© BCS
~_

Business Process
Management

A Rigorous Approach

Business Process Management
A Rigorous Approach

The British Computer Society

The British Computer Society is the leading professional body for the IT
industry. With members in over 100 countries, the BCS is the professional
and learned Society in the field of computers and information systems.

The BCS is responsible for setting standards for the IT profession. It is also
leading the change in public perception and appreciation of the economic
and social importance of professionally managed IT projects and
programmes. In this capacity, the Society advises, informs and persuades
industry and government on successful IT implementation.

IT is affecting every part of our lives and that is why the BCS is determined
to promote IT as the profession of the 21st century.

Joining the BCS

BCS qualifications, products and services are designed with your career
plans in mind. We not only provide essential recognition through
professional qualifications but also offer many other useful benefits to
our members at every level.

Membership of the BCS demonstrates your commitment to professional
development. It helps to set you apart from other IT practitioners and
provides industry recognition of your skills and experience. Employers and
customers increasingly require proof of professional qualifications and
competence. Professional membership confirms your competence and
integrity and sets an independent standard that people can trust.
www.bcs.org/membership

Further Information

Further information about the BCS can be obtained from: The British
Computer Society, First Floor, Block D, North Star House, North Star
Avenue, Swindon SN2 1FA, UK.

Telephone: 0845 300 4417 (UK only) or +44 (0)1793 417 424 (overseas)
Email: customerservice@hq.bcs.org.uk
Web: www.bcs.org

Business Process
Management

A Rigorous Approach

Martyn A. Ould
Venice Consulting Ltd

B BCS

Copyright © 2005 Martyn A Ould
Reprinted 2006

All rights reserved. Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted by the Copyright Designs and Patents Act 1988, no part of
this publication may be reproduced, stored or transmitted in any form or by any means,
except with the prior permission in writing of the Publisher, or in the case of reprographic
reproduction, in accordance with the terms of the licences issued by the Copyright Licensing
Agency. Enquiries for permission to reproduce material outside those terms should be
directed to the Publisher.

First published in the UK by:

The British Computer Society
Publishing and Information Products
First Floor, Block D

North Star House

North Star Avenue

Swindon SN2 1FA

UK

www.bcs.org

ISBN 10 1-902505-60-3
ISBN 13 978-1-902505-60-2

Co-published in the USA and Canada by:
Meghan - Kiffer Press

310 Fern Street

Tampa, FL 33609,

USA

www.mkpress.com

ISBN (USA and Canada) 0-929652-27-4

British Cataloguing in Publication Data.
A CIP catalogue record for this book is available at the British Library.

All trademarks, registered names etc acknowledged in this publication are to be the property
of their respective owners.

Disclaimer:
The views expressed in this book are of the author(s) and do not necessarily reflect the views
of BCS except where explicitly stated as such.

Although every care has been taken by the authors and BCS in the preparation of the
publication, no warranty is given by the authors or BCS as Publisher as to the accuracy or
completeness of the information contained within it and neither the authors nor BCS shall be
responsible or liable for any loss or damage whatsoever arising by virtue of such information
or any instructions or advice contained within this publication or by any of the
aforementioned.

Typeset by Tradespools, Chippenham, Wiltshire.
UK edition:
Printed at Antony Rowe Ltd., Chippenham, Wiltshire.

Contents

Figures
Author
Abbreviations
Preface
Introduction

Processes are back on top

What a ‘process’ is and what it isn’t
Why worry about processes?

The Riva method

Eight principles for process modelling
The structure of this book

Warnings

Some early references

1 Basic process concepts
What happens in the world?
Roles
Actions
Interactions
Process goals
Entities
Things are complicated

2 Modelling a process

Some health warnings

The Role Activity Diagram

Representing roles

Representing role states

Representing actions

Representing concurrent threads of activity
Representing alternative courses of action
Representing interactions

Representing triggers

Representing the ad hoc process
Representing props

Case study 1

viii
xii
xiii

Xiv

29
29
32
44
48
49
51
53

55

55
58
58
66
69
72
76
85
102
112
113
114

Business Process Management

3 Dynamism in the process 117
Introduction 117
A reminder about state 117
How role instances ‘start’ 118
How a process starts and runs 120
How role instances ‘end’ 121
How a process ‘ends’ 121
4 Process relationships 125
What happens in an organization? 125
Interaction of processes 127
Activation of processes 133
Encapsulation 138
5 The three basic process types 145
Introduction 145
The case process 145
The case management process 150
The relationship between case process and case management
process 154
Modelling the CP-CMP relationship at RAD level 161
The case strategy process 166
Summary 168
6 Preparing a process architecture 169
Introduction 169
What business is this organization in? 172
Which EBEs represent work for the organization? 176
What are the dynamic relationships between UOWs? 179
Producing the first-cut process architecture 182
Producing the second-cut process architecture 185
The process architecture as a searchlight 195
Case study 2 197
Case study 3 202
7 Dynamism in the world 211
Introduction 211
Case study 4 212
Dynamism at work 223
All the world’s a theatre 230
8 Managing the modelling 233
Introduction 233
Step 1: Decide on the objectives of the modelling 239
Step 2: Get an overall picture 240

vi

Contents

Step 3: Run one or more interactive workshops 242
Step 4: Use other sources of information 250
Step 5: Review, revise, validate the model 254
9 Discovering and defining processes 257
Introduction 257
Discovering a process 260
Presenting a process definition 262
Summary 266
10 Analysing for process improvement 267
The importance of spring-cleaning 267
Starting points 269
Analysing the process architecture 271
Preparing a process model for analysis 273
Analysing the process model 274
Case study 5 291
Summary 293
11 Designing a process 295
Introduction 295
Preparing the process architecture 295
Getting the process design ground rules in place 296
The process design process 302
Summary 304
12 Processes and information systems 305
Introduction 305
Riva and traditional information system development 306
Riva and object-oriented system development 311
Riva and workflow system development 315
Summary 318
13 Processes and process systems 319
Process mobility — the Theatre of the Third Wave 319
The New Order 321
Process calculi 327
Six visions 330
References 335
Index 337

vii

viii

Figures

Figure 0.1 Tax collection: pure simplicity

Figure 0.2 Are the world’s processes really this neat and tidy?

Figure 2.1 The RAD notation

Figure 2.2 A RAD for a simple process

Figure 2.3 Instantiating the Task Force role

Figure 2.4 Roles with pre-existing instances

Figure 2.5 A computer system as a role

Figure 2.6 Labelling a state

Figure 2.7 An action in a role with its adjoining states

Figure 2.8 A role instance thread before and after an action

Figure 2.9 The marking before a three-way part refinement

Figure 2.10 Closing a four-way part refinement

Figure 2.11 State recombination at the end of a three-way part refinement

Figure 2.12 A four-way part refinement where only two threads recombine

Figure 2.13 A replicated part refinement

Figure 2.14 The replicated part refinement in Figure 2.13 expanded

Figure 2.15 An over-constrained process

Figure 2.16 Representing alternative threads of activity: case refinement

Figure 2.17 The marking before a case refinement

Figure 2.18 A four-way case refinement

Figure 2.19 Nothing ‘happens’ in a case refinement

Figure 2.20 Case refinement threads sometimes recombine

Figure 2.21 Three case refinement threads finally return to a common
thread

Figure 2.22 Case refinements don’t always close tidily

Figure 2.23 Abbreviating a simple case refinement

Figure 2.24 Three equivalent role instance markings

Figure 2.25 Three different but equivalent models

Figure 2.26 An annotated case refinement

Figure 2.27 Three threads combine to form one

Figure 2.28 The optional stop sign at the end of a thread

Figure 2.29 A simple interaction

Figure 2.30 A three-party interaction

Figure 2.31 Captioning the components of an interaction

Figure 2.32 Interactions synchronize role instances

Figure 2.33 Just enough synchronization

Figure 2.34 Just enough synchronization again

Figure 2.35 A replicated interaction

Figures

Figure 2.36 An interaction involving many role instances

Figure 2.37 A contractual cycle in a RAD, driven by the customer

Figure 2.38 An interaction as a conversation for action

Figure 2.39 A asks B who asks C ...

Figure 2.40 A role ready to have an interaction at any time

Figure 2.41 Many-at-a-time processing after initialization

Figure 2.42 The successive states of the company after receiving tax

registration

Figure 2.43 One-at-a-time processing

Figure 2.44 A conditional interaction wrongly modelled

Figure 2.45 A conditional interaction correctly modelled

Figure 2.46 The before and after states of a trigger

Figure 2.47 A trigger marking calendar or clock time

Figure 2.48 Waiting for a time trigger in the middle of a thread

Figure 2.49 A trigger marking the passage of time

Figure 2.50 An event external to the modelled process

Figure 2.51 Treating an external event as an interaction

Figure 2.52 Spotting an event internal to the process

Figure 2.53 An as-and-when event

Figure 2.54 An event importing something into the role body

Figure 2.55 An event changing the state of something in the role body

Figure 2.56 A role instance with four threads ready to start

Figure 2.57 Modelling a plan and its activities

Figure 2.58 An action runs late

Figure 2.59 An optimistic process

Figure 2.60 A pessimistic yet realistic process

Figure 2.61 Some tricky triggers

Figure 2.62 A role of ad hoc activity

Figure 2.63 Handle a candidate product

Figure 3.1 ‘After doing A we can do B’

Figure 3.2 The start of a thread in a role on a RAD

Figure 3.3 A role instance thread ready to start in a running RAD

Figure 3.4 A multithreaded role instance ready to start in a running RAD

Figure 3.5 Manage a project

Figure 4.1 A general model of process interaction

Figure 4.2 A simple process interaction

Figure 4.3 Figure 4.2 slightly reduced

Figure 4.4 Process interaction modelled with two role interactions

Figure 4.5 Minimal process activation and interaction

Figure 4.6 More-than-minimal process activation and subsequent inter-
action

Figure 4.7 Full process activation and interaction

Figure 4.8 Action P12 and Process P12

Figure 4.9 Using a sub-role in an encapsulated process

Figure 4.10 Encapsulating an interaction

ix

Business Process Management

Figure 5.1 The basic service relationship

Figure 5.2 The basic service relationship with negotiation

Figure 5.3 The general service relationship

Figure 5.4 Contention for a service

Figure 5.5 The general task force relationship

Figure 5.6 Part of a case management process for clinical trials

Figure 5.7 Part of a case process for clinical trials

Figure 5.8 Abstract case process activation

Figure 5.9 Concrete case process interaction

Figure 5.10 The process trinity

Figure 6.1 Not a process architecture — more a random hacking

Figure 6.2 Not a process architecture — more a list of silos

Figure 6.3 The UOW diagram for a university faculty administration

Figure 6.4 Translating a service relationship between UOWs into processes

Figure 6.5 Translating a task force relationship between UOWs into

processes
Figure 6.6 A UOW diagram for the IS support to the business requirement
Figure 6.7 The first-cut process architecture for the UOW model in
Figure 6.6

Figure 6.8 Folding a CMP into the requesting CP

Figure 6.9 Some delivery chains can be short-circuited

Figure 6.10 UOWs, collections and their processes

Figure 6.11 The first-cut processes for a pipeline and its candidate drugs

Figure 6.12 The reduced processes for a pipeline and its candidate drugs

Figure 6.13 Second-cut architecture from the first-cut architecture in
Figure 6.7

Figure 6.14 Big fleas have smaller fleas ...

Figure 6.15 Big fleas have shorter fleas ...

Figure 6.16 UOW model for a utility company’s job management

Figure 6.17 First-cut process architecture for a utility company’s job
management

Figure 6.18 Second-cut process architecture for the utility company’s job
management

Figure 6.19 UOW diagram for a development group in a software product
company

Figure 6.20 First-cut process architecture from Figure 6.19

Figure 6.21 Second-cut process architecture from Figure 6.20

Figure 6.22 Part of Handle a Product

Figure 6.23 Part of Handle a Release

Figure 6.24 Part of Manage the flow of Change Proposals

Figure 6.25 Part of Handle a Change Proposal

Figure 7.1 UOW diagram for the Sentinel case study

Figure 7.2 First-cut process architecture for the Sentinel study

Figure 7.3 A second-cut process architecture for the Sentinel study

Figure 7.4 The Sentinel case study drawn on one RAD

Figures

Figure 7.5 Not what happens in the real world

Figure 7.6 A UOW diagram for the ‘process’

Figure 7.7 A process architecture for the ‘process’

Figure 7.8 UOW diagram for an email system

Figure 7.9 First-cut process architecture for an email system

Figure 7.10 Second-cut process architecture for an email system

Figure 7.11 The Handle an eConversation case process

Figure 7.12 The Handle an eThread case process

Figure 7.13 The Handle an eMail case process

Figure 7.14 The three email case processes drawn on one RAD

Figure 8.1 A concrete action and its abstract counterpart

Figure 8.2 A concrete interaction and its abstract counterpart

Figure 8.3 Abstract roles and their concrete counterparts

Figure 8.4 A concrete model of the handling of a mail item

Figure 8.5 An abstract model of the handling of a mail item

Figure 9.1 Omission as boundary

Figure 9.2 1SO 9001’s process view of quality management in an
organization

Figure 9.3 The general scheme for discovering and defining processes

Figure 10.1 Increasing parallelism in a role’s actions

Figure 10.2 Complicating a process for improved average speed

Figure 10.3 Splitting cases by difficulty

Figure 10.4 Planning for success

Figure 10.5 Can we move this responsibility?

Figure 10.6 Fewer and easier handoffs

Figure 10.7 From specialist stream to case worker

Figure 10.8 Is this intermediary role adding anything?

Figure 10.9 The general scheme for process improvement

Figure 11.1 The general scheme for process design

Figure 12.1 Steps from the business drivers to an IS strategy

Figure 12.2 Steps from the current IS provision to an IS strategy

Figure 12.3 Preparing a gap analysis

Figure 12.4 A simple workflow process

xi

Xii

Author

Martyn Ould read mathematics at Cambridge University and entered the
software industry directly in 1970, working for several years for ICL on
operating systems. After a short spell at King’s College Hospital Computer
Centre, he worked for eleven years with Logica, principally on real-time
systems, as developer, designer and project manager. In his last two years
there he co-founded a company-wide software engineering initiative and
co-wrote his first book A Practical Handbook for Software Development
(Ould and Birrell, 1985 and 1988). His second book, Testing in Software
Development (Ould and Unwin, 1986 and 1988) resulted from work done
by the BCS Testing Working Group.

In 1985 he joined software house Praxis where he became Quality and
Technical Director, with responsibility for the company’s quality policy
and strategy and its overall technical strategy. He developed a systematic
planning technique - Strada — for software engineering projects described
in his fifth book Managing Software Quality and Business Risk (Ould, 1999).
At Praxis he consulted for clients on the software engineering process,
specialising in project audits and rescues, reviews of software development
methods, and risk management. He continues this work as an independent
consultant, and teaches Strada on graduate courses at Oxford University.

At Praxis he led the development of the STRIM method for business
process design and diagnosis described in his fourth book Business
Processes (Ould, 1995). He has since extended this to the full-spectrum
business process management method — Riva — described in this book.
Following the merger with the Deloitte & Touche Consulting Group, he
was a Senior Manager within the global firm. He became an independent
consultant in 1998 and now consults in business process management and
provides training in Riva. He has contributed numerous articles, reviews
and papers to the computing press; lectured to public, government,
university and corporate audiences; and acted as a referee for national
research programmes, conferences and journals.

He is a Fellow of the BCS and a Chartered Engineer.

In his spare time he is a letterpress printer, designing, printing and
publishing limited edition books with commissioned illustrations using
traditional metal type and mechanical presses. Details of his consulting
services and printing and publishing activities can be found at
www.ould.org.

Abbreviations

BPEL
BPM
BPML
BPMN
BPMS
BPR
CMP
CP
CPA
CRF
CRO
CSP
DBMS
EBE
ELH
ER
ERP
IS
PAD
PDA
QMS

RML
SAS
SOP
SPML
SSADM
STRIM

TQM
UML
Uow
WEM

Business Process Execution Language
Business Process Management
Business Process Modeling Language
Business Process Modeling Notation
Business Process Management System
Business Process Re-engineering

Case Management Process

Case Process

Critical Path Analysis

Case Report Form

Clinical Research Organization

Case Strategy Process

Database Management System
Essential Business Entity

Entity Life History

Entity Relationship

Enterprise Resource Planning
Information System

Process Architecture Diagram
Personal Digital Assistant (handheld device)
Quality Management System

Role Activity Diagram

Requirements Modeling Language
System Attribute Specification
Standard Operating Procedure

STRIM Process Modelling Language
Structured Systems Analysis and Design Methodology
Structured Technique for Role Interaction Modelling (the
precursor of Riva)

Total Quality Management

Unified Modeling Language

Unit of Work

Workflow Management

xiii

Xiv

Preface

Much has happened in the business process world since I wrote Business
Processes (Ould, 1995). The recent growth of interest in the important
emerging technology of Business Process Management and the experience
I have had using the approach described in this book have together
conspired to force me back to my desk to write this current work about the
Riva method.

My grateful thanks go in particular to Stewart Green and his colleagues
(University of the West of England, Bristol), Tim Huckvale (Charteris), Dr
Steve Hutson (Calcis Consulting Group), Derek Miers (Enix Consulting
Limited and Director of BPMI.org), David Perrin (Holonix Limited), Clive
Roberts (Co-ordination Systems Limited), Howard Smith (Co-chair of
BPMI.org and CTO Computer Sciences Corporation European Group) and
Professor Bob Snowdon (University of Manchester). Michael Jackson’s
work on system development has been very influential. Their help on the
text, and conversations with them and many others over the years have
helped me where private cogitation has failed. Many of their thoughts,
ideas and words have found their way into the melting pot and it is hard
now to identify, let alone acknowledge, all of them. Insights arise from
many sources, not least from application to real problems but also from
the courses I have given on Riva and the challenges of course attendees.
Any nonsense is, of course, mine.

I would also like to thank a number of people for permission to use
material: Deloitte for allowing me to carry forward some material from my
1995 book; Howard Smith for quotations from his and Peter Fingar’s
influential book Business Process Management: The Third Wave (Smith and
Fingar, 2002) and other articles; Tony Solomonides at the University of the
West of England, Bristol, for permission to use the Sentinel case study in
Chapter 7; the University of the West of England, Bristol for permission to
use case study material from work undertaken with the CEMS Faculty.

My website at www.veniceconsulting.co.uk contains free downloads of
some resources to support the use of Riva. Questions, criticisms and
contributions are welcome and should be addressed to riva@venicecon-
sulting.co.uk.

Martyn Ould
Hinton Charterhouse, 1 May 2004

Introduction

PROCESSES ARE BACK ON TOP

Something very different is happening in the world of process. In recent
decades business processes have ridden two ‘waves’. A third is upon us.

In the first wave, processes existed purely in terms of custom - ‘it’s just
the way we do things round here’ - or, if they were lucky, lived a private life
inside policy and procedure manuals. The emphasis was towards ‘small’
pieces of organizational activity such as claiming expenses and approving
budgets, or perhaps standardized and often-repeated sequential activity
such as the analysis of a laboratory sample. If processes were modelled it
was with simple diagrams such as flowcharts. And perhaps flowcharts
were enough for simple sequential processes. The pictures were stored in
procedure manuals — and all too easily ignored. Sometimes those pictures
would be drawn as part of an attempt to understand the process and how
it might be improved, how things might be done more quickly or more
cheaply: in other words for process improvement. Total Quality Manage-
ment (TQM), with its Seven Tools of Quality, used simple models to
examine processes, looking for those — typically small-scale — improve-
ments.

In the second wave, processes initially became the unwitting victims of
the information system developers: ‘information’ was on top. By cement-
ing the allowable information flows in the information system, the
information system engineers cemented the business process at the
same time. The process could no longer be changed without expensive re-
engineering of the underlying information systems. But worse was to
come: processes found themselves captives of Enterprise Resource
Planning (ERP) systems. A side effect of Business Process Re-engineering
(BPR) was that many of the ‘common’ processes of organizations were re-
engineered to what was (not jokingly) called ‘best practice’ or ‘world-class
practice’. Recognizing that the commonality of such processes meant that
they could be made into commodities, vendors of ERP systems defined
processes for whole areas of organizational activity and built them into
their systems - everyone could be offered the same ‘competitive
advantage’! The ‘Inventory Management Process’ could be bought by all
and sundry. That’s ‘The Inventory Management Process’. Once again, the
process had become a victim, condemned to second-class citizenship,
subservient to ‘information’.

Business Process Management

But we are now seeing a Third Wave — a term first coined by Howard
Smith and Peter Fingar (Smith and Fingar, 2002) — a wave driven by the
new technology of Business Process Management (BPM). Finally, the
business process has become a first-class citizen, the one that now
determines what information will be kept: process first, then information.
Instead of being buried in the rules of a relational database or in the
settings of an ERP system, invisible but cast in concrete, the process is now
visible, changeable, and potentially back in the hands of the organization,
with the result that the organization now has the power to change how it
wants to do its business, and to change it when it needs to.

At the heart of BPM is a different understanding of business processes.
Part of that understanding is that our process is not something that could
perhaps be ‘deduced’ from the way our information system is set up or
from what our ERP allows us to do. It is not ‘implied by’ the information
system. Our process has its own separate existence in a form that — given to
a ‘process enactment engine’ — can be executed or ‘run’, that can be
changed on-the-fly, that can be evolved as our business evolves, that can
be monitored in real time and that can be deployed at will through the
organization. A computer system that supports our organization no longer
simply helps us to manage our information: it now helps us, first and
foremost, to manage our processes. It is a Business Process Management
System (BPMS).

This third wave needs appropriate methods for thinking about
processes, for working with processes, for defining, designing and
analyzing processes in a way that positions us to use those new BPM
systems. If you are familiar with my previous book Business Processes
(Ould, 1995) you will know that such a method has been around for
some time, originally in the form of a Structured Technique for Role
Interaction Modelling (STRIM) and now in its updated form Riva. This
book describes Riva.

Riva has its roots in the IPSE 2.5 research project carried out as part of
the UK Alvey Programme in 1986. As part of the project, Clive Roberts and I
undertook to develop a language that, firstly, could be used to describe a
process and, secondly, was defined to a point where a process model
written in that language could be given to a computer system which would
then ‘enact’ the process, thereby supporting the group who would
collectively carry it out. The solution we developed was a combination
of Anatol Holt’s Role Activity Diagrams (RADs), to which we made some
important adaptations, and Sol Greenspan’s Requirements Modeling
Language (RML), from which we developed the STRIM Process Modeling
Language (SPML), in particular by adding the concept of role to its formal
semantics. Central to IPSE 2.5 was the idea that a process model could be
changed on-the-fly by the process users and while the process was
running. (References to relevant literature can be found at the end of this
chapter.) IPSE 2.5 was an early BPMS, but it has taken the intervening

Introduction

decades to see the development of technologies necessary to make it a
reality, not least the internet, web services, and much of the object-
oriented application infrastructure now available.

When Clive and I developed SPML we had to provide formal semantics
for the language so that it was executable and supported on-the-fly
changes. We also defined transformation rules that allowed us to translate
a RAD into SPML; this meant that a RAD had strong semantics itself, and it
is this feature that is important in the area of modelling to enact a process.
SPML has now been taken forward and the new version is called CoSpeak —
it is a language of coordination. To the everyday user of Riva, the presence
of an XML variant called CoSpeak is not important. But to the analyst and
to those interested in building BPMSs, the presence of a formal language
with full semantics, underpinning RADs, is vital. Without those semantics
we cannot say unambiguously what a given RAD means in terms of the
behaviour of the process it describes.

Holt himself describes the application of his Role/Activity Theory to
coordination systems in terms of a conceptual model based around what
people as a group do, rather than around the data they operate on. It is
hard to overemphasize this point. A lot of process modelling has come
from the software engineering world where, historically, data and
information have ruled. That sort of process modelling has therefore
concentrated on things and data about things. But processes are about
dynamics, activity, collaboration and cooperation. So the way we think
about processes must have these at the centre. We must put processes
back on top. Riva does this.

WHAT A ‘PROCESS’ IS AND WHAT IT ISN'T

I'm a stickler for good definitions. I believe that we can get a long way in
solving many problems by defining our basic concepts properly. By
striving for clarity in those basic concepts we force ourselves to deepen our
understanding of our subject. Moreover, those definitions are the
foundations of our work: poor definitions mean poor theories, and poor
theories make poor practice. I don’t want to assemble a lot of shoddy ideas
and call them a method. I want to build a principled theory and practice of
business processes. The more principled our theory is, the more powerful
it will be and the more quickly we can get to results. I also want it to be as
simple as possible, but not too simple, as someone cleverer than I once
said.

This leaves me wanting to start this book by defining the concept
‘process’. If we don’t know — from the outset — what the word means, then
we won’t get very far.

Every organization does things in order to achieve its objectives. For
instance:

Business Process Management

e We handle orders for goods.

e We recruit staff.

e We design new products.

e We run an investment portfolio.

e We develop new pharmaceutical drugs.

Something that characterizes all of these is they are ‘quite large things’.
They probably involve more than one person, take more than a moment,
and might be carried out in different ways in different situations. We can
appreciate that they are different from something like ‘Fill in expenses
form’. When we use the word ‘process’ we are thinking of a coherent body
of organizational activity: activity that goes on in the organization and that
in some sense comes as a unit. Typically ‘comes as a unit’ means ‘is all
focused on a certain outcome’. For instance in the above cases the
outcomes might be:

e To respond to a customer order by shipping the requested goods and
invoicing the customer for payment.

e To respond to the staffing needs of the organization by engaging staff
of the right type and capabilities on appropriate terms and conditions.

e To answer a gap in the market place with a product that can be
manufactured, marketed and sold profitably.

e To decide how available funds will be allocated to financial
instruments in order to realize gains of the right value at an acceptable
level of risk.

e To develop and bring to market new pharmaceutical drugs that are
efficacious and safe.

Let’s look at some of the essential features of a process. A process involves
activity: people and/or machines do things. A process also generally
involves more than one person or machine working together: a process is
about groups; in particular it is about collaborative activity. And a process
has a goal: it is intended to achieve something. The group collaborate to
achieve the goal.

We can also characterize the concept ‘process’ by what it is not. It is not
the same as a ‘functional group’, e.g. Personnel, Manufacturing, Finance,
Goods Inwards, or Credit Control. These are parts of the organization
which have responsibilities, staff and resources; but they are not processes
though they take part in processes. In fact, we shall see later that the
relationship between processes and functional groups can be complex and
indeed that the efficient operation of processes can be hindered by an
organization’s structures. In a re-engineering context we shall want to
explore that relationship between the organization and the process. So, we
shall resist all thoughts of the ‘Finance process’ or the ‘HR process’ — these
are meaningless phrases.

Introduction

This discussion begs a question: ‘How do we sensibly chunk all of the
organizational activity into things we can call processes?’ This is a hard
question, and one that is often badly — even wrongly - answered in
business process management projects. Key to it, I believe, is that the
method we use must give the answer appropriate to the business of the
particular organization we are looking at. And if you use that method and /
use that same method, we should surely both end up with the same
answer. If we reach different answers, what value can we give to either?

Suppose I walk into the dissecting room at the teaching hospital to
lecture to medical students on how the human body is constructed.
Awaiting my arrival is my assistant, ready with a thick marker pen. There,
on the table, is the cadaver. I have brought with me an axe. With a deft
overhead blow I lop off the lower part of one leg. My assistant labels it ‘“The
A bit’. The students dutifully record the name against their sketches of the
body. Some aren’t sure quite where on the leg the axe fell, but choose a
point anyway. With no more ado, another blow removes the top of the
skull, which my assistant labels ‘The B bit’. More scratching in notebooks.
Further blows yield bits C, D, and E, the remainder on the table being
labelled ‘The F bit’ with the marker pen. ‘The F bit’ is still quite large, so
four swipes render it into five pieces, which my assistant labels ‘The F1 bit’,
‘The F2 bit’, and so on. The students take notes, increasingly unsure about
exactly how much corpse each bit is made up of. Never mind, I now take
bit F2, and putting down the axe in favour of a small meat cleaver, I cleave
it into bits whose names, I tell the students, are F2a, F2b, and F2c.

What understanding do the students now have about the way the body is
constructed and how it works? Has the chunking been guided by an
understanding of what a human body is all about? Would each student
have the same understanding of exactly what constituted each bit? If I gave
the same lecture next week, would the students’ drawings be anything like
those of this week’s?

You would, I know, prefer that I had taken a scalpel with me to the
dissecting room, together with an understanding of what a human body is
all about - the fact that there are ‘natural cleavage lines’ that separate the
central nervous system, the gastro-intestinal system, the skeleton, the
musculature — and of how those systems are connected. We look for these
things because we know that a human body is ‘in the business of feeling
and sensing, nourishing itself, standing and moving.

When we chunk organizational activity we shall need a similar scalpel
that will allow us to cut along the natural cleavage lines of that activity, to
separate out the processes using an understanding of what the organiza-
tion is all about, an understanding in particular of what business it is in. In
the early chapters we shall look at how to model an individual process
without in the first instance worrying too much about how we know that
that pile of activity constitutes a process, dissected along natural cleavage
lines, rather than a chunk that has been as-good-as-randomly hacked out

Business Process Management

of the whole. In Chapter 6 we shall discover how to do that dissection, how
to divide all the activity going on in the organization into a set of processes
that has been rigorously derived from an understanding of what business
the organization is in. And we shall do it in a way that yields the same
answer whoever does the analysis.

KEY POINTS

A process is a coherent set of activities carried out by a collaborating
group to achieve a goal.

The chunking of organizational activity into ‘processes’ must be driven
by an understanding of the business the organization is in.

Before we go further, I must say how we shall be using the words ‘business’
and ‘organization’. We shall use the neutral word ‘organization’ to mean
any group we are interested in: a team, a department, a company, a group
of companies, a company and its customers, a nation, whatever. I shall (try
to) restrict my use of the word ‘business’ to mean ‘what the organization
gets up to’:

e This organization is in the business of making and marketing

furniture.

e This organization is in the business of providing shared services to
local hospitals.

e This organization is in the business of managing building programmes
for the city.

e This organization is in the business of collecting fines imposed by the
courts.

Deciding on the ‘organization’ we are concerned with can itself be an
important decision. Gone are the days when we would only worry about
the efficiency of individual activities. Today we are concerned with the
efficiency of, say, our entire supply chain - from one end to the other.
Gone are the days when we would worry only about our patch, ignoring
what happens on the other side of the wall in the world of our suppliers or
our customers or our partners. Today, we need to ensure the way we work
with them is fully thought through and integrated. Gone are the days when
we could get on with our business in private. Today we are increasingly
required to make our end-to-end processes visible.

WHY WORRY ABOUT PROCESSES?

There have been a number of business ‘movements’ over the last twenty
years that have made people recognize that they have processes and that
these processes are what the organization is about. The central notion in
each is that of process and there is a need to be able to picture a process

Introduction

through a process model. Like all models, a process model will capture just
those things that we need for our purpose. To understand the needs of the
process modeller we must look at the various situations we might find
ourselves in where process is important. We can readily identify the
following seven. They are not completely separate but it is useful to
consider them separately for now. They are:

e Situations where there is a need for a shared understanding of what
the organization does and how it does it.

e Situations where a common approach to doing something is to be
adopted and perhaps mandated, for instance through a Quality
Management System (QMS).

o Incremental improvement programmes, such as might be run under
the banner of TQM.

e Radical change programmes, such as might be carried out using the
principles and techniques of BPR.

e Situations where traditional data-based information technology (IT)
systems need to be aligned with the needs of the organization.

e Situations in which workflow management systems are to be used on a
computer system to control the flow of work.

e Situations where new forms of process technology such as BPMSs, are
to be applied to give active support to the management and
enactment of business process.

Let’s examine each in a little more detail.

Understanding your organization

It has to be said that not every organization recognizes that it operates
processes, even though it knows perfectly well how it is structured into
functional groups and what each of those functional groups is responsible
for. Whilst people might appreciate in some abstract way that the
organization can only work through their collaboration, they might
individually have very little idea of how the collaboration actually works
— they each do their bit, but how do the bits fit together? When I have
modelled a process within an organization, people will often remark ‘You
know, I've never really thought of things in terms of a process that starts
there and ends there.” People know about what they do, who they depend
on, and who they pass things on to. But they might not be aware of the
larger, end-to-end process in which they, along with many others, play a
part.

Simply modelling the process can provide individuals and groups with a
perspective on the organization that transcends parochial views and, as a
result, can promote a more collaborative spirit. ‘Now I know why you want
that, I can make sure you get it reliably.” We are interested in helping
people to ‘get out of the functional silos’.

Business Process Management

A model that makes the process visible to the parties concerned can in
itself bring great value.

Standardizing processes in Quality Management Systems

The emergence and development of the ISO 9000 series of standards led to
an increased concern with how an organization goes about its business in
a way that ensures quality in the products or services that it delivers to its
customers. ISO 9001 (ISO 9001:2000 Quality Management Systems —
Requirements) sets a standard for a QMS. Central to the standard is the
notion that key processes should be defined in some way so that they are
repeatable, measurable, and improvable. The details are unimportant here,
but the message is: if you are concerned with ensuring the quality of your
product or service, you must concern yourself with the processes that
deliver that product or service.

Typically, therefore, an organization will describe how its processes are
carried out in a way that:

e communicates the processes to those who must carry them out (‘How
should I do this piece of work?’);

e provides the opportunity for independent assessment of the organiza-
tion’s conformance to the process it has laid down for itself (‘Are these
people doing what they said they would do?’);

e acts as a basis for future improvement of the process (‘We do this now
but how could we do it better?’).

Such descriptions tend to be lodged in some form of Quality Manual and
they can take many forms, typically a mixture of text and diagrams. A good
description — model — of a process will be one that communicates in
sufficient detail to those that must carry it out, that is precise enough to
permit an assessment of conformance, and that is appropriately detailed to
be a basis for analysis and improvement. (Note the careful use of the words
‘sufficient’, ‘enough’ and ‘appropriately’.)

Incremental improvement

It has long been recognized in the disciplines of quality management and
TQM that the cost-effectiveness and profitability of a process are
determined by the quality of the goods or services it produces, and that
that quality is itself determined by the process as well as the inputs and the
workers. In particular, if we want to reduce wastage (of materials,
resources, or time) we need to address the ‘common causes’ (to use the
jargon) of defects, and this means removing systemic errors, i.e. those
introduced by the process itself.

To do this, we need a way of exploring at an appropriately detailed level
just what happens between the customer making a request and the
customer going away satisfied with the goods or services we have
provided, and, within that flow, we need to understand where defects

Introduction

and/or unnecessary delays are introduced so that we can adjust the
process to remove their cause. Central to that exploration is a model of the
process, through which we can ask where improvements can be made.

The aim is that, bit by bit, we refine the process and gradually eradicate
those systemic causes of poor quality: we are in the arena of incremental
improvement.

Radical change

In the world of BPR, incremental improvement is not enough. Here we are
looking for major breakthroughs: an 80 per cent reduction in cycle time
not 10 per cent, reducing staff levels to one-fifth, not by one-fifth. And to
do this we are prepared to make radical changes, not just tinkering with
the fine detail of our processes but making major changes in our
organizational structure, and questioning the very need for doing things
the way we have done them for years, or even why we have those processes
at all. We are prepared to ask questions like ‘Can we operate without a
central Purchasing Department?’, ‘Is tendering the only way we can ensure
the best price for bought-in goods and services?’ or ‘What would happen if
suppliers were paid by the recipient of the goods rather than Accounts?’

In this context, detailed maps of our current processes are largely
irrelevant. We've decided that we shall only consider big changes — detail is
simply not interesting. But an architectural view of our processes, and
broad-brush models of the way our organization operates, of what
processes we have and how they traverse the functional silos, could give
us clues about the sorts of radical change we might imagine. We could
question whether we could remove entire processes by thinking about how
we do things in a more radical way.

And when we have decided how we want our new organization to land
when we have thrown the existing one in the air, we shall need some way
of designing the new processes, ensuring that they fit with those that
survive and with each other, and that they make sense in our new flattened
or process-oriented organizational structure.

Process design means, again, being able to model the process, this time
the new process.

Building on database management systems

I once worked with an IT department that had built a system designed to
support the information needs of a particular group within the organiza-
tion. The system was designed to provide that group with a way of
recording and tracking progress on the items they were processing in real
time. But, at the time that the system was designed, no one had recognized
that the work of that group was inextricably linked with the work of
another group who had their own IT system; the new system quite simply
‘clashed’ with the process by which each work item had to be handled. As a
result, the users resorted to inputting information once the process had

Business Process Management

10

finished, and as a result the system failed to provide the real-time support
which it had been intended to provide.

Rightly or wrongly, past IT systems have often been considered to have
been failures in that they have not brought the benefits that were promised
to the organization. There has been an assumption in the minds of those
that build IT systems (and I have been amongst them) that data and
information are central: that if we start with an analysis of the information
needs of the individual in the business process, we shall build a system
that supports the organization effectively. Unfortunately, this ignores one
important feature of organizations: they do not work simply by ensuring
individuals have information at their fingertips; they work by having
processes in which groups collaborate effectively. Good IT follows firstly
from an understanding of the way that the organization does its business
with the structures it has, and only then from an understanding of the
information that the organization needs because of the way it chooses to
do its business.

Process precedes information. Once we have decided how we shall carry
out our business — our process — we can identify the information needs and
hence the information-based systems needed to support them.

Building on workflow management systems

In the 1990s, a new class of software infrastructure products emerged:
workflow management systems. These provide active support to a simple
business process by controlling the flow of a work item around the
organization, routing it and its supporting information and (electronic)
documents and images from person to person in the process, from
workstation to workstation.

Such systems clearly need some model of the process, a model that
describes the path the work item takes from role to role, the decisions, the
alternative paths, exception handling, escalation paths, and so on. Once
again, we see the need to be able to model a process in terms of roles,
activities, decisions and flows from role to role (what we shall generally
refer to as interactions).

A key feature of such infrastructure products was that the process was
pretty much set in stone: once programmed into the workflow system,
changing it became a major undertaking, on a par with changing the
structure of a database supporting a process: not something to be
undertaken lightly and something only to be done by the experts in the
IT department. Alas, workflow management systems have also tended to
use proprietary models (i.e. they are all based on different process
constructs) and are not general enough to express all the sorts of process
we might wish to run.

Building on business process management systems

More recently, we are seeing an entirely radical class of products: BPMSs.

Introduction

A BPMS takes a description (model) of a set of processes, and enacts it:
we might say that it ‘executes’ it, or ‘carries it out’, or ‘runs it’. In the same
way that a normal computer ‘carries out’ a software program, so a BPMS
‘carries out’ a set of processes. This much they have in common with
workflow systems. But in a true BPMS a radical step is taken: in the
parlance, processes become ‘first-class objects’; so within a BPMS, a
process can be itself managed, revised and passed around. In this new
paradigm, processes come out of the shadows and become true and visible
business assets.

We can express this succinctly by saying that a BPMS supports us
working in a business process, and supports us working with a business
process. In the first case we enact the process, in the second we manage
the process. The moment we recognize that the management of a process
is itself a process, we realize that the BPMS is a new sort of world where the
unit of currency is the process not its data, a world in which that currency
is both minted and used — processes are defined and enacted. To use more
of the parlance, we say that processes have mobility: rather than being
something static — statically defined and statically followed as in traditional
workflow systems — we allow them to be the subject matter of other
processes, we allow processes to be passed around for enactment, and we
allow a process to grow as a network of interacting and collaborating parts.

The modelling situation here is an order of magnitude more complex —
the problem is the same as that addressed by the IPSE 2.5 project that I
mentioned earlier and that contains the seeds of Riva. As a result, Riva has
the necessary concepts and machinery for those modelling processes
using languages such as Business Process Modeling Language (BPML) and
Business Process Execution Language (BPEL).

THE RIVA METHOD

Whatever our reason for taking an interest in our processes, we shall need
a way to define, record, discuss and analyse them, and we shall need a
language for talking about processes. This is where Riva comes in.

Riva is a method for the elicitation, modelling, analysis and design of

organizational processes.

It uses two languages for talking about processes:

e The Process Architecture Diagram (PAD) is used to describe the
overall chunking of the organizational activity into individual
processes.

e The Role Activity Diagram (RAD) is used to describe an individual

process. In a modelling project, we shall always have one PAD and one
or more RADs.

11

Business Process Management

12

The Riva method includes techniques for:

e determining what processes an organization must have in order to be
in the business it is in (chunking);

e ‘discovering’ and modelling an existing process;

e defining an existing process;

e designing an intended process;

e qualitatively analysing a process once a model has been produced;

e using process models for requirements definitions for information
systems and workflow systems;

e developing process models for BPMS development.

In any process modelling method we shall want to find more than just a
notation, more than a way of drawing pictures: we shall want to find
‘intellectual machinery’ that helps us to think about our processes and get to
answers. Riva is a rigorous and rather uncompromising method: my views
are that: a sloppy model cannot be relied on; a sloppy model can give the
wrong answers; a sloppy model does not give real insight; a sloppy model
cannot be used as the basis for any sort of computer system that is intended
to support the organization, whether it be data-, workflow- or process-based.

But before we look at the notations and the techniques themselves, we
must pause and examine our motivations and needs in a little more detail.

Chunking

When we set to work on an organization’s processes, our first problem is
getting our arms around the whole thing. Walking into the building where
the business is done, we find a mass of activity going on. How on earth do
we start? And where do we start? Presumably all this activity falls into some
sort of chunks, chunks that make some sort of business sense. But how do
we chunk it in a way that makes business sense?

Let’s go a step further. If our organization changes its structure, surely
we wouldn’t expect to end up with a different set of chunks? It is still in the
same business after all. How it does those processes might change, but it
still must have those processes. And surely, to be in a particular business
we need a particular set of processes? And if our organization changes its
culture, surely it will still have the same processes? How the processes get
done will - of course — change if we change the culture. But the existence of
the process will not — it remains there, in one shape or another, as long as
we are in the same business.

We shall be looking for a method of chunking that gives us a ‘process
architecture’ with this property of invariance. What we are looking for is a
chunking that is derived solely from an understanding of what business
the organization is in. We would like to say ‘If the organization is in this
business then it must have these processes.’

Introduction

When pharmaceutical drug compounds are being developed, small
batches are made for clinical trials using general-purpose pilot plants.
Such plants are expensive to build and run. There is a queue of batches
waiting their turn for use of a pilot plant. If that queue is not managed
properly, the effect on the drug pipeline can be significant: it doesn’t
matter how quickly each batch goes through if the important batches are
held up because of bad planning. Turn to the Procedures Manual of any
organization and I can almost — almost — guarantee that it will cover only
‘coal-face’ processes, processes that deal with a manufacturing batch, a
purchase order, a sale, a customer, or a clinical trial. But what about that
flow management? When individual cases compete for resources, manage-
ment activity is necessary to decide priorities, allocate and schedule
resources. We can draw two lessons. Firstly, when we chunk all the
organizational activity, we must not forget that that management activity
is out there and deserves equal recognition with the coal-face processes.
Secondly, we cannot mix the description of how that management activity
is done with the description of how an individual case is done — they are
different processes.

So of all that activity in the building, we must be sure to cover both ‘coal-
face’ processes and management processes. But what about all those
people in the conference room, standing around the whiteboard discuss-
ing how they should respond to recent developments in their competitors’
offerings; the finance folk sitting with their bankers looking at their
exposure to currency fluctuations and deciding whether they have the
right mechanisms in place to deal with them; the Board discussing
possible take-over targets with their management consultants? None of
these people are carrying out the day-to-day business processes, or the
processes that manage those processes. They are standing back and taking
a longer view of the business. They are involved in what we might
categorize as ‘strategy work’: the results of their deliberations will change
what happens and perhaps how it happens. When we put our arms round
the organizational activity and chunk it up, that strategic work must also
appear if we are to have a complete picture: we shall expect to find strategy
processes.

In summary, we can expect our chunking to expose processes in three
flavours: coal-face, management, and strategic. We shall examine these
more thoroughly in Chapter 5, before describing in Chapter 6 how to use
them when developing a process architecture.

Describing, designing, analysing, enacting

A recurrent theme in this book is the idea that what is included in a model
for an individual process and what is not will be determined largely by the
perspectives we choose to take, which in turn are determined by the
reasons we have for modelling in the first place. We have already seen that
there are a number of reasons for taking a process-oriented view of our

13

Business Process Management

14

organization, and that we have many reasons for modelling the processes
within it; four Ds and an E: discovery, definition, diagnosis, design, and
enactment.

Modelling to discover and define a process
This is what we do when we want, amongst other things, to:

e discover a process that has not seen the light of day: ‘This is how we
apparently handle customer complaints’;

e define a process: ‘This is how we will all handle customer complaints’;

e communicate it to others: ‘This is how your work contributes to
customer complaint handling’;

e share it across a group of people: ‘So this is how, together, we handle
customer complaints round here’;

e negotiate around it: ‘If you could do this, my life would be made much
easier; inreturn I can

It is surprisingly common for an organization not to have a clear idea — or
sometimes any idea — of how certain things are done. They do get done
because people fit in, work things out, develop their own patterns of
behaviour and pass them on. There is a sense in which this could be
regarded as ‘good’: it promotes flexibility, discourages slavish subservience
to a set of rules, allows things to develop and shift as the environment
changes, and so on. On the other hand it becomes hard to promote good
practice, makes life hard for new recruits, doesn’t permit steady
improvement, allows reversion to bad practice without anyone noticing,
and so on. Process modelling often has a role to play in revealing to the
organization how things are, perhaps how bad things are.

We might call this ‘process discovery’. It is about building a shared
understanding of the process as it is today, an understanding that we can
communicate to others.

Such discovery might be a first step to agreeing on a common way of
doing things. Suppose a group is seeking ISO 9001 certification for its QMS;
it will want to define its processes in its Quality Manual. We shall probably
find a descriptive process model in some form in such a Manual. The
model acts as a work instruction to people in the organization. Text is very
often used to describe how things are done but the serial nature of text
makes it impossible to adequately describe — let alone prescribe -
something that has possibly many threads, decisions, concurrent activities,
and so on. A diagram is a traditional way of dealing with this.

A software house had a number of its processes described in its Quality
Manual in the form of RADs. Those diagrams told people what was
expected of them when carrying out the processes; in particular they
specified in quite considerable detail the key business processes of
planning and reporting projects, of bidding for new contracts and of

Introduction

purchasing — all processes that had an important and direct financial
impact on the company and to which it therefore wanted to ensure some
degree of conformance. Other processes were about delivering product
quality. RADs allowed them to define all these processes to an appropriate
level of detail.

Summarizing our needs for process description is difficult: we can have
so many different reasons to describe processes. Certainly our model must
say what we want it to say. So the notation must allow us to say those sorts
of things, and our method must help us do that. We shall look more closely
at the practicalities of modelling for discovery and definition in Chapter 9.

Modelling to design a process

It is relatively rare for people to have cause to design a new process or set
of processes from scratch. It probably means that either a new
organization has been created or an existing one has undergone a very
radical change of business.

One group of managers in a multinational product company wanted to
define a planning process that they would use involving their management
and other corporate functions such as ‘HQ’, ‘Finance’ and ‘Audit’. They
already had a process in place but it was not well articulated and they were
fairly certain that they did not all have the same view of the process. The
process was that of deciding on the portfolio of products in which they
would fund investment, and the process of developing a new product
within that overall planning process. They already had a short verbal
description of the proposed new process and we used the methods
described in this book to capture those processes completely. In addition
to giving them greater understanding through the analysis, the method
gave them a clear diagram which then went into their Procedures Manual.
It also filled in many gaps in the textual description, which only became
apparent when the process was explored using Riva’s rigorous notations
and method.

With the fragmentation of industries such as utilities, and the
consequent construction of new regulatory frameworks and bodies,
entirely new processes become necessary to ensure fair competition
between the fragments. These can be truly greenfield sites for process
design. Nothing similar exists in the current organization; entirely new
objectives arise, and new roles and responsibilities must be created, and so
on. A new utility organization found itself having to set up a new group
with responsibility for reporting to the regulatory body. Nothing like this
had been done before: what processes would they need? Never having had
the need before, there was no organizational structure to support it. How
should they design those processes in the absence of the ‘comfort’ of an
existing organization?

We shall look more closely at the practicalities of modelling for process
design in Chapter 11.

15

Business Process Management

16

Modelling to diagnose a process for improvement

Once we have a model of an existing process, we may well want to use the
model to analyse the process itself. Some of the questions we shall want to
ask will be quantitative: ‘What is the average cycle time?’, ‘How much will
the cycle time be affected by changing the process in this way?’, ‘Where are
the bottlenecks? Other questions will be qualitative: ‘Do we have the
optimum division of tasks across the people involved?, ‘Why does this
paperwork flow back and forth?’, ‘Are the right decisions being made at the
right level in the organization?’, ‘Are we overdoing the financial oversight?’

Such analysis is a common precursor to improving the organization by,
for instance:

e changing the order of activities;

e changing responsibilities for activities or decisions;

e changing the way things are scheduled;

e increasing or decreasing the amount of parallel activity;

e removing or inserting buffers or stores for materials between steps in a
process;

e restructuring functional groups to align them better with the process.

Any organization involved in TQM or other process improvement activity
will want to model its processes and analyse them for weaknesses or
inefficiencies on paper, before trying out improvements in real life.

We shall look more closely at the practicalities of modelling for process
improvement in Chapter 10.

Modelling for traditional information systems

Traditionally, when considering computer support for the activity of an
organization, we have done some sort of analysis of the organization in
order to identify where automation can best be applied. Since the mid-
1970s that analysis has concentrated on data and into the twenty-first
century data analysis continues to be the cornerstone of software
development: object analysis, data-flow analysis, Entity Relationship (ER)
modelling, and Entity Life History (ELH) modelling in particular have
featured large and continue to do so. The move towards object-oriented
conceptualization has changed that scene little.

Unfortunately, too little attention has traditionally been paid to under-
standing the business process that is being supported. Even an otherwise
well-thought-through system development method such as Structured
Systems Analysis and Design Methodology (SSADM) - see for instance
Business System Development with SSADM (Office of Government
Commerce, 2001) — has taken the view that business activity is relatively
unstructured, or at least that any structuring is not of great interest. With
the advent of the Unified Modeling Language (UML), we have seen an

Introduction

increased interest in the nature of organizational activity, with the idea of
so-called use cases.

We can look to our process modelling method for two things in the
Information System (IS) context. Firstly, we can expect it to reveal more
effectively, reliably and efficiently the use cases of the business. Secondly,
we can expect it to make the information needs of the individual clearer in
the context of the entire process. We shall look more closely at the
practicalities of modelling as a precursor to defining requirements for
traditional information systems in Chapter 12.

Modelling for workflow management systems

Traditional information systems have for the most part had a very simple
architecture. In essence, they provide the individual with a peek 'n’ poke
facility into some central database — most importantly they only give
explicit support to the individual. Every individual is plumbed into the
data. But organizational processes are not just collections of individuals
operating independently. Organizational processes are carried out by
groups of people acting collaboratively to achieve a goal. If our computer
systems are to reflect this they must support groups more directly. In the
last two decades software packages have appeared under the title
Workflow Management (WFM). Their architecture recognizes that people
who connect to the system are working jointly on a case, and so that
architecture must support the flow of a case from person to person. They
have recognized that organizational activity is more than a set of
individuals manipulating data, and is better seen as a flow of work items
between collaborating individuals.

Now, traditional data-oriented systems analysis and design have served
us perfectly well when we build data-oriented systems supporting
individuals. But WFM products require different analysis and design
methods. Data-oriented analysis methods provided us with various sorts of
data model. WFM products need process-oriented methods providing us
with process models.

We shall be looking for ways of identifying workflows and then
understanding the nature and content of that flow; in particular, who
gets to do what when, what information they need to do it, what
information flows with the workflow, and what is static. We shall cover this
in Chapter 12.

Modelling for business process management systems

Given a data model for a data processing system, any Database Manage-
ment System (DBMS) will allow us to store this in a database and use it
directly to generate forms and reports that the individual can use to add,
amend or present data. There is a thin sense in which we could say ‘The
data model is executed.’

17

Business Process Management

What's the analogue for process models? Suppose we could give our
process model to a computer system and have it enact that model, i.e. ‘run’
the model, supporting the participants in the process as the process
proceeds, handling their agendas, supporting their interactions, and
perhaps playing its own part in the process. Systems that provide this
sort of support are termed enactment systems and they provide us with our
final motive for process modelling: they require a process model whose
‘meaning’ is sufficiently well defined to allow them to enact the process
without further human intervention.

Such an enactment system will go beyond handling simple workflows
and will deal with the network of processes that can be in progress at any
one moment. Processes themselves will become a sort of currency in the
system: they can be changed and passed around. This use of process
models will have important implications for the process modelling method
and its notations. But we can imagine the step beyond that we touched on
at the start of this chapter: the idea that our processes, ‘living’ inside the
enactment system, can themselves be manipulated in a variety of ways:
small changes, big changes, new processes even. As well as supporting our
use of our processes, such a system would support our management of our
processes. It becomes a BPMS. Not surprisingly this introduces a whole
new raft of requirements on our modelling notations and method.

We shall look more closely at the practicalities of modelling for BPMSs in
Chapter 13.

KEY POINTS

Our modelling method must enable us to:
take an architectural view of our processes;

expose our processes as a discovery activity;
define our processes appropriately in a regulated environment;
use our models to diagnose our processes;

design new processes from scratch;

expose the information needs of the participants in a business process
as a prelude to building an information system;

e design workflows that can be supported by a workflow management
system,;

e produce the process definitions that can be enacted in a BPMS.

EIGHT PRINCIPLES FOR PROCESS MODELLING

18

To finish this chapter, I'd like to introduce a Tutor and a Pupil in
discussion about some of the requirements of a process method. Their

Introduction

dialogue - the first of a number throughout the book — highlights some
important principles that underlie Riva.

Principle 1: If we must have abstractions, let's make them
meaningful

Tutor: When we model something we describe it, and to describe something we
need a language. A model uses a limited language — a limited number of
concepts — that allows us to say the things we want to say, to describe the
things we want to describe. If we wanted to model a nation’s economy, how
would we model it?

Pupil: We might capture it in terms of the flow of money between the various
places it can reside: the Treasury, people’s savings, money in circulation,
investment instruments of various sorts, and so on?

Tutor: Yes. Note how we’d be working with two abstract concepts: a ‘pool’, of which

each of those residences is an example, and a ‘flow’ — the movement of
money between two pools. By varying the rates of flow we can investigate
the behaviour of the model and perhaps deduce something about the
behaviour of the real economy. An early economic model used precisely
these abstractions, and made them concrete by using plastic containers of
water to represent pools, and piping and pumps between containers to
represent flows. The pools and flows were represented as plumbing and the
money by water.
When we model processes — what people do — we shall need a small number
of concepts that represent real-world things, but they must be concrete
enough for someone looking at our model to readily understand the model
and what it is telling them.

Principle 2: The real world is messy

Tutor: At a suitably high level of abstraction, any process can be made to look neat
and tidy.

Figure 0.1 summarizes the process of collecting taxes from you and me and
giving them to the government to spend on our behalf. Tidy isn’t it?

Pupil: Well, it certainly summarizes what tax collection is about: namely that there
is some relationship between The People and The Government that involves
The Tax Collector.

Tutor: So how is it that tax collection causes so much grief and there is so much
money to be made out of helping people with their tax affairs? The fact is of
course that the tax collection process is complex and involved. A summary
diagram hides all that — and can make it next to useless if we want to answer
any questions.

The Tax
R el Collector

FIGURE 0.1 Tax collection: pure simplicity

The
Government

19

Business Process Management

20

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

Could we ‘decompose’ this neat picture in some way? We could still keep it
neat by ensuring that we restrict the number of boxes on the diagram to,
say, no more than seven. After all, someone did once say that people have
trouble with handling more than seven items of information at any one
time. And, if we want to, we could allow ourselves to ‘decompose’ any one of
those boxes in turn into its own diagram with another seven-ish boxes to
describe it, and so on.

You seem to be saying that our process model can take the form of a
hierarchy, consisting of a set of diagrams, each of which (with the exception
of the topmost one) expands a single box on its ‘parent’ diagram. Something
like Figure 0.2 perhaps? A neat hierarchical model? OK, then answer me
this: if this is a ‘good’ model, then it must be ‘like’ the real world it claims to
model. Is it? In particular, does the structure of the process in the model
reflect the structure of the process in the real world?2 When we look at the
world, do we find neatly ordered processes, with each activity in a process
neatly decomposable?

I guess not. I suppose if we are looking at something statically — a city for
instance — we could draw a model of its static nature and say that the city is
made up of quarters, and each quarter has districts, and each district has
streets and so on ... But we wouldn’t be saying anything about the way that
the city works.

Exactly, and your point about the difference between a static and a dynamic
view is very important. When we model organizational activity we are
interested in dynamics. Dynamics are not hierarchical. Organic systems are
networks, often networks of networks. And they are changing networks:
things are born, establish relationships with other things, and then die. The
network is a dynamic thing, constantly changing. There is a dynamic flux of
activity ... not some static hierarchy of activity.

Is there another sense in which models can be complex: things can simply
get ... messy? In fact I guess we should be very surprised if something like
the process of an organization that has grown organically over time was so
neat and tidy.

True. We'll see that — when they happen - real-world processes can be
complex, gangling, even muddled or messy (these aren’t my words — they’re
words frequently used by the people whose processes I work with). They
wander here, there and everywhere; the hierarchical picture fails to show
that: it replaces convolution by neat (but irrelevant) hierarchy. The message

R
N

FIGURE 0.2 Are the world’s processes really this neat and tidy?

Tutor:
Pupil:
Tutor:

Pupil:
Tutor:

Pupil:

Tutor:

Pupil:

Introduction

for our process modelling approach is that we can’t let the notation dictate
to us that our models must be neat hierarchies. Things are much more
complex.

Unfortunately the IT world has for years been using hierarchies as a way of
designing synthetic things like computer programs, and software structures
of all kinds. The great mistake has been to assume that we can use such
hierarchy-based notions to describe organic things like businesses.
Businesses aren’t the product of tidy design activities over which some
designer has had full control. They're the product of time and many
uncoordinated changes by many hands. Traditional structured approaches
from the IT world just won’t work.

Principle 3: A model must mean something, but only one
something

What does Figure 0.1 mean to you? What do the two boxes mean? What does
the arrow mean?

Errr ... from their names, the boxes seem to be collections of people ... or
one is a collection of people and the other is an organization ...

I haven’t told you what a box means, of course. ‘Money’ doesn’t appear
anywhere in the picture — are you surprised?

Well, I assumed the arrow represented money.

It could. But it could also represent ‘paperwork’. Suppose we accept that the
arrow represents money flowing from The People to The Government. Can
we assume from the single head on the arrow that the money only flows one
way? In fact it doesn’t. I recently got a tax refund. Would having a two-
headed arrow be more accurate? Let us assume that, because the arrow has
the label ‘The Tax Collector’, the Tax Collector is the agent for the flow, the
thing that makes it happen on behalf of The Government. Would that mean
then that the Tax Collector sometimes makes the flow go from The
Government to The People? Does the Tax Collector act as your agent for
giving money to you?

It was such a simple diagram — two boxes and an arrow - but it does seem to
raise more questions than answers.

Right. And the reason for that is that I have not given a clear meaning to the
symbols I've used in the diagram. ‘A picture says a thousand words’ — a
different thousand words to each of us, unless we agree on the semantics of
our notation. If I can’t tell what my process model means, I can’t tell what
needs doing. When I choose a notation for my models, I need to be sure that
I have clear semantics for them: I know what a box means, I know what a
line means, I know what each little symbol means. The model is
unambiguous.

Principle 4: Process models are about people, and for people

I can see a danger here. When we model a process we are describing what
people do. (I suppose machines of various sorts might play a part in a
process, but they don’t have to be asked their opinion so I guess we can
concentrate on people.) To find out what people do we’ll need to ask them

21

Business Process Management

22

Tutor:

Pupil:

Tutor:

and watch them, we’ll do some sort of ‘process elicitation’. I'm sure we’ll
then want to put our model of their process in front of them and have them
discuss it, correct it and improve it and ask whatever questions of it they
want answered.

So the concepts we use in our model must be concepts people relate to in
daily life. The notation has to make sense to people. If we can’t explain it in
ten minutes, it doesn’t make sense. But on the other side of the coin, any
well-founded notation will have subtleties and potential complexities, and
so there’s a danger of opacity. A newcomer to a model must be able to
understand quickly what the model is saying. If the model needs extensive
interpretation by a skilled analyst before it can be understood by the person
on the shop floor, the battle is half lost, surely.

Yes, there is a dilemma there. We want a notation that is powerful - that
allows us to say all the complex things we want to say — yet is accessible. The
acid test is this: at their first modelling session, can an ordinary person go to
the whiteboard and correct a mistake in the model so that it correctly
describes what happens?

Principle 5: There’s what people actually do, and there’s what
they effectively do

I have another problem. When the Accounts Department raises an invoice
against a customer’s order, what we see them doing is involving themselves
and others in a paperchase, in which the flow of paper is embellished with
activities of transcription, checking, updating, copying, chasing, phoning,
and so on. But what they’re effectively doing is extracting payment for the
goods and services supplied. How do we reconcile these two views of a
process?

The answer is that we won’t try to reconcile them: we’ll recognize that these
are two different views of the same thing. When we look at a process in
concrete terms, we see what people actually do, and such a model might be
in terms of the mechanisms they use. But, when we want to understand how
the process might be re-engineered, or what the possibilities for technology
support are, or how the organization and roles and responsibilities might be
changed to improve things, we shall need to get to the bottom of the
process, to understand what it is effectively about. We would draw a
different model that expressed the intent of their actions.

Our modelling method and notation must allow us to prepare both sorts of
model, what we might call concrete and abstract models.

Tutor:
Pupil:
Tutor:
Pupil:

Tutor:

Tutor:
Pupil:

Tutor:
Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

Introduction

Principle 6: People work in functions, but they do processes

If you ask someone what they do in an organization, what sort of answer will
you get?

‘T work in Accounts’ or ‘I work in Product Design’ or something like that.
And if you press for detail?

They’ll tell you how they contribute to the work of the department, where
the work comes, from and what happens as a result of their work.

Right. The lessons from TQM and BPR have been that what people really do
is play a part in one or more processes, and that these processes invariably
cut through the boundaries between departments. Getting the organization
to recognize the existence of these ‘cross-functional’ processes and to deal
with the conflict that occurs at the boundaries between the ‘functional silos’
is a major part of improvement and re-engineering.

There’s a big message here for our modelling approach: do I have ways of
modelling the process from the point of view of organizational structures
and how work is allocated across the functions, as well as from a pure
responsibility point of view? Can we separate out responsibilities from
organizational functions? We have to be able to do this if we are considering
re-engineering through change in the functional structure or in the
responsibilities allocated to functions. Remember that we can have a
functional group called, say, Administration, and then have to decide what
responsibilities we want to give them.

Principle 7: It's what people do, not what they do it to, that
counts

What do you do?

I... carry out activities: I write an article; I facilitate a workshop for a client;
I elicit a client’s process; I give a training course.

Just one thing at a time?

Well ... I often have a number of activities going on in parallel: I start a new
piece of work for a client; I put one activity down to do another; I stop
everything to fill in my timesheet; I resume one of the activities I put down; I
finish an activity.

Right, so you have a number of balls in the air, a number of plates spinning,
a number of activities you could be doing, or are in the middle of doing, at
any one moment. Anything else?

I make decisions: I decide that the text for the brochure need not go for
another review but can go straight to the graphic artist; I decide that a
request for new computer hardware is acceptable; I decide that an invoice is
correct and can be sent to the client.

Yes, you're choosing among alternative courses of action depending on the
current circumstances. More?

I interact with other people: the graphic artist and I agree on the final layout
of the brochure; I send the manuscript of my book to the publisher; I
delegate responsibility for hardware procurement to my facilities manager.
OK. Let’s pull this together. In all these things that occupy your day, you're
doing things, sometimes on your own, sometimes with others. You're

23

Business Process Management

playing a part in a number of different processes at any one time, and in
each you may have a number of actions in progress. It’s reasonable then to
expect that any notation we use to model those processes should allow us to
capture activity: concurrent actions, collaborative interactions, and decision
making.

We must focus on what people do, collaboratively and individually. What
they do it to is of secondary importance.

I raise this because here again there has been an unfortunate influence from
the IT world on our process modelling (and I speak as a software engineer of
many years). Hitherto the IT world has concentrated almost exclusively on
data. On what people do things to. This is not surprising. Computers gave
up computing pretty soon after their invention to concentrate on looking
after people’s data: memory became a cheap, voluminous commodity and
that memory was as good as permanent. We've exploited that. When IT
people build information systems they principally design databases and
ways of getting the data in and out. The traditional development methods
(SSADM, IE, Yourdon, and so on) rightly concentrate on the data aspects of
the business being supported, and the notations are about data: Data Flow
Diagrams, Entity Models, Entity Life Histories etc. But we should not expect
their hammers to be good for driving home our screws. We are in the
process business not the data business.

KEY POINTS

o If we must have abstractions, let’'s make them meaningful. Any process
modelling notation must deal in business-oriented concepts that people
relate to. Otherwise how can they tell if a model’s right?

o The real world is messy. The notation must be able to model mess when
necessary. Muddle modelling is perhaps the norm, not the exception.

e A model must mean something and only one thing. If our model is
ambiguous, how can we tell what it is telling us or others?

e Process models are about people, and for people. The notation must
make sense to people. If we can’t explain a model in ten minutes, it
doesn’t make sense.

o There’s what people actually do and there’s what they effectively do.
These are different and we must be able to model both.

e People do processes, but they work in functions. These two can be in
conflict. A model must capture both — and the conflict.

e It’s what people do, not what they do it to, that counts. A process is
principally about doing, deciding and cooperating, not data or things.

THE STRUCTURE OF THIS BOOK

The book falls naturally into two parts: you can think of part 1 as theory
and part 2 as practice.

24

Introduction

When we want to think about a particular subject in life we need an
appropriate vocabulary — words to describe the subject — and a grammar -
ways of arranging words to convey meaning. If we choose the right words
and the right grammar we shall be very expressive. Major branches of
mathematics were held up until a notation was developed that not only
represented the subject being worked on, but also worked as a notation.
The same will be true for our subject: processes. If we choose the wrong
vocabulary or the wrong syntax, we shall not be able to say things we want
to say, and we might even end up saying things that are just plain wrong;
we shall be describing processes that don’t exist; or we won’t be able to
answer the questions we want answered.

So part 1 is very much about getting the right vocabulary and the right
syntax so we can describe business processes in a way that meets our
needs, whatever they may be.

e Chapter 1 — Basic process concepts — gets us thinking about just how
we look at a process. What are the features of real-world processes that
we want to reflect in process models?

e Chapter 2 — Modelling a process — provides all the ‘vocabulary’
necessary to represent a single process in a RAD. We shall examine the
notation and the underlying concepts in detail.

e Chapter 3 — Dynamism in the process — highlights the levels of within-
process concurrency that can be captured in a RAD, and shows how
we can exploit that richness when we model real-world situations,
current or planned.

e Chapter 4 — Process relationships — examines the types of dynamic
relationship that processes can have and illustrates how we represent
them on RADs. The relationship types will be central to the
construction of our process architecture.

e Chapter 5 — The three basic process types — describes the three main
types of process — the Case Process (CP), Case Management Process
(CMP) and Case Strategy Process (CSP) — that underlie the construc-
tion of a process architecture.

e Chapter 6 — Preparing a process architecture — deals with the
construction of the process architecture of an organization, a concept
of central importance for re-engineering, for overall process design
and for steering any process work.

e Chapter 7 — Dynamism in the world — shows how the process
architecture captures all the between-process concurrency in the
world.

25

Business Process Management

Part 2 puts part 1’s theory into practice.

e Chapter 8 - Managing the modelling — provides guidance on running a
process workshop and conducting interviews in order to prepare a
model of a process, for whatever reason. We shall concentrate on how
to make appropriate modelling decisions, the need for fitness for
purpose in process models, and how to get results quickly.
Subsequent chapters customize this general approach for different
purposes.

e Chapter 9 — Discovering and defining processes — covers the practical
use of the approach in determining what processes an organization
has, in eliciting those processes onto RADs, and in the use of RADs in
QMSs, tying into ISO 9001 with its emphasis on process.

e Chapter 10 — Analysing for process improvement — is about using the
approach at both the architectural and the process level for asking
questions about processes and their performance, and for driving
tactical process improvement.

e Chapter 11 — Designing a process — covers the design of a new process
architecture and new processes. As the processes do not exist today,
we shall start from a blank sheet of paper.

e Chapter 12 — Processes and ISs — covers the use of the approach in
constructing an IS strategy for an organization, and in the design of
ISs.

e Chapter 13 — Processes and process systems — covers the use of the
approach in using the new wave of BPMSs in which agile and mobile
processes replace static data structures.

WARNINGS

26

Some warnings are in order.

Riva is not just diagrams. We shall be drawing diagrams — three sorts in
fact — but they are only half the story. The other half is the underlying
concepts and how they can be used to get a real understanding of complex
human organizational activity. Without them, the diagrams end up just
being sequential flowcharts and the point is missed. If you feel tempted to
simply check out the different sorts of blobs on a RAD in Chapter 2 and
start drawing, you will be missing a great deal.

When you come to the section on the RAD notation, you will find
yourself reading (what I hope are) very precise definitions of things, with
apparently simple concepts being teased apart mercilessly. You will ask
yourself why all this is necessary. If you want rough and ready models, you
will draw rough and ready models. You will misuse the Riva notation,
ignore the subtleties and add new blobs and arrows of your own. In my
defence, I must tell you that one reason for drawing a model of a process

Introduction

may be that we want to execute the model: we want to give the model to a
computer and have it run the process for us, with human beings playing
the roles and carrying out the activities and interactions, all under the
control of the machine that has the process in front of it. Drawing a few
blobs and arrows on a whiteboard can be a rewarding experience on its
own: things become clear, relationships are exposed, and we can come to a
shared understanding (we like to think). But those blobs and arrows do not
capture the process with the precision required to give that ‘model’ to a
computer to execute for us: a goal of BPMSs. Chapter 13 will take us into
that more refined world, where slapdash will not be sufficient, and where
precision rules. When you use Riva you have the opportunity to be very
precise, whether or not you choose to take that opportunity.

Riva is a method for the analyst. This being so, we shall not be afraid of
using precise and specialized terminology between us as analysts. This
book introduces a number of detailed technical ideas and terms, essential
to the analyst for real understanding of a process, and for the accurate
capture of a process in a process model. But one person’s terminology is of
course another’s jargon, and the analyst needs to be careful when working
with ‘ordinary’ people. My (good) experience is that, whilst I have these
technical ideas and terms in my head, ordinary people can work with Riva
process models happily and productively without them. My (bitter)
experience is that the effect on an ordinary person of hearing the word
‘instantiate’ for example is akin to a sharp blow between the eyes with a
heavy club: it switches them off. Exercise caution.

Like all methods Riva does some things and not others. It is a set of
ideas. There are many ideas for different situations. There is no obligation
to use all of them at the same time, only to pick the ones that you need.
You can use Riva in a rough and ready fashion, or you can exploit all the
subtleties and precision it offers.

Riva is not a cookbook. There is no recipe and there are no cooking
instructions. There are concepts to be used. You choose.

SOME EARLY REFERENCES

Holt’s original exposition of Role/Activity Theory (Holt, Ramsey and
Grimes, 1983).

Greenspan’s thesis on his Requirements Modelling Language (Green-
span, 1985)

Clive Roberts’s and my paper on the IPSE 2.5 work (Ould and Roberts,
1987).

27

1 Basic process concepts

What are the features of real-world processes that we want to reflect in process
models?

WHAT HAPPENS IN THE WORLD?

Our analysis of the needs of the process modeller leads us naturally to the
basic concepts that we will be looking for in our process modelling
language — the vocabulary that will help us say the things we want to say, to
answer the questions we want to answer. This chapter will look at those
basic concepts, before we go on to model them in Chapter 2.

Processes are divided over roles

Central to our notion of a process is that it is about people doing business —
how they do it, how they think they do it, how they are supposed to do it,
how they might do it better or differently, and so on. People are central. So
should we model a process by saying what Mavis does, what Bill does and
what Charlie does? Perhaps we should draw a box labelled ‘Charlie’ and in
that box describe, in some way, what Charlie does. Similarly we might have
boxes for Mavis and Bill, and for the other people involved in the process.
This doesn’t feel right of course because, in an organization, people do
things not because they are themselves but because they have a
responsibility in the organization; they are perhaps paid to carry out that
responsibility: they have a role in the organization. So those boxes on our
diagram should really be about roles, responsibilities that are carried out —
acted, as we shall say — by individuals or perhaps groups of individuals.

For now, let’s just think of a role as a responsibility of some sort, perhaps
a hat that someone — an actor — can wear. I go to work, and as I walk in the
door of my office I put on my hat of responsibility.

In the process of getting a book published we find roles such as the
author, the publisher’s editor, the typesetter, the copy editor, the publicist,
the printer, and the bookseller. Each has their own responsibility.

Some roles are carried out by individuals: Martyn Ould is (carrying out
the responsibility of) the author of this book. Other roles might be carried
out by a group of people: the responsibilities of the Accounts Department
are carried out by the people who work in the Accounts Department.

Finally, a role has the things necessary to do its actions. They can
include its physical environment, work in progress, materials, resources in
various forms, and tools. We shall call these the role’s props. Those props

29

Business Process Management

30

might reside permanently within the ‘body’ of the role; for instance, the
Project Manager has a set of plans to use during the project. Or props
might be passed to the role; for instance the Project Manager receives
terms of reference for the project to be managed.

Individuals do things following rules

In carrying out my responsibility — in performing my role — I do things. We
shall call those things actions. So roles carry out actions.

In the business of getting a book published, various people write the
book, prepare the index, draw the diagrams, check the copy, set the type,
print the book, and get copies to the shops. By predicting the target market
place, the publisher decides whether the book will come out first in
hardback or paperback. The designer decides on typographical issues such
as layout and typeface. The printer prints the pages and binds the books,
ready for the retailer to sell to the public. Each of these actions does
something in a way that we hope adds value and contributes to the
business of achieving the goals of the process.

Things are done in a particular order: we cannot label a product until we
have the label and the product; we cannot typeset a book until the copy is
ready; we must lay the foundations of the house before we build the walls;
we need to get the budget approved before we spend money.

Sometimes the way things are done is determined by the outcome of
decisions about the state of things: if the customer is late in paying, we
charge interest to their account; if the house being insured is in a flood
plain, we estimate the insurance premiums differently; if it is the weekend,
we charge double; if the email system is down, we send a fax.

Sometimes, how we do things is governed strictly:

e Policy. Our company might have a policy that nobody can approve
their own work, or that all product tests must be carried out by
someone independent of the production group.

e Procedures. Some of our work might be regulated and defined in the
form of procedures. For example, in order to control financial
commitment closely we might have procedures for planning projects,
reporting project status and purchasing. We might have procedures to
make interfaces efficient: all requests for training follow the same
procedure so that people requesting training do not need to invent how
to make a request, and the people handling requests know in what form
they will arrive. Procedures might say who can sign off purchases above
what value, who can authorize a change in production schedules, or
who can cancel a project. (Note that I have used the word procedurehere
in the strict ISO sense of standardized activity.)

e Standards. A standard might be laid down to define a common
appearance or content for something produced during the process.
We might require that project plans and reports conform to a

Basic process concepts

particular layout. This might be for efficiency (everyone knows what a
report looks like and where to find the information they are interested
in) or for control (we want to ensure that certain topics always get
covered and certain information is always included).

All these are business rules that govern ‘how things get done around here’.

