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PREFACE

Stated choice experiments are widely used in various areas including marketing, transport,
environmental resource economics and public welfare analysis. Many aspects of the
design of a stated choice experiment are independent of its area of application, however,
and the goal of this book is to present constructions for optimal designs for stated choice
experiments. Although we will define “optimal” formally later, informally an optimal
design is one which gets as much information as possible from an experiment of a given
size.

We assume throughout that all the options in each choice set are described by several
attributes, and that each attribute has two or more levels. Usually we will assume that all
the choice sets in a particular experiment have the same number of options, although we
will relax this constraint in the penultimate chapter. We assume that a multinomial logit
model will be used to analyze the results of the stated choice experiment.

In the first chapter we describe typical stated choice experiments and give several
examples of published choice experiments. We introduce the terminology that we will use
throughout the book.

In Chapter 2 we define and construct factorial designs. These designs are used in
various settings to determine the effect of each of several factors, or attributes, on one
or more response variables. Factorial designs are appropriate when discussing the design
of stated choice experiments, since in most stated choice experiments the options to be
considered are described by attributes each of which can take one of several levels. We
show how the effects of each factor can be calculated independently of the other factors in
the experiment and we show how the joint effects of two or more factors can be determined.
We show the relationship between fractional factorial designs and orthogonal arrays, give

xvii
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relevant constructions and discuss how to use some of the tables of such designs that are
available.

In Chapter 3 we discuss the use of the multinomial logit (MNL) model to analyze the
results of a stated choice experiment. We derive the Bradley—Terry model and extend it
to choice sets with more than two options. We show how the attributes that are used to
describe the options can be incorporated into the MNL model and hence how to derive
the appropriate variance-covariance matrix for the effects of interest. Functions of this
matrix are traditionally used to compare designs and we indicate how any two stated choice
experiments can be compared so that the “better” design can be determined. We develop
the theory for the determination of the optimal stated choice experiment and we show how
the optimality value associated with any set of choice sets of any size involving attributes
with any number of levels can be calculated. This theory provides a non-subjective way to
compare any set of stated choice experiments. We briefly discuss comparing designs using
the structural properties of the choice experiments under consideration but as yet there is
no firm link between these properties and those of the optimal designs.

In the remaining chapters we discuss some specific choice situations in turn.

In Chapter 4 we discuss the construction of choice experiments in which all of the
attributes describing the options have two levels and in which all choice sets have two
options. These are often called paired comparison choice experiments. We find the optimal
designs for estimating main effects, and main effects plus two-factor interactions. We
get the designs from the complete factorial and show how equally good designs can be
constructed from fractional factorials, which were constructed in Chapter 2. In both cases
the designs always have known efficiency properties.

In Chapter 5 we extend the ideas of the previous chapter to choice sets of any size,
although we still retain the restriction that the attributes each have only two levels. We
work initially with designs based on the complete factorial and then show how to get smaller
designs that are just as good from regular fractional factorial designs.

In Chapter 6 we extend the ideas of the previous two chapters to construct optimal stated
choice designs for any number of attributes with any number of levels using choice sets
of any size. We derive the upper bound for D-optimal designs and show how to construct
small designs that reach this bound for the estimation of main effects. In this case there
are no general constructions for optimal designs for the estimation of main effects and
two-factor interactions but we give heuristics that give designs that work well in practice.
We give tables of optimal designs for some small situations.

In Chapter 7 we briefly consider other important topics in the construction of optimal
choice experiments. We look at how to construct optimal designs when there is either a
“none of these” option in each choice set or a common base alternative in each choice set.
We consider how to design optimal experiments when there are restrictions on the number
of attributes that can be different between any two options in a choice set, find the optimal
size of the number of options for the choice sets in a choice experiment and look briefly at
the use of prior point estimates.

The constructions we have given in the previous chapters are not necessarily the easiest
way to construct choice experiments so in Chapter 8 we discuss some techniques that we
have used in practice to construct optimal or near-optimal choice experiments. We also
compare some commonly used strategies for constructing choice experiments.

For each chapter we provide references to the mathematical and statistical literature for
the constructions, to various literature including the marketing literature and the health
services literature for examples of applications of the designs, and we provide a number
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of exercises to help the reader test their understanding of the material presented. Some of
these exercises provide interesting extensions to the topics discussed in the chapter.

Software that allows readers to construct choice sets from a starting design by adding
sets of generators is available at http://maths.science.uts.edu.au/maths/wiki/SPExpts. For
these choice sets, or indeed any set of choice sets, the software will calculate the information
matrix and the corresponding variance-covariance matrix.

Our biggest thank you is to Jordan Louviere who introduced the first author to choice
experiments a decade ago and who has been a constant source of questions and encourage-
ment ever since. While writing this manuscript we have benefitted greatly from feedback
from various people. We would particularly like to thank David Pihlens, Stephen Bush and
Amanda Parnis for constructive comments that improved the clarity of the presentation.
Each author would like to blame the other author for any mistakes that remain.

DEBORAH J. STREET AND LEONIE BURGESS
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CHAPTER 1

TYPICAL STATED CHOICE EXPERIMENTS

People make choices all the time; some of these decisions are of interest to governments
and businesses. Governments might want to model! demand for health services in the future
or to assess the likely electoral impact of a decision to allow logging in a national park.
Businesses want to predict the likely market for new goods and services.

Information about choices can be captured from sources like supermarket scanners.
However, this “revealed preference” data tells you nothing about products that do not
yet exist. Here an experimental approach can help. Such experiments are called “stated
preference” or “stated choice™ experiments. This book describes the best way to design
generic stated preference choice experiments, from a mathematical perspective.

Stated choice experiments are widely used in business although often not published. Ac-
cording to the results of a survey sent out to businesses, there were about 1000 commercial
applications in the United States in the 1970s and there were about 400 per year in the early
1980s (Cattin and Wittink (1982); Wittink and Cattin (1989)). Wittink et al. (1994) found
less extensive use in Europe in the period 1986—1991, but Hartmann and Sattler (2002) have
found that the number of companies using stated choice experiments and the number of
experiments conducted had more than doubled in German-speaking Europe by 2001. The
range of application areas has also increased and now includes transport (Hensher (1994)),
health economics (Bryan and Dolan (2004)), and environmental evaluation (Hanley et al.
(2001)), among others.

In the rest of this chapter we will define some concepts that we will use throughout the
book. We will use published choice experiments from various application areas to illustrate
these concepts. These examples will also illustrate the range of issues that needs to be
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2 TYPICAL STATED CHOICE EXPERIMENTS

addressed when designing such an experiment. The mathematical and statistical issues
raised will be considered in the remainder of this book.

1.1 DEFINITIONS

Stated choice experiments are easy to describe. A stated choice experiment consists of
a set of choice sets. Each choice set consists of two or more options (or alternatives).
Each respondent (also called subject) is shown each choice set in turn and asked to choose
one of the options presented in the choice set. The number of options in a choice set
is called the choice set size. A stated choice or stated preference choice experiment is
often called a discrete choice experiment and the abbreviations SP experiment and DCE
are very common. We will look at the design of choice experiments for the simplest
stated preference situation in this book — the so-called generic stated preference choice
experiment. In such an experiment, all options in each choice set are described by the same
set of attributes, and each of these attributes can take one level from a set of possible levels.

An example involving one choice set might ask members of a group of employees how
they will travel to work tomorrow. The five options are {drive, catch a bus, walk, cycle,
other} and these five options comprise the choice set. Each respondent will then choose
one of these five methods of getting to work.

