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Preface

This is the first book of the trilogy on a fixed-income valuation course 
by Wiley finance covering the following three areas of fixed-income 

valuation:

1. Interest rate risk modeling
2. Term structure modeling
3. Credit risk modeling

Unlike other books in fixed-income valuation, which are either too rig-
orous but mathematically demanding, or easy-to-read but lacking in impor-
tant details, our goal is to provide readability with sufficient rigor. In the
first book, we give a basic introduction to various fixed-income securities
and their derivatives. The principal focus of this book is on measuring and
managing interest rate risk arising from general nonparallel rate changes in
the term structure of interest rates. This book covers five types of interest
rate risk models in the fixed-income literature. These models can be applied
in a variety of contexts by financial institutions ranging from commercial
banks to fixed-income hedge funds. These institutions can design and exe-
cute strategies that range from simplest duration-based hedging to the more
sophisticated immunization or speculative yield-curve programs, based on
multiple risk measures with off-balance sheet positions in swaps, interest
rate options, and interest rate futures.

The five interest rate risk models covered in this book are the duration
and convexity models in Chapter 2, M-Absolute/M-Square models in Chap-
ter 4, duration vector model in Chapter 5, key rate duration model in Chap-
ter 9, and principal component duration model in Chapter 10. Applications
using some of these models are given for regular bonds in Chapters 2,4,5,9,
and 10; Treasury futures and Eurodollar futures in Chapter 6; bond options
and callable bonds in Chapter 7; forward rate agreements, interest rate op-
tions, swaps, and swaptions in Chapter 8; mortgage securities in Chapter
10; and default-prone corporate bonds in Chapter 11.

Chapter 3 also shows how to estimate the term structure of interest rates
from a cross-section of bond prices using the Nelson-Siegel exponential
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model and the McCulloch’s cubic spline model. The interest rate options,
such as caps, floors, collars, and swaptions in Chapter 8 are priced using the
LIBOR market models of Jamshidian and others. The default-prone zero-
coupon bonds in Chapter 11 are priced using the models of Merton and
Nawalkha-Shimko et al., while default-prone coupon bonds are priced using
the first passage probability models of Longstaff and Schwartz, and Collin-
Dufresne and Goldstein.

All three books of the trilogy come with software in a user-friendly
excel/VBA format that covers a variety of models in the three respective areas.
The software is organized to correspond with the models covered in different
chapters, so it can be used as a powerful supplement in the learning process.
Using the software for the current book, the user could, for example, design a
multiple factor hedging strategy using the three key rate durations or using
the three principal component durations. The user could solve for the no-
tional amounts corresponding to interest rate swaps of different maturities to
protect against the height, slope, and curvature shifts in the yield curve using
a three-element duration vector model. The user could pick from a variety of
multiple factor hedging and speculative strategies, such as immunization,
bond index replication, and speculative yield-curve strategies, using a variety
of interest rate contingent claims, such as regular bonds, bond options, Trea-
sury futures (on T-bills, T-notes, and T-bonds), Eurodollar futures, forward
rate agreements, interest rate options (e.g., caps, floors, and collars), swaps,
swaptions, and default-prone corporate bonds. Finally, based on Craig
Holden’s excel program, the software for Chapter 3 also demonstrates a ped-
agogically useful term structure “movie” using monthly zero-coupon rates as
well as forward rates over the period from 1946 to 1991.

After reading chapters on given topics from these books, the reader
should be able to follow the examples and be ready to apply these models
without searching for missing details from other sources (as we often did
while writing this book). Though many of our programs require coding
in advanced scientific languages, such as C, C++, the final output is always
presented in user-friendly excel/VBA spreadsheets. These spreadsheets allow
the readers with basic excel skills to instantly play with these models.

This book will be useful to both fixed-income practitioners, as well as
graduate and advanced undergraduate students in an introductory course in
fixed-income valuation.

Since this book is a part of the trilogy, it is integrated both conceptually
and in terms of the mathematical notation, with the next two books to fol-
low. This implies low cost to the user in reading the next two books, espe-
cially for practitioners who do not have the luxury of taking fixed-income
courses. The second book on term structure modeling covers various term
structure models from the basic Vasicek/CIR models to the more advanced
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quadratic, HJM, and LIBOR market models. The third book covers both
the structural and reduced-form models on credit risk as well as valuation
of credit derivatives.

Various aspects of this trilogy on the fixed-income valuation course, in-
cluding the book descriptions, software details, and future updates are
available on the web site www.fixedincomerisk.com.

SANJAY K. NAWALKHA

GLORIA M. SOTO

NATALIA A. BELIAEVA
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CHAPTER 1
Interest Rate Risk Modeling

An Overview

F inancial institutions and other market participants manage many types of
risks, including interest rate risk, credit risk, foreign exchange risk, liq-

uidity risk, market risk, and operational risk. This book, the first volume of
a trilogy on fixed-income modeling, gives a detailed introduction to various
modeling techniques used by practitioners for measuring and managing in-
terest rate risk. The importance of managing interest rate risk cannot be
overstated. The total notional amount of outstanding over-the-counter
(OTC) single-currency interest rate derivatives was about $165 trillion as of
June 2004, of which 85 percent represented swaps and forward contracts
(see Table 1.1). This amount is 62 percent higher than what it was just 18
months before in December 2002. The explosive growth of OTC interest
rate derivatives over the past quarter century suggests that managing inter-
est rate risk remains a chief concern for many financial institutions and
other market participants, even as U.S. interest rates have declined steadily
since reaching their peak in 1980 to 1981. With near record low interest
rates prevailing in January 2005, a potential change in the interest rate
regime is likely and could lead to huge wealth transfers among various
counterparties in the OTC interest rate derivatives market. This could be
painful if these participants have not used swaps wisely to hedge against the
mismatches in the asset-liability cash flow structures.

The use of swaps or any other derivatives to hedge any type of risk can
be thought of as similar to the consumption of medicine. In the right
dosage, swaps or derivatives are effective but can be quite harmful in an
overdose or if used for a purpose not intended. The perceived abuse of de-
rivatives by Warren Buffett and others does not imply that derivatives
should be shunned, but that these should be used wisely in the right dosage
and at the appropriate time (Buffett, 2002).
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Interest Rate Risk Modeling 3

A typical example of a market participant interested in managing inter-
est rate risk is a commercial bank whose assets mostly consist of fixed and
floating rate loans (some with embedded options), while its liabilities consist
of deposits in checking, savings, money market accounts, and some debt se-
curities. Naturally, for most large banks, the average maturity of the assets is
longer than the average maturity of the liabilities, as banks typically lend in
the intermediate to long maturity sector and borrow in the short maturity
sector. Average maturity, more popularly known as the duration of a secu-
rity, is the most commonly used risk measure for measuring the interest rate
risk exposure of the security. Duration has been shown to explain perhaps
70 percent of the returns of default-free securities; however, since bank as-
sets are also exposed to credit risk, bank asset duration explains a lower
percentage of the asset returns. Generally, other risk measures, such as
default-prone bond duration, slope duration, and others, are needed to ex-
plain the asset returns not explained by traditional duration.

Due to a positive gap between the asset duration and the liability dura-
tion, bank equity duration is generally positive. Since banks are highly lever-
aged financial institutions, the bank equity duration tends to be a lot higher
than its asset duration. The high-equity duration resulting from an asset-
liability duration mismatch has been of major concern not only for the
shareholders of the banking firms, but also for the regulating institutions
assigned with the responsibility of avoiding major banking crises. An illus-
trative example of a crisis unleashed by the asset-liability duration mis-
match is the savings and loans (S&Ls) bank crisis that unfolded in the late
1970s and 1980s in the United States. The factors causing that crisis are
many, including an artificial ceiling on the interest rates that the S&Ls
could pay to their depositors, causing an exodus of the bank customers to
other more lucrative investments; a sharp increase in interest rates triggered
by the high inflation of the early 1980s; controversial responses by the Fed-
eral Reserve Bank, which increased the cost of capital for S&Ls (when they
offered new products to circumvent the interest rate ceiling); and a reluc-
tance by regulatory authorities to take timely steps to keep this crisis from
snowballing. These factors ultimately resulted in a huge mismatch between
the cost of funds and the earnings generated from the assets. Many S&Ls
made negative net income margins, leading to a general deterioration of
capital solvency ratios, and even resulting in negative book values of equity
in some instances.

The ultimate bailout efforts of the government cost U.S. taxpayers
around $180 billion. Yet, that loss was only 3.2 percent of the U.S. gross do-
mestic product (GDP). Banking crises in other developing countries have
caused even higher economic losses. For example, the restructuring costs of
the 1980s bank crises in Argentina and Chile were 55.3 percent and 40 per-
cent of their respective GDPs (Caprio and Klingebiel, 1996). The huge costs
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to many Asian economies, including the Hong Kong economy, during the
Asian currency crises of 1997 to 1998 are well known. These events high-
light the importance of risk management for the banking industry, espe-
cially in the developing world.

The surge in oil prices to almost $50 a barrel in year 2005, the contin-
ued rise in commodity prices, pick-up of inflation in China and other parts
of Asia, and the strengthening economies of the United States and Europe
have made financial institutions concerned about the effects of higher inter-
est rates on their profitability measures and capital solvency ratios. In-
creases in interest rates can significantly erase the equity values of highly
leveraged institutions such as commercial banks, government agencies such
as Fannie Mae and Freddie Mac, fixed-income hedge funds, and other in-
vestment companies. Many financial institutions also hold some percentage
of their assets in mortgage loans, which are likely to experience a lengthen-
ing of average maturity or duration as interest rates rise. Given that much of
the world has recently witnessed record low interest rates, and many na-
tions are still at record high valuations for real estate, significant risks exist
for losses in this market. A potentially sharp increase in interest rates may
also lead to additional costs tied to provisions for losses in other sectors, as
the creditworthiness of corporate customers may deteriorate due to higher
borrowing costs. On the positive side, to the extent that many banks now
have a bigger percentage of earnings tied to non-interest income, they will
be somewhat immune to the increases in the interest rates.

Near term increases in the interest rates are likely to be nonparallel, ris-
ing more at the shorter end, as the currently steep shape of the U.S. Trea-
sury yield curve flattens out. It is well known that the traditional duration
and convexity risk measures are valid only when the whole yield curve
moves in a parallel fashion. If short rates increase more than the long rates,
then the slope of the yield curve will experience a negative shift, while the
curvature will most likely experience a positive shift (from a high negative
curvature to a low negative curvature) as shown in Figure 1.1. Though this
is the more likely scenario, other scenarios may lead to other types of shifts
in the yield curve.

How do the managers of financial institutions, such as banks, insur-
ance companies, and index bond funds hedge against the effects of non-
parallel yield curve shifts? How do hedge funds managers design
speculative strategies based upon yield curve movements? This book ad-
dresses these issues by giving a detailed introduction to the widely used
models in the area of interest rate risk management over the past two
decades.1 We discuss five types of interest rate risk models in the fixed-
income literature. These models are given as the duration and convexity
models (Chapter 2), M-Absolute/M-Square models (Chapter 4), duration
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FIGURE 1.1 Nonparallel Yield-Curve Shift
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vector models (Chapter 5), key rate duration models (Chapter 9), and prin-
cipal component duration models (Chapter 10). We consider applications
of these models to regular bonds (Chapters 2, 4, 5, 9, and 10); T-Bill fu-
tures, T-Note futures, T-Bond futures, and Eurodollar futures (Chapter 6);
call and put options on bonds, and interest rate options, such as caps,
floors, and collars (Chapters 7 and 8); forward rate agreements, interest
rate swaps, and swaptions (Chapter 8); mortgage-backed securities (Chap-
ter 10); and default-prone corporate bonds and stocks (Chapter 11). Virtu-
ally all chapters of the book have Excel/VBA spreadsheets that allow the
reader to work with these models. In the remaining part of this chapter, we
briefly summarize the five types of models covered in this book and discuss
how financial institutions can use these models.

DURATION AND CONVEXITY MODELS

Consider a bond with cash flows Ct, payable at time t. The bond sells for a
price P, and is priced using a term structure of continuously compounded
zero-coupon yields given by y(t). The traditional duration model can be
used to approximate percentage change in the bond price as follows:

(1.1)∆ ∆P
P

D y≅ −
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where

and

Duration is given as the weighted-average time to maturity of the cash
flows, where the weights are defined as the present values of the cash flows
divided by the bond price. The duration model given in equation 1.1 as-
sumes that the yield curve experiences infinitesimal and parallel shifts.
Hence, the change in the yield ∆y, is assumed to be equal for all bonds re-
gardless of their coupons and maturities. However, we know that shorter
maturity rates are more volatile than the longer maturity rates, so the as-
sumption of parallel yield curve shifts is obviously false.

Convexity is given as the weighted average of maturity-squares of a
bond, where weights are the present values of the bond’s cash flows, given
as proportions of the bond’s price. Convexity can be mathematically ex-
pressed as follows:

For large changes in the interest rates, the definitions of duration and
convexity in equations 1.1 and 1.2, respectively, are used to derive a two-
term Taylor series expansion for approximating the percentage change in
the bond price as follows:

Equation 1.3 suggests that for bonds with identical durations, higher
convexity is always preferable. This is because if CON is positive, then re-
gardless of whether ∆y is positive or negative (∆y)2 is always positive, mak-
ing a higher-convexity bond preferable to a lower-convexity bond.

However, the above result is based on the assumption of a large and par-
allel shift in the yield curve. Not only are large and parallel shifts in the yield

(1.3)
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curve inconsistent with arbitrage-free term structure dynamics, such shifts
occur rarely in the bond markets. Even under slight violations of the as-
sumption of parallel yield curve shifts, higher convexity may not be desirable.

M-ABSOLUTE AND M-SQUARE MODELS

An alternative view of convexity, which is based on a more realistic eco-
nomic framework, relates convexity to slope shifts in the term structure of
interest rates. This view of convexity was proposed by Fong and Vasicek
(1983, 1984) and Fong and Fabozzi (1985) through the introduction of the
new risk measure, M-square, which is a linear transformation of convexity.
The M-square of a bond portfolio is given as the weighted average of the
squares of the distance between cash flow maturities and the planning hori-
zon of the portfolio:

where the weights are defined in equation 1.1, and H is the planning hori-
zon. A bond portfolio selected with minimum M-square has cash flows
clustered around the planning horizon date and, hence, protects the port-
folio from immunization risk resulting from nonparallel yield curve shifts.
Though both convexity and M-square measures give similar information
about the riskiness of a bond or a bond portfolio (since one is a linear
function of the other), the developments of these two risk measures follow
different paths. Convexity emphasizes the gain in the return on a portfo-
lio, against large and parallel shifts in the term structure of interest rates
M-square emphasizes the risk exposure of a portfolio due to slope shifts in
the term structure of interest rates. Hence, the convexity view and the M-
square view have exactly opposite implications for bond risk analysis and
portfolio management. Lacey and Nawalkha (1993) find that high con-
vexity (which is the same as high M-square) adds risk but not return to a
bond portfolio using U.S. Treasury bond price data over the period 1976
to 1987.

Unlike the M-square model, that requires two risk measures for hedging
(i.e., both duration and M-square), Nawalkha and Chambers (1996) derive
the M-absolute model, which only requires one risk measure for hedging
against the nonparallel yield curve shifts. The M-absolute of a bond portfolio
is given as the weighted average of the absolute distances between cash flow
maturities and the planning horizon of the portfolio.

(1.4)M t H wt
t t

t tN

2 2
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where the weights are defined in equation 1.1, and H is the planning
horizon.

Though the M-absolute model immunizes only partially against the
height shifts, it reduces the immunization risk caused by the shifts in the
slope, curvature, and all other term structure shape parameters by selecting
a minimum M-absolute bond portfolio with cash flows clustered around its
planning horizon date. The relative desirability of the duration model or the
M-absolute model depends on the nature of term structure shifts expected.
If height shifts completely dominate the slope, curvature, and other higher
order term structure shifts, then the duration model will outperform the M-
absolute model. If, however, slope, curvature, and other higher order shifts
are relatively significant—in comparison with the height shifts—then the
M-absolute model may outperform the traditional duration model. Using
McCulloch and Kwon’s (1993) term structure data over the observation
period 1951 through 1986, Nawalkha and Chambers (1996) find the M-
absolute model reduces the immunization risk inherent in the duration
model by more than half.

DURATION VECTOR MODELS

Though both M-absolute and M-square risk measures provide significant
enhancement in the immunization performance over the traditional dura-
tion model, perfect immunization is not possible using either of the two
measures except for the trivial case in which the portfolio consists of a
zero-coupon bond maturing at the horizon date. Further gains in immu-
nization performance have been made possible by the duration vector
model, which uses a vector of higher order duration measures to immunize
against changes in the shape parameters (i.e., height, slope, curvature) of
the yield curve. The immunization constraints of the duration vector model
are given by:

where the weights are defined in equation 1.1, and H is the planning hori-
zon. About three to five duration vector constraints (i.e., Q = 3 to 5) have
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shown to almost perfectly immunize against the risk of nonparallel yield
curve shifts.

Since the shifts in the height, slope, curvature, and other parameters of
the term structure of interest rate shifts are generally larger at the shorter
end of the maturity spectrum, it is possible that an alternative set of dura-
tion measures that are linear in g(t), g(t)2, g(t)3, and so on, and which put
relatively more weight at the shorter end of the maturity spectrum due to
the specific choice of the function g(t), may provide enhanced immunization
performance. Consistent with this intuition, Nawalkha, Soto, and Zhang
(2003) and Nawalkha, Chambers, Soto, and Zhang (2004) derive a class of
generalized duration vector models using a Taylor series expansion of the
bond return function with respect to specific functions of the cash flow ma-
turities. These papers find that g(t) = t0.25 or g(t) = t0.5 perform significantly
better than the traditional duration vector for short planning horizons
when three to five risk measures are used. Though the duration vector and
the generalized duration vector models, significantly outperform the M-
absolute and M-square models, the improvement in performance comes at
the cost of higher portfolio rebalancing costs required by these models.

KEY RATE DURATION MODELS

The key rate duration model of Ho (1992) describes the shifts in the term
structure as a discrete vector representing the changes in the key spot rates
of various maturities. Interest rate changes at other maturities are derived
from these values via linear interpolation. Key rate durations are then
defined as the sensitivity of the portfolio value to key rates at different
points along the term structure. The key rate duration model can be
considered an extension of the traditional duration model given in equa-
tion 1.1, as follows:

where the yield curve is divided into m different key rates.
Similar to the duration vector models, an appealing feature of the key

rate model is that it does not require a stationary covariance structure of in-
terest rate changes (unless performing a VaR analysis). Hence, it doesn’t
matter whether the correlations between the changes in interest rates of dif-
ferent maturities increase or decrease or even whether these changes are
positively or negatively correlated. Also, the model allows for any number

(1.7)
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of key rates, and, therefore, interest rate risk can be modeled and hedged to
a high degree of accuracy.

However, unlike the duration vector models, which require at most
three to five duration measures, the number of duration measures to be
used and the corresponding division of the term structure into different key
rates, remain quite arbitrary under the key rate model. For example, Ho
(1992) proposes as many as 11 key rate durations to effectively hedge
against interest rate risk. Hedging against a large number of key rate dura-
tions implies larger long and short positions in the portfolio, which can
make this approach somewhat expensive in terms of the transaction costs
associated with portfolio construction and rebalancing.

PRINCIPAL COMPONENT DURATION MODELS

The principal component model assumes that the yield curve movements
can be summarized by a few composite variables. These new variables are
constructed by applying a statistical technique called principal component
analysis (PCA) to the past interest rate changes. The use of PCA in the
Treasury bond markets has revealed that three principal components (re-
lated to the height, the slope, and the curvature of the yield curve) are suf-
ficient in explaining almost all of the variation in interest rate changes. An
illustration of the impact of these components on the yield curve is shown
in Figure 1.2.

The first principal component ch, basically represents a parallel
change in the yield curve, which is why it is usually named the level or the
height factor. The second principal component cs, represents a change in
the steepness or the slope, and is named the slope factor. This factor is also
called the “twist factor” as it makes the short-term rates and long-term
rates move in opposite directions. The third principal component cc, is
called the curvature factor, as it basically affects the curvature of the yield
curve by inducing a butterfly shift. This shift consists of short rates and
long rates moving in the same direction and medium-term rates moving in
the opposite direction.

The yield changes can be given as weighted linear sums of the principal
components as follows:

(1.8)
  
∆ ∆ ∆ ∆y t l c l c l c ii ih h is s ic c( ) , . ,≈ + + = 1 . . mm
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FIGURE 1.2 Shape of the Principal Components
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where ∆ch = Change in the first component
∆cs = Change in the second component
∆cc = Change in the third component

The variables lih, lis, and lic, are the factor sensitivities (or loadings) of
the yield change ∆y(ti) on the three principal components respectively. They
correspond to the three curves shown in Figure 1.2. The sensitivity of the
portfolio value to these three risk factors is measured by principal compo-
nent durations (PCDs) given as follows:

The first three principal component durations given in equation 1.1 ex-
plain anywhere from 80 percent to 95 percent of the ex-post return differ-
entials on bonds, depending on the time period chosen.

Since the principal component model explicitly selects the factors based
on their contributions to the total variance of interest rate changes, it
should lead to some gain in hedging efficiency. Further, in situations where
explicit or implicit short positions are not allowed, the duration vector or
the key rate duration model cannot give a zero immunization risk solution,

(1.9)
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except for some trivial cases. With short positions disallowed, significant
immunization risk is bound to remain in the portfolio, and this risk can be
minimized with the knowledge of the factor structure of interest rate
changes using a principal component model.

However, the principal component model has a major shortcoming: It
assumes that the covariance structure of interest rate changes is stationary.
In situations where this assumption is violated, the use of the model might
result in poor hedging performance.

APPLICATIONS TO FINANCIAL INSTITUTIONS

The five types of models discussed can be applied in a variety of contexts by
financial institutions, from designing and executing simple duration-based
hedging strategies to the most sophisticated dynamic immunization pro-
grams based on multiple risk measures, with off balance sheet positions in
swaps, interest rate options, and interest rate futures. A few examples of
these applications are discussed next.

Consider an insurance company that sells guaranteed investment prod-
ucts (GICs) to institutional investors and/or individuals. To guarantee a
high yield over a prespecified horizon, the insurance company may use
high-quality AAA-rated corporate bonds to design a dynamic immuniza-
tion strategy, instead of simply investing in a riskless zero-coupon bond
(e.g., Treasury STRIPs). The extra yield on high-quality bonds will compen-
sate for the additional risk introduced by the AAA spread changes over the
Treasury yield curve changes. Since the largest portion of the yield changes
for high-quality corporate bonds are due to changes in the Treasury yield
curve, a one- to three-factor duration vector model (see equation 1.6), or
one to five risk measure based key rate duration model (see Figure 1.2) can
be used. Though using more risk measures will lead to better immunization
performance, doing so will require higher transaction costs and may even
require explicit or implicit short positions.2 Hence, the number of risk mea-
sures should be carefully selected after running many yield curve scenarios
with transactions cost analysis.

As a second example, consider a commercial bank interested in protect-
ing the value of shareholder equity from interest rate risk. The equity dura-
tion can be computed using the asset duration and the liability duration. An
appropriate model that can be used to protect a bank’s equity is the M-
square model with a prespecified target equity duration. This model does
not require that the M-square of the assets be set equal to the M-square of
the liabilities, but that the difference between the M-squares of the assets
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and the liabilities be minimized. Since by the nature of their business (lend in
long maturity sector, borrow in short maturity sector), banks cannot fully
adjust the maturity structure of their assets and liabilities, the M-square
model is more suited for a bank, instead of the duration vector model or the
key rate duration model.

Next, consider a bond fund that attempts to replicate or beat the re-
turn on an index such as the Lehman U.S. government bond index. A prin-
cipal component (PC) model can be used to get the empirical PC
durations of the Lehman bond index by first obtaining the PCs using the
historical data on changes in the Treasury rates of different maturities, and
then running regressions of the returns on the Lehman index on the three
important PCs. These regressions give three empirical PC durations, re-
lated to the so-called height, slope, and curvature factors (see equation
1.7). The bond fund can then select from a pool of bonds with an objec-
tive function that maximizes the yield, while constraining the empirical
PC durations of the fund to equal those of the Lehman index. Since both
the PCs and empirical PC durations change with time, the bond fund
managers can use the most recent data (i.e., past six months) to design
these strategies, which can be updated periodically, every two weeks, or
every month.

Finally, consider a bond hedge fund manager who wishes to speculate
on the changes in the shape of the yield curve. The type of yield curve shift
depicted in Figure 1.1 is quite likely given the current economic scenario
and the U.S. central bank policy. The figure shows a positive height shift,
a negative slope shift, and a positive curvature shift, as the steep yield
curve moves up, and flattens out. In order to benefit from this type of ex-
pected yield curve shift, the hedge fund manager can create a portfolio
with cash bonds and Treasury futures, with a negative D(1), a positive
D(2), and a negative D(3). The exact magnitudes of D(1), D(2), and D(3)
(see equation 1.4) will depend on the confidence the hedge fund manager
places in the particular types of shifts, and risk/return trade-off that she
desires. For example, if she feels strongly that the slope shift will be nega-
tive, but unsure about the curvature shift, then she will take more expo-
sure to slope shifts by increasing the D(2) of the portfolio, but have the
D(3) of the portfolio close to zero.

The examples above demonstrate how managers of different financial
institutions with varying objectives can use various multifactor models for
hedging or speculating against the risk of nonparallel yield curve shifts. Of
course, transactions costs and other market frictions require that managers
simulate the performance of the trading strategies under realistic market
conditions before putting these models to use.
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INTERACTION WITH OTHER RISKS

The analysis until now has focused on interest rate risk measures for default-
free securities. However, a typical bank balance sheet also includes corpo-
rate and individual loans that are exposed to credit risk, call risk, foreign
exchange risk, liquidity risk, and other risks. The interaction between inter-
est rate risk and the other risks is of crucial importance in implementing an
overall risk protection strategy. Major banks in the United States, including
Bank of America, are developing systems to measure different risks in an in-
tegrated manner. Since the focus of this book is on interest rate risk, we now
consider how some of these other risks interact with interest rate risk. This
not only provides insights into the overall effects of interest rate changes on
bank assets and liabilities, but also allows for integrating interest rate risk
with other types of risks in designing a total risk management system.

The interaction between credit risk and interest rate risk is of crucial
importance as most bank loans are subject to the risk of credit downgrade
or default. Many studies document the inverse relationship between credit
spread changes and interest rate changes. In a rising interest rate environ-
ment, credit spreads tend to narrow, and vice-versa, which in general im-
plies that corporate loans are less sensitive to interest rate changes (or have
lower durations and convexities) than the equivalent default-free bonds.
However, this is not always true. Nawalkha (1996) outlines specific condi-
tions under which the credits spreads could either narrow or widen as inter-
est rates increase, implying that the durations of corporate bonds could be
either lower or higher than those of default-free counterparts. He finds that
relatively short (long) maturity loans issued to corporations with high (low)
interest rate sensitive assets, have longer (shorter) durations than those of
equivalent default-free bonds.

The interaction between the call risk (due to the prepayment option)
and interest rate risk may prove to be the most challenging aspect of risk
management for some banks in the current environment in which most
homeowners have already refinanced at record low interest rates. The mort-
gage prepayment options would lose much of their value if interest rates
were to rise by a few percent in the next couple of years. This could signifi-
cantly lengthen the duration of mortgage loans and mortgage-backed secu-
rities. Interest rates have been trending downward for most of the past
quarter century, and a potential switch in the interest rate regime is likely,
given the recent surge in oil prices, the continued rise in commodity prices,
and the rising world GDP. The interaction of the lengthening of the mort-
gage durations with interest rate increases could expose the banks with sig-
nificant holdings in mortgage assets to a high level of interest rate risk. This
risk could get compounded further, if increases in interest rate also deflate
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the sky-high valuations of real estate in many parts of the world, reducing
loan to value ratios, and increasing provisions for loan losses related to the
mortgage assets.

The effects of foreign exchange risk can be devastating as many banks
and regulators learned during the Asian currency crisis of 1997 to 1998.
Like stock market bubbles and crashes, currencies also go through periodic
upswings and downswings, which can wreck havoc on the balance sheets of
financial institutions exposed to explicit or implicit currency-related risks.
Further, economies such as Hong Kong, which have a fixed exchange rate
system, must rely on a domestic exchange fund to support the currency peg.
The artificially imposed currency peg creates a strong link between cur-
rency and interest rate risk. For example, during the Asian currency crisis,
the speculative attack on the Hong Kong dollar led to an increase in the
overnight rate all the way up to 280 percent on October 23, 1997. Although
this quickly subsided, medium term rates remained higher than usual for
many weeks, creating a panic in the stock market and wiping out much
value from the banking and real estate stocks. The spread between London
Interbank Offer Rate (LIBOR) and the Hong Kong Interbank Offer Rate
(HIBOR) also increased significantly during this period, making it more
costly to borrow dollars from the local banks. In general, currency crises
have more severe effects on banks with more extreme duration gaps result-
ing from severe maturity mismatches between the assets and the liabilities,
making the values of assets and liabilities deviate more sharply.

A good risk management system must consider the interactions of all
risks in a unified framework. Duration and other interest rate risk measures
are sensitive to credit risk, call risk, and foreign exchange risk, among other
risks. Only by considering the combined effects of these risks on the interest
rate risk profile of a bank can senior bankers get a perspective on the true
risk exposure of a bank to interest rate changes.

NOTES

1. See Nawalkha (1999) for a review of this literature.
2. For example, the purchase of put options on Treasury bond futures creates im-

plicit short positions.
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CHAPTER 2
Bond Price, Duration,

and Convexity

Investigation of a fixed-income security begins by observing its price-yield
characteristics in relation to its risk and cash flow profile. Unlike cor-

porate bonds that are subject to both default risk and interest rate risk, 
default-free securities such as U.S. Treasury bonds are subject to interest
rate risk only. The interest rate risk of a default-free bond typically rises
with its maturity. However, due to the presence of coupons, a more appro-
priate measure of risk of a default-free bond is its duration1 which is defined
as the weighted-average maturity of the bond. In many ways, duration is to
fixed-income what beta is to equity. Duration explains perhaps 70 percent
of ex-post bond returns differentials—although this number varies based on
the length of time used to compute returns, the amount and types of inter-
est rate volatility in the time period analyzed, the level of default risk in the
bonds, and the liquidity of the market being analyzed.

Duration captures only the linear relationship between bond returns and
the changes in interest rates. However, part of the relationship between bond
returns and changes in the interest rates is nonlinear. To capture the nonlinear
relationship between bond returns and the changes in interest rates, Reding-
ton (1952) introduced the concept of convexity. This chapter discusses the du-
ration and convexity risk measures and clarifies a number of fallacies about
them in the fixed-income literature. However, before introducing these risk
measures, we give a brief introduction to compounding and discounting rules.

BOND PRICE UNDER CONTINUOUS COMPOUNDING

Consider the future value of a single sum formula given as:

(2.1)FV PV
APR

kt
k

t k

= +






×

1

This chapter coauthored with Timothy Crack and Nelson Lacey.
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where t is the holding period given in number of years, APRk is the annual
percentage rate with k compounding periods over one year. Federal regula-
tions require that all quotes of interest rates be given by using an APR. Ob-
viously, the APR quote must be given together with the compounding
frequency k, as the compounding frequency affects the future value in equa-
tion 2.1. To appreciate the importance of compounding frequency, consider
a student who in a desperate moment borrows $1,000 for one year from a
pawnbroker at an APR12 of 300 percent. Not having read the small print
carefully, she goes back to return the sum of $4,000 ($1,000 principal plus
$3,000 interest) to the pawnbroker at the end of the year. To her dismay, she
finds that she owes $14,551.92 instead, which is $10,551.92 more than
what she thought. The pawnbroker shows her the following calculation:

Since interest on interest, and interest on interest on interest, and so on
are higher with more frequent compounding, it leads to a higher future
value in equation 2.2. Of course, the reason monthly compounding fre-
quency makes such a huge difference is because we assumed an unusually
high APR12 equal to 300 percent. At more reasonable values of APR12 like
10 percent, the compounding frequency would not have made such a big
difference.

The most common compounding frequencies in the fixed-income mar-
kets are annual, semiannual, monthly, and daily. It is always possible to find
equivalent APRs under different compounding frequencies, such that the fu-
ture value remains the same in equation 2.1. To allow mathematical
tractability, it is often easier to use an APR with continuous compounding,
where interest on interest is paid out continuously, or with infinite com-
pounding intervals in a year. Let y represent the APR assuming continuous
compounding. Then by using the compounding rule, equation 2.1 can be
rewritten as:

Since k goes to infinity, applying the exponential constant e, equation 2.3
can be rewritten as:

(2.4)FV PV et
yt= ×

(2.3)FV PV
y

kt k

t k

= +



→∞

×

lim 1

(2.2)FVt = +




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If an APR is quoted with a compounding frequency k, then an equiva-
lent APR under continuous compounding can be given as follows:

Equation 2.5 follows by equating the right sides of equations 2.1 and 2.4,
and then taking logarithms of both sides of the equation.

As an example, given APR12 (i.e., an APR with monthly compounding),
the continuously compounded APR is given as:

By dividing both sides of equation 2.4 by ety we get the present value of
a single sum as follows:

By applying the present value rule (equation 2.7) to every cash flow of a
bond, the price of a bond with a periodic coupon C paid k times a year, and
face value F, is given as follows:

where t1, t2, t3, . . . , tN are the N cash flow payment dates of the bond. As-
suming the bond matures at time tN = T, and the time intervals between
all cash flow payments are equal, then N = Tk, and t1 = 1/k, t2 = 2/k,
t3 = 3/k, . . . , tN = N/k. Substituting these in equation 2.8, the bond price
can be expressed by the following formula:

where i = y/k is the continuously compounded APR divided by k.

(2.9)
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Unlike bonds, annuities like the mortgage loans do not make a lump-
sum payment at the maturity date. Setting F = 0 in the above equation, the
annuity formula is given as follows:

Perpetuities are annuities with infinite life. Setting N = infinity, in equation
2.10, the perpetuity formula is given as:

Note that equations 2.9, 2.10, and 2.11 assume that all variables are
defined in periodic units. For example, if a fixed-income security, such as a
bond, annuity, or a perpetuity, paid out coupons semiannually (the most
common scenario for U.S. bonds), then equations 2.9, 2.10, and 2.11 can
be used with the variables defined as follows:

where C = Semiannual coupon
i = y/2 = Continuously compounded APR divided by 2

N = Number of semiannual coupon payments

Similarly, if a fixed-income security paid out coupons monthly (e.g.,
mortgage loans or MBS), then equations 2.9, 2.10, and 2.11 can be used
with the variables defined as follows:

where C = Monthly coupon
i = y/12 = Continuously-compounded APR divided by 12

N = Number of monthly coupon payments

Example 2.1 Consider a 30-year home-equity loan with 360 monthly pay-
ments (i.e., 30 × 12 = 360) of $100. Suppose that the quoted APR with
monthly compounding for the loan is 6 percent and we wish to calculate y,
the continuously compounded APR. Using equation 2.5, this yield is calcu-
lated as:

y APR k kk= 0.05985ln( / ) ln( . / )1 1 0 06 12 12+ × = + × = 005
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The present value of the loan can be computed in two different ways. Using
the discrete monthly rate = APR/12 = 0.06/12 = 0.005, the loan’s present
value is given as:

Using the continuously compounded yield, y = 0.0598505, the loan’s pres-
ent value is given by equation 2.8 as follows:

Since both approaches give identical answers, we can use the second ap-
proach based upon continuous compounding, which turns out to be more
tractable mathematically. Throughout this chapter and for much of this
book, we will use continuously compounded yields.

We do not have to do a summation of the 360 terms as shown above.
The present value of the mortgage loan can be computed directly by using
the formula in equation 2.10, with C = $100, i = y/12 = 0.0598505/12 =
0.00498754, and N = 360, as follows:

DURATION

Duration is the weighted-average maturity of a bond, where weights are
the present values of the bond’s cash flows, given as proportions of bond’s
price:

(2.12)
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and

Under continuous compounding, the duration measure gives the nega-
tive of the percentage price change of a bond, divided by an infinitesimally
small change in the yield of a bond:2

The duration measure defined by equations 2.13 and 2.15 increases
with maturity, decreases with coupon rate, and decreases with the yield. By
using an approximation of equation 2.15, we get the following expression
for the percentage change in the bond price:

Hence, the percentage change in bond price is proportional to its dura-
tion, for an infinitesimally small change in the yield. Equation 2.16 assumes
a parallel and infinitesimal shift in the yield curve. Nonparallel shifts in the
yield curve result in unequal changes in the yields for different bonds, which
invalidates using the given definition of duration, since ∆y on the right side
of equation 2.16 becomes different for different bonds.3

By definition, the magnitude of duration is always less than or equal to
the maturity of the bond. However, this is true only for securities such as
bonds that have non-negative cash flows. If one or more of the cash flows
are negative, then duration may exceed the maturity of the underlying secu-
rity, or may even be negative. Negative cash flows are introduced when
computing the duration of fixed-income derivatives such as option and fu-
tures, which are priced as portfolios of long and short positions in regular
bonds. For example, the duration of a call option on a bond is greater than

(2.16)
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TABLE 2.1 Computing Duration

Cash Present Value Weight of Product of Product of 
Flows of the Cash the Cash Weight and Present Value 

Maturity ($) Flow ($) Flow Maturity and Maturity

t C PV = C/et × y w = PV/P w × t PV × t

1 100 95.12 0.079 0.079 95.12

2 100 90.48 0.075 0.149 180.97

3 100 86.07 0.071 0.213 258.21

4 100 81.87 0.068 0.271 327.49

5 100 77.88 0.064 0.322 389.40

5 1,000 778.80 0.643 3.218 3,894.00

Total P = 1,210.23 1.000 D = 4.251 5,145.20

the duration of the underlying bond since this option is a leveraged security.
Similarly, the duration of a put option on a bond is generally negative since
this option represents a leveraged short position. The following example
shows the calculation of the duration of a regular coupon bond.

Example 2.2 Consider a five-year bond with $1,000 face value. The bond
makes annual coupon payments at a 10 percent coupon rate. Assume that
the continuously compounded annualized yield of this bond equals 5 per-
cent (i.e., y = ln(1 + APR) = 5%). Table 2.1 shows how to compute the
price and duration of this bond.

The first column of Table 2.1 gives the maturity of each cash flow of the
bond; the second column the dollar value of each of these cash flows; the
third column gives their present values; the fourth column gives the weights
defined as the present values of the cash flows as proportions of the bond
price; the fifth column gives the product of the weights and the maturities;
and the last column gives the value of the product of the present value and
the maturity of each cash flow.

The sum of the present values of the cash flows gives the bond price.
The duration of the bond is given by equation 2.13 as:

and shown at the bottom of the fifth column as D = 4.251 years.

D t wt
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The last column of Table 2.1 allows us to compute duration in a differ-
ent way. Substituting equation 2.14 into equation 2.13 gives:

Therefore, duration also can be computed by dividing the sum of the
products of the present value and the maturity of each cash flow by the
bond price. This gives again:

The duration of a bond portfolio is a weighted average of the durations
of the bonds in the portfolio, where the weights are defined as the propor-
tions of investments in the bonds. To illustrate the computation of portfolio
duration, consider another bond B with a maturity of 10 years and a
coupon rate of 10 percent. Using the same yield, the price of bond B is
$1,373.96 and its duration is 7.257 years. The duration of bond B is longer
since it has a longer maturity.

Now consider a bond portfolio including one bond A and two bonds B.
The portfolio value is thus $1,210.23 + 2($1,373.96) = $3,958.15. The
portfolio duration is computed as follows:

Finally, consider a third bond C with the same characteristics as bond A
but with a higher coupon rate of 12 percent. Using the same yield, the price
of bond C is equal to $1,296.52, which is higher than bond A’s price of
$1,210.23 since bond C has a higher coupon rate. Bond C’s duration is
4.161 years, which is lower than the duration of bond A (4.251 years). In
general, higher coupon rate gives a lower duration, since the weight of the
earlier cash flows (i.e., coupons) gives more weight to lower maturities.

Example 2.3 Reconsider the $1,000 face value, 10 percent coupon rate,
five-year bond introduced in the previous example. As shown earlier, this
bond has a price of $1,210.23 and a duration of 4.251 years. Now suppose
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that interest rates increase (due to unexpected news on inflation) so that the
yield of the bond rises up to 6 percent.

The new bond price consistent with the new yield can be computed
using equation 2.8 as follows:

The change in the bond price is given as:

and the percentage bond price change is given as:

Using the duration risk measure, we can approximate the percentage
change in the bond price using equation 2.16, as follows:

The percentage price change approximated by duration is very close to
the true percentage price change. The difference between actual and approxi-
mated percentage price change is −4.154 percent − (−4.251 percent) = 0.097
percent, or about a dollar on the $1,210.23 initial price. In this example, if
the yield decreased to 4 percent, then the bond price would have increased to
$1,262.90, giving a percentage bond price change equal to 4.352 percent. In
the latter case, the difference between the actual and estimated percentage
change would have been 4.352 percent − 4.251 percent = 0.101 percent.

Regardless of whether the yield increases or decreases, the actual minus
the estimated percentage price change is always positive. This is due to the
so-called convexity of the bond, which is related to the curvature of the
bond price-yield relationship shown in Figure 2.1. However, as indicated in
the next section, and demonstrated later in Chapter 4, the convexity gains
resulting from the curvature of the bond price-yield relationship are illusory
and disappear when the assumption of a parallel shift in the term structure
of interest rates is violated even slightly.
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FIGURE 2.1 Bond Price/Yield Relationship with Tangent Line
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CONVEXITY

Convexity is given as the weighted average of maturity-squares of a bond,
where weights are the present values of the bond’s cash flows, given as
proportions of bond’s price. Convexity can be mathematically expressed
as follows:

Under continuous compounding, the convexity measure is obtained as
the second derivative of the bond price with respect to the yield of the bond,
divided by the bond price:4
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For large changes in the interest rates, the definitions of duration and
convexity in equations 2.15 and 2.18, respectively, are used to derive a two-
term Taylor series expansion for approximating the percentage change in
the bond price as follows:

Equation 2.19 suggests that for bonds with identical durations, higher
convexity is always preferable. This is because if CON is positive, then re-
gardless of whether ∆y is positive or negative (∆y)2 is always positive, mak-
ing a higher convexity bond preferable to a lower convexity bond.

However, this result is based on the assumption of a large and parallel
shift in the yield curve. Not only are large and parallel shifts in the yield
curve inconsistent with arbitrage-free term structure dynamics, such shifts
occur rarely in the bond markets. As will be shown in Chapter 4, even
under slight violations of the assumption of parallel yield curve shifts,
higher convexity may not be desirable.

Bond convexity increases with maturity, decreases with coupon rate,
and decreases with yield. By definition, the magnitude of convexity is al-
ways less than the square of the maturity of the bond. If the underlying se-
curity has one or more negative cash flows then convexity may exceed
maturity-square, or may even be negative. For example, the convexity of a
call option on a bond is generally greater than the convexity of the underly-
ing bond since this option is a leveraged security. Similarly, the convexity of
a put option on a bond is generally negative since this option represents a
leveraged short position.

Example 2.4 The convexity of a bond is computed identically to the dura-
tion of a bond, except that the longevity of each cash flow is replaced by the
longevity squared. Table 2.2 gives the convexities of the three bonds consid-
ered in Example 2.2.

As can be seen, convexity increases with maturity and decreases with
coupon rate. The convexity of a bond portfolio can be calculated as the
weighted average of the convexities of the individual bonds. For the portfo-
lio of bonds A and B, the convexity of the portfolio is given as the weighted
average of the individual bond convexities:
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TABLE 2.2 Bonds’ Characteristics

Annual Yield to Convexity 
Maturity Coupon Maturity Price Duration (years 

Bond (years) Rate (%) (%) ($) (years) squared)

A 5 10 5 1,210.23 4.251 19.797

B 10 10 5 1,373.96 7.257 63.162

C 5 12 5 1,296.52 4.161 19.172

COMMON FALLACIES CONCERNING DURATION
AND CONVEXITY

If you draw the traditional textbook plot of a bond’s price versus its yield as
shown in Figure 2.1 and ask finance students what the slope is at any given
point, they invariably answer that the slope is the duration of the bond. Ask
them if changing slope (as yield changes) illustrates changes in this dura-
tion, and they invariably answer yes—wrong again.

Although Figure 2.1 is a common tool for explaining duration and con-
vexity concepts, these explanations generate substantial confusion. The
confusion has two main sources. The first source of confusion is that differ-
ent books use quite different definitions of duration and convexity, some-
times without due care or clarity. Unfortunately, each definition carries
different properties. The second source of confusion is that the traditional
textbook plot in Figure 2.1 is simply not well suited to explaining the roles
of duration and convexity.5

Let us try to interpret D and CON in relation to the simple plot of bond
price versus bond yield given in Figure 2.1 as is often done in textbooks or
in the classroom. In the familiar case of a zero-coupon bond of maturity T,
all weights except wT are zero, and thus D = T, and CON = T2.

It is well known that limiting the analysis to duration only (i.e., ignoring
convexity) is equivalent to assuming that the bond pricing relationship is lin-
ear in yield and thus that the relationship in Figure 2.1 follows the tangent
line. Many other statements can be made about Figure 2.1. We find some or
all of the following interrelated statements in each of several different
sources in the literature and it is our experience that this is how many peo-
ple think about Figure 2.1 with respect to our definitions of D and CON:

1. Duration measures the sensitivity of a bond’s price to changes in its
yield, and is thus given by the (negative of the) slope of the plot of bond
price versus bond yield.
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2. Duration decreases (increases) as bond yield increases (decreases)—this
property holds for all option-free bonds.

3. Duration is the steepness of the tangent line in Figure 2.1. The steeper
the tangent line, the greater the duration; the flatter the tangent line, the
lower the duration.

4. Yield-induced changes in duration accelerate (decelerate) changes in
prices as yields decrease (increase). This is why absolute and percentage
price changes are greater when yields decline than when they increase
by the same number of basis points.

5. Bond convexity is a second-order measure of the sensitivity of a bond’s
price to changes in its yield, and is thus given by the curvature (i.e., rate
of change of slope) of the plot of bond price versus bond yield.

6. Bond convexity is the rate of change of duration as yields change.
7. Bond convexity decreases (increases) as bond yield increases

(decreases)—this property holds for all option-free bonds.

Although appealing, each and every one of these statements is false for
our definitions of duration and convexity unless accompanied by additional
assumptions or restrictions. We give simple counter examples in the next
section. We shall also demonstrate that if the (flawed) intuition behind
these statements is applied to bonds with embedded options it creates sub-
stantial confusion.

Simple Counter Examples

Consider a five-year zero-coupon bond (i.e., a “zero”). The plot of bond
price versus yield to maturity for the zero looks like that in Figure 2.1. A
zero has duration equal to its maturity, so a five-year zero has D equal to
five—regardless of its yield. It follows immediately that in the case of the
zero, the changing slope of the plot in Figure 2.1 cannot be equal to the
negative of the zero’s Macaulay duration because the zero’s D is fixed at
five regardless of yield. We also conclude that D need not change with
changing yield (even though the tangent line in Figure 2.1 flattens out with
increasing yield).

The curvature of the plot in Figure 2.1 means that decreases (increases)
in yield are associated with accelerated (decelerated) changes in price per
basis point change in yield. However, in the case of a zero, changes in D
cannot be the cause. Also, the convexity of a zero equals its maturity
squared regardless of yield. However, the rate of change of the zero’s dura-
tion with respect to its yield is zero (because the zero’s duration does not
change with yield). Thus, bond convexity cannot be simply the sensitivity of
duration to changes in yield. We also conclude that convexity (fixed at
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CON = 25 for our five-year zero) need not change with changing yield (even
though the curvature of bond price in Figure 2.1 decreases with increasing
yield). With a little math, it can also be shown that bond convexity is not
the curvature of price with respect to yield. This result appears in the next
section along with explanations.

Let us emphasize here that this is not simply a matter of the given state-
ments failing to hold for zeroes or failing to hold when using continuous
yields. The problem is deeper than that—it is just that it is easiest to see
when looking at zeroes and using continuous yields. The casual statements
mentioned in the previous section overlook the following interrelated facts
about Figure 2.1:

1. The slope is not (the negative of) duration.
2. The curvature (i.e., rate of change of slope) does not illustrate chang-

ing duration.
3. The curvature (i.e., rate of change of slope) is not bond convexity.
4. Changing curvature does not illustrate changing convexity.

Explanation of the Fallacies

To confuse the slope and curvature of Figure 2.1 with (the negative of) du-
ration and with convexity, respectively, leads to a fundamental misunder-
standing of these concepts. We need to return to first principles to
understand what is going on. We must examine the Taylor series expansion
of bond price as a function of yield. By multiplying both sides of the two-
term Taylor series expansion of the bond return given in equation 2.19 by
P, we get:

It follows from equation 2.19 that duration and convexity are directly
related to the first two coefficients in a second order approximation of “in-
stantaneous bond return” (i.e., ∆P/P) with respect to change in the yield. If
instead of relating instantaneous bond return to change in the yield, as in
equation 2.19, we relate change in the price to change in the yield, as in
equation 2.20, we find that the roles of duration and convexity are “con-
taminated” by price level. This can be shown directly by the definitions of
the first and second order derivatives of bond price with respect to the
yield, given as:

(2.20)
  
∆ ∆ ∆P DP y CON P y≅ − + ×1

2
2( )
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Equation 2.21 says that the slope of the plot in Figure 2.1 is not −D, but
−DP (i.e., the negative of what is known as “dollar duration”). Equation
2.22 says that the curvature (i.e., rate of change of the slope) of the plot in
Figure 2.1 is not CON, but CON × P (i.e., what is known as “dollar con-
vexity”). That is, when you relate price to yield, price contaminates the
roles of duration and convexity. We suspect that many of the earlier state-
ments drawn from the literature refer to dollar duration and dollar convex-
ity, respectively.

The definition in equation 2.21 also yields the following:

Thus, the sensitivity of duration to changes in yield is not convexity, but
the difference between duration squared and convexity. This can be calcu-
lated directly by a practitioner who has already calculated both duration
and convexity. This equality also yields a very nice property for zero-coupon
bonds: CON = D2, because the duration of a zero does not change with
yield. It follows that convexity is fixed regardless of yield for a zero, and
therefore that convexity of a zero also does not change with yield.

It is dollar duration (i.e., DP) that measures the dollar change in the
price of a bond for a given change in yields. Thus, changing slope in Figure
2.1 does not illustrate changing duration. Rather, changing slope in Figure
2.1 illustrates changing dollar duration and this does not necessarily tell us
anything about duration, D. Similarly, the curvature in Figure 2.1 illustrates
dollar convexity (i.e., CON × P) and this differs substantially from convex-
ity, CON. The numerical examples in Table 2.3 show just how different the
aforementioned concepts can be.

From Table 2.3 Panel A and Panel B, it can be seen that duration does
not change with yield for a zero-coupon bond, but duration does decrease
slowly with increasing yield for a coupon-bearing bond; dollar duration
decreases rapidly with increasing yield regardless of coupon rate; convex-
ity does not change with yield for a zero-coupon bond, but convexity does

(2.23)
∂ = −D
dy

D CON2

(2.22)∂
∂

= ×
2

2

P
y

CON P

(2.21)
 

∂
∂

= −P
y

DP
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TABLE 2.3 Numerical Examples

Panel A: Five-Year Zero-Coupon Bond with Face $100

Yield y 0.00 0.05 0.10 0.15 0.20 0.25

Price P 100.00 77.88 60.65 47.24 36.79 28.65

Duration D 5.00 5.00 5.00 5.00 5.00 5.00

Convexity CON 25.00 25.00 25.00 25.00 25.00 25.00

Slope −DP −500.00 −389.40 −303.27 −236.18 −183.94 −143.25

Curvature CON × P 2,500.00 1,947.00 1,516.33 1,180.92 919.70 716.26

Panel B: Five-Year 15% Annual-Coupon Bond with Face $100

Yield y 0.00 0.05 0.10 0.15 0.20 0.25

Price P 175.00 142.59 116.77 96.14 79.61 66.33

Duration D 4.14 4.05 3.94 3.83 3.71 3.59

Convexity CON 19.00 18.38 17.70 16.99 16.23 15.44

Slope −DP −725.00 −577.08 −460.45 −368.37 −295.58 −237.95

Curvature CON × P 3,325.00 2,620.30 2,067.36 1,633.21 1,292.08 1,023.84

decrease slowly with increasing yield for a coupon-bearing bond; dollar
convexity decreases rapidly with increasing yield regardless of coupon rate;
and, finally, other things being equal duration and convexity decrease with
increasing coupon level, but dollar duration and dollar convexity increase
with increasing coupon level.

Applications to Callable Bonds

We have demonstrated that many statements about duration and convexity
do not hold in the simple case of a zero-coupon bond. Let us now take the
more complicated example of a security with an embedded option—a
callable zero-coupon bond—to illustrate how misleading these statements
can be if applied more generally.

Consider a $100 face value 10-year zero-coupon bond that is callable
(European-style) in one year at 80 percent of its face value. Figure 2.2 plots the
bond’s price, duration, and dollar duration as a function of yield. The bond
price as a function of yield first steepens, and then flattens as yield increases
(see Figure 2.2 Panel A). Inferring duration from the slope in Figure 2.1 im-
plies incorrectly that duration first increases and then decreases as yield
rises—whereas, the duration of the callable bond is monotonically increas-
ing in yield (see Figure 2.2 Panel B).6 The correct inference is that it is dollar
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FIGURE 2.2 Callable Zero-Coupon Bond
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duration that first increases and then decreases with increasing yield (see
Figure 2.2 Panel C). We conclude that inferring duration from the slope of
the price-yield relationship causes substantial confusion in the case of a
callable bond.

A New Graph

There are two problems with the traditional plot of bond price versus yield
given in Figure 2.1. The first problem, as discussed, is that the slope of the
tangent line at the initial yield is not duration, and the change in slope with
respect to yield is not convexity. The second and related problem is that the
traditional plot shows dollar changes in bond prices for changing yields.
However, a $2 change in a $100 bond is not the same as a $2 change in a
$50 bond—the plot compares apples and oranges. Two ways to reduce
these problems come immediately to mind: either plot log price against
yield, or plot instantaneous return (i.e., ∆P/P) against yield.
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FIGURE 2.3 Log Price versus Yield

Lo
g 

pr
ic

e

y* Yield

Zero-coupon bond
log price

Coupon bond
log price

Tangent line at y*

Suppose we follow the first approach and plot log price against yield as
shown in Figure 2.3. In this case, the slope of the plot is easily shown to be
−D, where D is the duration of the bond.7 The change in slope can be
shown to be −(D2 − CON). The vertical change along the plot from the ini-
tial point is the log of 1 plus the instantaneous return on the bond.8 The
plot is unbounded below (because log of the price is unbounded below
as P ➝ 0). In the special case of a zero-coupon bond (where CON = D2 so
the change in slope is zero), the plot of log price versus yield is a straight line
(see Figure 2.3).

The plot of log price versus yield (Figure 2.3) has substantially less cur-
vature than the traditional plot of price versus yield—in the case of a zero it
has no curvature at all. There is a simple economic reason for this reduced
curvature: the absolute value of the slope in Figure 2.3 is duration, and du-
ration does not change very much with changing yield. Contrast this with
the traditional plot (Figure 2.1) where the slope is −DP, which does vary a
lot with changing yield because P varies a lot.
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FIGURE 2.4 Instantaneous Return versus Yield
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Unfortunately, even though the slope of the log price versus yield graph
is equal to −D, the curvature (i.e., change in slope) of the graph does not
give convexity. To address this shortcoming, we recommend a second ap-
proach that plots instantaneous return against yield (see Figure 2.4). The in-
stantaneous bond return is the instantaneous price change divided by initial
price (P − P*)/P*. The slope of the tangent line at the initial yield is easily
shown to be −D, where D is the duration of the bond. The rate of change of
slope at the initial yield is easily shown to be CON, the convexity.9 Thus,
duration and convexity are first and second order measures of the sensitiv-
ity of a bond’s instantaneous return to changes in its yield. Given that the
value of the slope and its rate of change are −D and CON, respectively, this
plot is more appropriate than plotting log price versus yield (it also avoids
the potential confusion arising from log price being unbounded later).

For different initial yields, the curve in Figure 2.4 “slides” sideways as
shown in Figure 2.5. The change in slope of the tangent line for increasing
yield is minor compared to that in the traditional plot of price versus yield
(with no change at all for a zero). The reason is the same as that given earlier
for the log price plot: the slope here is −D and D does not change much with
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FIGURE 2.5 Instantaneous Return versus Yield for Different Initial Yields
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yield, where as for the traditional plot the slope is −DP which changes a lot
because P changes so much with changing yield. The curvature (or change in
slope) of each curve at its initial yield is the convexity of the bond and de-
creases as the initial yield increases.10 Finally, compared to the initial point,
the vertical change along the plot in Figure 2.4 is the instantaneous rate of
return on the bond.

Figure 2.6 presents the plot of instantaneous return versus yield for the
callable zero-coupon bond that we discussed earlier. It can be seen that the
duration (absolute value of slope at initial yield) increases for increasing ini-
tial yield—as in Figure 2.2 Panel B—and the convexity (change in slope at ini-
tial yield) goes from negative to zero to positive as initial yield increases. This
is because increasing yield decreases the likelihood that the embedded call
will be exercised. This in turn lengthens the expected maturity of the callable
zero and increases its duration and convexity. This differs from Figure 2.5 in
which duration and convexity decrease with increasing yield (the case
of a noncallable coupon bond). The monotonically increasing relationship
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FIGURE 2.6 Instantaneous Return versus Yield for Callable Zero
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between the duration of a callable zero-coupon bond and its yield cannot be
inferred directly from the traditional price-yield graph such as Figure 2.2
Panel A—thus illustrating the importance of our new plot. Some other fal-
lacies concerning duration and convexity that are outside the scope of this
chapter are outlined in Appendix 2.1.

FORMULAS FOR DURATION AND CONVEXITY

Closed-form formulas for duration and convexity eliminate the need to sum
the present values of the weighted discounted values of future cash flows and
hence constitute a more efficient procedure for calculating these measures.
Although a number of closed-form solutions for duration and convexity have
been suggested in the literature, here we offer a general approach that allows
the derivation of these solutions both at the coupon payment dates and be-
tween the coupon payment dates.
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Duration and Convexity Formulas for Regular Bonds

Consider a bond that makes a periodic coupon payment of C dollars k
times a year. The face value of the bond is F dollars, and its continuously
compounded annualized yield equals y. The bond has a total of N cash
flows remaining. Let s define the time elapsed since the last coupon payment
date in the units of the time interval between coupon payments. At the
coupon payment dates, s = 0. Further, define c = C/F as the periodic coupon
rate, and i = y/k, the continuously compounded annualized yield divided by
k. The formula for the duration of a regular bond between coupon payment
dates is given as follows:

For the special case of s = 0, the above formula simplifies to:

The duration formulas given in equations 2.24 and 2.25 adjust for com-
pounding frequency, and are given in annualized units (i.e., number of
years). Hence, they can be directly used for approximating the percentage
price change in equation 2.16, given a change ∆y in the continuously com-
pounded annualized yield.

The formula for the convexity of a regular bond between coupon pay-
ment dates is given as follows:

(2.26)

  

CON
c e e s s e e N s eNi i i i i

=
−( ) +( ) +





− + −( ) −1 2 1
2

11 1

1 1 12 2 3

( )( ) + −



{ }

−( ) −( ) + −( )

e

k c e e e

i

i Ni i





+
−( ) −( ) − −( )

−( ) −

e N s e c

k c e e

i i

i Ni

1 1

1 1

2 2

2 2 (( ) + −( )





ei 1
3

(2.25)

  

D
ce e N e e c

k c e e
s

i Ni i i

i Ni
= =

−( ) + −( ) − −( )
−( ) −

0

1 1 1

1 11 1
2( ) + −( )





ei

(2.24)D
c e e s s e e N s e cNi i i i i

=
−( ) +( ) −  + −( ) −( ) − −(1 1 1 ))

−( ) −( ) + −( )





k c e e ei Ni i1 1 1
2



38 BOND PRICE, DURATION, AND CONVEXITY

For the special case of s = 0, the earlier formula simplifies to:

The convexity formulas given previously also adjust for compounding
frequency, and are given in annualized units (i.e., number of years squared).
Hence, they can be directly used for approximating the percentage price
change in equation 2.19, given a squared change (∆y)2 in the continuously
compounded annualized yield.

Duration and Convexity Formulas for
Annuities and Perpetuities

Consider an annuity with a periodic cash flow of C dollars made k times a
year, a continuously compounded annualized yield equal to y, and N cash
flows remaining. Let s define the time elapsed since the last annuity pay-
ment date in the units of the time interval between the annuity payments.
So, at the annuity payment dates, s = 0. Let i = y/k, the continuously com-
pounded annualized yield divided by k. The formula for the duration of an
annuity between the payment dates is:

For the special case of s = 0, the equation 2.28 simplifies to:

The formula for the convexity of an annuity between coupon pay-
ment dates is:
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For the special case of s = 0, the above formula simplifies to:

A perpetuity is an annuity with an infinite number of cash flows. The
duration and convexity formulas for perpetuity at and between coupon
payment dates can be obtained by a simple inspection of equations 2.28,
2.29, and 2.31, and substitution of N = infinity as follows:

Similar to the case of regular bonds, the duration and convexity formu-
las given in equations 2.28 through 2.35 adjust for compounding frequency,
and are given in annualized units.

Example 2.5 Reconsider the five-year, 10 percent annual coupon bond A
with a continuously compounded yield of 5 percent given in Example 2.2.
In that example, we obtained the bond’s duration as 4.251 years. In Ex-
ample 2.4, we obtained the same bond’s convexity as 19.797. These values
can be computed using the closed-form formulas given above. Since the
bond matures in exactly five years, the closed-form formulas with s = 0
are applied.

Using equation 2.25, the bond A’s duration is calculated as:
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Using equation 2.27, bond A’s convexity is calculated as:

As expected, the two formulas give the same values obtained in ear-
lier examples.

Now, consider the duration and convexity of this bond after nine
months. Assume that the yield to maturity is still 5 percent. Since the bond
has not paid any coupons, the number of coupons before maturity remains
5 (N = 5), and the first coupon is due in three months. The time elapsed
since the date of the last coupon relative to time between two coupon pay-
ments is s = 9 months/12 months = 0.75 years. To calculate the duration
and convexity, we use the formulas given in equations 2.24 and 2.26, re-
spectively, as follows:

The new values of duration and convexity are lower than those obtained
previously due to the time elapsed.
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APPENDIX 2.1: OTHER FALLACIES CONCERNING
DURATION AND CONVEXITY

Other fallacies found in the fixed-income literature regarding duration and
convexity area are as follows:

1. Duration is based on the assumption of infinitesimal and parallel yield
curve shifts, therefore, is not a useful risk measure when yield curve
shifts are large and nonparallel.

2. Since duration is not derived using the framework of the modern port-
folio theory, it does not relate risk to return.

3. Convexity is based on the assumption of large and parallel yield curve
shifts, which imply the existence of arbitrage profits, and hence
convexity is a theoretically invalid measure for interest rate risk analysis.