Individuals within a group interact

Also central to our notion of process is that people, in carrying out their
roles, sometimes do things together: they collaborate. To collaborate, they
carry out some actions together. We shall say that they interact and that
they have interactions. For instance:

e You and I discuss something.
e You and I negotiate.
e I contract with you to do something.

e I pass you some information.

I delegate a task to you.

I ask you for something.

I give you authority to do something.

e You and I agree on an action.

e You and I jointly approve something.

e You report your status to me.

e I oversee something you are doing.

e You pass me the results of your work.
e | instruct you.

e You and I work on something together.
e I wait for you to do something.

e I chase the progress of your work.

Note how rich interactions can be. An interaction isn’t just about the locus
of activity moving from one role to another; real business-oriented, value-
adding things can happen in an interaction. Interactions are just as vital to
the process as the actions that individual roles carry out on their own.
Ineffective interactions can be as damaging to a process as ineffective
actions. Slow interactions can affect cycle times as much as slow actions.

So, a role involves a set of actions and interactions which are governed
by rules which, taken together, carry out a particular responsibility. A
process is the sum of the contributions of the individuals acting as
individuals and collaborating as a group. If we get the sum right, the
process achieves its goal. So ...

31

Business Process Management

ROLES

32

Processes have goals

A process is done for a reason: it has a goal. Sometimes the goal might not
be reached and there is some other outcome, perhaps an undesirable one,
some sort of failure.

For instance, the goal of a process might be to deliver a computer
system, to maintain positive cash flow, to organize the efficient use of a
piece of plant, to provide a medical care service to a customer, or to
manage a research budget. It must be possible to see from our process
model how a process is achieving the goals set for it, and ideally to be able
to identify the point(s) in the process where those goals can be said to have
been achieved.

KEY POINTS

A process is a coherent set of actions carried out by a collaborating set of
roles to achieve a goal.

A role is a responsibility within a process.

An actor carries out a role.

A role carries out actions following business rules.

A role has props which it uses to carry out its responsibility.

Roles have interactions in order to collaborate.

A process has goals and outcomes.

These concepts are central to Riva: role, actor, action, interaction, goal,
and outcome. Let’s examine each in more detail.

Suppose we walk into a supermarket company and identify the things that
we might think of as roles, in some yet-to-be-defined sense. Here are
some: Store Manager, Shelf Stacker, Checkout Assistant, Shop-floor
Assistant, Security Guard, Finance Clerk, Warehouse Person. If we walked
into a publishing company we might choose Author, Editor, Commission-
ing Editor, Marketing Manager, Copy Editor, Production Planner. If we
walk into a software engineering company we might find Project Manager,
Programmer, System Tester, Chief Architect, Designer, Configuration
Controller, Finance Director.

Roles of this sort are rather like job titles, the sort of thing an individual
might have printed on their business card. Or they might be boxes on the
organization chart. Or both. For instance, there will be a box on the
organization chart labelled CEO. There might be several labelled Store
Manager — one per store. Such roles have a part to play, responsibilities to
carry out in the organization. However, there will be no box labelled
Author on the organization chart for our publishing company, even though
authors have a lot to do with the processes of a publishing company.

Basic process concepts

Author is not a post in the organization, but a real author might view it as
their job title, what appears in their passport as their occupation, or on
their business card.

Moreover, I could stand back from the organization a little and see it in
terms of rather ‘larger’ roles: Finance, Production, Editorial, Marketing.
Here I am clearly spotting functional groups, each of which has one or
more responsibilities in the organization. What is the relationship between
these sorts of roles and the ‘smaller’ roles we identified above? We might
expect that the Finance Director carries out some of the responsibilities
carried out by Finance, and that some other parts are carried out by (say)
Finance Clerk. Of course, we can’t divide up all the responsibilities of
Finance and hand the bits to the ‘smaller’ roles because responsibility isn’t
like that: in many cases, a responsibility of Finance can only be carried out
through the cooperation of a number of roles operating within the Finance
Department. I am suggesting here that it is dangerous to think of roles
nested in some sort of hierarchy: hierarchies smack strongly of decom-
position and if we try to decompose responsibility by cutting it up into
lumps we shall lose the notion of cooperation and collaboration, which is
what makes so much happen in organizations. Things will fall apart.

There is probably only one Finance Department in our supermarket
company. But we might identify Store as a role in the organization and
there will be lots of them. A bank may have many branches: each branch
plays the same role and has the same responsibilities.

There are other sorts of role which are neither posts nor job-titles nor
functional groups. Take Customer for instance. When I walk into a shop, I
take on the role of Customer, and in that role I interact with roles in the
shop. I don’t have Customer in my passport, any more than I have the role
Expense Claimant on my business card. But there are times — month-ends
typically — when I do put on the hat of Expense Claimant in order to claim
my expenses. Both of these are transient roles that I take on at appropriate
times. Here are some similar transient roles: job Applicant, Hospital
Patient, Complainant, Employee, Defendant, and House Vendor.

So far, our roles have been rather tangible things: you can kick them, or
at least draw some sort of line round them somewhere. But we could take
the notion of role-as-responsibility a step further and identify rather
abstract things — pure responsibilities — as roles. For instance, Large Claim
Approval might be a responsibility in an insurance company. When claims
over a certain size are about to be paid, we might require that they are
scrutinized independently before going through. The responsibility for
carrying out that scrutiny has a reality — though we might not be able to
kick it — and an identity. In practice, we shall probably allocate that
responsibility to a role of one of our other, more concrete types, a
particular post or job title, say.

Let’s pull these threads together and list the different sorts of roles that
we might have:

33

Business Process Management

34

e A unique functional position or post: e.g. Head of Analysis Depart-
ment, CEO. Such a position or post is unique in that there is one and
only one in the organization. There is only one Analysis Department
and that brings with it the responsibility of heading it, which we wrap
up in the unique post of Head of Analysis Department.

e A generic functional position or post: e.g. Head of Department,
Divisional Manager. Each Department brings with it the responsibility
for heading that Department. Each Division brings with it the
responsibility for managing that Division.

e A unique functional group: e.g. Document Registry, Accounts, The
Government. Such a group is unique in that there is one and only one
in the organization. It has a part to play in the organization’s activity.

e A generic functional group: e.g. Department, Branch, Subsidiary.
There may be many Departments or Branches. They all have the same
responsibility in the organization.

e A generic type of person: e.g. Trade Union Member, Customer,
Purchaser, Expense Claimant. Typically a rather transient role — one
that comes and goes — but there may be many at any one time.

e An abstraction: e.g. Progress Chasing. Such an abstract role is almost a
definition of the responsibility itself, rather than a label of a post that
brings with it a responsibility.

KEY POINTS

Some roles are unique in the organization and some are generic and
replicated.
Some roles are concrete and some are abstract.

Roles are types; role instances are acted

We have so far talked rather glibly of roles, and of roles being acted. But we
need to introduce an important subtlety here.

In the world of cars there are many different types, for instance a Rover
or a Saab. Given a type of car, we will find on the roads a number of cars of
that type. I have a car of the Saab type; a colleague has a car of the same
type; our two cars are both instances of the Saab type.

These notions of a type and the instances of the type are very important
in the Riva method. In fact, a role in Riva is actually a type. That is, in
principle there can be a number of different instances or occurrences of a
role type active at any one time within an organization. In this book I shall
use the word instance in this sense of occurrence. (Software engineers will
recognize the terminology of object orientation.)

As an example, in a pharmaceutical R&D company - let us call it Hill
Pharm - we might have a number of projects running at any one time, one

Basic process concepts

for each new drug that is undergoing development. Suppose we define the
role Project Manager for drug development projects: it is the role to do with
the responsibility for managing a project. We then know that there must be
an instance of the Project Manager role for the Xanthropol project, another
instance for the Bisintifil project, and yet another for the Viniliton project.
Each project has a separate responsibility associated with it.

When the Xanthropol project started, the responsibility for managing it
was created. Suppose we appointed Bill to be the project manager. In Riva
terminology ‘We assigned Bill as actor of the instance of Project Manager
for the Xanthropol project.” We might even say ‘We cast Bill as actor of the
instance of Project Manager for the Xanthropol project.’

Perhaps Bill then resigned, and Jill took over. The instance remained
constant but the actor changed. Jill stepped into Bill’s shoes; she took over
the responsibility. But perhaps, just for a day after Bill’s resignation, the
project had no project manager. In other words the Xanthropol instance of
the role Project Manager had no actor that day, no one to take
responsibility. The important point to note here is that as long as a
project exists, the responsibility for managing it also exists, whether or not
anyone is carrying it out, or acting it. In other words, the role instance
exists whether or not it has an actor.

So, we need to be careful to distinguish between the role instance —
which has its own existence — and its current actor, if any.

Let’s take a further example. Prime Minister is a role type. I can point to
several instances of this role around the world: ‘Prime Minister of the UK’,
‘Prime Minister of Australia’ and ‘Prime Minister of Canada’, to name
three. These role instances exist independently of whomever is acting
them at any one time. As I write, a man called Tony Blair is acting the
instance ‘Prime Minister of the UK’. This instance was formerly acted by
John Major. In fact Tony Blair acts a number of other role instances
concurrently, one being that of ‘Member of Parliament for Sedgefield’,
itself an instance of the role type Member of Parliament. In the Riva view of
the world, an election is simply a way of choosing an actor for a role
instance. If an MP dies, the role instance they were acting continues but
there is no one to act it, no one to carry out the responsibilities of being MP
for the area, until there has been an election.

If you approached an employee going into the publisher’s building and
asked them what they did, they might say ‘I'm a Copy Editor’. They are
saying ‘I wear the hat of Copy Editor’. At home they do not wear that hat.
(Let’s assume they don’t take work home.) So, as they walk into the
building they don that hat and start carrying out the responsibility it
implies.

Quite clearly, the role instance is separate from the person who acts it.
That employee we stopped: when they go into a shop they don the hat of
Customer. When they leave, they take the hat off. When they re-enter the
publisher’s building, they don the hat of Copy Editor again. And while they

35

Business Process Management

36

are wearing that hat they take part in various processes in which they have
a part — a responsibility — to play.

Note how strong the theatrical analogy is: actors play roles. You might
say ‘I play the part of CEO in this company’ in the same way that someone
else might say they played the part of Hamlet in a recent performance.

Now an actor can take many forms. It might be a single person, a group
of people, a computer, a person or group assisted by computers, a
machine tool, a company - indeed, any agent in the real world capable of
carrying out the work in the role.

When we model a process, we might (or might not) be concerned to
understand where role instances come from and how actors get allocated.
For instance if we are modelling how a new drug development project gets
underway, we will at some point model how the project comes into being
(‘is born’) and with that will come the creation of the responsibility for the
management of that project: an instance of the role Project Manager will
be created. We may also model, as part of the process, how a person is
chosen to act that role instance — how they are ‘cast’ for the role; indeed,
we shall allocate the responsibility of choosing someone to another role in
the process, perhaps a Therapeutic Area Director. And we may go further
and model how a replacement project manager is found if an existing one
leaves the project.

A word of warning is in order here. Our first inclination when choosing
roles might be to use names like Store Manager, but this can make it too
seductive to identify roles solely with post or job titles, forgetting that job
titles are invariably bundles of responsibilities in different roles in a
number of different processes. For instance, the post of CEO could be
treated as a role, but it is clearly a post that has a part to play in many
processes in the company’s activity: as authorizer of large purchase orders,
as setter of the company’s strategy, and as an important player in
maintaining the company’s relationship with its clients. Put another way,
the CEO has a number of responsibilities in the organization. If we show
the role CEO on the process model for, say, the process of setting company
strategy, we must remember therefore that we are only saying ‘This is the
responsibility that the post of CEO has in this process’ or ‘This is the role of
the CEO in this process’; we are not saying ‘This is the CEO role.’

Equally, it is all too tempting to identify parts of the organization as
roles: departments, divisions, sections or whatever. For instance, a Finance
Department, though forming a readily identifiable group of people, might
actually participate in a number of separate though related processes
including remunerating staff (by paying people), purchasing (by placing
orders and paying suppliers), and handling the company’s cash flow (by
invoicing clients, chasing bad debts and negotiating with the bank). It has
a host of responsibilities.

Whether or not we associate posts or job titles or parts of the
organization with roles will, like so many similar decisions, depend on

Basic process concepts

why we are modelling the process, and later in the book we shall look at
the various situations in which different approaches are appropriate. Some
process models that I have prepared for clients have had, on a single page,
roles from each of the different forms.

KEY POINTS

The role type defines the role.

A role type can have a number of instances.

Role instances operate independently and concurrently.

Each instance can be acted by one or more people or no one, at a given
moment in time.

If appropriate, we can model the creation of new role instances.

If appropriate, we can model the casting of actors in role instances.

The dynamics of roles, role instances and actors

Let’s explore the relationship between roles, role instances and actors a
little further.

In the case of Hill Pharm projects, we would expect to see only one
instance of the role Project Manager being acted on a given drug
development project, i.e. within one ‘running’ of the process that we
might call Develop a New Drug. This is a situation where at most one
instance of the role will exist when a process runs. Across the company
there would of course be a number of instances of the role, one per active
project.

The single instance of Project Manager could be acted by different
people at different times during the lifetime of its project: Jack might be
acting as project manager until 19 March, when he hands over the role
(instance) to Jill. In a well-organized company we would not expect to
discover that at some moment both Jack and Jill were acting the role, or a
moment when nobody was acting it. So here is a case where we expect to
find a one-to-one mapping between role instance and actor at any one
time, though that mapping might change over time.

Let’s think about a software product company which has a number of
development projects in progress at any one time. Each project is
responsible for the development and bringing to market of one new
software product. Let’s take one such project. Within that project, there
could be several instances of the role of Designer, each being acted by a
designer-type person, and, in a large project, perhaps hundreds of
instances of Software Programmer, each being acted by a software
programmer-type person. So when the Develop a New Software Product
process is running for a particular software product, we would find one
Project Manager instance, a number of Designer instances, and many
Software Programmer instances. When we draw the model of the Develop
a New Software Product process, we shall only describe the role types and

37

Business Process Management

38

hence imply that all programmers, for instance, follow the same
procedure. If, in the real-life process, some programmers follow one
procedure and others follow another, we would expect to see two different
role types in our process model. For instance, novice programmers might
be constrained by a rather detailed procedure to ensure that they do not do
anything that threatens the project (and incidentally to train them in good
practice), whilst experienced programmers might follow a less rigorously
defined procedure which recognizes their greater expertise and grants
them greater discretion. Our process model might therefore contain two
role types that have the same goal but operate differently: Experienced
Software Programmer and Novice Software Programmer.

In our Develop a New Software Product process, we might well have
somewhere a role with responsibility for controlling change to specifica-
tions, designs, code, and so on: let us call it the Change Controller role. The
Change Controller role will probably only have one instance on a project
and that single instance might be acted by a whole team of people.
Conversely, one (physical) actor might be acting several role instances
simultaneously. For instance, on a small project, one person, Jill, might be
acting the single instance of Project Manager, the single instance of Change
Controller, and perhaps one of two instances of Programmer. Here is a
case where the mapping from actors to role instances might be one-to-
many.

Let’s now look at how those role instances may come and go, and to do
this let’s revisit the different forms that a role can take, and look at how the
number of instances and actors can change over time for each:

e A unique functional group: e.g. Document Registry, Accounts.
Within a given organization we would expect to find only one instance
of a (named) functional group such as these. In other words the role
type (e.g. Accounts) has only one instance and that instance is
effectively permanent; that is, we can take it as permanent for the
purposes of the process model in which the role appears. The actors of
the single role instance are of course the people (and perhaps
computers) who make up the actual Accounts Department, and while
the instance has a permanent existence (with the same qualification
as above), the people who act it will change. Today I might be a
member of Accounts, helping act the role; tomorrow I might have
resigned and you might have taken my place.
Suppose the organization we are concerned with is a nation. Then The
Government will be a role, it will have one instance, and the actors will
be those currently in power. Moreover, unless anarchy breaks out, the
single instance is there for all time, with a succession of different
actors acting it.
Summarizing, there will be a single permanent instance of such a role
with variable actor(s).

Basic process concepts

e A unique functional position or post: e.g. Head of Analysis Depart-
ment, CEO.
The situation here is similar to the unique functional group case: there
is only one instance of the type. For instance there is only one Analysis
Department and it has only one Head of Department post; similarly
there is only one CEO post in this organization. The holder (actor) of
such a post can change of course, but the post (role instance) is
probably permanent for the purpose of the model.
Summarizing, there will be a single permanent instance of such a role,
with variable actor(s).

e A generic functional group: e.g. Department, Branch.

Such a group will appear in a process model when we want to refer to
any Department, Branch etc. and do not want to be specific about
which Department we are concerned with, or we want to allow any
department to play a particular part in the process. When the process
runs, there may be any number of instances of the role — the branch in
Oxford, the branch in Chicago, the branch in Auckland etc. These
instances will be permanent for the duration of the process, unless of
course the process is about the creation and closure of branches. The
actors of this sort of role can of course change: staff at a given branch
come and go.

e A generic functional position or post: e.g. Head of Department,
Divisional Manager.
The situation here is slightly different. At any one time there will,
according to the organizational structure, be a fixed number of such
posts: Head of Research Department, Head of Marketing Department,
Head of Production Department, and so on. We might want to
consider each of these as an instance of the role Head of Department.
And each role instance — each Department Head post — will have an
actor: the current holder of that post.
Summarizing, in general the set of instances will remain fixed for a
given process, but there will be a change in actors as people are put in
those posts and leave them.

e A generic type of person: e.g. Trade Union Member, Customer,
Purchaser, Expense Claimant.
This is like the generic functional group: when a process runs, one or
more instances will be created but each will be identifiable with an
individual, and the role instance is in a one-to-one relationship with
that individual.
If an instance of Customer comes into being it will be associated with
and acted by a single person; the actor will not change. During the
handling of a complaint from Mr Bloggs we do not expect to see Mrs
Featherstonehaugh take over at some point: the Complainant
instance’s actor remains constant.

39

Business Process Management

40

In the process Sell a House, we shall have a role Vendor, representing
the seller of the house concerned. For a given house there is one
vendor, so the role will have at most one instance during the process.
And the actor of that instance, the person or group selling the house, is
very unlikely to change during the sale.

On the other hand, in the process Find and Buy a House, the role
Vendor will represent the sellers of houses we might buy. Instances of
Vendor will come and go, as houses come onto the market and come
off it during the process. Each instance will be acted by a fixed actor:
the owner of the house concerned.

The Expense Claimant role is the hat we put on when we want to claim
expenses; it is the role we act to claim expenses. Our main role might
be Supervisor, but once a month we ‘slip into’ the role of Expense
Claimant.

e An abstraction: e.g. Progress Chasing, Project Managing.

This is a case where a gerund (an -ing noun) makes a good name for
the role. It can be particularly useful to name an area of responsibility,
rather than a box on the organogram for the organization, such as a
post or a department. I might start Progress Chasing an invoice but
someone else might take over at some point if I ask them to; and there
could be any number of us progress-chasing various items at any one
time. Be careful not to think of this as an action: it is a responsibility
within which certain actions will be carried out, but we have yet to
look inside the box and examine actions.

One apparent flavour of role that we need to be careful with is a rank or job
title: e.g. Principal Analyst, Senior Engineer Grade 5. This is a ‘badge’ that
people have, that they carry round the organization, and that brings
responsibilities or entitles them to carry out certain responsibilities. When
we label a role in a process with such a badge we are saying ‘Anyone acting
this role — carrying out these responsibilities in the process — must have
this badge.’

KEY POINTS

A role instance generally exists independently of an actor to act it.
Generally, the actor of a role instance can change.
At a given moment, there might be no one acting a given role instance.

Role instances start other role instances

We have seen how some roles have permanent instances, permanent in
that they are there when the process concerned starts and still there when
it finishes. (Remember we are looking at a single process at the moment.)
Suppose we are modelling the Prepare the Annual Budget process. We
might expect that the unique role CEO plays a part. When the process of

Basic process concepts

preparing the budget starts, that instance already exists (moreover, when
the process is over and the budget is ready, the instance is still there). To
be precise, we shall say that ‘The role CEO has a pre-existing instance for
the process.’

However some roles may not have instances when the process starts.
Suppose we are modelling a process called Develop a Software Product.
We could imagine that during the early phases of the process/project, we
would want to create a role instance to manage change requests and
appoint someone to carry out that role instance. Once the instance is in
place and has an actor assigned, the management of change requests can
begin. Clearly in this situation we will need instances to be created during
the process, and it will not come as a surprise that one role instance can
cause the creation of new role instances to create new responsibilities. This
corresponds to what happens in real life: one responsibility can create
another responsibility. We shall say that one role can ‘instantiate’ another.
For example, in Develop a Software Product, the (single) instance of the
Project Manager role might instantiate the Change Manager role. This is
what happens when a Project Manager creates the responsibility for
managing change.

In the pharmaceutical R and D industry, when a chemical compound
looks as though it has promising therapeutic properties, a team is often set
up to champion that compound through the long process of getting it to
market. That team has responsibility for managing the compound’s life
thereafter. So the Compound Management Team role is instantiated to
carry out that responsibility. During the compound’s development, many
batches of raw drug material will be made for formulation for clinical trials.
The (abstract) role of Making a Batch is instantiated for each batch - each
time a batch is to be made there is a responsibility created for that; in fact,
there may be any number of instances of that role at any given time,
depending on how many batches are in the process of being made at that
time. (Remember that Making a Batch is not the name of an activity: it is
the name of the responsibility for making a batch.)

Any role that is not permanent as far as the process is concerned will
have to be instantiated at some point — we have called these transient
roles.

Note that creating a new role instance does not imply any allocation of
real people or machines to act the role instance, as far as a RAD is
concerned. The actual team of people who manage the life of a candidate
compound may well change over the many years during which the
compound is developed, but the role instance remains. When a batch of
compound is to be made, the role instance is started and a process
research chemist is allocated to actually make the batch, i.e. to act the role
instance — it could be John or it could be Jill. Again we are being careful to
separate a role instance from its actor. Also, if the new role instance needs
resources (props) to carry out its responsibility, we might be interested in

41

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

42

modelling how it acquires them. When I start work as the manager of a
project, what props can I expect to find on my desk, where did they come
from, and which props do I have to acquire for myself?

KEY POINTS

Some role types have pre-existing instances in a given process.

Other role types must be instantiated during the process: this equates to
creating a new responsibility during a process.

Instantiating a role type only creates the responsibility; allocating actors
to carry out that responsibility is a separate matter.

A role type has an instance profile in a given process:

e It can have one or more pre-existing instances.

e Those instances might be fixed for the duration of the process.

e The actor of a role instance might change during the life of the
instance.

That ‘in a given process’ above is important: a role’s instance profile will
depend on the scope of the process context. As far as the process of taking a
proposed law through Parliament is concerned, the role Member of
Parliament can be considered to have 635 pre-existing instances whose
actors are of no concern to us. But if we are concerned with the process of
electing new Members of Parliament, then the actors and their allocation is
very much a matter of concern. If we are concerned with the (unusual)
process of redefining parliamentary boundaries, and hence with creating
and deleting instances of Member of Parliament, then we shall have a certain
number of pre-existing instances, and potentially a different number of
instances on completion of the process; actors will not be our concern here.

Later, next to the water cooler

Something puzzles me. You're saying — and I understand this - that
responsibilities come and go in the organization. To take the example
earlier, when a new project comes along in Hill Pharm, that creates a new
responsibility for managing the project. Once the project is finished, that
responsibility is gone. So there is a flux of responsibilities washing through
the organization - right?

Right. In fact I like the word flux — a continuous succession of changes ...
that’s what’s happening: responsibilities are coming and going.

But the organogram stays more or less constant. In particular, the
organizational structure doesn’t change with the flow of responsibilities.
What’s happening?

Simple. Every time a new responsibility arises it gets allocated to a post or a
functional group, or one of the other concrete - let us say ‘real-life’ — roles.
When a purchase order is raised, the responsibility for checking and
approving it is created. That responsibility is an abstract role. I would call it
Purchase Order Approving. As you say, as time passes there is a flux of such
role instances, coming and going. Yet all invoices are actually handed to the

Basic process concepts

CFO for checking and approval. So we are allocating all the Purchase Order
Approvingrole instances onto the single instance of CFO. Try the idea with a
different situation: suppose someone calls the Helpdesk.

Pupil: OK, a call comes into the Helpdesk. That creates a responsibility ... to
answer it satisfactorily, say. I guess you’d want to call that role Call
Handling. One way or another the call is routed to a desk. I guess the desk
represents a concrete role. But you would want me to be more accurate: the
desk represents an instance of a concrete role — call it Helpdesk Station —
and the person sitting at that desk is acting that instance. So we have
mapped that instance of Call Handling onto that instance of Helpdesk

Station.

Tutor: Exactly! Now do the same with another situation: the fire service gets a
report of a fire.

Pupil: Right, well, the report creates a responsibility — to put out the fire. The

responsibility is taken on by the fire crew leader. So the responsibility,
which we might give the abstract role name Fire Handling, has been
mapped onto the concrete role Fire Crew Leader. Presumably, when we
model all these processes, we have a choice between modelling the abstract
role — a transient role that comes and goes — or the concrete role that the
responsibility is mapped onto, which is rather more permanent?

Tutor: Precisely. Let me try and capture this. We identified six types of thing we
might find ‘playing a part’ in a process: unique post, unique functional
group etc. Five of them are organizational realities, the sixth is an
abstraction: a ‘pure responsibility’. In many situations we create responsi-
bilities on-the-fly. We’ll see later that such a responsibility typically ‘goes
with’ what we shall call a unit of work (UOW); it’s the responsibility for that
UOW. But that responsibility has to be allocated to something in the
organization: one of the five organizational types of role.

Pupil: So when a customer order arrives we might say that the responsibility to
deal with it is created, and that we give that responsibility (initially at least)
to, say, a Customer Order Clerk. On the RAD, we could choose to model the
abstract role - the responsibility — Customer Order Handling, or the
organizational entity Customer Order Clerk.

Tutor: A good example. A post is another example. The organizational post CEO
means nothing on its own. It is given meaning by the responsibilities that
we allocate to it. The post CEO takes on many responsibilities in many
processes. Some are permanent, many are transient. By acting as CEO, a
person takes on that flux of responsibilities.

Pupil: One final point: organizations depend a great deal these days on their
computer systems. They have systems, often massive systems, that — shall I
say — play a part in the process. Would you consider such a system as a role?

Tutor: In a sense, yes, but I'm going to be a bit cautious about the idea. Later on we
shall indeed see some process models that have such systems as roles,
playing a part in the process. I'm cautious simply because it’s hard to say
that the system ‘takes responsibility’ for anything - it is just a heap of metal
and plastic after all.

You’re looking tired?

43

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

ACTIONS

44

You really have whittled away at this idea of a role. Why should we get
involved with all these subtleties?

Have patience. We shall have some important questions to answer and
these categories of role will help us to answer them:

Do we understand the dynamics of each role?

Do we need to model how instances arise? In particular, how do
responsibilities get identified and created and by whom? Who has the
authority to create a new responsibility in the organization?

Do we need to model how actors become connected to the instances they
are acting? The relationship between actor and role instance is what the
scheduling of staff and resources is all about, and this itself might be part of
the process or indeed another process altogether.

OK. I can see how it would be all too easy when looking at processes to
worry just about what is done, and to forget how things get organized to get
done, and how responsibilities are created and handed around.

Indeed, but there’s more to it than that. A constant theme of Riva is that
organizational activity is massively concurrent: there are many, many
things going on at the same time. If we want to get our heads round it and
get a true and full understanding of that organizational activity, one that
captures that concurrency, then we’ll need ways of describing it in the
language we use. Role instances are one of the sorts of concurrency that we
find. Role instances have their own lives: they operate concurrently. We’ll
see later in this chapter that they also operate independently except where
they collaborate through interactions.

From now on, we must take care to differentiate between a role type, a role
instance, and the actor of a role instance, unless the sense is clear from the
context.

(If you are familiar with the notion of use cases in the Unified Modeling
Language (UML), you will need to make a concept switch from UML'’s use
of role and actor to Riva’s. UML confusingly defines a use case as ‘The
specification of [my italics] a sequence of actions ... that a system (or other
entity) can perform, interacting with actors of the system’, an actor as ‘A
coherent set of roles that users of use cases play when interacting with
these use cases’. An actor has one role for each use case with which it
communicates, and a role as ‘The named specific behaviour of an entity
participating in a particular context’. (See www.omg.org/uml.)

When we look at a single process, we know that we chunk everything that
gets done in the process into roles, and that each role represents an area of
responsibility within the process. We must now look inside each role.

Actions are what actors do on their own in their roles to carry out their
responsibilities. Let’s take some examples:

Basic process concepts

e In the process of developing a new pharmaceutical drug, actions
might include Choose lead molecule, Carry out a clinical trial, Prepare
the submission to Regulatory Authority and Clean the pilot plant.

e In the process of buying a house we might find actions such as Choose
estate agents (realtors), Obtain finance, Obtain planning permission
and Negotiate the price.

e In the process of developing a software system, actions might include
Prepare the project plan, Prepare use case model, Carry out a proof
obligation, Transform an algorithm, Verify a code module against
specification, Build the system, and Add a component to the object
library.

Note how we name actions with verbs: ‘prepare’, ‘draw up’, ‘verify’ etc.

An action needs to be well defined; in particular we need to know what
makes it start and what makes it stop, what state the world is in when it
starts and what state the world is in when it stops, i.e. when and why an
action is done. Let’s look at this in more detail.

Like roles, actions are defined in Riva as types that have instances. If we
are speaking informally about a process we shall say ‘Action A starts’; if we
want to be formal and precise we shall say ‘An instance of action type A is
created.” An instance of an action type is created when the organization’s
process enters a particular state: we call this the activating condition for
the action. This is a sufficient condition for the action instance to start. For
example, in an organization that has a policy of paying invoices three
months after receiving them, the action Pay invoiced amount would have
as its activating condition the fact that payment of an invoice has been due
for three months. In an organization that pays on receipt, the activating
condition would be the fact that an invoice has been received. The post-
condition of an action is the state of the world when the action (instance)
has finished. Pay invoiced amount would probably have as (part of) its
post-condition the fact that a cheque for the invoiced amount had been
sent to the supplier.

Not surprisingly, the post-condition of one action will often be the
activating condition for another. So in the Purchase Materials process in
our prompt-paying organization, the post-condition of the action Receive
invoice — probably Invoice received — will be the activating condition of the
action Pay invoiced amount. In this case we might say that ‘the action Pay
invoiced amount follows the action Receive invoice' or that ‘the action Pay
invoiced amount is consequent on the action Receive invoice'.

There may be other conditions that are also true when an action is
started and which we want to note (though they are not what makes the
action start); these are collectively referred to as the action’s pre-condition.
They are necessary but not sufficient conditions for the action to start.
Thus, in the late-paying organization, the action Pay invoiced amount
might have as a pre-condition the fact that payment has been authorized.

45

Business Process Management

46

Pupil:

Tutor:

Pupil:

Tutor:

Authorization does not activate payment: ‘due for three months’ does.
Payment cannot occur unless there has been authorization.

(Strictly, a post-condition is a necessary but not sufficient condition for
completion of the action. We can also define a stopping condition of an
action, which is the sufficient condition for the action instance to stop.)

As an example in Develop a Software System, suppose we have an
action (type) called Compile component source code. The activating
condition for this could be Component source code successfully syntax-
checked; a pre-condition could be Access available to validated library; the
post-condition could be Corresponding object file available in the object
directory.

Finally, let’s note that an action can have alternative activating
conditions: there can be a number of different situations that cause me
to send an email, or write out a cheque, or compile some source code.
Each has a different activating condition, but they will all share the same
pre-conditions.

Actions change the state of things

I’'ve noticed that you’ve made no attempt to define an action in terms of
inputs and outputs. I've seen actions described as ways of ‘transforming
inputs into outputs’. Why don’t we do that in Riva?

Because that manufacturing-oriented way of thinking about actions and
processes isn’t helpful. We end up distorting the idea of an input and an
output — and hence our understanding of an action - just to stick with the
metaphor. The compiled object code could certainly be thought of as an
‘output’ of the action Compile component source code, a product of the
action. But it’s nonsense to say that the source code was transformed into
the object code. It clearly wasn’t. The source code of a software component
isn’t consumed by the action - it still exists after the compilation - so calling
it an input is strange. A dirty car is not consumed by the act of washing it.
No, I guess not. The purpose of washing a car is to change its state from
‘dirty’ to ‘clean’. Ah ... I described it in terms of states. But couldn’t we say
that a dirty car was the input and a clean car was the output?

We could, and one way I could implement that is to crush and dispose of the
dirty car you give me and hand you back a clean car. I didn’t transform the
car you gave me but I satisfied the input-output specification. What sense
does it make to say that a purchase order is transformed into goods? The
whole input-transform—-output metaphor leads us into absurd statements
and is best avoided.

It is much more natural and less forced to think of the state of the world
before an action starts — there is a particular software component that is
uncompiled - and its state after the action has finished - that there is an
object-code file associated with the component source code in the
development library. The purpose of the action is to change the state of
(that part of) the world. This all becomes much more obvious when we are
dealing with desired outcomes such as ‘a happy customer’. I would rather

Pupil:

Tutor:

Basic process concepts

say that an action leaves a customer in a happy state, rather than that it
outputs a happy customer — as though they have popped out of the side of
the box smiling, having gone in the other side looking glum. And I would
certainly not want to say that an action ‘transforms a purchase order into a
happy customer’. That sounds like science fiction.

One example that comes to mind is the process for curing someone of an
illness. The input - forgive me - is a sick patient and the output is a well
patient. What’s wrong with that?

Remember my constant message: when we think about processes, we are
thinking about dynamics. When we think about actions, we want to know
when things happen, when actions start. States do that for us. When we say ‘C
is the activating condition for action A’ we are defining the dynamics of that
part of the process: Cis what makes A start. Defining the inputs of A (whatever
itmeans) doesn’t tell us what makes Astart. Inputs and outputs might capture
data dynamics but they don’t capture process dynamics. States do.

If you tell me that the action Cure a sick person has a sick person as its
input and a well person as its output, I'm no wiser about what starts the
activity, which seems to me to be vital information. I need to know that its
activating state is Sick person waiting in reception, and that its post-
condition is Well person has returned home, or possibly — let’s be realistic —
Dead person is in mortuary. (Of course, if we do allow that other possible
post-condition, we have named the action badly.)

Finally, we shall see in a moment the importance of goals of a process.
Goals are, of course, just desired states, so we shall need to have the
language in place for talking about states.

Actions have relationships

Actions not only have important properties of their own, they also relate to

each other in different ways. There are three ways:

e Action A might always follow action B in role R: a cheque cannot be
sent until the expense claim has been approved. So actions may be
ordered and follow a particular sequence. The action Approve expense
claim must precede the action Send cheque for expenses within the role
Finance.

e Either action A is carried out or action B is carried out in role R
depending on whether some condition C holds: if the expense claim is
over £1,000 it is paid by electronic transfer, otherwise by cheque. So
actions may be conditional. The action Pay expense claim by electronic
transfer can only start (be instantiated) if the condition expense claim
exceeds £1,000 is true; the action Pay expense claim by cheque can only
start (be instantiated) if it is false.

e At some point both action A and action B can proceed in parallel in
role R: once the expense claim has been approved, the money can be
paid to the claimant and the relevant department budget can be
debited. So actions may be concurrent. The action Pay expenses to

47

Business Process Management

claimant can proceed concurrently with Debit departmental budget
within the role Finance.

In our process model we will want to be able to show where actions are
sequential, conditional or concurrent. These will be one way in which
business rules will be represented.

KEY POINTS

An action is carried out by a role on its own.

The activating condition of an action is a state that causes an action to
start (be instantiated).

The post-condition of an action is the state of the world when the action
has finished.

We define the dynamics of roles in terms of state changes.

INTERACTIONS

48

Roles ‘chunk’ the activity in a process. Roles carry out actions on their own
account. But we started from the important axiom that the main way
things happen in a process, especially in terms of moving the process on or
making progress, is through the interactions that take place between roles,
such as when a manager delegates a task to a subordinate or a price is
negotiated.

In the process Develop a Software System for a Client, the role Project
Manager will want to interact with the roles Designer and Programmer to
obtain status reports on work completed, and the Designer role will want to
pass specifications of programs to be written to the Programmer role. In
the process Develop a Portfolio of Products, the Board of Directors will
want to pass a statement of direction to the Product Strategy Board along
with a budget level and targets. In return the Product Strategy Board will
present the Board of Directors with information on the chosen portfolio,
and progress reports against budget and targets.

In Riva terms, an interaction is neutral and has no implied direction — it
is just some coordination between roles, a collaborative act. But an
interaction might involve the transfer of something — what we shall call a
gram — from the body of one role to that of the other. For example, the
Divisional Manager role interacts with the Project Manager role so that the
former can pass the latter some terms of reference for the project they are
to manage. But an interaction need not involve the transfer of a gram: for
instance, you and I might interact simply to agree on something — ‘nothing
changes hands’. For instance, the Sales Team, the Marketing Team, and
the Production Group of a product company might collectively decide
when a new product should go to market: that interaction might consist of
a discussion around a table.

Basic process concepts

As with actions, we will think of interactions in terms of states and state
changes, not in terms of inputs and outputs. When I reimburse you with
your expenses, I see it in terms of your change of state: before the
interaction you didn’t have your expenses, after the interaction you did;
before the interaction I had the money, afterwards you had it.

An interaction can be two-party — involving two role instances - or
multi-party, involving a number of role instances. However many parties
are involved, an interaction is always synchronous:

e it starts at the same moment for each party, as soon as they are all
ready;

e it completes at the same moment for each party, as soon as they have
all finished.

One way of thinking about an interaction is as an alignment of states. For
you and me to interact, we must both be ‘waiting’ in the required state
beforehand; we go through the interaction together, and then we go to our
respective after-states.

In some cases, an interaction might physically take a few seconds (I give
you a memo containing some terms of reference), in others, months (a
vendor and purchaser agree on the contractual terms of a sale). As
elsewhere in our modelling notation, we do not capture absolute time:
there is no time axis on our models. We might choose to annotate actions
and interactions with their duration in some way, but no more.

KEY POINTS

Interactions between roles are the way that collaboration happens in a
process.

Interactions are the way that role instances coordinate their activity.

In some interactions grams change hands.

Interactions align the states of the interacting parties.

PROCESS GOALS

Point-wise goals

Processes are there for a reason. For instance, the goal of a process might
be to deliver a computer system, to provide a medical procedure to a
patient, or to manage a research budget. It must be possible to see from
our process models how a process is achieving the goals set for it, and
ideally, to be able to identify the point(s) in the process where those goals
can be said to have been achieved or maintained.

In the simplest case, we will be able to identify some point in the activity
of a particular role where the state of the process is ‘goal achieved’. After a
particular action or interaction has completed we can recognize that the

49

Business Process Management

50

goal has been achieved. For instance, in a process for handling a reported
credit card loss, we might say that once there has been an interaction with
the customer in which the latter has been sent a new credit card, the goal
Client has been sent replacement credit card has been achieved. We can
identify the role in which, at some point, that state has been achieved, i.e.
the state at that point is the goal. Reaching that state is reaching the goal.

The goal of an insurance company in its New Policy Applications
Department might be to respond to a customer with a proposal within
seven days of receipt of their application. Each step in the process can
contribute to the successful achievement of that ‘point-wise’ goal: there
comes a point when we can say ‘Here the goal of the process has been
achieved.” The goal of the process of carrying out a software development
project for a client is to satisfy the client with a timely delivery of working
software. The only point at which we can check whether we have been
successful is the point of delivery: is it on time and does it work? Until that
point we can only make predictions.

In some situations there may be several goals, leading not to one state in
one role but a combination of states in a number of roles. For instance, the
goals of the Handle a Reported Credit Card Loss process might be not
only that a new card is sent to the customer, but also that the credit card
fraud bureau is informed and that the card number is entered on the list of
lost cards that is circulated to retailers.

The New Policy Applications Department in a life insurance company
wants to get a correct policy proposal out within seven days of receipt of
the application; it might also want to ensure that the business it takes on is
good business, i.e. that the premiums it charges adequately cover the risk;
and it might also have the goal of making the terms offered available to
those assessing the competitiveness of the company’s products.

On the way towards achieving a final goal, we can often identify sub-
goals which represent milestones of some sort. Issuing the insurance
proposal to the customer requires that, at some point en route, the risk be
satisfactorily assessed and that approval be obtained for the premium
offered.

This indicates, I hope, how important it is to see a process model as a
description of the way that the organization changes state, from its initial
state (someone wanting a service or whatever) to its final state (service
delivered).

Steady-state goals

When I run my life in financial terms, one of my aims is to regulate my
earning and spending so as to keep my bank balance in credit. At any
moment in time, I prefer to have the bank looking after my money rather
than the other way round. I don’t like paying interest. The critical bit is ‘at
any moment in time’. I want to see a steady state in which I am in credit.

ENTITIES

Pupil:
Tutor:

Pupil:

Tutor:

Basic process concepts

The steady-state goal is more complicated. By definition, it says that
something is true at all times or — softening this a little — that it is true at a
number of points in the process (the times when we choose to look, say). I
might want to be sure that at all times everyone has the latest information
on product features, or that expenditure is always kept within the budget
level set at the start of the year. The process of managing cash flow in a
company has the same goal: that of maintaining a steady state in which the
company keeps a positive cash flow as expenditure and revenue rise and
fall. If the process is successful we should be able to observe the company
at any moment in time and note a positive cash flow. We shall unpick this

a little more later.

KEY POINTS

Processes have goals.
Goals are simply desired states.
Goals can be point-wise or steady state.

Why isn’t data or information in our list of concepts?

The simple answer is that in this approach to business processes we
concentrate unashamedly on what people do, rather than on what people
do it to or what they do it with. Once we have chosen a structure for the
organization and the processes it will operate, then we can decide on the
information needed by individuals and groups to perform those processes
in that organizational structure.

Process precedes information.

Once we have a process model - a description of how the business does its
business or plans to do its business — we can start to investigate the
information needs of the process: Who needs what information to do that or
to make that decision? And how does that information get to that person?
We might think of documents, in particular, as the oil that lets the wheels
turn, but they aren’t the wheels!

You’ve made a lot of disapproving noises about inputs and outputs. And
now you’re keeping low on information. Do you deny the existence of things
altogether? For instance, a manager will prepare a Plan, write a Report, draw
up Terms of Reference, or approve a Document. Plan, Report, Terms of
Reference, and Document are entities. A programmer uses a Specification
during the programming action and produces a Program. A warehouse
person uses a Picking List during the packing action.

Yes, we shall indeed talk about entities. And we’ll use the word ‘entity’ for
anything that is the subject matter of an action. Or indeed an interaction:
when I delegate a task to you I perhaps pass you some Terms of Reference;
and when you have finished the work you will pass me the Results. The
grams of an interaction are frequently entities.

51

Business Process Management

52

Pupil:

Tutor:

Pupil:

Tutor:

Like roles and actions, Riva entities come as fypes which can be instantiated.
In fact, if an action instance produces an output we consider it to be
instantiating the relevant entity type.

When we define an entity, we will want to ascribe properties to it. Amongst
those that are covered by Riva are the parts from which a compound entity
is composed if it is a composite thing and invariants, i.e. things that are
always true about the entity. For example, a Technical Specification might
be defined to be made up of a Contents List, Document Control Section, a
Scope Section, a Control Flow Section, and a Data Flow Section, followed by
Performance Details. A Production Plan might be made up of a List of Input
Resources, a Timetable, and a Definition of the process to be used. An
invariant of the entity Production Lathe is that it is up to date in its
maintenance schedule.

And entities do play a part, don’t they? If I ring up someone who is doing
something for me and ask them how things are getting on, they’ll often tell
me about the state of the objects that are involved: ‘Your application forms
have been approved’, ‘Your car will be ready in half an hour’, ‘The catalogue
you ordered is on its way to you’, and so on.

That’s right. And more generally, when we define the activating condition,
pre-conditions or post-condition of an action, we will often do it in terms of
the states of entities. For example:

The activating condition of the action Send Invoice is that there is an Invoice
and it has been approved.

e A pre-condition of the action Send Invoice is that the goods have been

received in good condition.

e A post-condition of the action Send Invoice is that the Database has been

updated with the date the invoice was sent, that the invoice has been sent,
and so on.

So we will have entities, but information — presumably about those entities —
is simply their state? And we shall talk about state? And we shan’t
concentrate on information per se?

Exactly. If our task is to understand a process, then worrying about the
information of the process is a bit like trying to understand a document by
worrying about the typeface in which it is written.

KEY POINTS

Entities are the subject matter of actions and interactions.

Entities are instantiated, just like any other types.

Entities have states, some of which are used in defining actions and
interactions.

Information consists of state descriptions.

Basic process concepts

THINGS ARE COMPLICATED

Pupil: You've outlined the ideas behind each of the central concepts — roles,
actions, interactions, and so on — but I sense that there is a more general
message that you’re getting at. This notion of instance seems important.

Tutor: Yes, in fact there are two important ‘inner’ messages here. The first is the
central place of instantiation: the making of new instances. It’s important
because it’s what drives the dynamics of a process. We’ve seen how roles in
particular are instantiated: new responsibilities are created dynamically
during a process. We’ll look more closely later at the instantiation of actions
and interactions.

Pupil: OK, so an organization at any one moment is just a mass of instances, and
an organization viewed over time is a flux of instances. What’s the second
inner message?

Tutor: It’'s a closely related message: processes are about concurrency: lots of
things are happening at the same time. When we walk into the building and
watch the mass of organizational activity, we don’t see a simple flowchart
being followed, with someone’s finger tracing down the boxes. We see many
instances of many different processes in progress simultaneously. Within
each process instance we see many role instances active at the same time.
We see role instances coming and going as responsibilities arise and cease.
And within each role instance we see potentially many threads of activity in
progress. In summary, there is a massive network of interrelated threads
operating.

Pupil: So, all those instances mean concurrency. And presumably, what an
organization achieves it achieves because of all that concurrency - things
don’t happen because of sequential activity.

Tutor: Exactly. Let me give you an analogy which my colleague Clive Roberts
embodies in the logo of his company Co-ordination Systems. When geese fly
long distances, each bird uses the same tactic: fly in a specific relationship
to the next bird. The result is a chevron of birds. That chevron is an
emergent behaviour resulting from the interactions and concurrent activity
of all the birds. Yet no bird looks at the overall shape and decides how to
respond. It follows its own tactic. The effect of the organization is an
emergent property resulting from the interactions and concurrent activity
of many role instances across many process instances.

To truly understand our processes as dynamic objects we must grapple with
instantiation and with concurrency, and in particular find ways to model
them. And, if we want to design sets of processes that we can actually
execute on a Business Process Management System of the sort we shall
explore in Chapter 13, we shall need to be able to design those dynamics
that give the right emergent behaviour.

Instantiation and concurrency are central themes of Riva, and when we
have developed the argument we shall turn to the idea of mobility of
processes.

53

2 Modelling a process

Provides all the vocabulary necessary to represent a single process in a Role Activity
Diagram (RAD).

SOME HEALTH WARNINGS

We have now looked at our needs as process modellers and at the aspects
of the real world that we shall want to see in our models if we are going to
satisfy those needs. It’s time to look at the language for our process
models.

But I want to start with two warnings.

We are going to begin by modelling a single process. But this begs a
rather important question: how did we decide that this process exists? Put
another way, how do we know it makes sense to call this particular ‘pile’ of
activity a ‘process’? In any organization we might guess there will be many
different processes. We might guess that they are related: that the process
for purchasing goods is in some way related to the process for dealing with
invoices; that the process for opening a new bank account for a customer
is in some way related to the process for checking a person’s credit; and so
on. So how did we chunk all the activity in the organization into those
processes and then choose this one to model? These are questions we
must, tantalizingly, leave unanswered until Chapter 6. Once we have the
language necessary to model a single process, we can look at the different
sorts of relationships that can exist between processes, and then build up a
theory of ‘chunking’ that will allow us to answer these crucial questions.

This introduces a danger: if you don’t read further than this chapter you
may go off and start modelling things that you think are processes but
which could only be called ‘collections of activities’, collections that don’t
have the coherence that exists in the real world. The axe man cometh.

That’s the first warning: be sure that what you are modelling is a process.

Here’s the second warning: there is no single model of a process. Our
viewpoint will vary as our motives vary. If we are interested in why a
process seems to bottleneck in certain areas, we might want to model the
process from the point of view of how work is allocated to individuals. If
we are interested in how the functional subdivisions of the organization
help or hinder the flow of a transaction through a process that crosses the
functional boundaries, we might want to view the process in terms of those
boundaries and the interactions across them, without worrying too much
about how each function does its work.

55

Business Process Management

56

There are as many models of a single process as there are viewpoints
that we might want to take. The perspective taken, what is left in and what
is left out — all these decisions rest on our judgement as modellers. Again
no simple rule will say what perspective we should take in any given
situation, though in later chapters we shall draw up some guidelines. This
is a point that I shall return to many times in the book. Relevance is in the
eye of the modeller, too. A model is ‘right’ ... if it helps. It helps if it reveals
things we want to know, or helps us answer questions, or can be analysed,
or can be adjusted to test proposed changes, or simply aids understanding.
We shall see in Chapter 8 that the most important thing at the start of a
modelling activity is to be clear about the purpose of the model. The model
itself cannot do anything - it is a tool that will work well in the right hands
in the right situation, and badly otherwise.

Indeed, we might take several perspectives corresponding to the
different perceived purposes of the process we are looking at. In our
work for a pharmaceutical company, Tim Huckvale and I initially prepared
two models of a particular process, essentially seeing the same process
from two perspectives: one from that of the scientists doing the science
necessary to take a new drug compound to market, another from that of
the management pushing the development of the compound through the
various stages of process scale-up and trials whilst weeding out those
compounds that would not offer future success. In Soft Systems terms,
these views could be considered to be holons which we ‘put against the
world’ in order to learn about it (see for instance Checkland and Scholes,
1990, and Patching, 1990). Each corresponds to a different idea of the
purpose of the process (/system). The Research Chemist saw the purpose
of the process we were looking at to be to produce a way of making the
drug compound safely in the required quantities and to the required
purity; the Regulatory Affairs Group saw its purpose to be the production
of the information and audit trail of development which would satisfy the
industry regulators; the Clinician saw its purpose to be the timely
production of sufficient quantities of drug for the clinical trials they were
planning; the senior management saw the purpose to be either to get a
successful-looking compound to manufacturing as quickly as possible or
to drop an unsuccessful-looking compound as early as possible; and so on.

If I walk into a map store and ask for a map, I'll hope I'm asked ‘What do
you want the map for? I could have a number of reasons:

e To walk from Paddington railway station to Victoria railway station in
London. I need a map to help me find my way around. In particular, it
will need to be a fairly detailed map as I am interested in being able to
trace my steps through London’s network of streets. I shall need street
names but won’t need to know if streets are one-way for vehicles.

e To drive from Bath to Birmingham. Again I'm looking for help in
finding my way around, but now I shall need a map on a different

Modelling a process

scale: one that shows me the broad shape of the country and the
major roads will do. I won’t need anything showing country lanes,
small villages, or the local topography of the countryside I shall be
passing through. It would be useful if the map also had outline street
maps of Bath and Birmingham.

e To allow me to agree with someone on a spot in London where we will
meet. In this case my reason for needing a map involves someone else:
we will use the map as an agreed definition of something; we can
agree on where we will meet in predefined surroundings. If we are
meeting at a pub, it would be good if the map showed the locations of
pubs.

e To agree on a boundary to be drawn on the sale of some land. Here we
want to define something not already defined, and to place it in some
larger context, with references to existing features.

e To decide where to move an existing footpath. In England a footpath
may well go back many centuries; its end points and its route will have
been determined by needs from the past. Changes in surroundings
might make moving it sensible. We need to know what the options are.
We will be working at quite a small scale.

e To decide where to route a new road. If I am planning a completely
new road from A to B, I shall need to explore the options and the
impact that each will have on things that I want untouched. I want a
map that shows topography on a large scale, at a level of detail that
allows the exploration of impact.

e To record the position of underground cables. Here, as a cable
company say, I shall be maintaining my own maps of where my cables
run relative to the infrastructure of the town. I need these maps to
allow my staff to find the cables in the future.

The parallels between maps and process models should be clear. Before we
carry out some process modelling we will need to know quite clearly what
we want from the model so that we can choose the scale it is at, and the
sorts of detail it shows.

KEY POINTS

Before modelling a process, be sure it is a process — always start with a
process architecture.

There is no such thing as the model of a process.

Worse, all models are wrong ... but some are useful.

To get to useful answers we must ask the right questions.

Our choice of model is guided by the questions we want to answer.
Before you start, answer the question ‘What questions do I want to
answer with this model?” and write your answer on the wall.

57

Business Process Management

THE ROLE ACTIVITY DIAGRAM

A Riva process model takes the form of a RAD. A RAD shows the roles that
play a part in the process, and their component actions and interactions,
together with external events and the logic that determines which actions
are carried out when. So, it shows the activity of roles in the process and
how they collaborate.

I have summarized the notation for RADs — the various sorts of blobs — in
Figure 2.1. This is the language we shall use. In this chapter we shall look at
each of the elements of this language and take each one in two steps: how
to use it diagrammatically, and what to do in different modelling
situations. (The little spring-shaped symbol means ‘don’t care’. It is a
sort of pictorial ellipsis ... and you will find it used a lot in sample RADs
throughout the book. If it appears at the start of a thread it means ‘We
don’t care how we got here.’ If it appears at the end of a thread it means
‘We don’t care what happens after here.’ If it appears in the middle of a
thread it means ‘We don’t care how we cross this gap.’)

Figure 2.2 shows a RAD for a simple process, to give you a feel for what a
complete RAD looks like.

A RAD represents the whole of a process as far as we wish to capture it.
Somewhere on the RAD we name the process it is modelling. This might be
Develop a Software System for a Client, Develop a Portfolio of Products,
Arrange a Payment of Benefits or Manage the flow of Customer Queries.
Remember, we haven’t yet discussed just what constitutes a process, how
to decide what goes in one process rather than another, or how processes
fit together — all of this will come later.

Let’s now look in detail at the RAD notation and how we use it to capture
the concepts covered in Chapter 1.

(Computer tools that support the preparation of RADs may use slightly
different symbols but the shape is of no importance. It is the meaning we
attach to those symbols that is important, and it is that meaning that this
chapter addresses.)

REPRESENTING ROLES

58

Each role in the process is represented by a shaded block with rounded
edges. Everything the role does appears in that box and since only roles
can do things, everything on a RAD is inside a role box. In Figure 2.2 there
are three roles with the names Divisional Director, Project Manager, and
Designer. All actions and interactions take place within those three roles.
We can turn this around and say that everything is done as part of carrying
out some responsibility or other.

The name of the role appears immediately above or below the block,
whichever is convenient.

Modelling a process

Designer
A state
A state description <?Pro]ect completed
Atrigger 3l Project started
A role
An action * Write the project plan
yes no
design satisfactory? Alternative paths
depending on Start another role Eg Start new Designer
the condition:

‘case refinement'

An interaction
between two roles [::‘ Agree schedule [::‘
Concurrent paths:
‘part refinement’ . i
An interaction [:] [:] [:]
between three roles

FIGURE 2.1 The RAD notation

We sometimes draw a single role as a number of separate shaded blocks
if there are indeed separate parts of the role and it makes the RAD easier to
draw. Sometimes, as another modelling convenience, it is handy to let the
boxes of different roles overlap, provided of course there is no ambiguity
about what is in which role. Where we do overlap them we use different
shading to distinguish the two roles — see Figure 3.5 as an example of both
of these modelling conveniences.

In Chapter 1 we examined several different sorts of role: unique
functional group, type of person etc. Our notation does not differentiate
these graphically.

Although each of the roles in Figure 2.2 consists of just one ‘thread’
starting at the top of its grey box, a role might well consist of a number of
separate threads corresponding to different things that it does. We shall
see more of this later.

Representing new role instances being started - role
instantiation

One role instance can instantiate another role, i.e. start a new instance of
that role: this action is indicated by a square with a cross inside it. In
Figure 2.2, the Project Manager role instantiates the Designer role. The
caption against the crossed box identifies the role being instantiated (see
Figure 2.3).

This idea of instantiating a role is of course a rather abstract one. In
Chapter 1, I equated it with the idea of ‘creating an area of responsibility’,
something separate from giving that responsibility to a real person, which,
in Riva, we see as allocating an actor to a role instance — what we call
‘casting’, to follow the theatrical metaphor. We probably won’t want to

59

Business Process Management

Divisional Director ¢ N

New project started Projec t Manager

Start new Project Manager /

Agree TOR and delegate—

j Start new Designer

Run a client project

Designer

Write TOR for Designer (

Agree TOR and delegate

Prepare a plan

Give plan

Prepare an estimate

Pass over estimate

Choose a
design method

yes
Design of required quality?

=

Produce design

Carry out design quality check

no

Notify of completion

\

Produce final debrief K
|

Project completed and debriefed

-

FIGURE 2.2 A RAD for a simple process

write Instantiate Designer role or Instantiate the Task Force role as the
caption to a crossed box on a RAD. We are more likely to say things like:

e Start a Designer role.

e Create the responsibility for managing the project.

e Set up a Task Force.

e Get a Task Force going.

Egl Start up a Task Force

FIGURE 2.3 Instantiating the Task Force role

60

Modelling a process

Strictly we should not say Appoint a Task Force as that really is about
casting actors for the role instance. Indeed, whenever we instantiate a role,
we have a modelling decision to make: do we want to model the casting of
an actor to carry out the new role instance? Like all modelling decisions,
the answer will depend on the purpose of the model. If we decide we do
want to cover that aspect, we can expect the casting of the actor to be done
after the instantiation: minimally an action such as Nominate person to
manage new project, but potentially an interaction with other roles to
come to a choice, or even with other processes responsible for resourcing.

In a RAD we have no separate symbol to represent the ‘ending’ of a role
instance once its work is done. If we need to show this explicitly we simply
use an action labelled something like Close down this Task Force.

Representing roles with pre-existing instances

We have seen that some role types have pre-existing instances: instances
that are ‘in place’ when the process starts. For instance, we might expect
that when the Handle a Customer Complaint process starts there is an
instance of the role Customer already in place. It is important for us to
distinguish those roles graphically for a very good reason: when we look at
a RAD we want to be able to tell which roles have instances and hence
where process activity can start. If a role does not have an instance in place
when the process starts then there can be no activity to do with that role.
The role must be instantiated first.

To mark a role with a single pre-existing instance we place a tick v next
to its name. If the role has exactly four pre-existing instances then we place
the number 4 next to the tick: v/4. If it has an indeterminate number of
instances we mark it with ‘/n’. See Figure 2.4. If a role has no tick against

Marketing Call Centre Divisional
Manager v/ Operator v Director v

o

FIGURE 2.4 Roles with pre-existing instances

its name we know immediately that, when the process starts, there are no
instances of it and we can therefore expect to find it being instantiated by
another role somewhere on the RAD.

Choosing and modelling roles

Different types of role

We know that roles come in different flavours. Does it make sense to have
differently flavoured roles in the same model? The answer to this question,
and to many similar ones, is ‘Yes, if it makes sense’! When we model a

61

Business Process Management

62

process we have a purpose in mind. That purpose will tell us what makes
sense. Let’s start by looking at the different types of role and when we
might use them:

e A unique functional position or post.

Take the role Chief Executive. If we decide to have that role in our
model we are clearly saying ‘These are the responsibilities in this
process that are placed on the desk of the person with the title “Chief
Executive”.” It’s highly likely that the Chief Executive will have a host of
other responsibilities in other processes. But a particular process
model only shows their responsibilities in this process. The box
marked Chief Executive in this model is not a full definition of the
responsibilities of that post.

Since such a role has only one instance we can expect that instance to
be pre-existing and hence the role name will have an accompanying
tick.

A generic functional position or post.

If all the Divisional Managers are in place when the process starts then
we will put a tick against the role name. If we know there are six
Divisional Managers then we can put a 6 next to the tick; if we don’t
care or only know that there is at least one Divisional Manager when
the process runs then we put an n against the tick.

If there are no Divisional Managers at the start of the process, then
their creation must be part of the process.

A unique functional group.

The situation of a unique functional group is similar to the unique
functional post: there will almost certainly be a single instance at the
start of the process and hence a tick next to the role name.

A generic functional group.

Generic functional groups work like generic functional posts. An
example might be Retail Branch in the process Prepare the Annual
Sales Forecast. There will be a number - possibly indefinite — of them
at the start of the process, and we shall tick the role name
appropriately. This sort of functional group typically has a more-or-
less permanent existence — unless of course we are looking at the
process for deciding to open new retail branches and close existing
ones.

A generic type of person.

Customer is the typical generic-type-of-person role. In most situations,
the role will appear with a tick indicating a single pre-existing
instance.

Modelling a process

e An abstraction.
Here the situation changes. Let’s take an example: Project Managing.
With abstract roles like this, we are naming the contents of the box:
‘The set of responsibilities represented by this box we will call Project
Managing.’
The term ‘Project Manager’ is ambiguous in that it is used in different
ways. Like some organizations, we might use it as a synonym for
Project Managing: an abstract, transient role, whose instances only
last as long as the projects they manage, each being associated one-to-
one with the project. I could say ‘I am the project manager of the
Battlebridge Project.” On the other hand we might use it as a badge,
identifying people qualified to act instances of the role Project
Managing: 1 might say I'm a Project Manager’ meaning that I get
given projects to manage.
A more pointed example might be Large Claim Approving, where we
are naming the set of actions and interactions that carry out the
responsibility of approving large claims. We have abstracted the role
away from the organization and its structure — we are not saying what
post a person must hold to do these actions and interactions, or what
qualifications they must have - we are simply labelling the
responsibility.
An important abstraction that we shall see more of later is the sort that
is also transient in the same way that a Project Team can be. Suppose I
am a customer and make a complaint. In essence, I generate a
responsibility to handle my complaint. It is very common in Riva to
identify that responsibility as a role which is instantiated when a
complaint arrives, deals with that and only that one complaint, and
vanishes once that complaint has been dealt with. If we have 127
complaints being dealt with at a particular moment then we will find
127 instances of the role Complaint Handling in the organization. The
moment a complaint is closed there will be 126 instances and if two
new ones arrive, the count will go up to 128.

Abstract roles might or might not have pre-existing instances on a
RAD.

(Ticking pre-existing roles is obviously important when it is not obvious
which roles have pre-existing instances and when we need to know. In the
many snippets of RADs in this book, I have not always used ticks, in
particular where the situation is obvious or does not matter.)

Abstract and concrete roles

The last type of role in the above list — the abstract role - is important. We
saw in Chapter 1 that such an abstract role is almost a definition of the
responsibility itself, rather than a label of a post that typically gets to carry

63

Business Process Management

64

out that responsibility. In a sense, we are getting closer to the role itself
when we think of it in such abstract terms. A recurring theme will be the
difference between our intent and the mechanism we use. We can model a
process in terms of intent or of mechanism. For instance, if you ask me
what I am doing I might answer ‘I'm pressing keys on a keyboard’: it’s true,
I am. But you might have expected the answer ‘I'm writing a book.” I'm
doing that too ... and the mechanism I am using is pressing keys on a
keyboard. My intent is to write a book; I am doing it by pressing keys.

This distinction crops up when we choose the roles in a RAD. Do we
want to talk about mechanism or intent? Is the mechanism that the
Finance Director is the post that actually approves the payment of large
invoices? Is the intent that the role executes the responsibility for
Approving large invoices? It is probably, both so we have a modelling
decision to make: Finance Director or Approving large invoices? The answer
as ever will be obvious as soon as we remember why we are drawing this
RAD. If we are preparing a process model as a work instruction then we
had better be very specific about who does each job: we shall choose
Finance Director. If we are trying to get inside a process and model what is
really going on, or we are designing a new process and have no
preconceptions about who does what, we shall choose Approving large
invoices. But we shall see more of this decision and its answers in later
chapters when we look at using Riva in different situations.

Committees and meetings as roles

It’s often the case that a corporate body such as ‘The Board’ acts as a single
role that performs various actions — monitoring, acting as an approval
authority, planning etc — whilst at other points in the process the
individual members act in their own right: CEO, CFO, CIO etc. The
Divisional Directors might act collectively in one role — Divisional
Management Committee — and individually in their own right in the role
Divisional Director. In the latter case we might expect a Divisional Director
to have an interaction with the Divisional Management Committee in
order to submit a divisional plan as input to the corporate plan. If Shirley is
a Divisional Director she will act both of the roles in that process, putting
on the right hat at the right moment. She has two hats: one as the actor of
an instance of the role Divisional Director and another as an actor of the
single instance of the role Divisional Management Committee.

Equally, it is sometimes useful to regard a regular meeting as playing a
role in a process, particularly if it has some executive responsibility. A
meeting might be ordained to happen monthly in order to agree the
priorities of the coming month’s activity, to approve the expenditure of a
department, or simply to ensure an exchange of information between the
attendees. Such a role, e.g. Monthly Planning Meeting, might therefore
appear on a RAD with a /.

Modelling a process

People as roles

In the same way that a named department can be seen as a role, so can a
named person. If we are modelling the Respond to Customer Complaint
process in a very concrete way and Mary is the one who is responsible for
calling customers who have left messages, then we can feel quite at ease
equating her with that responsibility. On the other hand if we wanted to
‘stand back’ from the process and take a rather more abstract view of it,
then we would probably not want to equate responsibilities with their
current actors, and the role called Mary might appear as Customer Recall,
say.

Computer systems as roles

We saw earlier that a computer can be an actor of a role (instance): in the
work of the Accounts Department we will find people doing things
(handling purchases, invoices, orders, cash advances etc), but we might
also find computers doing things such as automatically preparing lists of
aged debtors each Monday. It may be that an information system running
on a computer plays such a large part in a process that we could consider it
as having a role of its own. There would be one instance of that role and,
trivially, one actor: the box of tricks itself. Other people-acted roles would
of course have interactions with it, either to put data in or get data out.
There is a sense of course in which we cannot really say that the computer
system ‘takes on the responsibility’ of doing whatever it does, but showing
a significant system as a role can be a useful modelling choice.

Although we have not yet fully explored the RAD notation, Figure 2.5
should be readily understandable and it shows a computer system, which
is the role Admissions Register System, with Clinicians and Admissions
Clerks interacting with it.

Admissions Clerk ¢ N

Admissions / \

New admission arrives

Register System v |

Collect details

’ Enter basic details on register

Clinician ¢ n
Prepare clinician report

I
Send clinician report

to appropriate Clinician

FIGURE 2.5 A computer system as a role

65

Business Process Management

KEY POINTS

A role is represented as a labelled grey box.

The name is annotated with or without ticks depending on whether it has
or does not have pre-existing instances.

There is a rich variety of role types, including committees, meetings, and
even computer systems.

REPRESENTING ROLE STATES

66

The vertical lines between blobs within a role are more than just ways of
connecting the blobs. They represent states which the role can be in. Our
understanding of a RAD is greatly enhanced if we see lines as states rather
than just ‘flows’ from one action or interaction to another. This will
become more and more apparent as we look more carefully at RADs and
the way processes work.

Sometimes on a RAD we want to say what state the world is in at a
particular part of the process; in other words we want to label the state. We
do this by simply putting a little ‘sensing loop’ around the state line and
annotating it, as in Figure 2.6. Similarly, in Figure 2.2, the final state of the

All comments have now been received

FIGURE 2.6 Labelling a state

Project Manager role is Project completed and debriefed (which is probably
the goal of the whole process).

In real life we are quite used to the notion of state, even though we might
not recognize it: ‘How are you getting on with my expense claim? is
another way of saying ‘What state has the processing of my expense claim
reached? We happily ask ‘Has authorization to proceed been given yet?’,
or ‘Has the Finance Director given his approval yet?’ In these too, we are
asking about the state the process has reached. And someone answering
the question will say something like ‘Well, it has reached the desk of the
Finance Director but she hasn’t had a chance to approve it yet,” or ‘It’s
waiting for the Divisional Manager to provide some further figures.” We
typically talk in terms of how far each role has got with the matter,
especially if things have come to a halt on someone’s desk!

Modelling a process

Choosing and modelling states
History and potential

The first thing to say is that we do not need to label all the states in a RAD.
This would be impractical and not useful. As ever, we label the ones we
want to label, those that help us with our purpose in drawing the model.

We would label the starting state of a thread if there is something about
the initial state of a thread that is important to the role or to its
understanding: Written complaint in hand, Nothing yet recorded on the
database or The project has already been approved. Some states in the
middle of a thread in a role can also be important in some way: All
necessary materials now in hand, The file can now be closed or Everyone
must now be informed.

Note how some of these state descriptions say where we have been, and
some say where we are going. In other words, we might summarize things
up to this point: All necessary materials now in hand. Or we might say what
is now possible or required: The file can now be closed or Everyone must
now be informed.

These dual aspects of a state — history and potential — reflect the fact that
one action’s post-condition (the past) can be another’s activating
condition (the future). When we label a state we might wish to signal
either history or potential, or both.

Goals as desired states

In Chapter 1 we saw how goals are important in modelling processes. A
goal is simply a desired state. The goal is reached when the state is
reached.

Let's take the example of a process called Handle a Request for
Quotation in an insurance company. When a customer requests a
quotation for insuring a particular risk, the (main) goal of the process is
to provide that customer with that quotation. We shall have achieved that
goal the moment the customer has the quotation in their hand. So in the
role Customer, we should expect to find the state Quotation in hand, say, at
some point.

We might be tempted to think that this marks the ‘end’ of the process:
the main goal has been achieved. However, it might only be the end of the
process as far as the customer is concerned. There may still be work to be
done at the insurance company’s end: database records to be updated,
archives to be made, audit trails to be secured, information about the
quotation to be added into the overall risk profile of the company, and so
on. We might think of each of these as a ‘minor’ goal of the process: a
further state that must be achieved before the process as a whole can stop.
As such, it would be appropriate to label the states that correspond to
these minor goals — they will mark the ‘ends’ of various threads of activity
that are raised by the single request.

67

Business Process Management

68

These major and minor goals are point-wise goals: we can identify the
points (states) in the process where they are deemed to have been
achieved.

As we saw in Chapter 1, there is a second sort of goal: the steady-state
goal. Let’s take as an example the process Bring a New Product to Market
in a software product company. We could imagine that a goal of this
process is that the Marketing Department always knows the latest key
features of the product. This is a steady-state goal: we want it to be true all
the time. By definition, therefore, we cannot put our finger on a single
point — or state — in the process model where this goal is achieved, so it is
meaningless to try to model such a goal. Instead, we will want to ensure
that the process maintains that goal by design. This means knowing what
in the process can perturb things (e.g. the software designers making a
major change of functionality), how we could detect whether the
Marketing Department was out of date, and how we could correct things
if they got out of date. This is of course a design issue rather than a
modelling issue, so we shall pick it up again in Chapter 11.

Multiple outcomes of a process

When we come to examine the logistics of process modelling in Chapter 8,
we shall look more carefully at the importance of establishing process
goals at the start of a modelling project. Indeed, we shall widen the
question to one of establishing process outcomes, some of which might not
be goals. For example, we might have a process to develop a new
pharmaceutical drug and take it to market. The goal could be said to get
the drug to market, but more often than not the actual outcome is that the
drug is withdrawn and the project is closed. Project closure was not the
goal of the process, though finding out as quickly as possible if a drug will
not be successful can be, in one sense, a goal.

So when we look for outcomes we may well find several for a single
process. Let’s take the example of a process to Handle a Customer
Complaint for a retail store. We might brainstorm several possible
outcomes:

e The customer receives replacement goods and agrees the complaint is
closed.

e The customer receives a refund and agrees the complaint is closed.

e No agreement can be reached and the matter is referred to the
industry ombudsman.
So, we would expect to see each of these somewhere in the model of the
process:

e The first outcome would correspond to the state after the receipt of
notification from the customer that they have received the replace-

Modelling a process

ment goods and agree the complaint is closed. This state might
perhaps be in a role such as Customer Service Assistant.

e The second outcome would correspond to the state after the receipt of
notification from the customer that they have received the refund and
agree that the complaint is closed. This state might perhaps be in the
same Customer Service Assistant role.

e The third outcome would correspond to the state after the matter has
been referred to the industry ombudsman. We might find this state in
a role such as Customer Service Manager, say.

KEY POINTS

We mark interesting states with appropriate captions.

A state can express history (where we have been) or potential (where we
can go).

Some states represent goals, sub-goals, or outcomes.

REPRESENTING ACTIONS

An action in a role is modelled with a small black box, suitably captioned,
as in Figure 2.7. The action can start when its activating condition is met.

Agreed scope in hand, ready for specification

Prepare first draft of specification

First draft of specification available
FIGURE 2.7 An action in a role with its adjoining states

When it is finished its post-condition is true. In Figure 2.7 we have shown
the activating condition and the post-condition, by annotating the states
before and after the action, but remember that we shall only caption states
where it’s useful.

The fact that an action is shown as a black box is significant: it says that,
as far as we are concerned in this model, we do not care how this action is
carried out, so long as the desired state is reached after it. The question
naturally arises as to whether one can ‘decompose’ or ‘open up’ a black
box. This is an important issue which we shall cover in Chapter 4.

‘Running’ a thread

When a role is instantiated we can think of the new instance starting with a
‘token’ sitting on the initial state of each thread. As the process unfolds and
the role instance proceeds through its actions and interactions, the

69

Business Process Management

70

changes of state are marked by changes in the positions of tokens on the
states, what we shall call the marking of the model (to borrow some
terminology from Petri Nets). For instance, suppose a role instance is in
the state shown in the left-hand fragment of Figure 2.8.

Before: Prepare invoice

Prepare invoice After:

FIGURE 2.8 A role instance thread before and after an action

The token shown as a lozenge sitting on the state line before the action
Prepare invoice indicates that the next thing that the role can do is carry
out that action. Nothing else is needed for the actor to start the action. The
state in front of the action represents what we have called its activating
condition, that is, the condition of the role instance which will cause the
action to start (strictly, to be instantiated). A token sitting on a particular
state can be thought of as representing the potential future behaviour of
the role instance.

When the action does start, the role instance is in the state of carrying it
out (and the token essentially disappears, though you might think of a
token sitting in the action box). When the action has finished, a token
appears on the state immediately following the action to indicate that the
role instance is now in that state. The state after the action represents what
we have called its post-condition.

We shall use this idea of tokens flowing to illustrate what happens when
a RAD ‘runs’. It is important to understand just what happens when a RAD
‘runs’ so that we can make correct interpretations of the model for
comparison with what happens when the real-life process runs, or to see
how a proposed process would look when it does run. Above all, it will help
us check the concurrency that we have modelled, both within one role
(instance) and across the process as a whole. This is one of the features of
RADs that distinguishes them from flowcharts and swim-lanes, where
serial threads are the order of the day. We shall examine process
concurrency in detail in Chapter 3.

Choosing and modelling actions

Actions as black boxes

An action is shown as a black box and it is useful to think of it in exactly
those terms: ‘This action is atomic; we are not saying how it is done or
what is in the box.” Anything we do wish to say about the action appears in

Modelling a process

the caption we attach to it. We are not likely to write an essay as a caption
but we might have a sentence or two. For example we might write:

e Get deployment document, operational review, and support docu-
mentation signed off.

e Update file.
e Prepare annual forecast.
e Decide whom to involve in forthcoming project review.