This simple example illustrates the fact that in many choice experiments people are
forced to choose one of the options presented. We call such an experiment a forced choice
experiment. In this case, being compelled to choose is easy since the respondents were
employees (so would be going to work) and every possible way of getting to work was in
the choice set since there was an option “other”. Thus the list of options presented was
exhaustive.

Sometimes a forced choice experiment is used even though the list of options presented
is not exhaustive. This is done to try to find out how respondents “trade-off” the different
characteristics of the options presented. A simple example is to offer a cheap flight with
restrictive check-in times or a more expensive flight where there are fewer restrictions on
check-in times. In reality, there might be intermediate choices, but these are not offered in
the choice set.

However, there are certainly situations where it simply does not make sense to force
people to choose. People may well spend several weeks deciding which car to buy and
will defer choice on the first few cars that they consider. To allow for this situation, choice
experiments include an option variously called “no choice” or “delay choice” or “none of
these”. We will just talk about having a none option to cover all of these situations.

A related situation arises when there is an option which needs to appear in every choice
set. This can happen when respondents are being asked to compare a new treatment with
an existing, standard treatment for a medical condition, for instance. We speak then of all
choice sets having a common base option.

Sometimes just one option is described to respondents who are then asked whether or
not they would be prepared to use that good or service. Usually several descriptions are
shown to each respondent in turn. This is called a binary response experiment, and in many
ways it is the simplest choice experiment of all. It does not allow for the investigation of
trade-offs between levels of different attributes, but it gives an indication of combinations
of levels that would be acceptable to respondents.

When constructing choice sets, it is often best to avoid choice sets where one option
is going to be preferred by every respondent. In the flight example above, there will be
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respondents who prefer to save money and so put up with the restrictive check-in conditions,
and there will be respondents for whom a more relaxed attitude to the check-in time will
be very important. It seems obvious, though, that a cheap flight with the relaxed check-in
conditions would be preferred by all respondents. An option which is preferred by all
respondents is called a dominating or dominant option, and it is often important to be able
to design choice experiments where it is less likely that there are choice sets in which any
option dominates (or where there is an option that is dominated by all others in the choice
set). There is a discussion about dominating options with some discussion of earlier work
in Huber and Zwerina (1996).

When constructing options which are described by two or more attributes, it can be nec-
essary to avoid unrealistic combinations of attribute levels. For example, when describing a
health state and asking respondents whether they think they would want a hip replacement
if they were in this health state, it would be unrealistic to describe a state in which the
person had constant pain but could easily walk 5 kilometers.

Throughout this book, we will only consider situations where the options in the ex-
periment can be described by several different atrributes. Each attribute has two or more
levels. For the flight example we have been describing, the options have two attributes,
the cost and the check-in conditions. In general. attributes need to have levels that are
plausible and that are varied over a relevant range. For example, health insurance plans can
be described by maximum cost to the subscriber per hospital stay, whether or not visits to
the dentist are covered, whether or not visits to the physiotherapist are covered, and so on.
Although attributes like cost are continuous, in the choice experiment setting we choose a
few different costs and use these as discrete levels for the attribute. Thus we do not consider
continuous attributes in this book. :

Finally, we stress that we will be talking about generic stated preference choice experi-
ments throughout this book. We do not consider the construction of optimal designs when
the options are labeled, perhaps by brand or perhaps by type of transport, say, and hence the
attributes, and the levels, depend on the label. We only consider designs that are analyzed
using the MNL model.

1.2 BINARY RESPONSE EXPERIMENTS

As we said above, in binary response experiments the respondents are shown a description
of a good or service, and they are asked whether they would be interested in buying or
using that good or service. For each option they are shown, they answer “yes” or “no’.

One published example of a binary response experiment appears in Gerard et al. (2003).
This study was carried out to develop strategies that were likely to increase the participation
rates in breast screening programs. The goal of a breast screening program is to achieve a
target participation rate across the relevant population since then there should be a reduction
in breast cancer mortality across that population. To get this participation rate requires that
women participate at the recommended screening rate. The aim of the study described in
Gerard et al. (2003) was to “identify attributes of service delivery that eligible screenees
value most and over which decision makers have control”. The attributes and levels used
in the study are given in Table 1.1.

Given these attributes and levels, what does a respondent actually see? The respondent
sees a number of options, like the one in Table 1.2, and just has to answer the question.
In this particular survey each respondent saw 16 options (invitations) and so answered the
question about each of these 16 different possible invitations in turn.
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Table 1.1  Attributes and Levels for the Survey to Enhance Breast Screening Participation

Attributes Attribute Levels

Method of inviting women for screening  Personal reminder letter
Personal reminder letter and
recommendation by your GP
Media campaign
Recommendation from
family/friends

Information included with invitation No information sheet
Sheet about the procedure,
benefits and risks
of breast screening

Time to wait for an appointment 1 week
4 weeks
Choice of appointment times Usual office hours
Usual office hours, one evening per
week

Saturday morning

Time spent traveling Not more than 20 minutes
Between 20 and 40 minutes
Between 40 and 60 minutes
Between 1 and 2 hours

How staff at the service relate to you Welcoming manner
Reserved manner

Attention paid to privacy Private changing area
Open changing area

Time spent waiting for mammogram 20 minutes
30 minutes
40 minutes
50 minutes

Time to notification of results 8 working days
10 working days
12 working days
14 working days

Level of accuracy of the screening test 70%
80%
90%
100%
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Table 1.2 One Option from a Survey about Breast Screening Participation

Screening Service

How are you informed Personal reminder letter

Information provided with invitation No information sheet

Wait for an appointment 4 weeks

Appointment choices Usual office hours and one evening
per week

Time spent traveling (one way) Not more than 20 minutes

How staff relate to you Reserved manner

Changing area Private changing area

Time spent having screen 40 minutes

Time waiting for results 10 working days

Accuracy of the results 90%

Imagine that your next invitation to be screened is approaching.
Would you choose to attend the screening service described above?
(tick one only)

Yes O No O

The statistical question here is: “which options (that is, combinations of attribute levels)
should we be showing to respondents so that we can decide which of these attributes, if
any, is important, and whether there are any pairs of attribute levels which jointly influence
the decision to participate in the breast screening service?” The design of such informative
binary response designs is described in Section 7.1.2.

1.3 FORCED CHOICE EXPERIMENTS

In a forced choice experiment, each respondent is shown a number of choice sets in turn
and asked to choose the best option from each choice set. There is no opportunity to avoid
making a choice in each choice set.

Severin (2000) investigated which attributes made take-out pizza outlets more attractive.
In her first experiment, she used the six attributes in Table 1.3 with the levels indicated.
A sample choice set for an experiment looking at these six attributes describing take-out
pizza outlets is given in Table 1.4. There are three things to observe here.

The first is that ali the attributes have two levels; an attribute with only two levels is
called a binary attribute, and it is often easier to design small, but informative, experiments
when all the attributes are binary. We focus on designs for binary attributes in Chapters 4
and 5.

The second is that the question has been phrased so that the respondents are asked
to imagine that the two choices presented to them are the last two options that they are
considering in their search for a take-out pizza outlet. This assumption means that the
respondents are naturally in a setting where it does not make sense not to choose an option,
and so they are forced to make a selection even though the options presented are not
exhaustive.



6 TYPICAL STATED CHOICE EXPERIMENTS

Finally, observe that each respondent has been shown only two options and has been
asked to state which one is preferred. While it is very common to present only two options
in each choice set, it is not necessarily the best choice set size to use; see Section 7.2 for a
discussion about the statistically optimal choice set size. Larger choice sets do place more
cognitive demands on respondents, and this is discussed in Iyengar and Lepper (2000),
Schwartz et al. (2002), and Iyengar et al. (2004).