The first and third fallacies can be traced back to an influential critique
of duration and convexity by Ingersoll, Skelton, and Weil (1978). The sec-
ond fallacy resulted from comments of Sharpe (1983), which questioned
whether duration is consistent with a risk-return equilibrium. A resolution
to all of the above fallacies was provided by Nawalkha and Chambers
(1999) and is outlined next.

The duration risk measure is consistent with a specific arbitrage-free
term structure model of Heath, Jarrow, and Morton (HJM; 1992). This
model is discussed in detail in the second part of the book. Under this
model, only the “unexpected” portion of the yield curve shift remains par-
allel. The expected portion of the yield curve shift is always nonparallel and
is determined by the “forward rate drift restriction” imposed by the HJM
model. Duration reflects the risk resulting only from the unexpected yield
curve shifts, which are assumed to be parallel. However, when even the un-
expected yield curve shifts are nonparallel, duration risk measure allows in-
terest rate risk hedging against only the shifts in the height of the yield
curve. Under this scenario, duration becomes a partial risk measure, and
other higher order measures may be needed to hedge against shifts in the
slope, curvature, and other higher order changes in the yield curve. Even as
a partial risk measure, duration explains roughly 70 percent of the ex-post
return differentials among bonds, and so remains the most important bond
risk measure.

Further, the duration risk measure is consistent with Merton’s (1973a)
intertemporal capital asset pricing model (ICAPM), and, hence, with
continuous-time modern portfolio theory. Assuming that the entire invest-
ment opportunity set is represented by the changes in the instantaneous
short rate, a simplified form of the two-parameter ICAPM can be obtained
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for securities subject to default risk (e.g., stocks and default-prone bonds).
However, the two-parameter ICAPM reduces to a single-factor model for all
default-free securities. Interestingly, the appropriate equilibrium measure of
the systematic risk of a default-free security is its duration and not its bond
beta as derived by Alexander (1980); Boquist, Racette, and Schlarbaum
(1975); Jarrow (1978); and Livingston (1978), under more restrictive as-
sumptions. Intuitively, the above result obtains because under the two-
parameter ICAPM, every default-free bond can serve as a hedge portfolio
that is used to hedge against unexpected changes in the interest rates by risk-
averse investors.

Finally, using the continuous-time HJM framework, the effect of con-
vexity on the bond return can be shown to cancel out by a portion of the
theta of the bond. Bond theta measures the drift of the bond price due to the
passage of time. Due to this convexity-theta trade-off, bond convexity is not
priced under the single factor forward rate models of HJM. However, bond
convexity may be priced under a two-factor HJM model that allows both
level and slope shifts in the term structure of forward rates. The relation of
convexity with slope shifts in the yield curve is the subject of Chapter 4.

NOTES

1. Duration was discovered more than half a century ago by Macaulay (1938) and
Hicks (1939), and then rediscovered a number of times by researchers including
Samuelson (1945) and Redington (1952).

2. Under discrete compounding, equation 2.15 leads to modified duration, which
is different from duration. However, with continuous compounding, the defini-
tion of duration given in equation 2.15 is identical to the definition of duration
given by equation 2.13.

3. Under nonparallel shifts in the yield curve, one can use the generalized duration
vector models introduced in Chapter 5 or the key rate duration models intro-
duced in Chapter 9.

4. Under discrete compounding, equation 2.18 leads to modified convexity, which
is different from convexity. However, with continuous compounding, the defini-
tion of convexity given in equation 2.18 is identical to the definition of convex-
ity given by equation 2.17.

5. See the following: Cole and Young (1995, p. 1); Fabozzi (1996, pp. 66, 73);
Fabozzi, Pitts, and Dattatreya (1995, pp. 97–98, p. 101, p. 109); Johnson
(1990, p. 73); Kritzman (1992, p. 19); and Livingston (1990, p. 70).

6. See Nawalkha (1995) for analytical details of the pricing and duration of this
callable bond—we are assuming (in his notation) that volatility of returns to the
bond is V = 0.01.

7. Since ∂lnP/∂y = (∂P/∂y)/P is the slope, it follows from the definition of D that
the slope equals −D.
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8. Consider an initial price P* at yield y* and a new price P at a new yield y. The
vertical distance is lnP − lnP* = ln(P/P*) = ln(1 + Rate of instantaneous return),
as stated.

9. The slope or the first derivative of the plot at the initial yield y* equals [∂[(P −
P*)/P*]/∂y]y=y* = [(∂P/∂y)y=y*]/P* = −D. The curvature (i.e., change in slope) or
the second derivative of the plot at the initial yield y* equals [∂[∂[(P −
P*)/P*]/∂y]/∂y]y=y* = [(∂2P/∂y2)y=y*]/P* = CON.

10. If Figure 2.5 were for a zero-coupon bond, the slopes and curvatures would be
identical as initial yield changes.
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CHAPTER 3
Estimation of the Term

Structure of Interest Rates

The duration model introduced in the previous chapter assumes infinitesi-
mal and parallel shifts in a flat yield curve. In order to consider nonparal-

lel shifts in a nonflat yield curve, we need to model the yields corresponding
to different maturities. The term structure of interest rates gives the relation-
ship between the yield on an investment and the term to maturity of the in-
vestment. This chapter focuses on how to estimate the default-free term
structure of interest rates using cross-sectional U.S. Treasury bond data. The
term structure obtained in this chapter will serve as an input in many chap-
ters that follow, which introduce more complex risk measures for hedging
against nonparallel term structure shifts (such as, M-absolute, M-square,
duration vector, key rate durations, principal component durations). The
term structure will also be an important input in various chapters in the sec-
ond and third volumes of this book series. Since the valuation of default-free
fixed-income securities and the derivatives based on these securities must fit
an empirically observable term structure, estimation of the term structure
using cross-sectional data is essential for the valuation process.

The default-free term structure generally rises with maturity, because
investors generally demand higher rates of interest on longer maturity in-
vestments, both due to a preference for liquidity and as an aversion to inter-
est rate risk. The term structure is typically measured using default-free,
continuously compounded, annualized zero-coupon yields. Since coupon
bonds are portfolios of zero-coupon bonds, the term structure can be used
to value both coupon bonds and zero-coupon bonds. The term structure is
not directly observable from the published coupon bond prices and yields.
Though default-free zero-coupon prices (such as the U.S. Treasury STRIPS)
can be directly used for obtaining the term structure, the lack of liquidity in
these markets, and the unavailability of a continuum of maturities, make the
use of coupon bond prices necessary for obtaining more robust estimates of
the term structure.
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FIGURE 3.1 The Discount Function
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This chapter reviews three methods of term structure estimation: the
bootstrapping method, the McCulloch cubic-spline method, and the Nelson
and Siegel method. We consider various extensions to these methods based
on error-weighing schemes that lead to more robust estimates of the term
structure. Before introducing these methods however, we review some nota-
tion and concepts.

BOND PRICES, SPOT RATES, AND FORWARD RATES

The Discount Function

Under continuous compounding, the price of a zero-coupon bond with a
face value of $100 and a term to maturity of t years can be written as:

where y(t) is the continuously compounded rate corresponding to the matu-
rity term t. The equation 3.1 is a generalization of the present value rule
given in equation 2.7 in the previous chapter, which assumed a constant
rate y. The function y(t) defines the continuously compounded term struc-
ture based upon zero-coupon rates. The expression e−y(t)t is referred to as
the discount function d(t). The typical shape of the discount function is
shown in Figure 3.1. This function starts at 1, since the current value of a $1

(3.1)P t
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e d t
y t t

y t t( ) ( )( )
( )= = =−100

100 100
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payable today is $1, and it decreases with increasing maturity due to the
time value of money.

If a series of default-free zero-coupon bonds exist for differing maturi-
ties, then it is possible to extract the term structure by simply inverting
equation 3.1 to obtain y(t). Unfortunately, due to the lack of liquidity and
unavailability of zero-coupon bonds for all maturities, the term structure
cannot be simply obtained by using zero-coupon bonds such as U.S. Trea-
sury STRIPS.

Accrued Interest

Since a coupon bond can be viewed as a portfolio of zero-coupon bonds,
the term structure can be used to price the coupon bond as follows. Let the
price of a coupon-bearing bond that makes a total of N coupon payments,
k times a year at times t1, t2, . . . , tN, and a face value F, be given as:1

where C is the periodic coupon paid k times a year. Equivalently, we have:

Equation 3.3 gives what is called the cash price of a bond. This is the
price that purchaser pays when buying the bond. However, bond prices are
not quoted as cash prices. The quoted prices are clean prices, which exclude
the accrued interest. Accrued interest is the interest accumulated between
the most recent interest payment and the present time. If t0 denotes the cur-
rent time, tp denotes the date of the previous coupon payment, and tq de-
notes the date of the next coupon payment, then the formula for accrued
interest is given as:

and the bond’s quoted price is then expressed as:

(3.4)
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Computation of accrued interest requires the day-count basis used in
the market. The day-count basis defines how to measure the number of
days:

1. Between the current date and the date of the previous coupon payment,
or t0 − tp , and

2. Between the coupon payment dates before and after the current date,
or tq − tp.

The most widely used day-count bases are given as follows:

■ Actual/Actual: both t0 − tp and tq − tp are measured using the actual
number of days between the dates.

■ Actual/360: t0 − tp is measured using the actual number of days be-
tween t0 and tp , and tq − tp equals 360/k, where k is the number of
coupon payments made in one year.

■ 30/360: t0 − tp is measured as 30 × number of remaining and complete
months + actual number of days remaining between the dates t0 and tp ,
and tq − tp equals 360/k, where k is the number of coupon payments
made in one year.

The Actual/Actual basis is used for Treasury bonds, the Actual/360
basis is used for U.S. Treasury bills and other money market instruments,
and the 30/360 basis is used for U.S. corporate and municipal bonds.

Example 3.1 Consider a semiannual coupon bond with a $1,000 face
value and a 5 percent annualized coupon rate with coupon payments on
June 1 and December 1. Suppose we wish to calculate the accrued interest
earned from the date of the last coupon payment to the current date, 
November 3.

If we use the Actual/Actual day count basis to measure the number of
days between dates, then,

t0 − tp = The actual number of days between June 1 and November 3 = 155, and
tq − tp = The actual number of days between June 1 and December 1 = 183

The accrued interest is given as:
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where C = 50/2 = $25, is the semiannual coupon payment.

If we used the Actual/360 convention, then,

t0 − tp = The actual number of days between June 1 and November 3
= 155, and

tq − tp = 360/k = 360/2 = 180

The accrued interest is given as:

Finally, if we used the 30/360 convention, then,

t0 − tp = 30 × 5 (five complete months times 30 days each month)
+ 2 (number of actual days from November 1 to November 3)

= 152, and
tq − tp = Equals 360/k = 360/2 = 180

The accrued interest is given as:

Now, assume that the bond in the previous example is a U.S. Treasury
bond quoted at the price of 95-08 on November 3. Since Treasury bonds are
quoted with the accuracy of 32 seconds to a dollar, a quoted price of
$95.08 corresponds to a price of $95.25 on a $100 face value, and hence a
price of $952.50 for the $1,000 face value. Using an Actual/Actual day
count basis, the accrued interest on November 3 is $21.17, giving a cash
price equal to:
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It is not the cash price, but the quoted price that depends on the specific
day-count convention being applied. Any increase (decrease) in the accrued
interest due to a specific day-count convention used is exactly offset by a
corresponding decrease (increase) in the quoted price, so that the cash price
remains unchanged. Since the TISR is computed using cash prices, it is also
independent of the day-count convention used. It is necessary to know the
day-count convention in order to obtain the cash price using the quoted
price and the accrued interest.

Yield to Maturity

The yield to maturity is given as that discount rate that makes the sum of
the discounted values of all future cash flows (either of coupons or princi-
pal) from the bond equal to the cash price of the bond, that is:2

Equation 3.6 is a tautology. Comparing equations 3.6 and 3.2, the yield
to maturity can be seen as a complex weighted average of zero-coupon
rates. Given a nonflat term structure of zero-coupon rates, bonds with same
maturity but different coupon rates will generally have different yields to
maturity, due to the coupon effect. The coupon effect makes the term struc-
ture of yields on coupon bonds lower (higher) than the term structure of
zero-coupon rates, when the latter is sloping upward (downward).

Spot Rates versus Forward Rates

The forward rate between the future dates t1 and t2 is the annualized inter-
est rate that can be contractually locked in today on an investment to be
made at time t1 that matures at time t2. The forward rate is different from
the future rate in that the forward rate is known with certainty today, while
the future rate can be known only in the future.

Consider two investment strategies. The first strategy requires making a
riskless investment of $1 at a future date t1, which is redeemed at future
date t2 for an amount equal to:

The variable f(t1, t2) which is known today is defined as the continuously
compounded annualized forward rate, between dates t1 and t2.
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Now consider a second investment strategy that requires shorting today
(which is the same as borrowing and immediately selling) a $1 face value
riskless zero-coupon bond that matures at time t1 and investing the pro-
ceeds from the short sale in a two-year riskless investment maturing at time
t2. The proceeds of the short sale equal P(t1), the current price of $1 face
value riskless zero-coupon bond that matures at time t1. This investment
costs nothing today, requires covering the short position at time t1 by paying
$1, and receiving the future value of the proceeds from the short sale, which
at time t2 equals:

where y(t1) and y(t2) are zero-coupon rates for terms t1 and t2. Since both
riskless investment strategies require $1 investment at time t1, and cost
nothing today, the value of these investment strategies at time t2 must be
identical. This implies that the compounded value in expression 3.7 must
equal the compounded value in equation 3.8, or:

Taking logarithms on both sides of the equation 3.9 and further simpli-
fication we obtain:

Rearranging the terms:

Equation 3.11 implies that if the term structure of zero-coupon rates is
upward (downward) sloping, then forward rates will be higher (lower) than
zero-coupon rates.
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TABLE 3.1 Computing Implied Forward Rates

Maturity Spot Rates Forward Rates
t y(t) f (t − 1, t)

1 5.444

2 5.762 6.080

3 5.994 6.457

4 6.165 6.679

5 6.294 6.811

6 6.393 6.888

7 6.471 6.934

8 6.532 6.961

9 6.581 6.977

10 6.622 6.987

Example 3.2 Table 3.1 illustrates the calculation of forward rates. The sec-
ond column of the table shows the continuously compounded zero-coupon
rates for terms ranging from 1 to 10 years. The third column gives the one-
year forward rates implied by the zero-coupon rates.

For example the forward rate f(2, 3) is computed using equation 3.10
as follows:

All forward rates derived in the previous example apply over the discrete
time interval of one year. In general, forward rates can be computed for any
arbitrary interval length. Instantaneous forward rates are obtained when the
interval length becomes infinitesimally small. Mathematically, the instanta-
neous forward rate f(t), is the annualized rate of return locked in today, on
money to be invested at a future time t, for an infinitesimally small interval
dt → 0, and can be derived using equation 3.11, by substituting t2 = t + dt
and t1 = t:
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The instantaneous forward rates can be interpreted as the marginal cost
of borrowing for an infinitesimal period of time beginning at time t. Using
equation 3.13, the term structure of instantaneous forward rates (or simply
forward rates, from here on) can be derived from the term structure of zero-
coupon rates.

Equation 3.14 can be expressed in an integral form as follows:3

or

Equation 3.15 gives a nice relationship between zero-coupon rates and
forward rates. It implies that the zero-coupon rate for term t is an average of
the instantaneous forward rates beginning from term 0 to term t. This rela-
tionship suggests that forward rates should be in general more volatile than
zero-coupon rates, especially at the longer end. Lekkos (1999) finds this to
be empirically true. An excellent visual exposition of the difference in the
volatilities of the zero-coupon yields and those of the instantaneous forward
rates is given by the Excel term structure “movie,” based on McCulloch and
Kwon (1993) term structure data in the spreadsheet model for this chapter.
The high volatility of long-maturity forward rates has important implica-
tions for advanced term structure models, such as the Heath, Jarrow, and
Morton (HJM; 1992) forward rate model given in the second volume of this
book series.

Term Structure Hypotheses

Figure 3.2 shows different shapes of the term structure of zero-coupon
yields. The steep shape of the term structure typically occurs at the trough
of a business cycle, when after many interest rate reductions by the central
bank, the economy seems poised for a recovery in the future, making the
longer maturity rates significantly higher than the shorter maturity rates.
The inverted shape of the term structure typically occurs at the peak of a
business cycle, when after many interest rate increases by the central bank,
the economic boom or a bubble may be followed by a recession or a de-
pression, making the longer interest rates lower than the shorter rates. The
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FIGURE 3.2 Basic Shapes of the Term Structure
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humped shape typically occurs when the market participants expect a short
economic recovery followed by another recession. The normal shape is gen-
erally indicative of an economy that is expanding normally.

The previous discussion relating economic expectations to the shapes
of the term structure suggests that these shapes contain information about
the expectations of the evolution of future interest rates. For example, a
steep term structure suggests that future short rates will be higher than the
current short rates. However, expectations don’t fully explain why term
structures have different shapes at different times. Other important vari-
ables are risk and liquidity premiums demanded by fixed-income investors
in order to invest in bonds of different maturities. Finally, the demand and
supply variables in different maturity segments may also explain the shape
of the term structure. Since many variables affect the shape of the term
structure, alternative hypotheses have been advanced in the fixed-income
literature that highlight the individual roles played by these variables.

The four basic term structure hypotheses are given as (1) the expecta-
tion hypothesis, (2) the liquidity premium hypothesis, (3) the market seg-
mentation hypothesis, and (4) the preferred habitat hypothesis. More than
a century ago, Fisher (1896) introduced the expectation hypothesis, and
many versions of this hypothesis have appeared since then. Two basic ideas
behind expectations hypothesis are (1) expectations about future short
rates are reflected in current forward rates and (2) expected holding period
returns are the same for bonds of different maturities. As pointed out by
Cox, Ingersoll, and Ross (CIR; 1981), these statements are not consistent,
and at least four different versions of expectations hypothesis exist in the
literature.
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The unbiased expectations hypothesis states that current forward rates
are equal to the expectations of future short rates. The return-to-maturity
expectations hypothesis states that the total return on a bond maturing at a
given future date is equal to the expected return on the investment in a
money market account until that date. The yield-to-maturity expectations
hypothesis states that the yield to maturity of a bond is equal to the expected
return per period on an investment in the money market account until the
bond maturity date. Finally, the local expectations hypothesis states that the
instantaneous return on all bonds are equal to the current short rate. CIR
demonstrate that all four versions of the expectations hypothesis are consis-
tent with each other in a world of certainty, but they become inconsistent in
a world of uncertainty. Further, they show that only the local expectations
hypothesis is consistent with an arbitrage-free equilibrium under uncer-
tainty. The local expectations hypothesis is consistent with virtually all
continuous-time term structure models discussed in the second volume of
this book series.4 The above four versions of expectations hypothesis are the
pure versions of this theory. Campbell (1986) shows that under the more
general expectations hypothesis, the term premiums can be constant (and
not zero as under the pure expectations hypothesis) across maturity.

Hicks (1939) introduced the liquidity premium hypothesis, which pos-
tulates that the return on long-term bonds must exceed the expected returns
on short-term bonds in order to compensate the investors for the higher
price volatility of long-term bonds. Consequently, even when the market ex-
pects the future short rates to remain at the current levels, the term struc-
ture should be an increasing function of maturity. The liquidity premium
hypothesis can explain the normal and steep shapes of the term structure in
Figure 3.2 even if the forward rates are not unbiased expectations of the fu-
ture short rates.

The market segmentation hypothesis, suggested by Culbertson (1957),
states that different market participants have a preference for bonds with
maturities within different maturity buckets. Due to the segmentation of the
demand and supply conditions in the different maturity market segments,
the bond prices and interest rates in the different segments become rela-
tively independent. As a consequence, the term structures and the discount
function are not necessarily smooth and continuous between the different
segments and so the implied forward rates at these points have little infor-
mative content.

Modigliani and Sutch (1966) introduced the preferred habitat hypothe-
sis, according to which even though investors might prefer bonds with spe-
cific maturities, they should be willing to shift to other maturities if the
differences in yields compensate them. Therefore, the different market seg-
ments are interdependent and the term structure and the discount function
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are smooth functions. The preferred habitat hypothesis is consistent with
all shapes of the term structure shown in Figure 3.2.

Many researchers have tested the general expectations hypothesis and
found it to be false. For example, Campbell and Shiller (1991) and Fama
and Bliss (1987) find that term premiums are not constant, but predictable
using forward rates and term spreads. These finding support the main im-
plications of the liquidity premium hypothesis and/or the preferred habitat
hypothesis.

TERM STRUCTURE ESTIMATION: THE BASIC METHODS

Estimation of the term structure involves obtaining zero-coupon rates, or
forward rates, or discount functions from a set of coupon bond prices. Gen-
erally, this requires fitting a parsimonious functional form that is flexible in
capturing stylized facts regarding the shape of the term structure. A good
term structure estimation method should satisfy the following requirements:

■ The method ensures a suitable fitting of the data.
■ The estimated zero-coupon rates and the forward rates remain positive

over the entire maturity spectrum.
■ The estimated discount functions, and the term structures of zero-

coupon rates and forward rates are continuous and smooth.
■ The method allows asymptotic shapes for the term structures of zero-

coupon rates and forward rates at the long end of the maturity spectrum.

The commonly used term structure estimation methods are given as
the bootstrapping method, the polynomial/exponential spline methods of
McCulloch (1971, 1975) and Vasicek and Fong (1982), and the exponential
functional form methods of Nelson and Siegel (1987) and Svensson (1994).
Extensions of the above methods are given as the heteroscedastic error cor-
rection based model of Chambers, Carleton, and Waldman (1984), and the
error weighing models such as the B-spline method of Steely (1991) and the
penalized spline methods of Fisher, Nychka, and Zervos (1995) and Jarrow,
Ruppert, and Yu (2004). In the following section, we focus on three com-
monly used term structure estimation methods given as the bootstrapping
method, the McCulloch polynomial cubic-spline method, and the Nelson
and Siegel exponential-form method.

Bootstrapping Method

The bootstrapping method consists of iteratively extracting zero-coupon
yields using a sequence of increasing maturity coupon bond prices. This
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method requires the existence of at least one bond that matures at each
bootstrapping date. To illustrate this method, consider a set of K bonds that
pay semiannual coupons. The shortest maturity bond is a six-month bond,
which by definition does not have any intermediate coupon payments be-
tween now and six months, since coupons are paid semiannually. Using
equation 3.2, the price of this bond is given as:

where F0.5 is the face value of the bond payable at the maturity of 0.5 years,
C0.5 is the semiannual coupon payment at the maturity, and y(0.5) is the an-
nualized six-month zero-coupon yield (under continuously compounding).
The six-month zero-coupon yield can be calculated by taking logarithms of
both sides of equation 3.16, and simplifying as follows:

To compute the one-year zero-coupon yield, we can use the price of a
one-year coupon bond as follows:

where F1 is the face value of the bond payable at the bond’s one-year matu-
rity, C1 is the semiannual coupon, which is paid at the end of 0.5 years and
one year, and y(1) is the annualized one-year zero-coupon yield. By re-
arranging the terms in equation 3.18 and taking logarithms, we get the one-
year zero-coupon yield as follows:

Since we already know the six-month yield, y(0.5) from equation 3.17,
this can be substituted in equation 3.19 to solve for the one-year yield. Now,
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continuing in this manner, the six-month yield, y(0.5), and the one-year
yield, y(1), can both be used to obtain the 1.5-year yield, y(1.5), given the
price of a 1.5-year maturity coupon bond. Following the same approach,
the zero-coupon yields of all of the K maturities (corresponding to the
maturities of the bonds in the sample) are computed iteratively using the
zero-coupon yields of the previous maturities. The zero-coupon yields cor-
responding to the maturities that lie between these K dates can be com-
puted by using linear or quadratic interpolation. Generally, about 15 to 30
bootstrapping maturities are sufficient in producing the whole term struc-
ture of zero-coupon yields.

Instead of solving the zero-coupon yields sequentially using an iterative
approach as shown above, the following matrix approach can be used for
obtaining a direct solution. Consider K bonds maturing at dates t1, t2, . . . ,
tK, and let CFit be the total cash flow payments of the ith (for i = 1, 2,
3, . . . , K) bond on the date t (for t = t1, t2, . . . , tK). Then the prices of the
K bonds are given by the following system of K simultaneous equations:

Note that the upper triangle of the cash flow matrix on the right side of
equation 3.20 has zero values. By multiplying both sides of equation 3.20 by
the inverse of the cash flow matrix, the discount functions corresponding to
maturities t1, t2, . . . , tK can be computed as follows:

This solution requires that the number of bonds equal the number of
cash-flow maturity dates. The zero-coupon rates can be computed from the
corresponding discount functions using equation 3.1.

(3.21)

   

d t

d t

d t

CF

CF C

K

t

t

( )

( )

( )

1

2

1

2

1

1

0 0

�



















=

…

FF

CF CF CF

t

Kt Kt KtK

2

1

2

1 2

0…

…
� � � �





















−

PP t

P t

P tK

( )

( )

( )

1

2

�



















(3.20)

P t

P t

P t

CF

CF C

K

t

t

( )

( )

( )

1

2

1

2

1

1

0 0

�



















=

…

FF

CF CF CF

d

t

Kt Kt KtK

2 2

1 2

0…

…
� � � �





















(tt

d t

d tK

1

2

)

( )

( )

�





















58 ESTIMATION OF THE TERM STRUCTURE OF INTEREST RATES

TABLE 3.2 Bond Data for Bootstrapping Method

Maturity Annual 
Bond # Price ($) (years) Coupon Rate (%)

1 96.60 1 2

2 93.71 2 2.5

3 91.56 3 3

4 90.24 4 3.5

5 89.74 5 4

6 90.04 6 4.5

7 91.09 7 5

8 92.82 8 5.5

9 95.19 9 6

10 98.14 10 6.5

Example 3.3 This example demonstrates the bootstrapping method using
the 10 bonds given in Table 3.2. For expositional simplicity all bonds are as-
sumed to make annual coupon payments.

Bond 1’s price is given as follows:

which gives the one-year zero-coupon yield as:

Using the one-year yield of 5.439 percent to discount the first coupon pay-
ment from the two-year bond, the price of the two-year bond is given as:

Solving for y(2), we get,
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Following this iterative procedure, the zero-coupon rates for all 10 ma-
turities can be computed. More directly, we can use the matrix solution
given by equation 3.21, as follows:

Multiplying the two matrices gives the solution as:

The zero-coupon rates are obtained from the corresponding discount
functions by the following relationship derived from equation 3.1:

The zero-coupon rates are displayed in Figure 3.3. The points between
the estimated zero-coupon yields are obtained by simple linear or qua-
dratic interpolation, and thus the whole term structure of zero-coupon
rates is obtained.

(3.23)
  
y t

d t

t
( )

ln ( )
=

−

  

d

d

d

d

d

d

d

d

d

d

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

2

3

4

5

6

7

8

9

10





































=

0.947

0.891

0..835

0.781

0.730

0.681

0.636

0.593

0.553

0.516





































  

d

d

d

d

d

d

d

d

d

d

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

2

3

4

5

6

7

8

9

10





































=

102 0 0 0 0 0 0 0 0 00

2 5 102 5 0 0 0 0 0 0 0 0

3 3 103 0 0 0 0 0 0 0

3 5 3 5 3 5 103

. .

. . . .55 0 0 0 0 0 0

4 4 4 4 104 0 0 0 0 0

4 5 4 5 4 5 4 5 4 5 104 5 0 0 0. . . . . . 00

5 5 5 5 5 5 105 0 0 0

5 5 5 5 5 5 5 5 5 5 5 5 5 5 105 5 0 0

6

. . . . . . . .

66 6 6 6 6 6 6 106 0

6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 106. . . . . . . . . .55

1




































−
96.60

93..71

91.56

90.24

89.74

90.04

91.09

92.82

95.19

98.144







































60 ESTIMATION OF THE TERM STRUCTURE OF INTEREST RATES

FIGURE 3.3 Zero-Coupon Rate Estimated Using the Bootstrapping Method
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The bootstrapping method has two main limitations. First, since this
method does not perform optimization, it computes zero-coupon yields
that exactly fit the bond prices. This leads to overfitting since bond prices
often contain idiosyncratic errors due to lack of liquidity, bid-ask spreads,
special tax effects, and so on, and, hence, the term structure will not be
necessarily smooth as shown in Figure 3.3. Second, the bootstrapping
method requires ad-hoc adjustments when the number of bonds are not the
same as the bootstrapping maturities, and when cash flows of different
bonds do not fall on the same bootstrapping dates. In the following section,
we consider alternatives to the bootstrapping method that impose specific
functional forms on the term structure of zero-coupon yields or the dis-
count functions.

Cubic-Spline Method

Consider the relationship between the observed price of a coupon bond ma-
turing at time tm, and the term structure of discount functions. Using equa-
tions 3.1 and 3.3, the price of this bond can be expressed as:

(3.24)P t CF d tm j j
j

m

( ) ( )= × +
=
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1

ε
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where CFj is the total cash flow from the bond (i.e., coupon, face value, or
both) on date tj (j = 1, 2, . . . , m). Since bond prices are observed with idio-
syncratic errors, we need to estimate some functional form for the discount
function that minimizes these errors. We face two problems in doing this.
First, the discount functions may be highly nonlinear, such that we may need
a high-dimensional function to make the approximation work. Second, the
error terms in equation 3.24 may increase with the maturity of the bonds,
since longer maturity bonds have higher bid-ask spreads, lower liquidity, and
so on. Due to this heteroscedasticity of errors, estimation of the discount
function using approaches such as least squares minimization, generally fits
well at long maturities, but provides a very poor fit at short maturities (see
McCulloch, 1971, and Chambers, Carleton, and Waldman, 1984).

The cubic-spline method addresses the first issue by dividing the term
structure in many segments using a series of points that are called knot
points. Different functions of the same class (polynomial, exponential, etc.)
are then used to fit the term structure over these segments. The family of
functions is constrained to be continuous and smooth around each knot
point to ensure the continuity and smoothness of the fitted curves, using
spline methods. McCulloch pioneered the application of splines to term
structure estimation by using quadratic polynomial splines in 1971 and
cubic polynomial splines in 1975. The cubic-spline method remains popular
among practitioners and is explained next.

Consider a set of K bonds with maturities of t1, t2, . . . , tK years. The
range of maturities is divided into s − 2 intervals defined by s − 1 knot
points T1, T2, . . . , Ts−1, where T1 = 0 and Ts−1 = tK. A cubic polynomial
spline of the discount function d(t) is defined by the following equation:

where g1(t), g2(t), . . . , gs(t) define a set of s basis piecewise cubic functions
and α1, . . . , αs are unknown parameters that must be estimated.

Since the discount factor for time 0 is 1 by definition, we have:

The continuity and smoothness of the discount function within each
interval is ensured by the polynomial functional form of each gi(t). The
continuity and smoothness at the knot points is ensured by the require-
ment that the polynomial functions defined over adjacent intervals (Ti−1, Ti)
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and (Ti, Ti+1) have a common value and common first and second deriva-
tives at Ti. These constraints lead to the following definitions for the set of
basis functions g1(t), g2(t), . . . , gs(t):

Substituting equation 3.25 into equation 3.24, we can rewrite the price
of the bond maturing at date tm as follows:

By rearranging the terms, we obtain:

The estimation of the discount function requires searching the un-
known parameters, α1, α2 , . . . , αs to minimize the sum of squared errors
across all bonds. Since equation 3.29 is linear with respect to the parame-
ters α1, α2 , . . . , αs, this can be achieved by an ordinary least squares (OLS)
regression.5

The above approach uses s − 2 number of maturity segments, s − 1
number of knotpoints, and s number of cubic polynomial functions. An in-
tuitive choice for the maturity segments may be short-term, intermediate-
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term, and long-term, which gives three maturity segments of 0 to 1 years, 1
to 5 years, and 5 to 10 years, four knot points given as, 0, 1, 5, and 10
years, and five cubic polynomial functions.

McCulloch recommends choosing knot points such that there are ap-
proximately an equal number of data points (number of bonds’ maturities)
within each maturity segment. Using this approach, if the bonds are
arranged in ascending order of maturity, that is, t1 ≤ t2 ≤ t3 . . . ≤ tK, then the
knot points are given as follows:

where h is an integer defined as:

and the parameter θ is given as:

McCulloch also suggests that the number of basis functions may be set to
the integer nearest to the square root of the number of observations, that is:

This choice of s has two desired properties. First, as the number of ob-
servations (bonds) increases, the number of basis functions increases. Sec-
ond, as the number of observations increases, the number of observations
within each interval increases, too.

Example 3.4 Consider the 15 bonds in Table 3.3. This set includes five
more bonds with maturities ranging from 11 to 15 years in addition to the
10 bonds given in Example 3.3.

According to the McCulloch criterion, the number of basis function
is given as:
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TABLE 3.3 Bond Data for Cubic-Spline Method

Maturity Annual 
Bond # Price ($) (years) Coupon Rate (%)

1 96.60 1 2

2 93.71 2 2.5

3 91.56 3 3

4 90.24 4 3.5

5 89.74 5 4

6 90.04 6 4.5

7 91.09 7 5

8 92.82 8 5.5

9 95.19 9 6

10 98.14 10 6.5

11 101.60 11 7

12 105.54 12 7.5

13 109.90 13 8

14 114.64 14 8.5

15 119.73 15 9

which implies that the number of knot points is s − 1 = 3, and the number of
intervals for the maturity range that extends from 0 to 15 years is s − 2 = 2.

According to equation 3.30, the first knot point, T1 = 0, and the last
knot point T3 = 15 years. The second knot point, T2, is obtained as follows:

where using equations 3.31 and 3.32, h and θ are given as:

and

  

h INT
i K

s
INT=

−( )
−













=
−( ) ×

−










1

2

2 1 15

4 2



= =INT[ . ]7 5 7

(3.34)T t t th h h2 1= + −+θ( )

s Round= 



 =15 4



Term Structure Estimation: The Basic Methods 65

Also, using Table 3.3, t7 = 7 and t8 = 8. Substituting the values of h, θ, t7,
and t8, given above in equation 3.34, we get,

Hence, the three knot points are T1 = 0, T2 = 7.5, and T3 = 15. The
three knot points divide the maturity spectrum into two segments, 0 to 7.5
year and 7.5 years to 15 years. The number of basis functions is given as
s = 4. Using equation 3.27, these functions are given as follows:

g t

t t
T

T t T

T
T t T

t T

1

2 3

2
1 2

2
2 2

2

2 6

3 2

( ) =

− ≤ <

+
−





≥














=

≤ <

+
−

+

g t

t
T

T t T

T T t T
2

3

2
1 2

2
2

2 2

6

6 2

( )

( ) (( ) ( )

( )

t T t T

T T
T t T

g

−
−

−
−

≤ ≤














2
2

2
3

3 2
2 3

3

2 6

(( )
( )

( )

(

t

t T

t T

T T
T t T

g t

=

<

−

−
≤ ≤











0

6

2

2
3

3 2
2 3

4 )) = t tfor all

  T2 7 0 5 8 7 7 5= + × − =. ( ) .

  
θ =

−( )
−

− =
−( ) ×

−
− =

i K

s
h

1

2

2 1 15

4 2
7 0 5.



66 ESTIMATION OF THE TERM STRUCTURE OF INTEREST RATES

FIGURE 3.4 Basis Functions of the Discount Function
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The shapes of these basis functions are shown in Figure 3.4. The verti-
cal line divides the maturity range into the two segments. As can be seen,
these basis functions ensure continuity and smoothness at the knot points.
The discount function is given as a linear weighted average of the basis func-
tions as follows:

The parameters α1, α2, α3, and α4 are estimated using an OLS linear re-
gression model given as:

Using the bond data in Table 3.3, the estimated values of the para-
meters are:
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FIGURE 3.5 Estimated Zero-Coupon Rates Using Cubic-Spline Method
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The discount function is obtained using the above four parameter val-
ues and the four basis functions. The zero-coupon rates are obtained from
the discount function using equation 3.23, and are displayed in Figure 3.5.

A potential criticism of the cubic-spline method is the sensitivity of the
discount function to the location of the knot points. Different knot points
result in variations in the discount function, which can be sometimes signif-
icant. Also, too many knot points may lead to overfitting of the discount
function. So, one must be careful in the selection of both the number and
the placing of the knot points. Another shortcoming of cubic-splines is that
they give unreasonably curved shapes for the term structure at the long end
of the maturity spectrum, a region where the term structure must have very
little curvature. Finally, the OLS regression used for the estimation of the pa-
rameters in equation 3.29, gives the same weights to the price errors of the
bonds with heterogeneous characteristics, such as liquidity, bid-ask spreads,
maturity. Some of these criticisms are addressed in the last section of this
chapter, which introduces more advanced term structure estimation models.
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Nelson and Siegel Model

The Nelson and Siegel (1987) model uses a single exponential functional
form over the entire maturity range. An advantage of this model is that it al-
lows the estimated term structure to behave asymptotically over the long
end. Due to the asymptotic behavior of the term structure, many academics
and practitioners prefer the Nelson and Siegel model to the cubic-spline
models. Nelson and Siegel suggest a parsimonious parameterization of the
instantaneous forward rate curve given as follows:

Finding this model to be overparameterized, Nelson and Siegel consider
a special case of this model given as:6

The zero-coupon rates consistent with the forward rates given by the
above equation can be solved using equation 3.15, as follows:

The Nelson and Siegel model is based on four parameters. These para-
meters can be interpreted as follows:

■ α1 + α2 is the instantaneous short rate, that is, α1 + α2 = y(0) = f(0).
■ α1 is the consol rate. It gives the asymptotic value of the term structure

of both the zero-coupon rates and the instantaneous forward rates,
that is, α1 = y(∞) = f(∞).

■ The spread between the consol rate and the instantaneous short rate is
−α2, which can be interpreted as the slope of the term structure of
zero-coupon rates as well as the term structure of forward rates.

■ α3 affects the curvature of the term structure over the intermediate
terms. When α3 > 0, the term structure attains a maximum value lead-
ing to a concave shape, and when α3 < 0, the term structure attains
minimum value leading to a convex shape.

■ ß > 0, is the speed of convergence of the term structure toward the
consol rate. A lower ß value accelerates the convergence of the term

(3.37)
  
y t

t
e et t( ) / /= + +( ) −( ) −− −α α α β αβ β

1 2 3 31

(3.36)f t e
t

et t( ) / /= + +− −α α α
β

β β
1 2 3

(3.35)
  
f t e et t( ) / /= + +− −α α αβ β

1 2 3
1 2



Term Structure Estimation: The Basic Methods 69

FIGURE 3.6 Influence of the Alpha Parameters of Nelson and Siegel on the Term
Structure of Zero-Coupon Rates
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structure toward the consol rate, while a higher ß value moves the
hump in the term structure closer to longer maturities.

Figure 3.6 illustrates how the parameters α1, α2, and α3, affect the
shape of the term structure of zero-coupon rates (given a constant ß = 1). A
change in α1 can be interpreted as the height change, a change in α2 can be
interpreted as the slope change (though this parameter also affects the cur-
vature change slightly), and a change in α3 can be interpreted as the curva-
ture change in the term structure of zero-coupon rates.

Figure 3.7 demonstrates that Nelson and Siegel method is consistent
with a variety of term structure shapes, including monotonic and humped,
and allows asymptotic behavior of forward and spot rates at the long end.

The discount function associated with the term structures in 3.36 and
3.37 is given as:

Substituting this functional form into the pricing formula for a coupon-
bearing bond, we have:

where tm is the bond’s maturity and CFj is the cash flow of the bond at time tj.

(3.39)
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FIGURE 3.7 Influence of the Curvature and Hump Positioning Parameters of
Nelson and Siegel on the Spot Curve
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The parameters in equation 3.39 can be estimated by minimizing the
sum of squared errors, that is:

subject to the following constraints:

(3.40)
  

Min i
i
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α α α β
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where εi is the difference between the ith bond’s market price and its
theoretical price given by equation 3.39. The first constraint in equation
3.41 requires that the consol rate remain positive; the second constraint
requires that the instantaneous short rate remain positive; finally, the
third constraint ensures the convergence of the term structure to the con-
sol rate.

Since the bond pricing equation 3.39 is a nonlinear function, the four
parameters are estimated using a nonlinear optimization technique. As non-
linear optimization techniques are usually sensitive to the starting values of
the parameters, these values must be carefully chosen.

Example 3.5 Reconsider the bond data in Table 3.3. The initial values of
the parameters may be guessed using some logical approximations. For ex-
ample, the starting value for the parameter α1, which indicates the asymp-
totic value of the term structure of zero-coupon rates, may be set as the
yield to maturity of the longest bond in the sample. In Table 3.3, the longest
bond is Bond 15, whose continuously compounded yield to maturity can
be calculated using the “solver” function in Excel and is given as 6.629
percent.7

The starting value for the parameter α2, which is the difference between
the instantaneous short rate and the consol rate, may be set as the difference
between the yields to maturity of the shortest maturity bond and the longest
maturity bond in the sample. In Table 3.3, this corresponds to the difference
between the yields to maturity of Bond 1 and Bond 15, given as 5.439 −
6.629 = −1.19 percent.

The starting values of the other two parameters, α3 and ß, which are
associated with the curvature of the term structure and the speed of con-
vergence toward the consol rate, respectively, are difficult to guess. There-
fore, it might be necessary to consider a grid of different starting values.
The feasible range for these parameters for realistic term structure
data are −10 ≤ α3 ≤ 10, and ß ranging from the shortest maturity and
the longest maturity in the sample of bonds. Hence, using Table 3.3,
1 ≤ ß ≤ 15.

Using the data in Table 3.3, we obtain the following values of the para-
meters using nonlinear optimization:

(3.41)
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α α
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FIGURE 3.8 Estimated Zero-Coupon Rates Using the Nelson and Siegel Method
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The corresponding term structure of zero-coupon rates is shown in Figure 3.8.

ADVANCE METHODS IN TERM STRUCTURE ESTIMATION

The advances in term structure estimation have centered around two issues.
The first issue centers on the filtering criteria for the selection of bonds in
the sample. Bond selection should be from the same risk class, so that ma-
turity is the only distinguishing characteristic across bonds. If multiple
bonds are available, then bonds with very low liquidity or unusually high
bid-ask errors may be ignored. Also, bonds should be selected in such a way
that the tax treatment is as homogenous as possible. Finally, bonds with dis-
tortions arising due to embedded options, such as call or put features
should be excluded. The filtering criteria based on the discussed variables
cannot be defined so tightly that the data reduction seriously compromises
the estimation process.

The second issue deals with the pricing error-weighing schemes in the op-
timization process. Both the estimation of the cubic-spline model using the
OLS regression in equation 3.29, and the estimation of the Nelson and Siegel
model in equations 3.39 through 3.41, was done by the minimization of the
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sum of squared pricing errors. However, many alternative error-weighing
schemes exist which lead to more robust estimates of the term structure.

Chambers, Carleton, and Waldman (1984) demonstrate that the errors
between the fitted and actual prices increase with bond maturity, and so
weighing the errors by the inverse of bond maturity after adjusting for a
sample dependent parameter, allows the term structure of zero-coupon
rates to be fitted well both at the long end and the short end. They found
that using a single polynomial of sixth degree for the entire maturity range
together with the heteroscedastic error correction, leads to a good fit of the
term structure. However, since a sixth-degree polynomial has high instabil-
ity at the long end (explodes to infinity for infinite maturity), researchers
have looked for other alternatives to this model. For example, the het-
eroscedastic error correction suggested by Chambers, Carleton, and Wald-
man can also be applied to the exponential model of Nelson and Siegel,
which remains stable at the long end.

It is well known that bond maturity is not an adequate measure of the
relationship between price changes and yield changes. The percentage
change in price is given as the duration of the bond times the change in its
yield. Hence, given a price error, the corresponding yield error is reduced in
proportion to the duration of the bond. So, instead of using bond maturity,
Bliss (1997b) suggests weighting the price error by the inverse of the bond’s
duration. The weight assigned to the jth bond’s price error can be expressed
as follows:

where K is the number of bonds in the sample, D(i) is the duration of
the ith bond.

Other error weighting schemes have focused on the bid-ask spreads,
which also tend to be higher for longer maturity bonds. These alternatives
can be applied both to the cubic-spline models and models similar to Nel-
son and Siegel’s that use a single functional form for the term structure.

For example, instead of using errors defined as the difference between the
true mean prices and the fitted prices, the errors can be defined as follows:

(3.43)
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where PA, PB, and P* are the bid quote, ask quote, and the fitted price, re-
spectively. Using this definition, the errors will be nonzero, only if the fitted
prices lie outside the bid-ask quotes.

An alternative consist of dividing the error of each bond’s price by its
bid-ask spread and raising this quotient to a penalty parameter λ with a
value higher than 1 (typically 2), that is,

where the sum of squares of the “penalized” error terms ε’s across different
bonds is minimized. If the error term in the numerator and the bid-ask
spread in the denominator are equal, then the value of the quotient (i.e., the
expression in the brackets) equals 1, and, hence, the penalty parameter does
not alter the error term. If instead, the error is greater than the bid-ask
spread, then the penalty parameter will increase the size of the error and
more weight will be given to it in the estimation process. On the contrary, if
the error is smaller than the bid-ask spread, then the penalty parameter will
decrease the size of the error and less weight will be given to it in the esti-
mation process.

Other penalty functions can also be considered. For example, Fisher,
Nychka, and Zervos (1995) consider a nonparametric estimation method
using a penalized spline model with the following objective function:

where K is the number of bonds in the sample data, tK is the maximum ter-
minal maturity of the bonds in the sample, h(t) is the function to be fitted
(the discount function, the forward curve or the spot curve) and λ is a posi-
tive penalty parameter. The parameter λ controls the trade-off between the
smoothness of the fitted function and the goodness of fit. Jarrow, Ruppert,
and Yu (2004) extend this model to the estimation of the term structures of
corporate yields.

NOTES

1. When compounding is discrete, each ey(t)t is replaced by (1 + APR(t)/k)tk, where
APR(t) is the annual percentage rate for term t compounded k times a year.

(3.45)
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2. When compounding is discrete, each eyt is replaced by (1 + y/k)tk. Since cash
price is used in equation 3.6, sometimes the discount rate is also called the “ad-
justed” yield to maturity.

3. Equation 3.14 is the solution to the first order differential equation given in
3.13. This can be verified by taking the partial derivative of both sides of equa-
tion 3.14, with respect to t.

4. Though more recently McCulloch (1993) and Fisher and Gilles (1998) have
constructed economies in which various versions of the expectations hypothesis
may be consistent even in a world of uncertainty, the empirically implausible
nature of the short rate processes assumed in these papers suggest that these re-
sults are of interest only from a purely theoretical point of view.

5. As explained in the last section of this chapter, other functions can be opti-
mized. McCulloch, indeed, proposed to weight the errors by the inverse of the
buy-ask spread. This, however, precludes the use of OLS techniques.

6. The new function resembles a constant plus a Laguerre function, which consists
of polynomials multiplied by exponentially decaying terms. This indicates a
method for generalization to higher-order models.

7. Generally, the yield to maturity is reported using discrete compounding. This
yield may be used as the starting value too, since it is quite close in value to its
continuously compounded counterpart.
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CHAPTER 4
M-Absolute and M-Square

Risk Measures

Chapter 2 analyzed duration and convexity, the two commonly used risk
measures for fixed-income securities. These measures are based on the

restrictive assumption of parallel shifts in the term structure of interest
rates. This chapter introduces two new risk measures that allow nonparallel
shifts in the term structure of interest rates. Unlike Chapter 2 that derived
risk measures using a flat term structure, these new risk measures allow in-
terest rate movements to be consistent with empirically realistic shapes of
the term structures illustrated in Chapter 3.

The first risk measure called M-absolute is both simple and powerful. It
is simple in that only one risk measure is used to manage interest rate risk.
It is powerful in that it reduces by more than half the residual interest rate
risk not captured by the traditional duration model.

The second risk measure called M-square is a second-order risk mea-
sure similar to convexity. Though convexity leads to higher returns for large
and parallel shifts in the term structure of interest rates, as pointed out in
Chapter 2, this convexity view is somewhat naïve and has been challenged
both theoretically and empirically in the fixed-income literature. An alter-
native view of convexity, which is based on a more realistic economic frame-
work, relates convexity to slope shifts in the term structure of interest rates.
This view of convexity is proposed by Fong and Vasicek (1983, 1984)
through the introduction of the new risk measure, M-square, which is a lin-
ear transformation of convexity. Though both measures give similar infor-
mation about the riskiness of a bond or a bond portfolio (since one is a
linear function of the other), the developments of these two risk measures
follow different paths. Convexity emphasizes the gain in the return on a
portfolio, against large and parallel shifts in the term structure of interest
rates. On the other hand, M-square emphasizes the risk exposure of a port-
folio due to slope shifts in the term structure of interest rates. Hence, even
though M-square is a linear function of convexity, the convexity view and
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the M-square view have different implications for bond risk analysis and
portfolio management. This chapter shows how to reconcile the two differ-
ent views, and investigates which view is supported by the empirical data.

MEASURING TERM STRUCTURE SHIFTS

Reconsider the price of a bond with a periodic coupon C paid k times a
year, and face value F, given in equation 2.8 in Chapter 2, as follows:

where t1, t2, t3, . . . , tN are the N cash flow payment dates of the bond, and
y is the continuously compounded yield of the bond. To derive general in-
terest rate risk measures that allow large and nonparallel shifts in the term
structure of interest rates the assumption of a single yield must be relaxed.
As shown in Chapter 3, the term structure of interest rates can be defined in
two equivalent ways—the term structure of zero-coupon yields and the term
structure of instantaneous forward rates. The following two sections con-
sider the shifts in these term structures of interest rates and show an equiv-
alence of the relationship between them.

Shifts in the Term Structure of Zero-Coupon Yields

The term structure of zero-coupon yields can be applied to price the bond
given in equation 4.1 as follows:

where each cash flow is discounted by the zero-coupon yield y(t) corre-
sponding to its maturity t. The term structure of zero-coupon yields can be
estimated from the quoted yields on coupon bonds (see Chapter 3 for de-
tails). We assume a simple polynomial form for the term structure of zero-
coupon yields, as follows:1
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where parameters A0, A1, A2, and A3, are the height, slope, curvature, and
the rate of change of curvature (and so on) of the term structure. Though
about five to six terms on the right side of equation 4.3 may be needed for
adequately capturing the shape of the term structure of zero-coupon yields,
the height, slope, and curvature parameters are the most important. Exam-
ple 4.1 demonstrates how the term structure of zero-coupon yields can be
used to price bonds.

Example 4.1 Assume the following values for the shape parameters:

A0 = 0.06
A1 = 0.01
A2 = −0.001
A3 = 0.0001

Substituting these in equation 4.3, the term structure is given as:

Using the previous equation, the different maturity yields can be given as:

Similarly, one, two, three, four, and five-year yields are given as follows:

The assumed parameters define a rising shape for the term structure of
zero-coupon yields. By changing the values of the shape parameters, one
can define different types of shapes (e.g., rising, falling, humped) for the
term structure.

We can price a $1,000 face value, five-year, 10 percent annual coupon
bond, by substituting these yields in equation 4.2:
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Now, let the term structure experience a noninfinitesimal and a non-
parallel shift given as:

where A0' = A0 + ∆A0
A1' = A1 + ∆A1
A2' = A2 + ∆A2
A3' = A3 + ∆A3

and ∆A0, ∆A1, ∆A2, and ∆A3, are the changes in the shape parameters.
Equation 4.4 can be rewritten as follows:

where

Equation 4.6 defines the shift in the term structure of zero-coupon
yields as a function of the changes in height, slope, curvature, and other
parameters.

Example 4.2 Reconsider the initial term structure of zero-coupon yields as
defined in Example 4.1. Assume that the central bank increases the short
rate (y(0) may proxy for the short rate) by 50 basis points. This increase in
the short rate signals a slowing down of the economy to the bond traders.
Expecting slower growth and, hence, a lower inflation in the future, the
bond traders start buying the medium term bonds (for simplicity, in our
case, one year is a short term, and three to five years is a medium term).
This leads to a negative slope shift of 20 basis points per year. The changes
in curvature and other higher order parameters are zero. The shift in the
term structure is given as follows (see equation 4.6):
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The new term structure is given as follows:

Substituting different maturity values in these equations, the new zero-
coupon yields and the changes in zero-coupon yields can be easily com-
puted. These are given as follows:

The new bond price consistent with the new term structure of zero-
coupon yields equals $1,019.84. Hence, the bond price change equals (the
original bond price in Example 4.1 was $1,002.11):

Though the central bank increased the instantaneous short rate by 50
basis points, the five-year bond gained in value by approximately $17.73.
This happened because the long rates fell even as the short rates rose, lead-
ing to an overall increase in the bond price. This example demonstrates the
inadequacy of using the simple duration model, which would have falsely
predicted a decrease in the five-year bond’s price, given an increase in the
short rate (since it would assume a parallel increase in all yields). The per-
centage increase in the bond price is:

Shifts in Term Structure of Instantaneous Forward Rates

An alternate characterization of the term structure can be given by the
instantaneous forward rates. In many instances, it is easier to work with
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instantaneous forward rates as certain interest rate risk measures and
fixed-income derivatives are easier to model using forward rates. Though
any shift in the term structure of zero-coupon yields corresponds to a
unique shift in the term structure of instantaneous forward rates, the in-
stantaneous forward rates are a lot more volatile than the zero-coupon
yields, especially at the long end of the maturity spectrum. An intuitive
reason behind this is that longer term zero-coupon yields are averages
of instantaneous forward rates, and as is well known from statistics, an
“average” of a set of variables has a lower volatility than the average
volatility of the variables. A visual exposition of the difference in the
volatility of zero-coupon yields and instantaneous forward rates is given
by the Excel term structure movie in Chapter 3, based on McCulloch’s
term structure data.

As mentioned, a one-to-one correspondence exists between the term
structure of zero-coupon yields and the term structure of instantaneous for-
ward rates. The relationship between the two term structures can be given
as follows (see Chapter 3):

where y(t) is the zero-coupon yield for term t, and f(t) is the instantaneous
forward rate for term t (which is the same as the forward rate that can be
locked in at time zero for an infinitesimally small interval, t to t + dt).
Hence, given the term structure of instantaneous forward rates, the term
structure of zero-coupon yields can be obtained. It is also possible to obtain
the term structure of instantaneous forward rates, given the term structure
of zero-coupon yields, by taking the derivative of both sides of equation 4.7
as follows:

If the term structure of zero-coupon yields is rising, then ∂y(t)/∂t > 0,
and instantaneous forward rates will be higher than zero-coupon yields.
Similarly, if the term structure of zero-coupon yields is falling, then
∂y(t)/∂t < 0, and instantaneous forward rates will be lower than zero-
coupon yields.

Equation 4.7 can be used to express the bond price in equation 4.2
as follows:

(4.8)  f t t y t t y t( ) ( ) / ( )= × ∂ ∂ +

(4.7)
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To compute the bond price, we need an expression for the forward
rates. Substituting equation 4.3 into equation 4.8, and taking the derivative
of y(t) with respect to t, the instantaneous forward rate can be given as:

or

Substituting the forward rates given in equation 4.11 in equation 4.9
and computing the respective integrals, the bond price can be obtained
using the term structure of instantaneous forward rates.

Both the term structure of zero-coupon yields and the term structure of
instantaneous forward rates have the same height, but the term structure of
forward rates has twice the slope, and thrice the curvature (and four times
the rate of change of curvature, and so on) of the term structure of zero-
coupon yields. This makes the term structure of forward rates more volatile,
especially for longer maturities.

Using equation 4.11, the shift in the term structure of instantaneous
forward rates can be given as follows:

where the new term structure is given as:

Example 4.3 In this example, we price the $1,000 face value, five-year, 10
percent annual coupon bond using the instantaneous forward rates with the
same term structure parameter values given in Example 4.1. Then, we obtain
the new price of this bond using the instantaneous forward rates correspond-
ing to the new parameter values given in Example 4.2. We expect to find the
same prices as in Example 4.1 and Example 4.2, which used zero-coupon
yields, demonstrating how instantaneous forward rates are used in practice.
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Substituting the term structure parameter values from Example 4.1 into
equation 4.11, we get:

This equation can be used to compute the following integral:

Using the previous equation, the following five integrals can be computed:

Substituting these integrals in equation 4.9:

The bond price is the same as Example 4.1. Similarly, we can obtain the
new bond price using the new instantaneous forward rates. Substituting the
values of ∆A0 = 0.0050, ∆A1 = −0.0020, ∆A2 = 0.0, and ∆A3 = 0.0, from
Example 4.2 into equation 4.12 we get:
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The new term structure of instantaneous forward rates is given as:

The previous equation can again be used to compute the integral:

Using this equation, the five integrals can be computed for t = 1, 2, 3, 4, and
5. Substituting these integrals in the bond price equation, the new price of
the bond can be obtained as $1,019.84, which is identical to the new price
given in Example 4.2 using zero-coupon yields.

M-ABSOLUTE VERSUS DURATION

Recall that duration is defined as the weighted average of the maturities of
the cash flows of a bond, where weights are the present values of the cash
flows, given as proportions of the bond’s price:

Duration was defined in Chapter 2 using the bond’s yield to maturity. Du-
ration can be defined more generally using the entire term structure of in-
terest rates, with the following weights in equation 4.14:

where, CFt is the cash flow occurring at time t. Duration computed using
the yield to maturity is often known as the Macaulay duration, while dura-
tion computed using the entire term structure of interest rates, as in equa-
tions 4.14 and 4.15, is known as the Fisher and Weil (1971) duration. For
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brevity, we will refer to both duration definitions as simply “duration,”
though in this chapter we will be using the latter definition.

Duration gives the planning horizon, at which the future value of a
bond or a bond portfolio remains immunized from an instantaneous, paral-
lel shift in the term structure of interest rates. By setting a bond portfolio’s
duration to the desired planning horizon, the portfolio’s future value is im-
munized against parallel term structure shifts. The M-absolute risk measure
is defined as the weighted average of the absolute differences between cash
flow maturities and the planning horizon, where weights are the present
values of the bond’s (or a bond portfolio’s) cash flows, given as proportions
of the bond’s (or the bond portfolio’s) price:

Unlike duration, the M-absolute measure is specific to a given planning
horizon. The M-absolute risk measure selects the bond that minimizes the
M-absolute of the bond portfolio. For the special case, when planning hori-
zon is equal to zero, the M-absolute converges to the duration of the bond.
To get more insight regarding the M-absolute risk measure, consider the
lower bound on the change in the target future value of a bond portfolio
∆VH = VH' − VH, given as follows:2

where VH is the target future value of the bond portfolio at the planning
horizon H, given as:

and VH' is the realized future value of the bond portfolio at time H, given an
instantaneous change in the forward rates from f(t) to f '|(t), and V0 is the
current price of the bond portfolio.

Equation 4.17 puts a lower bound on the change in the target future
value of the bond portfolio, which is a function of a constant K3 and the
portfolio’s M-absolute. The term K3 depends on the term structure move-
ments and gives the maximum absolute deviation of the term structure of
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the initial forward rates from the term structure of the new forward rates.
Mathematically, K3 can be defined as follows:

for all t such that, 0 ≤ t ≤ tN.
The term K3 is outside of the control of a portfolio manager. A portfo-

lio manager can control the portfolio’s M-absolute, however, by selecting a
particular bond portfolio. The smaller the magnitude of M-absolute, the
lower the immunization risk exposure of the bond portfolio. Only a zero-
coupon bond maturing at horizon H has zero M-absolute, which implies
that only this bond is completely immune from interest rate risk. An implicit
condition required for the inequality 4.17 to hold is that the bond portfolio
does not contain any short positions (see Appendix 4.1). The immunization
objective of the M-absolute model is to select a bond portfolio that mini-
mizes the portfolio’s M-absolute. We call this objective the M-absolute im-
munization approach.

Both the duration model and the M-absolute model are single risk-
measure models. An important difference between them arises from the
nature of the stochastic processes assumed for the term structure move-
ments. The difference between duration and M-absolute can be illustrated
using two cases.

Case 1: The term structure of instantaneous forward rates experiences
an instantaneous, infinitesimal, and parallel shift (i.e., slope, curva-
ture, and other higher order shifts are not allowed). In this case, the
model leads to a perfect immunization performance (with duration
equal to the planning horizon date). In contrast, the M-absolute
model leads to a reduction in immunization risk but not to a com-
plete elimination of immunization risk except in certain trivial situ-
ations.3 Hence, the performance of the duration model would be
superior to that of the M-absolute model under the case of small
parallel shifts.

Case 2: The term structure of instantaneous forward rates experiences
a general shift in the height, slope, curvature, and other higher
order term structure shape parameters, possibly including large
shifts. Because the traditional duration model focuses on im-
munizing against small and parallel shifts in the term structure of
instantaneous forward rates, the presence of shifts in the slope,
curvature, and other higher order term structure shape parameters

(4.18)K K K where K f t K3 1 2 1 2= ( ) ≤ ( ) ≤Max , , , ∆
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may result in a “stochastic process risk” for the duration model.
The effects of the stochastic process risk are especially high for a
“barbell” portfolio as compared to a “bullet” portfolio.

Although the use of M-absolute does not entirely eliminate the risk of
small and parallel interest rate shifts, it does offer enhanced protection
against nonparallel shifts. Equation 4.17 gives the lower bound on the tar-
get future value of the bond portfolio as a product of its M-absolute and the
parameter K3, which gives the maximum absolute deviation of the term
structure of new forward rates from the term structure of initial forward
rates. In general, the value of K3 depends on the shifts in the height, slope,
curvature, and other relevant higher order term structure shape parameters.

The essential difference between the duration model and the M-absolute
model can be summarized as follows.

The duration model completely immunizes against the height shifts but
ignores the impact of slope, curvature, and other higher order term struc-
ture shifts on the future target value of a bond portfolio. This characteristic
allows the traditional duration model to be neutral toward selecting a bar-
bell or a bullet portfolio. In contrast, the M-absolute model immunizes only
partially against the height shifts, but it also reduces the immunization risk
caused by the shifts in the slope, curvature, and all other term structure
shape parameters by selecting a bond portfolio with cash flows clustered
around its planning horizon date.

The relative desirability of the duration model or the M-absolute model
depends on the nature of term structure shifts expected. If height shifts
completely dominate the slope, curvature, and other higher order term
structure shifts, then the duration model will outperform the M-absolute
model. If, however, slope, curvature, and other higher order shifts are rela-
tively significant—in comparison with the height shifts—then the M-absolute
model may outperform the traditional duration model.

Example 4.4 The M-absolute of a bond portfolio is computed identically
to the duration of a bond portfolio, except that the longevity of each cash
flow is reduced by H and then its absolute value is taken. For example, con-
sider a bond portfolio A consisting of equal investments in two zero-coupon
bonds maturing in two years and three years, respectively. The duration of
this portfolio would be equal to 2.5 years; that is,

DA = ×( ) + ×( ) =50 2 0 50 3 0 2 5% . % . .years years yearss
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The M-absolute of this portfolio, however, would depend upon the in-
vestor’s time horizon. For an investor with a time horizon of 2.5 years, the
portfolio M-absolute would be equal to 0.5; that is,

Now, consider bond portfolio B, consisting of equal investments in two
zero-coupon bonds maturing in one year and four years, respectively. The
duration of this portfolio would also be equal to 2.5 years; that is,

Note that both bond portfolios have equal durations and, based upon
duration alone, would appear to be equally risky. Portfolio A, however, of-
fers generally superior immunization because its cash flows are closer to the
horizon and therefore are less subjected to the effects of large and nonpar-
allel term structure shifts. This difference in riskiness is captured by the M-
absolute risk measures of the two portfolios. Note that the M-absolute of
portfolio B is greater than the M-absolute of portfolio A:

Because M-absolute is a single-risk-measure model, it does not generally
provide perfect interest rate risk protection. For example, the M-absolute of
portfolio A is equal to 0.5 years for any value of investment horizon H from
two to three years. Ultimately, the usefulness of M-absolute must be re-
solved empirically.