When we choose to ‘bottle up’ some activity and represent it as a single
box we are making an important modelling decision about the amount of
detail that we want to get into. Get deployment document, operational
review, and support documentation signed off may be regarded as atomic
for a particular RAD but it is of course potentially a ‘big’ complex action.
My diatribe against hierarchies in Chapter 1 will have warned you that I am
against decomposition as a basis for modelling. So, I would be very, very
cautious about wanting to ‘decompose’ a black-box action - exactly what
does ‘decomposing an action’ mean? This is in fact a very difficult
question, one that process modelling methods that use decomposition
ignore, with the result that they falsify their models. The question is
important enough that we shall leave it to its own treatment in Chapter 4.
Meanwhile, in answer to the question ‘How much detail should I go to in
my process model?’ I would simply answer — of course — ‘However much is
useful given the purpose of your model.’

Concrete and abstract actions

I pointed out the difference between intent and mechanism earlier on,
when discussing roles. A similar view can be taken of actions: we can
model either the intent of the action, or the mechanism used to carry it
out, or both. For example, we might caption an action as Complete screen
24A - this gives us no idea at all of what is intended by this action but it
does tell us what to do, what mechanism we should use. On the other
hand, we might caption the same action Record new customer details,
which tells us what we are trying to achieve with this action - a record of
customer details — but gives us no indication at all of how to do it. The first
caption treats the action in a concrete sense, the second in an abstract
sense (we are abstracting away from mechanisms to what is intended). Of
course, we might decide that the purpose of our model is best served by
putting both the intent and the mechanism in the caption: Record new
customer details using screen 24A. A purely mechanistic caption might be
sufficient in a RAD serving as a work instruction or procedure. A purely
abstract caption might make sense if we are using our model to really get
an understanding of what the process is all about, irrespective of how we
go about it physically. The combined caption could be used in training

71

Business Process Management

material where it is good to tell people what to do and why they are doing
it. As ever, a process model must be fit for purpose.

Actions need verbs

Finally, note how the caption for an action starts with a verb. It is activity
that we are describing after all, so it’s a good discipline to ensure that there
is an active verb somewhere.

KEY POINTS

An action is shown as a black box.

An action is atomic for the RAD.

An action has an activating condition and a post-condition, and we might
choose to model them.

An action can be described in terms of its intent or its mechanism, or
both, as appropriate.

For brevity, I shall sometimes refer to the pre-state and the post-state of a
process element, meaning the activating condition and the post-condition,
respectively.

REPRESENTING CONCURRENT THREADS OF ACTIVITY

72

There might be a point at which a role can start a number of separate
threads of activity that can be carried out concurrently. ‘Now that I have
written all the chapters I can prepare the contents list and at the same time
I can prepare the index.” This ‘splitting’ of a thread into two or more
concurrent threads is represented in a RAD by the symbol shown in
Figure 2.1 for part refinement. Strictly speaking, a state of the role is being
refined (divided) into a number of separate parts. Another example of part
refinement is the early split in the Designer role in Figure 2.2 where a
designer starts two concurrent threads of activity. On one thread they
choose a method; on the other they first prepare an estimate, then interact
with the project manager to pass over the estimate, and finally wait for a
second interaction to receive a plan back from the project manager. Part
refinement can involve any number of threads of concurrent activity,
depending on just how much concurrency is possible in the work of the
role.

Using tokens again, we can think of the single token that reaches the
part refinement becoming a number of tokens, each of which passes down
one thread of the part refinement. In the left-hand fragment in Figure 2.9,
the action Do Z has completed and there is a state token on the state line
coming out of Do Z and before the part refinement. This marking is
entirely equivalent to that shown in the right-hand fragment, where the
token before the part refinement has ‘turned into’ one on each of the
separate part threads.

Do Z

Modelling a process

Doz
——
Do A Do B DoC Do A Do B DoC

FIGURE 2.9 The marking before a three-way part refinement
In some situations, all the concurrent threads must complete before the
role can proceed to further activity; in this case we use the representation

in Figure 2.10, with the four threads being joined once they have finished
(i.e. the part states are recombined).

ready to start the four concurrent threads

Do A ﬁDoB ﬁDoC ﬁDoD

all the concurrent threads have completed

FIGURE 2.10 Closing a four-way part refinement

We can expect that at some point after the part threads have gone their
separate ways, they will all have finished and hence there will be a token
sitting on the state at the end of each thread, as shown in the example in
the left-hand fragment of Figure 2.11. This is precisely the same marking as

Do Z

Do A Do B DoC Do A ﬁDoB ﬁDoC

FIGURE 2.11 State recombination at the end of a three-way part refinement

73

Business Process Management

74

that shown in the right-hand fragment, where the part thread tokens have
all been replaced by a single token on the state line immediately after the
closure of the part refinement.

In some cases, however, a role does not operate this way. A project
manager’s activity might be considered as two quite separate areas of
responsibility, almost ‘sub-roles’: keeping staff occupied with work and
liaising with the client. These might be the two threads of an early part
refinement of the role, which need never recombine. In Figure 2.12 we see

FIGURE 2.12 A four-way part refinement where only two threads recombine

a fragment in which two of the four threads recombine, whilst two others
never do, one endlessly looping on itself and the other diving off to
somewhere else in the role perhaps.

Replicated part refinements

Suppose a Line Manager wants to prepare a revenue prediction across all
the projects they are responsible for. The number of projects they have
active at any one moment may be variable, so we need a way of
representing this. This is one example of a general situation where we want
a thread of activity to be ‘replicated’ a number of times. Figure 2.13 shows
how we do it.

Line Manager

-~

% for each active project

Make revenue prediction

Write departmental report

N J

FIGURE 2.13 A replicated part refinement

Modelling a process

The single thread that is to be replicated is shown within the usual part
refinement structure and the replication is indicated with an asterisk. The
number of times the thread is replicated is captured in the caption, in this
case for each active project. Because this is a part refinement, the action
Write departmental report cannot start until all the replicated threads are
complete, i.e. until the Line Manager has made a revenue prediction for all
the current projects.

Note that this is not a loop: the Line Manager is not making a revenue
prediction for one project, and then for the next, and then for the next,
until they are all done, in a serial fashion. Instead we are saying that there
is a thread of activity — a simple one in this case consisting of just one
action — which is replicated, say seven times, and all those seven threads
can now start and run in parallel. Figure 2.14 shows the replicated part

Line Manager

4 N

project 1 project 2 project 3 etc

Z\

Make revenue Make revenue Make revenue
prediction prediction prediction

- /

FIGURE 2.14 The replicated part refinement in Figure 2.13 expanded

refinement expanded. As in a normal part refinement, the replicated
threads might or might not recombine.

It is important to remember that the replication is done the moment it is
reached. On one occasion a thread might be replicated seven times and on
another, 70 times.

Choosing and modelling part refinements

The part refinement is an important construct because it is one way we
model potentially concurrent action within a role. When people model
processes, they all too easily fall into the trap of making all activity
sequential: A follows B follows C follows D etc, thereby ending up with a
very sequential-looking process. If we are modelling an existing process,
the resulting model might be true in that what we have drawn does capture
the time ordering of actions, but it might not model the necessary logic of
the process. Suppose action Bmust follow action 4, and that action D must
follow action C, but that those two threads — A-B and C-D - are
independent. Because I can only do one thing at a time, you might observe

75

Business Process Management

me doing any one of the following sequences: (4, B, C, D), (4, C, D, B), (4,
C B, D), (C D, A B), (C, A B, D), or (C, A, D, B). But none of those is the
only or correct way. It would be wrong for us to observe things being done
in the order A, C, B, D one day and then to show that sequence on our
model. It would be an incorrect model of the process in general. And if we
were designing the process and we drew it as in Figure 2.15 we would
unnecessarily restrict people’s options for carrying out that process in the
future.

Cut grass
Bag grass cuttings
Sweep deck

Wash deck

FIGURE 2.15 An over-constrained process

KEY POINTS

Part refinements capture within-role concurrency.

Part refinements might or might not recombine once some or all of the
threads have completed.

Replicated part refinements model situations where the same thread is
carried out a number of times in parallel.

REPRESENTING ALTERNATIVE COURSES OF ACTION

76

At some points in a process, what happens next in a role might depend on
the state reached. For example, the way a clerk deals with an application
for overtime might depend on the salary band of the claimant; how a
chemist makes a batch of drug compound for a clinical trial might depend
on which pilot plant has been allocated for the production; the way an
order for a shrub is dealt with by a horticulturist might depend on the time
of year the order is received and when the shrub concerned is best
shipped.

We represent such alternative courses of action with the notation shown
in Figure 2.1 for case refinement. Essentially we are refining the state of the
process according to different ‘cases’. The general situation is shown in
Figure 2.16.

The preceding state line takes a bend to the right and a downward
pointing arrow appears at the start of each alternative thread. Typically, we
label the bend with a question:

Modelling a process

<answer 1 <answer 2
(case 1)> (case 2)> etc
<question> \/ \ /A

FIGURE 2.16 Representing alternative threads of activity: case refinement

e Has the invoice been paid?
e What month is it?
e Where is the package going?
We then label each downward arrow with an alternative:
e yes/no;
e January/February/...;
e UK/overseas.

Using our token scheme, we can think of a token arriving at the case
refinement, and then passing down the thread that corresponds to the
predicate that is true; the role goes in different directions depending on the
state of things at that moment. Figure 2.17 illustrates this. Immediately

Prepare invoice

yes no
More than £10,000?

Prepare invoice

Do this Do that

More than £10,0007?

or

Prepare invoice

Do this Do that

yes no
More than £10,000?

Do this Do that

FIGURE 2.17 The marking before a case refinement

77

Business Process Management

78

after the action Prepare invoice we can imagine a token on its post-state as
shown on the left-hand fragment. The case refinement says that if the
predicate More than £10,000 is true, this is equivalent to the upper right-
hand fragment with the token on the corresponding state line; whilst, if
More than £10,000 is not true, it is equivalent to the lower right-hand
fragment with the token on the other state line.

The two-way case refinement generalizes quite naturally to N-way case
refinements. The way an organization carries out a particular part of the
process might, for instance, depend on which of its offices it is carried out
in. We would show this with an N-way case refinement such as that in
Figure 2.18. Here, the process proceeds differently according to whether
the location is London, New York, Paris, or Stykkisholmur.

London New York Paris Stykkisholmur

Office \/ \/
location? g ;

FIGURE 2.18 A four-way case refinement

You could think of case refinement as a case statement in a
programming language or as a decision box in a conventional flowchart.
But it is important to note that, unlike a decision box on a flowchart, there
is no activity going on ‘in’ the symbol for case refinement — no person or
machine is doing anything to make the decision: the role instance is simply
going in different directions depending on the state it is in. The upper
fragment in Figure 2.19 would therefore be wrong: the caption is a

OK not OK
/
Check the widget wrong:
Check the widget
e right!

OK?

FIGURE 2.19 Nothing ‘happens’ in a case refinement

description of an action and not a predicate (question) about the state. The
value of the OK? predicate must be determinable as a result of some prior
action or interaction in the process, such as the preceding quality control
action Check the widget in the lower fragment; the case refinement does
not itself ‘contain’ any activity to check the design.

Modelling a process

In some situations, whichever of the alternative threads of activity is
followed, we want to ‘return’ finally to the ‘main’ thread of activity. In this
case we use the representation in Figure 2.20, with the threads joining up

policy amendment

policy claim call new policy call call
Handle policy Set up Handle policy
claim new policy amendment

FIGURE 2.20 Case refinement threads sometimes recombine

again when they have finished (i.e. the case states are recombined). In this
example, we have also used an alternative labelling of the case refinement:
we have omitted the question and simply labelled the different cases; if the
meaning is clear, this is fine.

We can best visualize what this means by looking at it using tokens. In
Figure 2.21, whichever of the three case threads is followed, we require the

office in office in office in office in office in office in office in office in office in
London Paris New York London Paris New York London Paris New York
office in office in Office in
London Paris New York
are all the same as N4

FIGURE 2.21 Three case refinement threads finally return to a common thread
main thread to be picked up finally. Thus each of the three markings

shown in the upper part of the figure is equivalent to the marking in the
lower part.

79

Business Process Management

80

In other situations, the case refinement threads might not recombine.
The example in Figure 2.22 is a case in point: if the customer call picked up

policy claim call new policy call wrong number call
Ha_ndle policy Setup . Redirect call
claim new policy
Archive call

FIGURE 2.22 Case refinements don’t always close tidily

at the call centre is about making a claim on an insurance policy or setting
up a new policy, then it is dealt with, and once it has been dealt with it is
archived. If the call is a wrong number, we simply redirect it and finish the
process there. (If this all seems hopelessly laboured and obvious, then you
are probably not a software engineer: in software design and modelling
methods that have come from that world, there is a strong emphasis on
‘Dijkstra structures’ where, in crude terms, everything closes off tidily.
Unfortunately the world is not as tidy and ‘block-structured’ as we can
make our software, so any modelling method that demands such tidiness
will be of no use in modelling the real world.)

We sometimes adopt an abbreviation for simple case refinements. On
the left-hand side of Figure 2.23 we show a case refinement with a single

no yes
Cleaning

necessary? cl : t
: ean e men
Clean equipment OI‘ if necesg:r’))/

FIGURE 2.23 Abbreviating a simple case refinement

action only being done if cleaning is necessary, whilst on the right-hand
side we capture the conditionality in the name of the action. Words like ‘if
appropriate’ or ‘as necessary’ might be useful. This can also be done with
conditional interactions, but greater care is needed.

Case refinement naturally allows us to represent conditional iteration
within a role, as in the example in Figure 2.2 where the Designer repeatedly
produces and checks a design until it is OK. Anywhere on a single state line
is the same, so the three role instance markings shown in Figure 2.24 are
equivalent in that the next possible action of the role is Produce design in

Design of
sufficient
quality?

Modelling a process

Produce design Produce design Produce design

Carry out design
quality check

yes no

Carry out design
quality check

yes no

Carry out design
quality check

yes no

Design of Design of
sufficient sufficient
quality? quality?

FIGURE 2.24 Three equivalent role instance markings

all three cases. You might object that the first and third situations in the
figure are quite different, since in the first you don’t have a design whilst in
the third you do. True, but the RAD is telling us that, as far as this process
is concerned, having a design that has failed its quality check is no
different from having no design at all: in each case you have to produce a
new design. The states marked by the tokens are equivalent in that they
define the same future behaviour even if they define different histories. If
this is not what we wanted to model then we have the wrong model.

Choosing and modelling case refinements
Case refinements are not active

Case refinements are relatively straightforward. But we should always
make sure that all the information needed to evaluate the predicate is
available to the role concerned without further work. The more general
question we should ask is ‘Does the role have all the props necessary to
answer the question?’

So if the predicate is Which office is the application being processed in?
there probably isn’t a problem: the actor can look around and recognize
they are in New York and not London. If it is Is the applicant male or
female? and the applicant isn’t sitting in front of the role concerned, then
we should check whether the applicant’s gender has been ascertained
before this point in the process, and that it is available to the role
concerned.

Complex case refinements

There are situations where we can model the case refinement in several
ways. Take the following description of what happens in the pharmacy of a
pharmaceuticals company:

A pharmacy bottles three types of drug:

81

Business Process Management

1. unformulated and aseptic;

2. unformulated and non-aseptic;

3. formulated.
Type 1 requires equipment to be sterilized before filling. Type 2 requires
equipment to be cleaned before filling. Types 1 and 2 require bottles to be
tested for leaks after filling. Type 3 only requires bottles to be filled.

We have several options, shown in Figure 2.25. They all describe exactly
the same behaviour: for each type of drug the same actions are done in the

yes

W

type 3?

type 1 type 2

Sterilize equipment Clean equipment . Fill bottle

Fill bottle

Perform leak test

-

type 1 type 2 type 3
N N/
Sterilize equipment Clean equipment
Fill bottle Fill bottle [i bottie
Perform leak test Perform leak test
type 1 type 2 type 3
Sterilize equipment Clean equipment

Fill bottle

type 3 type 1 or2

Perform leak test

FIGURE 2.25 Three different but equivalent models

Modelling a process

same order. So, is there any reason to use one rather than the others? The
first option might be appropriate if type 1 and type 2 drugs were prepared
in one location and type 3 in a different location; the way that the threads
are placed suggests the ‘geography’ of the process. The second option
might be appropriate if the three types were prepared in different
locations, so it is useful to elaborate the thread fully for each type. The
third option might be appropriate if all three types were done in the same
location and one wanted to emphasize that bottle filling was done in the
same way (one single action) in all three cases.

Probabilities and case refinements

Case refinements represent alternative courses of action, and when we
come to analyse the process it might be important to know how often the
different alternatives are followed. In Figure 2.26, how often does the

Widget Maker
4 N

Make a widget

~

Check the widget

yes (80%) no (20%)
Good enough?

Rework the widget

o J

FIGURE 2.26 An annotated case refinement

Widget Maker have to rework the design? We simply annotate the RAD in
an appropriate way. Figure 2.26 shows a simple percentage, but there
might be seasonal variation or it might depend on some other
characteristic of the process (the depth of the items in the in-tray, the
rate at which work is being done etc).

KEY POINTS

Case refinements model alternative courses of action that arise in a thread.
The alternatives should be mutually exclusive.

Each alternative leads to a separate thread.

The alternative threads might or might not recombine.

There is no activity in the case refinement itself.

83

Business Process Management

84

expenses approved

Representing merging threads

It is quite often the case that we want two or more threads in a role to
come together in a single thread, even though they did not originate from a
single thread. For instance, the Payroll Department will prepare a cheque
for an employee and get it authorized at the end of a number of different
procedures, all of which start from different triggering points:

e At the end of the month when the salary payment is due and the
timesheet has been checked.

e Whenever a cash advance has been approved.
e Whenever the reimbursement of expenses has been approved.

To show these different parts of the role coming together to a single thread
we simply combine the state lines in the curving fashion shown as in
Figure 2.27. This says simply that whichever of those states the role is in, its

cash advance

approved timesheet approved

Make payment

FIGURE 2.27 Three threads combine to form one

future behaviour is the same: it makes payment. Each of the three threads
defines a different history, but they all also define the same potential.
(Note the different shape in the merge from the way that part and case
refinements are closed.)

The threads can come from anywhere within the role. Organizational
activity often ambles around, dividing and recombining, ducking and
weaving, jumping off at tangents, sometimes coming back. Our notation
must allow us to model the ‘untidiness’ of the real world. Within a role,
threads of activity can divide, recombine, and switch to other threads
without constraint — simply because that is the way the real world
operates: as a network rather than a hierarchy. And roles can operate in a
similar way using interactions as the mechanism for ‘jumping’.

Representing the end of a thread

Do we need to signal the end of a thread? No. The left-hand fragment of
Figure 2.28 shows a thread simply coming to an end. Once the action
Archive paperwork has been completed there is nothing else to do and so
nothing more will happen on this thread. In some situations however, it
can be helpful to reinforce the fact that this is really the end of the line and

Modelling a process

Archive paperwork Archive paperwork

FIGURE 2.28 The optional stop sign at the end of a thread

not simply as far as we wanted to go in this model. In these situations we
use a little ‘stop’ sign as in the right-hand fragment.

KEY POINTS

States in a role can merge: different past behaviours lead to the same
future behaviour.
Optionally, we can mark the end of a thread.

REPRESENTING INTERACTIONS

Interactions are collaborative actions carried out by two or more roles.
Let’s take some examples:

e The purchaser arranges finance with their bank.
e The Project Manager and Line Manager review the Project Plan.

e The QA Team lets the Project Manager know they have finished the
tests.
e The Line Manager asks for an update on progress.
e Vendor and Purchaser agree on the delivery date.
e The Sales Executive tells the Project Team of the contract change.
e The Product Design Team gives the Development Team the
specification.
e The Engineering Department drafts the design with the Production
Engineer.
e All the Divisional Managers meet to review the budgets.
e Each Divisional Manager reports to the Board.
A vanilla interaction between roles is shown as a white box in one role
connected by a horizontal line to a white box in another role. We refer to
the white box in each role as a part-interaction - it is the contribution that
the role concerned makes to the interaction. Figure 2.29 shows a simple
interaction between two roles.
In this example, by shading in its part-interaction, we have also shown

which of the roles ‘takes the driving seat’” and makes the interaction
happen. We are saying that it is up to the widget-making supervisor to take

85

Business Process Management

Widget Making
Supervisor w4 Widget Maker o/

F|nd out how \ (
time has been spent j K

FIGURE 2.29 A simple interaction

the initiative and ask the (single) widget maker how they have been
spending their time.

An interaction can involve any number of roles and signifies that the
roles involved must pass through it together; as an example Figure 2.30

Widget Grommet
Supervisor ¢ Makers ¥’ Makers v/

Agree workforcoglg week \ (\ (
- 7 AN] AN []

FIGURE 2.30 A three-party interaction

shows an interaction involving three roles. Note also how in this example
we have lumped all the widget makers as one role, Widget Makers, and all
the grommet makers as another, Grommet Makers.

If it is useful, we can add further annotation to the interaction, perhaps
captioning a part-interaction to describe its contribution and even a
further caption for the entire interaction. An example is given in
Figure 2.31. We would typically model in this way when capturing a truly

Pulping machine
Tree feller / operator

Lop branches Remove tree Pulp Iopped branches

FIGURE 2.31 Captioning the components of an interaction

collaborative activity where each of the parties makes their own
contribution to the overall action.

We always caption an interaction in a way that makes clear what is
happening, and that would include whether anything ‘changes hands’
during the interaction, i.e. whether any grams are involved. Interaction
lines do not carry arrows to indicate the ‘flow’ of any gram: we simply

86

Modelling a process

place an appropriate caption at the appropriate end. For example, in
Figure 2.2 the Project Manager role receives an estimate from the Designer
role, and this is indicated by placing the caption Pass over estimate at the
Designer role end of the interaction line.

Interactions synchronize role instances

As with an action, an interaction has an activating condition, which is the
condition corresponding to each participating role being in the state
before its part-interaction. So the overall activating condition is effectively
the state when all the participating roles are ready for the interaction.
The rules for an interaction say that an interaction cannot start until all
the participating roles are in their respective pre-states, and that when the
interaction finishes they all move into their respective post-states. Any role
might get to the interaction before the others. If I reach my side of the
interaction and you are not ready, I must wait until you are; as soon as we
are both ready the interaction can take place. Put another way, interactions
synchronize the states of the participating role instances. Figure 2.32

Both are ready to The interaction

interact

A

)

Send goods ———

N

has finished

B B
) A)
)

Do this Do this

Send goods ———

Do that Do that

N
N N

FIGURE 2.32 Interactions synchronize role instances

summarizes this with tokens. In the left-hand fragment both roles are in
their respective pre-states, i.e. their respective part-interactions can be
activated. In the right-hand fragment, the two part-interactions have
completed and so the two roles are in their respective post-states.

How much do we want to synchronize?

Remember that a RAD shows strict ordering. It is very easy to draw strict
ordering when it is not actually required or present in reality. For instance, if
role Bmust have got to a certain point but then can accept the goods any time

87

Business Process Management

Pupil:

Tutor:
Pupil:

Tutor:

Pupil:

88

after then, and must have them before certain other actions can continue,
then we render this as shown in Figure 2.33. This figure says that once B has

B
A
Do this
Send goods Do other stuff
Do that

- /

FIGURE 2.33 Just enough synchronization

completed the action Do this it can receive the goods while getting on with
other tasks (Do other stuff) as shown by the part refinement. Once it has
received the goods and completed those other tasks it can Do that.

We have recognized that there is a window during which B can and must
take delivery but that during that window, B can be getting on with other
things.

Later, next to the water cooler

You’ve emphasized that interactions synchronize state and ... if I've got this
right ... an interaction therefore can’t finish until all the parties have done
their part-interactions?

Correct.

But surely that’s not like the real world. Suppose I send you a letter. Sending
you a letter is an interaction between you and me, but I don’t wait around
until I've heard you’ve received it before getting on with something else.
You have a knack of putting the answers to your questions in your
questions! You're right that the interaction of my-sending-and-your-
receiving-a-letter doesn’t finish until — in particular — you’ve received it.
But you told me that you don’t want to wait around for the interaction to
complete. In effect, you told me that you want to do something else
concurrently while that interaction is completing. Doesn’t that sound like a
part refinement?

I guess it does. Shall I draw it on this handy whiteboard next to the water
cooler? (Figure 2.34)

I suppose that if I wanted to capture what we do once you have indeed
received the letter then I would draw it after the interaction, but I’ve drawn

Modelling a process

Do something else Post letter Receive letter

)

FIGURE 2.34 Just enough synchronization again

it as if once I've posted it, that’s it. Of course I can see now that it’s very like
Figure 2.33 but reflected.

Tutor: Yes. Now, if we don’t mind modelling mechanisms, we could recognize that
when you post a letter you have a very short interaction with the post office
immediately after which you can get on with other things. The post office
then carries out the action of moving your letter from one post office to
another, and then has a very short interaction with your correspondent to
give them the letter. We have decoupled you and your correspondent
through what I would call a carrier function. But you can draw that for
yourself - I'm going home.

Choosing and modelling interactions
Interactions change role states
Interactions can come in a great variety of guises:
e I arrange finance with my bank.
e We review the Project Plan.
e He lets her know he has finished the tests.
e She asks for an update on progress.
e They agree on the delivery date.
e She tells the team of the contract change.
e I give you the specification.
e We draft the design.
e They report to the Board.

Reading these, we sense different things going on. Sometimes things are
being passed over: information, documents, materials. Something that was

89

Business Process Management

90

in one role is now in another; or perhaps they both have it, as in the case of
information. Sometimes, the interacting parties are jointly contributing to
something: reviewing, agreeing, drafting. One or both of them now has
something that neither had before the interaction: an agreed delivery date,
for instance, or a design that they have jointly drafted. It is useful to think
through the state changes in the participating roles: just what has changed
in each role as a result of the interaction? How have the states of the props
been changed? What props does the role now have that it did not have
before? What props does it not now have that it did have before?

Concrete and abstract interactions

Interactions are as amenable to concrete and abstract descriptions as roles
and actions are.

A caption on an interaction that read Send completed form 195/5 would
tell us nothing about what is going on except how the interaction is done.
If we knew the form concerned we might know that it is the company’s
expense claim form and hence the interaction is in fact about claiming
expenses. An abstract caption for the same interaction might be Claim
expenses, which would not give us any indication of how to do it but would
tell us what was going on, the intent of the interaction. The caption Claim
expenses using a completed form 195/5would tell us what was going on and
how it was done.

Here are some other examples:

e A Project Manager passes a budget report to the Line Manager ... A
Project Manager reports on the budget to the Line Manager.

e The Client and Consultant speak on the telephone ... The Client and
Consultant agree the scope of the work.

e The Customer presses the ‘Buy Now’ button on the web page ... The
Customer confirms the purchase of the contents of their shopping
cart.

When would we use these different styles of caption? Again, this is a
discussion that we must leave until later chapters where we look at how
Riva is used in different situations.

Interactions with replicated role instances

When a process runs, an interaction actually occurs between instances of
the roles concerned, of course. (Strictly, an instance of the interaction
occurs between instances of the roles concerned!) So, one instance of Line
Manager interacts with one instance of Project Manager. But what if the
Line Manager wants to have the same interaction with each of the current
Project Managers, perhaps to get the status of their projects? We need to be
able to represent the fact that the one instance of Line Manager has the
same interaction with all the existing instances of Project Manager,
however many there are. The upper fragment in Figure 2.35 shows how we

Modelling a process

Line Manager o/

Project Manager

N
Get status

Line Manager o/

[N
Project Manager

%for each active project / n

Get status

N)

FIGURE 2.35 A replicated interaction

do this. You can think of this as shorthand for the lower fragment in
Figure 2.35 in which the replication is shown at the Line Manager, end by
replicating the thread containing the interaction for each Project Manager.
The net effect is that the one instance of Line Manager starts a separate
interaction with each instance of Project Manager.

Note that this is not the same as having a single interaction that involves
all of them. An example might be that the Line Manager wants to brief all
the current Project Managers on the new corporate budget. We show this
using the notation in Figure 2.36. This single interaction involves a total of

Line Manager ¢

Project Manager

vn

Brief on new corporate budget

FIGURE 2.36 An interaction involving many role instances

91

Business Process Management

92

N+1 role instances, where N is the number of instances of Project
Manager.

Interactions are rarely as simple as we think

An interaction can be very simple (e.g. I give you some terms of reference) or
very complex (e.g. The three parties meet to negotiate and agree the price of
a piece of work, drawing up the agreement as a legal document and
obtaining financial securities from a bank). As with actions, what we regard
as ‘atomic’ in our RAD depends on why we are drawing the RAD. We
always show whatever detail is appropriate to that model for that purpose.
An interaction that is shown as a single line on a RAD might, if it were in
some sense ‘opened up’, show the involvement of other roles not
otherwise mentioned in this RAD, new interactions between them and
other roles, and a whole mass of organizational activity. But by drawing
just one interaction we are saying ‘One interaction is appropriate for this
model.’

Contracts — a pattern of interaction

A contract is a common form of interaction between two parties and one
that we shall see in various guises. Winograd offers a view of organizational
behaviour in terms of a four-step contractual cycle between a customer
and a supplier: preparation, negotiation, performance, assessment.

In the preparation step, either the customer decides what they want to
buy (or, more generally, contract out for) or the supplier makes some offer
to a would-be customer; this results in the customer making a request to
the supplier. The two parties negotiate the request and two mutual
promises result: the supplier agrees to provide something in return for
something else, perhaps payment by the customer. The supplier then
carries out the performance step which finishes with a declaration that the
work is complete, an assertion that the customer tests, finally declaring
satisfaction.

Each step can, in its turn, be carried out by a cycle of its own:
performance might be broken down into sub-cycles for instance.

In the ideal world conceived by Winograd and Flores, or a new one that
we intend to build, we build all organizational behaviour out of such
contractual cycles (see Winograd, 1987). It is doubtful that we can
retrospectively impose a hierarchical structure of such cycles on an existing
process or expect to find one there when we come to model it - we cannot
expect that the evolution of the process has preserved such neat
conceptual integrity; in fact, it would be far more realistic to expect that
as in any other physical system, entropy — the degree of chaos or lack of
order in the system - inexorably increases over time unless energy is
expended to reverse it (albeit temporarily). We could of course consider
BPR to be an ‘entropy-reversal’ exercise, one in which the chaos and

Modelling a process

disorder that has built up over the years is recognized and, through radical
change, replaced by a ‘tidier’ and ‘simpler’ system.

Nevertheless, the Winograd contractual pattern can be observed, and of
course has a natural representation in a RAD: Figure 2.37.

Procurement body ¢
e N\ Supplier ¢

Prepare draft contract terms f \

Negotiate contract terms

agreement no agreement

Execute contract

%Monitor progress
I

Carry out Acceptance Test

success failure

/

Accept delivery

FIGURE 2.37 A contractual cycle in a RAD, driven by the customer

We can elaborate the model at several points to allow for situations
where

o there is a breakdown in the negotiation;
e the Supplier fails to complete the performance;

o the Procurement body is not satisfied with the performance of the
Supplier;

e the various steps are themselves the subject of subcontracts.

We shall find it a useful modelling discipline to spot interactions that
represent acts of negotiation, assessment and so on, in order to see how far
the complete cycle is present and perhaps, if it is not, to ask whether it
should be and whether the process could be improved by restructuring it
to the ‘standard’ cycle.

So, whenever, in a modelling workshop, someone identifies an
interaction by saying ‘Then the employee gets the Line Manager to
approve the expense claim’, we shall now know to ask ‘Do they always
approve it?’” If it really were the case that the Line Manager always
approves the expense claim, we could identify an easy process improve-

93

Business Process Management

ment by simply removing that interaction — it seems to serve no purpose.
What is more likely of course is that a more complex conversation is being
(poorly) summarized as one of approval, and we are probably ignoring the
possibility that the Line Manager might reject the expense claim. And what
happens then?

We can elaborate this idea a great deal further and recognize
interactions as ‘conversations for action’, with the much more complex
general pattern shown in Figure 2.38. The conversation between two

A requests B promises B asserts A declares

94

B rejects
A withdraws

A declares
B counters
B reneges
A withdraws

A counters A accepts

A withdraws

A rejects

B withdraws

FIGURE 2.38 An interaction as a conversation for action

parties A and B starts at state 1 and then moves to a new state depending
on how A and B interact. The interaction therefore ends up at one of states
5, 7, 8 and 9; the last three of these represent a form of failure, the first
success. (See Winograd and Flores, 1987.)

This template gives us a useful pattern against which to assess each
interaction when we come to it. I am not suggesting that every interaction
we deal with should be elaborated to this nth degree, only that we should
make a conscious decision about how far we want to go in this model, for
this purpose, in unpicking this interaction into its component parts.
Returning to our expense claim example, it would be entirely valid for us to
wrap up a whole mass of such conversational detail in a single interaction
that is indeed labelled Get the Line Manager to approve expense claim, if we
allowed that that initial refusal, reworking, and resubmission were part
and parcel of the interaction. That would still not allow the possibility of
my withdrawing my expense claim altogether of course, and if that
possibility was important and relevant to the model we were drawing, then
we had better draw it and not simply ignore it.

Modelling a process

Delegation ladders

When we model a process with a RAD, we seem not to take any explicit notice
of one of the most important aspects of an organization: its authorization
hierarchy. Most organizations — even those operating forms of matrix
management — use some layering down from the Chief Executive; some only
operate that way. In fact in a RAD, although we might not model the
hierarchy explicitly, we can model the way it makes itself felt: the business
rules that operate in terms of planning, delegating, reporting, authorizing,
and so on. Indeed, it is normal for a RAD that uses functional positions or job
titles as roles to expose the hierarchical aspects of an organization’s
behaviour in terms of interactions between ‘superior’ and ‘inferior’ roles. Itis
common to see the hierarchy running from left toright in the RAD: The Board
appears as a role at the extreme left, passing instructions to the next level
down, say Divisional Director, who in turn passes instructions to their right
via interactions with Project Manager and so on further to the right. We can
see these as formal contracts of course, as discussed above.

Delegation and reporting back are very common process patterns in an
organization and they have a very natural representation in a RAD: they are
simply pairs of interactions. Take the process shown partially in
Figure 2.39. If The Board starts up a Customer Survey Task Force to carry

The Board ¢

Customer Survey

Start Task Force to carry out Task Force
annual customer satisfaction /

survey
!

Provide terms of reference
in memorandum

o ot Polisters
. oose pollsters
Marketmg/ Commission survey Jn
from chosen
Request] pollsters
internal perception Survey
Check out |
| Report back
Report back—

Prepare Survey Report

Deliver Survey Report

(S %

FIGURE 2.39 A asks B who asks C ...

95

Business Process Management

96

out the annual customer survey, we will see an interaction between the
two roles across which The Board gives the Customer Survey Task Force its
terms of reference. In its turn the Customer Survey Task Force delegates
parts of that responsibility to other roles: Pollsters and Marketing, say. The
task is broken into smaller sub-tasks and delegated out to other roles. Note
that Customer Survey Task Force is a transient role, an instance of which is
created for the occasion.

As each role completes its sub-task, it might (or might not) report back
to the delegating role to say ‘I've done what you asked.” So we can expect
to find a corresponding ‘closure’ interaction for each delegation interac-
tion. Or, at least, it is a useful modelling discipline when you see an
interaction that represents delegation to look for a corresponding closure
interaction in the real process; if there isn’t one there you can question
whether there should be; and if there is, you can question that too. Looking
back at the sample (and not very sensible) process in Figure 2.2, we can see
quite readily that the Divisional Director, having delegated the execution of
the project to the Project Manager, apparently never expects to hear about
the completion of the project — let’s hope that in that model we simply
weren't interested in the involvement of the Divisional Director after they
had started the project off!

In some cases, one role instance might delegate a task to some other role
instance which is pre-existent, such as a department or a post in the
organization:

e Each March, The Board delegates the annual assessment of effective-
ness of the company’s IT systems to the IS Department.

e After an accident in the plant, the Divisional Director delegates a
review of plant safety to the Health and Safety Manager.

In other cases, a role might be instantiated for the purpose: we tend to call
such roles ‘task forces’ or ‘project teams’. Their job is to carry out the task
and then disband. Figure 2.39 shows just such a role: Customer Survey Task
Force.

Service interactions

Let’s take this a bit further. We have seen how an interaction can be said to
‘align’ the states of participating role instances: that is, the participating
role instances ‘go through’ the interaction together. As far as the RAD is
concerned the interaction is atomic; once it has started we know nothing
except when it has finished. But of course, many things happen between
parties without apparently any need to synchronize so explicitly. For
instance, some roles provide some form of on-demand service: a Line
Manager will authorize leave requests at any time, rather than only at
some prescribed point in their work. So some part of the Line Manager’s
work must involve ‘being available’ in case such a demand arises.

Modelling a process

This situation is modelled quite straightforwardly in a RAD by having a
separate (i.e. concurrent) thread of activity in the service role ‘hanging free’
- see Figure 2.40. By definition, the activating condition for such a part-

Another role v Line
/ N v Manager
‘true’

Get leave request authorized

N

FIGURE 2.40 A role ready to have an interaction at any time

interaction on the server’s side is ‘true’, i.e. the role is ready to undertake
such an interaction on demand, at any time. Indeed, that thread can be
activated/instantiated an indefinite number of times as requests for
service come in, since the activating condition remains ‘true’. This is often
what we want. Not all activity is strictly sequenced in the sense of ‘When X
has finished do Y’; often the logic is more catch-all: ‘Whenever necessary
do Y. The interaction with a hanging thread is a special case of this.

I like to describe free-hanging threads such as this as corresponding to
parts of the role’s brain: a bit of the brain that is always ready to have that
interaction and start that thread.

Primed service interactions

In some situations we might wish to have an activity thread hanging free,
ready to respond, but only after some prior action has been completed. For
instance, once a business has acquired its tax registration it can process
any number of orders arriving asynchronously. We would show this
situation in a RAD as in Figure 2.41. When (the single instance of) A
Company starts, the only thing it can do is obtain tax registration. The
Obtain tax registration action takes place and the role then enters a state
where it is able to accept an interaction (a purchase order). That
interaction causes two threads to start: one to process the order and
another to wait for another interaction (another purchase order). While the
first order is being processed, a second can arrive which again causes the
two threads to start: one to process the second order and another to wait
for the third, and so on.

We can see this more easily by looking at it in terms of tokens. Figure 2.42
shows the states through which the RAD fragment passes (note the
direction of the broad arrow at the back of the diagram):

97

Business Process Management

A Company

Obtain tax registration

. Receive order

Process order |

\ 7
A Company

A Company 4

-

. Receive order

Process order

~

Obtain tax registration

Process orde

L

% Obtain tax registration

. Receive order

Process order

5
_ j
A Company

Process order | | |

Obtain tax registration

. Receive order

Process ordel

4
_ j
A Company

FIGURE 2.42 The successive states of the company after receiving tax registration

Modelling a process

Registration for tax has been completed; waiting for the first order.
The first order has arrived via the interaction.

An equivalent state to state 2, using the definition of a part
refinement.

4. An equivalent state to state 3, remembering that a state line shows a
single state. The role is now ready to process the first order and also
ready to accept a second.

A second order arrives but the first still hasn’t been processed.

One order (it could be either) has been processed, the other is
waiting for processing, and a new order is also being awaited.

The thread to process an order is successively started as each order arrives.
In fact, strictly, the actions on that thread are instantiated as and when
their activating condition becomes true. We can imagine that the actions
on the thread are being instantiated as many times as there are orders.
Certainly each ‘thread instance’ proceeds independently, at its own pace.
There is no implication that orders ‘queue’ to follow the thread. In fact, it is
quite possible for orders to be processed at different speeds — the RAD says
nothing about which will finish first. I have drawn one possible sequence
of markings for the RAD, principally to show how a mass of concurrent
activity can build up, indicated by the proliferation of tokens. RADs are
about the concurrent activity in the real world.

Strictly sequenced service

In some cases it might not be desirable to have an activity thread hanging
free in such a way that it can be activated at any time or indefinitely many
times: we might wish to handle requests just one at a time in strict
sequence. In this case a hanging interaction is clearly not what is wanted,
and in order to serialize the processing of requests we put that processing
in a sequential loop. The processing can no longer take place asynchro-
nously: it can only occur when the server has finished serving the previous
request. This situation is shown in Figure 2.43. We must assume that when
the role starts there is a token sitting on the loop, as we have shown. Spend

Service

Receive order

Satisfy order

FIGURE 2.43 One-at-a-time processing

99

Business Process Management

100

a moment checking that orders are dealt with strictly in rotation and a new
one cannot be received until the previous one has been satisfied.

Conditional interactions

It is not uncommon for an interaction to take place only under certain
conditions. For instance, suppose that you (a buyer) order some goods
from me (a seller). When you receive the goods from me you check that
they are OK, and if they are not, you send them back to me. That
interaction for returning the goods to me takes place only if they are not
OK. How should we model this? Our first thought might be to draw a
process as shown in Figure 2.44. Follow it through, especially on the
seller’s side.

Buying o/ Selling
e

Ship goods

Goods sent

Check the goods

yes no
Goods OK? Goods OK?

Faulty goods sent

goods —

‘ Ship new goods

JAN Y

FIGURE 2.44 A conditional interaction wrongly modelled

no yes

OK goods sent

(S

This would be wrong. Firstly, remember that a case refinement does not
involve any action: it simply divides the state. So, the figure says that in the
Selling role, immediately after the goods have been shipped, we must be
able to refine the state marked Goods sent either into the state OK goods
sent or into the state Faulty goods sent. But if this really were the case it
would mean that the seller must know immediately after shipment
whether the goods are faulty or not and can be ready to respond
appropriately! If we assume that the seller is not so underhand, we have
modelled the wrong process. The problem is that the condition Goods OK?
cannot be determined at that point within the body of the Selling role.
Only the Buying role has the resources within its body to determine the
value of the condition.

Modelling a process

A correct model for this situation would therefore be that shown in
Figure 2.45.

Buying Selling
\

Ship goods
\ Goods sent
Check goods

yes no

-

Goods OK?

goods

Ship new goods

q ') Y

FIGURE 2.45 A conditional interaction correctly modelled

Here, we show the case refinement only in the Buying role and a second
interaction with the Selling role that only takes place if the Buying role
decides the goods are not OK. The Selling end of that interaction takes the
form of a ‘hanging’ thread: it can take place whenever necessary and we do
not need to tie it into the rest of the role. Only if the Buying role takes the
initiative and ‘forces’ the interaction, will the Selling role need to do
anything about it.

If the seller had a standard practice of always checking with the buyer
that the goods delivered were satisfactory then we would explicitly model
this of course.

KEY POINTS

Interactions show the points where roles cooperate.

An interaction can involve any number of roles.

An interaction synchronizes the states of all the participant role instances.
The result of an interaction can be the exchange of something, or joint
activity, or both.

Replicated part-interactions allow us to model interactions involving all
current instances of a role.

Interactions can be modelled in concrete or abstract terms, or both.
Interactions can be more complex than we think and the right level of
detail must be struck.

101

Business Process Management

Pupil:
Tutor:

We’ve spent a lot of time on interactions.

Yes, but don’t sound so surprised: processes are about collaboration, and
interactions are where collaboration takes place. If you're used to swim-
lanes, you might suppose that when two swim-lanes interact, all that
happens is that the locus of activity moves from one to another. In fact,
interactions are very rich in nature and we must be aware of that.

REPRESENTING TRIGGERS

102

Sometimes a role must wait for something to happen before it can
proceed. To be more precise, sometimes a thread must wait for something
to happen before it can proceed. We call that something a trigger.

We show a trigger by an arrow (>) placed on the state line - see
Figure 2.1 — with a caption that briefly describes the trigger concerned. In
strict terms, a trigger moves the role concerned from the state preceding
the little arrow to the state just after it — imagine this in terms of the
movement of a token. In Figure 2.46 we see the start of a thread that waits

ready to note resignation of
member of staff

member of staff resigns

member of staff has resigned

FIGURE 2.46 The before and after states of a trigger

for someone to resign. We have labelled the before and after states to
emphasize the way the trigger changes the state.

In Figure 2.2 the RAD tells us that a Divisional Director role instance
must wait until a new project has been approved — somewhere outside this
process — before it can proceed.

Triggers marking calendar time and clock time
End of month might be the absolute time that triggers the start of the work

to prepare the month-end paperwork (Figure 2.47). Thursday 6.00 pm
End of month

Prepare report for previous month

FIGURE 2.47 A trigger marking calendar or clock time

Modelling a process

might signal the start of work on the weekly wages cycle. I May might
signal the start of the annual budget round.

A trigger of this sort is commonly found at the start of such time-related
threads. But it could fall in the middle of a thread. Suppose we issue an
invoice and then wait until the end of the following calendar month before
checking that payment has been received. This would look like Figure 2.48.

Issue invoice
End of following calendar month
Check if payment has been received

FIGURE 2.48 Waiting for a time trigger in the middle of a thread

Triggers marking the passage of time

Sometimes work has to be suspended until a certain period of time has
passed. Our little arrow symbol allows us to represent this. Thirty days later
might be such a ‘relative’ time trigger: thirty days after an invoice has been
sent out we might check that payment has been received. Figure 2.49

Salesperson ¢/ 4 Customer

Send letter [i

Two weeks have passed

Phone to follow up letter i

FIGURE 2.49 A trigger marking the passage of time

shows a situation where a letter is sent to a customer and the role waits
two weeks before making a phone call to follow up the letter.

Triggers marking external events

Sometimes, something happens outside our process which has an impact
on its progress — we call this an external event. For instance, suppose we
are modelling the recruitment process in a company. The resignation of a
member of staff triggers a thread of activity in the Human Resources role in
our process, preparing job specifications, contacting recruitment agencies,
and so on. The person resigning would communicate their resignation to

103

Business Process Management

the Human Resources role in some way. We might not be concerned in our
model to know the detail of the resignation, how it was communicated, or
any details other than that it has occurred and that a certain post is to
become vacant. We would represent this using something like Figure 2.50.

HR ¢

(Resignation occurs
Contact agencies Prepg_re pb
k specification

FIGURE 2.50 An event external to the modelled process

We could on the other hand adopt the perspective that the resignation is
in some way an interaction between the HR role in our process and some
other role, and we would have something like Figure 2.51. But this adds

~

Resignery/ HRy
Contact agencies

[%Notify of resignation
Prepare job §
L specification

FIGURE 2.51 Treating an external event as an interaction

/

little and only moves the boundary of our model out to some portion of the
role Resigner, leading us firstly to think (perhaps unnecessarily) about the
identity of that external role and secondly, what led up to that interaction
in the Resigner role! As it stands, Figure 2.51 shows a process which
depends on the role Resigner deciding to use the Notify resignation
interaction for anything to happen.

However, if we are concerned, for instance, to check the way we deal
with someone who has resigned, it is obviously important that this
interaction should appear and, indeed, we might decide we want to
capture precisely how that interaction can take place formally.

104

Modelling a process

Triggers marking internal events

An external event spots something happening outside the modelled
process that triggers action inside the modelled process. We can also use
an event to spot something happening ‘over there’ in the modelled process
that triggers action ‘over here’. Figure 2.52 shows an example. In this case,

Project Manager /
/

Supplier s

Plan subcontracted work

Subcontract

Subcontracted Carry out work
work over-runs

|
Determine impact

N

FIGURE 2.52 Spotting an event internal to the process

an action has taken more than an allotted time: the subcontractor is late
and this triggers the Project Manager into action.

We need to be a little careful when using this way of spotting something
happening ‘elsewhere’ in the process. When you do it, ask yourself the
question ‘How would this role find out that this event has happened?’ If
the answer is ‘by asking so-and-so’, then we might question why we did
not model that interaction. The example in Figure 2.52 is fine: the Project
Manager has a calendar and a note of when the work should have been
finished. The trigger doesn’t tell us how the Project Manager spotted the
over-run, simply that it was spotted.

Triggers marking as-and-when events

Finally, there is the situation where a thread of activity can be triggered at
any time. It might be on a whim: ‘Let’s carry out an audit of the retail side
of the business.” An example is shown in Figure 2.53. Indeed, if the thread

Ad hoc decision is made to carry out an audit

FIGURE 2.53 An as-and-when event

105

Business Process Management

can be started on a completely ad hoc basis then we have no need to show
a trigger at all.

Triggers can perform magic

An external event trigger is a way of defining part of the boundary of our
model. We are recognizing that something happens ‘out there’ that affects
‘in here’. The actual effect can include a little magic: the triggering event
might cause the importing of something into the process (strictly, into the
role body) or it might change the state of something already in the process
(strictly, inside the role body).

Figure 2.54 shows an event — Application form arrives from customer —
that imports something into the role: the application form from the

Clerk 4

~

Application form arrives from customer
|

Decide which department should process it

FIGURE 2.54 An event importing something into the role body

customer. The fact that we have shown its arrival as an external event says
that we don’t care, for the purposes of this model at least, how this
happens. It just does. The Clerk role now has that application form in its
possession, in its role body.

Figure 2.55 shows an external event changing the state of something
already in the role body: the sales predictions in the possession of the Chief
Accountant have, somehow (and we’re not saying how), been changed.

Chief Accountant

Sales predictions have been revised

Determine effect on cash flow

FIGURE 2.55 An event changing the state of something in the role body
Again, when we use a trigger in this way, we should ask how the prop

was changed: perhaps it was through an interaction with some other role.
Should we be showing that interaction on this model?

106

Pr

Modelling a process

Choosing and modelling triggers
Triggers and threads

This is an appropriate moment to remind ourselves that a role may have
more than one thread. Figure 2.56 shows a part of a Divisional Director role

Divisional Director W4

-

Time to start
annual budget cycle

epare first draft of budget

Circulate

Time to start
monthly reporting cycle

Assemble last month's figures

Get section reports

\

\

for comment

Ready to approve

expense claim
Prepare Divisional Plan

)

FIGURE 2.56 A role instance with four threads ready to start

which has four threads: one for dealing with the annual budget cycle; one
to deal with the monthly reporting cycle; one waiting for an interaction
with anyone wanting an expense claim approved; another to get straight
on with preparing their Divisional Plan. We can think of these threads as
corresponding to four parts of the Divisional Director’s brain: each waits
for its own particular trigger to set it off.

Event-driven vs cycle-driven threads

An event-driven thread is one that is triggered whenever a certain event
occurs. It is a thread which represents our response to a certain situation.
We can imagine many different sorts of triggering events. For instance,
Customer application arrives and Sample arrives for analysis might be the
triggers for threads that deal with individual cases: we will have a number
of customer applications being processed at any one time, and there will
be a number of samples at various stages of analysis at any given moment.
Budget change announced, however, would be more likely to trigger a
process that starts, proceeds and stops ... and maybe is triggered again at
some time in the future on the next budget change; but we are not going to
be dealing with several simultaneously. In the worst case, we’ll abandon
any (over-running) attempt to deal with the last one and switch our
attention to the one that has just come in.

107

Business Process Management

A cycle-driven thread is an event-driven thread which fires regularly
according to the clock or the calendar. There is probably (but not certainly)
only one instance of such a thread in progress at any one moment and we
fire an instance off at regular intervals. We will find events such as End of
Month, 5 April and Midnight at the beginning of such threads.

Plans and activities

It is not uncommon for certain parts of a process to be started off
according to the dictates of a plan which is prepared during the process we
are modelling. In other words, the threads of activity that will be carried
out are known, but exactly which threads will be done and in which order
they will be done might be decided on-the-fly, as the process proceeds.
Those decisions — what and when - are what plans are all about. Our plan
will tell us that when a certain condition is right, a certain thread of activity
should be started, but we cannot tell which or when until we are into the
process.

Suppose our business is developing new electrical goods. At various
points in the design and development of a new product we shall need to
carry out various tests and obtain certificates of compliance with certain
regulations. Precisely which tests are needed will vary from product to
product, and they will be different for a toaster and a hand-dryer. To model
such a general Develop a New Electrical Product process we might
therefore need to show threads of activity to do with carrying out tests and
obtaining certificates, with those threads being triggered by internal
events: effectively ‘The plan says the moment is right.” Figure 2.57 gives an
example. We have gone a step further and modelled the (internal) event
that all the planned activities have been completed.

Product Planning / Customer Trials / Product Safety /

108

Y

Division Division
Time to carry

out a planned
customer trial

Time to carry
out a planned
safety trial

Plan product development
(including customer trials
and safety trials)

All trials have been completed

FIGURE 2.57 Modelling a plan and its activities

Modelling a process

Modelling exception conditions - timing out an action

Suppose a Helpdesk takes calls from customers. If the Helpdesk person
cannot answer the question there and then on the telephone, they tell the
caller that they will go away and investigate the enquiry and call back with
an answer within the hour. If at the end of the hour they don’t have an
answer to give the caller, they need to give an interim report on things and
perhaps give a time by which they will get back. We want to show both the
intended process — immediate answer or call back within an hour — but
also the process if an hour passes without an answer emerging from the
investigation.

To do this, we show the handling of a late action as a response to the
event which is the timing-out of the action. And when the action does
finish (or gets aborted perhaps) we take an appropriate course of action
depending on whether it has timed out - see Figure 2.58. We are using the

Customer Helpdesk

N O
%Make enquiry

: D

Investigate

Investigation complete

no yes
Did we over-run time?

Call back with response
I
Call back with response
and apology

Investigation has been running for an hour

Call back with
J interim response

FIGURE 2.58 An action runs late

> to detect an appropriate event inside the process: Investigation has
been running for an hour. This trigger sits on its own thread - it doesn’t
need to be ‘tied into’ other parts of the process.

When people model processes, they all too easily fall into the trap of
modelling the normal or expected behaviour. But if we observe people
doing a process we shall often find them dealing with abnormal or
unexpected situations. Should those behaviours be part of the model too?
Well, the answer depends on the purpose of the model. But we might say
that if we want a full picture of an existing process, or a thorough model of
a planned process, then we had better not forget those exception

109

Business Process Management

110

QA

If‘]fObtain paperwork

conditions. They will often reveal problems elsewhere in the process:
earlier work that has not been completed on time, poor quality inputs such
as forms inadequately completed, perhaps because they are too compli-
cated, and so on.

Modelling exception conditions — timing out an interaction

Once a customer has placed an order, they wait for the interaction which is
the delivery of the ordered goods. Do they wait for ever? Of course not: if
the goods have not turned up after a certain period they will want to chase
them. So, how would we model this exception condition and the way it is
handled?

Suppose a Section Manager waits for goods from Manufacturing and for
the corresponding paperwork from QA before passing the goods with the
paperwork to Shipping for shipping. An optimistic view of this process is
shown in Figure 2.59.

Section Manager

- D

Manufacturing

Obtain goods—

Shipping

Arrange shipment of goods
with paperwork

/

FIGURE 2.59 An optimistic process

\

If we were modelling the process and did not press our questions very
hard, this is the story we might hear. But of course we might guess that the
Section Manager won’t wait for ever for the paperwork to turn up. Further
questioning might reveal that the process as actually implemented takes a
rather more pessimistic view of the world and has a workaround for when
the paperwork is late, in other words, for when the Obtain paperwork
interaction times out as perceived by the Section Manager.

That pessimistic — but realistic — process is shown in Figure 2.60. The
Section Manager starts the two interactions with QA and Manufacturing as
before but now, having received the goods from Manufacturing, has two
possible courses of action: one in the case where the paperwork arrives on
time (on the other thread of the part refinement) and another in the case
where that interaction with QA times out. In the first case, the Section
Manager proceeds as normal, shipping the goods with the paperwork. In

Modelling a process

8010AUI PUBS

yiomiaded yum

]

Buiddiys

ylomiaded dn-mojjo} pues

D‘| Arejodwsay yum

yiomiaded

wewdiys abuely

yiomiaded Arelodwse} abuelny

1IN0 Sawi} JO dWi} UO SaALLIe Yiomiaded

sanIe
yiomiaded aje]

N0 pawiny awi} uo

]

Bunnjoeynuepy

¢ POALLIE Ylom Jaded

yiomiaded

Jabeueypy uonoasg

spoob jo yswdiys abuelly

c_mso\ﬂﬁ_

VO

FIGURE 2.60 A pessimistic yet realistic process

the second case, they ship the goods with temporary paperwork and, at the
same time, wait (even longer, in fact indefinitely according to the RAD) for

the real paperwork to turn up. When it does, the follow-up paperwork can

111

Business Process Management

be sent off and the process resumes its ‘normal’ course, with an invoice
being sent to the consignee.

More complicated mechanisms can be modelled using a > to pick up
timeouts and respond to them. Spend a moment checking how the two
triggers are used in Figure 2.60.

Triggers can be complex ... in their captions

Figure 2.61 shows some typical situations modelled in different ways. The
first RAD fragment shows a role that has to prepare a report at the end of

End of
Month end or Board Sooner of month end and Month end acgounting
requests a Report accounting period end period
Prepare report Prepare report Prepare report

FIGURE 2.61 Some tricky triggers

the month or whenever the Board requests a report. The second shows the
role writing the report at the end of the month or the end of the accounting
period, whichever comes first. These make the point that an event can be
quite complex but only needs to be described in English in its caption. The
third shows the role writing the report at the end of the month or the end
of the accounting period, whichever is the later.

KEY POINTS

The trigger symbol is used to represent a variety of things that can trigger
activity in a role:
e moments in time;

o the passage of time;

e events outside the modelled process;

e events somewhere inside the modelled process;
°

as-and-when events.

REPRESENTING THE AD HOC PROCESS

Pupil:

Tutor:

112

So far we seem to have been describing processes that have some order,
some sequence to them. OK, we’ve seen roles with several threads — separate
parts of their brain for different parts of their responsibility, as you put it.
But some processes are entirely ... ad hoc. Things don’t happen in a
predefined order. Surely RADs aren’t appropriate for them?

Au contraire! You've just said how they can be handled: with separate
threads! Yes, we can imagine a process where the order in which activities

Modelling a process

are carried out is decided by the actor on-the-fly, and can’t be laid out
beforehand. Writing a book is one: I flit between writing a chapter, changing
a style across all the chapters, amending the index, updating the contents
list, and so on. A part of my brain is ready to do any one of those things at
any time. There can be many such parts, each corresponding to a thread of
spontaneous activity, perhaps a single activity. With that thought, could you
now sketch the RAD of the process I just described?

Pupil: Well, each of those threads must sit on its own ... I’'m not sure if they have
triggers on them ... I guess I don’t need to show triggers if they are truly
spontaneous as far as the model is concerned. How about this (Figure 2.62)?

Tutor: Looks fine. Here’s a role with six bits of brain each ready to start a thread
when the actor feels like it — pure ad hoccery!

Author

style

Write chapter Rea’d someone Drink tea
else’s work

FIGURE 2.62 A role of ad hoc activity

* Amend document Update contents list Update index

REPRESENTING PROPS

Processes involve things. The states of things affect the course of events
and are affected by events. When I work on a chapter of the book, the state
of that chapter changes. When the chapter is finished I can have it
reviewed.

These things are the props for the role. Props can include the resources
the role needs.

We might be happy to simply note the props concerned in captions to
actions, interactions and decisions:

e Prepare the Project Plan.

e Assemble the engine.

e Deliver the book that was ordered.

e Hand over the terms of reference for the work.

e Is the purchase over £100?

e Was the employee working abroad?
But where are these things — the Project Plan, the engine, the terms of

reference? In the words of Bluebottle: ‘Everyone’s got to be somewhere.’
The Riva answer to this is ‘In the body of a role instance’. If I am preparing

113

Business Process Management

the Project Plan as (an instance of) Project Manager, the Project Plan is on
my desk. If we, an Engine Construction Cell, assemble the engine, it is in
our assembly area. If I am deciding if the employee was working abroad,
something in my role body must allow me to decide. And that something
must have got there somehow.

This is more than a matter of geography or cubicle politics of course: my
desk is where I keep my resources to carry out my role; our assembly area
is where everything we need to assemble engines — equipment, tools, parts
—is held for our job. When parts are delivered (via an interaction) they end
up in our role body. When we deliver an assembled engine, it passes from
our role body to that of the Final Assembly Team.

If it’s appropriate for the model in hand, it makes sense therefore to
show props within the grey area of the role on a RAD, just as a simple list.

CASE STUDY 1

114

To close the chapter, let’s take a look at a RAD of the sort that we might
produce in real life. I have chosen it to illustrate a number of points. See
Figure 2.63.

The process is of a type that we shall soon be referring to as a case
process: it’s a process that deals with one something, in this case a
‘candidate product’. So the process is triggered when the Marketing
Director detects the fact that a candidate product has been identified. A
new responsibility is created to deal with it in the form of a Product
Manager (the only role with no pre-existing instances). There is then a
flurry of concurrent activity from a number of roles in the preparation of a
dossier that goes to the Board. They might reject it (end of process), or ask
for it to be resubmitted, or pass it for development. During development,
the Board is kept up to date with progress, and finally Product Assurance
run an Acceptance Test over the product before it is deemed ready for sale.
The process therefore has two possible outcomes.

What is noticeable about this model is how the interactions outnumber
the actions. It was drawn to emphasize the collaborative nature of this
process, to stress how everyone’s involvement has to be coordinated to
ensure success. Since time-to-market is important for a product company,
it also aimed to show where different roles would be operating
concurrently and there are part refinements within roles, allowing them
to get on with several things at once. At one point, Development can be
involved in at least three concurrent threads of work. Once again,
interactions are important in getting material out to people and gathering
it back in. Coordination.

In later chapters, we shall look at how a RAD can be used to get to
answers to the sorts of questions we might ask about a process. But as well
as providing us with an example of a RAD, perhaps we can also look at the
sorts of things we can spot when something like this is drawn:

Modelling a process

afes o} Apeal Jonpoid

91 9oue)deooy Ino Aued

/" pieog

ssaifoid podey

jusuodwod ay} asedaid
yjuow Jo awi pajulodde 1y

| |
1USUOdWI0D BIEMYOS LOES 104 *

oedg ise)
t+— oouejdesoy 4

wuopu)

asedaid
@oueInssy
19npo.d VAl

ue(d pajielop aledaid

wiojuj

ued pue

s9adg Jan0 ssed
ueyd pejsod pue
s0adg [BOIUYOS] PUE [BUOIOUNS Biedald

‘HF {F

paoslel 1onpoid

10ads
ssed

(.

pajdedoe pejosfes aghew

\' jwawdojanaqg

9SBD SSOUISNG SSASSY

uoissiwgnsal jsenbay

.

ISes) [BOIUYOS)
4O JUBLUSSESSE BPIAOIY

1od jonpoud yium

uopeoloads elm
80UBIBYOD JO JUBWISSSSE SPIA0Id

uoljesyyoads
/* 1npoid

1091Y21y
Vs |esluydsa)

PalyaIY
/* yonpoug

Jonpo.d ajepipued e sjpueH

1senbey

aulno jonpoud yeiq

1ab6euepy

1npoid

_I_J.mmoo ur syndut 199]109D- |

ue|d sefes aledaid

wea} ajeulpI00) I_HH__

19ISSOP JBA0 Ssed / \

ue|d sseuisng asedeid

aoe|diexew ay) Aening

syuswainbal [~
jJonpoud uo joug
J1eBeuep Jonpoid Helg —————————
\r 1abeuepy
paynuspl jonpoid ajepipue) W

/" 10100010 Bunasrepy

aQ ssauisng

FIGURE 2.63 Handle a candidate product

115

Business Process Management

116

e The use of grey boxes to contain the activity of roles helps us see
where roles fit in the process (much better than swim-lanes, we might
say).

e We might quickly observe that some key roles are involved early on,
but disappear from the work in the later stages. The Marketing
Director, for instance, has no involvement apparently once a project
has been given the go-ahead by the Board — was this really the case, or
just appropriate for this model?

e A glance tells us that the Product Manager moves into a rather
responsive style of management once the project has been passed to
the Board for approval and - if approved — on to Development for
production. They appear to be on the receiving end of interactions
from others. What are they doing to manage things proactively?
Development seem to be in the driving seat.

o If the Board does reject the candidate, it seems to be a private matter:
no one else gets to hear about it. Perhaps as far as this model is
concerned, we weren't interested in the process for rounding off a
rejection.

e Acceptance Testing can, it appears, only result in success. Do we ever
get to the point where we decide that it has all been a terrible mistake
and abandon the thing in Acceptance Testing? Indeed, we can imagine
the product being abandoned at all sorts of points: if costs spiral or the
timescale goes out too far, for example. We haven’t shown those
measures being monitored or responded to. This could be because
there is no mechanism for that monitoring or because we chose not to
model it.

e We presumably could have shown Development developing the
product as a simple black box, but we have chosen to unpick it at
least as far as showing a reporting cycle to the Board, and the need to
develop in parallel a number of components that make up the
product.

e The model is largely abstract in nature. Although it shows real posts
and groups in the organization, the actions and interactions are
generally expressed in terms of intent: the Product Manager ‘requests
assessments’ and we are not told how that request is made or what
form the assessments take (written, emailed, verbal?).

These few observations should make it clear that as well as allowing us to
capture the dynamics of a process precisely, a RAD is ‘revealing’: it allows
us to see the nature, the style, the flavour of what is going on, and hence
allows us to answer the sort of questions we shall want to ask about the
process.

3 Dynamism in the process

Highlights the levels of within-process concurrency that can be captured in a RAD.

INTRODUCTION

At the end of Chapter 1 our Tutor pointed out two important messages:
instantiation and concurrency. Things happen because many concurrent
things happen at the same time. Remember the chevron of geese. Think of
a beehive. When we draw a RAD we are essentially drawing a static model
that shows the relationships between types of things: types of roles, types
of actions, and types of interactions. But more importantly, it describes the
potential behaviour of an organization when it carries out the process that
we have modelled. That behaviour arises from instantiation. In this
chapter we shall look more closely at how a RAD captures concurrency. We
shall do this by showing how we can pick up a RAD and ‘run’ it — a sort of
paper animation. Such a paper exercise is useful for understanding or
validating a process model; if we want to enact the process on a BPMS then
the topic becomes central as we shall see in Chapter 13.

As we looked at each concept in the RAD notation in Chapter 2 — case
refinement, part refinement etc — we found it useful to animate the
fragments of RAD in order to understand the sorts of behaviour that we
had effectively defined. In this chapter we shall look at the business of
animation on a larger scale: that of the entire RAD. How do we look at a
RAD and animate it to see what the process does?

A RAD describes a process in terms of the relationships between types of
roles, types of actions, types of interaction, and types of events. When we
animate a RAD to see how it works, we look at instances of roles, actions,
interactions and events, and we are interested in the actual states of role
instances.

A REMINDER ABOUT STATE

Each line (other than those indicating interactions) represents a potential
state of a role instance. Because a role instance can have more than one
thread of work active at any one moment, we can be stricter and say that
each line represents a potential sub-state of a role instance. For instance,
when a role instance enters a part refinement with three threads, we can
think of its state becoming the ‘sum’ of the sub-states on each of those three
threads. We showed the state of an instance by placing tokens on the

117

Business Process Management

appropriate state lines. As the role instance does its work — carrying out
actions, taking part in interactions, responding to external events — so the
positions of the tokens change: the marking changes to reflect the change of
state of the role instance. We can imagine a software tool on our PC that
shows us our role instance - RAD-style — with tokens on the state lines to tell
us where we have got to in carrying out that role. As we do items of work, so
the marking changes to reflect the way we are moving through the process.

If we stood back and looked at a running process we would see a set of
role instances, each in its current state. If we asked the question ‘What is
the state of the process?’, we could answer by saying that it is the ‘sum’ of
the states of all those separate role instances. This matches real life: ‘How
far have we got with dealing with that insurance claim?’, ‘Well, the loss
adjuster is currently waiting to arrange a meeting at the claimant’s house,
the clerk dealing with it has checked with the police, and we’re sorting out
liability with the lawyers right now.’

We will be able to tell when the process has reached its goal when the
desired states are reached in certain of the role instances.

HOW ROLE INSTANCES ‘START’

118

Let’s remember that there are two ways for an instance of a role to arise.
The simplest situation is where a role has one or more pre-existing
instances. Those instances are in place when the process starts and can
begin work. Other roles need to be instantiated once the process is
running. Suppose that a process has just started and there is a pre-existing
role instance for one of the roles, or a role has just been instantiated in a
running process (e.g. a Task Force has been set up). What happens to that
role instance? To answer this, let’s step back for a moment.

Inside a role we draw all the things a role does: actions and part-
interactions. For each of these we can define the activating condition: the
state which allows the action or part-interaction to start. We can define
those states by making the post-condition of one thing the activation of the
next: by connecting them with a line. So in Figure 3.1 when we have done A
we can do B: or in our jargon, the post-condition of A is the activating

FIGURE 3.1 ‘After doing A we can do B’

Dynamism in the process

condition of B. (Strictly, once the instance of A has completed, an instance
of B is created and can be acted by the current actor of the role instance.)

Suppose now that we have a thread of activity whose beginning is as
shown in Figure 3.2. What is the activating condition of action A? The rule

FIGURE 3.2 The start of a thread in a role on a RAD

is that at the head of a thread the state is ‘true’, and since the value of this
is always ‘true’ we can deduce that action A is always ready to run. In other
words, for any instance of the role there is always a token sitting on the
state preceding A, as shown in Figure 3.3.

FIGURE 3.3 A role instance thread ready to start in a running RAD

This generalises of course to each such thread in the role: when a role
instance starts (in particular when it has just been created), it has a token
at the start of every separate thread. What happens on each thread then
depends on the first thing on the thread:

e It waits in front of an action, in which case it is up to the actor to
decide when to start the action.
e It waits to take part in an interaction.

e It waits for an event to happen.

Let’s revisit the fragment of a process we saw in Figure 2.56. When the
Divisional Director role instance in that process starts, there will be a token
at the top of each thread, as shown in Figure 3.4. What we observe is the
Divisional Director waiting for the moment to come when they must start
work on the annual budget; waiting for the moment when it is time to start
working on the monthly report; waiting for an interaction with someone

119

Business Process Management

Divisional Director

e N

Time to start Time to start

annual budget cycle monthly reporting cycle

Prepare first draft of budget Assemble last month's figures
Circulate

Get section reports
for comment

Ready to approve

expense claim
Prepare Divisional Plan

(S /

FIGURE 3.4 A multithreaded role instance ready to start in a running RAD

wanting an expense claim approved; but able to get straight on with
preparing the Divisional Plan. If we restrict ourselves to this small
fragment, we have a role instance that is ready to start four threads of
activity.

Note how important it becomes when we draw a RAD to mark roles with
pre-existing instances, if we really want to understand how much
concurrency there is at the outset and hence how the process can unfold.

HOW A PROCESS STARTS AND RUNS

When we look at a RAD we want to be able to see how and where it starts.
Simple. We just ask ourselves ‘Which roles have pre-existing instances?’
Each of those instances then starts in the way we have just described: with
a token at the head of each free thread. We need say no more. We simply
use the rules we developed in Chapter 2 to see how the tokens flow. When
the role instance comes across a part refinement, more threads will
become active: the concurrency of the role instance will increase. Some
threads will merge and others will come to a dead end. If the role instance
comes to a replicated part refinement, a multitude of concurrent threads
can be started up.

This is a good moment for a caution. When you draw your first RADs you
will find yourself unable to resist two things: joining everything up, and
creating unnecessary sequences. If you succumb to either of these
temptations you will deny the existence of concurrency. For instance, do

120

Dynamism in the process

those four black-box actions you have drawn in a sequence actually have
to be done in sequence, or is some parallelism possible?

HOW ROLE INSTANCES ‘END’

We have no special notation in Riva to mark the ‘death’ of a role instance
in a RAD, no symbol that says ‘delete this role instance’. When we want to
show this we simply use a black-box action with an appropriate caption:
e.g. Close down the Task Force, Close off responsibility for Project Managing,
or End role of Expense Claimant. If this troubles you, remember that a
role’s activity can be made up of many concurrent threads. It is not always
a matter of reaching the end of a single thread.

HOW A PROCESS ‘ENDS’

Tutor:
Pupil:

Tutor:

Pupil:

A process ends when there are no role instances with something to do ...
assuming of course that they cannot be revived into activity by an external
event that they are waiting on.

Later, next to the water cooler

I hope you can see now why a RAD is not a flowchart.

Well, a flowchart — and, I guess, all the variations on the theme that I've seen
being used — represents a simple, single, sequential flow of activity, a single
thread with no possibility of multiple concurrent activity. A swim-lane
diagram typically does no more than show the single thread trundling
between roles. Even if we allow a thread to divide we aren’t getting the true
concurrency that happens in the world.

Exactly. It is all too easy to model a process as if it is some kind of simple
sequence - processes are hardly ever like that. If they were, most people in the
building would be standing still at any one moment, waiting for their turn to
come. Instead, as a process unfolds, there is a constantly changing flux of
instances that ebbs and flows. We cannot think of a process as a sequence of
activities, some beads strung on a string, pieces of meat on a kebab stick. We
must accept thatitis morelike. .. well, like the workings of an organization! So
although a RAD is a static model that shows relationships between types of
things (roles, actions, interactions), it actually captures the potential
dynamics; what happens when things run and instances happen.

Let’s look at the RAD in Figure 3.5. Tell me about the concurrency in it.

OK. When the process starts there is a Project Manager, a Board, an
Accounts Department, a Client, and a Line Manager. The model seems to be
mostly about the Project Manager, who has six separate threads. One thread
is triggered at the end of a quarter and they then have a quarterly review
with the Board. Another triggers every two weeks to have an interim
progress review with the Line Manager. Then there is another at the end of
the month which is to do with getting the monthly report written and sent
off to the client.

121

Business Process Management

/* SlUnoaoy

\
panoidde ao10AUI
2UO]S3|IW J0BIIU0D

8010AUI Jelq

Buisseooid
10} ssed

|
1senbay 8210AU| a1edald

9010AUI w>o_nn<HH_

N

N

yruow Ioj podal sey sl

waly o} woday ssaiboid puss

panoidde ao10Aul Alyiuo

_

99010AUl 8A0Jddy

uoday 108lo.d 9816y

yoday 108loid asedaid

/waln

e N

£9U0)salW
/ 10BIU0D
ou Arewwng sabiey) 1ono ssed
uone|dwod poday 0)0 yIomiau ayepdn
saunby B YdM erepdn
dM 1no Aep _HU SNje}s si o pul
OdM ssed
o dM @Anoe Yyoes 104 %IN
/ \ DDdM esedaid
6 _ pua Yuow
M
JOUMQ abe)ded 310 UMD dM LBIS

paLIElS aq 0} dM 40} S|

Joeloi4 e ebeueyy

ﬂu_f\smsm: ssalboid wuslu|

/® 1abeuep aul

2010AUl 8Jedald

£10e1U0d
sak ou

N /

/* sjunooay

malnal Apspenp

Jayenb r._v

passed aAey S¥oaM OM |

K

/* 1eBeueyy 108loid

pu3

/* pieog

NBL

FIGURE 3.5 Manage a project

122

Dynamism in the process

The most interesting seems to be one to do with handing out pieces of work
— ‘work packages’. Each work package has a responsibility associated with it
in the form of a Work Package Owner role. When one of those owners is
started they get a WPCC - some sort of terms of reference I guess — and they
do the work — no details about that — and finally tell the Project Manager
when it’s finished — the Project Manager waits to hear about that.

Tutor: So tell me about the concurrency in this process.

Pupil: That work-package-related thread can fire as many times as necessary so, in
principle, at any one moment the Project Manager could be having a
quarterly review with the Board, having an interim progress review with the
Line Manager, preparing the monthly report — which itself could involve as
many threads as there are active work packages — and looking after as many
threads again for the work packages themselves. So if there are N current
work packages, the Project Manager could have 2 + 2N concurrent threads
of work in hand - that sounds like project management!

And of course there are N instances of Work Package Owner, each of which
has two threads going: one doing the work package and the other ready to
report on status to the Project Manager.

Tutor: Right. But this amount of concurrency is still not enough. So far, we have
only talked about the concurrency possible in one process. We now have to
step back and get a handle on how the collection of different processes work
together and we shall then add whole new levels of concurrency.

KEY POINTS

When an individual process (instance) runs there is concurrent activity.
Each role type can have zero, or one or more independently active
instances at any one moment.

