
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Figure 1 Likelihood ratio statistics and LOD score on chromosome 5. Solid line
is the semiparametric mixture and the dashed is the normal mixture. (From Zou
et al. 2002.)

could use the Hodges-Lehmann estimator β̂ = median{b|T (b) ≈ 0}. Note
that the linear rank statistic may not reach zero, so in practice we take the
closest values on either side and average them.

This seems rather difficult to do in practice since q are unknown. How-
ever, Haley-Knott regression provides a decent approximation. In other
words, we can substitute unknown q with its expectation when estimating
β:

pr(y|q, θ) = F (y + E(q)β),

with E(q) the expectation of q given flanking markers to the loci λ (Haley
and Knott 1992). Haley-Knott least squares estimators are consisten, but
may be inefficient, while modified Hodges-Lehmann (HL) estimators may
have bias, since they are nonlinear in q, depending on the median. Never-
theless, our HL estimators perform well in simulations. Our investigation
for a single QTL shows that (Zou et al. 2003) the approximation works
well for linkage maps that are relatively dense (when the average marker
distance is no larger than 20 cM) which is true for most of the modern
QTL mapping studies. The proposed estimator of β is more efficient than
its traditional estimator based on the normality assumption when the data
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Figure 2 Point estimates (+) and 0.95 pointwise confidence limits (0) for cumulative

distributions at location of maximum partial likelihood ratio statis tic. Dashed lines are
point estimates from the normal mixture model. (a) WF/WF; (b) WKy/WF. (From
Zou et al. 2002.)

is not normally distributed. Further, Haley-Knott (1992) regression gives
valid estimates and testing when data are not normal.

Listeria Monocytogene Time-to-Death in Mice
Our second example relates to the date on the time-to-death following infec-
tion with Listeria monocytogenes of 116 F2 mice from an intercross between
the BALB/cByJ and C57BL/6ByJ strains (Boyartchuk et al 2001). The
histograms of the log time-to-death of the non-survivors are given in Fig-
ure 3. 31 mice which is roughly 30% of mice survive beyond 264 days.
From the histogram it is hard to justify that the log time-to-death of the
non-survivors is normally distributed. Broman (2003) applied four different
methods, including both the standard interval mapping and non-parametric
interval mapping, to this data set and showed that the locus on chromosome
1 appears to have effect only on the average time-to-death among the non-
survivors. For this reason, our analysis will be restricted on chromosome 1
for those non-survivors.

The additive and dominance estimators from standard interval map-
ping are 0.262, 0.059, respectively while they are 0.257, 0.038, respectively
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Figure 3 Histogram of log2(survival time), following infection with Lis teria Monocy-
togenes. 31 mice recovered from the infection and survived to the end of experiment
264hr (log2(264) = 8).

based on the rank based method. Therefore, the non-parametric rank based
analysis confirms the results by Broman (2003).

3 Non-parametric Models

The semi-parametric models are quite useful, but they still rely on some
common shape in some sense. What if we want to allow completely arbi-
trary shaped distributions with different QTL genotypes?

Here we examine non-parametric methods that make no assumptions
about the shape of the distribution, that is we focus on cumulative distri-
butions conditional only on the QT genotype

pr(Y ≤ y|q) = Fq(y) .

This approach is more robust to heavy-tailed phenotype distributions and
to occasional outliers.

Estimates of shift discussed in the previous section could be useful here,
but they are actually semi-parametric. We wish to estimate the conditional
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Figure 4 LOD score curves from standard interval mapping (dashed line) and nonpara-
metric interval mapping (solid line).

distributions Fq without any assumptions of shape. Here is the basic idea.
We estimate the cumulative distributions given flanking markers, pr(Y ≤
y|m,λ), by dividing phenotypes into groups based on flanking markers and
summing up the corresponding histograms (details below). Now notice
that the phenotype distributions conditional on QTL are mixtures of these
flanking-marker distributions:

pr(Y ≤ y|m,λ) =
∑

q

pr(q|m,λ)Fq(y) .

Given QTL λ, we can calculate pr(q|m,λ). If there are m QTL, then in a
backcross there are 22m possible flanking marker values but only L = 2m

possible QT genotypes. Thus we have fewer unknowns (Fq) than knowns
in a set of linear equations, and we can estimate. This argument can be ex-
tended to handle missing marker genotypes and other types of experimental
crosses.

To be specific, consider the cumulative distributions

Hi(y) = pr(yi ≤ y|mi, λ) .

Here is a way to get the estimator of Hi. Let Ni(y) = I(yi ≤ y), being 1 if
yi ≤ y or 0 if yi > y. Divide experimental units up into sets based on the
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value of their flanking markers around the loci λ. Let s be one such set.
For each unit i in this set s, average the indicators across this set:

Ĥi(y) =
∑

k∈s
Nk(y)/ns

with ns being the size of the set s. This gives an empirical estimator of
Hi(y) which increases from 0 to 1 as y increases, taking steps of size 1/ns.
All individuals in set s have this same estimator. Thus,

∑

i∈s
Ĥi(y) =

∑

i∈s
Ni(y) .

Let H = (H1, · · · , Hn)
T be the cumulative phenotype distributions con-

ditioned on flanking markers, and F be a column vector across the QT
genotypes of Fq. Combine the segregation model into an n× 2m matrix R
with Riq = pr(q|mi, λ). Thus

H(y) = RF (y) .

In the case of fully informative flanking markers, the ‘best’ (least squares)
estimator of Fq(y) given QTL λ is

F̂ (y|λ) = (RTR)−1RTĤ(y) = WĤ(y) = WN(y)

with N = (N1, · · · , Nn)T. The last equality holds since we are effectively
summing first over individuals with the same flanking markers. This makes
sense, since we can think of the problem as having the cumulative distribu-
tion as the phenotype of interest, with data being Ni(y) = I(yi ≤ y). The
least squares estimator of Fq(y) minimizes the following sum of squares:

n∑

i=1

[
I(yi ≤ y) −

∑

q

pr(q|mi, λ)Fq(y)

]2

.

That is, we find the best fit to the cumulative distribution of phenotypes y
based on the segretation model and on phenotype model given QTL at λ.

The covariances of the phenotype cumulative distribution arise directly
from the binomial model, since we are estimating a probability. For y ≤ y′,

cov
(
F̂ (y|λ), F̂ (y′|λ)

)
= WH(y)(I −H(y′))WT ,

which can be estimated by WN(y)(I −N(y′))WT .
The linear rank test provides a formal non-parametric testing frame-

work to infer QTL, assuming common shape. Following this localization,
the above estimators can provide graphical assessment of the shape of the
distribution for each genotype.
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The rank tests of Kruglyak and Lander (1995) may have low power to
detect differences between the phenotypic distributions. A test for homo-
geneity of the components may also be conducted using the proposed non-
parametric estimators. For given y, the null hypothesis is H0 : AF̂ (t) = 0,
where A is an (L − 1) × L matrix containing (L − 1) linearly independent
contrasts of FQ(y)s corresponding all possible QTL genotypes q. Under
H0, the statistic

L(y) = {AF̂ (y)}{AΣ̂(y, y)AT }−1{AF̂ (y)}T

has a chi-squared distribution with L − 1 degrees of freedom. Evaluating
the distribution of L as a process in y ∈ [0, τ ] (τ is the maximum y value
observed would) enable omnibus testing procedures which are sensitive to
differences amongst the component distributions at all time points. For
example, using supy L(y) would provide a statistic which is sensitive to all
alternatives, unlike the test of Kruglyak and Lander (1995). The theoretical
developments of supy L(y) appear to be rather challenging and deserves
further investigation. In practice, one might consider using the bootstrap
to approximate the distribution of the sup test under H0 across the genome.

Again, the proposed method has been applied to the mammary tumor
rat data (Fine et al. 2004). We compute nonparametric estimates of the
carcinoma distributions for the WKy/WF and WF/WF genotypes at the
estimated QTL and the estimated distributions are displayed in Figure
5 along with 0.95 pointwise confidence intervals. The plots exhibit that
WF/WF rats have higher tumor counts. Further, the estimated distribu-
tion F̂ (y) provides another goodness of fit method of the traditional para-
metric QTL mapping. The estimated means in the WKy/WF and WF/WF
groups are 2.64 and 5.46, respectively, which agrees with Mapmaker/QTL.
However, the estimated distributions from the normal mixture are rather
different from the nonparametric estimates; these are not shown. Instead,
the estimated components from a model with FWKy/WF and FWF/WF as-
sumed to be negative binomial, which was fitted by Lan et al. (2001), are
displayed in Figure 5. These fall entirely within the 0.95 limits, indicating
that this model matches the data well.

4 Discussion

The Wilcoxon rank-sum test was extended to interval mapping by Kruglyak
and Lander (1995). For related sum of scores tests that might be used as
alternatives, see Puri and Sen (1985) or other texts on non-parametric
statistics.

Technical details for the QTL exponential tilt can be found in Zou,
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Figure 5 Point estimates (+) and 0.95 pointwise confidence limits (0) for cumulative
distributions at location of maximum partial likelihood ratio statis tic. Dashed lines are
point estimates from the negative binomial mixture model. (a) WF/WF; (b) WKy/WF.
(From Fine et al. 2004.)

Fine and Yandell (2002), based on empirical likelihood work of Qin (Qin &
Lawless 1994; Qin 1999). See Owen (2001) for a comprehensive treatment of
empirical likelihoods. Zou and Fine (2002) showed how the partial empirical
likelihood is closely related to the conditional likelihood. This connection
raises interesting robustness issues with respect to selective genotyping and
selective phenotyping that are discussed in Jin et al. (2003).

Fine, Zou and Yandell (2001) developed non-parametric cumulative dis-
tributions for QTL phenotypes for uncensored and censored data. Speed
(pers. comm.) developed a QTL version of the Cox proportional hazards.
Recent research has touched on time series and repeated measures analysis
in the QTL context.

Calculating thresholds and power are important practical issues in the
design and analysis of any QTL study. However, the usual point-wise sig-
nificance level based on chi-square approximation is inadequate because
the entire genome is tested for the presence of a QTL. Theoretical ap-
proximations based on the Ornstein-Uhlenbeck diffusion process have been
developed to determine threshold and power (Lander and Botstein 1989;
Dupuis and Siegmund 1999; Rebai et al. 1994, 1995; Zou et al. 2001, 2002)
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in some simple experimental crosses. However, permutation procedure is
time consuming and may not be applicable under some conditions. The
theoretical approximation is not readily available for any study designs and
hard to obtain for complicated models. Empirical permutation procedures
to estimate genome-wide threshold values for traditional interval mapping
proposed by Churchill and Doerge (1994) and widely used for normal data
can be readily applied to the semiparametric and nonparametric methods
reviewed here. Recently, Zou et al. (2004) proposed a new resampling
procedure to assess the significance of genome-wide QTL mapping that
is computationally much less intensive than Churchill and Doerge (1994).
Further, it is applicable to complicated QTL mapping models that the per-
mutation and theoretical methods cannot handle.
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Work in the last two decades on Bayesian nonparametric methods for
mixture models finds that a posterior distribution is a double mixture.
One first selects a partition of the objects based on a distribution on the
partitions, and then performs a traditional parametric posterior analysis
on the data corresponding to each cluster of the given partition. It is
known that such a partition distribution favors partitions for which the
clustering process is defined by predictive quantities such as predictive
densities or weights. If a posterior distribution is a statistical guide to
the unknown, this partition distribution could be used as a basis for a
statistical model for clustering in which the partition is a parameter. The
corresponding maximum likelihood estimator or posterior mode is used
as an estimator of the partition. We also discuss methods to approxi-
mate these estimators based on a weighted Chinese restaurant process.
A numerical example on a leukemia data set is given.

Key words: Cluster model, likelihood function, distribution on parti-
tions, weighted Chinese restaurant processes, predictive density

1 Introduction

Clustering is the grouping of similar objects. Recent texts on cluster-
ing identify three key questions to be asked: (i) How many clusters? (ii)
How do we define similarity between objects? (iii) How do we know that
our results are good? See for example Gordon (1999), Duda, Hart and
Stork (2001), and Amaratunga and Cabrera (2004), and Kuncheva (2004).
Traditional methods of clustering (K-means clustering, single linkage and

405
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nearest-neighbor) select the number of clusters (i), and then work on (ii)
by defining a similarity measure, usually through a distance, between two
objects. Two objects belong to the same cluster if the distance between
their corresponding measurements is relatively small. To evaluate the clus-
ter method, the cluster obtained is usually empirically compared with the
known cluster structure of the objects. These existing numerical methods
partition the objects deterministically, and they are foreign to statistical
inference methods. A model-based method for statistical clustering differs
from deterministic clustering in that the numerical measurements of the n
objects are assumed to have a joint model density. Once a model density
is assumed, either Bayesian or frequentist methods can be applied. Scott
and Symons (1971) assume a fixed number of clusters and a multivariate
Normal components model, and discuss the maximum likelihood estima-
tor for a ‘classification likelihood;’ see also Friedman and Rubin (1967).
Banfield and Raftery (1993) cover the case that the covariance matrices of
the Normal components varies and propose an eigenvalue decomposition to
facilitate the analysis. Another approach for clustering is based on a finite
mixture method [Wolfe (1970), Symons (1981); see McLachlan and Basford
(1988) for references.] Fraley and Raftery (2002) suggest the use of the EM
algorithm to approximate the MLEs in the finite mixture likelihood and
give reviews and references.

Analytic work in Bayesian nonparametric mixture models suggests an-
other possibility. Using an updating technique developed for Gamma-type
processes, Lo (1984) and Lo and Weng (1989) eliminate the finite mixture
restriction and obtain posterior quantities as averages over partitions; the
averaging is defined by a distribution over the collection of all partitions
of the objects. Lo, Brunner and Chan (1996) recognize a key property of
this partition distribution in that it gives more weight to partitions that
cluster the data in terms of Bayesian prediction. They propose a sequential
seating algorithm, called the weighted Chinese restaurant process (WCR),
which generates random partitions that also enjoy this predictive property.
This algorithm and its Gibbs relative can serve as a basis of a Monte Carlo
approximation to the posterior quantities. For further development along
this line, see Ishwaran and James (2003a, 2003b), Lau and So (2004), and
James (2002, 2005). The latter author extends the updating technique to
prior processes that can be represented as an integral of a planar Poisson
process, and finds that the partition distribution structure continues to
prevail. [An example of such an integral is given by the Levy-Ito represen-
tation for an increasing process; see for example Section 1.11 of Ito (2004)
or page 227 of Loeve (1977).] Brunner and Lo (1999) suggest the use of a
partition distribution as a model for clustering; see also Lo (1999, Chap-
ter 6). The unknown parameter is a partition, and the posterior mode is
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used to estimate the “true” partition. The traditional maximum likelihood
estimator is but a posterior mode with respect to a uniform prior distri-
bution on the space of partitions. However, the problem of searching for
a modal partition for the partition likelihood is of a combinatorial nature
and is known to be difficult [See Section 5.1 in Fraley and Raftery (2002).]
Brunner and Lo (1999) suggest approximations to these modes based on
a run of the Gibbs version of the WCR [Lo (2005)]. The WCR clustering
is computational intensive. To cut down the computation time, Cabrera,
Lau and Lo (2005) develop a WCR algorithm based on randomly sampling
blocks of data during the Gibbs cycles, which reduces the computation to a
manageable level. Other possible approaches to clustering based on Dirich-
let mixture models emphasize the simulation of missing values rather than
partitions; see Basu and Chib (2003) for references.

Recent work by Quintana and Iglesias (2003) point out the relation-
ship between the partition distributions appearing in the Bayesian solution
to the mixture density problem [Lo (1984)] and the ‘product partition mod-
els’ discussed by Hartigan (1990), Barry and Hartigan (1992), and Crowley
(1997). In both cases, the products are over component densities. On the
other hand, related studies in Bayesian mixture hazard rate models [Lo and
Weng (1989) and James (2002, 2005, Section 4)] suggest that the partition
distributions could be products over component hazard rates that are not
subject to the normalization restriction of a density. It remains to be seen
if the partition distribution is a natural way to describe a clustering phe-
nomenon, or if it is but a consequence of the tools, i.e., planar Poisson
representations, used. It seems that, despite a mounting number of cluster-
ing references, still more work needs to be done to better-understand the
underlying structure of the clustering problem, and to present a cohesive
and unified treatment.

Section 2 describes the partition likelihood of the clustering model and
proposes the use of Monte Carlo methods to approximate the posterior
modes. Section 3 covers the sequential seating WCR which is based on iid
sampling. Its Markov chain relative, the Gibbs WCR, is discussed in Section
4. Section 5 spells out the prediction property of the seating probability
of the two WCRs. The method is illustrated by an example in ‘t-density
clustering’ using a leukemia data set in Section 6. This example shows
that the random-block WCR provides a better separation than traditional
deterministic clustering algorithms.
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2 A statistical model for clustering

Given a partition p =
{
C1, . . . , Cn(p)

}
of n objects {1, . . . , n}, the

measurements of the objects are modeled by a likelihood given p as

f (x |p ) =

n(p)∏

i=1

k (xj , j ∈ Ci) , (1)

where k (xj , j ∈ {1, . . . , n}) is a joint density of the data x = {x1, . . . , xn}.
The joint density yields a marginal density of {xq, q ∈ C}, k (xq, q ∈ C),
for each subset C of {1, . . . , n}. For j /∈ C, with an abuse of notation,
k (xj |xq, q ∈ C ) denotes the predictive density of xj given {xq, q ∈ C} eval-
uated at xj . For independent and identically distributed measurements xjs,
k (xj , j ∈ {1, . . . , n}) is a symmetric function in xjs; see the following Re-
mark 4. Note that this method is applicable to regression and time series
models in which the existence of symmetric kernels is implicit; see for ex-
ample Lau and So (2004).

One can proceed with either a frequentist analysis or a Bayesian analysis
of the model likelihood function f (x |p ). For example, a frequentist locates
the maximum likelihood estimator p̂ so that

f (x |p̂ ) = max
p

n(p)∏

i=1

k (xj , j ∈ Ci) ;

the max is over all partitions p of {1, . . . , n}. Alternatively, a Bayesian
starts by assuming a prior density on ps, i.e., π(p) such that

∑
p π(p) = 1,

and computes a posterior distribution on partitions given data as

π(p |data) ∝ f (x|p) × π(p)

with
∑

p π(p |data) = 1. Here the posterior mode p∗, π(p∗ |data) =
maxp π(p |data), is conveniently used as a Bayesian estimator of the true
partition. To facilitate the construction of a posterior density, a conjugate
prior could be used. A conjugate prior density of p should be proportional
to the likelihood f (x |p ) when the latter is viewed as a function of the
“parameter” p. This suggests that a conjugate prior density for p is of the
product form

π(p |g ) ∝
n(p)∏

i=1

g (Ci) , (2)

where the parameter g (·) is a function defined on the space of subsets of
{1, . . . , n}. Note that C0 denotes an empty table and g (C0) is defined to be
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1. In this case, the posterior distribution π(p |data) is also of the product
form (2) in which g is updated to

g∗ (Ci) = g (Ci) × k (xj , j ∈ Ci) . (3)

That is,

π(p |data) = π(p |g∗ ) ∝
n(p)∏

i=1

g∗(Ci). (4)

An inspection of (2) and (4) suggests that the search of the maximum likeli-
hood estimator p̂ and that of the posterior mode p∗ are identical problems:
Both look for the maximum of a distribution on the space of partitions,
which have the product form (2). The resulting modal partition, p̂ or p∗,
answers (i) and (ii) simultaneously. It should be noted that while this
method answers questions (i) and (ii), the idea of model checking, i.e.,
answer to question (iii), has not been entirely clear to us yet.

It suffices to describe Monte Carlo methods to locate a posterior
model p∗. The data x is fixed and given. One convenient way to locate
p∗ is through sampling π(p |data): If p1, . . . ,pM are iid from π(p |data),
a pk with a larger π(pk |data) will have a higher probability to be sam-
pled. Compute π(pk |data); k = 1, . . . ,M ; the pk that gives the largest
π(pk |data) is an approximation to p∗. However, the exact (perfect) sam-
pling [Propp and Wilson (1996)] from π(p |data) does not seem to be avail-
able. The sequential seating WCR [Lo Brunner and Chan (1996)] that
samples a partition from a distribution close to π(p |data) is a possibility.
A Gibbs sampler [Geman and Geman (1984)] based on the sequential WCR
that has a stationary distribution π(p |data) is another reasonable alterna-
tive. The sequential seating and the Gibbs WCRs are close relatives. Due
to the former’s elementary nature, we shall discuss it first.

Remark 1. The structure of the posterior distribution for a Bayesian mix-
ture model with respect to Gamma-type priors [Lo (1984) and Lo and Weng
(1989)] suggests that the class of partition distributions (2) could be key.
It turns out that the situation is not that different if one uses the more
general Levy-type process priors as the class (2) appears again as a key
component of the posterior distributions; see Section 4 in James (2002)
and in James (2005). Models defined by (1) and (2) are also called prod-
uct partition models [Hartigan (1990), Crowley (1997) and Quintana and
Iglesias (2003).]
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3 The sequential seating weighted Chinese restaurant

process

The sequential seating weighted Chinese restaurant process is devel-
oped to approximate posterior quantities of the form ξ =

∑
p h (p)π(p |g∗ )

where the function h (·) is known. The seating algorithm achieves this by
sequentially generating a random partition p that has a distribution close
to the posterior distribution π(p |g∗ ). Sampling p repeatedly and indepen-
dently results in a Monte Carlo weighted average that approximates ξ. [The
Monte Carlo weighted average is biased. That however does not seem to
affect the approximation too much; see numerical Examples in Lo, Brunner
and Chan (1996).]

We consider the π(p |g ) case first. To initiate the sequential seating,
customer 1 is seated at an empty C0. Suppose j − 1 customers are seated,
resulting in occupied tables denoted by C1, . . . , Cn(p). Customer j will be
seated at an empty table with probability proportional to g ({j}); otherwise,
he/she is seated at an occupied table Ci with probability proportional to
the predictive ratios

g ({j} |Ci ) ≡
g ({j} ∪ Ci)
g (Ci)

, i = 0, . . . , n (p) ; (5)

the normalization constant of this conditional probability at seating j is

λ (j − 1) = g ({j}) +

n(p)∑

i=1

g ({j} |Ci ) .

After n customers are seated, the product rule gives the joint density of
the resulting random partition p as [Lemma 1.1 in Lo, Brunner and Chan
(1996)]

q(p |g ) =

∏n(p)
i=1 g (Ci)∏n
j=1 λ (j − 1)

.

The numerator agrees with that of π(p |g ), and in this sense q(p |g ) is close
to π(p |g ). On the other hand, the denominator

∏n
j=1 λ (j − 1) depends on

the seating order; this dependence seems to retard the closeness of q (p |g )
to π (p |g ).

Letting g∗ play the role of g in the seating algorithm, the resulting
sequential WCR distribution is given by q(p |g∗ ), which is close to the
posterior distribution π(p |g∗ ). The seating probability is proportional to

k (xj |xq, q ∈ Ci) ×
g ({j} ∪ Ci)
g (Ci)

, i = 0, . . . , n (p) . (6)
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Replacing g by g∗ in λ (j − 1) results in the normalization constant
λ∗ (j − 1). [For an empty table C0, k (xj |xq, q ∈ C0) is defined to be k (xj).]

Remark 2. The seating probability (6) contains two predictive quantities:
The prior part g ({j} ∪ Ci) /g (Ci) is an extension of the seating probability
of a (unweighted) Chinese restaurant process; see the following Example 1.
The word ‘weighted’ in WCR addresses the contribution of k (xj |xq, q ∈ Ci).

4 The Gibbs weighted Chinese restaurant process

A Gibbs sampler version of the WCR has the posterior distribution
π(p |g∗ ) as the stationary distribution, and the Gibbs average can also
be used to approximate ξ. It suffices to consider the π(p |g ) case. The
general theory of Gibbs sampler states that the Markov transition consists
of a Gibbs cycle which is based on the idea of predicting a new variable
given the rest of the variables and then rotating (cycling) the new variable
among the existing ones for predictions. [See Geman and Geman (1984).]
In the present situation, the prediction part can be read off from the last
seating step of the sequential WCR, and the cycling part amounts to a
rotation of reseating j. The Gibbs WCR cycle of moving the current p to
a new partition is completed by cycling through the following two steps for
j = 1, 2, . . . , n.

Step 1. The current partition of {1, . . . , n} is denoted by q. Delete integer j
from (the table containing j in) q and denote the resulting partition
by p =

{
C0, C1, . . . , Cn(p)

}
.

Step 2. Reseat integer j to the cluster Ci, with a reseating probability pro-
portional to

g ({j} |Ci ) ≡
g ({j} ∪ Ci)
g (Ci)

, i = 0, 1, . . . , n (p) . (7)

It follows then the Gibbs sampler having the posterior π(p |g∗ ) as a
stationary distribution has a reseating probability proportional to

k (xj |xq, q ∈ Ci ) ×
g ({j} ∪Ci)
g (Ci)

, i = 0, 1, . . . , n (p) (8)

Remark 3. A Gibbs sampler on partitions is discussed by MacEachern
(1994) for a location mixture of Normals model. Crowley (1997) considers
essentially similar problems from the product partition models viewpoint.
Quintana and Iglesias (2003) cover extensions and give more references. See
also the following Example 3.
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5 A predictive property of WCR clustering

The use of a seating probability (6) or (8) to generate a random par-
tition is of interest and deserves a careful examination. For the rest of the
Section, we shall discuss the case of the Gibbs WCR, i.e., (8), as the se-
quential seating case is rather similar. The way a new customer, say j, is
assigned to an occupied table Ci, reveals a clustering process for a set of
data {xj , j = 1, . . . , n} by means of predictive properties between measure-
ments rather than the traditional one based on a distance function defined
between (groups of) data. The ‘next’ customer j is assigned to table Ci
with seating probability proportional to (8). Identify the observation xj
with integer j, j = 1, . . . , n, and regard Ci as a cluster of data. The pre-
dictive weight k (xj |xq, q ∈ Ci ) is really the value of a predictive density,
conditional on {xq, q ∈ Ci}, and evaluated at a new observation xj . Note
that the predictive density k (xj |xq, q ∈ Ci ) is large if j is close to Ci (that
is, if xj is close to {xq, q ∈ Ci}); otherwise k (xj |xq, q ∈ Ci ) is small. Hence
if j is close to Ci, the seating probability that it will be grouped into Ci
is also large. The second ratio g ({j} ∪Ci) /g (Ci) is a similar ‘predictive’
quantity based on the prior (2). The product of the predictive density and
the prior predictive ratio provides a rather natural balancing effect to the
random seating, and it also defines the closeness of the clustering process.
The following example illustrates the balancing effect of the seating proba-
bilities based on various prior π(p |g ). For more examples of π(p |g )s and
the corresponding π(p |g∗ )s, see Section 4 in James (2002, 2005).

Example 1 A Chinese restaurant process (CR) with parameter e0 > 0 is
a distribution on the space of partitions that has a density

π(p |g ) ∝
n(p)∏

i=1

[e0 × (ei − 1)!] .

This is (2) with g (Ci) = e0 × (ei − 1)! for i = 0, . . . , n (p). [Recall g (C0) =
1.] In this case, the predictive ratio g ({j} ∪ Ci) /g (Ci) reduces to ei for
i = 0, . . . , n (p). The seating probability for the posterior (8) becomes

k (xj |xq, q ∈ Ci ) × ei , i = 0, . . . , n (p)

Here a short distance between xj and {xq , q ∈ Ci} could be balanced out
by a large table size ei, yielding a seating probability of moderate size.

Example 2 The case of a uniform prior on p gives another perspective
of the seating probability. Let g (·) be the constant 1, π(p |g ) becomes a
uniform prior on the space of partitions. The prior predictive ratio at (8)
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vanishes, and the Gibbs cycle is entirely data-driven. The resulting Gibbs
sampler yields an approximation to a maximum likelihood estimator p̂.

Example 3 Model (1) can be fine-tuned to accommodate additional
regression-type parameters φ. The general situation can be summarized by

φ ∼ β (dφ) = β′ (φ) dφ, p |φ has a density proportional to
∏n(p)
i=1 g (Ci, φ),

and x |(p, φ) has a model density
∏n(p)
i=1 k (xj , j ∈ Ci |φ). Here the model

is

f (x |p, φ) =

n(p)∏

i=1

k (xj , j ∈ Ci |φ ) ,

and the prior is

π(p, φ |g ) ∝ β′ (φ)

n(p)∏

i=1

g (Ci, φ) .

It follows then given x, the joint posterior density of (p, φ) |x is

π(p, φ |x) ∝ β′ (φ)

n(p)∏

i=1

g∗ (Ci, φ) , (9)

where g∗ (Ci, φ) denotes k (xj , j ∈ Ci |φ )×g (Ci, φ). That is, π (p, φ |g ) is a
conjugate family of priors for this model. A Gibbs chain that samples the
posterior (9) is obtained by alternately sampling p and φ:

(i) Given φ, the density of p is proportional to
∏n(p)
i=1 g∗ (Ci, φ); move

p to the next p′ by cycle through Steps 1 and 2 for j = 1, . . . , n.
(ii) Given p, sample a next φ′ from (9).

If sampling φ′ |p in (ii) is difficult (such as the case of a regression
parameter φ with an error density being a scale mixture of Normals) one
nests a Metropolis-Hastings rejection step [Hastings (1970)] to move φ to
the next value φ′. This procedure replaces Step (ii) by a randomization
step

(ii’) Given p, and φ from step (i), sample a φ∗ from β′ (φ). Let φ′ = φ∗

with probability min

{∏n(p)
i=1

g∗ (Ci, φ
∗)

g∗ (Ci, φ)
, 1

}
; otherwise φ′ = φ.

The case of hierarchical Bayesian models is another example. Let φ =
(u, v), and suppose k (xj , j ∈ Ci |φ ) depends on φ through u, and g (Ci, φ)
depends on φ only through v, where u is a regression parameter and v is a
mixing prior parameter. The posterior distribution (9) specializes to

π(p, u, v, |x ) ∝ β′ (u, v)

n(p)∏

i=1

[k (xj , j ∈ Ci, |u ) g (Ci, v)] . (10)
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A Gibbs sampler samples p, u, and v alternatively (given the other two),
and a Metropolis-Hastings step may be needed to move u and v given p.

Remark 4. The foregoing discussion reveals the importance of predictive
properties between different objects, or their corresponding measurements.
This presents no difficulty for a Bayesian. In the case that {x1, . . . , xn} are
iid measurements from a mixture model, a Bayesian constructs a symmetric
k (xj , j ∈ {1, . . . , n}) by averaging out a “nuisance parameter” (de Finetti’s
theorem)

k (xj , j ∈ {1, . . . , n}) = E




n∏

j=1

τK (τ (xj − µ))


 , (11)

where K (·) is a prescribed density on the line, and E is the expectation
with respect to a distribution of (τ, µ) , τ > 0, which is independent of
the data {x1, . . . , xn}. Extensions to multivariate observations amount to
a change of notation. The next Section discusses the case of a standard
Normal K (·), which benefits from an integral-free expectation (11). A
symmetric k (xj , j ∈ {1, . . . , n}) can also be constructed by conditioning on
some sufficient statistic. This is a frequentist way to eliminate a nuisance
parameter. For example, if K (·) is a standard Normal density, let S =
(Sample variance, Sample average), the conditional density of {x1, . . . , xn}
given S can be used as k (xj , j ∈ {1, . . . , n}). The latter conditional density
is independent of (τ, µ) by sufficiency; it is symmetric as it is a function of
S.

6 The multivariate t-density clustering

There are a variety of kernels k (. . .)s that generate a clustering method
and Cabrera, Lau and Lo (2005) propose clustering n objects with multi-
variate measurements using a multivariate t-density kernel k (. . .) [i.e., the
following (15)]. Some of the clustering algorithms existing in the literature
use Normal component densities; see Remark 3. From the Bayesian mix-
ture model viewpoint, a Normal component density appears only in location
mixtures of Normals models, and methods described in Example 3 can be
applied to cluster data. However, a location mixture family consists of den-
sities that are convolutions with a fixed density, and they are necessarily
bounded by the sup-norm of the fixed density (which is a Normal density
in this case.) This restriction limits their ability to cluster data from an
arbitrary density. The t-density kernel arises naturally in the Bayesian es-
timation of an arbitrary density using the mixture method [Section 3 in Lo
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(1984)] and the t-density clustering does not suffer from this restriction; an
added twist is that it yields integral-free seating probabilities.

To illustrate the idea of the t-density clustering, it suffices to consider
the case that measurements corresponding to the n objects are univariate.
Work in Bayesian nonparametric mixture models cited before and Remark 4
yield a model for clustering (1) determined by

k (xj , j ∈ Ci) = E


∏

j∈Ci

√
τφ
(√
τ (xj − µ)

)

 . (12)

where φ (·) is a standard N (0, 1) density. The expectation is with respect
to the distribution of (τ, µ): τ is Gamma with mean α/β and variance
α/β2, and µ |τ is Normal with mean m and precision tτ . See Section 9.6 in
De Groot (1970). In this case, k (xj , j ∈ {1, . . . , n}) is a symmetric density
with t-marginals.

The maximization of the criterion function log [π(p |data)] given by

J (p |g∗ ) =

n(p)∑

i=1

log [k(xq, q ∈ Ci)] +

n(p)∑

i=1

log [g (Ci)] (13)

over all possible partition ps is a criterion for clustering. We shall use
the Chinese restaurant process prior with parameter e0 (Example 1) for
illustration. In this case the criterion function becomes

J (p) =

n(p)∑

i=1

log [k(xq , q ∈ Ci)] +

n(p)∑

i=1

log [(ei − 1)!] + n(p) log (e0) . (14)

The resulting p∗ obtained is then a posterior mode for model (1) with a
Chinese restaurant process prior with parameter e0.

The clustering of n objects with D dimensional multivariate measure-
ments {x1, . . . ,xn} is identical except for a change of notation: φ (·) is a
multivariate standard normal, τ is a D×D Wishart matrix with α degrees
of freedom and precision matrix β, µ |τ is multivariate Normal with mean
vector m and precision matrix tτ . See Section 9.10 in De Groot (1970).
Using this vector notation, the kernel k (xj , j ∈ Ci) is given by (12), and
the expectation there reduces to

k (xj , j ∈ Ci) =

D∏
r=1

Γ

(
α+ ei + 1 − r

2

)

D∏
r=1

Γ

(
α+ 1 − r

2

) t
D
2

π
Dei
2 (t+ ei)

D
2

|β|α2

|β∗|
α+ei

2

, (15)

where

β∗ = β +
∑

j∈Ci
(xj − x̄i) (xj − x̄i)

′ +
tei
t+ ei

(x̄i − m) (x̄i − m)′
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Figure 1 Profile plots of the gene expression clustered by a partition estimate from the
t-density clustering model with Gibbs WCR

and x̄i = 1
ei

∑
j∈Ci xj .

The following example illustrates the methodology. A leukemia data set
[Golub et al. (1999)] contains 3051 gene expression levels of 38 patients,
where 27 of them have acute lymphoblastic leukemia (ALL) and the rest of
them have acute myeloid leukemia (AML). The data set is available in both
MULTTEST and PLSGENOMICS packages of the statistical software R.
Here the 3051 gene expression levels are to be clustered, and D = 38 is re-
garded as the dimension of a ‘measurement’. See Amaratunga and Cabrera
(2004) for the interexchangeable roles played by the ‘objects/sample size’
and ‘variables/dimension’. The prior parameters (α,β,m, t) are chosen to
be (40, 0.1I38×38,038, 0.1) where I38×38 is a 38×38 identity matrix and 038

is a 38 dimensional column vector with all entries 0. The parameter e0
of the Chinese restaurant process is set to be 1. The Gibbs WCR based
on randomly selected blocks of data, called random-block WCR [Cabrera,



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Model-Based Clustering 417

2
1

0
1

2
3

4

ALL AML

Cluster 1 (size:  942 )

2
1

0
1

2
3

4

ALL AML

Cluster 2 (size:  1147 )
2

1
0

1
2

3
4

ALL AML

Cluster 3 (size:  10 )

2
1

0
1

2
3

4

ALL AML

Cluster 4 (size:  712 )

2
1

0
1

2
3

4

ALL AML

Cluster 5 (size:  106 )

2
1

0
1

2
3

4

ALL AML

Cluster 6 (size:  134 )

Figure 2 Box plots of the gene expression clustered by a partition estimate from the
t-density clustering model with Gibbs WCR

Lau and Lo (2005)] is employed to reduce the search time. This procedure
is a dimensional reduction technique. A block of 20 patients (out of 38)
is randomly selected, and a Gibbs WCR reseating cycle is completed to
obtain a new partition of the 3051 gene expression levels. For the next
Gibbs cycle, another randomly sampled block of 20 patients is used. The
reduced prior parameters are (40, 0.1I20×20,020, 0.1). The Gibbs sampler is
initiated with an initial partition with n = 3051 singleton clusters. Among
these iterations, the partition that maximizes the criterion function J (p)
is obtained. The partition has 6 clusters. Figure 1 shows the profile plots
of the gene expression levels separated by the 6 clusters (The cluster sizes
are located next to the cluster numbers.) Figure 2 shows the boxplots of
the gene expression levels for each patient separated by the 6 clusters. The
boxplots reveal the average and the variation differences of the gene expres-
sion levels between clusters. The gene expression levels vary constantly for
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Figure 3 Means and Variances of Cluster 5 and 6 across patients from the t-density
clustering model with Gibbs WCR. Left Column: Means across the patients of Cluster
5 and 6; Right Column: Variances across the patients of Cluster 5 and 6

patients in clusters 1, 2, and 4, which is not the case for patients in clusters
3, 5, and 6.

The Gibbs WCR successfully separates AML patients and ALL patients
in terms of gene expression levels in both cluster 5 and cluster 6. For
this particular gene expression data, Golub et al.(1999) defines “idealized
expression pattern;” that is, a class of patients have uniformly high gene
expression levels and the other class have uniformly low gene expression
levels. The patterns are revealed in clusters 5 and 6, AML patients and ALL
patients perform oppositely in both clusters. Compared with ALL patients,
AML patients have uniformly higher averages and variations in Clusters 5,
and yet uniformly lower averages and variations in Cluster 6 [Figure 3 plots
the sample means and sample variances of the gene expression levels across
patients of both clusters.] Thus, gene expression levels of AML and ALL
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Figure 4 Profile plots of the gene expression clustered by a partition estimate from the
complete linkage method

patients are well separated in clusters 5 and 6.
Gene clustering looks for both known and unknown patterns across

samples, e.g. Golub et al. (1999)’s “idealized expression pattern”. The
multivariate t-density clustering model is an appropriate model to discover
the patterns as the multivariate t-density clustering model allows clusters to
have different covariances and different means. In each cluster, each patient
has his/her own mean, own variance and covariance with other patients.
This flexible feature prompts the success of the t-density clustering model.
Upon setting the number of clusters at 6, several hierarchical agglomerative
methods, single linkage, average linkage, median linkage, centroid, ward
[Chapter 4, Gordon (1989)], and the K-mean method are implemented and
the performances are compared. The hierarchical agglomerative methods
use Euclidean distance as the similarity measure. The t-density model
performs very well, and has highest J (p) among other selected methods,
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Figure 5 Box plots of the gene expression clustered by a partition estimate from the
complete linkage method

Table 1 The criterion quantities (13) under the partitions gen-
erated by the selected clustering methods. The parameters are
(40, 0.1I38×38 ,038, 0.1) and e0 = 1

Methods J (p)

Multivariate t clustering model with Gibbs WCR -69678.83
Median linkage -72240.54
Single linkage -72395.95

Centroid -73546.03
Average linkage -73880.66
Complete linkage -78216.41

Ward -84084.50
K-mean -84782.51
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Figure 6 Means and Variances of Cluster 5 and 6 across patients from the complete
linkage method. Left Column: Means across the patients of Cluster 5 and 6; Right
Column: Variances across the patients of Cluster 5 and 6

see Table 1. With respect to Golub et al. (1999)’s “idealized expression
pattern,” the complete linkage method provides clearly better separation
than the other selected methods. Figures 4 and 5 show the profile plots and
the boxplots of the gene expression levels in the six clusters obtained by the
complete linkage method. Figure 6 shows the sample means and sample
variances across the patients of clusters 5 and 6. Compared with ALL
patients, AML patients have higher averages and variations in Clusters 5.
On the other hand, AML patients have lower averages and higher variations
in Cluster 6; furthermore, the averages and variances do not exhibit a
uniform pattern.
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Chapter 21

NEUTRAL-TO-THE-RIGHT

SPECIES SAMPLING MIXTURE MODELS

Lancelot F. James

Department of Information and Systems Management
Clear Water Bay, HONG KONG

E-mail: lancelot@ust.hk

This paper describes briefly how one may utilize a class of species sam-
pling mixture models derived from Doksum’s (1974) neutral to the right
processes. For practical implementation we describe an ordered/ranked
variant of the generalized weighted Chinese restaurant process.

Key words: Chinese Restaurant process, Dirichlet process, Lévy pro-
cess, Neutral to the right process, Species sampling model.

1 Introduction

The field of Bayesian nonparametric statistics involves the idea of assign-
ing prior and posterior distributions over spaces of probability measures or
more general measures. That is, similar to the classical parametric Bayesian
idea of assigning priors to an unknown parameter, say θ, which lies in a
Euclidean space, one views, for instance, an unknown cumulative distri-
bution function, say F (t), as being a stochastic process. More generally
for an unknown probability measure P , a Bayesian views it as a random
probability measure. This is currently a well-developed and active area of
research that has links to a variety of areas where Lévy and more general
random processes are commonly used. However, as discussed in Doksum
and James (2004), in the late 1960’s, noting the high activity and advance
in nonparametric statistics, David Blackwell and others wondered how one
could assign priors which were both flexible and tractable. Arising from
these questions were two viable answers which till this day remain at the
cornerstone of Bayesian nonparametric statistics.

Ferguson (1973, 1974) proposed the use of a Dirichlet process prior [see

425
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also Freedman (1963)]. For this prior if P is a probability on some space X ,
and (B1, . . . , Bk) is a measurable partition of X , then P (B1), . . . , P (Bk)
has a Dirichlet distribution. Moreover, the posterior distribution of P given
a sample X = (X1, . . . , Xn) is also a Dirichlet process. For a specified

probability measure H and a scalar θ > 0, one can say that P :
d
= PθH is

a Dirichlet process with shape parameter θH , if the Dirichlet distributions
discussed above have parameters given by E[P (Ai)] = θH(Ai).

Following this, Doksum (1974) introduced the class of Neutral to the
Right (NTR) random probability measures on the real line. In these mod-
els, if P is a distribution on the real line, then for each partition B1, . . . , Bk,
with Bj = (sj−1, sj ], j = 1, . . . , k, s0 = −∞, sk = ∞, si < sj for
i < j; P (B1), . . . , P (Bk) is such that P (Bi) has the same distribution as

Vi
∏i−1
j=1(1 − Vj), where V1, . . . , V2, . . . is a collection of independent non-

negative random variables. This represents a remarkably rich choice of
models defined by specifying different distributions for the Vi. Notably
if Vi is chosen to be beta random variable with parameters (αi, βi) and

βi =
∑k−1

j=1 αj , then this gives the Dirichlet process as described in Dok-
sum (1974). Doksum (1974) shows that if P is a NTR distribution then the
posterior distribution of P give a sample X1, . . . , Xn is also an NTR. Sub-
sequently, Ferguson and Phadia (1979) showed that this type of conjugacy
property extends to the case of right censored survival models. This last
fact coupled with the subsequent related works of Hjort (1990), Kim (1999),
Lo (1993) and Walker and Muliere (1997) have popularized the usage of
NTR processes in models related to survival and event history analysis.

Despite these attractive points, the usage of NTR processes in more
complex statistical models, such as mixture models, has been notably ab-
sent. This is in contrast to the Dirichlet process which, coupled with the
advances in MCMC and other computational procedures, is regularly used
in nonparametric or semi-parametric statistical models. The theoretical
framework for Dirichlet process mixture models can be traced back to
Lo (1984) who proposed to model a density as a convolution mixture model
of a known kernel density K(y|x) and a Dirichlet process P as,

f(y|P ) =

∫

X

K(y|x)P (dx). (1)

This may be equivalently expressed in terms of a missing data model where
for a sample Y = (Y1, . . . , Yn) based on (1), one has Y1, . . . , Yn|X, P are
such that Yi are independent with distributions K(·|Xi), Xi|P are iid P
and P is a Dirichlet process. It is clear that the description of the posterior
distribution of P and related quantities is much more complex than in the
setting discussed in Ferguson (1973). However, Lo (1984) shows that its
description is facilitated by the descriptions of the posterior distribution
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of P |X given by Ferguson (1973) and the exchangeable marginal distri-
bution of X discussed in Blackwell and MacQueen (1973). Blackwell and
MacQueen describe the distribution via what is known as the Blackwell-
MacQueen Pólya urn scheme where P(X1 ∈ A) = H(A) and for n > 1

P(Xn ∈ ·|X1, . . . , Xn−1) =
θ

θ + n− 1
H(·) +

1

θ + n− 1

n−1∑

j=1

δXi(·). (2)

Note that (2) clearly indicates that there can be ties among (X1, . . . , Xn)
and that the n(p) ≤ n unique values, say X∗

1 , . . . , X
∗
n(p) are iid with com-

mon distribution H. Letting p = {C1, . . . , Cn(p)} denote a partition of the
integers {1, . . . , n}, where one can write Cj = {i : Xi = X∗

j }, with size
nj = |Cj | for j = 1, . . . , n(p). This leads to the following important de-
scription of the distribution of X,

π(dX|θH) = PD(p|θ)
n(p)∏

j=1

H(dX∗
j )

where

PD(p|θ) =
θn(p)Γ(θ)

Γ(θ + n)

n(p)∏

j=1

(nj − 1)! := pθ(n1, . . . , nn(p))

is a variant of Ewens sampling formula [see Ewens (1972) and Anto-
niak (1974)], often called the Chinese restaurant process. It can be inter-
preted as P(C1, . . . , Cn(p)) = pθ(n1, . . . , nn(p)) where pθ, being symmetric
in its arguments, is the most notable example of an exchangeable partition
probability function(EPPF) [see Pitman (1996)]. It is easily seen that a
Dirichlet Process with shape θH is characterized by the pair (pθ, H). Let-
ting p(n1, . . . , nk), for n(p) = k, denote an arbitrary EPPF, Pitman (1996)
shows that the class of random probability measures whose distribution is
completely determined by the pair (p,H) must correspond to the class of
species sampling random probability measures. General species sampling
random probability measures constitute all random probability measures
that can be represented as

P (·) =

∞∑

i=1

PiδZi(·) + (1 −
∞∑

k=1

Pk)H(·) (3)

where 0 ≤ Pi < 1 are random weights such that 0 <
∑∞
i=1 Pi ≤ 1, in-

dependent of the Zi which are iid with some non-atomic distribution H .
Furthermore the law of the (Pi) is determined by the EPPF p. Noting these
points, Ishwaran and James (2003) described the class of species sampling



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

428 L. F. James

mixture models by replacing a Dirichlet process in (1) with P specified
by (3). See also Müller and Quintana (2004).

Except for the special case of the Dirichlet process, NTR processes are
not species sampling models and this is one of the factors which makes anal-
ysis a bit difficult. Nonetheless, James (2003, 2006) was able to extend the
definition of NTR processes to a class of random probability measures on
more general spaces, which he called Spatial NTR processes. Additionally
a tractable description of the marginal distribution of this class of models
was obtained. These two ingredients then allow for the implementation of
NTR mixture models. Our goal here is not to describe the mechanisms
for a full-blown NTR mixture model, as this requires much more overhead,
but rather mixture models based on species sampling models which are
derived from NTR processes. James (2003, 2006) introduced these NTR
species sampling models. Quite specifically, though the NTR processes are
not species sampling models they produce EPPF’s p that, along with the
specification of H , are uniquely associated with an NTR species sampling
model. This produces a very rich and flexible class of random priors that are
a bit simpler analytically than NTR processes. An interesting fact is that
this class contains the two-parameter (α, θ) Poisson-Dirichlet random prob-
ability measures for parameters 0 ≤ α < 1 and θ > 0. That is the Dirichlet
process and a class of random probabilities defined by normalizing a sta-
ble law process and further power tempering the stable law distribution,
which are discussed in Pitman (1996) and Pitman and Yor (1997). Im-
plementations of these latter models, being quite special, may be treated
by computational procedures involving random partitions discussed in Ish-
waran and James (2003) or by the methods in Ishwaran and James (2001).
Here we will discuss a ranked weighted Chinese restaurant procedure which
applies more generally.

2 NTR and related processes

2.1 NTR processes

Let F (t) denote a cumulative distribution function on the positive real line.
Additionally, let S(t) = 1−F (t) denote a survival function. Doksum (1974,
Theorem 3.1) shows that F is an NTR process if and only if it can be
represented as

F (t) = 1 − e−Y (t) (4)

where Y (t) is an independent increment process which is non-decreasing
and right continuous almost surely and furthermore limt→∞ Y (t) = ∞ and
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limt→−∞ Y (t) = 0 almost surely. In other words Y belongs to the class of
positive Lévy processes.

We shall suppose hereafter that T is a positive random variable such
that, conditional on F , its distribution function is F where F is an NTR
process. Then T has an interpretation as a survival time with “conditional”
survival distribution S(t) = 1 − F (t) := P (T > t|F ). It is evident from (4)
that the distribution of F is completely determined by the law of Y which
is determined by its Laplace transform

E
[
e−ωY (t)

]
= e−

∫
t
0
φ(ω|s)Λ0(ds) := E[(S(t))ω ]

where φ(ω|s) is equal to
∫ ∞

0

(1 − e−vω)τ(dv|s)=
∫ 1

0

(1 − (1 − u)ω)ρ(du|s)

=

∫ 1

0

ω(1 − u)
ω−1

[∫ 1

u

ρ(dv|s)
]
du, (5)

τ and ρ are Lévy densities on [0,∞] and [0, 1] respectively which are in
correspondence via the mapping y → 1 − e−y. Without loss of generality

we shall assume that
∫ 1

0
uρ(du|s) = 1 for each fixed s, which implies that

φ(ω|s) = 1. Hence we have that

E[S(t)] = e−Λ0(t) = 1 − F0(t)

where F0 represents one’s prior belief about the true distribution and
Λ0(dt) = F0(dt)/S0(t−) is its corresponding cumulative hazard with
S0(t−) = 1 − F0(t−) = P(T ≥ t).

Note that for each fixed s, φ(ω|s) corresponds to the log Laplace trans-
form of an infinitely-divisible random variable. It follows that different
specifications for τ or equivalently ρ lead to different NTR processes. When
τ and ρ do not depend on s, then F , Y , and all relevant functionals are
said to be homogeneous. We also apply this name to τ and ρ. Additionally
φ(ω|s) specializes to

φ(ω):=

∫ ∞

0

(1 − e−vω)τ(dv) =

∫ 1

0

(1 − (1 − u)
ω
)ρ(du)

=

∫ 1

0

ω(1 − u)
ω−1

[∫ 1

u

ρ(dv)

]
du.

Consider now the cumulative hazard process of F , say Λ, defined by Λ(dt) =
F (dt)/S(t−). The idea of Hjort (1990) was to work directly with Λ rather
than F . He showed importantly that if one specified Λ to be a positive
completely random measure on [0, 1], whose law is specified by the Laplace
transform

E[e−ωΛ(t)] = e−
∫ t
0
ψ(ω|s)Λ0(ds)
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where ψ(ω|s) :=
∫ 1

0 (1−e−uω)ρ(du|s), then F and S must be NTR processes
specified by (5). James (2003, 2006) shows that one can extend the defini-
tion of an NTR process to a spatial NTR process on [0,∞]×X by working
with the concept of a random hazard measure, say ΛH(dt, dx). ΛH is a
natural extension of Λ in the sense that ΛH(dt,X ) = Λ(dt) and is other-
wise specified by replacing the intensity ρ(du|s)Λ0(ds) by ρ(du|s)Λ0(ds, dx),
where,

Λ0(ds, dx) = H(dx|s)Λ0(ds)

is a hazard measure and H(·|s) may be interpreted as the conditional dis-
tribution of X |T = s. A spatial NTR process (SPNTR) is then defined
as

PS(dt, dx) = S(t−)ΛH(dt, dx) (6)

The SPNTR in (6) has marginals such that PS(dt, dX ) = F (dt) is an NTR
and

PS([0,∞), dx) =

∫ ∞

0

S(t−)ΛH(ds, dx), (7)

represents an entirely new class of random probability measures.

2.2 NTR species sampling models

NTR species sampling models arise as a special case of (7) by setting
H(dx|s) := H(dx). Here we will work only with the class of homogeneous
processes and hence we will additionally choose ρ(du|s) = ρ(du). Thus an
NTR species sampling model is of the form

Pρ,H(dx) =

∫ ∞

0

S(s−)ΛH(ds, dx) =

∞∑

k=1

PkδZk(dx).

Furthermore, if P
d
= Pρ,H , we denote its law as P(·|ρ,H). It follows that

for practical usage in mixture models one needs a tractable description of
the corresponding EPPF, say pρ. However, before we do that we will need
to introduce additional notation which connects pρ with the NTR process.
If we suppose that X1, . . . , Xn|Pρ,H are iid with distribution Pρ,H , then
these points come from a description of the n conditionally independent
pairs (T1, X1), . . . , (Tn, Xn)|PS where (Ti, Xi) are iid PS , such that Ti are
iid F , where F is an NTR, and Xi are iid Pρ,H . Here PS must be specified
by the intensity ρ(du)Λ0(ds)H(dx). Now if one denotes the n(p) unique
pairs as (T ∗

j , X
∗
j ) for j=1,. . . , n(p), then one may simply set each Cj =

{i : Ti = T ∗
j }. Furthermore we define T(1:n) > T(2:n) > . . . > T(n(p):n) > 0

to be the ordered values of the unique values (T ∗
j )j≤n(p). Hence we can



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

NTR Mixture Models 431

define p by setting Cj := {i : Ti = T ∗
j }, and define m = {D1, . . . , Dn(p)}

with cells Dj = {i : Ti = T(j:n)} with cardinality dj = |Dj|. It is evident
that given a partition p = {C1, . . . , Cn(p)}, m takes its values over the
symmetric group, say Sn(p), of all n(p)! permutations of p. Let Rj−1 =⋃j−1
k=1Dk := {i : Ti > T(j:n)} with cardinality rj−1 =

∑j−1
k=1 dk. Then, in

terms of survival analysis, the quantities dj and rj = dj + rj−1 have the
interpretation as the number of deaths at time T(j:n), and the number at
risk at time T(j:n), respectively. See James (2006) for further elaboration.
Now from James (2003, 2006) it follows that

πρ(p) = pρ(n1, . . . , n(p)) =
∑

m∈Sn(p)

∏n(p)
j=1 κdj,rj−1(ρ)∏n(p)

j=1 φ(rj)
(8)

where

κdj ,rj−1(ρ) =

∫ 1

0

udj(1 − u)
rj−1ρ(du).

The form of the EPPF is in general not tractable. However by augmentation
one sees that the distribution of m is given by

πρ(m) =

∏n(p)
j=1 κdj,rj−1(ρ)∏n(p)

j=1 φ(rj)
(9)

and has a nice product form. This suggests that one can work with a joint
distribution of (X,m) given by

πρ(m)

n(p)∏

j=1

H(dX∗
j ).

Related to this, James (2006) shows that a prediction rule of Xn+1|X,m is
given by

P(Xn+1 ∈ dx|X,m) = (1 −
n(p)∑

j=1

pj:n)P0(dx) +

n(p)∑

j=1

pj:nδX∗
j
(dx),

with (1 −∑n(p)
j=1 pj:n) =

∑n(p)+1
j=1 qj:n, and where

pj:n =
κdj+1,rj−1(ρ)

∏n(p)
l=j+1 κdl,rl−1+1(ρ)

κdj ,rj−1(ρ)
∏n(p)
l=j+1 κdl,rl−1

(ρ)

n(p)∏

l=j

φ(rl)

φ(rl + 1)
,

and

qj:n =
κ1,rj−1(ρ)

φ(rj−1 + 1)

∏n(p)
l=j κdl,rl−1+1(ρ)
∏n(p)
l=j κdl,rl−1

(ρ)

n(p)∏

l=j

φ(rl)

φ(rl + 1)
,
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with qn(p)+1:n = κ1,n(ρ)/φ(n+1), are transition probabilities derived from
πρ(m). Note that in the calculation of κ1,rj−1(ρ), rj−1 + 1 is to be used
rather than rj = rj−1 + mj. As an example, consider the choice of a
homogeneous beta process [Hjort (1990), see also Ferguson (1974), Ferguson
and Phadia (1979) and Gnedin (2004)] defined by

ρ(du) = θu−1(1 − u)θ−1du.

Then it is easily seen that φ(rj) =
∑rj

l=1 θ/(θ + l − 1), and it follows that
in this case

pj:n=
dj

n+ θ

n(p)∏

l=j

φ(rl)

φ(rl + 1)
, and

qj:n=
1

n+ θ

1
∑rj−1+1
i=1 1/(θ + i− 1)

n(p)∏

l=j

φ(rl)

φ(rl + 1)
.

Remark 1. Gnedin and Pitman (2005a) also obtained the expressions (8)
and (9) independent of James (2003, 2006) in a different context. See
James (2006) for more details.

Remark 2. Related to this, Gnedin and Pitman (2005a) [see additionally
Gnedin and Pitman (2005b)] showed that the EPPF in (8) corresponds to
that of the two-parameter (α, θ) Poisson-Dirichlet process with parameters
0 ≤ α < 1 and θ > 0 if ρ := ρα,θ is chosen such that∫ 1

u

ρα,θ(dv) =
Γ(θ + 2 − α)

Γ(1 − α)Γ(1 + θ)
u−α(1 − u)

θ
.

From this, James (2006) deduced that Pρα,θ ,H =
∑∞

k=1Wk

∏k−1
i=1 (1 −

Wi)δZk where (Wk) are independent beta (1 − α, θ + kα) random vari-
ables independent of the (Zk) which are iid H . That is a two-parameter
(α, θ) Poisson-Dirichlet process, for 0 ≤ α < 1 and θ > 0 can be represented
as the marginal probability measure of a spatial NTR process, as described
above. See Pitman and Yor (1997) and Ishwaran and James (2001) for more
on the stick-breaking representation of the two parameter Poisson-Dirichlet
process.

3 NTR species sampling mixture models

3.1 General mixture models

Now setting P = Pρ,H in (1) yields a special case of the species sampling
models described in Ishwaran and James (2003). That is∫

X

K(y|x)Pρ,H(dx) =

∫

X

∫ ∞

0

K(y|x)S(s−)ΛH(ds, dx) (10)
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is called an NTR species sampling models. We look at the situation where
Y1, . . . , Yn|Pρ,H are iid with density or pmf (10). This translates into the
hierarchical model

Yi|Xi, P
ind∼K(Yi|Xi) for i = 1, . . . , n

Xi|P iid∼ P (11)

P ∼ P(·|ρ,H).

Since we have a description of the EPPF, in principle the theo-
retical results and computational procedures described in Ishwaran and
James (2003) apply. However, as we have noted, in general πρ(p) is not as
simple to work with as πρ(m). So we develop here results that allows us
to sample from a posterior distribution of m rather than partitions. We
summarize these results in the next proposition.