Nawalkha and Chambers (1996) test the M-absolute risk measure
against the duration risk measure using McCulloch’s term structure data
over the observation period 1951 through 1986. On December 31 of each
year, 31 annual coupon bonds are constructed with seven different maturi-
ties (1, 2, 3, . . . , 7 years) and five different coupon values (6, 8, 10, 12, and
14 percent) for each maturity.4

For December 31, 1951, two different bond portfolios are con-
structed corresponding to the duration strategy and the M-absolute strat-
egy. Under the duration strategy, an infinite number of portfolios exist that
would set the portfolio duration equal to the investment horizon H. To de-
termine a unique portfolio, the following quadratic objective function is
minimized:5

  
M A

B = × −( ) + × −( ) =50 1 0 2 5 50 4 0 2 5 1 5% . . % . . . years

  
DB = ×( ) + ×( ) =50 1 0 50 4 0 2 5% . % . .years years yearss
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subject to:

where pi gives the weight of the ith bond in the bond portfolio, and Di de-
fines the duration of the ith bond. The objective function of the M-absolute
strategy is to minimize the portfolio’s M-absolute:

subject to:

where MA
i defines the M-absolute of the ith bond.

The planning horizon, H, is assumed to equal four years. The two port-
folios are rebalanced on December 31 of each of the next three years (i.e.,
1952, 1953, 1954) when annual coupons are received. At the end of the four-
year horizon (i.e., December 31, 1955), the returns of the two bond portfo-
lios are compared with the return on a hypothetical four-year zero-coupon
bond (computed at the beginning of the planning horizon). The differences
between the actual values and the target value are defined as deviations in the
interest rate, risk-hedging performance. The immunization procedure is re-
peated over 32 overlapping four-year periods: 1951 to 1955, 1952 to 1956,
. . . , 1982 to 1986. Because interest rate volatility in the 1950s and 1960s
was lower than in the 1970s and 1980s, and to test the robustness of these

  

p

p i J

i
i

J

i

=
∑ =

≥ =
1

0 1 2

1

for all . . ., , , ,

(4.20)
  
Min p Mi

A
i

i

J

=
∑









1

p D H

p

p i

i i
i

J

i
i

J

i

=

=

∑

∑

=

=

≥ =

1

1

0 1 2

1

for all ., , , . . , J

(4.19)
  
Min pi

i

J
2

1=
∑











90 M-ABSOLUTE AND M-SQUARE RISK MEASURES

models against the possible nonstationarities in the stochastic processes for
the term structure, results for these two periods are analyzed separately.

Table 4.1 reports the sum of absolute deviations of the M-absolute
hedging strategy as a percentage of the sum of absolute deviations of the du-
ration strategy, for the two separate time periods. The M-absolute strategy
reduces the immunization risk inherent in the duration model by more than
half in both time periods. This finding implies that the changes in the height
of the term structure of instantaneous forward rates must be accompanied
by significant changes in the slope, curvature, and other higher order term
structure shape parameters.

M-SQUARE VERSUS CONVEXITY

Recall that convexity is defined as the weighted average of the maturity-
squares of the cash flows of a bond, where weights are the present values of
the cash flows, given as proportions of the bond’s price:

The weights are defined using the entire term structure of interest rates as in
equation 4.15. Convexity measures the gain in a bond’s (or a bond portfo-
lio’s) value due to the second order effect of a large and parallel shift in the
term structure of interest rates.

(4.21)
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TABLE 4.1 Deviations of Actual Values from Target Values for the Duration and
M-Absolute Strategies

Sum of Absolute As a Percentage of the 
Deviations Duration Strategy

Observation period 1951–1970

Duration strategy 0.10063 100.00

M-absolute strategy 0.03560 35.37

Observation period 1967–1986

Duration strategy 0.28239 100.00

M-absolute strategy 0.11604 41.09
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The M-square risk measure is defined as the weighted average of the
squared differences between cash flow maturities and the planning horizon,
where weights are the present values of the bond’s (or a bond portfolio’s)
cash flows, given as proportions of the bond’s (or the bond portfolio’s) price:

Unlike convexity, the M-square measure is specific to a given planning hori-
zon. The M-square model selects the bond portfolio that minimizes the M-
square of the bond portfolio, subject to the duration constraint (i.e.,
Duration = Planning horizon). For the special case, when planning horizon
is equal to zero, the M-square converges to the convexity of the bond. To get
more insight regarding the M-square risk measure, consider the following
inequality.6

where VH is the target future value of the bond portfolio at the plan-
ning horizon H.

Unlike the M-absolute model, the M-square model is based upon two
risk measures. If the portfolio is immunized with respect to duration (i.e.,
D = H), then equation 4.23 puts a lower bound on the target future value,
which is a function of a constant K4 and the portfolio’s M-square. The term
K4 depends on term structure movements and gives the maximum slope of
the shift in the term structure of instantaneous forward rates across the ma-
turity term t.7 Mathematically, K4 can be defined as follows:

for all t such that, 0 ≤ t ≤ tN.
The term K4 is outside of the control of a portfolio manager. A portfo-

lio manager can control the portfolio’s M-square, however, by selecting a
particular duration-immunized bond portfolio. The smaller the magnitude
of M-square, the lower the risk exposure of the bond portfolio. A portfolio
that has cash flows centered closer to its planning horizon has a lower M-
square. However, only a zero-coupon bond maturing at horizon H has a
zero M-square, which implies that only this bond is completely immune
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from interest rate risk. An implicit condition required for the inequality
(4.23) to hold is that the bond portfolio does not contain any short posi-
tions (see Appendix 4.1). The immunization objective of the M-square
model is to select a bond portfolio that minimizes the portfolio’s M-square,
subject to the duration constraint D = H.

A linear relationship exists between M-square and convexity, given
as follows:

If duration is kept constant, then M-square is an increasing function of con-
vexity. Equation 4.25 leads to the well-known convexity-M-square para-
dox.8 As shown in equation 3.18 in the previous chapter, higher convexity is
beneficial since it leads to higher returns. On the other hand, equation 4.23
suggests that M-square should be minimized, in order to minimize immu-
nization risk. These two statements contradict each other since increasing
convexity is equivalent to increasing M-square (see equation 4.25). This
convexity-M-square paradox can be resolved by noting that the “convexity
view” assumes parallel term structure shifts, while the “M-square view” as-
sumes nonparallel term structure shifts. Obviously, perfect parallel shifts in
the term structure are not possible. Hence, which view is valid, depends on
the extent of the violation of the parallel term structure shift assumption
(i.e., Is this violation slight or significant?).

Before we address this issue using empirical data, note that the convex-
ity view is not consistent with bond market equilibrium, because a riskless
positive return with zero initial investment can be guaranteed by taking a
long position in a barbell or high positive-convexity portfolio along with a
simultaneous and equal short position in a bullet or low-convexity portfo-
lio, each portfolio having equal durations. Hence, to avoid riskless arbitrage
opportunities, bond convexity must be priced in equilibrium. Specifically, if
convexity is desirable, the price of the barbell portfolio will be bid up much
like the expected bid-up in the price of a stock portfolio with positive skew-
ness. This conclusion is at odds with the convexity view that bond portfolio
returns can be increased through higher portfolio convexity.

However, since the M-square view is based on risk minimization condi-
tions against nonparallel shifts in the term structure of interest rates, this
view is consistent with equilibrium conditions, as it requires no specific as-
sumptions regarding the shape of these shifts.

In the following subsection, we provide a unified framework, which al-
lows both the convexity view and the M-square view as special cases of
the general framework. Then we show the empirical relationship between

(4.25)  M CON D H H2 22= − × × +
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bond convexity (which is linear in M-square) and ex ante bond returns. We
also investigate whether higher convexity portfolios lead to higher immu-
nization risk.

Resolving the Convexity/M-Square Paradox

Unlike the lower bound approach to the M-square model given earlier, Fong
and Fabozzi (1985) and Lacey and Nawalkha (1993) suggest an alternative
two-term Taylor-series-expansion approach to the M-square model. This
approach leads to a generalized framework for resolving the convexity/
M-square paradox.

Consider a bond portfolio at time t = 0 that offers the amount Ct at
time t = t1, t2 , . . . , tN. The return R(H) on this portfolio between t = 0 and
t = H (an investment horizon) can be given as:

where as shown in equation 4.17, VH' is the realized future value of the port-
folio at the planning horizon H after the term structure of forward rates
shifts to f '(t), and V0 is the current value of the portfolio using the current
term structure of forward rates f(t). As shown in Appendix 4.2, using a two-
term Taylor series expansion, equation 4.26 can be simplified as:

where, RF (H) is the riskless-return on any default-free zero-coupon bond
with maturity H given as:

and ε is the error term due to higher order Taylor series terms.
The duration coefficient in equation 4.28 is defined as follows:

and the M-square coefficient in equation 4.27 is defined as a difference of
two effects as follows:
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where

and

The convexity effect (CE) is positive for any term structure shift such
that an increase in convexity (i.e., same as increase in M-square) enhances
return regardless of the direction of the shift. This demonstrates the tradi-
tional view of convexity. The risk effect (RE) can be either positive or nega-
tive, depending on whether the instantaneous forward rate at the planning
horizon H experiences a positive or a negative slope shift. A positive slope
shift will decrease the value of the M-square coefficient (see equation 4.30)
such that a higher-M-square portfolio (i.e., the same as a higher convexity
portfolio) will result in a decline in portfolio return. A negative slope shift
will increase the value of the M-square coefficient such that a higher-M-
square portfolio (i.e., the same as a higher convexity portfolio) will result in
an increase in portfolio return.

The convexity view assumes an insignificant risk effect (i.e., parallel
shifts) such that only the convexity effect matters. Within this view, higher
convexity always leads to higher return, which is inconsistent with the equi-
librium conditions as outlined in Ingersoll, Skelton, and Weil (1978). Con-
versely, the equilibrium-consistent M-square view assumes an insignificant
convexity effect such that only the risk effect matters. Within this view, the
desirability of convexity depends on whether the risk effect is positive, neg-
ative, or insignificantly different from zero.

Example 4.5 Reconsider the $1,000 face value, five-year, 10 percent an-
nual coupon bond that was priced in Example 4.3. In this example, the ini-
tial term structure of instantaneous forward rates is given as:
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The instantaneous shift in the forward rates and the new term structure
of forward rates were given in that example as:

and

Consider the instantaneous return on this bond (at H = 0) using equation
4.27. Substituting H = 0, equation 4.27 simplifies to the following equation:

where D is the duration, and CON is the convexity of the bond.9 The con-
vexity effect and the risk effect are given as follows:

The M-square (or convexity) coefficient is equal to CE − RE =
0.0020125. The risk effect completely dominates the convexity effect in
this example. This could be because in this example, the slope change is
high, equal to −0.004 or negative 40 basis points per year. However, note
that even if slope change were only 1 basis point per year, the risk effect
would still be equal to 1⁄2(0.0001) = 0.00005, which is four times the con-
vexity effect of 0.0000125 produced by 50 basis points shift in the height
of the term structure. What this suggests is that even very small changes in
the slope (or curvature, etc.) of the term structure of forward rates can vi-
olate the assumption of parallel term structure shifts sufficiently, such that
the risk effect dominates the convexity effect. This is also consistent with a
number of empirical studies that show that convexity adds risk but not
extra return to option-free bond portfolios.
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From Example 4.3, the instantaneous return on the bond can be given as:

Approximating this return using the two-term Taylor series expansion
given earlier we get:

where

and

Substitutingdurationandconvexity in theTaylor series expansion,weget:

or

The approximation of 1.771 percent is extremely close to the actual re-
turn of 1.769 percent (the difference equals 0.002 percent).

Note that the approximation is good because it considers the risk effect
consistent with the M-square view. Suppose, we assumed perfect parallel
shifts consistent with the convexity view, instead. Then the risk effect would
be assumed to be zero, and the approximation would be given as follows:
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or

The return of −2.049 percent is consistent with the convexity view out-
lined in the previous chapter, and is very different from the actual return of
1.769 percent (the difference equals −3.818 percent).

Convexity, M-Square, and Ex-Ante Returns

Lacey and Nawalkha (1993) test a modified version of equation 4.27 in
order to empirically distinguish between the risk effect (caused by slope
changes) and the convexity effect (caused by second-order effect of height
changes). The equation tested is obtained from equation 4.27 by substitut-
ing the linear relationship between M-square and convexity given in equa-
tion 4.25 as follows:

where

An ex-ante version of equation 4.33 is tested with CRSP government
bond data using pooled cross-sectional time-series regressions of two-
month excess holding period returns of U.S. Treasury bonds on their dura-
tion and convexity measures over the period January 1976 through
November 1987. The results of these tests over the whole sample period as
well as over selected five-year periods are reported in Table 4.2.

The convexity coefficient (same as the M-square coefficient in equation
4.27) is negative in all eight subperiods, and is negative and statistically sig-
nificant over two of these periods. In general, high positive convexity is not
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associated with positive excess returns, a conclusion that rejects the “con-
vexity view,” consistent with the theoretical criticisms of bond convexity
given by Ingersoll, Skelton, and Weil (1978), among others.

However, the statistically significant negative values of the convexity co-
efficient over two subperiods provide some evidence that convexity is
priced, and that increasing the level of positive convexity reduces the ex-
ante excess return on a bond portfolio. The negative relationship between
the convexity exposure and excess holding-period bond returns is not in-
consistent with the results of Fama (1984), which imply a positive slope, but
a negative curvature for the term structure of excess holding-period returns.

Convexity, M-Square, and Immunization Risk

The previous section demonstrated that increasing convexity (or M-square)
does not increase ex-ante returns on bonds. This section shows that holding
duration constant, and increasing the absolute size of convexity (or M-
square) leads to higher immunization risk for bond portfolios. Bond port-
folios are constructed (using CRSP bond data) to have different levels of
convexity exposure, while keeping the duration equal to two months (i.e.,
0.16667 years). The standard deviation of the excess returns over two-
month holding periods is measured for each of these portfolios. The excess

TABLE 4.2 Ex Ante Bond Returns and Convexity Exposure

Number of 
Test Period β1 γ 2 Observations

Jan. 1976−Nov. 1987 0.00039 −0.000026 3,881

Jan. 1976−Dec. 1981 −0.00083 −0.000048 1,553

Jan. 1982−Nov. 1987 0.00126a −0.000034 2,328

Jan. 1977−Dec. 1982 0.00029 −0.000043 1,682

Jan. 1978−Dec. 1983 −0.00004 −0.000057 1,808

Jan. 1979−Dec. 1984 0.00057 −0.000075c 1,942

Jan. 1980−Dec. 1985 0.00109 c −0.000071c 2,097

Jan. 1981−Dec. 1986 0.00120b −0.000041 2,263

a Indicates significant at the 0.001 level. 
b Indicates significant at the 0.05 level. 
c Indicates significant at the 0.10 level.

Note: The number of observations in each period test is determined by (1) the num-
ber of two-month holding periods in the particular test period, and (2) the number
of bonds within each two-month holding period. 
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returns are defined as the portfolio’s duration-immunized return less the
riskless return.

Table 4.3 reports the standard deviation of the excess holding period re-
turns for portfolios with different levels of convexity exposures, for the full
sample period and the two subperiods, 1976 through 1981 and 1982
through 1987. Figure 4.1 illustrates these standard deviations graphically.

A clear relationship is shown between portfolio convexity and immu-
nization risk, where risk is defined by the standard deviation of the portfolio’s
excess return. High-convexity portfolios (both positive and negative) have the
highest risk, while low-convexity portfolios (both positive and negative) have
the lowest risk. Although the degree of tilt between convexity and risk is not
constant through time—the tilt is steeper over 1976 through 1981 than it is
over 1982 through 1987—a monotonic relationship between convexity and
risk holds for each period under examination. Thus, these results demon-
strate that the magnitude of convexity exposure increases immunization risk.

CLOSED-FORM SOLUTIONS FOR M-SQUARE AND
M-ABSOLUTE

In this section, we present closed-form solutions of M-square and M-
absolute that remove much of the computational burden associated with

TABLE 4.3 Convexity Exposure and Immunization Risk

Convexity
Immunization Risk

Exposure Jan. 76–Nov. 87 Jan. 76–Dec. 81 Jan. 82–Nov. 87

−50 4.842 6.379 2.414

−40 3.944 5.200 1.962

−30 3.051 4.026 1.516

−20 2.170 2.862 1.085

−10 1.323 1.734 0.699

0 0.659 0.803 0.479

+10 0.872 1.052 0.633

+20 1.652 2.096 1.001

+30 2.518 3.241 1.426

+40 3.406 4.409 1.870

+50 4.301 5.585 2.322
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summing quantities over time. The closed forms are valid both at coupon
payment dates and between coupon payment dates.

The expression for M-square of a security between cash flow payment
dates, with cash flows paid k times a year at regular intervals, is given as:

where i = y/k is the continuously compounded yield of the bond divided by
k, CFi is the ith of the cash flow payment (i = 1, 2, . . . , N), N is the total
number of cash flows, s is the time elapsed since the date of last cash flow
payment in the units of time interval between coupon payment dates, and H
is the planning horizon in the units of time interval between coupon pay-
ment dates. At the coupon payment dates, s = 0.

The M-square formula in equation 4.35 applies to all fixed-income secu-
rities with fixed regular cash flows, such as bonds, annuities, and perpetuities.
The division of the bracketed expressions by k2 on the right hand side of equa-
tion 4.35 gives the M-square value in annualized units. Even though the de-
rivation of M-square risk measure uses the whole forward rate curve, the
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equation 4.35 uses the continuously compounded yield per period of the se-
curity. It has been shown that the error by using a single yield versus the whole
yield curve in calculating the M-square is insignificant for portfolio immu-
nization and other hedging applications. Simplifying equation 4.35 gives:

which can be rewritten in an alternative form as:

where D is the duration and CON is the convexity as defined in Chapter 2.
Equation 4.37 expresses M-square in terms of duration and convexity.

Hence, substituting the closed-form solutions of D and CON obtained in
Chapter 2 into equation 4.37 gives the closed-form formula of M-square.
Since Chapter 2 obtained the formulas of D and CON, both between
coupon payment dates and at coupon payment dates, for three types of se-
curities (i.e., regular bonds, annuities, and perpetuities), appropriate sub-
stitutions of D and CON in equation 4.37 lead to the corresponding
M-square formulas.

The M-absolute is given in the summation form as:

where all variables are as defined above and xrefers to the absolute value
of x. The division of the bracketed expressions by k on the right hand side
of equation 4.38 gives the M-absolute value in annualized units.
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A closed-form formula for M-absolute between cash flow payment
dates is given as follows:

where P = Price of the underlying security with the accrued interest
(the security may be a regular fixed-coupon bond, an
annuity, or a perpetuity)

D = Duration of the underlying security
CF1 = First cash flow of the underlying security

L = INT(H + s)
INT(x) = Integer function defined as the closest integer less than

or equal to x

IA and IB are indicator functions defined as:

By substituting the appropriate formulas of the price and duration from the
previous chapter, either at coupon payment dates or between coupon pay-
ment dates, into equation 4.39, the M-absolute of a regular bond, or an an-
nuity, or a perpetuity, can be calculated, easily.

Example 4.6 Consider 12 bonds, all of which have a $1,000 face value and
a 10 percent annual coupon rate, but different maturities ranging from 1
year to 3.75 years in increments of 0.25 years. Assume that the yields to ma-
turity of all bonds are identical and equal 5 percent and the planning hori-
zon is set to two years. Table 4.4 gives the M-square and M-absolute of the
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nine bonds obtained by applying the closed-form solutions presented previ-
ously. All the figures are expressed in years.

APPENDIX 4.1: DERIVATION OF THE M-ABSOLUTE 
AND M-SQUARE MODELS

Consider a bond portfolio at time t = 0 with CFt as the payment on the
portfolio at time t (t = t1, t2, . . . , tN). Let the continuously compounded
term structure of instantaneous forward rates be given by f(t). The value of
the bond portfolio at time 0 is:

and the expected value of the portfolio at the planning horizon H is:
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TABLE 4.4 M-Square and M-Absolute for All Twelve Bonds

Bond’s Maturity N s M-Square M-Absolute

1 1 0 1.000 1.000

1.25 2 0.75 0.781 0.837

1.5 2 0.5 0.424 0.587

1.75 2 0.25 0.193 0.337

2 2 0 0.087 0.087

2.25 3 0.75 0.354 0.416

2.5 3 0.5 0.418 0.584

2.75 3 0.25 0.607 0.752

3 3 0 0.920 0.920

3.25 4 0.75 1.497 1.179

3.5 4 0.5 1.949 1.349

3.75 4 0.25 2.526 1.520
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Now, allow an instantaneous shift in the forward rates from f(t) to
f '(t) such that f '(t) = f(t) + ∆f(t). The realized future value of the portfolio
at time H is:

The change in the expected terminal value of the bond portfolio caused
by the instantaneous change in the forward rates is given as:

Using equations 4.41 and 4.43, the percentage change in the expected
terminal value of the bond portfolio can be given as:

where

To derive the M-absolute model, consider the following two cases:

Case 1: H ≥ t. Define a constant K1, subject to ∆f(t) ≥ K1, for all
t ≥ 0. Therefore,

which implies:

where x refers to the absolute value of x.
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Case 2: H ≤ t. Define a constant K2, subject to ∆f(t) ≤ K2, for all t ≥
0. Therefore,

or alternatively,

which implies:

Combining equations 4.46 and 4.49 produces:

Equation 4.50 can be rewritten as:

where , because K1 ≤ K2 for all t ≥ 0.

Because ex ≥ 1 + x, then

Assuming short positions are restricted such that CFt ≥ 0 for all t ≥ 0,
then by substituting the value of eh(t) from equation 4.52 into equation 4.44,
we obtain a lower bound on the change in the terminal value of the bond
portfolio given as:

where MA is the M-absolute of the bond portfolio defined as:
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or equivalently,

To derive the M-square model, let us define:

Then:

which implies:

Assume that the maximum slope of the shift in the term structure
of instantaneous forward rates across the maturity term t is given by a
constant K4 such as g(t) ≤ K4 for all t ≥ 0. Consider the following two
cases.

Case 1: H ≥ t. We have:
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Case 2: H ≤ t. We have:

Combining equations 4.59 and 4.60 gives:

for all t ≥ 0 and, therefore:

We then have:

Substituting this result into equation 4.44, we obtain the following
lower bound on the change in the terminal value of the bond portfolio:

where M2 is the M-square of the bond portfolio defined as:

APPENDIX 4.2: TWO-TERM TAYLOR-SERIES-
EXPANSION APPROACH TO THE M-SQUARE MODEL

Consider a bond portfolio at time t = 0 that offers the amount CFt at time
t (t = t1, t2, . . . , tN). Let the continuously compounded term structure of

(4.65)
  
M

V
CF e t Ht

f s ds

t t

t t tN

2

0

21
0

1

= × ∫ −( )−

=

=

∑ ( )

(4.64)
  

∆
∆

V

V
D H f H K MH

H

≥ − − × − ×( ) ( )
1

2 4
2

(4.63)e f H t H K t Hh t( ) ( )≥ − −( ) − −( )1
1

2 4

2
∆

(4.62)h t f H t H K t H t( ) ( ) ,≥ − −( ) − −( ) ≥∆ 1

2
04

2
for all

(4.61)u t g u du K t H
t

H
−( ) ≤ −( )∫ ( )

1

2 4

2

(4.60)
  

u t g u du t u g u du t u K du
t

H

H

t

H

t
−( ) = −( ) ≤ −( ) =∫ ∫ ∫( ) ( ) 4

11

2
K



108 M-ABSOLUTE AND M-SQUARE RISK MEASURES

instantaneous forward rates be given by f(t). Now allow an instantaneous
shift in the forward rates from f(t) to f '(t) such that f '(t) = f(t) + ∆f(t). The
return on the bond portfolio between t = 0 and t = H can be given as:

where V0 is the value of the bond portfolio at time 0, before the shift in the
forward rates:

and VH' is the realized future value of the portfolio at the planning horizon,
after the term structure of forward rates have shifted to f '(t):

Substituting the definitions of V0 and VH' into equation 4.66 gives:

where

If the forward rate function does not change between time 0 and H,
then k(t) = 1, and equation 4.69 reduces to:
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where RF(H) is the riskless return on any default-free zero-coupon bond
with maturity H.

If forward rates do change, the bond portfolio return will be different
from the riskless return. Equation 4.69 can be simplified further using a
two-term Taylor series expansion of k(t) around time t = H:

where ε(t) is the error term due to higher order Taylor series terms.
Substituting the value of k(t) from equation 4.72 into equation 4.69 and

simplifying gives:

where ε is the error term, the duration coefficient is defined as:

and the M-square coefficient is defined as:

As done in subsection 0, the M-square coefficient can be divided into
two components:

where:
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and

NOTES

1. See Chambers et al. (1984). Assuming a polynomial form for the term structure
of zero-coupon yields is not necessary, but doing so leads to many insights on
the nature of the nonparallel term structure shifts.

2. The proof of inequality in equation 4.17 is given in Appendix 4.1.
3. Only a single zero-coupon bond maturing on the planning horizon date has a

zero M-absolute (because short positions are restricted).
4. Since coupons are paid annually, all the one-year maturity coupon bonds col-

lapse to a single one-year zero-coupon bond regardless of the coupon rate.
5. The objective function “spreads out” the investment among available bonds.

Diversification across bonds tends to minimize the effects of unsystematic inter-
est rate risk.

6. The proof of inequality in equation 4.23 is given in Appendix 4.1.
7. The expression ∂∆f(t)/∂t is not the same as 2∆s in equation 4.12. The expres-

sion ∂∆f(t)/∂t defines the slope of the shift in the term structure of forward rates
at term t, and will generally change with t. The changing slope will result when-
ever curvature and other higher-order shape changes are nonzero.

8. See Lacey and Nawalkha (1993).
9. Recall that M-square converges to the convexity of a bond when the planning

horizon H = 0 (see equation 4.25).
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CHAPTER 5
Duration Vector Models

Though both M-absolute and M-square risk measures provide significant
enhancement in the immunization performance over the traditional du-

ration model, perfect immunization is not possible using either of the two
measures except for the trivial case in which the portfolio consists of a zero-
coupon bond maturing at the horizon date. Further gains in immunization
performance have been made possible by the duration vector model, which
using a vector of higher order duration measures immunize against changes
in the shape parameters (i.e., height, slope, curvature, and so on) of the term
structure of interest rates. Various derivations to the duration vector model
have been given in the literature that assume a polynomial form for the
shifts in the term structure of interest rates.1 The duration vector model
provides a high level of immunization performance using only three to five
risk measures.

In this chapter, we give a more general derivation to the duration vector
model that does not require the term structure shifts to be of a particular
functional form.2 Using an example, we demonstrate the application of the
duration vector model when the term structure is estimated using the expo-
nential functional form of the Nelson and Siegel (1987) model introduced
in Chapter 3.

This chapter also derives a new class of generalized duration vector
models. Since the shifts in the height, slope, curvature, and other parame-
ters of the term structure of interest rate shifts are generally larger at the
shorter end of the maturity spectrum, it is possible that an alternative set of
duration measures that are linear in g(t), g(t)2, g(t)3, and so on, and which
put relatively more weight at the shorter end of the maturity spectrum due
to the specific choice of the function g(t), may provide enhanced immuniza-
tion performance. Consistent with this intuition, this chapter gives a new
class of generalized duration vector models using a Taylor series expansion
of the bond return function with respect to specific functions of the cash

This chapter coauthored with Donald Chambers and Jun Zhang.
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flow maturities. Using a change of variable for the Taylor series expansion,
the generalized duration vector model leads to duration measures that are
linear in g(t), g(t)2, g(t)3, and so on. The generalized duration vector models
subsume the traditional duration vector models by considering the special
case, g(t) = t.

We consider a polynomial class of generalized duration vector models
based upon the functional form g(t) = tα. Different values of the parameter
α result in different generalized duration vector models. The value of α = 1
corresponds to the case of the traditional duration vector, where the higher
order duration measures are linear in t, t2, t3, and so on. Other values of α
are equivalent to cases where the higher order duration measures are linear
in some polynomial function of the maturity raised to integer powers [e.g.,
α = 0.5 produces t0.5, (t0.5)2, (t0.5)3].

Two other types of multifactor models that have become popular with
bond practitioners are given as the key rate duration models and the princi-
pal component models.3 Though these models will be considered in detail in
Chapters 9 and 10, some fundamental distinctions between them and the
generalized duration vector models must be pointed out briefly. Both the
generalized duration vector models and the key rate duration models are
based upon the assumption of smoothness in the shift of the term structure
of interest rates.4 These models do not require any assumptions regarding
the stationarity of the covariance structure of interest rate changes. For ex-
ample, the interest rate risk hedging conditions and portfolio formation do
not change depending upon whether short rates and long rates have a posi-
tive correlation or a negative correlation under these models. This explains
why these models can hedge with a high level of accuracy, even over periods
in which the covariance structure of interest rate changes is nonstationary.
However, the number of risk measures to be used and the corresponding
division of the term structure into different key rates remain quite arbitrary
under the key rate duration models. For example, Ho (1992) proposes as
many as eleven key rate durations to effectively hedge against interest rate
risk. The principal component models, however, require a stationary covari-
ance structure of interest rate changes and, hence, their performance can be
poor if the stationarity assumption is violated.

THE DURATION VECTOR MODEL

This section derives the duration vector model, which captures the interest
rate risk of fixed-income securities under nonparallel and noninfinitesimal
shifts in a nonflat yield curve. This model is a generalization of the tradi-
tional duration model. Under the duration vector model, the riskiness of
bonds is captured by a vector of risk measures, given as D(1), D(2), D(3),
and so on. Generally, the first three to five duration vector measures are suf-
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ficient to capture all of the interest rate risk inherent in default-free bonds
and bond portfolios.

To derive the duration vector model, consider a bond portfolio at time
t = 0 with CFt as the payment on the portfolio at time t (t = t1, t2, . . . , tN).
Let the continuously compounded term structure of instantaneous forward
rates be given by f(t). Now allow an instantaneous shift in the forward rates
from f(t) to f '(t) such that f '(t) = f(t) + ∆f(t). The instantaneous percentage
change in the current value of the portfolio is given as:

where

Equation 5.1 expresses the percentage change in the bond portfolio
value as a product of a duration vector and a shift vector. The duration
vector depends on the maturity characteristics of the portfolio, while the
shift vector depends on the nature of the shifts in the term structure of in-
stantaneous forward rates. The elements of the duration vector are defined
by equation 5.2. The duration vector elements are linear in the integer pow-
ers of the maturity of the cash flows of the bond portfolio (i.e., t, t2, t3). The
first element of the duration vector is the traditional duration measure given
as the weighted-average time to maturity. Higher order duration measures
are computed similarly as weighted averages of the times to maturity
squared, cubed, and so forth.
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The first shift vector element captures the change in the level of the for-
ward rate curve for the instantaneous term, given by ∆f(0); the second shift
vector element captures the difference between the square of this change
and the slope of the change in the forward rate curve (given by ∂∆f(t)/∂t at t
= 0); and finally the third shift vector element captures the effect of the third
power of the change in the level of the forward rate curve, the interaction
between the change in the level and the slope of the change in the forward
rate curve, and the curvature of the change in the forward rate curve (given
by ∂2∆f(t)/∂t2 at t = 0).

Generally, it has been found that the magnitudes of the higher order
derivatives in the shift vector elements dominate the magnitudes of higher
powers. For example, in the second shift vector element, the magnitude of
∂∆f(t)/∂t evaluated at t = 0 generally dominates the magnitude of ∆f(0)2. In
fact, this is the reason why the second-order duration measure D(2)
(which is the same as bond convexity when using continuous compound-
ing) mostly measures the sensitivity of the bond portfolio to the changes in
the slope of the forward rate curve (defined as the risk effect in the previ-
ous chapter), and not as much the sensitivity of the bond portfolio to large
changes in the height of the forward rate curve (defined as the convexity
effect in the previous chapter). Similarly, the third-order duration measure
D(3) mostly measures the sensitivity of the bond portfolio to the changes
in the curvature (and to some extent the product of the changes in the
height and the slope) of the forward rate curve, and not as much the sensi-
tivity of the bond portfolio to large changes in the height of the forward
rate curve.

To immunize a portfolio at a planning horizon of H years, the duration
vector model requires setting the portfolio duration vector to the duration
vector of a hypothetical default-free zero-coupon bond maturing at H. Since
the duration vector elements of a zero-coupon bond are given as its maturity,
maturity squared, maturity cubed, and so on, the immunization constraints
are given as follows:

(5.3)

   

D w t H

D w t H

D

t
t t

t t

t
t t

t t

N

N

( )

( )

1

2

1

1

2 2

= × =

= × =

=

=

=

=

∑

∑

(( )

( )

3 3 3

1

1

= × =

= × =

=

=

=

=

∑ w t H

D M w t H

t
t t

t t

t
M M

t t

t t

N

�

NN

∑



The Duration Vector Model 115

The duration vector of a bond portfolio is obtained as the weighted av-
erage of the duration vectors of individual bonds, where the weights are de-
fined as the proportions of investment of the bonds in the total portfolio. If
pi (I = 1, 2, . . . , J) is the proportion of investment in the ith bond, and Di
(m) (m = 1, 2, . . . , M) is the duration vector of the ith bond, the duration
vector of a portfolio of bonds is given by:

where

To immunize a bond portfolio, proportions of investments in different
bonds are chosen such that the duration vector of the portfolio is set equal
to a horizon vector as follows:

If the number of bonds J equals the number of constraints M + 1, then a
unique solution exists for the bond proportions p1, p2, . . . , pJ. If J < M + 1,
then the system shown in equation 5.5 does not have any solution. If J > M +
1 (which is the most common case), the system of equations has an infinite
number of solutions. To select a unique immunizing solution in this case, we
optimize the following quadratic function:

subject to the set of constraints given in equation 5.5. The objective func-
tion (5.6) is used for achieving diversification across all bonds, and reduces
bond-specific idiosyncratic risks that are not captured (e.g., liquidity risk)
by the systematic term structure movements.
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A solution to the constrained quadratic optimization problem given
previously can be obtained by deriving the first order conditions using the
Lagrange method. The solution requires multiplying the inverse of a J + M +
1 dimensional square matrix with a column vector containing J + M + 1 el-
ements as follows:

The first J elements of the column vector on the right-hand side of
equation 5.7 give the proportions to be invested in the different bonds in
the portfolio. The rest of the M + 1 elements of the column vector on the
right-hand side of equation 5.7 can be ignored. The matrix inversion and
matrix multiplication can be done on any popular software programs such
as Excel or Matlab.

This duration vector model has been derived under very general as-
sumptions that do not require the term structure shifts to be of a particular
functional form. This derivation follows from the M-vector model (1997) as
shown in Appendix 5.1.5 All previous approaches to the duration vector
model were more restrictive and based on a polynomial functional form for
the term structure shifts.6

Though more restrictive, a polynomial form for the term structure
shifts is insightful for understanding the return decomposition of a portfo-
lio using the duration vector model. Recall from Chapter 4 (see equations
4.6 and 4.12) that under a polynomial functional form, the instantaneous
shifts in the term structure of zero-coupon yields and the term structure of
instantaneous forward rates are given as follows:
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and

where ∆A0 = Change in the height parameter
∆A1 = Change in the slope parameter
∆A2 = Change in the curvature parameter

∆A3, ∆A4, . . . = Changes in other higher order shape parameters

Substituting equation 5.9 into equation 5.1, the percentage change in
the portfolio value is given as:

It can be seen that the shift vector elements simplify considerably under
the assumption of polynomial shifts. However, since our earlier derivation
ensures that the duration vector model does not require the assumption of
polynomial shifts, the model performs well even when the shifts are given
by other functional forms. This is demonstrated by the following two exam-
ples that apply the duration vector model to the term structure given in the
exponential form by Nelson and Siegel (1987).

Example 5.1 Consider five bonds all of which have a $1,000 face value
and a 10 percent annual coupon rate, but with different maturities as
shown in Table 5.1.

Assume that the term structure of instantaneous forward rates is esti-
mated using Nelson and Siegel’s exponential form:
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FIGURE 5.1 Term Structure of Instantaneous Forward Rates
and Zero-Coupon Yields
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TABLE 5.1 Description of the Bonds

Face Maturity Annual 
Bond # Value ($) (years) Coupon Rate (%)

1 1,000 1 10

2 1,000 2 10

3 1,000 3 10

4 1,000 4 10

5 1,000 5 10

Chapter 3 showed that the zero-coupon yield curve consistent with this
structure is:

Now, consider the following parameter values: α1 = 0.07, α2 = −0.02,
α3 = 0.001, and ß = 2. The corresponding instantaneous forward rate curve
and zero-coupon yield curve are shown in Figure 5.1.

Table 5.2 illustrates the computation of the first, second, and third
order duration risk measures of bond 5.
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TABLE 5.2 Computing the Price and the Duration Risk Measures of Bond 5

Zero-
Cash Coupon Present
Flows Yield Value Computing Computing Computing 

Maturity ($) (%) ($) D5(1) D5(2) D5(3)

T CF y(t) CF/et y(t) PV × t PV × t2 PV × t3

1 100 5.444 94.70 94.70 94.70 94.70

2 100 5.762 89.11 178.23 356.46 712.92

3 100 5.994 83.54 250.63 751.89 2,255.66

4 100 6.165 78.15 312.58 1,250.32 5,001.29

5 1,100 6.294 803.00 4,015.01 20,075.04 100,375.18

Total P = 1,148.51 4,851.15 22,528.41 108,439.75

D5(1) = D5(2) = D5(3) =
4.224 19.615 94.418

The first column of Table 5.2 gives the maturities of the cash flows; the
second column gives the dollar values of the cash flows; the third column
gives the zero-coupon yields obtained from Nelson and Siegel’s formula
given in equation 5.12; the fourth column gives the present values of the
cash flows, and the remaining three columns give the value of the product of
the present value of each cash flow and the corresponding maturity raised
to the power one, two, and three, respectively.

The sum of the present values of the cash flows gives the bond price. The
first-, second-, and third-order duration risk measures are computed by di-
viding the sums in the last three columns, respectively, by the bond price, or:

Similar calculations give the first-, second-, and third-order duration
measures for bonds 1, 2, 3, and 4 in Table 5.3.
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TABLE 5.3 Prices and Duration Risk Measures for All Five Bonds

Bond # Price ($) Duration Measures

1 1,041.72 D1(1) = 1.000 D1(2) = 1.000 D1(3) = 1.000

2 1,074.97 D2(1) = 1.912 D2(2) = 3.736 D2(3) = 7.383

3 1,102.79 D3(1) = 2.747 D3(2) = 7.909 D3(3) = 23.232

4 1,126.96 D4(1) = 3.516 D4(2) = 13.272 D4(3) = 51.535

5 1,148.51 D5(1) = 4.224 D5(2) = 19.615 D5(3) = 94.418

The duration vector of a bond portfolio is simply the weighted average
of the duration vectors of individual bonds, where the weights are defined
as the proportions invested in the bonds. To illustrate the computation of
portfolio duration vector, consider a bond portfolio with an initial value of
$10,000 composed of an investment of $2,000 in each of the five bonds.
The proportion of investment in each bond is then 0.2 and the duration vec-
tor of the bond portfolio is computed as follows:

This portfolio with equal weights in all bonds was arbitrarily selected
and does not provide an immunized return over a given planning horizon.
Suppose an institution desires to create an immunized portfolio consisting
of bonds 1, 2, 3, 4, and 5 over a planning horizon of three years using the
first-, second-, and third-order duration measures. The immunization con-
straints given by equation 5.5 lead to the following equations:

The previous system of four equations leads to an infinite number of so-
lutions, because the number of unknowns (five portfolio weights) is greater
than the number of equations. To select a unique immunizing solution, we
optimize the quadratic objective function given as:
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subject to the four constraints given.
The solution using equation 5.7 is:

Multiplying these proportions by the portfolio value of $10,000, bonds
1 and 5 must be shorted in the amounts of $1,871.40 and $1,215.25, re-
spectively. Adding the proceeds from the short positions to the initial port-
folio value of $10,000, the investments in bonds 2, 3, and 4 must be
$2,939.94, $5,582.55, and $4,564.17, respectively. Dividing these amounts
by the respective bond prices, the immunized portfolio is composed of 
−1.796 number of bonds 1, 2.735 number of bonds 2, 5.062 number of
bonds 3, 4.050 number of bonds 4, and −1.058 number of bonds 5.

Example 5.2 Consider a shift in the instantaneous forward rate curve
given in Example 5.1. Let the new parameters measuring the forward rate
curve be given as α1 = 0.075, α2 = −0.01, α3 = 0.002, and ß = 2. The
instantaneous forward rates before and after the shock are shown in
Figure 5.2.

The instantaneous forward rate curve shifts upward, while its shape
flattens. This is consistent with a positive height change, negative slope
change, and a positive curvature change. Though the magnitude of curva-
ture decreases, the sign of the change is positive, since it is from a high neg-
ative curvature to a less negative curvature. The hypothesized signs of the
changes in the shape of the forward rate curve are confirmed later in this
example. As a result of the shift in the instantaneous forward rate curve,
the values of the bonds 1, 2, 3, 4, 5, and the equally weighted portfolio
comprised of these bonds analyzed in Example 5.1 change to $1,028.21
(bond 1), $1,051.28 (bond 2), $1,071.09 (bond 3), $1,088.65 (bond 4),
$1,104.53 (bond 5), and $9,727.98 (bond portfolio).7

As a result of the change in forward rates, the instantaneous return on
the portfolio is given as follows:
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FIGURE 5.2 Shock in the Term Structure of Instantaneous Forward Rates
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According to equation 5.1, the return on the portfolio can be estimated
using three duration risk measures, as follows:

where

Since the initial forward rate curve is given as:

and the new forward rate curve after the shock is given as:
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we can compute the following expressions:

As conjectured in Figure 5.2, the forward rate curve experiences a pos-
itive height change, a negative slope change, and a positive curvature
change. Substituting the previous expressions into the shift vector elements,
gives:

The returns on the bond portfolio estimated from the model for the
three cases, when M = 1, M = 2, and M = 3, are given as:

The estimated returns approach the actual return on the bond portfolio
(−2.72 percent) as M increases. As Figure 5.3 shows, when M = 3 the dif-
ference between the estimated and the actual return has reduced to a third
of the corresponding difference when M = 1. Further, as Figure 5.3 demon-
strates, the differences between the estimated returns and actual returns de-
cline further as M increases. Though adding higher order duration measures
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FIGURE 5.3 Absolute Differences between Actual and Estimated Returns
for Different Values of M
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(i.e., by using higher values of M) leads to lower errors between the esti-
mated and the actual returns, the appropriate number of duration measures
to be used for portfolio immunization is an empirical issue, since the mar-
ginal decline in the errors has to be traded off against higher transaction
costs associated with portfolio rebalancing.

Nawalkha and Chambers (1997) perform an extensive set of empirical
tests over the observation period 1951 through 1986 to determine an ap-
propriate value of M for the duration vector model. Using McCulloch term
structure data, they simulate coupon bond prices as follows. On December
31 of each year (1951 through 1986), 31 annual coupon bonds are con-
structed with seven different maturities (1, 2, 3, . . . , 7 years) and five dif-
ferent coupon values (6, 8, 10, 12, and 14 percent) for each maturity.8

On December 31, 1951, five different bond portfolios are constructed
corresponding to five alternative immunization strategies corresponding to
five different values of M = 1, 2, 3, 4, and 5. For each value of M, the fol-
lowing quadratic objective function is minimized, subject to the immuniza-
tion constraints:

subject to:
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TABLE 5.4 Deviations of Actual Values from Target Values for the Duration
Vector Strategies

M = 1 M = 2 M = 3 M = 4 M = 5

Panel A: Observation period 1951–1970

Sum of absolute deviations 0.10063 0.03445 0.01085 0.00305 0.00136

As percentage of M = 1 100.00 34.23 10.78 3.03 1.35

Panel B: Observation period 1967–1986

Sum of absolute deviations 0.28239 0.06621 0.03228 0.01412 0.01082

As percentage of M = 1 100.00 23.45 11.43 4.99 3.83

where pi gives the weight of the ith bond in the bond portfolio, and Di(m)
defines the duration vector for the ith bond. The solution to this con-
strained optimization problem is given by equation 5.7.

The initial investment is set to $1 and the planning horizon is assumed
to equal four years. The five portfolios are rebalanced on December 31 of
each of the next three years when annual coupons are received. At the end of
the four-year horizon, the returns of all five bond portfolios are compared
with the return on a hypothetical four-year zero-coupon bond (computed at
the beginning of the planning horizon). The differences between the actual
values and the target value are defined as deviations in the interest rate risk
hedging performance. The tests are repeated over 32 overlapping four-year
periods given as 1951 to 1955, 1952 to 1956, . . . , 1982 to 1986.

Because interest rate volatility in the 1950s and 1960s was lower than
in the 1970s and 1980s, and to test the robustness of these models against
possible nonstationarities in the stochastic processes for the term structure,
results for the periods 1951 to 1970 and 1967 to 1986 are shown sepa-
rately in Table 5.4. Panels A and B report the sums of absolute deviations of
actual portfolio values from target values of the five hedging strategies for
each of the two subperiods.9 These deviations are also reported as a per-
centage of the deviations of the simple duration strategy (i.e., with M = 1)
for the two subperiods.
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The figures show that the immunization performance of the duration
vector strategies improves steadily as the length of the duration vector is
increased. The strategy with M = 5 leads to near-perfect interest rate risk
hedging performance, eliminating more than 95 percent of the interest rate
risk inherent in the simple duration strategy over both subperiods. The re-
sults of the tests are similar over both subperiods, providing empirical con-
firmation that the duration vector model is independent of the particular
stochastic processes for term structure movements.

Hedging Strategies Based on the Duration Vector Model

Though portfolio immunization is the most common application of the du-
ration vector model, other applications include bond index replication, du-
ration gap analysis of financial institutions, and active trading strategies.
Bond index replication consists of replicating the risk-return characteristics
of some underlying bond index. Under the duration vector model, this in-
volves equating the duration measures of the portfolio to those of the bond
index. For replicating a bond index, the relevant constraints on the duration
measures are:

Another application of the duration vector model is controlling the in-
terest rate risk of financial institutions by eliminating or reducing the dura-
tion measure gaps. For example, the duration gaps can be defined as follows
with respect to the first- and second-order duration measures:

where VA is the value of the assets and VL the value of the liabilities.
To immunize the equity value of the financial institution from the

changes in the term structure, the managers can eliminate the duration gaps
by imposing the following constraints:

(5.14)
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Highly leveraged financial institutions such as Fannie Mae and Freddie
Mac are generally very concerned about their interest rate risk exposure.
Though these institutions typically aim to make their first-order duration
gap equal to zero, they could use a gap model for the first- and second-
order duration measures as shown in equation 5.15.

Finally, the duration vector models allow speculative bond trading strate-
gies that are of interest to many fixed-income hedge funds. To obtain the de-
sired portfolio return, the duration risk measures can be set to any values.

Example 5.3 Suppose a hedge-fund manager predicts that the forward rate
yield curve will evolve as in Example 5.2. Hence, the shift vector under the
duration vector model is given as Y1 = −0.015, Y2 = 0.00236, and Y3 =
−0.00037. To benefit from such a yield-curve shift, the manager can select
a portfolio with a negative value of D(1), a positive value of D(2), and a
negative value of D(3). Let us assume that the target values for the three
duration measures are:

The instantaneous return on the bond portfolio, given the previous
yield-curve shift, is approximately equal to:

To obtain this return from the bond portfolio comprised of the bonds
1, 2, 3, 4, and 5 introduced in Example 5.1, the manager will have to deter-
mine the proportion of investment in the five bonds by performing the fol-
lowing constrained quadratic minimization:

subject to:
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The solution is given as follows:

Closed-Form Formulas for Duration Measures

Though the higher order duration measures given in equation 5.2 are com-
puted as summations, significant saving in computation time results by
using closed-form formulas for these measures instead of the summations.
The derivations of closed-form formulas require using the bond-specific
yield to maturity to compute the duration measures, instead of the whole
yield curve. It has been observed by Chambers et al. (1988) that the dura-
tion measures computed by using the bond-specific yield-to-maturities lead
to virtually identical immunization performance as achieved by the duration
measures computed using the whole yield curve. From a practical perspec-
tive, this means that all duration measures can be computed using a simple
calculator or a spreadsheet using information that is widely available.10

Nawalkha and Lacey (1990) show how to compute higher order dura-
tion measures, both at coupon payment dates, and between coupon payment
dates. The expression for the mth order duration risk measure of a bond, be-
tween coupon payment dates, with coupons paid k times a year is given as:

where i = y/k is the continuously compounded yield of the bond divided by
k, C is periodic coupon payment given as the annual coupon payment di-
vided by k, F is the face value, N is the total number of cash flows, and s is
the time elapsed since the date of last cash flow payment in the units of time
interval between coupon payment dates. The division of the bracketed ex-
pressions by km on the right side of equation 5.16 gives the mth order dura-
tion measure in annualized units.
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The closed-form solution for the mth order duration measure is given as:

where c = C/F, and Sm is given in closed form as follows:

and

Although in principle this approach can be used to obtain the closed-
form solution of all higher order elements of the duration vector, the for-
mulas become complicated and cumbersome to report as we move to higher
orders beyond three. Table 5.5 gives the closed-form solutions of the first
three elements of the duration vector. Bond practitioners frequently use
these three duration measures.

Example 5.4 Reconsider the five-year, 10 percent coupon bond in Example
5.1. The first three duration measures of this bond were given as, D(1) =
4.224, D(2) = 19.615, and D(3) = 94.418. We now compute these duration
measures using the closed-form formulas given in Table 5.5. Since this bond
gives annual coupons, its quoted yield to maturity is based upon annual
compounding and must be equal to 6.433 percent as shown next:

which gives r = 6.433% and y = i = 6.234%.
Assuming y is the continuously compounded yield, it is equal to

ln(1 + r) = ln(1.06433) = 6.234 percent, and can be easily obtained from
the quoted discrete annual yield.
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Since the bond matures in exactly five years, the closed-form formulas
with s = 0 given in Table 5.5 can be used to compute the three duration
measures. The first-, second-, and third-order duration measures of this
bond are computed as follows:

The three values obtained using the closed-form formulas are virtually
identical to the values to these duration measures obtained using the sum-
mation form earlier, the slight differences being due to the use of the single
rate i instead of the whole yield curve. The slight differences are so insignif-
icant, that immunization performance is virtually identical using either of
these duration measures.

Now consider the computation of the first-, second-, and the third-
order duration measures after nine months, so that the bond now matures
in four years and three months. Also, assume that the yield to maturity is
still 6.234 percent. Since the bond has not paid any coupons yet, the num-
ber of coupons before maturity is still 5 (N = 5), but the first coupon is due
in three months. The time elapsed since the date of the last coupon relative
to time between two coupon payments is s = 9 months/12 months = 0.75
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FIGURE 5.4 Calculating Higher Order Duration Measures

S0 = 4.163
S1 = 11.971
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years. To compute the duration measures, we use the formulas in the top
section of Table 5.5, which yield:

As expected, the duration measures between coupon payment dates
are lower than those obtained earlier. The significant differences between
the duration measures at coupon payment dates and those between
payment dates as we move to higher order measures, show that ignoring the
time elapsed between coupon payment dates can introduce significant er-
rors in portfolio formation when higher order duration strategies are used.

When duration measures of orders higher than three are needed, we
suggest the approach illustrated in Example 5.5 for efficiency of calculation.
The approach consists of computing the values of Sm for every m from 0 to
the length chosen for the duration vector. According to equation 5.18, S0 is
used in the calculation of S1, S0 and S1 are used in the calculation of S2, and
so on. As we are obtaining the value of each Sm, it can be substituted into
equation 5.17 to obtain each duration measure D(m).

Example 5.5 Consider again the five-year, 10 percent coupon bond priced
to yield 6.234 percent. The method used for computing the five elements of
the duration vector of this bond is shown by Figure 5.4.

GENERALIZED DURATION VECTOR MODELS

Although increasing the length of the duration vector improves the immu-
nization performance, it also tends to produce more extreme portfolio
holdings than is produced by the duration vector of a shorter length. As
a result, the portfolio becomes increasingly exposed to nonsystematic
risks (i.e., bond-specific) and incurs high transactions costs. For this rea-
son, instead of increasing the length of the duration vector, we propose a

  D D D( ) . ; ( ) . ; ( ) .1 3 480 2 13 874 3 57 136= = =
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polynomial class of generalized duration vector models, which seems to be
more effective in protecting against immunization risk than the traditional
duration vector model, without increasing the vector length.11 These mod-
els are obtained using a generalized Taylor series expansion of the portfo-
lio return given in Appendix 5.1.

The generalized duration vector model is given as follows:

where

and

Equation 5.20 defines the generalized duration risk measures D*(1),
D*(2), D*(3), . . . , D*(M). The generalized duration risk measures are sim-
ilar to the traditional duration risk measures, except that the weighted aver-
ages are computed with respect to g(t), g(t)2, g(t)3, and so on, instead of t,
t2, t3, and so on. Hence, the generalized duration risk measure D*(1) is the
weighted average of g(t), the generalized duration risk measure D*(2) is the
weighted average of g(t)2, and so on. The shift vector elements in equation
5.19 depend only on the nature of term structure shifts, and not on the
portfolio characteristics. These elements are defined in Appendix 5.1.

For immunizing a bond portfolio, the first-, second-, third-, and higher
order generalized duration risk measures of the portfolio are set equal to
g(H), g(H)2, g(H)3, and so on, which is similar to the traditional duration
vector models in which the first-, second-, third-, and higher order duration
measures of the bond portfolio are set equal to H, H2, H3, and so on. The
immunization constraints are given as follows:
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TABLE 5.6 Computing the Generalized Duration Risk Measures of Bond 5

Zero-
Cash Coupon Present
Flows Yield Value Computing Computing Computing 

Maturity ($) (%) ($) D*
5(1) D*

5(2) D*
5(3)

t CF y(t) CF/et y(t) PV × t0.25 PV × t0.25 × 2 PV × t0.25 × 3

1 100 5.444 94.70 94.70 94.70 94.70

2 100 5.762 89.11 105.98 126.03 149.87

3 100 5.994 83.54 109.95 144.70 190.44

4 100 6.165 78.15 110.51 156.29 221.03

5 1,100 6.294 803.00 1,200.77 1,795.57 2,685.00

Total P = 1,148.51 1,621.91 2,317.29 3,341.04

D*
5(1) = D*

5(2) = D*
5(3) =

1.412 2.018 2.909

Example 5.6 Consider the polynomial functions given as g(t) = tα for the
generalized duration vector models. Reconsider the five bonds and the bond
portfolio given in Example 5.1. Assuming that α = 0.25 and thus, g(t) =
t0.25, Table 5.6 shows how to compute the generalized duration risk
measures of bond 5 up to the third order.

The first four columns of Table 5.6 give the cash flow maturities, the
dollar value of the cash flows, the zero-coupon yield, and the present values
of the cash flows, respectively. The remaining three columns of the table

(5.21)
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TABLE 5.7 Prices and Duration Risk Measures for Each Bond

Bond # Price ($) Generalized Duration Measures

1 1,041.72 D*1(1) = 1.000 D*1(2) = 1.000 D*1(3) =1.000

2 1,074.97 D*2(1) = 1.173 D*2(2) = 1.378 D*2(3) = 1.622

3 1,102.79 D*3(1) = 1.279 D*3(2) = 1.644 D*3(3) = 2.121

4 1,126.96 D*4(1) = 1.354 D*4(2) = 1.850 D*4(3) = 2.543

5 1,148.51 D*5(1) = 1.412 D*5(2) = 2.018 D*5(3) = 2.909

compute the first-, second-, and third-order generalized duration measures
by summing the products of the present value of cash flows and the corre-
sponding maturities raised to different powers. These powers are obtained
by multiplying the value of α = 0.25 by the successive integer values of one,
two and three, respectively.

The first-, second-, and third-order generalized duration risk measures
are computed by dividing the sums in the last three columns, respectively,
by the bond price, or:

Similar calculations for bond 1, 2, 3, and 4 give the generalized dura-
tion risk measures for these bonds shown in Table 5.7.

Using Table 5.7, the generalized duration vector of an equally weighted
bond portfolio, invested in the five bonds, is given as follows:

This portfolio with equal weights in all bonds was arbitrarily selected
and does not provide an immunized return over a given planning horizon.
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Suppose an institution desires to create an immunized portfolio consisting
of bonds 1, 2, 3, 4, and 5 over a planning horizon of three years using the
first-, second-, and third-order generalized duration measures. The immu-
nization constraints given by equation 5.21 lead to the following equations:

This system of four equations leads to an infinite number of solutions,
because the number of unknowns (five portfolio weights) is greater than the
number of equations. To select a unique immunizing solution, we optimize
the quadratic objective function given as:

subject to the four constraints given here.
The solution is similar to that shown in equation 5.7, but with two

modifications. First, generalized duration measures given in Table 5.7 are
used instead of traditional duration measures. Second, g(H) = 30.25, g(H)2 =
(30.25)2, g(H)3 = (30.25)3, and so on, are substituted instead of H, H2, H3, and
so on in the column vector on the left-hand side of equation 5.7. Quadratic
optimization gives the following solution for the bonds’ proportions:

Multiplying these proportions by the portfolio value of $10,000,
bonds, 1 and 5 must be shorted in the amounts of $1,202.73 and
$1,923.12, respectively. Adding the proceeds from the short positions to the
initial portfolio value of $10,000, the investments in bonds 2, 3, and 4 must
be $1,072.81, $6,641.98, and $5,411.05. Dividing these amounts by the re-
spective bond prices, the immunized portfolio is composed of −1.155 num-
ber of bonds 1, 0.998 number of bonds 2, 6.023 number of bonds 3, 4.801
number of bonds 4, and −1.674 number of bonds 5.

Not surprisingly, the immunized portfolio under the generalized dura-
tion vector with g(t) = t0.25 is different from the immunized portfolio under
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FIGURE 5.5 Weights of Each Bond in the Portfolios Immunized with the
Generalized Duration Vector for Different Values of α

2.0 

1.5 

1.0 

0.5 

0.0 

–0.5

Value of α

W
ei

gh
t o

f e
ac

h 
bo

nd

1.501.250.750.500.25 1.00

Bond 1
Bond 2
Bond 3
Bond 4
Bond 5

the traditional duration vector model (i.e., when g(t) = t). Other different
values of α lead to different portfolio weights. This is shown in Figure 5.5,
which gives the weights of each of the five bonds in the immunized portfo-
lio for values of α ranging from 0.25 to 1.5.

Figure 5.5 shows that a lower value of α comes with a higher bond
portfolio concentration in bonds 3 and 4, where as a high value of α comes
with investments spread out in bonds 2, 3, and 4. Nawalkha, Soto, and
Zhang (2003) examine the immunization performance of the generalized
duration vector model corresponding to g(t) = tα with six different values of
α: 0.25, 0.5, 0.75, 1, 1.25, and 1.5. Different lengths of the generalized du-
ration vectors (i.e., the value of M ranging from 1 to 5) are used to test
which functional forms converge faster. Nawalkha, Soto, and Zhang (2003)
find that the lower α generalized duration strategies significantly outper-
form higher α strategies, when higher order duration constraints are used.

APPENDIX 5.1: DERIVATION OF THE GENERALIZED
DURATION VECTOR MODELS

Consider a bond portfolio at time t = 0 with CFt as the payment on the
portfolio at time t(t = t1, t2, . . . , tN). Let the continuously compounded
term structure of instantaneous forward rates be given by f(t). Now allow
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an instantaneous shift in the forward rates from f(t) to f '(t) such that f '(t) =
f(t) + ∆f(t). The return on the bond portfolio between t = 0 and t = H can
be given as:

where V0 is the value of the bond portfolio at time 0, before the shift in the
forward rates:

and VH' is the realized future value of the portfolio at the planning horizon,
after the term structure of forward rates have shifted to f '(t):

Substituting the definitions of V0 and VH' into equation 5.22 gives:

where

Using a change of variable, let the forward rate function f(t) be repre-
sented by a chain function given as:
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where g(t) is a continuously differentiable function of t. Further assume that
g(t) is monotonic and the inverse function of g(t) exists and is given as:

The instantaneous change in the forward rate function can be given as:

Using equations 5.28 and 5.29, we have:

where

Doing a Taylor series expansion of r(g(t)) around g(H), k(t) can be rep-
resented as:

For a reasonably large number M, the first M + 1 terms of the above equa-
tion may approximate the value of k(t) well. Equation 5.32 can be written in
a simplified form as:
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where

and expression ε(t) is the error term due to higher order Taylor series terms.
Equation 5.31 shows that the value of p(g) depends on the change in

the forward rate function. In particular, if the forward rate function does
not change, p(g(H)) equals zero and, therefore, Z*

m = 0 for all m = 1, 2, . . . ,
M. In this case, k(t) = 1, and the return on the portfolio is riskless. Substi-
tuting k(t) = 1 into equation 5.25, the riskless return between time 0 and H
is given as:

If forward rates do change, the bond portfolio return will be different
from the riskless return. The bond portfolio return can be obtained by sub-
stituting equation 5.33 into equation 5.25, which gives:

where ε is the error term due to higher order Taylor series terms, RF (H) is
the riskless return defined in equation 5.34, and M*m is the mth measure of
the generalized M-vector corresponding to a given function g(t) for all m =
1, 2, . . . , M. The mth measure is of the following form:
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Defining the generalized shift vector elements for all m = 1, 2, . . . , M, as:

where

Assuming H = 0, equation 5.35 reduces to the generalized duration vector
model given by equation 5.19:

The duration vector model introduced in equation 5.1 can be obtained
as a special case of the generalized duration vector model given in equation
5.38, when g(t) = t.

NOTES

1. For example, see Chambers, Carleton, and McEnally (1988), Grandville
(2003), Granito (1984), Nawalkha (1995), and Prisman and Tian (1994).

2. This derivation is based upon the M-vector model of Nawalkha and Cham-
bers (1997) and the generalized M-vector model of Nawalkha, Soto, and
Zhang (2003).
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3. A review of different multifactor models can be found in Soto (2001b). For an
empirical comparison of various recent approaches, see Soto (2004a).

4. The generalized duration vector models require the assumption of smoothness
in the shift of the term structure of interest rates in order to perform a general-
ized Taylor series expansion. The key rate durations require the same assump-
tion in order to divide the shift in the term structure of interest into many
approximately linear segments.

5. The M-Vector model was derived by Nawalkha and Chambers (1997). The de-
rivation of equation 5.1 follows from the M-Vector model, under the assump-
tion of an instantaneous planning horizon, or H = 0.

6. See Chambers, Carleton, and McEnally (1988), Grandville (2003), Granito
(1984), and Nawalkha (1995).

7. To compute the prices, note that the new zero-coupon yields for maturities
from one year to five years are: y(1) = 6.749%, y(2) = 6.921%, y(3) = 7.041%,
y(4) = 7.127%, and y(5) = 7.190%.

8. Since coupons are paid annually, all the one-year maturity coupon bonds col-
lapse to a single one-year zero-coupon bond regardless of the coupon rate.