Within each role instance there can be zero, or one or more threads of
activity operating independently and concurrently at any one moment.

123

4 Process relationships

Examines the two types of dynamic relationship that processes can have and how to
represent them in RADs.

WHAT HAPPENS IN AN ORGANIZATION?

So far, we have seen how a Riva RAD can be used to capture the concurrent
and collaborative activity that makes up a single business process, in terms
of roles and their actions and interactions. But if we walk into a company’s
building, we might guess that going on around us are many processes
dealing with the many different aspects of the organization’s life. As we
look around, we sense a number of things:

e Some of them are ‘big’ processes - the development of a new
pharmaceutical drug involving thousands of people across the world —
and some are ‘small’ - someone claiming their expenses.

e Some are long-running, and some are over quickly — think again of the
two processes in the above example: ten years against ten hours, say.

e Some processes support others: during the process of running a
student examination, the process of marking an individual script is
carried out many times; during the development of a pharmaceutical
drug, many clinical trials are carried out; during a clinical trial, many
medical tests are carried out.

e Some processes interact with others: the process for designing a new
product interacts with the process for making a test batch; the process
for preparing the annual budget interacts with the process for
planning marketing campaigns.

We sense that all the activity going on around us in the organization is a
network of interacting processes, a network that is changing by the
moment. Some processes are occurring many times at the same instant:
124 different clinical trials are ‘in progress’; 2,489 expense claims are ‘going
through the system’; 167 papers are ‘in the process of’ being marked and
moderated.

Let’s think about that last paragraph more closely. We have one process
for running a clinical trial, but there are 124 instances of that process in
action at this moment. This sounds familiar. Just as it was possible for an
action or a role type to have many instances at a given moment, a process
type can have many instances in progress at any moment. And those

125

Business Process Management

126

instances come and go in the same way: when the 33 Physics students
have sat the examination paper, 33 new instances of the process for
marking an exam paper must be created. When the result for an exam
paper is finalized, so the corresponding instance disappears, its job done.

(Note that we must be careful now to say whether we are talking about a
process type or a process instance. I shall distinguish between them if it is
not obvious which is being referred to. So remember that the word
‘process’ on its own really needs to be read as ‘process type’ or ‘process
instance’ as the situation demands.)

It’s hard to over-emphasize the importance of these points when we
look at how we will think about and represent processes in some sort of
model, whether we are defining, analysing, designing, or improving
processes. Let’s see why.

If we fail to note that there are many process instances running at one
moment, we will ignore the question of what makes them start, and when
and how. We will ignore the problems that arise from managing all that
concurrent activity. We will ignore the effect of all that concurrency on
productivity, on resources, on scheduling, and more.

When we describe a process in a RAD, we draw a static structure of role
types. But we saw how, when that RAD ‘runs’, instances of roles can be
created dynamically and, within the role instances, instances of activities
and interactions are created dynamically. The RAD captures the dynamics
of the process and all its potential concurrency, by describing the types
and how they get instantiated. We need a similar approach to describing
an organization in terms of its processes. We can draw a static network of
process types. But when that network ‘runs’ there will be a dynamic
network of interacting instances. In Chapter 6 we shall look at how we can
determine that Process Architecture Diagram (PAD), that captures the
dynamics of the organization and all its potential concurrency.

The important conclusion is that if we want to model activity at the
organizational level then we shall need an approach that captures the
dynamic relationships, and that captures the network and the way that it
operates. We now have some important questions to answer:

e How do we decide what process types an organization has? Put
crudely: how do we chunk all that organizational activity? Putting
aside which processes are started when and how they interact, what is
the list of processes used by the organization?

e Given that we have a network of interacting processes, what sorts of
interaction can processes have? What sorts of relationship can exist
between two processes? And remember that we are interested in
dynamic relationships, not static relationships.

e Knowing what processes the organization has, and the sorts of
relationship that can exist between processes in a network, how do we

Process relationships

decide precisely what dynamic relationships this organization has
between its processes?

If we can answer these questions we should be able to walk into the
building and, after some analysis, draw a picture of the network of process
types that the organization must have: its process architecture.

We shall answer these questions in a different order, and start by looking
at the two main types of relationship that can exist between two processes,
and how those relationships get modelled in a RAD. They are:

e Interaction: where the two processes operate independently but
interact at various points.

e Activation: where one process starts another, which then operates
independently.

I must make an important point here. In each case, what we want to do is
recognize that we will be drawing a RAD for each process in the
relationship. We want each of those RADs to be free-standing and
‘readable’ on its own. But processes cannot be cleaved apart so cleanly; if
we cut an arm off a living body we chop through nerves and blood vessels,
and to get a true picture we need to show where they came from or were
heading. So we want a way of producing free-standing RADs whilst still
showing where they are related or connected.

Finally, before moving on, I want to stress again how nervous I am about
hierarchies and decomposition when we are thinking about processes. In
Riva you will never see a hierarchy, you will only see networks.

KEY POINTS

One process instance can create an instance of another by activation.
Two process instances can collaborate via interaction.

From moment to moment, there is a flux of interacting process instances
at work in the organization.

Organizational activity is the operation of an evolving network of
concurrent, interacting process instances.

INTERACTION OF PROCESSES

When we look at an organization we know we will see many processes
operating - strictly, many process instances. We also know that these
processes do not operate entirely separately from one another; in
particular two processes will occasionally interact in some way. For
instance, a company might have an annual budget-setting process in
which it reviews the portfolio of projects and decides on the budget for
each in the coming year. At the same time, each project will follow a
project lifetime process that might take several years (i.e. several rounds of

127

Business Process Management

128

budget setting). At points during its lifetime, the project (process) will
clearly need to interact with the budget-setting process to find out what its
budget is to be. We will probably model the two processes on separate
RADs. But we know that the processes interact at various points, so we will
want to show those interactions on their respective RADs whilst allowing
each RAD to be free-standing.

What precisely do we mean by ‘process A interacts with process B'? In
Riva we know that everything happens within roles, so a process
interaction will clearly show itself as a role interaction. Firstly, this tells
us that there is at least one role that the two processes have in common; in
other words, at least one role has a responsibility in each process.
Secondly, we can expect to find a state of that role which appears in both
processes; such a state represents some sort of synchronization between
the two processes. It is as if the person carrying out the common role can
say ‘When I'm here in this process, I'm there in that process’ — the
common role has a common state too.

The modelling of process interaction

Let’s look at the ‘rule’ for modelling a process interaction and follow it up
with some examples.

When we model an interaction between two processes, A and B, it is best
to start by modelling it as an appropriate role interaction in each process/
RAD and then either to pare things down or to beef things up, as the
situation demands.

e Find the point of interaction in terms of the two roles in A and B that
interact. Let’s call them RA and RB.

e Draw that interaction in the RAD for A at the appropriate point and in
the RAD for B at the appropriate point. We can represent the
interaction differently in the two models if that is appropriate. Note
that RA and RB now both appear in both RADs.

e On the RAD for A, name the pre- and/or post-states of the part-
interactions for RA and RB. Give the same names to the corresponding
pre- and/or post-states of the part-interactions on the RAD for B.

Figure 4.1 shows the final situation in this general case. In both RADs we
have shown the role interaction that constitutes the interaction between
the processes. We have then labelled the pre- and post-states of each part-
interaction, and used the same state labels in both RADs. You can think of
the shared states as solder points that make electrical contact across —
create the same potential in — the two RADs. In the RAD for process A we
show a minimal amount of role RB. In the RAD for process B we show a
minimal amount for role RA.

RA

Process relationships

RB

eady for interaction with process B eady for interaction with process A
Interact with role RB in process B—— ;
teraction with process B complete teraction W\Rh process A complete

\
\
\
1
1

\

1

1

i

/ |

'

1

i

|

I

Il

1

!
i
i

Process A

Process B

'éady for interaction with process A

eady for interaction with process B

teraction with process B complete Gaﬂeraotion with process A complete

FIGURE 4.1 A general model of process interaction

A sample process interaction
Consider the simple example in Figure 4.2. In the Carry out Annual
Portfolio Review process, the Product Divisional Manager is told of a

change in their budget as decided by the Product Portfolio Management
Committee. As far as that process model is concerned we are not interested

in how the Product Divisional Manager responds to that, simply that they
are left in the state Budget change received: their response is the subject of
the interacting process: Handle a Product. The Product Divisional
Manager plays a part in that, too, and it is in the model of that process
that we map their response. Note how the two interacting roles appear in
both models, as does their interaction.

The Product Divisional Manager and the Product Portfolio Management

Committee are the two roles that are common to the two processes. Their

129

Business Process Management

Budget change agreed?

Product Portfolio Part of the
Management Carry out Annual Portfolio
Committee Review process

-

Product Divisional
MOB. o5 Manager

Notify of required
budget change ‘

‘ _ Budget change received
Budget change notified

-

Product Portfolio Product Divisional Part of th
Management Manager Hand aP 0 J et
Committee e anale a Froauc
process
Notify of required
budget change
Budget ch ived .
Budget change notified ucget change receive Plannlng
Evaluate budget change and Review
replan product development
! Group
Convene Planning Review Group
Instruct as to changes sought

130

(.

FIGURE 4.2 A simple process interaction

respective post-states — Budget change received and Budget change notified
- appear on both RADs.

Figure 4.3 takes a slightly more minimal view of the process interaction
as a simple example of the modelling choices open to us. Other variations
are possible of course.

In Carry out Annual Portfolio Review we have shown the role
interaction between the Product Portfolio Management Committee and
the Product Divisional Manager explicitly: Notify required budget change.
The Product Divisional Manager is then in the state Budget change received
after the interaction.

In Handle a Product we have used the action Take part in annual
portfolio review process to stand for the interaction that the Product

Process relationships

Product Portfolio

Part of the
Management :
Committee Carry Out gnngal P;)rtfollo
e ~ eview process
Product Divisional
no yes
Budget change agreed? ManagerJ

Notify required budget change

Budget change received

\ /

Product Divisional v

M Part of the
anager Handle a Product
/ process

Take part in annual portfolio review process

Budget change received

Evaluate budget change and Plannmg

replan product development Review

| Group
Convene Planning Review Group
Instruct as to changes sought

N

FIGURE 4.3 Figure 4.2 slightly reduced

Divisional Manager has in Carry out Annual Portfolio Review. The
Product Divisional Manager is then in the state Budget change received
after that action.

Clearly, in some instances the interaction could be much more complex
with a number of state equivalences defined to tie them together. But note
that we always do it by giving the same name to states in the same role in
the processes that are interacting.

Figure 4.4 shows the same basic modelling scheme at work in the
situation where a replicated interaction is involved. In the Manage a
Programme process, the Line Manager goes separately to each Project
Manager and gets the status of their project. How the Project Manager

131

Business Process Management

132

-

Part of the
Manage a Project process

Get status of project }
k / Status reported to Line Manager

Part of the
Line Manager Manage a Programme
Ve ™\ process

Month-end
Project Manager ¢/,

Get statuses of projects |

Status reported
to Line Manager

-

Project Manager

Line Manager s/ é

Prepare end of month figures

N

FIGURE 4.4 Process interaction modelled with two role interactions

determines that status is the subject of another process altogether: Manage
a Project. In the RAD for that process we have chosen to show the same
interaction, but now at the appropriate point in the management of a
project. To tie the two RADs together we have labelled the shared state
(Status reported to Line Manager) in a shared role (Project Manager). We
could also have labelled the other three states on either side of the part-
interactions in the two roles. That is a modelling decision.

In principle, we can of course cut the boundary between two interacting
processes at slightly different places, and there are many ways of
representing the boundary. Where we draw the boundary and what level
of detail we show depends on what we find useful for our purpose. When
we move into the next chapter and start to look at how to chunk
organizational activity into processes, we shall find that in practice the
boundary is generally clear and the representation straightforward.

Process relationships

KEY POINTS

When two processes interact, at least one role will appear in both their
RADs.

The interaction is minimally a common state in the shared role. That
shared state represents the synchronization of the two processes.
Whether we show all the shared roles and/or all the shared states and/or
all the interactions between the roles is a modelling decision.

ACTIVATION OF PROCESSES

The other important type of relationship between processes is the one
where one process is able to ‘activate’ another, to ‘set it going’, to ‘kick it
off’ or ‘start it up’. The assumption is that if ‘process A activates process B’,
then process B can then go its own way independently of process A. The
two processes might subsequently want to interact in some way.

As an example, suppose we have a Carry out a Strategic Review process
in a company. As the mission-critical success factors and future strategic
goals are examined during the review, new targets are set for different parts
of the company and those targets in turn lead to the need for a number of
Tactical Reviews. We can think of the Carry out a Strategic Review process
spinning off a number of instances of the Carry out a Tactical Review
process. Each of those instances will do its work and feed back to (/interact
with) the Carry out a Strategic Review process.

This sort of thing is exactly what constantly goes on in organizations.
During the development of a pharmaceutical drug, clinical trials are ‘set
going’ to examine aspects of the safety and efficacy of the proposed drug,
and they report back to the ‘main process’ with the results as and when
they complete. Many clinical trials are in progress at any one time. That’s
the sort of concurrency that runs right through any organization. In Riva,
we have precisely the language we need to describe what happens in the
real world. We will say that ‘process A activates process B’, or that that
‘process A instantiates process B'. They have the same meaning: ‘An
instance of process type A instantiates process type B'.

We must now say precisely what we mean by saying that one process
instantiates another. We shall start by showing how it can be represented
in a very minimal way.

Suppose that when we model Carry out a Strategic Review, we want to
show Carry out a Tactical Review being activated. Figure 4.5 shows how
we do this. In the activating process — Carry out a Strategic Review — we
show an appropriate role (here Strategic Review Board) instantiating what
we call the lead role of the activated process (here Task Force). The Task
Force role is an ‘abstract’ role: it doesn’t have pre-existing instances, in
particular, such things do not appear on the organization chart; instances

133

Business Process Management

Part of the Part of the
Carry out a Strategic Review Carry out a Tactical Review
process process

Strategic Review Board

134

\
Task Force /

Start 'Task Force' in Tactlcal Review required

'Carry out a Tactical
Review' process

Task Force actions complete

Task Force actions complete
(in ‘Carry out a Tactical Review’ process)

FIGURE 4.5 Minimal process activation and interaction

are only created as and when required and once they have done their work
they disappear. The lead role represents the responsibility for the process:
hence the term lead role. This reflects real life: when we decide we want to
have a Task Force do something for us, we create the responsibility for that
something: that responsibility is the lead role. Moreover, we can associate
the instance of Task Force with the instance of the Carry out a Tactical
Review process. So when we want to instantiate a process we simply
instantiate its lead role — everything then follows.

When we then draw up the RAD for Carry out a Tactical Review, we
naturally show the lead role, Task Force, and, to indicate that it has a pre-
existing instance (generated in Carry out a Strategic Review), we tick it
with a /.

Note that we do not need to show what makes things start in the RAD for
Carry out a Tactical Review: the v is enough to indicate that the Task
Force is already instantiated, so we can simply show what it does when it
gets going. That said, we might choose to label the state at the start of the
role with a suitable caption (e.g. Tactical Review required), simply to make
this separate RAD that bit more free-standing so that it can be read on its
own.

The RAD for Carry out a Tactical Review shows that the role Task Force
carries out some activity and then, at some point, is in the state Task Force
actions complete. This state is probably important to the Strategic Review
process; the Strategic Review Board is not interested in how it is reached,
only when it is reached, since it needs to pick up and respond in some way

Process relationships

to the results of the Task Force’s work. Figure 4.5 shows how we can
represent that in a very minimal fashion.

Note how we use the > to spot the completion of the Task Force’s
work in the activated process and how (in this model) we have used it to
import the results of their work into the activating process. In other words,
the activating process synchronizes with that state by waiting on a
corresponding event (Task Force actions complete). We can think of this as
a very bare way of representing a process interaction.

Note how the two resulting RADs can either be read entirely separately
or be seen as a coherent pair, using this minimal amount of modelling to
capture the activation and the subsequent interaction.

Suppose we didn’t want to be quite so minimal in our model. For
instance, on the model for Carry out a Strategic Review, we might want to
explicitly show the final interaction with Task Force where results are
returned to the Strategic Review Board. In particular, we would like to use
the technique we developed above for showing the interaction between
two processes, which is what this return of results is. The result would be
something like Figure 4.6 in which the shared role Task Force appears on
both RADs. In Figure 4.5 we used a > to spot completion of the Task
Force actions over in Carry out a Tactical Review and to import the results.

Part of the Part of the
Carry out a Strategic Review Carry out a Tactical Review
process process
Strategic Review Board Task Force

-

\ Tactical Review requiredg
7 7\

N Start 'Task Force' in
/N 'Tactical Review' process Tactical Review complete

Hand over results to requester
I

Tactical Review results
handed over

Task Force D
(Tactical Review complete

Hand olver Tactical Review results

Tacticall Review results

handed over

FIGURE 4.6 More-than-minimal process activation and subsequent interaction

135

Business Process Management

In Figure 4.6 we use an explicit interaction to hand over the Tactical
Review’s results, and use our normal process interaction notation to tie
this back to Carry out a Tactical Review.

Let’s go one step further and suppose we are interested in the fact that
the Task Force receives terms of reference when it starts. We might draw
the RAD in Figure 4.7. Now we have still shown the role Task Force in the

Strategic Review Board Part of thg ,
- Carry out a Strategic Review
process
Task Force
Start 'Task Force'in [Tactical Review
‘Tactical Review' process required

% Provide terms of reference ———

Tactical Review complete

% Receive Tactical Review results.

/ Tactical Review results

handed over)

Task Force V4

Strategic Review Board s/ . . _
/ \ Tactical Review required

% Receive terms of reference

Tactical Review complete

d] |
Hand over Tactical Review results
_ Y, '

Tactical Review results
handed over /

Part of the Carry out a Tactical Review process

FIGURE 4.7 Full process activation and interaction
Carry out a Strategic Review RAD, but we have added the interaction to

pass the terms of reference to the Task Force, and have also moved the
start boundary of the Carry out a Tactical Review RAD by adding that

136

Pupil:

Tutor:

Process relationships

initial interaction for receiving terms of reference. Take a moment to check
how the events and states have been used to tie the two RADs together
whilst keeping them free-standing, and to observe the complementary
nature of the way the relationships between the two processes are
represented in the two RADs. Note the symmetry of the two RADs in
Figure 4.7 and compare it with the minimalist model in Figure 4.5.

The minimal modelling of process activation
To model process activation in a minimal way, we proceed as follows:

e In the activating process A, instantiate the lead role in the activated
process B.

e In the activated process B, identify (for information) the start state of
the lead role and show that role as having a pre-existing instance.

Later, next to the water cooler

I'm rather surprised by all this. What you’re saying is that process A
activates process B simply by instantiating B’s lead role. That’s all that is
necessary for things to begin?

Yes, it is. Like all things Riva, we try to keep things minimal. Let’s think
through what’s happening. When I activate a process it’s for a reason: I want
something to happen. To make something happen, I create a responsibility
for making it happen. The lead role is that responsibility. By instantiating
the lead role we have created the responsibility. The process begins. We
don’t instantiate other roles or actions or whatever ... not until their time
comes.

Having instantiated the lead role, the activating process A might
immediately assign actor(s) and hand them resources — their props — in
an interaction. We might choose to model this ... or we might not. By
instantiating the lead role, we are - in effect — instantiating the activated
process B. The instances of A and B then have their own lives, operating
concurrently, interacting as necessary. In some situations the activated
process instance will have a shorter lifetime than the activating process
instance, perhaps ‘living’ only as long as is necessary to do a job and give the
results back to the activating process instance. In Chapter 6, when we
construct the organization’s process architecture, we shall see how this sort
of ‘service’ relationship underpins much of the dynamics in an organiza-
tion.

Earlier in this chapter I said that organizational activity is the operation of a
changing network of concurrent, interacting process instances. It should be
clear now how such a dynamic network can be seen as the operation of
process activation and process interaction.

137

Business Process Management

KEY POINTS

One process activates another by instantiating the latter’s lead role.
Subsequently, the two process instances operate independently and
concurrently.

ENCAPSULATION

138

Given that our functioning organization is a network of interacting process
instances, we can see that hierarchical decomposition would be a totally
inappropriate way of modelling organizational dynamics. To say that
‘process A is subprocess Al plus subprocess A2 plus ... is to ignore reality.
It is hard to give any meaning to such a statement. What exactly do we
mean by ‘plus’?

However, when we draw a RAD there are occasions when we might wish
to ‘summarize’ a whole mass of activity in a single black-box action, not
wishing - in this particular perspective — to get into the detail of how it is
done. Similarly, we might wish to summarize a complex interaction as a
simple interaction, not wishing — in this particular perspective — to worry
about the detail. We should therefore allow ourselves the possibility of
such a modelling convenience. But note that this is a modelling
convenience, and we are not pretending that processes are hierarchically
structured. We must take great care not to imagine that we can accurately
model a process by decomposition into smaller and smaller process ‘units’
or ‘subprocesses’.

Opening up a black-box action

The question is ‘What happens if we “open’’ a black box on a RAD?’ Rather
than talking about the ‘decomposition’ of a black-box action, I prefer to
say that we are looking through a window and seeing part of the world
from another, more detailed, perspective. We need to understand how that
new perspective relates to the black box on the original RAD. In particular,
we must remember that an action (like an interaction) takes place over
some period of time and at a particular place in the process, and so we
need to understand especially the temporal relationships between the two
perspectives, the ‘main’ RAD where we see a black box and the
‘encapsulated’ RAD which we see when we look through the window.
For instance take the action Produce design back in Figure 2.2. Suppose
we open this black box. When we look through it, we might find a whole
world of activity involving new roles such as Client, User, Quality
Assurance, and Chief Engineer. These do not appear on the first RAD, nor
are they ‘part of’ the role Designing. But they are all ‘encapsulated’ in the
action Produce design. In treating Produce design as a process in its own
right, we are starting to look at new parts of the world, parts that we were

Process relationships

not interested in when we were drawing up the model in Figure 2.2. So we
are now going to draw two free-standing RADs whilst showing the
relationship between them.

To understand how we open up a black box on a RAD, let us look at a
simple example. Suppose we are a life insurance company and suppose
that the way the Underwriting Manager handles an application for an
insurance policy depends on the office where the application is received;
each office has its own procedure for getting partner approval for
something. If we were not concerned with the detail of each office’s
procedure but did want to identify which procedure they used then we
might draw the relevant part of Handle an Insurance Claim as in the
upper part of Figure 4.8, showing the Underwriting Manager using
procedure P12 in the London office, procedure P13a at the New York
office, and so on, with each shown as a black-box action.

Suppose now that we want to go into detail about the different office
procedures but, for modelling convenience, to show it on its own RAD.
How would we do this? Basically, we draw a new RAD for each office
procedure’s black box. In other words, we treat each black box as if it were
a complete process and give it a RAD of its own; for instance, action P12 on
the main RAD becomes Process P12 on its own RAD. Remembering my
earlier warning about the dangers of decomposition, we have to ask what
precisely we mean by saying ‘Action P12 has its own RAD as Process P12’

Firstly, what ‘starts’ Process P12? In Process P12 we will naturally expect
to see the role Underwriting Manager from the ‘main’ process, the role that
carries out action P12 and, moreover, we can assume that one instance of
Underwriting Manager exists when process P12 runs. This is the ‘lead role’
of the process: it is the one that pre-exists and that picks up the thread at
the beginning. So the activating condition of action P12 is also the state at
the start of the lead role in Process P12. We will show this by labelling the
states accordingly: Partner approval required.

Secondly, when we know that P12 is complete, the Underwriting
Manager is in the state Partner approval obtained. This too must appear on
the RAD for Process P12 and we have shown this in the lower part of
Figure 4.8. But when we say that ‘Action P12 has its own RAD as Process
P12,” do we require that all of Process P12 has to be completed before the
black box for action P12 is deemed complete and the main process can
proceed? If the answer were ‘yes’ it would, to use software jargon, be like
treating process P12 as a ‘subroutine’ which must ‘complete’ before
‘control passes back to’ the main process. Again, there is a temptation
(especially for the software engineer) to impose a tidy block-structured
simplicity on the world; but the world is rarely so clean. Instead we are
saying that Process P12 must reach a specified state before action P12 is
complete. We recognize that there will be some state reached during
Process P12 which is the same as the post-condition of action P12.

139

Business Process Management

Underwriting Manager

/

iPanner approval required

Partner approval

Office in Office in Office in Office in
London New York Paris Stykkisholmur
P12 P13a P33 P33c

obtained
£

Underwriting Manager

Partner approval required

Archive materials

Notify Statistical Department

Part of the Handle an
Insurance Claim
process

Part of Process P12

Partner approval obtained

/

FIGURE 4.8 Action P12 and Process P12

In the second RAD fragment in Figure 4.8 we show part of the RAD for
Process P12: the process might be quite complicated but at some point
that same state — Partner approval obtained - is reached, at which the
thread in Handle an Insurance Claim can proceed, even though there is
clearly further procedural activity in Process P12 before it finishes: the
Statistical Department must be informed, archiving must be done, and so
on. The Underwriting Manager in Handle an Insurance Claim does not

140

Tutor:

Pupil:
Tutor:

Process relationships

have to wait for all these things to be done before proceeding. (Process
elements have not been labelled in Figure 4.8 where they are not pertinent
to the example.)

So there is no sense in which Process P12 and action P12 are the same
thing. All we can say is that some of Process P12 constitutes action P12.

Later, next to the water cooler

To demonstrate why I am nervous about this idea of encapsulation and the
danger of imagining there are things called ‘subprocesses’, let me tell you
my suspicion about this Handle an Insurance Claim process: it is that the
partners in this insurance company have a stream of requests for approval
coming to them, and that that stream of work has to be managed, prioritized
and perhaps resourced, with approval requests being forwarded to partners
on the basis of availability, loading etc. In other words, that stream of
requests is managed somewhere.

That sounds like a process itself to me.

Exactly. So the RAD we have drawn is a lie: it shows none of that flow
management. If we are in a process improvement project and we don’t show
it, we can never recognize it as a potential bottleneck. If we are designing a
new process and don’t show it, we will have a gap in our processes. If we are
planning to enact these processes on some form of BPMS, then we shall
need to be very clear where such case management occurs. So by thinking
in terms of ‘subprocesses’ we have made a major modelling error. That’s
one of the reasons why I am nervous about encapsulation and its use.
Riva’s solution to this is the process architecture. This is the way we find all
the processes in the organization, in particular the flow management
processes. In Chapter 6 we shall see how to expose all the processes and, as
a result, we should see that encapsulation should only be necessary — as a
modelling convenience — in a very few cases.

Modelling action encapsulation
Let’s summarize the steps in representing the encapsulation of an action:

e In the main process RAD, show the black-box action A to be opened in
the appropriate role R, label its pre-state, say ST, and label its post-
state, say SP.

e In the encapsulated process RAD, label the state at the top of the main
thread of R ST. Show the state SP at the appropriate place in R.

Spend a moment thinking through how the two states — both shown on
both RADs - tie the two processes together, much as we might solder ends
of wire together to connect electrical circuits.

Finally, let’s note that there is a special symbol for an action that has an
encapsulated process for it on another RAD:

141

Business Process Management

142

Get partner approval

When we move from the main process to the encapsulated process we
might find it useful to work with a sub-role of the role in the main process.
So, although we might have the role Accounts carrying out the action
Review Budget in the Prepare the Annual Budget process, when we model
the encapsulated ‘process’ Review Budget in its own RAD, we might show
the Chief Accountant starting it off — a role that is ‘within’ Accounts. Since
we want the RADs to be free-standing, we would tie them together with
some extra captioning on the action in the main process RAD, as in
Figure 4.9. The dotted lines emphasize the way in which states are used
like solder points to connect the main and the encapsulated processes.

Accounts v 4

e N Chief Accountant

(in Accounts)
)

----------------------- Ve B
Review Budget

udget review required
(lead role: Chief Accountant)

Budget review require

Budget review in han

udget review in hand _/

Part of Part of

Prepare the Annual Budget Review Budget
process process

FIGURE 4.9 Using a sub-role in an encapsulated process

Opening up an interaction

In a RAD, we might choose to summarize a complicated interaction in a
single element as a modelling convenience. As an example, take a
simplification of the interaction I used earlier: ‘Two parties meet to
discuss, negotiate and agree the price of a piece of work, drawing up the
agreement as a legal document and obtaining financial securities from a
bank.” On a RAD, we might choose to represent this as an atomic
interaction between the roles Buyer and Seller, atomic in that we are not
interested — in that model - in any further detail; we simply want to say

Process relationships

that Buyer and Seller have that interaction with that result and we don’t
mind how they do it.

Suppose we now choose to ‘open up’ this interaction. Rather than
showing just more detail of what happens between Buyer and Seller (in the
way that we noted when we looked at interactions as ‘conversations for
action’ in Chapter 2), we might look further and find other roles involved,
roles which did not appear on the first RAD: Bank Manager, Lawyer, and
Auditor for example; we might also find new actions that they carry out
and new interactions between them. We have not ‘decomposed’ the
interaction: we have opened it up like a window again and looked at this
part of the world from a new angle, an angle which introduces new roles
and activities, all of which were of no interest to the first RAD.

As when we opened black-box actions, we need to understand the
relationship between the interaction and its ‘expansion’. Not surprisingly,
we do it by equating the pre-states of the two part-interactions with
corresponding starting states in the roles in the expanded process. The
post-states of the part-interactions are similarly dealt with. Spend a
moment tracing through the example in Figure 4.10. In the expanded
Finalize a Sale process, much can happen between the initial and final

states.
Buyer ¢ Seller
Finance available Title proven
Finalize sale |
Part of the Title deeds in hand Cash in hand
Buy a House
process
Buyer Seller
Part of the yers/ 4
Finalize a Sale , _ ' o
Finance available Title proven
process

Exchange details——

iTitle deeds in hand

N

FIGURE 4.10 Encapsulating an interaction

iCash in hand

|

143

Business Process Management

Modelling interaction encapsulation

Let’'s summarize the steps in representing the encapsulation of an
interaction between roles R1 and R2:

1. In the main process RAD:

(a) Show the part-interactions P1 and P2 of the interaction to be
opened in R1 and R2 respectively.

(b) Label the pre-states of each part-interaction, say preP1 and
preP2.

(c) Label the post-states of each part-interaction, say postP1 and
postP2.

2. In the encapsulated process RAD:
(a) Label the state at the top of the main thread of R1 preP1.
(b) Label the state at the top of the main thread of R2 preP2.
(c) Show the states postP1 and postP2 at the appropriate places.

Again, spend a moment thinking through how the four states — all shown
on both RADs - solder the two models together.

KEY POINTS

Don’t use encapsulation.

If you think you must, don’t until you have fully understood the process
architecture and cannot find the encapsulated ‘process’ in it.

If you still think you must, ask first whether you have uncovered another
UOW as described in Chapter 6.

If you finally do, use states to show how the beginning and end of the
action/interaction being encapsulated translate into the ‘expanded’
process.

When you have done it, remember that encapsulation is only a modelling
convenience and probably doesn’t reflect anything in the real world.
Finally, reconsider whether you really should have done it!

144

5 The three basic process types

Describes the three main types of process — the case, case management, and case
Strategy processes.

INTRODUCTION

We now have in place the concepts and vocabulary for describing
individual processes, and for modelling the two sorts of relationship
between processes: activation and interaction. In the Introduction we —
rather vaguely - observed that there are three types of organizational
activity: what I called coal-face, management, and strategic activity. In this
chapter, we shall look at three types of process and give them more precise
names and much more precise meanings:

® Case processes;
e case management processes;
e case strategy processes.

Our hypothesis will be that everything that happens in the building is part
of a case process, or a case management process, or a case strategy
process. We shall use this hypothesis in the next chapter when we look at
how to chunk all the activity in the building: how to draw up the process
architecture of the organization.

THE CASE PROCESS

Units of work and cases

Suppose we are looking at the department in a life insurance company that
deals with new business and, in particular, applications for new insurance
policies; and suppose we are particularly interested in what happens to an
application for a new life insurance policy, from the point at which it is
received by the company to the point where some outcome is reached with
the prospective customer. We can think of the customer application as the
unitofwork (UOW) for this department: itis the unitin which work arrives and
is dealt with, and every application is dealt with in the same, standard way.
If we walked into a software house, we would find them taking on pieces
of work for a client — which are typically called projects. The ‘project’ is the
UOW of the software house. Each piece of work is one case of the UOW
‘project’ that typically starts with the award of the contract and finishes

145

Business Process Management

146

with acceptance of the software by the client. At any one time the software
house will have many projects (cases) in progress, all at different stages of
some standard project lifecycle.

In a pharmaceutical R and D company, each potential new drug
compound has a development lifetime that takes it from the point where it
is determined to have some possible therapeutic effects, to the point at
which it obtains approval from the regulatory authorities to be put on sale
or is dropped. Here the UOW is the ‘compound’. During the development
of the drug compound, the company carries out clinical trials to determine
its efficacy and safety. The ‘clinical trial’ is also a UOW, in fact a major
work item dealt with by the Clinical Department.

Let’s think of some more UOWSs and the groups for whom they are
UOWs:

e a house purchase, for a solicitor’s office;

e a purchase order, for a supplies company;

e a marketing campaign, for the Marketing Department;
e a production batch, for a factory;

e a customer complaint, for the Customer Services section;
e a product line, for a manufacturer;

e an operation, for a hospital;

e a patient, for a hospital;

e a student, for a college;

e a course module, for the Physics faculty;

e an exam paper, for a university course;

e a meeting, for the committee secretary;

e a blocked drain, for the Maintenance Department;

e a clinical trial, for a pharmaceutical company;

e a phone call, for a call centre;

e a blood donation, for a blood bank;

a stock purchase, for a broker;

a donation, for a charity;

e an amendment to a purchase order, for a supplies company;

a company, for a conglomerate;

a request for new staff, for the HR department;
e the annual budget, for the Board;

e a generator, for an electricity supply company;
e a lease, for a lease owner;

e a customer, for a services company;

e a building, for a construction company;

The three basic process types

e a building, for a property company;
e a project report, for a project manager.

Take a moment to jot down all the UOWSs you can think of in your part of
the organization, or even in your home. A child, for the parents? A meal, for
the cook? A visit to the supermarket, for the shopper? A journey to the
office, for the commuter?

The list above shows how varied UOWSs can be:

e Some are solid, physical things with a lifetime that we can easily see: a
generator, a building, a patient, a customer. During their lifetime we
shall ‘look after’ them.

e Some are less tangible: a purchase order, a customer complaint, a
course module. Their lifetime is a little harder to define but during
that lifetime we shall ‘deal with’ them. (They might have a paper or
other physical manifestation, but that is incidental.)

e Some are rather abstract: a project, a clinical trial, a meeting. They
have a duration rather than a lifetime and begin and end when we say
so. We might say that we ‘do’ them.

e Some are very abstract: an amendment to a purchase order, a product
line.

UOWs and case processes

This sort of situation is common; perhaps we might claim it is the way all
organizations work. Work comes in ‘cases’ or ‘episodes’, each needing to
be dealt with in a standard way (assuming we don’t behave randomly when
each case arrives). The moment we say ‘dealt with in a standard way’, we
have recognized that each case follows the same process. We shall call that
process the case process. This will be the process that ‘looks after’, or ‘deals
with’, or ‘handles’ a case during its lifetime. When a case ‘arrives’, ‘comes
into our area’ or ‘lands on our desk’, however we put it, we start the case
process working on it. In fact, given the concepts and vocabulary we
developed in Chapter 4, we can now say that we ‘activate the case process’
for each new case. We might even say that we ‘instantiate the case process’
for each new case.

So at any one moment, we could look around and see perhaps many
instances of the case process in progress: one for each case currently being
dealt with. The office supplies company has 1,222 purchase orders ‘in
hand’. The call centre is currently ‘dealing with’ 34 calls. The Board is
‘working on’ the annual budget. The pharmaceutical drug company has 15
compounds ‘in the pipeline’. The Clinical Department is ‘running’ 87
clinical trials. In everyday speech we have many ways of saying ‘A case
process instance is operating.’

Each case will be at a different stage in its case process: for example, in our
pharmaceutical research company, compound A might be in ‘first in man’

147

Business Process Management

148

trials with human volunteers, compound B might be undergoing major
Phase III trials with thousands of clinical patients, and compound C might
be awaiting regulatory approval at the end of its development process.

In some situations, cases might come just one at a time: there is only one
annual budget each year and we finish work on one before we start on the
next.

Naming case processes

Because the three process patterns will prove to be central to our thinking
about processes, it will be useful to be able to distinguish them by the names
we give them. This might feel over the top at first, but as we use the
convention more and more, we will find that it helps keep our minds focused
on the case process as opposed to the case management process, or on the
case strategy process as opposed to the case management process and so on.

To emphasize that we are talking about a case process, we shall always
start by naming a case process with the words Handle a or Prepare a. We
use Handle a where the UOW could be seen as the input to the case
process or the thing that in some way triggers it:

e Handle a purchase order.
e Handle a customer complaint.

We use Prepare a where the UOW could be seen as the output or the
outcome in some way. So we would have:

e Prepare a production batch.
e Prepare a project report.
Where the UOW is really neither an input nor an output, use Handle a.
e Handle a marketing campaign.
e Handle a house purchase.

Already, these names are emphasizing that the process is about one thing:
one purchase order, one production batch, one marketing campaign. By all
means choose a different name later in the analysis: Run a marketing
campaign, or Make a production batch, or Deal with a customer
complaint, or Satisfy a customer order. But try starting with the stilted
names before moving to something else. If there is only one case of the
UOW, we replace ‘a’ by ‘the’ in the name.

Bounding case processes

So in Riva, we name case processes in a way that emphasizes the UOW.
Other naming conventions that you might come across emphasize another
important aspect, their end-to-end nature: Order to cash, Engage to close,
Transact to fulfil, Build to order, Plan to produce, Résumé to work, Goal to
reward.

Clearly, a case process starts when the case ‘arrives’. A case ‘lands on the
desk’ and the case process starts. We’'ll need to be thoughtful about

The three basic process types

precisely when that happens. In workshop situations — as we shall see later
in Chapter 8 — I like to ask the question ‘How do I know I've got a case?

e At what moment do we know a house purchase has started? Is it when
an offer to buy is accepted? Or when the offer is first made? Or when
the potential buyer visits the property? Or when the house goes on the
market?

e When does a customer complaint start? When the customer has
finished filling in the complaint form? Or the moment they stand in
front of the Customer Service desk and announce that they have a
complaint? Or when they first joined the queue at the desk?

e When do I become a customer of the corner shop? Is it when I have
made my first purchase? Is it when I walk in the door? Is it when I
move into the locality?

We cannot answer these questions without understanding the larger
context, the architecture within which this one process sits. So we must
defer an answer until Chapter 6.

How long does a case last? How long is a piece of string? A phone call to
the call centre could last twenty seconds; a pharmaceutical drug
compound trial can last twenty years. So there is no minimum or
maximum lifetime of a case.

Where does a case process ‘finish’? My workshop question is ‘How could
I tell you've finished?” or ‘What state are things in when the case has been
dealt with?” We need to be just as thoughtful here as with the start point.
When do I cease to be a customer of the corner shop? When I have paid for
the goods? When I have left the shop? When I have left the locality? Again,
we must know more about the larger context before we can answer this
question.

It’s very easy to assume that the end point of Handle a customer
complaint is something like ‘The customer has gone away happy.” That
would certainly be a desirable outcome of the case process but it is by no
means the only possible outcome. How about ‘The customer drops the
complaint’ or ‘The customer rejects our offer and takes the case to the
industry ombudsman’? These are other possible outcomes, and we can
imagine the handling of a customer complaint ending — as far as we and
our model are concerned — with any one of these three possibilities.

By thinking through the possible outcomes, we are often forced to
reconsider the name of the case process — and hence the way we think
about it. Take a UOW such as ‘expense claim’. It would be all too easy to
think that the case process should be called Approve an expense claim
(‘Claim to payment’?) The absurdity of this is apparent when we realize
that one possible outcome is that the expense claim is rejected. The
process is not to approve an expense claim but to handle an expense claim.
This is a mistake that is often made, and of course it can easily blinker our
understanding of the process.

149

Business Process Management

The traps can be quite subtle. Satisfy customer order (‘Order to cash’?)
is exactly the customer-oriented and success-oriented name we might like
to give to a process. But some customer orders cannot be satisfied and
have to be rejected. Handle a customer order leaves open the fact that our
case process must deal with ill-formed orders, and orders from customers
we choose not to do business with, and orders sent in error. By using the
neutral phrases Handle a ... and Prepare a ... we leave the other
possibilities open and we don’t blinker our thinking.

KEY POINTS

A case process is the process that deals with one case or instance of a
uow.

A case process should be named Handle a ... or Prepare a ..., depending
on whether the UOW is an input/trigger or an output/outcome.

A case process typically has a single starting point, corresponding to the
‘arrival’ of the case.

A case process can have one or many possible outcomes.

Let’s go back now and examine some of those UOWSs we identified earlier
on. Some of them might feel a tad strange when we put Handle a in front
of them. For instance, what are we to make of the case process Handle a
customer? To start to answer this we must start with the question ‘What is
the lifetime of a customer?’ At what point does a new ‘customer’ case arise?
If our organization takes a long view of customers, then a new case might
start the moment we have a name and an address of someone who might
buy something from us. Our Handle a customer process is now about
getting that person into our store, giving them a satisfying retail
experience, ensuring they return often, sending them special offers,
rewarding frequent purchases etc. As far as my local supermarket is
concerned, I exist as a customer — as a case — even when I am not in their
store. My instance of their Handle a customer process will probably only
end when I tear up my loyalty card and send them the pieces. On the other
hand, I can think of other shops who might have a Handle a customer
transaction process, but whose Handle a customer process is quite empty.

THE CASE MANAGEMENT PROCESS

150

The flow of cases

For each UOW there is a case process. And, at any one moment, there may
be many cases of the UOW and hence many instances of that case process
in progress. Given all this concurrent activity, possibly sharing resources or
facilities, the organization will need to manage the flux, dealing with issues
of planning, scheduling, resource management, task allocation, making
go/no-go decisions, reporting, and so on. But when we take the case-

The three basic process types

oriented view, we are putting aside all of these concerns and concentrating
simply on what happens to a single case.

For any UOW we can therefore expect to find two processes: one for the
case and another for case management. We shall refer to the latter process
as the case management process. The two processes will of course interact,
but separating them is vital for effective process design and analysis.

Before we look more closely at how we represent the typical relation-
ships between a case process and a case management process, let’s take a
closer look at the sorts of things that go on in case management processes.

The contents of a case management process
In a case management process we shall expect to see actions to do with:
e planning;
e reporting;
e monitoring;
e scheduling;
e resourcing;
e prioritizing;
e negotiating;
e reconciling.
So, we shall expect to see roles such as:
e Boards;
e managers;
e management teams;
e management committees;
® Supervisors;
e progress chasers;
e planning teams;
e programme support offices;
e monitoring groups.

The case process is normally quite straightforward, being by definition the
process which takes a single case from ‘birth’ to ‘death’. As such, it will
tend to have one trigger corresponding to the birth of the case, and one or
more alternative outcomes corresponding to its different forms of death.
For instance, the Handle an insurance application case process might be
triggered by the arrival of an application and have two alternative
outcomes: application accepted and application rejected.

Case management processes are never so simple and rarely single-
threaded. The nature of management is that it responds to many different
situations and intervenes as necessary, and is proactive in many other

151

Business Process Management

152

situations. We can therefore expect the full-blown case management
process to have many triggers corresponding to the different stimuli, each
with its own outcome(s). We must not imagine that every case manage-
ment process will contain all of the following components — indeed some
case management processes are trivial or even null — but here is a list of
typical components of a case management process:

e Dealing with a request for a new case, i.e. for a case process instance
to be started.

e Negotiating with a requester if the request for a new case cannot be
met (at the required resource cost or timescale).

e Monitoring the progress of current case process instances.

e Hearing about and dealing with the completion of a case process
instance.

e Hearing about and dealing with exceptions and failures from case
process instances.

e Determining what resources should be assigned to the acting of which
case process instances.

e Adjusting the resources currently allocated to existing case process
instances as loading changes.

e Dealing with requests for shared resources from a case process
instance, e.g. actors for new role instances.

e Dealing with requests, typically from other case management
processes, to negotiate about priorities on services being supplied
by those case management processes (‘escalation’).

e Dealing with instructions from the case strategy process about how
case management is to be done (see below).

e Receiving budgets or resources from ‘superior’ management pro-
cesses for providing the service (assuming this is a UOW that is
provided as a service, e.g. an invoice).

e Recording and analysing trend data, and responding to the results.

e Assessing immediate resource trends and estimating near-term
resource requirements.

e Assessing exception trends and redefining the case process for process
improvement.

e Auditing the behaviour of case process instances.

The case management process is essentially taking responsibility for the
flow of case process instances. This is key. When a new case of a UOW
comes along and needs an instance of the case process to be started, it is
the case management process that must be asked to start it: it is the process
that decides when — amongst all the other instances contending for time
and resources — this new instance is to start. It is the case management

The three basic process types

process that monitors all the active case process instances, and manages
resourcing and scheduling amongst them.

A case management process might batch cases until there are enough to
start work on them. It might start them in strict order of arrival. It might
juggle their ordering depending on their relative priorities. It might move
resources from one to another. It will sort out conflicts over priorities
between competing cases. We might summarize all this by saying that it
‘manages the flow of cases’.

Naming case management processes

In the same way that we chose ‘neutral’ names for case processes with the
Handle a and Prepare a prefixes, we shall use a similar rule for case
management processes: we shall start them with the words Manage the
flow of. For example, we might have the following processes:

e Manage the flow of purchase orders.

e Manage the flow of customer complaints.
e Manage the flow of production batches.

e Manage the flow of project reports.

e Manage the flow of marketing campaigns.
e Manage the flow of house purchases.

Once again, the purpose of this convention is to concentrate our minds, in
particular to help the separation of concerns: dealing with the individual
case is the responsibility of the case process; managing across the cases is
the responsibility of the case management process.

Whilst we should start with this stilted name, we shall feel free to choose
a more meaningful name later, if it's appropriate.

KEY POINTS

In principle, every UOW has a case management process that manages
the flow of cases of that UOW.

The case management process exists in only one instance.

It contains management roles carrying out management-related actions
to do with scheduling, prioritizing, and resourcing.

Requests for new cases are always directed at the case management
process.

It activates case process instances when required.

It interacts with its case process instances when required.

153

Business Process Management

THE RELATIONSHIP BETWEEN CASE PROCESS AND CASE
MANAGEMENT PROCESS

154

We have seen that each UOW has a case process and a case management
process, and we have a good sense of the separation of concerns. A proven
strength of this approach is that it gives equal weight to how we deal with
day-to-day work (cases) and how we manage that work (case manage-
ment). Let’s look at how the relationship works in practice.

The service relationship

Suppose we are in a factory and we have a UOW called the ‘order’. Down
on the production line the UOW is the ‘production batch’. An order arrives.
An instance of the Handle an order process runs. (How did that happen?)
At some point it will determine that a batch must be produced to satisfy
the order. Of course the factory already has a number of existing batches
going through production. Our instance of Handle an order cannot simply
start up an instance of the Prepare a batch process — the new batch needs
to be worked into the production schedule. This is precisely the
responsibility of the case management process, Manage the flow of
batches. So our instance of Handle an order must ask Manage the flow of
batches to add the new batch to the schedule, and, when the time is right,
it is Manage the flow of batches that will start (/instantiate) the Prepare a
batch process. The Prepare a batch process instance then carries out the
responsibility of making that one batch at the time and with the resources
specified by Manage the flow of batches. Put simply, it will make the
batch. We can think of Handle an order as the ‘customer’ of ‘supplier’
Prepare a batch, and when the batch has been made it will be supplied by
Prepare a batch to Handle an order.
Let’s restate this very precisely in our Riva vocabulary:

1. A Handle an order instance interacts with the Manage the flow of
batches instance to request a batch.

Manage the flow of batches schedules the requested batch.

Manage the flow of batches activates Prepare a batch at the
appropriate moment.

4. Once the batch to satisfy the order is ready, the Prepare a batch
instance interacts with the requesting Handle an order instance in
order to hand over the batch. That Prepare a batch instance can
then finish.

Figure 5.1 shows these basic dynamic relationships between the three
processes. (Let’s introduce a couple of abbreviations: we shall occasionally
use CP for case process and CMP for case management process.) A
rounded rectangle denotes a process. We can tell from its name whether it
is a case process or a case management process. An arrow with an I in a

The three basic process types

Handle an
order

. requests
delivers to q

Manage the
flow of
batches

Prepare a
batch

starts

FIGURE 5.1 The basic service relationship

circle at one end represents an interaction between two processes; the
arrow goes from the process that initiates the interaction. An arrow with an
A in a circle at one end represents activation; the arrow goes from the
process that does the activation to the one that is activated. Spend a
moment checking through steps 1-4 above against Figure 5.1. At the ‘close’
of the relationship in step 4, the service case process ‘delivers’ to the
requesting case process. We use the word ‘delivers’ in a very general sense:
delivery might take the form of physical delivery — a transfer of goods from
one role to another — or it might just be a notification that the service is
complete.

Life is generally not as simple. Just asking for a batch of 20 units to be
ready on 15 June does not guarantee getting a batch of 20 units on 15 June.
Is there the capacity given all the other batches in the queue? If not, what
has to happen? In reality, there will be a negotiation between the
‘customer’ Handle an order and Manage the flow of batches, which
might involve some reworking of the schedules to achieve the target. And,
of course, other batches may be affected, requiring wider negotiation. How
is that negotiation done? Typically, Manage the flow of batches must
negotiate with Manage the flow of orders. Ultimately, only the CMP for
orders can resolve inter-order issues. Let’s add negotiation to the basic
service relationship: Figure 5.2.

We can also add some other basic management relationships between
CP and CMP: the CMP will monitor the CP through a process interaction;
in some situations the CMP may intervene in the CP, perhaps to notify it of
resourcing or scheduling changes, perhaps in extreme situations to stop it;
the CP will report status and exceptions and management-related
problems to the CMP, and so on. This gives us the general service
relationship shown in Figure 5.3.

Of course, the full set of relationships shown between Manage the flow
of batches and Prepare a batch also exists — in the general case — between

155

Business Process Management

156

Manage the
flow of
orders

Handle an
order

requests

delivers to negotiates negotiates

Manage the
flow of
batches

Prepare a

batch starts

FIGURE 5.2 The basic service relationship with negotiation

Handle an order and Manage the flow of orders. (Yes, that original
instance of Handle an order was created by Manage the flow of orders!)

There is another possible complication: the service might be used by the
cases of more than one UOW. Suppose that the R and D Department is
working on potential new products. We can think of a ‘potential product’
as a UOW. It therefore has a case process, Handle a potential product,
which carries out the R and D necessary to bring the new product to
production capability, and a case management process, Manage the flow
of potential products, which ensures that the R and D pipeline is working
optimally. Imagine that, as part of product development, Handle a
potential product requires test batches to be made in the factory on the
same production line. To get those batches made, it too will have to knock
on the door of Manage the flow of batches and ask to have its batches
scheduled in. As well as reconciling the demands for batches to satisfy
orders, the CMP must now add to the mix requests for batches for R and D.

Manage the
flow of
orders

Handle an
order

requests

delivers to negotiates

negotiates

starts

Manage the
Prepare a monitors o flow of
batch intervenes 0 batches

stops
reports

FIGURE 5.3 The general service relationship

The three basic process types

Handle a Manage the flow

potential of potential
product products
negotiates
deliver batch . requests with
negotiates
Manage the
Handle a 9
starts f|OW Of
batches
negotiates
with
deliver batch requests negotiates
with
Manage the

Handle an

flow of
order starts

orders

FIGURE 5.4 Contention for a service

In Figure 5.4 we can see the resulting process structure: note how Manage
the flow of batches now has requests for batches coming from two places,
and how in some cases it may need to negotiate with the corresponding
CMP to reconcile problems. We can easily imagine some of the tensions
that might arise between these, let alone the question of which customer’s
orders are more important than others. The CMP Manage the flow of
batches becomes the focus of these issues, the place where they are sorted
out. In the general case, any CP wanting a service must knock at the door
of the appropriate CMP to obtain it.

This illustrates even more clearly the importance of the way in which
Riva lets us cleanly separate issues to do with the single case from issues to
do with the set of cases in hand at any one time. When we are designing or
modelling the case processes, we know that we can concentrate on how a
single batch is made, or how a single customer call is answered, leaving
matters of scheduling, prioritization and resourcing where they belong: in
the case management process.

Finally, let’s take another example. During the development of a new
drug compound, clinical trials are carried out. Many pharmaceutical
companies outsource clinical trials to external Clinical Research Organiza-
tions (CROs). CROs provide a ‘clinical trials service’. In our terminology,
Develop a compound interacts with the Manage the flow of clinical trials
process at the CRO when it needs a new clinical trial. That process has
responsibility at the CRO for scheduling the clinical trial and, at an

157

Business Process Management

158

appropriate moment, starting it, i.e. activating its Do a clinical trial case
process. Once the clinical trial is complete, the results are returned by the
CRO’s Do a clinical trial to the pharmaceutical company’s Develop a
compound and the service is complete.

The task force relationship

Let’s stand back from what we have just done on the service relationship.
The process for satisfying an order needs a batch to be made. It goes to the
case management process for batches to request that service. Subse-
quently the service is delivered. Key to this is the fact that making batches
is a permanent service offered by someone else. Anyone wanting a batch
uses this service. The service operates independently of the processes that
use it.

But when we need a job done we might not always go to a separate
service whose job it is to provide it: we might set up the means to do the
job ourselves. Let’s call those means a task force. It’s rather as if we
ourselves have the case management process for the service.

Here’s an example. Imagine a software house that carries out system
development projects for clients. They no doubt have a case process called
Run a project. Each project is planned and carried out as a number of
separate work packages for specifying the system, designing parts of the
system, developing the many software components, testing those
components, and so on. The work package is (by definition!) a UOW so
the software house will have a Do a work package case process too. But
when a project wants a work package doing, it doesn’'t go to some
independent ‘work package service’ to get it done; in particular, it doesn’t
interact with a separate Manage the flow of work packages process that
deals with work packages from all projects. Managing the flow of work
packages is something that the project does for itself: it’s something that
goes on inside — is indeed part of — Run a project. Each project itself
manages the flow of its own work packages. Each work package is done by
a little task force set up to do it that follows the standard process for work
packages. There is clearly still case management to be done for work
packages: they have to be scheduled, prioritized, resourced and so on, in
the usual way. But that last sentence simply describes project planning
and control ... which are part of Run a project. The underlying
relationship between the processes is the same as for the service situation,
but with one difference: in the service situation, Handle an order and
Manage the flow of batches were independent processes, which interacted
when an order required a batch; in the task force situation, Manage the
flow of work packages is part of — is encapsulated in — Run a project.

Our general relationship diagram for the task force relationship looks
like Figure 5.5. The only change from the service relationship diagram in
Figure 5.3 is the ‘E’ for ‘encapsulation’ instead of the ‘I’ for ‘interaction’
where Run a project requests a work package from Manage the flow of

The three basic process types

Run a
project

requests

delivers to negotiates

° Manage the
flow of WPs

Do a work monitors

package intervenes
stops

reports

FIGURE 5.5 The general task force relationship

work packages. Note that there is no negotiation with what would be
Manage the flow of projects: the management of the flow of work
packages is ‘inside’ the running of the individual project that wants it, so
that sort of negotiation across projects would never occur.

This task force relationship crops up in a number of similar situations.
Take the concept of a ‘programme of projects’. A business might establish
a programme (a UOW, of course) to make some major business change.
Carrying out that change will mean undertaking a number of separate,
concurrent, and coordinated projects (another UOW) to, say, reorganize
the department concerned, move staff and offices to a new location,
recruit new staff skilled in some new area, update the information systems,
and handle HR issues for existing staff. The programme will manage the
set of projects itself; it will not go to some separate service that does
projects. Put in our terms, we would say that Run a programme
encapsulates Manage the flow of projects.

We saw how a large pharmaceutical company will have a portfolio of
potential drug compounds in development - its ‘pipeline’. ‘Portfolio’ and
‘compound’ are UOWs. In the process Run the portfolio new compounds
will be identified and added to the portfolio, some will be removed from
the portfolio if they do not have the necessary promise, and priorities will
be changed between competing compounds in the portfolio. All of these
are of course aspects of Manage the flow of compounds, and we can see
the same task force pattern as in the programme of projects and the
project of work packages. No external service is used for the UOW
required: case management is done ‘in-house’.

Let’s return to our pharmaceutical company which outsources its
clinical trials to a CRO. Fifteen years ago it might have done its own
clinical trials. Instead of having a service relationship to get its trials
done, it would have had a task force relationship and done its own case
management.

159

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

160

KEY POINTS

When one case process wants a case provided by another case process, it
must ask the corresponding case management process.

The case management process is responsible for scheduling, prioritizing
and resourcing cases, and for activating the case process when
appropriate.

Where necessary, the case management process will negotiate amongst
contending case processes via their respective case management
processes.

The case management process can monitor, intervene in, and even stop a
case process.

Where a UOW is supplied as a service, its case management process
operates independently.

Where a UOW is supplied via a task force, its case management process is
encapsulated in the requesting case process.

Later, next to the water cooler

As I understand it, the name ‘task force’ is used because a wholly new group
might be created to carry out the case process instance. But couldn’t this
occur in the ‘service function’ as well? When the service function gets the
request it will instantiate the case process in exactly the same way. Both
styles seem to have features of task forces.

Yes, the two situations might be implemented in the same way but the thing
that differentiates them is that, in the task force situation, the case
management is effectively done by the requesting case process: I don’t
expect a service provider to do it. Imagine the situation where you have a
project (an instance of the Run a Project case process). To get your project
done, you break it up into work packages. Each of these is done by the Do a
Work Package case process. Think it through.

Well, it’s clearly a task force situation as I do the management of the work
packages myself, as part of my Project case process. There’s certainly a flow
of work packages — many are going on at one time. So there is case
management to be done and there is a case management process.

Exactly. But the case management of work packages isn’t done by a service
provider - it really is part of your case process for the project: you manage
your own work packages within the project. The case management process
for work packages is ‘within’ your case process for the project. It would be
different if you subcontracted work packages to a service provider. In that
case they would do case management for you, and your work packages
would have to take their turn amongst a lot of others from other users of the
service.

This makes me think that whether a UOW is dealt with as a service or as a
task force is a matter of design. I could choose to deal with it myself or I
could ... outsource it.

Right. We could see this as a re-engineering opportunity: an inflexible
centralized service could be disbanded in favour of giving individual groups

The three basic process types

the freedom to set up their own task forces as and when they require them;
or on the other hand, inefficiently replicated DIY processes could be
replaced by a central service achieving economies of scale. The world is full
of people swinging from one to the other. Most recently, outsourcing of
non-core processes has been all the rage: in Riva terms, people have been
giving the case processes and case management processes for what we shall
call designed UOWs to others to do for them, whilst keeping the case
processes and case management processes of (what we shall call) their
essential UOWs in house. That’s the Riva definition of outsourcing.

MODELLING THE CP-CMP RELATIONSHIP AT RAD LEVEL

We now know, at the process level, what form the relationship between
CPs and CMPs takes: we have the generic pictures in Figures 5.3 and 5.5.
What do these relationships look like in the RADs concerned? Again,
generically, we know that we shall be using activation when the CMP
wants to start a CP, and an interaction when a CP wants to deliver
something to the requesting CP, when a CMP wants to monitor a CP, and
SO on.

Let’s look at some simple examples to see this in practice. Figure 5.6
shows us part of the CMP that we might have in a pharmaceutical
company for clinical trials. We have shown just three of the potentially
many threads that might make up such a process. They are all in the main
role Clinical Project Leader:

e the thread that responds to a request for a new clinical trial;

e the thread that carries out regular monitoring of all the clinical trials
currently in progress;

e the thread that responds to announcement of the completion of a
clinical trial.

Spend a moment examining these three threads:

1. The top thread starts with a request for a new clinical trial from a
requesting process. This process interaction takes the form of a role
interaction between Clinical Project Leader and the ‘anonymous’
role Requester. If a clinical trial is to be done in-house, Manage the
flow of Clinical Trials immediately activates its CP — Handle a
Clinical Trial (Figure 5.7) — by instantiating that process’s lead role,
Clinical Trial Leader.

2. The middle thread involves an interaction with each of the current
instances of Handle a Clinical Trial in the form an interaction with
their lead role instances.

3. The bottom thread captures an interaction with an instance of
Handle a Clinical Trial which is completing. This process interac-
tion takes the form of a role interaction between Clinical Trial

161

Business Process Management

Requester v

Clinical Project Leader /

-

Z

Contract Manager

Select CRO and pass copy of

Allocate selected person to act the role

First Monday of each month (ie case process can start)

Part of the Manage
the flow of Clinical
Trials process

FIGURE 5.6

New trial has been requested

Using display of current utilization levels,

decide if trial is to be run in-house or out-sourced and,
if in-house, select person to act as Clinical Trial Leader

outsource in-house

Start a Clinical Trial Leader role
high-level synopsis for for the new clinical trial due to start

protocol for this trial

Clinical Trial Leader

)

Select and pass copy of
high-level synopsis for
protocol for this trial

High-level synopsis for protocol in hand

|
% For each clinical trial

Trial status required

Request status ! Report statusg
Trial status received Status reported

| I

Tnal completes

Not|fy of completlon
of cI|n|caI trial
Completion notified J

Part of a case management process for clinical trials

Leader in Handle a Clinical Trial and Clinical Project Leader in
Manage the flow of Clinical Trials.

Figure 5.7
in particul
4. The

shows some of the CP Handle a Clinical Trial and three threads
ar within Clinical Trial Leader:

top thread begins with the state that the lead role, Clinical Trial

Leader, starts in — High-level synopsis for protocol in hand — and
proceeds on its way.

5. The

middle thread responds when necessary to a status request from

the Clinical Project Leader in the CMP Manage the flow of Clinical
Trials — this role interaction represents the process interaction in
item 2 above.

162

Data Management,

Regulatory,
Modelling v Statistics,
Meeting Clinical Sciences,
Secretary Clinical Operations

)

Review synopsis
|

)

Review synops

Develop detailed synopsis for

The three basic process types

Clinical Trial Leader V4

e)

High-level synopsis for protocol in hand

Start a Modelling Meeting Secretary role
for a new protocol whose development is due
|
Examine current utilization and allocate
person to act as secretary to the Modelling Meeting

Send copies of high-level synopsis

1S for protocol to modelling team

protocol at Modelling Meeting |

Complete detailed protocol synopsis Start |

Send out copies of

% for each Investigator

nvestigator
Investigator

1)

detailed synopsis

Two

weeks elapsed
I I

Get feedback on
detailed synopsis

Consider

Distribute info & schedule

Develop final synopsis at
Last Chance Meeting

"

Last Chance Meeting

Supply final synopsis

)

Trial status required

Part of the
Handle a Clinical

Request status
I

Trial status received

status

i] Report

Trial complete

Trial process

Completion noti

" J

Report completion

ified

A

Clinical Project Leader

FIGURE 5.7 Part of a case p

The bottom thread is

rocess for clinical trials

where the Clinical Trial Leader reports

completion of the trial to Manage the flow of Clinical Trials; again

the process interaction
corresponding to item 3

takes the form of a role interaction,
above.

We might also expect that the process — perhaps in the form of the Clinical
Trial Leader — provides the results of the trial to the original requesting CP

somewhere downstream.

163

Business Process Management

Pupil:

164

Later still, next to the water cooler

I'm a bit troubled by one aspect of the activation of CPs. When the CMP
wants to activate the CP, it does it in the standard way: by instantiating the
lead role of the CP. This implies that the lead role is a transient, probably
abstract role, with an —ing name, such as Batch Making. But what actually
happens of course is that a real, concrete role starts the work, such as Plant
Operative. How do you reconcile these two things?

Project Part of the.
Managing Manage a Project

process (abstract)
% Invoice

Invoice required Handling

Start respon5|b|I|ty (Invoice
Handllng) for preparing an invoice

Prowde details

Invoicing complete
Notify
Completion of invoicing

has been notified /

@J

—0—\0-

Invoice g Invoice
Requesting Handling

% Recelve details

Invoicing complete

. o

Completion of invoicing
has been notmed

Part of the
Handle an Invoice
process (abstract)

FIGURE 5.8 Abstract case process activation

Tutor:

Pupil:
Tutor:

The three basic process types

A good point. When we want something done — an invoice prepared, a batch
made, an examination paper marked — we are basically creating the
responsibility for doing it. That’s what instantiating a role is about. So I
hope you can see that instantiating the (abstract) lead role does make sense.
Yes I can, but square that up with the concrete side of things for me.

You’ve answered the question: are we preparing a concrete model or an
abstract model? If it’'s an abstract model we shall see something like
Figure 5.8, in which we instantiate the lead role to create the responsibility.

If we want a concrete model we shall have something like Figure 5.9, in
which we simply interact with the concrete role and fire up its main thread

Part of the
Project V4 Manage a Project
Manager process (concrete)

4 Accounts

%nvoce required Awaiting an invoice request

_

Provide details

{6

Invoicing complete

Notify

Completion of invoicing

AN / has been notified /

N0

Invoice Accounts ¢
Requester N R N
Awamng an invoice request

Provide details—— —Receive details

%

Invoicing complete

! Notify

T

Completion of invoicing

Part of the has been notified /

Handle an Invoice
process (concrete)

FIGURE 5.9 Concrete case process interaction

165

Business Process Management

to deal with the new case — what we called a ‘service interaction’ in
Chapter 2.

Which of these perspectives we choose depends on our reasons for
modelling, as always. But I hope you can see that they both allow us to
represent the concurrency that is possible with many cases in hand at once.
In the abstract scheme (which I would prefer, all things being equal), each
case has its own instance of the lead role. In the concrete scheme, each case
has its own ‘instance’ of the thread of the main role.

THE CASE STRATEGY PROCESS

166

So far, we have seen how the CP deals with an individual case of a UOW
and the CMP deals with the flux of instances of the CP or, as we put it,
‘manages the flow of’ those cases. Now suppose we walk into the building
of the organization we are interested in and look around us. Some people
will be engaged in dealing with cases, others will be managing the flow of
cases. Have we accounted for all the activity in the building if we list all the
CPs and their CMPs? Not yet. There is one more sort of activity going on
and it involves people ‘standing back’ and taking the long view, the
strategic view, of what is happening. The CPs are about front-line, coal-
face activity; the CMPs are about managing that coal-face activity. Case
strategy processes (CSPs) are about taking the strategic view of UOWs and
driving the CPs and CMPs accordingly. A CSP has its CP and CMP as
subject matter. It asks questions such as:

e What is happening inside our business that will affect my UOW and
how it is dealt with?
We are a water supply company and we have a big drive on to get
more households on metered supplies. Meters need reading, and
readings raise queries. How will the metering drive affect call rates at
the Call Centre?

e What is happening outside our business that will affect it?
The regulatory bodies in the pharmaceutical industry are taking
greater interest in how we develop the software that we use in the
R and D phase of our work. How will that affect the processes we use
to develop that software?

e Is the nature of the UOW changing?
Bank customers are increasingly prone to moving their accounts from
one bank to another in response to changes in charges. How should
our handling of customers change to accommodate this trend?

e Are the rates or volumes of our UOW changing?
There are some significant changes going on in the types of courses
that students sign on for. What does this mean for the processes that
manage the courses that are suddenly finding themselves popular?

The three basic process types

e What is the performance of our CP and CMP? Is it adequate and can it
be improved?
We have collected measurements of throughput and turnaround time
for the processing of job applications. Do we need a different
approach to scheduling in the CMP, combined with reorganized
responsibilities in the CP?

e Are our CP and CMP actually being carried out in accordance with
company procedures?
The industry regulator takes a keen interest in the way our software is
developed. Let’s audit what is actually happening on the ground in our
CP and CMP (instances) and ensure that we are up to the mark.

We collect these strategic considerations into the CSP. Typically, a CSP will
have many threads, rather like a CMP. Some threads will be event-driven,
triggered when something happens inside or outside the business that
needs consideration and perhaps a response. Other threads will be
calendar-driven and involve regular strategic reviews of business trends or
industry trends. Either way, the outcome of the work of a CSP is likely to be
changes or instructions to its CP and CMP.

Naming case strategy processes

As with the other two basic process types, we shall name CSPs in a stilted
way as a starting point:

e Maintain a strategic view of purchase orders.

e Maintain a strategic view of customer complaints.
e Maintain a strategic view of production batches.

e Maintain a strategic view of project reports.

e Maintain a strategic view of marketing campaigns.
e Maintain a strategic view of house purchases.

The goal as ever is to focus our minds on the exact area of concern of this
process, and to separate it from the concerns of the coal-face processes
and their management processes.

KEY POINTS

The case strategy process takes the long-term internal and external view.
It treats its case process and case management process as subject matter
and might cause them to be changed.

167

Business Process Management

SUMMARY

168

We can bring together the three basic process types in one diagram:
Figure 5.10. The hypothesis in Riva is that any activity we observe when we
walk into the organization’s building will be part of a CP, a CMP or a CSP.
This trinity of processes and their relationships give us the underpinning
theory that we need to determine the organization’s process architecture,
as we shall see in the next chapter.

~

Unit of Work
(uow)

handles a single case of the UOW through

r AP
case process its lifetime

manages the continuing flow of cases of
the UOW, monitoring over the medium
term, scheduling, and prioritizing case
process instances

case
management
process

observes long-term performance and trends, makes predictions,
and determines the strategy for the case and case processes in
the future

case strategy

process

FIGURE 5.10 The process trinity

6 Preparing a process architecture

Describes how to construct the process architecture of an organization, a concept of
central importance for any work with processes.

INTRODUCTION

A constant theme of the Riva approach is the central place of concurrency
in organizational activity: the fact that when we walk into the organiza-
tion’s building we are surrounded by many instances of many processes all
operating at the same time, some activating others, some interacting, and
so on. At any one moment there is a network of interacting process
instances at work. If we want to get our arms round all of that activity, to
‘chunk’ that activity into the constituent processes, how should we go
about it? This chapter describes how to prepare the process architecture of
the organization, the picture that says what process types there are in the
organization and what their dynamic relationships are. Remember that I
am not interested in static hierarchical decomposition — the world is not a
neat hierarchy fixed in time - it is a dynamic network of interacting
instances.

Getting this process architecture right is vital. A poor division of
organizational activity into processes can easily lead to unnecessarily
complex designs or models. There is a lesson to be learnt here from the
world of software design: when we invent software modules we look for
what are called high ‘cohesion’ and low ‘coupling’. The idea is that each
module should contain closely related activity: it is coherent in its content.
The result of doing this is that the bandwidth of the relationships between
it and other units is reduced: the system is loosely coupled. This in turn
means that we keep the interconnections between modules to a minimum,
thereby reducing complexity, and hence increasing maintainability and
reliability. Software of course is synthetic: how it looks and how it is
structured is entirely up to the software designer. A business process is
typically not synthetic: it has developed organically and is the result of
some design and a lot of chance. We cannot expect it to be tidy. But when
we chunk the organizational activity we can expect to look for ‘natural’ or
latent modularity: chunking that is there because it has to be, because the
organization is in this particular business.

It is as if we are looking for natural fault lines in a rock when carving, or
splitting wood with the grain rather than across it. When we model the real
world, if we break the activity ‘with the grain’, we shall get fewer broken

169

Business Process Management

170

connections. We want to exploit any cohesion present in the real world.
Our aim must be to find that natural grain.

If we are considering re-engineering, a bad initial division can at best
obscure the possibility of a radical change to a process and at worst lead
to the local optimization of processes at the expense of the organization.
We also want to be able to distinguish between processes that are there
because we are in a particular business and processes that are there
because we have chosen to work in a particular way. The first group arise
from what we shall call essential UOWs, and the latter from what we shall
call designed UOWs - the latter are of course candidates for re-
engineering.

People (especially those of us with software engineering backgrounds)
have a natural desire to decompose a process into successively smaller
subprocesses, in other words to draw up a hierarchical structure. But the
world is rarely constructed in such a neat way and the processes in an
organization are invariably connected in a network, rather than being
contained in one another. The danger of thinking hierarchically cannot be
overemphasized. To draw a diagram such as the one in Figure 6.1 is not to

The Business

Plan the Carry out the Monitor the
business business business

Staff
allocation

[T

Sales
prediction

Plant planning

FIGURE 6.1 Not a process architecture — more a random hacking

prepare a process architecture. What does it mean to say, as the diagram
implies, that one process is the ‘sum’ of three others? Where in the figure
are the dynamic relationships between processes represented? It is, after
all, the dynamic relationships that are crucial to an understanding of how
an organization works. It is network dynamics that matter, not some
arbitrary hierarchical composition.

It is equally all too easy to draw up a list of ‘major’ processes in an
organization by looking for functional units in the organization and
imagining that they in some sense represent ‘top level processes’, e.g. the
‘Finance process’, the ‘Analytical Chemistry process’, or the ‘HR process’.
These are all meaningless and probably misleading titles that must be
resisted at all costs. If we change the organization’s structure, its list of

Preparing a process architecture

processes would change too, which would be absurd if it was still in the
same business.

Figure 6.2 is an equally tempting ‘chunking’ of activity. At least in this
picture there is a sense of dynamism, of the order of things. But it is

FIGURE 6.2 Not a process architecture — more a list of silos

hopelessly serial, and all too easily becomes just a list of silos.

Surely, what we are looking for is a process architecture that is derived
solely from an understanding of what business the organization is in. We
would like to say ‘If the organization is in this business then it must have
these processes.” ‘“This is the grain of the organization.” If the organization
changes the business it is in, then we would expect the list of its processes
to change appropriately. But if the business reorganizes itself, perhaps
from a hierarchical to a matrix organization, why should the list of
processes change? Clearly, how some of those processes are done might
change, but not the list itself. If the business changes its culture from being
production-focused to customer-focused, why would the list of processes
change? If two departments are merged, why would the list of processes
change?

We shall see that a Riva process architecture is an invariant for an
organization that stays in the same business. This makes it a particularly
secure place to start any process design, or improvement activity, or
computer system design. Even if I am asked to look at what is perceived to
be a single process, I insist on preparing a process architecture in order to
ensure that we have the right chunking and that what appears to be one
process is one process, rather than parts of several related processes
arbitrarily lumped together. Never forget the axe.

Before we move on, let’s remind ourselves of how we shall be using the
word ‘organization’: an organization might be Jane and John, a project
team, the HR Department, the sales force together with the production
planning group, the Bristol branch, the four branches in Somerset, the
entire company, or our market place and all its players. It’s whatever we
want to look at.

171

Business Process Management

WHAT BUSINESS IS THIS ORGANIZATION IN?

172

Essential business entities

Our first step in constructing the process architecture is to characterize the
business that the organization is in. We shall do this in terms of its essential
business entities (EBEs).
In any business there are things — entities — that one cannot get away
from. They are there simply because of the business the organization is in.
For instance:

e In a pharmaceutical R and D company we would recognize Drug
compound, Clinical trial, Assay, and Batch of raw compound. As long
as the pharmaceutical company is in the business of developing
compounds that are subject to regulatory control, these things will
exist: they are the essence of the business.

o If we are in the business of administering a modular programme in a
university faculty, candidates for EBEs would be things like Module,
Award, Student assessment, External examiner, Curriculum and
Appeal. Take any one of these away and the business changes — or
the faculty cannot do its allotted business.

e If we are a water utility, we shall think of things like Customer,
Supplied property, Meter, Asset, Job and Customer contact.

e A firm of consulting engineers will have things like Customer, Project,
Market sector and Expertise area on its list.

e A car repair shop will have Customer, Appointment and Item of
equipment.