Table 1.3  Six Attributes to be Used in an Experiment to Compare Pizza Outlets

Attributes Attribute Levels

Pizza type Traditional
Gourmet

Type of Crust  Thick
Thin

Ingredients All fresh
Some tinned

Size Small only
Three sizes

Price $17
$13

Delivery time 30 minutes
45 minutes

Table 1.4 One Choice Set in an Experiment to Compare Pizza Outlets

Outlet A Outlet B
Pizza type Traditional Gourmet
Type of crust Thick Thin
Ingredients All fresh Some tinned
Size Small only Small only
Price $17 $13
Delivery time 30 minutes 30 minutes

Suppose that you have already narrowed down your choice
of take-out pizza outlet to the two alternatives above.
Which of these two would you choose?

(tick one only)

Outlet A O Outlet B O

Most forced choice experiments do not use only binary attributes. Chapter 6 deals with
the construction of forced choice experiments for attributes with any number of levels. For
example, Maddala et al. (2002) used 6 attributes with 3,4, 5, 3, 5, and 2 levels, respectively,
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in a choice experiment ¢xamining preferences for HIV testing methods. The attributes,
together with the attribute levels, are given in Table 1.5, and one choice set from the study
is given in Table 1.6. Each respondent was presented with 11 choice sets and for each of
these was asked to choose one of two options. As the respondents were all surveyed at HIV
testing locations a forced choice experiment was appropriate.

Table 1.5 Attributes and Levels for the Study Examining Preferences for HIV Testing
Methods

Attribute Attribute Levels

Location Doctor’s office
Public clinic
Home

Price $0
$10
$50
$100

Sample collection Draw blood
Swab mouth
Urine sample
Prick finger

Timeliness/accuracy ~ Results in 1-2 weeks; almost always accurate
Immediate results; almost always accurate
Immediate results; less accurate

Privacy/anonymity Only you know; not linked
Phones; not linked
In person; not linked
Phone; linked
In person; linked

Counseling Talk to a counselor
Read brochure then talk to counselor

Both of the experiments discussed above used only six attributes. Hartmann and Sattler
(2002) found that about 75% of commercially conducted stated choice experiments used
6 or fewer attributes and they speculated that this might be because commonly available
software often used to generate choice experiments would not allow more than 6 attributes.
However, there are choice experiments where many attributes are used; see Section 1.7.2.

1.4 THE “NONE” OPTION

As we said above, sometimes it does not make sense to compel people to choose one of the
options in a choice set and so some choice experiments include an option variously called
“no choice” or “delay choice” or “none of these” in each choice set.

Often an existing forced choice experiment can be easily modified to include an option
not to choose. Forinstance, in the pizza outlet experiment described in the previous section,
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Table 1.6 One Choice Set from the Study Examining Preferences for HIV Testing Methods

Attribute Option A Option B
Location Doctor’s office Public clinic
Price $100 $10
Sample collection Swab mouth Urine sample
Timeliness/accuracy Results in 1-2 weeks; Immediate results;

almost always accurate less accurate
Privacy/anonymity In person; not linked Only you know; not linked
Counselling Talk to a counselor Read brochure then talk to

counselor

Which of these two testing methods would you choose? (tick one only)

Option A O Option B O

we could change the question to ask: “Suppose that you have decided to get a take-out
meal. Which of these pizza outlets would you select, or would you go somewhere else?”

Dhar (1997) looks at the situations in which consumers find it hard to choose and
so will opt to defer choice if they can. Haaijer et al. (2001) summarize his results by
saying “respondents may choose the no-choice when none of the alternatives appears to
be attractive, or when the decision-maker expects to find better alternatives by continuing
to search. ...adding an attractive alternative to an already attractive choice set increases
the preference of the no-choice option and adding an unattractive alternative to the choice
set decreases the preference of the no-choice.” In Section 7.1.1, we discuss how to design
good designs when there is a “‘none of these” option in each choice set.

1.5 A COMMON BASE OPTION

Some choice experiments have a common (or base) option, sometimes called constant
comparator, in each choice set, together with one or more other options. This is often done
so that the current situation can be compared to other possibilities. A typical example arises
in medicine when the standard treatment option can be compared to a number of possible
alternative treatment options.

Ryan and Hughes (1997) questioned women about various possible alternatives to the
surgical removal of the product of conception after a miscarriage (note that some such
treatment is essential after a miscarriage). They identified the attributes and levels given in
Table 1.7 as being appropriate.

In the choice experiment, the common base, which is the current treatment option of
surgical management, was described as “having a low level of pain, requiring 1 day and O
nights in hospital, taking 3-4 days to return to normal activities, costing $350, and there
would be complications post-surgery”. This raises the question of whether it is sensible
to have an option in which it is known with certainty that there will be complications; it
might have made more sense to talk of the probability of complications given a particular
treatment. This interesting non-mathematical issue will not be addressed in this book.
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Table 1.7 Five Attributes to be Used in an Experiment to Investigate Miscarriage
Management Preferences

Attributes Attribute Levels
Level of pain Low

Moderate

Severe
Time in hospital | day and 0 nights

2 days and | night
3 days and 2 nights
4 days and 3 nights

Time taken to return to normal activities  1-2 days
34 days
5-6 days
More than 7 days

Cost to you of treatment $100
$200
$350
$500

Complications following treatment Yes
No

Having a common option in all choice sets is not as good as allowing all the options
to be different from one choice set to another but when a common base is appropriate we
show how to design as well as possible for this setting in Section 7.1.3.

1.6 AVOIDING PARTICULAR LEVEL COMBINATIONS

Sometimes a set of level combinations of at least two of the attributes is unrealistic and
sometimes a set of level combinations is clearly the best for all respondents and so will
always be chosen.

We discuss examples of each of these situations here. We give some ideas for how to
design choice experiments when these circumstances pertain in Chapters 4, 5, and 8.

1.6.1 Unrealistic Treatment Combinations

To illustrate this idea consider the descriptions of 5 attributes describing health states
devised by EuroQol; see EuroQoL (2006). These attributes and levels are given in Table
1.8 and are used to describe health states for various purposes. In the context of a stated
preference choice experiment we might describe two health states and ask respondents
which one they prefer.

Buteven a quick look at the levels shows that some combinations of attribute levels do not
make sense. A health state in which a person is “Confined to bed” in the mobility attribute is
nol going to be able to be linked with “No problems with self-care” in the self-care attribute.
Thus it is necessary to determine the level combinations that are unrealistic before using
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choice sets that are generated for these attributes using the techniques developed in later
chapters.

Table 1.8 Five Attributes Used to Compare Aspects of Quality of Life

Attributes Attribute Levels

Mobility No problems in walking about
Some problems in walking about
Confined to bed

Self-Care No problems with self-care

Some problems with self-care
Unable to wash or dress one’s self

Usual Activities No problems with performing one’s usual activities
(e.g., work, study Some problems with performing one’s usual activities
housework) Unable to perform one’s usual activities
Pain/Discomfort No pain or discomfort

Moderate pain or discomfort
Extreme pain or discomfort

Anxiety/Depression  Not anxious or depressed
Moderately anxious or depressed
Extremely anxious or depressed

1.6.2 Dominating Options

Many attributes can have ordered levels in the sense that all respondents agree on the same
ordering of the levels for the attribute. In the levels presented in Table 1.8 it is clear that
in every attribute the levels go from the best to the worst. Thus a choice set that asks
people to choose between the health state (No problems in walking about, No problems
with self-care, No problems with performing one’s usual activities, No pain or discomfort,
Not anxious or depressed) and any other health state is not going to give any information -
all respondents will choose the first health state. We say that the first health state dominates
the other possible health states.