9. Each of these two periods includes 16 four-year overlapping holding periods.
10. Yield to maturity given in discrete frequencies (annual, semiannual, etc.) can be

turned into continuously compounded yields using the results shown in Chapter 2.
11. See Nawalkha, Chambers, Soto, and Zhang (2003) and Nawalkha, Soto, and

Zhang (2003).
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CHAPTER 6
Hedging with Interest-Rate Futures

For centuries futures contracts traded primarily on physical commodities
such as precious metals, agriculture, wood products, and oil. The intro-

duction of exchange-traded derivative contracts on financial securities in the
1970s coincided with the publications of highly influential papers on how
to value these derivatives. A futures contract is an agreement between two
parties to trade an asset at some future date for a fixed price agreed upon
today. Due to features such as standardization, marking to market, and so
forth, futures contracts are more liquid and easier to trade than forward
contracts. Popular interest rate futures contracts in the United States and
Europe include Eurodollar futures, and futures on Treasury bonds, notes,
and bills. Short-term interest rate futures contracts, such as T-bill and Euro-
dollar, trade on the Chicago Mercantile Exchange (CME), while long-term
contracts such as T-note and T-bond, trade on the Chicago Board of Trade
(CBOT). Table 6.1 displays the denomination, the name of the exchange,
and the open interest (the number of contracts outstanding) on December
10, 2003, for the different interest rate futures contracts. As can be seen
from this table, the explosive growth of the Eurodollar futures contract has
come at the expense of the T-bill futures contract, which has virtually faded
to extinction, even though the T-bill cash market continues to be the most
liquid short-term fixed-income market in the world. In 2003, less than 20
futures contracts traded daily on T-bills compared to roughly 800,000 con-
tracts on Eurodollar time deposits. The number of contracts outstanding on
T-notes and T-bonds are less than 1.5 million, while the number of con-
tracts outstanding on Eurodollars are 5.2 million on December 10, 2003.

This chapter describes the contractual details and pricing of the interest
rate futures contracts listed in Table 6.1. The chapter also shows how to
hedge and speculate against interest rate movements using these futures con-
tracts. In order to capture the effects of nonparallel rate changes, we derive

This chapter coauthored with Iuliana Ismailescu.
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the duration vectors of these contracts (see Chapter 5 for more details on the
duration vector model), which allow hedging against the changes in height,
slope, curvature, and so on of the term structure of interest rates.

EURODOLLAR FUTURES

A Eurodollar deposit is a deposit denominated in U.S. dollars in an Ameri-
can or foreign bank located outside the United States. The interest rate on
the Eurodollar deposit is given as the London Interbank Offer Rate
(LIBOR), which is the ask rate at which large international banks lend U.S.
dollars to each other.1 The three-month Eurodollar futures contract is based
on a hypothetical three-month (90-day) Eurodollar CD with a face value of
$1 million. The contract expires in the months of March, June, September,
and December, as well as all four nearest months, with maturities extending
up to 10 years into the future. The Eurodollar futures contract is settled in
cash on the second London business day prior to the third Wednesday of the
delivery month.

The three-month Eurodollar futures is the most liquid and actively
traded futures contracts in the world, its success largely resulting from com-
plimentary growth of the over-the-counter LIBOR-based derivative prod-
ucts, such as interest rates swaps, interest rate options (caps, floors, etc.),
and forward rate agreements (FRAs). Traders often use Eurodollar futures
to hedge against the exposure in interest rate swaps and other LIBOR-based
products. Compared to the notional amount of about $5.2 trillion for the
Eurodollar futures contracts at the end of 2003 (see Table 6.1), the notional
amounts of dollar-denominated derivative such as interest rate swaps, inter-
est rate options, and FRAs are about $31 trillion, $5.2 trillion, and $3.6
trillion, respectively.

TABLE 6.1 Interest Rate Futures

Open Interest
Contract Denomination ($) Exchange December 10, 2003

U.S. T-Bills 1,000,000 CME 0

Eurodollars 1,000,000 CME 5,203,120

U.S. T-Bonds 100,000 CBOT 490,968

U.S. T-Notes 100,000 CBOT 986,595

Note: CME = Chicago Mercantile Exchange; CBOT = Chicago Board of Trade.

Source: The Wall Street Journal.
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Arguably, even though Eurodollar futures is the most successful exchange
traded contract ever, its price does not converge to any spot market instru-
ment in the Eurodollar market. The CME designed the contract so that its
price converges to 100 minus q/4 at expiration, where q is the annualized rate
on a 90-day Eurodollar time deposit (using quarterly compounding and 360
days in a year). Hence, though the futures contract is priced as if the underly-
ing Eurodollar time deposit is a discount instrument (similar to T-bills), in re-
ality the Eurodollar time deposits are add-on instruments. Specifically, given
the annualized rate q on a 90-day Eurodollar time deposit observed at the fu-
tures expiration date, an investment of $100 in the Eurodollar time deposit
grows to 100 plus q/4 after 90 days, even though futures price converges to
100 minus q/4 at the expiration date. Due to the absence of convergence of
the Eurodollar futures contract to the underlying spot price, the sensitivities
of Eurodollar futures prices to changes in LIBOR have a slightly different
form than the sensitivities of T-bill futures prices to changes in the U.S. Trea-
sury rates.

Futures Prices and Futures Interest Rates

Let Q be the quoted or the settlement price for a Eurodollar futures con-
tract with an expiration date s. The relationship between the settlement
price and the futures interest rate is given as follows:

where q is the 90-day LIBOR futures rate expressed in percentage with
quarterly compounding and an actual/360 day-count convention (see
Chapter 3 for details on the three different day-count conventions). Con-
ceptually, the futures rate q is the quarterly compounded annualized rate
that can be locked in on a Eurodollar deposit to be made at time s for a pe-
riod of 90 days. Of course, Eurodollar futures are settled in cash, so the ex-
ercise of the futures contract does not lead to an actual investment in
Eurodollars on the delivery date. The discrete rate q can be transformed
into a continuously compounded annualized rate that uses actual/365 day
count convention as follows:

(6.2)
  
1

4
100

90 365 90 365+ = + ×q f s s/ *( , / ) ( / )e

(6.1)  q Q= −100
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where f*(s, s + 90/365) is the continuously compounded futures rate ex-
pressed in decimal form, which can be locked in on a Eurodollar deposit to
be made at time s for a period of 90 days. By taking logarithms of both sides
of equation 6.2 and simplifying, we get:

The futures interest rate is different from forward interest rate. The
difference arises because futures contracts are marked-to-market every
day, which makes these contracts more volatile than the corresponding for-
ward contracts. Though the exact relationship between the futures rates
and forward rates is dependent on the assumptions of a specific term
structure model, the following approximation based on Ho and Lee (1986)
can be used:

where, f(s, s + t) is the annualized forward rate with continuous compound-
ing, t is the maturity of the underlying asset at the delivery date s (for the
Eurodollar futures contracts, t = 90/365), and σ is the annual standard de-
viation of the change in the short-term interest rate. The term 1⁄2σ2s(s + t) is
known as the convexity adjustment. For short maturities, convexity adjust-
ment is close to zero, and the Eurodollar futures interest rates can be as-
sumed to be the same as the corresponding forward interest rate. For long
maturity Eurodollar futures, a convexity adjustment must be used for ob-
taining the implied forward rates. If the default risk associated with Euro-
dollar deposits in foreign countries is small, then Eurodollar forward rates
should be only slightly higher than the corresponding U.S. Treasury for-
ward rates. Hence, the deviations of the Eurodollar futures rates from the
forward rates in the U.S. Treasury markets should be due to two reasons:
the convexity adjustment and the default risk.

Example 6.1 Consider a five-year maturity Eurodollar futures contract with
a quoted or settlement price of 96. The quarterly compounded annualized
futures rate, q, can be calculated in percentage using equation 6.1:

Using equation 6.3, the continuously compounded annualized futures
rate f*(5, 5 + 90/365) based on an actual/365 day-count convention is com-
puted as follows:

q = − =100 96 4

(6.4)
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Finally, the continuously compounded annualized forward rate,
f(5, 5 + 90/365) is computed using equation 6.4 as follows:

Using a standard deviation of 1.2 percent, the forward rate is equal to:

Due to marking-to-market, futures contracts are riskier investments
than forward contracts and, hence, it is natural that the futures rate is
higher than the forward rate.

An investor with a long position in the Eurodollar futures expects to
gain (lose) when interest rates go down (up), while an investor with a short
position expects to gain (lose) when interest rates go up (down). Due to
marking-to-market, the gains or losses are settled on a daily basis. Gains
and losses incurred by the holders of futures positions are equal to the
changes in the contract price. To compute the gains and losses, we need to
convert the settlement price of the futures contract Q, into a contract price.

The contract price (CP) corresponding to the settlement price Q, is
given as:

Thus, a settlement price of 96 in the previous example corresponds to a
contract price of:

This can be alternatively computed as follows:

(6.6)  CP = + × =750,000 2 500 96 990 000, $ ,

CP = − =10 000 100 0 25 100 96 990 000, [ . ( - )] $ ,

(6.5)
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Due to the linear relationship in equation 6.1, a change of one basis
point in the settlement price Q, corresponds to a change of one basis point in
the quoted futures rate q. Further, the contract price changes by $25 for
every one basis point change in either the settlement price or the futures rate.
For example, if the settlement price Q changes to 96.01 from 96, then quoted
futures rate q will change to 3.99 from 4 (using equation 6.1, and the con-
tract price will increase by $25 to become $990,025, using equation 6.5). Fi-
nally, substituting equation 6.1 into equation 6.5, the contract price can also
be expressed as a linear function of the quoted futures rate q as follows:

Hedging with Eurodollar Futures

Due to the availability of Eurodollar futures with expiration dates up to 10
years, these contracts are useful in capturing the effects of the changes in the
various shape parameters that measure the term structure of interest rates.
Since the contract prices of Eurodollar futures are linear in the quoted futures
rates (see equation 6.7), Eurodollar futures are effective in hedging against the
changes in interest rates, without introducing the nonlinear effects of convex-
ity, and so forth. Since many instruments in the LIBOR-based derivative mar-
kets, such as interest rate swaps and interest rate options are also linear in
interest rates, Eurodollar futures are effective in hedging these products.

In the following section we show that Eurodollars may be effective in
hedging even fixed-income securities such as regular bonds that are nonlin-
ear functions of interest rates.

As pointed out in Chapters 4 and 5, the nonlinear effects of rate
changes are extremely small compared to the linear effects of the nonparal-
lel rate changes, such as shifts in the height, slope, curvature, and so on of
the term structure of interest rates. In this section, we extend the duration
vector model developed in Chapter 5 to Eurodollar futures, by making two
assumptions:

1. We use a linear approximation for the derivation of the duration vector
of Eurodollar futures, unlike the nonlinear approximation used in
Chapter 5 for regular bonds.

2. We assume that the difference between forward rates and futures rates
(see equation 6.4) is time homogenous and stationary over time.

Recall from Chapter 4 (see equations 4.6 and 4.12) that under a poly-
nomial functional form, the instantaneous shifts in the term structure of

(6.7)CP q q= − × = −1,000,000 2 500 10 000 100 4, , ( / )
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zero-coupon yields and the term structure of instantaneous forward rates
are given as follows:

and

where ∆A0 = Change in the height parameter
∆A1 = Change in the slope parameter
∆A2 = Change in the curvature parameter

∆A3, ∆A4, . . . = Changes in other higher order shape parameters

For expositional simplicity we are using the same notation for instanta-
neous forward rates in the Eurodollar market (given by equation 6.9) as we
did for the corresponding rates in the U.S. Treasury market in equation 4.12
in Chapter 4. Using the same notation does not create any confusion when
hedging Eurodollar-based derivative products using Eurodollar futures.
However, when cross-hedging fixed-income products based on the U.S.
Treasury curve using Eurodollar futures, we assume that the spread of the
Eurodollar forward rate curve over the U.S. Treasury forward rate curve is
constant over time, such that the changes in both forward rate curves are
identical and are given by equation 4.12 in Chapter 4 and equation 6.9 in
this chapter. The percentage change in the contract price of a Eurodollar fu-
tures can be linearly approximated using the duration vector model as fol-
lows (see Appendix 6.1 for a proof):

where

(6.11)
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and K(Q) is defined as follows:

The definitions of the duration vector elements in equation 6.11 are
similar to the duration vector elements of T-bill futures (as shown later), ex-
cept for the term K(Q).

The term K(Q) is required since the Eurodollar futures does not con-
verge to an underlying spot instrument in the Eurodollar market. The Euro-
dollar futures is priced as if the underlying Eurodollar deposit is a discount
instrument, and yet the Eurodollar deposit is an add-on instrument. The ex-
pression K(Q) remains close to 1 for low levels of interest rates, but as inter-
est rates become high, K(Q) becomes significantly larger than 1, leading to
higher duration vector values. This implies that the percentage change in the
contract price of a Eurodollar futures contract is higher for the same magni-
tude of rate change, when the initial rates are higher.

The duration vector model for Eurodollar futures contracts given by
equation 6.10 is different from the duration vector model for regular bonds
given by equation 5.10 in Chapter 5. Since the contract price of a Euro-
dollar futures is linear in futures rates, the nonlinear terms related to
changes in the rates (e.g., square of the changes in the height and slope of
the term structure) are absent in equation 6.10. However, since the magni-
tudes of the nonlinear terms are extremely small relative to the linear terms,
the duration vectors of U.S. Treasury bonds and the duration vectors of
Eurodollar futures can be combined for designing hedging strategies. These
cross-hedging strategies are based on the assumption that the spread be-
tween Eurodollar forward rates and U.S. Treasury forward rates remains
stationary over time. The following example shows how to compute the du-
ration vector of a Eurodollar futures contract.

Example 6.2 Assume that the settlement price quote of a Eurodollar
futures contract with 100 days until maturity is 95. Then Q = 95 and s =
100/360 or 0.2778 years. The contract price is computed using equation
6.5 and equals:

The variable K(Q) and the duration vector of this contract can be com-
puted as follows:

(6.13)  CP = − − =9510 000 100 0 25 100 987 500, [ . ( )] ,
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We now show how to design a cross-hedging strategy where Eurodollar
futures can be added to a U.S. Treasury bond portfolio to eliminate interest
rate risk arising from nonparallel rate changes. Consider the M duration
vector elements of the bond portfolio given in equation 5.4 as follows:

where, pi (i = 1, 2, . . . , J) is the proportion of investment in the ith bond,
and Di (m) (m = 1, 2, . . . , M) is the mth order duration vector element of
the ith bond.

Unlike in Chapter 5, we assume that the bond proportions given previ-
ously are known, and we wish to hedge the earlier bond portfolio with M
duration vector constraints using M number of Eurodollar futures. Let the
number of ith bond in the portfolio be given as ni, and the price of the ith
bond be Pi. Then the proportion of investment in the ith bond equals:

where by definition the sum of the proportions equals 1. Let the number of
ith Eurodollar futures contracts be given as ni

f, and the contract price of the
ith Eurodollar futures be given as CPi. Define the proportion of the ith
(i = 1, 2, . . . , M) Eurodollar futures contract with respect to the total dol-
lar investment in the bond portfolio as follows:

The M duration vector constraints can be given as follows:

(6.16)
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where Di
f(m), for i = 1, 2, . . . , M, and m = 1, 2, . . . , M, gives the mth

order duration vector element for the ith Eurodollar futures contract, and
H is the immunization planning horizon of the bond portfolio. Equation
6.17 has an intuitive interpretation. The left side of equation 6.17 gives the
duration vector of the total portfolio, which includes the duration vector
of the cash bond portfolio plus the duration vectors of the Eurodollar fu-
tures. Similar to equation 5.3, the duration vector of the total portfolio is
set equal to a horizon vector. This allows replicating a zero-coupon bond
maturing at the horizon date H, and hence dynamically immunizes the
total portfolio.

If H is set to zero, then the portfolio is hedged with respect to instanta-
neous price changes.

The proportions in the Eurodollar futures contracts which are de-
fined relative to the investment in the cash bond portfolio (see equation
6.16) give the magnitude of positions undertaken (long or short), but
do not require any cash investment.2 Since equation 6.17 gives M equa-
tions in M unknowns, the proportions p1

f, p2
f, . . . , pM

f , can be solved as
follows:

Equation 6.18 can be understood as follows: If the cash bond portfolio
is already immunized, then equation 5.3 holds, and the last column vector
on the right side of equation 6.18 consists of a vector of zeros (since
DPORT(1) = H, DPORT(2) = H2, . . . , DPORT(M) = HM). In this case, the posi-
tions in the Eurodollar futures are equal to zero, which intuitively makes
sense since the cash portfolio is already immunized. However, if the last col-
umn vector has nonzero terms, then some positions in the Eurodollar fu-
tures may be required to immunize the portfolio. In general, larger are the
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TABLE 6.2 Delivery Dates for Eurodollar Futures

Futures Contract Delivery Date Maturity (in years)

June 2004 June 14, 2004 0.53 = 189/360

December 2005 December 19, 2005 2.03 = 211/360

December 2008 December 15, 2008 5.02 = 7/360

deviations of the duration vector values of the cash portfolio from the hori-
zon vector values, larger will be the positions in the Eurodollar futures to
immunize the portfolio. The actual number of Eurodollar futures contracts
can be computed once the proportions are known from equation 6.18, by
inverting equation 6.16 as follows:

Example 6.3 Consider a trader who has a bond portfolio consisting of one
thousand 3.375-percent, November 2008 Treasury notes (T-note). On
December 8, 2003, the quoted price of this T-note is 100�16, or 100 + 16/32
= 100.50 percent of the face value, which equals $1,005 on the $1,000 face
value. The trader expects an increase in the interest rates and she wants to
hedge her bond portfolio against this risk over the instantaneous interval.
She selects three Eurodollar futures contracts expiring in June 2004,
December 2005, and December 2008, respectively. On December 8, 2003,
the settlement prices of these futures contracts are 98.42, 96.18, and 94.42,
respectively. The contract prices corresponding to these settlement prices are
given by equation 6.5 as follows:

The Eurodollar futures contracts are settled in cash two days prior to
the third Wednesday of the delivery month. The delivery dates and times to
maturity of the three Eurodollar futures contracts are given in Table 6.2,
and the duration vectors are shown in Table 6.3.

June 2004 contract: 10,000[100 0.25(100CP1 = − −− =98.42)] $996,050

December 2005 contract: CPP2 = − − =10,000[100 0.25(100 96.18)] $990,450

Deceember 2008 contract: 10,000[100 0.25(1CP3 = − 000 94.42)] $986,050− =

(6.19)
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TABLE 6.3 Duration Vector Values of Eurodollar Futures and T-Note

Futures Contract D(1) D(2) D(3) Pricea ($)

June 2004 0.2485 0.3222 0.3171 996,050

December 2005 0.2513 1.0827 3.5016 990,450

December 2008 0.2536 2.6079 20.1215 986,050

Treasury Note 4.5804 21.9946 107.0826 1,007.144

a This column gives the contract price for futures contracts and cash price for the
T-Note.

The ask yield to maturity of the Treasury note is 3.25 percent per year
with semiannual compounding. The corresponding continuously com-
pounded yield to maturity per payment period (half a year) is i = y/2 = ln(1
+ 0.0325/2) = 1.6119 percent. Since the government note matures on No-
vember 15, 2008, a coupon of $16.875 is paid on May 15 and November
15, every year until maturity. The number of days elapsed since the date of
the last coupon payment equals 23, and, thus, the accrued interest equals
$16.875 × 23/181 = $2.144. Hence, the cash price of the bond on Decem-
ber 8, 2003 is equal to:

P1 = $1,005 + $2.144 = $1,007.144

Using the closed-form solutions of the duration measures given in Table
5.5, the first-, second-, and third-order duration measures of the Treasury
note can be computed with c = $16.875/1000 = 1.6875%, i = y/2 =
1.6119%, N = 10, and s = 0.127. Similarly, using equation 6.11, the first-,
second-, and third-order duration measures of the three Eurodollar futures
given previously, can be computed as shown in Table 6.3.

If the trader uses all three futures contracts, she can hedge against the
linear effects of changes in the height, slope, and curvature of the term
structure, using three duration vector constraints. The proportions in the
three Eurodollar futures contracts can be computed using equation 6.18,
for an instantaneous horizon of zero, as follows:
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TABLE 6.4 Eurodollar Futures and Treasury Note Quoted Prices on 
December 9, 2003

Quoted Price Pricea Price 
Futures Contract Dec. 9 Dec. 9 ($) Change ($)

June 2004 98.38 995,950 − 100

December 2005 96.09 990,225 − 225

December 2008 94.31 985,775 − 275

Treasury Note 100.02 1,002.863 −4.281

a This column gives the contract price for futures contracts and cash price for the
T-Note.

The solution is given as:

The number of futures contracts can be computed using equation 6.19 to
hedge one thousand Treasury notes as follows:

To assess the performance of the immunization strategy, consider the
prices of the T-note and Eurodollar futures contracts on December 9, 2003,
one day after the trader entered this strategy. The quoted prices on this day,
along with the futures contract prices, and changes in the contract price are
given in Table 6.4.

The loss on the portfolio of one thousand Treasury notes equals:

(1,002.863 − 1,007.144) × 1,000 = −4.281 × 1,000 = −$4,281
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This loss is offset by a gain on the futures positions equal to:

(−3.7059) × (−100) + (−11.4578) × (−225) + (−3.3738) × (−275) = $3,876.41

The residual loss not captured by the immunization strategy is $405.36,
which is less than 10 percent of the loss on the cash portfolio of T-notes.

Though the immunization technique given in equations 6.14 through
6.19 is derived in the context of cross-hedging U.S. Treasury bonds with
Eurodollar futures, the same technique applies when using T-bill futures, T-
note futures, and T-bond futures to hedge U.S. Treasury bonds. We now turn
to these instruments as alternative instruments for hedging interest rate risk.

TREASURY BILL FUTURES

The asset underlying a Treasury bill futures contract is the 90-day U.S. Trea-
sury bill worth $1 million in face value. Treasury bill (T-bill) futures trade
on the CME, with contract’s expiration months in March, June, September,
and December, and maturities extending up to a year and a half. Despite
the large size of the U.S. T-bill market, the T-bill futures market has shrunk
considerably, losing market share to the Eurodollar futures market. In re-
cent years, T-bill futures have settled via cash, rather than physical delivery
that used to be the norm when these contracts were first introduced.

Treasury Bill Pricing

The price of a T-bill is quoted with a discount assuming $100 face value and
360 days in a year as follows:

where d is the quoted discount rate, and t is the number of days until matu-
rity of the T-bill. Using equation 6.20, the quoted ask discount rate gives the
T-bill ask price at which the trader sells and the quoted bid discount rate
gives the T-bill bid price at which the trader buys. Suppose the quoted ask
discount rate equals 5.9325 on a T-bill maturing in 91 days. Then, the ask-
ing price for the T-bill is given as:

(6.21)P = − × =100
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360
5 9325 98 50. $ .
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If the face value of the T-bill is $1,000, the buyer of one T-bill pays
98.50×10 = $985 to the trader to purchase one T-bill. T-bills can be bought
with face values ranging from $1,000 to $1,000,000.

Futures Prices and Futures Interest Rates

Using the same notation for Eurodollar futures, let q define the quoted fu-
tures rate and Q define the quoted settlement price of a T-bill futures con-
tract. Then similar to equation 6.1 we have:

Since the 90-day T-bill underlying the T-bill futures contract is a dis-
count instrument, the relationship between the quoted futures rate q and
the continuously compounded futures rate is given as:

The relationship between q and f*(s, s + 90/365) for T-bill futures in equa-
tion 6.23 is different from a similar relationship for Eurodollar futures in
equation 6.2. This difference arises because the Eurodollar deposit underly-
ing the Eurodollar futures contract is priced as an add-on instrument, while
the cash T-bill underlying the T-bill futures contract is priced as a discount
instrument.

The contract price of a T-bill future is defined in the same way as that of
the Eurodollar futures and is given by equations 6.5 and 6.7, assuming q
and Q are the quoted futures rate and the quote settlement price of the
T-bill futures contract. On July 2, 2003, the settlement price for the Sep-
tember Treasury bill futures contract was Q = 99.14. According to equation
6.22, the quoted futures rate q equals 100 − 99.14 = 0.86. Also, the con-
tract price is similar to the Eurodollar futures contract and is given by equa-
tion 6.5 as 10,000(100 − 0.25 × (100 − 99.14)) = $997,850. Similar to
Eurodollar futures contract, a one basis point change in the T-bill futures
quoted rate corresponds to a $25 change in the futures contract price.

Assuming that the changes in the Treasury forward rates are also de-
fined by equation 6.9, the duration vector of T-bill futures contracts can be
obtained as follows:3

(6.24). .∆ ∆ ∆ ∆CP
CP
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where

The definition of the duration vector elements in equation 6.25 is simi-
lar to the duration vector elements of Eurodollar futures except for the term
K(Q). K(Q) is absent in equation 6.25, since unlike Eurodollar futures, the
price of the T-bill futures converges to the underlying 90-day cash bill,
which is a discount instrument. The duration vector of T-bill futures is iden-
tical to that obtained by Chambers, Carleton, and Waldman (1984) and
others. Hedging short-term U.S. Treasury securities with T-bill futures can
be accomplished using the duration vector by the technique outlined in
equations 6.14 through 6.19. However, using T-note futures and T-bond fu-
tures may be essential when hedging long-term U.S. Treasury securities.

TREASURY BOND FUTURES

Treasury bond futures are the most popular long-term interest rate futures.
These futures trade on the Chicago Board of Trade (CBOT) and expire in
the months of March, June, September, and December in addition to extra
months scheduled by the CBOT based on the demand for these contracts.
The last trading day for these contracts is the business day prior to the last
seven days of the expiration month. Delivery can take place any time during
the delivery month and is initiated by the short side. The first delivery day is
the first business day of the delivery month. As with most other futures con-
tracts, delivery seldom takes place. The uncertainty about the delivery date
poses a risk to the futures buyer that cannot be hedged away.

The underlying asset in a Treasury bond (T-bond) futures contract is
any $100,000 face value government bond with more than 15 years to ma-
turity on the first day of delivery month and which is noncallable for 15
years from this day. The quoted price of the T-bond futures contract is
based on the assumption that the underlying bond has a 6 percent coupon
rate, but the CBOT also permits delivery of bonds with coupon rates differ-
ent than 6 percent. In fact, a wide range of coupons and maturities qualify
for delivery. To put all eligible bonds on a more or less equal footing, the
CBOT has developed comprehensive tables to compute an adjustment fac-
tor, called conversion factor, that converts the quoted futures price to an in-
voice price applicable for delivery. The invoice price for the deliverable bond
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(not including accrued interest) is the bond’s conversion factor times the fu-
tures price.

where FP = Quoted futures price
CF = Conversion factor

Similarly to Treasury bond prices, Treasury bond futures prices are quoted
in dollars and 32nd of a dollar on a $100 face value. Thus, a quoted futures
price of 98.04 represents 98 + 4/32, or $98,125 on a $100,000 face-value
contract.

T-bond futures price quotes do not include accrued interest. Therefore,
the delivery cash price is always higher than the invoice price by the amount
of the accrued interest on the deliverable bond.

where AI is the accrued interest.

Example 6.4 Suppose on November 12, 2003, the quoted price of the 10
percent coupon bond maturing on August 5, 2019, is 97.08 (or $97,250 on
a $100,000 face value). Since government bonds pay coupons semiannually,
a coupon of $5,000 would be paid on February 5 and August 5 of each year.
The number of days between August 5, 2003, and November 12, 2003 (not
including August 5, 2003, and including November 12, 2003), is 99,
whereas the number of days between August 5, 2003, and February 5, 2004
(not including August 5, 2003, and including February 5, 2004), is 181 days.
Therefore, with the actual/actual day-count convention used for Treasury
bonds, the accrued interest from August 5, 2003, to November 12, 2003, is

If this bond is the deliverable bond underlying the futures contract, then
the cash price in equation 6.27 will be greater than the invoice price by an
amount equal to the accrued interest of $2,734.81.

  
AI = × =$ , $ , .5 000

99
181

2 734 81

(6.27)
 

CP Invoice price Accrued interest

FP C

= +
= × FF AI+

(6.26) Invoice price FP CF= ×
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Conversion Factor

A bond’s conversion factor is the price at which the bond would yield 6 per-
cent to maturity or to the first call date (if callable), on the first delivery date
of the T-bond futures expiration month. The bond maturity is rounded
down to the nearest zero, three, six, or nine months. If the maturity of the
bond is rounded down to zero months, then the conversion factor is:

where c is the coupon rate and n is the number of years to maturity. If the
maturity of the bond is rounded down to three months, the conversion fac-
tor is:

If the maturity of the bond is rounded down to six months, the conversion
factor is:

And, finally, if the maturity of the bond is rounded down to nine months,
the conversion factor is:

CF0 and CF6 have the same format, and so do CF3 and CF9. Therefore, we
can combine equations 6.28 and 6.30 into a single equation:

where m is the number of semiannual periods to maturity.
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Thus, instead of rounding the bond’s maturity down to zero, three, six,
or nine months, we can just round it down to zero or three months. If the re-
sult is zero, use equation 6.32, otherwise, use equation 6.29. The conversion
factor always increases with the coupon rate, holding the maturity constant.
If the coupon rate is more than 6 percent, the conversion factor increases
with maturity, but if the coupon rate is less than 6 percent, the conversion
factor decreases with maturity. The conversion factor equals one when the
coupon rate equals 6 percent, regardless of the maturity.

Example 6.5 Consider a futures contract expiring in the month of December
with the underlying deliverable bond given in Example 6.4. Assume that the
bond is delivered on the first day of the expiration month, December 1, 2003.
On this day, the bond has 15 years 8 months and 5 days to maturity. Rounding
the bond’s maturity on the delivery day down to the nearest zero or three
months, the maturity is 15 years and 6 months. We treat this as 31 six-month
periods. Applying equation 6.32 for m = 31:

Suppose the quoted futures price on this bond is 96.04 (or $96,125 on
a $100,000 face value contract). The time elapsed since the previous
coupon payment date, August 5, 2003, to the expiration date of the futures
contract, December 1, 2003, equals 118 days. Hence, the accrued interest
on the bond equals:

Using equation 6.27, the delivery cash price of the T-bond futures contract is:

CP = $96,125 × 1.4 + $3,259.67 = $137,835.49

Cheapest-to-Deliver Bond

The party with the short position in the T-bond futures contract can deliver
any government bond with more than 15 years to maturity and which is
noncallable for 15 years from the delivery date. At any given day of the de-
livery month, there are about 30 bonds that the short side can deliver.
Which bond should the seller choose to deliver? The answer to this question
can be understood as follows.

On the delivery date, the seller receives:

Quoted futures price × Conversion factor + Accrued interest
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TABLE 6.5 Deliverable Bonds for the T-Bond Futures Contract

Quoted Bond Price Conversion Factor
Bond Coupon (%) P CF

1 7.50 98−23 1.0138

2 6.00 97−16 1.0000

3 8.00 99−12 1.0204

4 6.25 97−30 1.0049

TABLE 6.6 Cost of Delivery

Quoted Quoted Conversion Cost of 
Bond Price Futures Price Factor Delivery

Bond (P) (FP) (CF) (P − (FP × CF))

1 98.72 97.28 1.0138 0.10

2 97.50 97.28 1.0000 0.22

3 99.38 97.28 1.0204 0.11

4 97.94 97.28 1.0049 0.18

The cost of purchasing a bond to deliver is:

Quoted bond price + Accrued interest

Hence, the seller will choose the cheapest-to-deliver bond, which is the
bond for which the cost of delivery is lowest, where the cost of delivery is
defined as:

Example 6.6 illustrates the selection of the cheapest-to-deliver bond.

Example 6.6 Assume that the T-bond quoted futures price on the delivery
day is 97.09 and that the party with the short position in the contract can
choose to deliver from the bonds given in Table 6.5.

The cost of delivering each of these bonds is given in Table 6.6. It gives
the quoted bond price and quoted futures price in decimal form. Using
equation 6.33, the cheapest-to-deliver bond is bond 1.

(6.33)
 

Cost of delivery Quoted bond price Quoted f= − uutures price Conversion factor

P FP CF

×
= − ×



Treasury Bond Futures 163

Options Embedded in T-Bond Futures

A variety of options are embedded in T-bond futures. We have already dis-
cussed the cheapest-to-deliver option. The seller of the futures contract can
also choose when to deliver the bond on the designated days in the delivery
month. Another option known as the wild card play makes the T-bond futures
price lower than it would be without this option. This option arises from the
fact that the T-bond futures market closes at 2:00 P.M. Chicago time, while the
bonds continue trading until 4:00 P.M. Moreover, the short side of the futures
contract does not have to notify the clearing house about her intention to de-
liver until 8:00 P.M. Thus, if the bond prices declines between 2 and 4 P.M., the
seller can notify the clearing house about her intention to deliver using the
2:00 P.M. futures price, and make the delivery by buying the cheapest-to-
deliver bond at a lower price after 2 P.M. Otherwise, the party with the short
position keeps the position open and applies the same strategy the next day.

Treasury Bond Futures Pricing

The uncertainty regarding the many delivery options makes the T-bond fu-
tures contract difficult to price. In the following analysis, we assume that
both the deliverable bond and delivery date are known, and the wild card
play option is not significant in the pricing of T-bond futures. Under these
assumptions, the Treasury bond futures price can be approximated by its
forward price, and is given as:

where P is the current price of the deliverable T-bond, I is the present value
of the coupons during the life of the futures contract, s is the expiration date
of the futures contract, and y(t) is the zero-coupon yield for the term t.

In the following analysis, we assume that the delivery date is the first
day of the expiration month of the futures contract, and use the follow-
ing notations:

T = Current maturity of the cheapest-to-deliver bond
C = Coupon payment of cheapest-to-deliver bond
F = Face value of cheapest-to-deliver bond

CF = Conversion factor of cheapest-to-deliver bond
τ = Length of time between expiration date of the futures

contract and first cash flow payment after the futures’
expiration date

n = number of coupon payments between current time and futures’
expiration date

(6.34)FP P I es y s= − ×( ) ( )
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FIGURE 6.1 Timeline for T-Bond Futures
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In addition, assume that there are two coupon payments per year, so that by
definition 0 ≤ τ ≤ 0.5.

The timeline is shown in Figure 6.1. The price of a futures contract de-
pends only on cash flows received after the T-bond is delivered. The deliv-
ery cash price of the futures contract is given as:4

Using equation 6.27, the quoted price of the futures contract is given as:

Substituting equation 6.35 and the definition of accrued interest in equation
6.36, we get,

Example 6.7 Reconsider the cheapest-to-deliver bond in Example 6.5 with
the delivery date of December 1, 2003. Assume that the bond’s quoted price
is not given, but that the term structure of zero-coupon yields has the
polynomial form defined in Chapter 3, as follows:

where for expositional simplicity the height, slope, and curvature are as-
sumed to be the only parameters of the term structure of interest rates. Fur-
ther, assume that these parameters are defined as:
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FIGURE 6.2 Timeline for T-Bond Futures
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A0 = 0.02
A1 = 0.005
A2 = −0.0001

For the futures contract written on this T-bond, the variables are T = 15
years, 8 months, and 23 days; C = $5 on a $100 face value (or $5,000 on
a $100,000 face value); F = $100; CF = 1.4 (see Example 6.4); s = 18 days; τ
= 66 days; and n = 0 (no coupon payments between current time and futures’
expiration date). Though the asset underlying the Treasury bond futures con-
tract is a $100,000 face-value government bond, we do all calculations as-
suming a $100 face value. All final prices can be multiplied by 1,000 later.
The timeline of the cash flows associated with this futures contract is shown
in Figure 6.2.

s = 18 days = 0.05 years
τ = 66 days = 0.18 years

s+ τ = 84 days = 0.23 years
T = 15 years, 8 months, and 23 days = 15.73 years

T − (s + τ) = 15 years and 6 months = 15.5 years

Using equation 6.37, the quoted futures price is given as:

The yields for different maturities are computed using the following
equation and are displayed in Table 6.7.
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TABLE 6.7 Zero-Coupon Yields

Maturity Yield Maturity Yield
(0.23 + t × 0.5) y(0.23 + t × 0.5) (0.23 + t × 0.5) y(0.23 + t × 0.5)

t = 0 0.0211 t = 16 0.0544

t = 1 0.0236 t = 17 0.0560

t = 2 0.0260 t = 18 0.0576

t = 3 0.0284 t = 19 0.0592

t = 4 0.0307 t = 20 0.0607

t = 5 0.0329 t = 21 0.0621

t = 6 0.0351 t = 22 0.0635

t = 7 0.0373 t = 23 0.0649

t = 8 0.0394 t = 24 0.0662

t = 9 0.0414 t = 25 0.0674

t = 10 0.0434 t = 26 0.0686

t = 11 0.0454 t = 27 0.0698

t = 12 0.0473 t = 28 0.0709

t = 13 0.0491 t = 29 0.0720

t = 14 0.0509 t = 30 0.0730

t = 15 0.0527 t = 31 0.0739

Substituting the zero-coupon yields from Table 6.7 into equation 6.38,
the quoted price of the futures contract based on a $100 face value is equal
to $95.10. The cash price is derived from the quoted futures price using
equation 6.36 and is equal to $136.33.

Duration Vector of T-Bond Futures

Assuming that the changes in the zero-coupon yields and the instantaneous
forward rates are given by equations 6.8 and 6.9, respectively, the percent-
age change in the T-bond futures quoted price is given as follows:5

(6.40)∆ ∆ ∆ ∆FP
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D A D A D A D M= − − − − −( ) ( ) ( ) ( )1 2 30 1 2
. . . ∆∆AM−1
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FIGURE 6.3 Timeline for T-Bond Futures
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where

for m = 1, 2, 3, . . . , M.
Hedging using the duration vector of T-bond futures can be accom-

plished in the same manner as hedging using the duration vector of Euro-
dollar futures and T-bill futures. These hedging conditions are outlined in
equations 6.14 through 6.19. Unlike T-bill futures, T-bond futures can be
used for hedging long-term bond portfolios, since the deliverable bonds un-
derlying the T-bond futures have longer maturities.

Example 6.8 Consider the T-bond futures contract in Example 6.5. The
contract is initiated on November 12, 2003 and expires on December 1,
2003. The cheapest-to-deliver bond is a 10 percent coupon, $100,000 face-
value government bond that matures on August 5, 2019. The conversion
factor of this bond is 1.4. The timeline of the cash flows associated with this
futures contract and all other variables are given in Example 6.6. These cash
flows are given as shown in Figure 6.3.

s = 18 days = 0.05 years
τ = 66 days = 0.18 years

s + τ = 84 days = 0.23 years
T = 15 years 8 months and 23 days = 15.73 years

T − (s + τ) = 15 years and 6 months = 15.5 years

Reconsider the term structure of zero-coupon yields given in Example
6.7, as y(t) = 0.02 + 0.005t − 0.0001t2, and suppose that the term structure
parameters change instantaneously as shown in Table 6.8.

The original and the new zero-coupon yields based on the parameters
in Table 6.8 are given in Table 6.9 on page 169.
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TABLE 6.8 Changes in the Term Structure Parameters

Original New
Parameters Change Parameters

A0 0.02 0.005 0.025

A1 0.005 −0.0001 0.0049

A2 −0.0001 0 −0.0001

Substituting the new zero-coupon yields into equation 6.35, the new
quoted price of the futures contract equals $92.02, which is a decline of
3.24 percent from the original price of $95.10. This change is approximated
by the first three elements of the duration vector model. The duration vec-
tor elements are given as:

Using the zero-coupon yields given in Table 6.9, we obtain the first
three elements of the duration vector as follows:

D(1) = 8.73
D(2) = 105.97
D(3) = 1442.99

Using only the duration, the percentage change in the cash price is given as:

or a decline of 4.37 percent. Since the actual percentage change is −3.24
percent, duration overestimates the magnitude of the change. Using a three-
element duration vector model, the percentage change in the cash price is
given as:
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or a decline of 3.31 percent. Using only duration gives an immunization
risk error of:

−4.37% −(−3.24%) = −1.13%

while using the three-element duration vector model gives an immunization
risk error of only:

−3.31% − (−3.24%) = −0.07%

which is less than one tenth of the error of the duration model.

TREASURY NOTE FUTURES

Three kinds of Treasury note (T-note) futures are transacted on the CBOT
given as two-year, five-year, and 10-year T-note futures. The two-year T-note
futures is not as actively traded as the five-year and the 10-year T-note fu-
tures, because both T-bill futures and short-term Eurodollar futures are close
competitors of the two-year T-note futures. The asset underlying the 10-year
T-note futures contract is any $100,000 face-value Treasury note maturing
between six and 10 years from the first calendar day of the delivery month.
The asset underlying the five-year T-note futures contract is any $100,000
face-value T-note maturing between four and five years from the first calen-
dar day of the delivery month. The five-year Treasury note issued after the
last trading day of the contract month is not eligible for delivery into that
month’s contract. The least active of the three T-note futures, the two-year
Treasury note futures contract is based on a $200,000 face-value U.S. Trea-
sury note with an original maturity of not more than five years and a remain-
ing maturity of not less than one years from the first day of the delivery
month but not more than two years from the last day of the delivery month.

Delivery months for the T-note futures are March, June, September,
and December, and the first delivery day is the first business day of the de-
livery month. While five-year and 10-year T-note futures can be delivered
any time during the delivery month, the delivery day of the two-year T-note
futures contract is any day up to the third business day following the last
trading day. The last trading day for the two-year T-note futures is the ear-
lier of either (1) the second business day prior to the issue day of the two-
year note auctioned in the current month or (2) the last business day of the
calendar month, whereas for the other two futures contracts it is the sev-
enth business day preceding the last business day of the delivery month.

Since Treasury notes with different maturities and coupons are eligible
for delivery on the T-note futures contract, the CBOT adjusts the invoice
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price and the cash price of the T-note futures in the same manner as it ad-
justs those for T-bond futures (see equations 6.26 and 6.27). Even the defi-
nition of the conversion factor is similar for T-note futures and for T-bond
futures, and is given by equations 6.28 through 6.31. The only difference be-
tween T-note futures and T-bond futures is the range of maturities of the de-
liverable bonds. Hence, all results derived for pricing and hedging using the
T-bond futures hold for T-note futures by considering the appropriate range
of maturities of deliverable bonds applicable to the specific T-note futures.

APPENDIX 6.1: THE DURATION VECTOR OF THE
EURODOLLAR FUTURES

The relation between the continuously compounded forward rate over a dis-
crete interval and the continuously compounded instantaneous forward
rates is given as follows:

The relationship between the instantaneous changes in both forward rates is
given as follows:

Substituting equation 6.9 into (6.44) gives:

or

where A0, A1, and A2 are the height, slope, and curvature of the change in
the term structure of zero-coupon yields, as shown in equation 6.8.
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Since the futures rates underlying the Eurodollar futures contract are
based on a 90-day Eurodollar deposit, we substitute t = 90/365 in equation
6.46, which gives:

Using equation 6.4, the instantaneous change in the forward rate equals
the instantaneous change in the futures rate. Hence, replacing the forward
rate with the futures rate in equation 6.47 gives:

Using equation 6.5, the change in the contract price is given as:

Since q = 100 − Q, in equation 6.1, it follows that:

Rearranging equation 6.2 gives:

If the discrete futures rate q changes to q', and the corresponding continu-
ously compounded rate f*(s, s + 90/365) changes to f*'(s, s + 90/365),
then the relationship between these changes is given using equation 6.51
as follows:

By defining,
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equation 6.52 becomes:

and by using equation 6.50, we get:

Using a first-order Taylor series approximation for the exponential
function, exp(x) ≈ 1 + x, for small values of x, in equation 6.55 and apply-
ing equation 6.49 we obtain the change in the contract price as follows:

Substituting equation 6.2 and equation 6.1 into equation 6.56 we get,

Substituting equation 6.48 into equation 6.57 and rearranging the terms gives:

Dividing both sides by the contract price, and redefining the terms, we get,

where
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FIGURE 6.4 Timeline for T-Bond Futures
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and K(Q) is defined as follows:

Substituting the value of CP from equation 6.5 into equation 6.61 gives the
definition of K(Q) in equation 6.12, as shown next:

APPENDIX 6.2: THE DURATION VECTOR OF THE 
T-BOND FUTURES

Consider a futures contract on a Treasury bond with a given cheapest-to-
deliver bond and a given delivery date. The variables of the futures contract
are defined as follows:

T = The maturity of the cheapest-to-deliver bond
C = Coupon payment of the cheapest-to-deliver bond
F = Face value of the cheapest-to-deliver bond

CF = Conversion factor of the cheapest-to-deliver bond
τ = Length of time between the expiration date of the futures contract

and the first cash flow payment made after the futures’ expiration
date

n = Number of coupon payments between current time and the futures’
expiration date

Given semiannual payments, the timeline of the cash flows is given in
Figure 6.4.
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The current price of the cheapest-to-deliver bond to be delivered at
time s and maturing at time T is given as follows:

where: f*(s, t) = continuously compounded futures rate from time s to time t.
For expositional simplicity, we assume that the futures rate f*(s, t) and

the forward rate f(s, t) are equal. In reality, all we require is that the instan-
taneous changes in the futures rate and the forward rate are equal. Thus,
equation 6.63 becomes:

If f(t1, t2) is the forward rate between time t1 and t2, y(t1) is the zero-
coupon yield maturing at time t1 and y(t2) is the zero-coupon yield matur-
ing at time t2, then, the relationship between f(t1, t2), y(t1), and y(t2) is given
by equation 6.65:

Substituting equation 6.65 into equation 6.64 we obtain:

The present value of the coupons during the life of the futures con-
tract, I, is:

Subtracting (6.67) from (6.66) and multiplying by esy(s), we obtain the
futures cash price at delivery:
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To make equation 6.68 more intuitive let us change the summation
index from t' to t = t' − n. With the new summation index, the futures cash
price at delivery becomes:

The above gives the cash price of the cheapest-to-deliver bond at deliv-
ery. Once we have the cash futures price, we can calculate the invoice price
at delivery by deducting the accrued interest on the first coupon payment
that is distributed after the futures contract expires, or:

Further, using equation 6.26, we obtain the quoted futures price given in
equation 6.37, or:

For a given change in the zero-coupon yields, the old and new zero-
coupon yields are given by equations 4.3 and 4.4, respectively. Then, the old
(quoted) futures price is given by equation 6.71 and the new price can be
given as follows:

Subtracting (6.71) from (6.72) we obtain the change in the futures price:
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Substituting y'(t) by y(t) + ∆y(t), into the above equation:

or

Using the first-order approximation of the exponential function’s ex-
pansion ex = 1 + x + x2/2! + x3/3! + . . . in equation 6.74, we get:

The shift in the term structure of zero-coupon yields as a function of
changes in height, slope, curvature, and other parameters is given as follows:

∆y(t) = ∆A0 + ∆A1 × t + ∆A2 × t2 + . . .
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Substituting this equation into equation 6.75, the change in the futures
price is:

)

Dividing both sides of equation 6.76 by the futures (quoted) price, we
obtain:
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If we denote

equation 6.77 becomes:

which is the percentage change of T-bond futures cash price expressed in
equation 6.40.

NOTES

1. The Bid Rate is known as the London Interbank Bid Rate, or LIBID.
2. We have ignored the margin requirements that do require some cash investment.
3. For expositional simplicity, we are using the same notation for the forward rate

changes in both the LIBOR market and the Treasury market. For cross-hedging,
we assume that the changes in both markets are identical even if the initial for-
ward rates in the two markets are different.

4. Full proof of equation 6.35 is given in Appendix 6.2.
5. The proof of equation 6.40 is given in Appendix 6.2.
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CHAPTER 7
Hedging with Bond Options: A
General Gaussian Framework

T his chapter derives the duration vector risk measures of bond options
using a general multifactor Gaussian framework. This framework allows

arbitrary nonparallel shifts in the yield curve assuming that interest rates
have a normal or a Gaussian distribution. Though the model is quite general
and is consistent with a variety of single and multiple factor Gaussian term
structure models (given by Ho and Lee, 1986; Vasicek, 1977; extensions of
Vasicek model by Hull and White, 1993; multifactor affine and nonaffine
models of Heath, Jarrrow, and Morton, 1992, and others), the results of
this chapter are not restricted to any one of these models.

Though we do not provide the specific details of the Gaussian term
structure models, which are covered in detail in the second book of this se-
ries, we ensure that the duration measures are consistent with a general
framework that applies to all of these models. It is well known that an op-
tion on a zero-coupon bond can be considered a portfolio consisting of the
underlying zero-coupon bond and another zero-coupon bond maturing on
the expiration date of the option. Since the duration vector of a portfolio of
securities is a weighted average of the duration vectors of the securities in
the portfolio, the duration vector of an option on a zero-coupon bond is ob-
tained by using the duration vectors of zero-coupon bonds that replicate the
option. We also derive the duration vector measures of a callable zero-
coupon bond by considering it as a portfolio of a noncallable zero-coupon
bond and an option on the noncallable zero-coupon bond.

Though this chapter derives the results for European options on zero-
coupon bonds, the framework given here applies even to other options such
as interest rate caps and floors, which can be considered portfolios of Euro-
pean puts and calls, respectively, on zero-coupon bonds. Hence, the results
of this chapter can be generalized to derive the duration vectors of interest
rate caps and floors under the multifactor Gaussian framework.
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This chapter uses an empirical approach for the estimation of the dura-
tion vector of bond options using the implied volatility methodology. An ad-
vantage of the implied volatility methodology is that it incorporates all of
the currently available information and thus avoids the errors contained in
the estimation of future volatility using the historical full-rank covariance
structure of bond returns. This approach allows the general Gaussian model
to be calibrated not only to the observed bond prices (or yield curve), but
also the observed option prices at the current date. Since minimal theoreti-
cal assumptions are made about the volatility structure, the framework is
consistent with a variety of Gaussian term structure models.

This chapter also introduces a more general approach to the estimation
of the duration vector of a bond option, which holds under non-Gaussian
term structure models. However, this approach requires the knowledge of
specific term structure models to estimate the implied volatilities and the
hedge ratios for the computation of the duration vector.

Unfortunately, the duration vector model cannot be easily extended to
options on coupon bonds. This is because an option on a coupon bond can-
not be given as a sum of the options on the zero-coupon bonds comprising
the coupon bond, in a setting that allows multiple factors. The numerical
methods in the second book of this series may be applied to obtain the du-
ration vectors of options on coupon bonds under such a general framework.

The final part of this chapter derives a general duration model for Eu-
ropean options on default-free coupon bonds assuming a single affine inter-
est rate factor. The models in this category are Ho and Lee (1986), Vasicek
(1977), Cox, Ingersoll, and Ross (CIR; 1985), and the single-factor affine
extensions of the Vasicek model and the CIR model given by Hull and
White (1993). The Hull and White model allows calibrating the interest
rate process to the observed market bond prices. Though we will not pro-
vide all of the term structure mathematics in this chapter, we give enough
information to understand and apply these term structure models to com-
pute the durations of options on coupon bonds and callable coupon bonds.
Also, the applications given here hold for European options only. The sec-
ond book in this series covers term structure mathematics and numerical
techniques in more detail, which can be used to derive the durations of
American options on coupon bonds and callable coupon bonds.

A GENERAL GAUSSIAN FRAMEWORK FOR PRICING
ZERO-COUPON BOND OPTIONS

Consider a European call option with an expiration date of S, written on a
default-free zero-coupon bond maturing at time T (S ≤ T). Assume that the
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bond has a face value of F and the exercise price of the option is K. Further,
assume that P(t, T) is the time t price of a zero-coupon bond that pays $1 at
time T. At the option expiration date S, the terminal value of this option can
be given as follows:

The time t price of this option c(t), can be obtained using a variety of
term structure models given in the fixed-income literature. In this chapter,
we restrict our attention to the Gaussian term structure models. These mod-
els assume that the underlying continuously compounded interest rates,
such as the short rate, zero-coupon rates, or the forward rates, have a nor-
mal or Gaussian distribution. A variety of single and multiple factor Gauss-
ian term structure models exist in the literature given by Merton (1973b),
Vasicek (1977), extensions of Vasicek model by Hull and White (1993), Ho
and Lee (1986), and the multifactor affine and nonaffine forward rate mod-
els of Heath, Jarrrow, and Morton (1992). The current price of this option
c(t), under all the above models has the following functional form:

where

N(x) = the cumulative probability that a standard normal
variable is less than x (the popular spreadsheet pro-
gram Microsoft Excel gives the value of N(x) using
the command function, “=NORMSDIST(x)”),

σ2(v, T) dv = VaR[dP(v, T)/P(v, T)] = the variance at time v (t ≤ v ≤
T) of the return on the bond maturing on date T,
over the infinitesimal interval v to v + dv
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σ2(v, S) dv = VaR[dP(v, S)/P(v, S)] = the variance at time v (t ≤ v ≤ S)
of the return on the bond maturing on the option expi-
ration date S over the infinitesimal interval v to v + dv

ρ(v, S, T) dv = CORR[dP(v, S)/P(v, S), dP(v, T)/P(v, T)] = the corre-
lation at time v (t ≤ v ≤ S) between the returns on the
bond maturing on date T and the bond maturing on
the option expiration date S over the infinitesimal
interval v to v + dv

A property shared by all Gaussians models is that the volatilities of in-
stantaneous bond returns, σ(v, T) and σ(v, S), and the correlation between the
instantaneous bond returns ρ(v, S, T), are deterministic functions of current
time and the bond maturity. In other words, σ(v, T), σ(v, S), and ρ(v, S, T), are
completely predictable at any time t ≥ 0 and do not depend upon the evolu-
tion of the future interest rates and/or bond prices. These models assume that
interest rates have a Gaussian distribution, which leads to a lognormal distri-
bution for bond prices. The deterministic functions σ(v, T), σ(v, S), and ρ(v, S,
T), take on different forms under different Gaussian term structure models.

For the purpose of deriving the duration vector risk measures for these
models, we do not need to estimate these functions, as we can use an im-
plied volatility approach, which does not require explicit specification of
these functions. To understand the implied volatility approach, note that in
equation 7.2, if the market values of c(t), P(t, T), P(t, S), and the values of F
and K are known, then we can immediately estimate the implied value of the
integrated volatility expression V, without explicitly knowing the functions
σ(v, T), σ(v, S), and ρ(v, S, T), which are specific to the term structure mod-
els. As we will show later, once the value of V is known, the duration vector
of options on bonds are easily calculated.

The terms N(d1) and N(d2) in equation 7.2 always lie between 0 and 1,
and have two interpretations given as follows:

1. A replicating portfolio interpretation: The quantity N(d1) is the number
of zero-coupon bonds maturing on date T, and the quantity −N(d2) is
the number of zero-coupon bonds maturing on date S, which replicate
the option on the zero-coupon bond. The replicating portfolio is self-
financing in that any increase (decrease) in the portfolio holding of the
first bond is exactly offset by the decrease (increase) in the portfolio
holding of the second bond. According to this interpretation, the call
option can be thought of as a leveraged security. Specifically, it repre-
sents N(d1) long positions in the $F face-value zero-coupon bond un-
derlying the option contract and N(d2) short positions in a $K
face-value zero-coupon bond maturing on the option expiration date.
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2. A hedging ratio interpretation: Using equation 7.2, it can be shown that

and

Hence, N(d1) or Delta1 is the hedge ratio of the change in the call price
to the change in the price of the $F face-value zero-coupon bond maturing
on date T. Similarly, −N(d2) or Delta2 is the hedge ratio of the change in the
call price to the change in the price of the $K face-value zero-coupon bond
maturing on date S. Note that bond options have two delta measures as op-
posed to stock options, which only have one delta measure.

Now, consider a European put option with an expiration date of S,
written on a default-free zero-coupon bond maturing at time T (S ≤ T). As-
sume that the bond has a face value of F and the exercise price of the option
is K. At the option expiration date S, the terminal value of this option can be
given as follows:

Similar to equation 7.2, the time t price of this put option can be given
as follows:

where all variables in equation 7.4 are as defined before. The put price can
also be obtained directly from the call price using the following put-call
parity relationship, when all of the underlying variables are the same:

Example 7.1 Consider the zero-coupon yield curve given as:

where parameters A0, A1, A2, and A3 are the height, slope, curvature, and so
on of the term structure of zero-coupon yields (see Chapters 3 and 4). As-
sume the following values for the shape parameters:
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A0 = 0.06
A1 = 0.01
A2 = −0.001
A3 = 0.0001

Substituting these in equation 7.6, the term structure is given as:

Now consider the price of a call option on a five-year zero-coupon
bond (i.e., T = 5 years), with an exercise price K = $70, option expiration
date S = 1 year, and V = 0.3. The face value of the five-year bond, F = $100.
To get the call option price c(0), we need to know the values of P(0, 5), P(0,
1) in equation 7.2. These values can be computed using the one-year and
five-year zero-coupon yields that are obtained as follows:

and

Hence, the values of $1 face-value zero-coupon bonds maturing at
years 1 and 5 are given as follows:

P(0, 1) = 1/e0.0691 = 0.93323
P(0, 5) = 1/e(0.0975 × 5) = 0.61416

Substituting the above values in the expressions for d1 and d2, in equa-
tion 7.2, we get:

Using the cumulative normal distribution function in Excel (N(x) is com-
puted using the command “=NORMSDIST(x)”), we get:

N(d1) = N(0.16117) = 0.56402
N(d2) = N(−0.38655) = 0.34955
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Hence, call option price equals:

Now consider the price of a put option on the same five-year zero-
coupon bond, with an exercise price of $70, option expiration date of one
year, and V = 0.3. The face value of the five-year bond equals $100. Since
all variables for the call and the put are identical, we can use the put-call
parity relationship given in equation 7.5, and get the put price as follows:

THE DURATION VECTORS OF BOND OPTIONS

To obtain the duration vector of a European call option on a zero-coupon
bond, note that the value of the call option can be given as a replicating port-
folio of two bonds: a long position equal to N(d1) P(t, T) F (i.e., N(d1) num-
ber of bonds with a price of P(t, T) F per bond), and a short position equal
to −N(d2) P(t, S) K (i.e., −N(d2) number of bonds with a price of P(t, S) K per
bond).

Since the total value of this portfolio is the value of the call option, the
portfolio weights are given as:

and

where, by definition wc1 + wc2 = 1.
Since the duration vector of a portfolio of bonds is equal to the

weighted average of the duration vectors of the bonds in the portfolio, we
can compute the duration vector of the call option by treating it as a repli-
cating portfolio of the two bonds, using the weights given previously.

At time t, the duration vector of the zero-coupon bond maturing at date
T is given as follows (using the definition of the duration vector elements
from equation 5.2):

Similarly, at time t, the duration vector of the zero-coupon bond maturing
at date S is given as follows:

(7.9)D m T t m Mm( ) ( ) , , ,= − =for all . . . ,1 2

(7.8)  w N d P t S K c tc2 2= −[ ]( ) ( , ) / ( ) 

(7.7)w N d P t T F c tc1 1=  ( ) ( , ) / ( )

p t( ) . . . $ .= + × − × =11 81 0 93323 70 0 61416 100 15 72

c t( ) = × × − × ×0.56402 0.61416 100 0.34955 0.93323 70 == $11.81
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Hence, the duration vector of the call option is given as follows:

where wc1 and wc2 are defined in equations 7.7 and 7.8, respectively.
Substituting the duration vector of the call option from equation 7.11

into equation 5.10, we can express the percentage change in the call price
as follows:

Similarly, we can obtain the duration vector of a European put option
on a zero-coupon bond. Similar to the call option, the put option can also
be given as a replicating bond portfolio using equation 7.4. Specifically, it
represents a short position equal to −[1 − N(d1)] P(t, T) F (i.e., −[1 − N(d1)]
number of bonds with a price of P(t, T) F, per bond), and a long position
equal to [1 − N(d2)] P(t, S) K (i.e., [1 − N(d2)] number of bonds with a price
of P(t, S) K, per bond).

Hence, the portfolio weights in the two bonds are given as follows:

and

where by definition wp1 + wp2 = 1.
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Hence, the duration vector of the put option is given as:

for all m = 1, 2, . . . , M.
Substituting the duration vector of the put option from equation 7.15

into equation 5.10, we can express the percentage change in the put price
as follows:

The duration vector of calls and puts obtained in this section allows
these options to be used in designing immunization and other hedging
strategies such as index replication, duration gap management, and so on,
as outlined in Chapter 5. By treating these options as additional securities,
all of the results derived in Chapter 5 for hedging against arbitrary nonpar-
allel term structure shifts immediately apply to fixed-income portfolios that
include these options. However, unlike using cash bonds and futures, in
which portfolio rebalancing can be done at discrete cash flow payment
dates, the use of options requires portfolio rebalancing to be done on a
daily basis as the hedge ratios and duration vectors change continuously
due to the changing time value of these options.

Though options on zero-coupon bonds are not that common, a huge
market in the interest rate options such as caps, floors, and collars exists. As
shown in the next chapter, these interest rate options can be considered
portfolios of European zero-coupon bond options. Hence, the duration vec-
tor of options obtained above can be generalized to hold for these interest
rate options under the general multifactor Gaussian framework.

Example 7.2 In this example, we estimate the percentage change in the
price of the call option given in Example 7.1 using the duration vector, and
compare it to the actual change caused by a shift in the yield curve. To
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compute the duration vector of the call option in Example 7.1, we estimate
the weights wc1 and wc2, given in equation 7.7 and 7.8, as follows:

In Example 7.1, the maturity of the two zero-coupon bonds that repli-
cate the call option are given as T − t = 5 years, and S − t = 1 year. Hence,
the first two elements of the duration vector are computed using equation
7.11, as follows:

Dc(1) = 2.9342 × 5 − 1.9342 × 1 = 12.737
Dc(2) = 2.9342 × 25 − 1.9342 × 1 = 71.421

Using only the first two elements of the duration vector in equation
7.12, we get:

Now, consider an instantaneous change in the parameters of the yield
curve, as follows:

∆A0 = 0.005
∆A1 = −0.002
∆A2 = 0
∆A3 = 0

Substituting the above parameters in equation 7.17, we get:

∆c t

c t

( )
( )

≈ − × − × − = =12.737 0.005 71.421 ( 0.0020125) 0.0801 8.01%
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The estimated percentage change given previously can be compared
with the actual percentage change in the call price. The yield curve in Ex-
ample 7.1 was given as follows:

Since we have assumed ∆A0 = 0.005 and ∆A1 = −0.002, the new yield curve
is given as follows:

The new yield curve gives the following values for the one-year and five-
year zero-coupon yields:

and

Hence, the new values of $1 face-value zero-coupon bonds maturing at
years 1 and 5 are given as:

P(0, 1) = 1/e0.0721 = 0.93044
P(0, 5) = 1/e(0.0925 × 5) = 0.62971

Substituting the new bond prices, F = 100 and K = 70 in equation 7.2,
and following the procedure given in Example 7.1, the new call price equals
$12.77. Since the original call price equals 11.81 in Example 7.1, the actual
percentage change in the call price equals:

(12.77 − 11.81)/11.81 = 0.96/11.81 = 8.16%

The estimated percentage change using the two-element duration vec-
tor is 8.01 percent, which is quite close to the actual percentage change of

y 5 0 065 0 008 5 0 001 5 0 0001 5 0 0922 3( ) = + × − × + × =. . . . . 55

y 1 0 065 0 008 1 0 001 1 0 0001 1 0 0722 3( ) = + × − × + × =. . . . . 11

y t t t t( ) = + − +0 065 0 008 0 001 0 00012 3. . . .

y t t t t( ) = + − +0 06 0 01 0 001 0 00012 3. . . .
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8.16 percent. The difference is only 0.15 percent, or less than one-sixth of 
1 percent of $11.81, equal to about 2 pennies.