An EBE can be something physical and concrete such as a batch of drug
compound (you can stick your finger in it in the barrel once it exists), or
something rather abstract such as a clinical trial (you could see a clinical
trial going on but you couldn’t touch it), or something entirely abstract
such as a request to change a clinical trial (e.g. ‘I have decided to double
the strength of the tablets’). The entirely abstract EBEs often prove to be
very important, as we shall see.

(The older among us will hear echoes of Michael Jackson’s JSD (Jackson,
1983). A JSD real-world entity must ‘perform or suffer actions, in a
significant time-ordering, exist in the real world. .. and be capable of being
regarded as an individual.” Much of what follows has strong parallels with
JSD’s concepts.)

Sometimes, something that at first glance feels like an EBE is there only
because of the way the organization has decided to do its business. How
should we react if we find Invoice on the list of candidate EBEs? Someone
in the room will argue that we can’t survive unless we send out invoices;
we shall run out of money, and go bankrupt: ‘They’re essential — Invoice
must be an EBE’. For a car manufacturer, Invoice is not an essential entity;

Preparing a process architecture

it is a designed business entity. The car manufacturer is not in the business
of invoices. On the other hand, Payment is essential and not designed.
Invoices might be the way the manufacturer has decided to obtain
payment: we must get paid, but how is a matter of choice. However, for the
Invoice Handling Department — which is in the business of handling
invoices — Invoice is certainly an EBE.

An EBE is called ‘essential’ because it is part of the essence of the
business. Unless we are in the Invoicing Department, invoices will not be
what we are about: we are not in business to handle invoices, invoices are
not our subject matter, they are not what we are in business for. They are
not ‘essential’ in that meaning of the word. And, of course, we can also
argue that they are not essential in the other meaning, that ‘we have to
have them’. They are, after all, only a way of requesting payment, and we
can think of many other ways of doing that. The fact is that we have chosen
invoices as the way we will ask for payment. Invoices are certainly business
entities for us, but they are designed business entities, and not essential
business entities — they are there because of the way we choose to do our
business, rather than because they fundamentally characterize our
business.

This leaves us with a modelling decision. How should we handle
designed business entities? The answer is to consider them, whilst noting
that they are designed entities, and to replace them — where possible — by
the EBEs they stand for or implement.

Think of the list of EBEs as a searchlight that illuminates the part of the
world we are interested in. We can focus in on the HR Department, or
expand out to the entire company. We can illuminate both the
pharmaceutical drug company and its partner companies in clinical
research, or we can restrict our focus to the drug company alone. We can
concentrate on some part of our ‘internal’ world, or we can extend our
view to cover what our customers are concerned with. Indeed, whilst we
might start by thinking about a particular organization and then prepare a
list of its EBEs, we shall invariably find ourselves revisiting exactly what
‘organization’ we want to cover and then redrawing the boundaries
differently in order to answer the questions we want to answer.

EBEs are a powerful way of focusing our thoughts on the things that
matter, and avoiding analysis paralysis.

173

Business Process Management

174

KEY POINTS

The process architecture must capture the network of concurrent activity
in the organization.

It should be derived solely from an understanding of what business the
organization is in.

We start the analysis and characterization of that business by examining
its EBEs.

An EBE is an entity that is the essence of the organization’s business.
An EBE is part of the subject-matter of the organization.

Finding the EBEs

Since the EBEs are the subject matter of the organization, anyone who
knows what business the organization is in could - in principle — quickly
give you a list of EBEs. So let’s get half a dozen of those people in the room

to brainstorm the list.

In true brainstorming fashion, the list will quickly build to thirty, forty,
fifty, a hundred candidate EBEs. We can prompt suggestions with

questions such as:

e What do we make?
Cars, packs of biscuits, radios, furniture, bottled drinks, ...

e What do we sell?

Cars, palettes of packs of biscuits, water, electricity, insurance policies,

items of furniture, packs of tablets ...
e What product lines do we have?

These models of cars, these ranges of biscuits, these designs of

furniture, ...
e What services do we offer?

Giving roadside assistance for a vehicle breakdown, responding to an

emergency call, answering a customer complaint, ...
e What service lines do we have?

These types of insurance policy, these levels of maintenance service,
these levels of call-out service, these types of financial portfolio

management, ...
e What things can we simply not get away from?

We are developing pharmaceutical drugs, so we cannot get away from

the regulatory authorities.

We build aero engines, so we cannot get away from the safety

regulator.

We are a quoted company, so we have shareholders.

We have staff members.

Company policy requires us to follow certain quality standards.
e Who are our external customers?

Preparing a process architecture

Car buyers, car dealers, car wholesalers, fleet car buyers, ...

e Who are our internal customers?
Researchers, project managers, staff members, the Board, ...
e Are there things that our customers have, or want, or do, that might
be EBEs for us?
Complaints, purchases, overdrafts, accounts, loans, loyalty cards, ...
e What things do we think differentiate our organization from others
in the same business?
Our quality focus, our culture, our expertize, our prices, our brands,
our customer focus.

e What sorts of things do we deal with day in, day out?
Car engines, flour suppliers, drilling machines, power stations,
customer complaints, machine failures, quality standards.

e What events in the ‘outside world’, the world outside our organiza-
tion, do we need to respond to?
Power failures, drain collapses, customer complaints, significant share
price changes, new financial years, ...

e What business entities are listed in our corporate data model?
e What things do our information systems keep information on?

Once the flow has dried up, we revisit each item on the list and apply a
number of filters that test whether it is truly an entity that is the essence of
the business. 1 like to keep the entire list of candidate EBEs as we move
forward, whilst bracketing out — rather than deleting — those that don’t get
through the filters, and noting the reason why each has been bracketed.
This is going to be an iterative process and we are certain to revisit this list
later, perhaps reinstating a candidate, or adding new candidates. So it is a
good idea to keep all that work and all those decisions as the work
proceeds. Here are the filters:

e Since these are all supposed to be entities, test each by putting the

word ‘a’ or ‘the’ in front of each suggestion. If it doesn’t make sense,
bracket it and think again: are there any other entities that are
suggested and that do pass the test?
This can cause consternation in some situations. If we are a water
supply company, then ‘water’ surely must appear on the EBE list, yet
you can'’t talk about ‘a water’, or, indeed, ‘an electricity’ if we were an
electricity supply company. Have faith — bracket it and keep going.

e Bracket any designed entities.
Invoices may be the meat and drink of the Invoicing Department and
hence an EBE for them. But for the company as a whole, they are not:
the organization is not in business to issue invoices. Invoices, for the
organization, are just a way of obtaining payment.

175

Business Process Management

e Bracket entities that are simply roles, and which are not ‘of the
essence’ of the business.
The Accounts Department is an entity, and it's about the business.
Someone (possibly from the Accounts Department) will say ‘This
company wouldn’t function without the Accounts Department -
they’re essential.” Well yes, they are essential, but not ‘of the essence’:
we are not in business to do accounts, we make cars. Accounts play an
important role. But they are not an EBE, though they have a role.

WHICH EBES REPRESENT WORK FOR THE ORGANIZATION?

176

Filtering off units of work

After the first filters have been applied to our brainstormed list of
candidate EBEs, we shall have reduced the list to perhaps half. The items
remaining are true EBEs. These are the things the business has as its
subject matter. They define and characterize the organization.

Our second step is to decide which of these are entities that have
lifetimes during which we must look after them. These are our units of
work. Essential business entities can be essential UOWs, and designed
business entities can be designed UOWs.

For instance, a clinical trial is a UOW for an R and D pharmaceutical
company: it starts, proceeds and stops, and we must look after that life. A
drug compound is a UOW: it is invented, tested and developed, taken to
market, and finally withdrawn, and we must look after that.

We need a further set of filters to help us whittle the EBEs down to just
those that are UOWs:

e Bracket EBEs that are clearly not UOWs for us.

A Purchase of a theatre ticket would be an EBE for a Box Office and a
UOW. A Ticket might be on our list of candidate EBEs, but we can
bracket it because the ticket itself does not have a separate lifetime of
its own of interest to us: we don’t care how it is designed, printed and
distributed. It’s just a mechanism we use in the contract — it stands for
a successful purchase and the right to occupy a seat at a performance.
(‘Ah, did we have “Performance’’ on the list? Is that a UOW for the Box
Office?’)

e Bracket EBEs that are not UOWs for us, even if they are for someone
else.
A ‘quality standard’ clearly has a lifetime. If we are the central Quality
Management Group, with responsibility for the quality standards that
make up the Quality Management System, then quality standards are
our meat and drink and that lifetime would certainly represent a unit
of work for us: we shall decide on the need for a standard, draft it, have
it reviewed, approve it, distribute it, make changes to it, and finally
withdraw it. But for somebody who is only required to use quality

Preparing a process architecture

standards, they may be an EBE but they are not a unit of work.
Standards will only feature as controls in their processes, and will not
be the subject matter of their processes.

e Bracket EBEs that are only roles that play a part in processes.
The Safety Regulator is an EBE of, say, a company producing railway
signalling systems. But there is no sense in which the lifetime of the
Safety Regulator is something that the company concerns itself with: it
does not have to look after the Safety Regulator in that sense. Clearly
though, the Regulator will play a role in many of the company’s
processes, and we will expect to see it as a grey box on RADs.
It’s quite typical for the list of candidate EBEs to contain all sorts of job
titles and posts in the organization: CEO, Project Manager, Sales-
person and so on. True, the business could perhaps not operate
effectively without the CEO but the CEO does not have a lifetime that
we need to handle. If we cannot imagine having a process to look after
that role during its lifetime then we bracket it.

e Bracket any EBE that is only part of another EBE and does not have a
separate lifetime of its own.
If we manufacture DVDs, then DVD is probably an EBE and a UOW.
But Jewel case is probably not a UOW for us. Yes, each compact disc
we make goes into a jewel case, but we don’t care about the lifetime of
that case: we just buy them in. The disc itself does have a lifetime
however, from the moment it is a lump of molten plastic to the point
where it is capable of being played in a DVD player.

Some EBEs might (or might not) turn out not to be UOWSs themselves, but
might point to other UOWs. This is commonly the case with collections of
things that form another thing:

e As an electricity distribution company, we regard (the) Transmission
System as an EBE - without it we are not in business — and there is a
very real sense in which it has an (unending) lifetime that is of interest
to us. But perhaps more interestingly we realize that the Transmission
System is a collection of assets and Asset should be on the list too. So
we add Asset to the list and show both as UOWs.

e Our expertize is in the list. Is it helpful to think of the lifetime of (the)
expertize that we have? Probably not. However, Our expertize is made
up of a number of individual expertizes, and each of these will be
chosen, developed, fostered, and perhaps finally dropped. So
Expertize, on the other hand, does have a lifetime of interest to the
organization: that is a UOW.

e As a pharmaceutical development company, we are very concerned to
have a good ‘pipeline’, i.e. a good stream of potential new drugs going
through research and development. That Pipeline will appear on our
EBE candidates list. But so will Drug compound. We can view both as

177

Business Process Management

178

EBEs and also as UOWs. Of course, we have only one pipeline, but that
pipeline is composed of a number of compounds.

Finding ‘unseen’ UOWs

As in any requirements-gathering exercise the question arises: ‘How do we
know when we have finished? How do we know when we have everything
we should have?” We have a number of ways of checking for UOWSs that we
might have missed:

e Examine the names of departments and groups.
Individual departments often exist to deal with one sort of UOW: for
instance, we might observe that the Analytical Chemistry Department
deals with assays. Is ‘Assay’ an EBE and a UOW perhaps for the
organization? The Emergency Response Team deals with ... emer-
gencies. The Help Desk deals with fault reports. We need to be careful
when finding UOWs this way: they might well be designed UOWs.

e Put the words ‘Change to’ in front of each candidate UOW and see if it
creates another UOW.
At one pharmaceutical company we found people who thought their
unit of work was dealing with requests from clinicians for the patient
packs (of drugs) for clinical trials. When we looked, we found that they
did indeed do that and had a UOW called Request for supplies for a
clinical trial. But additionally — and very importantly - they spent a
great deal of time dealing with changes of mind from clinicians, so
they had a further unit of work which was the Change to request for
supplies for a clinical trial: a change arrived, it had to be dealt with,
and finally had to be incorporated into readjusted schedules. For each
original request there might be several changes.

e Put the words ‘Collection of’ in front of each candidate UOW and see
if it creates another UOW.
Is there a sense in which the collection of things has its own existence?
Like the portfolio of drug compounds in a pharmaceutical company,
or the product range of a software application company, or the
publisher’s list of books in print. A publisher doesn’t just deal with
titles in isolation: it will build a list of a particular character and
content. In other words, the list has its own existence and lifetime,
apart from the titles that make it up.

Preparing a process architecture

KEY POINTS

A UOW is an EBE that has a lifetime during which we must look after it.
These are essential UOWs.

Other UOWs arise from designed business entities rather than from
EBEs. These are designed UOWs.

Some UOWs are collections of other things or changes to other things.

Tips for the process architecture brainstorming

e Work on flipcharts so that you have a full record of what happened.
Whiteboards invite rubbing out and reduce the ability to backtrack
earlier decisions. This also helps people to remember how they got to
where they got and why.

e Treat the brainstorming of candidate EBEs as true brainstorming:
write them down as they are shouted out, without discussion. The one
exception I make to this rule is to apply the ‘a/the’ rule to check that
something is an entity.

e When starting the filtering for real EBEs, start with easy ones to help
people get their heads round the idea. If we make cars, then Car is a
true EBE. If we design cars, then Car design is a true EBE. But CEO is
clearly just a role.

e Do the same when filtering for EBEs that are also UOWs. If we make
cars, then Car is a UOW. If we are in a regulated industry, the
Regulator is a true EBE but not a UOW.

e Draft a sentence describing each UOW, in particular to capture its
scope. This is an aide memoire for future work and future readers.

WHAT ARE THE DYNAMIC RELATIONSHIPS BETWEEN UOWS?

Our list has now been whittled down to those true EBEs which are also
UOWs. The next step is to examine the relationships between those UOWs.

Now, we can think of all sorts of possible relationships between UOWs:
the annual product portfolio review process (Carry out the annual review
of the portfolio) perhaps needs information from the process for collating
the annual accounts (Prepare the annual accounts). That’s an information
relationship; these two processes will therefore need to interact to
exchange information. The question is ‘which relationships are interest-
ing?’ Because we shall be interested in the dynamic relationships between
the processes, we shall want to concentrate on the dynamic relationships
between the UOWs.

When we were examining the different dynamic relationships that can
exist between processes, we saw that relationships arise when some UOWs
‘need’ other UOWs. For instance, candidate drug compounds require

179

Business Process Management

180

clinical trials to be carried out. During the development of the compound
many clinical trials will be required. There will be times when several
clinical trials will be in progress for the same compound. Every clinical trial
requires patients. They have to be recruited; they have to be given the drug,
a placebo, or a comparative drug; and they have to be monitored and
recorded. At any time during the trial many patients will be participating in
it. In order for a patient to participate in a clinical trial ‘patient packs’ have
to be prepared that contain the doses of whatever they are receiving for the
trial. Since there are many patients in a trial — potentially thousands — there
will be a need for many patient packs.

Compound, Clinical trial, Patient and Patient pack are all UOWs in the
pharmaceutical R and D company. And there are important dynamic
relationships between them. We summarize this sort of relationship with
the neutral word ‘generates’:

e A candidate drug compound generates clinical trials.
e A clinical trial generates patients.

e A patient generates patient packs.

e A project generates work packages.

e A customer generates customer orders.

e A staff member generates expense claims.

e An order generates batches.

The word ‘generates’ perhaps jars in some cases, but I use it as a catch-all
word covering concepts such as ‘need’, ‘require’, ‘call for’ and ‘activate’.
And when I say that ‘A generates B’ I mean ‘during the lifetime of a case of
UOW A4, cases of UOW B are needed/called for/...’ So, during the lifetime
of a clinical trial, patients are needed. During the lifetime of a customer,
orders are placed by that customer. During the lifetime of the portfolio,
(new) products are considered. And so on.

In some cases, the lifetimes of the cases of UOW B are all contained
within the lifetime of the case of UOW A: clinical trials must have been
completed before development of the compound can be completed.
Sometimes the generated cases of B live on, after the generating case of A
has finished: a project will generate invoices to the client, and their
handling can linger on after the project itself has finished. We might allow
the project to close even though the processing of its invoices continues
after the project is declared to be finished.

The cardinality of the relationship between two UOWSs can vary: each
case of A generates exactly one case of B, or each case of A generates none,
one, or many cases of B. One clinical trial generates one clinical trial
report. One clinical trial generates many patients.

Our third step in building the process architecture is to go through the
filtered list of UOWs and draw out these dynamic relationships, the
‘generates’ relationships. We construct a UOW diagram in which we show

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:
Tutor:

Preparing a process architecture

the UOWs and the dynamic relationships between them; we name each
relationship and identify its cardinality (one-one or one-many). For
example, ‘A Compound requires many Clinical trials’. We use the following
conventions:

e Each UOW is shown as a hexagon containing the name of the UOW in
the singular.

e Each ‘generates’ relationship is shown as an arrow from the
generating UOW to the generated UOW, and appropriately labelled.

e Where a UOW is generated by an agent outside the organisation we
are concerned with, we show the arrow coming from a cloud
suggesting ‘The Outside World'.

Figure 6.3 gives an example of the sort of UOW diagram we might produce.
It shows the UOWs that characterize the administration of the teaching
programme in a university faculty and their dynamic relationships.

KEY POINTS

The UOW diagram shows only dynamic relationships between UOWs.
In particular, it shows only ‘generates’ relationships, where one type of
UOW arises because of and during the lifetime of another.

No other relationships are drawn on the diagram.

Later, next to the water-cooler

I'm worried that in your UOW diagram for the university faculty some
UOWs are not connected to others. Student, for example, is just sitting on its
own. And Teaching quality event and some others are generated ‘out of the
blue’ but don’t generate anything else.

Do not be alarmed by this! There is absolutely no requirement for every
UOW to be connected to some other UOW. Remember that we are only
looking at this stage for those dynamic ‘generates’ relationships. Not
everything generates something else or is generated by something else!
Well, 'm tempted to suggest that there must be some relationship between
the Student and a Student assessment.

It’s very important at this stage to draw only the dynamic relationships. Do
not be tempted to think of other - possibly interesting — relationships. A
Student assessment is generated from the lifetime of a run of a module. Yes,
it concerns the student but it isn’t the lifetime of the student that generates
the assessment. This is a subtle but important point.

How come students appear out of thin air?

As far as this organization - the Faculty Administration - is concerned, they
do! We’ve turned the searchlight away from student recruitment towards
the teaching side of the faculty.

181

Business Process Management

d,c_u

leads to (

Teaching
quality event

Local
regulation

Chief external

examiner
involves (

requires
(1:m)
|nvolves

(1:m) involves (1:m)

Field external
examiner

req ui res

(‘f} Resource
N

generates (1:m) eqwres

generates (1:m) generates (1:m)

generates (1:m)

Assessment
specification

Learning
opportunity

Student
assessment

generates (1:1/0) generates (1:1/0)

Assessment
offence

ECA, LWA,
Appeal

FIGURE 6.3 The UOW diagram for a university faculty administration

PRODUCING THE FIRST-CUT PROCESS ARCHITECTURE

We started this chapter with the assertion that a true process architecture
should be an invariant of the organization, determined only by the
business the organization is in. So far, we have developed a characteriza-

182

Preparing a process architecture

tion of that business in terms of a set of essential UOWs and their dynamic
relationships, all drawn up on the UOW diagram. The next step -
producing a ‘first cut’ of the process architecture - is entirely mechanical
and uses the ideas we developed in the previous two chapters.

Firstly, we hypothesize that for each UOW on the UOW diagram there
are three processes: its CP, its CMP, and its CSP. So, for the UOW Customer
call, we know that Handle a customer call, Manage the flow of customer
calls and Maintain a strategic view of customer calls will all appear
somewhere in our process architecture. By definition, if Customer call is a
UOW, we have to look after it during its life time: that is what the CP does —
it looks after one instance. Since there will potentially be many in progress
at any one moment we need to handle that flow: that is what the CMP
does. Since this thing is either of the essence of the business or important
enough to be designed, somewhere we need to take a strategic view of it:
that is what the CSP does.

Secondly, we hypothesize that each ‘generates’ relationship between two
UOWs in the UOW diagram can be translated into relationships between
the corresponding processes. Here we use the results of Chapter 5. We
examine each ‘generates’ relationship and decide if it is a task force or a
service function relationship.

If A generates B and the relationship is a service relationship, then the

translation rule in Figure 6.4 is used.
becomes

AcPp 1) A CMP
requests

delivers to negotiates

generates

negotiates
n starts
B CP monitors
intervenes
° stops

reports

FIGURE 6.4 Translating a service relationship between UOWs into processes

183

Business Process Management

184

If the relationship between A and B is a task force relationship, then the
translation rule in Figure 6.5 is used.

Note that in both cases we have drawn the full set of relationships
between CP and CMP: starting, monitoring, intervening, stopping,
reporting and negotiating.

Figure 6.6 shows the UOW diagram we might draw for the area in a
company to do with looking after the system that supports the business
requirement. There is one business requirement, which has a lifetime that
is looked after and during which changes arise. Matching it is one system,
which also has its lifetime. During the lifetime of the system, new releases
are made of it. Looking after it also requires new work products to be
generated. And so on. Spend a moment understanding the dynamics of
this organization.

Knowing how to deal with the two relationships of service function and
task force we can, quite mechanically, transform the UOW model of
Figure 6.6 into the first-cut process architecture in Figure 6.7. We have only
labelled the ‘encapsulates’ relationships, as all the others should now be
obvious from context.

(We shall generally omit CSPs from the process architecture unless they

are of specific interest for our purpose.)

becomes

generates

>

AcP [(E)

requests

delivers to negotiates

B CP

: < !
T3 2
33 B
= 7
28
m(ﬂ

0 stops

reports

FIGURE 6.5 Translating a task force relationship between UOWs into processes

Preparing a process architecture

the business
requirement

change to the
business
requirement

change to the

release
system

work product

detected
defect

operational
failure

change to a
work product

FIGURE 6.6 A UOW diagram for the IS support to the business requirement

Pupil: It’s complicated — should I be worried?

Tutor: Ask anyone in a company looking after computer systems supporting
business requirements and tell them it’s simple! That said, this is the first-
cut architecture. There are some reductions that we can make. But take
careful note: they are reductions that mirror the real world. They are
definitely not simplifications to make the diagram look simpler! That would
do us no service at all.

Pupil: OK, I can accept that. But people will surely be put off by the fact that the
picture is a mass of blobs and arrows.
Tutor: I'll put what you said another way: people will surely be put off by the fact

that the business operates a complex network of interconnected processes.
Whether or not they are put off, it is true! And we shall not get to answers if
our pictures are lies or over-simplifications.

PRODUCING THE SECOND-CUT PROCESS ARCHITECTURE

That last step was purely mechanical. The resulting process architecture
represents — in a sense — the most we can expect to find in the way of
processes for the units of work we identified. In practice, it often shows
more than exist. Let’s explore some of the ways that we can reduce the
first-cut process architecture to produce the second-cut process archi-
tecture.

185

Business Process Management

[SEETET
pajoelep Jo
moy} ay) abeuepy

abueyo e
1senbal

10943p pajosiep
e a|pueH

1099
0 m;w_ ainjrey
’ Jeuonesado
10940p JO ue 9|pueH

1onpoud yiom
MaU Janlep

10npoud spom 0y uonnjosai Ayjou
abueyo Joniep 1onpoud ylom

MU JoAI|ep 1onpoud xiom

mau jsenbai

ebueyo e sain|iey ain|ie}
1senbai 10npoud yiom feuonesado Jo [euonesado
e 9|pueH mojj ay) abeuepy JO @Inso|o
1onpoud yiom J8AIlep

MaU JaAIep
1onpoud yom
MaU JaAlep

sjonpoud yiom
0} sabueyo jo
Moy} 8y} ebeuepy

ainjiey

ves j0 Aynou

1onpoud ylom

onpoJd 3Iom o
10np0AC y Mau }sanbal

abueyo Janlep

ases|al
e a|pueH

1onpoud }Iom € 0}

abueyo e s|pueH sjonpoud
MIOM JO MOJ}

ay) ebeuep

1onpoud ylom
Mmau jsenbai

abueyo e
1senbai

1onpoud yiom

1onpoud om 0} MaU JoAllep

abueyo Janiep oses|al
woj)sAs Jonpoid yiom soses|al MaU Janijep
ay) 0} abueyd MoU 1senba JO Moy}
e 9|pueH ay) abeuepy

1onpo.d siom
Mau }sanbal

oseslal B
1senbal

walsAs
ay} 0} sabuey jo
Moy} ayy ebeuepy

juswalinbal

@ ssaulsnq 8y} 0}
abueyo e s|pueH

wo)sAs
ay) 8|pueH

abueyo e
1senbai

ysenbai jo

isenbai jo BWODJN0 JoAIep

BWO0JN0 JoAIIBP

juswalinbai
ssauisnq

ay} 0} sebueyo jo

MoJ} 8y} abeuepy

Juswalinbai
ssauisnqg

abueyo e ay] s|pue
1senbal 1\@ U} SIpueH

FIGURE 6.7 The first-cut process architecture for the UOW model in Figure 6.6

186

Preparing a process architecture

Folding a task force CMP into the requesting CP

Where a task force relationship has been transformed, and the CMP that
receives requests is shown as encapsulated in the requesting CP, we can
decide to fold the CMP into the requesting CP, particularly if it is trivial or
near trivial. Why does this make sense? We know that the things being
managed by the CMP are only requested by that CP — otherwise it would be
a service function. So, it’s plain that we can consider case management to
be part of the requesting CP.

As an example, the fragment of first-cut process architecture on the left
of Figure 6.8 is folded to give the fragment on the right. This arose from the

Handle a

project
deliver results of

work package \

Handle a
project

becomes

deliver results of

work package request work package

start

Manage the
flow of work
packages

Handle a
work package

Handle a
work package

FIGURE 6.8 Folding a CMP into the requesting CP

start

UOW relationship ‘A Project generates Work Packages’ and a recognition
that that relationship is a task force relationship: the project sets work
packages going under its own initiative, rather than going to an ‘outside’
service that does work packages. Put another way, the Handle a project CP
does its own case management for work packages.

It is vital to remember that when we fold the CMP into the requesting
CP, we are not saying that the CMP doesn’t exist, or that there is no case
management to be done. We are saying that it sits within the requesting CP
and is best modelled there. We are entirely at liberty to leave it as a
separate process if we think that our purpose will be better served by doing
that.

Dealing with 1:1 ‘generates’ relationships

In some cases, we will have on our UOW diagram one instance of an A
generating precisely one instance of a B, what we shall call a 1:1
relationship. For instance, we might have drafted the following:

e A Customer Purchase generates one Invoice.

e A Clinical Trial generates one CRF Design.

e A Draft Document generates one Approved Document.
e A Job Applicant generates one Staff Member.

There are some subtleties here.

187

Business Process Management

188

Suppose that in our organization one Customer purchase generates
precisely one Invoice. Assuming that invoicing is done, for all sorts of
reasons, as a service within the organization, we shall want to keep the
processes arising from Customer purchase and Invoice separate. We shall
need the separate Manage the flow of invoices to sort out priorities
between invoices from the different sources, i.e. from CPs other than
Handle a Customer purchase. So the handling of invoices is a service
function and we must leave the full set of CPs and CMPs on the second-cut
architecture.

Suppose we are the Clinical Trials Division of a pharmaceutical drug
development company. The Case Report Form (CRF) is a large document
that records the life-history of a single patient taking part in a clinical trial.
For each clinical trial, a CRF is specially designed to take into account the
particular requirements of that trial. In Riva terms, a Clinical trial
generates just one CRF design. Do we still need both UOWSs? Yes, we
probably do. The CRF design has its own life that runs alongside the trial’s:
it is drafted, reviewed, approved, copied, amended, and so on. However,
since there is only one CRF design for one clinical trial, and its lifetime is
intimately related to the trial and not passed off to someone else to look
after, will we need case management for CRF designs? Yes, we probably do:
there might only be one CRF design for each clinical trial, but there are
many clinical trials and hence many CRF designs, and if we provide the
development and maintenance of CRF designs as a service then we shall
need both Manage the flow of CRF designs and Handle a CRF design in
the process architecture.

A Draft document is a document in a particular state: draft. After it has
been through certain processing it might change its state and become an
Approved document. What happened there? Perhaps it would make more
sense to say that a Document changes state, and hence to replace the two
UOWs by one. The first half of Handle a Document would then be about
the lifetime of a document in the draft state and the second half would be
about a document in the approved state. We would not distinguish
between case management of draft documents and case management of
approved documents, contenting ourselves with Manage the flow of
Documents.

Suppose we have a UOW called Job applicant and another called Staff
member. In some cases, job applicants become staff members. In some
cases they don’t. Job applicants sometimes ‘turn into’ staff members.
Strictly speaking, Job applicant is in a ‘1:0/1" relationship with Staff
member. Following the Document analogy, we would try to find a single
UOW of which job applicant and Staff member were just different states.
Hard. Moreover, the lifetime of a job applicant is quite different from the
lifetime of a staff member — quite different things happen to you - and it
feels better to keep them separate and hence with their own CPs. Also, the
case management of job applicants is a wholly different thing from the

Preparing a process architecture

case management of staff members. So, we shall find the full set of
processes in the process architecture — Handle a Job applicant, Manage
the flow of Job applicants, Handle a Staff member, and Manage the flow
of Staff members — and at some point Handle a Job applicant will request
a new staff member from Manage the flow of Staff members. That is the
moment of recruitment.

Dealing with delivery interactions and delivery chains

The standard transformation always produces a ‘delivers’ interaction from
the requested case to the requesting case. When a project generates a work
package, the work package is assumed to deliver something back to the
project. And in this situation that is probably what happens in reality. But
in other situations the ‘generates’ relationship is more ‘fire and forget’. So
once we have the first-cut architecture in front of us, another validation we
can carry out is to examine each ‘delivers’ interaction and ask ‘Does this
happen in reality? Does anything really get delivered?’ If the answer is ‘No’,
then we can delete that interaction.

Let’s look at another situation. Suppose A generates B generates C
generates D on the UOW diagram. This will yield the first-cut process
architecture shown in the top half of Figure 6.9. Note how the chain of
delivery is from D CPto C CP to B CP to A CP. It is always worth thinking
this through and comparing it with reality. We often find that in practice

request/' request, request,
ol Y { & Y
o) o) O

deliver deliver deliver

becomes

B CMP C CMP D CMP
re t/' request, request/'
- ® ® ®
Ty (e (e

deliver

FIGURE 6.9 Some delivery chains can be short-circuited

189

Business Process Management

190

this delivery chain is short-circuited and that the actual relationships are
as shown in the bottom half of the figure.
We shall see an example of this in a case study later.

Dealing with collections

We saw earlier how our UOW analysis might turn up a UOW that is
actually a collection of another UOW. For instance, a Programme is a
collection of Projects; a Project is a collection of Work Packages; a
Transmission System is a collection of Assets; a Product Portfolio is a
collection of Products; and so on. In other words, during the analysis we
have decided that not only does an individual project have a lifetime that
needs handling, but a collection of projects — a programme — also has its
own lifetime that needs handling. We will probably also have identified
that (with our special use of the word ‘generates’):

e A Transmission System generates Assets.
e A Project generates Work Packages.
e A Product Portfolio generates Products.

Let’s take the first of these. It will produce the snippet of process
architecture shown in Figure 6.10. Let’s think what the process Manage the

Handle the
Transmission E)
System

request an asset

deliver

Handle an
Asset

Manage the

activate flow of Assets

FIGURE 6.10 UOWs, collections, and their processes

flow of Assets is likely to be about. The more we think about it, the more
we suspect that managing the flow of assets is actually part of what
handling a transmission system is all about. So the CMP for the atomic
object is the same as — or at least is contained within — the CP for the
collection, and once again we are likely to fold the CMP into the
collection’s CP.

As another example, let’s look again at the way in which a pharmaceu-
tical development company runs the business of getting new chemical
compounds into the drug market. We can identify an obvious unit of work:
the Candidate drug. Each candidate drug will have its own life history: it

Preparing a process architecture

starts as one of thousands of compounds that have been successfully
screened, and it proceeds through a variety of ever larger trials; at the same
time, there is a parallel development of the chemical process by which it
will finally be manufactured in bulk. If the candidate drug proves safe and
efficacious it will reach the market. This ‘Molecule to market’ process will
involve many scientific groups that deal with the candidate drug:
pharmaceutical sciences, clinical trials, manufacturing process scale-up,
analytical chemistry, health and safety, quality assurance, and the
regulatory group.

At any one moment the company will have many drug candidates at
different stages. Such an organization is in fact a ‘case pipeline’, designed
to get the successful candidates through to the market place in the shortest
possible time and to weed out the unsuccessful candidates as soon as
possible. (So few candidates typically make it to market that perhaps the
process should be called ‘Molecule to reject bin’.) The pipeline can be
considered a UOW in its own right: it has a (never-ending) lifetime and
must be looked after. Clearly, the pipeline is the set of candidate drugs. At
any one moment there will be one pipeline containing many candidate
drugs. Indeed, the pipeline generates candidate drugs, so we shall expect
to find the three processes shown in Figure 6.11.

Handle the

pipeline

request new
deliver candidate drug

Handle a
candidate
drug

Manage the flow
of candidate
drugs

FIGURE 6.11 The first-cut processes for a pipeline and its candidate drugs

Now, requests for candidate drugs do not come from anywhere else
other than the pipeline, and the pipeline is the set of candidate drugs. So a
task force relationship is appropriate between Handle the pipeline and
Manage the flow of candidate drugs (notice the E-relationship). This
suggests that we can fold Manage the flow of candidate drugs into Handle
the pipeline. This will make immediate sense: if we watch Handle the
pipeline at work we will see that it is amongst other things about managing
the flow of candidate drugs. The result will be Figure 6.12, but note that we
are never obliged to fold the CMP away like this: it is a modelling decision
to be made for each situation.

191

Business Process Management

192

Handle a
candidate
drug

Handle the
pipeline

deliver/®

FIGURE 6.12 The reduced processes for a pipeline and its candidate drugs

Dealing with empty CMPs

It is not uncommon for a CMP to be ... empty: some things simply don’t
need or don’t get case management. As a trivial example, we know in
Figure 6.10 that there is only one Transmission System - there will be no
process called Manage the flow of Transmission Systems and there will
only be one instance of Handle the Transmission System.

Perhaps Jill deals with invoices. If you want an invoice, you walk up to
her desk and leave an invoice request on it. She picks up invoice requests
from her desk at random and works on them, sometimes working on
several at once. The process Manage the flow of invoice requests simply
does not exist. For our second-cut process architecture we might therefore
remove it: any requesting CPs will simply activate Handle an invoice
request itself, rather than asking a Manage the flow of invoice requests to
do it. Dropping your request on her desk is all that needs to be done.

But then Jill decides to organize herself better: she now has an in-tray
where you put your invoice request. It’s annoying, but she simply takes the
top request off the pile, deals with it, takes the next one off the top, and so
on. Last on, first off. Now there is a Manage the flow of invoice requests
process, and it has a serious effect on the variability of the time it takes for
an invoice request to be dealt with.

From first-cut to second-cut architecture

We are now in a position to reduce the first-cut architecture in Figure 6.7
to the more realistic second-cut architecture in Figure 6.13. You can see
that much of the reduction (a word I prefer to ‘simplification’) has
occurred around Handle the system — not surprisingly as there is only one
and hence it does a great deal of case management itself. Such reductions
can’t be made for the ‘smaller’” UOWs - e.g. Work product and Change to
work product — where requests for them come from all sides and the flow is
managed as a service. We have also short-circuited a couple of delivery
chains to reflect reality.

Designed business entities and UOWs

When we analysed our candidate EBEs looking for UOWSs, we bracketed
out designed entities on our list of candidate EBEs and so they were not
carried forward onto the UOW diagram. Our reason was that, if we want a
process architecture that is solely based on the business the organization is

Preparing a process architecture

abueyo e
1senbai

109}9p palosiep
e 8|pueH

ain|ie}
|[euonelado

10npoud yiom ue 8jpueH

Mau JaAllep

1onpoud ylom 0}
abueyo Janlep 1onpoud yiom
MBU JoAljep

uels

1onpoid yiom
Mau }senbal
108)8p JO

abueyo e
uonnjosal Ajjou

salin|ie}
1senbai

jonpoud yiom [euoiesado jo

e 8|pueH

Moy} 8y} abeuepy

1onpoud yiom

M8U JoAIIep
sjonpoud iom 1onpoud siom ain|rey
0} sabueyo Jo MU Jalep veis jo Anou

MoJ} 8y} abeuep 10npoud yiom

1onpoid yiom 0}
mau jsanbai

abueyo Jeljep

oses|al
e a|pueH

1onpo.d ylom e o}

abueyo e s|pueH syonpoud
IOM JO MO}

ay} ebeuepy

10npoud ylom
MaU Janlep

1onpoud yiom
mau)senbal

abueyo e
1senbai

1onpo.d ylom 0}

abueyo Janiep oses|al

woysAs
ay1 01 ebueyo
e 9|pueH

els
Jonpoud sjiom Jonpoud sjiom ve

Mau 1senbal Mau jsenbal

wolsAs
ay} o|pueH

Hels 1senbai jo

8WOooIN0 JBAIIeP

uels

1senbai jo
WO2}N0 JBAIIBP

wswsalinbai
ssauisnq
dy1 s|pueH

swalinbal
ssaulisng ayj o}
abueyo e s|pueH

MU JBAlep

cut architecture in Figure 6.7

FIGURE 6.13 Second-cut architecture from the first

193

Business Process Management

194

in and is independent of how it chooses to do its business, then we must
drop them from the list. The result is that our process architecture really
does concentrate solely on those processes that must exist because we are
in the business we are in. There are no processes that are there simply
because of some decision about how we should do our business.

This gives our process architecture a ‘purity’ that can be very useful in
many situations. If we want to re-engineer then it is important not to be
blinded by current mechanisms.

On the other hand, if we are building an ‘as-is’ view of the organization,
then we shall want to see processes in the architecture that are there
because that is the way we choose to do our business. So we can take the
brackets off the designed UOWs concerned and let them generate
processes in the architecture.

KEY POINTS

To build a process architecture:

1. Identify the EBEs.

2. Use the filters to extract the UOWs.

3. Map the UOW relationships and add their type and cardinality.

4. Transform the UOW diagram into the first-cut process architecture
using the two standard transformations.

5. Consider folding some processes, especially where task force
relationships are involved.

6. Put the resulting architecture against the world to validate the
relationships.

7. Restore designed UOWs, if appropriate.

8. Make any further reductions and finalize the second-cut process
architecture.

Other process interactions

When constructing the process architecture we deduced the principal
interactions between processes: the request from a CP to a CMP, the
delivery from a CP to a requesting process etc. There will of course be
others: when we get into detail about how processes operate — how we
have chosen to do our business — we shall see that there are other
interactions between processes. But since they are about how we do our
business, we would rather not have them on our ‘pure’ process
architecture, an architecture that we want to be re-engineering-proof.
They will arise naturally as we design/model the individual processes.

Preparing a process architecture

THE PROCESS ARCHITECTURE AS SEARCHLIGHT

Pupil: You were very rude earlier about so-called process architectures that were
random chunkings of organizational activity, either strung together in some
sort of sequence like a kebab, or else hanging Christmas tree fashion. How is
a Riva process architecture different?

Tutor: Well, we’'ve seen how UOWs come in a variety of sizes: a Compound
represents a much larger unit of work than an Assay. We can also see a
partial ordering (‘generates’) amongst UOWs. It is likely, though not certain,
that as we follow the ‘generates’ relationships we’ll find our way to ‘smaller’
and ‘smaller’ UOWs. Look at the (real-life) example I've drawn in Figure 6.14
and tell me what you see.

Pupil: Well, I see it shows a sequence of UOWs that get smaller in ‘size’: I know a
clinical trial is a massive thing, a CRF page is ... just a page in a document
called a CRF.

Tutor: Right, and all of these entities have a similarly long duration: a patient is a
patient as long as the trial persists, as do the records about them. Indeed, we
might reckon that the records last longer than the patient in the trial in that
even though the patient has left the trial and ceased to be a patient, the
records about them are kept and looked after a great deal longer.

I've drawn another sequence in Figure 6.15 to do with the administration of
a university faculty. This time the UOWs are getting smaller in duration.
Can you see how this says that, to add more ‘detail’ to our process
architecture, we must add more UOWSs to our UOW diagram, with the new
UOWs being generated by (probably) ‘larger’ UOWs already on the diagram?
Note that we don’t add more detail by decomposing into lower levels of a
hierarchy. We add more detail by adding more nodes to our network. And
indeed this reflects the real world. The question is only whether we choose
to include them in the model or exclude them from it. By choosing to
include them we are turning our searchlight on that part of the
organization’s activity.

generates

generates

generates

CRF Page

FIGURE 6.14 Big fleas have smaller fleas ...

195

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

196

involves

generates

generates

Student
assessment

FIGURE 6.15 Big fleas have shorter fleas ...

So, it’s not that these ‘smaller’ UOWs are ‘inside’ the larger ones — more that
we don’t see them if we choose not to?

Exactly. Here’s another way of looking at it. When we stare up at the night
sky, we can only see the stars we can see: the ones that are bright enough. If
we go somewhere where there is less light pollution, we see more of the less
bright stars. It’s not that we are seeing inside the bright stars and seeing
stars there. Finally, we need a telescope to see the very faint stars between
all the others — note how I said ‘between’. That’s how it is with UOWs and
the Riva process architecture.

Turning my night-sky metaphor on its head, I can also think of the process
architecture as a searchlight which I train on the organization. I can widen
or narrow its spread and look at some parts and not others. Equally I can
increase or lower its intensity, allowing me to see more or fewer of the
smaller (fainter) UOWs.

So when I choose the UOWs I choose the ones I want to choose for my
purpose.

Right. But remember that the stars are all there - you don’t invent them.
You look at this part of the sky or that part. And you simply see more or
fewer of them, as you choose. We’re modelling reality. We’re not imposing
nice structures on reality.

You made a big deal earlier about why a sound process architecture was
essential. How have we benefited from doing it the Riva way?

I'll give you three ways. Firstly, by deriving the architecture from the entities
that are at the heart of the organization’s existence we’ve ensured that the
architecture is deduced solely from the business the organization is in. We
haven’t considered at all how the organization chooses to do business: its
organizational structure, its geography, its culture, whether it is a
command-and-control or empowered or consensus organization, whether
it operates strict hierarchical procedures or allows cross-functional
communications, whether information is treated as shared or on a need-
to-know basis, and so on.

Interestingly, we haven’t been at all concerned with the goals of the
organization either. Goals are achieved by the way that processes are done.
The Riva process architecture tells us what processes we must have to do

Pupil:

Tutor:

Pupil:
Tutor:

Pupil:

Tutor:

Preparing a process architecture

our business, and we use the goals when we design those processes to
ensure that they do what we want.

In other words, the process architecture says ‘If you are in this business you
will have these processes in these dynamic relationships,” and it’s only when
we start to look inside the individual processes and at how their relation-
ships are implemented that we introduce culture and organizational style.
Yes. We do that by our choice of roles and the interactions we require
between them, in particular in the use of approval, delegation, reporting,
agreement, authorization, negotiation, questioning and informing, and the
mechanisms for these interactions.

Secondly, by mapping the relationships between UOWs into relationships
between their respective CPs and CMPs we ensure that the dynamic content
of the architecture matches what is happening in the real world. Our
architecture doesn’t impose structure on our processes in the form of some
arbitrary decomposition with no analogue in the real world.

And the third benefit?

Well, by recognising those two well-defined ways in which processes can be
related — activation and interaction — we again capture reality, and moreover
we do it in a way that can be directly modelled when we look at the detail
within processes in a RAD.

The message I'm getting is that a Riva process architecture would ‘survive’
re-engineering, in other words it’s in some sense an invariant of the
organization; we’ve divided the organizational activity along the natural
cleavage lines and as a result our processes will have greater cohesion and
less coupling; and we’ve an approach that allows us to turn the spotlight
wherever is appropriate to our concern.

Precisely. I can put it more mundanely: we can really rely on a Riva process
architecture. As long as the organization stays in the same business, it will
have those processes in those relationships. And if it changes its business,
we can very easily determine the changes in the architecture: ‘changing
your business’ means adding or subtracting EBEs, which — we know — will
tell us immediately which new processes appear and which existing
processes disappear.

CASE STUDY 2

Let's start with a relatively straightforward example of a process
architecture. Suppose we are looking at the job management part of a
water utility, the part that undertakes various works on its assets: drains,
sewers, water supplies, reservoirs etc.

A workshop brainstormed the following as potential EBEs, and decided
that the ones in brackets were either not UOWSs or were not UOWs that
came within the scope of the BPM project:

e Customer;

e Contact (by a customer);

197

Business Process Management

198

e Job;

Sample (of water);

Inspection;
e Customer notification;

Material requisition (MR);

e Asset;

History of an asset;

(Statutory notification);

e (Event/Incident);

(Appointment);
o (Meter reading).

This led to the UOW model in Figure 6.16. Not surprisingly, given the
scope of the study, the searchlight is on Job and its UOW ‘neighbours’.

This in turn led to the process architecture in Figure 6.17.
Discussions at the workshop led to the following decisions:

e The UOW Asset was dropped because the processes concerned with
assets were considered outside the scope of the model: they were the
business of the engineers who specified, procured and maintained
them.

e Various sources of requests for Jobs (including the periodic main-
tenance of assets and planned requests arising from History, e.g. a
trend of leaks in a particular area) were bundled and shown as a cloud
to represent an external source of no interest other than as a source of
requests.

o All of the UOWs were supported by service functions so CMPs
appeared for each.

e The relationship between Handle a Job and Manage Customer
notifications is a little different from the usual. Here, in one request,
Handle a Job requests Manage Notifications flow to organize the
notifications for all customers. Manage Notifications flow is given a
single geographical location, determines all the customers to whom
notifications should be sent, and then sends a notification to each. It is
probably not worth separating out Manage Notifications flow and
Handle a Customer notification, the latter being a very ‘small’
process, so they have been replaced by a single process Handle
Customer notifications which takes a geographical location and sends
out all notifications for that location. This is shown in the second-cut
process architecture below.

e Note also how Handle a Job is not interested in knowing the outcome
of the notification of customers, so there is no closure of that request.

Preparing a process architecture

‘

generates generates

:

generates generates

(periodic)

0

generates
(reactive)

generates
(planned)

W

generates
(planned/
reactive)

generates

generates :
Material

requisition
(MR)

Ei,b 3

generates
generates

UOW diagram for a
Utility Company's
Job Management

Customer
Notification

FIGURE 6.16 UOW model for a utility company’s job management

e The lifetime of customers was deemed out of scope so Manage
Customers flow and Handle a Customer were dropped.

e Some reduction is possible, knowing more about the real situation. In
particular, all contacts are made by telephone and it is the telephone
system itself that effectively does such contact flow management as is
necessary. For this reason the Manage Contacts Flow (case manage-
ment) process can be dropped.

The result is shown in the second-cut process architecture in Figure 6.18.

199

Business Process Management

Handle a
Customer

Handle a

Sample Report sample

results

Make contact

Raise a sample Report on contact

Handle a
Contact

Manage
Contacts flow

Manage
Samples flow

Request }9

a sample Report Inspection

outcome Request an Inspection

Request a Job

Manage
Inspections
flow

Handle an
Inspection

Request a Job

Handle an a Report status
MR .
Report on Raise an 7
Inspection
Deliver the outcome (L CJ J
Start requisition materials]
Request a Request
follow-on Job a Job

Request
materials
(MR)

Report
progress

Control and/Q>

schedule }/D

Raise a new Job

Manage Jobs
flow

Manage MR

How (1) Handle a Job

Deliver
Request
notifications

Process Architecture for a
Utility Company's
Job Management

Handle a
Customer
Notification

Manage
Notifications
flow

Raise
notification

FIGURE 6.17 First-cut process architecture for a utility company’s job management

KEY POINTS

The process architecture is a searchlight, focusing our attention on the
area of the organizational activity that we are interested in.

By including ‘fainter’ units of work (typically designed) we increase the
intensity of the searchlight.

There is no sense in which we are successively decomposing processes.
We are adding more nodes to the network of processes.

200

Preparing a process architecture

Handle a 7
Sample
/v(OJ
@\ Repon on \
Raise a sample Repser; jﬁ‘g‘p'e contact

Make contact

Handle a
Contact

Manage
Sample flow

Request a sample
Request a Job
Report Inspection

outcome Request an Inspection

Raise an
Inspection Manage
Handle an 9
; (A] Inspections
Report status Inspection fow
Handle an
MR
Report job
outcome Request a Job
Request a

follow-on Job
Report
progress
Control and //®®

Manage MR
flow

Manage Jobs

Handle a Job
flow

schedule

Request
a Job
Request Raise a new Job /
Handle notifications y
Customer &3

Second-cut Process Architecture for a
Utility Company's Job Management

Notifications

FIGURE 6.18 Second-cut process architecture for the utility company’s job management

Later, next to the water-cooler

Pupil: I know that people get very worried about analysis paralysis. Isn’t there a
danger that people will perceive all this process architecture stuff as simply
getting in the way of getting on and looking at the processes themselves?

Tutor: Yes, there is. People can be very keen to get on with what they perceive to be
‘real work’. I hope that I've made the case for preparing a process
architecture whatever situation we are in. What I now have to do is satisfy
you - and those folks with busy lives and hard targets — that preparing a
process architecture can be a very quick activity.

201

Business Process Management

Pupil:
Tutor:

Remember firstly that we do it principally to make sure that we get the right
chunking of all the organizational activity, and that we identify at least the
dynamic relationships between the chunks - the processes.

OK.

Then remember that the work centred around brainstorming the EBEs,
filtering them into UOWs, and finally doing any appropriate reduction of the
first-cut architecture to the second-cut architecture. To give you a flavour of
how quickly that can be done, let me give you an example.

I was at a sales meeting with a client, trying to sell them Riva-based
consultancy. One of the client team had said she only had a short amount of
time as she had a video-conference with colleagues across the Atlantic at
which they would discuss a new framework for their QMS. She needed to get
away from the meeting early in order to draft a framework for discussion.
‘How long have you got before your video-conference?’ I asked. ‘Two hours,’
came the reply. ‘That’s plenty for what you want: let’s spend the first hour
brainstorming EBEs and deriving UOWs,’ I said, ‘and the second hour
deducing the process architecture, and reducing it as much as we can in the
time.” My challenge of free consultancy was accepted, and we did it. She
went off with a second-cut process architecture to get her discussions
started. I don’t want to suggest that two hours is all you’ll ever need, but we
are talking about days and not months.

CASE STUDY 3

202

Finally, let’s examine a simple process architecture and look in particular

at how the dynamic relationships would appear in RADs for them.

Suppose a software product company has a range of products. During
the lifetime of a product, changes to it are proposed. Occasionally the
outstanding changes proposed for a product are reviewed; some are
deleted and some are incorporated in a new release of the product. A

brainstorming of EBEs might come up with the following:
e Product;
e Change proposal;
e Release;
e Sale;

e Customer.

Which of these are UOWSs? In other words, which of them have a lifetime
which must be serviced by our ‘organization’? For this exercise, we might
decide that we are not concerned with selling and marketing, only the

generation of product for sale. Our list of UOWs is therefore:
e Product;
e Change proposal;
o Release.

Tutor:
Pupil:

Preparing a process architecture

As far as the development group is concerned, ideas for new products
come from outside, perhaps a marketing function within the company.
During the lifetime of a product, releases are produced. Change proposals
relating to products come from outside the group (customers in particular,
we might suspect) and are raised during the management of the product
itself. Our UOW diagram would look like Figure 6.19.

@

C
/C’_,CJ)\
generates generates
Change
generates Proposal

generates
Release

FIGURE 6.19 UOW diagram for a development group in a software product company

From this we can deduce our first-cut process architecture, as in
Figure 6.20.

Each product manages its own releases and since releases are done one
at a time for a given product, the CMP Manage the flow of releases doesn’t
exist so we can drop it. We can also assume that the business of deciding
on new products - Manage the flow of Products - is outside the area lit by
our searchlight. So we get the second-cut process architecture in
Figure 6.21.

Now we can start to get inside the individual processes. Figures 6.22
through 6.25 are incomplete RADs for the four processes: we have
concentrated only on the activity around the relationships between the
processes — we aren’t interested here in the minutiae of change manage-
ment. Let’s listen in on our Tutor and Pupil discussing the models.

Why don’t you walk us through the case study?

OK. Looking at Handle a Product (Figure 6.22), first of all I would guess that
somewhere else there’s a Manage the flow of Products CMP that will create
the instance of Product Management Team that the RAD shows.

I can see that the Product Management Team has three main threads of
activity. One (top right) is the main thread that gets under way immediately:
the Team does some planning and then arranges for the first release;
monthly it reviews things and decides whether a new release is called for,
given the changes waiting their turn; and bi-annually it decides whether

203

Business Process Management

7
C
request & CJ J\
new product
propose
deliver a change

Manage the
flow of deliver
roduct
Products p Handle a Manage the
Change o flow of Change

Proposal Proposals

deliver

change
start 9

propose
new product

a change

®\ request

new release

deliver @
release

Handle a start
Release release

Handle a
Product

Manage the
flow of
Releases

FIGURE 6.20 First-cut process architecture from Figure 6.19

to withdraw the product from the market or perhaps make some changes —
probably quite radical ones, if any, I would guess.
If the Team decides ... we don’t have any detail here ... that it wants to
propose a change to the product, it uses the appropriate route like everyone
else and interacts with the Change Coordinator ... that’s the ‘propose a
change’ interaction with the CMP Manage the flow of Change Proposals of
course.
Going back to the point where the Team generates a new release ... we
know that case management for releases is null, so the Product Manage-
ment Team simply activates the CP itself by instantiating its lead role —
Release Coordinating - it creates the responsibility for the release ... and lets
it get on with it, waiting until the release has been done before checking
what effect it has on the market. Interestingly, that thread — waiting to see
the effect on the market - could still be in progress when the next monthly
review is started for the next release?

Tutor: True. Exactly the sort of concurrency we find: things rarely happen one at a
time. It’s entirely possible for several releases to be in hand at one time.
Let’s move on to the CP for Release.

204

Preparing a process architecture

‘\/\ propose

deliver a change

=)

deliver Handle a Manage the
product Change 0 flow of Change
start Proposal Proposals
new product deliver
change

propose
a change

Handle a
Product

%

start
release

deliver
release

Handle a

Release

FIGURE 6.21 Second-cut process architecture from Figure 6.20

Pupil: In Handle a Release (Figure 6.23), I can see the instantiated Release
Coordinating role preparing the release by filtering the outstanding change
proposals, getting the appropriate software changes made for all of the
change proposals that are accepted for the release, postponing some
proposals for a future release presumably, and rejecting others there and
then. Presumably that rejection is picked up in Handle a Change Proposal
... I can check that process interaction in a minute. Once the release has
been made there’s an interesting state — New release ready — which of course
the Product Management Team are waiting to hear about back in Handle a
Product in Figure 6.22. And there’s an interesting little ... trick? We need to
signal that each individual change that made it into the release has indeed
made it, presumably so that the Change Coordinator can take the
appropriate action over in the appropriate instance of the CP Handle a

Change.
Tutor: Well, you might call that a trick but it captures reality!
Pupil: I noticed that the process architecture shows the new release being

‘delivered’ to the product via an interaction between Handle a Release
and Handle a Product. We’ve actually modelled this in your minimalist way
as a state-trigger pair: the state New release ready in Handle a Release is
spotted as an external event in Handle a Product. I guess we could have
chosen to be more explicit and modelled the interaction that — say - takes

205

Business Process Management

(sjesodoid abuey)n /
Jo Moj} 8y} abeueyy a8s)
puey ui lesodoid abueyn
l jesodoud abueyd Jano ssed

(mojaq ess) sjesodoid abueyo mau asodoid
abueyd mau jo Buisiel 0} epew uolsioag
._O”—NC_U‘_OOO\ ul ynsal Ajjuenbasqgns

abueysn 01 s1y} 1oedxe BIN
aseajal Mau Jo (bl mojaq

109}J0 19)/ewWw MaIneY 99s) sjesodoud
abueyo mau

jo Buisrels ul jnsal
Apuenbasgns 0y
siy} 10adxa WBIN

[oseojoy e 9|pueH, 99s)
wes | juswabeue|y 1onpo.id
AQ pauoISSIWWOD ases|al MaN

sebueyo sjepipued Jo 1SI| BAID)

6 aseajas Mau 1oy Ajiqisuodsal yum
UlBUIPIOO0D pujeuipioon esesjoy, mou pelg

asea|ay

(ss@00.1d ,ose9|9Y B 9|pUEH,
ui 8joJ Buneulpioo)
asea|ay, 99s) Apeal asesjal maN

1onpoud Joy
ABojelis mainay
|
¢palinbai
[EMEIDUYIM

19)Jew wouj
10npoid MBIPYNA

;8seajel Mau
Jels 0] uoseay

seh ou sk ou

sue|d aseajal [eniul pue oses|al e 10} UOIelapIsSuod Japun
ABajess 1onpoud jeniur asedaid 194 J0u sebueyd asoy) mainey 1onpoud Joj 1osew mainey
|
paAIgouo9 Jonpold maN Alyiuop Alrenuue-1g

N

/b wea] juswabeueyy 19npoid

FIGURE 6.22 Part of Handle a Product

206

Change Control Board‘/

Preparing a process architecture

Release Coordinating

/ New release commissioned by
Product Management Team
(see 'Handle a Product' process)

]

Software
Team ¢

Review outstanding change proposals

% For each change proposal

accepted rejected postponed

Outcome?

]

Get change made and verified
I I

Change proposal rejected
(see Handle a Change Proposal)

Make release

New release ready

(see Handle a Product)

% For each accepted changela proposal

Change incorporated in release
(see Handle a Change Proposal)

-

FIGURE 6.23 Part of Handle a Release

Change Originato

N

Change required
Submit (

Change Coordinator

change proposal

I::]—Revise as necessary

Change proposal in hand

Validate against outstanding
change proposals

no yes
Valid proposal?

Notify of rejection

Change proposal
to be proceeded with
(see Handle a Change)

Change proposal closed

FIGURE 6.24 Part of Manage the flow of Change Proposals

207

Business Process Management

Product
Management
Team V4

|
Change logged in system

and ready for incorporation
in next release

Change Coordinator/

Change proposal

to be proceeded with
(see Manage the flow of
Change Proposals)

Make avallable for incorporation
in next release

Change Originator

)

]

Tutor:
Pupil:

208

Nt

Change incorporated
in release (see

Handle a Release)
|
Inform of incorporation

Change proposal
rejected (see Handle
a Release)

|
Inform of rejection

Close change proposal . g
Release Coordinating V4

Inform of |ncorporat|on

Change proposal closed

Close change proposal
Inform of rejectlon
Change proposal closed

FIGURE 6.25 Part of Handle a Change Proposal

place between the Release Coordinator and the Product Management Team
to notify delivery?
Yes, we could - that’s a modelling decision of course.
Another thing I noticed was that the responsibility for a new release has
been represented as an abstract role — Release coordinating — and that the
Product Management Team instantiates it for each release. But the same
isn’t true for a change proposal: we’re not instantiating a role — a
responsibility — just for that change proposal. Instead, we’re passing it to
a fixed post, the Change Coordinator ... which I feel makes sense, but 'm
not convinced ... wait ... most of the handling of a change proposal actually
goes on in the handling of a release. The case management of change
proposals is little more than a matter of checking that the request is a valid
one and then sticking it on the pile of change proposals waiting for a release
. oh, and notifying people of the outcome. The Change Coordinator does
the case management and deals with individual cases — which is, I guess,
why it makes sense not to have an abstract role taking responsibility for an
individual change proposal.

Preparing a process architecture

Tutor: Yes, that’s fair — in designing these processes we’ve chosen to map the
responsibility for all change proposals and for their case management onto
a single post in the organization. In a different situation we might have
modelled it differently. With the model as it stands we haven’t yet said how
the responsibility for a release is going to be allocated. That’s a design
decision we still have to make.

Tutor: Let’s move on to the CP and CMP for Change Proposals.

Pupil: In both Manage the flow of Change Proposals (Figure 6.24) and Handle a
Change Proposal (Figure 6.25), we’ve got a role called Change Originator. 1
guess this is a sort of anonymous role, in that a change can be originated by
a Product Management Team, for instance, or by any agent in ‘the outside
world’.

Tutor: That’s right — remember the cloud in the second-cut process architecture:
proposals for changes can come from there. So, let’s start with the CP
Handle a Change Proposal (Figure 6.25).

Pupil: The top thread is where the CMP has started a new case ... and all the

Change Coordinator does is pass the proposal to the Product Management
Team, who put it on the pile ready for consideration at the next monthly
review. That’s an information-passing interaction between Handle a Change
Proposal and Handle a Product.
Then there are two process interactions with Handle a Release where we
hear about the rejection (Change proposal rejected) or incorporation
(Change incorporated in release) of a Change Proposal. In both situations,
the case ... the Change Proposal ... is closed and the outcome is notified to
the original Change Requester. I suppose both of these process interactions
are the result of design decisions about how we want these processes to
operate, so they weren’t on the process architecture?

Tutor: That’s right. We must always remember that the purpose of the process
architecture is to give us our initial chunking of the organizational activity
into processes and also to tell us the dynamic relationships that must be
there. When we decide how we want the processes to operate we might well
generate the need for additional process interactions, very often for
information-passing.

Pupil: You’ve been careful to separate the CP and CMP for Change Proposal but
since, as you observed, the former does run straight through into the latter,
is there really any sense in keeping the RADs separate?

Tutor: We could indeed combine those RADs, as a modelling convenience. I've
separated them, as you say, just to emphasize that there is case manage-
ment going on here, and it might result in a change proposal being rejected
before it is put into the pot, so to speak. In a realistic situation we could
imagine far more complex decision-making being required at this stage,
before a change proposal ever finds its way into the list. But certainly we
could combine processes onto one RAD if it helps understanding, without
losing precision. You might like to try the exercise of doing precisely that
and putting all four of the processes we have just looked at onto one RAD.
Be careful with pre-existing instances!

209

7 Dynamism in the world

Shows how the process architecture captures all the between-process concurrency in
the world.

INTRODUCTION

In Chapter 1, our Tutor stressed that things happen in organizations
because a mass of concurrent activity takes place, and that, thanks to
instantiation, there is a flux of instances that make that concurrency
happen. In Chapter 3 we looked at how a RAD captures the concurrency
possible in a single process. Now that we also have an understanding of the
process architecture of the organization - in particular the way that
processes activate each other and interact - we can extend our horizons
and look at how concurrency occurs across the world that we are
concerned with: the ‘organization’. This is the right moment to summarize
where we capture concurrency in Riva models:

e An organization has a number of process types, each of which can be
instantiated.

e Each process instance operates independently. Process instances can
interact.

e Within a process instance each role type in the process can be
instantiated.

e Each role instance operates independently. Role instances can
interact.

e Within a role instance separate threads can be instantiated.

e Each thread instance operates independently. Thread instances can
combine and divide.

I have been strict here: a process instance only exists inasmuch as we have
instantiated the lead role of the process, and that role instance has in turn
instantiated other roles. Similarly, we don’t instantiate threads as such,
rather the actions and interactions on those threads. Put another way, if we
look inside a ‘running’ Riva model of an organization we shall see a flux of
role instances, each role instance having a number of action and
interaction instances in progress. This reflects precisely what is happening
inside the building when we walk in: the world is a mass of acting and
interacting responsibilities.

211

Business Process Management

In this chapter, we shall explore the notion of concurrency through two
rather different case studies. In the first — a fairly conventional situation —
we examine how we can represent concurrency in a single RAD of the
organizational activity, or more usefully as a set of processes deduced from
the process architecture. In the second, we look at a completely different
sort of process with a rather different dynamic: email.

CASE STUDY 4

212

In writing a book such as this, it is hard to decide at what level to pitch
worked examples. A real example, from the real world, will be too big. A
sufficiently reduced example from the real world will probably be too
simple to be convincing. And the real world rarely offers tidy case studies
for textbooks. I have chosen a real project that starts from exactly the sort
of ill-formed input that typifies real projects, and it allows me to show the
revelatory power of the Riva method.

The problem - as originally stated — was to prepare a description of ‘the
process’ (singular) outlined in the following piece of descriptive text. I shall
do what I always do: start with a process architecture, in order to chunk the
organization’s activity into processes. Once we have the process
architecture in place we can start to look at the individual processes in
it. Yes, there is more than one.

When we have finished dissecting the processes we shall model the
problem as if it were indeed one process, conflating all the processes onto
a single RAD.

The sentinel case study

This case study concerns the work of a European project in the control of
antibiotic-resistant infections in children. Often children are asympto-
matic carriers of bacteria that they can pass on to other children by playing
with the same toys, touching each other etc.

The medical infrastructure in place to monitor, contain and destroy the
infectious organism typically involves a medical practitioner who collects
samples from human individuals and sends them for further analysis.
Consequently three levels of operation can be recognized:

1. The field level — where the medical practitioner interacts directly
with the potential human hosts, collects samples and basic
characterization of the individual and sends the samples for further
analysis at the next level, the microbiological/biochemical labora-
tory.

2. The laboratory level — which corresponds to the facilities that
process the samples sent in from the field level.

3. A central location — where data integration and decision-making
take place.

Dynamism in the world

Typically, the human host is mostly characterized at the field level and the
infectious organism is characterized mostly at the laboratory level. In our
case study, Care Centres, the Microbiology Centre and the Epidemiological
Information Centre represent the three levels.

At the Care Centre (for example a nursery school), within a Care Centre
Period, swabs are taken from children’s noses for analysis. The Care Centre
Operative collects these swabs, referred to as C Samples, together into a C
Sample Batch to send to the Microbiology Centre. This is usually done one
class or group of children at a time.

These are called Care Centre Units and the period when their swabs are
taken is called the Care Centre Unit Period - this must fall within the Care
Centre Period. The Care Centre Operative records all the necessary details
(ID numbers etc) in order to ensure that the link between the Attendee (i.e.
a child) and their C Sample is maintained.

At the Microbiology Centre (usually a laboratory) the Microbiology
Centre Operative receives a batch of samples, i.e. a C Sample Batch,
records them as M Sample Batches in the local system, and then
reorganizes them into one or more Sample Analysis Groups to suit the
process at the Microbiology Centre. (To make this point clearer imagine
that one Care Centre Unit sends 19 swabs to the Microbiology Centre,
another sends 22 and a third 26. The Microbiology Centre can process, say,
35 swabs at a time. The three distinct M Sample Batches — of 19, 22 and 26
— are reorganized into two Sample Analysis Groups of 32 and 35
respectively.) Each swab is cultured on a Petri dish and an attempt is
made to isolate different strains of bacteria and then to identify them. This
is done using various tests, the main ones being by serotype, by
antibiogram, and by pulse field gel electrophoresis (PFGE). Information
about strains identified in each swab is sent back to the Care Centre.

Information about strains is also sent to the Epidemiological Informa-
tion Centre. The role of this centre is partly to organize and manage the
overall campaigns (e.g. to define the Care Centre Periods) but, more
importantly, it determines whether alarms must be raised and to what
level. For example, if any antibiotic resistant strains are present, an alarm
is raised. However, actions at the Care Centre following an alarm vary from
country to country. In Sweden the children must be sent home and the
parents are paid by the state to stay at home with them. In Portugal they
are also likely to be sent home, but they return earlier because there is no
social provision. If a situation is deemed serious enough, a Care Centre
may be closed for a time.

Analysis

Let’s start by listing candidate EBEs using only the text provided. Clearly in
a normal process study we would be running brainstorming workshops.
When faced with this sort of situation, spotting nouns is a productive
approach:

213

Business Process Management

214

You can see I have already been careful to ensure they are all entities: we
can meaningfully put the word ‘a’ or ‘the’ in front of each.

The next step is to filter them using the guidelines listed in Chapter 6 to
get to a list of UOWs for this ‘organization’. Because we want to model the
organization as-is, we include designed as well as essential UOWs. Bulleted
items are those that passed through the filters. Bracketed items didn’t and
the reasons appear against them. (This list looks very much the way it did
on the whiteboard during the EBE brainstorming session.)

Child;

Medical Practitioner;
Sample;

Laboratory;

Care Centre;
Microbiology Centre;
Epidemiological Information Centre;
Care Centre Period;
Care Centre Operative;
C Sample;

C Sample Batch;

M Sample Batch;

Class (of children);
Care Centre Unit;

Care Centre Unit Period;
Attendee;

Sample Analysis Group;
Swab;

Bacterium;

Strain of bacteria;

Petri dish;

Test (e.g. PFGE);

C Sample Result;
Campaign;

Alarm;

Resistant strain;

Country.

(Child) = C Sample: we are interested in the life history of the sample
the child gives but not of the child. If anything, the child is only a

role that plays a part.

Pupil:

Tutor:

Dynamism in the world

(Medical practitioner): a role that plays a part, lifetime not of interest

to us.
(Sample): see C Sample.
(Laboratory): lifetime not of interest to us.
(Microbiology Centre): lifetime not of interest to us.
(Epidemiological Information Centre): lifetime not of interest to us.
(Care Centre): lifetime not of interest to us.

(Care Centre Period): a period of time.

(Care Centre Operative): a role that plays a part, lifetime not of interest

to us.

e C Sample.
e C Sample Batch.
(M Sample Batch) = C Sample Batch.
(Class (of children)): lifetime not of interest to us.
e Care Centre Unit.
(Care Centre Unit Period): a period of time.
(Attendee): see Child.
e Sample Analysis Group.
(Swab) = C Sample.
(Bacterium): lifetime not of interest to us.
(Strain of Bacteria): lifetime not of interest to us.
(Petri Dish): lifetime not of interest to us.
(Test): lifetime not of interest to us.
e C Sample Result.
e Campaign.
(Alarm) lifetime not of interest to us.
(Resistant Strain) lifetime not of interest to us.

(Country) lifetime not of interest to us.

During the break, next to the water cooler

I was concerned when you so easily knocked Child out of the list of UOWs —
surely this whole thing is about children?

Well, is it? Remember that when we decide on the EBEs and filter out the
UOWs, we choose those that characterize the organization we are interested
in — we turn the searchlight on some areas and not on others. We also adjust
the intensity of the searchlight, perhaps differently in different areas, to
illuminate just those things that are ‘large enough’ for our purposes. You
might feel that my choice in the filtering would not be your choice: that
simply means we are thinking about different ‘organizations’. We could

215

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

216

widen our interest a bit and bring in how we deal with children who are
found to be carriers for instance.

OK, so you're saying that that’s a scoping decision. If we decide we want to
include that part of the business, we shall indeed have Child in the list and
... there will be a process called Handle a child and another called Manage
the flow of children (though I'm not too sure what that would be about in
this situation).

Exactly. We could then cover what happens to each child, in particular if
they are found to be a carrier or an alarm is raised. But you might agree that
the description we have been given doesn’t get into any of that, so we should
scope it out by leaving Child out of the list of UOWs.

OK. Then following the same reasoning, Alarm was an interesting
candidate. Alarms have a lifetime of interest to someone ... OK, but not
us, we're saying. They are the business of national bodies. I guess I've just
made a decision about where the searchlight is pointing and how wide I
want its beam to be.

I also thought Sample Analysis Group was interesting. Sample Analysis
Groups are - as the text makes clear — only there to suit the way the
Microbiology Centre works: they are designed EBEs.

Right. We're faced with the typical decision: are we concerned with
developing a pure process architecture which is independent of how we
choose to do things, or do we want to include designed mechanisms? In this
instance, our concern is with the way things are. If we were looking for re-
engineering opportunities we might take the opposite view. In later
sessions, we shall look at how our purpose will determine which way
decisions like this should go.

We can now transfer the six surviving UOWs to a UOW diagram, adding
the ‘generates’ relationships that hold between them. The result is

Figure 7.1.
Let’s unpick what this is saying:

e The ‘big’ unit of work is the Campaign. Campaigns are defined at the
Epidemiological Information Centre.

e During each Campaign a number of Care Centre Units are generated.
This is done within the handling of the Campaign — no outside service
is involved, so the relationship is a task force relationship.

e A Care Centre Unit generates C Sample Batches. The latter are the
units in which C Samples are sent to the Microbiology Centre, which
deals with these as a service. The Microbiology Centre has them
coming in from many Care Centres.

e C/M Sample Batches are restructured as Sample Analysis Groups for
the ‘convenience’ of the Microbiology Centre. Note the n:m
cardinality. Sample Analysis Groups are dealt with as a service.

e C Samples arise from the Care Centre’s own handling of C Sample

Batches. There is no separate service dealing with C Samples for them
and others. This is a task force relationship.

Dynamism in the world

Campaign

contains (1:m) (task force)

Care Centre
Unit

) is restructured as
generates (1:m) (service) (n:m) (service)

Sample
Analysis
Group

C/M Sample
Batch

contains (1:m) (task force) generates (1:m) (task force)

C Sample
Result

FIGURE 7.1 UOW diagram for the Sentinel case study

e During the lifetime of a Sample Analysis Group, the results for the
constituent C Samples are generated. C Sample Results are managed
within the context of each Sample Analysis group so this is also a task
force relationship.

We might first think that C Sample Results arise from (are generated by) C
Samples. We could certainly say that C Sample Results are ‘related to’ their
corresponding C Samples, in the obvious way. But that is not the dynamic
‘generates’ relationship that we are looking for, and which does exist
between Sample Analysis Group and C Sample Result: it is during the
lifetime of the Sample Analysis Group, which is processed in Microbiology,
that the C Sample Results are generated.

Note how in this UOW diagram things get smaller as we follow the
arrows.

The next step is to mechanically transform the UOW diagram into the
first-cut process architecture in Figure 7.2.

Let’s walk through this. (Note that we have not added the CSPs. This is
common but not inevitable. The CSPs sit ‘around’ their CPs and CMPs,
and this study was concerned with operational activity, rather than
strategic planning.)

There is a ‘root process’ — Manage the flow of Campaigns — which, at
appropriate moments, activates Handle a Campaign in order to get a

217

Business Process Management

Manage the
flow of
Campaigns

Handle a
Campaign
deliver @\

Handle a
Care Centre
Unit

Manage the
(A] flow of Care
Centre Units

deliver request

Manage the 'eq“eS‘\@ Manage the
flow of : flow of C
Handle a C activate
Sample Samole
Anal ‘pG Sample Batch Bat I?
ysis Gps deliver ®\ atches
deliver

request

activate

Manage the
flow of C
Samples

Handle a activate

Handle a C
Sample

Sample
Analysis Gp

deliver request

Manage the
flow of C
Sample

Results

Handle a C
Sample
Result

activate

FIGURE 7.2 First-cut process architecture for the Sentinel study

campaign done. A Campaign is made up of a number of Care Centre Units,
which are managed by the campaign. The diagram therefore shows
Manage the flow of Care Centre Units encapsulated in Handle a
Campaign. Manage the flow of Care Centre Units has its own existence
and needs to be thought about in its own right, but we are recognizing that
when we come to model it, it will be ‘found in’ or best modelled in Handle
a Campaign since that is where the flow management actually takes place.

During Handle a Care Centre Unit, C Sample Batches are generated in
task force mode. C/M Sample Batches are then converted at the
Microbiology Centre into Sample Analysis Groups for which there is
separate flow management. Handle a C Sample Batch makes its request to
Manage the flow of Sample Analysis Groups which activates Handle a
Sample Analysis Group when ready, which in turn goes to Manage the

218

Dynamism in the world

flow of C Sample Results for each C Sample Result it requires. There is a
chain of deliveries back through the sequence.