It is possible to have a choice set in which one option dominates the other options in
the choice set even though the option is not one that dominates all others in the complete
set of level combinations. So if we use 0, 1, and 2 to represent the levels for each of the
attributes in Table 1.8 then the best health state overall is 00000. But a choice set that
contains (00111, 01222, 12211), for example, has a dominating option since 00111 has at
least as good a level on every attribute as the other two options in the choice set. It is not
clear, however, whether 01222 or 12211 would be preferred since it is not necessarily true
that the same utility values apply to the same levels of different attributes.

We discuss ways of avoiding choice sets with dominating options in Chapters 4, 5, and
8.
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1.7 OTHER ISSUES

In this chapter we have discussed a number of different types of choice experiments that
have been published in the literature. We have indicated that, in later chapters, we will
describe how to construct optimal designs for binary responses, for forced choice stated
preference experiments, for stated choice experiments where a “none” option is included
in every choice set, and for stated choice experiments where a common base option is
included in every choice set. In all cases we consider only generic options analyzed using
the MNL model. In this section we want to mention a couple of designs that we will
not be constructing and to discuss briefly some non-mathematical issues that need to be
considered when designing choice experiments.

1.7.1 Other Designs

In some experiments, options are described not only by attribute levels but also by a brand
name or label; for example, the name of the airline that is providing the flight. Such
experiments are said to have branded or labeled options (or alternatives), and these have
alternative specific attributes.

In many situations, people choose from the options that are available at the time they
make their choice rather than deferring choosing until some other option is available.
Experimentally, we can model this by having a two-stage design process. We have a design
which says what options are available and another design that determines the specific
options to present given what is to be available. Such designs are termed availability
designs.

We will not be discussing the construction of designs for branded alternatives or for
availability experiments in this book. The interested reader is referred to Louviere et al.
(2000).

1.7.2 Non-mathematical Issues for Stated Preference Choice Experiments

The first issue, and one that we have alluded to in Sections 1.3 and 1.4, is the question of
task complexity and thus of respondent efficiency. If a task is too complicated (perhaps
because there are too many attributes being used to describe the options in a choice set
or because there are too many options in each choice set), then the results from a choice
experiment are likely to be more variable than expected. Aspects of this problem have been
investigated by various authors, and several relevant references are discussed in Iyengar
and Lepper (2000). Louviere et al. (2007) found that completion rates are high even for
what would be considered large choice experiments in terms of the number of attributes
and the number of options.

A related issue concerns the number of choice sets that respondents can reasonably be
expected to complete. If there are too many choice sets, then respondents may well become
tired and give more variable results over the course of the experiment. This situation has
been investigated by Brazell and Louviere (1995) and Holling et al. (1998).

The discrete choice experiment task needs to be thought about in context. Are the
choices one time only or are they repeated? How important is the outcome of the decision?
(In a medical setting you could be asking people to think about life-or-death decisions.)
How familiar is the context? The choice of a health insurance provider may be familiar
while other choices, such as for liver transplant services, may require the provision of
detailed information in the experiment so that respondents can make an informed choice.
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The attributes that are used to describe the options in a choice experiment need to be
appropriate and plausible, and the combinations that are presented in the experiment need
to be realistic; otherwise, respondents may take the task less seriously or be confused by it.

The mechanics of setting up a stated preference experiment are outlined in Chapter 9 of
Louviere et al. (2000). Dillman and Bowker (2001) discuss many aspects of both mail and
internet surveys.

There are various sources of bias that have been identified as sometimes occurring
in choice experiments. One is what has been termed affirmation bias when respondents
choose responses to be consistent with what they feel the study objectives are. This is why
experimenters sometimes include attributes that are not of immediate interest to mask the
main attributes that are under investigation.

A second possible source of bias is called rationalization bias, where responses are
given that justify the actual behavior. This serves to reduce cognitive dissonance for the
respondents. A third possible source of bias results from the fact that there are no transaction
costs associated with choices in a stated preference study. Some respondents try to respond
in a way that they believe will influence the chance of, or the magnitude of, changes in
the real world. This is termed strategic or policy response bias. Finally, people may not
be prepared to indicate preferences which they feel are socially unacceptable or politically
incorrect. These terms are defined and used in Walker et al. (2002).

Other sources of bias can be related to the actual topic under investigation. Carlsson
(2003) was investigating business passengers preferences, and some of his options were
more environmentally friendly, but more expensive, than other options, and he spoke of
respondents perhaps aiming to have a “warm glow” or “purchasing moral satisfaction”
when making choices.

Severin (2000) has shown, in a paired comparison experiment, that if there are a large
number of attributes describing each option, then respondents find the task more difficult
and she has suggested that about 8 or 9 attributes seem to be effectively processed: see her
thesis for more details. For a discussion of the role of cognitive complexity in the design of
choice experiments, readers are referred to DeShazo and Fermo (2002) and Arentze et al.
(2003) and references cited therein.

These and other psychological and cognitive issues are beyond the scope of this book,
and we refer the reader interested in such issues elsewhere. The papers by Iyengar and
Lepper (2000) and Schwartz et al. (2002) and the references cited therein provide a good
starting point to find out more about these issues.

1.7.3 Published Studies

As we have said before, stated preference choice experiments are used in many areas. Here
we give references to a few published studies, together with a very brief indication of the
question being investigated and the type of design being used.

Chakraborty et al. (1994) describe a choice experiment to investigate how consumers
choose health insurance. As well as the actual company offering the insurance, 23 other
attributes were used to describe health insurance plans. Respondents were presented with
choice sets with 4 options in each and asked to indicate their preferred plan.

Hanley et al. (2001) describe a stated preference study to investigate demand for climbing
in Scotland. Each choice set contained two possible climbs and a “neither of these” option.
They also give a table with details of about 10 other studies that used DCEs to investigate
questions in environmental evaluation.
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Kemperman et al. (2000) used an availability design to decide which of four types of
theme parks would be available to respondents in each of spring and summer. Each choice
set contained four theme parks and a “‘none of these” option.

McKenzie et al. (2001) describe a study in which five attributes that are commonly used
to describe the symptoms of asthma were included and three levels for each of these chosen.
Patients with moderate to severe asthma were shown “pairs of scenarios characterized by
different combinations of asthma symptoms”, and were asked which of the two scenarios
they thought would be better to have or whether they felt there was no difference.

Ryan and Gerard (2003) and Bryan and Dolan (2004) give examples of the use of DCEs
in the health economics context.

Scarpa et al. (2004) discuss experiments to “characterise the preference for fifteen
different attributes related to water provision”.

An example of a choice experiment that involved labeled options is given in Tayyaran
et al. (2003). The authors were interested in investigating whether telecommuting and
intelligent transportation systems had an impact on residential location. Each choice set
contained three residential options as well as a “none of these” option. The residential
options were “branded” as central cities, first-tier satellite nodes, and second-tier satellite
nodes. Each residential option was described by 7 attributes, 4 of which were the same for
all of the locations.

Walker et al. (2002) used two stated choice experiments to model tenants’ choices in the
public rental market.