Proposition 1. Suppose that one has the model specified in (11). Then
the following results holds

(i) The distribution of X1, . . . , Xn|Y,m is such that the unique values X∗
j

for j = 1, . . . , n(p) are conditionally independent with distributions

π(dX∗
j |Dj) ∝ H(dX∗

j )
∏

i∈Dj
K(Yi|X∗

j ).

(ii) The posterior distribution of m|Y is

πρ(m|Y) ∝ πρ(m)

n(p)∏

j=1

∫

X

∏

i∈Dj
K(Yi|x)H(dx).

(iii) The posterior distribution of p|Y is

∑

m∈Sn(p)

πρ(m|Y) ∝ πρ(p)

n(p)∏

j=1

∫

X

∏

i∈Cj
K(Yi|x)H(dx).

From this result one can compute a Bayesian predictive density of
Yn+1|m,Y as,

l(n)=f(Yn+1|m,Y) =



n(p)+1∑

j=1

qj:n



∫

X

K(Yn+1|x)H(dx)

+

n(p)∑

j=1

pj:n

∫

X

K(Yn+1|x)π(dx|Dj).
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A Bayesian density estimate analogous to Lo (1984) is then obtained by
summing this expression relative to the distribution of m|Y.

Corollary 1. For the model in Proposition 1, a Bayesian predictive density
estimator of Yn+1|Y is given by

E[f(Yn+1|P )|Y] =
∑

p

∑

m∈Sn(p)

f(Yn+1|m,Y)πρ(m|Y).

3.2 Ordered/Ranked generalized weighted Chinese

restaurant processes

The significance of the expression for the predictive density is that we can
use l(n) in precisely the same manner as the predictive densities given p,Y,
used in Ishwaran and James (2003) [see also Lo, Brunner and Chan (1996)]
to construct computational procedures for approximating posterior quanti-
ties. In fact, all the major computational procedures for Dirichlet pro-
cess mixture models [see for instance Escobar (1994) and Escobar and
West (1995)] utilize some type of predictive density. Here, in analogy
to the gWCR algorithms in Lo, Brunner and Chan (1996) and Ishwaran
and James (2003), we define a weighted version of the Ordered/Ranked
generalized Chinese restaurant process developed in James (2003, 2006),
to approximate a draw from πρ(m|Y) as follows. For each n ≥ 1, let
{D1:n, . . . , Dn(p):n}, denote a seating configuration of the first n customers,
where Dj:n denotes the set of the n customers seated at a table with com-
mon rank j.

(i) Given this configuration, the next customer n+ 1 is seated at an occu-
pied table Dj:n, denoting that customer n+ 1 is equivalent to the jth
largest seated customers, with probability

pj:n
l(n)

∫

X

K(Yn+1|x)π(dx|D(j:n)) (12)

for j = 1, . . . , n(p).
(ii) Otherwise, the probability that customer n + 1 is new and is the jth

largest among n(p) + 1 possible ranks is,

qj:n
l(n)

∫

X

K(Yn+1|x)H(dx) (13)

for j = 1, . . . , n(p) + 1.

Similar to the gWCR SIS algorithms [see Ishwaran and James (2003,
Lemma 2)], by appealing to the product rule of probability, repeating this
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procedure for customers {1, . . . , n}, produces a draw of m from a density
of m depending on Y, say q(m), that satisfies the relationship

L(m)q(m) = πρ(m)

n(p)∏

j=1

∫

X

∏

i∈Dj
k(Yi|x)H(dx)

where L(m) =
∏n
i=1 l(i−1). Hence for any functional h(m), it follows that

∑

p

∑

m∈Sn(p)

h(m)πρ(m|Y) =

∑
p

∑
m∈Sn(p)

h(m)L(m)q(m)
∑

p

∑
m∈Sn(p)

L(m)q(m)
. (14)

If the functional h(m) has a closed form, such as the predictive density
E[f(y|P )|m,Y] = f(y|m,Y), then one approximates (14) by using the rules
in (12) and (13) to draw m. Repeating this procedure say B times, results
in iid realizations, say (m(b)) for b = 1, . . . , B and one can approximate (14)
by

∑B
b=1 h(m(b))L(m(b))∑B

b=1 L(m(b))
.

When the kernelsK are set to 1, this procedure reduces to that described in
James (2003, 2006) producing an exact draw from πρ(m). For more intricate
models one can incorporate a draw from the unique values X∗

1 , . . . , X
∗
n(p)

which has the same distribution that arises for the Dirichlet process. One
can also incorporate draws from the posterior distribution of Pρ,H(dx)
which is described in James (2006). Otherwise it is a simple matter to
modify all the computational procedures discussed in Ishwaran and James
(2003, Section 4).

3.3 Normal mixture example

One of the most studied and utilized Bayesian mixture models is the Normal
mixture model. It is specified by the choice of

fσ(y|P ) =

∫ ∞

−∞
φσ(y − x)P (dx) (15)

where

φσ(z) =
1√
2πσ

exp

(
− z2

2σ2

)

is a Normal density and a natural candidate for density estimation. In the
case of the Dirichlet process, this model was introduced by Lo (1984) and
popularized by the development of feasible computational algorithms in Es-
cobar (1994) and Escobar and West (1995). Suppose that {Yi} are iid with
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true density f0, a recent result of Lijoi, Prünster and Walker (2005) shows
that fσ(·|P ) in (15) based on very general random probability measures,
and a suitable prior distribution for σ, have posterior distributions that are
strongly consistent in terms of estimating the unknown density f0 under
rather mild conditions. In particular their result validates the use of rather
arbitrary NTR species sampling models in this context with the classical
choice of H set to be a Normal distribution with mean 0 and variance A.
Here, setting σ =

√
θ, one has

K(Yi|Xi) =
1√
2πθ

exp

(
1

2θ
(Yi −Xi)

2

)
.

Using these specifications we present the details of the proposed algorithm:

(i) Customer n + 1 is seated to a new table and assigned rank j among
n(p) + 1 possible ranks with probability

qj:n
λθ(n+ 1)

1√
2π(θ +A)

exp

(
− Y 2

n+1

2(θ +A)

)

(ii) Customer n + 1 is seated to an existing table and is assigned rank j
with probability

pj:n
λθ(n+ 1)

√
θ + Adj

2πθ[θ +A(dj + 1)]
exp

[
− 1

2θ

(
Y 2
n+1

−
A
∑
i∈Dj Yi + Yn+1

θ +A(dj + 1)
+
A
∑

i∈Dj Yi

θ +Adj

)]

(iii) Additionally each X∗
j |Y,m, θ is normally distributed with parameters

1

σj
=
dj
θ

+
1

A
and µj =

σj
θ

∑

i∈Dj
Yi.

λθ(n+ 1) is the appropriate normalizing constant which is a special case of
l(n).

Remark 3. For comparison, the setup and notation we use is similar to
that used in Ishwaran and James (2003, 6.1) which is based on weighted
Chinese restaurant sampling of partitions p.

4 Concluding remarks

We have given a brief account of how one can use Doksum’s NTR models to
create a new class of species sampling random probability measures which
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can be applied to complex mixture models. These models exhibit many
features of the NTR models, in terms of clustering behavior, but as we
have shown are simpler to use. Ideally one would like to describe parallel
schemes for the more complex spatial NTR models. However, this requires
a considerably more involved study which we shall report elsewhere. More
details can be found in James (2003, 2006) where explicit examples can be
easily constructed.

The representation in 4 is important as it connects NTR processes to
a large body of work on exponential functionals of Lévy processes which
have applications in many fields including physics and finance. For a recent
survey, see Bertoin and Yor (2005). Some recent papers which exploit this
representation and are directly linked to NTR processes are Epifani, Lijoi
and Prünster (2003) and James (2003, 2006). Additionally, outside of a
Bayesian context, there is a notable body of recent work which has some
overlaps with James (2003, 2006) and hence NTR processes by Gnedin
and Pitman (2005a) and subsequent papers Gnedin and Pitman (2005b),
Gnedin and Pitman and Yor (2005) and Gnedin, Pitman and Yor (2006).
Although outside of a specific Bayesian context these papers contain re-
sults which are relevant to statistical analysis such as results related to the
behavior of the number of ties n(p). The fact that these models arise from
different considerations and different points of emphasis attests to their rich
nature. It will be interesting to see what future connections will be made.
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Pólya urn schemes. Ann. Statist. 1, 353-355.

4. Doksum, K. A. (1974) Tailfree and neutral random probabilities and their
posterior distributions. Ann. Probab. 2, 183-201.

5. Doksum, K. A. and James, L. F. (2004) On spatial neutral to the right
processes and their posterior distributions. In Mathematical Reliability: An
Expository Perspective (Editors: Mazzuchi, Singpurwalla and Soyer). Inter-
national Series in Operations Research and Management Science. Kluwer
Academic Publishers

6. Epifani, I., Lijoi, A. and Pruenster, I. (2003) Exponential functionals
and means of neutral to the right priors. Biometrika, 90, 791-808.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

438 L. F. James

7. Escobar, M. D. (1994) Estimating normal means with the Dirichlet process
prior. J. Amer. Stat. Assoc. 89, 268-277

8. Escobar, M. D. and West, M. (1995) Bayesian density estimation and
inference using mixtures. J. Amer. Stat. Assoc. 90, 577-588.

9. Ewens, W. J. (1972) The sampling theory of selectively neutral alleles,
Theor. Popul. Biol. 3, 87-112

10. Ferguson, T. S. (1973) A Bayesian analysis of some nonparametric prob-
lems, Ann. Statist., 1, 209-230

11. Ferguson, T. S. (1974) Prior distributions on spaces of probability mea-
sures, Ann. Statist. 2,615-629

12. Ferguson, T. S. and Phadia, E. (1979) Bayesian nonparametric estima-
tion based on censored data, Ann. Statist. 7, 163-186

13. Freedman, D. A. (1963) On the asymptotic behavior of Bayes estimates
in the discrete case. Ann. Math. Statist. 34, 1386-1403

14. Gnedin, A. V. (2004) Three sampling formulas. Combin. Probab. Comput.
13, 185-193

15. Gnedin, A. V. and Pitman, J. (2005a) Regenerative composition struc-
tures, Ann. Probab. 33, 445-479

16. Gnedin, A. V. and Pitman, J. (2005b) Self-similar and Markov compo-
sition structures. In Representation Theory, Dynamical Systems, Combina-
torial and Algorithmic Methods. Part 13 (Editor: A. A. Lodkin). Zapiski
Nauchnyh Seminarov POMI, Vol. 326, PDMI, 59-84

17. Gnedin, A. V., Pitman, J. and Yor, M. (2005) Asymptotic laws for
regenerative compositions: gamma subordinators and the like, Probab. Th.
and Rel. Fields. Published online November 2005

18. Gnedin, A. V., Pitman, J. and Yor, M. (2006) Asymptotic laws for com-
positions derived from transformed subordinators, Ann. Probab. 34, 468-492

19. Hjort, N. L. (1990) Nonparametric Bayes estimators based on Beta pro-
cesses in models for life history data Ann. Statist. 18,1259-1294

20. Ishwaran, H. and James, L. F. (2001) Gibbs sampling methods for stick-
breaking priors, J. Amer. Stat. Assoc. 96, 161-173

21. Ishwaran, H. and James, L. F. (2003) Generalized weighted Chinese
restaurant processes for species sampling mixture models Statistica Sinica
13, 1211-1235

22. James, L. F. (2003) Poisson calculus for spatial neutral to the right pro-
cesses. Available at http://arxiv.org/abs/math.PR/0305053

23. James, L. F. (2006) Poisson calculus for spatial neutral to the right pro-
cesses. Ann. Statist. 34, 416-440

24. Kim, Y. (1999) Nonparametric Bayesian estimators for counting processes.
Ann. Statist. 27, 562-588



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

NTR Mixture Models 439

25. Lijoi, A., Prünster, I. and Walker, S. G. (2005) On consistency of
nonparametric normal mixtures for Bayesian density estimation. J. Amer.
Stat. Assoc. 100, 1292-1296

26. Lo, A. Y. (1993) A Bayesian bootstrap for censored data¿ Ann. Statist. 21,
100-123

27. Lo, A. Y. (1984) On a class of Bayesian nonparametric estimates: I. density
estimates. Ann. Statist. 12, 351-357

28. Lo, A. Y., Brunner, L. J. and Chan, A. T. (1996) Weighted Chinese
restaurant processes and Bayesian mixture model. Research Report Hong
Kong University of Science and Technology

29. Müller, P. and Quintana, F. A. (2004) Nonparametric Bayesian data
analysis. Statist. Sci. 19, 95-110

30. Pitman, J. (1996) Some developments of the Blackwell-MacQueen urn
scheme. In Statistics, Probability and Game Theory (Editors: T.S. Ferguson,
L.S. Shapley and J.B. Macqueen). IMS Lecture Notes-Monograph series, Vol
30, 245-267

31. Pitman, J. and Yor, M. (1997) The two-parameter Poisson-Dirichlet dis-
tribution derived from a stable subordinator. Ann. Probab. 25, 855-900

32. Walker, S. and Muliere, P. (1997) Beta-Stacy processes and a general-
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Chapter 22

NONPARAMETRIC BAYESIAN INFERENCE ABOUT
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We investigate the posterior distribution of a percentile and several per-
centiles In the Dirichlet process nonparametric setting. Our main result
is an asymptotic expansion for the posterior distribution of a percentile
that has a leading normal term. We also introduce a procedure for sam-
pling from the posterior distribution.

Keywords: Empirical distribution; Posterior distribution.

1 Introduction

This research is motivated by the first author’s study of statistical proce-
dures for making inferences about the ratio of percentiles (Johnson and
Hwang 2003). Here, we consider nonparametric Bayesian procedures for
making inferences about one or more percentiles from the same distribu-
tion.

Let X = (X1, X2, . . . , Xn) be a random sample from a distribution
G(·|ξ) and let

ξp = F−1(p) = inf{x|F (x) ≥ p}
be the 100p-th percentile of a G(·) for 0 < p < 1. Without priors, the
properties of percentiles are summarized in Serfling (1980).

We consider the Bayesian setting with a Dirichlet process, with prior
measure α0, over the possible cdf’s F . Assume 0 < p1 < p2 < · · · < pk < 1
and t1 < t2 < · · · < tk. Then given the observations X1, X2, . . . , Xn,

α(ti) = α(−∞, ti] = #(Xj ≤ ti) + α0(ti)

443
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for 1 ≤ i ≤ k, so

α(ti, ti+1) = α(−∞, ti+1] − α(−∞, ti]

=#(ti < Xj ≤ ti+1) + α0(ti, ti+1)

where α0(ti) = α0(−∞, ti] and α0(ti, ti+1) = α0(−∞, ti+1] − α0(−∞, ti].
For simplicity, we denote αR = α0(R). By Ferguson (1973), the posterior
distribution of F is Dirichlet process with the measure α and

(F (t1),F (t2) − F (t1), . . . , F (tk) − F (tk−1), 1 − F (tk))

∼ Dirichlet(α(t1), α(t1, t2), . . . , n+ αR − α(tk)),

for t1 < t2 < · · · < tk.
Then, for i < j, it is well known that the marginal and conditional

posterior distributions of F (ti), F (tj) − F (ti) and (F (tj) − F (ti))/(1 −
F (ti))|F (ti) are

F (ti) ∼ Beta(α(ti), n+ αR − α(ti)),

F (tj) − F (ti) ∼ Beta(α(ti, tj), n+ αR − α(ti, tj))

and
F (tj) − F (ti)

1 − F (ti)

∣∣∣∣
F (ti)

∼ Beta(α(ti, tj), n+ αR − α(ti) − α(ti, tj)). (1)

(see Johnson, Kotz and Balakrishnan 2002 and Ferguson 1973)
In this chapter, we consider the joint posterior distribution of the per-

centiles. In Section 2, we propose a method to generate random quantities
from the posterior distribution. Examples are given in Section 3. In Sec-
tion 4 we establish asymptotic joint normality for the posterior distribution
of several percentiles. Then, we employ these results to obtain an asymp-
totic expansion of the posterior distribution of a percentile in Section 5.
Numerical comparisons are given in Section 6.

2 Random Number Generation from the Posterior

Suppose we wish to explore the joint posterior distribution of two percentiles
(ξp1 , ξp2) with p1 < p2. To generate random values for (ξp1 , ξp2) from the
posterior

(1) Generate a value from Beta(α(t1), n+αR−α(t1)) and call it ξp1 . Since
the marginal posterior distribution of F (t1) is Beta(α(t1), n + αR −
α(t1)), we have (Ferguson 1973)

Pr[ξp1 ≤ t1] = Pr[F−1(p1) ≤ t1] = Pr[p1 ≤ F (t1)]

Hence we generate ξp1 as follows;
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(a) Generate a value u1 from U(0, 1).
(b) Find t1 such that

u1=

∫ 1

p1

Γ(n+ αR)

Γ(α(t1))Γ(n+ αR − α(t1))
×

zα(t1)−1(1 − z)n+αR−α(t1)−1dz (2)

Take t1 as ξp1 .

(2) Given the value ξp1 generated in the previous step, we next generate a
value from Beta(α(t1, t2), n+αR−α(t1)−α(t1, t2)) and call it η. Take
ξp1 + η as ξp2 . Let η = t2 − t1. To implement this procedure, we note
that the conditional posterior probability

Pr[ξp2 − ξp1 ≤ η|F (t1) = p1]

=Pr[ξp2 ≤ t1 + η|F (t1) = p1]

=Pr[p2 ≤ F (t1 + η)|F (t1) = p1]

=Pr
[p2 − p1

1 − p1
≤ F (t1 + η) − p1

1 − p1

∣∣∣F (t1) = p1

]

=Pr
[p2 − p1

1 − p1
≤ F (t1 + η) − F (t1)

1 − F (t1)

∣∣∣F (t1) = p1

]

and by equation (1), the a value of ξp2 given ξp1 = F−1(p1) = t1 can
be generated as follows ;

(a) Generate U2 = u2 from U(0, 1).
(b) Find η such that

u2=

∫ 1

(p2−p1)

(1−p1)

Γ(n+ αR − α(t1))

Γ(α(t1, t1 + η))Γ(n + αR − α(t1) − α(t1, t1 + η))

×zα(t1,t1+η)−1(1 − z)n+αR−α(t1)−α(t1,t1+η)−1dz

=

∫ 1

(p2−p1)/(1−p1)

Γ(n+ αR − α(t1))

Γ(α(t1, t1 + η))Γ(n+ αR − α(t1 + η))

×zα(t1,t1+η)−1(1 − z)n+αR−α(t1+η)−1dz

We note that α(t1, t1 + η) = α(t2) − α(t1).
(c) Take t1 + η as ξp2 .

Finally, get the paired value (t1, t2) as a value of (ξp1 , ξp2).
For a higher dimensional quantities of (t1, t2, . . . , tk)

′, we extend above
arguments as follows; Let −∞ = t0 < t1 < · · · < tk < tk+1 = ∞. Given 0 <
p1 < p2 < . . . < pk < 1, generating a k-dimensional vector (ξp1 , ξp2 , . . . , ξpk)
by expressing the posterior joint distribution

(F (t1), F (t2) − F (t1), . . . , 1 − F (tk)) ∼
Dirichlet(α(t1), α(t2) − α(t1), . . . , n+ αR − α(tk))
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Table 1 107 observations(sorted) of MOR(lb/in2 of 2 × 4 inches, Grade 2,
Green(30% moisture content).

1228.4 1420.3 1931.2 2105.5 2327.6 2350.2 2444.5 2524.8

2566.1 2642.7 2748.2 2764.8 2822.7 3015.2 3022.1 3095.2

3168.1 3207.7 3340.9 3396.4 3440.7 3508.1 3556.0 3677.3

3747.0 3770.9 3854.5 3879.0 3917.7 3938.0 4044.5 4050.5

4161.0 4187.7 4230.9 4274.4 4281.8 4392.0 4414.5 4420.0

4429.6 4432.9 4451.7 4461.2 4533.1 4533.1 4607.6 4616.1

4658.4 4690.8 4760.3 4787.2 4795.9 4818.4 4872.4 4892.6

4896.3 4994.6 5078.2 5128.6 5143.3 5161.1 5231.6 5268.4

5270.6 5278.7 5289.3 5325.4 5325.4 5418.6 5465.8 5511.1

5530.9 5531.8 5651.6 5677.2 5681.0 5691.8 5817.3 5818.8

5851.4 5883.6 5894.0 5976.8 5988.6 6051.4 6082.7 6136.7

6245.9 6307.9 6351.2 6357.9 6455.7 6617.3 6674.1 6767.2

6843.5 6964.0 6997.6 7011.3 7061.8 7311.8 7529.2 7643.6

8145.4 8153.4 9213.0

(1) Generate t1 using the Beta(α(t1), n+αR−α(t1)) distribution as in (2)
and take t1 as ξp1 .

(2) For i = 1, 2, . . . , k, use the posterior conditional distributions

F (ti) − F (ti−1)

1 − F (ti−1)

∣∣∣
F (ti−1),...,F (t1)

∼ Beta(α(ti) − α(ti−1), n+ αR − α(ti−1)).

For values ξpi given ξpi−1 , we generate u from U(0, 1) and solve

u=

∫ 1

(pi−pi−1)

(1−pi−1)

Γ(n+ αR − α(ti−1))

Γ(α(ti−1, ti−1 + η))Γ(n+ αR − α(ti−1 + η))
×

zα(ti−1+η)−α(ti−1)−1(1 − z)n+αR−α(ti−1+η)−1dz

for η.
(3) Take ti−1 + η as ξpi .

3 Examples

We apply our algorithm to data on the modulus of rupture(MOR) of Dou-
glas Fir specimens.

From the data in Table 1, we generated 5,000 separate random vectors
for each of for cases (ξ0.05, ξ0.10), (ξ0.05, ξ0.20), (ξ0.05, ξ0.50), (ξ0.05, ξ0.95).
The means and Pearson correlation coefficients are calculated in Table 2.

The priors measure α0 used in our simulation study is the uniform on
(0, 9500) and we consider p1 = 0.05 and p2 = 0.1, 0.2, 0.5 and 0.95. We note
that the estimates for ξ0.05, ξ0.10, ξ0.20, ξ0.50 and ξ0.95 based on the linear
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Table 2 Basic statistics from 5,000(each) vectors of percentiles.

(ξ0.05, ξ0.10) (ξ0.05, ξ0.20)

Mean vector (2327.839, 2749.342) (2322.128, 3490.037)

sd (263.1465, 225.2865) (265.8184, 267.9980)

Correlation 0.61588595 0.41460567

(ξ0.05, ξ0.50) (ξ0.05, ξ0.95)

Mean vector (2317.516, 4810.936) (2317.570 7105.646)

sd (267.7407, 189.4894) (268.1235, 248.2899)

Correlation 0.19598357 0.03640863

interpolation

ξ̂p = x[np] + (x[np+1] − x[np])(np− [np]) (3)

are 2335.51, 2716.55, 3467.66, 4807.15 and 7224.30, respectively, where
[a] is integer part of a ∈ R. For comparisons, we consider the asymptotic

properties of (ξp1 , ξp2). For p1 < p2, we note that (ξ̂p1 , ξ̂p2) is asymptotically
normal with mean (ξp1 , ξp2) and covariance σ12/n where

σ12 =
p1(1 − p2)

f(ξp1)f(ξp2)
(4)

and σ21 = σ12. Here, f is the probability density function of X1, . . . , Xn

and f is positive and continuous at ξp1 and ξp2 (Serfling 1980). Based on
the data in Table 1, x̄ = 4840.325 and s2x = 2354470. If we assume a normal
distribution for the data,

σ12 = σ21 =
0.05(1 − 0.1)

0.00006721438 ∗ 0.0001143738
= 5853610

σ11 =
0.05(1 − 0.05)

0.00006721438 ∗ 0.00006721438
= 10514030

σ22 =
0.1(1 − 0.1)

0.0001143738 ∗ 0.0001143738
= 6880015

so that the correlation is 0.6882473 for (ξ0.05, ξ0.1). We note that the cor-
relation coefficients reduce to √

p1(1 − p2)

p2(1 − p1)

and the correlation coefficients for (ξ0.05, ξ0.2), (ξ0.05, ξ0.5) and (ξ0.05, ξ0.95)
are 0.4588315, 0.2294157 and 0.05263158, respectively.

The standard deviations of ξ0.05, ξ0.1, ξ0.2, ξ0.5, ξ0.95 based on (4) under
normal assumption are (313.4676 253.5730 211.9414 185.9151 313.4676)

The standard deviations with kernel density estimator of f obtained
by density function in R-language, with bandwidth in equation (3.31) in
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Silverman (1986) and Gaussian kernel, are (242.8418, 256.4729, 250.108,
188.9272, 267.2380).

For a higher dimensional example, we consider the same data given
in Table 1, we generate 5,000 tuples of (Q1, Q2, Q3) where Qi is the i-
th quartile. Note that, using the original order statistics, (3) gives the
estimates (3833.60, 4807.15, 5826.95). The mean vector of the 5,000 tuples is
(3825.409, 4823.007, 5787.796) and correlation matrix of generated vectors
and based on the asymptotics in (4) are


1.000000.575630.34629
0.575631.000000.57409
0.346290.574091.00000


 and



1.000000.577350.33333
0.577351.000000.57735
0.333330.577351.00000




respectively. The standard deviations of (Q1, Q2, Q3) based on the ker-
nel density estimation of f from R-language function library with the
bandwidth given in equation (3.31) of Silverman (1986) and Gaussian ker-
nel is (224.5768, 188.9272, , 197.9982) and based on normal assumption is
(202.1312, 185.9151, 202.1312) and from the 5,000 generated tuples is
(243.6205, 195.7481, 180.7857).

4 Asymptotic Normality of Joint Posterior Distribution

After establishing two preliminary lemmas, we give our direct proof of
asymptotic normality. At the time we obtained Theorem 1 and presented
it at ISI 2003 Berlin, Hjort (2003) obtained an even stronger result. He
established the weak convergence of the posterior percentile process but by
an indirect proof. Further results on convergence, and examples similar
to ours for single percentiles, appear in Hjort and Petrone (2006) in this
volume. The results of our direct proof here are needed in the development
of asymptotic expansions in the next section. Our results do not require
conditions on the tail behavior of the underlying distribution, but we also
do not get weak convergence of the posterior process.

Lemma 1. Let X1, X2, . . . , Xn be a random sample from a distribution G.
Assume that G has its derivative g and g is uniformly continuous on R.
Let

Gn(t) =
#(Xj ≤ t) + α0(t)

n+ αR
(5)

and tn = inf{t|p ≤ Gn(t)}. Then for w > 0, as n→ ∞,

#(tn < Xj ≤ tn + w/
√
n)

n · w/√n = g(ηp) + o(1) (6)

almost surely.
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Proof. Denote

gn(t) =
#(t < Xj ≤ t+ w/

√
n)

n · w/√n =
1

n · w/√n

n∑

j=1

K
(Xj − t

w/
√
n

)
(7)

where

K(u) =

{
1if 0 < u ≤ 1
0otherwise

Since K is bounded with finite variation and w/
√
n→ 0, n·w/√n·(logn)−1

→ ∞ as n→ ∞, we have

sup
x

|gn(x) − g(x)| → 0

almost surely (p71–72 in Silverman 1986, Bertrand-Retali 1978). Because
tn → ηp almost surely, g is continuous and

|gn(tn) − g(ηp)|≤|gn(tn) − g(tn)| + |g(tn) − g(ηp)|
≤sup

x
|gn(x) − g(x)| + |g(tn) − g(ηp)|,

the result follows. �

Corollary 1. Under the same conditions in Lemma 1, (6) holds for w < 0.

Proof : Let w < 0 and c = |w|. With K(u) = I[−1/2<u<1/2], we have

#(t− c/
√
n < Xj ≤ t+ c/

√
n)

2n · c/√n =
1

n · 2c/√n

n∑

j=1

K
(Xj − t

2c/
√
n

)

→g(ηp)

by a similar argument in Lemma 1. Since

#(t+ w/
√
n < Xj ≤ t)

n · c/√n

=2
#(t− c/

√
n < Xj ≤ t+ c/

√
n)

2n · c/√n − #(t < Xj ≤ t+ c/
√
n)

n · c/√n ,

same result holds for w < 0.

Remark 1. By Lemma 1, Corollary 1 and Gn(tn) = p+O(n−1), as n→ ∞,

Gn(tn + w/
√
n) − p

w/
√
n

→ g(ηp) (8)

almost surely, for all w.
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Lemma 2. Let 0 = p0 < p1 < p2 < · · · < pk < pk+1 = 1 and tin =
inf{t|pi ≤ Gn(t)} with Gn(t) in (5). Let Z1, Z2, . . . be a random sample of
size [n + αR] + 1 from a gamma distribution with parameters (1, 1). Let,
with Gn(t0n) = 0 and Gn(tk+1,n) = 1 ,

αin = αin(tin + wi/
√
n) = (n+ αR)Gn(tin + wi/

√
n)

so that αin/n → pi as n → ∞. Denote T1 = Z1 + Z2 + · · ·Z[α1n] + Z10

Ti = Z[αi−1,n]+1 +Z[αi−1,n]+2 + · · ·+Z[αi,n] +Zi0 where Zi0 = Zαin−[αin] ∼
Gamma(αin − [αin], 1), for i = 1, 2, . . . , (k + 1). Then(

T1∑k+1
i=1 Ti

,
T1 + T2∑k+1
i=1 Ti

, . . . ,
T1 + T2 + · · · + Tk∑k+1

i=1 Ti

)′

→ Nk(p,V )

where p = (p1, p2, . . . , pk)
′ and V = (vij)i,j=1,2,...k = pi(1 − pj) for i ≤ j

Proof. Since Zi0/
√
n

p→ 0 and by CLT, we note that
√
αin − αi−1,n

( Ti
αin − αi−1,n

− 1
)

=
√
n
(Ti
n

√
n√

αin − αi−1,n
−

√
αin − αi−1,n√

n

)
d→ N(0, 1)

so that √
n(Ti/n− (pi − pi−1))

d→ N(0, pi − pi−1) (9)

Let t = (t1, t2, . . . , tk+1)
′ and

h(t)=(h1(t), h2(t), . . . , hk(t))
′

=

(
t1∑k+1
i=1 ti

,
t1 + t2∑k+1
i=1 ti

, . . . ,
t1 + t2 + · · · + tk∑k+1

i=1 ti

)′

and pd = (p1, p2 − p1, . . . , pk − pk−1, 1 − pk)
′. Then we have

h(pd) = (p1, p2 − p1, . . . , pk − pk−1)

and, for j = 1, 2, . . . , k and l = 1, 2, . . . , k + 1,

∇h(t)
k×(k+1) =

[∂hl(t)
∂tj

]
jl

=

{
(
∑
ti) − (t1 + t2 + · · · + tj)/(

∑
ti)

2 if j ≥ l
−(t1 + t2 + · · · + tj)/(

∑
ti)

2 if j < l

Then

[∇h(pd)]jl=

{
1 − pj if j ≥ l
−pj if j < l

for j = 1, 2, . . . , k and l = 1, 2, . . . , k + 1.

=




1 − p1−p1 −p1 · · ·−p1

1 − p21 − p2−p2 · · ·−p2

...
...

...
...

1 − pk1 − pk1 − pk· · · 1 − pk
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Since the covariance matrix Σ(k+1)×(k+1) of (9) is diagonal matrix of
(p1, p2 − p1, . . . , pk − pk−1, 1 − pk), we have

∇h(pd)Σ =

{
(1 − pj)(pl − pl−1) if j ≥ l
−pj(pl − pl−1) if j < l

,

which can be written as


p1(1 − p1)−p1(p2 − p1) · · · −p1(1 − pk)
p1(1 − p2)(1 − p2)(p2 − p1)· · · −p2(1 − pk)
p1(1 − p3)(1 − p3)(p2 − p1)· · · −p3(1 − pk)
...

...
...

...
p1(1 − pk)(1 − pk)(p2 − p1)· · · (1 − pk)(1 − pk)




Hence the diagonal elements of V k×k = ∇h(pd)Σ(∇h(pd))
′ is

vjj =

j∑

m=1

(1 − pj)
2(pm − pm−1) +

k+1∑

m=j+1

p2
j(pm − pm−1) = pj(1 − pj)

for j = 1, 2, . . . , k and lower diagonal elements (j > l) are

vjl=

l∑

m=1

(1 − pj)(pm − pm−1)(1 − pl) −
j∑

m=l+1

pl(1 − pj)(pm − pm−1)

+

k+1∑

m=j+1

pjpl(pm − pm−1) = pl(1 − pj).

Note that he upper diagonal elements are the same as those of lower diag-
onal by symmetry of V . The final matrix can be written as




p1(1 − p1)p1(1 − p2)p1(1 − p3)· · · p1(1 − pk)
p1(1 − p2)p2(1 − p2)p2(1 − p3)· · · p2(1 − pk)
...

...
...

...
...

p1(1 − pk)p2(1 − pk)p2(1 − pk)· · · pk(1 − pk)




This completes proof. �

Theorem 1. For i = 1, 2, . . . , k, assume that G is continuous at ηi with
pi = G(ηi) and has its derivative g. Assume the conditions on tin, g, p and
X1, X2, . . . , Xk in Lemma 1 and Lemma 2 hold. Then, as n→ ∞,

Pr[
√
n(ξp1 − t1n) ≤ w1, . . . ,

√
n(ξpk − tkn) ≤ wk] → Nk(0, Nk(0,V g)

where

V g =

{
pi(1 − pj)/[g(ηi)g(ηj)]i ≤ j
pi(1 − pj)/[g(ηi)g(ηj)]i > j
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Proof. Since the distribution of F (t1n + wi/
√
n), . . . , F (tk+1,n +

wk+1/
√
n) − F (tk,n + wk+1/

√
n)) is Dirichlet(α1n, . . . , αk+1,n − αk,n), we

have

(F (tin + w1/
√
n), . . . , F (tkn + wk/

√
n))

d
=
( T1∑

Tm
, . . . ,

∑k
Tm∑
Tm

)

d→Nk(p,V )

By Lemma 2, asymptotically, we have (j ≥ i)

Pr[
√
n(ξp1 − t1n) ≤ w1, . . . ,

√
n(ξpk − tkn) ≤ wk]

=Pr[p1 ≤ F (t1n + w1/
√
n), . . . , pk ≤ F (tkn + wk/

√
n)]

=Pr

[
p1 ≤

∑1
m=1 Tm∑k+1
m=1 Tm

, . . . , pk ≤
∑k
m=1 Tm∑k+1
m=1 Tm

]

=Pr

[
p1 −

α1n

n+ αR
≤
∑1

m=1 Tm∑k+1
m=1 Tm

− α1n

n+ αR
, . . . ,

pk −
αkn

n+ αR
≤
∑k
m=1 Tm∑k+1
m=1 Tm

− αjn
n+ αR

]

=Pr

[
p1 −Gn(t1n + w1/

√
n) ≤

∑1
m=1 Tm∑k+1
m=1 Tm

−Gn(t1n + w1/
√
n), . . . ,

pk −Gn(tkn + wk/
√
n) ≤

∑k
m=1 Tm∑k+1
m=1 Tm

−Gn(tkn + wk/
√
n)

]

=

∫ √
n(Gn(t1n+w1/

√
n)−p1)

−∞
· · ·
∫ √

n(Gn(tkn+wk/
√
n)−pk)

−∞

1

(2π)k/2|V |1/2

× exp
{
− 1

2
y′V −1y

}
dy1 · · · dyk (10)

Let xi = gn(tin)yi for i = 1, 2, . . . , k with gn in (7). Hence, by Lemma 1,
(10) is

∫ w1

−∞
· · ·
∫ wk

−∞

1

(2π)k/2|V g|1/2
exp

{
− 1

2
x′V −1

g x
}
dx1 · · · dxk

as n→ ∞. �

Note that the covariance is pi(1 − pj)/[g(ηi)g(ηj)].
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5 An Asymptotic Expansion for the Posterior Distribution

In this section, we establish some higher order correction terms to the
normal limit distribution. Correction terms, to the normal limit for the
joint posterior distribution, are established in Johnson and Sim (2006).

We first state the main result as Theorem 2.

Theorem 2. Let Φ and φ be the standard normal cdf and pdf, respectively,
and write Gn = Gn(tn + w/

√
n). Then, as n→ ∞,

Γ(n+ αR)

Γ((n+ αR)Gn)Γ((n+ αR)(1 −Gn))
×

∫ 1

p

z(n+αR)Gn−1(1 − z)(n+αR)(1−Gn)−1dz (11)

=1 − Φ(kn) +
1√

n+ αR

(1 − 2Gn)(k
2
n − 1)

3
√
Gn(1 −Gn)

φ(kn)

+
dn

n+ αR
φ(kn) +O(n−3/2) (12)

where

kn =

√
n+ αR

Gn(1 −Gn)
(p−Gn), (13)

and the dn are given in (20). Here, kn and dn each converge to finite
constants.

Proof. By Stirling’s formula,

ln Γ(a) = (a− 1

2
) ln a− a+

1

2
ln(2π) +

1

12a
− 1

360a3
+ · · ·
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we have
1

B((n+ αR)Gn, (n+ αR)(1 −Gn))

=
Γ(n+ αR)

Γ((n+ αR)Gn)Γ((n+ αR)(1 −Gn))

= exp{ln Γ(n+ αR) − ln Γ((n+ αR)Gn) − ln Γ((n+ αR)(1 −Gn))}

= exp
{
(n+ αR − 1

2
) ln(n+ αR) − (n+ αR) +

1

2
ln 2π +

1

12(n+ αR)

+O(n−3) −
[
((n+ αR)Gn − 1

2
) ln((n+ αR)Gn) − (n+ αR)Gn

+
1

2
ln 2π +

1

12(n+ αR)Gn
+O(n−3)

]
−
[
((n+ αR)(1 −Gn) − 1

2
) ×

ln((n+ αR)(1 −Gn)) − (n+ αR)(1 −Gn) +
1

2
ln 2π

+
1

12(n+ αR)(1 −Gn)
+O(n−3)

]}

= exp
{1

2
ln(n+ αR) −

[
(n+ αR)Gn − 1

2

]
lnGn

−
[
(n+ αR)(1 −Gn) − 1

2

]
ln(1 −Gn) − 1

2
ln(2π)

+
Gn(1 −Gn) − (1 −Gn) −Gn

12(n+ αR)Gn(1 −Gn)
+O(n−3)

}

=
(n+ αR)1/2

√
2πG

(n+αR)Gn−1/2
n (1 −Gn)(n+αR)(1−Gn)−1/2

× exp
{ −1 +Gn −G2

n

12(n+ αR)Gn(1 −Gn)
+O(n−3)

}

=
(n+ αR)1/2

√
2πG

(n+αR)Gn−1/2
n (1 −Gn)(n+αR)(1−Gn)−1/2

×
[
1 +

−1 +Gn −G2
n

12(n+ αR)Gn(1 −Gn)
+O(n−2)

]
(14)

Now, write the integrand in (11) as

z(n+αR)Gn−1(1−z)(n+αR)(1−Gn)−1 =
1

z(1 − z)
e(n+αR)[Gn ln z+(1−Gn) ln(1−z)]

and let

hn(z) = Gn ln z + (1 −Gn) ln(1 − z).

Then

h′n(z) =
Gn
z

− 1 −Gn
1 − z
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so that the value zn0 = z0 = Gn giving the maximum of hn(z) satisfies
h′n(z) = 0. Also

e(n+αR)hn(z0) = z
(n+αR)z0
0 (1−z0)(n+αR)(1−z0) = [zz00 (1−z0)1−z0 ]n+αR (15)

and h′′n(z0) = −1/(z0(1 − z0)). Note that, for l ≥ 2,

h(l)
n (z0) = (−1)l−1 (l − 1)!Gn

zl
− (l − 1)!(1 −Gn)

(1 − z)l

∣∣∣
z0

=(−1)l−1 (l − 1)!

zl−1
0

− (l − 1)!

(1 − z0)l−1

Using a Taylor expansion for hn at z0, the integrand in (11) can be written

1

z(1 − z)
e(n+αR)hn(z0)e(n+αR)h′′

n(z0)(z−z0)2/2e(n+αR)(z−z0)3ψ(z,Gn)

where

ψ(z,Gn) =
h′′′n (z0)

3!
+
h

(4)
n (z0)(z − z0)

4!
+ · · · + h

(l)
n (z − z0)

l−3

l!
+ · · ·

Let v = (n+ αR)(z − z0)
3 and set

Pn(v, z,Gn) =
1

z(1 − z)
exp{vψ(z,Gn)}

Then Pn has a two variable expansion (see Johnson and Ladalla 1978 for
similar expansions.)

Pn(v, z,Gn) =

∞∑

l=0

∑

i+j=l

cijv
i(z − z0)

j (16)

= c00 + c10v + c01(z − z0) + c20v
2 + c11v(z − z0) + c02(z − z0)

2 + · · ·

where cij =
∂nPn
∂vi∂zj

1

i!j!

∣∣∣
(0,z0)

. The exact expressions for cij ’s, up to order

2, are

c00 = Pn(v, z,Gn)
∣∣∣
(0,z0)

=
1

z0(1 − z0)
,

and

c01 =
∂Pn
∂z

∣∣∣
(0,z0)

=
2z0 − 1

z2
0(1 − z0)2

=
1

z0(1 − z0)
c′01

c10 =
∂Pn
∂v

∣∣∣
(0,z0)

=
1

z0(1 − z0)

h
(3)
n (z0)

3!
=

1

z0(1 − z0)

(1 − 2z0)

3z2
0(1 − z0)2

=
1

z0(1 − z0)
c′10
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c11=
1

1!

1

1!

∂2Pn
∂v∂z

∣∣∣
(0,z0)

=
2z0 − 1

z2
0(1 − z0)2

h
(3)
n (z0)

3!
+

1

z0(1 − z0)

h
(4)
n (z0)

4!

=− 1

z0(1 − z0)

[ (1 − 2z0)
2

3z3
0(1 − z0)3

+
1 − 3z0 + 3z2

0

4z3
0(1 − z0)3

]

=
1

z0(1 − z0)

−7 + 25z0 − 25z2
0

12z3
0(1 − z0)3

=
1

z0(1 − z0)
c′11

c20 =
1

2!

∂2Pn
∂v2

∣∣∣
(0,z0)

=
1

z0(1 − z0)

(1 − 2z0)
2

18z4
0(1 − z0)4

=
1

z0(1 − z0)
c′20

c02=
1

2!

∂2Pn
∂z2

∣∣∣
(0,z0)

=
1 − 3z0 + 3z2

0

z3
0(1 − z0)3

=
1

z0(1 − z0)

1 − 3z0 + 3z2
0

z2
0(1 − z0)2

=
1

z0(1 − z0)
c′02

Hence the integral in (11), with v being replaced by (n+ αR)(z − z0)
3, is

e(n+αR)hn(z0)

∫ 1

p

1

z(1 − z)
e(n+αR)h′′

n(z0)(z−z0)2/2e(n+αR)(z−z0)3ψ(z,Gn)dz

= e(n+αR)hn(z0)

∫ 1

p

e(n+αR)h′′
n(z0)(z−z0)2/2Pn(n(z − z0)

3, z, Gn)dz

=
e(n+αR)hn(z0)

z0(1 − z0)

∫ 1

p

e(n+αR)h′′
n(z0)(z−z0)2/2

[
1 + c′10(n+ αR)(z − z0)

3

+c′01(z − z0) + c′11(n+ αR)(z − z0)
4 + c′20(n+ αR)2(z − z0)

6

+c′02(z − z0)
2 + · · ·

]
dz (17)

We make a change of variable

y =
√
−(n+ αR)h′′n(z0)(z − z0) =

√
n+ αR
z0(1 − z0)

(z − z0) (18)

where
dz

dy
=

√
z0(1 − z0)

n+ αR
and the range of y is

kn =

√
(n+ αR)

z0(1 − z0)
(p−z0) < y <

√
(n+ αR)

z0(1 − z0)
(1−z0) =

√
(n+ αR)(1 − z0)

z0
.

Next, we turn our attention to the sequence of constants, which is the
product of four terms: 1/(z0(1−z0)), e(n+αR)hn(z0) in (15), 1/B((n+αR)Gn,
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(n+ αR)(1 −Gn)) in (14) and the Jacobian. By writing z0 for Gn

e(n+αR)hn(z0)

z0(1 − z0)

1

B((n+ αR)z0, (n+ αR)(1 − z0))

√
z0(1 − z0)

n+ αR

=
z
(n+αR)z0
0 (1 − z0)

(n+αR)(1−z0)

z0(1 − z0)
×

(n+ αR)1/2
√

2πz
(n+αR)z0−1/2
0 (1 − z0)(n+αR)(1−z0)−1/2

×

[
1 +

−1 + z0 − z2
0

12(n+ αR)z0(1 − z0)
+O(n−2)

]√z0(1 − z0)

n+ αR

=
1√

(n+ αR)z0(1 − z0)

[√(n+ αR)z0(1 − z0)√
2π

+
−1 + z0 − z2

0

12
√

2π(n+ αR)z0(1 − z0)
+ O(n−3/2)

]

=
1√
2π

+
1√

2π(n+ αR)
an +O(n−2) (19)

where an =
−1 + z0 − z2

0

12z0(1 − z0)
.

Returning to the integral (11), under the change of variable (18), by
(17) and (19), we have

1√
2π

∫ √
(n+αR)(1−z0)/z0

kn

e−y
2/2
[
1 +

1√
n+ αR

{
c′10z

3/2
0 (1 − z0)

3/2y3

+c′01
√
z0(1 − z0)y

}
+

1

n+ αR

{
c′11z

2
0(1 − z0)

2y4 + c′20z
3
0(1 − z0)

3y6

+c′02z0(1 − z0)y
2
}]
dy +

an
n+ αR

1√
2π

∫ √
(n+αR)(1−z0)/z0

kn

e−y
2/2dy

+O(n−3/2)

=I0 +
1√

n+ αR

{
c′′10I3 + c′′01I1

}

+
1

n+ αR

{
c′′11I4 + c′′20I6 + c′′02I2 + anI0

}
+O(n−3/2)

where

Il =
1√
2π

∫ √
(n+αR)(1−z0)/z0

kn

yle−y
2/2dy, l = 0, 1, 2, . . .
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and

c′′10 =
1 − 2z0

3
√
z0(1 − z0)

, c′′20 =
(1 − 2z0)

2

18z0(1 − z0)
, c′′02 =

1 − 3z0 + 3z2
0

z0(1 − z0)
,

c′′01 = − 1 − 2z0√
z0(1 − z0)

= −3c′′10, c′′11 =
−7 + 25z0 − 25z2

0

12z0(1 − z0)
.

Note that

I0=
1√
2π

∫ √
(n+αR)(1−z0)/z0

kn

e−y
2/2dy,

I1=
1√
2π

[
e−k

2
n/2 − e−[(n+αR)(1−z0)/z0]/2

]

Il=− 1√
2π
yl−1e−y

2/2
∣∣∣
√

(n+αR)(1−z0)/z0

kn
+ (l − 1)Il−2

=Jl−1 + (l − 1)Il−2,

for l ≥ 2, where

Jl = − 1√
2π
yle−y

2/2
∣∣∣
√

(n+αR)(1−z0)/z0

kn
.

Note that the upper limit of Jl is O(n−m) for all m > 0 so that

Jl =
1√
2π
klne

−k2
n/2 +O(n−m).

Further, I1 = J0, I3 = J2 + 2I1 and c′′01 = −3c′′10, so we have

c′′10I3 + c′′01I1

=c′′10(J2 + 2I1) − 3c′′10I1 =
1 − 2z0

3
√
z0(1 − z0)

(J2 − J0)

=
1 − 2z0

3
√
z0(1 − z0)

(k2
n − 1)φ(kn) +O(n−m) for any m > 0.

and similarly we have

c′′11I4 + c′′20I6 + c′′02I2 + anI0

=c′′11(J3 + 3J1 + 3I0) + c′′20(J5 + 5J3 + 15J1 + 15I0)

+c′′02(J1 + I0) + anI0

=c′′20J5 + (c′′11 + 5c′′20)J3 + (3c′′11 + 15c′′20 + c′′02)J1

+(3c′′11 + 15c′′20 + c′′02 + an)I0

=
(1 − 2z0)

2

18z0(1 − z0)
J5 +

−11 + 35z0 − 35z2
0

36z0(1 − z0)
J3 +

1 − z0 + z2
0

12z0(1 − z0)
J1

=
[ (1 − 2z0)

2

18z0(1 − z0)
k5
n +

−11 + 35z0 − 35z2
0

36z0(1 − z0)
k3
n +

1 − z0 + z2
0

12z0(1 − z0)
kn

]
φ(kn)

+O(n−m)

=dnφ(kn) +O(n−m) for any m > 0.
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Figure 1 The posterior cdf and approximate posterior cdf overlaid for the 50-th per-
centile. Based on a random sample of 100 standard normal variables.

Here, dn can also be written as

(1 − 2Gn)
2

18Gn(1 −Gn)
k5
n +

−11 + 35Gn − 35G2
n

36Gn(1 −Gn)
k3
n +

1 −Gn +G2
n

12Gn(1 −Gn)
kn. (20)

Finally, since I0 = 1 − Φ(kn) + O(n−m) for any m > 0 (see p166 Feller
1960), we obtain the leading term in (12) and the result follows. �

Remark 2. By Lemma 1 and Corollary 1 or equation (8),

kn =
√

(n+ αR)/z0(1 − z0)(p− z0) → −g(ηp)w/
√
p(1 − p).

6 Numerical Comparisons

We conclude with a brief numerical comparison of the exact posterior dis-
tribution and the approximate result using the first order correction term.

Random samples of standard normal variables were generated and the
exact posterior distribution was evaluated using the equation (11) in Theo-
rem 2 and the expansion using equation (12) without the error term O−3/2.
In our simulation study we chose a uniform prior whose support contained
the generated random sample.
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Figure 2 The posterior cdf and approximate posterior cdf overlaid for the 5-th per-
centile. Based on a random sample of 100 standard normal variables.
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Figure 3 The posterior cdf and approximate posterior cdf overlaid for 50-th percentile.
Based on a random sample of 1,000 standard normal variables.
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Figure 1 concerns the cumulative distribution function of the 50-th per-
centile of the posterior distribution for a case where the sample size is 100.
The exact and approximate distributions are almost identical. Figure 2
presents the exact and approximate distribution of the 5-th percentile for a
case where the sample size is 100. In this figure, small differences between
the exact and approximate distribution are apparent. The approximation
is not as good as for the 50-th percentile.

Figure 3 presents the exact and approximate distribution of the 5-th
percentile for a case where the sample size is increased to 1000. The graph
becomes much smoother and the exact and approximate distributions are
almost the same.
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densité pa la méthode de noyau, Rev. Roumaine Math. Pures. Appl., 23,
361–385.

2. Feller, W. (1960) An Introduction to Probability Theory and Its Applica-
tions, 2nd edition, John Wiley & Sons, New York.

3. Ferguson, T. S. (1973), A Bayesian Analysis of Some Nonparametric Prob-
lems, The Annals of Statistics, 1, No. 2, pp209–230.

4. Hjort, N. (2003), Topics in Nonparametric Statistics, Highly Structured
Stochastic Systems, eds. Green, P. , Hjort, N. and Richardson, S., Oxford,

5. Hjort, N. and Petrone, S. (2007), Nonparametric Quantile Inference
Using Dirichlet Processes, Chapter in Advances in Statistical Modeling and
Inference, ed. by V. Nair.

6. Johnson, R. A. and Hwang, L. (2003) Some Exact and Approximate
Confidence Region for the Ratio of Percentiles from Two Different Distribu-
tions, Statistical Methods in Reliability, eds. Lindqvist, B. H. and Doksum,
K. A., World Scientific, New Jersey.

7. Johnson, R. A. and Ladalla, J. N. (1979) The Large Sample Behavior of
Posterior Distributions When Sampling from Multiparameter Exponential
Family Models, and Allied Results, Sankhyā, Ser. B 41, 196–215.
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This chapter deals with nonparametric inference for quantiles from a
Bayesian perspective, using the Dirichlet process. The posterior distri-
bution for quantiles is characterised, enabling also explicit formulae for
posterior mean and variance. Unlike the Bayes estimator for the dis-
tribution function, our Bayes estimator for the quantile function is a
smooth curve. A Bernshtĕın–von Mises type theorem is given, exhibit-
ing the limiting posterior distribution of the quantile process. Links to
kernel-smoothed quantile estimators are provided. As a side product we
develop an automatic nonparametric density estimator, free of smooth-
ing parameters, with support exactly matching that of the data range.
Nonparametric Bayes estimators are also provided for other quantile-
related quantities, including the Lorenz curve and the Gini index, for
Doksum’s shift curve and for Parzen’s comparison distribution in two-
sample situations, and finally for the quantile regression function in sit-
uations with covariates.

Keywords: Bayesian bootstrap; Bayesian quantile regression; Bern-
shtĕın–von Mises theorem; Comparison distribution; Dirichlet process;
Doksum’s shift function; Lorenz curve; Nonparametric Bayes, Quantile
inference.

1 Introduction and summary

Assume data X1, . . . , Xn come from some unknown distribution F , and
that interest focusses on one or more quantiles, say Q(y) = F−1(y). This

463
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chapter develops and discusses methods for carrying out nonparametric
Bayesian inference for Q, based on a Dirichlet process prior for F . The
methods also extend to various other quantile-related quantities in other
contexts, notably to various functions and plots for comparing two samples,
like Doksum’s shift function (see Doksum, 1974a and Doksum and Sievers,
1976) and Parzen’s (1979, 1982) comparison distribution, and to quantile
regression. A guide-map of our chapter is as follows.

We start in Section 2 with setting the framework and by characterising
the prior and posterior distributions of one or more quantiles. This makes it
possible to derive explicit formulae for the posterior mean, variance and co-
variance in Section 3. A noteworthy feature here is that the posterior mean
function is a smooth curve Q̂(y), unlike the traditional Bayes estimator F̃n
for F , which has jumps at the data points. Of particular interest is the
non-informative limit of the Bayes estimator Q̂0 when the strength param-
eter of the Dirichlet prior is sent to zero. It is seen to be a Bernshtĕın-type
smoothed quantile method.

In Section 4 we consider Bayes estimators of the quantile density q = Q′

and of the probability density f = F ′, formed by the appropriate opera-
tions on Q̂. A particular construction of interest is the density estimator
f̂0, computed by inversion and differentiation of Q̂0. This estimator is
nonparametric and automatic, requires no smoothing parameters, and is
supported on the exact data range, say [x(1), x(n)]. In Section 5 we discuss
applications to the Lorenz curve and the Gini index, which are frequently
used in econometric contexts. We obtain nonparametric Bayes estimators
of these quantities. Then Section 6 provides Bayesian sister versions of
two important nonparametric plotting strategies for comparing two popu-
lations: Doksum’s shift curve D(x) and Parzen’s comparison distribution
π(y). Recipes for computing Bayesian credibility bands are also given. In
Section 7 we study large-sample properties of our estimators, and reach
Bernshtĕın–von Mises type theorems for the limits of the posterior pro-
cesses

√
n(Q − Q̂),

√
n(D − D̂),

√
n(π − π̂). This can be used to form

certain approximate credibility intervals for the quantile function, for the
shift function, and for the comparison distribution. Then in Section 8 re-
sults are generalised to a semiparametric regression framework, where the
regression parameters are given a prior independent of the quantile pro-
cess of the error distribution. Our chapter ends with a list of concluding
comments, some pointing to further research problems of interest.
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2 The quantile process of a Dirichlet

This section derives the basic distributional results about the distribution
of random quantiles for Dirichlet priors, pre and post data. Our point of
departure is a Dirichlet process F with parameter measure α(·) = aF0(·),
written F ∼ Dir(aF0), splitting into constant a = α(IR) and probability
distribution F0 = α/a; for definitions and basic results one may consult
Ferguson (1973, 1974). For a review of general Bayesian nonparametrics,
see Hjort (2003).

2.1 Prior distributions of quantiles

For the random F , consider its accompanying quantile process

Q(y) = F−1(y) = inf{t : F (t) ≥ y}.

For this left-continuous inverse of the right-continuous F it holds generally
that Q(y) ≤ x if and only if y ≤ F (x), even for cases when F , like here,
has jumps. It follows, by the basic Beta distribution property of marginals
of Dirichlet processes, that the distribution of Q(y) can be written

H0,a(x) = Pr{Q(y) ≤ x}
= 1 − Be(y; aF0(x), aF̄0(x)) = Be(1 − y; aF̄0(x), aF0(x)). (1)

Here and below we let Be(·; b, c) and be(·; b, c) denote respectively the dis-
tribution function and the density of a Beta variable with parameters (b, c),
and F̄0 is the survival function 1−F0. We allow Beta variables with param-
eters (b, 0) and (0, c); these are with probability one equal to respectively 1
and 0. Thus Be(y; b, 0) = 0 and Be(y; 0, c) = 1 for y ∈ [0, 1].

Note that H0,a(x) = Ja(F0(x)), where Ja(x) = Be(1 − y; a(1 − x), ax)
is the distribution of a random y-quantile for the special case of F0 being
uniform on (0, 1), say Quni(y). This means that the distribution of Q(y)
in the general case is the same as the distribution of F−1

0 (Quni(y)). If
F0 has a density f0, this also implies that the prior density of Q(y) is
h0(x) = ja(F0(x))f0(x), where

ja(x) =
∂

∂x

∫ 1−y

0

Γ(a)

Γ(a− ax)Γ(ax)
ua−ax−1(1 − u)ax−1 du (2)

is the density of Quni(y). The point is that the prior densities can be com-
puted and displayed via numerical integration and derivation; see Figure 1.
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2.2 Several quantiles simultaneously

Consider now the joint distribution of two or more Q-values. For y1 < · · · <
yk, we have

Pr{Q(y1) ≤ t1, . . . , Q(yk) ≤ tk} = Pr{y1 ≤ F (t1), . . . , yk ≤ F (tk)}
= Pr{V1 ≥ y1, . . . , V1 + · · · + Vk ≥ yk},

in terms of a Dirichlet vector (V1, . . . , Vk, Vk+1) with parameters
(c0, . . . , ck, ck+1), where cj = aF0(tj−1, tj ]; here F0(A) is the probability
assigned to the set A by the F0 distribution, and t0 = −∞, tk+1 = ∞.
This in principle determines all aspects of the simultaneous distribution of
the vector of random quantiles.

To give somewhat more qualitative insights into the joint distribution of
the random quantiles, we start recalling an important and convenient prop-
erty of the Dirichlet process. When it is ‘chopped up’ into smaller pieces,
conditioned to have certain total probabilities on certain sets, the individ-
ual daughter processes become independent and are indeed still Dirich-
let. In detail, if F is Dirichlet aF0, and one conditions on the event
F (B1) = z1, . . . , F (Bm) = zm, where the Bis form a partition and the
zis sum to 1, then this creates m new and independent Dirichlet processes
on B1, . . . , Bm. Specifically, F (.)/zi is Dirichlet on its ‘local sample space’
Bi with parameter aF0, that is,

F (.)/zi ∼ Dir(aF0) = Dir(aF0(Bi)F0(.)/F0(Bi)).