We can now fold processes together where a task force relationship is
involved. This yields the second-cut process architecture in Figure 7.3.

Manage the
flow of
Campaigns

Handle a
Campaign

/m activate
anaie a /

Care Centre

\ Unit /@\
request activate
Manage the / \®f Handle a C \/
flow of

le Batch
Sample Sample Batc A
g_\) Analysis Gps >
deliver
activate

activate” Handlea) d) Handle a C /

Sample
Analysis Gp

deliver

Sample

Handle a C
Sample
Result

activate

FIGURE 7.3 A second-cut process architecture for the Sentinel study

What has happened?
e We have folded each encapsulated CMP into the single CP that uses it.

e We have recognized that the chain of delivery from Handle a C
Sample Result to Handle a C Sample Batch to Handle a Care Centre
Unit to Handle a Campaign can be short-circuited, leaving one
‘delivers’ relationship from Handle a C Sample Result to Handle a
Campaign. Remember that the first-cut architecture is derived
mechanically from the UOW diagram and needs to be put against
the world. It is Handle a Campaign that wants the results in order to
determine whether an alarm needs to be raised.

The net result is that we can recognize eight discrete processes that are
covered in the one description. It is certainly possible to draw a RAD as if
this piece of the world really were a single process — Figure 7.4 does
precisely this, in one way. Spend a few moments chunking the RAD along

219

Business Process Management

/

|ebnuod uspamg

%8
¢uesaid sutens juesisal

\a (sisAjeue)

anua) Abojoiqooi = ok

anoiquue Aue aiy
/ pesiel aq 0} wiely \

N T)
a1ua) uojjew.oyu]
/> |esibojoiwepids

¢payhuspl urens
ou sok

s)s9) ajendoldde
Ajdde pue ainynp

dnoig ayy ul
a|dweg 9 yoeas Jo4 %

ﬁ puss
\ dnoug sisAjeuy
o|dweg yoes 104 *
yoea Gg 0} dn jo sdnoig
sisAjeuy s|dweg dn ayep
s|qejiene sejdwes juaioyng
N
waysAs [eo0] Uo pouad Jun anua) ared
uoleg ejdwies |\ se piooey UIyum s
1
\ X yoreg a|dwes O anieoey | | puesg
wials
ISAS \ & yoreg sjdwes O

2J1ua) >mO_O_QO‘_O__>_ \ ACO_H.QQOO._V 0JUI SQBMS 3|qUIaSSY

anuay Abojoiqosoip SR

PIIYO USSMIST Sjul| PI0oSY

I
pIIyo wouy sjdwes 9 109|100

Hun 81U BIBD Ul PIIYO Yoes 104 *

90UBWILIOD O} JU(81USY dIeD Jo} Bl |

«.

Hun enus) ased

spoliad 8ue) e1ed aulwisieq

palinbai usypp paiinbai yun anus) a1e) yoes Jo4 *

anua) uoljew.oju]
\r |eaibojoiwapidy

+

FIGURE 7.4 The Sentinel case study drawn on one RAD

u _Apuud

Hun enua) 81e) o Aued o}
aAneladQ a5u8) a1e) 8)edo|y

I
Hun enus) aseg Hels

suibaq pouad anua) ared

u /} @ue) a1ed

220

Dynamism in the world

the lines of Figure 7.3. You will find all eight processes in there — some of
them consisting of a single interaction. You will also be able to see the
activation and interaction of the processes: sometimes as a role
instantiation and sometimes as an interaction between roles. The
concurrency that builds up in the process when things get going is created
from the instantiation of Care Centre Units and the multiple instantiation
of new threads in various roles thanks to replicated part refinements.

Later, next to the water cooler

Tutor: I hope you're beginning to see how, by taking the process architecture view
of things, we get a much more realistic understanding of the mass of
concurrent activity that the organization indulges in.

Pupil: Yes, I can. It was interesting to see how the RAD you drew looks rather
sequential at first glance but does in fact capture how — when this part of the
world ‘runs’ — a mass of concurrent activity spreads out and then dies away.
I can see that it’s the replicated part refinements that do that: they create
lots of concurrent threads of activity. But the process architecture view and
the eight separate processes really make that so much clearer. I can
visualize how a single Campaign starts, kicks off several Care Centre Units,
each of which ... etc etc, and before we know it there are scores of process
instances running independently. In time they die off and the world is quiet
again.

Tutor: Yes, people all too easily look at an area of organizational activity and draw
it as a sequential thread as if that is what happens. If they think a little
harder they might perhaps use a single RAD to capture some or all of the
concurrency that is actually going on. This is better — we are getting closer to
reality. But if they start with a process architecture then they are thinking
‘concurrency’ right from the beginning: the separate processes, the dynamic
relationships between them that cause new instances to be started ... we’re
capturing concurrency before getting anywhere near the workings of roles
and so on. When we start to open up the individual processes we can explore
the concurrency between roles, and by opening up roles we can explore the
concurrency within a role. So by taking concurrency in three steps —
architecture first, then processes, then roles — we get a firmer and more
accurate handle on it.

I once saw a flowchart someone had drawn of their ‘process’ — in essence it
was the sequence of boxes shown in Figure 7.5. Would you care to criticize it
with your new understanding?

Choose a
monitoring
approach per
threat type

Monitor Handle a
potential threat that
threats arises

Prepare Prepare

Security Monitoring
Strategy Schedule

FIGURE 7.5 Not what happens in the real world

221

Business Process Management

Pupil:

Tutor:

Pupil:

Threat
monitoring
approach

Tutor:

222

Well, the first thing is that I'm sure that they didn’t do things in the strict
order shown: devise a Security Strategy, then devise a Monitoring Schedule,
then choose a way of monitoring one sort of threat, then spot a threat, then
do something about it. Does the one security Strategy last forever? Does the
one Monitoring Schedule last forever? Does monitoring for threats cease
once the first threat is spotted? What happens when the second threat
comes along? The more I think about it, the more unrealistic it becomes.
You're right; it’s not what they did, of course. Moreover, in the small print it
was clear that the Monitoring Schedule was maintained and adjusted over
time. It had its own independent life. What about UOWs?

Just what I was thinking. A Threat is a UOW, to name one. So there will be a
CP for that - Handle a threat — and a CMP — Manage the flow of threats. The
Monitoring Schedule sounds like something with its own life and since there
is only one, there won’t be any case management. Ditto for the Security
Strategy. So we probably have four interacting processes here instead of one
strange sequential one.

OK, I really ought to start with a UOW diagram. Let me sketch one in
Figure 7.6 just from the bare facts that we have.

generates (1:1)

The Security
Strategy

generates (1:m)

generates (1:m) generates (1:m)

Threat
evaluation
exercise

The
Monitoring
Schedule

FIGURE 7.6 A UOW diagram for the ‘process’

I've guessed that the Monitoring Schedule lists Threat evaluation exercises
which take place and reveal threats. I guess threats will also appear out of
the blue. So, after a bit of work the process architecture will probably look
like Figure 7.7.

I haven't added subsidiary interactions but I guess it’'s enough to
demonstrate that the flowchart process really didn’t capture reality at all.
Exactly. Let’s pull this together.

If we string together things that do occasionally happen in a particular
order, we shall not capture reality; in particular we shall probably miss the
potential concurrency.

If we mix up UOWs, we shall not capture reality. It will be plain wrong.

If we conflate CPs and CMPs, we shall not capture reality. We shall miss
concurrency and most probably get it just plain wrong!

If we don’t start with a UOW analysis and derive the process architecture

Dynamism in the world

request threat 7
evaluation exercise C
CO3

Handle the Manage the
Monitoring flow of threat

Handle the e
Security

Manage the

Strategy Schedule evaluation notify of flow of threats
\ exercises threat
start start

Handle a Handle a 7

threat threat Handle a
monitoring evaluation threat
approach exercise

FIGURE 7.7 A process architecture for the ‘process’

from that, we shall end up ignoring the potentially concurrent processes
and describing a world that does not exist. The resulting process model will
not reflect reality and it will be impossible to use. It will not be a basis for
process improvement and would be a disastrous starting point for
developing systems to support the activity.

An organization really is a portfolio of processes. We can be more specific:
an organization is a portfolio of end-to-end CPs together with the necessary
CMPs and CSPs. That’s why a Riva process architecture fully captures the
organization in process terms.

DYNAMISM AT WORK

Pupil: That last case study was about ... shall I say ... a conventional process. But
my thoughts are straying to something a little less tangible: the world of
email conversations. The ‘organization’ here is certainly not some
functional group. It’s the rather abstract world of structured communica-
tion by email. I have to ask you whether you think Riva’s concepts work
here.

Tutor: And I have to say ‘Of course!” In fact email is a very nice example of the sort
of very fluid and very dynamic process that goes on in organizations and
which traditional flowcharts and other notations simply can’t deal with.
Let’s give it a go. Informally, I could describe the world of email as one in
which people can start conversations. A ‘conversation’ is just an area that
someone wants to start some ‘threads’ going on.

Suppose I’'m interested in having a conversation about William Morris and
the Arts and Crafts movement. I might start three threads of conversation:
one on his Red House pattern designs, one on his Kelmscott books, and
another on his Socialist writings. I start each thread simply by sending out
an email to some people I think might be interested in it. Each recipient
picks up the thread either by responding to it — perhaps to the same group of

223

Business Process Management

Pupil:

Tutor:
Pupil:

Tutor:

224

people or a different group, by ignoring it, or perhaps by sending out an
email to another group of recipients on a new thread of their own within the
conversation. That sounds like a nice dynamic, fluid sort of process. Where
shall we start in our analysis?

Well, as good Riva analysts, our first instinct will be to draw a UOW diagram
(Figure 7.8). I'll assume that an eConversation can start spontaneously, in

eConversation eThread

FIGURE 7.8 UOW diagram for an email system

someone’s mind. And that an eConversation starts a new eThread with a
particular message title. Let’s equate each eThread with a message title.
Then each eConversation evolves in the form of one or more eThreads,
where an eThread takes the form of one or more eMails. Obviously, eMails
can generate new eMails and/or eThreads.

Our second instinct will be to transform this into a first-cut architecture
(Figure 7.9).

Good. Now reduce it to the second-cut architecture.

I can see some obvious reductions: ‘delivery’ resulting from ‘generates’
means nothing in this context, so we can remove those process interactions.
All case management is clearly done in task force mode and so a CP does the
CMP for generated UOWs. I guess that all case management is null anyway
in this simple case ... but I can imagine useful facilities to do with logging
and measurement and so on. Anyway, we seem to be just left with a set of
‘activates’ relationships between the three case processes reflecting the
UOW structure (Figure 7.10).

Should we be surprised by the final, second-cut architecture?

Not in the slightest. Because there is no case management, the process
architecture will have exactly the same structure as the UOW diagram. The
real point that we can draw from this example is that this simple picture
represents completely the way that things can blossom - even explode - on
email. A conversation can develop in an infinity of ways. One conversation
might consist of a single thread of a single message that causes no further
email. Others can cause torrents of new threads that all have their origin in
that first spontaneous email. One day, perhaps, all the threads peter out and
the conversation as a whole ‘ends’ at that moment. This picture captures the
cascade of process instances that really does happen in the real world.
Email is not a serial affair and it’s not workflow.

Dynamism in the world

Handle an
eConversation

&—

requests a new eThread
delivers

activates Manage the
flow of

eThreads

Handle an
eThread

requests a new eMail

) delivers
delivers

activates

Handle an
eMail

Manage the
flow of eMails

delivers requests a new eMail

requests a new eThread

FIGURE 7.9 First-cut process architecture for an email system

Handle an
eConversation

activates

Handle an
eThread

. activates
activates

Handle an
eMail

activates

FIGURE 7.10 Second-cut process architecture for an email system

225

Business Process Management

Correspondent In Handle an

eThread CP Root V4

?hread topic in hand eThread

Pupil:
Tutor:

Pupil:

Tutor:
Pupil:

226

/ N\ eConversation
%decde to start new conversation

=

)

start eThread CP Root
| eThread CP Root

allocate myself as actor
pass topic of eThread m

new eThread topic in hand

FIGURE 7.11 The Handle an eConversation case process
Handle an

|
start eMail CP Root

| eMail CP Root
allocate myself as actor
|

pass topic of eMail

new eMail topic in hand

FIGURE 7.12 The Handle an eThread case process

But why don’t you take it one step further and draw some RADs for the three
CPs that we’re left with?

OK. Three CPs. (Figures 7.11 to 7.13).

Now we can start to see how a RAD captures all the possible future
behaviours of the ‘organization’. Talk me through what you’ve drawn.
Well a conversation starts spontaneously with a Correspondent who creates
a new ‘responsibility’ for a thread and takes on that responsibility (role
instance) themselves. That role instance then creates yet another new
responsibility in the form of an instance of a role for an email, and again
acts that instance.

OK, that’s the first two CPs. Then what?

In that responsibility (eMail CP Root) the correspondent then actually
writes the email, chooses a set of recipients from an Address Book, and
sends each of them a copy. The interesting thing is that we have identified
being the recipient of an email with the responsibility for dealing with it;
though ignoring it is one way they can deal with it, as ever! And these (very
tiny) responsibilities are created dynamically.

Tutor:
Pupil:

Tutor:

Dynamism in the world

eMail CP Root
e \ Handle an eMail

new eMail topic in hand

compose eMail

choose recipients from Address Book

|

%% for each recipient

start eMail Recipient eMail recipient

| ™

allocate physical recipient as actor

decide to respond to eMalil

\ with another eMail
|
start eMail CP root

eMail CP Root |
\ allocate myself as actor

I pass topic of eMail

send eMail to recipient |

new eMail topic in hand
% decide to respond to eMail
by starting new eThread

start eThread CP root

eThread CP Root
\ allocate myself as actor

pass topic of eThread

new eThread topic in hand

- J

FIGURE 7.13 The Handle an eMail case process

Exactly. Then what?

The recipient doesn’t actually have to do anything — they can ignore the
email. But they can also decide to contribute to the thread by sending out a
response email — again creating new responsibilities (role instances) for
each recipient — or they can decide to start a whole new thread in the
conversation.

Right. In fact, of course, the RAD says that they can contribute to the
existing thread and they can start a new thread ... and indeed they can do
those two things as many times as they like — just as in real life: we leave a
message in our inbox and two days later decide to send out a reply, and then
the next day decide to forward it with a different reply to a different group of

227

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:
Pupil:

Tutor:

228

people, and so on. The conversation can ‘blossom’ in the hands of recipients
in an infinite number of ways. How does the concurrency show itself?

I guess it’s reflected in the multiplication of instances of the roles for
conversations, threads and emails. Over time, these are generated by people
sending emails and creating them. Once a conversation starts flowing you
could have lots and lots of these at any one moment, all operating
independently and deciding how they want to push things on, if at all.
Yes. Now even though our process architecture is ‘small’, it does highlight
concurrency in terms of the separate processes that can be instantiated.
There is, of course, nothing to stop me then drawing a single RAD
combining all three processes — this is a modelling choice, remember, and
not a statement about the world. If we do that, we’ll get something like
Figure 7.14. It describes that same behaviour as Figures 7.11 to 7.13 but we
lose the visibility of the separate processes, and we might regard that as a
bad modelling choice as a result.

One thing that is currently fixed in the process we have drawn is the number
of pre-existing instances of Correspondent; in other words we start with —
and remain with — a fixed number of correspondents. This means we’re
actually missing a degree of variability that is present in the world. Now
something that we haven’t looked at is the Address Book.

Well, we’ve — I’ve — assumed that it’s just there and available to all. Isn’t that
fair?

Yes, we could certainly regard it as some sort of shared resource. But — in the
world of email - we can treat it as a designed UOW: it has a lifetime, it
undergoes change during that lifetime, and it needs handling. And if it’s a
UOW then it has a CP. Indeed, we can associate the Address Book with its
CP. Then if someone wants email addresses they can interact with the
Handle the Address Book process.

I like it. Presumably if we wanted to go further we could identify a ‘smaller’
UOW called Account Holder or some such, which is generated by the Address
Book unit of work.

Keep going ...

Well, in our first-cut process architecture we know that there will be a
Handle an Account Holder process and a Manage the flow of Account
Holders process. We can associate an instance of Handle an Account Holder
with an account holder. I'm really getting the feeling that the world is full of
processes rather than data or objects. Any significant object — in particular
any with a lifetime in which things happen - can be associated with its CP
instance.

I think this demonstrates the power of the Riva process architecture. It
moves us away from thinking about data and objects and towards
processes.

In true BPM style, we start to identify things with their processes. An
Address Book, or an Account Holder, becomes a process rather than an
object about which we keep data, or an object which processes messages.
The object-oriented paradigm converted us all from thinking about data on
which computation is performed, to thinking about objects which have

Correspondent /

eThread
CP Root

o)

new eThread topic in hand

| [T

pass topic of eMail

start eMail CP Root

allocate myself as actor

Dynamism in the world

decide to start new conversation
start eThread CP Root
allocate myself as actor

pass topic of eThread

eMail
CP Root

/

eMail
recipient

new eMail topic in hand

compose eMail

|
choose recipients
from Address Book

|
% for each recipient

start eMail Recipient
|

allocate physical
recipient as actor
|

(o

decide to respond to eMalil

with another eMail
I
start eMail CP root

allocate myself as actor

pass topic of eMail

send eMail to recipient

by starting new eThread
I

start eThread CP root

allocate myself as actor

——pass topic of eThread

-

decide to respond to eMail

FIGURE 7.14 The three email case processes drawn on one RAD

229

Business Process Management

associated computation (to process messages) and state. The process-
oriented paradigm finally completes the inversion: everything is a process
and instances have state which we can treat as data. Riva moreover adds
business-related concepts and dynamics to basic object orientation — role
and interaction and prop/resource in particular.

ALL THE WORLD’S A THEATRE

Tutor:

Pupil:

Tutor:
Pupil:

Tutor:
Pupil:

Tutor:

Pupil:

230

From the outset, there has been a theatrical theme running through the
book: in particular, the notions of roles and their actors. Let’s round off the
metaphor and see what it tells us about the world and how Riva helps us
understand it and get our arms round it. We’ll leave it to our Tutor and
Pupil to explore the idea.

Later, next to the water cooler

We’ve been talking about activity in a part of the world, the part inhabited
by our ‘organization’. We can think of that part of the world as the ‘theatre’.
This theatre will be a rather twenty-first-century one with some unusual
characteristics. Let’s start with processes.

Well, we’ve got processes — plays, I guess. Plays are written down in scripts
... process models and ...

Stop there for a moment. Think about instances ...

Plays are performed ... they have performances ... process instances. So
when we walk into the theatre we’ll find performances of plays going on. Ah
— the theatre seems to be a multiplex, because I have lots of plays being
performed at the same time! Worse, some performances start new
performances! And presumably they have to find a stage to operate on.
Concentrate on one performance for a moment.

Well, a play consists of a number of roles. Each role ... ah, each role
instance ... is acted by an actor — who was cast in that part somewhere along
the line. Things start getting a bit weird around here, I suspect, because
during the performance some actors might act several roles, rushing around
the stage from one to another. Worse, I suppose they might be acting roles
in more than one performance so they’ll have to run from stage to stage,
changing costume as they go. In the worst case they’ll be acting several roles
in several performances.

When we're talking about performances, remember we need to talk about
role instances.

Hmm. That’s a bit weird too: how many Hamlets can you have in one
performance of Hamlet? Only one, I guess; but we have seen plenty of
processes in which some roles are instantiated many times - mercifully,
Shakespeare was content with a single instance of the Prince of Denmark on
stage at any one moment. But it appears that in some plays new role
instances are created while the play is in progress. And an actor has to be
found to play the role instance. In extreme cases, the actors might be writing

Dynamism in the world

bits of play, inventing new roles, instantiating them, and then casting actors
as they go along. This is truly contemporary!

Tutor: Absolutely. You mention casting ...

Pupil: Yeeees. We said, didn’t we, that the allocation of actors to role instances is
just more process ... so casting happens on stage and possibly during the
performance!

Tutor: Any thoughts about props?

Pupil: Well ... the props are the resources actors need to play the role instance. It

might be a book or a newspaper in a real play, and an information system or
a software application in a real business process. The costume sounds a bit
like the mindset they need for the role.

Tutor: So we have a number of stages, each with a performance of a play going on.
Performances are starting up and stopping all over the place. On each stage,
role instances are being played by actors, who are possibly rushing from
play to play and from role instance to role instance, putting costumes on
and taking costumes off, and picking up and putting down props as
appropriate. So far so good. What about role actions and interactions?

Pupil: I'm not sure I want to watch one of these plays. Sometimes a role instance is
doing an action: so the actor is giving a soliloquy; sometimes it’s interacting
with another role instance, or even with several others at the same time.
There may be several soliloquies and several conversations all going on at
the same time. And occasionally proceedings will get held up for want of an
actor ... who might be acting another role instance on another stage. It’s

madness.

Tutor: Hold that thought. You've only dealt with role interactions in a single
performance, but we have seen how process instances interact. And in the
theatre?

Pupil: Oh dear. Some plays are connected. A performance of one play has to

interact with a performance of another. That means that role instances in
the two performances have to interact — there must be communication
systems between the stages — telephones or email or something. Or perhaps
the actors rush to and from each other’s stage, or perhaps they meet in the
corridor? My head is starting to spin.

Tutor: We’ve just described a chaotic-sounding theatre — but it’'s no more complex
than the average organization. The problem is of course, that when most
people look at an organization and are faced with the task of capturing what
goes on, they find it so overwhelming that they resort to the simplest thing
they can think of: the sequential process with perhaps some branching and
some swim-lanes. But these come nowhere near giving us an insight into
what is really happening in the Theatre of the Third Wave. That’s why I
made such a fuss, at the start of the book, about instantiation and
concurrency being the key to really understanding organizations. That’s
why they are so central to Riva.

231

Business Process Management

232

KEY POINTS

When a process architecture ‘runs’, processes are instantiated.

Process instances operate concurrently.

The dynamism in the world is the flux of concurrent process instances.
The process architecture expresses the potential concurrent behaviour of
that part of the world, in the same way that a process model expresses the
potential concurrent behaviour within one process.

We can identify business entities (essential and designed) with their CPs.
The world becomes a constantly changing network of process instances
and a cascade of responsibilities.

8 Managing the modelling

Provides guidance on running a process workshop and conducting interviews in order
to prepare a model of a process, for whatever purpose.

INTRODUCTION

In Chapter 2 we looked at the business of modelling a single process from
the ‘technical’ point of view. But the process modelling activity itself needs
to be managed if it is to be successful. This chapter gives guidance on
actually doing the process modelling work to ensure that it gets to answers
as efficiently as possible. We look at modelling from a procedural point of
view (i.e. as a process itself) and, to a lesser extent, from the ‘soft’ point of
view, taking into account some of the sociological, political and people
issues. We shall step through a basic process modelling procedure — in
particular, a modelling workshop — addressing the soft issues as we go.
We’ll take a generic view of the modelling process for now, leaving it to
subsequent chapters to describe how to adapt it for specific situations:
discovery, definition, design, diagnosis and enactment. The four Ds and
an E.

There can be no hard and fast rules for the procedure we should follow.
It can be affected as much by political and logistical issues as by technical
modelling issues. However, here’s the basic scheme:

1. Decide on the objectives of the modelling.

2. Brief ourselves by getting an overall picture, no matter how coarse,
from a variety of sources.

3. Run one or more interactive workshops of those involved to draw up
a RAD that meets the objectives of the modelling.

4. Use other appropriate sources of information.
5. Review, revise and validate the model using other inputs.
6. Use the model.

No surprises there. Remember that we have already prepared our process
architecture.

Before we look at each of these steps in detail, there is one topic that we
have touched on already but which we need to consolidate: the difference
between abstract and concrete process models.

233

Business Process Management

234

Abstract and concrete models

There is an important choice that we must make at the start of any session:
do we need an abstract model or a concrete model, or one that is a mix?
When we examined the different process concepts in Chapter 2 - role,
action and interaction — we saw how we could choose to model abstractly
(concentrating on intent) or concretely (concentrating on mechanism), or
both. Let’s remind ourselves of the options and then look at two models of
the same process: one abstract and the other concrete.

If we are modelling how a process operates now we might wish to
capture, for instance, the division of labour between people and computer
systems. Or we might decide that it is not important initially whether an
action involves people or machines, and decide instead to capture the
‘essential’ content of the process, not worrying how it is manifested
physically. Yet again, we might decide that in future we want a particular
action to be done by a person, or automated and given to a machine to do,
or done by a person with the aid of a machine (such as a database system),
and we might choose to model this.

For example, we might prepare a model of how you get a purchase order
form from someone who keeps a stock of blanks, fill it in with the details of
something you want to buy, pass it to me, get me to authorize the purchase
by signing the form, and return it to you. We might represent this process
fragment as some actions in our respective roles and interactions between
them. Those interactions have a purchase order form as the gram passing
between us.

The abstract process might simply be ‘You ask me to authorize a
purchase,” a single interaction without any gram. What we capture is not
the mechanism but the intent. Whether we choose to model a process
concretely or abstractly depends on what we are trying to achieve by
modelling.

If we are involved in process improvement or re-engineering we might
find it useful to:

e draw up the current concrete process model;
e ‘abstract’ it to yield the current abstract model;
o find a better way of implementing it in a new concrete model.

Remember that we are not thinking here of preparing detailed as-is
concrete models, and then deriving complete abstract models, and then
complete to-be concrete models. The suggestion is only that by ‘moving’
in some sense from the concrete to the abstract and back to the concrete
we will gain insights. That could mean simply thinking it through in rough
sketches or on whiteboards.

This route also makes sense when we are modelling a process as a
prelude to providing computer support to some or all of it.

Managing the modelling

Concrete vs abstract actions

When we draw an action on a concrete RAD we will want to show how the
action is done; we shall want to talk about the mechanism. In an abstract
RAD, on the other hand, we shall talk about the intent or purpose of an
action. So, in Figure 8.1 we see a very concrete action — Complete form 21b

Prepare sales analysis
* Complete form 21b * for the month

FIGURE 8.1 A concrete action and its abstract counterpart

—whose name is explicit enough to be a work instruction, but gives us little
idea as to what is achieved by taking this action except that a form has
been filled in. The figure also shows the action expressed in abstract terms
— Prepare sales analysis for the month — which tells us what we want to
achieve but not how we do it. Of course, we are quite at liberty in our
models to give an action a name that tells us both things — Prepare sales
analysis for the month by completing form 21b - but it is as well to be aware
of the two contrasting styles.

Concrete vs abstract interactions

Precisely the same applies naturally to interactions, as illustrated in
Figure 8.2 (which we saw earlier in Chapter 2).

Widget Making

Supervisor V4 Widget Maker

Recewe timesheet %) [i:l }
Widget Making

Supervisor V4 Widget Maker o/

Fmd out how \ (
time has been spent j K

FIGURE 8.2 A concrete interaction and its abstract counterpart

When we model interactions concretely we shall see verbs like ‘send’,
‘sign’, ‘copy’, ‘pass’, ‘receive’ and ‘get’ — mechanisms. When we model
abstractly we will use words like ‘request’, ‘delegate’, ‘authorize’, ‘approve’,
‘report’ and ‘agree’ — intents.

235

Business Process Management

236

Concrete vs abstract events

The differentiation between mechanism and intent carries naturally into
events. We might label an event as Form CC received from customer or as
Customer makes a claim.

Concrete vs abstract roles

Finally, we can do the same thing for roles, something we discussed a lot in
Chapters 1 and 2. When we take a concrete view of a process, we shall be
very likely to choose as our roles things recognizable in the organization:
posts, departments and computer systems. When we take an abstract view
we shall be more likely to identify areas of responsibility without reference
to the way they are allocated to organizational entities.

So, in the top part of Figure 8.3 we talk in terms of areas of responsibility
called Project Managing and Purchase Approval. In the bottom part, where

Project Managing

Purchase Approval
Obtain purchase approval [::‘

Project Manager ¢

Finance Director /
Obtain purchase approval :]

FIGURE 8.3 Abstract roles and their concrete counterparts

we are taking a more concrete view, our concrete model shows the job title
of Project Manager and the post of Finance Director.

An example

In Figure 8.4 we have a process described in very concrete terms. Real
posts and departments appear as roles; actions involve physical objects
and physical actions on them; interactions are expressed in terms of the
paperwork involved; and there is even a computer system taking part as a
role. This would make an excellent RAD for telling people exactly what to

Managing the modelling

panoidde, sjew pue 1081100

\

)

89| swus}

1919| pasodwod uiney

|eoads uinjey
J9)9| swis}
|eroads aledaid
ssosse

pue sulwex3

Lt

/t 1emamispun

(&

sah ou

paiinbai Bunumiapun

olyoads 41 %08y

~

-

passaoco.d uoneolddy

\

Jpanoidde, yep

MO ou

Bunsod 1oy 1ons| Jono ssed

308y2 Ajjenb prepuels og

/

juealjdde o3 A|daus 3s04

MO

1a)8| prepu

/| wioy Aioyeue|dxa
yum yuomiaded ssedq

puadde pue g/ | wioy AdoD

els

Jomo|

J

34910

us suonedlddy maN

(e1840U09)
wa}l lew e a|pueH

(.

jueoidde jo snjejs 309yH

uoneoldde jo

90.N0S JO PI0dDI JBJUT
PIETEREILETEE]

0} ylomiaded sseq

1 YIM [28p O} }48J0 BS00YD

. uoneolidde jo Adoo ssed

av

ydeqg
/ sojes
Anioug

siaded premioy
pue dwejs-ajeq

/

Josintadng
u/s. suones|ddy maN

-

o

walsAg Bupjoea]
921n0g sajes

Koijod
Mau

wrep
Koljod

uonsanb
Koijod

SJUBJU0D ¥98Yd pue Way [rew uado

SOALLIR W) 1B

K

1910 wooy 1sod

FIGURE 8.4 A concrete model of the handling of a mail item

do. But it would be of less use for getting an overall picture of why things

are being done.

Suppose now that we rework this model, trying to move towards a more
abstract representation of the process. We might draw something similar

to Figure 8.5.

237

Business Process Management

Priority
Sales
Handling

Incoming Post Handling‘/

(W Handle a mail item
ltem of correspondence arrives (abstract)

policy policy new
question claim policy New PO'ICy
Handling

Start New Policy Handling

Provide with details

Update records

Check status
of applicant

Check if specific
underwriting required

A/B lower

Examine

Tutor:
Pupil:

Tutor:

Pupil:
Tutor:

238

Notify of application and assess
Prepare special
terms

Prepare response to request

Check, correct if necessary and approve

Return composed reply

Send reply to applicant

Application processed

"

FIGURE 8.5 An abstract model of the handling of a mail item

What do you notice about the change?

Well, the abstract version is much simpler. We’ve removed a lot of stuff
that’s shown in Figure 8.4 only because of the way they’ve chosen to
implement the process: posts, computer systems, communications mechan-
isms, paper flow etc.

Right. The abstract model is getting at the essence of the process, at what we
are trying to do.

Would it be fair to say that it’s therefore a better model, because it’s simpler?
NO! It’s vital to remember that abstraction isn’t some sort of summarizing.
Our aim is to model the process in terms of intent or purpose, rather than
mechanism. A side effect might well be that the model is pictorially simpler,
because we will ignore ‘implementation detail’. But a simpler model is not
necessarily a better model. Hiding implementation detail might be the last
thing we want to do. It might be precisely our aim to demonstrate that a
process is a shambles of crazy activity! We might model all that madness
and end up with a crazy RAD - and that will be exactly what we want
management to see to prove to them that they need to do something about

Managing the modelling

it! Showing them a tidy model will not scare them into action. Our second
model might be an abstract version, as the first step to simplifying the way
the process is carried out. But then we have a different purpose in mind for
the model.

KEY POINTS

Before modelling, we must decide if we are working with an abstract or a
concrete model.

An abstract process model shows intent.

A concrete process model shows mechanisms.

A model can be a mix of abstract and concrete perspectives.

The type of model must be determined by the purpose of the model.

A simple model is not necessarily a better model.

If it’s a muddle, we might need to model the muddle.

STEP 1: DECIDE ON THE OBJECTIVES OF THE MODELLING

The importance of this step can never be overemphasized. Over the years,
process modelling has acquired a bad name. This is because all too
frequently it has been done badly, has lost the plot, wasted everyone’s time
and money, and yielded little except a doorstop of pictures. Part of the
problem has been the poor methods that have been used: methods that
rely on decomposition (which all too easily results in unstoppable
modelling), or that provide no clear direction (with random models as a
result). The other part of the problem has been that modellers frequently
forget why they are doing it, and get stuck in a belief that they are working
on the model — whereas of course there is no single model, only the model
you find useful.

Once we have answered the question ‘Why are we doing this?’, I suggest
we have it printed in red on a large sheet of paper that is displayed
whenever and wherever the process is being thought about. We must avoid
analysis paralysis. Then, to answer questions such as ‘Do we need more
detail?’, “Where should we stop?’, ‘Do we need to cover such-and-such?’,
just look at that large sheet of paper and rephrase the question: ‘Have we
enough detail to do what we are trying to do, to answer the questions we
have posed, to achieve the goals we have set?’

If we do not know why we are modelling and do not have a clear idea of
the outcome we are looking for, or what we want to be able to do with the
model, the modelling activity will be slow and undirected at best, and at
worst will fail. We are more than likely to end up modelling aimlessly. We
have already seen that there is no single model of a process so when we
start to model, we need to know what perspectives we should be taking.

239

Business Process Management

Early in this book we identified a number of different reasons for
drawing a model of a process. In subsequent chapters, we shall look at
these different aims:

e To discover a process or to define it to the degree we want to enforce it
— Chapter 9.

e To map the as-is process for diagnosis and to improve it — Chapter 10.
e To design a brand new process from scratch — Chapter 11.

e To provide a basis for the design of an information system — Chapter
12.

e To build an enactable model — Chapter 13.

STEP 2: GET AN OVERALL PICTURE

240

Now that we know where we are headed, our aim in the second step is to
map out the ground; in particular to identify the boundaries of the process
model and to identify the perspective or perspectives that will help us get
to answers. Our aim is to get ourselves briefed before the group workshops
and individual interviews, so that we have a good idea of what we can
expect to hear: the roles we can expect to hear about, where difficulties and
tensions lie, where the process starts and finishes, and so on.

What is our starting point?

Our first input is of course the process architecture. We might have
produced it as part of step 1 when we fixed on the organization that we are
interested in, or it might be in place already. Either way, it will have
chunked the activity of the organization that we are looking at, and we
shall have chosen one or more processes that we want to capture, or
design, or diagnose, or improve, or enact.

The architecture gives us first-cut answers to the following questions.
Write those answers down and publish them for the process you are
dealing with:

e What is the ‘organization’ that we are concerned with? The process
architecture defines the organization in terms of the UOWs it deals
with, of course, but let’s come up with a simple characterization such
as ‘All of the Marketing Department’s activity excluding TV cam-
paigns’, or ‘The interface between clinicians and the pharmacy’, or
‘The work of the group that deals with vehicles abandoned in the
street’.

e Are we looking at a CP, a CMP or a CSP?
e How is the process activated or triggered?

e What relationships does it have with other processes? In particular,
does it generate new cases of any UOWs itself?

Managing the modelling

Roughly what happens?

The process architecture only draws a boundary round a process. It tells us
nothing about what is inside it, except that we know the sorts of things that
will appear in a CMP, for instance. Our next step is to get an appreciation
of the contents of our process. My experience is that this can be done
efficiently by interviewing someone who has a good grasp of the whole
process, even though they might only operate a part of it. They might not
be a senior person in terms of rank, but they might well be senior in
experience in that organization, having worked in many parts of it. The
essential thing is that they should have a broad view. If an organization has
previously done some sort of investigation into how things work (or don’t
work), the person who led that could be a useful starting point. This work
can take a couple of days of intensive discussion, using lots of informal
pictures.

At some point there might be enough information about the process to
take a first cut at a RAD. But remember that this is a private RAD: we are
sketching it as part of our briefing prior to getting close to the action.

What roles can we expect?

Early on, we can start to list the roles that we are likely to come across as
we get into the modelling sessions. Natural sources are:

e posts from the relevant parts of the organization chart;
e job titles;

e departments, branches etc;

e roles identified in existing written procedures;

e committees, task forces, working groups etc;

e the customer(s) of the process and perhaps their customers;

suppliers to the process;
e regular meetings.

Using this list we also need to decide whom to invite, to be sure of having
the right people in the room to answer the questions we have set. I have a
subversive suggestion at this point; unless they have a role to play in the
process, do not invite managers ... more of this later.

What terminology is used?

Now is the right time to start a glossary of terms. If, as analysts, we are new
to the business we are modelling, we have what is both an advantage and a
disadvantage: we don’t know the terminology of that business. This is a
disadvantage because at first we shall be slow to understand what people
are saying when they use terms that have a special meaning for them. This
is an advantage too because, in trying to find out exactly what they mean
by those terms, we shall start to uncover ambiguities in the organization’s

241

Business Process Management

views about itself: two groups might use the same word but with different
meanings. Such ambiguities can be indicators of misunderstandings or
even conflicts.

What do senior people think?

Working our way down through the organization chart will generally be the
politically correct approach: involve department heads early on. We should
find out whom they regard as authoritative about what goes on in their
groups, get their commitment to the use of their staff’s time, manage their
expectations about possible outcomes etc. What is politically correct and
what is necessary to get the facts will determine in what order we speak to
whom. This is all bound up with the way in which the larger project - for
radical change, incremental change, the introduction of a QMS, or
whatever - is itself being handled. Most such initiatives require senior
level backing and sponsorship for success, a topic that is adequately
covered in the literature on these larger topics and one which I do not
address here. But we should be aware of that problem.

STEP 3: RUN ONE OR MORE INTERACTIVE WORKSHOPS

242

Having been briefed in the process we're interested in and having cleared
the way with the appropriate senior people, we now reach perhaps the
most important step in the process modelling project: the group session in
which we will model the process that we are working on.

But let’s first take a small digression here to worry about whether group
sessions are a good idea at all. If you are an ethnomethodologist you will
believe that the one true way of finding out how an existing process works
is to sit and watch it, perhaps even take part in it. We must ask however
whether, given the questions we are trying to answer and the challenges we
are facing, we are actually interested in pure discovery. If our aim is to
design an improved process, we might not be the slightest bit interested in
capturing how things are done today: we know the process is wrong — why
draw a picture of it? If our aim is to define a process so that we can
standardize it — ‘this is the way we do things round here’ — then we won’t
want to capture all the ad hoccery of actual practice: we want to produce a
work instruction, not a depiction of reality. So whilst we can appreciate the
different dimension that ethnomethodology can bring to the depiction of
existing operational processes, for the most part that is not our interest.

Our interest is in getting a group to engage with their process — for
definition, diagnosis, improvement or enactment. If we are not designing a
process in a greenfield situation, in other words if there is an existing
process out there, we shall aim to get in one room a representative from
each of the roles that we have identified during our briefing. It may be the
first time those people have been in a room together, so ingrained might
be the functional silos of the organization. For the first time they might be

Managing the modelling

seeing how their work fits with the work of others and facing for the first
time, from a general perspective, the areas of conflict or stress between
groups in the process.

The output of the session will be a RAD. But here is an important point:
we shall not introduce the group to the RAD notation. We use it almost
without mention, drawing the process as we go, using the symbols we have
become familiar with. Our job, as the person at the front holding the marker
pen, is to translate what we hear into a picture — a RAD. Each time we use a
new symbol - the first part refinement, say — we shall simply make a point
just to say ‘When we have a number of parallel threads starting I'll draw this
... My experience is that any group readily takes to the notation, provided
that the analyst actually does the initial drafting for them. It’s sufficiently
transparent for people to work on their process during a modelling session,
rather than to work on (struggle with) the notation.

Starting the workshop: laying out the ground

This is not a book on facilitating a workshop. Much of what follows is just a
Riva slant on everyday facilitation. However, I like to start by agreeing the
timetable: ‘Here we are. It’s 9.30 am. We will finish by 12.30 am. If you
commit to giving me your undivided attention during the next three hours,
I commit to finishing this workshop no later that 12.30 am.’

When people enter the room, make sure they find on the wall that large
sheet of paper with the purpose of the session on it. Spend some time
getting their focus on it.

Next, spend time agreeing the bounds of the process to be modelled.
From our briefing work, we already have a good idea of what to expect, of
course. But besides scoping people’s expectation and thinking, this
exercise will help each individual warm to the area and the challenge
written up there in red. Questions that help this exploration include:

e What'’s the process called?

This may sound a stupid question, but it often reveals different
perspectives or agendas in the group. To get people to think, I replay
their name for it:

‘What’s it called?

‘It’s called Accept delivery of raw materials.’

‘I visualize some raw materials that have just arrived and you are
going to accept them - yes?

‘... No, we don’t always accept them: sometimes we reject them.
We’'re really checking them to see if they can be accepted.’

‘OK. I visualize some raw materials that have just arrived and you
are going to check them to see if they can be approved. So perhaps it
should be called Check delivery of raw material?

‘... In fact, we check who they've come from: if they come from an
approved supplier we accept them immediately; otherwise they are
turned away.’

243

Business Process Management

244

And so on.

Our aim should be to bring the group towards the name that we were
led to by the process architecture, Handle a delivery of raw
materials for instance. If things won’t go in that direction then
perhaps there is a message there: that the architecture is faulty in
some way, or we have the wrong group here, or there are such
different viewpoints in the room that we need to back off and deal
with the discrepancy.

For a CP, what does this process deal with? What does it handle? Or
what does it produce?

In Riva terms, what’s the UOW? We must avoid getting into the input/
output style of thinking, of course: this doesn’t help in scoping the
process and can too easily have people focusing on the way the
process works.

How does the process start?

In Riva terms, what events trigger action? A CP will generally only yield
one trigger but the group might identify triggers for interactions with
other processes: Make a product batch has to respond to enquiries
about progress from management, for instance. A CMP should
generate plenty of triggers, as we saw in Chapter 5.

How do we know when the process finishes (if it ever does)? What
are the goals of the process? What are the possible outcomes of the
process?

Groups often need prodding to recognize that a process can have
more than a successful outcome: rejection, failure, handing off, or
escalation can all be alternatives. We must rephrase the question in
many ways to winkle them out:

‘How would I know it has finished?’

‘What’s the last thing that happens?’

‘Can the process fail in some way?’

‘If that’s success, what’s failure?’

‘How many different ways can it fail?’

Who are the people or groups involved?

What roles will we expect to see appearing in the model? People will
shout out all the job titles and posts that they can think of. At the edge
of the process they will identify larger groups, perhaps entire
departments that they have connections with. Write them all up.
There may be dozens — I have seen forty. Keep writing. We will
probably find that only a handful actually appear on the final RAD, but
the list will prove a useful memory jogger.

Identifying all the roles is not always as easy as it might seem. People
think naturally in terms of departments and named individuals and
this is a perfectly good starting point. In his work with a leasing
company, my colleague Tim Huckvale worked with a group who

Managing the modelling

identified Kate as the person who did such and such - Kate had always
done that. Kate’s name went on the flipchart.

e What areas do we want to ignore today? What areas are definitely in
the discussion?
The process architecture has chunked the organizational activity, so
we might know that the processes for certain UOWs are being dealt
with in separate workshops and, we only need to go as far with this
process as the boundary concerned. If we are dealing with a CP, we
know that case management is outside our work. If we are dealing
with a CMP, we can ignore how individual cases are dealt with. And so
on.

Our prior briefing has told us what to expect to hear and where to probe.
We shall put all the answers to the questions onto flipchart sheets and stick
them on the walls as reminders whilst we work on the process itself.

For the actual modelling a large whiteboard is essential. Preferably two

. or three. We need a large area to work in and we will be drafting,
correcting, changing, and rubbing out a great deal — space and flexibility
are key. Do not use flipcharts for the RAD - you cannot rub things off.
Above all, do not attempt to use a specialized drawing tool on a PC. It is
very distracting, and very inflexible. People must be focused on the
process. Icons, buttons, windows and all the flummery of a software
application simply divert attention from the real job. If you have a printing
whiteboard or a digital camera, so much the better. If the whiteboard is a
projected virtual one that you can sketch freehand on, directly into a
computer, better still. But please leave your favourite drawing tool at
home! If we find we have to sit down at the end of the session and copy the
whiteboard contents onto paper or into a laptop, then that is a small price
to pay for the complete concentration of the group. Technology distracts.

Doing the modelling

Now comes the moment when the modelling has to start.

If the process has a natural start-to-end flow about it — perhaps it is a CP
— we can take advantage of this: we draw the main triggering event for the
case at the top left-hand corner of the whiteboard and put it into the role
where the process starts. We find out which role that is by asking ‘Who
notices this?’, ‘Who first gets to hear that something is needed?, ‘Who
deals with it in the first place? We look at our brainstormed list of
candidate roles for inspiration. Not surprisingly, this first step can take a
worrying amount of time: all the questions about whether this is a concrete
or an abstract model, whether we are modelling organizationally or in
terms of responsibilities, whether the process starts here or before or after
etc, have to be answered. We shall be patient and work through this. These
first decisions will set the tone for the entire session, so we must be happy
that we have these decisions right before we move on and make more. We

245

Business Process Management

246

should expect to go into the room knowing the appropriate answers, of
course — that is our responsibility as leader.

We start by drawing the goal (i.e. the desired outcome) of the process as
a state somewhere in some role at the bottom right of the whiteboard. The
rest of the workshop is now about filling in the process between these two
points. Roles appear as they enter the process, spreading across to the
right. Don’t start by writing all their names along the top of the board — we
shall only use a fraction of the ones that were identified earlier.

If the process does not have a neat flow, things are less easy and it
becomes necessary to do the same thing for each of the threads that exist.

Either way, as the RAD develops, we shall draw it and redraw it many
times as the group explores the process. Few will have thought about their
daily lives in this way, so there is an (enjoyable) element of exploration for
them. There will be problems that we have to solve as the modelling
proceeds. Just how much detail do we want to get into? Shall we ignore
that role’s contribution at this stage? Is it sufficient to summarize that set
of interactions as just one for now? Do we want to separate those two roles
or treat them as one at the moment? Shall we collapse all that activity into
just one black box? Should we regard the work going on in that other
process as outside our boundary and simply capture it as an external event
or two? There are, as ever, no stock answers to these questions. It all
depends why you are modelling: look up at the words in red for an answer.
That said, we must get to the end of the process in the available time: we
made that commitment. Going away with at least a rounded - if not
‘complete’ — model has a value: we can always explore further detail in
later sessions, either with the same group or with smaller groups and
individuals.

Given that a process will generally have many threads and that they
cannot all be explored simultaneously, we shall need to be careful to note
where threads still have to be closed off. And it is useful for the group to
know that this care is needed so that they are encouraged to point out
unfinished threads that will have to be returned to at some time. Simply
drawing a ‘spring’ at the appropriate point on the RAD is usually enough to
indicate ‘unfinished business’.

Should we look at the ‘normal’ situation first and then come back and
add the exception condition handling and abnormal situations later, or
should we try and deal with them all on a single sweep? There is some
virtue in the first approach in order to build a framework on which
everything can be hung. The danger is of course that exception and
abnormal situation handling can easily be forgotten if put off ‘until later’,
and it is often those parts of the process that reveal areas for improvement
or suggest the possible use of computer systems to reduce the likelihood of
error.

Workarounds — additions to the ‘approved’ process in order to make it
work — are a fruitful source of ideas about what is going wrong and what

Managing the modelling

could be done to remedy things. It is not unusual to hear something like
‘Then I go and get approval from the monthly Management Meeting ...
well - I say that — in fact sometimes I can’t wait that long, so I check it out
with the Chairman, Brian, and then get it rubber-stamped at the next
Management Meeting, otherwise nothing would get done.” That work-
around is a clue. Indeed, we shall need to probe for the existence of such
workarounds:

e What do you do if you don’t get the stuff in time?

e Do you ever get on with that even though you haven’t had
authorization?

e How long do you wait for that?

As the modelling proceeds, some of the roles brainstormed earlier will find
their way onto the RAD. People will start to abstract away from named
individuals — ‘Well, Mary does do that but she’s signing it off in her
capacity as Site Safety Officer’ — and the roles appear. Quite often roles that
are not on the ‘main’ stream of the process are missed initially. They might
only be involved for a single interaction, but of course it can be that
interaction that holds things up, simply because it is some form of
approval that is required from an ‘outside’ role: Get Health and Safety to
sign off the risk management plan, Get the plan signed off by QA, Get
Finance to agree to the budget. Equally, we must be prepared to strip out
roles that don’t materially contribute to the process or its understanding as
the modelling proceeds.

This is part of the trick of knowing what to put in and what not to put in
— it’s a modelling decision. The boundary needs constant validation:

e We've got this role in here — do we care for now?
e Is it worth looking at what happens before this trigger or not?

e Is this really the goal, or is there actually something earlier/later that
we are really interested in?

and so on.

Standing pen in hand, at the whiteboard, we have an important task:
eliciting the process from the group, getting it onto the whiteboard,
allowing the group to own what is drawn and to buy into what is drawn,
steering the modelling, and bringing it to a conclusion. The result of their
work is that RAD on the whiteboard. But many other important items of
information and clues will have cropped up during the discussion and
debate, things that are spoken or just hinted at, and for this reason we shall
find it very useful to have another person simply keeping a record of things
such as:

e avenues that were explored but backtracked from;

e any decisions to ignore certain detail that would need to be picked up
later;

247

Business Process Management

248

e concerns about the way the process works or doesn’t work currently;
e suggestions as to how it could be improved;

e situations where errors frequently occur;

e points of stress in the process;

e judgements about the relationship with other processes/departments
and their effect on the process under discussion.

People will say a lot of things during the modelling that could act as
pointers to inefficiencies, problems, and solutions. We must record these
for later analysis. Our note-taker, perhaps more than anyone standing at
the whiteboard, has to be sensitive to what is said:

e When these forms arrive, the applicant’s policy number is rarely filled
in and we end up having to go back to the originator to get the
information.

e We generally don’t have enough time to handle that fully and we only
go back to it when we get a quiet period.

e Couldn’t that be sorted out at the weekly meeting rather than waiting
for the next management review?

All these signals need to be noted for future use, if we are not going to
explore them there and then.

Our aim is that, by the end of the session, the process on the whiteboard
is their process and the model is their model — they have after all drawn it,
albeit with the help of the analyst who held the pen. This element of
ownership is, as ever, vital for subsequent work.

Closing the workshop

Having made that commitment at the start of the session to finish on time,
we shall stick to it. Our aim — whatever happens — is to get to the end of the
process, even if we have to gloss over some areas, recognize that we have
not adequately dealt with others, and so on. We must cover the entire
process to some degree. We can always come back and go over it again.
But we cannot put it down halfway through and expect to pick the threads
up again a week later — not least because we probably won’t have the same
people in the room.

So, remembering our deadline, we shall also aim to leave enough time at
the end of the allotted time to revisit all of the brainstormed triggers,
outcomes and roles that we put up on the flipchart. Did we cover them all?
If not, why not? Are we clear why not and happy with that? Although we
might well have started with twenty or thirty candidate roles, we’ll
probably find that we only have half a dozen on the RAD - this is quite
typical. For instance, the brainstormed list probably had all the individual
job titles in the Accounts Department, but — for this model - we only
needed to show the role Accounts.

Managing the modelling

The clock says 12.25pm and we wind up with a final question: ‘We are
going to take this information away, draw it up tidily and circulate it to
you. Do you think we have finished our discovery/diagnosis/design today?’
The group needs to decide if its work is done. We should always aim to get
them back at least once for a review session. One workshop is not enough.
In some cases, four or five have been necessary for a group to get to a final
process design that it is happy with, that meets the design goals set for it,
or that it thinks it can operate.

As our group disperses, we gather up all the material that has emerged
and transfer the pictures and all the other information to a more portable
form. We now have to organize what we have heard. Our first task will be to
draw up the RADs ‘properly’ — at last we can use our favourite drawing
tool. This inevitably reveals unfinished threads, missing detail, doubts,
misgivings, questions about terminology, and so on. We collate these and
add all the signals and messages the note-taker heard during the session.
We will use these to guide further information gathering, as input to the
review workshop to follow and to subsequent workshops that continue the
capture, design or diagnosis that we are doing.

KEY POINTS

A good basic procedure for a group modelling workshop is:

1. Arrange to involve representatives from all the likely roles.

2. Ensure the workshop room has plenty of drawing space: whiteboards
and flipcharts. And working pens!

Get the group together for an agreed period of time.

Put the purpose of the overall exercise on the wall.

Brainstorm triggers, goals and outcomes onto flipchart sheets.
Brainstorm an initial list of roles onto flipchart sheets.

Walk through the process from start to end, picking up all the triggers.
At the end, revisit the roles, triggers, goals and outcomes and ask if
they have all been adequately covered.

9. Record all issues and concerns separately as they are raised.

10. Finish on time whatever it takes.

£ 50 &2 & > 69

When is a process model ‘complete’?

If we examine an island such as Anglesey or Martha’s Vineyard to answer
the apparently simple question ‘How long is its coastline?” we come up
against a problem. If there is a road around the island we could measure its
length and decide that that is the length of the coastline. But the road
doesn’t trace round each inlet (there might be a bridge over it) or round
each peninsula (it cuts across the base). To get a ‘more accurate’
measurement we might decide to walk around the coastline with a
pedometer, walking into each inlet and around each peninsula along the
coastal path. We will get a greater distance than we obtained from the
length of the coastal road. To get a yet ‘more accurate’ figure we might

249

Business Process Management

decide — having much spare time — to run a tape-measure along the edge of
the water as we pace the coastal path. We will obtain a yet larger distance.
And so on.

This is a good metaphor for processes. There is always more detail if you
want to look for it. Whether the detail is useful and justifies the expense of
collection, only the process modeller can determine — there is no simple
rule that can tell you ‘You have finished!” Completeness is in the eye of the
modeller. The answer is in those words in red on the wall.

So one session might not be enough. We might need to reconvene the
group and revisit those parts of the model that we have not finalized. Our
note-taking and post-workshop review will tell us what remains to be
done. And it is when we all find ourselves in the room together again that
we realize the value of having got to the end of the process at the first
session: we have the whole thing laid out in front of us - right or wrong -
and we can take a view of it in the cold light of the new day. Having slept
on it, when they see it again our group might decide it was all a terrible
mistake: ‘That won’t work — it’'s too complicated,” ‘It still doesn’t feel
sufficiently responsive to the customer,” or ‘Will that really work with the
new database that is being put in next quarter?” We will not be afraid of
tearing it up and starting again if this should happen. Hopefully, things
won’t be that bad and the new session will be about filling in gaps, refining
where necessary, removing unnecessary detail in places, and general
reworking.

By the time we have finished, our RAD might look a tangle, and once
again our job is to take it away and rearrange it so that it becomes clearer
to read and understand. (Note that I am only going to rearrange it
diagrammatically: I am not suggesting that we simplify it in any way.)

STEP 4: USE OTHER SOURCES OF INFORMATION

250

When we capture, diagnose or design a process with Riva, we work
primarily with workshops, an approach which has obvious drawbacks:
those involved can tell us untruths, they can forget to tell us about
interesting things, they can tell us what they think we want to hear, they
might conceal things they don’t want us to hear, and so on. How can we
deal with this? Where possible, we must deal with it at the workshop itself
but there are some other routes that we can use.

Examining existing documents

A document almost invariably gives solid form to an interaction some-
where - it is after all a way of collaborating. There are potentially four
groups of people involved with a document and they represent roles
interacting for some reason:

Managing the modelling

e The author(s). They have some reason for producing it: to inform, to
instruct, to report etc.

e The reviewer(s). They provide quality control on the document and its
contents.

e The authorizer(s). They are approving or authorizing the publication
of the document for some reason: they are the budget holders; the
information is being released in their name; they are responsible for
public statements; they are agreeing to certain aspects of it etc.

e The recipient(s). They are presumably expected to act on the
document. The recipient might receive the document ‘for information
only’ and not act on it, but each ‘copied to’ role represents a potential
interaction, whether or not it serves a useful purpose. When we look at
the ‘copied to’ list we might see a list of job functions or positions —
Finance Director, Marketing, QA - or a list of names. In the latter case
we have the task of determining which role the recipient is acting
when they receive the document concerned.

Documents often record the path that a case has taken through the CP.
Good document control keeps a record of the history of a document,
making it possible to see what process has been applied to it in reality.

Examining existing documents describing processes

Our organization may well have documented some of its processes in the
past. Documented processes can take a number of forms including
procedures, manuals, work instructions, and Quality Manuals. Where
these exist they will clearly be an important source for us in that, in theory
at least, they should describe the process in some fashion. But there is a
danger here too in that ‘in theory’: written procedures and practices are
not always followed scrupulously or even at all, especially if they can only
be made usable and efficient by ‘adapting’ them. In a modelling session,
people often ask ‘Do you want us to tell you how we actually do this, or
how we’re supposed to do it?’

Highly regulated industries are more likely to have documented
procedures. They are also more likely to follow them if there is the
constant expectation of an auditor arriving unannounced at the front
desk.

Examining existing terms of reference, personal objectives etc

We have seen how a role groups a set of responsibilities within a process.
Such responsibilities are often communicated to the incumbent as written
terms of reference, objectives, or a job description. These can give us clues
about:

e the desired outcome of the work of a role;

e the way the job is to be carried out;

251

Business Process Management

252

the things the role is to produce;

targets that the role must achieve;

e resources that the role can use;
e interactions that the role must have;

e who the role’s customers are.

Identifying regular meetings and their purpose

We saw earlier how boards and committees that have regular meetings can
play a role, in the sense of having defined responsibilities.

We can represent a meeting simply as an interaction between the roles
that are represented at the meeting, or we can regard the group that meets
- indeed the actual meeting — as a role in itself. Which view we take
depends on whether the group that meets has some responsibility of its
own in the process, or is simply a way for the individual roles to get
together.

I have modelled a process in which the Weekly Development Meeting was
shown as a role. The meeting had responsibility for making a joint decision
in the process (in theory at least), so we decided to show it as a role. In
practice, the meeting was often unable to make decisions, as we
discovered when we attended one, because representatives were not
always empowered to make decisions on behalf of their departments. As a
result the meeting became more of an updating session — an interaction
that could be carried out in many simpler, less expensive ways.

When we look at meetings we should ask questions such as:

e Who attends?
e What roles are they playing when they attend?

e Why do they attend? Are they there for reporting, receiving informa-
tion, authorizing, or taking decisions on behalf of themselves or the
group they represent?

e Does the group that meets play a role itself and have its own
responsibilities?

e How does the outcome of the meeting get propagated? How does it
cause subsequent activity in the process?

e By which roles?

e Does the meeting report its outcome to other roles who did not
attend?

e How are they supposed to react?

One way we can answer these questions is to actually attend and observe
what happens.

Managing the modelling

Interviewing individuals

Some items on our ‘Issues arising’ list might best be addressed by
interviewing an individual. If they have not seen a process model before,
then we must decide whether walking them through the model is the best
way of doing things, as opposed to a simple question and answer session.
We need never feel obliged to show the RAD to the interviewee.

Once again I prefer to have two people carry out an interview: one
questions while the other records. It can be beneficial to hold the interview
at the interviewee’s normal place of work. Very often, in order to explain
something to us, the interviewee will say ‘Let me show you an example...,’
reach into their filing cabinet and produce an illuminating document. This
has to be balanced against the usual problem of interruptions to the
interview and hence everyone’s concentration but, overall, interviewing
people on their home territory seems most effective.

A two-hour interview is about the most that both sides can take. The
interviewee becomes drained, and the interviewers overloaded with
information. We should budget about half a day for the two analysts to
go over the information gleaned, in particular working it back into the
RADs and recording new questions and issues that will need to be referred
back to the interviewee, or on to subsequent interviewees or the next group
session.

Setting the scene at the interview is key. Time is limited and there is
much to cover, so we should spend a few minutes covering a number of
points with the interviewee. They go roughly as follows:

e Thank the interviewee for their time.

e Ask how long we have actually got for the interview.

Although we might have asked for a two-hour interview we are
probably starting late, and the interviewee will have subsequently
agreed to give someone else the second of our two hours! Agreeing at
the outset how long the session will last means that we can pace our
questioning and ensure that we cover the key points, rather than
wasting all the precious time on smaller issues; and the interviewee
makes some sort of commitment to the time that’s agreed.

e Outline the purpose of the project.

The interviewee might well have heard of the project and have some
idea of what is going on. We should describe the project overall and
then place our activity in that framework. Being open about our
motivations helps the interview along. It is generally the case — and we
should stress it — that our work is non-judgemental: we are not there to
observe and then say ‘Aha, there’s wastage, that’s inefficient, why on
earth are you doing it that way?’ Our role as facilitators is to bring the
organization to these sorts of statements from its own observations
and judgement.

253

Business Process Management

e Describe how we are doing our work.
We want to position this interview in the larger scheme of things. Why
are we interviewing people, and this person in particular?

e Say to whom we have already spoken.

This helps to prevent repetition and to make it clear that either this
person is very important and is being seen first, or we have already
spoken to this person’s boss and hence are here with some authority.
There are of course sensitivities here and dangers too: repetition can
be a good thing if it reveals differences of opinion about a process, and
a different viewpoint often provides new detail or insights. Also, we
don’t want subordinates to feel that they necessarily have to toe the
party line and say what their superiors would want them to say.

e Explain how far we have got.
How much have we found out so far? What areas do we think we have
some grasp of and which do we think we are struggling with? People
generally like to tell you what they know, so admitting ignorance at
this point encourages them to tell.

e Describe what we are doing now.
Are we trying to establish the ground? Or do we have a good model
already and are now trying to flesh out detail?

e Tell the interviewee how they can help us now in this interview.

e If we plan to use a RAD with the interviewee, tell them, and add that
we shall explain the notation as we go along.

This leaves us ready to get to the core of the interview.

STEP 5: REVIEW, REVISE, VALIDATE THE MODEL

254

Throughout the modelling project our RAD will be under constant change
as more information is obtained, other information is discarded, the
perspective is altered, and so on. The task is all about using our noses,
chasing things to ground, following leads and backing off them. There is no
simple procedure for successful process modelling whatever its purpose:
discovery, definition, diagnosis, design or enactment. Like any such
activity, the skill of analysis is with the analyst as much as with the
analytical method.

However, constantly taking the RADs back to the process actors and
replaying new versions is clearly a major part of our work. A feedback
session is one way of doing this. It naturally involves a group of people who
have some stake in the process. It is not unlike the group modelling
session, except that the model is now being replayed to the people who
originally had a hand in producing it or who, though not originally
involved, play a part in the process.

Such a session can serve several purposes:

Managing the modelling

e It is a way of validating the models that have been constructed.

e It provides a way of letting the process actors work through and
explore potential improvements for themselves.

e It can be an important part of change management in a radical or
incremental change programme, by providing a communications
channel from the change management team back to the organization.

The RAD provides a vehicle for description, discussion, and decision,
whatever the situation. There is a risk that a new group will want to
redesign the process or change the model for some reason — we must be
clear whether they have the power to do that and, if so, on what terms and
with what safeguards for the model’s consistency.

I always reckon to keep each new version of a RAD as it develops. Small
changes can be made to the current version ad lib, as the process is
clarified or the perspective is clarified. But when a major change is made -
a major realignment of perspective or a major restructuring — we should
store the current version (call it version N) and copy it to a new one (N+ 1)
on which the major change is made. Keeping old versions serves two
purposes. The first is the pragmatic one, that even though a major change
feels right today, in the cold light of tomorrow it might not seem such a
good idea and it is nice to be able to return to a previous version without
pain. The second purpose is that the record of how the RAD changes will
itself be a useful teaching tool: we can see how the work went, went wrong,
was put back on the right track, diverged, returned, and so on; all this
information will help us to understand the modelling process itself and do
it better next time.

Quality control of a RAD

As the modelling proceeds, we must maintain tight quality control over the
RAD: being tidy helps enormously, especially since we are showing the
RAD to people constantly and there is great value in their seeing a
consistent notation and usage in what we show them.

As in any language, good style helps communication. I am a stickler for
accuracy in representation: RADs provide a concise and unambiguous way
of saying things, and there is no point in throwing that advantage away by
being fast and loose with the notation - all the rules below are there for a
reason. Get into the habit of using them even when sketching a RAD,
rather than trying to ‘correct’ the RAD once it has been captured.

e Label each action in verb-object format.
For instance: Prepare the monthly report; Classify client request;
Assemble business case for approval.

o Identify the nature of each interaction with an appropriate verb.
For instance: Agree ... ; Approve ... ; Delegate ...

255

Business Process Management

256

Label each interaction against the initiating role and word it from the
point of view of that role.

For instance: Hand over monthly report, Receive classified client
request, Approve business case.

Label important states so that just the interesting part of the state is
briefly described. Describe the state with a sentence in the present
tense.

For instance: The monthly report has now been prepared, The client
request is new and exceeds £10,000, There is no approved business case.

Annotate the RAD with a highlighted text block when you need to
make a comment about the accuracy of the RAD itself.

For instance: What happens now if the application is refused?, What
happens to the documentation of a refused proposal?, Regional
Manager step omitted for simplicity.

KEY POINTS

To avoid analysis paralysis, ask frequently ‘Have we enough detail to do
what we are trying to do, to answer the questions we have posed, to
achieve the goals we have set?

A process model is complete when it is sufficient to address the declared
goal.

Complement the workshops by:

looking at documents that suggest process;

examining written procedures (whether or not they are actually
followed);

looking at people’s terms of reference;
observing regular meetings;

doing follow-up interviews with individuals.

Quality control your RADs constantly.
Keep old versions of RADs - you may need them! And they hold valuable
lessons.

9 Discovering and defining
processes

Covers the practical use of the approach in determining what processes an
organisation has, in eliciting those processes (onto RADs), and in the use of RADs in
QMSs, tying into ISO 9001.

INTRODUCTION

In the simplest of situations, we want no more than to find out what is
going on in the organization. We're in the world of discovery: there’s a
process out there, but no one can quite say what actually happens. People
are doing things and perhaps the right results are being obtained. But our
individual responsibilities — what we each have to do - are passed on by
word of mouth, by rote, or by tradition. The fact that results are produced
at all is perhaps a matter of luck rather than judgement.

Once we have been through the process of discovery we shall have a
process model that says ‘This is how in practice we handle customer
complaints.” We're now in a position to give each individual — perhaps for
the first time — a helicopter view of how things work and how their
contribution fits with that of everyone else — or doesn’t: ‘This is how your
work contributes to customer complaint handling.” At last we’re able to
share that understanding across a group of people: ‘So this is how,
together, we handle customer complaints round here.” This will be the first
step towards change and small-scale improvement: ‘If you could do this,
my life would be made much easier; in return I can ...’

As well as discovery, we might want to write up our process as a work
instruction: “This is how we will all handle customer complaints.” This sort
of process definition can serve several purposes:

e to ensure we continue working together in a way that we all share and

understand;

e to ensure that new people joining the organization can get into the
swing of things quickly, by following the process that has been laid
down;

e to ensure that we deliver the quality our customers are looking for in
our product or service by working in a way that guarantees — or at least
increases our chances of delivering — that quality;

257

Business Process Management

258

e to satisfy a regulatory body that governs how we go about our work, by
carrying out our processes in the same way, day in and day out, so that
we achieve the necessary quality.

In this chapter, we shall look at how best to use the concepts we have
developed so far to discover a process that is out there somewhere, and
then go on to examine the different ways in which we can present a
process definition for the different purposes we might have. But first we
need to touch on a subject that will crop up a lot in modelling work: the
boundary of a model.

The boundary of a process model

When we draw a process model, no matter how much detail we put in it or
how ‘big’ it is, we are always drawing a boundary somewhere, a boundary
that says ‘For this model, I'm not interested in what happens beyond here.’
We are making a modelling decision.

The black-box action as a boundary

The first and obvious boundary in a RAD is the black-box action. By
representing an action as a black box we are treating it as an atom, and
saying that we are not concerned here with the detail of what goes on in
that action. The black box is a sort of lower boundary to the detail about
activity that we want to capture. We might wish at some point to examine
what happens ‘inside’ the box — we dealt with this in Chapter 4.

Here are some examples of the sorts of things we might say when
describing a single action. Note how they might describe a small, short-
lived activity or something very large and very long-lasting.

e Prepare production line for new model.

e Complete handover form signalling acceptance of new production
line.

e Agree pricing with dealerships.

e Issue Press Release.

The interaction as a boundary

Similarly, an interaction is an atomic thing: we have no detail about what
goes on when the interaction takes place. It just happens at the appointed
states in the participating roles and that’s an end to it as far as the model is
concerned: another lower boundary of detail. Again, we have chosen not to
look more closely in this RAD.

As with an action, the ‘size’ and duration of an interaction can vary
enormously:

e Supplier demonstrates equipment to Potential Customers.

e Supplier and Customer negotiate price.

Discovering and defining processes

e Supplier and Customer sign agreement.

e Supplier maintains Customer’s equipment for ten years.

The trigger as a boundary

Any trigger is clearly a boundary too. Suppose we have the event Decision
made to carry out an audit as the trigger of a thread in a role. This says that
the thread starts when this event occurs, and that — on this model — we are
not interested in where or why or how it occurs, only that it occurs.

Pre-existing role instances as a boundary

We can consider pre-existing role instances as a form of boundary to our
model. If we draw the role Task Force and mark it as having a pre-existing
instance, we are saying ‘However it came about, there is a single instance
of the role Task Force when this process starts.” An instance might be there
because it’s a fixed post in an organization, such as CEO, or because some
other role in some other process — we care not what on this RAD - has
created the instance in order, say, to activate this process.

Boundary definition by omission

Finally, we implicitly define the boundary of a model simply by omitting
things. The most common example of this is where we only draw those parts
of a real-world role that are relevant to the process we are looking at.
Figure 9.1 shows how we might wish to indicate that, for certain items of

Buying ¢
\

-

Finance
Confirm stock status Director/
no yes

Capital expenditure?

Notify of amount

-)

FIGURE 9.1 Omission as boundary

expenditure the Finance Director needs to be told, and to that end there is an
interaction with the Finance Director role. But we have chosen not to show
just what the Finance Director does with the information — this is outside our
interest for this RAD. Clearly, the Finance Director does more in life than is

259

Business Process Management

suggested by this RAD, but everything besides accepting notification of
capital expenditure is outside the boundary chosen for this model.

DISCOVERING A PROCESS

Tutor:
Pupil:

Tutor:

260

Let’s begin by looking at how we go about discovering (uncovering?) a
process. As ever, we shall start with a process architecture. The important
thing about a Riva process architecture is that we don’t need to know
anything about how things are being done. In other words, we don’t need
to know how things are done before we structure our understanding of
how things are done. The process architecture is deduced only and wholly
from an analysis of the business the organization is in, its ‘subject matter’,
which we examined in Chapter 6. By going through the EBE and UOW
analysis we reach an architecture which says ‘If you are in this business,
which has these units of work, then you must have these processes with
these dynamic relationships.” That's a very powerful place to start the
challenge of discovering how individual processes in the architecture are
done. The chunking we achieve ensures we build on sound foundations.

So, when we start on the discovery of a particular process within the
process architecture, we already have a name for it and we know where it
starts and where it ends. Let’s remind ourselves of the basic scheme from
Chapter 8:

1. Decide on the objectives of the modelling: here we are concerned
with discovering the process.

2. Brief ourselves by getting an overall picture, no matter how coarse,
from a variety of sources.

3. Run one or more interactive workshops of those involved to draw up
a RAD that meets the objectives of the modelling.

Use other appropriate sources of information.
Review, revise and validate the model using other inputs.
Use the model.

What adjustments do we need to make to this general approach? We shall
listenin ...

Firstly, no managers are allowed to this workshop!

They won’t stand for that! Why don’t you want them there? They feel
exposed already because the process isn’t defined, which presumably is
their fault. And even if they have been delinquent, they’ll want to know what
is happening out there.

The problem is that the people doing the work might be - shall we say — shy
about revealing how they do it. So by all means, let’s interview the managers
as part of step 2, finding out what the managers think is happening or
expect to be happening, or even know is happening. But we are more likely
to get the ‘truth’ from the coalface, where the dirt is!

Discovering and defining processes

Pupil: So at the workshop, we’ll have in front of us a group who should not feel
intimidated and who will tell us how things really happen, good or bad,
appropriate or inappropriate.

Tutor: Right. Secondly, we’ll draw a concrete model.

Pupil: If we want to understand the process shouldn’t we be thinking abstractly
rather than worrying about footling detail?

Tutor: We want to know what happens in reality. We might choose to stand back a

little to understand the purpose of the actions and interactions. But it won’t
help to get too abstract, too early.

Pupil: OK, but if we want to extract what is really going on, what sort of questions
should we be asking?
Tutor: Easy: ‘Do you really?’, ‘Why do you do that?’, ‘Why in that order?, ‘Does

everyone in that role do it the same way?, ‘Has it always been done like
that?’, ‘Where do things go wrong and what do you do then?’, ‘What’s behind
doing it like that?’, ‘Why does the same person do those two rather different
sorts of things?’

Pupil: So we’re standing in front of some ‘coalface’ workers; we know we are going
to draw a process model. But where do we start?
Tutor: At the beginning of course! Suppose we’re working on a CP. When we looked

at the general scheme for running a process modelling workshop, we drew
the main triggering event for the case at the top left-hand corner of the
white-board and put it into the role where the process starts. And we drew
the goal or commonest outcome of the process as a state, somewhere in
some role at the bottom right of the whiteboard. Once the trigger is on the
board we can just ask ‘And then what happens?” and we draw what we hear.
There will be discussion; there will be questions about whether we are
getting too detailed or not detailed enough. As the analyst, we must help the
group make that decision at each step. Once a new blob is on the model, we
ask the same question: ‘And then what happens?’

Pupil: How do we handle the fact that processes are very rarely just a simple
sequence? There will be all sorts of threads.
Tutor: Yes, there will. The trick is not to forget that we are leaving a trail of unfinished

threads behind us - just use that little spring symbol to say ‘We have to come
back here and pick up this thread.” When we started the workshop we
brainstormed all possible triggers and all possible outcomes, and we shall
need to check through those lists for more processes before we finish.

Pupil: If this is true process discovery, there will be lots of surprises and it will be
hard to do that pre-workshop briefing you talked about.
Tutor: It will. It means that we have to listen very hard at the workshop itself to

what people are saying and not to let anything go. It’s why I suggested that
there should be a separate note-taker present to catch all the points that
might slip away as discussion continues.

We'll still also use all the other means we can to find out what is happening.
All the methods we listed in Chapter 8 are at our disposal: interviews,
observation, documents, terms of reference, personal objectives ... any-
thing that might suggest how things are actually being done. It all gets
assessed for the model.

261

Business Process Management

Choosing perspectives for communication

If we are modelling to communicate, the scope and perspective of our
model need to be chosen so that the model tells people what they need or
want to know and omits everything else, or perhaps relegates it to ‘the
edges’ of the model. One strength of a RAD is that we can decide at each
point of the boundary how we want to draw it: with a black-box action,
with an external event, or with an interaction, as we saw above.

At each point in the modelling we can ask ‘Is it important to us to know
this or to know beyond this point?’ or ‘Does it help our understanding to
get into this area?” In some instances we might say ‘definitely not’ and
simply terminate that thread; in other instances we might say ‘We don’t
need to know the detail but it would be useful to have some context’ in
which case we might ‘summarize’ the process beyond the area we are
interested in. Again, on a RAD it is quite simple and natural to mix the level
of coverage to suit your purpose.

We might have more than a ‘neutral’ aim of communication. We might
want to scare. The process is a mess and we want people - management in
particular perhaps — to realize that it is a mess. The keynote of our
perspective here is honesty. Whatever it looks like we will model it: if it’s a
muddle, we will model that muddle. Drawing a tidy model of a messy
process makes no sense if our aim is to reveal the mess.