1.8 CONCLUDING REMARKS

In this chapter we have seen that there are a number of areas where stated choice exper-
iments have been applied and that there are a number of issues, both mathematical and
non-mathematical, which need to be considered in the construction of the best possible ex-
periments for a given situation. In the remainder of this book we look at the mathematical
issues that need to be considered to design a good generic stated choice experiment to be
analyzed using the MNL model. In the next chapter, we collect a number of results about
factorial designs which are intimately connected with the representation of options by at-
tributes. We follow this with a discussion about parameter estimators and their distribution.
Over the following three chapters we show how to get the best designs for any number
of attributes, each attribute being allowed to have any number of levels and with choice
sets of any size. In the penultimate chapter we consider how to construct good designs for
other situations, such as the inclusion of a “none” option in every choice set. The final
chapter illustrates the application of the results in the book to the construction of a number
of experiments that we have designed in the last five years.
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CHAPTER 2

FACTORIAL DESIGNS

Comparative experiments are carried out to compare the effects of two or more treatments
on some response variable (or variables). They were developed in an agricultural setting,
and often the effects of several factors on the yield of a crop, say, were investigated
simultaneously. Such experiments are called factorial experiments and were introduced by
Sir Ronald Fisher in the 1920s.

Suppose that an experiment is designed to investigate the effect of k factors on the yield
of a crop. Then the treatments of interest are in fact combinations of levels of each of the k
factors under investigation. We refer to these as treatment combinations. 1f the gth factor
has £, levels, then there are L = Hszl £, possible treatment combinations, but often only
a subset of these are actually used in the experiment.

In this chapter we will show the link between the treatment combinations in a factorial
design and the options used in a stated preference choice experiment. We will review the
constructions that exist for obtaining subsets of the treatment combinations from a factorial
design so that specific effects of interest can still be estimated. While these constructions
were developed to provide good designs when the results of the experiment are analyzed
using a linear model with normal errors, it turns out that these constructions are still useful
when the multinomial logit model is used. Thus the results developed here form the basis
for much of the rest of the book.

Throughout this chapter, we will assume that y;, ;,,..;, is the response with the first
factor at level 7, the second factor at level j, and so on, until the final factor is at level
¢q in a traditional comparative experiment. (In choice experiments the word attribute is
used instead of the word factor. In this chapter we use the word “factor,” since we are
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Copyright © 2007 John Wiley & Sons. Inc.
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summarizing constructions from the statistical literature. In later chapters we will use
the word “attribute” instead, to make the results more consistent with the use in various
application areas.)

2.1 COMPLETE FACTORIAL DESIGNS

A complete factorial design is one in which each of the possible level combinations appears
at least once. If all of the factors have the same number of levels, then the factorial design
is said to be symmetric; otherwise it is asymmetric.

Suppose that there are k factors and that each of the factors has £ levels. Then the
factorial design is said to be a symmetric design with £ levels, and we talk about an ¢*
factorial design. The smallest symmetric factorial design is a design in which two factors
each have two levels, a 22 design.

We will represent the levels of an ¢ level factor by 0,1,...,¢ — 1.

B EXAMPLE 2.1.1.
The combinations of factor levels in a 22 factorial design are 000, 001, 010, 011, 100, 101,
110,and 111. O

In an asymmetric factorial design, the factors may have different numbers of levels. If
factor g has £, levels, then we speak of an £; x €5 x ... x £ factorial design.

H EXAMPLE 2.1.2.
The combinations of factor levels in a 3 x 4 factorial design are 00, 01, 02, 03, 10, 11, 12,
13,20, 21, 22, and 23. O

2.1.1 2% Designs

Designs in which all factors have only two levels are the most commonly used factorial
designs. Typically, the two levels are chosen to be the largest and smallest levels that
are deemed to be plausible for that attribute (factor). For example, in an experiment to
investigate treatment preferences for asthma, one of the attributes might be sleep disturbance
with levels no disturbance and woken more than 5 times per night. In an experiment
describing employment conditions, one of the attributes might be amount of annual leave
with levels 2 weeks per year and 6 weeks paid leave and up to 4 weeks unpaid leave per
year. In an experiment to compare plane flights, one of the attributes might be in-flight
service with levels beverages and hot meals.

2.1.1.1 Main Effects As a result of conducting the experiment, we would like to be
able to estimate the effect of each of the factors, individually, on the response. This is
termed the main effect of that factor.

If we fix the levels of all factors except one, and then look at the difference in response
between the high level and the low level of this one factor, this difference in response is
called the simple effect of the factor at the particular levels of the other factors. The main
effect of a factor is the average of all the simple effects for that factor.

B EXAMPLE 2.1.3.
Suppose that there are k = 3 factors, A, B, and C, each with two levels. Suppose that a
complete experiment has been carried out. Then there are four simple effects to calculate
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for each of the three factors. Consider factor A. Then the simple effect of A at level 0 for
B and level 0 for C' is given by

Y100 — Yooo-

The simple effect of A at level O for B and level 1 for C' is given by

Y101 — Yoo1-

The simple effect of A atlevel 1 for B and level O for C is given by

Y110 — Yo1o-

Finally, the simple effect of A at level 1 for B and level 1 for C is given by

Y111 — Yo11-

The main etfect of A is the average of these four simple effects and is given by

1
Z(yl()() — Yoo + Y101 — Yoo1 + Y110 — Yo10 + Y111 — Yo11)- O

It is often easier to describe the main effect of a factor as the difference between the
average response to that factor when it is at level 1 and the average response when it is at
level 0. To write this mathematically, we let the treatment combinations be represented by
binary k-tuples (zixz ... xx), wherezy = 0orl, ¢ = 1,..., k. Then we could write the
main effect of the gth factor as

1
516—_1 Z Yeizo.xy — Z Yei2o... 1

ry=1 z,=0

2.1.1.2 Interaction Effects Two factors are said to interact if the effect of one of the
factors on the response depends on the level of the other factor.

Formally the rwo-factor interaction effect of factors A and B is defined as the average
difference between the simple effect of A atlevel | of B and the simple effect of A at level
0of B.

Hl EXAMPLE 2.1.4.

Suppose that £ = 2. Then the simple effect of A at level 1 of B is (y11 — yo1) and the
simple effect of A at level 0 of B is (y10 — yoo). The interaction effect of A and B, denoted
by AB, is the average difference between these two simple effects, that is,

1 1
AB = 3 ((y11 — wo1) — (y10 — ¥oo)) = 5 {(y11 + yoo — (yor + 210)) - O

In general, a two-factor interaction is

1 1
5 -2—;__2 Z Yrizg...on ™ Z Y zy...xp

Ty =1y, =1 Ty =0.14,=1

1
- FE Z Yzizo...0p — Z Yazyzo.. .y,

T4y =1,14,=0 Ty =0.20,,=0
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1
= 5?_’? Z Yzyza..2r — Z Yrizg..xp

Ty +Tqe=0 Tqy+Ty,=1

Higher-order interactions are defined recursively. Thus the three-factor interaction
between factors A, B, and C is defined as the average difference between the ABinteraction
atlevel 1 of C and the AB interaction at level 0 of C.

B EXAMPLE 2.1.5.
Suppose that £ = 4. Then the AB interaction at level 1 of ' is

1
1 (y1111 + yoor1 — (Yo111 + Y1011) + Y1110 + Yoo10 — (Yo110 + Yr010)) -

The AB interaction at level 0 of C is

1
Z(yllm + yooo1 — (Yo101 + Y1001) + Y1100 + Yoooo — (Y0100 + Y1000)).-

The average difference between these is

1 1
ABC= 3 { [Z (y1111 + Yoo11 — (Yor11 + Y1011) + Y1110 + Yoo10 — (Wor1o + ywm))}

1
- [Z (y1101 + Yooor — (Yo101 + Y1001) + Y1100 + Yoooo — (Yo100 + yIOOO))} }

1
=3 ((y1111 + Yoo11 + Y1110 + Yoo1o + Yoto1 + Y1001 + Y0100 + Y1000)
— (o111 + Y1011 + Yo110 + Y1010 + Y1101 + Yooo1 + Y1100 + Y0000)) - O

This is a specific case of the following general result.