See Hjort (1986, 1996) for this fact about pinned down Dirichlets and
some of its consequences. Note the rescaling of the Dirichlet parameter,
as a new prior strength parameter aF0(Bi) times the rescaled distribution
F0(.)/F0(Bi) on set Bi.

Consider two quantiles Q(y1) and Q(y2), where y1 < y2, for the prior
process. Conditional on y2 = F (t2), our F splits into two independent
Dirichlet processes on (−∞, t2] and (t2,∞). By the general result just
described, and arguing as with equation (1), one finds for t1 ≤ t2 that

Pr{Q(y1) ≤ t1 | y2 = F (t2)} = Pr{y1 ≤ y2F
∗(t1)}

= Be(1 − y1/y2; aF0(t1, t2], aF0(−∞, t1]),

where F ∗ is Dirichlet (aF0) on (−∞, t2]. This argument may be extended
to the case of three or more random quantiles, also suitable for simulation
purposes.

2.3 Posterior distributions of quantiles

Conditionally on the randomly selected F , let X1, . . . , Xn be independently
drawn from F . Since F given data is an updated Dirichlet with parameter
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aF0 + nFn, where Fn is the empirical distribution of the data points, the
posterior distribution of Q(y) may be written as in (1), with aF0 + nFn
replacing aF0 there. Assume for simplicity that the data points are distinct,
order them x(1) < · · · < x(n), and write x(0) = −∞ and x(n+1) = ∞. Then

Hn,a(x) = Pr{Q(y) ≤ x | data}
= 1 − Be(y; (aF0 + nFn)(x), (aF̄0 + nF̄n)(x)), (3)

in terms of F̄0 = 1 − F0 and F̄n = 1 − Fn. For x(i) ≤ x < x(i+1), this is
equal to Be(1 − y; aF̄0(x) + n− i, aF0(x) + i). Thus Q(y) has a density of
the form

hn,a(x) = (∂/∂x) Be(1− y; aF̄0(x)+n− i, aF0(x)+ i) inside (x(i), x(i+1)),

cf. the calculations leading to (2), and posterior point mass

∆Hn,a(x(i)) = Be(y; aF0(x(i)−) + i− 1, aF̄0(x(i)−) + n− i+ 1)

−Be(y; aF0(x(i)) + i, aF̄0(x(i)) + n− i)

= (n+ a)−1be(y; aF0(x(i)) + i, aF̄0(x(i)) + n− i+ 1) (4)

at point x(i). The partial integration formula (A1) of the Appendix is used
here, and assumes continuity of F0 at x(i).

If a is sent to zero here there is no posterior probability mass left be-
tween data points; the distribution concentrates on the data points with
probabilities

pn(x(i)) = Be(y; i− 1, n− i+ 1) − Be(y; i, n− i)

=

(
n− 1

i− 1

)
yi−1(1 − y)n−i. (5)

These binomial weights concentrate around y for moderate to large n. We
also have the following result, proved in our Appendix, which says that even
if a is large, the combined posterior probability that Q(y) has of landing
outside the data points goes to zero as n increases. In other words, the dis-
tribution function Hn,a(x) becomes closer and closer to being concentrated
in only the n sample points.

Proposition 1. For fixed positive a, the sum of the posterior point masses
∆Hn,a(x(i)) that Q(y) has at the data points goes to 1 as n→ ∞.

The prior to posterior mechanism is illustrated in Figure 1 for the case
of the upper quartile Q(0.75), with prior guess F0 = N(0, 1), with n = 100
data points really coming from N(1, 1). The right panel shows only the
posterior probabilities (5) corresponding to a = 0; even for a = 10 the (4)
probabilities are quite close to those of (5).
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Figure 1 Prior to posterior for a given quantile: The left panel shows the prior densi-
ties ja(F0(x))f0(x) at quantile y = 0.75, for values a = 0.1, 1, 5, 10, for F0 the standard
normal, with smaller values of a closer to the f0 and larger values of a tighter around
Q0(y) = 0.675. The right panel shows the posterior probabilities (5) after having ob-
served n = 100 data points from the distribution N(1, 1), with true quartile 1.675. The
posterior probability mass outside the data points equals 0.0002, 0.0017, 0.0085, 0.0181
for the four values of a, respectively.

Next consider random quantiles at positions y1 < · · · < yk. Then the
event Q(y1) ≤ t1, . . . , Q(yk) ≤ tk, where t1 ≤ · · · ≤ tk, is equivalent to

y1 ≤ V1, y2 ≤ V1 + V2, . . . , yk ≤ V1 + · · · + Vk,

writing now Vj = F (tj) − F (tj−1) for j = 1, . . . , k + 1, where t0 = −∞
and tk+1 = ∞. The vector (V1, . . . , Vk, Vk+1) has the appropriate Dirich-
let distribution with parameters (c1, . . . , ck, ck+1), where cj = (aF0 +
nFn)(tj−1, tj ]. This fully defines Pr{Q(y1) ≤ t1, . . . , Q(yk) ≤ tk | data}.
Its limit as a→ 0 is discussed below.

2.4 The objective posterior quantile process

For the non-informative prior case of a = 0 we have seen that Q(y) con-
centrates on the observed data points with binomial probabilities given
in (5). When considering two quantiles, we find that Pr{Q(y1) =
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x(i) | data, Q(y2) = x(j)} becomes

Be(1 − y1/y2; j − i, i) − Be(1 − y1/y2; j − i+ 1, i− 1)

= (1/j)be(1 − y1/y2; j − i+ 1, i),

using (A1) again. Combining this with (5) one finds that (Q(y1), Q(y2))
selects the pair (x(i), x(j)) with probability pn(x(i), x(j)) equal to

(n− 1)!

(j − 1)!(n− j)!
yj−1
2 (1 − y2)

n−j (1/j) j!

(j − i)!(i− 1)!

(y2 − y1
y2

)j−i(y1
y2

)i−1

=

(
n− 1

i− 1, j − i, n− j

)
yi−1
1 (y2 − y1)

j−i(1 − y2)
n−j (6)

for 1 ≤ i ≤ j ≤ n. This trinomial structure generalises to a suitable
multinomial one for more than two quantiles at a time.

In fact, the non-informative case corresponds to a random F which
is concentrated at the data points x(1) < · · · < x(n) with probabilities
D1, . . . , Dn following a Dirichlet distribution with parameters (1, . . . , 1).
This in turn means that

Q(y) = x(i) if D1 + · · · +Di ≤ y < D1 + · · · +Di+1.

In yet other words, Q(y) = x(N(y)), where N(y) is the smallest i at which
the cumulative sum Si = D1 + · · · + Di exceeds y. One may re-prove (5)
from this, as well as the trinomial result (6) for

pn(x(i), x(j)) = Pr{Si−1 < y1 ≤ Si ≤ Sj−1 < y2 ≤ Sj},
via integrations in the distribution for (Si−1, Si − Si−1, Sj−1 − Si−1, Sj −
Sj−1, 1−Sj), which is Dirichlet with parameters (i−1, 1, j−1− i, 1, n− j).
The easiest argument uses that S1, . . . , Sn−1 forms an ordered sample of
size n−1 from the uniform distribution on the unit interval. For the general
case of m quantiles one finds that Pr{Q(y1) = x(i1), . . . , Q(ym) = x(im)} is
equal to
(

n− 1

i1 − 1, 1, . . . , im − im−1, 1, n− im

)
yi1−1
1 (y2 − y1)

i2−i1 · · · (1 − ym)n−im ,

valid for y1 < · · · < ym and i1 ≤ · · · ≤ im. This ‘multinomial struc-
ture’ hints at connections to Brownian bridges; such are indeed studied in
Section 7.

3 Bayesian quantile inference

To carry out Bayesian inference for Q(y), for specific quantiles or for the
full quantile function, several options are available.
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One possibility is to repeatedly simulate full Q functions by numeri-
cally inverting simulated paths of F , these being drawn according to the
Dir(aF0 + nFn) distribution. Another is to work directly with the explicit
posterior distribution Hn,a of (3) for Q(y), or if necessary with the gen-
eralisations to several quantiles discussed in Section 2.3. One attractive
estimator is

Q∗
n(y) = median{Q(y) |data} = H−1

n,a(
1
2 ),

which is the Bayes estimator under loss functions of the type
∫ 1

0 w(y)|Q̂(y)−
Q(y)| dy. It is not difficult to implement a programme that for each y
finds the posterior median, from the formula for Hn,a(x). For the special
case of y = 1

2 , the posterior median of the random median is the me-

dian of the posterior expectation F̃n = (aF0 + nFn)/(a + n). This may
also naturally be supplemented with posterior credibility bands of the type
[H−1

n,a(0.05), H−1
n,a(0.95)]. It follows from theory developed below that such

a band is secured limiting 90% pointwise coverage probability, also in the
frequentist sense. Here, however, we focus on directly computable Bayes
estimators and on posterior variances.

We first set out to compute the posterior mean function of Q(y), which
is the Bayes estimator under quadratic loss. The informative case a > 0 is
more cumbersome mathematically than the a → 0 case, and is considered
first. Ferguson (1973, p. 224) pointed out that the posterior expectation “is
difficult to compute, and may, in fact, not even exist”. Here we give both
precise finiteness conditions and a formula; such have apparently not been
given earlier in the literature. From our results in Section 2 it is clear that
when the integrals exist, a formula for the posterior mean takes the form

Q̂a(y) =

n∑

i=1

∆Hn,a(x(i))x(i) +

n∑

i=0

∫

(x(i),x(i+1))

xhn,a(x) dx, (7)

with Hn,a and hn,a as given in Section 2.3. Existence requires finiteness
of the first and the last integrals here, over respectively (−∞, x(1)) and
(x(n),∞). The following is proved in our Appendix.

Proposition 2. Let Q = F−1 have the prior process induced by a Dirichlet
process prior with parameter aF0 for F , where a is positive. Then the
posterior mean Q̂a(y) of the quantile function Q(y) is well-defined and finite
if and only if the prior mean E0|X | =

∫
|x| dF0(x) is finite. This result is

independent of the sample size n and of the value of y, and is also valid for
the prior situation.

For implementation purposes, formula (7) is a little awkward. A simpler
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equivalent formula is

Q̂a(y) =

∫ ∞

0

Pr{Q(y) ≥ x | data} dx−
∫ 0

−∞
Pr{Q(y) ≤ x | data} dx

=

∫ ∞

0

Be(y; aF0(x) + nFn(x), aF̄0(x) + nF̄n(x)) dx (8)

−
∫ 0

−∞
Be(1 − y; aF̄0(x) + nF̄n(x), aF0(x) + nFn(x)) dx.

For large a dominating n in size, this estimator is close to the prior guess
function F−1

0 (y). Even a moderate or large a will however be ‘washed out’
by the data as n grows, as is apparent from Proposition 1 and made clearer
in Section 7.

Particularly interesting is the nonparametric quantile estimator emerg-
ing by letting a tend to zero, since the posterior then concentrates on the
data points alone. By (5), the result is

Q̂0(y) =
n∑

i=1

(
n− 1

i− 1

)
yi−1(1 − y)n−ix(i). (9)

This is a (n − 1)-degree polynomial function that smoothly climbs from

Q̂0(0) = x(1) to Q̂0(1) = x(n). It may of course be used also outside the
present Bayesian framework. Its frequentist properties have been studied,
to various extents, in Hjort (1986), Sheather and Marron (1990), and Cheng
(1995), and we learn more in Section 7 below. Interestingly, it can also
be expressed as n−1

∑n
i=1 be(y; i, n − i + 1)x(i), an even mixture of beta

densities.
The posterior variance V̂a(y) may also be computed explicitly, via

E{Q(y)2 | data} =
∫∞
0 Pr{|Q(y)| ≥ x1/2 | data} dx, which as with other

calculations above with some efforts also may be expressed in terms of fi-
nite sums of explicit terms. One may show as with Proposition 2 that the
posterior variance is finite if and only if the prior variance is finite; this
statement is valid for each n. In the a→ 0 case the variance simplifies to

V̂0(y) =

n∑

i=1

(
n− 1

i− 1

)
yi−1(1 − y)n−i {x(i) − Q̂0(y)}2. (10)

The posterior covariance between two quantiles can similarly be estimated
explicitly, via (6). With the limiting normality results of Section 7 this im-

plies for example that Q̂0(y)± 1.96 V̂0(y)
1/2 becomes an asymptotic point-

wise 95% confidence band in the frequentist sense, as well as an asymptotic
pointwise 95% credibility band in the Bayesian posterior sense.

Remark 1. Note first that X([nt]) is distributed as F−1
tr (U([nt])), in terms

of an ordered sample U(1), . . . , U(n) from the uniform distribution on the
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unit interval, in terms of the true distribution Ftr for the Xis. Hence X([nt])

is close to F−1(t) for moderate to large n. A kernel type estimator based
on the order statistics would be of the form

Q̃(y) =

∫
Kh(t− y)X([nt]) dt

.
= n−1

n∑

i=1

Kh(i/n− y)x(i),

in terms of a scaled kernel functionKh(u) = h−1K(h−1u) and its smoothing
parameter h. One may now show, via approximate normality of the bino-
mial weights used in (9), that Q̂0(y) is asymptotically identical to such a ker-
nel estimator, with K the standard normal kernel, and h = {y(1−y)/n}1/2;
proving this is related to the classic de Moivre–Laplace result. This means
under-smoothing if compared to the theoretically optimal bandwidths,
which are of size O(n−1/3) for moderate to large n. See Sheather and
Marron (1990).

4 Quantile density and probability density estimators

Assume that the true F = Ftr governing data has a smooth density ftr,
positive on its support. The quantile function Qtr(y) = F−1

tr (y) has deriva-
tive qtr(y) = 1/ftr(Qtr(y)), sometimes called the quantile density function.

In this section we look at the relatives q̂a and f̂a following from Q̂a of the
previous section, with a = 0 leading to particularly interesting estimators.

First consider the quantile density. The Bayes estimator with the Dirich-
let process prior under squared error loss is, via results of Section 3, after
an exchange of derivative and mean operations,

q̂a(y) =

∫ ∞

0

be(y; aF0(x) + nFn(x), aF̄0(x) + nF̄n(x)) dx

+

∫ 0

−∞
be(1 − y; aF̄0(x) + nF̄n(x), aF0(x) + nFn(x)) dx.

The limiting non-informative case q̂0 = Q̂′
0 can be written in several reveal-

ing ways, from (9) or as a limit of the above;

q̂0(y) =
n∑

i=1

(
n− 1

i− 1

)
yi−1(1 − y)n−i

( i− 1

y
− n− i

1 − y

)
x(i)

=

∫ x(n)

x(1)

be(y, nFn(x), nF̄n(x)) dx =
n−1∑

i=1

(x(i+1) − x(i))be(y, i, n− i).

Note that there is no smoothing parameter in this construction; the inher-
ent smoothing comes ‘for free’ through the limiting Dirichlet process prior
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argument. The level of this inherent smoothing is about {y(1 − y)/n}1/2,
as per Remark 1 above.

We have devised Bayesian ways of estimating Q = F−1, and are free to
invert back to the F scale, finding in effect new estimators of the distribu-
tion function. Thus let F̂a(x) be the solution to x = Q̂a(y). It can be com-
puted from (8). This is not the same as the posterior mean or posterior me-
dian, but is a Bayes estimator in its own right, with loss function of the form

L(F, F̂ ) =
∫ 1

0
w(Q̂−Q)2 dy. It is noteworthy that F̂a is smooth and differ-

entiable in x, unlike the posterior mean function {aF0(x)+nFn(x)}/(a+n),

which has jumps at each data point. When a dominates n, F̂a is close to F0.
The case a = 0 is again of particular interest, with F̂0 climbing smoothly
from zero at x(1) to one at x(n), with an everywhere positive density over

this data range. The F̂0 may be considered a smoother default alternative
to the empirical distribution function Fn, for e.g. display purposes. It fol-
lows from theory of Section 7 that

√
n(F̂0−Fn) →p 0, so the two estimators

are close.
It is well known that distribution functions chosen from the Dirichlet

prior are discrete with probability one. Thus the random posterior quantile
process is also discrete. That the posterior mean of Q(y) happens to be a
smooth function of y is not a contradiction, however. We have somehow
‘gained smoothness’ by passing from F to Q and back to F again. This
should perhaps be viewed as mathematical happenstance; neither F nor Q
is smooth, but the posterior mean function of Q is.

Our efforts also lead to new nonparametric Bayesian density estimators.
We solved Q̂a(y) = x to reach the estimator F̂a(x), and its derivative f̂a(x)
is a Bayes estimator of the underlying data density ftr. The result is a
continuous bridge in a, from the prior guess f0 for a large to something
genuinely nonparametric and prior-independent for a = 0. One may con-
template devising methods for choosing a from data, smoothing between
prior and data, perhaps in empirical Bayesian fashions, or via a hyperprior.
Here we focus on the automatic density estimator f̂0, corresponding to the
non-informative prior.

From f̂0(x) = (Q̂−1
0 )′(x) we may write

f̂0(x) =
[n−1∑

i=1

(x(i+1) − x(i))be(F̂0(x); i, n− i)
]−1

, (11)

where, for each x, the equation Q̂0(y) = x is numerically solved for y to get

F̂0(x), for example using a Newton–Raphson method. From smoothness

properties of F̂0 noted above, one sees that f̂0(x) is strictly positive on the
exact data range [x(1), x(n)], with unit integral.
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The formula above for f̂0(x) is directly valid inside (x(1), x(n)). At the
end points some details reveal that

f̂0(x(1)) = 1/q̂0(0) = {(n− 1)(x(2) − x(1))}−1,

f̂0(x(n)) = 1/q̂0(1) = {(n− 1)(x(n) − x(n−1))}−1.

It is interesting and perhaps surprising that this nonparametric Bayesian
approach leads to such explicit advice about the behaviour of f near and
at the endpoints; estimation of densities in the tails is in general a difficult
problem with no clear favourite among frequentist proposals.

It is perhaps too adventurous to struggle for the abolition of all
histograms, replacing them instead with the automatic Bayesian non-
informative density estimator f̂0 of (11). But as Figure 2 illustrates, it can
be a successful data descriptor, with better smoothness properties than the
histogram, and without the need for selecting smoothing parameters. It
also has the pleasant property that

∫
xf̂0(x) dx is precisely equal to the

data mean x̄. When compared to traditional kernel methods it will be
seen to smooth less, actually with an amount corresponding to a locally
varying bandwidth of size O(n−1/2), as opposed to the traditional optimal
size O(n−1/5). The latter does assume two derivatives of the underlying
density, however, whereas the (11) estimator has been constructed directly
from the data, without any further smoothness assumptions.

5 The Lorenz curve and the Gini index

Quantile functions are used in many spheres of theoretical and applied
statistics. One such is that of econometric studies of income distributions,
where information is often quantified and compared in terms of the so-called
Lorenz curve (going back a hundred years, to Lorenz, 1905), along with
various summary measures, like the Gini index; see e.g. Aaberge (2001) and
Aaberge, Bjerve and Doksum (2005). This section considers nonparametric
Bayes inference for such curves and indices.

When the distribution F of data is supported on the positive halfline,
the Lorenz curve is defined as

L(y) =

∫ y

0

Q(u) du
/∫ 1

0

Q(u) du for 0 ≤ y ≤ 1.

The numerator is also equal to
∫ Q(y)

0
xdF (x), and the denominator is sim-

ply equal to the mean µ of the distribution. It is in general convex, and is
equal to the diagonal L(y) = y if and only if the underlying distribution is
concentrated in a single point (perfect equality of income).
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Figure 2 A histogram (with more cells than usual) over n = 100 data points from the
standard normal, along with the automatic density estimator of (11).

Bayesian inference can now be carried out for L, for example through
simulation of Q curves from the posterior distribution. A natural Bayes
estimator takes the form

L̂a(y) =

∫ y

0

Q̂a(u) du
/∫ 1

0

Q̂a(u) du,

stemming from keeping the weighted squared error loss function for Q,
transforming the solution to L scale. Particularly interesting is the non-
informative limit version

L̂0(y) =

∫ y
0 Q̂0(u) du
∫ 1

0
Q̂0(u) du

=
{
n−1

n∑

i=1

Be(y; i, n− i+1)x(i)

}/
x̄ for 0 ≤ y ≤ 1.

The Gini index is a measure of closeness of the L curve to the diagonal,

i.e. the egalitarian case, and is defined as G = 2
∫ 1

0
{y − L(y)} dy. With a

Dirichlet prior for F and any weighted integrated squared error loss function

for the quantile function, we get a Bayes estimator Ĝa = 2
∫ 1

0
{y−L̂a(y)} dy.

The non-informative limiting version is of particular interest. Some algebra

shows that Ĝ0 = 2
∫ 1

0
{y − L̂0(y)} dy may be expressed as

Ĝ0 = 1 − 2
1

n

n∑

i=1

(
1 − i

n+ 1

)x(i)

x̄
= 2

1

n

n∑

i=1

i

n+ 1

x(i)

x̄
− 1.
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Its value may be supplemented with a credibility interval via posterior
simulation of L curves.

6 Doksum’s shift and Parzen’s comparison

Assume data X ′
1, . . . , X

′
m come from the distribution G, independently of

X1, . . . , Xn from F . When inspecting such data there are various options
for portraying, characterising and testing for differences between the two
distributions.

Doksum (1974a) introduced the so-called shift function
D(x) = G−1(F (x)) − x.

Its essential property is that X + D(X) has the same distribution as X ′.
The shift function has a particularly useful role in situations with control
and treatment groups. If the distributions of X and X ′ differ only in
location, for example, then D(x) is constant; if on the other hand G is a
location-and-scale translation of F , then D(x) is linear. Doksum (1974a)

studied the natural nonparametric estimator D̃(x) = G−1
m (Fn(x)) − x, in

terms of the empirical cumulative distributions Fn and Gm; see Section 7.3
below for its key large-sample properties. Here we describe how Bayesian
inference can be carried out, starting with independent priors F ∼ Dir(aF0)
and G ∼ Dir(bG0).

The posterior distribution at a fixed x is
Km,n(t) = Pr{G−1(F (x)) − x ≤ t | data} = Pr{F (x) ≤ G(x + t) | data},

which can be evaluated via numerical integration, using the Beta distribu-
tions involved. For the non-informative case,
Km,n(t) = Pr{Beta(nFn(x), nF̄n(x)) ≤ Beta(mGm(x+ t),mḠm(x+ t))}

=

∫ 1

0

Be(g, nFn(x), nF̄n(x))be(g,mGm(x + t),mḠm(x+ t)) dg.

This can be used to compute the posterior median estimatorK−1
m,n(

1
2 ), along

with a pointwise credibility band, say [K−1
m,n(0.05),K−1

m,n(0.95)]. It follows
from results of Section 7 that such a band will have frequentist coverage
level converging to the required 90%, for each x, when the sample sizes
grow.

We also provide formulae for the posterior mean and variance, for the
non-informative case. These are found by first conditioning on F , viz.

E{G−1(F (x)) | data, F} =

m∑

j=1

(
m− 1

j − 1

)
F (x)j−1F̄ (x)m−jx′(j),

E{G−1(F (x))2 | data, F} =

m∑

j=1

(
m− 1

j − 1

)
F (x)j−1F̄ (x)m−j(x′(j))

2.
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Using Beta moment formulae this gives the Bayes estimator D̂0(x) as

m∑

j=1

(
m− 1

j − 1

)
Γ(n)

Γ(nFn)Γ(nF̄n)

Γ(nFn + j − 1)Γ(nF̄n +m− j)

Γ(n+m− 1)
x′(j) − x,

writing Fn and F̄n for Fn(x) and F̄n(x), while the posterior variance V̂0(x)
can be found as

m∑

j=1

(
m− 1

j − 1

)
Γ(n)

Γ(nFn)Γ(nF̄n)

Γ(nFn + j − 1)Γ(nF̄n +m− j)

Γ(n+m− 1)
(x′(j))

2

−{D̂0(x) + x}2.

The theory of Section 7 guarantees that the band D̂0(x) ± 1.645 V̂0(x)
1/2

has pointwise coverage level converging to 90%, for example, as the sample
sizes increase.
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Figure 3 For the 65 guinea pigs in the control group and the 60 in the treatment group,
we display the Bayes estimator [full line] of the shift function associated with the two
survival distributions, alongside Doksum’s sample estimator [dotted line]. Also given is
the approximate pointwise 90% credibility band.

Doksum (1974a) illustrated his shift function using survival data of
guinea pigs in Bjerkedal’s (1960) study of the effect of virulent tubercle
bacilli, with 65 in the control group and 60 in the treatment group, the
latter receiving a dose of such bacilli. Here we re-analyse Bjerkedal and
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Doksum’s data, with Figure 3 displaying the Bayes estimate D̂0(x), seen
there to be quite close to Doksum’s direct estimate. Also displayed is the
approximate 90% pointwise confidence band. The figure illustrates dra-
matically that the weaker pigs (those who tend to die early) will tend to
have longer lives with the treatment, while the stronger pigs (those whose
lives tend to be long) are made drastically weaker, i.e. their life lengths
will decrease. This analysis agrees with conclusions in Doksum (1974a).
For example, pigs with life expectancy around 500 days can expect to live
around 200 days less if receiving the virulent tubercle bacilli in question.

Parzen (1979, 1982, 2002) has repeatedly advocated analysing and es-
timating the function π(y) = G(F−1(y)), which he terms the comparison
distribution. This function, or estimates thereof, may be plotted against
the identity function πid(y) = y on the unit interval; equality of the two
distributions is equivalent to π = πid. See also Newton’s interview with
Parzen (2002, p. 372–374). We now consider nonparametric Bayesian esti-
mation of the Parzen curve via independent Dirichlet process priors on F
and G, with parameters respectively aF0 and bG0.

A formula for the posterior mean π̂(y) may be derived as follows. Let

Ĝm = w′
mG0 + (1−w′

m)Gm be the posterior mean of G, in terms of w′
m =

b/(b+m) and the empirical distribution Gm for the m data points. Then

π̂(y) is the mean of E{G(Q(y)) |Q, data}, i.e. the mean of Ĝm(Q(y)) given
data, leading to

π̂(y) = w′
mE{G0(Q(y)) | data} + (1 − w′

m)E{Gm(Q(y)) | data}

= w′
m

∫ 1

0

Pr{G0(Q(y)) > z | data} dz

+ (1 − w′
m)

1

m

m∑

j=1

Pr{x′j ≤ Q(y) | data}

= w′
m

∫ 1

0

Be(y; (aF0 + nFn)(G−1
0 (z)), (aF̄0 + nF̄n)(G

−1
0 (z))) dz

+ (1 − w′
m)

1

m

m∑

j=1

Be(y; (aF0 + nFn)(x
′
j−), (aF̄0 + nF̄n)(x

′
j−)),

where the second term is explicit and the first not difficult to compute
numerically. If there are no ties between the x′j and the xi points for the
two samples, (aF0 + nFn)(x

′
j−) is the same as (aF0 + nFn)(x′j). For the

non-informative case of a and b both going to zero, we have the particularly
appealing estimator

π̂0(y) =
1

m

m∑

j=1

Be(y;nFn(x′j−), nF̄n(x
′
j−)).
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Its derivative, which is an estimate of what Parzen terms the comparison
density g(F−1(y))/f(F−1(y)), provided the densities g = G′ and f = F ′

exist, is quite simply (1/m)
∑m
j=1 be(y;nFn(x

′
j−), nF̄n(x

′
j−)). The poste-

rior variance of π(y) may also be calculated with some further efforts. For
the non-informative case of a = b = 0, we find

Var{π(y) | data} =
1

m+ 1
π̂0(y){1 − π̂0(y)}

+
m

m+ 1

{ 1

m2

∑

j,k

Be(y;nFn(x′j,k−), nF̄n(x
′
j,k−)) − π̂0(y)

2
}
,

in which x′j,k = max(x′j , x
′
k).

It is seen that π̂0(y) provides a smoother alternative to the direct non-
parametric Parzen estimator. The theory of Section 7 implies that the two
estimators are asymptotically equivalent, and also that the simple credi-
bility band π̂0(y) ± 1.96 ŝd(y), with ŝd(y) the posterior standard deviation
computed as above, is a band reaching 95% level coverage, in both the
frequentist and Bayesian settings, as sample sizes grow.

Laake, Laake and Aaberge (1985) discussed relations between hospital-
isation, as a measure of morbidity, and mortality. The patient material
consisted of 367 consecutive admissions at hospitals in Oslo in 1980 (176
males and 191 females), while data on mortality in Oslo consisted of 6140
deaths (2989 males and 3151 females). Letting F be the distribution of age
at hospitalisation and G the distribution of age at death, Laake, Laake and
Aaberge suggested studying Λ(y) = G−1(y)−F−1(y), a direct comparison
of the two quantile functions. It is a close cousin of the Doksum curve in
that Λ(F (x)) = D(x).

We have re-analysed the data of Laake, Laake and Aaberge (1985, Ta-

ble 1) using the Bayes estimator Λ̂(y) = Q̂G(y)− Q̂F (y), with components
as in (9). For our illustration, we ‘made’ continuous data from their ta-
ble, by distributing the number of observations in question evenly over the
required age interval; thus 12 and 17 observed hospitalised women in the
age groups 50–54 and 55–59 gave rise to 12 and 17 Xs spread uniformly
on the intervals [49.5, 54.5] and [54.5, 59.5], and so on. Figure 4 presents
these curves, for women and for men separately, along with confidence band
Λ̂(y)± 1.96 ŝd(y), where ŝd(y)2 is the sum of the two variance estimates in-
volved, computed as in (10). It follows from the theory of Section 7 that
this band indeed has the intended approximate 95% confidence level at each
quantile value y. The analysis shows that to the first order of approxima-
tion, and apart from noticeable deviations for the very young and the very
old, age at hospitalisation and age at death are similar, with a constant
shift between them, about seven years for women and six years for men.
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Figure 4 Estimated quantile difference G−1(y)−F−1(y) between age at death distribu-
tion and age at hospitalisation distribution, along with pointwise 95% confidence bands,
for women (left) and for men (right).

This interpretation is in essential agreement with conclusions reached by
Laake, Laake and Aaberge.

7 Large-sample analysis

In this section we discuss large-sample behaviour of the estimation schemes
we have developed, from both the Bayesian and frequentist perspectives.

7.1 Nonparametric Bernshtĕın–von Mises theorems

To set results reached below in perspective, it is useful first to recall
some well-known results about the limiting behaviour of maximum like-
lihood and Bayes estimators, as well as about the posterior distribu-
tion, valid for general parametric models. Specifically, assume i.i.d. data
Z1, . . . , Zn follow a parametric density g(z, θ), with θtr the true parame-

ter, and let θ̂ml and θ̂B be the maximum likelihood and posterior mean
Bayes estimator under a suitable prior π(dθ). Then, under mild regu-
larity conditions, discussed e.g. in Bickel and Doksum (2001, Ch. 5–6),

four notable results are valid: (i)
√
n(θ̂ml − θtr) →d N(0, J(θtr)

−1); (ii)
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√
n(θ̂B − θ̂ml) →p 0; (iii) with probability one, the posterior distribution is

such that
√
n(θ − θ̂B) | data →d N(0, J(θtr)

−1). Here J(θ) is the informa-
tion matrix of the model, see e.g. Bickel and Doksum (2001, Ch. 6). With a

consistent estimator Ĵ of this matrix one may compute the approximation
N(θ̂ml, n

−1Ĵ) to the posterior distribution of θ. Result (iv) is that this sim-

ple method is first-order asymptotically correct, i.e. Ĵ−1/2(θ − θ̂ml) | data
goes a.s. to N(0, I), the implication being that one may approximate the
posterior distribution without carrying out the Bayesian updating cal-
culations as such. Results of the (iii) and (iv) variety are often called
Bernshtĕın–von Mises theorems; see e.g. LeCam and Yang (1990, Ch. 7).
Note that Bayes and maximum likelihood estimators have the same limit
distribution, regardless also of the prior one starts out with, as a conse-
quence of (ii).

Such statements and results become more complicated in non- and semi-
parametric models, and sometimes do not hold. There are situation when
Bayes solutions do not match the natural frequentist estimators, and other
situations where the posterior distribution goes awry, or have a limit dif-
ferent from that indicated by Bernshtĕın–von Mises heuristics; see e.g. Di-
aconis and Freedman (1986a, 1986b), Hjort (1986, 1996, 2003). For the
present case of Dirichlet process priors there are no such surprises, how-
ever, as long as inference about F is concerned, as one may prove the
following. Here the role of the maximum likelihood estimator is played
by the empirical distribution Fn, with Bayes estimator (posterior mean)

equal to F̃n = (a/(a + n))F0 + (n/(a + n))Fn. Below, W 0 is a Brownian
bridge, i.e. a Gaußian zero-mean process on [0, 1] with covariance structure
t1(1 − t2) for t ≤ t2.

Proposition 3. Assume the Dirichlet process with parameter aF0 is used
for the distribution of i.i.d. data X1, X2, . . ., and assume that the real gen-
erating mechanism for these observations is a distribution Ftr. Then (i)
the process

√
n{Fn(t) − Ftr(t)} converges to W 0(Ftr(t)); (ii) the differ-

ence
√
n(F̃n − Fn) goes to zero; and (iii) the posterior distribution process

Vn(t) =
√
n{F (t) − F̃n(t)} | data also converges, with probability one, to

W 0(Ftr(t)). The convergence is w.r.t. the Skorokhod topology in the space
of right-continuous functions with left hand limits.

Proof. The first result is classic and may be found in e.g. Billingsley
(1968, Ch. 4). The second statement is immediate from the explicit rep-

resentation of F̃n. Proving the third involves showing finite-dimensional
convergence in distribution and tightness, as per the theory of convergence
of probability measures laid out in e.g. Billingsley (1968).

To show finite-dimensional convergence we start with t1 < · · · < tm
and work with differences ∆Vn,j =

√
n{F (tj−1, tj ] − F̃n(tj−1, tj ]}. The
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vector of Dj = F (tj−1, tj ] has a Dirichlet distribution with parameters

(n + a)F̃n(tj−1, tj]. Also, on a set Ω of probability one, both Fn and

F̃n tend uniformly to Ftr, by the Glivenko–Cantelli theorem. Finishing
this part of the proof is therefore more or less equivalent to the following
lemma: If (U1, . . . , Um) is a Dirichlet distributed vector with parameters
(kp1, . . . , kpm), where p1 + · · · + pm = 1, then the vector with compo-
nents (k + 1)1/2(Uj − pj) tends with growing k to a multinormal vector
with mean zero and ‘multinomial’ covariance structure pi(δi,j−pj), writing
δi,j = I{i=j}. Proving this can be done via Scheffé’s theorem on convergence
of densities, or more easily via the representation Uj = Gj/(G1 + · · ·+Gm)
in terms of independent Gj ∼ Gamma(kpj, 1), and for which one quickly
establishes that k1/2(Gj/k − pj) tends to a normal (0, pj).

It remains to demonstrate the almost sure tightness of Vn. For this
purpose, take first (U, V,W ) to be Dirichlet with parameter (kp, kq, kr),
where p+ q + r = 1. Then some fairly long calculations show that

E(U − p)2(V − q)2 =
pq

(k + 1)(k + 2)(k + 3)
{k − (k − 6)(p+ q − 3pq)}.

Applying this to the posterior process, writing Vn(s, t] = Vn(t)−Vn(s) and

so on, shows that E{Vn(s, t]2Vn(t, u]2 | data} is bounded by 3F̃n(s, t]F̃n(t, u],
with the right hand side converging, under Ω, towards a quantity bounded
by 3Ftr(s, u]

2. Tightness now follows from the proof of Theorem 15.6 (but
not quite by Theorem 15.6 itself) in Billingsley (1968). �

The result above was also in essence proved in Hjort (1991), and is
also related to large-sample studies of the Bayesian bootstrap, see e.g. Lo
(1987). We also note that (n + a + 1)1/2 is a somewhat superior scaling,
compared to

√
n, giving exactly matched first and second moments for the

posterior process.
We further note that the above conclusions hold also when the strength

parameter a of the prior is allowed to grow with n, as long as a/
√
n → 0.

In the more drastic case when a = cn, say, the frequentist and Bayesian
schemes do not agree asymptotically, as F̃n goes a.s. to F∞ = (c/(c+1))F0+
(1/(c+ 1))Ftr. But the arguments regarding (iii) still go through, showing

that the posterior distribution of (n+ a+ 1)1/2(F − F̃n) tends a.s. to that
of W 0(F∞(·)).

7.2 Behaviour of the posterior quantile process

Here we aim at obtaining results as above for the quantile processes in-
volved. For the quantiles, the natural frequentist estimator is F−1

n , while

several Bayesian schemes may be considered, including F̃−1
n and the poste-

rior mean function Q̂a(y) and its natural non-informative limit Q̂0(y).
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Proposition 4. Assume, in addition to conditions listed in Proposition 3,
that the Ftr distribution has a positive and continuous density ftr, and let
Qtr(y) and qtr(y) = 1/ftr(Qtr(y)) be the true quantile and quantile density
functions. Then (i) the process

√
n{F−1

n (y)−Qtr(y)} tends to qtr(y)W
0(y);

(ii) the difference
√
n{F−1

n (y) − F̃−1
n (y)} goes to zero in probability; and

(iii) the posterior distribution process
√
n{Q(y)− F̃−1

n (y)} |data converges
a.s. to the same limit qtr(y)W

0(y). The convergence takes place in each
of the spaces D[ε, 1− ε] of left-continuous functions with right-hand limits,
equipped with the Skorokhod topology, where ε ∈ (0, 1

2 ).

Proof. The first result is again classic, see e.g. Shorack and Wellner
(1986, Ch. 3). It is typically proven by tending to the uniform case first,
involving say F−1

n,unif(y), and then applying the delta method using the rep-

resentation F−1
n (y) = Qtr(F

−1
n,unif(y)). Results (ii) and (iii) may be proven

in different ways, but the apparently simplest route is via the method de-
vised by Doss and Gill (1992), which acts as a functional delta method
operating on the inverse functional F 7→ Q = F−1. We saw above that√
n{F (t) − F̃n(t)} | data tends a.s. to V (t) = W 0(Ftr(t)). From a slight

extension of Doss and Gill’s Theorem 2, employing the set Ω of proba-
bility 1 encountered in the previous proposition, follows that

√
n{Q(y) −

F̂−1
n (y)} | data must tend a.s. to the process −V (Qtr(y))/ftr(Qtr(y)), which

is the same as −qtr(y)W 0(y). This proves (iii), since by symmetry W 0 and
−W 0 have identical distributions. Statement (ii) follows similarly from
Doss and Gill (op. cit., Theorem 1), again with the slight extension to se-
cure an ‘almost sure’ version rather than an ‘in probability’ version, since
the process

√
n(Fn − F̃n) has the zero process as its limit. �

Remark 2. We also note that
√
n(Q̂a − Q̂0) →p 0 follows, by the same

type of arguments, starting from
√
n(F̃n−Fn) →p 0. In particular, different

Bayesians using different Dirichlet process priors will all agree asymptot-
ically. Also, the two estimators Q̂0 (the Bernshtĕın smoothed quantiles)
and F−1

n (the direct quantiles) become equivalent for large samples, in the

sense of
√
n(Q̂0 − F−1

n ) →p 0. This also follows from work of Sheather
and Marron (1990) about kernel smoothing of quantile functions; see also
Cheng (1995).

An important consequence of the proposition is that the posterior vari-
ance of

√
n(Q−F−1

n ) tends to the variance of qtrW
0. This is valid for each

Dirichlet strength parameter a, as n→ ∞. For a = 0, n times the posterior
variance V̂0(y) of (10) converges a.s. to qtr(y)

2y(1 − y). This fact, which
may also be proved via results of Conti (2004), is among the ingredients

necessary to secure that the natural confidence bands Q̂0±z0 V̂ 1/2
0 have the
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correct limiting coverage level. This comment also applies to constructions
in the following subsection.

7.3 Doksum’s shift and Parzen’s comparison

Here we first state results for the natural nonparametric estimators D̃(x)
and π̃(y) of Doksum’s shift function D(x) and Parzen’s comparison dis-
tribution, respectively, before we go on to describe the behaviour of their
Bayesian cousins, introduced in Section 6. For data X1, . . . , Xn from Ftr

and X ′
1, . . . , X

′
m from Gtr, let again Fn and Gm be the empirical distri-

bution functions. We write N = n + m and assume that n/N → c and
m/N → 1 − c as the sample sizes increase. Here Ftr and Gtr are the
real underlying distributions, for which we used Dirichlet process priors
Dir(aF0) and Dir(bG0) in Section 6.

The Doksum estimator is D̃(x) = G−1
m (Fn(x)) − x. Some analysis,

involving the frequentist parts of Propositions 3 and 4, shows that the
N1/2{D̃(x) −Dtr(x)} process tends to

(G−1
tr )′(Ftr(x)) {(1 − c)−1/2W 0

1 (Ftr(x)) + c−1/2W 0
2 (Ftr(x))}

= {c(1 − c)}−1/2(G−1
tr )′(Ftr(x))W

0(Ftr(x)), (12)

where Dtr(x) = G−1
tr (Ftr(x)) − x and W 0

1 and W 0
2 are two independent

Brownian bridges; these combine as indicated into one such Brownian
bridge W 0. This result was given in Doksum (1974a), and underlies vari-
ous methods for obtaining pointwise and simultaneous confidence bands for
D(x); see also Doksum and Sievers (1976).

Arguments used to reach the limit result above may now be repeated
mutatis mutandis, in combination with the Bernshtĕın–von Mises results in
Propositions 3–4, to reach

N1/2{D(x) − D̃(x)} | data →d ZD(x), (13)

say, using ZD to denote the limit process in (12). The convergence takes
place in each Skorokhod spaceD[a, b] over which the underlying densities ftr
and gtr are positive, and holds with probability 1, i.e. for almost all sample
sequences. Result (13) is valid for the informative case with a and b positive
(but fixed) as well as for the limiting case where F | data ∼ Dir(nFn) and

G | data ∼ Dir(mGm). It is also valid with D̃(x) replaced by either the

posterior mean D̂0(x) or posterior median K−1
m,n(

1
2 ) estimators discussed in

Section 6.
Similarly, the nonparametric Parzen estimator is π̃(y) = Gm(F−1

n (y)),
and a decomposition into two processes shows with some analysis that
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N1/2{π̃(y) − πtr(y)} tends to the process

ZP (y) =
1

(1 − c)1/2
W 0

1 (Gtr(F
−1
tr (y))) +

1

c1/2
gtr(F

−1
tr (y))

ftr(F
−1
tr (y))

W 2
0 (y)

= (1 − c)−1/2W 0
1 (πtr(y)) + c−1/2π′

tr(y)W
0
2 (y), (14)

with πtr(y) = Gtr(F
−1
tr (y)). For the case Ftr = Gtr, one has πtr(y) = y, and

the limit result translates to the quite simple (mn/N)1/2(π̃ − π) →d W
0.

This provides an easy and informative way of checking and testing prox-
imity of two distributions via the π̃ plot. “Why aren’t people celebrat-
ing these facts?”, as says Parzen in the interview with Newton (2002,
p. 373). Similarly worthy of celebrations, in the Bayesian camp, should
be the fact that (14) has a sister parallel in the present context, namely
that N1/2{π(y) − π̂(y)} |data tends to the same limit process as in (14).
Here π̂(y) can be the posterior median estimator or the posterior mean
estimator found in Section 6.

8 Quantile regression

Consider the regression situation where certain covariates (xi,1, . . . , xi,p)
t =

xi are available for individual i, thought to influence the distribution
of Yi. Assume that Yi = βtxi + σεi, where β = (β1, . . . , βp)

t con-
tains unknown regression parameters and ε1, . . . , εn are independent er-
ror terms, coming from a scaled residual distribution F . Thus a prospec-
tive observation Y , with covariate information x, will have distribution
F (t |x) = F ((t − βtx)/σ), conditional on (β, σ, F ). Its quantile function
becomes Q(u |x) = βtx+ σQ(u), writing again Q for F−1.

The problem to be discussed now is that of Bayesian inference for
Q(u |x), starting out with a prior for (β, σ, F ). Take (β, σ) and F to be
independent, with a prior density π(β, σ) and a Dir(aF0) prior for F , where
the prior guess F0 has a density f0. The posterior distribution of (β, σ, F )
may then be described as follows. First, the posterior density of β can be
shown to be

π(β, σ |data) = const. π(β, σ)
∏

distinct

f0((yi − βtxi)/σ),

where the product is taken over distinct values of yi − βtxi. This may be
shown via techniques in Hjort (1986). Secondly, given data and (β, σ), Q
acts as the posterior quantile process from a Dirichlet F with parameter
aF0 +

∑n
i=1 δ((yi − βtxi)/σ), with δ(z) denoting unit point mass at z;

in particular, expressions for Q̂a(u |β, σ) = E{Q(u) |β, σ, data} may be
written down using the results of earlier sections.
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In combination, this gives for each x0 an estimator for Q(u |x0) of the
form

Q̂a(u |x0) = E{βtx0 + σQ(u) | data}
= β̂tx0 + E{σQ̂a(u |β, σ) | data}

= β̂tx0 +

∫
σQ̂a(y |β, σ)π(β, σ | data) dβ dσ,

where β̂ is the posterior mean of β. For the particular case of a tending to
zero, this gives

Q̂0(u |x0) = β̂tx0 +

n∑

i=1

(
n− 1

i− 1

)
ui−1(1 − u)n−i ei.

Here ei =
∫
(y − βtx)(i)π(β | data) dβ, where, for each β, (y − βtx)(i) is the

result of sorting the n values of yj − βtxj and then finding the ith ranked
one. The simplest implementation might be to draw a large number of βs
from the posterior density, and then for each of these sort the values of
yj − βtxj . Averaging over all simulations then gives ei as the posterior

mean of (y − βtx)(i), for each i = 1, . . . , n, and in their turn Q̂0(u |x0) for
all x0.

One may also give a separate recipe for making inference for Q, the
residual quantile process. Other Bayesian approaches to quantile regression
are considered in Kottas and Gelfand (2001) and Hjort and Walker (2006).

9 Concluding remarks

In our final section we offer some concluding comments, some of which
might point to further problems of interest.

Other priors. There are of course other possibilities for quantifying
prior opinions of quantile functions. One may e.g. start with a prior more
general than or different from the Dirichlet process for F , like Doksum’s
(1974b) neutral to the right processes, or mixtures of Dirichlet processes,
and attempt to reach results for the consequent quantile processesQ = F−1.
Another and more direct approach is via the versatile class of quantile
pyramid processes developed in Hjort and Walker (2006). These work by
first drawing the median Q(1

2 ) from a certain distribution; then the two
other quartiles Q(1

4 ) and Q(3
4 ) given the median; then the three remaining

octiles Q( j8 ) for j = 1, 3, 5, 7; and so on. The Dirichlet process can actually
be seen to be a special case of these pyramid constructions. While the
treatment in Hjort and Walker leads to recipes which can handle the prior to
posterior updating task for any quantile pyramid, this relies on simulation
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techniques of the McMC variety. Part of the contribution of the present
chapter is that explicit formulae and characterisations are developed, partly
obviating the need for such simulation work, for the particular case of the
Dirichlet processes.

An invariance property. Our canonical Bayes estimator (9) was derived
by starting with a Dir(aF0) prior for F and then letting a go to zero. Ex-
tending the horizon beyond the simple i.i.d. setting, suppose for illustration
that data are assumed to be of the form Xi = ξ + σZi, with Zi having dis-
tribution G. One may then give a semiparametric prior for the distribution
F (t) = G((t − ξ)/σ) of Xi, with a prior for (ξ, σ) and an independent
Dir(aG0) prior for G. This leads to a more complicated posterior distribu-
tion for Q(y) = ξ+σQG(y), say. But since G given data and the parameters
is a Dirichlet with parameter aG0+

∑n
i=1 δ((xi−µ)/σ), results of Sections 2

and 3 give formulae for E{Q(y) |data, ξ, σ}. For the non-informative case
of a = 0,

E{Q(y) |data, ξ, σ} = ξ + σ
n∑

i=1

(
n− 1

i− 1

)
yi−1(1 − y)n−1x(i) − ξ

σ
.

But the extra parameters cancel out, showing that the posterior mean is
again the (9) estimator, which therefore is the limiting Bayes rule for rather
wider classes of priors than only the pure Dirichlet. The argument goes
through for each monotone transformation Xi = aθ(Zi) with a prior for
(θ,G).

In situations where the Lorenz curve and Gini index are of interest,
for example, one might think of data as Xi = θZi, with separate priors
for θ and the distribution G of Zi. The above argument shows that the
θ information is not relevant for Q(y) = θQG(y), when a is small, thus

lending further support to the estimators L̂0 and Ĝ0 of Section 5.

Alternative proofs. There are other venues of interest towards proving
Proposition 4 or other versions thereof. Johnson and Sim (2006) give a
different proof of the large-sample joint normality of a finite number of
posterior quantiles, including asymptotic expansions. Conti (2004) has in-
dependently of the present authors reached results for the posterior process√
n(Q−F̃−1

n ), partly using strong Hunga̋rian representations. His approach
gives results that are more informative than Proposition 4 concerning the
boundaries, i.e. for y close to 0 and y close to 1, where our direct method
works best on D[ε, 1 − ε] for a fixed small ε. Another angle is to exploit
approximations to the Beta and Dirichlet distributions associated with the
random F and turn these around to good approximations for Q. A third
possibility of interest is to express the random posterior quantile process
as Q(y) = x(N(y)), with N(y) the random process described in Section 2.4,
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climbing from 1 at zero to n at one. One may show that
√
n{N(y)/n− y}

tends to a Brownian bridge, and couple this with Q(y) = Qn(N(y)/n) to
give yet another proof of the Bernshtĕın–von Mises part of Proposition 4.

Simultaneous confidence bands. In our illustrations we focussed on con-
fidence bands with correct pointwise coverage. One may also construct
simultaneous bands for the different situations, with some more work. For
the Doksum shift function, in the frequentist setting, such simultaneous
bands were constructed in Doksum (1974a), Doksum and Sieverts (1976)
and Switzer (1976). To match this in the Bayesian setting, one might sim-
ulate a large number of D(x) curves from the posterior process, and note

the quantiles of the distribution of simulated max[a,b] |D(x)− D̂0(x)| across
some interval [a, b] of interest. Another method, using result (13), is to note

that N1/2 maxa≤x≤b |D(x) − D̂0(x)| | data tends in distribution to

max
a≤x≤b

|ZD(x)| =
1

{c(1 − c)}1/2
max

F (a)≤v≤F (b)

|W 0(v)|
gtr(G

−1
tr (v))

.

With appropriate consistent estimation of the denumerator one might sim-
ulate the required quantile of the limiting distribution. Other bands evolve
with alternative weight functions.

Further quantilian quantities. There are yet other statistical functions
or parameters of interest that depend on quantile functions and that can
be worked with using methods from our chapter. One such quantity is

the total time on test statistic T (u) =
∫ Q(u)

0
{1 − F (x)} dx. Doksum and

James (2004) show how inference for T may be carried out via Bayesian
bootstraps.

More informative priors for two-sample problems. In situations where
the Doksum band contains a horizontal line it indicates that the shift func-
tion is nearly constant, which corresponds to a location translation from
F to G, say G(t) = F (t − δ). For the Doksum–Bjerkedal data analysed in
Figure 3 the band nearly contains a linear curve, which indicates a location-
and-scale translation, say G(t) = F ((t− δ)/τ). The present point is that it
is fruitful to build Bayesian prior models for such scenarios, linking F and
G together, as opposed to simply assuming prior independence of F and G.
One version is to take F ∼ Dir(aF0) and then G(t) = F ((t − δ)/τ) with a
prior for (δ, τ). This leads to fruitful posterior models for (F, δ, τ).

Appendix: Various proofs

Relation between Beta cumulatives. Let be(·; a, b) and Be(·; a, b) denote
the density and cumulative distribution of a Beta variable with parameters
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(a, b). Then, by partial integration, for b > 1,

Be(c; a, b)−Be(c; a+ 1, b− 1) =
be(c; a+ 1, b)

a+ b
=

be(1 − c; b, a+ 1)

a+ b
. (A1)

Proof of Proposition 1. There are several ways in which to prove this,
including analysis via Taylor type expansions of the (4) probabilities and
their sum; see also Conti (2004). Here we briefly outline another and more
probabilistic argument. The idea is to decompose the posterior distribution
of F in two parts, corresponding to jumps D1, . . . , Dn at the data points
and a total probability E = F (IR−{x1, . . . , xn}) representing all increments
between the data points. Thus

F (t) =

n∑

i=1

DiI{x(i) ≤ t} +

n∑

i=1

EiI{x(i) ≤ t} = F̃ (t) + F ∗(t),

say, with Ei the part of E corresponding to the window (x(i−1), x(i)) be-
tween data points. The point here is that (D1, . . . , Dn, E) has a Dirichlet
(1, . . . , 1, a) distribution, with E becoming small in size as n increases. In

fact, E ≤ a/
√
n with probability at least 1 − 1/

√
n. Thus F = F̃ + F ∗

with F − F̃ ≤ a/
√
n, with high probability, and Q = F−1 must with a high

probability be close to Q̃ = F̃−1. But the latter has all its jumps exactly
situated at the data points.

Proof of Proposition 2. We first recall that for any cumulative distribu-
tion function H on the real line,∫ ∞

0

xdH(x) =

∫ ∞

0

{1 −H(x)} dx,

∫ 0

−∞
xdH(x) = −

∫ 0

−∞
H(x) dx.

These results can be shown using partial integration and the Fubini theo-
rem, and hold in the sense that finiteness of one integral implies finiteness
of the sister integral, and vice versa. These formulae are what is being used
when we in Section 3 preferred formula (8) to (7).

With the above formulae and characterisations we learn that the fi-
nite existence of the posterior mean of Q(y) hinges on the finiteness of
the extreme parts

∫∞
c Be(y; aF0(x) + n, aF̄0(x)) dx, for c ≥ x(n), and∫ b

−∞ Be(1−y; aF̄0(x)+n, aF0(x)) dx, for b ≤ x(1). Using Γ(v) = Γ(v+1)/v
the first integral may be expressed as∫ ∞

c

Γ(a+ n)aF̄0(x)

Γ(aF0(x) + n)Γ(aF̄0(x) + 1)

[∫ y

0

uaF0(x)+n−1(1 − u)aF̄0(x)−1 du
]
dx,

which is of the form
∫∞
c aF̄0(x)g(x) dx for a bounded function g; hence

this the integral is finite if and only if
∫∞
c

{1− F0(x)} dx is finite. We may

similarly show that the second integral is finite if and only if
∫ b
−∞ F0(x) dx

is finite. These arguments are valid for any n, also for the no-sample prior
case of n = 0. This proves the proposition.
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Chapter 24

ASYMPTOTIC DISTRIBUTION THEORY OF EMPIRICAL

RANK-DEPENDENT MEASURES OF INEQUALITY

Rolf Aaberge

Research Department
Statistics Norway, Oslo, NORWAY

E-mail: rolf.aaberge@ssb.no

A major aim of most income distribution studies is to make comparisons
of income inequality across time for a given country and/or compare
and rank different countries according to the level of income inequal-
ity. However, most of these studies lack information on sampling errors,
which makes it difficult to judge the significance of the attained rank-
ings. This chapter derives the asymptotic properties of the empirical
rank-dependent family of inequality measures. A favorable feature of
this family of inequality measures is that it includes the Gini coeffi-
cients, and that any member of this family can be given an explicit and
simple expression in terms of the Lorenz curve. By relying on a result
of Doksum (1974), it is easily demonstrated that the empirical Lorenz
curve converges to a Gaussian process. This result forms the basis of the
derivation of the asymptotic properties of the empirical rank-dependent
measures of inequality.

Key words: Gini coefficient; Lorenz curve; Rank-dependent measures
of inequality; Sampling errors.

1 Introduction

The standard practice in empirical analyses of income distributions is to
make separate comparisons of the overall level of income (the size of the
cake) and the distribution of income shares (division of the cake), and to
use the Lorenz curve as a basis for analysing the distribution of income
shares. [See e.g. Atkinson, Rainwater, and Smeeding (1995) who make
cross-country comparisons of Lorenz curves allowing for differences between
countries in level of income and Lambert (1993) for a discussion of applying

495
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Lorenz dominance criteria as basis for evaluating distributional effects of
tax reforms.] By displaying the deviation of each individual income share
from the income share that corresponds to perfect equality, the Lorenz
curve captures the essential descriptive features of the concept of inequal-
ity. [For a discussion of the normative aspects of Lorenz curve orderings,
see Kolm (1969, 1976a, 1976b), Atkinson (1970), Yaari (1987, 1988) and
Aaberge (2001).] When Lorenz curves do not intersect, it is universally
acknowledged that the higher Lorenz curve displays less inequality than
the lower Lorenz curve. This is due to the fact that the higher of two non-
intersecting Lorenz curves can be obtained from the lower Lorenz curve by
means of rank-preserving income transfers from richer to poorer individuals.
However, since observed Lorenz curves normally intersect weaker ranking
criteria than the dominance criterion of non-intersecting Lorenz curves are
required. In this case one may either search for weaker dominance criteria,
see e.g. Shorrocks and Foster (1978), Dardanoni and Lambert (1988), Lam-
bert (1993) and Aaberge (2000b), or one may apply summary measures of
inequality. The latter approach also offers a method for quantifying the
extent of inequality in income distributions, which may explain why nu-
merous alternative measures of inequality are introduced in the literature.
The most well-known and widely used measure of inequality is the Gini
coefficient, which is equal to twice the area between the Lorenz curve and
its equality reference. However, to get a broader picture of inequality than
what is captured by the Gini coefficient the use of alternative measures of
inequality is required. By making explicit use of the Lorenz curve Mehran
(1976), Donaldson and Weymark (1980,1983), Weymark (1981), Yitzhaki
(1983) and Aaberge (2000a, 2001) introduce various generalized Gini fam-
ilies of inequality measures. Moreover, Aaberge (2000a) demonstrates that
one of these families, called the Lorenz family of inequality measures, can
be considered as the moments of the Lorenz curve and thus provides a
complete characterization of the Lorenz curve. This means that the Lorenz
curve can be uniquely recovered from the knowledge of the corresponding
Lorenz measures of inequality, i.e. without loss of information examination
of inequality in an income distribution can be restricted to application of the
Lorenz measures of inequality. Note that a subclass of the extended Gini
family introduced by Donaldson and Weymark (1980,1983) is uniquely de-
termined by the Lorenz family of inequality measures. [See Aaberge 2000a
for a proof.] Since the different alternative generalized families of inequality
measures can be considered as subfamilies of Mehrans (1976) general family
of rank-dependent measures of inequality it appears useful to consider the
asymptotic properties of the empirical version of the general family of rank-
dependent measures of inequality rather than to restrict to the empirical
version of the Lorenz family of inequality measures. The plan of the paper
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is as follows. Section 2 provides formal definitions of the Lorenz curve and
the family of rank-dependent measures of inequality and the corresponding
non-parametric estimators. By relying on a result of Doksum (1974) it is
demonstrated in Section 3.1 that the empirical Lorenz curve (regarded as
a stochastic process) converges to a Gaussian process. This result forms
the basis of the derivation of the asymptotic properties of the empirical
rank-dependent measures of inequality that are presented in Section 3.2.