KEY POINTS

When modelling a process for discovery:
o keep the managers away;

keep the model concrete;
keep challenging;

draw whatever is interesting and helpful;

draw muddle if there is muddle.

PRESENTING A PROCESS DEFINITION

262

Suppose we want to use our model as a formal description. Perhaps we
plan to use it as some sort of work instruction, in a Quality Manual for
instance; perhaps it is to be used as the keystone of a Process Standard or a
Standard Operating Procedure. We want to prescribe how a process is to be
carried out: ‘This is how we do things around here.” As with process
discovery, we shall start with a process architecture to chunk the
organizational activity and decide what processes there are. The question
then is ‘What perspective do we want to take of the process given that we
want the model as a definition, to guide/instruct/require of people?’

Discovering and defining processes

Choosing perspectives for prescription
Let’s look at the features we shall expect of our model:

e Our model will need to be sufficiently precise and detailed for us to be
able to ‘dictate’ what we expect of people where we want to dictate to
them, and to leave room for discretion where we want discretion to be
used. Warning: most people prescribe too much and their process
definitions stray into areas where people could and should be left to
their own devices, discretion and initiative.

e Our RAD might need to be precise and testable enough to allow
independent auditing of the way the process is actually being carried
out in order to check for conformance. Remember that ‘precise’ does
not mean ‘excessively detailed’; ‘testable’ means there is a way of
deciding afterwards whether it really happened that way.

e We shall need to take care that we do not say more than we need to. If
we are going to be audited against the defined process, then the
definition should only say what we want to be audited against. It is all
too easy to over-egg the definition and then find we have prescribed
more than is necessary for our purposes, and the auditors are
demanding we do things that we don’t always want to be held to.

e The roles that appear on such a RAD will probably be concrete roles —
either posts or groups — and the descriptions of actions and
interactions will involve concrete mechanisms. Conformance is easier
to establish if definitions are close to the real world.

e Independent verification or validation plays an important part in
highly regulated industries, and in a RAD we have the mechanism -
through roles — for showing this explicitly. We will expect to see
separate roles that have responsibility for authorizing actions,
approving actions, and signing things off, and we will expect to see
interactions with them that express the execution of that responsi-
bility.

Using RADs in an ISO 9001 context

The international standard ISO 9001:2000 (Quality Management Systems —
Requirements) is commonly used as a specification by organizations
intending to manage the quality of their products or services through the
management of their processes. In support of the QMS approach, the
standard says that it:

. encourages organizations to analyse customer requirements, define the
processes that contribute to the achievement of a product which is
acceptable to the customer, and keep these processes under control. A
quality management system can provide the framework for continual
improvement to increase the probability of enhancing customer satisfaction

263

Business Process Management

and the satisfaction of other interested parties. It provides confidence to the
organization and its customers that it is able to provide products that
consistently fulfil requirements.

So, in an ISO 9001-compliant QMS we can expect to find the relevant
processes defined in some way. RADs offer a useful way of presenting such
definitions. The TickIT Guide, which is used for ISO 9001 certification in
the software development arena, recommends RADs for modelling
processes in a QMS (see The TickIT Guide, details at www.tickit.org).
Figure 9.2 shows ISO 9001’s process view of quality management in an
organization. Customers, in whatever form they appear, have require-

Continual improvement of

the quality management system

Customers

. Product
Requirements o a:
realization

Customers

Management
responsibility

Measurement,
analysis and
improvement

Resource

management

Satisfaction

Product

264

FIGURE 9.2 ISO 9001’s process view of quality management in an organization

ments which are realized by the organization’s processes and presented to
the customer in the form of a product or service, hopefully to their
satisfaction. ‘Product realization” will be where our CPs will typically sit.
‘Resource management’ will be where our CMPs will typically sit. In
Chapter 10 we shall touch on the question of where measurement sits so
that process analysis and improvement can be done.

In an ISO 9001 context we will expect to see an emphasis on the control
of the process, especially quality control and corrective action; in other
words answers to questions such as: ‘At what points in the process are
checks on quality carried out?” and ‘If a fault is discovered in the product

Discovering and defining processes

or service what action is taken (i) to correct it, and (ii) to ensure it does not
happen again?’

I have seen RADs presented in a number of ways as part of the definition
of a process:

e A RAD on its own.

One of the great secrets of RADs is that captions to symbols are drawn
next to small symbols and not inside big symbols. This is such a small
thing and yet it is a massive modelling convenience. Whoever decided
that the lozenge should represent decisions in flowcharts deserves a
hundred lashes: it’s the most impractical shape you could choose. In a
RAD the structure of the process is carried by the ordering of the blobs
and becomes a great deal more visible. The captions are free to take
up as much space as needed, alongside them. We are at liberty to put a
small paragraph against, say, an action blob if we find it useful.
Thanks to this remarkable property, a well-constructed RAD has little
need of additional supporting material and yet it is very compact.

e A RAD with roles expanded in text.

There are, however, those who simply cannot work with a picture —
something to do with left- and right-handed brains perhaps. An
organization that was preparing a QMS to be used by many hundreds
of people prepared the procedures in their Quality Manual in the form
of a RAD followed by text structured by role. Each action, interaction
and decision in a role was elaborated in text in a section following the
RAD. Someone carrying out a role could therefore see everything
about that role in one place, both in the text and in the RAD.

e Text supported by a RAD.

I have also seen procedures in the form of traditional text description
‘supported by’ a RAD. This is generally unhelpful. It is notoriously
difficult to express a complex concurrent process using something as
serial as natural language. I once took a 24-page text description of a
process and reworked it as an A3 RAD, with practically no loss of
information but with a huge gain in visibility ... and during that
reworking a host of problems were revealed that the text hid.

e A RAD on an intranet with hot links to ancillary material.
This is much more interesting. A RAD fits naturally in the world of web
pages. Where supporting text is required, hot links to separate pages
carrying that text can be provided from the relevant blobs on the RAD.
Or links can lead to pro formas to be used, data systems to be
accessed, and more.

e An enactable RAD.
This is perhaps the ultimate in process definition: the process model is
loaded on a process enactment system that is able to ‘drive’ that

265

Business Process Management

process and all its actors. This is a major topic and an important one

in the world of BPM and we must leave it to Chapter 13.

KEY POINTS

When modelling a process for definition/prescription:

e make the model a concrete model, especially if it is a work

instruction;
e say things just once;

e only say things you want to be held to;

o use the RAD as the hub of the definition and hang other material off it.

SUMMARY

Figure 9.3 shows the general scheme that we use for discovering and
defining existing processes. As with any process work, we start by

/ process architecture

current

o

concrete roles such as
posts, functional

observation groups, and job titles
of the

process concrete mechanisms,
interactions eg documents and
meetings

FIGURE 9.3 The general scheme for discovering and defining processes

preparing a process architecture to get that ideal chunking into processes.
We can then take the process we are interested in and start work on that,
confident that we are starting from somewhere appropriate. ‘Observation
of the process’ covers all the different ways that we might decide how a

process is being done.

266

1 O Analysing for process
improvement

Covers using the approach at both the architectural and the process level for asking
questions about processes and their performance, and for driving tactical process
improvement.

THE IMPORTANCE OF SPRING-CLEANING

Two three-letter acronyms have dominated the world of business
processes over recent decades: TQM and BPR.

This is not a book on TQM or BPR, both huge topics that have the
concept of process at their heart and that also contain many soft (but
difficult) issues such as the management of change, visioning, motivation,
culture and ethics. Our concern here is to look at how Riva can provide
answers to process questions for both. In particular, I want to highlight
how the concepts that Riva uses give us ways of looking for possible
improvements.

Over time, our organization and its processes become convoluted. A
process that started out simple and clean has, somehow, become complex
and messy. The business itself has changed or the business environment
has changed around it, and it has not changed its process in response.
Let’s look at some of the ways that such complexities can arise.

‘We won't let that happen again!’

Bad experiences all too readily lead to extra twists being added to a
process. A change might be made to plug a loophole, particularly if a
mistake has at some time caused trouble, such as financial loss. Suppose
that one day, we ship some equipment to a customer but the spares arrive
late. Perhaps that has happened before but without any major repercus-
sions — the spares have caught up a little bit later. This time the equipment
failed soon after arrival and the spares were needed quickly ... but weren’t
there. Our customer sustained a significant loss of business and we had to
compensate them. ‘We’re not going to let that happen again’ vows our
senior management, and extra steps and checks are added to the process
to plug that possible loophole. Of course, on average each shipment is now
held up that bit longer, just to ensure that the earlier mistake is never
repeated.

267

Business Process Management

268

Every time there is a process failure a new check, double-check, extra
approval or sign-off is added to the process. Gradually the barnacles cover
the once sleek hull of the ship and friction builds.

‘We won't give them another chance to mess us up!’

Functional groups can become self-protective. Suppose group A provides
materials to group B. And suppose B starts to get trouble with poor quality
arriving from A and, as a result and too often, has to return material for
reworking, having wasted its own materials and resources working on poor
inputs. Group B is very likely to put in extra checking procedures at the
interface with group A and add elaborate handover and fault-reporting
procedures, in order to protect themselves in the future.

Now everything is checked, everything is signed for, faults are recorded
and reported formally, and there are procedures for tracking faults and
cross-charging for the costs of faulty work. More complications for what
should be a simple handover process. None of that new activity adds value,
only cost.

‘The world has moved on!’

The nature of our business can change. A process that was adequate under
one set of market conditions can become quite ineffective when those
conditions change and, if the change occurs slowly, we shall add
workarounds bit by bit to try to overcome the increasing inadequacy of
the old process.

Suppose we are in the business of making fitted kitchen furniture. Some
years back when life was slower and customers less demanding, our order-
filling process relied on a simple flow of manufacture, with orders and
changes to orders being dealt with on a cyclic basis: on the first Monday of
each month the production team would look at the recent orders and
adjust the production schedules. The whole thing satisfactorily revolved
around that monthly cycle.

But our end-customers started demanding quicker delivery, and some
stores started promising faster delivery to certain customers. Some orders
couldn’t wait for the monthly production meeting and so had to be
handled as exceptions: ‘short circuits’ and ‘fast tracks’ were added to the
simple monthly cycle to handle the exceptions. But as time has passed and
things have become more hectic, we have added more and more such
workarounds to the main cycle and the workarounds have become
institutionalized, with the result that our monthly meeting is now more
about finding out what is happening and handling the big bush fires rather
than planning. Planning is effectively being done out there in the
workarounds.

We need to replace the old cycle-driven process, which is now unwieldy
and unresponsive, with an event-driven process, one which is clean and
responsive. Instead of piling things up to be handled, we need to deal with

STARTING

Analysing for process improvement

things as they come in and make the necessary changes to production
schedules on the spot. The current role structure and the interactions in it,
as defined by the monthly cycle, could continue to exist in order to
monitor the process from a managerial standpoint, but the day-to-day
control of the process needs to become the focus.

‘We’re in another world!’

Have we changed what we do? As well as teaching courses to full-time
students, do we now offer remote-learning packages to part-time students?
Have we decided not to outsource chemical assays to a service company
any more, and instead to bring that function back in house? Have we
passed all our invoicing to a finance house? Have we added generic
pharmaceutical drugs to our product line as well as under-patent drugs?

In each of these situations we might have tinkered with existing
processes to deal with the change in business. But knowing how we can
characterize business through its EBEs and then go on to derive a process
architecture in terms of its UOWSs, we immediately see that we really
should be thinking of changes at an architectural level rather than at a
process level. We may find we need entirely new CPs, CMPs and CSPs. Or
we may need to delete some processes. Relationships between our
processes may have changed and we might have made those changes
simply by bodging.

If our business has changed in its UOW characterization, we must start
by reworking the process architecture.

POINTS

There are several questions we need to answer before we can start work on
the process architecture or any individual processes.

What improvements are being sought?

Our process or organizational improvement work will not reach its goal if
we do not know what the goal is. It might be about reducing cycle times so
that we can get to market faster, or close the sale more quickly, or answer a
customer’s query more quickly, or be able to offer a faster response than
our competitors. It might be about reducing the cost of dealing with a
repair, or putting a new PC on an employee’s desk, or recruiting a new
member of staff, or preparing a bid for some work, or managing the flow of
call-centre calls.

How we decide on our improvement goal is a topic outside the compass
of this book — any book on process improvement from a high-level point of
view will provide guidance. (Chapter 11’s guidelines for designing a
process are also relevant when improving a process.) So let’s assume that
we start with a clear idea of what improvement we are looking for.

269

Business Process Management

270

Where shall we focus our changes?
Big changes or little changes?

At one end of the scale, we can completely rework the fundamentals of
how we do our business: in Riva terms we would, for instance, be
examining designed UOWs and asking whether they are strictly necessary,
and whether a different approach using different UOWs would streamline
things. We collect money for goods by issuing invoices. But why? Invoice is
a designed UOW. What happens if we delete it? We decompose our
software development projects into work packages based on the stages of a
development lifecycle — what would happen if we were to decompose
them into work packages based on a functional breakdown of the system?
(Software developers will recognize this as the step that was taken in
moving from the SSADM development approach to the DSDM approach.)

In the middle of the scale, we might reallocate responsibilities amongst
roles to reduce the number of handoffs in preparing an invoice, thereby
reducing the work involved and the time it takes to issue one.

At the other end of the scale, we might reduce the number of times a
rework action in Handle an invoice is carried out by improving the layout
of the invoice we send to customers.

We can look at process improvements right across this scale.

Intent or mechanism?

We can concentrate on intent or mechanism.

Are we doing the right things (intent)? The process might be highly
efficient in what it does ... but it does the wrong thing.

Are we doing the things right (mechanism)? It might do the right thing
... but it does it inefficiently.

We shall need to decide whether we want to work with an abstract model
(which is about intent) or a concrete model (which is about mechanism).

To-be or as-is?

We can start straight into modelling the process as it should be after
improvement, the to-be model. If we know the as-is process is bad, why
draw a picture of it? Let’s just start designing a new process. In some cases,
we can safely ignore the existing process and our process modelling
workshop will design the new one from scratch.

Alternatively, we can start by examining the process as it is and look for
improvements. If we expect the changes to be at a more detailed level, an
as-is model might be the right place to begin. In yet other cases, we might
not even know what is going on currently, and have to find out through an
as-is model before we can start to look for opportunities to improve the
process. And we should not assume that the current way of doing things is
all bad - there might be very good reasons for certain things being the way

Analysing for process improvement

they are and it is good to understand them and not make a mistake by
reworking them.

Where should we be measuring?

Measurement is a central part of BPM. We need measurement to know
how we are performing and to get indications of where things are not as
they should be. Our process architecture gives us a vital separation
between the process for dealing with one thing, and the management of all
the things currently in progress. In particular, the time that elapses
between the activation of a CP and the moment it reaches the desired
outcome is easier to identify: it is obvious where we should insert
measurement probes. Moreover, the CMP is where such measurements
can be collected, and trends detected and responded to.

KEY POINTS

Before we begin we must decide:
e what improvements are being sought;

whether we can consider big changes and/or little changes;
whether we are concerned with intent or mechanism;

whether we need to start with the to-be or the as-is process;

where measurement comes into play.

ANALYSING THE PROCESS ARCHITECTURE

Let’s begin at the beginning. Do we have the right process architecture? Do
we have the right designed UOWSs? In a sense, this is the central question of
BPR: are our processes aligned to our business and our customers? So our
starting point is to build the process architecture for the part of the
organization we're concerned with and to examine that.

Focusing the searchlight

Our first step is to decide what we mean by ‘our organization’. This team?
The sales force and its customers? Production Engineering and R and D?
The branch network? We saw in Chapter 6 that we can adjust the
searchlight according to our purpose. Since the EBEs characterize the
organization we are talking about, when we discuss which EBEs are UOWs
for ‘our organization’ we shall be moving the searchlight until it
illuminates the right thing. When we have finished we shall have a process
architecture that covers precisely the organization we want to talk about.
As a rule of thumb we can expect to extend across the boundary by one
process simply to recognize the points where our processes interact with
those outside our organization, or its customers and suppliers.

271

Business Process Management

272

The process architecture should — if we have done it properly — only
include processes for essential UOWs. We now add designed UOWs: UOWs
that we have decided to have and use in order to do our business — in
reality, of course, we may have spotted some of these when looking for the
essential ones and have bracketed them out. Now we can add them back in
but - importantly — we distinguish them from the essential ones. We can
think of this as adding mechanisms to an essential model. We saw in
Chapter 6 how we can choose to include smaller and smaller UOWs, as if
we are seeing fainter and fainter stars between the brighter stars in the
night sky. We must ask ‘Is this UOW too small to be worth bothering with?’
Our answer will be driven by whether we think there is mileage in
questioning its reason for existence.

Deleting designed UOWs

Knowing which UOWs are essential and which are designed, we now
examine each designed UOW and ask ‘Are we happy with this designed
UOW as the way of achieving our goal?’, or ‘What happens if we do away
with this UOW? What could we do to achieve the same goal but without
incurring the work?’

This sort of questioning makes us realize that Invoice is not the only way
of getting payment from a customer: we could simply require them to pay
electronically into our account against the delivery note when the goods
arrive. Instead of batching delivery requests and treating a batch as a
UOW, doing all the deliveries in the batch together, what would happen if
we simply dealt with each delivery when it arrived?

Outsourcing and insourcing UOWs

We can also ask ‘Would this UOW be more cheaply/quickly provided by
someone else as a service to us?’ — the classic outsourcing question. If we
have let the boundary of our process architecture cross into our supplier’s
domain, we can ask the opposite question: “This UOW that we currently
get from an outside service, could we do it more cheaply/quickly if we did
it ourselves?’ — the classic insourcing question.

UOWs are precisely the things that we can consider out/insourcing.
Roughly speaking, if we decide to outsource a UOW, its corresponding CP,
CMP and CSP all go to the outsourcing company. If we insource a UOW,
we must take those three processes back.

Task force or service function?

In Chapter 4, we saw the difference between a UOW that is provided by a
service and one that is provided by a task force. Suppose we run a product
company. For each product we prepare a user manual which needs to be
printed. Clearly, User Manual Print Run is a UOW which will have a CP
and a CMP. We now have a choice.

Analysing for process improvement

We can set up a group that will do manual printing as a service. This
group will operate the processes Do a User Manual Print Run and Manage
the flow of User Manual Print Runs. We shall demand that any product
team that needs a print run for its user manual must use that service. Our
goal is to make cost savings by having one set of facilities dedicated to
printing manuals. But it does mean that a product team must knock on the
door of Manage the flow of User Manual Print Runs and ask for a print
run, and then take its turn in the queue.

An alternative is to allow each product team to arrange its own printing.
It must have its own Do a User Manual Print Run and Manage the flow of
User Manual Print Runs. The case management is probably nil. The team
must set up a task force to do the printing. It does not need to join a queue.
But it does have to solve the problem of facilities itself, perhaps by going to
a local print shop or perhaps by setting up and staffing its own facilities.
Our goal is to stop the printing of manuals becoming a bottleneck in
getting products onto the market, and we are prepared to pay some extra
for that. In essence, we are building a process architecture in which those
that use the outputs of a process operate that process — a classic re-
engineering strategy.

Asking this question — shared service or not? — becomes very easy with a
Riva process architecture.

KEY POINTS

Using EBEs, we draw a boundary round our ‘organization’ to include just
the areas where we think change is necessary.

Starting with those EBEs we prepare a process architecture.

We examine designed UOWs and ask if we are happy to continue with
them in the future.

Task force and service functions are interchangeable.

We judge a UOW ‘too small’ for the process architecture if we are content
to leave how it is handled out of the study.

PREPARING A PROCESS MODEL FOR ANALYSIS

There is no single way to prepare an as-is process model as a basis for
analysing an individual process. Instead we have several options.

Our first model should be a concrete model. ‘This is what we do.” “These
are the mechanisms we use.” ‘This is what happens on the ground.” As we
prepare the model we shall see the problems, some staring us in the face.
Above all we need an honest model. We want to see it as it is, warts and all.
In fact it’s the warts we are looking for. We do not want a cleaned-up
version.

We might then choose to derive an abstract version from the concrete
model: ‘This is what we are trying to do.” Comparison with the concrete

273

Business Process Management

model will give us further messages. The convolutions of the process on
the ground will be all the more apparent when we compare it with the
simple thing we are trying to achieve.

If we plan to take a quantitative view of the process, we shall need details
about the duration of the individual actions and interactions and about the
amounts of resource they use: people and people’s time, quantities of
input materials and any other resources needed. In some cases we might
already have this information from measurement, or we can estimate it. If
we find a significant spread in the values we measure, we might find it
useful to record that spread in some way: perhaps a sketch graph of the
probability or something along the lines of ‘It normally takes two to three
days, never less than one and in rare circumstances up to six.” Once again
we simply annotate the action or interaction on the RAD with whatever
information we wish to keep.

We want to know where people don’t use the prescribed process and
why they don’t; we want to know where the workarounds have become
necessary and perhaps even institutionalized; we want to know where
rework has become a way of life; we want to know where the big hold-ups
occur and why ... all the dirt. This is one of the reasons it can be important
to exclude managers: we want a safe environment in which the unpleasant
facts can emerge.

ANALYSING THE PROCESS MODEL

274

If a process is in trouble or inefficient, the symptoms will often be
recognized and understood by its actors. No process model can of itself
provide the answer to a process problem: it can only act as a sort of
searchlight on the process. The purpose of the process model must be to
reveal: to reveal the process, the roots of its problems, and potential ways
of attacking the trouble. Sometimes a RAD can reveal the nature of the
problem and suggest a solution very quickly; something in the RAD is like a
flashing light saying ‘Here’s your problem.’ In other situations, revelation
comes more slowly, perhaps as the right — revealing — perspective is homed
in on.

We shall want to analyse the process from two points of view: qualitative
and quantitative. To set the scene for a description of the sorts of
quantitative and qualitative analysis that are possible on a RAD, let’s first
look at the different styles of process improvement that are possible.

There are four ways in which we can improve matters in a process:

e by ‘point-wise’ improvements to individual actions or interactions;
e by ‘flow-wise’ improvements;
e by restructuring roles;

e by realigning the organizational structure and the process structure.

Analysing for process improvement

In any given BPR or TQM programme, some mixture of these will be used.
The first three are generally the domain of the TQM disciplines,
concentrating on incremental change and incremental improvement; the
last two are where BPR looks for radical change, in addition to the
architectural level we looked at earlier in this chapter.

We take these in turn before considering the sorts of analysis of a RAD
that would lead us to answers at these four different levels. It is also worth
reminding ourselves once again that which of these levels we want to
consider will very much determine the perspectives — and hence the RADs
- we elicit and draw.

Making point-wise improvements

This is the finest level of granularity in process improvement. Here we are
concerned with increasing the efficiency (use of resources) or effectiveness
(reliability and quality of result) of individual actions in the process.

We might choose to help the individual carry out an individual action by
giving them tools to do their work. In an office environment, helping the
individual to do their work increasingly means using information
technology with personal productivity tools such as spreadsheets,
organizers, and word processors for example. We might improve the way
that interactions are carried out by providing email, better-equipped
meeting rooms, videoconferencing facilities, online discussion groups, or
even an arbitration service. Which actions and interactions we choose to
concentrate on when searching for point-wise improvements depends on
where we are seeking the benefits of improvement.

Reducing overall cost

Any action consumes resources and some interactions do too. Suppose our
concern is to optimize our process in its use of resources and hence its
cost, and suppose we have annotated the RAD with the resource usage of
each action and interaction. There are some straightforward analyses that
can be carried out on a RAD:

e Work on the big hits first. Look at each action and interaction in turn
to see which have significant resource usage and which therefore
might yield the biggest savings.

e Rework equals waste. Look for case refinements concerned with
checking for poor quality. Look at the frequency with which the thread
that deals with faulty material or errors in previous work is followed.
Trace back through the process and identify where that fault is
introduced. What can be done in that action to reduce the likelihood
of poor quality? And can the fault be detected earlier in the process so
that the cost of rework is reduced? These are all traditional TQM-style
questions which the RAD can help us answer.

e Duplication equals waste. Do different roles do the same thing?

275

Business Process Management

276

e Look for opportunities for error. Remove them.

e Examine the potential impact of supplier inputs. Poor quality will
mean increased cost to fix. See what can be done to improve them.

If you are familiar with activity networks for planning purposes, you will
know that one of the important ideas when working with them is the
critical path, that sequence of activities whose total duration is the
duration of the process. If an action on the critical path takes ten days
longer then the whole process takes ten days longer. The critical path
determines the overall duration of the process. We saw above how a RAD
can be annotated with the duration of each action and interaction. It can
be a simple manual activity to find the critical path. The presence of loops
in our process makes the situation more complicated of course, but the
principle remains. In complex cases, assuming the loops can be
compressed or ignored and all but the longest thread on each case
refinement discarded, the (reduced) RAD can be transferred to a
traditional project planning tool which will find the critical path
automatically.

Actions - especially those on the critical path — can be externally
focused, i.e. focused on the customer of the process; or they can be
internally focused, i.e. supporting some internal function that is not
directly relevant to delivery to the customer. We can go through the RAD
classifying each process element (action or interaction) under one of three
headings:

e It delivers value directly to the client of the process (mark these in
green).

e It delivers value only to the organization: internal reports, measure-
ment, delegation, approval etc (mark these in blue).

e It represents the existence of waste in some form: quality control,
handling exceptions, correcting mistakes, apologizing etc (mark these
in red).

Ideally, only green process elements should be on the critical path. Blue
elements should be moved off the critical path if necessary. Red elements
need to be eliminated, of course, though this will require change to the
other parts of the process to make it right-first-time.

Shortening cycle time

All actions and interactions take time. We might be seeking a reduced
time-to-process for an individual case: we want to get the result — the
service or the product - to the customer as quickly as possible (this might
be different from optimizing the throughput of an individual worker).
Critical Path Analysis (CPA) will be a key tool here:

e Look at each action and interaction on the critical path. If we can
reduce the duration of any of those we shall, by definition, reduce the

Analysing for process improvement

duration of the whole process (up to the point, of course, where
another path through the process becomes the critical path).

e Look for the actions and interactions on the critical path whose
duration has the greatest variation. In some situations, the perceived
quality of a service can be increased as much by making the service
reliably of a certain duration, as by making it shorter. ‘T don’t mind if it
takes three days providing I can be sure it doesn’t take any more.’

This works quite well except for situations where the process has loops or
repeated action in it, or threads that are only traversed under some
circumstances, for instance for rework. Standard project planning tools
cannot deal with loops and case refinements, so we must remove them
first if we intend using such tools. We can do that in one of two ways:

e By adding some ‘overhead’ to the part of the process that, on
occasions, needs to be redone.
Suppose we have a reviewing cycle that is repeated until the thing
being reviewed — a document say — is deemed acceptable. We might,
for the purposes of CPA, simply assume that the reviewing cycle is
always done twice and replace the loop by two reviewing threads in
sequence. Or we might collapse the cycle into a single action.

e By treating alternative paths in some proportional way.
Suppose we are processing forms and suppose type A forms take six
days while type B forms take twelve days. About two-thirds of the
forms are type A. We might say that the processing of type A and B
forms takes eight days on average, thereby removing the case
refinement.

This is not very satisfactory. We would prefer to leave the full process
structure in place and deal with it intact with loops and alternative threads.
The quantitative analysis approach of System Dynamics can help here (see
for instance Roberts et al., 1983). In System Dynamics, a process is seen as a
set of ‘flows’ of material between ‘stocks’. The flows form a network which
can include feedback loops and alternative paths for materials. PC-based
tools for animating such models allow the flow rates to be specified as
formulae and, in particular, to be made dependent on each other, on stock
levels, on external variables, on the passage of time, and on the time of year
or time of day; those relationships can involve statistical probabilities, so
we end up with a model that can be animated, allowing us to determine the
cycle time as a probability distribution itself: a much richer representation,
especially if we are trying to understand the variability of the time a process
takes. Such a model also allows the process’s long-term behaviour to be
explored: ‘Is the process stable over time?’, ‘What happens to the
throughput and cycle time over the seasonal rush?’

A RAD can be converted into a System Dynamics model by turning
states into stocks, and actions and interactions into flows. Case refine-

277

Business Process Management

278

ments become split flows whose rates sum to one, whilst part refinements
become joint flows in which the material is replicated on each flow. In
practice, the RAD must be greatly simplified first as it contains a great deal
of detail that does not need to be carried into the quantitative model.

Discrete simulation models permit similar quantitative representation of
a process in terms of flows of ‘stuff’ from one action to another, but that
stuff now takes the form of discrete objects with attached properties which
can be handled differently by an action according to their attributes: green
widgets are packaged in tens, red widgets in twenties.

To complete a quantitative model we will generally need to collect
information about other ‘influencing factors’ that affect the quantitative
behaviour of the process such as:

e the rate at which cases arrive for processing;

e the time of year (the rate at which work arrives might be seasonal);
o staff morale, which in turn might affect ...

o staff productivity;

e the numbers of staff available to carry out different actions;

e the availability of tools, machinery and other resources needed;

e consumer confidence;

e interest rates;

e weather patterns;

e population movements.

We can start to see that a quantitative model deals with factors which are
strictly outside the sort of model we have prepared with Riva. Moreover,
experience has shown that a quantitative model is most often beneficial if
it is kept at a fairly high level. So we should not expect to find quantitative
solutions from a qualitative model, nor qualitative solutions from a
quantitative model. Whilst there is some overlap between, say, a RAD and
a System Dynamics model, we are better off thinking of them as
complementary tools, each with its own things to tell us. That said, a
process architecture can be a better starting point for a Systems Dynamics
model as it operates at a more appropriate level than a RAD.

Making flow-wise improvements

So much for dealing with individual actions, interactions and decisions.
Given a set of roles and responsibilities, how can we improve the flow
through the process? What changes can we make to the order of actions
and interactions within a role in order to reduce the overall case
processing time, or reduce resource requirements?

Analysing for process improvement

Increasing parallelism/concurrency

One obvious approach to reducing the overall elapsed time that it takes to
process a case is to increase the overlap of activity, especially where this
reduces the length of the critical path. This is an approach well known to
those who plan projects using activity networks.

To reduce the overall elapsed time of a project, the planner looks for the
critical path through the project and looks for ways to increase the amount
of concurrent activity, so that actions that were once done sequentially are
now done in parallel. The RAD equivalent is to move from the process
fragment on the left-hand side of Figure 10.1 to that on the right-hand side.

FIGURE 10.1 Increasing parallelism in a role’s actions

The assumption is of course that B does not depend on A and that there
are actors available to do A and B concurrently.

The effect of this is to change the elapsed time of this fragment from the
sum of the times it takes to do A and B to the maximum of those two times.

Our inspection of the critical path might suggest that there is no need for
B to be on it at all and moving it off will be our immediate response.

It is a good discipline to ask ‘Do we really have to do these things in
sequence? whenever we see more than two black boxes in a row.

Applying the 80:20 rule — from generalists to specialists

Does every case that goes through a process need to undergo the same
processing? Does every purchase order need to be seen by the Finance
Director? Could we limit the ones needing the FD’s approval to those over
a certain value? If we can do this, we can reduce the average time it takes
for a case to be processed, if not the maximum. It might look as though we
are complicating the process, and indeed we are, but the effect can be
positive, assuming that the extra decision-making requires very little time.
We might replace the top process fragment in Figure 10.2 by the bottom
fragment.

We can take this further. Rather than routing both simple and complex
cases through the same case workers, thereby requiring all case workers to
have the same high level of skill so that they are able to handle any case of
any degree of difficulty, we can consider filtering out difficult cases at

279

Business Process Management

280

Purchase Order
Processing v Finance Director

éGet purchase approval i]

Purchase Order
Processing

v Finance Director
Purchase >£1,000?
Get purchase approval

FIGURE 10.2 Complicating a process for improved average speed

some point during their processing and passing them to a smaller number
of expert personnel. The personnel who handle the run-of-the-mill cases
no longer have to have the same degree of skill and could therefore be a
less expensive resource. Once again the process becomes slightly more
complex to incorporate the filtering, but the benefits could outweigh the
costs. The equivalent in RAD terms is shown in Figure 10.3.

As ever, we can also ask the opposite question: rather than having
specialists, and filtering mechanisms and handoffs to serve them, can we
not have generalists who offer a one-stop-shop?

Planning for success

‘Planning for success’ is a technique that we can use where shortening
elapsed time is of paramount importance and where we can countenance
wasting resource if the potential time gains are great enough. A product
development process is a typical example. Getting to the marketplace
earlier can mean increased product life and earlier revenue flow. A
business might consider the possibility of doing work that has to be thrown
away if development is abandoned, if it means it can get the product to the
marketplace earlier in the cases where development is successful. A

Analysing for process improvement

Normal-case clerk

\

Check case against criteria
| no yes Difficult-case clerk

Difficult case?
|
Handle straighforward case Hand over processing

L / Handle difficult case

FIGURE 10.3 Splitting cases by difficulty

pharmaceutical drug company might well build a production plant for a
new drug before they have obtained regulatory approval to sell it.
Suppose that the ‘sensible’ way of doing things is:

1. Do action A.
2. Decide whether it is worth continuing.

3. Ifitis, do action B and continue with the case; otherwise abandon
the case.

If we decide at step 2 that it is not worth continuing with the product, we
have not wasted effort doing action B to no avail. The time it takes to get
through this is, of course, the sum of the time to do action A, the time to
make the decision (typically small in comparison) and the time to do
action B.

If we plan for success, we start actions A and B at the same time. When A
finishes we make the decision. If the decision is ‘go’ we let B continue,
otherwise we chop B. This is equivalent to replacing the left-hand fragment
in Figure 10.4 by the right-hand fragment. (Remember that an action can

Do A
Do A Do B

Decide if worth continuing
Decide if worth continuing
no yes
Worth continuing? no yes
Worth continuing?
Process can be stopped Do B o .
Abort B if still running

=

Process can be stopped

FIGURE 10.4 Planning for success

281

Business Process Management

282

be terminated for a number of reasons: in this case either B finishes
naturally because it was allowed to run to completion, or it was aborted.
How we proceed at the end of the part refinement depends on whether B
was aborted or not.)

The upside of this change is that whenever the decision is ‘go’, we save
the elapsed time of the shorter of doing action A and doing action B - we
get to market that much faster. The downside is, of course, that, whenever
the decision is ‘no go’, we have wasted whatever has by that time been
spent doing B. Whether the upside is considered bigger than the downside
is clearly going to change from one situation to the next, but the RAD
provides a way of exploring the possibility.

The pharmaceutical industry offers many examples of the potential
benefits of planning for success. Each extra day that a successful drug is on
the market can mean a considerable amount on the bottom line; this can
justify risking wasted effort on actions that prove to be unnecessary.

Checking for coherent flow of ‘stuff’

We can annotate the actions and interactions in a process model with the
‘stuff’ — materials or information — they need and the ‘stuff’ they produce
(dare I say their inputs and outputs). Given that annotation, we can check
that the flow through the process is coherent, i.e. that stuff gets around the
process in one way or another, from the roles that produce it to the roles
that use it. It is not unusual for the workarounds that we find in a process
to be there simply to cope with the inadequacies of the formal process,
when it comes to moving stuff between the roles. “‘Why is that interaction
there? Well, I normally end up going back to the originator because, for
some reason, the information asked for in section 5 of the report is rarely
enough for me to do my bit.” Those workarounds, as is often the case, give
us clues for improvement of the process.

I've lost count of the number of times that someone in a process
modelling workshop has said ‘I always wondered why you sent me that
stuff — I've always binned it.” With any luck they will then say something
like ‘If it came with the summary sheet, it would save me having to
reconstitute the figures myself every time, which is all I want — can you do
that easily?’

We can ask such questions as:

e Is anything generated but never used?
e Are all received grams used by the receiving role?
e Is all stuff needed generated?

o Is all stuff generated before it is needed?

Analysing for process improvement

Catching faults earlier

If someone makes a mistake somewhere in the process it might not be
found until later on, and then correcting can involve unwinding things and
tracing back to the source to get the fault corrected — complications in the
process and delays in the processing.

Earlier fault detection can reduce the likelihood of faults getting through
to later stages and can reduce the cost of correcting them. We can check
the RAD for places where faults are detected and see if the detection can be
moved to an earlier point, nearer the source.

Look for iteration, where a passage of process is repeated until
something is right, or of the desired quality. See if the number of iterations
can be reduced by inserting more up-front preparatory work, for instance.

KEY POINTS

Examine the critical path.

Look for places where there is rework, workarounds, or hold-ups.
Consider ways to improve the effectiveness and efficiency of individual
actions and interactions.

Consider ways to shorten timescales by adjusting the flow of activity
within roles.

Look for ways of catching faults earlier.

Restructuring roles and interactions

As we map the process we reveal a structure that is the result of perhaps
decades of change in people’s job descriptions, in the way the organization
is structured, in the business of the organization, in how the organization
likes to treat its staff, in the principles the organization holds to, in the use
of technology, in unionization ... a host of factors for change. The precise
content of each role - particularly where it is defined as a post or group -
will not be wholly rational if we view it dispassionately. But from our role-
centred RADs we can look for ways of rationalizing the structure of roles, in
particular by moving actions between roles, combining roles, and so on.
We might explicitly try to reduce the number of interactions that are
necessary to make a process work, and this would typically mean
restructuring the roles and what they do.

In summary, the RAD becomes a way of challenging both the culture
and the allocation of roles and responsibilities (both fixed and dynamic) to
different roles in the organization.

How can we detect these sorts of possibilities? With abstract models.

The process as pizza

If we could design our process without worrying about who was to do
what, or how the process would work with our particular organizational

283

Business Process Management

284

structure, we could imagine coming up with the perfect process in the
form of a nice circular pizza. It would be a tidy, simple structure with only
the absolute essentials. But in real life we have to take that nice circular
pizza and divide it up between the different people we employ in the
different parts of the organization. When we cut up the pizza and pull the
sections apart we find we have a mess of strands of mozzarella on our
hands. The more pieces we cut, the more the strands.

Each strand is an interaction. It does not add value. It is only there
because we have cut the pizza that way. And the obvious observation is
that by cutting the pizza another way - by changing our organization so
that the pizza pieces are fewer when it is divided — we can simplify things
and have less of a mess.

To understand that key relationship between the process and the
organization — hierarchies, management structures, job titles etc — we need
to use concrete and abstract process models.

Suppose we run our as-is modelling session using a concrete model. We
are in effect showing how the many responsibilities in the process are
divided up amongst the posts and departments. Division induces
interactions. Now suppose we examine the concrete model and draw the
equivalent abstract model, where we only concern ourselves with intent
and we ignore mechanisms. The difference between the two models will
point up where the real-world partitioning into posts and departments has
unnecessarily complicated the simple — and ‘natural’ - division of
responsibility.

Moving responsibilities between roles to reduce handoffs

Take as an example the process Purchase an item of capital equipment.
We have found out that the CEO is asked by the Purchasing Manager to
approve purchase orders. To label the role CEO as shown in the top part of
Figure 10.5 would give a correct model of the concrete process, of the ways
things are actually done.

But of course, the CEO box on the RAD does not capture everything done
by the CEO, only how the CEO contributes to the process under
consideration. We might then look at that contribution and try to
characterize it in some way. We might decide that what the CEO is
actually doing is giving approval on behalf of the Board, taking into
account the cash position of the company and the priorities for contending
calls on that cash; the CEO has access to the knowledge of what else is
going on in the company and the priorities necessary to make the decision.
It just so happens that the CEO is the post currently designated to make
that decision. But in our desire to speed up decision-making we might be
prepared to move that responsibility around.

By concentrating on the responsibility — the abstract role Approving
Large Cash Outflow in the bottom part of Figure 10.5 — rather than the
current holder of that responsibility, we allow ourselves to think more

Analysing for process improvement

Purchasing Manager /

CEO V

%Get purchase approval [i:'

Purchase Order
Processing v N Approving Large
w Cash Outflow

%Get purchase approval [i]

FIGURE 10.5 Can we move this responsibility?

radically about whether, for instance, any Director could undertake the
decision if the necessary background information were available to them
too. This gives us a candidate for restructuring. We might end up with
something like Figure 10.6 in which we have also allowed the Purchasing

Purchasing
Manager v N
oo B yes Director ¥/ n
Purchase > £1,000? /

Get requisite approval
from an available Director

FIGURE 10.6 Fewer and easier handoffs

Manager to commit to purchase orders up to £1,000 without getting
approval.

Let’s take a look at what happens in the Reception area of the building. It
might be tempting to regard the work of the staff in Reception as a process
in itself: there are clearly some people there doing things during the day,
the same people in the same area of the building. But this would be to fall
into the trap of associating a group of people with a process. In fact, of

285

Business Process Management

286

course, the Reception staff undertake a variety of roles that contribute to a
variety of processes in the company. For example, they contribute to our
Purchase something process by acting as Goods Inwards for certain sorts
of goods, receiving deliveries, signing for them, determining who in the
company the delivery was for, notifying them, matching delivery with the
purchase order, and so on. They also contribute to our marketing
processes insofar as they greet visitors and operate the telephone
switchboard. Moreover, they contribute to the training processes in the
company by gathering the names of those wishing to attend internal
seminars, by arranging food, AV equipment, rooms etc. We might label
these roles as Small goods receiving, Visitor greeting, Telephone answering
and Seminar logistics handling. Doing this makes it easier for us to see how
our mapping of such roles onto functions — Reception - can be analysed
and perhaps changed.
Let’s generalize this. There are basically four steps:

1. Draw up the as-is process using concrete roles.

We make the roles match the actual posts or functional units that
exist in the organization. We are going to assume that the
organization will remain the same - the same posts and functional
units — but that we want to explore how we can divide the process
over them in a way that reduces the number of mozzarella
interactions — handoffs — that are necessary. Remember that every
handoff is a potential waste of resource, a potential delay, and a
potential buffer and conflict point.

2. Deduce the abstract roles underlying the process.

The actions and decisions have, over time and for a variety of
reasons, ended up being the responsibility of the various posts and
functional units shown. Once we have the as-is concrete model, we
look for the abstract roles within the process. We can then either
redraw the process in its fully abstract form, or simply mark them on
the as-is RAD by drawing lines around actions and decisions,
grouping them into abstract roles.

3. Identify ways of re-allocating actions and decisions in the abstract
roles to the concrete roles.
We decide where actions and decisions could be moved between
roles in order to reduce the number of interactions necessary. This is
not a mechanical process: it requires experimentation and it can also
require the organization to rethink some of its policies, particularly
in areas to do with delegation.

4. Define the new concrete roles.
Depending on the criteria we are using to choose the ‘best’ re-
allocation of actions and decisions, we leave ourselves with a new,
restructured process in which we might still have the same roles as
we started out with, but now with their responsibilities changed.

Analysing for process improvement

Alternatively, we might have created new posts that combine
responsibilities more efficiently.

The key to all this is that the concrete and abstract models are helping us
to look at the relationship between the process and the organization.

Relaxing/strengthening approval and authorization

A RAD is excellent for revealing the approval and authorization mechan-
isms that the organization has put in place. They can all be questioned,
with a view to either strengthening the mechanism or relaxing it. ‘Does the
Finance Director have to see all purchase requisitions?’, ‘Would it be better
to introduce the requirement for senior management approval at this
point, rather than waiting till further down the process?’, ‘Should this sort
of situation be escalated to a higher management level than it is now?’
We can recognize five levels of relationship or delegation between
manager and managed (see the excellent book by Oncken, 1987):

e Wait until you are told.

e Ask what to do.

e Recommend what should be done.

e Act but advise at once.

e Act on your own, reporting routinely.

We can ask what the current interactions tell us about the current
relationships, and ask whether they are over- or under-strict.

Specialists to generalists — the ‘case worker’

When we divide a single task over two people, we generate a need for
interaction between them across which the task will flow. When a case or
gram moves from one role to another via that interaction, we will often
find a buffer. If the respective roles process their own cases — UOWs —
according to their own cycles, some way is needed of ‘decoupling’ the
cycles at the point where they intersect. That’s a buffer — it’s what happens
in a CMP: requests arrive and go into the planning melting pot, possibly to
be batched with others, possibly to be put at the back of the queue.
Concretely, it can be folders accumulating in an in-tray, unread messages
in someone’s electronic mailbox, or all the other ways we have of piling up
work to be done. Buffers introduce delays, break the flow of processing,
and make tracking and monitoring difficult.

The flow of work for a single case can appear very simple, perhaps of the
kind shown in the left-hand process fragment in Figure 10.7. Apparently,
each role makes its contribution to the processing of a case and passes it
on to the next role down the production line — rather like a bucket chain at
a fire: each person in the chain turns to their left, grabs the bucket and
swings it to their right. Provided everyone is synchronized it works fine.
The bucket (i.e. the case) moves smoothly down the chain. Most CPs are

287

Business Process Management

288

Hopper

Case Worker

n

Hop

|
Skip
|

J
Lander |“mp

Land

>

Hop

FIGURE 10.7 From specialist stream to case worker

not like this; the roles take different or varying amounts of time with their
contributions and different numbers of people are put in to deal with each
stage to even out the flow. In other words, we end up introducing case
management at each interaction and each CMP introduces its own buffer
to smooth the flow: as a result buckets pile up between certain individuals
and some people then hand on three buckets at a time.

As each role (often a department) tries to optimize its performance, so
the overall flow can start to become uneven as the compartmentalization
works against optimization of the overall process. Many traditional
production-line industries have, for many reasons including motivation,
moved away from the bucket chain approach and introduced ‘case
workers’” who take responsibility for the entire handling of a case, as
suggested by the right-hand side of Figure 10.7. In automobile manu-
facture for instance, a production ‘cell’ might take a car through from
chassis to final inspection, working with it right down the line.

Is the problem with the case or the case management?

A CP itself might run more or less well, but if the corresponding CMP is
ineffective - or even totally absent — then individual cases can conflict with
each other, priorities can be poorly understood and ineffective, and people
might have to make do to get by. One would expect to see ways of
resourcing individual cases, managing changes in the case load, handling
sudden changes in the priority of individual cases and changes in the
nature or content of individual cases. If these are not adequately dealt
with, there could be trouble.

Analysing for process improvement

That said, the word ‘adequately’ is an important one: it can also be the
situation that a CMP is too cumbersome and is unnecessarily bureaucratic.
The modelling will help us to decide whether things are under- or over-
managed.

Is everyone doing something useful?

In the most extreme cases, we might observe roles which have few or no
actions of their own and which seem to be only third parties in other
people’s interactions. These roles may be redundant, adding no value and
only slowing things up. I have seen a role which seemed to sit between two
organizational units and passed stuff between them. It was quite hard to
see what value was added en route and some hard questions were asked
about that role. Figure 10.8 suggests the sort of thing we might see.

A Useful? B

H

FIGURE 10.8 Is this intermediary role adding anything?

Analysing interactions — handolffs

The interactions in the process are there because our roles — organizational
units — need to collaborate, and the way we define our organization
determines the way the collaboration works: we get more or fewer
mozzarella strings. By looking at the interactions we can therefore get
some clues as to how the organization might or might not be getting in the
way of the process.

(Auramaiki eral., 1992) examines office communications using discourse
analysis, and its analysis of ‘illocutionary acts’ is a useful way of examining
interactions in RADs.

We can think of an office as a communication network which creates,
maintains, and fulfils commitments. In a RAD, commitments happen in
interactions, so we should find it useful to analyse these to see what sorts
of commitments are being made. (One interaction might involve several
separate commitments.) If we refer to the role that initiates the interaction

289

Business Process Management

290

as the ‘speaker’ and the other roles as the ‘hearers’, we can identify five
types of commitment:

e assertive — the speaker is noting an actual state of affairs;

e directive — the speaker is asking the hearer to do something;

e commissive — the speaker is committing to do something;

e declarative — the speaker is bringing about a new state of affairs;

e expressive — the speaker is expressing attitudes or feelings about the
state of affairs.

An interaction carrying an assertive commitment would be one in which
roles are being informed about the completion of some action: ‘The plan
has been issued,” ‘The invoice has been paid,” ‘The budget has been
finalized.” We can ask ‘Do the hearer roles really need to know? Is B
interested in the assertion?’

When the commitment is directive we would expect to see the hearer
role doing something as a result (or else why are they being told?), and at
some later point reporting back in an assertive commitment to the speaker
role, to confirm completion. We can check this: is the interaction Request
report on fault statisticc matched by a subsequent interaction Deliver
report on fault statistics in the other direction? We can also check that each
hearer is able to carry out the requested action (i.e. has the authority and
resources, knows what is to be done, and is willing to accept instruction
from the speaker). And finally, we can check that the speaker has the
authority to give these instructions.

When a speaker makes a commissive commitment (i.e. promises to do
something), there should be a later interaction in which the speaker makes
an assertive commitment to the hearer, confirming completion of the
promise. We can check that this interaction occurs: is the interaction Agree
to supply necessary resources matched by a subsequent interaction Confirm
necessary resources are available? And we can check that the speaker has
the authority to make the commitment in the first place.

An interaction carrying a declarative commitment might be hard to
distinguish from one carrying assertive commitment, but we would expect
in the declarative case that all the roles involved would see this interaction
as a trigger to get on with some new action: they already know what to do;
this interaction is giving them permission to proceed. We might find the
interaction Production can now start, or The specification can now be relied
upon, or Approval to proceed has been given. We can check whether all
roles know what to do.

(Expressive commitments are outside the sort of modelling we undertake
with RADs, so we shall not examine them further.)

In Chapter 2, we looked at how any interaction could be regarded as a
‘conversation for action’. Any interacting pair of roles in our process model
will be engaged in such a conversation, possibly several. We can use the

Analysing for process improvement

template in Figure 2.38 to analyse the relationship between two roles by
identifying the separate interactions and mapping their components onto
that framework. Are there conversation components that are missing? If so,
should they be present? If they aren’t, would the process be improved if
they were added?

Finally, we can ask the following general questions to test whether we
have the right interactions between roles and, possibly, whether we have
the right roles:

e Is there a pair of roles with a mass of fine interaction? This might
indicate a poor division of activity between the roles or a confusion
over objectives.

e Are there roles which have the same type of interaction with many
other roles? This might reveal a pervasive function that should be dealt
with separately.

e Is the concrete form taken by an interaction ‘long’ in some sense? It
might be inefficient.

e Does an interaction have a buffer in its concrete form? Buffers slow up
interactions. The existence of a buffer might reveal a designed UOW
and its CMP that we had not recognized before.

e Does all the checking, authorization, referring back, copying for
comment, input, or approval etc help in the achievement of goals?

KEY POINTS

Draw the as-is process using concrete roles.

Deduce the abstract roles underlying the process.

Identify ways of re-allocating actions and decisions in the abstract roles
to the concrete roles.

Examine the interaction structure to see what it tells us about the
division of responsibilities across concrete roles.

Consider restructuring roles to improve the interaction structure of the
process.

Check for buffers and the hidden UOWs whose flow they manage.

CASE STUDY 5

In organization Q, a sizable mechanism had evolved over the years to deal
with requests made to a service group in the organization. Dealing with
these requests — which involved making and delivering specialist goods to
a hard and fast timescale and specification — was a top priority for the
organization and hence for the service group. When the requesters said
‘Get these supplies to this location on this date,” it had to happen. To make
life that little bit more interesting the requesters were, for perfectly valid

291

Business Process Management

292

reasons, in the habit of changing the details of their orders at any time and
making new requests at short notice. Arms and legs were broken by the
service group to make sure the requests were correctly satisfied, and
invariably they were. But the stress was increasing and it was not clear that
the mechanism, or the people, could stand a strategic change in the
business that would lead to larger numbers of smaller requests. What was
to be done to reduce the stress? Point-wise improvement — increasing the
productivity of the actions required to make the supplies — was not the
issue. Some other solution had to be found.

We modelled both the CP (how an individual request or change to a
request was satisfied) and the CMP (how the stream of requests was
handled, prioritized and so forth).

The main issue was the fact that satisfying a request required
contributions from four main teams, each struggling to solve difficult
technical problems to fulfil its contribution. Each new request or change to
a request meant getting all four teams to rejig their schedules whilst
keeping all previous requesters happy.

In the old days, when life was slower, this ‘negotiation’ of changed
schedules could be dealt with by one of the regular meetings held by
different committees: there were four altogether, dealing with the
management of the process from the day-to-day tactical level to the
long-term strategic level. But as time pressures had increased people had
found that the formal process was too slow, and during the modelling of
the CMP we found many workarounds where people would try to sort out
a solution and then get it signed off at the next appropriate meeting. This
became evident from the RADs which showed, buried in a mass of
workarounds, the original four time-driven cycles. What the RADs also
revealed was a mass of bilateral interactions by which the four teams
attempted to negotiate changes to their separate schedules, outside the
formal meetings.

These insights into what was happening led the service group to look for
a new way of running the case management. What was needed first of all
was an event-driven process rather than a cycle-driven process: things
could no longer be held up until the next cycle — they had to be dealt with
as and when they came in. The need for a quick resolution was now the
norm not the exception. The UOW was not the Monthly meeting:. it was the
Request and the Change to a request. Indeed, the latter had not been
recognized at all and was treated as an irritation. Moreover, the negotiation
of schedules between the four teams needed to be made the responsibility
of a single new body (role) that would replace all those bilateral
interactions with a single negotiation, recognizing that many bilateral
negotiations led invariably to whirling around in circles ... and stress.

The change of process pattern and the introduction of a new role
simplified the case management considerably, resulting in less stress,

Analysing for process improvement

continued satisfaction of the requesters, and increased ability to handle
future workloads.

SUMMARY

Process architecture

Current
business

EBE analysis

process

to-be concrete as-is abstract : as-is concrete
abstraction
roles roles roles

to-be concrete as-is abstract 2 as-is concrete
s ") . abstraction . ;
interactions interactions interactions

to-be concrete as-is abstract : as-is concrete
. ; abstraction .
actions actions actions

FIGURE 10.9 The general scheme for process improvement

293

1 1 Designing a process

Covers the design of a new process architecture and new processes starting from a
blank sheet of paper.

INTRODUCTION

So far, we have been dealing with the situation where there is a process out
there and we want to unearth it, understand it, communicate it,
standardize it, analyse it, or improve it. Or several of those. In this chapter
we look at how we can use Riva in a greenfield situation where there are no
processes at all, or there are some processes and we want to add one or
more new ones. In some extreme cases we may have a process in place but
it is so awful we have decided not even to look at it and to replace it from
scratch.

For simplicity, we shall assume from here on that we have a truly
greenfield site. The other situations can be dealt with by appropriate
adjustments to the greenfield approach.

As with process improvement in Chapter 10, this is not a book about
running a process development programme, more a book about how
Riva’s concepts can be exploited in such a programme. So we shall touch
on the programme aspects but only to connect Riva into them. (For that
larger context, you might look at Burlton, 2001).

Here’s an overall plan of our process design project as it might appear in
the larger process programme:

1. Prepare a process architecture.

2. For each process we want to design:
(a) Set the ground rules for that process.
(b) Run a process design workshop.
(c) Validate the design.

3. Revisit the process architecture to ensure that the fit we decided on
at the outset has worked.

PREPARING THE PROCESS ARCHITECTURE

This should no longer be a surprise: whatever the situation, we shall start
with a process architecture. If we have a new organization — be it a
company or department or whatever — we shall go through the procedure

295

Business Process Management

described in Chapter 6: characterize the organization through its EBEs,
filter those down to UOWs, establish the dynamic ‘generates’ relationships
between the UOWs, translate the resulting UOW diagram into the first-cut
process architecture, and reduce that to give the second-cut process
architecture. Initially, there will be no designed UOWs and hence all the
processes — case, case management and case strategy — will be to do with
the things that are the essence of the new organization. As we start to
design those processes, we might decide to create new, designed UOWs
that will be part of the way we decide to do the business of the new
organization. These will invoke new CPs, CMPs and CSPs which we can
also design.

GETTING THE PROCESS DESIGN GROUND RULES IN PLACE

296

With the process architecture in hand, we can confidently work on each of
the processes. Of course, we can’t expect to knock them down one by one,
sequentially. But in what follows we shall assume that we are addressing
one process in isolation.

We must be certain we are headed in the right direction with the right
terms of reference. We shall ask the following questions:

o Are there any organizational givens, things we cannot change?
e What are the requirements for the process?
e What are the principles for the process?

To answer these we must question the relevant stakeholders: the process
owners, managers, customers and sponsors. How we ask them will be a
matter of choice: a workshop, a round-table meeting or separate
interviews, for instance. However we go about it, we must document the
ground rules we discover and get agreement — formal or informal as the
occasion demands - from those who matter.

Are there organizational givens?
Are there any bounds to our ability to change things? For example:

e Are we constrained by the current organizational structure?
Must the process work within the current organizational structure as it
is, with the current roles and responsibilities? Are existing roles and
responsibilities up for grabs? Are some roles fixed and others open to
change? Can we create new organizational units, posts and job titles?
e Does our IS or IT infrastructure impose constraints?
Are we restricted in what we can expect in the way of person-to-
person communications, support for workflow and job scheduling,
availability of information, or production and distribution of docu-
ments in all their forms?

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Designing a process

e What constraints do the regulators place on us?
Are there specific requirements for reporting from our processes? Are
there required levels of transparency? Which areas of activity must be
open to independent audit? Are there prescribed interactions with the
regulatory body? Are there things that must be approved or licensed
before we can proceed at certain points?

e Are there safety, security, or risk issues to be addressed?
Do we need independent roles with responsibility in these areas? What
interactions are prescribed for them? Are there prescribed procedures
that we must incorporate in our own processes? Are there prescribed
processes with which we must interact?

e Are there cultural norms that must be observed?
Are we an empowered or a controlled organization? What behaviours
do we expect from our staff and our managers that might steer us
towards certain styles of interaction or relationship?

What are the process requirements?

The process architecture proves itself useful again at this point. Simply by
chunking the organizational activity the way it does, it gives us a basic level of
chunking of the requirements on the organization across the processes. If a
process is called Handle a Regulatory Request, Produce a Product Batch,
Handle a Customer, Manage the flow of Products or Manage the flow of
Orders, we already have a clear focus. Modelling methods that allow
arbitrary decomposition leave us with arbitrary chunks and no clear focus.

I hesitate to suggest this, but isn’t this an ideal place to think in terms of
inputs and outputs? Can’t we simply express our requirements for the
process in terms of what goes in and what goes out?

Firstly, let’s remind ourselves that we are talking about designing CPs and
CMPs. A neat end-to-end process like a CP might suggest an input-output
approach. But you must admit that it is less likely to make sense for a
multithreaded thing like a CMP?

Well, possibly. I'll suspend my disbelief for a moment — I’'m happy to
concentrate first on the CP — the argument will be stronger there.

OK. Let’s take Handle a Regulatory Request as an example. It’s pretty clear
what the input is. What about Produce a Product Batch? We know from its
name what the output is. If you remember, we based our naming
convention that way. But I can imagine a whole pile of other things that
we shall require of a process that we would be hard-pressed to express in
terms of inputs or outputs. Here’s a few to be getting on with: Customer has
been notified that their complaint has been rejected; Management have been
informed of price; Batch is in regulated store correctly labelled; Marketing
are satisfied with the timing.

I see. It’s often not just the thing we want to identify - complaint rejection,
price information, management, batch, and so on - but its state.

297

Business Process Management

Tutor:

Pupil:
Tutor:

298

Exactly. By working with final states we can be more general, and we’re not
forced to contort everything into the straitjacket of outputs. We can make
the same case for working with initial states instead of inputs.

There is another danger we need to be careful of: that of writing process
design when we should be writing process requirements. For instance, if we
write ‘The customer must receive a letter of apology,” we might have made a
design decision: the apology will take the form of a letter.

You’re saying in effect that we need to work with an abstract model?

Yes, I am.

The requirements on a process

When we draw up the requirements for a process, we shall be looking at it
from several angles:

e The starting state.
What will be the state of affairs when the process starts? There might
be several possible starting places — triggers — and we shall need to
cover each; this is especially true of a CMP. We can think in terms of
how we would write the state description at the beginning of the
thread on the RAD, whether for a CP or a CMP:

e ‘Approved plan in hand.’

e ‘Customer call is switched to the appropriate desk.’

e ‘Specification for batch has been approved but resources not yet
allocated.’

e ‘Project definition available in Project Inception Document.’

e ‘A request has been received for a new clinical trial supply to be
made.’

e ‘A project has reported an overrun in budget.’

e Any actions required in the process.
Perhaps certain checks are required or certain quality controls must
be carried out:

e ‘All intermediate products must be tested for specified purity.’
e ‘The unit must be shown to have achieved greater than 99.9 per cent
reliability.’
e ‘All materials leaving the plant must be appropriately labelled.’
e Any business rules governing the process.

Perhaps certain financial oversight is required, or certain people must
be involved in certain decisions or actions. The relationship between a
CP and its CMP will appear here. And some rules are what we earlier
called ‘steady-state goals’. For instance:

‘Product Quality Assurance must approve all test plans.’
‘Divisional Management must be kept apprised of progress.’
‘Resources will be allocated by the Production Planning Team.’

[]
[]
[]
e ‘Marketing need to be satisfied with the timing.’

Designing a process

e ‘All pre-customer checks must be carried out by an independent
testing group.’

e ‘Any Type 5 expenditure must be approved by the Divisional
Director.’

e ‘All materials supporting the decision are to be retained.’

e ‘The Customer must be kept up to date at major milestones in the
progress of their application.’

e The required outcomes of the process.

For a CMP we can ask what the possible outcomes are for each of the
identified triggers. For a CP we can ask what state we want things to be
in when the case has been handled, i.e. the process has completed. We
might recognize several alternatives: success or failure, approved or
not approved or returned for rework, and so on. We might describe
those alternative states in terms of things that have been produced or
changed - but only if those things are necessary and of the essence.
We can think in terms of how we would write the state description
somewhere on the RAD:

e ‘Approved plan in hand, management informed of content, and
projects database updated accordingly.’

e ‘Customer complaint rejected.’

e ‘Batch of chemical in regulated store correctly labelled.’

e ‘Customer has agreed that their call has been sufficiently answered.’

What are the process principles?

The requirements we were looking at in the preceding section were quite
functional: the process must do this, that, and the other. But there can also
be requirements on the process that are more about what the process
should be like, how it should feel to use, how it should feel culturally, what
organizational norms it must conform to, and so on. These sorts of
requirements are also typical of an improvement situation: we know what
the process should do - we now want to change its feel.

Let’s take an example. A large organization with many thousands of
computer users had a large infrastructure services group, itself numbering
hundreds of staff. Running a company’s networks and computers is a
thankless task at the best of times: people are rarely satisfied with the PC
on the desk in front of them and the facilities behind it. This group was
going through a particularly bad patch and relationships with the user
community had reached a low. The perception was that the constant
battering from the user community had left the group with a defensiveness
that was not in the business’s interest, but that had become built into its
processes. If the relationship was to be improved, the processes had to be
redesigned to meet the expectations of customers better.

Getting to the root problem of the perception was hard. But a long
session with a group of users, using brainstorming and affinity diagram-
ming, allowed us to reduce the many gripes to a handful of failed

299

Business Process Management

300

expectations about the way that service request calls to the group were
handled. Turning these around, we were able to summarize a set of
process principles that would lead to more agreeable experiences for users
and that should therefore govern the process redesign. When you read
them, you will find them very obvious — but then these things always are:

e When I make a service call, don’t bounce me from person to person.

e When we discuss my requirements, set my expectations at a reason-
able level.

e Don’t say something to please me and, in the event, let me down
again.

e Be honest with me about timescales.

e Get back to me if you say you will.

These straightforward principles captured what was lacking in the
processes as they had ended up. We put them on the wall at the
subsequent process redesign sessions to guide the design ... but more of
that in a moment.

It need not be the customers of the process that want to see
improvement — we would expect management to look for it too, of course.
As another example, let me quote a large software development group
inside another multinational. A cultural move was under way to increase
responsibility-taking and proactive problem-solving, and to add a measure
of risk-taking. Existing processes were being redesigned. A workshop of
stakeholding managers, from within the development group and its
customers in the business, produced a set of principles that reflected the
changes that were sought:

e Commitments and commitment points are clear.
e Deliverables are clear.

e Responsibilities are clear (including those for the quality of all
deliverables).

e The process acknowledges and attacks risk and makes risk visible.
e There are clear and appropriate financial controls and responsibilities.

e There is clear, fair and unambiguous reporting.

Everything is change managed.
e It’s a collaborative process.
e Quality is central to our approach.

As a third example, I'll say a little about a project with a major charity that
was changing its administrative processes to take advantage of a new
software system being installed. The new system made possible more
streamlined processes, so the processes and system were designed in
parallel. The functional requirements for the system emerged quite
naturally as the design proceeded. As part of the preparatory work, the

Designing a process

more abstract requirements of the system and the process were identified
in sessions with both users (the administrative staff) and management.
They covered the need for confidentiality about cases (the system
administered grants to individuals in need), speed (grantees typically had
low life expectancy so a protracted grant approval process could prove
useless), and sensitivity (ensuring that, for instance, the process responded
appropriately if the intended grantee died before approval).

Process principles can — of course — conflict. If we have visited the
different stakeholders and asked them for their principles, we may easily
end up with conflicting pressures.

However we acquire them, these process principles are important enough
to be written in large red letters on sheets that are on the walls when the
process design workshop is run. Both during and after the workshop, it’s our
responsibility — as workshop leaders — to be constantly checking that the
design is in line with the principles. The principle ‘When I make a service
call, don’t bounce me from person to person’ had clear implications for the
way that the roles involved interacted: the person picking up the original call
would not be able to relinquish responsibility for it by passing it off to
someone else; they would have to remain in the loop and in control. ‘Get
back to me if you say you will' meant having reliable prompts on the
supporting call management system which were acted on. An estimate of
time-to-fix would be given to a caller only after enough investigative work
had been done and the estimate had been checked: wild guesses were not
enough. If an estimate for completion was likely to be too unreliable then
the response would be staged and an estimate given for completion of just
the first stage, which might be a visit to the caller’s desk, for instance.

KEY POINTS

The process architecture tells us what processes must be designed for a
new (part of an) organization.

Before we start the design of a process we must:

e list the organizational givens, the constraints on our design freedom;

e list the principles that are to govern the design;

e list the requirements that the process must fulfil, reconciling conflicts
where they arise between different stakeholders in the process.

Requirements for the process should be expressed in terms of:
e its starting state(s);

e any activities that must take place;
e any business rules governing it;

e the required outcome(s).

301

Business Process Management

THE PROCESS DESIGN PROCESS

302

We are designing a process from scratch. We know from the process
architecture which process we are designing. We have established the
constraints, principles, and requirements that apply. It's time to run a
design workshop.

Preparing for the process workshop
The process architecture tells us the basic boundary of the process:

e Ifitis a CP, the initial state will be some variation on Case in hand and
there will be one or more potential outcomes, presumably at least one
of which will correspond to ‘success’.

e Ifitis a CMP, we have a list of candidate triggers from Chapter 5. Each
of these will have one or more appropriate outcomes.

o If it is a CP, we know which UOWs are in turn generated and hence
which CMPs must be approached to get cases of those UOWs under
way.

As there is no existing process, we do not do any prior briefing. It will be
enough to get the ground rules in place as described above. We can now
run a process workshop along the lines of the generic one described in
Chapter 8 — but with some major adjustments for this greenfield situation.
The sequence of steps will vary from situation to situation but the
following will give some structure to the event:

e From the outset we have flipchart sheets on the wall with all the key
inputs:

the (relevant part of the) process architecture;
the name of the process;

a list of candidate triggers;

one or more potential outcomes;
relationships with other processes;

the organizational givens;

the process requirements;

the process principles.

e Checking the list of organizational givens on the wall, rather than
brainstorming existing roles, we brainstorm the necessary areas of
responsibility — abstract roles — corresponding to:

mandatory or specialized skill sets;

mandatory approval;

mandatory oversight;

mandatory review;

restrictions imposed by IT;

any activities that must be carried out independently.

Designing a process

e Checking the list of process principles on the wall, we brainstorm
further areas of responsibility — abstract roles — corresponding to:

e desired skill sets;
e desired approval;
e desired oversight;
e desired review.

e We brainstorm basic actions within the process, allocating them to
abstract roles and noting any ordering that is immediately apparent.

e For a CP, we brainstorm the sorts of interactions we expect the
process to have with its CMP.

e We identify business-derived decisions and alternatives.

e We gradually lace together the abstract roles with interactions that
support the collaborative content. Our first model will be an abstract
model.

e We use the process principles to validate the design.
e We check that all the requirements have been dealt with.
e We check that the organizational givens have not been contradicted.

e If appropriate, we then decide how we want to implement the process
in terms of concrete roles, concrete mechanisms for interactions, and
so on. In going from the abstract to the concrete —i.e. as we cut up the
pizza — we shall find ourselves creating new interactions between the
concrete roles.

e We identify how existing or potential information technology solu-
tions could turn abstract things into concrete. (Tutor: That sounds
dangerous, doesn’t it?)

Finally, there is a thread that we left dangling in Chapter 2 and which it is
now time to tie off. Suppose we are designing for a steady-state goal such
as ‘Bank balance is always positive’. We must ask ‘What might change the
bank balance?’ and ensure that only actions that keep the bank balance
positive are possible. This might mean, for instance, only allowing
spending if a prior check has shown that there are sufficient funds to
meet the cost.

Slightly trickier, we might require that ‘Marketing are always aware of
the status of new product developments’. We perhaps recognize that there
will be periods when Marketing haven’'t heard some detail of a new
development and that the best we can do is to minimize those periods. Are
there actions or interactions in place to restore that part of the state after
process elements that might have changed it? Where an action can leave
Marketing out of date, we can ensure there is an immediate interaction to
bring them up to date.

303

Business Process Management

Process architecture

Proposed

business

areas of

concrete roles izati abstract roles gt
organizational responsibility

structures,
cultural

choices,
technological
opportunities

interactions
abstract necessitated by

interactions separation of

abstract roles

concrete
interactions

FIGURE 11.1 The general scheme for process design

SUMMARY
Pupil: You haven’t exactly provided a recipe for designing a process.
Tutor: No, and I don’t think it’s possible to write one. But we have listed what we

need to do to generate the information we need to do a design. Design is not
a mechanical process - it is all about invention and thinking - it’s above all a
creative process. The best we can hope to do is to identify what will help us
get everything on the table before we start, and check that what we create
meets the requirements.

Pupil: I'm also nervous about the fact that we haven’t touched on issues such as
whether or not the design is acceptable to management, whether it can
really be supported by the IT infrastructure, whether it would actually work,
whether it would work fast enough.

Tutor: You're right to be concerned about these things, but we did say that all those
process programme issues are for other books and other tutors ...

304

1 2 Processes and information
systems

Covers the role of the approach in constructing an IS strateqy for an organisation,
and in the design of traditional information systems.

INTRODUCTION

We know that for every UOW we are likely to find, in some measure, three
processes: the CP, CMP and CSP. Each of these can be expected to be both
a provider and a user of information, and hence a potential user of
computer-based information systems.

The case process

IS support for the CP will be about the capture, storage, presentation and
processing of information about individual cases. When I call my water
company, my name and account number (and perhaps the number of the
telephone I am calling from) will allow the information systems to bring up
my details and a summary of recent contacts on a screen in front of the
person taking my call. The time frame of IS support for the ‘lifetime’ of a
customer contact will be short- to medium-term: some contacts will be
cleared during the call, some will need action that will continue for
perhaps weeks as visits to the customer’s premises are arranged, take place
and get closed off. The time frame of IS support for the ‘lifetime’ of a
customer will be medium-term to long-term, since an instance of the CP
for an individual customer will last as long as the customer is a customer.

The case management process

IS support for the CMP is about the flow of cases at any one time -
typically rates and levels — and about exceptions that are raised by the CP
instances. As Call Centre Manager, I expect to see on a screen in front of
me who is doing what, what the waiting queue of callers looks like, and
how it is building or falling. The actual allocation of calls to call centre staff
is being dealt with automatically by my smart telephony system, leaving
me to manage the staffing levels and deal with exception conditions. The
time frame for such IS support will be about minute-to-minute manage-
ment of the centre. In other cases the time frame could be years.

305

Business Process Management

The case strategy process

IS support for the CSP is about the longer-term capture, storage, analysis
and presentation of past cases. We will think in terms of data warehousing
and data marts, the ability to slice and dice the case data, computer
simulation of the business and its flows, exploration of trends, experi-
mentation with different future scenarios, and modelling of new structures
and processes. The time frame for such IS support will be medium and
possibly long term, depending on the time horizon of the business.

RIVA AND TRADITIONAL INFORMATION SYSTEM DEVELOPMENT

306

From Riva process architecture to IS strategy

Utility company R sought a business-driven IS strategy, one driven by the
needs of the business rather than the capabilities of technology. For any
business, the issues that drive management action vary in time as priorities
change. Those business drivers will have different time horizons and the
role of IS is to support them accordingly. But the translation from business
drivers to information technology strategy is a big one: we needed to break
it into a number of smaller steps that could be taken individually with
senior managers.

The Riva approach in this area is summarized in Figure 12.1. The first
step was to brainstorm those business drivers: ignoring information
systems, what’s driving the business and changes in the business today
and in the foreseeable future? We developed a hierarchy of drivers with
lower levels making the ‘woolly’ upper levels more specific and finally,
where possible, measurable. At the highest level in our case study the
drivers included safety, expanding the customer base, and satisfying the
regulator. Each of these was then decomposed in turn to bring the area
into finer focus. A driver such as ‘We must expand the customer base’
might be decomposed into drivers such as ‘We must have more flexible
pricing,” ‘We must package our offerings better,” ‘We must improve the
quality of our A service,” and ‘We must understand better who is buying
what.” The driver ‘We must have more flexible pricing’ became ‘We must
know which of our assets are being used and how much’ and ‘We must be
able to construct more flexible contracts.” This sort of analysis might
already have been done by the organization and we can pick it up directly;
otherwise, a traditional facilitated workshop will yield the information.

While this work was progressing, a simple Riva process architecture was
constructed for the organization.

We worked with senior managers responsible for large chunks of the
company. They examined the list of processes in the process architecture
to see which potentially had the most to gain from having accessible
information. Simple round-the-table scoring allowed us to rank the
processes according to their ‘information potential’ — clearly processes

Processes and information systems

Prepare business

drivers hierarchy

Prepare process

architecture

Rank processes against business
drivers

Rank processes by information

potential

Select most relevant processes with highest IS
potential

Identify specific information opportunities

Translate into IS requirements and thence strategy

FIGURE 12.1 Steps from the business drivers to an IS strategy

with the most to gain from strong IS provision would be of greatest interest
to us in developing the IS strategy. They examined the processes to assess
how far each could help the organization meet the demands of each of the
‘leaf-node’ drivers in the driver hierarchy. A traditional matrix of drivers
against processes was used to score each process according to its
contribution to each driver and thence to derive a further ranking. By
simply multiplying the process—driver matrix by the information potential
rankings vector, we were able to quickly prepare a shortlist of the processes
that were most important to the business and had most to gain from
strong IS provision. In a final bout of workshops, we drew out
improvements in information quality or accessibility for each of those
processes, knowing now that we were addressing the big opportunities.
These requirements could then be translated into requirements on the IS
provision.

At this stage, we were of course simply characterizing the IS provision in
terms of what it would achieve as opposed to what it would look like:
‘Timely analysis of the usage that each asset component had and of its
costs, available at the desk of group D,” ‘Timely costing of alternatives
packages, available at the desk of group E’ and the like. The remaining

307

Business Process Management

308

step was to decide the technologies that could be used: data warehousing,
client-server architectures, web-based information gathering etc. This was
a purely technical judgement to be made by those familiar with the
technologies concerned, but the senior managers now had a clear vision of
why those technologies were relevant to their business — one of the hardest
steps to make — and we made the bridge for them using the process
architecture. If, say, a particular IS architecture was proposed to satisfy the
information needs of the asset CSP, managers could trace the decision
back to the business drivers concerned with their need for pricing
flexibility, and the proposal became meaningful.