B THEOREM 2.1.1.
The interaction effect of factors q1,qz, . . ., q; in a 2* factorial experiment is estimated by
1/2%1 times the difference between the sum of the treatment combinations with

Ty +Zg, +... .+ T =¢ (mod 2)
and the sum of the treatment combinations with
Ty +Zgy+ ...+ 2, =(t+1) (mod 2).

Proof. We will prove the result by induction on ¢.

The main effect of factor ¢y is the difference between the sum of the treatment com-
binations receiving factor ¢; at the high level (and so with ZTq, = 1) and the sum of the
treatment combinations receiving factor ¢; at the low level (and so with ZTq, = 0). Thus
the result holds fort = 1.

The interaction between the factors ¢; and g, is the difference between the main effect
of g1 at the high level of ¢, and the main effect of gy at the low level of g2. Thus we get

1 1
5 '27:_-2 Z Yei1xq..00 ™ Z Yeixa. ay

Ty =1,7,,=1 Tqy=0,14,=1
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1
— Ek—_—-i Z y.rl:[‘g,,.:rk - Z y.”n].‘ltg.,..‘m

Ty, =1,74,=0 2y =0.145=0
1
 9k1 Z Yerzo.me ™ Z Yrixo..as
Ty +T,,=0 T+, =1
Hence the result follows by induction. 0

M EXAMPLE 2.1.6.

Let k£ = 4. Then the ABC interaction is estimated by 1/8 of the difference between the
sum of the treatment combinations with z1 + z2 + 3 = 1 (mod 2) and the treatment
combinations with 1 +x2 +x3 = 0 (mod 2); this is consistent with the result of Example
2.1.5. O

2.1.2 3* Designs

In a 3% design there are & factors and all of the factors have three levels each. The factor
might be guantitative, such as the temperature with levels 40°, 50°, and 60°, or the factor
might be qualitative, such as severity of symptoms with levels mild, moderate, and severe.

In either case we are again interested in the effect of each factor, independently, on the
response and on the joint effect of two or more factors on the response.

2.1.2.1 Main Effects The main effecr of afactoris the effect of that factor, independent
of any other factor. on the response. So it seems natural, for each factor, to group the
3% responses to the treatment combinations into three sets. For factor g, these sets are
{y-TLTQ-HI'L 1'7711 = O}~ {yll‘1l‘2-~--”fk"rq = 1} and {y?ﬂlﬂ«dmzk |1’q = 2}

When a factor had two levels, we compared the average response in each of the two
sets of responses. When there are three sets, there are a number of comparisons that might
be of interest. We might be interested in comparing the average response of the three sets
pairwise, giving:

1
31 E ym\rz'..m”’g Yorza.xn | o
r,=1 T,=0

which compares responses to levels 1 and 0;

1
?k‘—v_l Z y.‘[‘1.‘62...231,v - Z y‘l’-lrg,,,:l‘k

r,=2 T,=0

which compares responses to levels 2 and 0; and

1
gk——T Z Yzizo.xn — Z Yerzo..xp |

T,=2 z,=1

which compares responses to levels 2 and 1. But these three comparisons are not indepen-
dent, since we can calculate the third comparison if we know the other two. How can we
get a set of independent comparisons?
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We want each comparison to be independent of the mean of all the responses and of
every other comparison so that each comparison can be tested independently of every other
comparison and of the mean. (Recall that if y ~ N{(u, %) then a’y ~ N(a'p,a’Za).
By definition, two normally distributed random variables,  and z are independent if
Cov(x,z) = 0. If Ais a matrix and if y ~ N(u,X), then Ay ~ N(Au, AT A').
These results can be used to establish when comparisons are independent; see below and
Exercise 2.1.4.10.)

We now give some definitions to formalize the ideas that we need.

A comparison is any linear combination of the responses. We will write a comparison

as
E /\zla:g‘.,zky:c;a-g..‘:ck-

r1T2...Tk

Arize..ze aNd Vg 2, o, are orthogonal or independent if

E /\zngn.zkyzlxg.‘.xk =0

T1Z2...Tk

(see Exercise 2.1.4.10). Thus a comparison is independent of the mean if

Z /\xla:z.,,n‘k = 0.

Z1T2.. Tk

Any such comparison is called a contrast.

We want to find two contrasts that are also orthogonal (equivalently pairwise indepen-
dent). Since all the treatment combinations in each set will have the same coefficient, there
are only three distinct coefficients that we need to find. We let A\ be the coefficient for
all the treatment combinations in the set {y;, z,..z, |zq = 0}, A; be the coefficient for all
the treatment combinations in the set {yz, ,.. 5, |Zg = 1}, and we let A, be the coefficient
for all the treatment combinations in the set {yz,z,..z, |24 = 2}. We define 1o, and
v, similarly. So we need to find A, A1, A2, 1o, 1y and vy such that Ag + Ay + A2 = 0,
Vg + 11 + vy = 0and Aoy + A1y + Agrg = 0.

While there are infinitely many solutions to these equations, there is one solution that
is commonly used. Let \p = —1, Ay = O0Oand Ay = 1, and let vy = v, = 1 and
v1 = —2. Then these contrasts give the linear and quadratic components of the response
to a quantitative factor with equally spaced levels; we prove this below.

Any two independent sets of contrasts will give the same sum of squares for a main
effect for a normally distributed random vector (see Exercise 2.1.4.10).

M EXAMPLE 2.1.7.
Suppose that £ = 3. Then the three sets of responses for the first factor are

{90007 Y001, Y0025 Y010, Y011, Y012, Y020, Y021, y022}7

{y100, Y101, Y102: Y110, Y111, Y112: Y120, Y121, Y122}

{3,12007 Y201, Y202, Y210, Y211, Y212, Y220, y2217y222}-
The contrast corresponding to A\g = —1, Ay = 0and Ag = 1is

1
3—,;7((11200 + Y201 + Y202 + Y210 + Y211 + Y212 + Y200 + Yo21 + Yo22)

— (yooo + Yoo1 + Yooz + Yoo + Yo11 + Yor2 + Yo20 + Yo21 + Yo22)). O
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2.1.2.2 Orthogonal Polynomial Contrasts Suppose that we have a set of pairs
(2, Y;), @ = 1,2,...,¢ and that we want to predict Y as a polynomial function of z of
ordern = 0,1,...,f ~ 1. We usually do this by constructing a matrix X with the first
column with entries of 1 (for the constant term), second column with the values of the z;,
the third column with the values of the 2? and so on until the ﬁnal column of X contains
the values of . Thus we can write £(Y) = X3 and B = (X'X)"'X'Y. In general,
nothing can be said about the form of the matrix X’ X. However, we could just as readily
use other polynomials to determine the entries in the X matrix so that the resulting X' X is
diagonal (and hence easy to invert).

To do this we proceed as follows.

We define

) n—1 -2
Pp(z) = 2" + apn-1T + Qpn—22”

+ Qn 1T + Qn .0
forn = 1,2,...and we let Py(x) = 1. We will then do a regression on Py (x). P>(x) and
so on, and we want the resulting X matrix to be such that X’ X is diagonal.

The off-diagonal entries in X' X are of the form

£
> Pu(z)Pa_j(z:).j=1,...,m; 2.1

i=1

and so we require this sum to equal 0.