2 Definition and estimation of the Lorenz curve and

rank-dependent measures of inequality

Let X be an income variable with cumulative distribution function F and
mean µ. Let [0,∞〉 be the domain of F where F−1 is the left inverse of F
and F−1(0) ≡ 0. The Lorenz curve L for F is defined by

L(u) =
1

µ

∫ u

0

F−1(t)dt, 0 ≤ u ≤ 1.

Thus, the Lorenz curve L(u) shows the share of total income received by
the 100u per poorest of the population. By introducing the conditional
mean function H(·) defined by

H(u) = E
(
X |X ≤ F−1(u)

)
=

1

u

∫ u

0

F−1(t)dt, 0 ≤ u ≤ 1,

Aaberge (1982) found that the Lorenz curve can be written on the following
form

L(u) = u
H(u)

H(1)
0 ≤ u ≤ 1. (1)

Let X1, X2, . . . Xn be independent random variables with common distri-
bution function F and let be the corresponding empirical distribution func-
tion. Since the parametric form of F is not known, it is natural to use the
empirical distribution function Fn to estimate F and to use

Hn(u) =
1

u

∫ u

0

F−1
n (t)dt, 0 ≤ u ≤ 1

to estimate H(u), where F−1
n is the left inverse of Fn. Now replacing H(u)

by Hn(u) in the expression (1) for L(u), we get the empirical Lorenz curve

Ln(u) = u
Hn(u)

Hn(1)
, 0 ≤ u ≤ 1. (2)
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To obtain an explicit expression for Hn(u) and the empirical Lorenz
curve, let X(1) ≤ X(2),≤ . . . ≤ X(n) denote the ordered X1, X2, . . . Xn. For
u = i/n we have

Hn

(
i

n

)
=

1

i

i∑

j=1

X(j), i = 1, 2, . . . , n

and

Ln

(
i

n

)
=

∑i
j=1X(j)∑n
j=1Xj

, i = 1, 2, . . . , n (3)

which is the familiar estimate formula of the empirical Lorenz curve. As
mentioned in Section 1 the ranking of Lorenz curves becomes problematic
when the Lorenz curves in question intersect. For this reason and to be
able to quantify the inequality in distributions of income it is common to
apply summary measures of inequality. As justified in Section 1 it appears
attractive to consider the family of rank-dependent measures of inequality
introduced by Mehran (1976) and defined by

JR(L) = 1 −
∫ 1

0

R(u)L(u)du (4)

where R is a non-negative weight-function. [A slightly different version
of JR was introduced by Piesch (1975), whereas Giaccardi (1950) consid-
ered a discrete version of JR. For alternative normative motivations of the
JR−family and various subfamilies of the JR−family we refer to Donald-
son and Weymark (1983), Yaari (1987,1988), BenPorath and Gilboa (1994)
and Aaberge (2001). See also Zitikis (2002) and Tarsitano (2004) for a
discussion on related families of inequality measures.] By inserting for the
following two alternative subclasses R1 and R2 of R,

R1k(u) = k(k + 1)(1 − u)k−1, k > 0

and

R2k(u) = (k + 1)uk−1, k > 0

we get the following subfamilies of the general rank-dependent family of
inequality measures JR,

Gk ≡ JR1k
(L) = 1 − k(k + 1)

∫ 1

0

(1 − u)k−1L(u)du, k > 0 (5)

and

Dk ≡ JR2k
(L) = 1 − (k + 1)

∫ 1

0

uk−1L(u)du, k > 0. (6)
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Note that {Gk : k > 0} was denoted the extended Gini family and {Dk :
k > 0} the illfare-ranked single series Ginis by Donaldson and Weymark
(1980). [See Zitikis and Gastwirth (2002) for a derivation of the asymptotic
distribution of the empirical extended Gini family of inequality measures.]
However, as mentioned in Section 1, Aaberge (2000a) proved that each of
the subfamilies {Dk : k = 1, 2, . . .} (denoted the Lorenz family of inequality
measures) and {Gk : k = 1, 2, . . .} provides a complete characterization of
the Lorenz curve, independent of whether the distribution function F is
defined on a bounded interval or not. Thus, any distribution function
F defined on the positive halfline R+ can be specified by its mean and
Lorenz measures of inequality even if some of the conventional moments
do not exist. It follows directly from expressions (5) and (6) that the Gini
coefficient defined by

G = 1 − 2

∫ 1

0

L(u)du

is included in the extended Gini family as well as in the Lorenz family of
inequality measures. By replacing L by Ln in the expression (4) for JR, we
get the following estimator of JR,

ĴR ≡ JR(Ln) = 1 −
∫ 1

0

R(u)Ln(u)du. (7)

For R(u) = 2, (7) gives the estimator of G as

Ĝ = 1 − 2

∫ 1

0

Ln(u)du = 1 −
2
∑n
i=1

∑i
j=1X(j)

(n+ 1)
∑n
j=1Xj

. (8)

[The asymptotic properties of the empirical Gini coefficient has been
considered by Hoeffding (1948), Goldie (1977), Aaberge (1982), Zitikis
(2002,2003) and Zitikis and Gastwirth (2002).]

3 Asymptotic distribution theory of the empirical Lorenz

curve and empirical rank-dependent measures of

inequality

As demonstrated by expressions (4) and (7), the rank-dependent measures
of inequality and their empirical counterparts are explicitly defined in terms
of the Lorenz curve and its empirical counterpart, respectively. Thus, in
order to derive the asymptotic distribution of the empirical rank-dependent
measures of inequality it is convenient to firstly derive the asymptotic prop-
erties of the empirical Lorenz curve. To this end we utilize the close
formal connection between the shift function of Doksum (1974) and the
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Lorenz curve. As an alternative to the approach chosen in this paper we
can follow Zitikis (2002) by expressing the rank-dependent measures of in-
equality in terms of L-statistics and rely on asymptotic distribution results
for L−statistics. [On general results for L−statistics see e.g. Chernoff et
al. (1967), Shorack (1972), Stigler (1974) and Serfling (1980).] Note that
Csörgő, Gastwirth and Zitikis (1998) have derived asymptotic confidence
bands for the Lorenz and the Bonferroni curves without requiring the ex-
istence of the density f . Moreover, Davydov and Zitikis (2003, 2004) have
considered the case where observations are allowed to be dependent. As
demonstrated by Zitikis (1998) note that the Vervaat process proves to be
a particularly helpful device in deriving asymptotic properties of various
aggregates of empirical quantiles.

3.1 Asymptotic properties of the empirical Lorenz curve

Since Fn is a consistent estimate of F,Hn(u) and Ln(u) are consistent
estimates of H(u) and L(u), respectively. Approximations to the variance
of Ln and the asymptotic properties of Ln can be obtained by considering
the limiting distribution of the process defined by

Zn(u) = n
1
2 [Ln(u) − L(u)] . (9)

In order to study the asymptotic behavior of Zn(u) we find it useful to start
with the process defined by

Yn(u) = n
1
2 [Hn(u) −H(u)] =

1

n

∫ u

0

n
1
2

(
F−1
n (t) − F−1(t)

)
dt. (10)

Assume that the support of F is a non-empty finite interval [a, b]. (When
F is an income distribution, a is commonly equal to zero.) Then Yn(u) and
Zn(u) are members of the space D of functions on [0, 1] which are right
continuous and have left hand limits. On this space we use the Skorokhod
topology and the associated σ−field (e.g. Billingsley 1968, page 111). We
let W0(t) denote a Brownian Bridge on [0, 1], that is, a Gaussian process
with mean zero and covariance function s(1 − t), 0 ≤ s ≤ t ≤ 1.
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Theorem 1. Suppose that F has a continuous nonzero derivative f on
[a, b]. Then Yn(u) converges in distribution to the process

Y(u) =
1

u

∫ u

0

W0(t)

f(F−1(t))
dt. (11)

Proof. It follows directly from Theorem 4.1 of Doksum (1974) that

n
1
2

(
F−1
n (t) − F−1(t)

)

converges in distribution to the Gaussian process W0(t)/f
(
F−1(t)

)
. Using

the arguments of Durbin (1973, section 4.4), we find that Y (u) as a function
of
(
W0(t)/f

(
F−1(t)

))
is continuous in the Skorokhod topology. The result

then follows from Billingsley (1968, Theorem 5.1). �

The following result states that Y (u) is a Gaussian process and thus
that Yn(u) is asymptotically normally distributed, both when considered
as a process, and for fixed u.

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Then the
process uY (u) has the same probability distribution as the Gaussian process

∞∑

j=1

qj(u)Zj

where qj(u) is given by

qj(u) =
2

1
2

jπ

∫ u

0

sin(jπt)

f (F−1(t))
dt (12)

and Z1, Z2, . . . are independent N(0, 1) variables.

Proof. Let

VN (t) =
2

1
2

f (F−1(t))

N∑

j=1

sin(jπt)

jπ
Zj

and note that

2

∞∑

j=1

sin(jπs) sin(jπt)

(jπ)2
= s(1 − t), 0 ≤ s ≤ t ≤ 1. (13)

Thus, the process VN (t) is Gaussian with mean zero and covariance function

cov (VN (s), VN (t)) =
2

f (F−1(s)) f (F−1(t))

N∑

j=1

sin(jπs) sin(jπt)

(jπ)2

→ cov (V (s), V (t)) ,
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where

V (t) =
W0(t)

f (F−1(t))
.

In order to prove that VN (t) converges in distribution to the Gaussian
process V (t), it is, according to Hajek and Sidak (1967, Theorem 3.1.a,
Theorem 3.1.b, Theorem 3.2) enough to show that

E[VN (t) − VN (s)]4 ≤M(t− s)2, 0 ≤ s, t ≤ 1,

where M is independent of N . Since for normally distributed random
variables with mean 0,

EX4 = 3[EX2]2,

we have

E[VN (t) − VN (s)]4 = 3[var (VN (t) − VN (s))]2

= 3{2var[
N∑

j=1

1

jπ

(
sin(jπt)

f (F−1(t))
− sin(jπs)

f (F−1(s))

)
Zj ]}2

= 3{2
N∑

j=1

[
1

jπ

(
sin(jπt)

f (F−1t)
− sin(jπs)

f (F−1(s))

)
]2}2

≤ 3{2
∞∑

j=1

[
1

jπ

(
sin(jπt)

f (F−1(t))
− sin(jπs)

f (F−1(s))

)
]2}2

= 3{ t(1 − t)

f2 (F−1(t))
+

s(1 − s)

f2 (F−1(s))
− 2

cov (W0(s),W0(t))

f (F−1(s)) f (F−1(t))
}2.

Since 0 < f(x) <∞ on [a, b], there exists a constant M such that

f
(
F−1(t)

)
≥M− 1

4 for all t ∈ [0, 1].

Then

E[VN (t) − VN (s)]2 ≤ 3M(t− s)2(1 − |t− s|)2 ≤ 3M(t− s)2.

Hence VN (t) converges in distribution to the process V (t). Thus, according
to Billingsley (1968, Theorem 5.1)

∫ u

0

VN (t)dt =

N∑

j=1

qj(u)Zj

converges in distribution to the process
∫ u

0

V (t)dt =

∫ u

0

W0(t)

f (F−1(t))
dt = uY (u).

�
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Now, let hj be a function defined by

hj(u) =
1

u
[qj(u) − qj(1)L(u)] (14)

where qj(u) is given by (12).

Theorem 3. Suppose the conditions of Theorem 1 are satisfied. Then
Zn(u) given by (9) converges in distribution to the Gaussian process

Z(u) =

∞∑

j=1

hj(u)Zj (15)

where Z1, Z2, . . . are independent N(0, 1) variables and hj(u) is given by
(14).

Proof. By combining (2), (9) and (10) we see that

Zn(u) =
1

Hn(1)
[uYn(u) − L(u)Yn(1)]

where Yn(u) is given by (10). Now, Theorem 1 implies that the process

uYn(u) − L(u)Yn(1)

converges in distribution to the process

uY (u) − L(u)Y (1)

where Y (u) is given by (11). Then, since Hn(1) converges in probability to
µ, Cramer-Slutskys theorem gives that Zn(u) converges in distribution to
the process

1

µ
[uY (u) − L(u)Y (1)].

Thus, by applying Theorem 2 the proof is completed. �

In order to derive the asymptotic covariance functions of the processes
Yn(u) and Zn(u), the following lemma is needed.
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Lemma 1. Suppose the conditions of Theorem 1 are satisfied. Then

∞∑

i=1

qi(u)qi(v) = τ2(u) + λ(u, v), 0 ≤ u ≤ v ≤ 1,

where qi(u) is defined by (12) and τ2(u) and λ(u, v) are given by

τ2(u) = 2

∫ F−1(u)

a

∫ y

a

F (x) (1 − F (y)) dxdy, 0 ≤ u ≤ 1 (16)

and

λ(u, v) =

∫ F−1(v)

F−1(u)

∫ F−1(u)

a

F (x) (1 − F (y)) dxdy, 0 ≤ u ≤ v ≤ 1. (17)

Proof. Assume that 0 ≤ u ≤ v ≤ 1. From the definition of qi(u) we have
that

∞∑

i=1

qi(u)qi(v) =
∞∑

i=1

∫ v

0

∫ u

0

[
2

f (F−1(t)) f (F−1(s))

sin(iπt) sin(iπs)

(iπ)2
]dtds.

By applying Fubinis theorem (e.g. Royden 1963) and the identity (13) we
get

∞∑

i=1

qi(u)qi(v) =

∫ v

0

∫ u

0

[
2

f (F−1(t)) f (F−1(s))

∞∑

i=1

sin(iπt) sin(iπs)

(iπ)2
]dtds

= 2

∫ u

0

∫ s

0

t(1 − s)

f (F−1(s)) f (F−1(s))
dtds

+

∫ v

u

∫ u

0

t(1 − s)

f (F−1(t)) f (F−1(s))
dtds

= 2

∫ F−1(u)

a

∫ y

a

(F (x)(1 − F (y))dxdy)

+

∫ F−1(v)

F−1(u)

∫ F−1(u)

a

F (x) (1 − F (y)) dxdy

= τ2(u) + λ(u, v).
�

As an immediate consequence of Theorem 1, Theorem 2 and Lemma 1 we
have the following corollary.

Corollary 1. Under the conditions of Theorem 1, Yn(u) has asymptotic
covariance function Θ2(u, v) given by

Θ2(u, v) =
1

uv
[τ2(u) + λ(u, v)], 0 < u ≤ v ≤ 1.
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From Theorem 3 and Lemma 1 we get the next corollary.

Corollary 2. Under the conditions of Theorem 1, Zn(u) has asymptotic
covariance function v2(u, v) given by

v2(u, v) =
1

µ2
[τ2(u) + λ(u, v) − L(u)

(
τ2(v) + λ(v, 1)

)

−L(v)
(
τ2(u) + λ(u, 1)

)
+ L(u)L(v)τ2(1)], 0 < u ≤ v ≤ 1.

(18)

In order to construct confidence intervals for the Lorenz curve at fixed
points, we apply the results of Theorem 3 and Corollary 2 which imply
that the distribution of

n
1
2
Ln(u) − L(u)

v(u, u)

tends to the N(0, 1) distribution for fixed u, where v2(u, u) is given by

v2(u, u) =
1

µ2
[τ2(u) − 2L(u)

(
τ2(u) + λ(u, 1)

)
+ L2(u)τ2(1)], 0 < u ≤ 1.

Before this result can be applied, we must estimate the asymptotic variance
v2(u, u) , i.e., we must estimate µ,L, τ2 and λ. The estimates of µ and L
are given by X and (3), respectively. Now, by introducing the statistics ak
and bk defined by

ai =

(
1 − k

n

)(
X(k+1) −X(k)

)

and

bk =
k

n

(
X(k+1) −X(k)

)
,

we obtain the following consistent estimates of τ2 and λ,

τ̂2

(
1

n

)
= 2

i−1∑

k=1

(
ak

l∑

i=1

bl

)
, i = 2, 3, . . . , n (19)

and

λ̂

(
i

n
,
j

n

)
=

(
j−1∑

k=1

ak

)(
i−1∑

l=1

bl

)
, i = 2, 3, . . . , n− 1; j ≥ i+ 1. (20)

Thus, replacing µ,L, τ2, and λ by their respective estimates in the expres-
sion (18) for v2 we obtain a consistent estimate of v2. To get an idea of how
reliable Ln(u) is as an estimate for L(u), we have to construct a confidence
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band based on Ln(u) and L(u). Such a confidence band can be obtained
from statistics of the type

Kn = n
1
2 sup0≤u≤1

|Ln(u) − L(u)|
ψ (Ln(u))

where ψ is a continuous nonnegative weight function. By applying Theo-
rem 3 and Billingsley (1968, Theorem 5.1), we find that Kn converges in
distribution to

K = sup0≤u≤1|
∞∑

j=1

hj(u)

ψ (L(u))
Zj|.

Let

Tm(u) =
m∑

j=1

hj(u)

ψ (L(u))
Zj,

T (u) =

∞∑

j=1

hj(u)

ψ (L(u))
Zj

and

K ′
m = sup0≤u≤1|Tm(u)|.

Since Tm converges in distribution to T , we find by applying Billingsley
(1968, Theorem 5.1) that K ′

m converges in distribution to K. Hence, for a
suitable choice of m and ψ, for instance ψ = 1, simulation methods may be
used to obtain the distribution of K ′

m and thus an approximation for the
distribution of K.

3.2 Asymptotic properties of the empirical rank-dependent

family of inequality measures

We shall now study the asymptotic distribution of the statistics ĴR given

by (7). Mehran (1976) states without proof that n
1
2

(
ĴR − JR

)
is asymp-

totically normally distributed with mean zero. The asymptotic variance,
however, cannot be derived, as maintained by Mehran (1976), from Stigler
(1974), Theorem 3.1). [See also Zitikis an Gastwirth (2002) on the asymp-
totic estimation of the S−Ginis, Zitikis (2003) on the asymptotic estimation
of the E−Gini index and a more general discussion in Davydov and Zitikis
(2004).] However, as will be demonstrated below Theorem 3 forms a helpful
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basis for deriving the asymptotic variance of ĴR. Let ω2 be a parameter
defined by

ω2 =
1

µ2

{
2

∫ 1

0

∫ v

0

[τ2(u) + λ(u, v)]R(u)R(v)dudv

−2[

∫ 1

0

uR(u)du− JR][

∫ 1

0

(
τ2(u) + λ(u, 1)

)
R(u)du]

+τ2(1)[

∫ 1

0

uR(u)du− JR]2
}

(21)

Theorem 4. Suppose the conditions of Theorem 1 are satisfied and ω2 <
∞. Then the distribution of

n
1
2

(
ĴR − JR

)

tends to the normal distribution with zero mean and variance ω2.

Proof. From (4), (7) and (9) we see that

n
1
2

(
ĴR − JR

)
= −

∫ 1

0

R(u)Zn(u)du.

By Theorem 3 we have that Zn(u) converges in distribution to the Gaussian
process Z(u) defined by (15). By applying Billingsley (1968, Theorem 5.1)

and Fubinis theorem we get that n
1
2

(
ĴR − JR

)
converges in distribution

to

−
∫ 1

0

R(u)Z(u)du = −
∫ 1

0

R(u)




∞∑

j=1

hj(u)Zj


 du

= −
∞∑

j=1

[

∫ 1

0

R(u)hj(u)du]Zj

where Z1, Z2, . . . are independent N(0, 1) variables and hj(u) is given by

(14), i.e., the asymptotic distribution of n
1
2

(
ĴR − JR

)
is normal with mean

zero and variance

∞∑

j=1

[

∫ 1

0

R(u)hj(u)du]2. (22)
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Then it remains to show that the asymptotic variance is equal to ω2. In-
serting (14) in (22), we get

∞∑

j=1

[

∫ 1

0

R(u)hj(u)du]2 =
1

µ2

∞∑

j=1

[

∫ 1

0

R(u) (qj(u) − qj(1)L(u))du]2

=
1

µ2

{ ∞∑

j=1

[

∫ 1

0

R(u)qj(u)du]2

−2[

∫ 1

0

R(u)L(u)du][

∞∑

j=1

qj(1)

∫ 1

0

R(u)qj(u)du]

+[

∞∑

j=1

q2j (1)][

∫ 1

0

R(u)L(u)du]2
}
.

In the following derivation we apply Fubinis theorem and the identity (13),
∞∑

j=1

[

∫ 1

0

R(u)qj(u)du]2 =

∞∑

j=1

∫ 1

0

∫ 1

0

R(u)qj(u)R(v)qj(v)dudv

=

∫ 1

0

∫ 1

0

[ ∫ v

0

∫ u

0

2

f (F−1(t)) f (F−1(s))

×




∞∑

j=1

sin(jπt sin(jπs)

(jπ)2


 dtds

]
R(u)R(v)dudv

= 2

∫ 1

0

∫ v

0

[
2

∫ u

0

∫ s

0

t(1 − s)

f (F−1(t)) f (F−1(s))
dt ds

+

∫ v

u

∫ u

0

t(1 − s)

f (F−1(t)) f (F−1(s))

]
R(u)R(v)dudv

= 2

∫ 1

0

∫ v

0

[
2

∫ F−1(u)

a

∫ y

a

F (x) (1 − F (y)) dxdy

+

∫ F−1(v)

F−1(u)

∫ F−1(u)

a

F (x) (1 − F (y)) dxdy
]

×R(u)R(v)dudv

= 2

∫ 1

0

∫ v

0

[τ2(u) + λ(u, v)]R(u)R(v)dudv

where τ2(u) and λ(u, v) are given by (16) and (17), respectively. Similarly,
we find that

∞∑

j=1

qj(1)

∫ 1

0

R(u)qj(u)du =

∫ 1

0

[τ2(u) + λ(u, 1)]R(u)du.
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From Lemma 1 it follows that

∞∑

j=1

q2j (1) = τ2(1).

Finally, by noting that

∫ 1

0

R(u)L(u)du =

∫ 1

0

uR(u)du− JR,

the proof is completed. �

For R(u) = 2, Theorem 4 states that ω2 = γ2, where γ2 is defined by

γ2 =
4

µ2

{
2

∫ 1

0

∫ v

0

[τ2(u) + λ(u, v)] dudv − (1 −G)

∫ 1

0

[τ2(u) + λ(u, 1)]du

+
1

4
(1 −G)2τ2(1)

}
, (23)

is the asymptotic variance of n
1
2 Ĝ. The estimation of γ2 is straightforward.

As in Section 2, we assume that the parametric form of F is not known.
Thus, replacing F by the empirical distribution function Fn in expression
(23) for γ2, we obtain a consistent nonparametric estimator for γ2. The
current estimator is given by

γ̂2 =
4

X
2

{ 2

n2

n∑

j=2

j∑

i=2

τ̂2

(
i

n

)
+

2

n2

n∑

j=3

j−1∑

i=2

λ̂

(
i

n
,
j

n

)

− 1

n

(
1 − Ĝ

)
[

n∑

i=2

τ̂2

(
i

n

)
+

n−1∑

i=2

λ̂

(
i

n
, 1

)
] +

1

4

(
1 − Ĝ

)2

τ̂2(1)
}

where τ̂2, λ̂ and Ĝ and are given by (19), (20) and (8), respectively. Simi-
larly, a consistent estimator for ω2 is obtained by replacing τ2, λ, µ and JR
by their respective estimates in the expression (21) for ω2.
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A MODIFIED KENDALL RANK-ORDER ASSOCIATION

TEST FOR EVALUATING THE REPEATABILITY OF TWO

STUDIES WITH A LARGE NUMBER OF OBJECTS
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Different studies on the same objects under the same conditions often
result in nearly uncorrelated ranking of the objects, especially when
dealing with large number of objects.The problem arises mainly from
the fact that the data contain only a small proportion of “interesting”
or “important” objects which hold the answers to the scientific questions.
This paper proposes a modified Kendall rank-order association test for
evaluating the repeatability of two studies on a large number of objects,
most of which are undifferentiated. Since the repeatability between two
datasets is reflected in the association between the two sets of observed
values, evaluating the extent and the significance of such association is
one way to measure the strength of the signals in the data. Due to the
complex nature of the data, we consider ranking association which is
distribution-free. Using simulation results, we show that the proposed
modification to the classic Kendall rank-order correlation coefficient has
desirable properties that can address many of the issues that arise in
current statistical studies.

Keywords: Repeatability; Kendall rank-order; Nonparametric associ-
ation test; Truncated rank.

1 Introduction

Current technological developments in many scientific fields allow re-
searchers to explore the research problems in more detail, on a larger scale,
involving many possible factors, and in huge dimensions simultaneously.
Such data, of unprecedentedly large sizes, provide new challenges to statis-
ticians. In this paper, we discuss one of them: evaluating the repeatability
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of two studies that rank the same, large set of, objects. To avoid confu-
sion with the statistical term “subject”, we call the units of evaluation as
objects.

Despite the huge amount of data collected, often only a small portion of
the variables (factors) hold the keys to new scientific discovery or validation.
Evaluating the importance of these variables (or factors) and ranking them
accordingly has been a focus of much current statistical research. Such eval-
uation provides the basis for dimension reduction, model selection, feature
selection, machine learning, etc. In this paper, for convenience of discus-
sion, we refer to the variables (or factors, or so-called dimensions in some
context) as objects of evaluation.

In most application, while the number of objects that need to be eval-
uated are frequently in the tens of thousands, only a few of them are rel-
evant to the questions to be addressed. Thus, the datasets are enormous
but contain only a small set of “interesting” or important objects. Typi-
cal examples of such scenarios can be easily found in microarray analysis.
Only dozens or hundreds of genes are truly regulated due to the treatments
under a single experiment, while the data contain expression levels from
tens of thousands. Conventionally, genes of more interest are those that
are highly expressed or those whose expression profiles correlate well with
the treatments. The reliability of such studies is a major concern due to
the fact that different studies on the same objects under the same condi-
tion usually result in different lists of genes that are highly expressed or
highly regulated by the treatments. However, one expects the repeatability
between two studies to be high if the scientific signal is real.

If the repeatability between two datasets is reflected in the association
between the two sets of observed values, we can evaluate the extent and
the significance of such association by measuring the strength of the signals
in the data. Because of the complex nature of such data, nonparametric
measures of association are more desirable since the distributions of the
observed values are usually unknown. Thus, we study the repeatability
between two studies through ranking association.

Consider a simple example using a microarry dataset (van ’t Veer et
al. 2002). In this study, gene expression levels of 24,479 biological oligonu-
cleotides in samples from 78 breast cancer patients were measured (using
2-dye-hybridization experiments on DNA Microarrays). Among these 78
breast cancer patients, 44 remained disease-free for more than 5 years,
while the other 34 patients developed metastases within 5 years (van ’t
Veer et al. 2002). The goal of this study was to identify genes that were
associated with the risk of developing metastases and use these genes for a
better prediction of disease outcomes. To illustrate the concepts and meth-
ods proposed in this paper, consider a small “experiment” using this data
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top 5000 correlated genes using all experiments

modified Kendall rank−order test:

at k=5000 test stat: 3.86

p−value: 5.78e−05

Kendall rank−order corr coef:

value: 0.00522

p−value: 0.112

Spearman rank−order corr coef:

value: 0.00786

Figure 1 An example of two microarray experiment samples showing weak association.

(downloaded from the paper’s web site). We randomly divide the data into
two equal halves, each with 17 patients with poor prognosis (metastases
within 5 years) and 22 patients with good prognosis (no metastases for
more than 5 years). For convenience of discussion, we call these two halves:
Sample 1 and Sample 2. For each gene, in either sample, correlation be-
tween the log10 gene expression ratios (the real gene expression versus the
background gene expression) and the prognosis label (1=poor, 0=good) is
calculated. In such a study, both positively and negatively correlated genes
are regarded as important. Figure 1 shows the absolute correlation values
from Sample 2 versus those of Sample 1. One can expect that the truly
important genes will be strongly (positively or negatively) correlated with
the prognosis label, in both Sample 1 and Sample 2. We should also expect
that some genes will display strong association by chance in one of the two
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samples. The noisy pattern in Figure 1 shows a weak association between
these two samples. Actually, the Kendall rank-order correlation coefficient
of the 24,479 genes expression levels is 0.00522 (p-value = 0.112). Another
interesting pattern is that, of the 5,000 top correlated genes selected based
on the combined data of Sample 1 and Sample 2, only 17% demonstrated
strong correlation with the prognosis label in both samples. It seems that
the association between gene expressions and the cancer outcome are nearly
random and uncorrelated between samples. However, the two samples have
about 1,131 top genes in common if one simply select the top 5,000 ones
with the highest absolute correlation values. Is this due to chance or true
signal?

It is not surprising that the association on all objects is low since the
unimportant or “uninteresting” objects should be similar and undifferenti-
ated in the analysis, except for random noises, and lead to random rankings
that result in the overall nearly uncorrelated pattern as seen in Figure 1.
However, the main interest is to examine the repeatability of the top genes
since their repeated appearance in the top list may be due to true signals
related to the mechanism of breast cancer. It is impossible to compute
measures of association using only the top ranks since the objects do not
overlap completely. On the other hand, measures of association using all
objects inevitably include many uninformative ones, and thus do not have
power when dealing the situation where only the top few matter. Simply
examining the number of overlapping top objects will result in loss of power
as we will show later.

In this paper, we propose a modified Kendall rank-order association
test to address this difficulty. Since it is based on rank-orders, it is a non-
parametric test of association, which does not rely on any assumption of
the quantitative evaluation scores of the two studies. Through simulation
results, we show the the proposed modification to the classic Kendall rank-
order correlation coefficient has desirable properties that will address the
needs of many modern statistical studies. For instance, for the data in
Figure 1, the p-value derived for the modified Kendall rank-order test is
5.78 × 10−5, indicating the association of the top genes are significant and
supporting the existence of true biological signals.

2 Method

This section studies the problem of repeatability through nonparametric
tests of association between two sets of evaluations based on a same set of
objects. To allow the tests to be distribution-free, the association is studied
on rankings, not the actual observation or evaluation values.
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2.1 Notation

Assume that n objects, S1, S2, . . . , Sn are under evaluation. Let Xi, i =
1, . . . , n and Yi, i = 1, . . . , n be two independent rankings, in decreasing
order, received by these samples. (Throughout, we discuss rankings in
decreasing order unless otherwise noted.)

Denote αi as the true merit of object Si. The two sets of rankings are
based on random observations and thus are random representations of the
true ranking, Rank (αi). Here, the notation Rank(·) is short for “the rank
of ...”. For convenience of formulation, we assume that

Xi = Rank(αi + εi), and Yi = Rank(αi + δi),

where εi’s are independent random departures with distribution function
F , δi’s are independent random departures with distribution function G,
and the ε’s are independent with the δ’s. Here, the α’s and the distribution
functions F , G are introduced only for convenience of discussion; they are
neither assumed known nor used in the inference.

Without loss of generality, we assume that the objects S1, ..., Sn are
arranged in the order of their true merits, that is α1 ≥ α2 ≥ · · · ≥ αn.
Under the null hypothesis that there is no difference among the objects in
terms of their true merits, i.e., α1 = α2 = · · · = αn, the ranking X , now
reduced to the Rank(ε), would be independent of the ranking Y , Rank(δ).
On the other hand, consider the extreme alternative where α1 > α2 > · · · >
αn, the ranking X and the ranking Y will then be positively correlated;
the degree of correlation depends on the random variation of ε’s and δ’s.
Thus, the correlation between ranking X and ranking Y can be used to
measure the variation among the objects’ merit, relative to the random
error variation.

2.2 Significance testing problem on ranking association

In practice, we frequently need to separate out a small sample of objects
with higher merit from the rest of the pool. If two rankings on the same
objects are uncorrelated, the objects with high ranks may not be truly supe-
rior to the other objects. This is because it may be primarily due to chance
that these objects are at the top of the list. On the other hand, in studies
that involve evaluation of a large number of objects (eg. gene expression
analysis), it is very common that the majority of the pool consists of ob-
jects that are quite similar if not identical in their true merits, and only
few cases have higher, ordered true merits. Under such circumstances, the
rankings are correlated for the few objects among the top, while the rank-
ings are uncorrelated for the rest of the observations with undifferentiated
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merits, even when the random error variations are low. Such a low correla-
tion among the lower ranks dilutes the overall “coordination” between the
ranking X and the ranking Y . As a result, the overall correlation between
X and Y would not be high. If, however, the objects are grouped into top
ranks and low ranks (that is, higher rank value in a decreasing rank order),
one would expect to observe a higher degree of correlation between the
groupings according to the rankings X and Y than the correlation between
the original rankings X and Y , reflecting the important true merits of the
few top objects.

Here we consider the inference question of testing the null hypothesis
H0 : α1 = α2 = · · · = αn ≡ α versus a local alternative Ha : ∃ 1 ≤ k0 ≪
n, s.t. α1 ≥ α2 ≥ · · · ≥ αk0 > αk0+1 = αk0+2 = · · · = αn−1 = αn. We
propose to study a modified Kendall rank-order test which detects objects
with true and high merits using the important association between the top
ranks of two rankings and the association between the grouping of ranks,
without effects from the noises in the lower ranks.

2.3 Problems with the Kendall rank-order test

We first examine the original Kendall rank-order correlation coefficient (Sie-
gal and Castellan 1988, Chapter 9). It uses the number of agreements
and disagreements defined as follows: consider all possible pairs of ranks
(Xi, Xj) in which Xi is lower than Xj , if

• the corresponding Yi is lower than Yj , it is then an agreement;
• the corresponding Yi is higher than Yj , it is then an disagreement.

Using these two counts, the Kendall rank-order correlation coefficient is
formulated as

T =
# agreements− # disagreements

total number of pairs
(1)

Since the maximum possible values for the number of agreements and the
number of disagreements are both the number of the total possible pairs,
T ranges between −1 and 1, same as the conventional Pearson’s coefficient
of correlation.

It is easy to show that

# agreements =

n∑

i=1

∑

i6=j
1(Xi<Xj)1(Yi<Yj), (2)

# disagreements =

n∑

i=1

∑

i6=j
1(Xi<Xj)1(Yi>Yj), (3)
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and, assuming there are no tied observations,

# agreements + # disagreements = n(n− 1)/2.

Under the null hypothesis, E(# agreements) =E(# disagreements) =
1
4n(n− 1). And the variance of the number of agreements can be shown to
be 1

16 (4n
9 + 10

9 )n(n− 1) (see Siegel and Castellan, 1988).
It follows that, under the null hypothesis, E(T ) = 0 and

Var(T ) = Var

(
4(# agreements) − 2n(n− 1)

n(n− 1)

)
=

2(2n+ 5)

9n(n− 1)
. (4)

Conventionally, for n > 10, the significance of T is evaluated using an
normal approximation (Siegel and Castellan 1988, Chapter 9). From (1)
and (4), one can see that such tests of association based on the Kendall
rank-order correlation coefficient is equivalent to a z-test for the number of
agreements. By constructing the test through the number of agreements,
the computation is reduced by half.

The test is reasonably powerful when the majority of the observations
are random representations of a sequence of completely ordered (differen-
tiated) true merits. However, when only a few objects have a sequence of
ordered α values and the majority of the objects are similar in their α’s,
those undifferentiated objects will result in large numbers of random agree-
ments and disagreements, and thus add substantial noise. As a result, the
power of the test based on the Kendall rank-order correlation coefficients
diminishes under local alternatives even when the local association exists
and is strong.

Simulation results under two sets of local alternatives are shown in Fig-
ure 4. The powers of the Kendall rank-order correlation coefficients under
different alternatives is the right ends of the curves. We see that the power
is affected more when the number of important objects is smaller. More de-
tails and discussion on these examples are in Section 3.2 and the simulation
details are discussed in Section 3.1.

2.4 Problems with test based on number of overlapping top

objects

When only the top objects are of interest, it is natural to consider a test
based on the number of overlapping top objects as a solution. Denote k
as the number of top objects that are to be considered. The number of
overlapping top objects between ranking X and ranking Y can then be
defined as

O =

n∑

i=1

1(Xi≤k)1(Yi≤k).
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It is easy to show that, under the null hypothesis,

E(O) =
k2

n
, Var(O) =

k2

n
+
k2(k − 1)2

n(n− 1)
− k4

n2
.

Thus a simple test can be constructed using
O − E(O)√

Var(O)
, and the sampling

distribution can be approximated by the standard normal distribution. The
exact significance can also be evaluated based on the values of k and n using
permutations.

The power of this test is satisfactory when the specification of k is close
to the true number of important objects, under the local alternatives we
consider in this paper. Actually, under such ideal situations, the perfor-
mance of this test is nearly comparable to that of the modified Kendall
rank-order association test, which is to be discussed in the next section.
However, the performance of the test based on the number of overlapping
top objects deteriorates dramatically when the specified value of k departs
from the ideal specification k0 (the true number of objects with higher true
merits). Such a trend, found in the simulation studies, is shown in Figure
5. Details of this example will be discussed in Section 3.2.

2.5 Modified Kendall rank-order association test

We now propose a solution to the problem raised in Section 2.2 by evaluat-
ing the correlation between two rankings, while only a small number, k ≪ n,
of the top ranks are actually considered. The value of k is pre-specified,
which can be based on the knowledge of k0 or inferred from previous results
regarding the data.

This modified Kendall rank-order test statistic is based on the truncated
ranks defined as Xc

i = min(Xi, k). The number of agreements as defined
in the Kendall rank-order correlation coefficient is now calculated based on
these truncated ranks. The test statistic is then the number of agreements
standardized by the mean and standard deviation of its sampling distribu-
tion under the null hypothesis. Similar to the formulation of (2) and (3),
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we have

# agreements =

n∑

i=1

∑

i6=j
1(Xci<X

c
j )

1(Y ci <Y
c
j ) (5)

=

n∑

i=1

∑

i6=j
1(min(Xi,k)<min(Xj ,k))1((min(Yi,k)<min(Yj ,k))

# disagreements =

n∑

i=1

∑

i6=j
1(Xci<X

c
j )

1(Y ci >Y
c
j ) (6)

=
n∑

i=1

∑

i6=j
1(min(Xi,k)<min(Xj ,k))1((min(Yi,k)>min(Yj ,k))

Under the null hypothesis, the ranking X = {X1, . . . , Xn} is a random
permutation of 1, . . . , n. Using (5) and (6), it is easy to show that

E(# agreements) = E(# disagreements) =
1

4
n(n− 1)

(
1 −

(
n−k+1

2

)
(
n
2

)
)2

=
1

4
n(n− 1)

(
1 − (n− k + 1)(n− k)

n(n− 1)

)2

. (7)

The variance of the number of the agreements under the null hypothesis
can also be calculated as follows:

Var




n∑

i=1

∑

j 6=i
1(Xci<X

c
j )

1(Y ci <Y
c
j )


 =

n∑

i=1

∑

j 6=i
Var

(
1(Xci<X

c
j )

1(Y ci <Y
c
j )

)

+

n∑

i=1

∑

j 6=i

∑

(k,l) 6=(i,j)

Cov
(
1(Xci<X

c
j )

1(Y ci <Y
c
j ), 1(Xck<X

c
l )

1(Y ck<Y
c
l )

)

= n(n− 1)

{
1

4
n(n− 1)

(
1 − (n− k + 1)(n− k)

n(n− 1)

)2

+(n− 2)(n− 3)

(
1

4

(
k−1
4

)
(
n
4

) +
1

4

(
k−1
3

)(
n−k+1

1

)
(
n
4

) +
1

6

(
k−1
2

)(
n−k+1

2

)
(
n
4

)
)2

+(n− 2)
1

6

((
k
3

)
(
n
3

) +

(
k−1
2

)(
n−k

1

)
(
n
3

)
)2

+(n− 2)
1

9

(
1 −

(
n−k+1

3

)
(
n
3

)
)2

− 1

16
(n2 − n)

(
1 − (n− k + 1)(n− k)

n(n− 1)

)4
}
.
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The modified Kendall rank-order test statistic is then defined as

T c =
# agreements − E(# agreements)√

Var (# agreements)
, (8)

where the sampling distribution can be approximated by the standard nor-
mal. The exact significance can also be evaluated based on the values of k
and n under the null hypothesis through permutations.
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Figure 2 Sampling distributions using truncated rankings versus full rankings under
the null and alternative hypotheses. Each distribution is based on 5000 simulations on
1000 objects. The alternative hypothesis used is specified as in Figure 3 with δ = 5 and
k0 = 50. The smooth curves in the plots represent the standard normal distribution
used in the approximation of p-values.

The advantage of the modified statistic is illustrated as in Figure 2.
The sampling distributions were simulated under the same null and alter-
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native hypotheses for the test statistics of the original Kendall rank-order
correlation coefficient and the modified Kendall rank-order association test
statistic. For the modified statistic, the sampling distribution under the
alternative is well separated from the sampling distribution under the null
hypothesis, while the distributions for the original statistic have a substan-
tial overlap. It indicates that by focusing on the top ranks, as with the
modified statistic, the signal becomes stronger because of the removal of a
substantial amount of noise.

3 Simulations and Results

3.1 Simulation models

The local alternatives can take many forms of departures from the null
hypothesis. For assessing the proposed method, we consider here a class
of alternatives of the form as shown in Figure 3. As mentioned in Section
2.2, we assume the true merits α’s are ordered. In each of the simulation
model, a number, k0, of α’s are set to be higher than the rest of the objects
that have identical merit values. For those that have higher merit values,
we specifies the values to have linear increments, while the highest α value,
α1, was δ higher than the value of the undifferentiated objects. In other
words, αi−1−αi = δ/k0, for 2 ≤ i ≤ k0 and αi−1−αi = 0 for k0+1 ≤ i ≤ n.
For convenience, F and G were taken to be normal distributions with mean
0 and standard deviation σ.
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Figure 3 Alternative model used for simulations.
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3.2 Results

For the class of alternatives that are considered in the simulation studies,
the strength of the signal from the objects with higher α values depends on
the elevation of merit, δ, and the noise standard deviation σ: The higher
the ratio between δ and σ, the more distinct the top objects are from the
rest of the evaluation pool. Without loss of generality, we fix σ to be 1 and
vary only the value of δ.

In Figure 4, power performance of the modified Kendall rank-order test
on simulated data with 500 objects are plotted at each possible truncation
values, k, under two specifications of δ and different values of k0. When
k = n, the modified test becomes the original Kendall rank-order test.
First, we observe that the power curves attain the peaks around the “right”
specification of k, i.e., around the real value of k0. Trimming too many
objects (smaller values k) and too few (larger values of k) both result in
loss of power. The most striking performance gain due for the modified
rank-order test is observed when the signal is weaker and the number of
the objects with higher merits is smaller (say, δ = 3, k0=10). As shown
in this example, the original Kendall rank-order statistic has little power
when the proportion of true signal is less than 5%, while the modified test
maintains a power of higher than 70% for a reasonable range of k values
around the true (unknown) value of k0.
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Figure 4 Power performance of the modified Kendall rank-order association test under
two sets of alternatives. The power is estimated using 500 simulations. The models used
for simulation are specified as in Figure 3 with δ = 3 versus δ = 9, while k0 takes four
different values.
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Figure 5 Power performance of the modified Kendall rank-order association test and the
test based on the overlapping top objects. The power is estimated using 500 simulations.
The model used for simulation is specified as in Figure 3 with δ = 3 and σ = 1, while k0
takes four different values.

Figure 5 shows the comparison of the power performance between the
modified rank-order test and the test based on the number of overlapping
top objects as described in Section 2.4. The models used for this compar-
ison have δ = 3 and σ = 1 with k0 varying. For the test based on the
number of overlapping top objects, the clearest pattern in Figure 5 is that
the power curves drop dramatically as the specified truncation number k
departs from the true value k0. This method is not useful when the value
k get closer to the total number of the objects, n, by definition. On the
other hand, the signal of the top objects is better preserved and reflected
by the modified rank-order test when k differs from k0. This is due to
the fact that the test using the overlap of top objects only reduces noises
from the undifferentiated objects, while the modified rank-order test takes
into account the informative order of the top ranks through the use of the
truncated ranks and gain more power to detect the real signals.

4 Discussion and Conclusion

4.1 Departure from normality

The sampling distributions of the modified Kendall rank-order test statis-
tic can be well approximated by normal distributions when k is not very
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small. However, when based on the truncated ranks, if k and n are both
small (say n ≤ 30, k ≤ 5), the sampling distribution under the null hy-
pothesis becomes more discrete. This is because, conditioning on the total
number of agreements and disagreements combined, the distribution of the
number of agreements is a binomial distribution with probability 0.5. The
combined total number of agreements and disagreements equals the num-
ber of informative pairs of objects (those that have at least one falling into
the top k ranks in both X and Y rankings). This number becomes very
small when n and k/n are both small. Actually, the expected total number
of agreements and disagreements under the null hypothesis is

E(# agreements + # disagreements | H0)

=
n(n− 1)

2

(
1 − (n− k)(n− k − 1)

n(n− 1)

)2

=
(2n− k − 1)2k2

2n(n− 1)
.

which is approximately 2k2 for most cases we consider in this paper, pro-
vided n is large and k ≪ n. Thus, the test derived based on the normal
approximation should be reasonable when k ≥ 10 and k ≪ n.

4.2 Disagreements versus agreements

The original Kendall rank-order correlation coefficient is calculated using
both the number of agreements and disagreements while adjusting for the
numbers of ties in both the X and Y rankings. For the truncated ranks,
the mean and variance of such a score becomes complicated to evaluate. It
is believed, though, that the number of disagreements should also contain
useful information. This is an issue that remains to be addressed in the
future.

4.3 More general alternatives

Other forms of departures from the null hypothesis can also take place in
different applications. For instance, in the microarray data example con-
sidered in the introduction, if we look at the coefficient of correlation, we
should look at both ends of the fully-sorted “merit” list. On the positive
value end will be genes that are highly expressed in good prognosis patients
but are suppressed in poor prognosis patients, while genes that expressed
in good prognosis patients but not poor prognosis patients will have corre-
lation values clustered around the lower end (large negative values). For a
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situation like this, a natural modification of the proposed method will be to
change the right-truncation of the rank to center truncation, i.e., modifying
the rank by assigning a single rank value to the mid-portion of the ordered
observations.

4.4 Computational considerations

The computational complexity of the test statistic is the same as that of
the original Kendall rank-order correlation coefficient, which is O(n2). For
a large value of n, the sorting of the objects and the counting of the agree-
ments can be time consuming. However, the amount of computation needed
can be adequately handled by current computing power. For the example
we have used in the introduction section, the calculation for 24,479 genes
took about 3 minuets to finish using R on a Pentium-4 PC, which should
be acceptable by current computing standards although this can be much
improved using scientific computing languages such as C or Fortran. The
mean and standard deviation for the normal approximation only depend on
the specification of n and k, which is easy to calculate and can be prepared
in advance.

4.5 Conclusion

In this paper, we proposed a modified Kendall rank-order association test
for studying the repeatability of two studies on a large number of objects,
most of which are undifferentiated. The method addresses new issues posed
by the low signal-to-noise ratio of current data sets. The test statistic is
intuitive, easy to implement, and fast to calculate. The exact sampling
distribution can be derived using permutation simulations or conveniently
approximated by normal distributions in most practical situations. Simula-
tions on a class of general alternatives show substantial gains in power due
to the proposed modification, compared to the original Kendall rank-order
coefficient of correlation. Through the use of rank-order based on truncated
ranks, the test statistic still manages to capture the informative order of
the objects with higher merits while removes the noises from the undiffer-
entiated objects. We believe this new test can find important applications
in statistical studies that involves large number of objects for evaluation.
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Stock prices have been modeled in the literature as either discrete or con-
tinuous versions of geometric Brownian motions (GBM). This chapter
uses rank statistics of the GBM to define a new exotic derivative called a
stochastic corridor. This rank statistic measures how much time, during
a given period, the stock prices stay below the price of a prefixed day.
The properties of the stochastic corridor and its applications in finance
are studied.

Key words: Rank Process; Stochastic Corridor; Look-back Option;
Exotic Derivatives; Geometric Brownian Motion; Stock Prices

1 Introduction

In Mathematical Finance, stock prices in discrete time are typically as-
sumed to follow lognormal distributions. More specifically, the logarithm
of stock price at time t is assumed to be a sum of t independent identically
distributed (iid) normal random variables. Functions of these stock prices
are used to define exotic derivatives, especially the ones called look-back
options. The most popular one is the arithmetic average; others include
the maximum and the minimum (Goldman et al., 1979). Miura(1992) con-
sidered the alpha-quantile option, which is based on the quantile or order
statistics of stock prices. The options based on Max, Min, and alpha-
quantiles are called look-back options since, at the end of the time interval,
we have to look back at all the stock prices that occurred during the time
interval in order to compute the value of these statistics.

In this chapter, we will use a continuous-time framework which can be
viewed as a limit of the discrete-time setting. Specifically, we will assume

529
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that the stock price {Su, u ∈ [0, T ]} follows a geometric Brownian motion
(GBM), i.e.,

Su = S0e
Xu = S0e

µu+σWu , for u ∈ [0, T ], (1)

where S0 is the random initial price and Wu is a standard Brownian motion
with zero mean.

Now, the corridor is defined as follows. For any fixed constant K, let

F (K) =
1

T

∫ T

0

I{Su ≤ K}du. (2)

This is just a continuous-time version of the empirical process for stock
prices during the time interval [0, T ]. It is a measure of the proportion of
time the stock prices stay below the given fixed value K during the time
interval [0, T ]. We will call it a fixed-level corridor or fixed corridor for
short.

This quantity depends on the path of stock price, and it can be de-
termined only at the end of the time interval. For example, consider
an application in discrete-time setting such as the currency exchange rate
derivatives. This statistic counts the proportion of days the exchange rate
stays below the given fixed level K, and the pay-off (which is the value
of the derivative at the time of exercise, or of expiration) of the deriva-
tive (contract) may promise to pay to the holder of the derivative the
amount of money proportional to the statistic. This is called a corridor
option. These corridors could also be used in principle for other applica-
tions such as weather derivatives to count the number of days where the
daily-temperature stays below a fixed level.

Given α ∈ [0, 1], the α-quantile of the process is defined as the quantity
m(α) such that

α =
1

T

∫ T

0

I{Su ≤ m(α)}du. (3)

Note that F (m(α)) = α. Then, m(α) is the level below which the stock
price stays for 100α−percent of the time during the time interval [0, T ].
Thus it could be viewed as a continuous-time version of “order statistics”
of stock prices observed during the time interval [0, T ].

In this chapter, we define and study the properties of a new derivative
called stochastic corridor. Specifically, consider a fixed day t with stock
price St, which is random. Define the rank process

R(t) =
1

T

∫ T

0

I{Su ≤ St}du. (4)
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This has a similar interpretation as the fixed corridor except that the fixed
value of K in the fixed corridor has been replaced by St which is stochastic.
Note that R(t) does not depend on S0 since

I {Su ≤ St} = I{S0e
Xu ≤ S0e

Xt} = I{Xu ≤ Xt}.
The fixed-level corridor and the stochastic-level corridor both can be used
as payoff of derivatives.

The rest of the chapter is organized as follows. In Section 2, we briefly
review the look-back options based on nonparametric statistics of stock
prices observed during the time interval. There we also review the results
for the probability distributions for non-parametric statistics such as α-
quantiles and rank processes. In Section 3, a brief discussion is given of the
risk-neutral measure in derivative pricing. In Section 4, we consider the
stochastic corridor option and introduce a swap or an exchange contract
between the stochastic corridor and a fixed corridor. We further introduce,
in Section 5, an option to buy/sell the stochastic corridor by a fixed corridor.
In Section 6, we define the forward starting corridors, and then we go on
to discuss a swap and an option based on these which are forward starting
versions of the spot starting ones in Sections 4 and 5. A specific feature of
the forward starting stochastic corridor is that its probability distribution is
independent of the starting stock price at the beginning of the future time
interval since it is a rank statistic determined by the relative magnitude of
the stock prices.

The contributions in this chapter are twofold. First, the look-back op-
tions defined in Sections 4, 5, and 6 are new results in the literature. Sec-
ond, we develop technical results on how to calculate the prices of these
derivatives.

2 Distribution Results

The following lemma plays a key role at several parts in this chapter where a
calculation is encountered for an expectation of the nonparametric statistics
such as a fixed corridor or a stochastic corridor. The proof can be found in
Fujita(1997) or Fujita & Miura(2002,2004). See also the handbook Borodin
& Salminen(2002) for the result without proof.

Lemma 1.

P (Wt ∈ da,
∫ t
0
I{Ws < 0}ds ∈ du) = (

∫ t
u
( a

2π
√
s3(t−s)3

e
−a2

2(t−s) ds)da du,

for a > 0.

P (Wt ∈ da,
∫ t
0
I{Ws < 0}ds ∈ du) = (

∫ u
0

( −a
2π
√
s3(t−s)3

e
−a2

2s ds)da du for

a < 0.
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Consider now the distribution of the fixed corridor F (K) or equivalently
TF (K). This was derived for the driftless case (µ = 0) in Miura(1992) using

the fact that the distribution can be reduced to that of
∫ T
0 I{Wu ≤ 0}du.

The Cameron-Martin theorem can then be used to get the result for the
general µ 6= 0 case.

Let µ = 0 for now, and assume throughout that S0 < K. Let

A =
1

σ
log

(
K

S0

)
(5)

and

τ = inf{u : Wu ≥ A, 0 < u < T }. (6)

Note that Wτ = A. It can be shown (Miura (1992)) that the probability
distribution of TF (K) is

G(x,K : 0, σ) =

∫ x

0

2

π
sin−1((

x − s

1 − s
)

1
2 ) hA(s)ds

where hA is the probability density of the stopping time τ .
Consider now the case with drift µ 6= 0. By Cameron-Martin theorem,

for any integrable function h(·),

E[h(TF (K))] = E[h(

∫ T

0

I{S0e
µu+σWu ≤ K}du)]

= E[e
µ
σWT−(µσ )2 T2 h(

∫ T

0

I{Wu ≤ 1

σ
log

K

S0
}du)].

Define Zu−τ = Wu −Wτ ) and recall that A = 1
σ log

(
K
S0

)
. Now we can get

the general distribution of T F (K) in the µ 6= 0 case as

G(x,K;µ, σ) = E[e
µ
σWT−(µσ )2 T2 I{

∫ T

0

I{Wu ≤ A}du < x}]

= E[e
µ
σWT−(µσ )2 T2 I{(τ +

∫ T

τ

I{Zu−τ ≤ 0}du) < x}]

= E[e
µ
σA−(µσ )2 T2 e

µ
σZT−τ I{(τ +

∫ T−τ

0

I{Zu ≤ 0}du) < x}].

The last term can be calculated by using the joint probability density func-

tion of (ZT−τ ,
∫ T−τ
0

I{Zu ≤ 0}du < x) as shown in Lemma 1 and the
distribution of the first hitting time of τ .

From this, we get the distribution of the α-quantile m(α) as P{m(α) <
y} = 1 − G(Tα, y : µ, σ). See also Akahori(1995). Fujita (1997) derived
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the joint probability density function of (ST ,m(α)) in order to price a call
option with payoff function max{ST −m(α), 0}.

Let us turn to the distribution of the stochastic corridor [TR(t)]. Fujita
and Miura (2004) noted that this rank statistic in the case µ = 0, σ = 1 can
be decomposed into a weighted sum of two independent random variables,
each of which follows an arcsine law.

Let R̃(t) denote the rank statistics for this case. Then,

T R̃(t) =

∫ T

0

I{Wu ≤Wt}du

=

∫ t

0

I{Wu −Wt ≤ 0}du+

∫ T

t

I{Wu −Wt ≤ 0}du

= t
1

t

∫ t

0

I{Zs ≤ 0}ds+ (T − t)
1

T − t

∫ T−t

0

I{Z∗
s ≤ 0}du,

where Zs = Wt−s −Wt and Z∗
s = Wt+s −Wt). Then, as shown in Fujita

and Miura (2004), Lemma 1 and the Cameron-Martin theorem can be used
to handle the general (µ, σ) case. More specifically, for the general case, for
any integrable function h(·),

E[h(TR(t))]

= E[e
µ
σWT−(µσ )2 T2 h(T R̃(t))]

=

∫ ∞

−∞

[∫ 1

0

e
µ
σx−(µσ )2 T2 h(y)f(WT ,T R̃(t))(x, y)dy

]
dx

= E[e
µ
σ (Z∗

T−t−Zt)−(µσ )2 T2 h(

∫ t

0

I{Zs ≤ 0}ds+

∫ T−t

0

I{Z∗
s ≤ 0}ds)]

where WT = Z∗
T−t − Zt in the equation on the righthand side above. Now

the last equation above can be expressed as

∫∫

−∞<x1<∞,0<y1<T−t

∫∫

−∞<x2<∞,0<y2<t

e
µ
σ (x1−x2)−(µσ )2 T2

h(y2 + y1)f(Z∗
T−t,

∫
T−t
0

I{Z∗
s≤0}ds)(x1, y1)dy1dx1

f(Zt,
∫ t
0
I{Zs≤0}ds)(x2, y2)dy2dx2

Thus, it is enough to derive a joint probability distribution function (or
density function) of (WT , R̃(t)) rather than that of (WT ,R(t)) in order
to calculate the above expectation. The joint densities of the decom-
posed variables [f(Z∗

T−t,
∫ T−t
0

I{Z∗
s≤0}ds)(x1, y1), f(Zt,

∫ t
0
I{Zs≤0}ds)(x2, y2)] can

be obtained from Lemma 1.
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3 Derivative Pricing

In the mathematical theory of derivative pricing, the conditional expecta-
tion is taken for the stock price Su under the so-called risk neutral proba-
bility measure (or equivalent martingale measure). Under this risk neutral
measure Q, the newly defined stochastic process W ∗ (shifted version of the
original Brownian motion W under the original measure P ) behaves as a
Brownian motion. This is done by an application of Girsanov’s theorem
as discussed briefly below (see, for example, Baxter and Rennie (1996) for
details.)

Recall that St = S0e
µt+σWt or dSt = St((µ+ 1

2σ
2)dt+ σdWt). Given a

constant interest rate r, define γ =
µ+ 1

2σ
2−r

σ and W ∗ = Wt + γt. Then, we

can write St = S0e
rt−rt+µt+σWt = S0e

rt− 1
2σ

2t+σ(Wt+γt) = S0e
rt− 1

2σ
2t+σW∗

t .
Q is then defined by

dQ

dP
= e−γWT− 1

2γ
2T

and under this Q, W ∗ is a Brownian motion. Further, {St} behaves as

dSt = St(rdt + σdW ∗
t ).

In the following sections, all the conditional expectations are done in a
derivative pricing framework. Hence, we assume that the conditional ex-
pectation taken for S is under Q.

4 Corridor Swap

The fixed corridor F (K) and the stochastic corridor R(t) both can be used
separately as payoff of derivatives. Their prices at time 0 are given respec-
tively by

e−rTE0[F
r,σ
K,T ], e−rTE0[R

r,σ
t,T ]

in a Black-Scholes market.
We go further to define a “swap” or an exchange of the two derivatives

which requires appropriate choice of the value of K. The payoff of the swap
contract is F (K) − R(t). This price at time of the contract is zero so that
we have, as usual,

0 = e−rTE0[

∫ T

0

I{Su ≤ K}du−
∫ T

0

I{Su ≤ St}du]

Thus, the constant K has to be chosen to satisfy the equation

E0[

∫ T

0

I{Su ≤ K}du] = E0[

∫ T

0

I{Su ≤ St}du].
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Note that righthand-side is a non-negative bounded constant less than T ,
and the lefthand-side is a strictly increasing continuous function of K rang-
ing from zero to T . So there must exist a constant K which satisfies the
above equality.