Note that the use of two duration risk measures allowed capturing the
effect of both the change in the height (i.e., ∆A0 = 0.005) and the change in
the slope (i.e., ∆A1 = − 0.002) of the zero-coupon yield curve on the call op-
tion price. Suppose we ignored the change in the slope and assumed a par-
allel shift in the yield curve. Then, the estimated percentage change would
be given as:

Substituting ∆A0 = 0.005 in equation 7.18, we get:

Hence, the estimated percentage change is negative 6.28 percent, which
is 14.44 percent lower than the actual change of 8.16 percent. Though the
results of this example are based upon hypothetical numbers, it is well
known that the effects of nonparallel shifts on options written on longer
term bonds are significant. The use of a two or three element duration vec-
tor model can significantly reduce the basis risk arising from nonparallel
shifts in the yield curve.

Bounds on the Duration Vector of Bond Options

A Lower Bound on the Duration Vector of Call Options It can be seen from
equations 7.7 and 7.8 that wc1 ≥ 0 and wc2 ≤ 0. Since wc2 ≤ 0 and (T − t)m ≥
(S − t)m (for all m = 1, 2, . . . , M), it is implied that wc2 (S − t)m ≥ wc2 (T − t)m.
This implies that Dc(m) = wc1 (T − t)m + wc2 (S − t)m ≥ (wc1 + wc2 ) (T − t)m.
Finally, since wc1 + wc2 = 1, the following inequality must always hold:

In other words, the duration vector of the zero-coupon bond underly-
ing the call option defines a lower bound of the duration vector of the call
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TABLE 7.1 Duration Vector Values of Call and Puts versus Exercise Price

Exercise
Panel A: Call Option Panel B: Put Option

Price ($) Dc(1) Dc(2) Dc(3) Dp (1) Dp (2) Dp (3)

0+ 5.00 25.00 125.00 − ∞ − ∞ − ∞
40 8.56 46.36 235.35 −317.79 −1,911.75 −9,881.56

80 40.80 239.78 1,234.70 −62.05 −377.31 −1,953.61

120 160.72 959.31 4,952.25 −8.69 −57.14 −299.39

+ ∞ + ∞ + ∞ + ∞ 1.00 1.00 1.00

option. This implies that sensitivity of the call option to interest rate
changes is higher than the sensitivity of the underlying bond to these
changes. Also, the lower bound on the duration vector of a call option im-
plies that its duration measures of a call option are always positive. The du-
ration vector of a call option does not have an upper bound. Hence, under
certain conditions the duration vector of the call option can become infi-
nitely large (e.g., as shown in Panel A of Table 7.1).

An Upper Bound on the Duration Vector of Put Options It can be seen
from equations 7.13 and 7.14 that wp1 ≤ 0 and wp2 ≥ 0. Since wp1 ≤ 0 and
(T − t)m ≥ (S − t)m (for all m = 1, 2, . . . , M), it is implied that wp1 (T − t)m

≤ wp1 (S − t)m. This implies that Dp(m) = wp1 (T − t)m + wp2 (S − t)m ≤ (wp1
+ wp2 ) (S − t)m. Finally, since wp1 + wp2 = 1, the following inequality must
always hold:

In other words, the duration vector of the zero-coupon bond maturing
at the put option’s expiration date, defines an upper bound of the duration
vector of the put option. Unlike the duration vectors of regular bonds and
call options, which are always positive, the duration vector of the put option
is generally negative, but can also be positive with an upper bound given in
equation 7.20. Since the duration vector of a put option does not have a
lower bound, under certain conditions the duration vector of the put option
can become infinitely negative (e.g., as shown in Panel B of Table 7.1).

To get additional insights into the duration vectors of call options and
put options, the next section performs numerical simulations to analyze the

(7.20)D m S t m Mp m( ) ( ) , , , . . . ,≤ − =for all 1 2
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TABLE 7.2 Duration Vector Values of Call and Puts versus Volatility

Volatility
Panel A: Call Option Panel B: Put Option

V Dc(1) Dc(2) Dc(3) Dp (1) Dp (2) Dp (3)

0.25% 59.38 351.30 1,810.86 −161.09 −971.54 −5,023.83

1% 40.80 239.78 1,234.70 −62.05 −377.31 −1,953.61

4% 24.86 144.13 740.53 −25.68 −159.08 −826.10

25% 12.60 70.62 360.69 −7.68 −51.09 −268.14

+ ∞ 5.00 25.00 125.00 1.00 1.00 1.00

relationships between the duration vector values of these options and the
underlying variables that define these options.

Numerical Simulations

This section numerically simulates the duration vector values of European
options written on zero-coupon bonds. Unless stated otherwise, the follow-
ing values of the different parameters are assumed:

1. Maturity of the underlying zero-coupon bond equals five years.
2. Option expiration date equals one year.
3. Exercise price, or the face value of the one-year bond equals $80.
4. Price of the five-year bond equals $80.
5. Integrated volatility, V, equals 1 percent.
6. Annualized interest rate (assuming a flat term structure) equals 6 percent.

The comparative static results are reported with respect to the exercise
price, the integrated bond volatility, and the interest rate in Tables 7.1, 7.2,
and 7.3, respectively.

The Exercise Price Table 7.1 provides the values of the duration vectors
of a European call option and a European put option, with respect to
different values of the exercise price. Panel A of Table 7.1 gives the first
three elements of the duration vector values of the call option. When the
exercise price tends to zero, the price of the call option converges to the
price of the underlying five-year bond, and the duration vector of the call
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TABLE 7.3 Duration Vector Values of Call and Puts versus Interest Rate

Interest
Panel A: Call Option Panel B: Put Option

Rate (%) Dc(1) Dc (2) Dc(3) Dp (1) Dp (2) Dp (3)

5 34.10 199.62 1,027.21 −73.19 −444.11 −2,298.76

10 79.18 470.07 2,424.54 −28.11 −173.64 −901.32

15 144.38 861.27 4,445.72 −10.41 −67.48 −352.48

20 219.25 1,310.51 6,766.82 −5.17 −36.00 −190.15

option becomes identical to that of the five-year bond. However, as the
exercise price increases, the call option becomes a leveraged security and its
duration vector rises rapidly.

Panel B constructed similar to Panel A, gives the values of the first three
elements of the duration vector of the put option. As the exercise price tends
to zero, the duration vector values of the put option tend to negative infin-
ity. Increases in the exercise price decrease the magnitudes of the duration
vector elements of the put option. As shown in Panel A of Table 7.1, that the
duration vector of a call option attains its lower bound when the exercise
price tends to zero. Similarly, it can be seen from Panel B of Table 7.1, that
the duration vector of a put option attains its upper bound when the exer-
cise price tends to infinity.

The Bond Volati l ity Table 7.2, constructed very similar to Table 7.1, allows
the integrated volatility V (see equation 7.2 for the definition) to vary, and
assumes the exercise price to be a constant equal to $80. Table 7.2
demonstrates that the magnitudes of the duration vectors of both the call
option and the put option decrease as V increases. As shown in Panel A of
Table 7.2, when V becomes infinitely large, the duration vector of the call
option converges to its lower bound. Similarly, as shown in Panel B of Table
7.2, when V becomes infinitely large, the duration vector of the put option
converges to its upper bound.

The Interest Rate Until now, we have assumed that the five-year zero-
coupon bond sells for an $80 price, with a 6 percent annualized interest
rate. This corresponds to a maturity face value of $107.99, at the end of five
years. Table 7.3 assumes this face value to be a given constant, and allows
the price of the five-year bond to fluctuate in response to the changes in the
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level of the interest rates. It can be seen from Panel A of Table 7.3 that the
magnitudes of the duration vector elements of the call option are positively
related to level of the interest rates. Similarly, it can be seen from Panel B of
Table 7.3 that the magnitudes of the duration vector elements of the put
option are negatively related to level of the interest rates.

Estimation of the Duration Vectors Using
Implied Volatil ities

Though we have identified the appropriate formulae for the duration vec-
tors of bond options and callable bonds (see equations 7.11 and 7.15),
these formulae remain meaningless unless they can be estimated using em-
pirical data. The main obstacle in the computation of the duration vectors
of bond options is the estimation of the integrated volatility V (see equation
7.2). This requires the estimation of the full-rank covariance structure of re-
turns on zero-coupon bonds using historical data. Though this is possible,
it remains a complicated task due to the declining maturities of the zero-
coupon bonds. Also, using specific functional forms of the volatility V may
limit the model to the Gaussian interest rate processes implied by these
functions. Since the model given in this chapter is very general and includes
all single and multifactor Gaussian models given by Merton (1973b); Va-
sicek (1977); extensions of Vasicek model by Hull and White (1993); multi-
factor affine and nonaffine models of Heath, Jarrrow, and Morton (1992);
and others; we want to put minimum theoretical constraints on the inte-
grated volatility V.

Hence, we use a direct empirical approach for the estimation of the du-
ration vector of bond options using the implied volatility methodology to
estimate V. An advantage of the implied volatility methodology is that it in-
corporates all of the currently available information and thus avoids the er-
rors contained in the estimation of future volatility using the historical
full-rank covariance structure of bond returns. This approach allows the
general Gaussian model to fit the observed bond prices (or yield curve) at
the current date, and also be calibrated to the observed option prices at the
current date. Since no theoretical assumption is made about V, it is consis-
tent with a variety of Gaussian term structure models.

To apply this approach note that if the market values of c(t), P(t, T), P(t,
S), and the values of F and K are known in equation 7.2, then we can esti-
mate the implied value of the integrated volatility V, without explicitly
knowing the functions σ(v, T), σ(v, S), and ρ(v, S, T), contained in V, which
are specific to the term structure models. However, since c(t) is a nonlinear
function of V and other variables, it is not easy to invert equation 7.2 and
express V as a nonlinear function of c(t) and other variables.
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However, computing V using c(t) and other variables, is quite an easy
task using any programming languages. In fact, both the “Solver” and
“Goal Seek” functions in Excel can be used to estimate V in a single step.
The value of V will change for options with different underlying variables.
However, for a specific call option, once the implied value of V is com-
puted, equations 7.7 through 7.11 can be used to estimate its duration
vector.

A similar argument applies for the computation of the duration vector
of a put option. In this case, we use equation 7.4 to estimate the implied
value of V, and then use this value of V in equations 7.13 through 7.15 to es-
timate the duration vector of the put option.

In the real world, options on zero-coupon bonds are not that common.
However, interest rate options such as caps, floors, and collars are very
widely used in many markets (i.e., the interest rate swap market, the mort-
gage market). Since a cap can be considered a portfolio of a sequence of in-
creasing maturity European put options on a corresponding sequence of
zero-coupon bonds with increasing maturities (as shown in the next chap-
ter), an iterative method can be used to estimate different values of V corre-
sponding to different zero-coupon bond options embedded in the cap, by
using a sequence of caps of increasing maturities. Using the different values
of V corresponding to different zero-coupon bond options, the results given
earlier can be applied for estimating the duration vector of a cap, which is
represented as a portfolio of European puts. Similarly, the duration vector
of a floor can be estimated by expressing the floor as a portfolio of a se-
quence of increasing maturity call options on a corresponding sequence of
zero-coupon bonds with increasing maturities.

THE DURATION VECTOR OF CALLABLE BONDS

Consider a default-free zero-coupon callable bond maturing at time T with a
face value $1. The time t price of this bond is Pc(t, T). The price of this bond
with $F of face value equals Pc(t, T)F. Assume that the $F face-value callable
bond is callable at time S (t < S < T) for an exercise price of K. This means
that at time S, the issuer of the callable bond can buy the bond back at a
fixed price equal to K dollars. Let P(t, T)F be the price of the corresponding
zero-coupon noncallable bond maturing at time T with a face value F.

The relationship between the callable and the noncallable bond can
be given as:

(7.21)P t T F P t T F c tc( , ) ( , ) ( )= +
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where c(t) is the price of a call option. This call option gives the option
holder the right to buy the zero-coupon bond maturing at date T, at time S
for an exercise price equal to $K. The price of the call option c(t) is defined
in equation 7.2. The short position in the call option embedded in the
callable bond is exactly offset by explicitly adding a long position in the same
call option on the right-hand side of equation 7.21, resulting in the price of
a noncallable bond. Equation 7.21 can be rewritten:

Hence, the callable bond represents a portfolio of a long position in the
underlying noncallable bond, and a short position in the call option.

The call option price is given in equation 7.2 as:

Substituting equation 7.2 into equation 7.22, we get:

To obtain the duration vector of the callable bond, note that the value
of the callable bond Pc(t, T)F, can be given as a portfolio of two bonds:

1. A long position equal to [1 − N(d1)] P(t, T)F, or [1 − N(d1)] number
of bonds with a price of P(t, T)F for each $F face-value bond matur-
ing at time T.

2. A long position equal to N(d2) P(t, S)K, or N(d2) number of bonds with
a price of P(t, S)K for each $K face-value bond maturing at time S.

Since the total value of this portfolio is the value of the callable bond, the
portfolio weights are given as:

and

Note that wcB1 + wcB2 = 1, and wcB1 ≥ 0, wcB2 ≥ 0.

(7.25)w N d P t S K P t T FcB
c

2 2=    ( ) ( , ) / ( , )

(7.24)w N d P t T P t TcB
c

1 11= −( ) ( ) ( , ) / ( , )

(7.23)P t T F N d P t T F N d P t S Kc( , ) ( ) ( , ) ( ) ( , )= −  +1 1 2

  c t N d P t T F N d P t S K( ) ( ( , ) ( ( , )= −1 2) )

(7.22)P t T F P t T F c tc( , ) ( , ) ( )= −
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The duration vector of the callable bond can be obtained as a weighted
average of the duration vectors of zero-coupon bonds maturing at dates T
and S, where the weights are given in equations 7.24 and 7.25, respectively.
Substituting the duration vectors of the two zero-coupon bonds maturing at
dates T and S from equations 7.9 and 7.10, respectively, the duration vector
of the callable bond is given as:

Since wcB1 + wcB2 = 1, and wcB1 ≥ 0, wcB2 ≥ 0 from the definitions given
in equation 7.25, it follows from equation 7.26 that the duration vector of a
callable zero-coupon bond always lies between the duration vector of the
bond maturing on the call date S and the duration vector of the bond un-
derlying the option contract, maturing on date T. In other words:

To compute the duration vector of a callable zero-coupon bond, a two-
step procedure can be followed. First, the price of the embedded call option
is calculated as the difference between the market price of the correspond-
ing noncallable bond and the callable bond. Next, the implied value of the
volatility expression V is estimated using the price of the embedded call op-
tion and other variables. The computation of the duration vector of the
callable bond is then straightforward using equation 7.26.

Substituting the duration vector of the callable bond from equation
7.26 into equation 5.10, we can express the percentage change in the
callable zero-coupon bond price as follows:
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A number of authors in the fixed-income literature derive the duration
of the callable bond, assuming infinitesimal parallel term structure shifts.
As noted by Nawalkha (1995), the duration measure for callable bonds de-
rived by these authors is incorrect. To see this, consider equation 7.28, for
the special case of infinitesimal parallel shift in the term structure of interest
rates, as follows:

where DcB(1) is given as:

Many researchers including Dunetz and Mahoney (1988) and Jamshid-
ian and Zhu (1988), and others show the duration of the callable zero-
coupon bond to be given as follows:

Hence, the duration formula given in equation 7.31 by these authors is
incorrect since it ignores the term wcB2 (S − t), given in equation 7.30. Ig-
noring this term can lead to big errors if the call date S is quite distant.

Numerical Simulations

This section numerically simulates the duration vector values of callable
zero-coupon bonds. Unless stated otherwise, the following values of the dif-
ferent parameters are assumed:

1. Maturity of the callable zero-coupon bond equals five years.
2. Call date equals one year.
3. Call exercise price, or K is $80.
4. Price of the noncallable five-year zero-coupon bond equals $80.
5. Volatility Expression, V is 1 percent.
6. Annualized interest rate (assuming a flat term structure) is 6 percent.

The comparative static results are reported with respect to the call ex-
ercise price, the underlying bond volatility, and the interest rate.

(7.31)D w T tcB
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TABLE 7.4 Duration Vector Values of Callable Bond versus
Call Exercise Price

Call Exercise
Price ($) DcB (1) DcB (2) DcB(3)

0+ 1.00 1.00 1.00

70 1.11 1.69 4.55

80 2.09 7.68 35.44

90 3.85 18.14 89.54

+ ∞ 5.00 25.00 125.00

The Call  Exercise Price Table 7.4 provides the values of the duration
vectors of the callable zero-coupon bond with respect to different values of
the call exercise price. When the call exercise price is zero, the probability
of exercising the call is 100 percent, and hence the duration vector of the
callable bond equals the duration vector of the bond maturing at the call
date (i.e., the lower bound of the duration vector of the callable bond). For
higher call exercise prices, the probability of exercising the call decreases,
which increases the duration vector values of the callable bond. In the limit,
as the call exercise price becomes infinite, the duration vector of the callable
bond equals the duration vector of the noncallable bond (i.e., the upper
bound of the duration vector of the callable bond).

The Bond Volati l ity Table 7.5 investigates the relationship of the duration
vector of the callable zero-coupon bond with respect to the changes in the
integrated volatility V. This table is divided into two panels. Panel A

TABLE 7.5 Duration Vector Values of Callable Bond versus Volatility

Panel A Panel B

Volatility
(Call Exercise Price = $90) (Call Exercise Price = $70)

V (%) DcB (1) DcB (2) DcB (3) DcB (1) DcB (2) DcB (3)

0.25 4.49 21.97 109.33 1.00 1.00 1.01

1 3.85 18.14 89.54 1.11 1.69 4.55

4 3.44 15.61 76.49 1.71 5.24 22.92

25 3.16 13.99 68.10 2.46 9.75 46.19

+ ∞ 3.00 13.00 63.00 3.00 13.00 63.00
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TABLE 7.6 Duration Vector Values of Callable Bond versus
Interest Rate

Interest Rate (%) DcB(1) DcB(2) DcB(3)

5 1.65 4.93 21.30

10 4.34 21.07 104.69

15 4.99 24.96 124.81

20 4.99 24.99 124.99

assumes that the call exercise price equals $90, while Panel B assumes that
the call exercise price equals $70. The noncallable bond’s price equals $80.
If the volatility V is very low, and if the call exercise price is significantly
higher than the price of the noncallable bond, then it is implied that the
probability of the exercise of the call is low, and the duration vector of the
callable bond should be closer to the duration vector of the noncallable
bond. Similarly, if the volatility V is very low, but the call exercise price is
significantly lower than the price of the noncallable bond, then it is implied
that the probability of the exercise of the call is high, and the duration
vector of the callable bond should be closer to the duration vector of the
zero-coupon bond maturing at the call date.

Panel A and Panel B of Table 7.5 demonstrate these results. When the
volatility V equals only 0.25 percent, the duration vector values of the
callable bond are closer to the duration vector values of the noncallable
bond in Panel A, and are closer to the duration vector values of the bond
maturing at the call date in Panel B. However, as the volatility increases in
Panel A (Panel B), the probability of the exercise of the call increases (de-
creases), causing the duration vector values of the callable bond to decrease
(increase). In the limit, as the volatility becomes infinite, the portfolio
weights of the callable bond become half or, wcB1 = wcB2 = 1⁄2, for both Pan-
els A and B, and the duration vector of the callable bond becomes half of
the sum of the duration vectors of the five-year noncallable bond and the
one-year bond maturing at the call date.

The Interest Rate Until now we have assumed that the five-year
noncallable zero-coupon bond sells for an $80 price, with a 6 percent
annualized interest rate. This corresponds to a maturity face value of
$107.99, at the end of five years. Table 7.6 assumes this face value to be a
given constant, and allows the price of the five-year noncallable bond to
fluctuate in response to the changes in the level of the interest rates. It can
be seen from Table 7.6, that as the interest rate increases, the probability of
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exercising the call decreases (since the five-year noncallable bond loses in
value). Hence, the duration vector values of the callable bond increase and
approach the duration vector values of the noncallable bond at high levels
of the interest rate.

The duration vector of the callable bond in this section assumed that
the underlying zero-coupon bond is called on a given call date. However,
most callable bonds are callable anytime after the call protection period,
and so the embedded call option in these callable bonds is an American-
type option that can be exercised at any time after the first call date, using a
contractually specified call schedule with deterministically changing call ex-
ercise prices. Also, since most callable bonds are also coupon-paying bonds,
the embedded call option is written on the underlying noncallable coupon-
paying bond. Simple closed-form formulas for options on coupon-paying
bonds do not exist in a multifactor setting. Hence, it is difficult to derive
simple analytical formulas for the duration vector of callable coupon bonds
with American-type option features. A variety of term structure models and
the numerical techniques such as binomial and trinomial trees in the second
book of this series can be used to derive the interest rate sensitivities of
these callable bonds. Later in this chapter, we consider the pricing and du-
rations of European options on coupon bonds, which provide some intu-
ition about the interest rate sensitivities of coupon-bond options.

ESTIMATION OF DURATION VECTORS USING 
NON-GAUSSIAN TERM STRUCTURE MODELS

The results until now have assumed a general Gaussian framework for the
derivation of the duration vectors of bond options and callable bonds. This
framework uses the implied volatility V to estimate the duration vectors.
This section shows how the results derived in the previous sections may be
extended to derive the duration vectors of bond options and callable bonds
under non-Gaussian multifactor models, including the general affine mod-
els of Dai and Singleton (2000), quadratic models of Ahn, Dittmar, and
Gallant (2002), and the jump-affine models of Chacko and Das (2002). The
price of a European call option on a zero-coupon bond maturing at date T,
with a face value F, under all the above term structure models has the fol-
lowing general form:

where all variables except ∏1 and ∏2 are as defined in earlier sections.
Though under the Gaussian framework ∏1 = N(d1) and ∏2 = N(d2) (as can

(7.32)  c t P t T F P t S K( ) ( , ) ( , )= −Π1 2Π



The Durations of European Options 203

be seen from equation 7.2), ∏1 and ∏2 may have more complex functional
forms under general non-Gaussian models. For example, under the multi-
factor jump-affine models of Chacko and Das, ∏1 and ∏2 are obtained
using fourier inversion of the characteristic functions associated with the
risk-neutral densities. In general, different term structure models will lead
to different functional forms for ∏1 and ∏2.

Using put-call parity given in equation 7.5, the price of the put option with
the same characteristic as that of the call option in equation 7.32, is given as:

Similarly, the price of a callable bond given in equation 7.23 can be
given under the more general framework as follows:

The derivation of functional forms of ∏1 and ∏2 for general multifactor
non-Gaussian models are outside the scope of this chapter, but are derived
under a variety of multifactor affine and quadratic term structure models in
the second book of this series. By substituting ∏1 for N(d1) and ∏2 for
N(d2), in all equations after equation 7.2, the results related to the duration
vectors of calls, puts, and callable bonds (and also interest rate caps and
floors which can be given as portfolios of European puts and calls, respec-
tively) given in the previous sections immediately hold under the more gen-
eral multifactor non-Gaussian term structure models.

THE DURATIONS OF EUROPEAN OPTIONS ON COUPON
BONDS AND CALLABLE COUPON BONDS

A default-free coupon bond can be considered a portfolio of default-free
zero-coupon bonds. Since an option on a coupon bond cannot be generally
priced as a portfolio of options on the underlying zero-coupon bonds (be-
cause the portfolio will generally have less volatility than the weighted aver-
age of the volatilities of the individual zero-coupon bonds in the portfolio),
obtaining closed-form solutions for European options on coupon bonds is
difficult if not impossible under a multiple factor setting.

In this section, we derive the interest rate sensitivities of European op-
tions on coupon bonds assuming a class of single-factor affine term structure
models. A term structure model is affine with respect to the instantaneous
short rate if the zero-coupon bond price is exponentially linear in the short

(7.34)P t T F P t T F P t S Kc( , ) ( , ) ( , )= −  +1 1 2Π Π

(7.33)  p t P t S K P t T F( ) [ ( , ) [ ( , )= − − −1 12 1Π Π] ]
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rate. The zero-coupon bond prices can be expressed as a decreasing function
of the current short rate under all single-factor affine term structure models.
Jamshidian (1989) demonstrates a mathematical trick to obtain the European
solution of an option on a coupon bond, from the European solutions of op-
tions on the underlying zero-coupon bonds, under all single-factor affine
term structure models. Jamshidian’s result can be demonstrated as follows.

Consider a European call option on a coupon bond, with an expiration
date S and exercise price K. The coupon bond has M cash flows given as CFi
at time Ti ≤ S, for i = 1, 2, . . . , M, maturing before or at the option expira-
tion date S, and N − M cash flows given as CFi at time Ti > S, for i = M + 1,
M + 2, . . . , N, maturing after the option expiration date S. The present
value of the N − M cash flows maturing after the option expiration date S
is given as:

where using the affine property the time t price P(t, Ti) = P(r(t),t,Ti), of a zero-
coupon bond that pays $1 at time Ti, is a decreasing function of the short rate
r(t), at time t. The value of the call option at expiration date S, equals:

where P(S, Ti) = P(r(S), S, Ti) is the time S price of a zero-coupon bond ma-
turing at time Ti. Since all zero-coupon bond prices P(S, Ti) are monotoni-
cally decreasing functions of the short rate r(S) under the single-factor term
structure models, the sum given in the inside brackets on the right side of
equation 7.36 also decreases as r(S) increases. 

Consequently, the option will be exercised only if r(S) is below the spe-
cific value of short rate equal to r*(S), which makes the following equation
hold:

Now define N − M, new constants given as:

(7.38)K P r S S Ti i= + +( *( ), , ), for 2, . . .i = M , M1 , N
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Substituting equation 7.38 into equation 7.37, we get:

By substituting equation 7.39 into equation 7.36, the payoff of the op-
tion on the coupon bond at time S can be expressed as:

If r(S) < r*(S), then P(S, Ti) = P(r(S), S, Ti) will be higher than Ki for each i,
and thus the payoff of the option becomes:

On the other hand, if r(S) ≥ r*(S), then each term P(S, Ti) − Ki will be non-
positive, and so the option is not exercised and its payoff equals zero.
Hence, for all possible values of r(S), the payoff of the option on the coupon
bond is given as:

In other words, the payoff of the option on the coupon bond equals the
payoff on a portfolio of options on zero-coupon bonds comprising the
coupon bond. Hence, the time t price of the call option on the coupon bond
equals the price of the portfolio of call options on zero-coupon bonds, or

where ci(t) is the price of the European call option with expiration date S
and exercise price Ki, written on a $1 face-value zero-coupon bond matur-
ing at time Ti. A similar argument can be applied to get the price of a Euro-
pean put option on a coupon bond as follows:
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where the put option is based on the same variables as the call option given
previously.

Now consider a callable coupon bond with a call date S and a call exer-
cise price K. The callable coupon bond has M cash flows given as CFi at
time Ti ≤ S, for i = 1, 2, . . . , M, maturing before or at the call date S, and
N − M cash flows given as CFi at time Ti > S, for i = M + 1, M + 2, . . . , N,
maturing after the call date S.

The price of a callable coupon bond can be given as:

where, CPc(t) = price of the callable coupon bond, CP(t) = price of a
coupon bond, and all other variables are as defined before.

Equation 7.43 shows that a call option on a coupon bond can be
treated as a portfolio of call options on zero-coupon bonds. Similarly, equa-
tion 7.44 shows that a put option on a coupon bond can be treated as a
portfolio of put options on zero-coupon bonds. Finally, equation 7.45
shows that a callable coupon bond can be treated as a portfolio of long po-
sitions in the zero-coupon bonds and another portfolio of short positions in
the call options written on zero-coupon bonds.

Hence, equations 7.43, 7.44, and 7.45 can be used to derive the dura-
tion vectors of call options on coupon bonds, put options on coupon
bonds, and callable coupon bonds, using the duration vectors of the un-
derlying call and put options on zero-coupon bonds given in equations
7.11 and 7.15, respectively. Since the derivation of the coupon bond option
formulas in the above equations are based upon the assumption of single-
factor affine term structure models, the elements of the duration vector for
these securities, measure the sensitivity of these securities to height, slope,
curvature shifts in the yield curve, caused by only one factor, and not mul-
tiple factors. However, since the first factor is the most important factor in
interest rate models, and the shape of the bond volatility function may be
nonstationary over time even if driven by only one factor, using two or
three elements of the duration vector model may still be useful in designing
hedging strategies. The use of a higher number of risk measures to capture
risks arising from a smaller number of factors is not that uncommon. For
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example, Ho (1992) suggests using as many as 11 key rate durations to
capture the interest rate risk of fixed-income securities, arising from only
three to four factors.

However, the theoretical framework developed in this section is more
suitable for the derivation of duration measures corresponding to the single-
factor affine term structure models. Though the results of this section can
be applied to single-factor affine term structure model (e.g., Cox, Ingersoll,
and Ross, 1985; Ho and Lee, 1986; Hull and White, 1993; Vasicek, 1977;
and the extensions of the Vasicek and CIR models), we focus our attention
on the Vasicek model and the extended Vasicek model given by Hull and
White. We do not give a detailed analysis of these models (which are given
in the second book of this series), but instead focus on the main results
needed to derive the prices and duration risk measures of options on
coupon bonds using these models.

Durations of Coupon Bond Options Using Vasicek and
Extended Vasicek Models

In order to derive the durations of bond options, we first need the definition
of the duration of a zero-coupon bond under both the Vasicek model and
the extended Vasicek model.

Duration of a Zero-Coupon Bond Vasicek assumes a mean reverting
Ornstein-Uhlenbeck process for the instantaneous short rate of the form:

where r(t) is the instantaneous short rate at time t, m is the long term mean
to which r reverts at a speed α, σ is the volatility coefficient and dZ(t) is
the standard Wiener process for the short rate. Assuming the price of a
default-free zero-coupon bond is a function of the short rate and the bond
maturity, applying Ito’s lemma, and using absence of arbitrage, Vasicek ob-
tained the following equation for the bond price at time t maturing T peri-
ods hence:

where

(7.47)P t T eA t T B t T r t( , ) ( , ) ( , ) ( )= −

(7.46)dr t m r t dt dZ t( ) = − ( )( ) + ( )α σ
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where γ is the market price of interest rate risk. The affine property of the
Vasicek model allows the bond price at any time to be expressed as an ex-
ponentially linear function of the short rate at that time in equation 7.47.
This property is useful in obtaining the solution of a coupon-bond option as
a portfolio of options on zero-coupon bonds as derived by Jamshidian
(1989) for all single-factor affine term structure models.

The stochastic bond price process consistent with equation 7.47 is
given as follows:

The relative basis risk of the default-free zero-coupon bond using equa-
tion 7.47 can be given as −[∂ P(t, T) ⁄ ∂ r(t)]/P(t, T), which defines the dura-
tion of the zero-coupon bond under the Vasicek model, given as:

The asymptotic value of the duration under the Vasicek model as T goes
to infinity equals 1/α. The traditional Macaulay duration can be obtained as
a special case of the Vasicek duration by assuming the speed of mean rever-
sion α equals zero. This can be demonstrated by using the L’Hospital’s rule
to equation 7.49, which gives DP(α = 0) = T − t. Intuitively, this result ob-
tains since a zero mean reversion makes the Vasicek’s model consistent with
parallel term structure shifts. In general, if the term structure is mean re-
verting and α is positive, the duration of a zero-coupon bond will be lower
than its traditional Macaulay duration.

Duration of a Call  Option on a Coupon Bond Since the Vasicek model
assumes a Gaussian interest rate process, the general solution of the
European call option price given in equation 7.2 holds for this model. By
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identifying the zero-coupon bond volatility as σ(t, T) = σB(t, T), and
correlation as ρ(v, S, T) = 1 (since the Vasicek model is a one-factor model),
from the Vasicek bond price process given in equation 7.48, and
substituting it in the expression V in equation 7.2, the time t price of a
European call option expiring at time S with an exercise price Ki, written
on a $1 face-value zero-coupon bond with maturity Ti is given as:

where P(t, Ti) is the price at time t of a $1 face-value zero-coupon bond ma-
turing at time Ti, and N(x) is the cumulative standard normal distribution
evaluated at x. The variables d1i and d2i are given as:

By substituting the value of B(t, Ti) from equation 7.49 into expression
Vi given previously, we get:

Now reconsider the European call option on a coupon bond with the
expiration date S and exercise price K. The coupon bond pays M cash flows
given as CFi at time Ti ≤ S, for i = 1, 2, . . . , M, maturing before or at the
option expiration date S, and N − M cash flows given as CFi at time Ti > S,
for i = M + 1, M + 2, . . . , N, maturing after the option expiration date S.
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Obviously, the M cash flows maturing before the option expiration date S,
can be ignored for pricing the coupon bond option.

As shown in the previous section, the price of the call option on the
coupon bond can be given as a portfolio of call options on zero-coupon
bonds. By substituting the prices of call options written on $1 face-value
zero-coupon bonds from equation 7.50 into equation 7.43, the price of the
call option on the coupon bond can be given as follows:

where ci(t) is defined in equation 7.50, and Ki can be obtained using equa-
tions 7.38 and 7.39, for i = M + 1, M + 2, . . . , N as follows. Guess a value
for the short rate r*(S) at time S, for which:

such that Ki is given as:

where using the affine single-factor assumption, the Vasicek’s bond price
P(r*(S), S, Ti) = exp[A(S, Ti) − B(S, Ti) r*(S)] is a decreasing function of
r*(S) as shown in equation 7.47.

Substituting equation 7.50 into equation 7.52, the price of the Euro-
pean call option on the coupon bond can be given as:

The call option on the coupon bond in equation 7.55 is given as a repli-
cating portfolio of long positions in N − M different zero-coupon bonds ma-
turing at dates Ti, for i = M + 1, M + 2, . . . , N, and a short position in the
zero-coupon bond maturing at date S. The portfolio weights in the long po-
sitions in the N − M different zero-coupon bonds are given as follows:
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The portfolio weight in the short position in the zero-coupon bond matur-
ing at date S is given as follows:

The duration of the call option on the coupon bond is given as the weighted
average of the durations of the N − M + 1 (N − M long positions and 1
short position) zero-coupon bonds that replicate the option. Using the defi-
nition of the duration of a zero-coupon bond from equation 7.49, the dura-
tion of the call option on the coupon bond is given as follows:

Example 7.3 Consider a one-year European call option with a strike price
of $96, written on a three-year 4 percent annual coupon bond with a $100
face value. Assume the following parameters for the Vasicek model:

α = 0.3
m = 7%
σ = 0.5%

Assume that the market price of risk λ = 0, and the current value of the
short rate equals 5 percent.

At the option expiration date of one year, the bond makes it first
coupon payment of $4, and the bond has two cash flows remaining. Hence,
at the end of one year, the bond can be regarded as a portfolio consisting of
four $1 face-value zero-coupon bonds maturing at the end of two years, and
104 $1 face-value zero-coupon bonds maturing at the end of three years.
The coupon bond can be valued as follows:

To determine the strike prices of the options on the zero-coupon bonds,
we need to find r*(1), which is that value of r(1) that makes the coupon
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TABLE 7.7 Calculations for Separate Zero-Coupon European Calls

Option 1 Option 2
i = 2 i = 3

Bond face value $1 $1

Bond maturity, Ti 2 years 3 years

Option strike price, Ki $0.9431 $0.8868

Option maturity, S 1 year 1 year

(Vi )0.5 0.37459% 0.65209%

d1i 0.3795 0.3822

d2i 0.3757 0.3757

N(d1i) 0.6478 0.6489

N(d2i) 0.6464 0.6464

Option price, ci(0) $0.002065 $0.003388

bond price at the end of one year, equal to the strike price of $96 (see equa-
tion 7.37). Substituting the Vasicek bond price formulas, we estimate r*(1)
from the following equation:

or

Using the Solver function in excel, we find r*(1) = 5.680%. Substituting
r*(1) = 5.680% for the short rate, the zero-coupon bond prices P(1, 2) and
P(1, 3) are given as:

The value of the option on the coupon bond equals the value of the portfo-
lio consisting of four one-year European options with strike price $0.9431
on a zero-coupon that pays $1 at year 2, and 104 one-year European op-
tions with strike price $0.8868 on a zero-coupon that pays $1 at year 3.
The calculations needed for valuing each of the two European options are
shown in Table 7.7.
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The value of the option on the coupon bond is given as:

The duration of the European call option on the coupon bond can be com-
puted by using the weights defined in equations 7.56 and 7.57, and the du-
ration formula given in equation 7.58, as follows:

where P(0, T1) = P(0, 1) = 0.9486, P(0, T2) = P(0, 2) = 0.8959, and P(0, T3)
= P(0, 3) = 0.8433, using the Vasicek bond price formula given in equation
7.47 with r(0) = 5%.

Hence, the call option on the coupon bond is equivalent to −163.2754
weight in the zero-coupon bond maturing at time t = 1, 6.4389 weight in
the zero-coupon bond maturing at time t = 2, and 157.8365 weight in the
zero-coupon bond maturing at time t = 3. The three weights add up to 1,
but their huge magnitudes indicate that this option is a highly leveraged se-
curity (since it is a deeply out-of-the-money option).

Using equation 7.58 the duration of the call option on the coupon bond
is given as:
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Hence, the duration of the call option equals 180.84 years.

Duration of a Put Option on a Coupon Bond Using a similar methodology
for the call option, the price of the put option on the coupon bond based
on the same underlying variables is given as follows:

The put option on the coupon bond in equation 7.59 is given as a
replicating portfolio of short positions in N − M different zero-coupon
bonds maturing at dates Ti, for i = M + 1, M + 2, . . . , N, and a long posi-
tion in the zero-coupon bond maturing at date S. The portfolio weights in
the short positions in the N − M different zero-coupon bonds are given as
follows:

The portfolio weight in the long position in the zero-coupon bond maturing
at date S is given as follows:

The duration of the put option on the coupon bond is given as the weighted
average of the durations of the N − M + 1 (N − M short positions and 1
long position) zero-coupon bonds that replicate the option. Using the defi-
nition of the duration of a zero-coupon bond from equation 7.49, the dura-
tion of the put option on the coupon bond is given as follows:

Duration of a Callable Coupon Bond Reconsider the callable coupon bond
with a call date S and a call exercise price K given earlier. The callable coupon
bond has M cash flows given as CFi at time Ti ≤ S, for i = 1, 2, . . . , M,
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maturing before or at the call date S, and N − M cash flows given as CFi at
time Ti > S, for i = M + 1, M + 2, . . . , N, maturing after the call date S.

The price of a callable coupon bond can be given as follows:

where, CPc(t) = price of the callable coupon bond, CP(t) = price of a
coupon bond, and c(t) = price of the call option on the coupon bond.

Substituting the price formula for the regular coupon bond, and the
price of the call option on coupon bond from equation 7.55 in equation
7.63, we get,

The callable coupon bond in equation 7.64 is given as a replicating
portfolio of long positions in N different zero-coupon bonds maturing at
dates Ti, for i = 1, 2, . . . , N, and a long position in the zero-coupon bond
maturing at date S. The portfolio weights are given as:

and

The duration of the callable coupon bond is given as the weighted average
of the durations of the N + 1 zero-coupon bonds that replicate this bond.
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Using the definition of the duration of a zero-coupon bond from equation
7.49, the duration of the callable coupon bond is given as:

Generalization to the Extended Vasicek Model The Vasicek model assumes
that time t prices of a zero-coupon bond is given by equation 7.47.
However, these prices may or may not fit the existing set of observable zero-
coupon bond prices at time t. If the model prices and market observed
prices are different, then option prices and duration measures will be
incorrect. To avoid this problem, practitioners often calibrate the term
structure model to observable prices at some initial date. Typically,
calibration is done on a daily basis, assuming the initial date is the current
date t = 0. Calibrating the model requires using an observable set of zero-
coupon bond prices P(0, T), as an input to the model. Since in general the
Vasicek model will not fit these observable prices, the short rate process
given in equation 7.46 must be modified, so that the model fits the
observable prices. The modified short rate process, called the extended
Vasicek model, is derived by Hull and White (1993) and is given as:

The only difference between equation 7.46 and equation 7.69 is that the
long-term mean in equation 7.69 is a deterministic function of time. The de-
terministically changing long-term mean is given as follows:

where, f(0, t) = −∂ lnP(0, t)/∂t = initially observed instantaneous forward
rate at time 0 for term t. Equation 7.70 requires that the zero-coupon bond
prices observed at the initial date t = 0, must be twice differentiable with re-
spect to bond maturity. This condition is satisfied by the commonly used
models for the estimation of the P(0, T) function (e.g., the cubic-spline
model of McCulloch and Kwon, 1993, and the exponential model of Nel-
son and Siegel, 1987, in Chapter 3).

Since the long-term mean m(t) does not appear in any option pricing
formulas or duration formulas, all equations from 7.50 to 7.68, except
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equations 7.53 and 7.54, continue to hold for calibrated model by simply
assuming current time t = 0 and using the twice-differentiable observable
zero-coupon bond price function P(0, T) instead of the Vasicek model
prices given by equation 7.47. Equations 7.53 and 7.54 are used to obtain
the exercise prices Ki such that an option on a coupon bond can be treated
as a portfolio of options on zero-coupon bonds. Estimation of Ki requires
that the zero-coupon bond price P(r(S), S, T) at the future time S, be a func-
tion of the future short rate r(S). This relationship between the short rate
and zero-coupon bond price is obviously not given by equation 7.47 under
the calibrated model, since the long-term mean m(t) is deterministically
changing, and equation 7.47 is valid only when the long-term mean is a
constant. Hence, one requires the functional relationship between P(r(S), S,
T) and r(S) at the future time S under the calibrated model with changing
long-term mean m(t), in order to apply equations 7.53 and 7.54 to estimate
Ki. This relationship is given as follows under the calibrated model:

where

Using this relationship to find Ki in equations 7.53 and 7.54, all equa-
tions from (7.50) to (7.68), continue to hold for the calibrated model by
simply assuming current time t = 0 and using the twice-differentiable ob-
servable zero-coupon bond price function P(0, T), instead of the Vasicek
model prices given by equation 7.47. It can be confirmed that the bond
price formula in equation 7.71 reduces to the bond price formula in equa-
tion 7.47, for the special case when m(t) = m, a constant.

The calibration of the Vasicek model using the above framework allows
the model to become consistent with the initially observable prices P(0, T).
However, the model is not calibrated to the historical term structure of
zero-coupon bond return volatility at time t = 0. In fact, bond volatility
function equals σB(t, T), which can take only a limited number of shapes.
As shown by Hull and White (1993), calibration to the historical term
structure of zero-coupon bond return volatility would require that the
speed of mean reversion parameter α is also time dependent. Such calibra-
tion is covered in the second book of this series.
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CHAPTER 8
Hedging with Swaps and

Interest Rate Options Using
the LIBOR Market Model

An interest rate swap is a contractual agreement between two counterpar-
ties under which each agrees to make periodic payment to the other for a

prespecified time period based on a notional amount of principal. The prin-
cipal amount is called notional because this amount is not exchanged, but is
used as a notional figure to determine the cash flows that are exchanged pe-
riodically. In a plain-vanilla interest rate swap, fixed cash flows computed
using a fixed interest rate on the notional amount are exchanged for float-
ing cash flows computed using a floating interest rate on the notional
amount. The most common floating interest rate used for computing the
floating leg of the cash flows is the three-month London Interbank Offer
Rate (LIBOR). Most interest rate swaps exchange the floating cash flows
every quarter, and the fixed cash flows every six-months. The stream of
floating cash flows in a swap agreement is called the floating leg, whereas
the stream of fixed cash flows constitute the fixed leg. The fixed rate in an
interest rate swap agreement is known as the swap rate. The dates at which
the floating rates are observed are called resets.

The total notional amount of interest rate swaps was about $111 tril-
lion on December 31, 2003, which was approximately 56 percent of the no-
tional amount of the entire over-the-counter global derivative market, which
includes options, forward rate agreements, and other popular swaps such as
currency swaps, equity swaps, and so on.1 The explosive growth of interest
rate swaps over the past quarter century suggests that managing interest rate
risk remains a chief concern for many financial institutions and other mar-
ket participants, even as U.S. interest rates have gone down steadily since
reaching their peak in 1980 to 1981. With virtually record low interest rates
prevailing in November 2004, a change in interest rate regime could lead to
a huge exchange of wealth among swap participants, though not necessarily

This chapter coauthored with Iuliana Ismailescu.
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creating a panic if the majority of the participants have used interest rate
swaps wisely to hedge against the negative effects of interest rate risk.

Interest rate swaps are used by financial institutions and other market
participants including corporations with interest rate sensitive assets or lia-
bilities for hedging interest rate risk arising from the maturity mismatches
between the assets and the liabilities. For example, a mortgage bank with a
high asset duration resulting from holding longer maturity fixed-rate loans,
and a low liability duration resulting from short maturity deposits, may ini-
tiate an interest rate swap in which it pays the fixed leg of the cash flows and
receives the floating leg of the cash flows. The swap-adjusted duration gap
of the mortgage bank would be reduced considerably, though this would
also mean lower return on its net worth. However, since the mortgage bank
specializes in the business of profiting from the services provided in the
home-loan business market, and not predicting the future direction of inter-
est rates, initiating such a swap may be consistent with its business model.
Similarly, very highly leveraged institutions such as Fannie Mae and Freddie
Mac often use interest rate swaps to fine-tune their duration gaps. Virtually,
all financial institutions and many corporations with nonfinancial busi-
nesses use interest rate swaps to manage the effects of unwanted interest
rate risk on their net worth.

In this chapter, we analyze the pricing and duration measures of inter-
est rate swaps by applying the duration vector model to swaps. Since inter-
est rate swaps can often include embedded options such as caps, floors, and
collars, we also derive the duration vectors of these interest rate options. To
price the interest rate options, we use the LIBOR market model, which has
become the industry standard for pricing these options in the swap market.
Finally, we derive the duration vectors of interest rate swaps with embedded
interest rate options.

The use of the duration vector model allows us to hedge the risks of
nonparallel interest rate shifts on the portfolio of assets and liabilities using
interest rate swaps, without making restrictive assumptions about the cor-
relation structure of interest rates. This is important because recent re-
search shows the importance of allowing maximum flexibility in the
correlation structure of interest rates to consistently price both the interest
rate options, such as caps and floors, and swaptions, which are options on
the underlying swap rate.

A SIMPLE INTRODUCTION TO INTEREST RATE SWAPS

We begin this chapter with an introduction to an example of a plain-vanilla
interest rate swap. For expositional simplicity, we assume that the counter-
parties exchange fixed and floating cash flows every six months.2
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TABLE 8.1 Cash Flows Exchanged by Firm A

Floating Fixed
LIBOR Cash Flow Cash Flow Net Cash 

Date Rate (%) Received ($) Paid ($) Flow ($)

September 1, 2003 3.50

March 1, 2004 3.75 175,000 200,000 −25,000

September 1, 2004 4.00 187,500 200,000 −12,500

March 1, 2005 4.20 200,000 200,000 0

September 1, 2005 4.50 210,000 200,000 +10,000

Example 8.1 Consider a two-year interest rate swap between firms A and
B, initiated on September 1, 2003, with an annualized swap rate of 4
percent compounded semiannually, and the floating rate given as the six-
month LIBOR. The notional principal of the swap equals $10 million. The
LIBOR rates and the exchange of cash flows are displayed in Table 8.1.

Every six months firm A pays 0.02 × $10 million = $200,000 to firm B
and receives the six-month LIBOR × $10 million from firm B, observed at
the beginning of each six-month period. The first exchange occurs on March
1, 2004, six months after the agreement is initiated. Since the annualized
six-month LIBOR rate observed six months earlier on September 1, 2003, is
3.5 percent, firm A receives from firm B a floating cash flow equal to:

and pays to firm B, a fixed cash flow equal to:

Since the net difference between these two cash flows is −$25,000, firm A
sends $25,000 to firm B on March 1, 2004. The second exchange of cash
flows takes place on September 1, 2004. Since the six-month LIBOR rate
observed six months earlier on March 1, 2004, is 3.75 percent, firm A re-
ceives from firm B a floating cash flow equal to:
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on September 1, 2004, and in return pays the fixed cash flow of $200,000,
resulting in a net cash flow payment from firm A to firm B of $12,500. The
cash flow exchanges on other dates are shown in Table 8.1.

Another way to look at the previous swap transaction is to assume that
firm A gives to firm B a fixed-coupon bond in exchange for receiving a
floating-coupon bond, where both bonds have a redemption face value
equal to the notional principal of $10 million. Hence, a plain-vanilla swap
can be considered equivalent to a long position in the floating rate bond to-
gether with a short position in the fixed-coupon bond (or vice versa). If one
or both counterparties involved in the swap transaction decide to terminate
the contract, they must negotiate the cancellation of the contract, called the
unwind, which involves one of the counterparties to make a payment based
upon the mark-to-market value of the swap contract. Another way to termi-
nate the original contract is to enter into a new swap contract by taking ex-
actly opposite positions in the fixed and floating legs, in order to neutralize
the interest rate risk of the original swap contract.

For the purpose of expositional simplicity, Example 8.1 abstracted from
the many real-world features of interest rate swap contracts. For example,
you must consider day-count conventions used for computing the cash flows
corresponding to the floating rates and fixed rates. Also, often the number
of payments on the floating leg is not necessarily equal to the number of
payments on the fixed leg, and cash flows are not exchanged on the same
dates. We address all of these issues in this chapter.

Day-Count Conventions

In Example 8.1, we assumed that the floating rate for a six-month period is
half as much as the annual rate. In doing this, we disregarded that, as a
money market instrument, LIBOR is quoted on an actual/360 basis. How-
ever, between March 1 and September 1 there are 184 days, thus, the sec-
ond cash flow received by firm A should be:

and firm A’s net cash outflow should be $8,334.
The fixed rate and the floating rate may come with different day-count

conventions. If the fixed rate comes from a Treasury note or Treasury bond,
it is quoted on an actual/365 basis and it cannot be directly compared with
LIBOR, which is quoted on an actual/360 basis. To make the two rates
comparable, we multiply the fixed rate by 360/365. The fixed rate quote
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184
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FIGURE 8.1 Interest Rate Swap with a Financial Intermediary

Company A Company B

3.985%

LIBOR

Financial
intermediary

4.015%

LIBOR

may also be given using a 30/360 day-count basis. A similar adjustment
from 30/360 basis to actual/360 basis is needed if the fixed rate is quoted on
a 30/360 basis.

The Financial Intermediary

Originally, interest rate swaps were brokered transactions in which the fi-
nancial intermediary would match customers interested in a swap transac-
tion. Once the transaction was completed, the role of the intermediary
ceased as the swap counterparties exchanged payments directly. Today, the
swap market is more or less a dealer market dominated by large interna-
tional banks and financial institutions that act as market makers—they be-
come a counterparty to a swap transaction before a swap player for the
other side of the transaction is found.

The plain-vanilla swaps on U.S. interest rates usually yield 2 to 4 basis
points to the financial intermediary on a pair of offsetting transactions. Fig-
ure 8.1 illustrates the role of the financial intermediary in a transaction sim-
ilar to that described in Example 8.1.

Note that the simple plain-vanilla swap transaction in Example 8.1 is
structured as a pair of offsetting transactions: one between the dealer and
firm A and the other between the dealer and firm B. In most instances,
firms A and B will never know that the financial institution has engaged in
a swap transaction with the other firm. If either of the two firms defaults, it
is the financial intermediary that assumes the loss, as it still must honor its
agreement with the other firm. The 2- to 4-basis-points fee partly compen-
sates the intermediary against the risk of default. To further control this
risk, some swap dealers require counterparties to post collateral, usually
high grade securities, that can be used in the case of default.

Significant efforts to ensure smooth trading of swaps have been made
by the International Swaps and Derivatives Association (ISDA), a global
organization representing leading participants in the swaps and deriva-
tives markets. The ISDA recommends a standardized master agreement
to counterparties interested in conducting derivatives business. The master
agreement specifies many details including how the mark-to-market of
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TABLE 8.2 Cost of Debt in Fixed and Floating Debt Markets

Fixed-Coupon Debt Floating-Coupon Debt
Firm (%) (%)

A 5 LIBOR + 0.50

B 4 LIBOR + 0.25

Cost advantage for B 1 0.25

transactions are calculated, what mutual collateral thresholds apply, the
types of derivatives that are netted out for margins, and so on.

MOTIVATIONS FOR INTEREST RATE SWAPS

Interest swaps are motivated by either the existence of what is known as com-
parative cost advantage or by the need to hedge interest rate risk. The con-
cept of comparative cost advantage can be understood using Example 8.2.

Example 8.2 Consider issuance of debt by two firms. Firm A needs to issue
fixed-coupon debt maturing in T years, while firm B needs to issue floating-
coupon debt maturing in T years. The yield or the cost of debt for both
these firms in the fixed-coupon debt market and the floating-coupon debt
market are given in Table 8.2.

Due to its better credit rating, firm B gets cheaper financing in both the
fixed rate market and the floating rate market. However, its advantage in
the fixed rate market is 1 percent, which is higher than its advantage in the
floating rate market of 0.25 percent. The difference between the cost advan-
tages in the two markets is called the comparative cost advantage of firm B
over firm A in the fixed rate market compared to the floating rate market
and is given as:

If the comparative cost advantage is not zero, then both firms could
benefit by issuing debt securities in the market in which they are relatively
better off, and still obtaining their choice of financing by doing an interest
rate swap. Specifically, firm A needs to issue fixed-coupon debt, but could
issue floating-coupon debt instead, since in the floating rate market its dis-
advantage is only 0.25 percent. Similarly, firm B needs to issue floating-
coupon debt, but could issue fixed-coupon debt instead, since in the fixed

(8.1)   Comparative cost advantage = − =1 0 25 0 75% . % . %
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FIGURE 8.2 Cash Payments of Company A

Company A Company B

LIBOR + 0.5%

4.0%

LIBOR

rate market its advantage is 1 percent. Simultaneously, the two firms execute
an interest rate swap, which converts firm A’s financing from floating rate
to fixed rate, and firm B’s financing from fixed rate to floating rate.

The issuance of securities by the two firms and the simultaneous execu-
tion of the interest rate swap through an intermediary are shown in Figure
8.2. Based on the information in Figure 8.2, we can compute the cost of fi-
nancing to each firm if they simply obtained the type of financing they
needed without doing the swap, and then compare it to the cost of financing
to each firm if they obtained financing from the markets in which they are
relatively better off with a simultaneous execution of an interest rate swap.
We assume that the intermediary charges an annual fee of 4 basis points (or
0.04% = 0.0004), which is divided and paid equally by firms A and B.

The cost of financing to the two firms, using the type of financing they
need without using a swap, is given as follows:

Firm A’s cost of financing without the swap = 5%
Firm B’s cost of financing without the swap = LIBOR + 0.25%

The cost of financing to the two firms, using the financing from the
markets in which they are relatively better off with a simultaneous execu-
tion of an interest rate swap, is given as follows:

Firm A’s cost of financing with the swap (see Figure 8.2):

Payments to financial intermediary = Swap rate + Fee = 4% + 0.02%
+ Payments to the investors in the floating rate debt = LIBOR + 0.5%
− Payments received from the financial intermediary= −LIBOR

4.52%

Firm B’s cost of financing with the swap (see Figure 8.2):

Payments to financial intermediary = LIBOR
+Payments to the investors in the fixed rate debt = 4%
−Payments received from the financial intermediary = −(Swap rate − Fee)

= −(4% − 0.02%)

LIBOR + 0.02%
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TABLE 8.3 Cost of Financing and Savings for Firm A and Firm B

Cost of Financing A (%) B (%)

Without the swap 5 LIBOR + 0.25

With the swap 4.52 LIBOR + 0.02

Savings 0.48 0.23

The savings from using the swap are given as the firms’ cost of financ-
ing without the swap minus the firms’ cost of financing with the swap, as
shown in Table 8.3.

The savings of firms A and B, and the 4 basis points given to the inter-
mediary add up to the comparative cost advantage of 0.75 percent as shown:

Savings for firm A = 0.48%
Savings for firm B= 0.23%

Fee to the intermediary= 0.04%

Total = 0.75%

The fact that the annual savings to the two firms and the fee to the in-
termediary add up to 0.75 percent is not a coincidence. This was the annual
comparative cost advantage computed earlier in equation 8.1. As a general
principal the comparative cost advantage represents the pie that can be
shared among all swap participants including the fee paid to the intermedi-
ary. Of course, the existence of comparative cost advantage should not be
necessarily viewed as arbitrage opportunities in the market. The intermedi-
ary will require collateral, and so forth, or may engage in better monitoring,
some of which can explain a reduction in cost of financing to the swap par-
ticipants. Occasionally, discrepancies in the relative pricing in different mar-
kets may exist temporarily, such that all swap participants can benefit as
shown in Example 8.2.

Example 8.2 demonstrated how comparative cost advantage can be ex-
ploited by the execution of an interest rate swap. In Example 8.3, we show
that hedging interest rate risk is another motivation for engaging in an in-
terest rate swap.

Example 8.3 Consider two firms A and B with the cash flow maturity
structure of assets and liabilities as shown in Table 8.4. Firm A’s assets are
financed with $100 million of floating rate bonds that give an annual
interest of LIBOR plus 0.5 percent. Firm B’s assets are financed with $100
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TABLE 8.4 Cash Flow Structure of Assets and Liabilities of Firm A and Firm B

Firm Assets Liabilities

A Fixed cash inflows Floating rate bond financed at
LIBOR plus 0.5%

B Floating cash inflows Fixed rate bond financed at 4%

million of fixed rate bonds that give an annual interest of 4 percent. Firm
A’s assets are mostly in businesses that provide fixed earnings, which do not
fluctuate with interest rates (these could also be long-term fixed-coupon
bonds held by a financial institution). In contrast, firm B’s assets are in
businesses that provide floating earnings that fluctuate with the inflation
rate and, hence, with the level of the interest rates (e.g., producer of oil or
other raw materials tied with inflation).

Obviously, both firms have a mismatched maturity structure of the asset/
liability cash flows. Firm A’s fixed cash flow earnings are financed by the is-
suance of floating rate debt, which implies a higher duration for its assets than
for its liabilities. In contrast, firm B’s floating cash flow earnings are financed
by the issuance of fixed rate debt, which implies a higher duration for its lia-
bilities than for its assets.3 The duration mismatch implies high exposure to
interest rate risk for both firms. Firm A gains and firm B loses when interest
rates fall, while firm A loses and firm B gains when interest rates rise.

To hedge the duration mismatch caused by the mismatch in cash flow
maturity structure, both these firms can pay off their debts and obtain new
financing to match their liability cash flow structure with the asset cash
flow structure. We assume that if firm A were to pay off its floating rate
bond and issue a fixed rate bond, it would have to pay an interest of 5 per-
cent per year on the new bond. Similarly, we assume that if firm B were to
pay off its fixed rate bond and issue a floating rate bond, it would have to
pay an interest of LIBOR + 0.25 percent per year on the new bond. How-
ever, early redemption of bonds is not easy unless the bonds are callable,
and issuing new bonds implies the occurrence of issuance costs. So, to save
on transactions costs, these two firms do a plain-vanilla interest rate swap
based on a $100 million notional principal. Since all numbers assumed in
this example are consistent with the numbers used in Example 8.2, the swap
details are consistent with those in Example 8.2, and both Figure 8.2 and
Table 8.3 apply to this example also.

The swap-transformed balance sheet is given in Table 8.5, and is based
on the information given in Table 8.3. Not only does the swap transaction
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TABLE 8.5 Swap-Transformed Market Value Balance Sheets of Firm A and Firm B

Firm Assets Liabilities

A Fixed cash inflows Effective fixed rate financing at 4.52%

B Floating cash inflows Effective floating rate financing at
LIBOR + 0.02%

allow these two firms to hedge against interest rate risk by matching the
asset cash flows to liability cash flows (fixed to fixed, and floating to float-
ing), it also allows them additional savings arising from the comparative
cost advantage, as shown in Example 8.2. Firm A saves 0.48 percent in in-
terest cost per year (5% − 4.52% = 0.48%), while firm B saves 0.23 percent
in interest cost per year (LIBOR + 0.25% − LIBOR + 0.02% = 0.23%). In
general, savings due to comparative cost advantage, and hedging interest
rate risk are the two main motivations for the use of interest rate swaps.

PRICING AND HEDGING WITH INTEREST RATE SWAPS

This section shows how to price and hedge using interest rate swaps. A
swap can be considered an exchange of a fixed-coupon bond and a floating
rate bond with face values of both bonds equal to the notional principal of
the swap. The coupon rate on the floating rate bond can be considered as
the floating rate that is used for obtaining the floating leg of the swap, while
coupon rate on the fixed-coupon bond can be considered as the fixed swap
rate that is used for obtaining the fixed cash flows of the swap. The payment
frequency of the fixed and floating coupons may or may not be the same. In
the Eurodollar swap market, the floating rate is generally given as the three-
month LIBOR, and the fixed rate is quoted as the swap rate. The fixed pay-
ments based on the swap rate are made semiannually and floating payments
based upon the three-month LIBOR are made quarterly.

Since pricing and duration vector formulas exist for fixed- and floating-
coupon bonds, these formulas can be used to obtain the price and duration
vector formulas for swaps. The price of a pay fixed/receive floating swap be-
fore its maturity can be given as follows:

(8.2)SWAP t P t P tfloating fixed( ) ( ) ( )= −
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where Pfixed(t) = Price of a fixed-coupon bond with coupon rate equal to
the swap rate that is used for obtaining the fixed leg of the
swap

Pfloating(t) = Price of a floating rate bond with coupon rate equal to the
floating rate that is used for obtaining the floating leg of
the swap

F = Face value of the fixed-coupon bond and the floating rate
bond, set equal to the notional principal of the swap

At the time of initiating a swap contract, the price of the swap,
SWAP(t), is set to zero, by choosing an appropriate swap rate for obtaining
the fixed cash flows corresponding to the fixed leg of the swap. As interest
rates change, the swap dealer will change the swap rate in order to initiate
new swap transactions at a zero swap price. However, from the perspective
of the swap holder, the swap rate remains fixed over the life of the swap con-
tract, and so can be assumed to be a constant equal to R. Given the con-
stant R, the price SWAP(t) in equation 8.2 will change and become nonzero
as soon as interest rates change after entering into the swap transaction.
The price SWAP(t) determines the present value of the gain or loss to the
holder of pay fixed/receive floating side of the swap, if the swapholder de-
cides to unwind the original swap by taking a new and opposite swap posi-
tion in the pay floating/receive fixed side of the swap.

Now, consider the floating leg of a swap which gives the floating rate
payments at dates Ti, i = 1, 2, . . . , n, where the length of the tenor is given as
τ = Ti − Ti−1. Given the notional principal of F, and the default-free money
market rate L(Ti−1, Ti) observed at time Ti−1, the payment from the floating
leg of the swap at time Ti is given as F × τ × L(Ti−1, Ti). The payments from
the floating leg are identical to the coupons paid by a default-free floating
rate bond which pays F × τ × L(Ti−1, Ti) at times Ti, i = 1, 2, . . . , n. Of
course, the floating leg and fixed leg do not actually make notional principal
payments of F at time Tn (as these would simply cancel out) but by express-
ing the swap price SWAP(t) as a difference between Pfixed(t) and Pfloating(t), we
can compute the price of Pfloating(t) as if the swap required exchange of F be-
tween the fixed leg and the floating leg at time Tn.