We will assume that the values of the x; are equally spaced; thus, z;,; — x; = d for all
i

The values of the coefficients in P, (z) depend on the value of £, We illustrate the
calculations using ¢ = 3.

As £ = 3, we want to evaluate Py(z), Py(x) and P2(z). But we already know that
Py(x) = 1 (by assumption, since Fp(x) is some constant function). Using Equation (2.1)
withn = 1 gives

ZPl(rz Po(x;) =

i=1

JI‘MW

Now substituting for P} we get

3

3
ZPI(-T{) = Z(l“i+al.0)
i=1

i=1

3
= le +3a1q
i=1

0.

So we see that a1, = —T and hence P, (z) =z — 7.
Using Equation (2.1) withn = 2 and j = 1 gives

3
> Pol@) Pr(as)

3
Z(’C? + o + 012_0)(.7.‘1' —T)
=1
0. (2.2)

i

i
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Using Equation (2.1) with n = 2 and j = 2 gives
3

3
D Paz)Pole) = D (@] +02azi + o)

i=1 i=1
= 0. (2.3)

We now use these two equations to solve for as 1 and o 9. From Equation (2.2) we get
(collecting terms)

3,1 (Z CE? - 3T2> -+ a3 0 (33— 35) + Zl’? - TZ CL‘Z2 = 0,
i i i

from which we see that

Using Equation (2.3), we get that
3azp = — Zazf — 302,17,
i
These are general expressions and we now simplify them by considering the case when
T = 0, o =1 and T3 = 2. Then

T=(0+1+2)/3=1,
dal=0+1+4=5,

K3

and
dal=0+1+8=0.
i
So we get
a1 =(1x5-9)/(5-3x1)=-2
and

Q.0 = (=5 -3 x (-2) x1)/3=1/3.
We usually record the values of the orthogonal polynomials for a given value of n rather
than the actual polynomials. Hence we would get a table like Table 2.1 for n = 3.

Table 2.1 Values of Orthogonal Polynomials for n = 3

Pi(x) -1 0 1 Linear component
3P (x) 1 =2 1 Quadratic component

We can find the values of orthogonal polynomials for any value of n in a similar way.
Tables of orthogonal polynomials may be found in Kuehl (1999) and Montgomery (2001).

It is possible to evaluate orthogonal polynomials for unequally spaced levels; see Ad-
delman (1962) and Narula (1978).

For a factor with ¢ levels, the values of P; (z) are the coefficients of the linear contrast

and the values of P (x) are the coefficients of the quadratic contrast. Higher-order contrasts
are defined similarly.
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2.1.2.3 Interaction Effects We start with two-factor interactions. The two-factor
interaction effect of factors A and B is the joint effect of the two factors on the response
and is again called AB. Now, however, there are four independent contrasts associated
with the interaction. This is because there are nine distinct pairs of levels for factors A and
B and so 8 independent contrasts possible between these sets. Four of these contrasts have
been used to calculate the main effects of the factors, leaving 4 contrasts for the interaction
effect.

The easiest way to determine these contrasts is to divide the responses to the treatment
combinations into nine sets, based jointly on the levels of A and B. So we get sets

ABoy = {Yzi20. 214 =0,z = ¢}, for 0 =0,1,2; 1 =0,1,2;

for any two factors A and B. There are 8 independent contrasts possible between 9 sets.
However, these sets are subsets of the sets that we used to define the main effects of factors
A and B. To ensure that the main effects and the interaction effect are independent, we
have to use those four contrasts (two from each main effect) to be 4 of the 8 contrasts.
Then any other four independent contrasts can be chosen to represent the interaction effect.
One common way to get the final four independent contrasts is to take the component-wise
product of the contrasts for main effects. This gives contrasts that are interpretable as
the linear x linear interaction, the linear x quadratic interaction, the quadratic x linear
interaction and the quadratic x quadratic interaction. Itis easy to verify that these contrasts
are independent of the contrasts for main effects.

H EXAMPLE 2.1.8.

Suppose that k& = 2. Then the contrasts for main effects and for the linear x linear
contrast, the linear x quadratic contrast, the quadratic x linear contrast and the quadratic
x quadratic contrast are given in Table 2.2. a

Table 2.2 A, B, and AB Contrasts for a 32 Factorial

=)
3
=
=
[
=
=
™
[
S
[\)

22 Treatment combinations

1 1 1 1 1 1 1 1 1 Mean
-1 =1 -1 0 0 0 1 1 1 AlLinear = Ar
] 1 1 -2 -2 -2 1 1 I AQuadratic = Ag
—1 0 1 -1 0 1 -1 0 1 B Linear = By,
I =2 1 I -2 1 1 =2 | B Quadratic = Bq
1 0 -1 0 0 0 -1 0 1 Ap x Bp
— 2 - 0 0 0 1 -2 1 Ay x Bg
-1 0 1 2 0 -2 -1 0 | Aq x B
P -2 =2 4 -2 1 =2 1 Ag x Bg

Another way to get the four contrasts that correspond to the two-factor interaction effects
is to use the sets

{y.TIIT--IL-l‘T(Il + g, :0}~, =012
and
{yI1.'I‘2...I’;. 'mql +21’q2 :9}7 0:O~1~2

Then the linear and quadratic contrasts can be used on these sets, although it is not clear
what interpretation might be put on them, even for quantitative factors. Note, though, that
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these sets are the pencils of an affine plane and that this link has been exploited in proving
results about fractional factorial designs; see Section 2.2 and Raghavarao (1971) for more
details.

B EXAMPLE 2.1.9.
Suppose that k = 3. The set givenby 1 + 22 = 0 is

{»o00, Yoo1, Y002, Y120, Y121, Y122, Y210, Y211, Y212}
If we let
ABoo = {z12223|71 = 0,22 = 0}, ABg1 = {x12223|7; = 0,20 = 1},
and so on, then the set given by z; + x5 = 0 is the union of AByg, ABi2, and AB,;.

The other 5 sets can be defined similarly. The 9 orthogonal contrasts are then as given in
Table 2.3. a

Table 2.3 A, B, and AB Contrasts for a 3% Factorial

ABoy ABmn ABo2 ABi9  ABun ABi2 ABy AB2: AB22

] ] I I ] 1 ] ] | Mean

- -1 -1 0 0 0 1 1 1

1 _9 _9 9 1 1 1 A Effect
- 1 -1 0 1 -1 0 1

—2 1 1 -2 1 1 -2 y[ B Effect
- 0 1 0 1 -1 1 -1 0
-2 1 -2 1 1 1 -2

_ 1 0 0 B 1 ) 0 _1 AB Effect

1 -2 -2 1 1 -2 1

The definition of the sets of treatment combinations for the determination of higher-order
interaction terms is similar. We can either take the orthogonal polynomial approach with
linear x linear x linear and so on, or we can use the second, “geometric”, approach. With
the geometric approach, the three-factor interaction between factors A, B, and C requires
four sets to define the eight contrasts; these are

Ty +xe+ax3 =1 (mod3), x+x2+2z3=1 (mod3),

1+ 2z, +x3 =1 (mod3), z;+2x;+2z3=1 (mod3).
We will take the geometric approach when we come to construct fractional factorial designs
in Section 2.2.
2.1.3 Asymmetric Designs

As we said earlier, we use 7y x £ x ... x £ to refer to a general factorial design in which
there are no restrictions on the number of levels for any of the factors.
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2.1.3.1 Main Effects As before, we want to be able to estimate the effect of each of
the factors, individually, on the response. For factor ¢, we calculate ¢, sets associated with
that factor and use contrasts between these sets to calculate the main effects for that factor.