It is necessary to have an explicit functional form of these expectations
in order to obtain the numerical value of K. They can be obtained by using
the distributional results in Section 2.

5 Corridor Option

It is possible to define Put-type and Call-type options using the fixed and
stochastic corridors. Their pricing can be done in a straightforward manner
since it does not require any further distributional results.

We define a corridor call option on the stochastic corridor with the fixed
level corridor as its exercise value. The pay-off of the corridor call option
is VC,T = max(R(t) − F (K), 0). Similarly, the pay-off of the corridor put
option is VP,T = max(F (K) − R(t), 0). The prices of these Call and Put
at time zero in the Black-Scholes model are given by VC,0 = e−rTE0[VC,T ]
and VP,0 = e−rTE0[VP,T ] respectively. The expectation for Call option can
be calculated as follows.

Theorem 1.

VC,0 = e−rTE0[B
r,σ] = e−rTE0[e

r
σWT−( rσ )2 T2 B0,σ]

where

Br,σ = Br,σ1 +Br,σ2

= Br,σ1,1 +Br,σ1,2 +Br,σ2,1 +Br,σ2,2

and

B0,σ = B0,σ
1,1 +B0,σ

1,2 +B0,σ
2,1 +B0,σ

2,2 ,

where

Bµ,σ = max{
∫ T

0

I{Su ≤ St}du−
∫ T

0

I{Su ≤ K}du, 0}

=

∫ T

0

I{Su ≤ St}du · I{St > K} −
∫ T

0

I{Su ≤ K}du · I{St > K}
∆
= Bµ,σ1 +Bµ,σ2
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=

∫ T

t

I{Su ≤ St}du · I{St > K} −
∫ T

t

I{Su ≤ K}du · I{St > K}

+

∫ t

0

I{Su ≤ St}du · I{St > K} −
∫ t

0

I{Su ≤ K}du · I{St > K}
∆
= Bµ,σ1,1 + Bµ,σ1,2 +Bµ,σ2,1 +Bµ,σ2,2

The terms above are calculated in the following lemmas.

Lemma 2.

E0[B
r,σ
1 ] = E0[{

∫ T

t

I{Su ≤ St}du−
∫ T

t

I{Su ≤ K}du} · I{St > K}]

= E0[e
r
σZT−t−( rσ )2 T−t

2

∫ T−t

0

I{Zv ≤ 0}dv] ·E0[I{Wt > Ar,σ}]

−
∫

{S0ert+σw>K}
{E0[e

r
σZT−t−( rσ )2 T−t

2

∫ T−t

0

I{Zv ≤ rt

+σw + log
K

S0
}dv |Wt = w]}n(w : 0, t)dw

Proof. Define Ar,σ = 1
σ (log K

S0
− rt)), and Zu−t = Wu −Wt. Note that

Wt and Wu −Wt are independent.

Br,σ1,1 =

∫ T

t

I{Su ≤ St}du · I{St > K}

=

∫ T

t

I{r(u − t) + σ(Wu−Wt) ≤ 0}du · I{Wt > Ar,σ}

=

∫ T−t

0

I{ru + σZu ≤ 0}du · I{Wt > Ar,σ}

Br,σ1,2 =

∫ T

t

I{Su ≤ K}du} · I{St > K}

=

∫ T

t

I{S0e
ru+σWu ≤ K}du} · I{S0e

rt+σWt > K}

=

∫ T

t

I{r(u − t) + σ(Wu −Wt) ≤ −rt− σWt + log
K

S0
}du

× I{Wt > Ar,σ}

=

∫ T−t

0

I{rv + σZv ≤ rt + σWt + log
K

S0
}dv · I{Wt > Ar,σ}.

(where v = u− t)
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In the last step, note that log
(
K
St

)
= −rt − σWt + log K

S0
< 0 in {Wt >

Ar,σ} = {St > K}. Now,

E0[B
r,σ
1 ] = E0[B

r,σ
1,1 ] + E0[B

r,σ
1,2 ]

= E0[e
r
σZT−t−( rσ )2 T−t

2

∫ T−t

0

I{Zv ≤ 0}dv] ·E0[I{Wt > Ar,σ}]

−
∫

{S0ert+σw>K}
{E0[e

r
σZT−t−( rσ )2 T−t

2

∫ T−t

0

I{Zv ≤
1

σ
(rt

+σw + log
K

S0
)}dv |Wt = w]}n(w : 0, t)dw

= E0[e
r
σZT−t−( rσ )2 T−t

2

∫ T−t

0

I{Zv ≤ 0}dv] ·E0[I{Wt > Ar,σ}]

−
∫

{S0ert+σw>K}
{E0[e

r
σZT−t−( rσ )2 T−t

2 (τ

+

∫ T−t

τ

I{Zv ≤ 0}dv) |Wt = w]}n(w : 0, t)dw,

where τ = inf{v : Zv ≥ A∗, 0 ≤ v ≤ T }, A∗ = 1
σ (rt + σw + log K

S0
) and

n(w : 0, t) is the density of the normal distribution with mean zero and
variance t. �

Lemma 3.

E0[B
r,σ
2 ] = E0[{

∫ t

0

I{Su ≤ St}du−
∫ t

0

I{Su ≤ K}du} · I{St > K}]

= E0[e
r
σZt−( rσ )2 t

2

∫ t

0

I{0 ≤ Zv}dv · I{S0e
Zt > K}]

−
∫ t

0

E0[e
r
σ (Zt−s+

1
σ log

(
K
S0

)
)−( rσ )

2 t
2 (s+

∫ t−s

0

I{Zv ≤ 0}dv)

× I{Zt−s > 0} |τ = s]g(s)ds

Proof. We rely on Cameron-Martin theorem to reduce the calculations
for the case µ 6= 0 to that for the case µ = 0.
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E0[B
r,σ
2,1 ] = E0[{

∫ t

0

I{Su ≤ St}du · I{St > K}]

= E0[

∫ t

0

I{S0e
ru+σWu ≤ S0e

rt+σWt}du · I{S0e
rt+σWt > K}]

= E0[

∫ t

0

I{0 ≤ rv + σZv}dv · I{S0e
rt+σZt > K}]

(where Zv = Wt −Wt−v, and note that Zt = Wt)

= E0[e
r
σZt−( rσ )

2 t
2

∫ t

0

I{0 ≤ Zv}dv · I{S0e
Zt > K}]

=

∫∫

log( KS0
)<x<∞,0<y<t

e
r
σx−( rσ )

2 t
2 yf(Zt,

∫
t
0
I{Zs≤0}ds)(x, y)dydx.

E0[B
r,σ
2,2 ] = E0[{

∫ t

0

I{Su ≤ K}du} · I{St > K}]

= E0[{
∫ t

0

I{ r
σ
u+Wu ≤ 1

σ
log

(
K

S0

)
}du} · I{ r

σ
t+Wt >

1

σ
log(

K

S0
)}]

= E0[e
r
σWt−( rσ )

2 t
2

∫ t

0

I{Wu ≤ 1

σ
log

(
K

S0

)
}du · I{Wt >

1

σ
log(

K

S0
)}]

= E0[e
r
σWt−( rσ )2 t

2 (τ +

∫ t

τ

I{Wu −Wτ ≤ 0}du) · I{Wt >
1

σ
log(

K

S0
)}]

(where τ = inf{u : Wu >
1

σ
log(K/S0), 0 < u < t}.)

= E0[e
r
σ (Zt−τ+ 1

σ log
(
K
S0

)
)−( rσ )2 t

2 (τ +

∫ t−τ

0

I{Zv ≤ 0}dv) · I{Zt−τ > 0}]

=

∫ t

0

E0[e
r
σ (Zt−s+

1
σ log

(
K
S0

)
)−( rσ )

2 t
2 (s+

∫ t−s

0

I{Zv ≤ 0}dv)

× I{Zt−s > 0} |τ = s]g(s)ds

(where Zv = Wτ+v −Wτ , g(·) is the probability density function of τ.

Note Zt−τ = Wt −Wτ = Wt −
1

σ
log

(
K

S0

)
)

=

∫

0<s<t

∫∫

0<x<∞,0<t−s
e
r
σ (x+ 1

σ log
(
K
S0

)
)−( rσ )2 t

2 (s+ y)

× f(Zt−s,
∫ t−s
0

I{Zv<0}dv)(x,y)g(s)dxdyds

�
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Put-Call Parity
For any random variables X and Y , we have an equality; max{X −Y, 0}+
Y = X + max{Y − X, 0}. Applying this relation to our Call and Put
regarding X and Y as our stochastic corridor R(t) and fixed level corridor
F (K),

max

[∫ T

0

I{Su ≤ St}du−
∫ T

0

I{Su ≤ K}du, 0

]
+

∫ T

0

I{Su ≤ K}du

=

∫ T

0

I{Su ≤ St}du+ max

[∫ T

0

I{Su ≤ K}du−
∫ T

0

I{Su ≤ St}du, 0

]

Since the pay-off of the left hand side and the right hand side of the equation
coincide, the prices at time zero of the derivatives corresponding to each
side must be equal under the assumption that the market does not allow
any arbitrage. Hence, using the linearity of expectation, we have (the
price of corridor call)+(price of fixed corridor) =(the price of stochastic
corridor)+(price of corridor put)

6 Forward Starting Corridor

Let [T0, T1], 0 < T0 < T1, be a future time interval where a corridor option
counts the amount of time that the stock prices stay below a level, either
fixed or stochastic. Now, the payoffs of forward starting fixed corridor and
stochastic corridor are respectively,

F (K, (T0, T1)) =

∫ T1

T0

I{Su ≤ K}du

and

R(t, (T0, T1)) =

∫ T1

T0

I{Su ≤ St}du.

A contract is made at time 0 and the payoff is paid to the holder at time
T1. Then the prices of these options in the Black-Scholes model are

e−rT1E0[
∫ T1

T0
I{Su ≤ K}du]

e−rT1E0[
∫ T1

T0
I{Su ≤ St}du]

respectively.
As we saw in the previous section that the probability distribution of

the stochastic corridor is independent of the value ST0 , the value of the
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initial stock price in the future time interval [T0, T1]. This independence
property may be expected to be useful in practice when they set a level
for the fixed corridor. In order to decide a constant level K, it may be
required in practice to have a certain idea or a prediction of overall level of
stock prices during the future time interval [T0, T1]. Since it is not easy to
make a prediction, it may be plausible sometimes to depend on a stochastic
value to determine an overall level, for example ST0 . Or there might be a
special time point t during the future time interval [T0, T1] that is suitable
for making St the stochastic level for the stochastic corridor.

If one wants to compensate the result from the ambiguity of a suitable
value of K with the difference between the two forward starting corridors,
one can swap to exchange the forward starting fixed corridor with the for-
ward starting stochastic corridor. The payoff of this swap is

∫ T1

T0

I{Su ≤ St}du−
∫ T1

T0

I{Su ≤ K}du

or
∫ T1

T0

I{Su ≤ K}du−
∫ T1

T0

I{Su ≤ St}du.

As in Section 3, we need to be able to determine a proper theoretical value
of K which makes the price of the swap contract be zero at the time of the
contract, i.e. at time 0. That is, K has to satisfy the equation

0 = e−rT1E0[

∫ T1

T0

I{Su ≤ K}du−
∫ T1

T0

I{Su ≤ St}du]

In other words,

E0[

∫ T1

T0

I{Su ≤ K}du] = E0[

∫ T1

T0

I{Su ≤ St}du].

The above expectations are the conditional expectations taken under the
condition that the value of S0 is given. The existence of such a constant K
is assured using the same argument as in the previous section.

The probability distribution of
∫ T1

T0
I{Su ≤ St}du is ST0 - indepen-

dent and is the same as that of
∫ T1−T0

0
I{Su ≤ St}du. (See Fujita and

Miura(2004)). However, the calculation for E0[
∫ T1

T0
I{Su ≤ K}du] requires

some additional comments.

E0[

∫ T1

T0

I{Su ≤ K}du |S0 ] = E0[ET0 [

∫ T1

T0

I{Su ≤ K}du |ST0 ] |S0 ]

= E0[ET0 [

∫ T1

T0

I{eXu−XT0 ≤ K

ST0

}du |ST0 ] |S0] .
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Since for any u in [T0, T1], (Xu − XT0) and XT0 or equivalently ST0 are
stochastically independent of each other, the expectation inside can be cal-
culated with any given value of ST0 and the result integrated with respect
to the density function of ST0 . So this does not involve a joint distribution
function.

A call option with a payoff

max

[∫ T1

T0

I{Su ≤ St}du−
∫ T1

T0

I{Su ≤ K}du, 0

]
,

is possible. Its price can be calculated in a similar way to that for the
option for the spot starting corridor.
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Chapter 27

CONDITIONAL MONTE CARLO BASED ON

SUFFICIENT STATISTICS WITH APPLICATIONS
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We review and complement a general approach for Monte Carlo com-
putations of conditional expectations given a sufficient statistic. The
problem of direct sampling from the conditional distribution is consid-
ered in particular. This can be done by a simple parameter adjustment
of the original statistical model if certain conditions are satisfied, but
in general one needs to use a weighted sampling scheme. Several exam-
ples are given in order to demonstrate how the general method can be
used under different distributions and observation plans. In particular
we consider cases with, respectively, truncated and type I censored sam-
ples from the exponential distribution, and also conditional sampling for
the inverse Gaussian distribution. Some new theoretical results are pre-
sented.

Key words: Sufficiency; Conditional distribution; Monte Carlo sim-
ulation; Pivotal statistic; Truncated exponential distribution; Type I
censoring; Inverse Gaussian distribution.

1 Introduction

We consider a pair (X,T ) of random vectors with joint distribution in-
dexed by a parameter vector θ. Throughout the paper we assume that
T is sufficient for θ compared to X , meaning that the conditional distri-
bution of X given T = t can be specified independent of θ [Bickel and
Doksum (2001), Ch. 1.5, Lehmann and Casella (1998), Ch. 1.6]. Sta-
tistical inference is often concerned with conditional expectations of the

545
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form E{φ(X)|T = t}, which will hence not depend on the value of θ. Ap-
plications include construction of optimal estimators, nuisance parameter
elimination and goodness-of-fit testing.

Only in exceptional cases is one able to compute E{φ(X)|T = t} an-
alytically. Typically this is not possible, thus leading to the need for ap-
proximations or simulation algorithms. Apparently because of the com-
putational difficulties involved, methods based on conditional distributions
given sufficient statistics are often not exploited in statistical applications.
In fact, the literature is scarce even for the normal and multinormal distri-
butions. Cheng (1984) used a result for Gamma-distributions to simulate
conditional normal samples with given sample mean and sample variance,
and then showed how to modify the idea to sample conditionally given the
sufficient statistic for the inverse Gaussian distribution. Subsequently he
extended the idea from his 1984 paper to derive a corresponding algorithm
for the multivariate normal case [Cheng (1985)]. A related approach based
on random rotations was recently suggested by Langsrud (2005). Lindqvist
and Taraldsen (2005) derived a method for the multinormal distribution
based on a parametrization via Cholesky-decompositions. Diaconis and
Sturmfels (1998) derived algorithms for sampling from discrete exponential
families conditional on a sufficient statistic.

Engen and Lillegaard (1997) considered the general problem of Monte
Carlo computation of conditional expectations given a sufficient statistic.
Their ideas were further developed and generalized in Lindqvist and Tarald-
sen (2005) [in the following referred to as LT (2005)] and in the technical
report Lindqvist and Taraldsen (2001) where a more detailed measure the-
oretic approach was employed.

The present paper reviews basic ideas and results from LT (2005). The
main purpose is to complement LT (2005) regarding computational aspects,
examples and theoretical results. In particular we consider some new ex-
amples from lifetime data analysis with connections to work by Kjell Dok-
sum [Bickel and Doksum (1969), exponential distributions; Doksum and
Høyland (1992), inverse Gaussian distributions].

2 Setup and basic algorithm

Following LT (2005) we assume that there is given a random vector U with
a known distribution, such that (X,T ) for given θ can be simulated by
means of U . More precisely we assume the existence of functions χ and
τ such that, for each θ, the joint distribution of (χ(U, θ), τ(U, θ)) equals
the joint distribution of (X,T ) under θ. Let in the following f(u) be the
probability density of U .
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Example 1. Exponential distribution. SupposeX = (X1, . . . , Xn) are i.i.d.
from the exponential distribution with hazard rate θ, denoted Exp(θ). Then
T =

∑n
i=1Xi is sufficient for θ. Letting U = (U1, . . . , Un) be i.i.d. Exp(1)

variables we can put

χ(U, θ) = (U1/θ, . . . , Un/θ),

τ(U, θ) =
n∑

i=1

Ui/θ.

Consider again the general case and suppose that a sample from the
conditional distribution of X given T = t is wanted. Since the conditional
distribution by sufficiency does not depend on θ, it is reasonable to believe
that it can be described in some simple way in terms of the distribution
of U , and thus enabling Monte Carlo simulation based on U . A suggestive
method for this would be to first draw U from its known distribution, then
to determine a parameter value θ̂ such that τ(U, θ̂) = t and finally to use

Xt(U) = χ(U, θ̂) as the desired sample. In this way we indeed get a sample
of X with the corresponding T having the correct value t. The question
remains, however, whether or not Xt(U) is a sample from the conditional
distribution of X given T = t.

Example 1 (continued). For given t and U there is a unique θ̂ ≡ θ̂(U, t)

with τ(U, θ̂) = t, namely

θ̂(U, t) =

∑n
i=1 Ui
t

.

This leads to the sample

Xt(U) = χ{U, θ̂(U, t)} =

(
tU1∑n
i=1 Ui

, . . . ,
tUn∑n
i=1 Ui

)
,

and it is well known [Aitchison (1963)] that the distribution ofXt(U) indeed
coincides with the conditional distribution of X given T = t.

The algorithm used in Example 1 can more generally be described as
follows:
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Algorithm 1. Conditional sampling of X given T = t.

(1) Generate U from the density f(u).

(2) Solve τ(U, θ) = t for θ. The (unique) solution is θ̂(U, t).

(3) Return Xt(U) = χ{U, θ̂(U, t)}.

The following so called pivotal condition, discussed and verified in LT
(2005), ensures that Algorithm 1 produces a sample Xt(U) from the con-

ditional distribution of X given T = t. Note that uniqueness of θ̂(U, t) in
Step 2 is required.

The pivotal condition. Assume that τ(u, θ) depends on u only through
a function r(u), where the value of r(u) can be uniquely recovered from the
equation τ(u, θ) = t for given θ and t. This means that there is a function
τ̃ such that τ(u, θ) = τ̃{r(u), θ} for all (u, θ), and a function ṽ such that
τ̃{r(u), θ} = t implies r(u) = ṽ(θ, t). Note that in this case ṽ(θ, T ) is
a pivotal quantity in the classical meaning that its distribution does not
depend on θ.

Example 1 (continued). The pivotal condition is satisfied here with
r(U) =

∑n
i=1 Ui. Thus Algorithm 1 is valid, as verified earlier by a direct

method.

3 General algorithm for unique θ̂(u, t)

Algorithm 1 will in general not produce samples from the correct conditional
distribution, even if the solution θ̂(u, t) of τ(u, θ) = t is unique. This was
demonstrated by a counterexample in Lindqvist, Taraldsen, Lillegaard and
Engen (2003). A modified algorithm can, however, be constructed. The
main idea [LT (2005)] is to consider the parameter θ as a random variable
Θ, independent of U , and with some conveniently chosen distribution π.
Such an approach is similar to the one of Trotter and Tukey (1956), and
this idea is also inherent in the approach of Engen and Lillegaard (1997).

The key result is that the conditional distribution of X given T = t
equals the conditional distribution of χ(U,Θ) given τ(U,Θ) = t. This is
intuitively obvious from the definition of sufficiency, which implies that this
holds when Θ is replaced by any fixed value θ. Note, however, that inde-
pendence of U and Θ is needed for this to hold. It follows that conditional
expectations E{φ(X)|T = t} can be computed from the formula

E{φ(X)|T = t} = E[φ{χ(U,Θ)}|τ(U,Θ) = t]. (1)

Assume in the rest of the section that the equation τ(u, θ) = t has the

unique solution θ̂(u, t) for θ. Then θ = θ̂{u, τ(u, θ)} is an identity in θ
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and u, and this fact together with (1) imply that

E{φ(X)|T = t} = E[φ{χ(U,Θ)}|τ(U,Θ) = t]

= E[φ{χ(U, θ̂{U, τ(U,Θ)})}|τ(U,Θ) = t]

= E[φ{χ(U, θ̂(U, t)}|τ(U,Θ) = t].

Thus we need only the conditional distribution of U given τ(U,Θ) = t.
Assuming this is given by a density f(u|t), Bayes’ formula implies that
f(u|t) ∝ f(t|u)f(u), where f(t|u) is the conditional density of τ(U,Θ) given
U = u and f(u) is the density of U . Now since U and Θ are independent,
f(t|u) is simply the density of τ(u,Θ) which we in the following denote
by Wt(u). It should be stressed that Wt(u) is the density of τ(u,Θ) as
a function of t, for each fixed u, while in the following it will usually be
considered as a function of u. From this we get

E{φ(X)|T = t} =
E[φ{Xt(U)}Wt(U)]

E{Wt(U)} , (2)

where the denominator E{Wt(U)} =
∫
Wt(u)f(u)du is merely the normal-

ization of the conditional density f(u|t). The formula shows that Wt(u)
acts as a weight function for a sample u from f(u).

It follows from (2) that sampling from the conditional distribution in
principle can be done by the following scheme:

Algorithm 2. Weighted conditional sampling of X given T = t.
Let Θ be a random variable and let t 7→Wt(u) be the density of τ(u,Θ).

(1) Generate V from a density proportional to Wt(u)f(u).

(2) Solve τ(V, θ) = t for θ. The (unique) solution is θ̂(V, t).

(3) Return Xt(V ) = χ{V, θ̂(V, t)}.

The weight function Wt(u) in the Euclidean case

Suppose that the vector X has a distribution depending on a k-dimensional
parameter θ and that T (X) is a k-dimensional sufficient statistic. Choose a
density π(θ) for Θ and let Wt(u) be the density of τ(u,Θ). Since τ(u, θ) = t

if and only if θ = θ̂(u, t) it follows under standard assumptions that

Wt(u) = π{θ̂(u, t)}|det∂tθ̂(u, t)| = | π(θ)

det∂θτ(u, θ)
|θ=θ̂(u,t). (3)

The formula (2) can thus be written

E{φ(X)|T = t} =

∫
φ[χ{u, θ̂(u, t)}]| π(θ)

det∂θτ(u,θ)
|θ=θ̂(u,t)f(u)du

∫
| π(θ)

det∂θτ(u,θ)
|θ=θ̂(u,t)f(u)du

, (4)
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and can be computed by simulation using a pseudo-sample from the distri-
bution of U as will be explained in Section 6.1.

Example 2. Truncated exponential lifetimes. Let X = (X1, . . . , Xn) be a
sample from the exponential distribution with hazard rate θ, but assume
now that Xi is an observation truncated at τi (i = 1, . . . , n), where the
τi > 0 are known numbers. This means that the distribution function of
Xi is

Fi(xi, θ) =
1 − e−θxi

1 − e−θτi
, 0 ≤ xi ≤ τi, i = 1, . . . , n. (5)

As for the non-truncated exponential case in Example 1, the statistic T =∑n
i=1Xi is sufficient for θ. Suppose we wish to consider the conditional

distribution of X given T = t. It turns out to be convenient to extend the
parameter set to allow θ to be any real number. Indeed, Fi defined in (5)
is a c.d.f. for all real θ if we define Fi(xi, 0) = xi/τi, 0 ≤ xi ≤ τi, obtained
by taking the limit as θ → 0 in (5).

Now a sample X can be simulated by ordinary inversion based on (5)
using a sample U = (U1, U2, . . . , Un) from the standard uniform distribu-
tion, denoted Un[0, 1]. This gives
χ(U, θ) = (η1(U1, θ), . . . , ηn(Un, θ)), τ(U, θ) =

∑n
i=1 ηi(Ui, θ) where

ηi(ui, θ) =

{
− log{1 − (1 − e−θτi)ui}/θ if θ 6= 0

τiui if θ = 0
.

The function ηi(ui, θ) is strictly decreasing in θ, which follows since Fi(xi, θ)

is strictly increasing in θ. Consequently the solution θ̂(u, t) of τ(u, θ) = t
is unique.

It turns out that the pivotal condition of Section 2 is not satisfied in
the present case. Indeed, Lindqvist et al. (2003) studied the case n = 2
and found that Algorithm 1 does not produce the correct distribution.
Thus we use instead Algorithm 2 and (4), for which we need to compute
|∂θτ(u, θ)|θ=θ̂(u,t). We obtain

|∂θτ(u, θ)|θ=θ̂(u,t) =
1

θ̂(u, t)

(
t−

n∑

i=1

τiuie
−θ̂(u,t)τi

1 − (1 − e−θ̂(u,t)τi)ui

)
.

In principle we can then use (4) with any choice of the density π(θ) for
which the integrals exist. The simple choice of π(θ) = 1/|θ| turns out
to work well in this example and is in accordance with the discussion in
Section 6.3 regarding the use of noninformative priors.

We close the example by noting that since θ = 0 corresponds to the Xi

being uniform, the target conditional distribution is that of n independent
Un[0, τi] random variables given their sum. There seems to be no simple
expression for this distribution, not even when the τi are equal.
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4 The general case

Recall the basic idea described in Section 3 that conditional expectations
E{φ(X)|T = t} can be computed from the formula (1) where we have
introduced the random parameter Θ. In the general case, where there may
not be a unique solution of τ(u, θ) = t, we compute (1) by conditioning on
U in addition to τ(U,Θ) = t. This leads to the most general result of LT
(2005) which states that

E{φ(X)|T = t} =

∫
Zt(u)Wt(u)f(u)du∫
Wt(u)f(u)du

, (6)

where Zt(u) is the conditional expectation of φ{χ(u,Θ)} given τ(u,Θ) = t
for fixed u, Wt(u) is the density of the variable τ(u,Θ) at t, for fixed u, and
f(u) is the density of U .

Thus our method essentially amounts to changing computations of
conditional expectations of φ{χ(U, θ)} given τ(U, θ) = t for fixed θ into
the often much simpler problem of computing conditional expectations of
φ{χ(u,Θ)} given τ(u,Θ) = t for fixed u. Note the freedom to choose a
suitable distribution π for Θ.

The formula (6) implies the following principal scheme for simulation of
X given T = t.

Algorithm 3. General weighted conditional sampling of X given T = t.
Let Θ be a random variable and let t 7→Wt(u) be the density of τ(u,Θ).

(1) Generate V from a density proportional to Wt(u)f(u) and let the result
be V = v.

(2) Generate Θt from the conditional distribution of Θ given τ(v,Θ) = t.
(3) Return Xt(V ) = χ(V,Θt).

4.1 The general Euclidean case

As in Section 3, suppose that the vector X has a distribution depending on
a k-dimensional parameter θ and that T (X) is a k-dimensional sufficient
statistic. In this case, the equation τ(u, θ) = t will typically have a finite
number of solutions, where this number may vary as u varies. Define

Γ(u, t) = {θ̂ : τ(u, θ̂) = t}
and note that the density t 7→Wt(u) of τ(u,Θ) is now given by

Wt(u) =
∑

θ̂∈Γ(u,t)

π(θ̂)

|det∂θτ(u, θ)|θ=θ̂
. (7)
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Furthermore, the conditional distribution of Θ given τ(u,Θ) = t is concen-
trated on Γ(u, t) and is given by

Pr{Θ = θ̂ | τ(u,Θ) = t} =
π(θ̂)

|det∂θτ(u, θ)|θ=θ̂Wt(u)
, θ̂ ∈ Γ(u, t). (8)

The following formula generalizes the result (4):

E{φ(X)|T = t} =

∫ ∑
θ̂∈Γ(u,t) φ(χ(u, θ̂)) π(θ̂)

|det∂θτ(u,θ)|θ=θ̂
f(u)du

∫ ∑
θ̂∈Γ(u,t)

π(θ̂)

|det∂θτ(u,θ)|θ=θ̂
f(u)du

. (9)

We note that the treatment of multiple roots of the equation τ(u, θ) = t
in the present context is similar to the treatment in Michael et al. (1976) in
connection with generation of random variates from transformations with
multiple roots. Formulas (7) and (8) can in fact together be considered as
a multivariate generalization of equation 3 in Michael et al. (1976) [see also
Taraldsen and Lindqvist (2005)].

The following two examples illustrate the use of Algorithm 3 and equa-
tion (9). In the first example Γ(u, t) contains at most one value of θ, but
may be empty. In the second example we may have an arbitrary number
of elements in Γ(u, t).

Example 3. Type I censored exponential lifetimes. Let n units with poten-
tial lifetimes Y1, Y2, . . . , Yn be observed from time 0, but assume that the
observation of the ith unit is censored at a given time ci > 0 (i = 1, . . . , n).
This means that we observe only Xi = min(Yi, ci). In the reliability termi-
nology this is called Type I censoring. Suppose Y1, . . . , Yn are i.i.d. with
distribution Exp(θ). Then the likelihood of X1, . . . , Xn can be written
θR exp(−θS) where R =

∑
i I(Xi < ci) is the number of noncensored ob-

servations and S =
∑
iXi is the sum of all observations. Here I(A) is the

indicator function of the event A. Now T = (R,S) is sufficient for θ, but
note that a two-dimensional statistic is here sufficient for a one-dimensional
parameter.

It should be remarked that the potential censoring times ci are assumed
known also for the units where Xi < ci. For example this is the case
if n machines, or patients in a medical study, are observed from possibly
different starting points in time, and until a common terminal point. Let
c1, . . . , cn be fixed, known numbers in the following.

As in Example 1, let U = (U1, . . . , Un) be a vector of n i.i.d. Exp(1)
variables. We then simulate X for a given value of θ by means of χ(U, θ) =
(η1(U1, θ), . . . , ηn(Un, θ)) where

ηi(ui, θ) = min(ui/θ, ci), i = 1, . . . , n.
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Thus T = (R,S) is simulated by τ(U, θ) = (γ(U, θ), ψ(U, θ)) where
γ(U, θ) =

∑
i I(Ui/θ < ci) and ψ(U, θ) =

∑
i ηi(Ui, θ).

We now show how to find the functions Wt(u) and Zt(u) needed in (6).
First we show that the equation τ(u, θ) = t has at most one solution for θ
for fixed u, t, but may have none. Let the observed value of the sufficient
statistic, t = (r, s), be fixed with 0 < r ≤ n, 0 < s <

∑
i ci. Then consider

the equations γ(u, θ) = r, ψ(u, θ) = s for a given u. Since ψ(u, θ) is

strictly decreasing in θ, from
∑
i ci to 0, there is a unique θ̂ which satisfies

ψ(u, θ̂) = s. However, this θ̂ may not solve γ(u, θ) = r. In the cases where

indeed γ(u, θ̂) = r, put K(u, t) = 1 and put K(u, t) = 0 otherwise. If
K(u, t) = 1 then define I(u, t) = {i1, . . . , ir} to be the set of indices i for

which ui/θ̂ < ci. With this notation we can express the solution θ̂ when
K(u, t) = 1 as

θ̂(u, t) =

∑
i∈I(u,t) ui

s−∑i6∈I(u,t) ci
.

Next, choose a density π(θ) for θ > 0, for example π(θ) = 1/θ in
accordance with Example 2. We then find the density Wt(u) ≡ W(r,s)(u)
of τ(u,Θ) to be

Wt(u) ds = π{θ : γ(u, θ) = r, s ≤ ψ(u, θ) ≤ s+ ds}

=

{
0 if K(u, t) = 0

θ̂(u, t)2π(θ̂(u, t))ds/
∑

i∈I(u,t) ui if K(u, t) = 1.

Further, Zt(u) is the conditional expectation of φ{χ(u,Θ)} given
τ(u,Θ) = t. This is easily found since the conditional distribution of Θ

given τ(u,Θ) = t is a one-point mass at θ̂(u, t) if K(u, t) = 1 and can be
arbitrarily chosen otherwise. Formula (9) therefore gives

E{φ(X)|T = t} =
E{K(U, t)φ[χ{U, θ̂(U, t)}]Wt(U)}

E{K(U, t)Wt(U)} .

The choice π(θ) = 1/θ yields the simple weight function

Wt(u) = (s−
∑

i6∈I(u,t)
ci)

−1, (10)

valid when K(u, t) = 1.
An important special case is when the ci are all equal. In this case

Wt(u) in (10) does not depend on u and we can sample directly from the
conditional distribution of X given T = t for fixed t by drawing u until
K(u, t) = 1 and then using Xt(u) = χ{u, θ̂(u, t)}.
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Example 4. Inverse Gaussian distributed lifetimes. Let X = (X1, . . . , Xn)
be a sample from the inverse Gaussian distribution with density

f(x;µ, φ) =

√
µφ

2πx3
exp

(
−µφ

2x
− φx

2µ
+ φ

)
, x > 0 (11)

[Seshadri (1999), p. 2] where µ, φ > 0 are parameters. Denote this dis-
tribution by IG(µ, φ). Note that a more common parametrization uses µ
together with λ = µφ, but the one used in (11) is more convenient for our
purposes as will become clear below. Doksum and Høyland (1992) consid-
ered models for accelerated life testing experiments which were based on
the inverse Gaussian distribution. In the present example we shall consider
conditional sampling given the sufficient statistic, which may have several
interesting applications in this connection.

A sufficient statistic is given by [Seshadri (1999), p. 7]

T = (T1, T2) =

(
n∑

i=1

Xi,

n∑

i=1

1/Xi

)
.

Since µ is a scale parameter in (11) we can simulate from IG(µ, φ) by
first simulating from IG(1, φ) and then multiplying the result by µ. We
shall use the method suggested by Michael et al. (1976) which seems to be
easier than ordinary inversion since there is no closed form expression for
the inverse cumulative distribution function.

Let Ui be Un[0, 1] and Vi be χ2
1 for i = 1, . . . , n, where all variables are

independent. Here χ2
1 means the chi-square distribution with 1 degree of

freedom. Let

Wi = 1 − (2φ)−1

(√
V 2
i + 4φVi − Vi

)
,

Zi = (1 +Wi)
−1.

Then [Michael et al. (1976)] the variables

η(Ui, Vi, φ) = I(Ui ≤ Zi) Wi + I(Ui > Zi) (1/Wi)

are distributed as IG(1, φ) and hence

χ(U, V, µ, φ) = (µη(U1, V1, φ), . . . , µη(Un, Vn, φ))

is a simulated sample of size n from IG(µ, φ). Here U = (U1, . . . , Un), V =
(V1, . . . , Vn). Moreover, we simulate T = (T1, T2) by

τ(U, V, µ, φ) = (τ1(U, V, µ, φ), τ2(U, V, µ, φ))

=

(
n∑

i=1

µη(Ui, Vi, φ),

n∑

i=1

(1/µ)(1/η(Ui, Vi, φ))

)
.
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In order to compute conditional expectations or to sample from the con-
ditional distribution of X given T = t we need to solve the equations
τ(u, v, µ, φ) = t = (t1, t2) with respect to µ and φ. This can be done by
first solving the equation

τ1(u, v, µ, φ) · τ2(u, v, µ, φ) = t1t2, (12)

which is free of µ. It turns out that the solution for φ is not neces-
sarily unique. In fact, the number of roots is finite but may vary with
(u, v). However, for each root found for φ we can easily solve for µ using
τ1(u, v, µ, φ) = t1. It should be noted that the functions η(ui, vi, φ) are
discontinuous in φ due to the indicator functions involved in their defini-
tion. However, the discontinuities are easy to calculate, and the functions
behave smoothly as functions of φ between them. This simplifies the solu-
tion of the equation (12) and enables rather straightforward computation of
Wt(u) in (7). A possible choice of the density π is to put π(µ, φ) = 1/(µφ)
since Jeffreys’ priors for, respectively, known φ and known µ are 1/µ and
1/φ (see Section 6.3 for the use of Jeffreys’ priors in the present context).
The desired simulations and computations can thus be performed by the
methods of the present section.

As mentioned in the introduction, Cheng (1984) presented a method
for simulation of conditional distributions in the case of inverse Gaussian
distributed samples. His method is based on a subtle decomposition of
chi-squared random variates and appears to be somewhat simpler than the
method presented here.

4.2 The discrete case

Suppose that bothX and T have discrete distributions, while the parameter
space is a subset of the k-dimensional Euclidean space. In this case the sets
Γ(u, t) are usually sets with positive Lebesgue measure. These may in
many cases be found explicitly, so that Wt(u) = Pr{τ(u,Θ) = t} can be
computed directly. In some instances, however, the set Γ(u, t) is difficult
to find. For such cases Engen and Lillegaard (1997) suggest replacing π by
a discrete measure, such as the counting measure on a grid of points in the
parameter space.

A thorough treatment of the discrete case is given in LT (2005), includ-
ing an example with logistic regression.
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5 On the distribution of θ̂(U, t)

Consider again the case when τ(u, θ) = t has the unique solution θ̂(u, t).
For computational reasons it may be desirable to have some knowledge of
the probability distribution of θ̂(U, t) as a function of U .

Note first that for the case when θ is one-dimensional and T is stochas-
tically increasing in θ, Lillegaard and Engen (1999) used the variates θ̂(U, t)
to derive exact confidence intervals for θ. More precisely they showed that
one obtains an exact (1−2k/(m+1))-confidence interval for θ by sampling

m + 1 values of θ̂(U, t) and then using the interval from the kth smallest
to the kth largest of them. They called this method conditional paramet-
ric bootstrapping. Their result can be rephrased to say that the interval
between the α/2 and 1− α/2 percentiles of the distribution of θ̂(U, t) is an

exact 1 − α confidence interval for θ. In fact, the distribution of θ̂(U, t) is
in this case a fiducial distribution in the sense of Fisher [Wilks (1962), p.
370]. This suggests that, under given standard conditions, the distribution

of θ̂(U, t) should at least asymptotically be comparable to that of a decent
estimator of θ, for example the maximum likelihood estimator.

This turns in fact out to be true under reasonable conditions. A rough
argument for the extended case where θ and T are k-dimensional can be
given as follows. Suppose that we have U = (U1, U2, . . . , Un) where we
shall consider the case where n → ∞. Furthermore, assume that the
parametrization is such that θ = E{T } = E{τ(U, θ)}. Lehmann and
Casella (1998, p. 116) calls this the mean value parametrization. In this
case T is itself an unbiased estimator of θ, and is the maximum likelihood
estimator if the underlying model is an exponential family [Lehmann and
Casella (1998), p. 470]. Our basic assumption for the following derivation
is that

n1/2(τ(U, θ) − θ)
d→ Nk(0,Σ(θ))

as n → ∞ for some positive definite matrix Σ(θ). This is satisfied in
the exponential family case, where Σ(θ) is the inverse Fisher information
matrix.

Now we consider a fixed value of t and define θ̂(U, t) to be the unique so-

lution of τ(U, θ) = t. Assume furthermore that we can show that θ̂(U, t) → t
in probability as n→ ∞. In this case, for any U ,

t = τ(U, θ̂(U, t))

= τ(U, t) + ∂θτ(U, θ)|θ=θ̃(θ̂(U, t) − t),

where θ̃ is between θ̂(U, t) and t in the sense that each component of θ̃ is a

convex combination of the corresponding components of θ̂(U, t) and t.
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Hence

n1/2(θ̂(U, t) − t) = (∂θτ(U, θ)|θ=θ̃)−1n1/2(t− τ(U, t))

and provided ∂θτ(U, θ)|θ=θ̃
p→ I (where I is the identity matrix) we have

n1/2(θ̂(U, t) − t) → Nk(0,Σ(t)) (13)

The requirement that ∂θτ(U, θ)|θ=θ̃
p→ I is typical in asymptotic results

related to estimating equations, see for example Welsh (1996, Section 4.2.4)
and Sørensen (1999) for sufficient conditions. The reason for the limit I
above is that E{τ(U, θ)} = θ. We will not pursue this further here, since
the methods we derive are meant for use in non-asymptotic inference.

The conclusion is that for a large class of models θ̂(U, t) has the same
asymptotic distribution as T under the parameter value θ = t. Thus in
multiparameter exponential models we conclude that θ̂(U, t) (under given
conditions) has the same asymptotic distribution as the maximum likeli-
hood estimator for θ. Note that by the invariance property of the maximum
likelihood estimator and of θ̂(U, t) (see Section 6.3) this holds under any
parametrization.

Finally we can reinterpret our result (13) to say that conditionally on

T , n1/2{θ̂(U, T ) − T } has the same limiting distribution as n1/2(T − θ).
This result is analogous to asymptotic results for bootstrapping (Bickel

and Freedman, 1981), in which the θ̂(U, T ) are replaced by bootstrapped
statistics.

6 Computational aspects

6.1 Monte Carlo computation of conditional expectations

A basic idea of our approach is that expectations of functions of U , such
as (4) and (9), can be evaluated by Monte Carlo simulation. Basically,
we can estimate E{h(U)} by (1/m)

∑m
i=1 h(ui) where u1, . . . , um is a com-

puter generated pseudo sample from the distribution of U . The literature
on Monte Carlo simulation [for example Ripley (1987)] contains various
methods for improving on this naive approach of estimating E{h(U)}.

6.2 Choice of simulation method for (X, T )

Our approach relies on the functions (χ(U, θ), τ(U, θ)) chosen for simulation
of (X,T ) in the original model. There is usually no unique way of select-
ing a simulation method. In the simulation of inverse Gaussian variables
in Example 4 it would be possible, for example, to use ordinary inversion
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based on the cumulative distribution function, or even to use simulation
of Wiener processes as described in Chhikara and Folks (1989). Each sim-
ulation scheme would give a different solution technique for handling the
conditional distributions.

6.3 Choice of the density π. Jeffreys’ prior

For a given setup in terms of (χ(U, θ), τ(U, θ)) we need to specify a density
π(θ), except when conditions for using Algorithm 1 are fulfilled. In practice
the effectiveness of an algorithm is connected to variation in the Wt(u)
which should be small or at best absent. For example, in order to minimize
this variation in the case of formula (4), the density π(θ) should be chosen

so that π{θ̂(u, t)} is similar to |det∂θτ(u, θ)|θ=θ̂(u,t).
Under the pivotal condition (Section 2) we may always choose π so that

Wt(u) does not depend on u. As a simple illustration, consider the simple
pivotal case where θ is one-dimensional and τ(u, θ) = r(u)θ. This means
that T/θ is a pivotal quantity. Assume that the parametrization is such
that E{r(U)} = 1 so that we have the mean value parametrization. In

this case θ̂(u, t) = t/r(u) so ∂tθ̂(u, t) = 1/r(u) = θ̂(u, t)/t. Hence we get
Wt(u) in (3) constant in u by choosing π(θ) = 1/θ. Assuming that T is the
maximum likelihood estimator of θ then under regularity conditions the
Fisher-information is given by 1/Var{τ(U, θ)} ∝ 1/θ2, so 1/θ is Jeffreys’
prior here. As another illustration it is shown in LT (2005) that in the case
where X is a sample from N(µ, σ) we obtain constant Wt(u) by choosing
π(µ, σ) = 1/σ, which is the standard improper, noninformative prior for
this case.

In fact there are reasons to choose improper, noninformative priors,
such as Jeffreys’ prior, also in general for the distribution π. Consider in
particular a one-to-one reparametrization from a k-dimensional parameter
θ to the k-dimensional ξ defined by θ = h(ξ). We then define τh(u, ξ) =

τ(u, h(ξ)) from which it follows that the ξ̂(u, t) which solves the equation

τh(u, ξ) = t satisfies θ̂(u, t) = h{ξ̂(u, t)}. Now let J be the k × k-matrix
with elements Jij = ∂hi(ξ)/∂ξj . Then we can write (3) as

Wt(u) = π[h{ξ̂(u, t)}] |detJ det∂tξ̂(u, t)|.
This shows that if we change the parametrization, then the weights Wt(u)
are unchanged provided we change π by the ordinary change of variable
formula for densities. Thus a consistent principle for choosing π should
have this property of invariance under reparametrizations. It is well known
that Jeffreys’ prior (Jeffreys, 1946) has this property, and there seems to
be reasons why in fact Jeffreys’ prior distribution is a reasonable candidate
for general use.
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6.4 Direct sampling from the conditional distributions

Algorithm 1 describes how to sample from the conditional distribution of
X given T = t under special conditions. Sampling from the conditional
distribution using Algorithms 2 or 3 may, however, in general be difficult
since the normalizing constant of the density Wt(u)f(u) may not be easily
available. Rejection sampling can be used if we are able to bound Wt(u)
from above. Looking at (3) we find that a possible way of doing this is to
seek a positive function ρ(θ) such that for all u we have

|det∂θτ(u, θ)|θ=θ̂(u,t) ≥ ρ{θ̂(u, t)}.

In this case we can put π(θ) = ρ(θ) to get Wt(u) ≤ 1 for all u. Then we
may simulate V in Step 1 by first drawing a U = u and then accepting it
with probability Wt(u).

A possible method for sampling without bounding Wt(u) is by means of
the SIR-algorithm of Rubin (1988). In the case of Algorithm 2 this method
can be described as follows:

First sample u1, . . . , um independently from the density f(u). Then
define wi = Wt(ui) for i = 1, . . . ,m and let Fm denote the discrete prob-
ability measure which assigns probability wi/

∑m
i′=1 wi′ to ui. Then Fm

converges to the desired conditional distribution as m → ∞. Hence for m
large enough we can obtain independent samples in Step 1 of Algorithms 2
and 3 by sampling from Fm.

Samples in Step 1 of Algorithms 2 and 3 can also be obtained by us-
ing the independence sampler based on the Metropolis-Hastings algorithm
[Tierney (1994)], but this leads to dependent samples from the conditional
distribution.
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Monte-Carlo estimation of an integral is usually based on the method
of moments or on an estimating equation. Recently, Kong et al. (2003)
proposed a likelihood based theory, which puts Monte-Carlo estimation
of integrals on a firmer, less ad hoc, basis by formulating the problem as
a likelihood inference problem for the baseline measure with simulated
observations as data. In this paper, we provide further exploration and
development of this theory. After an overview of the likelihood formu-
lation, we first demonstrate the power of the likelihood-based method
by presenting a universally improved importance sampling estimator.
We then prove that the formal, infinite-dimensional Fisher-information
based variance calculation given in Kong et al. (2003) is asymptotically
the same as the sampling based “sandwich” variance estimator. Next,
we explore the gain in Monte Carlo efficiency when the baseline measure
can be parameterized. Furthermore, we show how the Monte Carlo inte-
gration problem can also be dealt with by the method of empirical likeli-
hood, and how the baseline measure parameter can be properly profiled
out to form a profile likelihood for the integrals only. As a byproduct,
we obtain four equivalent conditions for the existence of unique maxi-
mum likelihood estimate for mixture models with known components.
We also discuss an apparent paradox for Bayesian inference with Monte
Carlo integration.

Keywords: Bridge Sampling; Fisher information; Importance sam-
pling; Mixture model; Normalizing constant; Profile likelihood.
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1 Introduction and overview

1.1 The need for computing normalizing constants

Let {qθ} be a family of unnormalized probability/density functions on some
sample space Γ, and let Pθ be the corresponding probability measure,
Pθ(A) =

∫
A
qθ(x)µ(dx)/c(θ), for any measurable A ⊂ Γ. Here c(θ) is the

normalizing constant, and µ is the dominating measure. Whereas the nor-
malizing constant is not required for many sampling methods, particularly
Markov chain Monte Carlo (MCMC) methods (e.g. Gilks et al., 1996), it is
a central quantity in many statistical and scientific problems. In physics, it
is known as the partition function, often estimated via MCMC (e.g. Ben-
nett, 1976; Ceperley, 1995; Voter, 1985). In genetics, many likelihoods are
computed using the following identity

p(Y mis |Y obs, θ) =
L(θ |Y obs, Y mis)

L(θ |Y obs)
,

where L(θ|Y obs) is the likelihood of interest, and L(θ |Y obs, Y mis) is the
complete-data likelihood, typically easier to evaluate because of its simpler
structure. With the help of sophisticated MCMC algorithms that simulate
from p(Y mis |Y obs, θ), computing L(θ |Y obs) becomes a problem of esti-
mating the normalizing constant c(θ) = L(θ |Y obs) of the unnormalized
f(Y mis |Y obs, θ), namely, qθ(Y mis) = L(θ |Y obs, Y mis), using our generic
notation (here Y obs is fixed). Methods such as importance sampling and
bridge sampling are then used to estimate L(θ |Y obs) (e.g. Ott, 1976; Geyer
and Thompson, 1992; Irwin et al., 1994; Jensen and Kong, 1999; Stephens
and Donnelly, 2001; Thompson, 2000).

In statistics, besides the obvious need for c(θ) in computing the like-
lihood, the computation of a Bayes factor is precisely a problem of com-
puting normalizing constants. These likelihood and Bayesian computation
problems are the major reasons for the recent interest in this topic, partic-
ularly given the increased complexity of Bayesian models (e.g. Geyer, 1994;
Gelfand and Dey, 1994; Newton and Raftery, 1994; Chib, 1995; Verdinelli
and Wasserman, 1995; Meng and Schilling, 1996; Meng and Wong, 1996;
Chen and Shao, 1997b,a; DiCiccio et al., 1997 Gelman and Meng, 1998;
Johnson, 1999; Chib and Jeliazakov, 2001; Meng and Schilling, 2002). In
all these problems, the quantities of interest are either ratios of normalizing
constants (e.g., likelihood ratios) or can be formulated as such. Even for
computing the normalizing constant for a single model, for computational
efficiency, we can estimate its value relative to the known value of the nor-
malizing constant of a simple approximation to the model (DiCiccio et al.,
1997; Meng and Schilling, 2002). Thus we focus on estimating a set of
normalizing constants modulo a common positive multiple. By extending



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Likelihood Theory for Monte Carlo Integration 565

{qθ} to include integrable but not necessarily non-negative functions, the
formulation also covers general Monte Carlo integrations.

1.2 A review of the likelihood theory

An intriguing aspect of Monte Carlo (MC) integration is that there is no
obvious (non-trivial) lower bound on the Monte Carlo variance with a given
simulation size. This is, of course, not surprising, because it is well-known
that the variance of the importance sampling estimator approaches zero
as the distance between the target density and trial density approaches
zero. Also, in MC integration problems, we know all quantities in c(θ) =∫
Γ
qθ(x)µ(dx), so there appears to be no inference problem to speak of.

This has led to several quandaries in the general attempts to model MC
simulated data just as real data; see Meng (2005).

To address this problem, Kong et al. (2003) proposed to treat the
baseline measure, µ, as the unknown parameter; additional arguments on
why this is a natural strategy are given in Meng (2005). Specifically, let
q1, . . . , qk be real-valued non-negative functions on Γ, and let µ be any
non-negative measure on Γ. We are interested in estimating cr/cs, where
cr =

∫
Γ
qr(x) dµ is assumed to be positive and finite. The simulated data

are nr > 0 independent samples from the rth weighted distribution

Pr(dx) = c−1
r qr(x)µ(dx). (1)

There may be additional functions qr, r = k + 1, . . . , k +m for which (the
relative value of) cr =

∫
Γ
qr(x)µ(dx) must also be estimated, and these

functions need not be non-negative. Also, as a theoretical device, by ex-
tending qr to be a joint density of dependent draws, the formulation covers
the practical situation where draws are realizations of a Markov chain.

Under the model of Kong et al. (2003), the parameter space is the set
of all non-negative measures on Γ, but our interest lies in the k +m linear
functionals

cr =

∫

Γ

qr(x) dµ, r = 1, . . . , k +m. (2)

Since the simulated data are n independent pairs: (y1, x1), . . . , (yn, xn),
where the labels yi ∈ {1, . . . , k} are determined by the simulation design
and xi ∼ Pyi , the full likelihood for µ is

L(µ;X) =
n∏

i=1

Pyi({xi}) =
n∏

i=1

µ({xi}) c−1
yi qyi(xi). (3)

Here we have assumed that Γ is countable; the uncountable case is dis-
cussed in Section 1.3. Re-parameterizing in terms of the canonical param-
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eter θ(x) = logµ({x}), the log likelihood for θ, except for a constant, is

n∑

i=1

θ(xi) −
k∑

s=1

ns log cs(θ) = n

∫

Γ

θ(x) dP̂ −
k∑

s=1

ns log cs(θ), (4)

where P̂ is the standard empirical measure which puts 1/n mass at each
observed data point. The maximum likelihood estimate of µ is given by

µ̂(dx) =
nP̂ (dx)

∑k
s=1 nsĉ

−1
s qs(x)

, (5)

where ĉs is the MLE of cs, which are obtained (up to a proportionality
constant) as the solution of the first k equations of

ĉr =

∫

Γ

qr(x) dµ̂ =

n∑

i=1

qr(xi)∑k
s=1 nsĉ

−1
s qs(xi)

, r = 1, . . . , k +m. (6)

Note that this set of equations has a unique solution (up to a multiplica-
tive constant) if and only if the set of values {qr(xi) ≥ 0, i = 1, . . . , n; r =
1, . . . , k} satisfies the “connected” condition of Vardi (1985), which we as-
sume. We also remark that in the above formulation, the labels {y1, . . . , yn}
play no role because they are not a part of the minimum sufficient statistic
(Vardi, 1985). However, such label information is crucial for the “warp
transformation” formulation, as discussed in Section 4.2.

1.3 Uncountable sample spaces

While the likelihood theory given in Kong et al. (2003) can be formally
extended to cases where Γ is uncountable, the definition of θ becomes prob-
lematic because it requires the existence of a dominating measure ν on Γ
such that the logarithmic derivative

θ(x) = log

(
dµ

dν
(x)

)

is well-defined on Γ. That is to say, the parameter space is restricted to the
set of measures on Γ that are absolutely continuous with respect to ν. This
construction is unsatisfactory when Γ is uncountable. The difficulty is that
if µ is Lebesgue measure on R, the “MLE” µ̂ is atomic, and thus not in the
parameter space as described. In fact, there does not exist on R a common
dominating measure ν such that µ̂ << ν for all possible estimates µ̂.

The problem is more of a mathematical technicality than a practical
obstacle, as equation (6) is clearly well-defined whether or not Γ is count-
able. Nevertheless, it is of some interest to acknowledge the problem, to
offer a resolution and to explore the consequences. First, we define (Γ,A)
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as a measure space, in which A is a σ-algebra of subsets sufficiently rich
to include all singletons of Γ. Second, we assume that the functions qs(x)
are A-measurable. Finally, the parameter space M is taken to be the set
of all non-negative measures defined on A. The likelihood at µ ∈ M,
L(µ;X), is still given by (3). Note here that we define likelihood through
its original form using the probability of the observed event {x1, . . . , xn},
not through any density function, which is not suitable here as there is no
single dominating measure for all elements in M.

From (3), it is clear that if µ({xi}) = 0 or cyi = ∞ for at least one i,
then L(µ;X) = 0. Furthermore, for each µ ∈ M such that µ({xi}) > 0
for all i = 1, . . . , n and µ(Γ\{x1, . . . , xn}) > 0, we define a µ̃ ∈ M so that
µ̃({xi}) = µ({xi}) for all i = 1, . . . , n, but µ̃(Γ\{x1, . . . , xn}) = 0. Recall
that qs(x) > 0 for all x ∈ Γ, it is then evident that for each s ∈ {1, . . . , k},

c̃s =

∫

Γ

qs(x)dµ̃ <

∫

Γ

qs(x)dµ = cs,

so that L(µ̃;x) > L(µ;x). Therefore, as far as MLE is concerned, we can
concentrate on measures with support on {x1, . . . , xn}. This effectively
implies that we can proceed as if Γ were countable.

Regardless of whether Γ is countable or not, the real power of the
likelihood-based method is that any usable knowledge about µ can (and
should) be used to form a sub-model for estimating µ, and hence to im-
prove MC efficiency for the resulting estimates of the c′s. The next section
details such an exercise in the context of importance sampling.

2 A universal improvement for importance sampling

2.1 Symmetrized importance sampling

While the formulation and results in Section 1 cover the most general bridge
sampling (Meng and Wong, 1996), the case with k = 1 is of special interest,
because it corresponds to the importance sampling approach via

γ ≡ c2
c1

=

∫

Γ

q2(x)

q1(x)
[c−1

1 q1(x)]dµ =

∫

Γ

q2(x)

q1(x)
dP1. (7)

Here we assume S2 ⊂ S1, where Sr is the support of qr, and we typically
set c1 = 1 because the trial density P1 is completely known. We highlight
this common application to emphasize that many current MC integrations
can be improved upon because they needlessly ignore usable symmetry
properties in the baseline measure (e.g., Lebesgue measure), which can be
captured easily by a sub-model under the likelihood formulation.

Specifically, let G be a compact group acting on Γ in such a way that µ
is invariant: µ(gA) = µ(A) for each g ∈ G. The sub-model is the one where
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the parameter space consists only of measures that are invariant under G.
The log likelihood function (4) simplifies because θ(x) = θ(gx) for each
g ∈ G. The MLE of µ is still given by (5) and (6), but with qs and P̂
replaced respectively by their group averages q̄s(x) = aveg∈G qs(gx) and

P̂G(A) = aveg∈G P̂ (gA).
To illustrate, the sub-model shows that (7) can be symmetrized by

group-averaging:

γ =
c2
c1

=

∫

Γ

q̄2(x)

q̄1(x)
dP̄1. (8)

Consequently, the usual importance sampling estimator

γ̂n =
1

n

n∑

i=1

q2(xi)

q1(xi)
≡ 1

n

n∑

i=1

w(xi), (9)

where {x1, . . . , xn} are draws from P1, is replaced by

γ̂Gn =
1

n

n∑

i=1

q̄2(xi)

q̄1(xi)
≡ 1

n

n∑

i=1

wG(xi). (10)

Because of (8), γ̂Gn is unbiased for γ as long as SG
2 ⊆ SG

1 (where SG
r is the

support of q̄r), which is a weaker requirement than S2 ⊆ S1. Therefore
the group average improves (or at least does no harm to) the robustness
of importance sampling in the sense of providing more assurance of having
enough support in the trial density.

There are several ways to see why (10) is more efficient than (9). First,
(9) is an “extreme” special case of (10) with G the identity transformation,
while the original analytic integration/summation over Γ in (7) can be
viewed as the other extreme case of (10) with a group rich enough such
that each of the wG(xi) in (10) is exactly the target value γ. The latter
can be most easily seen when Γ is finite, where we can take G be the full
permutation group on Γ. By using a suitable, much smaller sub-group,
(10) takes advantage of our ability to do partial analytic and/or numerical
summation, and then uses Monte Carlo to deal with the rest. In contrast,
(9) relies entirely on MC simulation to estimate γ.

Second, we can view the group transformation as “reparametrizing” the
sample space into a set of orbits and a cross-section that indexes the orbits.
Group averaging then analytically integrates over each orbit, and leaves
only the integration over the cross-section to MC simulation. For example,
suppose that Γ = R

d, µ is Lebesgue, and G is the orthogonal group. Then
group averaging is the same as the d−1 dimensional integration over all the
angles in polar coordinates. This analytic averaging, if feasible, makes (10)
more efficient than (9), because it effectively “Rao-Blackwellizes” out the
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d−1 angle coordinates, and thus (10) becomes a one-dimensional MC inte-
gral over the radius. Note that the correct “Rao-Blackwellization” carried
out by the sub-model, as shown in Section 2.2, averages individual qr, not
the ratios w = q2/q1. The latter does not in general provide a consistent
estimator because P1 is usually not invariant under G.