To obtain the price of the floating rate bond, Pfloating(t), note that the
cash flows from this bond are identical to the cash flows from investing $F
into a short-term default-free time-deposit account that pays a periodic in-
terest of F × τ × L(Ti−1, Ti), at times Ti, for i = 1, 2, . . . , n, and returns the
account balance F at time Tn. By definition the value of this account at the
initial time t = T0, equals F. At time T1, the account pays an interest equal to
F × τ × L(T0, T1), while the account’s balance equals F. Similarly, at time T2,
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the account pays an interest equal to F × τ × L(T1, T2), while the account
balance still equals F. Hence, the account value at all reset dates must equal
F, since the original investment F can be cashed out from the deposit ac-
count at any reset date.

However, between the reset dates the value of the time-deposit account
behaves like a default-free zero-coupon bond maturing at the next reset
date. This is because at the next reset date, the account will be worth its face
value F plus an interest amount that is known today. Since this account is
equivalent to the floating rate bond, the price Pfloating(t) can be given as:

where P(t, T1) is the time t price of $1 face-value default-free zero-coupon
bond, maturing at time T1. Hence, the price of the floating rate bond 
Pfloating(t) equals the price of a zero-coupon bond with a face value given as
F(1 + τ × L(T0 , T1)), maturing at time T1, when T0 < t < T1. Of course, at all
reset dates, t = Ti, as the floating coupons are paid, the price of the floating
bond converges to F.

Now, consider the fixed leg of a swap which gives the fixed-coupon
payments at dates Si , i = 1, 2, . . . , N, where the length of the tenor is given
as s = Si − Si−1. To keep the analysis general, we allow the payment dates
from the fixed leg to be different from the payment dates of the floating leg.
The total number of fixed payments N can also be different from the total
number of floating payments n. For example, the Eurodollar interest rate
swaps allow quarterly payments from the floating leg and semiannual pay-
ments from the fixed leg, such that n = 2N. However, since we treat the
swap price SWAP(t) as the difference between the floating rate bond and the
fixed-coupon bond in equation 8.2, we require that the offsetting payments
of the face value F from these two bonds occur exactly at the same date, or
the last payment dates SN and Tn, represent the same date.

Given the swap rate R, for the fixed leg, the corresponding price of
fixed-coupon bond, Pfixed(t), can be obtained as a sum of the underlying
zero-coupon bonds, as:

where by definition SN = Tn, and P(t, Si) is the price of a default-free zero-
coupon bond maturing at date Si.

(8.4)
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Example 8.4 Firm A initiated a five-year pay fixed/receive floating swap, 3.5
years ago (at t = 0), with a 6 percent swap rate, based on a notional principal
of $100 million. The floating rate of the swap is the three-month LIBOR with
quarterly compounding. The floating leg of the swap makes quarterly
payments, while the fixed leg of the swap makes semiannual payments. In
the past 3.5 years, interest rates have steadily increased, and now the six-
month, one-year, and 1.5-year LIBOR rates with continuous compounding
are given as 8 percent, 8.5 percent, and 9 percent, respectively. The value of
Pfixed(t = 3.5) now equals:

The value of Pfloating(t = 3.5) equals the notional value of $100 million at
the reset date, or

Thus, the price of the pay fixed/receive floating swap equals:

Duration Vector of an Interest Rate Swap

This section derives the duration vector of the pay fixed/receive floating
swap. The duration vector of the pay floating/receive fixed swap has identi-
cal magnitudes but opposite signs of the duration vector of the pay fixed/re-
ceive floating swap. Unlike duration vector of a cash bond portfolio, which
measures a change in the portfolio value as a percentage of the portfolio
value, the duration vector of a swap is defined to measure a change in the
swap price, not as a percentage of the swap price, but as a percentage of the
swap’s notional principal. This switch from swap price to the swap’s no-
tional principal is necessary for the definition of the duration vector for
swaps, since swap price is always zero at the initiation of the swap. This def-
inition of the duration vector of the swap implies that the change in swap
price for hedging purposes is estimated by using the notional value of the
swap, and not the swap price.

  SWAP t( . ) . $ .= = − =3 5 100 95 63 4 37 million

  
P tfloating ( . ) $= =3 5 100 million

P t
e efixed ( . )

/ / /
. . .= = + + +

×3 5
6 2 6 2 100 6
0 08 0 5 0 085

22
95 630 09 1 5e . . $ .× = million
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As mentioned earlier, we consider the floating leg of a swap with float-
ing rate payments at dates Ti, i = 1, 2, . . . , n, and fixed leg of the swap
with fixed-coupon payments at dates Si, i = 1, 2, . . . , N, where Tn = SN.
We assume that the current date t is less than both T1 and S1. Using
this framework, the price of a pay fixed/receive floating swap is defined
in equation 8.2 as SWAP(t) = Pfloating(t) − Pfixed(t), where Pfloating(t) is defined
in equation 8.3, and Pfixed(t) is defined in equation 8.4. Typically, the coupon
rate of the fixed leg, or the swap rate, is chosen such that the swap price at
inception of the swap is zero. To avoid a potential division by zero, the
weights of the portfolio in equation 8.2 are defined with respect to the
swap’s notional principal and not the swap price. Hence, the weights are
given as:

and

Thus, the duration vector of a swap is a weighted average of the dura-
tion vectors of the floating rate bond and the fixed-coupon bond, or:

As shown in equation 8.3, the floating rate bond behaves like a zero-
coupon bond maturing at the next reset date. Hence, the duration vector of
the floating rate bond at time t < T1, is given as follows:

Using equation 8.4, the duration vector of the fixed-coupon bond is ob-
tained as follows (see Chapter 5 for more details):

(8.8)D m T t mfloating m( ) ( )= − =, for all 1, 2, . .1 .. , M

(8.7)
  
D m w D m w D mswap

swap
floating

swap
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Fswap
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Substituting the duration vectors of the floating rate bond and the
fixed-coupon bond from equations 8.8 and 8.9, into equation 8.7, the du-
ration vector of the swap can be obtained. The change in the swap price
given as a percentage of the notional principal of the swap is given using a
relationship similar to equation 5.10, as follows:

The percentage change in the swap price defined relative to the notional
principal in equation 8.10 is independent of the scale of the notional princi-
pal. In other words, the duration vector elements of the swap do not change
as the notional principal increases or decreases.

Recall from Chapter 5 that ∆A0, ∆A1, ∆A2, are given as the changes in
the height, slope, curvature, and higher order shifts in the term structure of
default-free zero-coupon yields. For hedging applications, consider a cash
bond portfolio P(t) with duration vector elements given as D(1), D(2), . . . ,
D(M). Suppose the portfolio manager desires to change the duration vector
profile of the cash portfolio to a target duration vector profile given as
DT(1), DT(2), . . . , DT(M). Since this requires M duration constraints, the
manager will need to use M swaps of different maturities. Consider the du-
ration vector elements of the jth pay fixed/receive floating swap (j = 1,
2, . . . , M) as follows:

(8.11)D m m Mj
swap( ), for 1, 2, . . . ,=

(8.10)
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where the duration vector of the swap is defined in equation 8.7. It can be
shown that the notional principals for the M pay fixed/receive floating
swaps can be given by the following solution:

If the notional principal Fj is positive for some j, then the manager must
initiate a pay fixed/receive floating swap with that amount of notional prin-
cipal. However if the notional principal Fj is negative for some j, then the
manager must initiate a pay floating/receive fixed swap with the amount of
notional principal given as −Fj. In general, the duration vector elements of
pay fixed/receive floating swaps are negative as these swaps incur gains
(losses) when interest rates go up (down). In contrast, the duration vector
elements of pay floating/receive fixed swaps are positive as these swaps
incur losses (gains) when interest rates go up (down).

Equation 8.12 is very general and allows a variety of applications for
hedging interest rate risk under nonparallel term structure shifts. For most
applications M = 1, 2, or 3, should be enough to capture the effects of non-
parallel shifts on the cash portfolio. Hence, between one and three swaps of
differing maturities may be generally needed for protection from interest
rate risk under nonparallel term structure shifts.

By appropriate selection of the target duration vector values, different
types of interest rate risk hedging applications such as protecting from in-
stantaneous price changes, immunization at a planning horizon, bond index
replication, duration gap management, or target duration matching can be
designed for a variety of financial institutions.

For example, consider a trading institution interested in protecting itself
from instantaneous price fluctuations. This institution requires the target du-
ration vector values for the cash portfolio to be set to zero, or DT(1) = DT(2)
= . . . = DT(M) = 0 in equation 8.12. In another example, consider a manager
of guaranteed investment products (GICs) interested in immunizing her cash
portfolio over a planning horizon of H years. This can be achieved by setting
the target duration vector values for the cash portfolio to a horizon vector,
given as, DT(1) = H, DT(2) = H2, . . . , and DT(M) = HM. Of course, over
time as durations change, the manager must devise a strategy to rebalance
the swap positions at some discretely chosen points of time.

(8.12)
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As another example, consider a financial institution interested in man-
aging the duration gap between its assets and liabilities, by computing its 
equity duration vector. By considering the previous cash portfolio as the 
equity of the financial institution, you can select the target duration vector
values for the equity, as some chosen values DT(1), DT(2), . . . , DT(M). Sim-
ilarly, a portfolio manager interested in bond index replication can select the
target duration vector values to equal the duration vector values of a given
bond index, or DT(1) = DBI(1), DT(2) = DBI(2), . . . , DT(M) = DBI(M), where
DBI(1), DBI(2), . . . , DBI(M), are the duration vector values of the selected
bond index.

FORWARD RATE AGREEMENTS

Unlike swaps, which are exchanges of two streams of multiple cash flows
(where some of the exchanges may not even occur at the same date), a for-
ward rate agreement (FRA) between two counterparties is an exchange of a
single floating amount for a single fixed amount at a given future date. A
typical FRA in the Eurodollar market requires an exchange of a LIBOR-
based floating cash flow (known as the floating leg of the FRA) for a fixed
cash flow (known as the fixed leg of the FRA), at a future time T + τ, based
upon the LIBOR rate observed at the future time T. The payoff of an FRA
based on a notional principal of F, on the expiration date T + τ, is given as:

where L(T, T + τ) is the LIBOR rate observed at time T for the term τ. The
two expressions on the right side of equation 8.13 represent a long posi-
tion in the floating leg and a short position in the fixed leg of the FRA, 
respectively.

The price of an FRA at any time t prior to T can be obtained by repli-
cating the payoff of the floating leg of the FRA as a portfolio of two zero-
coupon bonds, which expire at times T and T + τ. The portfolio is given as
a long position in the zero-coupon bond maturing at time T and a short po-
sition in the zero-coupon bond maturing at time T + τ, where both bonds
have their face values equal to the FRA’s notional principal F.

The time T proceeds from the portfolio’s long position are reinvested
for τ periods at the prevailing LIBOR rate L(T, T + τ) at time T. The payoff
from this portfolio at time T + τ is given as F[1 + L(T, T + τ)τ] − F, or:

(8.13)
  
F L T T K F L T T F Kτ τ τ τ τ( , ) ( , )+ −  = + −
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The expression in equation 8.14 proves that the time T + τ payoff from
the portfolio equals the payoff of the floating leg of the FRA given in equa-
tion 8.13. Therefore, using the law of one price, the time t value of the float-
ing leg of the FRA equals the time t price of the replicating portfolio. The
value of the bond portfolio at time t is given as:

Hence, the time t price of the FRA payoff in equation 8.13, is given as:

The Duration Vector of an FRA

The duration vector of an FRA can be obtained in a manner similar to the
duration vector of a swap. Similar to a swap, an FRA can have a zero price
and, hence, its duration vector is defined to capture the change in FRA
price as a percentage of the notional principal of the FRA. Using equation
8.16, the weights for the derivation of the duration vector of the FRA are
given as follows:

and

Since the above weights are in two zero-coupon bonds maturing at time
T + τ − t and T − t, the duration vector of the FRA is given as follows:

(8.18)
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The change in the FRA price given as a percentage of the notional prin-
cipal of the FRA can be estimated with the duration vector of the FRA, using
a relationship similar to equation 8.10 for swaps, and is given as follows:

The percentage change in the FRA price defined relative to the notional
principal in equation 8.20 is independent of the scale of the notional princi-
pal. In other words, the duration vector elements of the FRA do not change
as the notional principal increases or decreases.

Similar to swaps, FRAs can be used to hedge against nonparallel term
structure shifts. Consider a cash bond portfolio P(t) with duration vector
elements given as D(1), D(2), . . . , D(M). Suppose the portfolio manager
desires to change the duration vector profile of the cash portfolio to a tar-
get duration vector profile given as DT(1), DT(2), . . . , DT(M). Since this
requires M duration constraints, the manager will need to use M FRAs of
different maturities. Consider the duration vector elements of the jth FRA
(j = 1, 2, . . . , M) as follows:

where the duration vector of the FRA is defined in equation 8.19. It can be
shown that the notional principals for the M FRAs can be given by the fol-
lowing solution:

(8.21)
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If the notional principal Fj is positive for some j, then the manager must
be long in the floating leg and short in the fixed leg of the FRA. However,
if the notional principal Fj is negative for some j, then the manager must be
short in the floating leg and long in the fixed leg of the FRA with the
amount of notional principal equal to −Fj. In general, the duration vector el-
ements of long floating/short fixed FRAs are negative as these FRAs incur
gains (losses) when interest rates go up (down). In contrast, the duration
vector elements of long fixed/short floating FRAs are positive as these
swaps incur losses (gains) when interest rates go up (down).

Similar to equation 8.12 for the case of swaps, equation 8.22 for FRAs is
very general and allows a variety of applications for hedging interest rate risk
under nonparallel term structure shifts. By appropriate selection of the target
duration vector values, different types of interest rate risk hedging applica-
tions such as protecting from instantaneous price changes, immunization at
a planning horizon, bond index replication, duration gap management, or
target duration matching can be designed for a variety of financial institu-
tions using FRAs. Discussion on how to select the target duration vector for
these different applications was given earlier for the case of interest rate
swaps.

PRICING AND HEDGING WITH CAPS, FLOORS, AND
COLLARS USING THE LIBOR MARKET MODEL

The LIBOR market model is perhaps the most widely used model for pric-
ing interest rate options, such as caps, floors, and collars in the Eurodollar
interest rate derivatives market. The LIBOR market model had humble ori-
gins, as initially it was just a practically motivated application of Black’s
(1976) formula for pricing futures to the Eurodollar-based interest rate de-
rivatives. By using the LIBOR rate as the underlying asset and the current
forward rate as the expectation of the future LIBOR rate and assuming con-
stant volatility, the Black formula immediately gave prices for European op-
tions written on the future LIBOR rate.

(8.22)
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For some time, the theoretical underpinnings of this approach seemed
dubious. How could LIBOR rate be considered a traded asset? How could
the expectation of the LIBOR rate be the current forward rate? And, how
could one assume constant volatility? All three assumptions seemed to not
have much theoretical justification.

Yet, the practitioners were pleasantly surprised to find that all of the
questions had good theoretical answers discovered recently by Brace,
Gatarek, and Musiela (1996); Jamshidian (1997); and Musiela and
Rutkowski (1997). These authors show that the LIBOR rate, which is the
floating leg of the FRA, can be represented as a portfolio of two zero-
coupon bonds (see previous section), and hence it is a traded asset. Since it
is a traded asset, the method of arbitrage-free valuation can be used to price
options based on the LIBOR rate. But the most useful theoretical result dis-
covered is that the expectation of the LIBOR rate under the forward mea-
sure is indeed the current forward rate, and hence application of Black’s
model is fully justified. Finally, since volatility was assumed to be constant
only for a specific maturity forward rate, one could calibrate the model to
allow different forward rate volatilities for different maturities by using the
observable prices of interest rate options on LIBOR rate.4

A major assumption of the LIBOR model is that under the physical
probability measure, the forward rate for the term between Ti and Ti+1 fol-
lows a log-normal distribution, or:

where dZi(t) is a Wiener process corresponding to maturity Ti, µi mea-
sures the drift, and σi measures the volatility of the forward rate process.5

Brace, Gatarek, and Musiela (1996); Jamshidian (1997); and Musiela 
and Rutkowski (1997) show that under the forward measure in which
traded securities are measured in the units of the zero-coupon bond price,
P(t, Ti+1), the drift of this process is zero, and the forward rate process is
given as:6

where the Wiener process in equation 8.24 is defined under the forward
measure corresponding to the maturity Ti+1.
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Since the forward rate has a zero drift in equation 8.24, it follows a
martingale. Also, by definition, the forward rate at time Ti equals the ob-
served LIBOR rate, or:

Since the forward rate is a traded asset, and has zero drift under the for-
ward measure, its current value equals the expected future value of the
LIBOR rate, or:

Next we consider pricing of interest rate caps, floors, and collars, using
the LIBOR market model. We give the basic formulas using the LIBOR mar-
ket model and derive the duration vectors of caps, floors, and collars. A
more complete theoretical development of the LIBOR market model is given
in the second volume of this series.

Pricing and Hedging with Interest Rate Caps

The Pricing of a Caplet and a Cap The payoff from a caplet on the LIBOR
rate at a future date Ti+1 = Ti + τ (for i = 0, 1, 2, . . . , n − 1), is given as:

where the timeline is given as t < T = T0 < T1 < T2 < . . . < Tn, L(Ti, Ti+1) is
the LIBOR rate observed at time Ti for the term τ = Ti+1 − Ti, F is the no-
tional value of the caplet, and Kc is the cap rate. Using the LIBOR market
model, the caplet price at time t is given as:

where

(8.29)
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and

A cap is defined as a portfolio of increasing maturity caplets. The price
of a cap can be given as a sum of the caplet prices from equation 8.29 and
is given as:

Example 8.5 Firm A has a three-year, $100 million loan with a floating
interest rate of LIBOR + 0.2 percent paid semiannually. The firm wants
to hedge the risk of upward movements in the interest rates, and so it
buys an interest rate cap with a cap rate of 7 percent with semiannual
compounding, effective one year from now, immediately after the LIBOR
reset. The 1-year, 1.5-year, 2-year, 2.5-year, and 3-year zero-coupon yields
are given as 6.85 percent, 6.90 percent, 7.00 percent, 7.05 percent, and
7.05 percent. The zero-coupon bond prices corresponding to these yields
are given as follows:

Using the relationship between zero-coupon bond prices and forward
rates, we can compute the six-month forward rates starting 1 year, 1.5
years, 2 years, and 2.5 years from today, as follows:
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And therefore,

We assume that the volatilities of the six-month forward rates men-
tioned previously are flat at 20 percent per year. Using the notation t = 0, T0
= 1 year, T1 = 1.5 years, T2 = 2 years, T3 = 2.5 years, and T4 = 3 years, the
current values of the caplets comprising the cap can be computed as follows.

First caplet (makes payment at 11⁄2 years at time T1):

and

Hence, N(d1,0) = 0.5745 and N(d2,0) = 0.4951.

The first caplet price equals:
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TABLE 8.6 Prices of Caplets and Cap

Time f(0,Ti,Ti+1) Caplet
Year Ti P(0,Ti ) (%) d1,i d2,i N(d1,i) N(d2,i) Price ($)

1 0 0.9338 7.12 0.1878 −0.0122 0.5745 0.4951 282,520

1.5 1 0.9017 7.43 0.3685 0.1236 0.6438 0.5492 409,484

2 2 0.8694 7.38 0.3298 0.0469 0.6292 0.5187 425,276

2.5 3 0.8384 7.18 0.2365 −0.0797 0.5935 0.4682 397,015

3 4 0.8094

Cap Price: 1,514,295

Similar calculations apply to CAPLET1(0), CAPLET2(0), and CAPLET3(0).
The detailed results are reported in Table 8.6.

Duration Vector of a Caplet The duration vector of the caplet can be
derived using its pricing formula given in equation 8.28. However, a further
simplification to the pricing formula in (8.28) is needed before we can
derive the duration vector of the caplet. By substituting the forward rate
from equation 8.31 into equation 8.28, the caplet can be expressed as a
portfolio of two zero-coupon bonds, one maturing at time Ti and the other
one at time Ti+1, as follows:

where, d1,i and d2,i are defined in equation 8.29. The caplet represents a
long position of FN(d1,i) P(t, Ti) in the bond maturing at date Ti, and a short
position of −F [N(d1,i) +Kcτ N(d2,i)]P(t, Ti+1) in the bond maturing on date
Ti+1. To obtain the duration vector of the caplet, the portfolio weights can
be given as follows:

and
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Using the above weights, the duration vector of the caplet is given as follows:

for all m = 1, 2, . . . , M.
The percentage change in the caplet price can be estimated with its du-

ration vector using a relationship similar to equation 5.10, as follows:

Duration Vector of a Cap As shown in equation 8.30, a cap is defined as
a portfolio of caplets. The price of a cap with payoffs beginning at time T1
equals:

Substituting the values of caplets from equation 8.32 into equation
8.37, the cap can be given as a portfolio of zero-coupon bonds, with its
price given as follows:

Rearranging terms in equation 8.38, we obtain:
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Equation 8.39 demonstrates that a cap with n reset dates is a portfolio
of n + 1 zero-coupon bonds expiring at time Ti, for i = 0, 1, 2, 3, . . . , n.
The weights in each of the n + 1 zero-coupon bonds are given as follows:

Using these weights, the duration vector of the cap is given as:

for all m = 1, 2, . . . , M.
Similar to equation 8.36, the percentage change in the cap price can be

estimated with its duration vector, as follows:
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Pricing and Hedging with Interest Rate Floors

The Pricing of a Floorlet and a Floor The payoff from a floorlet on the
LIBOR rate at a future date Ti+1 = Ti + τ (for i = 0, 1, 2, . . . , n − 1), is given
as follows:

where L(Ti, Ti+1) is the LIBOR rate observed at time Ti for the term τ = Ti+1
− Ti, F is the notional value of the floorlet, and Kf is the floor rate. Using the
LIBOR market model, the floorlet price at time t is given as follows:

where d1,i and d2,i are as given in equation 8.29 with Kc replaced by Kf . A
floor is defined as a portfolio of increasing maturity floorlets. The price of a
floor can be given as a sum of the floorlet prices from equation 8.44 and is
given as:

Duration Vector of a Floorlet The duration vector of the floorlet can be
derived using its pricing formula given in equation 8.44. However, a further
simplification to the pricing formula in (8.44) is needed before we can
derive the duration vector of the floorlet. By substituting the forward rate
from equation 8.31 into equation 8.44, the floorlet can be expressed as a
portfolio of two zero-coupon bonds, one maturing at time Ti and the other
one at time Ti+1, as follows:

where, d1,i and d2,i are given in equation 8.29 with Kc replaced by Kf .
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A floorlet represents a long position of F [N(−d1,i) +Kf τ N(−d2,i)]P(t,
Ti+1) in the bond maturing at Ti+1, and a short position of −F N(−d1,i) P(t,
Ti) in the bond maturing at date Ti. To obtain the duration vector of the
floorlet, the portfolio weights can be given as follows:

and

Using these weights, the duration vector of the floorlet is given as:

for all m = 1, 2, . . . , M.
The percentage change in the floorlet price can be estimated with its

duration vector using a relationship similar to that given in equation 8.36
for a caplet.

Duration Vector of a Floor As shown in equation 8.45, a floor is defined
as a portfolio of floorlets. The price of a floor with payoffs beginning at
time T1 equals:

Substituting the values of floorlets from equation 8.46 into equation
8.50, the floor can be given as a portfolio of zero-coupon bonds, with its
price given as follows:

where d1,i and d2,i are as defined in equation 8.29 with Kc replaced by Kf .
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Rearranging terms in equation 8.51, we obtain:

Equation 8.52 demonstrates that a floor with n reset dates is a portfo-
lio of n +1 zero-coupon bonds expiring at time Ti, for i = 0, 1, 2, 3, . . . , n.
The weights in each of the n + 1 zero-coupon bonds are given as follows:

Using these weights, the duration vector of the floor is given as:

for all m = 1, 2, . . . , M.
The percentage change in the floor price can be estimated with its dura-

tion vector using a relationship similar to that given in equation 8.42 for a cap.

Pricing and Hedging with Interest Rate Collars

A combination of a long position in a cap and a short position in a floor is
known as a collar. If the cap and floor have the same strike price, maturity,
and frequency of payments, then a long position in the cap and a short po-
sition in the floor provides the same cash flows as a swap with the fixed rate
equal to the strike price of the floor and cap. Assuming that under the swap
there is no exchange of payments on the first reset date, the relationship be-
tween the cap price, floor price, and swap price, also known as the put-call
parity relationship between caps and floors, is given as follows:
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The Pricing of a Collar A collar represents a portfolio with a long
position in a cap and a short position in a floor, and its construction is
intended to limit the losses due to sharp increases in the interest rates. A
collar allows partially or fully funding the purchase of a cap using the
premium obtained from writing the floor. The price of a collar is, thus, the
price of a cap net of a floor, or:

Substituting equations 8.30 and 8.45 into equation 8.56, the collar price
can be obtained as a combination of zero-coupon bond prices. Only when
the cap and the floor have the same strike price, maturity, and frequency of
payments, a collar provides the same cash flows as a swap as shown in
equation 8.55.

Duration Vector of a Collar The duration vector of a collar with a
nonzero price, can be obtained by using equation 8.56. The portfolio
weights for obtaining the duration vector can be defined as:

Using these portfolio weights, the duration vector of a collar is given as:

for M, where the duration vectors of a cap and a floor are defined in equa-
tions 8.41 and 8.54, respectively.

The percentage change in the collar price can be estimated with its dura-
tion vector using a relationship similar to that given in equation 8.42 for a cap.

Pricing of Floating-Rate Bonds with Embedded Collars

A long position in a floating rate bond gains when interest rates rise and loses
when interest rates fall. These gains and losses can be capped by writing a
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collar while being long in the floating rate bond. Writing a collar results in a
long position in the floor that ensures receiving a minimum floating interest
when interest rates decrease, and a short position in the cap, which limits the
gains from the floating interest when interest rates increase. The price of a
floating rate bond with an embedded negative position in the collar option
can be given as follows:

To obtain the duration vector of the floating rate bond with an embed-
ded collar, the portfolio weights are given as follows:

Using these weights, the duration vector of the floating bond with embed-
ded collar is given as:

The price and duration vectors of floating rate bonds with embedded
collars given earlier can be substituted in place of the price and duration
vectors of regular floating rate bonds, in the swap pricing formula and swap
duration vector formulas derived earlier in this chapter. Doing this allows
the floating leg of the interest rate swaps to have embedded collars.

INTEREST RATE SWAPTIONS

Interest rate swaptions give the holder the right to enter into an interest
rate swap at a certain date in the future, at a particular swap rate for a
specified term. A payer swaption gives the buyer the right to pay a fixed
rate and receive a floating rate. A receiver swaption gives the buyer the
right to pay a floating rate and receive a fixed rate. The holder of the payer

(8.61)
  D m w D m w D

floater
collar floater collar− = +( ) ( ) (1 2 mm)

(8.60)

  

w
P t

P t

w
COLLAR

floater

floater
collar

1

2

=

= −

−

( )

( )

(tt
P tfloater

collar

)
( )

−

(8.59)
  
P t P t COLLAR tfloater

collar
floater

−
= −( ) ( ) ( )



250 HEDGING WITH SWAPS AND INTEREST RATE OPTIONS 

swaption exercises the option only if at the swaption’s expiration date, the
market swap rate is higher than the strike rate. The opposite is true for the
holder of a receiver swaption.

When two counterparties enter a swaption, they agree on the strike
rate, length of the option period, the swap’s maturity, notional amount,
amortization, and frequency of the settlement. Depending on the exercise
rights of the buyer, swaptions fall into three main categories:

1. European swaptions give the buyer the right to exercise the option only
at maturity.

2. American swaptions give the buyer the right to exercise the option at
any time during the option period.

3. Bermudan swaptions give the buyer the right to exercise the option on
specific dates during the option period.

Example 8.6 Suppose in Example 8.5, rather than buying an interest rate
cap, Firm A buys a payer swaption expiring in one year, on a two-year
swap at a strike rate of 7 percent. If one year from now the two-year swap
rate is above 7 percent, then firm A exercises the swaption. Then the firm
will pay a fixed interest rate of 7 percent, and receive floating interest. If
the two-year swap rate is lower than or equal to 7 percent, the swaption is
not exercised.

The payoff from the swaption in this example consists of a series of cash
flows equal to:

where p is the number of swap payments per year, and R is the two-year
swap rate prevailing one year from now. If the swap payments are ex-
changed semiannually (p = 2) and the two-year swap rate, one year from
now is 7.3 percent (R = 7.3%), then the four payoffs of the swaption over
the two years, are given as:

In general, the payoffs from a payer swaption are given as a set of cash flows
equal to the following:
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which are known at time T (such that T < T1), but are paid at times T1,
T2, . . . , Tpn, where F is the notional principal exchanged in the swap un-
derlying the swaption, p is the number of payments under the swap per
year, n is the length of the swap in number of years, R is the n-year swap
rate prevailing at the expiration date T of the swaption, and K is the swap-
tion strike rate.

The Black Model for Pricing a Payer Swaption

Consider the time t value of a payer swaption expiring at date T, which gives
pn number of payoffs (shown in equation 8.63) that are received at times Ti
(i = 1, 2, . . . , pn). Assuming the payoffs come at constant intervals of τ
after the expiration date T, the value of τ is 1/p.

Applying Black’s model, the time t value of the payer swaption is given
as follows:

where

and ft
s = Et

Q(R), is the forward swap rate which is assumed to equal the ex-
pected value of the swap rate R (this is justified if expectation is taken under
the forward measure with P as the numeraire) given as follows:

where the weights are defined as follows:
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The Black model for pricing swaptions assumes that the forward swap
rate ft

s is lognormally distributed. Yet, earlier the Black model for pricing
of caps assumed that the forward rates f(t, T, Ti) are lognormally distrib-
uted (see equations 8.24 and 8.31). Since ft

s is an arithmetic weighted av-
erage of f(t, T, Ti) as shown in the above equation, the Black model for
pricing swaptions is inconsistent with the Black model for pricing caps,
since both ft

s and f(t, T, Ti) cannot be distributed lognormally, simultane-
ously. In general, since ft

s is an arithmetic weighted average of f(t, T, Ti),
the correlations between forward rates are important for pricing swap-
tions. However, the market participants typically treat ft

s as an exogenous
variable that is lognormally distributed, so modeling forward rate correla-
tions is not explicitly required unless one is comparing the prices of caps
with those of swaptions.

The Black Model for Pricing a Receiver Swaption

The payoffs from a receiver swaption are given as a set of cash flows equal
to the following:

which are known at time T, but are paid at times T1, T2, . . . , Tpn, where all
variables are as defined before.

The receiver swaption’s price is given as:

where all variables are as defined before.

Example 8.7 Reconsider the firm in Example 8.6, which bought a one-
year payer swaption with a strike rate of 7 percent and a $100 million
notional principal. Assume a LIBOR rate of 6.8 percent per annum with
continuous compounding and a 20 percent swap rate volatility per year.
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The continuously compounded interest rate y can be converted to the
semiannually compounded interest rate r as follows:

Using this equation, the continuously compounded interest rate of 6.8
percent per year is equivalent to a 6.92 percent per year with semiannual
compounding. Since we are using a flat yield curve, all forward rates are
equal, and, f0

s = E0
Q (R) = 6.92%. Hence, the swaption price can be now

computed as follows:

Given these values, N(d1) = 0.5170, and N(d2) = 0.4374.
The payer swaption’s price is given by equation 8.65, and is computed

as follows:

Duration Vectors of Payer and Receiver Swaptions

Both payer and receiver swaptions can be given as portfolios of zero-coupon
bonds maturing at times Ti, i = 1, 2, . . . , pn, with weights given as follows:
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Using the above weights, the duration vectors of payer and receiver swap-
tions are given as follows:

NUMERICAL ANALYSIS

In this section, we perform a comparative static analysis of the durations of
different derivatives considered in this chapter. The analysis focuses only on
the first element of the duration vector D(1). The D(1) values are simulated
for swaps, caps, floors, collars, floating rate bonds embedded with collars,
and swaps embedded with collars, for various underlying parameter values.
All of the options are priced using the LIBOR market model.

We assume that the current zero-coupon yields are given by the Nelson
and Siegel (1987) exponential model as follows:

For the purpose of simulation, the parameter values are given as α1 = 0.07,
α2 = −0.02, α3 = 0.0009, and β = 2. These parameters generate a smooth
yield curve, with the instantaneous short rate equal to 5 percent and gradu-
ally rising yields with y(5) = 6.29%.

All of the bonds, caps, floors, and swap contracts considered in this sec-
tion have a face value or notional principal of $100, and time to maturity of
five years, with coupons paid or reset every six months. We also assume a
flat forward rate volatility of σ = 20%.

Using a cap rate Kc = 9%, and a floor rate Kf = 3%, we obtain the prices
of the cap, floor, collar, and floating rate bond with a collar as: CAP(0) =
$0.8337, FLOOR(0) = $0.0179, COLLAR(0) = $0.8158, Pfloater−Collar(0) =
$99.1842. The initial price of the swap is assumed to be zero. Since the
price of the floating rate bond with a collar equals $99.1842, the semiannual
coupon payment is obtained by utilizing equation 8.4 and is found to equal
$3.0772. Using the benchmark parameter values, the durations of the cap,
floor, collar, floater (floating rate bond with a collar), and a pay floating/
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TABLE 8.7 Benchmark Values for the Parameters

Benchmark Value Range of Change
Parameter (%) (%)

Cap rate Kc 9 6−30
Floor rate Kf 3 1−9
Forward rate volatility σ 20 10−30
Instantaneous short rate y(0) 5 0−8

receive fixed swap with a collar are obtained as follows: Dcap(1) = −79.46,
Dfloor(1) = 108.96, Dcollar(1) = −83.59, Dfloater−collar(1) = 1.0178 years, and
Dswap−collar(1) = 3.1537 years.

After calculating these prices and durations using benchmark values,
we examine how the durations of these instruments change with the cap
rate, the floor rate, the forward rate volatility, and the instantaneous short
rate. Each simulation lets one or two parameters vary, keeping others at
their benchmark values. Table 8.7 gives the benchmark value for each pa-
rameter and the range for the sensitivity analysis.

Figure 8.3 shows how the cap duration changes with the cap rate and
how the floor duration changes with floor rate. Since the cap payoff in-
creases as interest rate increases, the cap duration is negative, and since the
floor payoff decreases as interest rate increases, the floor duration is posi-
tive. It is evident that both the cap and the floor durations have large mag-
nitudes due to the leverage implicit in these options. As noted by Nawalkha
(1995) and others, out-of-the-money options have higher leverage. The cap
becomes more out-of-the-money as the cap rate increases, hence, the mag-
nitude of the cap duration increases as cap rate increases. However, floor
becomes in-the-money as floor rate increases, hence, the magnitude of floor
duration decreases as floor rate increases.

Figure 8.4 Panel A and Panel B on page 257 show how the collar dura-
tion changes with the cap rate and the floor rate, respectively. The complex
patterns in the graphs can be explained by equations 8.56 and 8.58. A col-
lar represents a long position in a cap and a short position in a floor. The
collar duration is the weighted average of the cap duration and the floor du-
ration, where the weights are the relative prices of the cap and floor, divided
by the collar price. The collar price decreases from positive to negative as
the cap rate increases, and reaches zero at some point. Since the collar price
is in the denominator of equation 8.58, the weighting coefficients go to in-
finity in absolute value when the collar price goes to zero. As the collar price
goes from positive to negative, combining with the infinite weighting
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FIGURE 8.3 Panel A Plots the Duration of Cap as a Function of the Cap
Rate. Panel B Plots the Duration of Floor as a Function of the Floor Rate.
Note: The benchmark parameters are: Cap rate = 9 percent; Floor rate = 3
percent; the Instantaenous interest rate = 6 percent; the Forward rate
volatility = 20 percent.
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FIGURE 8.4 Panel A Plots the Duration of Collar as a Function of the Cap
Rate. Panel B Plots the Duration of Collar as a Function of the Floor Rate.
Note: The benchmark parameters are: Cap rate = 9 percent; Floor rate = 3
percent; the Instantaenous interest rate = 6 percent; the Forward rate volatil-
ity = 20 percent.
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FIGURE 8.5 Panels A, B, and C Plot the Durations of
Cap, Floor, and Collar, Respectively, as a Function of
the Forward Rate Volatility.
Note: The benchmark parameters are: Cap rate = 9
percent; Floor rate = 3 percent; the Instantaenous inter-
est rate = 6 percent; the Forward rate volatility = 20
percent.
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coefficients, the collar duration jumps from negative infinity to positive in-
finity at that cap rate. Similar arguments apply to the pattern of the collar
duration with respect to the floor rate.

Figure 8.5 shows that the magnitude of durations of all caps, floors,
and collars decrease with forward rate volatility. This is because, as the for-
ward rate volatility goes up, the options become less out-of-the-money (or
more in-the money), and the options have less leverage.

Figure 8.6  on page 260 shows how the durations of caps, floors, and
collars change with the instantaneous interest rate. As interest rate in-
creases, the cap becomes less out-of-the-money (or more in-the-money).
Again, the less leverage makes the magnitude of the cap duration decrease.
For the floor, as interest rate increases, it becomes more out-of-the-money,
and the high leverage increases the floor duration, initially. However, as in-
terest rates rise, so does the interest rate volatility since volatility increases
with the interest rates under the LIBOR market model. Higher volatility
makes the duration of the floor decrease. Hence, even though floor dura-
tion rises initially, as interest rates increase beyond a certain level, the floor
duration falls due to the high volatility effect.

As in Figure 8.4, the collar duration follows a complex pattern in Figure
8.6. At those interest rates at which the collar price reaches zero, the collar
duration changes from positive infinity to negative infinity.

Figure 8.7 Panel A on page 261 shows how the duration of the floater
changes with the cap rate and the floor rate. The three-dimensional surface
shows that the magnitude of the floater duration decreases with the cap rate
but increases with the floor rate. Under extreme values of the cap rate and
the floor rate (e.g., the cap rate of 16 percent, and the floor rate of 1 per-
cent), the floater with a collar should be similar to a regular floater. Under
these extreme values, the duration of the floater with a collar equals 0.5389
years, which is close to the duration of the regular floater of 0.5 years. On
the other hand, when the cap rate and the floor rate are almost equal (e.g.,
both the cap rate and the floor rate are 6 percent), the floater with a collar
should act like a fixed rate bond. In this scenario, the duration of the floater
with a collar equals 4.3963 years, which is close to the duration of the 6
percent coupon bond equal to 4.3830 years. Figure 8.7 Panel B shows that
the magnitude of the duration of the floater with a collar increases as inter-
est rate volatility increases. Figure 8.7 Panel C shows that the magnitude of
the duration of the floater first decreases and then increases with the in-
stantaneous interest rate.

Finally, Figure 8.8 on page 262 shows how the duration of the swap
with a collar changes with the variation in the underlying parameter values.
The swap duration is the weighted average of the fixed rate bond duration
and the duration of the floater with an embedded collar. Figure 8.8 Panel A
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FIGURE 8.6 Panels A, B, and C Plot the Durations of
Cap, Floor, and Collar, Respectively, as a Function of
the Instantaneous Interest Rate.
Note: The benchmark parameters are: Cap rate = 9
percent; Floor rate = 3 percent; the Instantaenous inter-
est rate = 6 percent; the Forward rate volatility = 20
percent.
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FIGURE 8.7 Panel A Plots the Duration of Floater as
a Function of the Cap Rate and the Floor Rate. Panel B
Plots the Duration of a Floater as a Function of the
Forward Rate Volatility. Panel C Plots the Duration of a
Floater as a Function of the Instantaneous Interest
Rate.
Note: The benchmark parameters are: Cap rate = 9
percent; Floor rate = 3 percent; the Instantaenous inter-
est rate = 6 percent; the Forward rate volatility = 20
percent.
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FIGURE 8.8 Panel A Plots the Duration of Swap with
Collar as a Function of the Cap Rate and the Floor
Rate. Panel B Plots the Duration of Swap with Collar as
a Function of the Forward Rate Volatility. Panel C Plots
the Duration of Swap with Collar as a Function of the
Instantaneous Interest Rate.
Note: The benchmark parameters are: Cap rate = 9
percent; Floor rate = 3 percent; the Instantaenous inter-
est rate = 6 percent; the Forward rate volatility = 20
percent.
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shows that the magnitude of the swap duration increases with the cap rate,
and decreases with the floor rate. Under extreme values of the cap rate and
the floor rate, the swap duration is much closer to the fixed rate bond dura-
tion (in our calculation, with the cap rate at 16 percent and the floor rate at
1 percent, the swap duration is 3.8174 years while the duration of the cor-
responding fixed rate bond is 4.3713 years). This is because with extreme
cap and floor rates, the floater with the embedded collar is close to being a
regular floater whose duration is very small. When the cap rate and the
floor rate are almost equal, the swap duration is close to zero since the
floater with the embedded collar behaves like a fixed rate bond whose du-
ration is almost canceled out with the duration of the other fixed rate bond
(in our calculation, with both cap rate and floor rate at 6 percent, the swap
duration is 0.0071 years). Figure 8.8 Panel B on page 262 shows that the
magnitude of the swap duration decreases with the interest rate volatility.
Figure 8.8 Panel C on page 262 shows that the magnitude of the swap dura-
tion first increases then decreases with the instantaneous short rate.

NOTES

1. See the quarterly report on http://www.bis.org/publ/otc_hy0405.pdf.
2. In reality, most interest rate swaps exchange the floating cash flows every quar-

ter, and the fixed cash flows every six months.
3. The duration of a floating rate bond is very short and equals the date to next

reset, ignoring the effects of default risk. An expression for the duration of a de-
fault-free floating rate bond is derived later in this chapter.

4. Even constant volatility for any specific forward rate is not required, as using
deterministically changing volatility also results in a formula similar to that
given by Black (1976).

5. The forward rate volatility can also be made deterministic. See note 4.
6. See the second volume of this series for more details on how equation 8.24 is

obtained under the forward measure, and a theoretical derivation of the LIBOR
market model.
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CHAPTER 9
Key Rate Durations with

VaR Analysis

Recently, a new class of models called the key rate durations have become
popular among practitioners. Similar to the duration vector models given

in Chapters 4 and 5, key rate durations can manage interest rate risk expo-
sure arising from arbitrary nonparallel shifts in the term structure of interest
rates. The duration vector models hedge against the shape changes in the
term structure of interest rates (such as, changes in the height, slope, curva-
ture), while the key rate durations hedge against the changes in a finite num-
ber of key interest rates that proxy for the shape changes in the entire term
structure.

The key rate duration model describes the shifts in the term structure as
a discrete vector representing the changes in the key zero-coupon rates of
various maturities.1 Interest rate changes at other maturities are derived
from these values via linear interpolation. Key rate durations are then de-
fined as the sensitivity of the portfolio value to the given key rates at differ-
ent points along the term structure. These duration measures can be used in
decomposing portfolio returns, identifying interest rate risk exposure, de-
signing active trading strategies, or implementing passive portfolio strate-
gies such as portfolio immunization and index replication.

Similar to the duration vector models, an appealing feature of the key
rate model is that it does not require a stationary covariance structure of in-
terest rate changes (unless performing a value at risk or VaR analysis).
Hence, it doesn’t matter whether the correlations between changes in the in-
terest rates of different maturities increase or decrease or even whether
these changes are positively or negatively correlated. Also, the model allows
for any number of key rates, and therefore, interest rate risk can be modeled
and hedged to a high degree of accuracy.
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However, unlike the duration vector models, which require at most
three to five duration measures, the number of key rate durations to be
used and the corresponding choice of key rates remain quite arbitrary
under the key rate model. For example, Ho (1992) proposes as many as 11
key rate durations to effectively hedge against interest rate risk. Further,
unlike the duration vector model, where the higher order duration mea-
sures serve as linear as well as nonlinear risk measures (e.g., D(2) simulta-
neously gives the linear exposure to slope shifts, as well as nonlinear
exposure to height shifts), the key rate durations give only the linear expo-
sures to the key rates. To measure nonlinear exposures to the key rates,
key rate convexity measures are required. Hedging against a large number
of key rate durations and convexities, implies large long and short posi-
tions in the portfolio, which can make this approach somewhat expensive
in terms of the transaction costs associated with portfolio construction
and rebalancing.

KEY RATE CHANGES

The basic idea behind the key rate model is that any smooth change in the
term structure of zero-coupon yields can be represented as a vector of
changes in a number of properly chosen key rates. That is:

where y(ti) is the zero-coupon rate for term ti and y(t1), y(t2), . . . , y(tm) de-
fine the set of m key rates. The changes in all other interest rates are ap-
proximated by linear interpolation of the changes in the adjacent key rates.
Thus, the shift in the term structure is approximated by a piecewise linear
function of the changes in the m key rates.2 The linear interpolation is per-
formed in two steps:

1. Define the linear contribution s(t, ti) made by the change in the ith key
rate, ∆y(ti), to the change in a given zero-coupon rate ∆y(t), as:

(9.1)
  
TSIR shift y t y t y tm= ( )∆ ∆ ∆( ), ( ), , ( )1 2 . . .
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2. Add up the linear contributions s(t, ti) for i = 1, 2, . . . , m, to obtain the
change in the given zero-coupon rate ∆y(t), as:

Using the definition of s(t, ti) in equation 9.2, only two adjacent terms on
the right side of the equation 9.3 can be nonzero for a given maturity t.
This is because for a specific maturity t, the change in the zero-coupon rate
∆y(t) is obtained via linear interpolation of the changes in the two sur-
rounding key rates.

Figure 9.1 shows the magnitudes of s(t, ti) under three cases, when
i = 1, i = j (for any given value of j = 2, 3, . . . , m − 1), and i = m, consistent
with equation 9.2 given previously.

Figure 9.2 shows the magnitudes of s(t, ti) under all m cases (i.e., i = 1,
2, . . . , m) consistent with equation 9.2. Figure 9.2 gives a collection of
“pyramid” shifts, which peaks at the specific key rate shift and which over-
laps with both the preceding and the following pyramid shifts. The overlap
is necessary because the changes in zero-coupon rates that are in between

(9.3)  ∆y t s t t s t t s t tm( ) ( , ) ( , ) ( , )= + + +. . .
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FIGURE 9.1 Linear Contributions of the Key Rate Shifts
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FIGURE 9.2 Collection of the Linear Contributions of the Key Rate Shifts

Sh
ift

Term

∆y(t1)
∆y(t2)

∆y(t3) ∆y(t4) ∆y(t5)
∆y(tm)∆y(tm –1)

t (1) t (2) t (3) t (4) t (5) t (m –1) t (m). . .

. . .

any two key rates are obtained by a linear interpolation of the changes in
those two key rates.

The sum of the key rate shifts along the maturity range leads to a piece-
wise linear approximation for the shift in the term structure. This approxi-
mation given by equation 9.3, together with an initial term structure gives
the new term structure as shown in Figure 9.3.
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FIGURE 9.3 The Term Structure Shift
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KEY RATE DURATIONS AND CONVEXITIES

This section derives key rate durations and convexities assuming that the
cash flows from a bond portfolio are fixed and the maturities of the cash
flows coincide with the maturities of the chosen key rates. Appendix 9.1
deals with the computation of key rate durations and convexities when cash
flows are not fixed, and when the maturities of the cash flows are different
from the maturities of the key rates.

Key Rate Durations

The set of key rate shifts can be used to evaluate the change in the price of any
fixed-income security. In particular, an infinitesimal and instantaneous shift
in a specific key rate, ∆y(ti), results in an instantaneous price change given as:

where KRD(i) is the ith key rate duration, defined as the (negative) percent-
age change in the price resulting from the change in the ith key rate:

(9.5)KRD i
P

P
y ti

( )
( )

= − ∂
∂

1

(9.4)
  

∆
∆

P

P
KRD i y ti

i= − ×( ) ( )



Key Rate Durations and Convexities 269

The total price change due to all key rate changes is given as the sum of
price changes resulting from individual key rate changes:

The set of KRDs forms a vector of m risk measures, representing the
first-order price sensitivities of the security to the m key rates:

Since the shift in the term structure is approximated by the sum of all
the key rate shifts, the total percentage change in price due to an infinitesi-
mal shift in the term structure can be obtained as the sum of the effect of
each key rate shift on the security price by substituting equation 9.4 into
equation 9.6, as follows:

or using matrix notation:

where ∆y = [∆y(1), ∆y(2), . . . , ∆y(m)] is the vector of key rate changes.

Key Rate Convexities

When the shift in the term structure is noninfinitesimal, the previous
framework must be extended to account for the second-order nonlinear ef-
fects of the key rate shifts. These are given as the key rate convexities and
are defined as:

for every pair (i, j) of key rates. The set of key rate convexities can be repre-
sented by a symmetric matrix of dimension m:

(9.10)
  
KRC i j KRC j i

P
P

y t y ti j

( , ) ( , )
( ) ( )

= = ∂
∂ ∂

1 2

(9.9)∆ ∆P
P

KRD yT= − ×

(9.8)
  

∆ ∆P
P

KRD i y ti
i

m

= − ×
=
∑ ( ) ( )

1

(9.7)
  
KRD KRD KRD KRD m=  ( ) ( ) ( )1 2 . . .

(9.6)  ∆ ∆ ∆ ∆P P P Pm= + + +1 2
. . .



270 KEY RATE DURATIONS WITH VAR ANALYSIS

The key rate durations and convexities of a portfolio can be obtained as
the weighted average of the key rate duration and convexities of the securi-
ties in the portfolio, where the weights are defined as the proportion of each
security held in the portfolio.

The percentage change in the price of a security can be approximated
by a second-order Taylor series expansion using the key rate durations and
convexities as follows:

Equation 9.12 can be rewritten as:

When the term structure exhibits a parallel shift, all key rates shift by
the same amount and equation 9.12 can be rewritten as:

where

and

Equation 9.14 gives the familiar two-term Taylor series expansion of
the bond return with continuously compounded interest rates under paral-
lel term structure shifts (see Chapter 2). Hence, under this assumption, the
key rate durations sum up to give the traditional duration, and key rate con-
vexities sum up to give the traditional convexity.
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TABLE 9.1 Description of the Bonds

Bond # Face Value ($) Maturity (years) Annual Coupon Rate (%)

1 1,000 1 10

2 1,000 2 10

3 1,000 3 10

4 1,000 4 10

5 1,000 5 10

Example 9.1 Consider five bonds 1, 2, 3, 4, and 5, all of which have a
$1,000 face value and a 10 percent annual coupon rate, but different
maturities as shown in Table 9.1.

Also assume that the one-, two-, three-, four-, and five-year continu-
ously compounded zero-coupon rates define the set of five key rates and
are given as:

Consider a bond portfolio with a cash flow CFi at time ti (for i = 1,
2, . . . , N) given as:

The first and second partial derivatives of the price with respect to the
key rates are:

Key rate durations and convexities are defined as:
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TABLE 9.2 Key Rate Durations and Convexities for the Five Bonds

Bond 1 Bond 2 Bond 3 Bond 4 Bond 5

Price $1,046.35 $1,080.54 $1,110.42 $1,137.62 $1,162.74

KRD(1) 1.000 0.088 0.086 0.084 0.082

KRD(2) 0.000 1.824 0.161 0.157 0.154

KRD(3) 0.000 0.000 2.501 0.222 0.217

KRD(4) 0.000 0.000 0.000 3.055 0.272

KRD(5) 0.000 0.000 0.000 0.000 3.504

KRC(1,1) 1.000 0.088 0.086 0.084 0.082

KRC(2,2) 0.000 3.648 0.323 0.315 0.308

KRC(3,3) 0.000 0.000 7.503 0.666 0.651

KRC(4,4) 0.000 0.000 0.000 12.219 1.087

KRC(5,5) 0.000 0.000 0.000 0.000 17.521

D 1.000 1.912 2.748 3.518 4.229

C 1.000 3.736 7.911 13.283 19.649

Using these formulas for the five bonds in Table 9.1 gives the results
shown in Table 9.2. The two last rows of the table give the values of traditional
duration and convexity, which correspond to the sum of the partial measures.

Now consider a $10,000 portfolio with equal investments of $2,000 in
each of the five bonds. The proportion of investment in each bond is 0.2
and the key rate duration measures of the portfolio are computed as:
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FIGURE 9.4 Key Rate Duration Profile of a Coupon-Bearing Bond
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The traditional duration of the bond portfolio given as the sum of the
five key rate durations is equal to 2.681.

RISK MEASUREMENT AND MANAGEMENT

Key rate durations give the risk profile of a fixed-income security across the
whole term structure. Figure 9.4 shows the typical key rate duration profile
of a coupon-bearing bond. The key rate durations first increase and then
decrease, except the key rate duration corresponding to the maturity term is
the highest (due to the lump sum payment at bond maturity). This pattern
results from two offsetting factors. The increase in the cash flow maturity
increases the key rate duration, while a higher discount due to the longer
maturity decreases the present value of the cash flow, which decreases the
key rate duration.

Using the key rate durations, a portfolio manager can identify the inter-
est rate risk profile of the portfolio. For example, a ladder portfolio has sim-
ilar key rate durations across the maturity range and thus represents no
specific bets on the shape of the term structure movements. A barbell (bul-
let) portfolio has high (low) key rate durations corresponding to the short
and long interest rates and low (high) durations for intermediate rates, and
so it is preferred if the short and the long rates fall more (less) than the in-
termediate rates.
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TABLE 9.3 Proportions Invested in Each Bond and Key Rate
Durations of the Ladder, Barbell, and Bullet Portfolios

Ladder Barbell Bullet

Bond 1 0.2 0.479 0.000

Bond 2 0.2 0.000 0.521

Bond 3 0.2 0.000 0.000

Bond 4 0.2 0.000 0.479

Bond 5 0.2 0.521 0.000

KRD(1) 0.268 0.522 0.086

KRD(2) 0.459 0.080 1.025

KRD(3) 0.588 0.113 0.106

KRD(4) 0.665 0.141 1.464

KRD(5) 0.701 1.825 0.000

Example 9.2 Reconsider the $10,000 initial investment equally distributed
in the five bonds in Example 9.1. This is a ladder portfolio with a tradi-
tional duration equal to 2.681 years. Also consider two portfolios with the
same initial market values and traditional durations, but one with a bullet
structure and the other with a barbell structure. The barbell portfolio
contains bonds maturing in years 1 and 5 and the bullet portfolio contains
bonds maturing in years 2 and 4.

To determine the proportions invested in the bonds in each portfolio,
we solve the following system of linear equations:

where pshort and plong are the proportions invested in the short-term and the
long-term bonds and Dshort and Dlong are the bonds’ traditional durations.
The proportions invested in each bond and the key rate durations of each
portfolio are summarized in Table 9.3.

Figure 9.5 displays the key rate duration profiles of the three portfolios.
Although the sums of the key rate durations for the three portfolios are
identical (2.681 years), the interest rate exposures of the three portfolios are
markedly different. Consequently, the portfolios will yield significantly dif-
ferent returns if the term structure exhibits nonparallel shifts.
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FIGURE 9.5 Key Rate Duration Profiles

Key rate (years)

Ke
y 

ra
te

 d
ur

at
io

n

421 53

Ladder
Barbell
Bullet

0.0

0.5

1.0

1.5

2.0

Consider an instantaneous shift in the term structure given in Example
9.1 such that the one-year key rate increases 50 basis points, the two-year
key rate increases 20 basis points, the four-year rate decreases 10 basis
points, and the five-year rate decreases 20 basis points. This means that the
term structure rotates around the three-year rate, as shown in Figure 9.6.

FIGURE 9.6 Instantaneous Shift in the Term Structure of Zero-Coupon Rates
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Given this shift in the term structure, bonds 1 through 5 yield instanta-
neous returns given as:

Applying the weights given in Table 9.3 to the above returns, we obtain
the following returns on the three portfolios:

The returns on the portfolios can also be estimated from the Taylor se-
ries approximation given in equation 9.12 using the portfolios’ key rate du-
rations in Table 9.3. The estimated returns are computed as:

The estimated values are very close to the true instantaneous returns given
before. The key rate duration profiles in Figure 9.5 explain the source of the
returns. The ladder portfolio is the least affected by the shock in the term
structure because the losses derived from the increase in the short-term rates
are nearly cancelled out by the profits derived from the decrease in the longer-
term rates. The barbell portfolio gives the highest return because of its high
exposure to the five-year rate. Finally, the bullet portfolio combines gains
from the decrease in the four-year rate with higher losses from the upward
movement of the one- and two-year rates and thus yields a negative return.

Key rate durations and convexities can be used in a variety of portfolio
strategies such as index replication, immunization, and active trading
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strategies. For example, to create a portfolio that replicates a given index,
the manager must equate the key rate measures of the portfolio to those of
the index. Having the same key rate measures, both portfolios will have the
same interest rate exposure and thus will yield the same return.

To immunize the equity value of a financial institution from an arbi-
trary shift in the term structure, the manager can eliminate key rate dura-
tion gaps by applying the following constraints:

where VA is the present value of the assets and VL the present value of the
liabilities.

To immunize a portfolio over a given planning horizon, the portfolio’s
key rate durations have to be set equal to the key rate durations of a hypo-
thetical zero-coupon bond maturing at the horizon date. Setting H as the
horizon date and using the key rate, y(H), for that term, the constraints on
the key rate durations of the portfolio are defined as:

Finally, managers can take active positions by determining the portfo-
lio’s key rate exposures across the term structure and choosing which inter-
est rate changes to hedge against, and which interest rates to speculate on,
based upon some interest rate forecasting model.

Example 9.3 Suppose a manager desires to create an immunized portfolio
over a planning horizon of four years using the model with five key rates.
Five key rates lead to five key rate durations for each bond. Hence, five
immunization constraints are required to match the five key rate durations
of the portfolios to the five key rate durations of a hypothetical zero-
coupon bond maturing in four years. Plus, another constraint is needed to
set the sum of the proportions invested in all bonds to 100 percent. This
requires six bonds in order to equate the number of constraints to the
number of bonds.

Consider the bonds 1, 2, 3, 4, and 5 in Example 9.1 and a new bond 6.
Bond 6 is a five-year zero-coupon bond with a face value of $1,000, and a
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market price of $740.82 computed using the term structure given in Exam-
ple 9.1. The key rate durations of bond 6 are:

The six immunization constraints can be written using matrix notation
as follows:

where p1, p2, . . . , p6 are the proportions of investment in each of the six
bonds.

Premultiplying both sides of the above equation by the inverse of the
first matrix, we obtain the proportions to be invested in the different bonds
as follows:

Substituting the values of the key rate durations of bonds 1 through
bond 5, from Example 9.1, the key rate durations of bond 6 from equation
9.20, and doing the matrix calculations, we obtain the following solution:

Multiplying these proportions by the portfolio value of $10,000 gives
short positions in the amounts of $121.48, $137.99, $155.99, and
$12,745.90, in bonds 1, 2, 3, and 5, respectively. Adding the proceeds from
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the short positions to the initial portfolio value of $10,000, the investments
in bonds 4 and 6 must be $14,228.47 and $8,932.89, respectively. Dividing
these amounts by the respective bond prices, the immunized portfolio
is composed of −0.116 number of bonds 1, −0.128 number of bonds 
2, −0.140 number of bonds 3, 12.507 number of bonds 4, −10.962 number
of bonds 5, and 12.058 number of bonds 6.

KEY RATE DURATIONS AND VALUE AT RISK ANALYSIS

VaR analysis can also be implemented in a simple manner using key rate du-
rations. VaR is defined as the maximum loss in the portfolio value at a given
level of confidence over a given horizon. Given a multivariate normal distri-
bution for the key rate changes, the portfolio return is distributed normally
under a linear approximation, with a mean equal to:

and variance equal to:

where µ∆y(i) is the mean change in the ith key rate and cov[∆y(i), ∆y(j)] is the
covariance between changes in the ith and the jth key rates.

Let the dollar return on the portfolio be given as R × V0, where V0 is the
initial market value of the portfolio. Then, the VaR of the portfolio at a c
percent confidence level is given as:3

Using the normal distribution:

where z1−c is the 1 − c percentile of a standard normal distribution and zc is
the c percentile.

Combining equations 9.23 and 9.24, the VaR of the portfolio at a c per-
cent confidence level is given as:
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If the holding period of the VaR is very small, we may ignore the ex-
pected return and express VaR simply as:

Substituting equation 9.22 in equation 9.26, we obtain the following
analytic solution to VaR:

The VaR solution given in equation 9.27 does not apply when key rate
changes are not normally distributed, or when a second-order Taylor ap-
proximation to portfolio return is considered. The VaR is then computed by
first simulating changes in the key rates using a Monte Carlo simulation or
other related techniques. The set of random values generated together with
the key rate durations and convexities are then used to provide the entire
distribution of price changes (or returns). Finally, the VaR is obtained di-
rectly from this distribution.

Example 9.4 Reconsider the three portfolios in Example 9.2 and suppose
that monthly changes in the five key rates are normally distributed with
covariance matrix defined as follows:

where ∆y% indicates that interest rate changes are expressed as percentages.
The one-month VaR at the 95 percent and 99 percent levels for each

portfolio can be computed using the following formulas in the matrix form:

where $10,000 is the initial market value of the portfolio, 1.645 and 2.326
are the 95th and 99th percentile of a standard normal distribution, KRDPORT
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TABLE 9.4 Variance of Portfolio Returns and VaR Numbers

Ladder Barbell Bullet

σR 0.788 0.756 0.806

VaR95 $129.69 $124.42 $132.58

VaR99 $183.42 $175.97 $187.51

is the portfolio’s key rate duration vector and the product indicates matrix
multiplication. Note that the covariance matrix that enters in equation 9.28
refers to changes in rates expressed in decimal form, not in percentages, and
hence equals the matrix Var(∆y%) divided by 10,000 (100× 100).

Table 9.4 shows the monthly standard deviation of the portfolio returns
and the VaR numbers for the three portfolios. The figures reveal that the
bullet portfolio is the most risky portfolio, followed by the ladder portfolio.
The bullet portfolio will lose a maximum of $132.58 with 95 percent prob-
ability over a one-month horizon. In other words, the bullet portfolio is ex-
pected to incur a loss greater than $132.58 in only 1 out of 20 months. The
VaR numbers at the 99 percent are greater because they indicate losses that
are only expected to be exceeded in 1 out of 100 months.

LIMITATIONS OF THE KEY RATE MODEL

Three limitations of the key rate models can be given as follows:

1. The choice of the key rates is arbitrary,
2. The unrealistic shapes of the individual key rate shifts, and
3. Loss of efficiency caused by not modeling the history of term

structure movements.

The Choice of Key Rates

The choice of the risk factors is important when dealing with multivariate
models. The key rate model, however, offers no guidance about how to
make this choice. Moreover, as mentioned earlier, when the model was first
introduced by Ho (1992), he recommended using as many as 11 key rates.

A natural choice of the set of key rates might consist of those rates that
are used often by traders and other market professionals. For example, the set
of key rates identified by RiskMetrics for the U.S. money and bond markets
includes 14 unevenly spaced maturities, namely, one month, three months,
six months, and 1, 2, 3, 4, 5, 7, 9, 10, 15, 20, and 30 years to maturity.
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FIGURE 9.7 Key Rate Shift and Its Effect on the Forward Rate Curve
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Since this number of key rates is still large, the manager could still nar-
row her choices based upon the maturity structure of the portfolio under
consideration. For example, short-term money market managers may con-
sider a large number of key rates at the short end of the term structure,
while long-term bond portfolio managers may focus on the middle and
long-term rates instead of short-term rates.