From Riva process architecture to IS gap analysis

Coming at the question from the other direction, the IS group at utility
company W wanted to develop an IS strategy that was aligned to the
business in a way that was accessible by senior management. The strategy
would need to map a path from the existing provision to the new. Again,
the process architecture provided the bridge.

Figure 12.2 summarizes the approach.

Inventory current IS Prepare process
provision architecture

Map existing IS provision onto business processes

Prepare business drivers
hierarchy

Review provision against priorities to identify gaps
and opportunities

Translate into IS requirements and thence strategy

FIGURE 12.2 Steps from the current IS provision to an IS strategy

For an IS group, the preparation of a process architecture can be kick-
started by using the corporate data model as a checklist of UOWs. (There
will be many things that an organization collects data about that do not
represent the ‘work items’ that we look for in UOWSs, but it would be
strange for there to be a UOW about which no data is kept.) While this

Processes and information systems

work was going on at W, a parallel team was preparing an inventory of
existing systems and their users. Those systems were then mapped onto
the process architecture — knowing the users of the system allowed us to
determine what processes they were involved in when they made use of
the system.

The result was a gap analysis. Certain processes were well supported by
the current IS provision. But an analysis of the business drivers of W
pointed to process areas of the business that would become important
before long and which would need increased support from IS. It was now
possible to prepare a ‘shopping list’ of systems and architectural changes
necessary to make them possible. The business case made to senior
management could now be aligned to the business’s processes and drivers,
offering the opportunity of a much richer form of justification than a cost-
benefit comparison - the IS group could be painted much more easily as
an enabler for the business, a case that has traditionally been difficult for
any IS group.

Figure 12.3 summarizes the approach to using a Riva process
architecture in preparing an IS gap analysis.

Process architecture

Current/

proposed
business

UOW: Customer contact

current
provision
Handle a Contact Handling
customer System,
contact (CP) Customer Database
Inventory of
current IS Handle flow of CTI
provision contacts (CMP)
Manage Contact Trends
strategy for Analysis
contacts (CSP) Spreadsheet

FIGURE 12.3 Preparing a gap analysis

309

Business Process Management

310

Preparing an appropriate process architecture

Using a process architecture in these two ways places few new
requirements on the way we build the process architecture in the first
place. The approach in Chapter 6 requires little adjustment.

The one decision we must make is whether to include in the process
architecture the processes for designed as well as essential UOWSs. An IS
strategy that is aligned to the business strategy will, minimally, provide an
adequate level of support to each of the processes for each of the essential
UOWs. But an adequate IS strategy will also support the way the
organization has chosen to do its business — in other words the designed
UOWSs — so we can expect that these will appear in the analysis.

Using a Riva process model in traditional IS development

Because Riva gets to the heart of what is going on in an organization, the
process models it produces are ideal starting points for the development of
traditional information systems. Each such development should start with
some sort of analysis of the business and, thereby, where and how an
information system can help. But traditional approaches have not looked
seriously at the process, something that we now have the machinery to do.
Traditional methods (such as SSADM) concentrate on the information
needs of the individual and the way that information finds its way between
individuals and groups through ‘plumbing’ between them and some
database. To do that they use techniques such as entity relationship
modelling, data flow modelling and entity life history modelling. The
information collected during a Riva analysis connects tidily into these:

e When we look at the UOWs in order to get at the case structure of the
organization, and model their relationships as a step to understanding
the likely relationships between processes, we have a sound starting
point for preparing the traditional entity relationship, or data, model.
The latter will add more entities and more (static) relationships.

e By examining the actions, interactions and decisions within roles, we
identify the information needs of those operating the process.

e When we examine the information inputs and outputs of actions and
the flow of grams in interactions, we build the basis for a data flow
model of the process.

e When we follow the history of a UOW entity (typically through the CP
that deals with it), we can map out its state history and hence have the
basis for its ELH.

e The flow of an entity through the actions and interactions will be
shown on the RAD; the actions and interactions through which it
flows will change its state.

Processes and information systems

e The state changes caused by the process will be shown on the ELH.
We can check where in the process those state changes occur and
ensure that the ELH and the RAD tell a consistent story.

e The attributes of the entity, as listed in the ER model, should cover
its state. We can check that the attributes are sufficient to describe
the entity’s different states.

In short, having done its job in helping us understand, analyse, or re-
design a process, a RAD also provides us with a sound starting point for the
data-oriented development of an information system to support that
process.

Information systems, and ERP systems perhaps even more so, are
notorious for being wet concrete before they are built and set concrete
once they are built. Worse, they set in concrete the very processes they
support, making them hard if not impossible to change once the concrete
of software has set. All too easily, crazy processes become ossified, a
phenomenon known as ‘paving cow paths’: things have always wandered
this way in the past and now, thanks to the information system, they are
doomed to wander this way in future. In the very worst case, it is also a
matter of ‘paving cow pats’.

The message here is, of course, that we should take an abstract
perspective in our RAD in order to ensure that our new process support
system does not simply mimic, say, the existing paper-based system but
instead takes advantage of the potential of a fully electronic environment:
document management, document imaging, smart telephony, web
services, PDAs, network communications, group support products etc.
Our process models will therefore be strongly abstract.

RIVA AND OBJECT-ORIENTED SYSTEM DEVELOPMENT

One of the central notions in Riva, whose roots go back to the early 1980s
to the formally-defined object-oriented language SPML, is that of the fype
(or class) and the instance. We saw how everything on a RAD is actually a
type, and that we can ‘run’ a RAD by looking at how, when and what
instances of types of roles, actions and interactions are created as the
process runs. Riva’s object orientation makes it a natural business analysis
precursor to the use of object-oriented software development approaches
and in particular, the object-oriented notations in UML (Unified Modeling
Language). Riva’s two notations are not a replacement for those of UML
any more than UML'’s fifteen or so are for Riva’s. Their shared object-
oriented roots make them good bedfellows but some apparent similarities
must be handled with care. Unfortunately, the attempt to crowbar UML
into the world of business process modelling has been made and we must
hand over to the Tutor to rebuff it ...

311

Business Process Management

Pupil:

Tutor:

Pupil:

Tutor:

312

During a break, next to the water cooler

I've had a lot of dealings with software developers recently and they have
really taken to UML for software specification and design. I know that a
number of people also use UML in business process modelling. It sounds
like a sensible idea — so why try and persuade them to use a different
approach for the business process side from the software design side?
Well, you've given me the reason without realizing it: UML and all its
diagrams come from the world of software engineering. Let me tell you a
story. You might have come across the IDEF0 notation. Its precursor (SADT)
was invented in the 1970s at TRW for the analysis and design of computer
systems using 70s technology, for which it was well suited. It has been
terribly abused by being transplanted from the world of system design to the
world of business process modelling, a purpose it was never intended for
when it was invented. Like UML, IDEF0 has no business- or organization-
oriented semantics. Worse, it was based on hierarchical decomposition
which made great sense in the 1970s when software development had that
paradigm, but it makes no sense in the modelling of organic business
processes.
We shouldn’t be surprised that using software-oriented methods to model
anything other than software systems proves hard work. It’s possible, of
course, but then we could model business processes with Turing machines
. and much good would it do us. My message is that Riva’s diagrams are
there for a purpose, and UML’s for other purposes. Attempts have been
made - in particular by tools vendors eyeing up the BPM marketplace - to
adapt UML for business modelling despite its lack of business-oriented
semantics.
You’re showing your age ... But let’s take UML’s use case diagrams — they’re
very popular and they’ve been proposed as a starting point for building a
model of a business — I understand The Object Advantage (Jacobson etal.,
1994) was the influential first attempt. What’s wrong with them?
Well, let’s check on definitions first. A use case was originally defined in the
world of computer systems as a sequence of transactions designed to
produce value to a user of the system. If we translate that out of the world of
computer systems to the world of business, we get something like ‘a
sequence of transactions designed to produce value to someone outside the
business’. Fine, except that there’s little agreement after more than a decade
on what use cases are and how to work with them — what does that tell us?
The real meat in use cases comes with the use case description, which is
typically a page or two of text that describes the use case. So what’s
happened? We’ve ended up writing serial text to describe a definitely non-
serial thing. All sorts of contrivances are then necessary to handle
exceptions, alternative routes etc. These are just attempts to render a
complex network structure into serial form: text! The question of use case
‘extension’, for example, confuses the issue and, it appears, practitioners. At
best, use case practitioners apologetically suggest that use cases are just an
exploratory tool. Not much good for real understanding then! As a way of

Processes and information systems

finding out what processes an organization has, what its dynamic structure
is, use cases prove very weak.

Pupil: OK, accepting that a set of use cases would only ‘explore’ the business
activity as you put it, what about the other notations that are then used to
support the use cases: the state diagrams, activity diagrams, interaction
diagrams, and so on?

Tutor: I think you’ve answered your own question again: we are now going to

collect a mass of detail into a number of quite separate and very technical
viewpoints: it’'s down to the reader to try and integrate all these different
viewpoints into a cogent picture of what actually happens in business terms
in the organization. So the structure of the resulting ‘model’ isn’t business-
orientated: it’s concept-orientated. And the concepts — interface objects,
control objects, entity objects — are not business-oriented concepts, they are
technical concepts.
People who have used UML diagram notations for business process
modelling often remark on the fact that several diagrams with different
notations are needed to capture a single business process. As a result, (i) it’s
hard for an analyst - let alone someone in the business — to easily see from
the multi-concept, multi-viewpoint set of diagrams what’s really going on
out there in the organization, and (ii) the many and detailed cross-
relationships that arise between the diagrams have to be maintained, and
this makes for problems with change as well as understanding.

Pupil: So you maintain that Riva’s concepts such as the UOW, the case process, the
case management process, creating a responsibility, responsibility roles,
organization roles, actions, interactions, decisions ... that these are the
proper metaphor for business process modelling?

Tutor: Of course. They have analogues in the real world. Real-world people

recognize them. Moreover, all of them are underpinned with an object-
oriented theory with formal semantics, but we don’t expose the poor
business folk to that. In this book - for analysts — we have used the object-
oriented concepts and even the word ‘instantiation’ but, as I stressed at the
outset, we don’t need to trouble the business folk with them.

The problem is that with a UML toolset on our PC, it’s impossible not to
slide into ways of thinking that are perfectly valid when thinking about
software design, but that make no sense when thinking about the real
world. A UML business modeller would tell us that in a restaurant we have
an Order object which must have an associated operation Which dish, which
is stimulated by, for instance, the Order Handler interface object — I have
read this somewhere. This would feel perfectly natural if we were discussing
a software design, but ‘invoking the operation Which dish from an Order
object’ has absolutely no analogue in the real world. It means nothing in the
real world. To claim that it models something that happens in the real world
is nonsense. It might be a sensible description of some class interactions in
a software system, but it has no meaning for someone in the restaurant
business.

Pupil: Isn’t this just a question of terminology?

313

Business Process Management

Tutor:

Pupil:
Tutor:

314

NO! It's a question of having the right metaphor, the right idiom. The
metaphor of ‘objects responding to received messages’ is fine where we are
building a software system using object-oriented tools that share that
metaphor. But that metaphor has no analogue in the real world: chefs do
not send messages to orders to find out what dishes are required.

Point taken.

Don’t despair. By all means use UML where it was intended to be used and
is entirely appropriate: in the analysis and design of software. So, let’s move
on and look at how we can make the transition from a sound business model
in the form of a Riva process architecture and a set of RADs to a technical
description of a system in the various notations in UML.

From Riva PAD to UML use case diagram

We know that a Riva process architecture is precisely based on a clear
characterization of the organization’s business in terms of its EBEs. A
clearly defined analysis path leads us to identify all the organization’s
processes and produce a second-cut process architecture. CPs in
particular can be identified with business use cases: after all, each CP
delivers some value to a ‘user’. A CMP can also be identified with a ‘large’
business use case, one that we will be able to decompose when we
examine the different threads within it at RAD level.

A traditional problem with use cases is knowing at what ‘level’ we should
be thinking. Are all the following system use cases: ‘I go to hospital,” ‘T visit
the Haematology Department,” ‘I have my blood pressure taken,” ‘“The
nurse records my blood pressure’? This problem might not have been
solved for UML system use cases, but by using the notion of ‘fainter and
fainter’ UOWSs that we introduced in Chapter 6 we are now able to get our
heads round the problem, rather than simply moving it from the system
arena to the business arena by inventing ‘business use cases’. Our Riva
analysis will readily identify, in particular, Patient Hospital Visit,
Haematology Visit, Blood Pressure Reading as UOWs, and clearly identify
their dynamic (‘generates’) relationships. Because the process architecture
was produced without consideration of technology or systems, we can be
confident that the corresponding business use cases are devoid of system
design — a good thing.

From Riva UOW diagram to UML object model

UML class diagrams must not be confused with Riva UOW diagrams. The
former show all relationships and are avowedly static views of the world.
The latter show only dynamic relationships, as they are a step towards the
all-important process architecture. We can certainly expect that essential
and designed UOWs will appear on a UML class diagram for a system
supporting the organization characterized by those UOWs. But neither is a
replacement for the other. That said, a Riva UOW diagram is a perfect
starting point for a UML class diagram, being based on a strong analysis as

Processes and information systems

described in Chapter 6. To the dynamic relationships in the UOW diagram
we must add the static relationships of interest in system development.

From Riva Role Activity Diagrams to UML activity diagrams

At first glance, UML activity diagrams with swim-lanes suggest Riva Role
Activity Diagrams. But they lack a number of important concepts. Firstly, a
swim-lane is a static thing, the responsibilities of a certain class, rather than
a responsibility that can itself be instantiated or even passed around - a
swim-lane cannot generate the network of collaboration that characterizes
organizational activity. Secondly, where activity flow crosses from one
swim-lane to another, it is just that: a movement of the locus of activity; the
implied interaction is not recognized, the contribution made by each end is
not recognized, and the object-oriented integrity of the interaction is lost.
Roles don’t just partition activity, the way that swim-lanes do: they also
express the interactions - the strands of mozzarella — that are generated by
the partitioning. The activity diagram ignores interactions as joint activities
that synchronize state, which is what happens in reality. A UML activity
diagram, taken together with an interaction diagram and sequence
diagram, could cover the ground of a RAD, but without the clarity or
precision. For instance, UML interaction diagrams capture some of the
dynamics of a ‘system’ in terms of messages passed between objects,
though typically they are potentially incomplete since ‘returns’ are not
always drawn, for instance, being regarded as ‘clutter’.

Preparing the process model for object-oriented system development

If we are starting with a clean sheet of paper, our process model should be
of the abstract variety so that subsequent work is not tainted with design
decisions that should be left open at this early stage.

RIVA AND WORKFLOW SYSTEM DEVELOPMENT

A Riva process architecture, complete with processes for designed UOWs,
exposes the workflows to be supported by a WFM system. Such systems
are typically designed to support CPs in which a thread of activity leads
from case inception to one of a number of possible outcomes. A degree of
branching of the flow is generally supported and some parallel working,
though this is typically less general than we would like. Take the RAD in
Figure 12.4 as an example. It shows a simple, single-threaded CP for
handling a job application. It is the sort of RAD that might result from work
to analyse and design a process that we want to support through workflow
technology. We have taken it more or less to the point where we can start
to decide which areas of the process can be supported with which sort of
technology.

Every applicant gets an acknowledgement in the form of a standard
letter (a P11); some are turned down on the basis of the application form

315

Business Process Management

Job
Applicant

Decide to apply

HR Manager

Send application —

Prepare acknowledgment
letter P11

I I
I::]iSend acknowledgement
| |

Application acknowledged

Create case file for applicant

Check for previous application
and append any details to case

! Requesting

Manager

=

Forward details
in case folder

Decide if worth
interviewing

Worth an interview?
I
Return case folder

with rejection

T
Prepare rejection

letter P12
|
— Send rejection letter

Application rejected

Prepare rejection

letter P33
| I

Send rejection letter

I |

Interview

Return case folder
with rejection

Offer?

/

l

E} 4}?4}

Send job offer letter

I

Job offered

/

FIGURE 12.4 A simple workflow process

Application rejected
| | Return case folder
‘ ‘ with acceptance and terms
Prepare job offer letter P47

and receive a P12 letter; others get an interview but are turned down with a
P33 letter; and successful applicants get a job offer in a P47 letter. The HR
Manager handles all interactions with the Job Applicant except for the
interview, which is done by the Requesting Manager. Let's examine how
workflow technology would naturally support this sort of process.

When the HR Manager receives an application from the Job Applicant,
they put together a ‘case file’ for this application. In a manual system, that

316

Processes and information systems

file could be just a labelled manila envelope which is then passed by hand
from person to person. In a ‘pure’ IT system it could be a new record on a
central database that can be accessed by anyone involved in handling the
case. In a WFM system it would be an electronic case folder that the
system conveys with the case on its travels round the workflow.

Before processing the application further, the HR Manager checks
whether the Job Applicant has ever applied for a job with the company
before and, if they have, attaches the details of the previous application to
the case folder. It might well be that there is an existing database which
holds such details and which therefore the HR Manager needs to
interrogate through an existing legacy system. We can therefore expect
them to use some standard forms to get at that database and to transfer the
results into the e-folder for the case.

The e-folder can now be forwarded to the Requesting Manager for
further work. That interaction is a ‘hard’ interaction and could be simply
supported within the WFM part of the system.

Subsequently, the HR Manager will interact with the Job Applicant in
various ways: acknowledging the application, turning down the applica-
tion, getting in for interview, turning down after interview, and making a
job offer. Each of these involves preparing a standard letter. Here is an
opportunity for traditional personal productivity tools: in particular a word
processor, perhaps used in conjunction with the e-folder to get applicant-
related details automatically into the letter. In fact, we can imagine an
implementation of this system which does not require the intervention of
the actual HR Manager at all: the system could prepare and despatch the
letters automatically on their behalf.

What have we seen with this simple example?

e Some actions require the individual to have access to the right
information at the right time and perhaps to update that information.
Such information needs are traditionally supported by ‘plumbing’
people into corporate or function-related databases — the domain of
traditional database products.

e Other actions require the individual to prepare material, perhaps
drawing information from a variety of sources. Here we might
integrate databases with personal productivity tools such as word
processors and spreadsheets.

e Some interactions and workflows are ‘hard’, that is they are
predefined and straightforward in nature, involving the transfer of
materials. They are precisely the sort of thing that WFM products are
designed to support.

e Other interactions are ‘soft’; that is, they cannot be predefined in
detail but can still be mediated by workgroup computing products.

317

Business Process Management

SUMMARY

318

e Other interactions will still remain the province of the face-to-face
meeting and the phone call.

Preparing a RAD for workflow

Since a RAD is a natural way to capture a workflow, little extra needs to be
done when preparing a RAD with a workflow implementation in mind. The
only significant issue is the need to be aware of any limitations the WFM
system might impose on the complexity possible in the workflow itself.

KEY POINTS

A process architecture provides a sound basis for ensuring that an IS
strategy is aligned to the business, and for gap analysis.

An abstract RAD provides a solid starting point for traditional data-
oriented system specification and design.

The object-oriented nature of a RAD makes it a suitable precursor to a
detailed implementation analysis using notations within UML.

Provided we take care with process complexity, a RAD is an ideal starting
point for direct implementation of a workflow on a WFM system.

1 3 Processes and process systems

Covers the role of the approach in developing BPM systems in which agile and mobile
processes replace static data structures.

PROCESS MOBILITY — THE THEATRE OF THE THIRD WAVE

Pupil:

One very noticeable thing about the email example in Chapter 7 is that, as
the world ‘runs’, so the entire ‘email process’ evolves into an increasingly
complex and intertwined beast. There is a cascade, a flux, a continuous
succession of changing process instances that are created and that peter
out. Every email corresponds to a process instance. Every thread
corresponds to a process instance. Every conversation corresponds to a
process instance. And every process instance — whether it is for an email, a
thread or a conversation — is associated with an individual with an email
address. I can turn that round and say that every email, every thread and
every conversation is a process (instance). As a conversation develops and
as more conversations are started up, there are an increasing number of
process instances running in parallel — and we have increasing concurrency.

Email addresses are the lubricant: the mobility of email addresses helps
create and cement the link between the process instances (and their
associated individuals). By knowing email addresses and passing them
around within emails we can expand the web of threads and conversa-
tions: the running process evolves. Linkages — in particular between role
instances — are created and changed. If I send an email to a group of people
and I make their email addresses visible in the message header, I am
effectively introducing them all to each other — they can now communicate
amongst themselves and the conversation can blossom. In Riva terms,
process instances know about each other and can communicate thanks to
that knowledge. The process evolves as a constantly mobile network of
parallel, interacting and communicating threads of activity.

So, the active process evolves but the definition remains constant. Put
crudely, the same RAD will be ‘operating’ tomorrow as is ‘operating’ today.
Or will it? We need one more level of dynamism: on-the-fly change of the
definition. Let’s listen in on our Tutor and Pupil.

Overheard at the water cooler

A while back we looked at the organization as a theatre — a rather chaotic
theatre, which proved to have lots of stages with plays being performed,

319

Business Process Management

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

Pupil:

Tutor:

320

actors running from role instance to role instance and a mass of interaction
between role instances and process instances (performances) going on
constantly. But I did notice one thing: the plays were fixed. Is that the only
constant in this madness?

I'm afraid not. It’s about to get much worse. The scripts of plays can be
rewritten. We might have liked Hamlet the way Shakespeare wrote it, but we
might also consider changing it for modern times — strengthening the
substance abuse angle at the end for instance.

Eeeek! So who is it that is changing the script?

That depends. In some situations the original author might come along and
produce new versions, perhaps rewriting the final act to give it a different
outcome, refining some of the smaller parts for better characterization, or
removing unnecessary material. When a new performance of the play is
about to start, the actors can use the new version.

That’s understandable in the real world: we have all sorts of reasons for
wanting to change the way we do things — our processes. But presumably
the whole business of changing a script happens outside the theatre?

NO! The scripts are in the theatre — that’s the only place you can change
them. Not only are they in the theatre, they are part of the subject matter of
the theatre: in other words, you can get hold of them. Now, you can only
change a script by using the process for changing scripts. Handle a Script —
let us say — would be just another process, indeed a CP. Scripts are UOWs!
The whole point of this theatre is that it is where everything happens — there
is no ‘outside’ - and one of the things that can happen there is that you work
with your processes. Putting it another way: the theatre supports you in
your processes, by managing all the instantiation and concurrency; but it
also supports you with your processes, by giving you all the means you need
to write new ones or change existing ones.

I can accept that a script can get changed and new performances use the
new script. But presumably any performance in progress is unaffected?
Please?

Why so? Why should a performance not switch to the new version as soon as
it’s available? Why should it be forced to carry on with the old one? In some
situations that might make sense — for consistency reasons perhaps — but in
principle we don’t need to make performances stick with old scripts.

I'm struggling ... I have a picture of a ‘master’ script which could be
changed. Any performance in progress might continue with the old version
or switch to the new version. But at least they are using a master.

Who said anything about ‘masters’? Why shouldn’t a performance use its
own variation of a script?

... because ... they ... OK, why not? So they might start with the ‘standard’
script for Hamlet but decide to change it in some way for just this
performance?

Of course! They’re doing a lunch-time slot, they'’re ten minutes in and
realize that people don’t have time for a full Hamlet so they quickly do a
rewrite and present a reduced version. There is nothing fixed or sacred
about a process.

Processes and process systems

Pupil: Now I'm getting concerned about the sort of chaos that will ensue if we let
everyone tinker with processes as they please.
Tutor: Then don’t let everyone tinker with processes as they please: you must

script the Handle a Script process to control what can and cannot happen to
a script. Everything is in the theatre, including control over use of the
theatre.

Pupil: My head is hurting.

In Appendix C of his book on the Third Wave (Smith and Fingar, 2002),
Howard Smith says ‘Any theory of process management must ... break
down distinctions between the process of change, the process under
change and change in both.’ If this makes our brains hurt, we must work at
it in the same way that we made the shift in mindset from data orientation
to object orientation. Now we must shift our mindset to process
orientation.

THE NEW ORDER

In this new environment the business process emerges from the shadows
and takes centre stage, not just in our thinking but in our computer
systems. In the past, the idea of ‘process’ was a useful backdrop for
thinking about an information system, but the system and its behaviour
were expressed in terms of data. With the Third Wave, processes become
the subject matter of the system, not just the background or underlying
framework. BPMSs allow their human users to work in their processes and
to work with their processes.

In this chapter, I want to examine the requirements that this first-class
citizenship of the process places on the technology required to build
BPMSs and how Riva provides us with the intellectual tools we need in
order to use it. Let’s reflect for a moment on the history.

I'm old enough to remember when, in the 1970s, a new generation of
data-processing systems was touted that end-users would build for
themselves using a ‘design by example’ paradigm. Offhand I can'’t
remember what happened to it, but I suspect the technology of the time
wasn’t fully up to the job, and end-users couldn’t be trusted of course.

Anyway, the relational database folk took over and ensured that control
stayed with the IT Department by making the levers so many and
convoluted that the end-users had to be kept well away. But at least the
organization could have a system that allowed it to differentiate itself, even
if it meant depending on the IT Department to deliver it.

There is a reliance in the relational model on the constancy of the
business’s entity-relationship diagram. Our DBMS can therefore concen-
trate on adding varying rows to fixed tables; or one could say that it now
ossifies our information access system around a fixed set of tables. Of
course, if the organization changes how it works the diagram is

321

Business Process Management

322

invalidated, as is our information access system. Suppose we draw a
picture of the organization’s processes and suppose we base our process
enactment system - our BPMS - on it. What happens when the
organization or its business changes? Will our BPMS be invalidated? Like
our pedestrian information access systems, will it be a drag on the
business?

You don’t have to be very old to remember how the ERP package folk
then commoditized information and process. And how the big consultancy
firms were ready with teams of lever-pullers and knob-twiddlers who
would ‘customize’ the standard ‘solution’ for you. Now you could be like
everyone else, more or less, and your staff could move to other employers
and immediately feel at home. Process was no longer a business
differentiator. But the process was still lodged on the other side of the
door to the IT Department.

When BPR was in full swing, by its very nature it called for major step
changes in the organization and the way it did business, reinforcing and
facilitating those changes by supporting them with ERP packages which
brought organization-wide processes that were pre-coded. We had one set
of processes one day and a completely different set the next — with all the
disruption that went with it. Given that change is the only constant in
business, how many organizations are prepared to undergo that sort of
upheaval again and again and again, as their business environment
changes? We can start to see how important it becomes for the process
itself to be there in front of us, the thing that drives the computerized
support, and - above all - there for us to change as our business
environment changes.

Instead of radical change to the entire organization, suppose we want to
start small and support a bit of one process in a part of a department; and
that we want to have the end-users — the process actors as we could call
them - adjust that process until it works the way they want; and suppose
that, once they’re comfortable, they want to extend its use to the whole
department, perhaps incorporating more of that process or even new,
connected processes, and then extend out to another department, or a
supplier, or a customer. Shouldn’t we expect the process actors to be able
to do all that? Adapt the process, extend it, spread it, add another etc?
Surely we don’t want them to have to wait for the Process Technology
Department to get round to it. Under the Old Order we had a business—IT
divide. Under the New Order process owners design and deploy their own
processes, obliterating, not bridging, the business-IT divide. To quote an
example given by Howard Smith and Peter Fingar:

The ideas of the reengineers had created a chasm between thought and
action, between process design and process deployment. [The company]
began to realize that their problem had never been the capacity to dream up
new processes. Instead, the real problem was how to make change happen,

Processes and process systems

and do so incrementally and on a continuous basis. They needed to make the
newly designed processes operational, and to do so step-by-step, process-by-
process. Instead of radical reengineering grand designs, what they needed
was an actionable and sustainable approach to operational innovation.
(Smith and Fingar, 2004)

Let’simagine another scenario in the New Order. In the world of the fixed and
invisible process, buried in the RDBMS or ERP, each patient in our hospital
must be processed in the same way if IT have anything to do with it. But
surely, when the patient enters the hospital, shouldn’t the process that they
will follow be customized for them, and won’t the health-care professionals
then want to adjust that process in the light of the outcomes of treatment?
And if new therapies become available, shouldn’t it be possible for the
patient to be switched to the new process? Not only do we want to change a
CP over time, but we may want to customize it for an individual case.

Let’s see what all this tells us about the technology.

What is the process equivalent of the entity-relationship model? What is
the ‘process-relationship model’ for the organization? Well, we have seen
how Riva provides a fast and reliable way of preparing such a ‘process
architecture’ for an organization, in particular an architecture that stays
the same as long as the business stays in the same business. This sort of
‘invariant’ architecture is exactly what we need: when we choose a process
to enact on our BPMS we need to choose it from a constant architecture;
when we add a process to our BPMS we must add one from the constant
architecture. Our end-users must have a shared view of what the processes
are and where their boundaries and relationships are. Such a process
architecture provides the bedrock on which we shall ‘grow as we go’: it
chunks the whole process — the process (because, in truth, there is only
one) — in a way that we can bite off sensible pieces. That’s the first feature:
our BPMS must be built around a constant process architecture of the sort
that Riva gives us.

At any one moment our BPMS will hold - I hesitate to use the term — a
process model. I hesitate because of course it’s not a model in the sense of a
model ship, something different from the ship. So instead I'll call it the
process potential. 1t's the thing that defines all the potential future
behaviour of the process.

Of course, the BPMS will also hold all the past actual behaviour in the
form of all past instances: the process past. (Indeed, the process past is
really part of the process potential: where we have been helps determine
where we shall go. Time future is contained in time past.) The BPMS will
hold what actually happened, in principle forever: nothing need be
forgotten — why should it be? Total persistence. In particular, total context
persistence. That’s the second feature: our BPMS must provide total
persistence. When 1 sign on to my PC it just sits there and doesn’t do
anything. Doesn’t it know what I am doing? Clearly not. One of the things I

323

Business Process Management

324

want to do is work on this book. In fact, I am working on several right now,
in different ways. I have to remember where in my folder structure I have
put files about this book and I have to remember what their names are:
what did 1 call that file of typesetting instructions from the publisher for
this book and where did I put it? Heavens, why am I worrying about the
names of things? I just want things to do with this book on my desktop
when I decide to work on this book. We only give things names because we
need to be able to find them again! I want the BPMS to know where I am
with what I am doing, and when I ask to pick up the threads (of that role
instance) I want to be presented with everything appropriate, everything in
context. No more names! ... except for cases: I must be able to tell the
system which book I want to work on, but I don’t expect to have to know
where everything about that book is — it should just come to my desktop.
When I choose to work on a particular chapter I must expect to identify it,
perhaps by pointing to it in the contents list, but I don’t expect to have to
know where the files containing it and all its diagrams are: I just want them
brought to my desktop again when I point to it. Context is all.

A process is just the way a bunch of people agree to get together —
collaborate — to make something happen. The process potential says what,
at this moment at least, they’ve agreed. (The process past is what they have
actually done.) If collaboration is what a process is about, then
collaboration must be a primitive of the process potential and of the
BPMS, the engine that turns potential into past. A Riva-based BPMS would
support roles and mediate their interactions and hence make the intended
collaboration happen. That's the third feature: our BPMS must be
collaboration-centric.

The process architecture will remain constant (if we stay in the same
business), but of course we shall want to allow our end-users to adjust
their processes ... on-the-fly. I'll put that another way: at any moment an
end-user may change the process potential in the BPMS, i.e. change the
possible futures. While the process is going on. There’s an immediate
implication: nothing must exist until it must. The BPMS must not
anticipate the future; it must only be in the present — and then only at
the last moment. That's the fourth feature: our BPMS must use lazy
instantiation as its prime mechanism. It must instantiate at the last
possible moment. Roles, for instance, unwind action by action, part-
interaction by part-interaction: the BPMS does not instantiate all the
actions and part-interactions in the role when the role comes into being —
it waits until the activating conditions become true and then instantiates.

But can we trust those end-users, the process actors, to change the
process? Perhaps, perhaps not. Perhaps the CEO would like to ensure that
any change is properly controlled (not the CIO, note, nor even the CPO —
the Chief Process Officer). So presumably we shall have a process change
control mechanism front-end to the BPMS? Of course not, changing a
process is a process and is therefore in the BPMS, part of the process

Tutor:

Processes and process systems

potential. In fact — to be perfectly general — everything is in the process
potential. If you can do it, it's in the potential. If it’s not in the potential,
you can’t do it. (And perhaps only the CEO can use the process change
process — but that will be in the potential too.) Perhaps different processes
have different change processes — these will all be in the potential ... and
open to change themselves (I feel a recursion coming on). That’s the fifth
feature: our BPMS contains all there is or has been. Or rather, all there is
today - tomorrow we shall change it.

So now we could define a simple process potential for a bit of our
department and a bit of our process. We’ll use that for a while and tune it,
on-the-fly. Then when we’re happy, we’ll grow the process potential to
cover more of our activity, or more of our department, or another
department, or one of our suppliers or whatever. We’ll grow as we go, the
BPMS lazily instantiating and hence forever in step with us, our past
always accessible, our future always ours to control.

Processes exist in their own right. There is a process life cycle: discovery,
design, deployment, execution, monitoring, control, change. The Third
Wave of BPM is more continuous, more incremental than BPR-ERP, and
closer to real TQM in that process-centric change is now in the hands of the
actors. The process enactment engine is process-neutral; in other words, the
process becomes the business of its actors, not the IT department.

In early deployments of the technology we might expect to have to
connect legacy systems, packaging them up as web services perhaps. But
in truth, that’s a dreary prospect. The BPMS would become just glue. A real
grow-as-you-go deployment would use the BPMS and the potential as its
entire world — after all, everything is in the potential and the past: the
process and all, everything - who could ask for anything more? (If you
could, then put it in the potential!) Because everything is persistent,
including relationships, nothing need be named - everything is in context,
the end-user’s context. We shall have no need of any RDBMS or document
management system or ERP to remember stuff. Indeed, they all become
redundant — they have always been small, closed worlds and we must do
away with them. And we shall have no need of diary systems, workgroup
computing (whatever that was), intranets, or any other of the half-baked
mechanisms we have invented to coordinate the workings of the
organization, to support collaboration. All collaboration is in the potential.
And the potential is in the BPMS. And the potential is the BPMS.

Later, next to the water cooler again

To calm you down when you started getting worried about uncontrolled
changes to scripts, I suggested that you simply needed to get a grip on things
using the Handle a Script process. I invite you to think through the
implications of the existence of this process.

325

Business Process Management

Pupil:

Tutor:

Pupil:
Tutor:

Pupil:

Tutor:

326

Well, I guess that for each script there is an instance of Handle a Script
running. Which means there is a stage where that performance is going on,
and that performance has the actual ... the paper script on it. Presumably, if
someone wants to use the script they get it from that process, from that
stage. They can take it away in some form and use it for a new performance
on its own stage. So far so good?

Yes. But I want to put what you said in a different way: scripts can be handed
around.

Oh dear. One performance can give a script to another performance?

Of course. Processes are truly mobile. When an interaction occurs between
two process instances, the gram can be a process. In traditional computer
systems, data was passed around or messages were passed between objects.
Now you can see why I suggested that the object-oriented paradigm was
only halfway to full process thinking: the unit of currency is the process.
Any thoughts on what would make up the Handle a Script process?

Well, there’ll be an instance of the process for each script (... and one for
itself ... oh dear, now I feel a recursion coming on!) ... and that instance will
have as one of its props the process model — or some representation of the
process ... as it stands ... the current potential. There will be an editing role
of some sort and within that role there will be threads that allow the
different actions one might want when editing a process model: adding new
roles to the process, adding actions and interactions to a role, and so on. It
would be nice if all this was done diagrammatically — we would like to edit
the RAD itself ideally.

We’ve talked about versions of things, but since Riva’s theoretical under-
pinnings are object-oriented I assume that what really happens is that we
refine object classes (that define roles, actions etc) rather than replacing
them?

Yes, that’s right.

KEY POINTS

A BPMS holds both the process potential and the process past.

The process potential can be structured using the Riva process
architecture.

Individual processes can be represented as RADs.

RADs can be actionable diagrams.

Everything is in the BPMS and in its process context.

If everything is in context, we no longer need to name things except the
UOWs.

The BPMS is collaboration-centric.

Change on-the-fly is the norm.

Processes replace data as the new currency.

Revolution is overthrown by evolution: we grow as we go.

Power to the people: a BPMS potentially puts the process back in the
hands of the organization.

Processes and process systems

A final thought. We have talked glibly about ‘instances’ of processes as a
convenient modelling metaphor. Remember that strictly speaking there
are no process instances. The clue was in the way that we ‘activated’ a
process: the word ‘activated’ was carefully chosen. All that actually
happened, of course, was that we instantiated the lead role of the process
concerned. Just that and only that. We did not instantiate the process. We
had no need to. We associate that instance of the lead role with the case it
is handling: the lead role has the responsibility for that case and can be
associated with it precisely, one-to-one. That case (and its lead role
instance) is the closest we get to an instance of the CP. We have to ask what
would be meant anyway by ‘p is an instance of process P'. At the moment
of instantiation of P, what would happen? What properties would p have
which were different from those of the case? We clearly could not
instantiate anything in P ahead of time — any actions, interactions, other
roles — because we do not know now what P will look like when we get to
them. Indeed, they might not exist if P is changed on-the-fly. That’s what I
meant by lazy instantiation.

PROCESS CALCULI

In many industries, business and systems architects strive to create software
applications that accurately reflect their business. Sometimes they do not
realize that a perfect simulation is their ultimate aim. Architects in other
industries know precisely that this is their task. In the logistics industry,
companies often model their IT architecture closely around the behavior of
the physical logistics networks they monitor and control. ... Gradually
[computer system] architects are finding ways to represent the behavior of
complex systems - interconnected and inter-related mobile processes —
within the business applications they develop. Soon they will realize that
mapping business concepts into artificial IT artifacts such as objects,
interfaces and procedure calls, should be replaced, or at least complemented,
by the process calculus models of the Third Wave. These artificial constructs
arose to support the composition of software, not the representation of
business. [They] are now looking for methods, tools and systems that are
purpose built for business. Increasingly they are looking to business process
modeling languages for solutions.

(Smith and Fingar, 2002)

Smith and Fingar hit the nail on the head. Because computers started out
as ... computers, things that computed, early computer language
development was centred around ways of describing computations on
numbers (see FORTRAN). When useful amounts of storage became a
realistic matter and symbolic data could be kept about things, languages
shifted slightly to the side and added ways of describing symbolic as well
as numeric data and of ‘computing’ with data — typically moving it around
and rearranging it (see COBOL). Even though our focus of interest has now

327

Business Process Management

328

moved to the process about which data must be kept, we still see desperate
attempts to use languages for data and data computation to describe
mobile processes. It won’t work. IDEFO is one notorious example and UML
another. (There is an old joke in software engineering: you can write
FORTRAN in any language.) The process-oriented world needs process-
oriented languages. The business process world needs business-process-
oriented languages. Data-oriented and even object-oriented languages can
only be tortured into supporting business process thinking. Process-
oriented languages need process-oriented methods — like Riva — to make
them work for us.

Calculi for reasoning about systems of processes have been around for
decades. Petri Nets have been used for representing systems but suffer two
shortcomings: firstly they lack any business-oriented semantics, and
secondly they have limited capacity for the sort of cascading and evolution
that we know underpins real-life processes. The original RAD notation was
based on Petri Nets. It didn’t allow processes to change: a process had a
fixed structure. The Riva adaptation added replicated part refinement and
role instantiation as ways of generating new process at run-time. Riva was
based on a derivative of Greenspan’s RML that described the dynamics of a
process in terms of an object-oriented metamodel with formal semantics.
IPSE 2.5 added an operational ‘process engine’ supporting process
mobility.

A crucial question when working with a mass of concurrent activity is
how one role instance knows which other role instances it is to interact
with. When we walk into a room full of people whom we do not know, we
can walk up to someone and introduce ourselves:

Hi, I'm Martyn.
Hello, I'm Angela.

Once this introduction has taken place, we're subsequently able to
interact. But how did we know that the thing we walked up to and said
‘Hi, I'm Martyn’ to was a person? This might sound a stupid question, but
suppose you have just joined GlobCorp and your role is to collect project
status information from all the project managers — how do you know
which of the 1,200 people in the building counts as a project manager? You
need to be introduced in some way. When we walk into that room, how
helpful it is for the host to take us by the arm and say ‘Martyn, I'd like to
introduce you to Brian.” Now we know Brian. We might have an interaction
with Brian and then Brian might introduce us to someone else with whom
we might then interact. Later we might start another interaction with
Brian. Sounds like a civilized party.

When we draw a Riva RAD for pure modelling purposes — perhaps as
part of a process discovery activity — we don’t worry too much about such
things. If a Project Manager has to provide a report at the end of the month

Processes and process systems

to their Divisional Director, we simply show an appropriate interaction
taking place between Project Manager and Divisional Director. We don’t
worry about how, in particular, the instance of Project Manager knows
which instance of Divisional Director to interact with — how they know
which is their Divisional Director. But if we are going to get a BPMS to run
this process, nothing will happen unless (i) a Project Manager can be
introduced to the appropriate Divisional Director and (ii) subsequently the
two can be correlated when the reporting interaction has to take place.
There will be many instances of Divisional Director and our instance of
Project Manager has to be able to say which one it wants to interact with.
These notions of introduction and correlation are vital for enactment.

Introduction typically takes one of two forms: one-to-one and directory.
When we were introduced to Brian at the party, it was a one-to-one
introduction. We made a mental note of Brian - his face and his name -
and Brian made a mental note of us, so that either of us could start a new
interaction later. On the other hand, if we are running a small van-hire firm
we shall probably have an entry in a trade directory giving our phone
number. Someone wanting to interact with us to hire a van can look at the
directory listing, choose a hire firm, pick up their phone number and start
the interaction with a phone call. At GlobCorp, we might hope to be given
a list of all the project managers so that we can interact with them to ask
for their reports, without having to be personally introduced to all 42 of
them.

Let’s look at the Riva equivalents. Suppose I am a role instance, A. When
I instantiate another role, I clearly know the role instance I have created, B
—Idon’t need to be introduced. But Bmight need to know who I am so that
we can interact later. So when B is created we must tell it who its ‘parent’
was. Then we can have an interaction where I pass over some terms of
reference or whatever. I might also want B to interact with a third role
instance C, so I shall have to introduce the two of them — on a one-to-one
basis. I shall have to say to B ‘You need to know about C for this matter’
and I shall need to say to C ‘You need to know about B for this matter’. B
and C will then be able to correlate and interact. This introduction takes
place over interactions of course ... provided the two ends have already
been introduced.

Now, in real life there are situations where we don’t have to be
introduced for an interaction to occur — what I called service interactions in
Chapter 2. I don’t have to be introduced to the teller at my bank in order to
deposit some money. I simply walk up to a teller and they interact with me
and I with them. No need for the manager (to whom I have already been
introduced) to pop out and say ‘Mr Ould, this is Ms Farrier. Ms Farrier, this
is Mr Ould.” In Riva terms, some role instances are ready and able to
interact anonymously.

Let’s stand back for a moment. We know that processes evolve through
the instantiation of roles, as new responsibilities are created. In order to

329

Business Process Management

collaborate — interact — those newly created role instances need to ‘be
aware of each other. Their identities must be available for handing
around, for introducing. Their identities must be ‘mobile’. It is the mobility
of identities that allows the process to change its structure and evolution to
occur. As role instances are created and introduced, so the network of
introductions develops and the corresponding network of potential
interactions can evolve.

The pi-calculus of Milner, Parrow and Walker (Milner, 1999) generalized
earlier process calculi by allowing ‘channel names’ to be dynamically
created and communicated, thereby allowing process mobility and a new
level of dynamism. Taking its cue from pi-calculus, BPMI.org has
published a representation for business processes, the BPML and a
Business Process Modeling Notation (BPMN) - see www.bpmi.org. At the
time of writing, the situation with BPM standards is still evolving, with a
raft of acronyms (BPSS, BPEL, BPEL], BPELAWS, ebXML, ebBP...) washing
around.

Wherever the ball comes to rest, as long as the metaphor is one of
collaborative, concurrent and mobile processes, Riva will help in their
design.

SIX VISIONS

330

Because this process-oriented world is so different from the information-
soaked world we currently inhabit, I shall end the chapter and the book
with six visions of the New Order. They were originally prepared with
David Perrin and Clive Roberts as part of a visioning exercise for a new
BPMS. Each is designed to capture one facet of the sort of process-driven
world that becomes possible when we base our business systems on our
business processes.

Managing globally audited and distributed processes

A Clinical Trials Manager in the pharmaceutical industry can spend a lot of
time on planes. Hating to waste time, Francesca uses her four-hour flight
back to the UK to work on the three clinical studies she’s managing. Via the
browser on her PDA, operating over the airborne satellite phone system,
she connects to the BPMS back at HQ outside London. After completing
security checks, she resumes her role as Manager of the Phase III trial for
the new drug Dimoxinol and finds herself taking part in interactions with
investigators in France and Belgium. Decisions made and communicated,
she moves on to reviewing a proposed change to the protocol - it has been
through earlier stages in the process but the BPMS knows that it now needs
her approval. As soon as she decides to work on it, the BPMS assembles the
necessary documents and places them on her PDA: no need to remember
where things are, everything is presented to her in context. A quick scan of
the change reveals a serious flaw, so she adds her reasoning and rejects it.

Processes and process systems

The BPMS pushes that part of the study process on automatically by
sending the rejection immediately by email to the change proposer.

The Terathroxine trial in Japan has been suffering from poor patient-
recruitment rates — as she finds out when she switches to acting the role of
its manager. So what has happened recently? The BPMS memorizes
everything that happens, so it’s possible to look back at the conduct of any
process and see who did what and when. As Trial Manager, Francesca has
the necessary rights to act another role in the process — Auditor — and to
browse the history so far. It’s not long before she discovers that one of her
investigators has been taking an inordinately long time taking part in a
joint decision that sits on the critical path. Stepping out of that role and
back into the Trial Manager role, she checks the background of the
investigator to find that this is his first experience of this sort of trial. Time
to act ...

Spreading best practice

The Arts and Media Faculty at Wellow University has recently taken the
opportunity presented by some internal reorganization to redefine its
processes. Using Riva, they prepare a RAD for each of their processes.

The Faculty team quickly put the processes into the BPMS and start to
get immediate benefits — they know that all the work items covered in their
process architecture will be managed and tracked through to completion.
Not surprisingly, news of the improvements they've made soon gets
around, and before long they find themselves leading a ‘best practice team’
tasked with rolling out their processes to other faculties.

The related group in the Fine Arts Faculty, not known for their love of
new technology, is the first to raise its performance. There are slight
differences between the two faculties, but it’s such a simple matter to add
Fine Arts administrative staff as role actors in the BPMS that they simply
pick up the best practice processes, with a view to making on-the-fly
modifications not long after roll-out.

The Fine Arts group are most impressed by the fact that they need only
register in the BPMS to start adopting the processes by simply playing their
roles in them. No software had to be written for them, they simply started
using the system with their normal browser at their PCs. After two months
using the Arts and Media processes, they are soon adapting them for their
own environment.

Building one-off collaborative processes on-the-fly

Dealing with an emergency is not just about each individual agency doing
its job. Time and again rehearsals have shown that close collaboration
between agencies is essential in mounting a rapid response.

An urgent message arrives at the Emergency Response Centre: Barrack
Hill caves and the houses built over them have collapsed. The Response
Centre Manager, Mark, turns straight to the BPMS. The bones of the

331

Business Process Management

332

collaborative process have been drawn up as a Riva model over the last two
years and are now waiting in the BPMS, ready to be brought into play to
coordinate the emergency services.

No two emergencies are alike — the process has to be constructed in
broad outline and details added as the emergency unfolds. Mark has used
the process authoring part of the BPMS many times before in rehearsals,
taking just minutes to build an appropriate collaborative process, and it’s
not long before the BPMS is running the collaboration of teams from the
fire services, cave rescue, the major utilities, and the hospital crisis centre.
Even automatic information feeds to the media are already built into the
process, and can start as soon as the process is kicked into action. Lives
and property are saved.

Customer-focused processes from functional silos

People in need of medical care are frequently treated by staff from many
different disciplines, and all too frequently these work almost in isolation
from each other, even though they share a common objective in treating
the patient. This isolation is reflected in separate processes, separate roles
and separate information resources.

Each of the resulting ‘silos’ of activity may well optimize the
performance of the individual service, but that doesn’t necessarily mean
that the total service delivered to the patient is the best it can be.

As a pilot study in more effective focusing of all services on the patient,
the authorities in Barsetshire form a cross-functional team from the
different groups that need to coordinate their work to deliver a service
package to victims of strokes. Speech therapy, occupational therapy,
physiotherapy, social services, the medical team, wheelchair mechanics
and many more, first use Riva to develop a process architecture for their
individual areas, and then work together to place these in a larger
architecture for integrating stroke management services. As a result, they
are able to construct a single process, focused on the patient, which
integrates the processes of each individual group with very few changes.

In stage 2, Barsetshire puts a BPMS in place to run the overall stroke
management process, principally by coordinating information flows
between the groups and notifying each group when its contribution is
required. In stage 3, processes from the individual groups are added to the
BPMS, and gradually an integrated process develops and spreads.

The stroke patient now feels they are the focus of the work of all the
teams that collaborate to improve their quality of life.

Built-in measurement leads to process improvement

The administration team for Rode University’s Engineering Faculty has
adopted the processes developed at Wellow University and is successfully
running the administration of students, courses, awards, and modules
using those processes. When the Vice-Chancellor announces that five per

Tutor:
Pupil:

Processes and process systems

cent of funds will shift from administration to teaching, yet more savings
have to be found and the Faculty administration team turn to the BPMS in
which they play their processes.

As part of the initial Riva-based process definition work they have done,
each process for dealing with a different type of work item has been
defined in terms of the actions of a set of roles and the collaboration
between those roles. Those processes are now playing in the BPMS.
Thanks to the way Riva has grouped their work into CPs and CMPs, it’s
easy to identify where to insert ‘measurement probes’. The collection of
data about the performance of the processes immediately becomes
automatic.

Some extra analysis activities are added to two management roles and
within days performance hot-spots become visible and point at opportu-
nities for process improvement. Almost invariably these occur at
boundaries with other, non-BPMS processes owned by other groups,
where collaboration can break down all too easily and impact perfor-
mance. With diagnostic data to hand, the Faculty’s processes are extended
into the other groups and more reliable collaboration is soon in place, with
cost savings following.

Keeping processes under audited control

In his role as Manager of Standard Operating Procedures (SOPs) at
pharmaceutical company BenePharm, Sanjay is a man with processes for
looking after processes. The industry regulator takes a very keen interest in
how things are done in their labs, requiring documented processes and
moreover — this is where Sanjay comes in — processes for controlling those
definitions themselves, the SOPs.

His group is small and their processes are relatively few, but managing
SOPs involves a great many people around the business: front-line staff
must draft them, business managers must approve drafts and changes,
changes must be evaluated by an SOP committee and finally, of course,
they have to be published on the intranet for people to be able to use them.
And Sanjay has to be able to demonstrate to the regulatory inspector that
all of this is being done in accordance with their SOP management
processes — the SOPs for managing SOPs.

This is one load that the BPMS has taken off Sanjay’s mind: with his
processes loaded into the BPMS they run just as required — no chasing or
checking by him or his staff. They can concentrate on the content and
usage of the SOPs. And because the BPMS keeps a full record of what
happens, that mandatory audit trail he needs comes for free.

Wouldn’t that all be nice?
It would indeed.

333

References

Auraméki, E., Hirschheim, R. and Lyytinen, K. (1992) Modelling offices
through discourse analysis: the SAMPO approach. Computer Journal, 35,
4, 342-352.

Burlton, R. T. (2001) Business Process Management — Profiting from Process.
SAMS, Indianapolis.

Checkland, P. and Scholes, J. (1990) Soft Systems Methodology in action.
Wiley, Chichester.

Greenspan, S. (1985) Requirements modeling: a knowledge representation
approach to software requirements definition. Technical Report CSRG-
155, Computer Systems Research Group, University of Toronto.

Holt, A. W., Ramsey, H. R. and Grimes, J. D. (1983) Coordination system
technology as the basis for a programming environment. Electrical
Communication, 57, 4, 307-314.

ISO 9001:2000 Quality Management Systems — Requirements.

Jackson, M. (1983) System Development. Prentice-Hall, Englewood Cliffs,
New Jersey.

Jacobson, I., Ericsson, M. and Jacobson, A. (1994) The Object Advantage.
Addison-Wesley, Wokingham.

Milner, R. (1999) Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, Cambridge.

Office of Government Commerce (2001) Business Systems Development
with SSADM. UK.

Oncken, W. (1987) Managing management time: who’s got the monkey?
Prentice-Hall, Englewood Cliffs, New Jersey.

Ould, M. A. (1995) Business Processes. John Wiley, Chichester.

Ould, M. A. (1999), Managing Software Quality and Business Risk. John
Wiley, Chichester.

Ould, M. A. and Birrell, N. (1985 and 1988) A Practical Handbook for
Software Development. Cambridge University Press, Cambridge.

Ould, M. A. and Roberts, C. (1987) Defining formal models of the software
development process. In Brereton P. (ed.), Software Engineering
Environments. Ellis Horwood, Chichester.

Ould, M. A. and Unwin, C. (1986 and 1988) Testing in Software
Development. Cambridge University Press, Cambridge.

Patching, D. (1990) Practical Soft Systems Analysis. Pitman Publishing,
London.

335

Business Process Management

336

Roberts, N., Andersen, D., Deal, R.,, Garet, M. and Shaffer, W. (1983)
Introduction to computer simulation: the system dynamics approach.
Addison-Wesley, Boston, MA.

Smith, H. and Fingar, P. (2002) Business Process Management: The Third
Wave. Meghan-Kiffer Press, Tampa, Florida.

Smith, H. and Fingar, P. (2004) Outoperate your competition using the
BPMS. Available at http://www.BPTrends.com.

Winograd, T. (1987) A language/action perspective on the design of
cooperative work. Human-Computer Interaction, 3, 1, 3-30.

Winograd, T. and Flores, F. (1987) Understanding Computers and
Cognition. Addison-Wesley, Reading, MA.

Index

abstract action, see action (abstract)
abstract event, see event (abstract)
abstract interaction, see interaction
(abstract)
abstract (process) model, see process
model (abstract)
abstract role, see role (abstract)
action 30, 44-8, 69-72, 298
abstract 71, 235
as a boundary 258
concrete 71, 235
opening up of, see encapsulation (of
an action)
activating condition 45, 52, 70, 87, 97
activation of a process, see process
activation
activity (in an organization)
concurrent 48
conditional 48
sequential 48
actor 29, 36; see also casting (of an
actor)
ad hoc process, see process (ad hoc)
as-is (process) model, see process
model (as-is)
as-is process, see process (as-is)

body (of a role), see role (body)

BPM 2

BPML 330

BPMN 330

BPMS 2, 3, 10, 17, 117, 141, 321

BPR 1, 7,9, 92, 267, 322

buffer 287, 291

business 6

business rule 31, 298

calendar time (passage of) 102-3

case (of a UOW) 145

case management 150, 288

case management process 150-3, 192,
305

case process 145-50, 305

case refinement 76-85

case strategy process 166-7, 305

case worker 287

casting (of an actor) 37, 59

chunking (of organizational activity)
12; see also process architecture

clock time (passage of) 102-3

CMP, see case management process

collaboration 4, 324

collection (of a UOW) 190

commitment (as interaction) 289

committee (as role) 64

computer system (as role) 65

concrete action, see action (concrete)

concrete interaction, see interaction
(concrete)

concrete (process) model, see process
model (concrete)

concrete role, see role (concrete)

concurrency 53, 70, 72, 99, 117, 211,
221, 279, 320

concurrent activity, see activity
(concurrent)

conditional activity, see activity
(conditional)

conditional interaction, see interaction
(conditional)

contract (as interaction) 92

conversation for action 94, 290

corrective action 264

correlation (of instances) 329

CoSpeak 3

CP, see case process

critical path (analysis) 276

CSP, see case strategy process

cycle-driven thread, see thread (cycle-
driven)

data flow model 310

decomposition 33, 71, 127, 138, 239

delegation (as interaction) 95

delivery chain (through processes) 189

designed business entity 170, 173, 175,
176, 183, 192

designed unit of work, see unit of work
(designed)

discrete simulation model 278

document (as interaction) 250

dynamic relationship (between UOWs)
179

EBE, see essential business entity
encapsulation
of a process, see process
encapsulation
of an action 138-42
of an interaction 142-4
entity 51-2, 172
entity life history 16, 310
entity model 310
entity relationship model 16, 310
ERP 1, 332
essential business entity 172-6
essential unit of work, see unit of work
(essential)
event
abstract 236
as-and-when 105-6
external 103-4
internal 105

event-driven thread, see thread (event-
driven)

exception condition 109-12

external event, see event (external)

flow of materials 282

flow-wise improvement 278-83

functional group (as role) 33, 34, 38, 39,
62

functional position (as role) 34, 39, 62

gap analysis (of an information
system) 308
‘generates’ relationship (between
UOWs), see dynamic
relationship
generic type of person (as role) 34, 62
glossary of terms (in process
modelling) 241
goal (of a process) 4, 30, 32, 49-51, 67,
118
point-wise 49, 68
steady-state 50, 68, 303
gram 48, 86
‘grow as we go’ 323

hand-off 284, 289; see also interaction

IDEFO 312, 328
improvement (of processes), see
process improvement
flow-wise, see flow-wise
improvement
point-wise, see point-wise
improvement
information 10, 51
information system 16, 305-15
as role 65
insourcing 272
instance 34, 117
instance profile (of a role) 42
instantiation 41, 53, 59, 117, 210, 320
intent 64, 71, 234, 270
interaction 31, 48-9, 85-102, 289; see
also hand-off
abstract 90, 235
as a boundary 258
concrete 90, 235
conditional 100
opening up of, see encapsulation (of
an interaction)
of processes, see process interaction
replicated 90-2, 131
internal event, see event (internal)
interviewing (for process discovery)
253-4

337

Business Process Management

intranet (for process definitions) 265

introduction (of role instances in
enactment) 329

IPSE 2.5 project 2, 328

IS strategy 306

ISO 9001 8, 14, 263-6

iteration (within a role) 80, 283

job title (as role name) 32, 33, 36, 40,
241

lazy instantiation (in enactment) 324,
327

marking (of a process instance) 70
measurement (in a process) 271
mechanism 22, 64, 71, 216, 234-9, 263,
270

meeting

as role 64

as role or interaction 252
merging threads, see thread (merging)
modelling (objectives of) 239

object-oriented methods 311

organization 6

organizational given (in process
design) 296

outcome (of a process) 32, 46, 68-9,
148-9, 151-2, 299, 302

outsourcing 269, 272

PAD, see process architecture
parallelism 279
part refinement 72-6
replicated 74, 120, 221, 328
part-interaction 85
persistence (of instances) 323
personal objectives (in role definition)
251
planning for success (in process
improvement) 280
plan (and its modelling) 108
point-wise goal, see goal (point-wise)
point-wise improvement 275-8
policy 30
post (as role) 33, 34, 36, 39, 42-3, 62
post-condition 45, 52, 70
post-state 72, 87, 128, 141, 144
pre-condition 45, 52
pre-existing role instance 61, 118, 120,
259
pre-state 72, 87, 128, 141, 144
primed service interaction, see service
interaction (primed)
probability (of a thread) 83
procedure (as process definition) 30,
251
process 4, 6, 32
ad hoc 112
as-is 286
to-be 270
process activation 127, 133-8
process analysis 273-91
process architecture 11, 12, 127, 137,
169-209, 260, 271-3, 295-6,
308-10
first-cut 182

338

as ‘searchlight’ 181, 202, 281
second-cut 185
process calculi 325-30
process change (during enactment)
324-5
process definition 14, 257, 262-6
process design 15, 295-304
process discovery 14, 257, 260-2
process duration 274
process enactment 2, 17, 265, 322, 329
process encapsulation 138-44
process history 62
process improvement 8, 14, 16, 267-93
process instance 53, 125-7, 152, 319,
327; see also process activation
process interaction 127, 127-33, 194
process mobility 319
process model 7
abstract 22, 71, 164, 234, 287
as-is 270
boundary of 247, 258, 262
completeness of 249
concrete 22, 71, 165, 234, 273, 287
preparing a 55-116
purpose of 52; see also modelling
(objectives of)
to-be 270
process past (in enactment) 323
process potential (in enactment) 67,
323
process principle 299
process relationships 125-44, 179-81
activation, see process activation
interaction, see process interaction
process requirement 297
process technology 7
process type 125
project team (as task force) 96
prop (for arole) 29, 41, 81, 90, 106, 113—
4, 137, 231, 326

QMS 7, 8, 14, 265

quality control (within processes) 264

quality control (of a RAD), see RAD
(quality control of)

quality management system, see QMS

Quality Manual 14, 262, 265

RAD 11
preparing a 55-116
quality control of 255-6
versions of 255
radical change 9
and BPR, see BPR
rank (as role) 40
relational database 321
replicated interaction, see interaction
(replicated)
replicated part refinement, see part
refinement (replicated)
Requirements Modeling Language, see
RML
responsibility (and roles) 23, 29-35, 40—
4, 53, 137
Riva 11
RML 2, 328
role 29, 32-44, 58-66
abstract 33, 63-4, 236, 286

body 30, 48, 113; see also prop
concrete 63-4, 263, 286
instance 35; see also pre-existing
role instance
instance profile, see instance profile
instantiation 59, 328
restructuring 283
transient 33, 41, 63
Role Activity Diagram, see RAD
Role/Activity Theory 3, 27

sequential activity, see activity
(sequential)
service function, see service
relationship
service interaction 96-100, 165, 329
primed 97
strictly sequenced 99
service relationship 154-7, 160, 272
Soft Systems 56
SSADM 310
standard 30
Standard Operating Procedure 262
state 45, 46, 49, 50, 52
interactions as alignment of 49
steady-state goal, see goal (steady-
state)
stop (a thread), see thread (stopping)
stopping condition 46
sub-state 117
System Dynamics 277

task force 96, 158, 160, 187, 272
relationship 157-9
terms of reference (in role definition)
251
Third Wave 2, 231, 319, 321, 325
thread (of activity) 67, 69, 107
cycle-driven 107
event-driven 107
merging 84
stopping 84
timing out
an action 109
an interaction 110
to-be (process) model, see process
model (to-be)
to-be process, see process (to-be)
token 69
TQM 1, 7, 8, 16, 267
transient role, see role (transient)
trigger, 102-12, 298
as a boundary 259
type 34, 117

UML 16, 44, 311, 328
understanding (the organization) 7
Unified Modeling Language, see UML
unit of work 145-8, 176-9
designed 170, 176, 192, 272
essential 170, 176, 272
UOW, see unit of work
UOW diagram 179-82, 314
use case 17
diagram 312

workflow management 7, 10, 17, 315
workshop (running of) 242

Other books from BCS that you might enjoy

Our topical, informed and readable books span the boundaries of IT
and management — essential reading for anyone in business!

ta Protection
gaComphance

in Context

Stewart Room

Brian I-I;a 2
Peter Morgan,
Angelina ‘Samaroo,

Data Protection and Compliance in Context

Stewart Room

This pragmatic guide explains the data protection
laws; provides practical advice on protecting data
privacy under the Data Protection Act, human rights
laws and freedom of information legislation; and gives
a platform for building compliance strategies. The
author, Stewart Room, is the chair of the National
Association of Data Protection and Freedom of
Information Officers (NADPO).

1-902505-78-6 (ISBN 13: 978-1-902505-78-7).
Cover price: £35.

Paperback.

Published: October 2006 (tbc).
www.bcs.org/books/dataprotection

Software Testing: An ISEB Foundation

Brian Hambling (Editor), Peter Morgan, Geoff
Thompson, Angelina Samaroo, Peter Williams

Providing a practical insight into the world of software
testing, this book explains the basic steps of the
testing process and how to perform effective tests. It
supports the revised ‘ISEB Foundation Certificate in
Software Testing’ and includes self-assessment
exercises, worked examples and sample exam
questions.

1-902505-79-4 (ISBN 13: 978-1-902505-79-4).
Cover Price: £20.

Paperback.

Published: September 2006 (tbc).
www.bcs.org/books/softwaretesting

339

Project Management in the Real World: Shortcuts to
Success

Elizabeth Harrin

Project Management in the Real World is a short cut to
project management experience: it summarizes over
250 years’ of expertise from experienced project
managers. It offers hints and tips on controlling
budget, time, scope and people; managing project
budgets; managing project scope; managing project
teams; managing project plans; and managing
yourself.

1-902505-81-6 (ISBN 13: 978-1-902505-81-7).
Cover price: £20.

Paperback.

Published: November 2006 (tbc).
www.bcs.org/books/realworldPM

Finance for IT Decision Makers: A Practical
Handbook for Buyers, Sellers and Managers (2nd
Edition)

Michael Blackstaff

Finance for IT Decision Makers covers aspects of
finance relevant to IT professionals who make or
influence decisions about IT. Written in plain
language with practical examples, it explains: the
fundamentals of finance and accounting; financing
methods; current standards and legislation; cost/
benefit analysis; investment evaluation methods;
budgeting, costing and pricing; and more.

1-902505-73-5 (ISBN 13: 978-1-902505-73-2).
Cover price: £30.

Paperback: 288pp

Published: July 2006.
www.bcs.org/books/finance

340

Project

NManage
In the Re§(Wrggnt

GBCS

Elizabeth Harrin

& BCS
N~

Finance for 1
Decision Makers

A practical

handbook
Jor buyers,
sellers ang
managers
(2 edition)

Michael Blackstaff

5BCS
\/

g
~
practical Data
Migration

John Morris

@ BCS

v
THE BRITISH COMPUTER SOCIE

A Manager's
Guide to

IT
Law

Edited by Jeremy Holt
and Jeremy Newton

Practical Data Migration

John Morris

Techniques and strategies for ensuring data migration
projects achieve maximum return on investment. This
practical guide contains: original methods; ideas on
rescuing ailing projects; and a model of best practice
to be used as a starting point for implementation of
the methods. All blended with real life examples and
clear definitions of commonly used jargon.

1-902505-71-9 (ISBN 13: 978-1-902505-71-8).

Cover Price: £30.

Paperback: 220pp.

Approx published: May 2006. www.bcs.org/books/
datamigration

A Manager’s Guide to IT Law
Jeremy Newton and Jeremy Holt (Editors)

This comprehensive guide to the IT-related legal
issues explains, in plain English, the most relevant
legal frameworks, with examples from actual case law
used to illustrate the kinds of problems and disputes
that most commonly arise. Contents include: IT
contracts; systems procurement contracts; avoiding
employment problems; instructing an IT consultant;
intellectual property law; escrow; outsourcing; data
protection.

1-902505-55-7 (ISBN 13: 978-1-902505-55-8).
Cover price: £25.

Paperback: 180pp.

Published: July 2004. www.bcs.org/books/itlaw

341

Business Analysis
Debra Paul and Donald Yeates (Editors)

A practical introductory guide for improving the
effectiveness of IT and its alignment with an
organization’s business objectives. = Workable
business analysis skills and techniques, underpinned
with academic theory. Covers strategy analysis,
modelling business systems/processes, business case
development, managing change, requirements
engineering and information resource management.

1-902505-70-0 (ISBN 13: 978-1-902505-70-1).
Cover Price: £25.

Paperback: 256pp.

Published: April 2006. www.bcs.org/books/
businessanalysis

A Pragmatic Guide to Business Process Modelling
Jon Holt

Explores all aspects of process modelling from process
analysis to process documentation by applying a
standard modelling notation UML. Guidance for
directors and managers on business process
modelling to improve processes, productivity and
profitability.

1-902505-66-2 (ISBN 13: 978-1-902505-66-4).
Cover price: £30.

Paperback: 184pp.

Published: September 2005. www.bcs.org/books/
processmodelling

342

»’ Edited by

G BCS
N~

Business Analysis

Debra pay(and
Donald Yeates

\BES/

A Pragmatic Guide to

Businesg Process
Modelh’ng

Jon Holt

®
EB
v
\wmms“wy

Invisible
Architecture

s & technology:
its of aligning people, ProCesse s
The benefts o for system designers B anese

Jenny Ure &
i Gudrun Jaegersberg

Professiona\ \ssues
in Information Technology

Invisible Architecture — The Benefits of Aligning
People, Processes and Technology

Jenny Ure & Gudrun Jaegersberg

The biggest problems faced in implementing
computer systems, especially across different
countries, are often not technical - they are ‘socio-
technical’. Invisible Architecture uses real examples to
highlight the potential for harnessing ‘soft’ factors to
competitive advantage.

1-902505-59-X (ISBN 13: 978-1-902505-59-6).
Cover Price: £25.

Paperback: 104pp.

Published: March 2005. www.bcs.org/books/
invisiblearchitecture

Professional Issues in Information Technology

Frank Bott

This book explores the relationship between
technological change, society and the law, and the
powerful role that computers and computer
professionals play in a technological society.
Designed to accompany the BCS Professional
Examination core Diploma module: ‘Professional
Issues in Information Systems Practice’.

1-902505-65-4 (ISBN 13: 978-1-902505-65-7).
Cover price: £20.

Paperback: 248pp.

Published: May 2005. www.bcs.org/books/
professionalissues

343

Project Management for IT-Related Projects -

Textbook for the ISEB Foundation Certificate in IS Qiseb
Project Management Er—
Bob Hughes (Editor), Roger Ireland, Brian West, ;,'; ‘;’:Ct

Norman Smith and David I. Shepherd m"“ fom.Re:gesgffe?,f

The principles of IT-related project management,
including project planning, monitoring and control,
change management, risk management and
communication between project stakeholders.
Encompasses the entire syllabus of the ‘ISEB
Foundation Certificate in IS Project Management’.

1-902505-58-1 (ISBN 13: 978-1-902505-58-9).
Cover Price: £20.

Paperback 148pp.

Published: August 2004. www.bcs.org/books/
projectmanagement

A Guide to Global Sourcing — Offshore Outsourcing
and Other Global Delivery Models E BCS‘”

HE BRITISH ComPuTER socrery

Elizabeth Anne Sparrow

The opportunities and obstacles associated with A Guide to
offshore outsourcing and other global delivery Global
models. Country-by-country analysis of offshore , Sourcing f

services available.

1-902505-61-1 (ISBN 13: 978-1-902505-61-9).
Cover Price: £25.

Paperback: 196pp.

Published: November 2004. www.bcs.org/books/
globalsourcing

Elizabeth Anne
Sparrow

More new books coming soon!
Visit: www.bcs.org/books

344

BCS Products and Services

Other products and services from the British Computer Society which
might be of interest to you include:

Publishing

BCS publications, including books, magazines and peer-review journals,
provide readers with informed content on business, management, legal
and emerging technological issues, supporting the professional, academic
and practical needs of the IT community. www.bcs.org/publications

BCS Professional Products and Services

The BCS promotes the use of the SFIAplus IT skills framework which forms
the basis of a range of professional development products and services for
both individual practitioners and employers. This includes BCS SkillsMa-
nager and BCS CareerDeveloper. www.bcs.org/products

Qualifications

Information Systems Examination Board (ISEB) qualifications are the
industry standard both here and abroad, and with over 100,000 practi-
tioners now qualified, it’s proof of their popularity. There’s a huge range on
offer covering all major areas of IT. ISEB qualifications are for forward
looking individuals and companies who want to stay ahead — who are
serious about driving business forward. www.iseb.org.uk

The BCS Professional Examination is examined to the academic level of
a UK honours degree and is the essential qualification for a career in
computing and IT. Whether you seek greater job recognition, promotion or
a new career direction, you'll find this is internationally recognised,
flexible and suited to the needs of the IT industry. www.bcs.org/exam

European Certification of IT Professionals (EUCIP) is aimed at IT
Professionals and Practitioners wishing to gain professional certification
and competency development. www.bcs.org/eucip

European Computer Driving Licence ® (ECDL) is the internationally
recognised computer skills qualification which enables people to demon-
strate their competence in computer skills. ECDL is managed in the UK by
the BCS. ECDL Advanced has been introduced to take computer skills
certification to the next level and teaches extensive knowledge of particular
computing tools. www.ecdl.co.uk

Networking and Events

The BCS’s national network of branches and specialist groups enables
members to exchange ideas and keep abreast of latest developments.
www.bcs.org/sg

The Society’s programme of social events, lectures, awards schemes, and
competitions provide more opportunities to network. www.bcs.org/events

345

Business Computer Society

Further Information

This information was correct at the time of publication but could change
in the future. For the latest information, please contact:

The British Computer Society
First Floor, Block D

North Star House

North Star Avenue

Swindon SN2 1FA

UK

Telephone: 0845 300 4417 (UK only) or +44 (0)1793 417 424 (overseas)

Email: customerservice@hq.bcs.org.uk
Web: www.bcs.org

346

Business Process Management

A Rigorous Approach

Martyn A Ould

Re-engineering or creating new business processes or organisational
structures? Need to identify IT solutions involving workflow,
document management or Business Process Management (BPM)
systems? Preparing process definitions intended for a Quality
Management System? Businesses need to adapt constantly, but are
often held back by static IT systems that aren't designed to change
with the business. The challenge is to create systems that can.

To do this, you need Riva.

Riva gives you a rigorous way of understanding the mass of
concurrent, collaborative activity that goes on in your
organisation, giving you a solid basis on which to develop
systems that support your business.

Business Process Management: A Rigorous Approach

provides a method for business analysis which is IT

orientated. It is essential reading whether you are an IT person
wanting to really understand business processes as a first step in
developing requirements for traditional IT or Third Wave BPM
systems; or a business manager involved in requirements definition,
process improvement or process design work.

Business Process Management: A Rigorous Approach is an

in-depth practical guide. It not only explains the theory behind BPM
and provides lots of examples from real life, it puts the

theory into action.

About the author

Martyn Ould is an independent consultant on the software
development process and the design and diagnosis of organisational
and business processes, and has worked for companies including
Deloitte, Praxis and Logica. A Fellow of the British Computer Society
and a Chartered Engineer, he has taught at Oxford and Bristol
Universities. Martyn has pioneered the development of the Riva

method for business process management.
professional and learned society in the field

of computers and information systems.

I BCS FIRST FLOOR, BLOCK D,

This book is brought to you by the
British Computer Society — the leading

NORTH STAR HOUSE, NORTH STAR AVENUE,

SWINDON, SN2 1FA, UK

Martyn Ould has re-invented
process modelling for the real
world. Throw away all
pre-conceived ideas of
wall-to-wall re-engineering
charts, workflow diagrams and
arcane application logic. The
author shows us that
processes are participatory,
concurrent, mobile and that
their underlying formalism is
interactive role-based
computation. With the advent
of Business Process
Management Systems this
important book is essential
advice for those modelling
processes using languages
such as BPML and BPEL.
Howard Smith,

co-chair BPMl.org (The Business
Process Management Initiative)
and Chief Technology Officer,

Computer Sciences Corporation
European Group

ENDORSED BY

BPMIl.org

ISBN 1-902505-60-3

9 |781902 505602">

	Front Cover
	Business Process Management
	The British Computer Society
	Business Process Management
	Contents
	Figures
	Author
	Abbreviations
	Preface
	Introduction
	1 Basic process concepts
	2 Modelling a process
	3 Dynamism in the process
	4 Process relationships
	5 The three basic process types
	6 Preparing a process architecture
	7 Dynamism in the world
	8 Managing the modelling
	9 Discovering and defining processes
	10 Analysing for process improvement
	11 Designing a process
	12 Processes and information systems
	13 Processes and process systems
	References
	Index
	Back Cover