Third, group averaging increases the overlap among the underlying
“densities” (in quotes as some “densities” can be negative), and thus re-
duces the variability in the importance-sampling weight w. That is, (10) is
more efficient than (9) for any compact group G. Asymptotically, this is a
consequence of the Fisher information results for general k and m, obtained
in Section 3, because a sub-model necessarily possesses larger Fisher infor-
mation than the full model for the same set of parameters. For k = m = 1,
namely the importance sampling, in Section 2.2 we prove this for any finite
sample size by showing that (10) is the Rao-Blackwell projection of (9)
given the minimum sufficient statistic, i.e., the cross-section.

2.2 A theoretical comparison

The following theorem establishes that averaging over a larger group nec-
essarily reduces the variance of (10) for each sample size, under the inde-
pendence assumption, because of the usual “Rao-Blackwellization.”

Theorem 1. Suppose G2 ⊂ G1 are two finite groups and µ is G1-invariant.
Let Gx = {gx : g ∈ G} be the G-orbit of x and

wj(x) =
aveg∈Gj q2(gx)

aveg∈Gj q1(gx)
=

∫
t∈Gjx q2(t) dµ∫
t∈Gjx q1(t) dµ

, j = 1, 2.

If {x1, . . . , xn} is an i.i.d. sample from P1, then

Var(γ̂G1
n ) ≤ Var(γ̂G2

n ), ∀ n ≥ 1, (11)

where the equality holds if and only if there exists Ω ⊂ S1, the support of
P1, such that P1(Ω) = 1 and,

∀ x ∈ Ω, w2(gx) = w2(x), for all g ∈ G1. (12)

Proof. We first prove that for X ∼ P1,

E [w2(X)| G1x] = w1(x). (13)

The left-hand side of (13) is
∫
t∈G1x

w2(t)q1(t) dµ∫
t∈G1x

q1(t) dµ
=

∫
t∈G1x

w2(t) [aveg∈G2 q1(gt)] dµ∫
t∈G1x

q1(t) dµ
, (14)
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where the equality holds because w2(t) and µ are G2-invariant and G2 ⊂
G1. The right side of (14) is w1(x) because w2(t) [aveg∈G2 q1(gt)] =
aveg∈G2 q2(gt), and

∫

t∈G1x

aveg∈G2 q2(gt) dµ = aveg∈G2

∫

t∈G1x

q2(gt)dµ =

∫

t∈G1x

q2(gt)dµ,

where the last equality follows from
∫
t∈G1x

q2(gt)dµ being G2-invariant.

It follows from (13) that γ̂G1
n =

∑
i w1(xi)/n is the Rao-Blackwell pro-

jection of γ̂G2
n when {x1, . . . , xn} are i.i.d. because

E
[
γ̂G2
n | G1x1, . . . ,G1xn

]
= γ̂G1

n .

Consequently, (11) holds, with equality if and only if there exists Ω̃ ⊂ S1

with P1(Ω̃) = 1 such that

∀x ∈ Ω̃, w2(x) = w1(x). (15)

To prove that (15) implies (12), let B = ∪g∈G1{gx : x ∈ S1\Ω̃}. Then

P1(B) = 0 because G1 is finite. Let Ω = S1\B ⊂ Ω̃. Then P1(Ω) = 1.
Furthermore, if x ∈ Ω, then gx ∈ Ω ⊂ Ω̃ for any g ∈ G1. Consequently,
for any x ∈ Ω, since w1(x) is G1-invariant, (15) implies w2(gx) = w1(gx) =
w1(x) = w2(x) for any g ∈ G1, which is (12).

To prove the converse, we first note that for any x,

aveg∈G1 qr(gx) = aveg1∈G1{aveg2∈G2 qr(g2g1x)}, r = 1, 2, (16)

which implies

aveg∈G1 q2(gx) = aveg1∈G1{w2(g1x) aveg1∈G2 q1(g2g1x)}. (17)

Consequently, if (12) holds, then (17) becomes

aveg1∈G1{w2(x) aveg2∈G2 q1(g2g1x)}

for any x ∈ Ω, which together with (16) implies

aveg∈G1 q2(gx) = w2(x) aveg∈G1 q1(gx).

This establishes (15) when we take Ω̃ = Ω. �

This theorem provides a theoretical confirmation that our ability to
carry out the aveG1 operator analytically, in addition to our ability to eval-
uate aveG2 , always helps to reduce the MC error unless the group averages
under G1 are already invariant under G2, in the sense of (12).
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2.3 Practical implications

A consequence of (11)–(12) is that we can improve on the standard MC
estimators such as (9) by using convenient choices of G for which (10)
dominates (9). For the most common applications of (9) in statistics, where
Γ = R

d and µ is the Lebesgue measure, we can always take the two-element
group GO = {Id,−Id}, where Id is the d × d identity matrix. For any
problem where (9) can be implemented, we can implement (10) with G =
GO:

γ̂GOn =
1

n

n∑

i=1

q2(xi) + q2(−xi)
q1(xi) + q1(−xi)

, (18)

where qr(x) = 0 if x is outside the support of qr, r = 1, 2. By (11)–(12),
Var(γ̂G0

n ) < Var(γ̂n) unless q2(−x)/q1(−x) = q2(x)/q1(x) for almost all
x ∈ S1.

In fact, even when (9) fails to provide a consistent estimator because
S2 6⊂ S1, (18) can still be consistent as it requires the weaker assumption
SG

2 ⊆ SG
1 , namely, the support of q1(x) + q1(−x) covers that of q2(x) +

q2(−x). As an extreme example, consider d = 1, c1 = 1, S2 = R but

S1 = [0,+∞). Then (9) will only estimate
∫ +∞
0 q2(x) dµ. By contrast,

because q1(−xi) = 0 for xi ∼ P1, (18) becomes

1

n

n∑

i=1

q2(xi)

q1(xi)
+

1

n

n∑

i=1

q2(−xi)
q1(xi)

, (19)

which correctly estimates
∫ +∞

0

q2(x) dµ +

∫ +∞

0

q2(−x) dµ =

∫ +∞

−∞
q2(x)dµ.

Upon recognizing the support problem of q1, one would apply (9) twice to
form (19) to estimate

∫
R
q2(x) dµ, whereas (18) achieves this automatically.

This illustrates the robustness of (18), or other versions of (10), over (9)
in dealing with the well-known “tail” problem with importance sampling,
because it can greatly reduce biases caused by lack of support in the trial
density. The requirement of making more function evaluations by (18) or
(10) is often a negligible premium for its greater efficiency and robustness,
especially in comparisons with the expense of making the MC draws. In
fact, for cases like (19) the corrected importance sampling requires the same
number of function evaluations as implementing (18).

The GO group is only one of many that can be used to improve efficiency.
For example, one can replace −Id in GO by any of the 2d−2 other diagonal
matrices where the diagonal elements are either 1 or −1. Each of these
groups represents reflections with respect to some of the d axes, and which
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one is optimal depends on q2 and q1. One advantage of using GO is that
it automatically symmetrizes q̄r on each one-dimensional subspace. While
the comparisons of (10) among non-nested groups can be mathematically
complicated, intuitively GO is a good “default” choice compared to other
two-element reflection groups. If d is not too large, then we can and should
consider using the full reflection group consisting of all 2d diagonal matrices
with diagonal elements ±1, which is superior to any of its sub-group as
guaranteed by Theorem 2.1. Further improvement is also possible by using
different reflection points/axes for different distributions, as investigated in
Meng and Schilling (2002); see Section 4.2.

As briefly mentioned in Kong et al. (2003), there are some similari-
ties between the group averaging method with the importance link function
(ILF) method of MacEachern and Peruggia (2000). The key of the ILF
method is to construct a finite number of 1–1 and onto importance link
functions gi, i = 1, . . . , I with domain Bi ⊂ Γ0, where Γ0 is a subset of Γ,
such that {Ti ≡ gi(Bi), i = 1, . . . , I} forms a partition of Γ. Thus, inte-
gration on Γ can be estimated from the integral on each Ti via importance
sampling using draws from a trial density concentrated on Γ0. This is a
very effective strategy to deal with a common problem in MCMC where the
draws “get stuck” in part of the space, say Γ0, but one needs to estimate
integrals on the whole space Γ. Indeed, MacEachern and Peruggia (2000)
proposed to use this method for handling reducible chains. In this regard,
group averaging achieves the same goal and provides a more systematic
way to construct link functions. If Γ0 is a cross-section of the orbits, then
{gΓ0, g ∈ G} automatically form a partition of Γ and (10) will be the same
as the ILF estimator using the same G. Estimator (19) is such an exam-
ple with g1(x) = x and g2(x) = −x. In addition, the group formulation
makes it clear that Γ0 needs to contain at least a cross-section in order for
the support of the P̄1 to cover Γ. When Γ0 is richer than a cross-section,
the group averaging estimator (10) is more efficient than the ILF estimator
using the same G because the latter is generally not the Rao-Blackwell pro-
jection given the cross-section. As a trade-off, the ILF estimator does not
require {gi, i = 1, . . . , I} to be a group, when they are constructed based
on information other than symmetries in the baseline measure.

3 Asymptotic covariance matrix

3.1 Formal Fisher information calculation

Apart from the special case with k = 1 (and m ≥ 1), the exact calculation
of the variance of the MLE of c is not tractable. However, we can obtain the
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asymptotic covariance matrix via the usual Fisher information calculation,
at least formally. The following result (provided in Kong et al., 2003), based
on the concept of Fisher information measure (e.g. McCullagh, 1999),
was introduced to deal with Fisher information “matrix” of infinite order,
countably or uncountably.

Specifically, the Fisher information measure for θ = logµ is

nI(A,B) =

k∑

r=1

nr
(
Pr(A ∩B) − Pr(A)Pr(B)

)
,

where Pr is the distribution in (1). When Γ is countable, we also use I
(without argument) to denote the |Γ| × |Γ| density matrix of the Fisher in-
formation measure; thus I is the usual Fisher information matrix, although
of countably infinite order. The asymptotic covariance matrix of θ̂ is the
(generalized) inverse Fisher information matrix, n−1I−, and the asymp-
totic covariance matrix of dµ̂ is n−1dµ(x) dµ(y) I−(x, y), where I−(x, y) is
the (x, y) element of I−, as indexed by Γ × Γ. From expression (6) for ĉr,
we find that the asymptotic covariance of log ĉ is given by

cov(log ĉr, log ĉs) = n−1

∫

Γ×Γ

I−(x, y) dPr(x) dPs(y), 1 ≤ r, s ≤ k +m.

(20)
Before we proceed further, we remark that so far as contrasts of log ĉ

are concerned, two variance matrices V, V ′ are equivalent if a⊤V b = a⊤V ′b
for all contrast vectors a, b. In other words, a⊤(V − V ′)b = 0, so we may
add to V any (symmetric) matrix W such that a⊤Wb = 0 without affecting
the value a⊤(V +W )b, the covariance of two contrasts a⊤ log ĉ and b⊤ log ĉ,
where ĉ = (ĉ1, . . . , ĉk+m). The set W of such symmetric matrices is the set
1x⊤+x1⊤, which is a vector subspace of dimension k. The set of symmetric
matrices that are equivalent to V is the coset V + W of symmetric k × k
matrices. Not all elements of this coset need be positive definite. Cosets
of this sort arise naturally as the set of symmetric generalized inverses of
a non-invertible symmetric matrix A whose kernel is 1, the set of constant
vectors. In particular, if A1 = 0 then AWA = 0 for eachW ∈ W . If A− is a
generalized inverse of A, i.e. AA−A = A, then A− +W is also a generalized
inverse of A for each W ∈ W . If A− is symmetric and ker(A) = 1, the coset
A− + W is the set of symmetric generalized inverses of A. In this paper,
whenever A is symmetric, A− will be restricted to be a symmetric general-
ized inverse, and any equality between generalized inverses is interpreted in
the sense of equivalence. The use of such generalized inverses makes it pos-
sible to express the asymptotic covariance matrix of log ĉ, which is singular,
in a symmetric form without the awkwardness and asymmetry associated
with fixing an arbitrary component of ĉ.
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3.2 Deriving the matrix version

While expression (20) is extendable to cases where Γ is uncountable, for the
case where Γ is finite or countably infinite, we can obtain the usual matrix
form. Specifically, let Pmix =

∑k
r=1 frPr be the mixture probability where

fr = nr/n, r = 1, . . . , k. Then the matrix I is given by

I = D − PkFP⊤
k ,

where D = diag{Pmix({x})}, Pk is a |Γ| × k matrix with rth column given
by Pr({x}) for x ∈ Γ with x as the row index, and F = diag{f1, . . . , fk}.
Provided that Pmix is strictly positive on Γ, the matrix I has kernel equal
to 1. Let Ok = P⊤

k D
−1Pk and let (F−1 − Ok)

− be a generalized inverse.
Then the matrix

I− = D−1 +D−1Pk
(
F−1 −Ok)

−P⊤
k D

−1 (21)

is a generalized inverse of I. Thus, writing ĉ(k) = (ĉ1, . . . , ĉk), asymptoti-
cally,

n cov(log ĉ(k)) = P⊤
k I−Pk = Ok +Ok(F

−1 −Ok)
−Ok, (22)

which involves only symmetric matrices of order k. The inverse asymptotic
variance of log ĉ(k), i.e. the asymptotic precision, is n(O−

k −O−
k OkFOkO

−
k ).

Similarly, for ĉ(k+m) = (ĉ1, . . . , ĉk+m), asymptotically we have

n cov(log ĉ(k+m)) =

(
Ok +OkLkOk O⊤

m,k +OkLkO
⊤
m,k

Om,k +Om,kLkOk Om +Om,kLkO
⊤
m,k

)
, (23)

where Lk = (F−1 − Ok)
−, Om = P⊤

mD
−1Pm, Om,k = P⊤

mD
−1Pk, with

Pm the counterpart of Pk but for r = k + 1, . . . , k + m. Note that for
f = (f1, . . . , fk)

⊤, we have Okf = 1 and (F−1 − Ok)f = 0, so F−1 − Ok
is singular. For each vector α ∈ R

k, (F−1 − Ok)
− + αf⊤ + fα⊤ is also

a symmetric generalized inverse. But the choice of α has no effect on the
variance of any contrast in expression (23).

We remark in passing that from (21) I− ≥ D−1 in the sense of Löwner
ordering, from which we obtain the asymptotic inequality,

Var(log(
ĉr
ĉs

)
)
≥ n−1

∫

Γ

( dPr(x)

dPmix(x)
− dPs(x)

dPmix(x)

)2
Pmix(dx), ∀1 ≤ r, s ≤ k+m.

3.3 Estimating equation “sandwich” version

A technical difficulty with the Fisher information approach arises when Γ is
uncountable. In such cases, the log density estimate θ̂ is generally inconsis-
tent in the sense of pointwise convergence and thus the Fisher information
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approach presented in Section 3.1 can only be viewed as a formal calcula-
tion, suggestive but not rigorous. In this section we show the formula (20)
or equivalently (23) are indeed correct even when Γ is uncountable.

First, equation (6) gives an estimating equation for log ĉ(k) via

n∑

i=1

∂ log[P (xi|yi; c)]
∂ log c

∣∣∣∣
c=ĉ(k)

= 0, (24)

where

P (x|y; c) =
fyqy(x)c

−1
y∑k

s=1 fsqs(x)c
−1
s

. (25)

Applying the standard “sandwich” approach, albeit on the quotient space
log c ∈ R

k/1, we obtain, asymptotically

n cov(log ĉ(k)) = Ĩ−V Ĩ−,

where, denoting by Er and covr, the expectation and variance under Pr,

Ĩ =

k∑

r=1

frEr

[
− ∂2 log[P (x|y; c)]

(∂ log c)(∂ log c)⊤

∣∣∣∣
c=ĉ(k)

]
= FOkF − F,

and

V =

k∑

r=1

fr covr

[
∂ log[P (x|y; log c)]

∂ log c

∣∣∣∣
c=ĉ(k)

]
= FOkF − FOkFOkF.

Therefore, asymptotically,

n cov(log ĉ(k)) = (I −OkF )−(Ok −OkFOk)(I −OkF )−⊤, (26)

where A−⊤ denotes (A−1)⊤.
To show that (22) and (26) are equivalent, we only need to show that

for a particular choice of the generalized inverse, they are equivalent. A
convenient choice is the Moore-Penrose generalized inverse A+ for any ma-
trix A, which is unique and satisfies AA+A = A, A+AA+ = A+, and A+A
and AA+ are symmetric. Using this choice, it can be shown that both
(22) and (26) are equivalent to (I − OkF )+Ok. And thus for computing
the variance of any contrast of log ĉ(k), (22) and (26) are equivalent. The
extended version (23) can be derived directly in similar way, although the
algebra is a bit more involved. In this derivation, a key is to observe that
the fy in (25) plays no role in (24) because log fy is a constant. Thus we
can effectively remove fy from (25), which would then allow the y index
extended to include y = k + 1, . . . , k +m (for which fy = 0).
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3.4 A numerical example

For a numerical example, we take k = 3, µ unit Poisson, n1 = n2 = n3, and
qr(x) = rx so that Pr is Poisson with mean r. Using (22), we find that

O3 =




1.426 0.958 0.616
0.958 1.038 1.004
0.616 1.004 1.380


 , P⊤

3 I−P3 =




1.576 0.949 0.475
0.949 1.039 1.012
0.475 1.012 1.513


 .

The variance of any contrast log(ĉr/ĉs) is remarkably little affected by
the relative allocation frequencies nr/n in the design. For example, if the
relative frequencies are f = (0.2, 0.3, 0.5)⊤ we find

O3 =




1.733 1.085 0.656
1.085 1.051 0.936
0.656 0.936 1.176


 , P⊤

3 I−P3 =




2.431 1.452 0.772
1.452 1.250 1.002
0.772 1.002 1.200


 .

The asymptotic variances of
(
log(ĉ1/ĉ2), log(ĉ1/ĉ3), log(ĉ2/ĉ3)

)
are thus

(0.716, 2.138, 0.528)/n and (0.775, 2.086, 0.446)/n for the first and second
allocation respectively.

In the sense of minimizing the average variance of pairwise con-
trasts, the relative frequencies in the optimal allocation are approximately
(0.0, 0.8, 0.2), with no observations from P1. But the average variance
achieved by this allocation is only 8% less than the average variance in the
design with equal weights. Further, the inferior design with equal weights
may be superior for interpolation or extrapolation, i.e. for estimating ratios
log(cr/cs) with r and/or s in {k + 1, . . . , k +m}.

The term bridge sampling has been used by Meng and Wong (1996)
and Gelman and Meng (1998), in connection with the practice of sampling
from intermediate distributions P2, . . . , Pk−1 in order to estimate the ratio
c1/ck more accurately. Since the optimal allocation in the preceding ex-
ample puts weight zero on P1, the optimal bridge is in fact a cantilever,
supported entirely on P2, P3. While the term ‘bridge sampling’ has a cer-
tain metaphoric appeal, this example indicates that it can be misleading to
interpret the structural stability of the bridge as evidence of its statistical
efficiency.

3.5 Asymptotic covariance matrix from sub-models

Since the estimating equation obtained from a sub-model is the same as
(6) except that qr is replaced by a group-average q̄r, r = 1, . . . , k + m,
the general covariance formula (23) is obviously applicable with the same
replacement. In notation, this replacement is signified with Ō in place of
O in (22) and other formulas as necessary. To see the potential gain in
efficiency by a sub-model, consider a case where Γ is countable, µ is the
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counting measure, and k = 2. Let A be a finite subset of Γ, and let GA be
the permutation group on A. Then averaging P1 and P2 over A effectively
makes both of them uniform on A. The asymptotic variance of log γGA ,
where γGA = ĉGA2 /ĉGA1 , from (22) is (also see Meng and Wong, 1996)

Var(log γ̂GA) =
1

nf1f2
(ō−1

12 − 1), (27)

where ō12 is the off-diagonal element of Ō2, that is,

ō12 ≡
∫

Γ

dP̄1(x)

dP̄mix(x)

dP̄2(x)

dP̄mix(x)
P̄mix(dx) ≥

∫

A

dP̄1(x)

dP̄mix(x)

dP̄2(x)

dP̄mix(x)
P̄mix(dx).

(28)
Using the fact that P̄1 and P̄2 are uniform on A, (27)-(28) yields

Var(log γ̂GA) ≤ 1

n1

P1(A
c)

P1(A)
+

1

n2

P2(A
c)

P2(A)
. (29)

Consequently, the variance decreases with the increase of mass of A un-
der both P1 and P2, and it approaches zero as A approaches Γ. This is
not surprising because as A approaches Γ, the difficulty of summing over
A, as required by the aveg∈GA operator, approaches that of the original
summation problem we try to avoid. Putting it differently, the choice and
especially the size of A models what we consider to be usable information
and computationally feasible. In implementing this sub-model estimator,
we do not need to actually perform the permutation because for any x ∈ A,
P̄r({x}) =

∑
w∈A Pr({w})/|A|, so the computation is linear in |A|.

As an illustration, let Γ = {0, 1, 2, . . . , }, µ counting measure, qr(x) =
(rλ)x/x!, r = 1, 2, and thus Pr is Poisson with mean rλ. Take A = Ak =
{0, 1, . . . , k}. Then Pr(A

c
k) ≤ (rλ)k+1/(k+1)!, and thus the right-hand side

of (29) goes to zero rapidly as k goes to infinity. Figure 1 gives the relative
variance of log(ĉAk1 /ĉAk2 ) verse the same estimator but without permutation
(i.e., using k = 0), based on the asymptotic variance formula (27). It is
seen that the size of the set of values of λ, the difference between the
means, that show much improvement increases with k. This is expected as
when k is suitably large compared to λ and 2λ, Ak will cover a substantial
amount of mass under both P1 and P2, and thus the group averaging will be
significantly better than the original un-permuted one. This also suggests
that we can choose other A’s, such as the union of two neighborhoods
(not necessarily overlapping) of the mean/mode of each distribution, that
may lead to even more efficient estimator with the same |A|. The key
message here is that an effective strategy for increasing overlap between
two distributions is to make both of them as close to uniform as possible.
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Figure 1 Variance of sub-model MLEs relative to that of MLE for the Poisson example
of Section 3.5 (here k is the group size).

4 Modeling with additional information

4.1 Parameterizing baseline measure

An extreme form of additional information arises when we can parame-
terize the baseline measure µ up to a finite set of unknown parameters.
Although this is of little practical interest (as it effectively assumes that we
can perform integrations analytically or numerically once we are given the
values of the unknown parameters), it provides a framework for examining
the maximum possible gains by using additional information on µ. We give
here two examples to illustrate two possible scenarios.
Example 1. Let k = 2, Γ = {0, 1, 2, . . . , }, qr(x) = rx, and suppose that µ is
known to be a distribution in the Poisson family, but with unknown mean λ.
Direct calculation shows that, for r = 1, 2, cr = eλ(r−1), and that λr = r λ
is the mean of the distribution Pr. Thus ξ ≡ log(c2/c1) = λ2 −λ1 = λ may

be estimated by the moment estimator ξ̂MNT = X̄2−X̄1, or more efficiently
by the MLE ξ̂MLE =

∑n
i=1Xi/(n1 +2n2). The MLE is minimum-variance,

unbiased and with variance

Var(ξ̂MLE) =
λ

n

1

f1 + 2f2
, (30)
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where fi = ni/n. Note the efficiency of ξ̂MNT relative to ξ̂MLE is [9 +
2(
√
f2/f1 −

√
f1/f2)

2]−1 ≤ 1/9, achieved when f1 = f2 = 1/2.
To see the loss of efficiency from not parameterizing µ, we compute the

asymptotic variance of the semi-parametric MLE ξ̂SMLE from Section 1,
which is also the optimal bridge sampling estimator (Meng and Wong,
1996). This variance is given by (27) (with the original o12 in the place of
ō12), where for our current problem, o12 is a function of λ given by

o12(λ) =

∞∑

x=0

(2λ)xe−2λ

x!(f1 + f22xe−λ)
.

Figure 2 plots the asymptotic efficiency of ξ̂SMLE relative to ξ̂MLE as a
function of λ, where f1 = f2 = 1/2. It is seen that the relative efficiency
is always below one and it approaches zero as λ → ∞. This is expected
because as the difference in means, λ = λ2 −λ1, increases, Var(ξ̂MLE) goes

up linearly in λ as seen in (30), but Var(ξ̂SMLE) goes up exponentially in
λ. The latter can be seen by using the inequality (8.4) of Meng and Wong
(1996, p. 850), which states that when f1 = f2 = 1/2,

H2
12 ≤ o12 ≤ H12 ≡

∫

Γ

√
dP1(x)

dµ(x)

dP2(x)

dµ(x)
µ(dx), (31)

where H12 determines the Hellinger distance between P1 and P2:√
2(1 −H12). Since for our current problem H12 = e−(1.5−

√
2)λ, we have

4

n

(
e(3−2

√
2)λ − 1

)
≥ Var(ξ̂SMLE) ≥ 4

n

(
e(1.5−

√
2)λ − 1

)
.

The phenomenon that the variance of the optimal bridge sampling esti-
mator (when k = 2) goes up exponentially with the difference in means
was also reported in Meng and Wong (1996), which suggests that it is cru-
cial to increase the overlap between the P1 and P2, using methods such as
those given in Meng and Schilling (2002), in order to improve the efficiency
of bridge sampling estimators. It is also interesting to note that the pa-
rameterized MLE, ξ̂MLE , resembles the behavior of some estimators from
path sampling, which is bridge sampling with infinitely many bridges, in
the sense that the latter can also have variances that go up linearly in the
difference in the means (Gelman and Meng, 1998).

Example 2. Let Γ = R
+, qr(x) = e−βrx, where 0 ≤ β1 < β2 < · · · < βk

are known, and µ(dx) = e−ρxdx for some unknown ρ > 0. Then cr =
1/(βr + ρ), r = 1, . . . , k, and Pr is exponential with mean cr. The model
is thus inverse linear (McCullagh and Nelder, 1989, chap. 2) with one
unknown parameter ρ. The sample ratio, X̄2/X̄1 is a consistent, but not
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Figure 2 Relative efficiency of the semi-parametric MLE versus MLE for the Example
1 of Section 4.1.

fully efficient, estimate of the ratio c2/c1. The MLE of ρ is ρ̂ = max(0, ρ̃),
where

k∑

r=1

fr
βr + ρ̃

= X̄,

which has a unique solution in (−β1,∞). The Fisher information is

I(ρ) = n

k∑

r=1

fr
(βr + ρ)2

= n

k∑

r=1

frc
2
r. (32)

To investigate the gain of efficiency by parameterizing, we consider the
case of k = 2. From (32), the asymptotic variance of ξ̂MLE = log(β2 + ρ̂)−
log(β1 + ρ̂) is

Var(ξ̂MLE) =
1

n

(c1 − c2)
2

f1c21 + f2c22
.

On the other hand, H12 = 2
√
c1c2/(c1 + c2), and thus by (27) and (31),

when f1 = f2 = 1/2,

1

n

[
2(
√
c1 −

√
c2)

2

√
c1c2

]
≤ Var(ξ̂SMLE) ≤ 1

n

[
(c1 − c2)

2

c1c2

]
.
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Consequently, the asymptotic relative efficiency of ξ̂SMLE is bounded by

min

{
(
√
c1 +

√
c2)

2√c1c2
(c21 + c22)

, 1

}
≥ Var(ξ̂MLE)

Var(ξ̂SMLE)
≥ 2c1c2
c21 + c22

. (33)

Consider the case where β1 = 1 and β2 = β > 1. Then the lower bound
on the asymptotic efficiency in (33) has a minimum value 2β/(1 + β2),
achieved when ρ = 0. Thus, unlike Example 1, in this example the gain in
efficiency from using ξ̂MLE may not be significant. For example, when β =
2, the asymptotic relative efficiency of ξ̂SMLE is at least 80%, irrespective
the value of ρ. This is due to substantial overlap between exponentials with
mean (1 + ρ)−1 and with mean (2 + ρ)−1, regardless of the value of ρ. Of

course, when β → ∞, the asymptotic efficiency of ξ̂SMLE tends to zero by
(33), because the exponential with mean (β+ρ)−1 becomes concentrated at
zero, and thus has little overlap with the exponential with mean (1 + ρ)−1.

4.2 Using label information

As we derived in Section 3, the asymptotic covariance is determined by the
design matrix F and the overlap measure matrix O = {ors, 1 ≤ r, s ≤
k +m}, where

ors =

∫

Γ

dPr(x)

dPmix(x)

dPs(x)

dPmix(x)
Pmix(dx). (34)

Generally speaking, the more overlap as measured by O, the more accurate
the MLE of log ĉ, where c = {c1, . . . , ck+m}. When Γ has certain topologi-
cal structure, we can consider transformations to “warp” Pr’s into similar
shapes (and locations) in such a way that the transformations do not alter
the normalizing constants. For example, suppose the dominating measure
µ is Lebesgue. Then we can consider transforming each xr ∼ Pr via an
one-to-one transformation gr(x). That is, (2) is replaced by

cr =

∫

Γ

qr(g
−1
r (x))Jr(x) dµ, (35)

where Jr is the Jacobian for g−1
r . Since we know both gr and Jr, (35) is

simply (2) with qr replaced by q̃r = qr(g
−1
r (x))Jr(x), and thus we can pro-

ceed as before. However, with appropriate choices of gr, the corresponding
new P̃r’s can have substantially more overlap than the original Pr’s, as
measured by O. Therefore, this warping technique can help greatly to re-
duce the Monte Carlo error. We emphasize that the label information is
crucial for such a procedure, in contrast to the likelihood formulation given
in Section 1, where we do not assume any additional knowledge (e.g., the
topological structures of Pr’s, including the support Γ).
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Meng and Schilling (2002) provide extensive empirical evidence on the
effectiveness of this warping strategy. They considered first, second, and
third order warping transformations, which correspond to location shift,
scale/rotation matching, and symmetrization. The first two orders of warp-
ing can be summarized by an affine transformation gr(x) = Sr(x − mr),
where mr and Sr can be (i) estimated from the draws from Pr (e.g., sample
mean and precision) or (ii) determined analytically from the known qr (e.g.,
its mode and the square root of the negative Hessian matrix at the mode).
For the third order warping, Meng and Schilling (2002) suggested using
mixtures of a density with its various reflections to eliminate skewness.
This is mathematically equivalent to group averaging when the reflections
used in the mixture form a group.

An unresolved problem with these label-specific transformations is that
we currently do not have a model-based way to choose, for example, the
transformation parameters {mr, Sr}. The difficult is that in order to let
the model properly estimate {mr, Sr} such that the warped distributions
will be close to each other, we need to build such a requirement into the
model. While we can estimate the distributional summaries of each Pr
using the draws from it, the likelihood function based on these data do not
contain direct information on how to transform these sampling distributions
together. This appears to be another interesting and challenging problem
in modeling our inability, namely the inability to analytically maximize
overlap, as measured by O, among the underlying distributions.

5 Using the profile likelihood approach

5.1 Profiling the empirical likelihood

In this section, we show that the likelihood (4) can be partially maximized
to produce the same results as given in Section 2 and Section 3. This
empirical likelihood approach not only yields a profile likelihood for c, but
also provides another explanation for why the “retrospective likelihood” for
c studied in Geyer (1994) is only first-order correct, as demonstrated before
(Kong et al., 2003, Section 6).

In the empirical likelihood approach, we treat both θ = {θ1, . . . , θn},
where θi = θ(xi), and c = {c1, . . . , ck} as parameters. Because of (4), the
profile likelihood of c is defined by

l(c) = max
θ∈Θ(c)

(
n∑

i=1

θi −
k∑

s=1

ns log cs

)
, (36)
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where

Θ(c) = {θ :

n∑

i=1

eθiqr(xi)c
−1
r ≡

n∑

i=1

Pr({xi}) = 1, r = 1, . . . , k.}. (37)

The equality constraint in (37) is motivated by the discussion given in
Section 1.3, where it is shown that in maximum likelihood calculations, we
can restrict ourselves to measures with support on {x1, . . . , xn}.

Before we proceed, we need to set conditions to guarantee that Θ(c) is
not empty. To do so, we let

W(c) = {W = (w1, . . . , wk) :

k∑

s=1

ws = 1 & pmix(xi|W ) > 0, ∀1 ≤ i ≤ n},

(38)

where pmix(x|W ) ≡ ∑k
s=1 wsps(x), with ps = qsc

−1
s denoting the normal-

ized density. Note that (38) does not require nonnegative wi’s, but only
that pmix(xi|W ) is positive for all i, i.e. we allow negative “weights”, as
long as the corresponding mixture density is positive. Clearly W(c) is con-
vex, and is non-empty because (k−1, . . . , k−1) ∈ W(c) under our sample
design.

Intuitively, because any two densities with respect to the same domi-
nating measure cannot dominate each other in order to integrate to one,
we need the following necessary condition for Θ(c) to be non-empty:
No Dominance Condition There does not exist a W ∈ W(c) and a
1 ≤ t ≤ k such that

pmix(xi|W ) ≥ pt(xi), for all i = 1, . . . , n, (39)

and where the inequality is strict for at least one i.
It is interesting that this intuitive necessary condition turns out to be

also sufficient, as seen from the following theorem, proved in the Appendix.
The A(c) set used in the theorem is the collection of all (a1, . . . , ak) such

that
∑k
s=1 as = 0 and pmix(xi|A) ≥ 0 for all i = 1, . . . , n with the inequality

being strict for at least one i. Note that the conditions (I), (IV) and (V)
were considered before (Tan, 2004), but (II) and (III) appear to be new.

Theorem 2. Assuming Qn×k = {qj(xi)} is of rank k, the following five
conditions are equivalent:

(I) Θ(c) is non-empty;
(II) The “No Dominance Condition” holds;
(III) A(c) is empty;
(IV) W(c) is a bounded convex set;
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(V) The equations

n∑

i=1

pr(xi)

pmix(xi|W )
= n, for all r = 1, . . . , k, (40)

have a unique solution in the interior of W(c).

We remark here that while conditions (III) and (IV) are geometrically
appealing, condition (V) seems to be most convenient for practical pur-
poses, because we can check numerically the existence of the solution to
(40). We also remark that when cr ∝ ĉr, where {ĉr, r = 1, . . . , k} is the
solution of (6), W = (f1, . . . , fk) satisfies (40), where fr = nr/n. Therefore,
we know that there exists at least one c such that Θ(c) is not empty.

For k = 2, the bounds given by (IV) can be established explicitly be-
cause condition (II) implies that the following two sets

N1 = {i : p1(xi) − p2(xi) < 0} and N2 = {i : p1(xi) − p2(xi) > 0}
are non-empty. Consequently, it is easy to verify directly that W(c) consists
of all (w1, w2) such that w1 + w2 = 1 and

max
i∈N2

{ −p2(xi)

p1(xi) − p2(xi)

}
< w1 < min

i∈N1

{ −p2(xi)

p1(xi) − p2(xi)

}
.

5.2 The computation of the profile likelihood

Equipped with Theorem 2, we can now proceed to find a computable ex-
pression for the profile likelihood l(c) of (36). We first observe that the
constraint in (37) is equivalent to

k∑

s=1

ws

(
n∑

i=1

eθiqs(xi)c
−1
s

)
≡

n∑

i=1

eθipmix(xi|W ) = 1, (41)

for any W ∈ W(c). Taking logarithms on both sides of (41), and then
applying Jensen’s inequality to the log function, we obtain that

n∑

i=1

θi ≤ −
n∑

i=1

[log pmix(xi|W ) + logn], (42)

for any θ ∈ Θ(c) and W ∈ W(c). This implies that

max
θ∈Θ(c)

n∑

i=1

θi ≤ − max
W∈W(c)

n∑

i=1

[log pmix(xi|W ) + logn]. (43)

We now show that the above inequality is actually an equality, and hence
the maximization needed to compute the profile likelihood l(c) is equivalent
to maximizing the log-likelihood for the unknown weights W under the
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mixture model as given by pmix(x|W ), with W(c) as the parameter space.
This happens because equation (40) is just the normal equation for the
maximum likelihood estimate (MLE) of W under this mixture model. Let
us denote with W (c) the MLE under this mixture model (recall we assume
condition (V) here), namely the unique solution of (40), and let

θi(c) = −[log pmix(xi|W (c)) + logn]. (44)

Evidently, this choice of θ makes (43) equality. Furthermore, (40) implies
θ(c) ∈ Θ(c). Consequently, θ(c) is the maximizer in (36), and therefore

l(c) = −
n∑

i=1

log pmix(xi|W (c)) − n logn−
k∑

s=1

ns log cs. (45)

Now because W (c) is the solution of (40), W (c) ∈ W(c) and c must satisfy

Tr(W (c), c) ≡
n∑

i=1

qr(xi)c
−1
r∑k

s=1 ws(c)qs(xi)c
−1
s

= n, r = 1, . . . , k. (46)

We remark here that the above derivation is similar to the maximization
approach used for finding MLE with control variates, as investigated in Tan
(2003a, 2004) and Meng (2005). A key advantage of (45) is that it provides
a direct “marginal likelihood” for c, which can be treated as a likelihood to
be used in Bayesian inference for c when we have reliable prior information
on it; see Section 6.1.

5.3 Computing the MLE and the observed Fisher

information

To maximize l(c), we first identify its stationary point(s). We therefore
calculate

∂l(c)

∂ log cr
=cr

[
−

n∑

i=1

∑k
s=1 ps(xi)

∂ws(c)
∂cr

− pr(xi)c
−1
r wr(c)

∑k
s=1 ps(xi)ws(c)

− nr
cr

]
=nwr(c)−nr,

(47)

where the last equality is due to (46) and
∑k

r=1wr(c) = 1. Consequently,
any stationary point c must satisfy wr(c) = nr/n = fr, r = 1, . . . , k. By
the uniqueness of the solution W (c) for (40), we can conclude that c must
be the solution of Tr(f, c) = n for all r = 1, . . . , k, which is exactly (6)
for r = 1, . . . , k. Under the “connectivity” assumption of Vardi (1985),
which we always assume, (6) has a unique solution (up to a multiplicative
constant), which is the MLE of c under the likelihood (4). Since l(c) is the
profiled likelihood derived from (4), it is clear that the very same ĉ also
maximizes l(c) in (45), as it should.
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It is interesting to observe that if we let W = f in (42) and (44), but
without realizing that the resulting θ from (44) may not satisfy (37), we
would have arrived at a “profile” log-likelihood (45) with W = f , as in
Geyer (1994). This would be exactly the wrong log-likelihood obtained by
the retrospective argument – see (6.1) of Kong et al. (2003). In other
words, the wrong likelihood is the same as the incorrectly “profiled” like-
lihood without realizing the strong compatibility requirement between W
and c, as in (46). However, because of (47), this incorrectly “profiled” log-
likelihood does provide the correct MLE as it coincides with the correct
profile likelihood when c = ĉ from (6) since W (ĉ) = f .

The incorrect “profile” likelihood does not provide the correct second
order inference, as demonstrated in Kong et al. (2003). The correct asymp-
totic covariance for log ĉ can be estimated by the inverse of the observed
Fisher information from the profile likelihood (45) (Murphy and Van Der
Vaart, 1999), namely,

Î = −
[

∂2l(c)

∂ log c(log c)⊤

]∣∣∣∣
c=ĉ

= −n ∂W (c)

∂ log c

∣∣∣∣
c=ĉ

, (48)

where the last equality is due to (47). By (46), we have
[
∂T (W, c)

∂W

] [
∂W (c)

∂ log c

]
= −∂T (W, c)

∂ log c
, (49)

where T = (T1, . . . , Tk)
⊤. Using W (ĉ) = f , it is easy to check that for any

r, s ∈ {1, . . . , k},
∂Tr
∂ws

∣∣∣∣
c=ĉ

= −ôrs and
∂Tr

∂ log cs

∣∣∣∣
c=ĉ

= ôrsfs − δ{r=s}, (50)

where

ôrs =

∫

Γ

[
dPr(x)

dPmix(x)

] [
dPs(x)

dPmix(x)

]
P̂mix(dx),

which is the sample version of (34). It follows from (48)-(50) that ÔkÎ/n =
I − ÔkF , which implies

nÎ− = (I − ÔkF )+Ôk,

which is equivalent to (22) and (26), except with Ôk estimating Ok.

6 A paradox and some future work

6.1 A Bayesian paradox?

Given the success of likelihood based methods, it is natural to ask the
question, “what about Bayesian methods?” Indeed, it seems so obvious
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that Bayesian methods should be particularly useful for dealing with simu-
lated data, since the usual dispute of the correctness of prior information no
longer exists. For example, by mathematical inequalities, such as Jensen’s
inequality or Cauchy-Schwartz, we may know for certain that a normalizing
constant c is between two known values, a and b. Surely such prior infor-
mation can and should be used in our MC integration. But how? Because
the model parameter is the baseline measure µ, to put a prior on µ that
respects a ≤ c =

∫
Γ
q(x)µ(dx) ≤ b would require similar or even greater an-

alytic effort than what is needed to calculate c analytically. In other words,
in order to carry out the Bayesian method, we need more effort than what
is needed to solve the original problem.

One, of course, could try to use the profile likelihood as given in (45) to
conduct Bayesian inference. This is certainly a topic worth investigating,
particularly with respect to the question of trading computational efficiency
with statistical efficiency because the computation of (45) is not cost-free
(but at least it is numerically feasible). Nevertheless, from a philosophi-
cal point of view, profile likelihood is not an legitimate Bayesian approach,
which finds marginal likelihood via integration, not maximization/profiling.
Therefore, statistical inference for MC integration appears to be an ultimate
paradox for Bayesian inference, because it appears that Bayesian methods
can solve (at least in theory) every other inference problem except for their
own computational problems (as Bayesian methods rely heavily on MC
integration for implementation). Or as Kong et al. (2003) put it “This
computational black hole, an infinite regress of progressively more compli-
cated models, is an unappealing prospect, to say the least.”

6.2 Some future work

Two important challenges are to extend the models to include the esti-
mation of label-specific transformations, and to use effectively information
on dependence structure (e.g., auto-correlation), as in an MCMC setting.
There has been no progress regarding the first, but the empirical evidence
provided in Meng and Schilling (2002) from the use of “warp transforma-
tion” methods suggest that the gain of efficiency by appropriately modeling
the label-specific transformations can be substantial. As for the second, sev-
eral papers (Tan, 2003b, 2004, 2006) show great promise. In particularly,
the use of the kernel functions under the likelihood modeling in a Gibbs
sampling setting, or more generally with Metropolis-Hastings algorithms
can lead to estimates of normalizing constants with a n−1 rate of conver-
gence, instead of the usual n−1/2 rate (Kong et al., 2003; Tan, 2003a).

Both of these extensions can therefore have substantial practical conse-
quences, as well as provide theoretical insight into how we should balance
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analytical, numerical, and simulation efforts in effective use of MC methods.
As discussed before (van Dyk and Meng, 2001, rejoinder), model selection
with simulated data has a different goal than with real data, because the
key question is not which model is approximately true — all models that
can link the simulated data to our estimand are known and true. The goal
is rather to select a model that provides an effective compromise between
computational complexity, human effort, and statistical efficiency. Our sub-
modeling via group averaging was guided by this goal, and we look forward
to further explorations of this method and to development of other methods
that will help to achieve the same goal.

Appendix: Proof of Theorem 2

(I)⇒ (II) We prove by contradiction. Suppose (II) is false. Then there
exists a W ∈ W(c) and t that satisfy (39). It follows that for any
θ ∈ Θ(c), we will reach the following contradiction:

1 =

n∑

i=1

eθipmix(xi|W ) >

n∑

i=1

eθipt(xi) = 1,

where the first and last equality are due to θ ∈ Θ(c) and W ∈ W(c),
and the inequality is a consequence of (39).

(II)⇒ (III) If there exists an A ∈ A(c), then it is easy to see that A+e1 ∈
W(c), where e1 = (1, 0, . . . , 0), and that (39) is satisfied for this element
of W(c) and for t = 1, with the inequality being strict for at least one
i. This contradicts assumption (II).

(III)⇒ (IV) We again prove by contradiction. Suppose there exists a
sequence W (m) ∈ W(c) such that it is unbounded as m→ ∞. For any

m, let rm be the index such that |W (m)
rm | = max{|W (m)

r |, r = 1, . . . , k}.
Because rm can only take k values, as m→ ∞, there is a subsequence
such that rm takes the same value, say, rm = 1.

Along this subsequence |W (m)
1 | → ∞, and a

(m)
r ≡ W

(m)
r /|W (m)

1 | ∈
[−1, 1] for any r ≥ 1. Therefore we can choose a subsequence such that

the limit of a
(m)
r exists for all r. Denote this limit by a = (a1, . . . , ak).

Then it is clear from
∑
rW

(m)
r = 1 that

∑

r

ar = lim
m→∞

∑

r

W
(m)
r

|W (m)
1 |

= lim
m→∞

1

|W (m)
1 |

= 0. (51)

Furthermore, from pmix(xi|W (m)) > 0, we obtain that

pmix(xi|A) = lim
m→∞

pmix(xi|W )

|W (m)
1 |

≥ 0, i = 1, . . . , n. (52)
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If we can prove that at least one inequality in (52) is strict, then (51) and
(52) allow us to conclude that a ∈ A(c), which contradicts assumption
(III). To prove this, suppose pmix(xi|A) = 0 for all i = 1, . . . , n. It
follows that Pn×ka⊤ = 0, where Pn×k = {pj(xi)} is the n×k matrix of
the normalized density values. Since Pn×k = Qn×k diag{c−1

1 , . . . , c−1
k }

and therefore it is of full rank k under our assumption that Qn×k is of
full rank k, we can conclude that a = 0. But this is impossible because
|a1| = 1 by our construction.

(IV) ⇒ (V) Because W(c) is bounded, all its boundaries are determined
by W such that pmix(xi|W ) = 0. Therefore,

f(W ) =
n∑

i=1

log pmix(xi|W ),

which is a concave function on W(c), must be maximized at an interior
point of W(c) because at any of these boundaries f(W ) = −∞. Since
this interior point, labeled by W (c), must be a stationary point, by
the method of Lagrange multiplier, it must satisfy (40). To prove this
solution is unique (and hence f(W ) has only one stationary point, the
global maximizer), let us suppose there are two solutions, W1 and W2,
that satisfy (40). This implies that, by summing up the left-hand side
of (40) with respect to either weight and then summing up the two
sums,

n∑

i=1

[
pmix(xi|W1)

pmix(xi|W2)
+
pmix(xi|W2)

pmix(xi|W1)
− 2

]
= 0. (53)

Using the fact that a+a−1 ≥ 2 for any a > 0, where the equality holds
if and only if a = 1, we can conclude from (53) that pmix(xi|W1) =
pmix(xi|W2) for all i = 1, . . . , n, namely Pn×k(W1 −W2) = 0. It follows
immediately that W1 = W2 because Pn×k is of rank k.

(V) ⇒ (I) Let W (c) be the unique solution of (40), and define θ(c) as in
(44). Then this θ(c) satisfies the constraints required by (37) and hence
Θ(c) must be non-empty.
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Chapter 29

CONFIDENCE NETS FOR CURVES
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A confidence distribution for a scalar parameter provides confidence in-
tervals by its quantiles. A confidence net represents a family of nested
confidence regions indexed by degree of confidence. Confidence nets are
obtained by mapping the deviance function into the unit interval. For
high-dimensional parameters, product confidence nets, represented as
families of simultaneous confidence bands, are obtained from bootstrap-
ping utilizing the abc-method. The method is applied to Norwegian
personal income data.

Key words: Abc-method; Bootstrapping; Confidence cure; Likelihood;
Simultaneous confidence; Quantile regression; Personal income.

1 Introduction

Confidence intervals, confidence regions and p-values are the prevalent con-
cepts for reporting inferential results in applications, although Bayesian
posterior distributions are increasingly used. In 1930, R.A. Fisher chal-
lenged the Bayesian paradigm of the time, and proposed fiducial distribu-
tions to replace posterior distributions based on flat priors. When pivots
are available, fiducial distributions follow, and are usually termed confi-
dence distributions (Efron 1998, Schweder and Hjort 2002). The cdf of a
confidence distribution could also be termed a p-value function. Neyman
(1941) showed the connection between his confidence intervals and fiducial
distributions. Exact confidence distributions are only available in simple
models, but approximate confidence distributions might be found through
simulation.

The general concept of confidence distribution is difficult in higher di-

593
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mension. For vector parameters one must therefore settle for a less ambi-
tious construct to capture the inferential uncertainty. I propose to use the
confidence net. A confidence net is a stochastic function from parameter
space to the unit interval with level sets representing simultaneous con-
fidence regions. One important method to construct a confidence net is
to map the deviance function into the probability interval such that the
distribution of the transformed deviance at the true value is uniformly dis-
tributed. That the confidence net evaluated at the true value is uniformly
distributed is actually the defining property of confidence nets.

Confidence net for a scalar parameter was introduced by Birnbaum
(1961) under the name ‘confidence curve’. The method has been been re-
peatedly proposed under different names (Bender, Berg and Zeeb 2005) but
has only found sporadic use in applied work. I will use the term ‘confidence
net’ to keep it apart from the estimated curve.

Curves such as correlation curves (Bjerve and Doksum 1993) are often
represented by its ordinate values at a finite number of argument values,
and with a method to connect neighboring values by a piece of continuous
curve. I regard the set of values defining the curve as a parameter, usually
of high but finite dimension. A simultaneous confidence band for the curve
is a product confidence region for the vector parameter. It has the shape
of a box or a rectangle in parameter space. A nested family of product
confidence regions indexed by their coverage probabilities, constitutes the
level sets of a confidence net for the curve. Such confidence nets can be
constructed from families of point-wise confidence bands by adjusting the
nominal levels to be simultaneous coverage probabilities. Beran (1988) de-
veloped this construction into a theory of balanced simultaneous confidence
sets. My confidence nets for curves are essentially variants of his method.

Confidence nets for curves might be hard to develop analytically except
in special cases. Bootstrapping or other simulation techniques are generally
more useful. The abc-method of Efron (1987) leads to confidence nets for
scalar parameters which are easily combined to a product confidence net
for the curve.

In the next section I discuss confidence nets in general, and give some
examples. Then I discuss confidence nets for curves, and show how they
might be found by bootstrapping and the abc-method. In the final sec-
tion I study personal income in Norway by quantile regression curves with
associated confidence nets. I am particularly interested in the 5% upper
quantile of income on capital as a function of wage for given age. I will use
the abc-method on a vector of 29 components.
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2 Confidence distributions and confidence nets

The setup is the familiar, with data X being distributed over a measurable
space according to a parameterized distribution Pθ. The parameter space
is Euclidean of finite dimension.

Assume first θ to be scalar, and that a pivot piv(θ,X), increasing in
θ and with continuous cdf F, is available. The probability transformed
pivot C(θ;X) = F (piv(θ,X)) is then the cdf of a confidence distribution
for θ. For any observed value of the data X , C(θ;X) is in fact a cdf in θ
representing the confidence distribution inferred from the data, and for any
value of θ, C(θ;X) is uniformly distributed on the unit interval when X ∼
Pθ. These two properties are basic for confidence distributions (Schweder
and Hjort (2002)).

Let C−1(p;X) be the confidence quantile. Since C is uniformly dis-
tributed at the true value, Pθ(C(θ;X) ≤ p) = Pθ(θ ≤ C−1(p;X)) = p. The
interval

(
C−1(α;X); C−1(β;X)

)
is thus a confidence interval of degree

β − α for all choices of 0 ≤ α ≤ β ≤ 1 . The distribution represented by C
therefore distributes confidence over interval statements concerning θ. This
is the reason for the name confidence distribution.

To ease notation,X will often be suppressed. Whether C(θ) is a stochas-
tic element or a realization, and whether it is a function of θ or a value,
should be clear from the context. Similarly, L(θ), D(θ), and N(θ) denotes
likelihood function, deviance function, and confidence net (to be defined
below) respectively.

Let

N(θ) = 1 − 2 min {C(θ), 1 − C(θ)} = |1 − 2C(θ)|. (1)

At each level 1 − α, the level set
(
C−1(α/2); C−1(1 − α/2)

)
of N is a

tail-symmetric confidence interval. I will call N a tail-symmetric confi-
dence net for θ. The concept of confidence net is not confined to scalar
parameters. Confidence nets share with pivots the property of having a
constant distribution at the true value of the parameter:

Definition 1. A stochastic function N from parameter space to the unit
interval is a confidence net if for each θ, N(θ;X) is uniformly distributed
on the unit interval when X ∼ Pθ.

The level sets {θ : N (θ;X) ≤ α} are clearly confidence regions for θ.
N is called a confidence net since its level sets constitute a net in the
mathematical sense.

A confidence distribution is only partially characterized by a related
confidence net. This is the case in one dimension, and even more so
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in higher dimensions. There are actually many confidence nets stem-
ming from the same confidence distribution. In the scalar case for ex-
ample, there are various tail-asymmetric confidence nets such as Ns(θ) =
1−min {C(θ)/s, (1 − C(θ)) / (1 − s)} for s between zero and one. Here Ns
has level sets

(
C−1(s (1 − α)); C−1(1 − (1 − s) (1 − α))

)
which are tail-

asymmetric for s 6= 1/2.
Note that C(θ) = N0(θ) and 1−C(θ) = N1(θ) both are confidence nets

with extreme tail skewness. They are one-sided confidence nets.
A confidence distribution in one dimension might be displayed by its

cdf, its density c(θ) = C′(θ), or often preferably by a confidence net which
usually would be tail-symmetric. Other distributions such as Bayesian pos-
teriors might also be displayed by (confidence) nets rather than by their
densities.

Example 1. Let X > 0 be exponentially distributed with mean θ > 0.
Then Y = −X/θ is exponentially distributed on the negative half-axis, and
is thus a pivot with cdf exp(y), y < 0. The probability transformed pivot
is the confidence cdf C(θ) = exp (−θX). Figure ?? shows representations
of the confidence distribution. The five realizations of the confidence net
in the lower right panel cross the vertical line at the true value θ = 1 at
uniformly distributed levels.

With θ̂ the maximum likelihood estimator,

D(θ) = −2 ln(L (θ) /L(θ̂)) (2)

is the deviance function. The deviance gives rise to confidence nets, also
when θ is a vector parameter. So do other suitable objective functions, such
as the profile deviance. The following proposition is trivial.

Proposition 1. If the (profile) deviance evaluated at the true value, D (θ) ,
has continuous cumulative distribution function Fθ, then

N (θ) = Fθ (D (θ))

is a confidence net.

In regular cases the null distribution Fθ is asymptotically independent
of the parameter, and it is approximately the chi-square distribution with
degrees of freedom equal to the dimension of θ.

Since the deviance is invariant, the confidence net based on the deviance
is invariant. But the deviance might be biased in the sense that the max-
imum likelihood estimator θ̂ is biased. I prefer to define bias in terms of
the median rather than the mean, to make the notion of no bias invariant
to monotonous transformations.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Confidence Nets for Curves 597

teta

C
o
n
fi
d
e
n
c
e
 d

e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

teta

C
o
n
fi
d
e
n
c
e
 c

d
f

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

teta

C
o
n
fi
d
e
n
c
e
 n

e
t

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

teta

C
o
n
fi
d
e
n
c
e
 n

e
t

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 1 Confidence density (upper left), confidence cdf (upper right), tail-symmetric
confidence net (lover left) for data X = 1.12 drawn from the standard exponential dis-
tribution, and also four other realizations of N based on data from the same distribution
(lower right).

Monotonicity and median might be defined in several ways when the
dimension is higher than one. For vector parameters representing curves it
is natural to define these notions component-wise, as we shall do.

Definition 2. A confidence net N is unbiased when the point estimator
θ̃ = argminN (θ) is median unbiased in each component.

Writing m for the vector of component medians, let b (θ) = m
(
θ̂
)

for the maximum likelihood estimator θ̂. With b invertible θ̃ = b−1
(
θ̂
)

is

median-unbiased and it minimizes D (b(θ)) . With Fθ the cdf of D (b(θ)),
N (θ) = Fθ (D (b(θ))) is a bias-corrected confidence net.

Example 2. The maximum likelihood estimator σ̂ of σ is badly bi-
ased in the Neyman-Scott example of highly stratified normal data. Let
Xij ∼ N

(
µi, σ

2
)
i = 1, · · · , n j = 1, 2. The maximum likelihood esti-
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mator is σ̂2 = 1
4n

∑n
i=1 (Xi1 −Xi2)

2
and the profile deviance is D(σ) =

2n
(
σ̂2/σ2 − ln

(
σ̂2/σ2

)
− 1
)
. σ2/σ̂2 ∼ 2n/χ2

n is a pivot yielding a confi-
dence distribution and a confidence net. From the pivotal distribution,
b(σ) = m (σ̂) = σ

√
m(χ2

n)/ (2n). The null distribution of D(b(σ)) is that
of 2n

(
χ2
n/m

(
χ2
n

)
− ln

(
χ2
n/m

(
χ2
n

))
− 1
)
, which is free of σ and is easily

obtained by simulation. The null distribution is actually very nearly that of
2χ2

1 rather than that of χ2
1. Figure 2 shows both the confidence net based

on the bias-corrected profile deviance and the tail-symmetric confidence
net from the confidence distribution based on the pivot, for n = 20 and
σ̂ = 0.854. The null distribution of the bias-corrected profile deviance was
based on a sample from the χ2

n of size only 500 to enable the dashed line
to be seen. The two nets are practically identical when using the exact
distribution of D(b(σ)).
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Figure 2 Exact tail-symmetric confidence net for σ in the Neyman-Scott example
(dashed line), and approximate confidence net based on the bias-corrected deviance
(solid line, 500 simulation replicates), n = 20 and σ̂ = 0.854.

Example 3. Consider a situation with two variance parameters, σ2
1 and

σ2
2 , with independent estimators distributed proportional to chi-square dis-
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tributions with 9 and 4 degrees of freedom respectively. We are primarily
interested in ψ = σ2/σ1. The maximum likelihood estimator ψ̂ has median
0.95ψ while σ̂1 has median 0.96σ1. Applying median bias-correction to each
component separately, the deviance function yields the confidence net that
is contoured in Figure 3. The maximum likelihood estimates behind this
net are σ̂1 = 1 and ψ̂ = 2. The distribution of the two-parametric null
deviance is independent of the parameter, and is found by simulation. It
is nearly chi-square 2. The confidence net based on the bias-corrected pro-
file deviance for ψ, with null distribution nearly that of 1.08χ2

1, is shown
in the lower panel. The exact tail-symmetric confidence net based on the
F-distribution is also plotted, but is practically identical to that based on
the profile deviance.
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Figure 3 Confidence net for (ψ = σ2/σ1, σ1) (upper panel) for two normal samples.
In lower panel, confidence net for ψ based on the bias-corrected profile deviance. The
median unbiased estimates are indicated by dotted lines. Null distributions found by
simulation with 100,000 replicates.

My experience is that confidence nets in one dimension based on median
bias-corrected profile deviances almost perfectly agree with exact confidence
nets based on the same statistic when the latter exist.