The Shape of Key Rate Shifts

Although the whole set of key rate shifts taken together allows for modeling
realistic movements in the term structure, each individual key rate shift has
a historically implausible shape. Each key rate shock implies the kind of for-
ward rate saw-tooth shift shown in Figure 9.7.

To address this shortcoming, a natural choice is to focus on the forward
rate curve instead of the zero-coupon curve. Johnson and Meyer (1989) first
proposed this methodology and called it the partial derivative approach or
PDA. According to the PDA, the forward rate structure is split up into many
linear segments and all forward rates within each segment are assumed to
change in a parallel way.

Partial durations can be then defined as the minus of the partial deriv-
atives of the portfolio’s value with respect to the changes in the individual
forward rates that represent these segments, divided by the portfolio’s mar-
ket value. As in the key rate model, the sum of partial durations is equiva-
lent to traditional duration because if all forward rates change by the same
magnitude, then the term structure of zero-coupon rates moves in a paral-
lel fashion.



Limitations of the Key Rate Model 283

Partial durations based on forward rates can be applied in the same
manner as the key rate durations for managing interest rate risk. However,
the values of the partial durations are very different from those of the key
rate durations. While under the key rate model each key rate only affects
the present value of the cash flows around the term of the rate, under the
partial duration approach each forward rate affects the present value of all
cash flows occurring within or after the term of the forward rate.

To understand this, reconsider the relationship between the zero-
coupon term structure and the forward rate term structure. As shown in
Chapter 3, continuously compounded zero-coupon rates and instantaneous
forward rates are related as:

where y(t) is the zero-coupon rate for term t, and f(t) is the instantaneous
forward rate for term t. Assuming that the forward rate intervals have a
length of one-period, we obtain:

where f(i −1, i) is the one-period forward rate from time i − 1 to i.
Equation 9.30 indicates that zero-coupon rates are simple averages of

the corresponding forward rates and imply that the present value of a cash
flow CF due at time t is:

According to equation 9.31, the market price of the cash flow is af-
fected by all forward rates preceding the maturity date.

Example 9.5 Reconsider the five-year, $1,000 face value, 10 percent
annual coupon bond and the one-, two-, three-, four-, and five-year
continuously compounded zero-coupon rates given in Example 9.1. Setting
the length of the forward period to one year, we obtain the following
forward rates:
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The present value of the bond can be calculated as follows:

The bond price is the same as Example 9.1. Partial durations with respect
to the five forward rates are computed as follows:
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The sum of the partial duration measures is 4.229, the traditional dura-
tion of the bond. Figure 9.8 shows these partial duration measures and the
key rate durations of the bond obtained in Example 9.1. The differences be-
tween the two duration profiles are remarkable. Partial durations are de-
creasing in the maturity of the forward rates, accounting for the fact that
changes in short-maturity forward rates have a greater impact in bond re-
turns than changes in long-maturity forward rates.

Loss of Efficiency

Some authors assert that the key rate model is not an efficient model in
describing the dynamic of the term structure because historical volatilities
of interest rates provide useful information about the behavior of the dif-
ferent segments of the term structure and the key model disregards this
information.4

Since each key rate change is assumed to be independent of the changes
in the rest of key rates, the model deals with movements in the term structure
whose probabilities may be too small to worry about. For example, a change
in the term structure where the 8- and 10-year rates move in one direction
and the 9-year rate moves in the opposite direction is fairly unlikely in the
real world but is as likely as other kind of shocks under the key rate model.

FIGURE 9.8 Partial Durations versus Key Rate Durations of a 
Coupon-Bearing Bond

Sequence of the key rate or the forward rate
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As a result, the use of the key rate model for interest rate risk manage-
ment imposes too severe restrictions on portfolio construction that leads to
increased costs and a loss of degrees of freedom that might be used to sat-
isfy other objectives and constraints. In fact, in the most general case in
which all zero-coupon rates are assumed to move independently, immuniza-
tion, hedging, or other passive strategies with the key rate model lead to a
cash flow matching along the yield curve.5

A number of variations of the key rate model that try to deal with this
undesirable consequence have gone through the inclusion of the covari-
ance of interest rate changes into the analysis. For example, Falkenstein
and Hanweck (1996) offer an alternative to the traditional key rate hedg-
ing called covariance-consistent key rate hedging that consists of finding
the portfolio that minimizes the variance of portfolio returns. Reitano
(1996) introduces the concept of stochastic immunization as a strategy
that instead of seeking immunization in the traditional sense, searches for
the portfolio that minimizes a risk measure defined as a weighted average
of the portfolio’s return variance and the worst case risk.

APPENDIX 9.1: COMPUTING KEY RATE RISK
MEASURES FOR COMPLEX SECURITIES AND
UNDER MATURITY MISMATCHES

Real-world fixed-income portfolios rarely fit the simple examples described
in this chapter. Complex interest rate-contingent claims such as bonds with
embedded options, naked bond options, interest rate options, such as caps,
floors, and so forth, generally do not allow the use of simple formulas for
key rate durations and convexities. Further, cash flows might occur at peri-
ods different from the maturity terms of the key rates considered in the
model. This appendix deals with these issues.

Effective Key Rate Risk Measures for Complex
Securities: Using Finite Difference Approximations

The derivative-based formulas for the key rate durations and convexities
cannot be used directly for securities with variable cash flows that move
with interest rates, such that the security’s price is obtained using option-
pricing-based or other theoretical models. In this case, finite difference ap-
proximations to the relevant derivatives can be used to obtain “effective”
key rate durations.



Appendix 9.1: Computing Key Rate Risk Measures 287

The central finite difference approximation to the first-order derivative
of price, P, with respect to the shift in the ith key rate, y(ti), is given as:

where Pi(+ε) and Pi(−ε) are the prices of the security computed by the valuation
model after shifting the term structure positively and negatively by an infin-
itesimally small magnitude ε in the ith key rate.

The finite difference approximation of the second-order derivative with
respect to the shift in the ith key rate, and the cross-partial derivative with
respect to the shifts in the ith and jth key rates are given as:

where the prices on the right side of equation 9.33 are obtained after shift-
ing the term structure by a combination of moves in the ith and jth key rates
given by εi and εj.

Using the definitions given in equations 9.5 and 9.10, we obtain the ef-
fective key rate durations and convexities as:
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Maturity Mismatch: Using Interpolations and
Mapping Techniques

Consider the situation in which cash flows, although deterministic, have
maturities that do not match the terms of any key rates. The definition of
the key rate shifts given in equation 9.2 can be used to obtain a generic ex-
pression for the change in the interest rate for any given term t:

where y(tfirst) and y(tlast) are the first and last key rates, y(tleft) and y(tright),
with tleft ≤ t ≤ tright, refers to the key rate adjacent (to the left and the right)
to term t, and α and (1 − α) are the coefficients of the linear interpolation,
defined as:

Since the price of a cash flow maturing at time t is given as:

the first and second partial derivatives of this value with respect to the ith
key rate and the pair (i, j) of key rates are:

(9.38)
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where the partial derivatives of y(t) with respect to a given key rate are ob-
tained from  equation 9.35.

Example 9.6 Consider a portfolio composed of equal investments in three
zero-coupon bonds maturing in 0.5, 4, and 12 years with prices P0.5, P4 and
P12. Also assume that the set of key rates includes only three maturities,
namely, 1, 5, and 10 years.

The three key rate durations of the bond portfolio can be computed
as follows:

The key rate convexities are computed similarly:
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FIGURE 9.9 Riskmetrics Cash Flow Map
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The resulting vector of key rate durations and the matrix of key rate
convexities are given as:

As might be expected, the key rate durations sum to the traditional du-
ration value of 5.5 years and the key rate convexities sum to the traditional
convexity value of 53.417.

An alternative procedure that allows constructing key rate duration
measures equivalent to those obtained from the use of linear interpolations
for interest rate changes is the mapping methodology proposed in RiskMet-
rics (2001). Mapping a cash flow consists of splitting it between two adja-
cent maturities (see Figure 9.9) within a set of prespecified maturities6 and
then proceeds as if the mapped cash flows were the actual cash flow.

There are a variety of ways to map cash flows. Indeed, RiskMetrics has
provided at least three different mapping schemes. However, only the actual
scheme allows obtaining duration measures (although not convexity mea-
sures) that match those described previously because this is, in fact, a con-
straint imposed by the method.

To illustrate, consider a payment of CFt maturing at time t, where t is
placed between two prespecified maturities tleft and tright, with tleft < t < tright.

KRD

KRC

=  

=
















0 5 1 4

0 417 1 0

1 3 0

0 0 48

.

.



292 KEY RATE DURATIONS WITH VAR ANALYSIS

The payment CFt is to be mapped into a payment of CFleft maturing at time
tleft, a payment of CFright at time tright and a cash position of CF0.

The mapping procedure first requires that the mapped cash flows pre-
serve the present value P of the original cash flow:

The sensitivity of the present value to changes in the zero-coupon rates
for terms tleft and tright must also be preserved, meaning that:

If either the level (as Risk Metrics assumes) or the changes (as Ho as-
sumes) of interest rates are given by a linear interpolation of the values for
adjacent rates, the two partial derivatives of y(t) are the weights α and 1 − α
defined in equation 9.36. After substitution into equation 9.40, we obtain:

From equations 9.39 and 9.41 we can obtain the cash position:

Equations 9.41 and 9.42 imply that an investment of P (the present
value of CFt) in a zero-coupon bond maturing at time t can be replicated by
a portfolio consisting of an investment of P × α × (t/tleft) in a zero-coupon
bond maturing at time tleft, an investment of P × (1 − α) × (t/tright) in a zero-
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coupon bond maturing at time tright and a residual cash position. This port-
folio preserves both the present value and the partial durations of the origi-
nal position.

NOTES

1. See Ho (1992).
2. Ho (1992) explicitly recognizes that the linear interpolation, as opposed to

other kind of interpolation, is used for reasons of simplicity.
3. The negative sign preceding VaR indicates that the value of VaR is a positive

amount while losses are negative changes in market values.
4. See, for example, Hill and Vaysman (1998) and Golub and Tilman (2000).
5. This is, indeed, the case of the immunized portfolio in Example 9.3.
6. In our framework, the set of maturities must correspond to the set of key rates.
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CHAPTER 10
Principal Component Model

with VaR Analysis

Previous chapters derived interest rate risk hedging conditions without
explicitly modeling the historical information contained in the factor

structure of the interest rate changes. There were two reasons for doing so.
First, many researchers have noted that the three most important principal
components that drive the interest rate movements resemble the changes in
the height, the slope, and the curvature of the term structure of interest rates
(TSIR). Since the first three elements of the duration vector also measure the
interest rate sensitivities to changes in height, slope, and curvature of the
changes in the term structure, the duration vector model is not inconsistent
with a principal component model for hedging. The specific term structure
shifts corresponding to the first three duration vector elements capture
much, if not all, of the variance captured by the first three principal compo-
nents of the interest rate changes.1

Second, an advantage shared by the duration vector model and the key
rate duration model, is that these models don’t require a stationary factor
structure for interest rate changes.2 So, the hedging performance is invariant
to the nonstationarities in covariance structure of rate changes. All that is
required is that the shifts in the term structure remain smooth in order to be
captured by a small number of risk measures.

However, there exist conditions under which a principal component
model may be preferred to the duration vector model or the key rate dura-
tion model. If the covariance structure of interest rates remains stationary,
then the duration vector and the key rate duration model may not be as effi-
cient as the principal component model. Second, since the principal compo-
nent model explicitly selects the factors based upon their contributions to
the total variance of interest rate changes, it should lead to gains in hedging
efficiency when using only a small number of risk measures. Finally, in situ-
ations where explicit or implicit short positions are not allowed, the dura-

This chapter coauthored with Cosette Chichirau.
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tion vector or the key rate duration model cannot give a zero immunization
risk solution, except for some trivial cases. With short positions disallowed,
significant immunization risk is bound to remain in the portfolio, and this
risk can be minimized with the knowledge of the factor structure of interest
rate changes using a principal component model.

The principal component model assumes that the term structure move-
ments can be summarized by a few composite variables. These new vari-
ables are constructed by applying a statistical technique called principal
component analysis (PCA) to the past interest rate changes. Although PCA
was first applied to equity markets, this technique has extended to fixed-
income markets in recent years, mainly because much of the interest rate
movement is systematic.

The use of PCA in the Treasury bond markets has revealed that three
principal components (related to the height, the slope, and the curvature of
the yield curve) are generally sufficient in explaining the variation in interest
rate changes. The sensitivity of the portfolio value to these risk factors is
measured by principal component durations and convexities. Besides the
benefits of a significant reduction in dimensionality when compared with
other models (such as the key rate model), the principal component model
is able to produce orthogonal risk factors. This feature makes interest rate
risk measurement and management a simpler task because each risk factor
can be treated independently.

FROM TERM STRUCTURE MOVEMENTS
TO PRINCIPAL COMPONENTS

In the previous chapter, we modeled the term structure shift as a function of
a vector of key rate changes:

The PCA approach provides an alternative representation of TSIR shifts
by using principal components:

Using this approach, an arbitrary change in the key rates can be expressed
as a unique set of realizations of principal components. Conversely, any re-
alization of principal components implies a unique change in the key rates.

(10.2)
  
TSIR shift c c cm= ( )∆ ∆ ∆1 2, ,, . . .

(10.1)
  
TSIR shift y t y t y tm= ( )∆ ∆ ∆( ), ( ), , ( )1 2 . . .
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The principal components are linear combinations of interest rate changes:

where uji are called principal component coefficients.
There is no reduction in dimensionality in equation 10.2, since the num-

ber of principal components is also m, equal to the number of key rate
changes. However, not all the components have equal significance. The first
principal component explains the maximum percentage of the total variance
of interest rate changes. The second component is linearly independent (i.e.,
orthogonal) of the first component and explains the maximum percentage of
the remaining variance, the third component is linearly independent (i.e., or-
thogonal) of the first two components and explains the maximum percentage
of the remaining variance, and so on. Consequently, if interest rate changes
result from a few systematic factors, only a few principal components can
capture TSIR movements. Moreover, since these components are constructed
to be independent, they simplify the task of managing interest rate risk.

The principal components are constructed using the covariance matrix
of zero-coupon rate changes. Since this matrix is symmetric by construc-
tion, it must have m normalized and linearly independent eigenvectors,
U1, . . . , Um, corresponding to m positive eigenvalues, λ1, . . . , λm. The co-
efficients of the first principal component are given as the elements of the
eigenvector corresponding to the highest eigenvalue. Its variance is given by
the magnitude of this eigenvalue. The coefficients of the second principal
component are given as the elements of the eigenvector corresponding to
the second highest eigenvalue, and so on. A discussion of eigenvalues, eigen-
vectors, and principal components is given in Appendix 10.1 for readers un-
familiar with this technique.

Since any TSIR shift can be described by using the m principal compo-
nents and the variance of each component is given by the magnitude of its
eigenvalue, the total variance of the interest rate changes is given as:

and the proportion of this variance explained by the jth principal compo-
nent is:

(10.5)
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TABLE 10.1 Eigenvectors and Eigenvalues

Rates PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8)

1 0.270 −0.701 −0.565 0.292 −0.138 −0.085 0.060 −0.026

2 0.372 −0.385 0.227 −0.423 0.459 0.445 −0.240 0.132

3 0.396 −0.120 0.315 −0.328 −0.037 −0.605 0.244 −0.442

4 0.395 0.028 0.296 0.103 −0.411 −0.182 −0.054 0.735

5 0.382 0.124 0.243 0.346 −0.415 0.476 −0.166 −0.483

7 0.350 0.252 −0.031 0.344 0.444 0.149 0.682 0.102

9 0.332 0.334 −0.225 0.266 0.397 −0.348 −0.614 −0.047

10 0.312 0.393 −0.576 −0.556 −0.270 0.162 0.085 0.022

Eigenvalues 0.605 0.057 0.009 0.001 0.001 0.000 0.000 0.000

Since the matrix of coefficients uji given in equation 10.3 is orthogonal
(a mathematical characteristic of the independent eigenvectors), the inverse
of the matrix is given by its transpose. Using this relation, the changes in the
m interest rates can be obtained by inverting equation 10.3 as follows:

The principal components with low eigenvalues make little contribu-
tion in explaining the interest rate changes, and hence these components
can be removed without losing significant information. This not only helps
in obtaining a low-dimensional parsimonious model, but also reduces the
noise in the data due to unsystematic factors.

Assuming that we retain the first k components, expression (10.6) can
be rewritten as:

where εi is an error term that measures the changes not explained by the k
principal components. Using equation 10.7, changes in the interest rates are
summarized by the first k components3 and the interest rate risk profile of a
portfolio can be obtained by measuring the portfolio’s sensitivity to only
these components.

Table 10.1 shows the eigenvectors and eigenvalues of the covariance
matrix of monthly changes in the U.S. zero-coupon rates from January
2000 through December 2002. Term structure shifts are described by 

(10.7)∆ ∆y t u c i mi ji j
j

k

i( ) , ,= + =
=
∑
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FIGURE 10.1 Impact of the First Three Principal Components on the Term Structure
of Interest Rates
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interest rate changes (in percentages) for a series of maturities including 1,
2, 3, 4, 5, 7, 9, and 10 years.

The first three principal components explain almost all of the variance
of interest rate changes, a result consistent with other studies. The first fac-
tor accounts for 89.8 percent of the total variance, while the second and
third factors account for 8.5 percent and 1.3 percent, respectively. In sum,
the first three principal components explain 99.6 percent of the variability
of the data, which indicates that these factors are sufficient for describing
the changes in the term structure.

Figure 10.1 shows the shape of the eigenvectors corresponding to the
first three principal components. These shapes give the impact of a unit
change in each principal component on the term structure of interest rates
(see equation 10.7). The change in the zero-coupon rates (on y-axis) is
plotted against the maturity terms (on x-axis) with respect to each princi-
pal component.

The first principal component basically represents a parallel change in
TSIR, which is why it is usually named the level or the height factor. The
second principal component represents a change in the steepness, and is
named the slope factor. The third principal component is called the curva-
ture factor, as it basically affects the curvature of the TSIR by inducing a
butterfly shift.

The previous visualization of the principal components is based
on a characterization of approximate shapes of the eigenvectors. The
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interpretation is not an exact representation. For example, the shape of the
first principal component is never strictly parallel. If the first principal com-
ponent is constrained to be parallel, it will cause other principal compo-
nents to become correlated, because to obtain a parallel shape for the first
principal component, it is necessary to perform a transformation on the
other set of principal components.4

Figure 10.1 shows changes in the term structure of interest rates assum-
ing unit shifts in the principal components. However, the eigenvalues in
Table 10.1 imply very different variances for the three principal compo-
nents, making unit shifts in each factor not equally likely. A better approach
is to modify the model to make each factor have a unit variance. This is
achieved by multiplying each eigenvector by the square root of its eigen-
value, and dividing the principal component by the square root of the
eigenvalue. The model for interest rates changes then becomes:

where

The coefficients in parenthesis, which measure the impact of a one stan-
dard deviation move in each principal component on each interest rate, are
called factor loadings.5 Using simpler notation without stars, and using only
three factors, equation 10.8 can be approximated as follows:

where the factors are defined as follows:

and the factor loadings are defined as follows:
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When the time interval used for zero-coupon rate changes in the PCA is
different from the time interval required in a risk management model, the
standard deviations obtained from the PCA must be scaled appropriately.
As a rule of thumb, each eigenvalue is scaled by multiplying it by the desired
horizon length. This is also the same as multiplying the standard deviation
of the principal component by the square root of the desired horizon length.
For example, if we use daily data for implementing the PCA, the monthly
standard deviation of the principal components is assumed to be 301⁄2 times
the daily standard deviation.

PRINCIPAL COMPONENT DURATIONS
AND CONVEXITIES

Once the principal components have been identified, principal component
durations and convexities can be computed from the first and the second
partial derivatives of the security with respect to the three factors as follows:

Using the second-order Taylor series approximation we have:

Since the principal components are independent, we can simplify
(10.12) by disregarding the cross effects, which gives:

Hence, three duration measures and three convexity measures are
needed to describe the riskiness of a fixed-income security. This is true

(10.13)
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even for securities with complex cash flow characteristics as shown in Ap-
pendix 10.2.6

The principal component measures can also be computed directly from
key rate durations and convexities. This involves substituting the expression
for interest rate changes given in equation 10.9 in the Taylor series approxi-
mation for the instantaneous return based on the key rate measures in
Chapter 9, and disregarding cross effects of principal component shifts:7

where KRD(i) is the ith key rate duration, defined as the (negative) percent-
age change in the security price resulting from a unit shift in the ith key rate
and KRC(i, j) is the (i, j)-key rate convexity, that captures the second-order
effect on prices of the shifts in the pair (i, j) of key rates.

Comparing equation 10.13 with equation 10.14, the principal compo-
nent durations (convexities) can be expressed as linear combinations of the
key rate durations (convexities):

Though the traditional duration equals the sum of the key rate durations, the
height-factor PCD may not always coincide with traditional duration be-
cause the first principal component does not provide an exact parallel TSIR
movement. Second, even with a parallel move, normalizing the eigenvectors
prevents this equivalence unless adjusted by a proportionality factor.8

Example 10.1 Reconsider the five bonds in Chapter 9, whose main
characteristics and key rate durations with respect to the 1, 2, 3, 4, and
five-year zero-coupon rates are reproduced in Table 10.2. The level of the
key rates is assumed to be 5 percent, 5.5 percent, 5.75 percent, 5.9 percent
and 6 percent.

Principal component durations can be computed using the vectors of
key rate durations and the factor loadings of these key rates. Factor loadings
shown in Table 10.3, are obtained from Table 10.1 by multiplying the
eigenvector of each principal component by the squared root of the corre-
sponding eigenvalue.
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TABLE 10.2 Characteristics and Key Rate Durations for the Five Bonds

Bond 1 Bond 2 Bond 3 Bond 4 Bond 5

Face value $1,000 $1,000 $1,000 $1,000 $1,000

Maturity (years) 1 2 3 4 5

Annual coupon 
rate (%) 10 10 10 10 10

Price $1,046.35 $1,080.54 $1,110.42 $1,137.62 $1,162.74

KRD(1) 1.000 0.088 0.086 0.084 0.082

KRD(2) 0.000 1.824 0.161 0.157 0.154

KRD(3) 0.000 0.000 2.501 0.222 0.217

KRD(4) 0.000 0.000 0.000 3.055 0.272

KRD(5) 0.000 0.000 0.000 0.000 3.504

TABLE 10.3 Factor Loadings

Years PC(1) PC(2) PC(3)

1 0.210 −0.168 −0.054

2 0.289 −0.092 0.022

3 0.308 −0.029 0.030

4 0.307 0.007 0.028

5 0.297 0.030 0.023

Principal component durations for each bond are computed using equa-
tion 10.15 and are shown in Table 10.4 together with traditional duration.

The height-factor duration, PCD(h), increases with the bond’s maturity
since the exposure to a near parallel component of the term structure shift
must increase with maturity. To obtain figures comparable to those of tradi-
tional duration, PCD(h) have to be scaled by the squared root of the num-
ber of rates included in the analysis (8 zero-coupon rates) divided by the
eigenvalue of the first principal component (0.605). These scaled principal
component durations are 0.765, 1.985, 3.033, 3.891, and 4.560, which are
similar to the traditional durations of the bonds given in the last row of
Table 10.4.
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TABLE 10.4 Principal Component Durations for the Five Bonds

Bond 1 Bond 2 Bond 3 Bond 4 Bond 5

PCD(h) 0.210 0.546 0.834 1.070 1.254

PCD(s) −0.168 −0.183 −0.101 −0.014 0.071

PCD(c) −0.054 0.035 0.074 0.091 0.094

D 1.000 1.912 2.748 3.518 4.229

The slope-factor duration, PCD(s), benefits the first four bonds, with
maturities ranging from one to four years due to an increase in the slope from
falling rates at the shorter end. The five-year bond, however, is negatively af-
fected by increases in steepness due to its high exposure to the change in the
five-year rate, which rises under the shift. Similar pattern explains the reason
behind the sign shifts in the curvature-factor durations, PCD(c).

Principal component risk measures can be obtained similarly from the
key rate measures of the portfolio or as a weighted average of the principal
component measures of each security in the portfolio. To illustrate, recon-
sider the ladder, barbell and bullet bond portfolios in Chapter 9, whose
key rate duration vectors and portfolio’s composition are reproduced in
Table 10.5.

TABLE 10.5 Proportions Invested in Each Bond and Key Rate
Durations of the Ladder, Barbell, and Bullet Portfolios

Ladder Barbell Bullet

Bond 1 0.2 0.479 0.000

Bond 2 0.2 0.000 0.521

Bond 3 0.2 0.000 0.000

Bond 4 0.2 0.000 0.479

Bond 5 0.2 0.521 0.000

KRD(1) 0.268 0.522 0.086

KRD(2) 0.459 0.080 1.025

KRD(3) 0.588 0.113 0.106

KRD(4) 0.665 0.141 1.464

KRD(5) 0.701 1.825 0.000
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TABLE 10.6 Principal Component Durations of the Ladder,
Barbell, and Bullet Portfolios

Ladder Barbell Bullet

PCD(h) 0.783 0.754 0.797

PCD(s) −0.079 −0.043 −0.102

PCD(c) 0.048 0.023 0.062

As mentioned earlier, the portfolios’ key rate duration vectors together
with the factor loadings in Table 10.3 allow the computation of the portfo-
lios’ principal component durations displayed in Table 10.6.

According to the absolute values of the measures, the bullet portfolio
shows the highest risk exposure to the level, slope and curvature shifts in the
term structure, while the barbell portfolio shows the lowest risk exposure.

RISK MEASUREMENT AND MANAGEMENT WITH THE
PRINCIPAL COMPONENT MODEL

The relationship between the principal component measures and the key
rate measures allows the manager to take the best of the two paradigms.
Since there are no universally accepted definitions for the level, steepness,
and curvature shifts, key rate durations are a valid starting point for avoid-
ing the ambiguity inherent in principal component shifts. Managers can
also benefit from the intuitive description of risk provided by the key rate
durations while using principal component durations for implementing
more parsimonious portfolio strategies that do not exhaust all degrees of
freedom in portfolio construction.

For example, immunizing the equity value of a financial institution
from arbitrary term structure shifts using principal component durations
will require imposing the following three constraints:

where VA is the present value of the assets and VL the present value of the
liabilities.

Passive portfolio strategies, such as portfolio replication, or immuniza-
tion for a given planning horizon, are constructed by matching the principal

(10.16)V PCD i V PCD i i hA
ASSETS

L
LIABILITIES( ) ( ) ,= = s c,
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component durations of the portfolio to the principal component durations
of the target portfolio.

Immunizing a portfolio for a given horizon requires choosing a portfo-
lio composition where the three durations of the portfolio equals a zero-
coupon bond’s duration maturing at the end of the planning horizon, that is:

where H is the length of the planning horizon and lHi is the loading of
principal component i on the continuously compounded zero-coupon rate
for term H.

For designing active portfolio strategies, three basic term structure
shifts corresponding to the three principal components can be used. Simu-
lated effects of the resulting scenarios on portfolio returns can help man-
agers make risk-return decisions.

Example 10.2 Chapter 9 demonstrated how a portfolio could be
immunized with five key rates using six different bonds. The bond portfolio
includes the five bonds given in Example 10.1 and an additional five-year
zero-coupon bond 6 with a face value of $1,000. This bond has a market
price of $740.82 and has all its key rate durations equal to zero, except the
five-year key rate duration, which equals five.

The same six-bond portfolio can be immunized using the principal com-
ponent model. In this case, the immunization constraints are given as follows:

Since the number of bonds exceeds the number of constraints, the sys-
tem of equations has an infinite number of solutions for the bond propor-
tions p1, p2, . . . , p6. To select a unique immunizing solution, we optimize
by using the following quadratic function:
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As discussed in Chapter 5, a solution to this constrained quadratic
problem can be obtained by deriving the first-order conditions using the La-
grange method. Expressing these conditions in matrix form and some ma-
trix manipulation gives the following solution:

The first six elements of the left column vector give the proportions to
be invested in the six bonds. We obtain the following solution for the bond
proportions:

The principal component solution is more diversified than the immunized
portfolio obtained under the key rate model. While the latter portfolio leads
to cash flow matching, the immunized portfolio under the principal compo-
nent model has nonzero net cash flows every year. Hence, immunization
using the key rate model resembles dedication strategies leading to near per-
fect hedging performance, while the principal component model’s main
strength is its low dimension leading to lower transaction costs and higher
degrees of freedom.

VAR ANALYSIS USING THE PRINCIPAL COMPONENT MODEL

VaR analysis using the principal component model has some advantages
over the key rate model. The principal components are uncorrelated by con-
struction and the correlation matrix of principal components is the identity
matrix. This simplifies the VaR analysis considerably. Further, if interest
rates are assumed to follow a multivariate normal distribution, principal
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components are normally distributed as well. The approximation of portfo-
lio returns based on principal component durations is then normally dis-
tributed with variance equal to:

Each principal component contributes the square of the corresponding
duration to the variance of portfolio returns. This allows a simple inter-
pretation of the riskiness of the portfolio in terms of the three principal
components.

Using equation 10.18 and the definition of VaR in Chapter 9, we obtain
the VaR of a portfolio at a c percent confidence as:

where V0 is the initial market value of the portfolio and zc is the c percentile
of a standard normal distribution.

Example 10.3 In Chapter 9, the one-month VaR at the 95 percent and 99
percent levels of the ladder, barbell, and bullet portfolios in Example 10.1
were obtained using the key rate model. Here we construct the same VaR
measures, but using the principal component model. Since the covariance
matrix used for the key rate model was based on the same data as this
chapter, the two sets of VaR values can be compared directly.

The VaR values at the 95 percent and 99 percent levels for each portfo-
lio using the principal component model are given as follows:

where, the initial market value of the portfolio equals $10,000 and the 95th
and 99th percentile of a standard normal distribution are 1.645 and 2.326,
respectively. The principal component durations from Table 10.6 are di-
vided by 100 since the rate changes are defined in percentage values when
constructing the principal components.
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TABLE 10.7 Variance of Portfolio Returns and VaR Numbers
Using the Principal Component Model

Ladder Barbell Bullet

σR 0.788 0.755 0.806

VaR95 $129.67 $124.26 $132.56

VaR99 $183.40 $175.74 $187.48

Table 10.7 shows the monthly standard deviation of the portfolio re-
turns and the VaR numbers. Consistent with the levels of exposure of each
portfolio revealed in Example 10.1, the bullet portfolio is the riskiest port-
folio, followed by the ladder portfolio, and finally the barbell portfolio.

These figures differ only slightly from the key rate model. The maxi-
mum difference in return volatility is 0.001 percent while the maximum dif-
ference in VaR values is less than a quarter of a dollar. This demonstrates
the principal component model is able to provide an accurate description of
interest rate dynamics while maintaining a low number of risk factors.

LIMITATIONS OF THE PRINCIPAL COMPONENT MODEL

The principal component model has a couple of shortcomings given as fol-
lows. First, the static nature of the technique is unable to deal with the non-
stationary time-series behavior of the interest rate changes. Second, principal
components are purely artificial constructions that summarize information
in correlated systems, but do not always lead to an economic interpretation.

Static Factors Arising from a Dynamic Volatil ity Structure

Application of PCA to term structure movements implies that the covari-
ance structure of interest rate changes is constant and hence the vectors of
factor loadings, which describe the shape of the principal components, are
stationary as well. This is critically important because if the shapes of the
principal components change frequently, then these components cannot ex-
plain the future volatility of interest rate changes.

A large number of empirical studies find evidence of a dynamic pattern
in the volatility of interest rates. As shown in Bliss (1997a) or Soto (2004b),
this affects the stability of the principal components. Figure 10.2 illustrates
the effect of the changing volatilities of U.S. zero-coupon rates on the
principal components obtained for 2000, 2001, and 2002. Though the first



309

FIGURE 10.2 Principal Components for Years 2000, 2001, and 2002
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principal component seems relatively stable, the second and third principal
components vary significantly.

In such circumstances, the manager must estimate the model periodi-
cally and examine alternative covariance matrices to check for stationary
and choose the most stable matrix. Some authors recommend that the third
principal component should be disregarded because of its high instability,
which hurts the performance of portfolio strategies.9

Principal Component Analysis: Using Zero-Coupon
Rate Changes or Forward Rate Changes

In an interesting study, Lekkos (2000) questioned the economic interpreta-
tion of the three principal components as representing shifts in the height,
slope, and curvature of the term structure. Lekkos attributes the shape of
these three components to the aggregating process of computing zero-
coupon rates from forward rates.

To illustrate, consider one-year forward rates, between 0 and 1 year, 1
and 2 years, 2 and 3 years, and so on until the last forward rate between 9
and 10 years. Assume that all forward rate changes have a unit variance, and
zero correlations with each other. Under this scenario, application of PCA
on the covariance matrix of forward rate changes does not allow any di-
mension reduction and the principal components are the 10 forward rate
changes, themselves. However, application of PCA on the covariance matrix
including the 1-, 2-, 3-, 4-, 5-, 6-, 7-, 9-, and 10-year zero-coupon rates re-
veals that the first principal component accounts for 69.7 percent of the
total variance. The first and second principal components account for 87.5
percent (the second component adds 17.7 percent), and the first three prin-
cipal components account for 93.9 percent (the third component adds 6.4
percent) of the total variance. Only the first three principal components are
needed to explain almost the entire variance of zero-coupon rate changes
even though all forward rate changes have zero correlation by definition.
Moreover, the shape of these three principal components shown in Figure
10.3 allows us to interpret them as level, slope, and curvature factors.

In other words, the traditional interpretation of the three principal com-
ponents as height, slope, and curvature factors could simply be due to the
definition of zero-coupon rates as aggregates of forward rates. More impor-
tantly, in this aggregation process some information about the variability in
the interest rates may be lost. Using principal component analysis on for-
ward rate changes based upon real market data, a minimum of six factors
are needed to account for 99 percent of the total variability of rate changes.
The first three principal components of forward rate changes for the period
January 2000 through December 2002 are shown in Figure 10.4.
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FIGURE 10.3 Eigenvectors of the First Three Principal Components of
Zero-Coupon
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FIGURE 10.4 First Three Principal Components of the Term Structure of
U.S. Forward Rates for the Period January 2000 to December 2002
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Although the first and third forward rate-based principal components
have similar shapes as the corresponding zero-coupon rate-based principal
components, the second principal component does not show such similar-
ity. Overall, the variability is spread out more evenly across the first
six principal components using the forward rate changes, and the first
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principal component explains only 59 percent of the variability. In con-
trast, only three principal components are required using the zero-coupon
rate changes. If researchers believe that important information about in-
terest rate changes is lost in the process of aggregating forward rates into
zero-coupon rates, then forward rates should be used for principal compo-
nent analysis leading to a higher number of risk measures for managing in-
terest rate risk.

APPLICATIONS TO MORTGAGE SECURITIES

So far, we presented the application of the principal component model to
the U.S. Treasury market using the default-free term structure data. How-
ever, the principal components obtained from default-free term structure
data can be used to compute interest rate sensitivities of securities in other
markets too. In this section, we show how to apply the PCA model to com-
pute the empirical PC durations of mortgage-backed securities (MBS). Of
course, the same technique can be applied to other markets, such as corpo-
rate bonds, municipal bonds, or inflation-indexed bonds.

The U.S. mortgage securities market is the largest debt market in the
world, with unprecedented growth since the 1980s, in terms of size, in-
vestors, and the number of instruments traded. The outstanding volume of
agency mortgage-backed securities (MBS) is well in excess of $3 trillion and
this is just the agency-securitized portion of the market. The total outstand-
ing residential and commercial mortgage debt has jumped from about $4.5
trillion in 1995 to more than $9 trillion in 2004.10

The investors in mortgage-related securities include commercial banks,
savings institutions, life insurance companies, agencies, trusts, and individ-
uals. The three main products under the umbrella of MBS are mortgage
pass-through securities, for which the cash flows from all the loans in the
pool (principal and interest) are simply passed through to the investors on a
pro rata basis; collateralized mortgage obligations (CMOs), which follow
specific rules for the cash flow distributions (such as class A investors re-
ceive all monthly principal payments until they are fully paid off; then, class
B investors receive all monthly principal payments until they are paid off,
and so on with class C and Z); and stripped MBS—interest only/principal
only (IO/PO), where the cash flows are stripped, so that IO holders receive
all interest but no principal, and PO holders receive all principal payments,
but no interest. In the following analysis we focus on pass-through securi-
ties, but since our analysis obtains empirical PC durations using daily re-
turn data on these securities, it easily generalizes to other securities in the
mortgage market, and even other markets.
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FIGURE 10.5 Monthly Duration for Lehman MBS Index
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An important characteristic that differentiates the securities in the
mortgage market from securities in other fixed-income markets is the high
degree of optionality present in these securities. This naturally makes them
difficult to value and hedge. The investor in MBS effectively writes two op-
tions: the option to default and the option to prepay. The prepayment op-
tion is generally a lot more significant in the valuation and hedging of MBS
than the default option. When interest rates decline, most homeowners pre-
pay through refinancing, which shortens the duration of the mortgage secu-
rities. When interest rates increase, the likelihood of prepayments reduces,
as homeowners hold on to their mortgage loans financed at low rates,
lengthening the duration of the mortgage securities.

Due to the prepayment option, MBS have tremendous negative convex-
ity. When the interest rates decline, the MBS prices increase, but prepay-
ments put an upper limit on the upside movements in the prices. However,
when interest rates increase, the probability of prepayment becomes lower,
and hence prices fall more rapidly with lengthening duration.

Figure 10.5 shows the monthly changes in duration for the Lehman
Brothers MBS Index from June 1999 to June 2004.11 Some of the duration
changes are quite dramatic, such as one over the year 2001, when the dura-
tion dropped sharply in response to the 11 interest rate cuts by the Federal
Open Market Committee (FOMC) of the U.S. central bank. After that pe-
riod, even as short-term rates remained steady, the long rates increased to-
ward the end of 2001 and the beginning of 2002, as the expectations of an
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FIGURE 10.6 10-Year U.S. T-Bonds Yield
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economic rebound led to an increase in longer rates as shown in Figure
10.6. The duration of the Lehman MBS index lengthened sharply over this
period as can be seen from Figure 10.5. Then again, as the Iraq war talk by
President George W. Bush depressed equity values and reduced long-term
rates steadily through much of 2002, the duration of the Lehman MBS
index shortened rapidly, followed by another rapid increase as the war in
Iraq was declared “mission accomplished” in the middle of year 2003, lead-
ing to another sharp increase in the long-term rates.

The tremendous variability in the duration of the Lehman MBS index is
caused by the significant influence of the prepayment option on the interest
rate sensitivities of MBS. Capturing the nonstationarity in the duration of
MBS is crucial in managing the interest rate risk of a mortgage portfolio. In
the following discussion, we suggest an empirical PC duration approach
that allows the mortgage durations to be empirically estimated using the
sensitivities of the MBS to PC factors using past 30 days of return data,
where the PC factors are estimated using past six months of daily changes
in key U.S. Treasury rates. This allows us to capture the high nonstationar-
ity in the MBS durations, even though the PC factors are estimated using
the larger sample period of six months. The empirical estimation of PC du-
rations is done in two stages. In the first stage, we compute the principal
component factors using the methodology outlined earlier in this chapter
with six months of daily rate changes in the key U.S. Treasury rates. In the
second stage, we obtain the empirical PC durations of MBS by running
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TABLE 10.8 Changes in Daily Interest Rates

Change in Rate

3-Month 1-Year 2-Year 5-Year 10-Year

07/18/03 0.005 0.024 0.026 0.028 0.020

07/21/03 0.016 0.038 0.107 0.188 0.195

07/22/03 0.015 −0.034 −0.040 −0.022 −0.020

07/23/03 −0.010 −0.007 −0.049 −0.053 −0.048

… … … … … …

01/12/04 0.000 0.015 0.000 −0.010 −0.004

Note: Given in percentage form. To convert to decimal form multiply by 10−2.

time-series linear regressions of daily returns on the changes in the PC fac-
tors obtained in the first stage.

First Stage: Estimation of Principal Components

For expositional simplicity we pick only five key Treasury rates to do the
PCA analysis with maturities given as 3 months, 1 year, 2 years, 5 years,
and 10 years. Typically, the first two to three principal components explain
most of the variability in interest rate changes. Our full sample includes
Treasury rate changes from year 1997 to year 2004. However, at any given
point of time, only six months of past daily data is used to estimate the prin-
cipal components. An example of the six-month sample of daily rate
changes is given in Table 10.8, which shows the first few days of daily rate
changes beginning from July 18, 2003, until January 12, 2004. This period
contains 120 business days for which daily changes are computed. These
changes are shown in percentage form, so for example, the change in the
10-year rate on July 18, 2003, from its value on the previous day equals 2
basis points, or 0.0002 in the decimal form.

The covariance matrix of daily rate changes over this period is given in
Table 10.9. These covariances use percentage rate changes as inputs, and so
multiplication of 10−4 converts them into decimal form.

Using the procedure given in Appendix 10.1 (see example 10.4 for a
demonstration) the loadings of the five PCs are obtained in Table 10.10.
This matrix shows how the PCs are obtained as linear weighted averages of
daily changes in rates of different maturities. For example, the first PC is ob-
tained by giving 0.018 weight to the change in the 3-month rate, 0.286
weight to the change in 1-year rate, 0.506 weight to the change in 2-year
rate, 0.607 weight to the change in 5-year rate, and 0.541 weight to the
change in 10-year rate.
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TABLE 10.9 Covariance Matrix of Daily Rate Changes

3m 1y 2y 5y 10y

3m 0.00016 0.00007 0.00013 0.00022 0.00023

1y 0.00007 0.00208 0.00288 0.00319 0.00277

2y 0.00013 0.00288 0.00528 0.00577 0.00499

5y 0.00022 0.00319 0.00577 0.00723 0.00630

10y 0.00023 0.00277 0.00499 0.00630 0.00595

Note: Given using percentage rate changes. To convert to decimal form multiply 
by 10−4.

TABLE 10.10 Principal Component Loading Matrix

3m 1y 2y 5y 10y

PC 1 0.018 0.286 0.506 0.607 0.541

PC 2 0.101 −0.619 −0.510 0.234 0.540

PC 3 0.072 0.721 −0.575 −0.166 0.342

PC 4 −0.056 −0.123 0.375 −0.738 0.544

PC 5 0.991 −0.001 0.106 −0.065 −0.059

Since we have only five key rates, the five principal components explain
100 percent of the variance. Of course, most of the important information
of rate changes is captured by the first two or three components, so the
other components can be ignored. Over the whole sample period from
1997 to 2004, the first three PCs explain about 90 to 99 percent of the vari-
ance of rate changes.

Second Stage: Estimation of Empirical PC Durations

To obtain the empirical PC durations of any security at any given date we
need to estimate the sensitivity of that security’s daily return to the PCs ob-
tained in the first stage. Though we use past six months of daily rate
changes to compute the principal component loading matrix shown in Table
10.10, we only use past 30 business days of data on daily returns and the
PCs to compute the empirical PC durations. For the current example, using
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TABLE 10.11 PC Estimation Using the PC Loading Matrix

Change in Rate

3-Month 1-Year 2-Year 5-Year 10-Year PC(1) PC(2) PC(3)

01/13/04 0.020 −0.039 −0.049 −0.070 −0.056 −0.108 0.005 −0.006

01/14/04 −0.010 0.015 0.016 −0.017 −0.044 −0.022 −0.046 −0.011

01/15/04 0.000 0.015 0.032 0.017 −0.011 0.025 −0.028 −0.014

01/16/04 0.010 0.025 0.023 0.063 0.051 0.085 0.016 0.012

… … … … … … … … …

02/25/04 −0.010 −0.019 −0.033 −0.021 −0.012 −0.042 0.016 0.004

Note: Given in percentage form. To convert to decimal form multiply by 10−2.

the PC loadings obtained from 120 business days of data in Table 10.10, we
compute the principal components for the following 30 business days. The
PCs for the first few days of the period beginning January 13, 2004, until
February 25, 2004, are shown in the last three columns of Table 10.11.

The time series of daily returns on any fixed-income security can be
now regressed against the corresponding times series of daily PC values
given in Table 10.11 in order to get empirical PC durations. We consider the
daily returns on MBS. Most trading on mortgage pass-through securities is
done on a to-be-announced (TBA) basis, under which the buyer and seller
agree on general parameters, such as issuing agency (GNMA, FNMA, or
FHLMC), coupon, settlement date, price, and par amount. The buyer finds
out which specific pools of mortgages will be delivered only two days be-
fore the settlement. The seller can choose any pools of mortgages as long as
they satisfy the Good Delivery guidelines established by the Bond Market
Association. The guidelines specify the maximum number of pools per $1
million of face value, the maximum variance in the face amount from the
nominal amount, and so on. Table 10.12 shows the prices of TBA FNMA
pass-throughs with eight different coupons ranging from 5.5 percent to 9
percent, in increments of 0.5 percent, for a few days toward the end of pe-
riod beginning January 13, 2004, until February 25, 2004. These prices are
used to construct daily returns on these securities over this period.

The PC durations are computed by regressing the daily returns of these
securities on the first three principal components shown in Table 10.11. For
example, the daily returns on the TBA FNMA pass-through with 5.5 percent
coupon, together with the three PCs are shown in Table 10.13 for the first
few days of the period beginning January 13, 2004, until February 25, 2004.
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TABLE 10.12 Selected Data from Price Series for Coupons Ranging from 
5.5 Percent to 9 Percent

5.5% 6% 6.5% 7% 7.5% 8% 8.5% 9%

02/13/04 102.094 103.906 105.188 106.125 107.125 108 108 108.25

02/17/04 102.063 103.906 105.188 106.125 107.125 108 108 108.25

02/18/04 102.031 103.875 105.156 106.094 107.094 108 108 108.25

02/19/04 102.094 103.906 105.156 106.125 107.125 108 108 108.25

02/20/04 101.938 103.813 105.094 106.125 107.125 108 108 108.25

02/23/04 102.063 103.875 105.094 106.125 107.125 108 108 108.25

02/24/04 102.156 103.969 105.125 106.125 107.125 108 108 108.25

02/25/04 102.219 104.000 105.125 106.125 107.125 108 108 108.25

TABLE 10.13 Daily Returns of TBA FNMA Pass-Through with 5.5 Percent Coupon

Daily Return on 5.5% Coupon PC(1) PC(2) PC(3)

01/13/04 0.154% −0.108 0.005 −0.006

01/14/04 0.091% −0.022 −0.046 −0.011

01/15/04 0.092% 0.025 −0.028 −0.014

01/16/04 −0.183% 0.085 0.016 0.012

… … … … …

02/25/04 0.062% −0.042 0.016 0.004

Note: PCs are given in percentage form. The regression uses the decimal form ob-
tained by multiplying by 10−2.

By regressing the daily returns on the three PCs given in Table 10.13,
the duration corresponding to the first PC equals 1.93 years, and the dura-
tion corresponding to the second PC equals 1.33, on February 25, 2004.
The duration corresponding to the third PC is insignificant. By repeating
this analysis period by period, the empirical durations corresponding to the
first PC for TBA FNMA pass-through with 5.5 percent coupon and 6 per-
cent coupon are shown in Figure 10.7. These durations have a similar pat-
tern as was found for the duration of the Lehman MBS index in Figure 10.5.
Due to higher coupon, the duration of the 6 percent pass-through is gener-
ally lower than that of the 5.5 percent pass-through.
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FIGURE 10.7 Empirical Durations Corresponding to the First PC for TBA
FNMA Pass-Through with 5.5 Percent Coupon and 6 Percent Coupon
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The empirical durations corresponding to the second PC for TBA
FNMA pass-through with 5.5 percent coupon and 6 percent coupon are
shown in Figure 10.8. These durations measure the sensitivity of these secu-
rities to slope shift in the Treasury yield curve. Though mostly the durations
corresponding to the second PC are positive, implying a loss in value when
positive slope shifts in the yield curve occur, these durations can become
negative in some periods such as July through November 1998 and in April
and May 2003.

APPENDIX 10.1: EIGENVECTORS, EIGENVALUES, AND
PRINCIPAL COMPONENTS

This appendix describes the principal component approach and provides a
step-by-step example for demonstrating its implementation. Consider a set
of m variables x1, . . . , xm with covariance matrix Σ. Since Σ is symmetric by
construction, using well-known results from matrix calculus we know that
Σ has m normalized and linearly independent eigenvectors, U1, . . . , Um,
corresponding to m positive eigenvalues, λ1, . . . , λm. In fact, Σ can be fac-
tored as follows:
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FIGURE 10.8 Empirical Durations Corresponding to the Second PC for
TBA FNMA Pass-Through with 5.5 Percent Coupon and 6 Percent Coupon
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where λ is a diagonal matrix with elements λ1, . . . , λm along the diagonal
and U is an mxm matrix whose rows correspond to the vectors U1, . . . ,
Um. Since U is composed of normalized and orthogonal vectors, its inverse
equals its transpose, or:

The relationship between the m principal components and the m origi-
nal variables is given as follows:

where C = [c1 . . . cm]T is the column vector of principal components and X
= [x1 . . . xm]T is the column vector of original variables. The matrix U gives
the principal component coefficients. Hence, the principal components are
linear combinations of the original variables and the original variables can,

(10.22)
 C UX=

(10.21)  U UT− =1

(10.20) Σ Λ= U UT



Appendix 10.1: Eigenvectors, Eigenvalues, and Principal Components 321

in turn, be expressed as linear combinations of the principal components
as follows:

Using equation 10.21, the previous relation can be expressed as follows:

To obtain the matrix U of principal component coefficients, we obtain
the m eigenvalues of the covariance matrix Σ. The eigenvalues are obtained
by solving the following equation:

where I is the identity matrix.
The eigenvectors are the nontrivial and normalized solutions to the set

of equations:

for j = 1, 2, . . . m.
The final step in principal component analysis consists of ranking the

eigenvalues by the order of their magnitudes. Since the eigenvalue of a prin-
cipal component measures its variance, the principal component with the
highest eigenvalue is the most important component. The eigenvector corre-
sponding to a specific principal component gives the coefficients related to
that principal component.

The dimensionality in principal component analysis is reduced by dis-
regarding those principal components that are of minor importance in ex-
plaining the variability of the original variables (i.e., those with the lowest
eigenvalues). Assuming that we retain the first k principal components, ex-
pression (10.24) can be rewritten as:

where UT* refers to the mxk matrix resulting from retaining the first k
columns of the transposed matrix of ordered eigenvectors, C* is the column

(10.27)  X U CT= +* * ε

(10.26)Σ −( ) =λ j jI U 0

(10.25)
  
Det IΣ −  =λ 0

(10.24) X U CT=

(10.23)  X U C= −1
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vector composed of the k principal components and ε is a column vector of
m error terms that contains the information not captured by the first k prin-
cipal components.

Example 10.4 Consider the covariance matrix of changes (in percentages)
in the U.S. one-year, three-year, and five-year zero-coupon rates over the
period January 2000 through December 2002:

According to equation 10.25, the eigenvalues of this matrix are the
roots of the following equation:

Solving the determinant, we get the third order equation given as follows:

which has three different roots that are given in the ascending order as follows:

Substituting each of these roots in (10.26), we can obtain the corre-
sponding eigenvectors. In particular, the eigenvector corresponding to λ1 is
composed of elements u11, u12, and u13, and is obtained as the nontrivial so-
lution to the following equations:
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Since the determinant of the matrix in the left side is zero, the number
of independent equations is two, and hence one element must remain free at
this stage. If we use u13 as the free variable, the solution is given as:

or

Since the eigenvector is also a normalized vector, we have:

which gives two solutions as u13 = −0.5967 and u13 = 0.5967.
Substituting the two values of u13 in the solutions for u11 and u12, we get

the first eigenvector (corresponding to the highest eigenvalue) as one of the
following two vectors:

Similarly, for the second eigenvalue, λ2, we obtain the eigenvector as
either of the following two vectors:

and similarly for the third eigenvalue λ3, we obtain:
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Taking the first solution of each eigenvector, we get the matrix of prin-
cipal component loadings that gives principal components as a linear trans-
formation of the interest rate changes as follows:

The portion of the total variance of the changes in the three interest
rates explained by each principal component is given using equation 10.5
as follows:

Since the first two principal components are enough to explain the dy-
namics of interest rate changes, using equation 10.27, the model for interest
rate changes can be expressed as:

and the portion of the total variance of interest rate changes captured by
these two principal components equals 99.6 percent.

APPENDIX 10.2: COMPUTING PRINCIPAL COMPONENT
RISK MEASURES FOR COMPLEX SECURITIES AND
UNDER MATURITY MISMATCHES

Appendix 9.1 derived the key rate durations and convexities of complex se-
curities with interest-sensitive cash flows, and for securities with mis-
matches between cash flows and key rate maturities. The handling of these
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situations under the principal component model mostly resembles the pro-
cedures described in that chapter. There are, however, some differences that
are discussed next.

For complex securities, the principal component model has two special
features. The orthogonality of the principal components makes it unneces-
sary to compute principal component convexities for the combination of
shifts in two different principal components. Therefore, the finite difference
method is only used to approximate the first- and second-order derivatives of
price, P, with respect to the shift in each principal component, ci, as follows:

where Pi(+ε) and Pi(−ε) are the prices of the security computed using a theo-
retical valuation model after shifting the term structure by a positive and a
negative move of a very small magnitude ε in the ith principal component.

The “effective” principal component durations and convexities using fi-
nite difference approximations can be given as:

When the cash flows and the set of zero-coupon rates have different
maturities, a straightforward solution can be obtained by interpolation of
the factor loadings. Using the results in Chapter 9 and substituting the
changes in the key rates by their expressions in terms of factor loadings and
principal components, we obtain the following expressions for the change
in the interest rate for any given term t:
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where tfirst and tlast refer to the terms of the shortest and longest term zero-
coupon rates in the set of initial rates, tleft and tright, with tleft ≤ t ≤ tright, refers to
the terms of the zero-coupon rates adjacent (to the left and the right) to term
t, li,j is the factor loading of the jth principal component on the ith zero-
coupon rate, and α and (1 − α) are the coefficients of the linear interpolation,
defined as follows:

NOTES

1. The empirical evidence in Soto (2004a) supports this assertion.
2. In its generality, the key rate model does not require a stationary factor struc-

ture of interest rate changes. However, for performing a VaR analysis, the co-
variance structure of the key rate changes must remain stationary.

3. Some researchers have applied factor analysis instead of PCA to obtain the
composite variables, which are called common factors. The estimation of the
common factor model can be carried out through several methods, the most
common being the maximum likelihood method and the principal component
method. The maximum likelihood method allows statistical tests, but requires
the assumption of normally distributed variables. The principal component
method does not make any data distribution assumption and focuses exclu-
sively on the covariance or the correlation matrix. This makes it possible to in-
corporate other assumptions into the estimation of the matrix. For example, the
structure can be obtained from GARCH models or computed using exponen-
tially weighted observations.

4. Bliss (1997a) provides a simple method for rotating the factors.
5. This name, which is specific to factor analysis, is appropriate in this frame-

work because equation 10.8 coincides with the final equation of a factor
analysis in which the method employed to extract common factors is PCA. See
note 3.

6. Appendix 10.2 deals with the computation of principal component risk mea-
sures for complex securities.

7. Direct application of equation 10.14 requires the initial vector of zero-coupon
rate changes in the principal component model to include the set of key rates.
Also note that slight differences might arise between the principal component
durations computed directly and the key rate durations, due to convexity effects
or the sensitivity of prices to nondifferentiable shifts on the forward rate curve
implied by key rate shocks.

(10.31)
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8. For the first principal component duration to match traditional duration when
the first principal component reflects an exact parallel movement, Barber and
Copper (1996) suggest to multiply each principal component duration by the
squared root of the number, m, of series in the original data set.

9. For instance, see Falkenstein and Hanweck (1997).
10. Source: Federal Reserve Bulletin.
11. Source: Lehman Brothers.
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CHAPTER 11
Duration Models for

Default-Prone Securities

Until now virtually all chapters in the book have focused on duration
models for default-free securities and their derivatives in the U.S. Trea-

sury and the LIBOR market. Though technically mortgage-related securi-
ties are prone to default, their high loan-to-value ratios, together with the
fact that mortgage loans (and mortgage-backed securities) are collateralized
with the residential and commercial assets, makes the default probability
quite low in this market. Hence, for most practical purposes, the mortgage
securities considered in the previous chapter can be modeled as default-free
securities. We now turn our attention to default-prone securities such as
corporate bonds and stocks.

It is generally assumed in the fixed-income literature that corporate
bonds have a lower duration, and, hence, a lower sensitivity to interest rate
changes than equivalent default-free bonds. The standard reasoning given in
the literature is as follows. Since the possibility of default reduces the ex-
pected maturity of the corporate bond, and since duration and expected
bond maturity are directly related, the presence of default risk shortens the
expected bond maturity and, hence, reduces the duration of the corporate
bond. Though intuitively appealing, this reasoning is flawed.

Consider a financial institution with $100 in assets financed by $95 (in
present value) in a zero-coupon bond maturing in one year and $5 of equity.
Let the duration of assets be equal to 10. Consider a rise of 1 percent in the
default-free interest rates, such that the assets fall about $100 × 10 × 1% =
$10 to approximately $90. Since the assets are now only worth $90, the
market value of the bond cannot be more than $90. Hence, the minimum
loss suffered by the bondholders is ($90 − $95)/$95 = −5.26% (in reality,
the loss would be higher because the equity value will be slightly higher
than zero, and bond value slightly lower than $90) and, hence, the duration
of the one-year corporate zero-coupon bond is at least five times the dura-
tion of the equivalent default-free zero-coupon bond with one-year matu-
rity. Though the high leverage ratio assumed in the previous example may
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be a bit unrealistic (though not unrealistic for certain financial institutions
such as Fannie Mae or commercial banks), it demonstrates that corporate
bond duration is inextricably linked with the duration of the underlying as-
sets of the firm.

Though the possibility of default reduces the expected maturity of the
bond, we noted that the duration of the corporate bond is about five times
the duration of the default-free bond in the previous example! This paradox
can be resolved by making the following observation. The expected con-
tractual maturity of a security is not the same as the expected maturity of
the cash flows of the underlying assets that can be used to replicate that se-
curity. For example, the duration of a one-year European call option written
on a five-year zero-coupon bond is at least five years, or at least five times
its contractual expiration date of one year (see Table 7.1). This is because
the call option can be replicated as a portfolio of a long position and a short
position in two different bonds. Just because this European call option’s ex-
pected contractual maturity is exactly one year, one cannot infer that its du-
ration equals one year.

Similarly, using the option-pricing framework of Merton (1974), a cor-
porate zero-coupon bond can be considered a replicating portfolio of an
equivalent maturity default-free zero-coupon bond and the underlying as-
sets of the firm. If the duration of assets is very high (e.g., the assets may be
30-year fixed-coupon mortgage loans), then the duration of the corporate
bond can be higher than the duration of the equivalent default-free bond,
consistent with the result shown in the previous example.

Though the duration of the corporate zero-coupon bond can be consid-
ered a weighted average of the duration of the default-free zero-coupon
bond and the duration of the firm’s assets, little discussion exists in the
bond literature on the duration of the underlying assets of firms. The asset
returns in industries tied with inflation, such as oil, gold, and so on may be
positively correlated with interest rate changes, implying a negative asset
duration in these industries, while asset returns in other industries, such as
financial services and utilities, may be negatively correlated with interest
rate changes, implying a positive asset duration.

Even though corporate bonds and stocks can be viewed as options,
much of the previous work modeled the duration of corporate bonds as ex-
tensions of the simple duration model.1 In absence of a rigorous contingent
claims analysis framework, the interest rate risk characteristics of corporate
bonds cannot be fully explained. For example, do increases in financial
leverage and/or business risk, increase or decrease the duration of a default-
prone bond? How does the interest rate sensitivity of the firm’s assets affect
the interest rate sensitivity of its risky debt? This chapter answers some of
these questions.
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Chance (1990); Shimko, Tejima, and Van Deventer (1993); Nawalkha
(1996); Longstaff and Schwartz (1995); and others provide contingent
claim models to answer some of the previous questions. Nawalkha general-
izes Chance’s model and derives new duration measures for a firm’s default-
prone zero-coupon bond and its non-dividend paying stock, under
theoretically less restrictive conditions.2 This extension is intuitively appeal-
ing and is consistent with the results of a number of previous empirical
studies on the interest rate sensitivities of corporate stocks and bonds.

One of the main results found by Chance is that the duration of a 
default-prone zero-coupon bond is always positive and its magnitude is al-
ways less than its maturity. Implicitly, another important result contained in
Chance’s model is that the duration of the corresponding non-dividend pay-
ing stock must always be negative, since the duration of the underlying as-
sets of the firm is assumed to be zero.

The duration of an asset is traditionally defined by its relative basis risk
given as −(∂V(t)/∂ r(t))/V(t), where V(t) is the value of the firm’s assets at
time t, and dr(t) represents an infinitesimal change in the current level of
default-free interest rate r(t). The duration of a firm’s assets can be given as
a weighted average of the durations of its non-dividend paying stock and
the zero-coupon bond, as follows:

where S(t) is the market value of the stock, D(t, T) is the market value of
corporate zero-coupon bond or debt maturing at time T, V(t) = S(t) + D(t,
T), is the value of the firm’s assets, and Ds, Dd, and Dv are the durations of
corporate stock, bond, and the assets, respectively. Since Chance assumes a
zero value for the asset duration (i.e., Dv = 0), equation 11.1 implies the fol-
lowing relationship between the stock duration and the bond duration:

Thus, not only is the stock duration always negative, but also its magnitude
is relatively significant compared to the magnitude of the duration of the
corporate bond, unless the debt to equity ratio is very low.

In general, the negative stock duration in equation 11.2 implies a
wealth transfer from the bondholders of a firm to its stockholders due to an
increase in the nominal interest rate. However, the previous wealth transfer
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hypothesis is inconsistent with almost all of the previous empirical findings
on the interest rate sensitivity of corporate stocks. Generally, stock values
fall when interest rates rise and duration values of stocks are generally pos-
itive. Positive durations for stocks imply that the asset durations must be
positive in equation 11.1.

In this chapter, we allow positive durations values for stocks. This is
done by relaxing the assumption of a zero-duration value for the assets of a
firm. It is shown that if the duration of a firm’s assets is positive, then the
duration of the non-dividend paying stock can be negative, zero, or positive.
An important consequence of a positive asset duration is that the duration
of the default-prone zero-coupon bond is higher than when the asset dura-
tion is assumed to be zero.

PRICING AND DURATION OF A DEFAULT-FREE
ZERO-COUPON BOND UNDER THE VASICEK MODEL

Vasicek (1977) assumes a mean reverting Ornstein-Uhlenbeck process for
the instantaneous short rate of the form:

where r(t) is the instantaneous short rate at time t, m is the long-term mean
to which r reverts at a speed α, σ is the volatility coefficient and dZ(t) is the
standard Wiener process for the short rate (see Appendix 11.1 for an intro-
duction to continuous-time stochastic processes).