3 Confidence nets for curves

For non-parametric curves, represented by a vector of ordinates θ, simul-
taneous confidence bands are product confidence regions for θ. Product
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confidence nets are therefore desirable for capturing the inferential uncer-
tainty in curve estimates.

For parametric curves, the confidence bands might be obtained from si-
multaneous confidence regions for the basic parameter. In the linear normal
model for example, the method of Scheffé (1959) for multiple comparison is
based on elliptical confidence nets. A curve constructed as an indexed set
of linear parameters, is obtained from the elliptical confidence net dating
back to Working and Hotelling (1929). If the curve represents all the linear
functions that can be constructed from an r-dimensional linear parameter,
the product confidence net for the curve is equivalent to the r-dimensional
elliptical confidence net for the parameter.

Tukey’s method of simultaneous inference for pair-wise differences
(Scheffé 1959) might be regarded as a problem of developing a product
confidence net for the vector of pair-wise differences, and could be solved
by simulation as outlined below when the Studentized range distribution is
of questionable validity.

Nair (1984) constructed simultaneous confidence bands for survival
functions by suitably expanding the set of point-wise intervals. Beran
(1988) went a step further by constructing simultaneous product confidence
sets from what he called a root. The root is essentially a collection of confi-
dence nets for the components of the vector parameter. For given nominal
confidence coefficient for all the point-wise intervals, their product set is
a box-shaped confidence set of a degree that depends on the dependence
structure and other particulars. This simultaneous confidence degree is of-
ten found by simulation. Beran’s method is then simply to chose nominal
degree to obtain the desired simultaneous degree. It leads to balance in the
sense that the simultaneous confidence set has the same marginal coverage
probability for each component of the parameter seen in isolation.

My product confidence net for a vector parameter is simply represent-
ing the collection of Beran’s balanced product sets. Let the curve be rep-
resented by the vector parameter θ of dimension T and with generic com-
ponent θt. Let Nt (θt) be the one dimensional confidence net for θt. This
point-wise confidence net is typically found from a confidence distribution,
or from a marginal, conditional or profile deviance function. Nt is uniformly
distributed at the true value of the parameter. The confidence net for θ
I am looking for is the product net (K (Nt (θt)) t = 1, · · · , T ) , written
(K (Nt (θt))) , for a suitable transformation K : (0, 1) → (0, 1) called the
adjustment function.

Definition 3. An increasing transform K turns a set of point-wise con-
fidence nets Nt (θt) into a balanced product confidence net for θ =
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(θ1, · · · , θT ) ,

N(θ) = (K (Nt (θt))) ,

if

Pθ (K (Nt (θt)) ≤ α for t = 1, · · · , T ) = Pθ

(
max
t=1···T

Nt (θt) ≤ K−1(α)
)

= α

for all θ and 0 < α < 1.

Analogous to Tukey’s problem, which is solved by the Studentized range
distribution, my problem is to find the distribution with cdf K of the max-
imum null net maxt=1···T Nt (θt). Only in rare cases is it possible to solve
this problem analytically.

The net N(θ) is balanced in the sense of Beran (1988) since each of its
confidence regions is the product of intervals with the same nominal degree
of confidence across the coordinates.

Example 4. Continue the previous example. With ψ = σ2/σ1, θ = (ψ, σ1)
is not much of a curve, but is used to illustrate the Chinese box struc-
ture of product confidence nets. A product confidence net has rectangu-
lar level sets shown in Figure 4. The root for this product net consists
of the two confidence nets N (σ1) = |1 − 2Fν1

(
ν1σ̂

2
1/σ

2
)
| and N (ψ) =

|1 − 2Fν2ν1

((
ψ̂/ψ

)2
)
|. Here, Fν1 and Fν2ν1 are the cdfs of the appropri-

ate chi-square distribution and the F-distribution respectively. The adjust-
ment functionK is now the cdf of max {|1 − 2Fν1 (X) |, |1 − 2Fν2ν1 (Y/X) |}
where X and Y are independent chi square distributed with ν1 and ν2 de-
grees of freedom respectively. Figure 4 shows also the adjustment function
K together with the approximate adjustment function determined by the
simple Bonferroni method.

Balance is not always desirable for product confidence nets. Some com-
ponents of the parameter might be of more interest than others, and, for
these, narrower projected nets are required on the expense of wider pro-
jected nets for less interesting components. A practical weighting scheme
is provided by component-specific transformations of the form

Kt (c) = K
(
c1/wt

)
.

Here, wt is a weight of interest in component θt. With K being the cdf of

maxt=1···T Nt (θt)
1/wt , N(θ) = (Kt (Nt (θt))) is indeed a confidence net for

θ.
I return to a balanced product confidence net based on a root of point-

wise confidence nets. When the latter is obtained by way of simulation, the
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Figure 4 Level sets of a product confidence net for ψ = σ2/σ1 and σ1 (left panel), and
K (solid line, right panel) with the diagonal and also the simple Bonferroni adjustment
function (dashed line). ν1 = 9 and ν2 = 4. 100,000 simulations.

adjustment function K can be estimated from the same set of simulated
data sets. Let N∗

t be the one dimensional confidence net for θt based on a
random set of data simulated with θ = θ0. When the simulation is done by
non-parametric bootstrapping, the estimate θ̂ based on the observed data
serves as reference value, θ0 = θ̂. Maximizing the value of the net at the
reference value, across components, leaves us with maxt=1···T N∗

t

(
θ0t
)
. The

adjustment function K is then simply the cdf of this random variable.
Since the point-wise confidence nets are transformed to a common scale,

e.g. to have uniform null distribution, the distribution of the maximum null
net will be independent of the true value of θ0 to a good approximation when
the correlation structure in the null nets varies little with the parameter.

Exact confidence nets are available for the individual components only
if pivots are available. Unfortunately, models with exact pivots are rare.
Under regularity conditions, approximate pivots are however available for
large data. Beran (1988) suggests to use bootstrapping to obtain such
approximate pivots as input to his construction, and he develops first order
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asymptotic results which apply to the direct simulation approach and the
bootstrapping approach based on Efron’s adjusted percentile method for
constructing confidence intervals.

Efron (1987) introduced acceleration and bias corrected percentile in-
tervals for one dimensional parameters, see also Schweder and Hjort (2002)
who term them abc intervals. The idea is that on some transformed
but monotonous scale Γ, γ̂ = Γ

(
θ̂
)

is normally distributed with mean

γ− b (1 + aγ) and variance (1 + aγ)
2
, and with γ = Γ(θ). With a value for

the acceleration constant a, which might take some effort to find, and for

the bias constant b = Φ−1
(
H(θ̂)

)
, the tail-symmetric abc-net is

Nabc(θ; θ̂) = |1 − 2Cabc(θ)|, (3)

Cabc(θ; θ̂) = Φ

(
Φ−1 (H(θ)) − b

1 + a (Φ−1 (H(θ)) − b)
− b

)
,

whereH is the cdf of the bootstrap distribution for the estimator θ̂ assumed
here to be based on B = ∞ replicates. The scale transformation is related
to H as

Γ(s) = (1 + aγ̂)
{
Φ−1 (H(s)) − b

}
+ γ̂. (4)

The confidence adjustment of the product of these point-wise abc-nets
is easily obtained, as explained in the following proposition.

Proposition 2. The balanced product confidence net for θ = (θ1, · · · , θT )

obtained from point-wise abc-nets N t
abc(θt; θ̂t) given by (3) from non para-

metric bootstrapping of the data, is

Nabc(θ) =
(
K
(
N t
abc (θt)

))

where K is the cdf of

V = max
t

|1 − 2Ht(θ
∗
t )|, (5)

and Ht is the cdf of the bootstrapped component estimates θ∗t .

Proof. The basis for non parametric bootstrapping is that the boot-
strapped curve estimate θ∗ has nearly distribution Pθ̂ when θ̂ has distri-
bution Pθ. The max null-net distribution of the unadjusted product net
is thus found from the joint distribution of Cabc(θ̂t; θ

∗
t ). Consider a given

component t. Using (4) for Γt and utilizing the invariance property of
confidence distributions,

Cabc(θ̂t; θ
∗
t ) = Cabc(γ̂t; γ

∗
t ) = Φ

(
γ̂t − Γt(θ

∗
t )

1 + atγ̂
− bt

)
= 1 −Ht (θ

∗
t ) .

This proves that the adjustment function K indeed is given by (5). �
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As mentioned, the same set of bootstrapped curve estimates can be
used to calculate the point-wise abc-nets and the adjustment function K.
This is correct to first order when the curve is of finite dimension and the
assumptions behind the abc method holds for each component.

For non-parametric curves, or parameters of infinite dimension, the
transformation K is not directly available. Beran (1988) showed however
that sampling from the infinite index set solves the problem, at least asymp-
totically. For regression curves over compact support, Claeskens and Van
Keilegom (2003) found asymptotically correct simultaneous confidence sets
based on bootstrapping.

4 Application to Norwegian income data

Statistics Norway surveyed income and wealth for a random sample of in-
dividuals in 2002. I consider males 18 years and above, and only look at
yearly income on capital Y by yearly income from all other sources X , con-
trolled for age A. Income is measured in Norwegian crowns, and all figures
are before tax. Sample size is 22496. I am interested in the upper quantiles
in the conditional distribution of Y given X and A, particularly in how the
95% quantile varies with X when controlling for the effect of age. I assume
an additive quantile regression function of the form

Qp(Y |X,A) = h(X) + g(A) + error.

Qp is the p-quantile function, here acting on the conditional distribution
of Y given X and A. The smooth curve h is represented by the vector
(h (x1) , · · · , h (x29)) for xt the t/30 quantile in the marginal distribution of
X . Similarly, g is represented by a 29-dimensional vector.

The model is fitted by a simplified version of the backfitting algo-
rithm of Yu and Lu (2004) as follows. Let bin(xt) be the bin for X
containing the value xt. Similarly for bin(at). The iteration alternates
between updating h and g by taking quantiles of adjusted values of Y
for values in appropriate bins, and starts with g = g0 = 0. In the i-
th iteration, first hi(xt) = Qp (Y − gi−1(A)|X ∈ bin(xt)) t = 1, · · · , 29.
Then g1

i (at) = Qp (Y − hi(X)|A ∈ bin(at)), which is median shifted to
gi(at) = g1

i (at) − Q.5
(
g1
i

)
, also for t = 1, · · · , 29. Since the sample size

is large, I used no smoothing across bins in this simplified algorithm.
Using p = .95 the backfitting algorithm converges quickly, see Figure 5.

I thus settle for 6 iterations in the estimation. The curve estimator to be
bootstrapped is h = s(h6) where s is the smoothing spline with 10 degrees
of freedom found by gam in Splus. This degree of smoothing was chosen to
allow the rather sharp bend in h come through (Figure 5).
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Figure 5 Points are 95% quantiles of capital income in bins by other income, regardless
of age. The iterates of the algorithm of Yu and Lu (2004) are shown by different line
types. They converge quickly to the rugged curve appearing to be solid. The smooth
solid curve is the smooth of the 6th iteration, df = 10.

A non-parametric bootstrap experiment with 1000 replicates was carried
out. The bootstrap results were first studied for each component separately
to see whether there seems to be acceleration in the standard deviation
on the transformed scale on which the bootstrap values are normally dis-
tributed. If, on the other hand, the assumption a = 0 can be made, the level
sets of the abc-confidence nets are particularly simple to compute. After

some trial and error I found that
10

√
ĥ(xt) is reasonably normally distributed

for each component. The question is then whether the standard deviation
in bootstrap estimates transformed to this scale is close to constant when
plotted against the transformed estimate across the components.

The lower right panel of Figure 6 shows the scatter over the 29 values
of x of marginal standard deviation in bootstrapped samples versus curve
estimate, both at the 10th root scale. On this scale, standard deviation
increases only slightly with curve estimate. From simple regression the
slope is estimated to be 0.06. This small value allows the acceleration to
be neglected, and a = 0 is assumed in (3). Figure 6 also shows that little
bias correction is needed (upper left panel), and that the variance on the
transformed scale indeed is relatively stable (lower left panel). The normal

probability plot of the bootstrapped
10

√
ĥ(332000) in the upper right panel
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Figure 6 Curve estimate, bias corrected by the abc method (solid line) and uncor-
rected estimate (dotted line) in upper left panel. Standard deviation of 10th root of
bootstrapped estimates in lower left panel. Upper right panel: normal probability plots
of tenth root of curve estimator at a typical level of other income. Lower right panel
shows the scatter of marginal standard deviation in the bootstrap samples versus curve
estimate, both at the 10th root scale.

Table 1 Nominal pointwise confidence needed to obtain the abc net and the
simple Bonferroni net at given simultaneous confidence. The default smoothing
by gam in Splus is denoted by default df.

.50 .75 .90 .95 .99

abc : K−1 (α) df = 10 .908 .964 .988 .994 .998
abc : K−1 (α) default df .816 .926 .976 .990 .998
Bonferroni : 1 − (1 − α)/29 .983 .991 .997 .998 1.00

shows that this bootstrap distribution is close to normal. This is the case
also at the other values of x.

The max null net (5) has distribution with cdf K found from the same
set of 1000 bootstrap replicates as that used for the point-wise abc-nets.

Bjerve and Doksum (1993) used the Bonferroni method to construct
a simultaneous confidence band. This construction leads to a competing
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confidence net. Figure 7 compares the Bonferroni adjustment with the abc
product net adjustment. The latter method is more conservative, as is well
known, and by a considerable degree. Table 1 spells this out numerically. It
also shows adjustment results under more smoothing of the non-parametric
quantile regression curve. The smoothed curve in Figure 5 has 10 degrees
of freedom. With heavier smoothing there is more autocorrelation in the
curve estimator, and the adjustment curve is lifted up.

The resulting confidence net is shown in Figure 8. One conclusion is that
the 95% quantile regression of capital income on other income, controlling
for the effect of age, is nearly flat up to other income 400000 crowns (slightly
less than a professor’s wage), and is then nearly linearly increasing. I cannot
explain this strong signal in the data, and will pass the question to the
economists.
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11. Scheffé, H. 1959. The Analysis of Variance. Wiley

12. Schweder, T. and Hjort, N. L. 2002. Confidence and likelihood. Scan-
dinavian Journal of Statistics. 29: 309-332.

13. Working, H. and Hotelling, H. 1929. Application of the theory of error
to the interpretation of trends. J. Amer. Stat. Assoc., Mar. Suppl.: 73-85.

14. Yu, K. and Lu, Z. 2004. Local linear additive quantile regression. Scandi-
navian Journal of Statistics. 31: 333-346.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

This page intentionally left blankThis page intentionally left blank



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

PART 10

Constrained Inference

611



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

612

This page intentionally left blankThis page intentionally left blank



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Chapter 30

DENSITY ESTIMATION BY TOTAL VARIATION
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L1 penalties have proven to be an attractive regularization device for
nonparametric regression, image reconstruction, and model selection.
For function estimation, L1 penalties, interpreted as roughness of the
candidate function measured by their total variation, are known to be
capable of capturing sharp changes in the target function while still
maintaining a general smoothing objective. We explore the use of penal-
ties based on total variation of the estimated density, its square root,
and its logarithm – and their derivatives – in the context of univariate
and bivariate density estimation, and compare the results to some other
density estimation methods including L2 penalized likelihood methods.
Our objective is to develop a unified approach to total variation penal-
ized density estimation offering methods that are: capable of identifying
qualitative features like sharp peaks, extendible to higher dimensions,
and computationally tractable. Modern interior point methods for solv-
ing convex optimization problems play a critical role in achieving the
final objective, as do piecewise linear finite element methods that facili-
tate the use of sparse linear algebra.

Key words: Density estimation; Penalized likelihood; Total variation;
Regularization.

1 Introduction

The appeal of pure maximum likelihood methods for nonparametric den-
sity estimation is immediately frustrated by the simple observation that

613
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maximizing log likelihoods,

n∑

i=1

log f(Xi) = max
f∈F

! (1)

over any moderately rich class of densities, F , yields estimators that col-
lapse to a sum of point masses. These notorious “Dirac catastrophes” can
be avoided by penalizing the log likelihood

n∑

i=1

log f(Xi) − λJ(f) = max
f∈F

! (2)

by a functional J that imposes a cost on densities that are too rough. The
penalty regularizes the original problem and produces a family of estimators
indexed by the tuning parameter λ.

Penalized maximum likelihood methods for density estimation were in-
troduced by Good (1971), who suggested using Fisher information for the
location parameter of the density as a penalty functional. Good offered a
heuristic rationale of this choice as a measure of the sensitivity of the den-
sity to location shifts. The choice has the added practical advantage that
it permits the optimization to be formulated as a convex problem with the
(squared) L2 penalty,

J(f) =

∫
(
√
f ′)2dx. (3)

In subsequent work Good and Gaskins (1971) found this penalty somewhat
unsatisfactory, producing estimates that sometimes “looked too straight.”
They suggested a modified penalty that incorporated a component penal-
izing the second derivative of

√
f as well as the first. This component has

a more direct interpretation as a measure of curvature and therefore as a
measure of roughness of the fitted density.

Eschewing a “full-dress Bayesian approach,” Good and Gaskins refer
to their methods as a “Bayesian approach in mufti.” Ideally, penalties
could be interpreted as an expression of prior belief about the plausibility
of various elements of F . In practice, the justification of particular penal-
ties inevitably has a more heuristic, ad-hoc flavor: data-analytic rationality
constrained by computational feasibility. While penalties may be applied
to the density itself rather than to its square root, a possibility briefly
mentioned in Silverman (1986), a more promising approach considered by
Leonard (1978) and Silverman (1982) replaces

√
f by log f in the penalty

term. When the second derivative of log f is penalized, this approach priv-
ileges exponential densities; whereas penalization of the third derivative of
log f targets the normal distributions.
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The early proposals of Good and Gaskins have received detailed the-
oretical consideration by Thompson and Tapia (1990) and by Eggermont
and LaRiccia (2001), who establish consistency and rates of convergence. A
heuristic argument of Klonias (1991) involving influence functions suggests
that penalized likelihood estimators perform automatically something sim-
ilar in effect to the “data sharpening” of Hall and Minnotte (2002) – they
take mass from the “valleys” and distribute it to the “peaks.” Silverman
(1984) provides an nice link between penalty estimators based on the rth
derivative of log f and adaptive kernel estimators, and he suggests that the
penalty approach achieves a degree of automatic adaptation of bandwidth
without reliance on a preliminary estimator. Taken together this work con-
stitutes, we believe, a convincing prima facie case for the regularization
approach to density estimation.

From the computational point of view, all these proposals, starting from
those of Good, can be formulated as convex optimization problems and
therefore are in principle efficiently computable. However, the practice has
not been that straightforward, and widely accessible implementations may
still not be always available. In particular, the earlier authors thinking in
terms of techniques for minimization of quadratic functionals might still
view the constraints implied by the fact that the optimization must be
performed over f that are densities as a computational pain. Penalization
of

√
f or log f is often motivated as a practical device circumventing the

nonnegativity constraint on f ; penalizing the logarithm of the density as
noted by Silverman (1982), offers a convenient opportunity to eliminate the
constraint requiring the integral of f to be 1. In contrast to these advan-
tages, penalizing the density f itself requires a somewhat more complicated
strategy to ensure the positivity and integrability of the estimator. In any
case, the form of the likelihood keeps the problem nonlinear; hence iterative
methods are ultimately required. Computation of estimators employing the
L2 penalty on (log f)′′ has been studied by O’Sullivan (1988). An imple-
mentation in R is available from the package gss of Gu (2005). Silverman’s
(1982) proposal to penalize the third derivative of log f , thereby shrink-
ing the estimate toward the Gaussian density, has been implemented by
Ramsay and Silverman (2002).

The development of modern interior-point methods for convex program-
ming not only changes this outlook – convex programming works with con-
straints routinely – but also makes various other penalization proposals vi-
able. In what follows, we would like to introduce several new nonparametric
density estimation proposals involving penalties formulated in terms of to-
tal variation. Weighted sums of squared L2 norms are replaced by weighted
L1 norms as an alternative regularization device. Squaring penalty contri-
butions inherently exaggerates the contribution to the penalty of jumps



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

616 R. Koenker & I. Mizera

and sharp bends in the density; indeed, density jumps and piecewise lin-
ear bends are impossible in the L2 framework since the penalty evaluates
them as “infinitely rough.” Total variation penalties are happy to tolerate
such jumps and bends, and they are therefore better suited to identifying
discrete jumps in densities or in their derivatives. This is precisely the
property that has made them attractive in imaging applications.

From a computational perspective, total-variation based penalties fit
comfortably into modern convex optimization setting. Exploiting the in-
herent sparsity of the linear algebra required yields very efficient interior
point algorithms. We will focus our attention on penalizing derivatives of
log f , but other convex transformations can be easily accommodated. Our
preliminary experimentation with penalization of

√
f and f itself did not

seem to offer tangible benefits.
Total-variation penalties also offer natural multivariate generalizations.

Indeed, we regard univariate density estimation as only a way station on a
road leading to improved multivariate density estimators. To this end, the
fact that penalty methods can easily accommodate qualitative constraints
on estimated functions and their boundary values is an important virtue.
One of our original motivations for investigating total variation penalties
for density estimation was the ease with which qualitative constraints –
monotonicity or log-concavity, for instance – could be imposed. In this
context it is worth mentioning the recent work of Rufibach and Dümbgen
(2004) who show that imposing log-concavity without any penalization is
enough to regularize the univariate maximum likelihood estimator, and
achieve attractive asymptotic behavior.

Total variation penalties for nonparametric regression with scattered
data have been explored by Koenker, Ng and Portnoy (1994), Mammen
and van de Geer (1997), Davies and Kovac (2001, 2004) and Koenker and
Mizera (2002, 2004). Total variation has also played an important role in
image processing since the seminal papers of Mumford and Shah (1989),
and Rudin, Osher, and Fatemi (1992).

We begin by considering the problem of estimating univariate densities,
and then extend the approach to bivariate settings.

2 Univariate Density Estimation

Given a random sample, X1, . . . , Xn from a density f0, we will consider
estimators that solve,

max
f

{
n∑

i=1

log f(Xi) − λJ(f) |
∫

Ω

f = 1}, (4)
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where J denotes a functional intended to penalize for the roughness of can-
didate estimates, F , and λ is a tuning parameter controlling the smoothness
of the estimate. Here the domain Ω may depend on a priori considerations
as well as the observed data.

We propose to consider roughness penalties based on total variation of
the transformed density and its derivatives. Recall that the total variation
of a function f : Ω → R is defined as

∨

Ω

(f) = sup
m∑

i=1

|f(ui) − f(ui−1)|,

where the supremum is taken over all partitions, u1 < . . . < um of Ω. When
f is absolutely continuous, we can write, see e.g. Natanson (1974, p.259),

∨

Ω

(f) =

∫

Ω

|f ′(x)|dx.

We will focus on penalizing the total variation of the first derivative of
the log density,

J(f) =
∨

Ω

((log f)′) =

∫

Ω

|(log f)′′|,

so letting g = log f we can rewrite (3) as,

max
g

{
n∑

i=1

g(Xi) − λ
∨

Ω

(g′) |
∫

Ω

eg = 1}. (5)

But this is only one of many possibilities: one may consider

J(f) =
∨

Ω

(g(k)),

where g(0) = g, g(1) = g′, etc., and g may be log f , or
√
f , or f itself, or

more generally gκ = f , for κ ∈ [1,∞], with the convention that g∞ ≡ eg.
Even more generally, linear combinations of such penalties with positive
weights may be considered. From this family we adopt κ = ∞ and k = 1;
see Sardy and Tseng (2005) for κ = 1 and k = 0. In multivariate settings
g(k) is replaced by ∇kg, as described in the next section.

As noted by Gu (2002), even for L2 formulations the presence of the
integrability constraint prevents the usual reproducing kernel strategy from
finding exact solutions; some iterative algorithm is needed. We will adopt
a finite element strategy that enables us to exploit the sparse structure
of the linear algebra used by modern interior point algorithms for convex
programming.

Restricting attention to f ’s for which log(f) is piecewise linear on a
specified partition of Ω, we can write J(f) as an ℓ1 norm of the second
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weighted differences of f evaluated at the mesh points of the partition. More
explicitly, let Ω be the closed interval [x0, xm] and consider the partition
x0 < x1 < · · · < xm with spacings hi = xi − xi−1, i = 1, · · ·m. If
log(f(x)) is piecewise linear, so that

log(f(x)) = αi + βix x ∈ [xi, xi+1),

then

J(f) =
∨

Ω

((log f)′) =

m∑

i=1

|βi−βi−1| =

m∑

i=1

|(αi+1−αi)/hi+1−(αi−αi−1)/hi|,

where we have imposed continuity of f in the last step. We can thus
parameterize functions f ∈ F by the function values αi = log(f(xi)), and
this enables us to write our problem (3) as a linear program,

max{
n∑

i=1

αi − λ

m∑

j=1

(uj + vj)|Dα− u+ v = 0, (α, u, v) ∈ R
n × R

2m
+ } (6)

where D denotes a tridiagonal matrix containing the hi factors for the
penalty contribution, and u and v represent the positive and negative parts
of the vector Dα, respectively.

An advantage of parameterization of the problem in terms of log f is
that it obviates any worries about the non-negativity of f̂ . But we have
still neglected one crucial constraint. We need to ensure that our density
estimates integrate to one. In the piecewise linear model for log f this
involves a rather awkward nonlinear constraint on the α’s,

m∑

j=1

hi
eαi − eαi−1

αi − αi−1
= 1.

This form of the constraint cannot be incorporated directly in its exact
form into our optimization framework, nevertheless its approximation by a
Riemann sum on a sufficiently fine grid provides a numerically satisfactory
solution.

2.1 Data Augmentation

In the usual Bayesian formalism, the contribution of the prior can often
be represented as simple data augmentation. That is, the prior can be
interpreted as what we would believe about the model parameters if we
had observed some “phantom data” whose likelihood we could evaluate.
This viewpoint may strain credulity somewhat, but under it the penalty,
J(f), expresses the belief that we have “seen” m observations on the second
differences of log f evaluated at the xi’s, all zero, and independent with
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standard Laplacian density, 1
2e

−|x|. The presence of λ introduces a free
scale parameter that represents the strength of this belief. Data dependent
strategies for the choice of λ obviously violate Bayesian orthodoxy, but
maybe condoned by the more pragmatic minded.

Pushing the notion of Bayesian virtual reality somewhat further, we may
imagine observing data at new xi values. Given that our estimated density
is parameterized by its function values at the “observed” xi values, these
new values introduce new parameters to be estimated; these “phantom ob-
servations” contribute nothing to the likelihood, but they do contribute to
the penalty term J(f). But by permitting log f to bend at the new xi
points in regions where there is otherwise no real data, flexibility of the
fitted density is increased. In regions where the function log f is convex,
or concave, one large change in the derivative can thus be broken up into
several smaller changes, without affecting the total variation of its deriva-
tive. Recall that the total variation of a monotone function on an interval
is just the difference in the values taken at the endpoints of the interval.

Rather than trying to carefully select a few xi values as knots for a
spline representation of the fitted density, as described in Stone, Hansen,
Kooperberg, and Truong (1997), all of the observed xi are retained as knots
and some virtual ones are thrown in as well. Shrinkage, controlled by the
tuning parameter, λ, is then relied upon to achieve the desired degree of
smoothing. The use of virtual observations is particularly advantageous in
the tails of the density, and in other regions where the observed data are
sparse. We will illustrate the use of this technique in both univariate and
bivariate density estimation in the various examples of subsequent sections.

Example 1. Several years ago one of us, as a class exercise, asked students
to estimate the density illustrated in Figure 1(a), based on a random sample
of 200 observations. The density is a mixture of three, three-parameter
lognormals:

f1(x) =

3∑

i=1

wiφ(log((x− γi − µi)/σi))/(σi(x− γi)), (7)

where φ denotes the standard normal density, µ = (0.5, 1.1, 2.6), γ =
(.0.4, 1.2, .2.4), σ = (0.2, 0.3, .0.2), and w = (0.33, 0.33, 0.33). In the fig-
ure we have superimposed the density on a histogram of the original data
using an intentionally narrow choice of binwidth.

The most striking conclusion of the exercise was how poorly conven-
tional density estimators performed. With one exception, none of the stu-
dent entries in the competition were able to distinguish the two tallest
peaks, and their performance on the lower peak wasn’t much better. All
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of the kernel estimates looked very similar to smoother of the two ker-
nel estimates displayed in Figure 1(b). This is a fixed-bandwidth Gaus-
sian kernel estimate with bandwidth chosen by Scott’s (1992) biased cross-
validation criterion as implemented in R and described by Venables and
Ripley (2002). The other kernel estimate employs Scott’s alternative un-
biased cross-validation bandwidth, and clearly performs somewhat better.
Gallant and Nychka’s (1987) Hermite series estimator also oversmooths
when the order of the estimator is chosen with their BIC criterion, but
performs better when AIC order selection is used, as illustrated in Figure
1(c). In Figure 1(d) we illustrate two variants of the most successful of the
student entries based on the logspline method of Kooperberg and Stone
(1991): one constrained to have positive support, the other unconstrained.
Figure 1(e) illustrates two versions of the logspline estimator implemented
by Gu (2002). Finally, Figure 1(f) illustrates two versions of a total vari-
ation penalty estimator; both versions employ a total variation penalty on
the derivative of log f , and use in addition to the 200 sample observations,
300 “virtual observations” equally spaced between 0 and 25. These estima-
tors were computed with the aid of the MOSEK package of E. D. Andersen,
an implementation for MATLAB of the methods described in Andersen and
Ye (1998). The penalty method estimators all perform well in this exercise,
but the kernel and Hermite series estimators have difficulty coping with the
combination of sharp peaks and smoother foothills.

3 Bivariate Density Estimation

In nonparametric regression piecewise linear fitting is often preferable to
piecewise constant fitting. Thus, penalizing total variation of the gradient,
∇g, instead of total variation of g itself, is desirable. For smooth functions
we can extend the previous definition by writing,

∨

Ω

∇g =

∫

Ω

‖∇2g‖, (8)

where ‖ · ‖ can be taken to be the Hilbert-Schmidt norm, although other
choices are possible as discussed in Koenker and Mizera (2004). This
penalty is closely associated with the thin plate penalty that replaces ‖∇2g‖
with ‖∇2g‖2. The latter penalty has received considerable attention, see
e.g. Wahba (1990) and the references cited therein. We would stress, how-
ever, that as in the univariate setting there are important advantages in
taking the square root.

For scattered data more typical of nonparametric regression applica-
tions, Koenker and Mizera (2004) have proposed an alternative discretiza-
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(a) Histogram (b) Kernel

(c) Hermite (d) Logspline

(e) Gulog (f) TVlog

Figure 1 Comparison of Estimates of the 3-Sisters Density.

tion of the total variation penalty based on continuous, piecewise-linear
functions defined on triangulations of a convex, polyhedral domain. Fol-
lowing Hansen, Kooperberg, and Sardy (1998), such functions are called
triograms. The penalty (7) can be simplified for triograms by summing the
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contributions over the edges of the triangulation,
∨

Ω

∇g =
∑

k

‖∇g+
ek

−∇g−ek‖ ‖ek‖. (9)

Each edge is associated with two adjacent triangles; the contribution of the
edge is simply the product of the Euclidean norm of the difference between
the gradients on the two triangles multiplied by the length of the edge. The
interiors of the triangles, since they are linear, contribute nothing to the
total variation, nor do the vertices of the triangulation. See Koenker and
Mizera (2004) for further details.

Choice of the triangulation is potentially an important issue especially
when the number of vertices is small, but numerical stability favors the clas-
sical Delaunay triangulation in most applications. Hansen and Kooperberg
(2002) consider sequential (greedy) model selection strategies for choosing
a parsimonious triangulations for nonparametric regression without relying
on a penalty term. In contrast, Koenker and Mizera (2004) employ the
total variation penalty (8) to control the roughness of the fit based on a
much more profligate triangulation. As in the univariate setting it is often
advantageous to add virtual vertices that can improve the flexibility of the
fitted function.

Extending the penalized triogram approach to bivariate density estima-
tion requires us, as in the univariate case, to make a decision about what is
to be penalized? We will focus exclusively on total variation penalization
of the log density with the understanding that similar methods could be
used for the density itself or another (convex) transform.

Given independent observations {xi = (x1i, x2i) : i = 1, · · · , n} from a
bivariate density f(x), let g = log f , and consider the class of penalized
maximum likelihood estimators solving

max
g∈G

n∑

i=1

g(xi) − λJ(g),

where J is the triogram penalty, given by (8). The set A consists of triogram
densities: continuous functions from a polyhedral convex domain Ω to R+,
piecewise linear on a triangulation of Ω and satisfying the condition,

∫

Ω

eg = 1.

It follows that log f can be parameterized by its function values at the
vertices of the triangulation. As in the univariate case, adding virtual
vertices is advantageous especially so in the region outside the convex hull
of the observed data where they provide a device to cope with tail behavior.
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Example 2. To illustrate the performance of our bivariate density estima-
tor, we consider the density

f2(x1, x2) = f(x2|x1)f(x1)

= 2φ(2(x2 −
√
x1)) · f1(x1),

where f1 is the univariate test density given above. Two views of this
density can be seen in the upper panels of Figure 2. There is one very
sharp peak and two narrow “fins”. In the two lower panels we depict views
of a fitted density based on 1000 observations. The tuning parameter λ is
taken to be 2, and the fit employs virtual observations on a integer grid
over the rectangle {[0, 30]× [0, 6]}.

Figure 2 Bivariate 3-Sisters Density and an Estimate.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

624 R. Koenker & I. Mizera

4 Duality and Regularized Maximum Entropy

An important feature of convex optimization problems is that they may
be reformulated as dual problems, thereby often offering a complementary
view of the problem from the other side of the looking glass. In addition to
providing deeper insight into the interpretation of the problem as originally
posed, dual formulations sometimes yield substantial practical benefits in
the form of gains in computational efficiency. In our experience, the dual
formulation of our computations exhibits substantially better performance
than the original penalized likelihood formulation. Execution times are
about 20 percent faster and convergence is more stable. We will show
in this section that total variation penalized maximum likelihood density
estimation has a dual formulation as regularized form of maximum entropy
estimation.

As we have seen already, piecewise linear log density estimators can be
represented by a finite dimensional vector of function values

αi = g(xi) i = 1, · · · ,m,

evaluated at knot locations, xi ∈ Ω. These points of evaluation can be
sample observations or “virtual” observations, or a mixture of the two.
They may be univariate, bivariate, or in principle, higher dimensional. We
approximate our integral by the Riemann sum,

∫

Ω

eg ≈
m∑

i=1

cie
αi ,

a step that can be justified rigorously by introducing points of evaluation
on a sufficiently fine grid, but is also motivated by computational consider-
ations. Provisionally, we will set the tuning parameter λ = 1, so our primal
problem is,

max{δ⊤α− ‖Dα‖1 |
∑

i

cie
αi = 1}. (P )

In the simplest case the vector δ ∈ R is composed of zeros and ones indicat-
ing which elements of α correspond to sample points and thus contribute
to the likelihood term. In the case that the xi are all virtual, chosen to lie
on a regular grid, for example, we can write, δ = B1n, where B denotes an
m by n matrix representing the n sample observations expressed in terms
of the virtual points, e.g. using barycentric coordinates.
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The integrability constraint can be conveniently incorporated into the
objective function using the following discretized version of a result of Sil-
verman (1982).

Lemma 1. α̂ solves problem (P) if and only if α̂ maximizes,

R(α) = δ⊤α− ‖Dα‖1 − n
∑

i

cie
αi .

Proof. Note that any differential operator, D, annihilates constant func-
tions, or the vector of ones. Thus, evaluating R at α∗ = α − log

∑
cie

αi ,
so
∑
cie

α∗
i = 1, we have

R(α∗) = R(α) + n
∑

i

cie
αi − n log

∑

i

cie
αi − 1,

but t− log t ≥ 1, for all t > 0 with equality only at t = 1. Thus, R(α∗) ≥
R(α), and it follows that α̂ maximizes R if and only if α̂ maximizes R
subject to

∑
i cie

αi = 1. This constrained problem is equivalent to (P). �

Introducing the artificial barrier vector β, the penalty contribution can
be reformulated slightly, and we can write (P) as,

max
α,β

{δ⊤α− 1⊤β −
∑

i

cie
αi | Dα ≤ β, −Dα ≤ β}.

We seek to minimize the Lagrangian,

L(α, β, ν1, ν2) = δ⊤α− 1⊤β − n
∑

cie
αi + ν⊤1 (Dα− β) + ν⊤2 (−Dα− β)

= (δ +D⊤(ν1 − ν2))
⊤α− (1 − ν1 − ν2)1

⊤β − n
∑

cie
αi ,

subject to the feasibility constraints,

γ ≡ δ +D⊤(ν1 − ν2) ≥ 0, ν1 + ν2 = 1, ν1 ≥ 0, and ν2 ≥ 0.

Now, differentiating the Lagrangian expression with respect to the αi’s
yields

∂L

∂αi
= δi − d⊤i (ν1 − ν2) − cie

αi = 0, i = 1, · · · ,m.

Convexity assures that these conditions are satisfied at the unique optimum:

fi ≡ (δi − d⊤i (ν1 − ν2))/ci = eαi i = 1, · · · ,m,
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so we can rewrite our Lagrangian problem with C = diag(c) as

min{
∑

cifi log fi | f = C−1(δ +D⊤y) ≥ 0. ‖y‖∞ ≤ 1}.

Reintroducing the tuning parameter λ we obtain the final form of the dual
problem.

Theorem 1. Problem (P) has equivalent dual formulation

max{−
∑

cifi log fi | f = C−1(δ +D⊤y) ≥ 0, ‖y‖∞ ≤ λ}. (D)

Remarks

(1) We can interpret the dual as a maximum entropy problem regularized
by the ℓ∞ constraint on y with added requirement that an affine trans-
formation of the vector of dual variables, y, lies in the positive orthant.

(2) The ℓ∞ constraint may be viewed as a generalized form of the tube
constraint associated with the taut string methods of Davies and Kovac
(2004). In the simplest setting, when total variation of the log density
itself, rather than its derivative, is employed as a penalty for univariate
density estimation, D is a finite difference operator and the dual vector,
y, can be interpreted as a shifted estimate of the distribution function
constrained to lie in a band around the empirical distribution function.
In more general settings the geometric interpretation of the constraints
on the dual vector, y, in terms of the sample data is somewhat less
clear. See also Koenker and Mizera (2006).

(3) The weights ci appearing in the objective function indicate that the
sum may be interpreted as a Riemann approximation to the entropy
integral. Expressing the problem equivalently as the maximization of

∑

i

cifi log
ci
cifi

+ logn

we arrive at an interpretation in terms of the Kullback-Leibler diver-
gence, K(φ, ν), of the probability distribution φ = (cifi), corresponding
to the estimated density f , from the probability distribution ν = n(ci),
corresponding to the density uniform over Ω. Thus, our proposal can
be interpreted in terms of regularized minimum distance estimation,

min{K(φ, ν)|φ = (δ +DT y) ≥ 0, ‖y‖∞ < λ},

a formulation not entirely surprising in the light of our knowledge about
maximum likelihood estimation. The choice of the uniform “carrier”
density could be modified to obtain exponentially tilted families as
described in Efron and Tibshirani (1996).
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(4) Density estimation methods based on maximum entropy go back at
least to Jaynes (1957). However, this literature has generally empha-
sized imposing exact moment conditions, or to use the machine learning
terminology, “features,” on the estimated density. In contrast, our dual
problem may be viewed as a regularized maximum entropy approach
that specifies “soft” feature constraints imposed as inequalities. Dud́ık,
Phillips, and Schapire (2004) consider a related maximum entropy den-
sity estimation problem with soft feature constraints. Donoho, John-
stone, Hoch, and Stern (1992) consider related penalty methods based
on entropy for a class of regression type imaging and spectroscopy prob-
lems, and show that they have superior performance to linear methods
based on Gaussian likelihoods and priors.

5 Monte-Carlo

In this section we report the results of a small Monte-Carlo experiment
designed to compare the performance of the TV penalized estimator with
three leading competitors:

TS The taut string estimator of Davies and Kovac (2005) using the default
tuning parameters embedded in the function pmden of their R package
ftnonpar.

Kucv The fixed bandwidth kernel density estimator implemented by the
function density in the R stats package, employing Scott’s (1992)
“unbiased cross validation” bandwidth selection.

Kbcv The fixed bandwidth density estimator as above, but using Scott’s
biased cross-validation bandwidth.

For purposes of the Monte-Carlo, automatic selection of λ for the TV
estimator was made according to the following recipe. Estimates were com-
puted at the fixed λ’s, {.1, .2, . . . , .9, 1.0}, using virtual observations on a
grid, G, of 400 points equally spaced on [−4, 4]. For each of these estimates
the Kolmogorov distance between the empirical distribution function of the
sample, F̂n, and the smoothed empirical, F̃n,λ, corresponding to the density
estimate

κ(λ) ≡ K(F̂n, F̃n,λ) = max
xi∈G

|F̂n(xi) − F̃n,λ(xi)|

was computed. Based on preliminary investigation, logκ(λ) was found to
be approximately linear in logλ, so we interpolated this log-linear rela-
tionship to find the λ that made κ(λ) approximately equal to the cutoff
cκ = .3/

√
n. The value .3 was chosen utterly without any redeeming the-
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Figure 3 The Marron and Wand candidate densities.

oretical justification. In rare cases for which this interpolation fails, i.e.,
λ̂ 6∈ [.1, 1], we use λ̂ = max{min{λ̂, 1}, .1}.

As candidate densities, we use the familiar Marron and Wand (1992)
normal mixtures illustrated in Figure 1. Random samples from these den-
sities were generated in with the aid of the R nor1mix package of Mächler
(2005). All computations for the taut string and kernel estimators are con-
ducted in R; computations for the TV estimator are made in matlab with
the aid of the PDCO function of Saunders (2004) as described above using
the sample data generated from R.

Three measures of performance are considered for each of the 16 test
densities. Table 1 reports the proportion replications for which each method
obtained the correct identification of the number of modes of the true den-
sity. Table 2 reports median MIAE (mean integrated absolute error), and
Table 3 reports median MISE (mean integrated squared error).

Clearly, the taut-string estimator performs very well in identifying uni-
modal and well separated bimodal densities, but it has more difficulties
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Table 1 The proportion of correct estimates of the
number of modes for the Marron-Wand densities:
Sample size, n = 500 and replications R = 1000.

Distribution TV TS K-ucv K-bcv

MW 1 0.303 1.000 0.690 0.863
MW 2 0.304 1.000 0.354 0.456
MW 3 0.169 1.000 0.000 0.059
MW 4 0.152 1.000 0.000 0.176
MW 5 0.345 1.000 0.000 0.000
MW 6 0.634 0.329 0.718 0.937
MW 7 0.716 1.000 0.678 0.880
MW 8 0.522 0.067 0.279 0.592
MW 9 0.472 0.013 0.434 0.292
MW 10 0.680 0.528 0.000 0.001
MW 11 0.000 0.000 0.006 0.000
MW 12 0.010 0.014 0.017 0.000
MW 13 0.172 0.001 0.003 0.000
MW 14 0.122 0.021 0.000 0.014
MW 15 0.101 0.078 0.000 0.038
MW 16 0.772 1.000 0.000 1.000

Table 2 Median Integrated Absolute Error: Sam-
ple size, n = 500 and number of replications
R = 1000.

Distribution TV TS K-ucv K-bcv

MW 1 0.109 0.166 0.089 0.082
MW 2 0.109 0.173 0.099 0.092
MW 3 0.130 0.218 0.191 0.200
MW 4 0.143 0.212 0.199 0.202
MW 5 0.120 0.177 0.150 0.140
MW 6 0.110 0.187 0.105 0.104
MW 7 0.127 0.204 0.120 0.116
MW 8 0.113 0.187 0.116 0.124
MW 9 0.120 0.204 0.118 0.132
MW 10 0.190 0.289 0.190 0.348
MW 11 0.144 0.193 0.118 0.117
MW 12 0.149 0.262 0.182 0.274
MW 13 0.186 0.214 0.146 0.143

MW 14 0.208 0.295 0.222 0.279
MW 15 0.173 0.311 0.224 0.248
MW 16 0.148 0.201 0.140 1.279
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Table 3 Median Integrated Squared Error: Sample
size, n = 500 and number of replications R = 1000.

Distribution TV TS K-ucv K-bcv

MW 1 0.0039 0.0074 0.0021 0.0018
MW 2 0.0042 0.0088 0.0028 0.0024
MW 3 0.0096 0.0468 0.0162 0.0280
MW 4 0.0117 0.0293 0.0163 0.0202
MW 5 0.0241 0.0577 0.0220 0.0183
MW 6 0.0037 0.0090 0.0029 0.0027
MW 7 0.0052 0.0121 0.0041 0.0037
MW 8 0.0042 0.0095 0.0041 0.0050
MW 9 0.0042 0.0104 0.0037 0.0043
MW 10 0.0163 0.0393 0.0137 0.0468
MW 11 0.0056 0.0101 0.0045 0.0043
MW 12 0.0066 0.0225 0.0115 0.0223
MW 13 0.0194 0.0136 0.0073 0.0071
MW 14 0.0238 0.0310 0.0174 0.0276
MW 15 0.0481 0.0334 0.0168 0.0231
MW 16 0.0054 0.0349 0.0145 0.5596

with the multimodal cases. Unbiased cross-validation is generally inferior
to biased cross-validation from a mode identification viewpoint, producing
too rough an estimate and therefore too many modes.

Unbiased CV has quite good MIAE performance. Not surprisingly, it
does best at the normal model, but it is somewhat worse than our TV
estimator for distributions 3, 4, 5, 14, and 15. In the other cases the perfor-
mance is quite comparable. The biased CV kernel estimator is consistently
inferior in MIAE except at the normal model. It fails spectacularly for the
sharply bimodel density number 16. The TV estimator is not too bad from
the MIAE perspective, consistently outperforming the taut-string estimator
by a substantial margin, and very competitive with the kernel estimators
except in the strictly Gaussian setting. Results for MISE are generally
similar to those for MIAE.

6 Prospects and Conclusions

Total variation penalty methods appear to have some distinct advantages
when estimating densities with sharply defined features. They also have at-
tractive computational features arising from the convexity of the penalized
likelihood formulation.

There are many enticing avenues for future research. There is consid-
erable scope for extending the investigation of dual formulations to other
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penalty functions and other fitting criteria. It would also be valuable to
explore a functional formulation of the duality relationship. The extensive
literature on covering numbers and entropy for functions of bounded vari-
ation can be deployed to study consistency and rates of convergence. And
inevitably there will be questions about automatic λ selection. We hope to
be able to address some of these issues in subsequent work.
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Chapter 31

A NOTE ON THE BOUNDED NORMAL MEAN PROBLEM

Jianqing Fan and Jin-Ting Zhang

Department of Operations Research and Financial Engineering
Princeton University Princeton, NJ, U.S.A.

Department of Statistics and Applied Probability
National University of Singapore, SINGAPORE

E-mails: jqfan@princeton.edu & stazjt@nus.edu.sg

The bounded normal mean problem has important applications in non-
parametric function estimation. It is to estimate the mean of a normal
distribution with mean restricted to a bounded interval. The minimax
risk for such a problem is generally unknown. It is shown in Donoho,
Liu and MacGibbon (1990) that the linear minimax risk provides a good
approximation to the minimax risk. We show in this note that a better
approximation can be obtained by a simple truncation of the minimax
linear estimator and that the minimax linear estimator is itself inadmis-
sible. The gain of the truncated minimax linear estimator is significant
for moderate size of the mean interval, where no analytical expression
for the minimax risk is available. In particular, we show that the trun-
cated minimax linear estimator performs no more than 13% worse than
the minimax estimator, comparing with 25% for the minimax linear es-
timator.

Keywords: Bounded normal mean; Minimax risk; Quadratic loss.
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1 Introduction

The minimax estimation of the bounded normal mean problem has been ex-
tensively studied in the literature. It is closely related to the minimax den-
sity estimation and minimax nonparametric regression problems. This con-
nection has been convincingly demonstrated in seminal work by Sacks and
Strawderman (1982), Ibragimov and Hasminskii (1984), Donoho and Liu
(1991) Fan (1993), Brown and Low (1991,1996) Nussbaum (1996), among
others. A sharp bound in the bounded normal mean problem would provide
a sharp minimax bound for the corresponding nonparametric problems and
a better procedure for estimating the bounded normal mean would lead to a
better procedure in the nonparametric problems. See for example Donoho
et al. (1990), Donoho and Liu (1991) and Brown and Low (1991,1996).
In fact, the nonparametric regression model, nonparametric density esti-
mation problem and the Gaussian white noise models are asymptotically
equivalent in the sense of Le Cam’s deficiency distance, as demonstrated
in Brown, Cai, Low and Zhang (2002) and Grama and Nussbaum (2002).
Actually, the lower bound of the best nonlinear estimator for nonparamet-
ric regression model in Fan (1993) and Chen (2003) is derived by using the
bound from the bounded normal mean problem.

The problem considered here is to estimate the mean of a normal dis-
tribution with a known variance under the quadratic loss when the mean
lies in a given bounded interval. No generality is lost if we further assume
that the known variance is 1 and the given interval is symmetric about the
origin. That is, we may assume the observation X comes from N(θ, 1) with
θ ∈ [−τ, τ ] for some τ > 0.

Let δ(X) be an arbitrary estimator for θ based on X . Its risk based
on the quadratic loss is defined as R(δ, θ) = E(δ(X) − θ)2, which will be
used throughout this paper. The minimax estimator δN (X) is the one
that minimizes the maximum risk supθ∈[−τ,τ ]R(δ, θ) among all possible
estimators and the minimax risk is

ρN (τ) = inf
δ

sup
θ∈[−τ,τ ]

R(δ, θ) = sup
θ∈[−τ,τ ]

R(δN , θ).

It follows from Ghosh (1964) that there exists a unique symmetric least
favorable prior, which concentrates its mass on a finite number of points and
gives a minimax Bayes estimator. Casella and Strawderman (1981) showed
that for small τ , i.e., 0 < τ ≤ 1.05, this least favorable prior is a two-point
one which puts its mass on the endpoints of the mean interval while for
1.4 ≤ τ ≤ 1.6, the least favorable three-point priors can be constructed
for each individual τ . When τ → ∞, the limiting behavior of the least
favorable priors was obtained by Bickel (1981) and the similar results can
be found in Levit (1980). Unfortunately, it remains open how to construct
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the least favorable finite-point prior for a general τ > 0 and hence ρN (τ) is
generally unknown.

Several authors have proposed alternative procedures to approximate
ρN (τ). Gatsonis, MacGibbon and Strawderman (1987) studied the proper-
ties of the Bayes estimator under the uniform prior. Donoho et al. (1990)
showed that the linear minimax risk is not far from the minimax risk. It is
well-known that the minimax linear estimator is

δL(X) = (1 + τ2)−1τ2X,

and the linear minimax risk is

ρL(τ) = inf
δ linear

sup
θ∈[−τ,τ ]

R(δ, θ) = (1 + τ2)−1τ2.

The linear minimax risk serves as an obvious upper bound for ρN (τ). Let

µLN (τ) = ρL(τ)/ρN (τ) and µ∗
LN = sup

τ>0
µLN (τ).

It is noted from Donoho et al. (1990) that

lim
τ→0

µLN(τ) = 1, and lim
τ→∞

µLN(τ) = 1, (1)

and

1 ≤ µLN (τ) ≤ µ∗
LN ≤ 1.25.

Nevertheless, the above bound can be easily improved upon by observing
that δL(X) may lie outside the interval [−τ, τ ] and hence δL(X) is inad-
missible. An obvious improvement for δL(X) can be made by a simple
truncation. That is, we define the truncated minimax linear estimator as

δT (X) =





−τ, δL(X) < −τ,
δL(X), δL(X) ∈ [−τ, τ ],
τ, δL(X) > τ.

Define further

ρT (τ) = sup
θ∈[−τ,τ ]

R(δ, θ),

and

µLT (τ) = ρL(τ)/ρT (τ) and µTN (τ) = ρT (τ)/ρN (τ). (2)

It is easy to show that ρN (τ) ≤ ρT (τ) ≤ ρL(τ). Therefore, 1 ≤ µLT (τ) ≤
µLN (τ) and 1 ≤ µTN (τ) ≤ µLN (τ). Then by (1), we have

lim
τ→0

µLT (τ) = lim
τ→0

µTN (τ) = lim
τ→0

µLN(τ) = 1,

lim
τ→∞

µLT (τ) = lim
τ→∞

µTN (τ) = lim
τ→∞

µLN(τ) = 1.
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Thus, we gain little for small and large τ ∈ (0,∞) by using δT (X) and
δN (X) instead of δL(X). Nonetheless, the gain is large for moderate τ .
By defining µ∗

LT = supτ>0 µLT (τ) and µ∗
TN = supτ>0 µTN (τ), we have the

following theorem.

Theorem 1. For any τ ∈ (0,∞), the following inequalities hold:
(a) 1 ≤ µLT (τ) ≤ µ∗

LT ≤ 1.23;
(b) 1 ≤ µTN (τ) ≤ µ∗

TN ≤ 1.13;
(c) 1.22 ≤ µ∗

LT ≤ 1.23;
(d) 1.22 ≤ µ∗

LN ≤ 1.25.

A consequence of the above theorem is that we provide a much sharper
bound for ρN (τ):

1.13−1ρT (τ) ≤ ρN (τ) ≤ ρT (τ),

namely, the truncated minimax linear estimator performs at most within
13% away from the best possible one. This marks a considerable improve-
ment for the bounds based on the minimax linear estimator:

1.25−1ρL(τ) ≤ ρN (τ) ≤ ρL(τ).

The above results have direct implications on minimax theory for other
nonparametric problems. Following the explicit construction and the proofs
in Fan (1992,1993), we can also improve the minimax efficiency of the best
linear estimator constructed in Fan (1992) and Chen (2003) for nonparamet-
ric regression problem. The resulting truncated local polynomial estimator
has minimax efficiency loss at most 13%.

The rest of this note is organized as follows. In Section 2, some proper-
ties of the truncated minimax linear estimator are investigated. In Section
3, we first outline a numerical approach to calculate the lower bounds of
the minimax risk for moderate τ . The resulting lower bounds together with
the maximum risk of δL(X) and δT (X) obtained in Section 2 for many se-
lected τ are tabulated and so are their ratios. We then give a detailed
proof of Theorem 1 there. In Section 4, we briefly discuss approximating
the minimax risk over a hyperrectangle by using δT (X) instead of δL(X).

2 Truncated Minimax Linear Estimator

In this section, we investigate some properties of R(δT , θ), the risk function
of the truncated minimax linear estimator δT (X). An immediate result
from the definition of δT is that for any θ ∈ [−τ, τ ], R(δT , θ) ≤ R(δL, θ).
That is,
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Lemma 1. δT dominates δL and hence δL is inadmissible.

Some simple calculation leads to the exact expression of R(δT , θ), which
allows a quick and accurate evaluation of ρT (τ), µLT (τ) and µ∗

LT .

Lemma 2. The risk function of δT (X) can be expressed in terms of the
standard normal distribution function Φ(x) and its density φ(x) as

R(δT , θ) = {α2 + (1 − α)2θ2}{Φ(τ/α− θ) + Φ(τ/α+ θ) − 1}
+ (τ + θ)2{1 − Φ(τ/α+ θ)} + (τ − θ)2{1 − Φ(τ/α− θ)}
− α{τ + (α− 2)θ}φ(τ/α− θ) − α{τ − (α− 2)θ}φ(τ/α+ θ),

for θ ∈ [−τ, τ ] where α = (1 + τ2)−1τ2.

From the above lemma, it is easy to see thatR(δT ,−θ) = R(δT , θ). That
is, R(δT , θ) is symmetric in θ. To study the ratio µLT (τ) defined in (2), we
need knowledge about ρT (τ) = supθ∈[−τ,τ ]R(δT , θ). By the symmetry of
R(δT , θ), we have

R′
θ(δT , θ) = −R′

θ(δT ,−θ),

where R′
θ(δT , θ) = ∂R(δT ,θ)

∂θ . A trivial result is

Lemma 3. R′
θ(δT , 0) = 0.

This implies that θ = 0 is a local extrema of the risk function R(δT , θ).
However, the closed form for other local extrema is not available and a
numerical approach is needed to find the maximum risk due to the compli-
cated form of the derivative function R′

θ(δT , θ). Figure 1 illustrates the risk
curves for some selected τ ’s. It can be seen that for small τ , τ < τ0, say, the
maximum risk ρT (τ) is attained at θ = ±τ but this is not the case when τ
is larger than τ0. Numerical calculation shows that τ0 is about 2.175. To
have an impression of ρT (τ), we computed its values at a sequence of τ ’s
having lag .2 over the interval [.2, 8.6] using a numerical approach. These
values are tabulated in Column 3 of Table 1 of next Section. They suggest
that ρT (τ) is a non-decreasing function of τ over the interval [0.2, 8.6].

We can show easily that ρL(τ) and ρN(τ) are non-decreasing functions
of τ . Similarly, it is expected that ρT (τ) is a non-decreasing function of
τ ∈ (0,∞). This can also be seen in Figure 2 where the maximum risk
curves ρL(τ), ρT (τ) and the lower bound curve of ρN (τ) are displayed. For
further discussion, we also tabulated ρL(τ) and µLT (τ) in Columns 2 and
5 of Table 1.
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Figure 1 Risk curves of δT (X) for some selected τ ’s. When τ < τ0, the maximum risk
is attained at the endpoints; when τ0 < τ < τ1, the maximum risk is attained at the
origin; and when τ > τ1, the maximum risk is attained at two symmetric points which
are neither the origin nor the endpoints. Here τ0 and τ1 are some fixed constants.

3 Minimax Risk

It is quite challenging to obtain ρN (τ) or its sharp lower bounds, especially
for moderate τ although the exact value or sharp lower bounds of ρN (τ)
can be used to assess how close the linear minimax estimator δL(X) and the
truncated minimax linear estimator δT (X) are from the minimax estimator
δN (X). For small τ , say 0 < τ ≤ 1.05, formula for computing exact ρN (τ)
is available. In fact, Donoho et al. (1990) showed that

ρN (τ) = τ2e−τ
2/2

∫
φ(t)/ cosh(τt)dt, 0 < τ ≤ 1.05, (3)

where φ(t) is the standard normal density function. This is the Bayes risk
for the least favorable two-point prior based on the work of Casella and
Strawderman (1981). For moderate and large τ , say τ > 1.05, computing
exact ρN (τ) is usually difficult if not impossible. As a result, sharp lower
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Figure 2 Maximum risk (or lower bound) curves for the estimators δL(X), δT (X) and
δN (X).

bounds for ρN (τ) are often computed instead. For large τ , Donoho et al.
(1990) employed the following inequality:

ρN(τ) ≥ 1 − sinh(τ)/{τ cosh(τ)}, (4)

for sharp lower bounds. To calculate sharp lower bounds of ρN (τ) for
moderate τ , however, one has to rely on the implicit characteristic of ρN (τ)
as the maximum of Bayes risks:

ρN (τ) = sup
π∈Π

ρπ(τ), (5)

where Π denotes all prior distributions, π(θ), supported on [−τ, τ ] and
ρπ(τ) the associated Bayes risk. By the well-known Brown’s identity, we
have

ρπ(τ) = inf
δ

∫ τ

−τ
R(δ, θ)π(θ)dθ = 1 −

∫ +∞

−∞
f ′
π(x)

2/fπ(x)dx, (6)

where fπ(x) is the marginal density of X , i.e.,

fπ(x) =

∫ τ

−τ
π(θ)φ(x − θ)dθ. (7)

It follows that for any π ∈ Π, ρπ provides a lower bound for ρN (τ) and
sharper lower bounds are provided by better choices of priors. Since the
interval [−τ, τ ] is symmetric, it is natural to consider only the symmetric
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priors. For a symmetric prior π over the interval [−τ, τ ], simple calculation
yields that fπ(−x) = fπ(x) and f ′

π(−x) = −f ′
π(x). It then follows that

ρπ(τ) = 1 − 2

∫ ∞

0

f ′
π(x)

2/fπ(x)dx. (8)

Following Casella and Strawderman (1981), we just consider symmetric
finite-point priors for π. Let s denote a nonnegative integer. We define
π2s(θ) as a symmetric (2s)-point prior by:

π2s(θ) =

{
pi, if θ = ±θi, i = 1, 2, · · · , s,
0, else,

where 0 < θ1 < θ2 < · · · < θs = τ and 2
∑s
i=1 pi = 1. Similarly, we define

π2s+1(θ) as a symmetric (2s+ 1)-point prior by:

π2s+1(θ) =




p0, if θ = 0,
pi, if θ = ±θi, i = 1, 2, · · · , s,
0, else,

where 0 < θ1 < θ2 < · · · < θs = τ and p0 + 2
∑s
i=1 pi = 1 with p0 > 0 since

if p0 = 0, π2s+1(θ) reduces to a symmetric (2s)-point prior. For a given
τ ∈ (0,∞), by suitably choosing s, θi, and pi, we can obtain some good
symmetric finite-point priors and hence obtain some sharp lower bounds for
ρN (τ) and the corresponding good upper bounds for µLN(τ) and µTN (τ),
by employing the formulas (5)-(8).

0 1 2 3 4 5 6 7 8 9
1

1.05

1.1

1.15

1.2

1.25

µ
LT

(τ)

An Upper Bound of µ
LN

(τ)

An Upper Bound of µ
TN

(τ)

Figure 3 Maximum risk ratio (or upper bound) curves. It can been seen that the gain
is considerable for moderate τ by using δT (X) instead of δL(X).
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Table 1 Maximum risks (or lower bound) of δL(X), δT (X) and δN (X).

τ ρL(τ) ρT (τ) ρN (τ) ≥ µLT (τ) µTN (τ) ≤ µLN (τ) ≤
0.2 0.0385 0.0385 0.0385 1.0000 1.0000 1.0000
0.4 0.1379 0.1379 0.1377 1.0000 1.0015 1.0015
0.6 0.2647 0.2633 0.2615 1.0053 1.0069 1.0122
0.8 0.3902 0.3829 0.3737 1.0191 1.0246 1.0442
1.0 0.5000 0.4804 0.4496 1.0408 1.0685 1.1121
1.2 0.5902 0.5521 0.4921 1.0690 1.1219 1.1993
1.4 0.6622 0.6015 0.5349 1.1009 1.1245 1.2380
1.6 0.7191 0.6338 0.5768 1.1346 1.0988 1.2467

1.8 0.7642 0.6540 0.6146 1.1685 1.0641 1.2434
2.0 0.8000 0.6658 0.6448 1.2016 1.0326 1.2407
2.2 0.8288 0.6769 0.6695 1.2244 1.0111 1.2379
2.4 0.8521 0.7196 0.6929 1.1841 1.0385 1.2298
2.6 0.8711 0.7549 0.7146 1.1539 1.0564 1.2190
2.8 0.8869 0.7843 0.7341 1.1308 1.0684 1.2081
3.0 0.9000 0.8090 0.7506 1.1125 1.0778 1.1990
3.2 0.9110 0.8302 0.7658 1.0973 1.0841 1.1896
3.4 0.9204 0.8483 0.7800 1.0850 1.0876 1.1800
3.6 0.9284 0.8639 0.7929 1.0747 1.0895 1.1709
3.8 0.9352 0.8774 0.8045 1.0659 1.0906 1.1625
4.0 0.9412 0.8892 0.8151 1.0585 1.0909 1.1547
4.2 0.9464 0.8994 0.8249 1.0523 1.0903 1.1473
4.4 0.9509 0.9084 0.8341 1.0468 1.0891 1.1400
4.6 0.9549 0.9163 0.8424 1.0421 1.0877 1.1335
4.8 0.9584 0.9233 0.8501 1.0380 1.0861 1.1274
5.0 0.9615 0.9295 0.8573 1.0344 1.0842 1.1215
5.2 0.9643 0.9350 0.8640 1.0313 1.0822 1.1161
5.4 0.9668 0.9399 0.8700 1.0286 1.0803 1.1113
5.6 0.9691 0.9444 0.8759 1.0262 1.0782 1.1064
5.8 0.9711 0.9483 0.8814 1.0240 1.0759 1.1018
6.0 0.9730 0.9519 0.8865 1.0222 1.0738 1.0976
6.2 0.9746 0.9552 0.8912 1.0203 1.0718 1.0936
6.4 0.9762 0.9580 0.8956 1.0190 1.0697 1.0900
6.6 0.9776 0.9606 0.8998 1.0177 1.0676 1.0865
6.8 0.9788 0.9629 0.9038 1.0165 1.0654 1.0830
7.0 0.9800 0.9651 0.9075 1.0154 1.0635 1.0799
7.2 0.9811 0.9670 0.9109 1.0146 1.0614 1.0768
7.4 0.9821 0.9687 0.9141 1.0138 1.0594 1.0741
7.6 0.9830 0.9704 0.9171 1.0130 1.0581 1.0719
7.8 0.9838 0.9726 0.9197 1.0115 1.0575 1.0697
8.0 0.9846 0.9741 0.9221 1.0108 1.0564 1.0678
8.2 0.9853 0.9755 0.9240 1.0100 1.0557 1.0663
8.4 0.9860 0.9768 0.9256 1.0094 1.0553 1.0653
8.6 0.9867 0.9779 0.9268 1.0090 1.0551 1.0646
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For example, when 0 < τ ≤ 1.05, the two-point prior, which puts equal mass
on the endpoints of the mean interval (i.e., s = 1, θ1 = τ and p1 = 1/2),
is the appropriate one while for each 1.05 < τ ≤ 2, a three-point prior
with well chosen p0 [θ1 = τ, p1 = (1 − p0)/2] is desired; see Casella and
Strawderman (1981) for details. For large τ , four-point, five-point or higher-
order finite-point priors are generally needed to get good priors and hence
good lower bounds for ρN (τ). Donoho et al. (1990) gave some lower bounds
of ρN(τ) for many selected τ ∈ [.42, 4.2]. To show Theorem 1, we need to
calculate more lower bounds over a wider interval, [.2, 8.6] say. For this
purpose, a numerical approach has been developed and we omit it here for
brevity. The resulting lower bounds for ρN(τ) for a sequence of τ ’s having
lag .2 over the interval [.2, 8.6] are listed in Column 4 of Table 1. The
associated upper bounds of the µLN(τ) and µTN (τ) are listed in Columns
6 and 7 of Table 1 respectively.

Based on Table 1, we can show that Theorem 1 is valid over the
interval [.2, 8.6]. From Columns 5-7 of Table 1, it is easy to see that
µ∗
LT ≈ 1.2244, µ∗

TN ≤ 1.1245 and µ∗
LN ≤ 1.2467. Since µLT (τ), µTN and

µLN (τ) are continuous functions of τ , at least theoretically, we can esti-
mate or predict them at any τ ∈ [.2, 8.6] using numerical interpolation so
that we can have more accurate estimate of µ∗

LT , and more accurate upper
bounds of µ∗

TN and µ∗
LN . In fact, by interpolation, we evaluated µLT (τ),

the upper bounds of µTN (τ) and µLN(τ) for a sequence of τ ’s having lag .02
over the interval [.2, 8.6] and found that µ∗

LT ≈ 1.2251, µ∗
TN ≤ 1.1292 and

µ∗
LN ≤ 1.2467. By these and Figure 3 where the ratio curve µLT (τ), the

upper bound curves of the ratio curves µTN (τ) and µLN (τ) are depicted
as dashed, dashdotted and solid curves respectively, we can safely conclude
that Parts (a)-(c) of Theorem 1 are valid for τ ∈ [.2, 8.6]. The validity of
Part (d) of Theorem 1 over the interval [.2, 8.6] follows from

µ∗
LN = sup

τ>0

ρL(τ)

ρN (τ)
= sup

τ>0

{
ρL(τ)

ρT (τ)

ρT (τ)

ρN (τ)

}

≥ sup
τ>0

ρL(τ)

ρT (τ)
= µ∗

LT ≈ 1.2251,

by noticing that we always have ρT (τ) ≥ ρN (τ).
It remains to show Theorem 1 holds for τ ∈ (0, .2] ∪ [8.6,∞). To this

end, it is sufficient to show that µLN(τ) ≤ 1.13 for τ ∈ (0, .2]∪[8.6,∞) since
we always have µLT (τ) ≤ µLN (τ) and µTN (τ) ≤ µLN (τ) for τ ∈ (0,∞).
Now for τ ∈ (0, .2], by (3), we have

µLN(τ) = ρL(τ)/ρN (τ) = (1 + τ2)−1τ2/{τ2e−τ
2/2

∫
φ(t)/ cosh(τt)dt}

≤ eτ
2/2{

∫
φ(t)/ cosh(τt)dt}−1 ≤ e.2

2/2{
∫
φ(t)/ cosh(.2t)dt}−1

≤ 1.04,
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as desired. The second to the last inequality follows from the monotonicity
of eτ

2/2{
∫
φ(t)/ cosh(τt)dt}−1 (see Donoho et al. 1990 for details). While

for τ ≥ 8.6, by (4), we have

µLN(τ) = ρL(τ)/ρN (τ) ≤ (1 + τ2)−1τ2/{1 − sinh(τ)/(τ cosh(τ))}
≤ (1 + 8.62)−18.62/{1 − sinh(8.6)/(8.6 cosh(8.6))}
≤ 1.12,

as desired. This completes the proof of Theorem 1.

4 Minimax Risk Over Hyperrectangles

Suppose we have a sequence of observations:

Yi = θi + ǫi, i = 1, 2, · · · ,
where ǫi are i.i.d N(0, σ2) with a given σ. Assume further that θ =
(θ1, θ2, · · · ) lies in Θ, a hyperrectangle defined as

Θ(τ) = {θ : |θi| ≤ τi, i = 1, 2, · · · }
for some given sequence of τi, tending to zero. Such a kind of Gaussian
white noise model is closely related to the nonparametric regression model.
See for example Brown and Low (1996), Nussbaum (1996), Brown et al.
(2002) and Grama and Nussbaum (2002). Let Xi = Yi/σ. Then Xi ∼
N(θi/σ, 1). One wishes to estimate the vector θ by θ̂ with small quadratic

risk R(θ̂, θ) = E‖θ̂ − θ‖2. Let

θ̂N = σ
(
δN (X1), δN (X2), · · ·

)
,

where δN (Xi) = δN (Yi/σ) is the minimax estimator of θi/σ. It is shown in

Donoho et al. (1990) that θ̂N is a minimax estimator of θ with the minimax
risk

ρ∗N (σ) = inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2 = sup
θ∈Θ

E‖θ̂N − θ‖2 = σ2
∑

ρN (τi/σ).

Unfortunately, the minimax procedure δN (·) is unknown to us. Instead,
Donoho et al. (1990) consider a replacement of δN (·) by the known proce-
dure δL(·), leading to the following minimax linear estimator

θ̂L = σ
(
δL(Y1/σ), δL(Y2/σ), · · ·

)
.

Such an estimator has a maximum risk

ρ∗L(σ) = sup
θ∈Θ

E‖θ̂L − θ‖2 = σ2
∑

ρL(τi/σ).
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In Donoho et al. (1990), it is shown that

ρ∗N (σ) ≤ ρ∗L(σ) ≤ µ∗
LNρ

∗
N (σ) ≤ 1.25ρ∗N(σ).

Since δT dominates δL, a better estimator for the vector θ is

θ̂T = σ
(
δT (Y1/σ), δT (Y2/σ), · · ·

)
,

which has the maximum risk

ρ∗T (σ) = sup
θ∈Θ

E‖θ̂T − θ‖2 = σ2
∑

ρT (τi/σ).

By Theorem 1, we can easily show that

Theorem 2. ρ∗N (σ) ≤ ρ∗T (σ) ≤ µ∗
TNρ

∗
N (σ) ≤ 1.13ρ∗N(σ).

Thus, the truncated minimax linear estimator θ̂T is a better estimator
than θ̂L, and a much closer bound for the minimax risk is obtained.

References

1. Bickel, P.J. (1981). Minimax estimation of the mean of a normal parameter
space is restricted. Ann. Statist., 9 1301-1309.

2. Brown, L. D. and Low, M. G. (1991). Information inequality bounds on
the minimax risk (with an application to nonparametric regression). Ann.
Statist., 19, 329-337.

3. Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of non-
parametric regression and white noise. Ann. Statist., 24, 2384-2398.

4. Brown, L. D., Cai, T. T., Low, M. G., and Zhang, C.H. (2002). Asymp-
totic equivalence theory for nonparametric regression with random design.
Ann. Statist., 30, 688–707.

5. Casella, G. and Strawderman, W. E.(1981). Estimating a bounded
normal mean. Ann. Statist., 9, 870-878.

6. Chen, K. (2003). Linear minimax efficiency of local polynomial regression
smoothers. J. Nonparametr. Stat., 15, 343–353.

7. Donoho, D. L. and Liu, R. C.(1991). Geometrizing rate of convergence
III. Ann. Statist., 19, 633-667.

8. Donoho, D. ., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over
hyperrectangles and implications. Ann. Statist., 18, 1416-1437.

9. Fan, J. (1992). Design-adaptive nonparametric regression. J. Ameri. Statist.
Assoc. 87, 998-1004.

10. Fan, J. (1993). Local linear regression smoothers and their minimax effi-
ciency. Ann. Statist., 21, 196-216.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Bounded Normal Mean 647

11. Gatsonis, C., MacGibbon, B. and Strawderman, W. E. (1987). On
the estimation of a restricted normal mean. Statist. Probab. Lett. 6, 21-30.

12. Ghosh, M. N. (1964). Uniform approximation of minimax point estimates.
Ann. Math. Statist. 35, 1031-1047.

13. Grama, I. and Nussbaum, M. (2002). Asymptotic equivalence for non-
parametric regression. Math. Methods Statist., 11, 1–36.

14. Ibragimov, I. A. and Hasminskii, R. Z.(1984). Nonparametric estimation
of the value of a linear functional in Gaussian white noise. Theory Probab.
Appl.,29,19-32.

15. Levit, B. Ya.(1980). On the second order asymptotically minimax esti-
mates. Theory Probab. Appl. 25, 561-576.

16. Nussbaum, M. (1996). Asymptotic equivalence of density estimation and
Gaussian white noise. Ann. Statist., 24, 2399-2430.

17. Sacks, J. and Strawderman, W. E. (1982). Improvements on linear min-
imax estimates. In Statistical Decision Theory and Related Topics III(S. S.
Gupta and J. O. Berger, eds.). 2, 287-304. Academic, New York.



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

This page intentionally left blankThis page intentionally left blank



December 14, 2006 14:14 World Scientific Review Volume - 9in x 6in main-test

Chapter 32

ESTIMATION OF SYMMETRIC DISTRIBUTIONS

SUBJECT TO A PEAKEDNESS ORDER
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A distribution function F is more peaked about a point a than the
distribution G is about the point b if F ((x + a)−) − F (−x + a) ≥
G((x + b)−) − G(−x + b) for every x > 0. The problem of estimating
symmetric distribution functions F or G, or both, under this constraint
is considered in this paper. It turns out that the proposed estimators
are projections of the empirical distribution function onto suitable con-
vex sets of distribution functions. As a consequence, the estimators are
shown to be strongly uniformly consistent. The asymptotic distribution
theory of the estimators is also discussed.

Keywords: Stochastic ordering; Projection; Symmetry; Weak conver-
gence; Linkage analysis.

1 Introduction

The concept of dispersion permeates the theory and applications of statis-
tics. Doksum (1969) defined a tail-ordering between distributions F and G
by requiring that F−1G(x)− x be nondecreasing. When F and G are con-
tinuous and strictly increasing, this concept is easily seen to be equivalent
to the dispersive order defined by F−1(u)−F−1(v) ≤ G−1(u)−G−1(v) for
all 0 ≤ u ≤ v ≤ 1. This order will be denoted by F <d G. Doksum (1969)
utilized this concept to study power properties of rank tests. In particular,
he showed that the power of certain rank tests is isotonic with respect to
this order. Rojo (1995b, 1999) considered the problem of estimating the

649
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quantile function F−1 and the distribution function F when F <d G, and
the asymptotic theory of the resulting estimators was delineated. Rojo and
Wang (1994) also showed that the power of tests based on L-statistics is
isotonic with respect to the dispersive order. For other properties of the
dispersive order see Bickel and Lehmann (1979).

This paper considers a different concept of dispersion proposed by Birn-
baum (1948). A distribution function F is said to be more peaked about
the point a than the distribution function G is about the point b if, for all
x ≥ 0,

F ((x+ a)−) − F (−x+ a) ≥ G((x+ b)−) −G(−x+ b), (1)

where h(x−) = limǫ↓0 h(x− ǫ). When (1) holds, we write F >p G. If F and
G are symmetric about the point 0, then the condition (1) is equivalent to

F (x−) ≥ G(x−) for x ≥ 0
F (x) ≤ G(x) for x < 0.

(2)

Note that (1) is equivalent to requiring that |X − a| be stochastically
smaller than |Y − b|, where X ∼ F and Y ∼ G respectively. Although, in
general, F <d G 6⇒ F >p G and F >p G 6⇒ F <d G, when F and G are
symmetric and continuous, it can be seen that F <d G⇒ F >p G.

As a way to motivate the use of the concept of peakedness in appli-
cations, we briefly discuss some international studies on Body Mass Index
(BMI) of populations of African descent. These studies have shown that as
populations migrate West, the distribution of the BMI for the various pop-
ulations increases in dispersion. This is the case, for example, for a series of
studies conducted by Loyola University in Chicago, (see, e.g., Rotimi et al .
(1995) and Colilla et al . (2000)), under the general umbrella of “The In-
ternational Collaborative Study on Hypertension in Blacks”. These studies
“followed” populations of Nigerian descent as they migrated from Africa to
the Caribbean, eventually settling in the United States. The studies com-
pared, in particular, the male and female populations from Nigeria with
African-American male and female populations of Nigerian descent in the
Chicago suburb of Maywood, Illinois. The comparison was based on an-
thropometric variables of which BMI was of particular interest. The results
of these studies demonstrated quite decisively that the sample distributions
for the BMI of the Nigerian populations are more “peaked” than the BMI
sample distributions for their African-American counterparts.

In the context of identifying genes linked to a specific phenotype, sib-
paired data illustrates very clearly that the distribution functions of sib-pair
differences are symmetrically distributed, and when the candidate gene is
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Figure 1 Empirical CDF and new estimators for the Lipoprotein data
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linked to the phenotype of interest, the cumulative distributions of the dif-
ferences within sib pairs are ordered by peakedness. The assumption of sym-
metry of sib-pair differences may be justified, for example, under a rather
general assumption on the distribution of the sib-pair phenotypes (X,Y ).
That is, if (X−µX , Y −µY ) has the same distribution as (µX−X,µY −Y ),
as it happens under the assumption of a bivariate normal distribution, and
if the means µX and µY are equal, then the sib-pair differences are symmet-
rically distributed. Figure 1 shows the empirical distribution functions for
plasma Lipoprotein (a) differences within sib-pairs for a sample of African-
American, and a sample of Caucasian individuals from the Dallas metroplex
area. The sib-pairs have been separated into three groups: Those sharing
zero alleles identical by descent (IBD); those sharing one allele IBD; and
those sharing two alleles IBD. It can be seen from these plots that the as-
sumptions of symmetry and peakedness are almost satisfied. A closer look,
however, shows that there are several violations of these assumptions. We
will return to this example at the end of the paper where we will illustrate
our estimators by applying them to this example. Thus, the concept of
peakedness arises in connection with many interesting applications.

The organization of the paper is as follows: Sections 2 and 3 consider
the problem of estimating F (or G), when G (or F ) is known. Sev-
eral estimators are proposed. These estimators are shown to be projec-
tions of the empirical distribution function onto appropiate convex sets
of distribution functions. As a result, the strong uniform convergence
of the estimators is easily obtained. In fact, a stronger result holds in
the one-sample problem. It can be shown that the resulting estima-
tors are pointwise closer to the true distribution function than the em-
pirical distribution is to the true distribution function in the sense that
|Fni(x)−F (x)|+|Fni(−x−)−F (−x)| ≤ |Fn(x)−F (x)|+|Fn(−x−)−F (−x)|,
where Fni and Fn represent the new estimators and the empirical distri-
bution function respectively. The weak convergence of these estimators is
also considered. Section 4 deals with the case where both F and G are
unknown, and estimators are provided which are shown to be strongly uni-
formly consistent and their asymptotic theory is discussed. Finally, section
5 discusses the example on sib-pair lipoprotein data.

2 One-sample problem

Rojo et al . (2006) considered the general problem of estimating F and G
under the peakedness restriction but without the assumption of symmetry.
Estimators were proposed which turned out to be strongly uniformly con-
sistent. However, the estimators presented here take full advantage of the
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symmetry assumption and are not special cases of the procedures presented
in Rojo et al . (2006). Moreover, they are simple to compute and can be
interpreted as projections of the empirical distribution function.

Let X1, ..., Xn be a random sample from the distribution function F
with F >p G. To fix ideas, the case when G is a known distribution func-
tion is considered first. Suppose that F and G are symmetric distribution
functions satisfying (2). It is clear that the empirical distribution function
Fn does not necessarily satisfy conditions (1) and (2) and therefore esti-
mators which satisfy these conditions may be needed. One possible way
to proceed is to “project” the empirical distribution function Fn onto the
convex set of distribution functions satisfying (1) and (2). There are sev-
eral possible ways of doing this. Using results of Schuster (1973, 1975),
Fn can be first projected onto the convex set of symmetric distributions
to obtain, say, F ∗

n . Subsequently, using ideas in Rojo and Ma (1996), F ∗
n

can be projected onto the convex set of distribution functions which satisfy
(1) and (2) to obtain F ∗∗

n . Of course, it is also possible to “project” first
onto the convex set of distribution functions satisfying (1) and then onto
the convex set of distribution functions satisfying (1) and (2). Doing this,
produces two estimators whose finite sample and asymptotic properties are
considered in this paper.

Schuster (1975) considered a functional of a distribution function F
defined by

Φ1(F (x)) =
1

2

(
F (x) + 1 − F (−x−)

)
. (3)

This provides a distribution function Φ1(F (x)) that is symmetric about 0,
but does not necessarily satisfy (2). Since (1) is equivalent to the stochastic
order of the absolute values of X and Y , where X ∼ F and Y ∼ G,
using ideas similar to those presented in Rojo and Ma (1996), consider the
following functional of the empirical distribution function

Φ2(Fn(x), G(x)) =

{
max{Fn(x), G(x)} x ≥ 0
min{Fn(x), G(x)} x < 0.

(4)

This gives a distribution function that satisfies (2), but is not necessarily
symmetric.

The operators Φ1 and Φ2 can be applied to the empirical distribution
function to obtain the following two estimators

Fn,1(x) = Φ1(Φ2(Fn(x), G(x)))

and

Fn,2(x) = Φ2 (Φ1(Fn(x)), G(x)) .
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It turns out that both Fn,1 and Fn,2 are distribution functions which
are symmetric about 0 and satisfy (2), as can be seen in the next lemma.

Lemma 1. The distribution functions Fn,1 and Fn,2 are symmetric about
0 and satisfy (2).

Proof. The distribution function Fn,1 is symmetric by definition. Let us
prove that it satisfies (2). Let x ≥ 0. Then

Fn,1(x) =
1

2

[
Φ2 (Fn(x), G(x)) + 1 − Φ2

(
Fn(−x−), G(−x−)

)]

≥ 1

2

[
G(x) + 1 −G(−x−)

]
≥ G(x),

where the last inequality follows from the symmetry of G about 0. The
proof for x < 0 is analogous. Thus Fn,1 satisfies (2). Now for Fn,2, let
x ≥ 0. Then

Fn,2(x) = max {Φ1(Fn(x)), G(x)}
= max

{
1 − Φ1(Fn(−x−)), 1 −G(−x−)

}

= 1 − min
{
Φ1(Fn(−x−)), G(−x−)

}

= 1 − Φ2

(
Φ1(Fn(−x−)), G(−x−)

)

= 1 − Fn,2(−x−),

where the second identity follows from the symmetry of Φ1(Fn(x)). The
proof is analogous for x < 0. Thus Fn,2 is symmetric about 0. It is easy to
check that Fn,2 satisfies the condition (2). �

It can be seen that the estimators Fn,1 and Fn,2 are “projections” of the
empirical distribution function onto appropriate convex sets of distribution
functions. To make this precise, let FG be the set of distribution functions
that satisfy (2) but are not necessarily symmetric. Then, the functions
F , Φ2(Fn, G), Fn,1 and Fn,2 are elements of FG. Under the norm ‖h‖p =

{
∫
(h(x))pdu(x)}1/p, for all p, and consequently under the norm ‖h‖∞ =
sup

−∞<x<∞
|h(x)|, Φ2(Fn, G) is the projection of Fn onto the set FG. In fact

a stronger statement holds.

Theorem 1. Let Φ2 be defined by (4). Then |Φ2(Fn(x), G) − Fn(x)| ≤
|H(x) − Fn(x)| for all x and all H ∈ FG.

Proof. Let H ∈ FG. If x > 0, then |Φ2(Fn(x), G(x)) − Fn(x)| = 0 when
Fn(x) ≥ G(x). On the other hand, if Fn(x) < G(x), then

|Φ2(Fn(x), G(x)) − Fn(x)| = G(x) − Fn(x) ≤ H(x) − Fn(x),
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since G(x) ≤ H(x). For x < 0, |Φ2(Fn(x), G(x)) − Fn(x)| = 0 when
Fn(x) ≤ G(x); and when Fn(x) > G(x)

|Φ2(Fn(x), G(x)) − Fn(x)| = Fn(x) −G(x) ≤ Fn(x) −H(x)

≤ |H(x) − Fn(x)| . �

As a consequence of Theorem (1) the following Corollary is obtained.

Corollary 1. Let Φ2 be defined by (4) and let Fn denote the empirical
distribution function. Then ‖Φ2(Fn, G) − Fn‖p = inf

H∈FG
‖H − Fn‖p.

Let S be the set of all the distribution functions symmetric about 0.
Applying the operator Φ1 to the empirical distribution function Fn gives a
projection of Fn onto S, as stated in the following theorem.

Theorem 2. Let Φ1(.) be defined by (3). Then ‖Φ1(Fn) − Fn‖∞ =
inf
H∈S

‖H − Fn‖∞

Proof. The proof is in Schuster (1973), Theorem 1. �

It follows from these results that the estimator Fn,1 is obtained by first
projecting the empirical distribution function onto the convex set of sym-
metric distributions and then projecting the resulting symmetric distribu-
tion onto the set of distributions satisfying (1) and (2). Similar arguments
apply to Fn,2. In general Fn,1(x) 6= Fn,2(x). In fact Fn,1 <p Fn,2 as de-
mostrated in the following result.

Theorem 3. Let Fn,1 = Φ1(Φ2(Fn, G)) and Fn,2 = Φ2(Φ1(Fn), G)). Then
Fn,1 <p Fn,2.

Proof. Suppose first that x ≥ 0. Since Fn(x) ≤ Φ2(Fn(x), G(x)) and
Φ2(Fn(−x−), G(−x−)) ≤ Fn(−x−), it follows that

Fn(x) + 1 − Fn(−x−) ≤ Φ2(Fn(x), G(x)) + 1 − Φ2(Fn(−x−), G(−x−)),

and

Φ1 (Fn(x)) ≤ Φ1(Φ2(Fn(x), G(x))) = Fn,1(x).

From the last inequality, we obtain Fn,2(x) ≤ Fn,1(x).
Now consider x < 0. In this case, we have the inequalities

Fn(x) ≥ Φ2(Fn(x), G(x)) and Φ2(Fn(−x−), G(−x−)) ≥ Fn(−x−).

Then,

Φ2(Fn(x), G(x)) + 1 − Φ2(Fn(−x−), G(−x−)) ≤ Fn(x) + 1 − Fn(−x−).

Thus, Fn,1(x) ≤ Φ1 (Fn(x)) . The desired result is obtained from the last
inequality. �
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Since both Fn,1 and Fn,2 are symmetric, Fn,1(0) = Fn,2(0) with proba-
bility 1, and as a result of the strong uniform consistency of both estimators,
Fn,1 and Fn,2 are asymptotically equivalent. For finite n, it is still possible
for Fn,1 and Fn,2 to be equal with positive probability.

Corollary 2.

a) For x ≥ 0, Fn,1(x) = Fn,2(x) when G(x) ≤ min {Fn(x), 1 − Fn(−x−)}
or G(x) ≥ max {Fn(x), 1 − Fn(−x−)} .

b) For x < 0, Fn,1(x) = Fn,2(x) when G(x) ≤ max {Fn(x), 1 − Fn(−x−)}
or G(x) ≥ min {Fn(x), 1 − Fn(−x−)}.

Proof.

a) Let x ≥ 0. If G(x) ≤ min {Fn(x), 1 − Fn(−x−)} then G(x) ≤
Φ1 (Fn(x)) , and

Φ1 (Fn(x)) ≤ Fn,1(x) ≤ Fn,2(x) = Φ1 (Fn(x)) .

Next suppose that G(x) ≥ max {Fn(x), 1 − Fn(−x−)} . From

Φ2(Fn(x), G(x)) = G(x), and G(x) ≥ Φ1(Fn(x)) we obtain

Fn,1(x) = Φ1 (G(x)) = G(x) = Fn,2(x).

b) Let x < 0. If G(x) ≤ max {Fn(x), 1 − Fn(−x−)} , then

G(x) ≤ Φ1(Fn(x)),Φ2(Fn(x), G(x)) = G(x),

and Fn,1(x) = G(x) = Fn,2(x). Consider now the case G(x) ≥
min {Fn(x), 1 − Fn(−x−)} . From Φ2(Fn(x), G(x)) = Fn(x), and
G(x) ≥ Φ1(Fn(x)), we obtain

Fn,1(x) = Φ1(Fn(x)) = Fn,2(x).
�

Note that Φ1(Fn(x)) is unbiased, and Φ2(Φ1(Fn(x), G(x))) = max(Φ1

(Fn(x), G(x)) for x > 0, while Φ2(Φ1(Fn(x), G(x))) = min(Φ1(Fn(x), G(x))
for x < 0. Thus, Fn2 is positively biased for x > 0 and it is negatively
biased for x < 0. Similarly, it is easy to show that Φ1(Φ2(Fn(x), G(x))) ≥
Φ1(Fn(x)) for x > 0, while Φ1(Φ2(Fn(x), G(x))) ≤ Φ1(Fn(x)) for x <
0. Thus, both estimators, Fn,1 and Fn,2, are biased. Expressions for the
expectation of both Fn,1 and Fn,2 may be obtained following ideas of Rojo
and Ma (1996), and they are given in Batun (2005).
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3 Asymptotic theory

The asymptotic theory of the estimators Fn,1 and Fn,2 is considered in this
section. Their strong uniform consistency will be seen to be an immediate
consequence of their being projections of the empirical distribution function
in a way that is made precise later. As it turns out, both Fn,1 and Fn,2
are uniformly closer to F than the empirical is to F , in the sense that
|Fni(x)−F (x)|+|Fni(−x−)−F (−x)| ≤ |Fn(x)−F (x)|+|Fn(−x−)−F (−x)|,
for i = 1, 2. When F (x0) 6= G(x0), Fn,1 and Fn,2, suitably normalized,
have asymptotic normal distributions. However, when F (x0) = G(x0), the
asymptotic distributions of Fn,1 and Fn,2 are somewhat more complex.

The first result in this section is the key for showing the strong uniform
consistency.

Theorem 4. Let F and G be symmetric distribution functions with F >p
G, and G known. Let Fn be the empirical distribution function based on
the random sample X1, ..., Xn from F. Then, for i = 1, 2,

|Fn,i(x) − F (x)| ≤ 1

2
|Fn(x) − F (x)| + 1

2

∣∣Fn(−x−) − F (−x−)
∣∣ .

Proof.
Let x ≥ 0. Then,

|Fn,1(x) − F (x)| = |Φ1(Φ2(Fn(x), G(x))) − Φ1(Φ2(F (x), G(x)))|

≤ 1

2
|Φ2(Fn(x), G(x)) − Φ2(F (x), G(x))|

+
1

2

∣∣Φ2(Fn(−x−), G(−x−)) − Φ2(F (−x−), G(−x−))
∣∣

≤ 1

2
|Fn(x) − F (x)| + 1

2

∣∣Fn(−x−) − F (−x−)
∣∣ ,

and
|Fn,2(x) − F (x)| = |max {Φ1(Fn(x)), G(x)} − max {Φ1(F (x)), G(x)}|

≤ max {|Φ1(Fn(x)) − Φ1(F (x))| , 0} .
Since |Φ1(Fn(x)) − Φ1(F (x))| = 1

2 |Fn(x) − Fn(−x−) − F (x) + F (−x−)|
the result follows. A similar argument shows the result for x < 0. �

The strong uniform consistency of Fn,1 and Fn,2 follows from this the-
orem and is stated as the next corollary.

Corollary 3. Under the assumptions of Theorem 4,

(i) ‖Fn,i − F‖∞ ≤ ‖Fn − F‖∞ for i = 1, 2.
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(ii) For distribution functions F and H define L(F,H) = V (‖F −H‖∞),
where V (x) ≥ 0 for all x ≥ 0. Then Fn is inadmissible as an estimator
of F with respect to all loss functions V (.).

Next, we turn our attention to the asymptotic distribution of Fn,1
and Fn,2. Clearly Fn,1 and Fn,2 are correlated but we only consider their
marginal asymptotic distributions. To avoid technicalities, we consider the
case of F and G continuous. Suppose first that x > 0 and F (x) > G(x) so
that F (−x) < G(−x). Then,

√
n(Fn,1(x) − F (x)) =

√
n

2
max {Fn(x) − F (x), G(x) − F (x)}

−
√
n

2
min

{
Fn(−x−) − F (−x−), G(−x) − F (−x)

}
.

Since G(x) − F (x) < 0, with G(−x) − F (−x) > 0, eventually with proba-
bility one,

√
n(Fn,1(x) − F (x)) =

√
n

2
(Fn(x) − F (x)) −

√
n

2
(Fn(−x−) − F (−x)).

Since {√n(Fn(x) − F (x)) : −∞ < x < ∞} converges weakly to a mean
zero Gaussian process with covariance function F (s)(1 − F (t)), s ≤ t, it

follows that
√
n(Fn,1(x) − F (x))

D→ N(0, F (x)
2 (2F (x) − 1)).

The same argument applies to x < 0 and shows that
√
n(Fn,1(x) −

F (x))
D→ N(0, F (x)

2 (1−2F (x))). The asymptotic distribution of Fn,2 follows
in a similar manner. Thus, we obtain the following theorem.

Theorem 5. Let F and G be continuous symmetric distribution functions
with F (x) > (<) G(x) for x > (<) 0. Then, for i = 1, 2 and all x,

√
n(Fn,i(x) − F (x))

D→ N(0,
F (−|x|)

2
(2F (|x|) − 1)).

The asymptotic distribution of Fn,i, i = 1, 2, is somewhat more involved
if F (x0) = G(x0) for some x0 > 0. In this case,

√
n(Fn,i(x0) − F (x0)) con-

verges in distribution to the random variable (max(Z1, 0) − min(Z2, 0))/2,
where (Z1, Z2) is a zero-mean bivariate normal distribution function with
V ar(Z1) = V ar(Z2) = F (x0)F (x0) and Corr(Z1, Z2) = F (x0)/F (x0). In
particular, the asymptotic distribution of

√
n(Fn,i(x0)−F (x0)) assigns pos-

itive probability to zero equal to P (Z1 ≤ 0, Z2 ≥ 0).
Although the processes {√n(Fn,i(x) − F (x)) : ∞ < x < ∞}, i = 1, 2,

are correlated, their marginal asymptotic theory is easily handled and it
turns out that it is the same for both processes. If F (x) > G(x) for all
x > 0, it can be shown that the finite dimensional distributions of the
process {√n(Fn,i(x) − F (x)) : −∞ < x < ∞}, i = 1, 2, converge weakly
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to the finite dimensional distributions of a mean zero Gaussian process
{B̃(x) : −∞ < x <∞} with covariance function

Cov(B̃(x), B̃(y)) =

{
1
2 F̄ (y)(F (x) − F (−x)), |y| > |x|
1
2F (x)(F (−y) − F (y)), |y| < |x|. (5)

We follow the classical approach to weak convergence as presented by, for
example, Billingsley (1968). Thus, the convergence of the finite dimensional
distributions, coupled with the tightness of the process

√
n(Fn,i(x)−F (x)) :

−∞ < x <∞} i = 1, 2, yields the following result.

Theorem 6. Under the assumptions of Theorem 5 the process
{√n(Fn,i(x) − F (x)) : −∞ < x < ∞}, i = 1, 2, converges weakly to a

zero-mean Gaussian process {B̃(x) : −∞ < x < ∞} with covariance func-
tion (5).

Proof. The proof follows directly from results in Rojo and Ma (1996) that
show that

√
n max(Fn(x)−F (x), G(x)−F (x)) and hence

√
nmin(Fn(x)−

F (x), G(x)−F (x)) converge weakly to a mean zero Gaussian proces. Since
Fn,i, i = 1, 2, are continuous functions of these processes with respect to
‖.‖∞, the result follows. �

Next suppose that the functions F and G are distinct but overlap on an
interval (x0, x0 + δ), δ > 0. Of course, by symmetry, they also overlap on
(−x0 − δ, x0), and in fact there may be other intervals where they overlap,
but this is not important as it is enough that there is one “overlap” interval
to show the lack of tightness of the process of interest. Thus F (x) = G(x)
for x ∈ (x0, x0 + δ) for some x0 and some δ, while F (x) 6= G(x) for, say,
x = x0+δ. It can be seen, as in Rojo (1995a), that the sequence of processes
{√n(Fni(x)−F (x)) : −∞ < x <∞} is not tight and hence cannot converge
weakly. The lack of tightness follows from the fact that for x ∈ (x0, x0 + δ),√
n(Fni(x)−F (x)) converges in distribution to (max(Z1, 0)−min(Z2, 0))/2,

where (Z1, Z2) has a mean-zero bivariate normal distribution, while for
x = x0 + δ, the asymptotic distribution of

√
n(Fni(x) − F (x)) is given by

Theorem 5, and therefore condition (15.8) in Theorem 15.3 in Billingsley
(1968) is not satisfied and, hence, tightness fails.

Finally, let F (x) = G(x), for all x. This condition arises under the hy-
pothesis that F and G are equal in “peakedness”. The asymptotic behavior
of the process {√n(Fni(x) − F (x)) : −∞ < x < ∞}, for i = 1, 2 can be
used to construct tests for the null hypothesis. We have,

√
n(Fn1(x) − F (x)) =

1

2
max{√n(Fn(x) − F (x)), 0}

−1

2
min{√n(Fn(−x−) − F (−x)), 0}
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for x > 0, and

√
n(Fn1(x) − F (x)) =

1

2
min{√n(Fn(x) − F (x)), 0}

−1

2
max{√n(Fn(−x−) − F (−x)), 0)},

for x < 0. The process {√n(Fn1(x) − F (x)) : −∞ < x < ∞}, converges
weakly to {H(x) : −∞ < x <∞},

H(x) =





1
2 max(Z(x), 0) − 1

2 min(Z(−x), 0) x > 0,

1
2 min(Z(x), 0) − 1

2 max(Z(−x), 0) x < 0,

(6)

where {Z(x) : −∞ < x < ∞} represents the weak limit of the empirical
process {√n(Fn(x) − F (x)) : −∞ < x < ∞}. Similar arguments apply to
the process defined by {√n(Fn2(x)−F (x)) : −∞ < x <∞}. These results
are summarized in the following theorem.

Theorem 7. Let F and G be continuous distributions functions with F >p
G.

(i) When F (x) = G(x) for all x, the processes {√n(Fni(x)−F (x)) : −∞ <
x < ∞}, i = 1, 2 converge weakly to the process {H(x) : −∞ < x <
∞} defined by (6).

(ii) Suppose that the functions F and G are distinct but overlap on an
interval (x0, x0 + δ), δ > 0, for some x0 and some δ > 0. Then, the
sequences {√n(Fni(x)− F (x)) : −∞ < x <∞}, i = 1, 2, are not tight
and hence cannot converge weakly.

4 The case when both F and G are unknown

Up to this point the distribution function G has been assumed to be known.
In this section we consider the problem of estimating F and G when F >p G
and independent random samples X1, ..., Xn ∼ F and Y1, ..., Ym ∼ G are
available. Several possibilities for estimating F and G, subject to the
peakedness order (1), based on the operators Φ1 and Φ2 arise in this case.
We consider one possible approach and briefly discuss others. For that pur-
pose, let Fn and Gm be the respective empirical distributions, and consider
the estimators

F 1
nm(x) = Φ1(Φ2(Fn(x), G∗

m(x))) (7)

and

F 2
nm(x) = Φ2(Φ1(Fn(x)), G

∗
m(x)), (8)
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where G∗
m(x) = Φ1(Gm(x)), the symmetrized version of Gm, and Φ1(x)

and Φ2(x) are defined by (3) and (4). That is, F 1
nm(x) (F 2

nm(x)) is defined
in the same way as Fn,1 (Fn,2), except that G(x) is replaced by G∗

m(x).
As it was the case with Fn,1 and Fn,2, F

1
nm and F 2

nm define symmetric
distributions that satisfy (1) with G∗

m now playing the role of G. That is,
G is estimated by G∗

m, while F is estimated by F 1
nm or F 2

nm. It follows that
F inm >p G

∗
m, i = 1, 2.

Before discussing the asymptotic theory of the estimators defined
through (7) and (8), note that there are other ways to obtain estimators of
F and G that are symmetric and satisfy (1). For example, we could start
by symmetrizing both Fn and Gm to obtain F ∗

n and G∗
m and then apply

(7) and (8) to get F 1∗
nm and G2∗

nm. Of course the result of this will be that
there is no difference between F 1∗

nm, G2∗
nm, and F 2

nm. However, one could
also define an operator

Φ∗
2(Fn(x), Gm(x)) =

{
min{Fn(x), Gm(x)} x ≥ 0
max{Fn(x), Gm(x)} x < 0,

(9)

and estimate F by Φ1(Fn(x)) and G as follows:

G1
nm(x) = Φ1(Φ

∗
2(F

∗
n(x), Gm(x))), (10)

and

G2
nm(x) = Φ∗

2(Φ1(F
∗
n(x)), Gm(x)). (11)

The main difference between the approach that estimates G by G∗
m and

then uses (7) and (8) to estimate F , and the approach that estimates F by
F ∗
n and then uses (10) and (11) to estimate G, is that, in the former, G∗

m

is unbiased for G with smaller variance than Gm and both F 1
nm and F 2

nm

are biased for F , while the latter approach provides an unbiased estimator
for F and biased estimators Ginm, i = 1, 2 for G. Attention will be focused
on the asymptotic theory of F inm, i = 1, 2, but the results apply almost
verbatim to the estimators Ginm, i = 1, 2.

The strong uniform consistency of F 1
nm and F 2

nm, defined by (7) and (8)
respectively, follows directly from the following result which is analogous
to Theorem 4.

Theorem 8. Let F and G satisfy the assumptions of Theorem 4, and let
Fn and Gm denote the empirical distribution functions based on X1, ..., Xn

and Y1, ..., Ym. Then, for i = 1, 2,

|F inm(x) − F (x)| ≤ 1

2
max{|Fn(x) − F (x)|, |G∗

m(x) −G(x)|}

+
1

2
max{|F (−x) − Fn(−x−)|, |G∗

m(−x−) −G(−x)|}.
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Proof. For x ≥ 0

|F 1
nm(x) − F (x)| =

1

2
|max{Fn(x), G∗

m(x)} + 1 − min{Fn(−x−), G∗
m(−x−)}

−max{F (x), G(x)} − 1 + min{F (−x), G(−x)}|

≤ 1

2
max{|Fn(x) − F (x)|, |G∗

m(x) −G(x)|}

+
1

2
max{|Fn(−x−) − F (−x)|, |G∗

m(−x−) −G(−x)|}.

For x < 0, the argument is similar, and the proof for F 2
nm follows almost

verbatim. �

Since every term in the right of the last inequality converges almost
surely to zero as n,m → ∞, it follows that, pointwise, both F 1

nm(x) and
F 2
nm(x) converge, with probability one, to F (x) as n,m→ ∞. Since,

‖F inm − F‖∞ ≤ max{‖Fn − F‖∞, ‖Gm −G‖∞}, for i = 1, 2,

the strong uniform consistency of F 1
nm and F 2

nm follows.

Corollary 4. Let F and G be as in Theorem 8. Then

‖F 1
nm − F‖∞ → 0 and ‖F 2

nm − F‖∞ → 0

as n,m→ ∞, with probability one.

As in the one-sample case, both estimators F 1
nm and F 2

nm have the
same asymptotic distribution. Therefore, we will initially concentrate our
attention on F 1

nm. Under the assumptions of Theorem 5, F (x) > G(x) for
every x > 0. Therefore, for arbitrary x > 0 let δ(x) = F (x) − G(x) > 0.
Henceforth, for ease of notation, we will write δ instead of δ(x). Write

kn,m(F 1
nm( x ) − F (x))

=
kn,m

2
{max{Fn(x) − F (x), G∗

m(x) − F (x)}
− min{Fn(−x−) − F (−x), G∗

m(−x−) − F (−x)}}

=
kn,m

2
{max{Fn(x) − F (x), G∗

m(x) −G(x) − δ}
− min{Fn(−x−) − F (−x), G∗

m(−x−) −G(−x) + δ}}, (12)

where kn,m → ∞ as n,m → ∞. Suppose also that
kn,m√
n

→ c for some

0 < c < ∞, and that
kn,m√
m

remains bounded. For example, one may take

kn,m =
√
n or kn,m =

√
n+m with n

m → c∗, for some 0 < c∗ < ∞. It
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follows from (12) that

kn,m(F 1
nm(x)−F (x)) =

1

2
{max{kn,m√

n
{√n(Fn(x)−F (x))}, kn,m√

m
{√m(G∗

m(x)−G(x))}−kn,mδ}

−min{kn,m√
n

{√n(Fn(−x−) − F (−x)}, kn,m√
m

{√m(G∗
m(−x−) −G(−x))}

+kn,mδ}}. (13)

Since δ > 0, it follows from (13) that

lim
n,m→∞

P{kn,m(F 1
nm(x)−F (x))≤ t}=

lim
n,m→∞

P{kn,m
2
√
n
{√n(Fn(x) − F (x)) +

√
n(F (−x) − Fn(−x−))} ≤ t}.

When x < 0 similar arguments yield the same result. It is now clear that
when F (x) > G(x) for x > 0, the asymptotic distribution of F 1

nm, and
that of F 2

nm as well, is the same as the asymptotic distribution of Fn,1 and
Fn,2 in the one-sample case. These results are summarized in the following
theorem.

Theorem 9. Let F and G be as in Theorem 5. Let kn,m → ∞ as n,m→
∞, with

kn,m√
n

→ c, and
kn,m√
m

→ c∗ for some 0 < c, c∗ < ∞. Then, for

i = 1, 2, as n,m→ ∞,

√
n(F inm(x) − F (x))

D→ N(0,
c2F (−|x|)

2
(2F (|x|) − 1)).

More precisely, lim
n,m→∞

P{kn,m(F inm(x)−F (x)) ≤ t} = Φ( tσ ) where σ2 =

c2F (−|x|
2 )(2F (|x|) − 1).

The weak convergence of the processes {√n(F inm(x) − F (x)) : −∞ <
x <∞}, i = 1, 2, as n,m→ ∞, in the case that F (x) > G(x) for all x > 0,
may be obtained as in the one-sample case. The basic idea behind the proof
is that when F (x) > G(x), for all x > 0, as n,m → ∞, eventually, with
high probability,

√
n(F inm(x) − F (x)) =

1

2
{√n(Fn(x) − F (x)) +

√
n(F (−x) − Fn(−x−))}

and, therefore, the weak limit of the processes {√n(F inm(x)−F (x)),−∞ <
x <∞}, i = 1, 2, is the same as the weak limit in the one-sample problem.
This is made precise in the following theorem which considers only the case
of kn,m =

√
n. The results, however, hold for general kn,m satisfying the

conditions of Theorem 9.
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Theorem 10. Let F and G be as in Theorem 5 and let n
m → c, for some

0 < c < ∞. Then, the processes {√n(F inm(x) − F (x)),−∞ < x < ∞},
i = 1, 2, converge weakly to the zero-mean Gaussian process with covariance
function given by (5).

Proof. Only the proof for the weak convergence of {√n(F 2
nm(x) −

F (x)),−∞ < x < ∞}, is provided here since the arguments to prove the
weak convergence of {√n(F 1

nm(x)−F (x)),−∞ < x <∞} are very similar.
Note that, for x > 0,

F 2
nm(x) − F (x) = max{F ∗

n(x), G∗
m(x)} − F (x)

=
1

2
{Fn(x) − F (x) + F (−x) − Fn(−x−)}

+ max{0, G∗
m(x) − F ∗

n(x)} (14)

where F ∗
n (x) = 1

2{Fn(x) + 1 − F (−x−)}, the symmetrized version of Fn.
Similarly, for x < 0,

F 2
nm(x) − F (x) = min{F ∗

n(x), G∗
m(x)} − F (x)

=
1

2
{Fn(x) − F (x) + F (−x) − Fn(−x−)}

+ min{0, G∗
m(x) − F ∗

n (x)}. (15)

It follows from (14) and (15) that, to prove the weak convergence of
{√n(F 2

nm(x) − F (x)),−∞ < x < ∞} to the zero-mean Gaussian process
with covariance function given by (5), it suffices to show that

sup
x

|√n{(F 2
nm(x) − F (x)) − 1

2
{Fn(x) − F (x) + F (−x) − Fn(−x−)}}|

=
√
nmax{sup

x≥0
max{0, (G∗

m(x)−F ∗
n(x))}, sup

x<0
|min{0, (G∗

m(x)−F ∗
n(x))}|}

converges to zero in probability. It is easy to see, using a symmetry argu-
ment, that

P{sup
x

|√n{(F 2
nm(x) − F (x))−1

2
{Fn(x)−F (x)+F (−x)−Fn(−x−)}}| > ε}

≤ 2P{sup
x≥0

√
nmax{0, G∗

m(x) − F ∗
n(x)} > ε}. (16)

Thus, it is enough to show that P{sup
x≥0

√
nmax{0, G∗

m(x)−F ∗
n(x)} > ε} → 0

as n,m→ ∞. Recall that F (x) > G(x) for all x > 0. Choose βn ↓ 0, with√
nβn → ∞, and let

kn = inf{y > 0 : F (y) −G(y) = βn} and

k∗n = sup{y > kn : inf
kn≤x≤y

(F (x) −G(x)) = βn}.
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Then kn ↓ 0 and k∗n → ∞, and F (x)−G(x) ≥ βn in [kn, k
∗
n]. Consider now

P{sup
x≥0

√
nmax{0, G∗

m(x) − F ∗
n(x)} > ε} =

P{max{ sup
0≤x≤kn

√
nmax{0, G∗

m(x) − F ∗
n(x)},

sup
kn<x≤k∗n

√
nmax{0, G∗

m(x) − F ∗
n(x)},

sup
x>k∗n

√
nmax{0, G∗

m(x) − F ∗
n(x)} > ε}. (17)

It is easy to see that the right side of (17) is bounded above by

P{ sup
0≤x≤kn

√
n(G∗

m(x) − F ∗
n(x)) > ε}

+ P{ sup
kn<x≤k∗n

√
n(G∗

m(x) − F ∗
n(x) > ε}

+ P{ sup
x>k∗n

√
n(G∗

m(x) − F ∗
n(x)) > ε}.

Thus, it suffices to show that each of these terms goes to zero as n,m→ ∞.
Consider first the second term and note that

P{ sup
kn<x≤k∗n

√
n(G∗

m(x) − F ∗
n(x)) > ε}

= P{ sup
kn<x≤k∗n

√
n(G∗

m(x) −G(x) +G(x) − F (x) + F (x) − F ∗
n(x)) > ε}

≤ P{ sup
kn<x≤k∗n

√
n{G∗

m(x) −G(x)+ F (x) − F ∗
n(x)} > ε+

√
nβn}

≤ P{
√
n

m

∥∥√m(G∗
m(x) −G(x))

∥∥
∞ > ε+

√
nβn}

+ P{
∥∥√n(F ∗

n(x)−F (x))
∥∥
∞>ε+

√
nβn}.

Since
√

n
m remains bounded while

√
nβn → ∞, it follows that

P{ sup
kn≤x≤k∗n

√
n(G∗

m(x) − F ∗
n(x)) > ε} converges to zero as n,m→ ∞.

Now consider

P{ sup
0≤x≤kn

√
n(G∗

m(x) − F ∗
n(x)) > ε}

= P{ sup
0≤x≤kn

√
n

2
{2((G∗

m(x) − 1

2
) − (G(x) − 1

2
))

+ 2 (G(x) − F (x)) + 2((F (x) − 1

2
) − (F ∗

n(x) − 1

2
))} > ε}

≤ P{ sup
0≤x≤kn

√
n{2((G∗

m(x) − 1

2
) − (G(x) − 1

2
))} > ε}

+ P{ sup
0≤x≤kn

√
n{2((F ∗

n(x) − 1

2
) − (F (x) − 1

2
))} > ε}.
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Now note that 2(G(x) − 1
2 ) = P (|Yi| ≤ x) and that 2(G∗

m(x) − 1
2 ) is the

empirical distribution function defined as 1
m

∑m
i=1 I{|Yi|≤x}. Therefore,

{√m(2(G∗
m(x) − 1

2
) − 2(G(x) − 1

2
)), 0 ≤ x <∞}

is the empirical process associated with the sequence {|Yi|}∞i=1. Similarly,

{√n(2(F ∗
n(x) − 1

2
) − 2(F (x) − 1

2
)), 0 ≤ x <∞}

is the empirical process associated with {|Xi|}∞i=1. Therefore, with
√

m
n

bounded away from 0, say
√

m
n > A for some A > 0 and all m,n,

P{
√
n

m
sup

0≤x≤kn

√
m{2((G∗

m(x) − 1

2
) − (G(x) − 1

2
))} > ε} ≤ 2(G(kn) − 1

2 )

ε2A2
.

Since kn ↓ 0, G(kn) → 1
2 and thus the above probability goes to zero.

Similar arguments show that

P{ sup
0≤x≤kn

√
n{2((F ∗

n(x) − 1

2
) − (F (x) − 1

2
))} > ε} ≤ 2(F (kn) − 1

2 )

ε2
→ 0,

and

P{
√
n

m
sup
x≥k∗n

√
m{2((G∗

m(x)− 1

2
)−(G(x)− 1

2
))} > ε} ≤ 2(1−G(k∗n))

ε2A2
→0,

and

P{ sup
x≥k∗n

√
n{2((1 − F ∗

n(x)) − (F (x) − 1

2
))} > ε} ≤ 2(1 − F (k∗n))

ε2
→ 0,

where the last two results follow since k∗n → ∞. �

5 Example

This section illustrates the estimators defined in Section 4 using a data
set on sib-pairs to study the linkage between apolipoprotein(a) and lev-
els of Lipoprotein(a). Various studies have been conducted, e.g. Mooser
et al (1997) and Boerwinkle et al (1992), to examine the relationship be-
tween levels of Lipoprotein(a), or Lp(a), and a polymorphic glycoprotein
(apolipoprotein(a)), in African-American and Caucasian populations. In
linkage analysis studies with sib-pair data, assuming that the locus of in-
terest is biallelic, sib-pairs are divided into those sharing 0 alleles Identical
By Descent (IBD); those sib-pairs sharing 1 allele IBD; and those sib-pairs
sharing 2 alleles IBD. The idea is that if the locus of interest, (in this case
the polymorphic glycoprotein apolippoprotein(a)), has a genetic effect on
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the phenotype of interest, (in this case levels of Lipoprotein(a)), siblings in
group 0 IBD will be less similar, than those siblings in group 1 IBD, and
these siblings in turn will be less similar than those siblings in group 2 IBD,
where similarity is measured, for example, by the spread of the distributions
of the pairwise phenotypic differences of the siblings within groups. This
idea is made precise in the Haseman-Elston model (Haseman and Elston
(1972)), which tests for linkage by regressing the siblings squared pheno-
typic differences on the proportion of alleles IBD, and then tests for the
slope parameter being zero.

In this example we illustrate our estimators with a data set that comes
from a study conducted at the University of Texas Southwestern Medical
School. The data represent the differences in Lp(a) for pairs of siblings
from a population of African-American and Caucasian families in the Dal-
las metroplex area. The empirical distribution functions for the sib-pair
differences have been plotted in Figure 1, after grouping the sib-pairs by
number of alleles identical by descent at the locus of interest – the Apo(a)
gene in the present context. Under the usual model of bivariate normality
of the sib-pair phenotypes, and equal mean levels of Lp(a) for each member
of the pair, the differences should appear to be symmetrically distributed
about 0. The data shown in Figure 1 seems to support this observation, ex-
cept that various violations to this restriction can be observed. Note that
under the model of bivariate normality with equal marginals, a common
assumption in the quantitative trait linkage analysis literature, the pair
(X,Y ) is exchangeable and therefore, X − Y has the same distribution as
Y −X , thus giving rise to the symmetry of the phenotypic differences.

On the other hand, the studies mentioned at the beginning of this sec-
tion, have also confirmed that the Apo(a) gene is linked to the levels of
Lp(a). Therefore, the data should show isotonic peakedness with respect to
the number of alleles IBD. This notion is also observed in Figure 1, although
as it was the case with the assumption of symmetry, there are violations
of the condition of peakedness. This is most noticeable in the Caucasian
population where the IBD 1 empirical distribution function, which should
lie within the curves for IBD 0 and IBD 2 falls below the IBD 0 curve
for values of Lp(a) between 35 and 70. The estimators discussed earlier in
Section 4 of the manuscript were applied to both data sets of sib-pair differ-
ences to obtain estimators which satisfy the restrictions of symmetry and
peakedness. It can be observed from the plots on the right side of Figure
1, that the major modifications made in the case of the African-American
population, consisted of adjustments to obtain the symmetry of the esti-
mators as the peakedness restriction was already satisfied by the empirical
distribution function. On the other hand, the modifications in the case of
the Caucasian population were more substantial and adjusted for both the
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lack of symmetry and the lack of order in peakedness.
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