Assuming the price of a default-free zero-coupon bond is a function of
the short rate and the bond maturity, applying Ito’s lemma, and using ab-
sence of arbitrage, Vasicek obtained the following equation for the bond
price at time t maturing T periods hence:

where
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where γ is the market price of interest rate risk. The stochastic bond price
process consistent with the above equation is given as:

The relative basis risk of the default-free zero-coupon bond using equa-
tion 11.4 can be given as −[∂ P(t, T) ⁄∂ r(t)]/P(t, T), which defines the dura-
tion of the bond under the Vasicek model, given as:

The asymptotic value of the duration under the Vasicek model as T goes
to infinity equals 1/α. The traditional Macaulay duration can be obtained as
a special case of the Vasicek duration by assuming the speed of mean rever-
sion α equals zero. This can be demonstrated by using the L’Hospital’s rule
to equation 11.6, which gives DP(α = 0) = T − t. Intuitively, the previous re-
sult obtains since a zero-mean reversion makes Vasicek’s model consistent
with parallel term structure shifts. In general, if the term structure is mean
reverting and α is positive, the duration of a zero-coupon bond will be
lower than its traditional Macaulay duration.

The Vasicek price given in equation 11.4 may not fit an existing set of
default-free zero-coupon bond prices. In that case, one may wish to cali-
brate the Vasicek model by using an observable set of zero-coupon prices
given at time t = 0 as P(0, T). The main advantage of using an observable set
of zero-coupon bond prices is that it ensures that the discrepancies between
the theoretical and observable prices of default-free bonds do not lead to er-
rors in the pricing of corporate bonds. As shown in Chapter 6 of the second
course book of this trilogy, calibration to observable prices P(0, T) can be
achieved by allowing the long-term mean m of the short rate in equation
11.3 to become a time-dependent function, given as follows:

where f(0, t) = −∂ lnP(0, t)/∂t
= Initially observed instantaneous forward rate at time 0
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Using this deterministically changing mean, m(t), instead of m in
equation 11.3 ensures that the price of the zero-coupon bond in equation
11.4 exactly equals the observable price P(0, T) at time t = 0. The chang-
ing long-term mean does not change the functional form of the bond price
process in equation 11.5 or the definition of the duration measure in equa-
tion 11.6, except that evolution of r(t) is different under the changing long-
term mean. Using the changing long-term mean allows all of the results of
this chapter to be calibrated to the initially observable default-free zero-
coupon prices.

Equation 11.7 requires that the initially observable bond price function
P(0, T) be twice differentiable with respect to maturity. This condition is
satisfied by the commonly used models for the estimation of P(0, T) func-
tion (e.g., the cubic-spline model of McCulloch and Kwon, 1992, and the
exponential model of Nelson and Seigel, 1987, given in Chapter 3).

THE ASSET DURATION

This section derives the duration measure of a firm’s assets consistent with
the contingent claims models of Shimko, Tejima, and Van Deventer (1993),
Nawalkha (1996, 2004), Longstaff and Schwartz (1995), Collin-Dufresne
and Goldstein (2001), and others. Since the return on the assets of a corpo-
ration and the changes in the short rate are always imperfectly correlated,
the asset price cannot be given as a deterministic function of the short rate,
and, hence, one cannot obtain the duration of the assets by taking the par-
tial derivative of the asset price with respect to the short rate. For example,
the asset value may increase or decrease for an increase in the short rate,
and hence asset duration cannot be defined in a mathematical sense. How-
ever, the conditional expected change in the asset return can be measured
for a given change in the short rate using a statistical regression technique.
Using this insight, we define the asset duration as the sensitivity of the asset
return to changes in the short rate as follows.

Assume that a firm’s asset price dynamics are given by the following dif-
fusion process:

Now, consider a time-series regression of the asset returns on changes
in the short rate given as follows:

(11.8)
dV t

V t
dt dZ tv v
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where a is the intercept and −Dv is the slope coefficient of the regression,
where Dv is the duration of the firm’s assets. Using the definition of a re-
gression slope coefficient, the asset duration Dv is given as follows:

Using equations 11.3 and 11.8, the previous definition of the asset du-
ration can be parameterized as follows:

where, ρ, the correlation between the two Wiener processes dZ(t) and
dZv(t) is given as:

The duration of the firm’s assets gives the negative of the expected per-
centage change in the asset value for a given change in the short rate. It
should be noted that since the short rate process and the asset price process
(given by equations 11.3 and 11.8) are assumed to have constant volatility
parameters, and the correlation between these two processes is also con-
stant (defined in equation 11.12), the duration of the firm’s assets is ob-
tained as a constant.

PRICING AND DURATION OF A DEFAULT-PRONE
ZERO-COUPON BOND: THE MERTON FRAMEWORK

Merton (1974) applies the Black-Scholes-Merton option-pricing model to
price the debt of a firm with a simple capital structure. Merton makes stan-
dard perfect market assumptions (zero transactions costs, zero taxes, infi-
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FIGURE 11.1 Firm Value Paths under Merton’s Model
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nite divisibility of assets, availability of costless information, no restrictions
on short selling, etc.) in an economy that allows trading in continuous time.
In a specific application, Merton considers a firm that has two types of
claims—single homogeneous class of debt and the residual claim equity. The
firm cannot issue any new claims on the firm nor can it pay cash dividends
or do share repurchase prior to the maturity of debt. At the current time t,
the debt has T − t years remaining to maturity. Since the firm makes no
coupon payments on debt, and no safety covenants exist in Merton’s frame-
work to enforce bankruptcy, the firm cannot default at any time before the
bond maturity date T, even if the assets of the firm fall to only a small frac-
tion of the face value of the bond.

Figure 11.1 illustrates different paths that the firm value process may
take. If at maturity the firm value falls below the face value of debt (the
shaded area), the firm cannot fully redeem the face value even by liquidating
all its assets. In this case, the bondholders take over the firm and sharehold-
ers get nothing.

The payoffs to stock and zero-coupon bond at maturity are shown in
Table 11.1. These payoffs are mathematically given as follows:

and

(11.14)D T T V T F( , ) ( ),min=  

(11.13)S T V T F( ) , ( )= − max 0
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TABLE 11.1 Payoffs to Stock and Zero-
Coupon Bond at Maturity: Merton Model

V(T ) ≥ F V(T ) < F

Stock value at T V(T) − F 0

Bond value at T F V(T)

where the sum of stock and bond equals the firm value, or:

The payoff in equation 11.13 makes the stock a call option on the firm’s
assets, where the exercise price of the option is equal to the face value of the
bond, and option expiration is equal to the maturity of the bond. The bond
payoff in equation 11.14 can be written alternatively as:

The payoff in equation 11.16 represents the default-prone zero-coupon
bond as a sum of a long position in a default-free zero-coupon bond (since
F is a sure payment in equation 11.16) and a short position in a put option.
The put option depends on the same variables as the call option represent-
ing the firm’s equity.

Nawalkha-Shimko et al. Models

Using the Merton framework given previously, Nawalkha (1996) and
Shimko et al. (1993) derive the time t price of the bond in equation 11.14
by assuming that the asset return process is given by equation 11.8 and 
the bond return process is given by equation 11.5. Using this framework,
these authors derive the price of a default-prone zero-coupon bond as 
follows:

where

(11.17)D t T N d V t N d P t T F( , ) ( ) ( ) ( ) ( , )= −  +1 1 2
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and

In equation 11.17 P(t, T) is the Vasicek bond price of a default-free
zero-coupon bond defined in equation 11.4. Also, expression B(t, T) is a
part of the Vasicek price defined in equation 11.4. All other variables are de-
fined as before. Note the long-term mean of the short rate, m, does not
enter anywhere in equation 11.17 except through the default-free bond
price function P(t, T) defined in equation 11.4. As shown in equation 11.7
when the parameter m is made a deterministic function of time, the Vasicek
model can be calibrated to an initially observed set of market prices of 
default-free zero-coupon bonds, P(0, T). By substituting t = 0, in equation
11.17, and using the observable market prices P(0, T) (instead of Vasicek
model prices with a constant m), the default-prone zero-coupon prices,
D(0, T), are also calibrated to P(0, T). Note that to use the European for-
mula in equation 11.7 we don’t need to know the process for the long-term
mean in equation 11.7, implied by the observable market prices P(0, T). Of
course, explicit modeling of the process for long-term mean would be es-
sential if we were pricing securities with American-type options like callable
bonds and convertible bonds.

Equation 11.17 suggests that the default-prone bond D(t, T) can be
considered a portfolio of the firm’s assets and the $F face-value default-free
zero-coupon bond maturing at time T. Specifically, D(t, T) equals an invest-
ment of N(d2) P(t, T) F in the default-free zero-coupon bond (i.e., N(d2)
number of $F face-value default-free zero-coupon bonds maturing at time
T), and an investment of [1− N(d1)] V(t) in the assets of the firm (i.e., [1 −
N(d1)] number of the firm’s assets).

V T t B t Tv
v= + +







−( ) − +σ

σ
α

ρσσ
α

σ
α

2
2

2

2

2

2 2 2
( , )

ρρσσ
α

σ
α

αv T te






− −( )− −

2

3
2

2
1( )

N x e dz
z

x

( ) = =
−

−∞
∫

1

2

1
2

2

π
Cumulative normal distrribution function at x

d
L t V

V

d

1

2

1
2=

− ( ) +

=

ln ( )

dd V

L t
P t T F

V t
Q

1 −

= =( )
( , )

( )
uasi-debt ratio



338 DURATION MODELS FOR DEFAULT-PRONE SECURITIES

Since the duration of a portfolio is a weighted average of the durations
of the securities in the portfolio, the duration of the default-prone bond can
be given as:

where the weights are defined as:

and

Since both weights are greater than zero and sum up to one, the duration of
the default-prone bond lies between the duration of the assets and the dura-
tion of the default-free zero-coupon bond. If the duration of assets is greater
than the duration of the default-free zero-coupon bond, then the duration
of the default-prone bond is greater than the duration of the default-free
bond. This result is in contrast with most duration models for default-prone
bonds in the fixed-income literature, which claim that duration of the 
default-prone bond is always less than the duration of the default-free bond
by implicitly or explicitly assuming that Dv = 0, in equation 11.18.

Using equation 11.1, the duration of the stock of the firm can be given as:

where, using balance sheet identity, S(t) = V(t) − D(t, T). Hence, the dura-
tion of the stock of the firm can be computed using the asset duration of the
default-prone bond duration.

Example 11.1 Consider a zero-coupon bond that promises to pay $1 (F = 1)
in a year (T = 1). Volatility of firm value is v = 0.2, the risk-free rate is r(0) =
6%, speed of mean reversion of the interest rate is α = 0.2, the risk-neutral
long-run mean of the interest rate is m = 0.06, volatility of the interest rate
process is σ = 0.02, the correlation between the firm value and interest rate
process is ρ = −0.3, and the market price of risk is γ = 0.
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The value of the default-free zero-coupon bond can be computed using
equation 11.4 as follows:

The value of the default-prone zero-coupon bond can be computed as
follows. The integrated volatility V, quasi-debt ratio L(t), d1, and d2 in equa-
tion 11.17 are given as:

The price of the default-prone bond can be computed using equation 11.17
as follows:

  

D t T N d V t N d P t T F

N

( , ) ( ) ( ) ( ) ( , )= −  +

= −

1

1

1 2

(( . ) . ( . ) . .1 3256 0 0390 1 1282 0 9418 1 0 9  × + × × =N 3307

  

V T t B t Tv
v= + +









 −( ) − +σ

σ
α

ρσσ
α

σ
α

2
2

2

2

2

2 2 2
( , )

ρρσσ
α

σ
α

αv T te








 − −( )

= +

− −
2

3
2

2
2

2
1

0 2
0 02

0

( )

.
.

..

( . ) . .
.

.

2

2 0 3 0 02 0 2
0 2

1

0 9063
2

2
+ × − × ×







 ×

− × ×× + × − × ×







 −0 02

0 2

2 0 3 0 02 0 2
0 2

0 022

2

.

.

( . ) . .
.

. 22

3
2 0 2

2 0 2
1 0 0390

×
−( ) =

= =

− ×

.
.

( )
( , )

( )

.e

L t
P t T F

V t
00 9418 1

1 2
0 7848

1
2

0

1

.
.

.

ln ( ) ln( .

× =

=
− ( ) +

=
−

d
L t V

V

77848
1
2

0 0390

0 0390
1 3256

1 32562 1

) .

.
.

.

+
=

= − = −d d V 00 0390 1 1282. .=

B t T
e e

A

T t

( , )
.

.
( ) . ( )

= − = − =
− − − −1 1

0 2
0 9063

0 2 1 0α

α

(( , ) ( , ) ( ) ]t T m B t T T t= + −








 − − 

σ
α

σ
α

γ 2

22
−−

= + −
×









 ×

B t T( , )

.
.

.
.

2
2

2

2

4

0 06 0
0 02

2 0 2
0 9

σ
α

0063 1 0 9063
0 02
4 0 2

0 00562
2

−  −
×

= −.
.

.
.

( )P t T, == = =− − − ×e eA t T B t T r t( , ) ( , ) ( ) . . .0 0056 0 9063 0 06 0..9418



340 DURATION MODELS FOR DEFAULT-PRONE SECURITIES

The firm value duration can be computed using equation 11.11 as
follows:

Duration of the default-free bond can be computed using equation 11.6
as follows:

Duration of the default-prone bond can be computed using equation
11.18 as a weighted average of the firm’s asset duration and the duration of
the default-free bond. The weights are given in equations 11.19 and 11.20:

Using these weights the duration of the default-prone bond and the stock
can be computed using equations 11.18 and 11.21, as follows:

Numerical Analysis

In this section, we perform numerical analysis to see the role played by 
the firm’s asset duration in determining the durations of the firm’s 
default-prone bond and stock. We also investigate how the default-prone
bond duration changes with respect to financial risk and business risk of
the firm.
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Relationship between Asset Duration, Bond Duration, and Stock Duration
Consider a firm that has both debt and equity outstanding. To keep the
analysis realistic, let’s assume momentarily that the interest and the
dividend payments are allowed. Since the duration of a portfolio of
securities can be given as the weighted average of the durations of the
individual securities in the portfolio, the asset duration can be given as:

Equation 11.22 follows from balance-sheet identity and is valid even
when interest and dividend payments are allowed. Based on casual empiri-
cism, let’s further assume that the duration of coupon-paying debt is greater
than zero. Since Dd > 0, equation 11.22 implies the following result:

Thus, assuming that the duration of a firm’s assets is less than or equal
to zero implies that the duration of its stock must be significantly negative
(unless the debt to equity ratio is always very low, or the magnitude of the
duration of the debt is insignificant). This is counterintuitive since investors
usually associate interest rate risk with bonds and not stocks. Further,
many empirical studies suggest that stock returns display significantly neg-
ative sensitivities or statistically insignificant sensitivities to the changes in
interest rates. In other words, the empirical evidence implies that the dura-
tion values of most stocks should be either positive or close to zero, but not
significantly negative as implied by equation 11.23. Hence, under empiri-
cally realistic conditions, the duration of the assets of most firms should not
be less than or equal to zero.

In this section, we offer additional insights on the signs and magni-
tudes of the duration of a firm’s assets, the duration of its default-prone
bond and the duration of its non-dividend paying stock. Since returns on
the firm’s assets are not directly observable, none of the empirical studies
in the past have analyzed the relationship between the asset returns and
the changes in the nominal interest rates. However, the sign of the dura-
tion of a firm’s assets can be determined by the sign and the magnitude of
the duration of its default-prone bond and the duration of its stock. Since
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FIGURE 11.2 Relationship between Asset Duration, Bond Duration, and
Stock Duration
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previous empirical studies do suggest certain general results about the signs
and magnitudes of the duration values of corporate bonds and corporate
stocks, these results can be used to implicitly determine the sign of the du-
ration of the firm’s assets.

In the following, we obtain a stronger characterization of the relation-
ship between the asset duration, the stock duration, and the bond duration
by making certain additional assumptions. Consistent with the contingent
claims valuation framework of this chapter, we now assume that a firm’s
outstanding liabilities are given by a single non-dividend paying stock and a
single default-prone zero-coupon bond.

We analyze the relationship between the asset duration, the duration of
the default-prone zero-coupon bond, and the duration of the non-dividend
paying stock in more detail by considering five cases given next, which are
also illustrated in Figure 11.2. These cases consider asset durations ranging
from negative values (in Case 1 and Case 2), to positive values (in Case 3,
Case 4, and Case 5), and show that positive duration values for assets are
more consistent with empirical data on stocks and bonds. A variable that
plays a key role in dividing the range of asset duration values among five
cases, from the most negative to the most positive, is the quasi-debt ratio
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L(t), introduced in equation 11.17. To analyze these five cases, we introduce
two more variables given as:

and

The five cases are given as:

Case 1: Dv < K1 Dp < 0. Under this case:
Dd < 0
Ds < 0
Ds > Dd 

Case 2: K1 Dp < DA < 0. Under this case:
Dd ≥ 0
Ds < 0
Ds ≥ D(t, T)/S(t)]Dd 

Case 3: 0 < DA ≤ K2DP. Under this case:
Dd > 0
Ds ≤ 0
Ds< [D(t, T)/S(t)]Dd 

Case 4: 0 < K2DP < DA < DP. Under this case:
Dd > 0
Ds > 0
Ds < Dd 

Case 5: 0 < DP < DA. Under this case:
Dd > 0
Ds > 0
Ds≥ Dd 

where x defines the absolute value of x.
For the ease of exposition, these five cases are illustrated in Figure 11.2.

The duration of the default-prone zero-coupon bond and the duration of
the non-dividend paying stock are plotted against the duration of the firm’s

(11.25)K
N d

N d

P t T F

V t

N d

N d
L t2

2

1

2

1

0= = >
( )

( )

( , )

( )

( )

( )
( )

(11.24)
  
K

N d

N d

P t T F

V t

N d

N d
L t1

2

1

2

11 1
=

−
=

−
( )

( )

( , )

( )

( )

( )
( )) < 0



344 DURATION MODELS FOR DEFAULT-PRONE SECURITIES

assets. It can be seen that Case 1 through Case 5 give successively increas-
ing range of values for the duration of the firm’s assets from highly negative
to highly positive. Note that the slope of the stock duration line is greater
than the slope of the bond duration line. This implies that the absolute
magnitude of the stock duration is higher than that of the bond duration,
both when the duration of the firm’s assets is either highly negative or
highly positive.

The duration of the firm’s assets is less than or equal to zero both for
Case 1 and Case 2. Case 1 implies that the duration of the default-prone zero-
coupon bond is negative. Though this is theoretically possible if the asset du-
ration is very highly negative, this case is generally inconsistent with the
empirically observed relation between bond returns and interest rate changes.

The magnitude of the stock duration clearly dominates the magnitude
of the bond duration under Case 1. Further, unless the debt to equity ratio
is always low, the magnitude of the stock duration is relatively significant
compared to the magnitude of the bond duration even under Case 2. Fi-
nally, the sign of the duration of the non-dividend paying stock is negative
under both Case 1 and Case 2. Hence, both these cases imply significantly
negative duration values for non-dividend paying stocks, which, as argued
before, is inconsistent with the empirical evidence.

The duration of the firm’s assets is greater than zero for Cases 3, 4, and
5. According to Case 3, the duration of the non-dividend paying stock must
be less than or equal to zero. Comparing Case 2 and Case 3, it can be seen
that even though both these cases may imply negative duration values for
the stock, the magnitude of the stock duration is much closer to zero under
Case 3. It can be argued that the implications of Case 3 are more consistent
with the empirical results of Sweeney and Warga (1986) and Chance (1982)
(since these authors find that the returns on many stocks display statistically
insignificant sensitivities to interest rate changes) than those of Case 2.

Case 4 allows the stock duration to be positive. This is consistent with
the observed negative correlation between the returns on stock portfolios
and the changes in the nominal interest rates, demonstrated in many empir-
ical studies. Note that under this case the magnitude of the duration of the
non-dividend paying stock is less than the magnitude of the duration of the
default-prone zero-coupon bond.

Case 5 may partially explain the extremely high sensitivities of the
returns on some stocks to interest rate changes. Note that this case consid-
ers high positive duration values for a firm’s assets. Since the slope of the
stock duration line is higher than the slope of the bond duration line, the
value of the stock duration can be quite high under this case. Clearly,
the magnitude of stock duration dominates the magnitude of bond duration
under this case.
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To give an example, Sweeney and Warga (1986) find that returns on the
utility industry stocks are highly sensitive to interest rate changes. The aver-
age percentage change in utility stock prices is about −70 times a given
change in the annualized default-free long-term yield. Assuming parallel
term structure shifts, this implies that the average duration for the utility
stocks is about 70 years. It is quite probable that the duration values of the
assets of the utility industry firms are highly positive, which is consistent
with Case 5.

Another implication of Case 5 is that the duration of the default-prone
zero-coupon bond is greater or equal to the duration of the corresponding
default-free zero-coupon bond. This can be seen from equation 11.18,
which implies that Dd ≥ Dp, if Dv ≥ Dp. Thus, unlike the duration model of
Chance (1990), and others, the duration of a default-prone zero-coupon
bond may be greater than the duration of a similar default-free zero-
coupon bond.

From the previous discussion of the five cases, it can be inferred that
the duration values of the assets of most firms, if not all, are usually posi-
tive (i.e., consistent with either of the Cases 3, 4, or 5). The condition
under which the duration of a firm’s asset could be less than or equal to
zero (i.e., Cases 1 and 2) requires that the duration of the corresponding
non-dividend paying stock must be significantly negative—a conclusion in-
consistent with the interest rate risk characteristics of most stocks.

Bond and Stock Durations versus Financial and Operating Leverage The
interest rate risk of bonds and stocks are related to the business risk and
financial risk of a firm. This section investigates this relationship by doing
a comparative static analysis of how durations of the default-prone zero-
coupon bond and the non-dividend paying stock change with changes in
variables that measure business risk and financial leverage.

Unlike the previous section, which investigated how the durations of
the stock and the bond are related to the asset duration, this section as-
sumes a constant asset duration, and analyzes the relationships of the 
default-prone bond duration and the stock duration with respect to the
quasi-debt ratio L(t) (i.e., to measure financial leverage) and the standard
deviation of the firm’s asset return σv (i.e., to measure business risk).

Figure 11.3 illustrates that both the default-prone bond duration and
the stock duration are decreasing functions of the financial leverage, when
the duration of the firm’s assets is less than the duration of the default-free
bond (which has the same maturity as that of the default-prone bond). In
contrast, Figure 11.4 demonstrates that when the duration of the firm’s as-
sets is greater than the duration of the default-free bond, both the default-
prone bond duration and the stock duration are increasing functions of the
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FIGURE 11.3 Bond and Stock Durations versus Financial Leverage, When
the Asset Duration Is Lower Than the Default-Free Bond Duration
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FIGURE 11.4 Bond and Stock Durations versus Financial Leverage, When
the Asset Duration Is Higher Than the Default-Free Bond Duration

8

7

6

5

4

3

2

1

0

Quasi-debt ratio

0.1 0.3 0.5 0.7 0.9

Du
ra

tio
n 

m
ea

su
re

s

Default-prone bond
Default-free bond
Firm value
Stock

1.71.51.3 1.9 2.11.1



Pricing and Duration of a Default-Prone Zero-Coupon Bond 347

FIGURE 11.5 Bond and Stock Durations versus Business Risk, When the
Asset Duration Is Lower Than the Default-Free Bond Duration
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financial leverage. Intuitively, these findings are consistent with the fact
that at extremely low levels of leverage the default-prone bond must behave
like the underlying default-free bond, and at extremely high levels of lever-
age the default-prone bond must behave like the underlying assets of the
firm in the Merton (1974) framework.

Figure 11.5 and Figure 11.6 allow the correlation coefficient between
the asset return and the default-free instantaneous short rate to change, as
the standard deviation of the asset return increases. This is done to keep the
duration of the firm’s assets constant (see equation 11.11), while investigat-
ing how the standard deviation of the firm’s asset return affects the dura-
tions of the stock and the default-prone bond. Figure 11.5 demonstrates that
when the asset duration is lower than the duration of the default-free bond,
the default-prone bond (stock) duration is a decreasing (increasing) function
of the standard deviation of the firm’s asset return. However, as Figure 11.6
demonstrates, when the asset duration is higher than the duration of the
default-free bond, the default-prone bond (stock) duration is an increasing
(decreasing) function of the standard deviation of the firm’s asset return.

These results provide new insights in relation to the well-known empir-
ical result that interest rate risk is inversely related to default risk. The prob-
ability of default for a default-prone bond rises as both the standard
deviation of the asset return and the quasi-debt ratio rise. Figures 11.3 and
11.5 are consistent with the fact that the interest rate risk of a default-prone
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FIGURE 11.6 Bond and Stock Durations versus Business Risk, When the
Asset Duration Is Higher Than the Default-Free Bond Duration
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bond is inversely related to its default risk, since the duration of the default-
prone bond decreases with increases in default risk. However, Figures 11.4
and 11.6 imply the opposite result. Interest rate risk of a default-prone bond
is directly related to its default risk, since the duration of the default-prone
bond increases with increases in default risk. Recall that both Figures 11.3
and 11.5 assume that the asset duration is lower than the duration of the
underlying default-free bond (consistent with either Case 3 or Case 4 in Fig-
ure 11.2), while Figures 11.4 and 11.6 assume that the asset duration is
higher than the duration of the underlying default-free bond (consistent
with Case 5 in Figure 11.2).

Hence, the previous analysis questions the traditional notion that inter-
est rate risk and default risk are inversely related. When the assets of firms
are very highly sensitive to interest rate risk, such as assets of the utility in-
dustry firms (see Sweeney and Warga, 1986), or depository institutions that
lend long and borrow short (such as the savings and loans associations), the
interest rate risk of the default-prone bonds may actually increase as the
default-risk increases (consistent with Figures 11.4, 11.6, and Case 5 in Fig-
ure 11.2). Future empirical research may confirm these theoretical findings
by using the magnitude of the interest rate risk exposure of the underlying
assets of firms for grouping them into different categories, and then testing
the relationship between interest rate risk and default risk separately over
different groups.
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Relationship between Credit Spread Changes and Interest Rate Changes
A significant body of research argues that credit spreads and default-free
interest rates are inversely related. In a recent study, Duffie (1998) using the
Lehman brothers data of noncallable bonds finds that an increase in the
three-month Treasury bill yield is accompanied by a decrease in the credit
spread. He also finds that this relationship is stronger for lower rated
bonds—a 10-basis points increase in the three-month yield leads to a
decrease of about four basis points in the credit spread of Baa bonds.
Though this relationship is consistent with previous findings, and should
generally hold, more insight on this issue can be gained by studying the
effects of the relationship between the asset duration and the duration of
the default-free bond. For example, it can be easily demonstrated that the
relationship found by Duffie may not hold if asset duration is significantly
higher than the default-free bond’s duration.

It was shown in the previous section that if the duration of the assets
exceeds the duration of the default-free zero-coupon bond, then the dura-
tion of the default-prone bond is higher than the duration of the default-free
bond. This implies that for a given increase in short rate, the default-free
bond value decreases less than the default-prone bond value, leading to an
increase in the credit spread. Using a similar argument, if the duration of
the assets is less than the duration of the default-free zero-coupon bond,
then an increase in short rate decreases the credit spread.

Hence, two important variables that determine the relationship be-
tween changes in the short rate and changes in the credit spread are:

1. The sensitivity of the underlying assets to interest rate changes, mea-
sured by the asset duration.

2. Maturity of the default-prone bond, which determines the duration of
the equivalent default-free bond.

As a general result, credit spreads of shorter maturity bonds issued by
corporations with highly interest rate sensitive assets will increase, while
credit spreads of longer maturity bonds issued by corporations that have as-
sets with low or negative interest rate sensitivity (i.e., with negative asset du-
rations) will decrease, in response to an increase in the default-free short
rate. Though these results are derived for zero-coupon bonds, the main im-
plication should continue to hold even with coupon bonds under credit risk
models that allow complex capital structures, as the duration risk measures
can be derived to adjust for coupon effects.

The credit spread is defined as the difference between the yields-to-
maturity of the default-prone zero-coupon bond and the default-free zero-
coupon bond (of the same maturity):
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FIGURE 11.7 Effect of Change in the Level of the Default-Free Short Rate
on Term Structure of Credit Spreads
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where yc(t, T) is the yield to maturity of the default-prone zero-coupon
bond, y(t, T) is the yield to maturity of the default-free zero-coupon bond
(y(t, T) = −lnP(t, T)/(T − t), where P(t, T) is the price of $1 face-value, default-
free zero-coupon bond defined in equation 11.4), and all other variables are
as defined before.

Figure 11.7 demonstrates the relationship between the default-free
short rate and the term structure of credit spreads. We choose the following
base parameter values:

V(0) = $120
F = $100

r(0) = 6%
σv = 20%
α = 0.2, m = 6%
σ = 2%
ρ = −30%
γ = 0
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Given these parameter values, the asset duration (see equation 11.11)
equals:

Instead of keeping the firm value constant in response to the short rate
changes, we simulate credit spreads assuming that the expected change in
the firm value is proportional to its asset duration. Given the asset duration
equals three, when the short rate increases by 1 percent, the firm value is ex-
pected to decrease by 3 percent. Similarly, when the short rate decreases by
1 percent, the firm value is expected to increase by 3 percent. Hence, the
credit spreads generated using the short rate of 7 percent assume that the
firm value decreases to its conditional expected value of $120 − $120 × 3%
= $116.4, and the credit spreads generated using the short rate of 5 percent
assume that the firm value increases to its conditional expected value of
$120 + $120 × 3% = $123.6.

It can be seen that when the short rate rises to 7 percent, credit spreads
increase for shorter maturities, but decrease for longer maturities. Similarly,
credit spreads decrease for shorter maturities, but increase for longer matu-
rities, when the short rate falls to 5 percent. The crossover point is around
4.581 years (it is slightly away from this point due to a very small “convex-
ity” error), the point at which the default-free bond duration equals the
asset duration of three years under the Vasicek model with 0.2 speed of
mean reversion. Below the crossover point, the asset duration is higher than
the default-free bond duration, and above the crossover point the asset du-
ration is lower than the default-free bond duration.

Based on this analysis, one must reconsider the previous empirical find-
ings about the inverse relationship between credit risk and interest rate risk
(e.g., Duffie, 1998). As a general result, credit spreads of shorter maturity
bonds issued by corporations with highly interest rate sensitive assets in-
crease, while credit spreads of longer maturity bonds issued by corporations
that have assets with low or negative interest rate sensitivity (i.e., with neg-
ative asset durations) decrease, in response to an increase in the default-free
short rate. Future research can partition the data based on the interest rate
sensitivity of the assets and the maturity of the corporate bonds in order to
confirm these findings.

The previous comparative static analysis is valid only for assessing in-
stantaneous effects of interest rate changes on expected credit spreads.
The joint evolution of the credit spreads and short rates over a long hori-
zon is captured by the Markovian system of equations describing these
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processes. Since the short rate also enters the firm value process through
its drift, the firm value may increase due to increases in the short rate over
a long horizon, partially offsetting the effect of negative correlation be-
tween the two processes.

PRICING AND DURATION OF A DEFAULT-PRONE
COUPON BOND: THE FIRST PASSAGE MODELS

The Merton (1974) framework is difficult to apply to coupon-paying
bonds, since a default-prone coupon bond cannot be treated as a portfolio
of default-prone zero-coupon bonds. This is because default on any given
coupon-payment date implies a default on future coupon payments, too.
Thus, a default-prone coupon bond is not a linear sum of the default-prone
zero-coupon bonds, and compound option models such as Geske (1977),
and others, must be used, since future coupons are paid conditional on
whether the earlier coupon payments are made. Though Geske’s work sig-
nificantly extends the model of Merton, it has two important limitations.
First, it does not allow the firm to buy back or issue more debt in order to
allow a dynamic capital structure policy. Second, it assumes that assets are
divided among the liability holders according to strict absolute priority
rules when the firm defaults. However, a number of researchers have
found that strict priority rules are rarely upheld in financially distressed
organizations.3

In a growing stream of research, a number of authors have proposed
what are known as the first passage models that overcome the limitations of
both the Merton model and the Geske’s extension of the Merton model.
This stream of research began with the work of Black and Cox (1976) who
proposed a new framework in which the firm defaults when the value of the
firm falls enough to reach a default threshold from above for the first time.
Black and Cox show that using the new framework allows the computation
of the value of a coupon bond as a sum of the values of the underlying zero-
coupon bonds. The probability of default under the Black and Cox model is
given as the first passage probability of the firm value hitting the given de-
fault threshold. The Black and Cox model disallows the unintuitive feature
of the Merton model that a firm’s value can be virtually extinguished before
the maturity of the bond, and yet it may not default if the firm value rises
sufficiently at the time of maturity.

Similar to the models of Merton and Geske, Black and Cox assume con-
stant interest rates and absolute priority rules. These two limitations of the
Black and Cox model are addressed by Longstaff and Schwartz (1995) who
allow stochastic interest rates as well as violations of the absolute priority
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rules. Collin-Dufresne and Goldstein (2001) further extend the model of
Longstaff and Schwartz by correcting an error in their formula and allow-
ing a dynamic capital structure with a stationary long-term mean. Finally,
Mueller simplifies the computation of the default probability in the Collin-
Dufresne and Goldstein model considerably, and allows macrovariables to
affect the dynamic capital structure of the firm.

Though most of these models are covered in detail in the third volume
of this series, in this section we provide an introduction to the models of
Black and Cox, and Longstaff and Schwartz. Though the Black and Cox
model provides much of the basic framework of the first passage models, it
cannot be used for computation of durations of coupon bonds, since it as-
sumes constant default-free rates. We apply the Longstaff and Schwartz
models for computing the durations of coupon bonds. Due to the violations
of absolute priority rules, and the particular specification of recovery in the
event of default, the Longstaff and Schwartz model can give highly nonlin-
ear relationships between the coupon bond duration and the underlying
variables measuring business risk and financial leverage of the firm. We in-
vestigate these relationships after the introduction to the first passage mod-
els using the simple framework of Black and Cox.

Black and Cox Model

Merton assumes that the firm can default only at maturity if the asset value
falls below the face value of debt. Hence, using the Merton model, the firm’s
assets can plummet to become a tiny fraction of the face value of the debt
before the bond maturity, and yet not default if the assets recover suffi-
ciently to become greater than the face value of debt at maturity. This is un-
realistic and creates highly perverse, gambling incentives for stockholders,
when asset value plummets. Bondholders are likely to intervene much be-
fore such gambling incentives become the choice for stockholders using
some contractual agreements.

Black and Cox specify a lower default threshold boundary, which is the
level at which the firm is forced into bankruptcy or reorganization. This
level can be given exogenously as a part of indenture provisions or deter-
mined endogenously. For example, bondholders are often protected by
safety covenants that give them the right to bankrupt or reorganize the firm
in case the firm does not fulfill some contractual obligations, like making
interest payments. In general, however, stockholders can sell the firm assets
or issue more debt and use the proceeds to pay interest to the bondholders.
Therefore, missing an interest payment is not a very good criterion for reor-
ganization boundary. The specific form of the safety covenant Black and
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TABLE 11.2 Payoffs to Stock and Zero-Coupon
Bond at Maturity: Black and Cox Model

V(T) ≥ F K ≤ V(T) < F

Stock value at T V(T) − F 0

Bond value at T F V(T)

Cox consider is that bondholders are entitled with the right to force the firm
into bankruptcy if its value falls to a prespecified level, which may change
over time. In this case, interest payments to the bondholders don’t play a
critical role.

For simplicity, we focus on the Black and Cox model to price a default-
prone zero-coupon bond, even though their model can be extended to in-
clude coupon payments. Black and Cox assume that the stockholders
receive a continuous dividend payment proportional to the firm value, aV.
Then firm value process is given as:

where µ is the expected rate of return on the firm’s assets.
Black and Cox suggest using a time-dependant default-threshold of an

exponential form given as:

The terminal payoffs in the Black and Cox model are given in Table 11.2.
Note that the firm value at bond maturity can never go below K. This is be-
cause the firm value V(t) is always greater or equal to the default threshold
K(t) (defined in equation 11.29), which is an absorbing barrier. When the
firm value V(t) hits the threshold K(t), the firm defaults immediately, and the
bondholders receive K(t) (for all 0 ≤ t ≤ T). This translates into the following
boundary conditions for the stock and the bond:

Since the firm may default at any time in the Black and Cox model, it is
necessary to specify two more conditions describing payoffs to the stock

(11.31)D T T V T F( , ) min ,= ( ) 

(11.30)S T V T F( ) max ,= ( ) − 0

(11.29)K t K e T t( ) ( )= − −γ

(11.28)
dV t
V t

a dt dZ tv v
( )

( )
( ) ( )= − +µ σ



Pricing and Duration of a Default-Prone Coupon Bond 355

and the bond when the firm value falls to the default threshold at any time
t, before bond maturity.

Using an arbitrage argument to derive a partial differential equation,
subject to boundary conditions given in equations 11.30, 11.31, and 11.32,
Black and Cox obtain the following solution to the zero-coupon bond price:

where

(11.34)
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A small typo in the original article of Black and Cox (1976) has been
corrected in equation 11.33. The terms in the box of the second to last ex-
pression on the right side of equation 11.33 are θ + η, and not θ − η as in
the original article. Black and Cox show how to generalize the above model
for coupon bonds under absolute priority rules. Since in practice the ab-
solute priority rules are violated almost always, we consider the generaliza-
tion of Longstaff and Schwartz (1995) that allows such violations in the
next section. Longstaff and Schwartz also allow stochastic interest rates,
and hence we use their framework to derive the duration of default-prone
coupon bonds.

Longstaff and Schwartz Model

The Longstaff and Schwartz model extends the Black and Cox model in two
important ways. First, this model allows interaction between default risk
and interest rate risk, by allowing for stochastic interest rates. Second, this
model allows for deviations from strict absolute priority rules. The interest
rate process and the asset return process are assumed to be as given in equa-
tions 11.3 and 11.8, respectively.

Longstaff and Schwartz consider a firm that issues a default-prone
bond with a periodic coupon payment C, and a face value F maturing at
time T. They assume that a default threshold value K exists at which finan-
cial distress occurs. The firm may have a complex capital structure with
many other bond (or debt) issues, such that the value of K will be generally
much higher than the face value F, of the single bond issue. The value of K is
constant, but can depend upon firm-specific and industry-specific variables,
and will be generally an increasing function of the total book value of the
firm’s bonds. As long as the firm value V(t) is greater than K, the firm con-
tinues to meet its interest payments to all bondholders. If V(t) reaches K, the
firm defaults on all its bond obligations, simultaneously. The simultaneous
default assumption is not unrealistic due to the existence of cross-default
provisions and injunctions against making coupon payments on other bond
issues. When financial distress is triggered, the total assets V(t) = K, are al-
located to the various classes of bond claimants, through some form of cor-
porate restructuring, such as Chapter 11 reorganization or liquidation,
Chapter 7 liquidation, or a private debt restructuring.

Longstaff and Schwartz assume that upon reaching the default thresh-
old K, for every $1 of face value of a given bond, the bondholder receives 
1 − w, at maturity. An equivalent way of specifying the payoff upon default
is to assume that the security holder receives 1 − w number of default-free
zero-coupon bonds at the time of default. Since empirically the absolute pri-
ority rules are violated in most if not all corporate restructurings, the lin-
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earity of this assumption is not unrealistic. Of course, different classes of se-
curities can be expected to have a different value of the writedown w. For
example, Altman (1992) finds that the value of average writedown w, is
equal to 0.40, 0.48, 0.69, 0.72, and 0.80 for secured, senior, senior subor-
dinated, cash-pay subordinated, and noncash-pay subordinated bonds over
a sample of defaulted bond issues during the 1985 to 1991 period. Franks
and Torous (1994) find the value of average writedown w, is equal to 0.20,
0.53, and 0.71 for secured, senior, and junior bonds for a sample of firms
that reorganized under Chapter 11 during the 1983 to 1990 period.

Though the value of the writedown w, could be different for each indi-
vidual bond issued by the firm, in practice the bonds are usually grouped
into a handful of categories at the time of reorganization. For example, a
firm with 50 types of bonds may have three to four categories, each with a
different value of w. The only constraint on w is that the total settlement of
all claimants cannot exceed the lower threshold value K.

Longstaff and Schwartz also assume that the firm value is independent
of its capital structure. This means that the coupon and principal payments
are financed by issuing more debt thus leaving capital structure of the firm
unchanged. Due to this assumption, the actual bondholders’ recovery in
case of default is not related to the face value of the bond. This is different
from Merton’s framework, which assumes that the magnitude of bondhold-
ers’ loss in case of default depends on the difference between the bond’s face
value and the actual firm value at maturity, which makes the recovery sto-
chastic but predictable.

The original solution for the price of default-prone bond proposed by
Longstaff and Schwartz was based on the formula due to Fortet (1943).
However, this formula is only valid for one-dimensional Markov processes.
Therefore, the Longstaff and Schwartz solution can only be used as an ap-
proximation to the true solution. This error was recognized and corrected
by Collin-Dufresne and Goldstein (2001). They proposed a solution based
on a two-dimensional generalization of the Fortet’s equation. Their solution
involves approximating a two-dimensional integral that can be computa-
tionally costly. A much simpler solution to Longstaff and Schwartz model
based on approximation of one-dimensional integral was provided by
Mueller (2002) and is given as follows:

where P(t, T) is the price of the default-free bond given in equation 11.4, F
is the face value of the bond, and Q(t, T) is the first passage probability of
default given as follows:

(11.35)
  
D t T P t T F wQ t T( , ) ( , ) ( , )= −( )1
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It can be shown that (xu xt, rt, t) ∼ N(M(u, T), S(u)), where M(u, T) and S(u)
are conditional mean and variance of xu which can be computed as follows:

(11.37)
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Also, (xuxs, xt, rt, t) ∼ N(M(u, s, xs, T), S(u, s)), and the conditional mean
and variance of xu in this case are computed as:

where V(u, s) is the covariance of the random variables (xuxt, rt, t) and
(xsxt, rt, t) given by:

The parameters for the short rate process and the firm value process are
as defined in equations 11.3 and 11.8 earlier. Also, for the purpose of nota-
tional convenience, the variable that measures the log of the firm value, x(t)
= ln(V(t)) is defined as xt, and the short rate r(t) is defined as rt. The variable
N(x) is the cumulative standard Normal distribution function evaluated at x.

(11.41)

V u s Cov x x x r tu s t t

v
v

( , ) , | , ,=  

= + +σ
ρσ σ
α

2
2 σσ

α

ρσ σ
α

σ
α

α α

2

2

2

2

3 1







×

+ − −






× − −− −

s

e ev s uu u s

u s u s

e

e e

+( )

+ × −( )

− −

− − − +

α

α ασ
α

( )

( ) ( )
2

32

(11.40)S u s S u
V u s

S u S s
( , ) ( )

( , )

( ) ( )
= × −









1

2

(11.39)M u s x T M u T
V u s

S s
x M s Ts s( , , , ) ( , )

( , )

( )
( ,= + × − ))( )

(11.38)

S u Var x x r tu t t

v
v

( ) | , ,=  

= + +



 σ

σ

α

ρσ σ
α

2
2

2

2 


 ×

− +








 × −( )

+ ×

−

u

ev u2 2
1

2
1

2

3 2

2

3

σ

α

ρσ σ

α

σ
α

α

−−( )−e u2α



360 DURATION MODELS FOR DEFAULT-PRONE SECURITIES

Example 11.2 Consider a zero-coupon bond that promises to pay $100
(i.e., F = 100) in one year (i.e., T = 1). The current value of the firm is $120
(i.e., V(0) = 120). The threshold at which default occurs is K = $100 and
the writedown upon default occurrence is w = 0.4. The volatility of firm’s
asset return is v = 0.2, the risk-free rate is r0 = 6%, speed of mean reversion
of the interest rate is α = 0.2, the risk-neutral long-run mean of the interest
rate is m = 0.06, volatility of the interest rate process is σ = 0.02, and the
correlation between firm value and interest rate process is ρ = −0.3.

The computation of the first passage probability in equation 11.36 re-
quires dividing the maturity of T years into n small intervals of ∆ each, or ∆
= T/n. Generally a value for n = 100 to 200 gives a highly accurate estimate
for the first passage probability for most choices of parameters. In the above
example, T = 1 year. For expositional purpose, we assume that n = 5, and
show the detailed steps on how to compute the first passage probability. The
extension to n = 100 or 200 should be straight forward, once these steps are
understood. Given n = 5, ∆ = T/n = 1/5 = 0.2. The first passage probability,
Q(0, 1) can be approximated in 5 steps as follows.

Computation of qi (i = 1, 2, . . . , 5) involves computing the values of ai,
and bi,j. This can be done by using the following formulas:

Note, computation of the term bi,j involves the term M(i∆, tj, ln K, T).
By definition, tj ∈[(j −1)∆, j∆]. For example, if j = 1, then t1 ∈ [0, 0.2].
Since we need a point value of tj, we assumed that tj is the mid-point of the
interval [(j − 1)∆, j∆], or:

The values of ai, and bi,j are computed using the formulas given previously.
We consider five cases corresponding to i = 1, 2, 3, 4, and 5.

The numbers in the first row of Table 11.3a provide the value of a1 and b1,1
computed using the formulas given previously. The second row of this
table gives the standard Normal distribution function evaluated at a1 and
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TABLE 11.3b Second Iteration, i = 2

a2 b2,1 b2,2

−1.5793 −0.1267 −0.0729

N(.) 0.0571 0.4496 0.4710

TABLE 11.3c Third Iteration, i = 3

a3 b3,1 b3,2 b3,3

−1.3454 −0.1631 −0.1259 −0.0724

N(.) 0.0892 0.4352 0.4499 0.4711

TABLE 11.3d Fourth Iteration, i = 4

a4 b4,1 b4,2 b4,3 b4,4

−1.2134 −0.1925 −0.1621 −0.1251 −0.0719

N(.) 0.1125 0.4237 0.4356 0.4502 0.4713

TABLE 11.3e Fifth Iteration, i = 5

a5 b5,1 b5,2 b5,3 b5,4 b5,5

−1.1282 −0.2177 −0.1913 −0.1610 −0.1243 −0.0715

N(.) 0.1296 0.4138 0.4242 0.4360 0.4506 0.4715

b1,1. Given the values of N(a1) and N(b1,1), the value of q1 can be computed
using equation 11.36, as follows:

Using similar computations in Tables 11.3b, 11.3c, 11.3d, and 11.3e,
the values of q2, q3, q4, and q5 can be computed as follows:

  
q

N a

N b1
1

1 1

0 0163

0 4708
0 0347= = =

( )

( )

.

.
.

,

TABLE 11.3a First Iteration, i = 1

a1 b1,1

−2.1362 −0.0733

N(.) 0.0163 0.4708
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Given the values of q1, . . . q5, we can compute the first passage proba-
bility of default, Q(0, 1) as follows:

The computation of the price of the default-prone bond requires the
price of the default-free bond, P(0, 1). Using the closed form of P(t, T) in
equation 11.4, we get:

Substituting the previous values of Q(0, 1) and P(0, 1) and the para-
meters, F = 100, and w = 0.4, in equation 11.35, the price of the default-
prone bond, D(0, 1), is given as follows:
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The value of D(0, 1) converges to its true price as n becomes large. For
n = 200, the value of D(0, 1) equals $83.04, which is one cent away from
the solution given previously.

In the Longstaff and Schwartz model, the value of a coupon bond can
be given as a portfolio of zero-coupon bonds, as all coupons default simul-
taneously when the firm hits the default threshold K for the first time.
Hence, the value of the coupon bond with coupon payments, C, at dates tk,
(1, N), where tN = T, can be written as:

Though the writedown for the coupons, wcoup, in case of default can
be any number from 0 to 1, in practice only the portion of principal pay-
ment is redeemed and coupon payments are written down completely, that
is, wcoup = 1.

The yield to maturity of a corporate coupon bond, yc(t, T) can be ob-
tained implicitly by solving the following equation:

The yield to maturity of a default-free coupon bond, y(t, T) can be obtained
implicitly by solving the following equation:

The credit spread is defined as the difference between the yields to matu-
rity of the corporate coupon bond and the riskless coupon bond (of the
same maturity):

Duration of a Default-Prone Bond A widespread misunderstanding among
fixed-income practitioners is that duration of a default-prone bond is

(11.45)
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always lower than the duration of an equivalent default-free bond. As
mentioned in the introduction to this chapter, this misunderstanding results
from confusing the expected contractual maturity of the bond with its
duration. As shown using Merton’s (1974) framework in the previous
section, the duration of a default-prone zero-coupon bond can be higher
than the duration of the equivalent default-free zero-coupon bond (which
under parallel term structure shifts equals the contractual maturity of the
bond) when the duration of the assets of the firm is higher than the duration
of the equivalent default-free bond.

We show that another reason for this misunderstanding is that duration
is frequently obtained using a simplistic comparative static analysis. For ex-
ample, consider how comparative static analysis would be used to derive the
duration of the default-prone zero-coupon bond using equation 11.35. By
taking the partial derivative of equation 11.35, we get:

Dividing both sides of equation 11.46 by −D(t, T), duration would be de-
fined as follows:

Hence, the duration of the default-prone bond would be given as the sum of
the duration of the default-free bond plus another term that is proportional
to the partial derivative of Q(t, T) with respect to r(t). In general, Q(t, T),
which is the first passage probability of default, is a function of the current
value of the firm’s assets through x(t) = lnV(t), which is contained in Q(t,
T). However, using a comparative static analysis would require evaluating
the partial derivative of Q(t, T) with respect to r(t), while keeping x(t) =
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lnV(t) constant. Doing this implicitly assumes a zero value for the asset du-
ration since the firm value is kept constant even though the instantaneous
short rate changes. Thus, duration obtained with a comparative static ap-
proach using equation 11.47 will lead to a significant underestimation of
true sensitivity of the default-prone bond to interest rate changes if the du-
ration of the assets is extremely high. The inappropriate use of the compar-
ative static approach is one of the reasons why some researchers have found
that duration of the default-prone bond is always lower than the duration of
the equivalent default-free bond under the Longstaff and Schwartz model,
and other such models.

The comparative static approach also does not lead to a closed-form so-
lution of the duration under the Longstaff-Schwartz model, since Q(t, T) is
defined in a nonlinear iterative fashion. Hence, in the following we suggest
an alternative numerical approach to computing the duration of the default-
prone bond under the Longstaff and Schwartz model.

The value of the default-prone zero-coupon bond D(t, T) in equation
11.35 can be written as a function of the current firm value V(t) and the
current instantaneous short rate r(t), as follows:

The values of V(t) and r(t) are contained in D(t, T) = D(V(t), r(t), t, T),
through Q(t, T) in equation 11.35. Now consider a very small instanta-
neous change in r(t) given as ∆r(t). Let the short rate after this instantaneous
change be given as r'(t) = r(t) + ∆r(t). The expected change in the firm’s
asset value V(t), caused by the change in the short rate is given as follows:

where Dv is the asset duration defined in equation 11.11. Define the new
firm value as V'(t) = V(t) + ∆V(t). Using the new firm value and the new in-
terest rate, compute the value of the default-prone zero-coupon bond again
using equation 11.35, as follows:

The duration of the default-prone zero-coupon bond now can be defined
as follows:

(11.50)  D t T D V t r t t T'( , ) ( '( ), '( ), , )=
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where

Computation of the duration of the default-prone zero-coupon bond
using equations 11.48 through 11.52, requires using the formula given in
equation 11.35 twice by changing the short rate by a small amount. Using
any small amount such as ∆r(t) = 0.00001 gives a highly accurate numerical
estimate of the duration of the default-prone bond. Also, by expressing
Dcoup(t, T) = Dcoup(V(t), r(t), t, T), in equation 11.42 as a function of V(t) and
r(t), the method demonstrated in equations 11.48 through 11.52, also gives
the duration of the default-prone coupon bond. Since this approach accounts
for the expected change in the value of the firm’s assets caused by a change in
the interest rate by explicitly using the asset duration defined in equation
11.11, it gives an accurate estimate of the default-prone bond duration.

Numerical Analysis Similar to the numerical analysis performed earlier
on the Nawalkha-Shimko et al. models, this section investigates how
interest rate risk of a default-prone bond is related to the firm’s business
risk and financial risk. However, unlike the Nawalkha-Shimko et al. models
which are based upon an endogenous default framework of Merton
(1974), the first passage models given by Longstaff and Schwartz, and
others, assume that both the default threshold K and the writedown ratio
w, are specified exogenously. The exogenous specification of default
threshold and writedown ratio leads to certain unique and peculiar
properties for the duration of the default-prone bond under the Longstaff
and Schwartz model.

To analyze how the duration of the default-prone bond is related to
business risk and financial risk, we assume a constant asset duration, and
consider the relationship of the default-prone bond duration with respect to
the volatility of the firm’s asset return σv (i.e., to measure business risk), and
the quasi-debt ratio L(t) (i.e., to measure financial leverage). When the firm
volatility increases, the duration of the assets is held constant by changing
the correlation between asset returns and short rate changes.

We consider a 6 percent annual coupon bond, which either matures in
two years or in 12 years. Considering two different maturities allows us to
consider both cases, when the asset duration is higher than the equivalent
default-free bond duration, and when the asset duration is lower than the
default-free bond duration. The parameters for the asset price process, the
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FIGURE 11.8 Default-Prone Bond Duration versus Financial Leverage,
When the Asset Duration Is Lower Than the Default-Free Bond Duration
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short rate process, and exogenous default process, are given as r(0) = 6%,
α = 0.2, m = 6%, σ = 2%, V(0) = $200, F = $100, K = $80, σv = 20%, =
−0.3, w = 0.4, wc = 1.

Figure 11.8 illustrates that the default-prone bond duration is initially a
decreasing function of the financial leverage (measured by quasi-debt ratio),
when the duration of the firm’s assets is less than the duration of the
default-free bond. However, unlike the endogenous model of Nawalkha
(1996) (see Figure 11.3), the duration of the default-prone bond increases
after the initial decline. At high leverage, default becomes more certain, and
due to the exogenous default assumptions in the Longstaff and Schwartz
model, the bondholders receive an almost certain payment of F(1 − w) at
maturity T, but zero-coupon payments until then (since we have assumed
100 percent writedown for coupon payments). Hence, an almost certain de-
fault makes the default-prone coupon bond behave more like a default-free
zero-coupon bond. This explains why at a high quasi-debt ratio, the dura-
tion of the default-prone coupon bond exceeds even the duration of the
default-free coupon bond in Figure 11.8. It is well known that the duration
of the default-free coupon bond is always lower than the duration of the
default-free zero-coupon bond, and the default-prone coupon bond behaves
more like a default-free zero-coupon bond when default is very likely. Inter-
estingly, the duration of the default-prone coupon bond is not as sensitive to
financial leverage when the asset duration is higher than the duration of the
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FIGURE 11.10 Default-Prone Bond Duration versus Business Risk, When the
Asset Duration Is Lower Than the Default-Free Bond Duration
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default-free coupon bond. As shown in Figure 11.9, only at extremely high
financial leverage the duration of the default-prone bond starts increasing
toward the asset duration value.

Figure 11.10 illustrates the relationship between the duration of the
default-prone coupon bond and firm’s volatility, when the asset duration is

FIGURE 11.9 Default-Prone Bond Duration versus Financial Leverage,
When the Asset Duration Is Higher Than the Default-Free Bond Duration
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FIGURE 11.11 Default-Prone Bond Duration versus Business Risk,
When the Asset Duration Is Higher Than the Default-Free Bond Duration
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lower than the default-free bond duration. Higher volatility makes default
more certain, and following the same reasoning as given for Figure 11.8, an
almost certain default makes the default-prone coupon bond behave more
like a default-free zero-coupon bond. Thus, even though the duration of the
default-prone coupon bond declines initially and moves toward the asset
duration, further increases in asset volatility makes it go higher, even ex-
ceeding the duration of the default-free coupon bond for very high levels of
volatility.

Figure 11.11 illustrates the relationship between the duration of the
default-prone coupon bond and firm’s volatility, when the asset duration is
higher than the default-free bond duration. Similar to Figure 11.9, the du-
ration of the default-prone coupon bond is not as sensitive to business risk
when the asset duration is higher than the duration of the default-free
coupon bond. Finally, Figure 11.12 demonstrates that the duration of the
default-prone coupon bond decreases with an increase in the annual
coupon rate.

The exogenous default model of Longstaff and Schwartz has some un-
intuitive features resulting from its assumptions. In this model the duration
characteristics of the default-prone coupon bond are like those of a default-
free bond both when the probability of default is low and when the proba-
bility of default is high. Some of these issues have been also addressed by
Acharya and Carpenter (2002) who derive durations of default-prone
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coupon bonds assuming endogenous bankruptcy. Their results are closer
to the results given by Nawalkha-Shimko et al. models, which also use an
endogenous framework, even though the latter models apply only to zero-
coupon bonds.

The appendix derives an extension of the Longstaff and Schwartz
model given by Collin-Dufresne and Goldstein (2001). These authors ex-
tend the Longstaff and Schwartz model by allowing a stationary leverage
ratio. In their model the default threshold itself changes as a mean revert-
ing process, with a long-term mean for the default threshold. As firms in-
crease the book value of the debt, the default threshold increases too,
while as firms reduce the book value of debt, the default threshold falls.
Since firms tend to target a long-term financial leverage ratio, the default
threshold can be expected to be stationary over the long term, but non-
stationary over the short term. Collin-Dufresne and Goldstein model also
captures the dependence of the level of default threshold to the level of the
default-free interest rate. This is very intuitive since at higher interest rates,
leverage becomes more costly and default threshold may rise. Appendix
11.1 provides a full solution with an example to compute the price of the
default-prone bond under the Collin-Dufresne and Goldstein model. The
duration of the default-prone bond given in equation 11.51 can be easily
extended to the Collin-Dufresne and Goldstein model, using the technique
given in this chapter.

FIGURE 11.12 Default-Prone Bond Duration versus Annual Coupon Rate
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APPENDIX 11.1: COLLIN-DUFRESNE AND
GOLDSTEIN MODEL

Collin-Dufresne and Goldstein extend the Longstaff and Schwartz model by
assuming that the log of the default threshold, lnK(t) follows the following
process:

where K(t) is the time-dependet default threshold. Equation 11.53 adds three
new parameters to the Longstaff and Schwartz model given as k, v, and φ.
Collin-Dufresne and Goldstein’s solution to this model involves approxima-
tion of a two dimensional integral. The solution suggested by Mueller (2002)
involves an approximation of a one-dimensional integral and therefore is
much simpler to compute as compared to Collin-Dufresne and Goldstein’s
solution. The general form of Mueller’s solution for this model is the same as
the solution for the Longstaff and Schwartz model presented earlier:

where P(t, T) is the value of a risk-free zero-coupon bond given by equation
11.4 and Q(t, T) is the probability of default given by:
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(xuxt, rt, t) ∼ N(M(u, T), S(u)), where M(u, T) and S(u) are conditional
mean and variance of xu,which can be computed as follows:

(xu xs, xt, rt, t) ∼ N(M(u, s, xs, T), S(u, s)), conditional mean and variance of
xu in this case can be computed as:

(11.59)
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where V(u, s) is the covariance of the random variables (xu  xt, rt, t) and
(xs xt, rt, t) given by:

where gr = −1 − kφ

Example 11.3 Consider a zero-coupon bond that promises to pay $100
(i.e., F = 100) in a year (i.e., T = 1) when the current value of the firm is
$120 (i.e., V(0) = 120), the initial default threshold K(0) = $100, writedown
is w = 0.4, volatility of firm’s operations is v = 0.2, the initial short rate is r0
= 6%, speed of mean reversion of the interest rate is α = 0.2, the risk-
neutral long-run mean of the interest rate is m = 0.06, volatility of the
interest rate process is σ = 0.02, and the correlation between firm value and
interest rate process is ρ = −0.3. The remaining parameters are k = 0.18, φ
= 2.8, ν = 0.432. Suppose, the time interval [0, 1] is subdivided into n = 5
equal subintervals of length ∆ = T/n = 1/5 = 0.2. Then, the first passage
probability, Q(t = 0, T = 1), can be approximated in 5 steps as follows.

Computation of qi (i = 1, . . . , 5) involves computing the values of ai,
and bi,j. This can be done by using the following formulas:

  

a
K M i T

S i

b
K M i t K

i

i j

j

=
−

=
−

ln ( , )

( )
ln ( , , ln ,

,

∆

∆
∆ TT

S i t

t j j
j

j

)

( , )

( ) ,

∆

∆ ∆∈ − 1

(11.60)

  

V u s Cov x x x r t

k

g

u s t t

v r v

( , ) , | , ,=  

= +
σ ρσ2

2
σσ
α

σ

αk k

g

k k
e er k u s k

−( ) +
−( )













× −− − −
2 2

2
2

( ) (( )u s

r u sg

k
e e

+

− −( ) −

( )

+
−( )













× −
2 2

2
2

σ

α α
α α(( )u s

r r vg

k k

g

k k

+( )

−
+( ) −( )

+
−( ) +( )

 2 2

2

σ

α α

ρσ σ
α α










× − − +( − − − − − − − −e e e ek u s ku s u ks u s( ) ( )α α α ))



374

TABLE 11.4d Fourth Iteration, i = 4

a4 b4,1 b4,2 b4,3 b4,4

−1.6348 −0.6624 −0.5597 −0.4333 −0.2500

N(.) 0.0510 0.2539 0.2878 0.3324 0.4013

TABLE 11.4e Fifth Iteration, i = 5

a5 b5,1 b5,2 b5,3 b5,4 b5,5

−1.6003 −0.7515 −0.6627 −0.5599 −0.4334 −0.2500

N(.) 0.0548 0.2262 0.2538 0.2878 0.3324 0.4013

TABLE 11.4c Third Iteration, i = 3

a3 b3,1 b3,2 b3,3

−1.7095 −0.5592 −0.4331 −0.2499

N(.) 0.0437 0.2880 0.3325 0.4013

TABLE 11.4a First Iteration, i = 1

a1 b1,1

−2.3450 −0.2493

N(.) 0.0095 0.4016

TABLE 11.4b Second Iteration, i = 2

a2 b2,1 b2,2

−1.8757 −0.4326 −0.2497

N(.) 0.0304 0.3327 0.4014
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It is assumed that tj is equal to the mid point of the interval [(j − 1)∆, j∆], or:

The first line of Table 11.4a provides the value of a1 and b1,1 computed
using the formulas given earlier. The second line of the table gives the stan-
dard Normal distribution function evaluated at a1 and b1,1. Once we have
N(a1) and N(b1,1), we can compute q1 as follows:

Using similar computations in Tables 11.4b, 11.4c, 11.4d, and 11.4e on
page 374, the values of q2, q3, q4, and q5 can be computed as follows:

Once we have q1, . . . , q5, we can compute the first passage probability
of default, Q(0, 1) as follows:
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The computation of the price of the default-prone bond requires the
price of the default-free bond, P(0, 1). Using the closed-form of P(t, T) in
equation 11.4, we get:

Substituting the previous values of Q(0, 1) and P(0, 1) and the parame-
ters, F = 100, and w = 0.4, in equation 11.55, the price of the default-prone
bond, D(0, 1), is given as follows:

For n = 200, the value of D(0, 1) equals $87.21, which is 4 cents away
from the solution given previously.

NOTES

1. See Bierwag et al. (1983), Chance (1983), Jarrow (1978), Morgan (1986), and
Ott (1986).

2. See Nawalkha (1996).
3. See Betker (1991, 1992), Brick and Fisher (1987), Eberhart, Moore, and Roen-

feldt (1990), Fama and Miller (1972), Franks and Torous (1989, 1994), Lopucki
and Whitford (1990), Smith and Warner (1979), and Weiss (1990).
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