B EXAMPLE 2.1.10.
Consider a 2 x 3 x 4 complete factorial design. The two sets for the first factor are

{000,001, 002,003, 010,011,012,013, 020, 021, 022, 023},

{100, 101,102,103,110,111,112,113,120, 121,122,123}

The second factor has three sets associated with it:
{000,001, 002,003, 100, 101,102,103}, {010,011,012,013,110,111,112,113},
{020,021, 022,023, 120, 121,122, 123}.

Similarly, there are four sets associated with the third factor. The corresponding matrix of
contrasts for main effects for the three factors is given in Table 2.4. a

Table 2.4 Main Effects Contrasts for a 2 x 3 x 4 Factorial

“Treatment Combinations

-1 -1 ~1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 | 1 i 1 | 1 1 i | A
1 -1 -1 -1 [ 0 4 0 | | | -1 -1 -1 -1 0 0 i i i I T By,
| t 1 I -2 -2 -2 -2 | 1 | i 1 | i -2 -2 -2 -2 1 ! T IIQ

-3 -1 1 yo—-3 -1 1 yo-3 -1 ¢ -3 ~1 ! -3 =1 1 ¥} -3 -1 Iy,
-1 -1 | I -1 -1 L -1 =1 I Po-1 -1 ! -1 -1 ! [ N (7(‘2

-1 3 =3 1T =1 3 =3 [ 3 -3 1 -1 3 =3 1T -1 i =3 -1 -3 ) o

2.1.3.2 Interaction Effects For interaction effects, we again use the polynomial
contrasts for each factor and take all possible component-wise products.

M EXAMPLE 2.1.11.

Consider the 2 x 3 factorial. Then the six treatment combinations are 00, 01, 02, 10, 11,

and 12.

The contrast for the main effect of the first factoris —1, -1, =1, 1, 1, 1.

For the second factor the main-effect contrasts are —1,0, 1, —=1,0,1and 1, =2,1,1, =2, 1.

Thus the two contrasts for the interactionare 1,0, —1, —1,0, 1 and —~1,2 ,—1, 1, =2, 1.
d

21.4 Exercises
1. Give all the level combinationsin a 2 x 2 x 3 factorial.
2. Give the B and C main effects for Example 2.1.3.

3. Use ﬁ(z%zl.g/xln,,ﬂ - quzo Yaiza...2, ) tO confirm the results in Example
2.1.3 and the previous exercise.
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Consider factors with two levels and let £ = 2 Confirm that the AB interaction and
the BA interaction are equal. Repeat with k& = 3.

. Consider factors with two levels and let k = 3. Show that the ABC interaction is
also equal to the average difference between the AC interaction at level 1 of B and
the AC interaction at level O of B. Are there any other ways that you could describe
this interaction?

. If £ = 4, verify that the following components are correct.

-3 -1 1 3 Linear
1 -1 -1 1 Quadratic
-1 3 -3 1 Cubic

. Suppose that k£ = 2 and that both attributes have 4 levels. Give possible entries for
the 6 polynomial contrasts for main effects and the 9 polynomial contrasts for the
two-factor interaction.

. Suppose that £ = 3.

(a) Letx = (0,1,2)". Let X = [1,x,x?|. Calculate X' X.

(b) Now let X = [1, Py(z), P2(x)] and calculate X’X.

(c) Comment.

(d) Suppose that you use the representations in both of the first two parts to fit a
quadratic polynomial. What is the relationship between the estimates?

(a) List the 6 sets of treatment combinations in a 32 factorial experiment corre-
sponding to the main effects.

(b) Give two independent contrasts for the main effects for each of the factors.
(c) List the six sets that correspond to the two-factor interaction.
(d) Give four independent contrasts corresponding to the two-factor interaction.

(e) Verify that all the eight contrasts (for main effects and the two-factor interaction)
that you get are orthogonal (that is, independent) in this case.

. Suppose that y1, 2, . . . , ¥ are independently identically distributed N(u, o?) ran-
dom variables.

(a) Let y, = (ylvaa - 'vyn) andleta’ = ((11,(12,. . -aa'n)' Then
a'y ~ N(uZai,aza’a).
i

Hence deduce that the sum of squares for testing Hq : 1>, a; = O is given by

(13, a;)?n/s* where s? is an unbiased estimate of 2.

(b) By definition, two normally distributed random variables, x and z are indepen-
dent if Cou(z,z) = 0. If A is a matrix, then Ay ~ N(Ap,0?AA"), where
© = (u,i,...,u). Suppose that the rows of A form a set of independent
contrasts. Then AA’ is a diagonal matrix. Derive the sum of squares for testing
Ho : Au = 0.

(c) Hence show that, in an ordinary least squares model, the sum of squares for a
factor is independent of which set of independent contrasts is chosen.

. Verify that the five contrasts in Example 2.1.11 are all mutually orthogonal.
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2.2 REGULAR FRACTIONAL FACTORIAL DESIGNS

A fractional factorial design is one in which only a subset of the Jevel combinations appears.

Fractional factorial designs are used when the number of treatment combinations in the
complete factorial is just too large to be practical, either because it will take too long to
complete the experiment or it will cost too much. So a fractional factorial design is faster
and cheaper and, with a suitably chosen fraction, you can still get all the information that
you want from the experiment. In this section we will look at the ways of getting fractional
factorials that allow you to estimate all the effects you are interested in.

2.2.1 Two-Level Fractions

Recall that, if each of the k factors has 2 levels, then we talk about a 2% design. We use 2¢~7
to denote a fractional factorial design in which only 2%~? treatment combinations appear.
A regular fraction of a 2% factorial s a fraction in which the treatment combinations can
be described by the solution to a set of binary equations. Equivalently, a regular fraction
is one in which there are some generator factors and all other factors can be defined in
terms of these generators. The binary equations are called the defining equations or the
defining contrasts of the fractional factorial design. A regular 287 fraction is defined by
p independent binary equations or, equivalently, by k£ — p generators.

An irregular fraction is a subset of the treatment combinations from the complete
factorial, but the subset is determined in some ad-hoc fashion. Usually all treatments
combinations in an irregular fraction have to be listed explicitly.

M EXAMPLE 2.2.1.
A regular 24! has 8 treatment combinations and these 8 treaiment combinations are the
solutions to one binary equation. The solutions to the binary equation

x1+zy+23=0 {(mod 2)

are the treatment combinations in Table 2.5. If z; = landxos = Othen1 +0+ 23 =0
{mod 2); so x3 = 1. The defining equation places no restrictions on xz4; so both 1010 and
1011 are solutions to the defining equation. This fraction may also be writtenas / = ABC.
(Recall that, when working modulo2,0+0=1+1=0and0+1=1+0=1) O

Table 2.5 A Regular 2*~ ' Design

_—— - OO DO
—_—0 O = = OO
OO = == OO
—_0 = O = O = O

As we have said, for a regular 257 design, the treatment combinations will satisfy p
independent binary equations. A set of equations is said to be independent if no non-zero
linear combination of the equations is identically 0. We now consider an example of this.
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B EXAMPLE 2.2.2,
Let k = 6. Consider the three binary equations

ri+axs+xst+axg = 0O,
T1+xo+xs+as = 0,
r1+x3t+xs =

To show that these equations are independent, we need to consider all the sums of these
equations; thus we consider the three sums of two equations and the sum of all three
equations. We get

T+ 2To+23+24+01 +22+25+26 = T3+ T4+ T5+ T4,
1+ To+x3+T4a+21+x3+x5 = T2+ T4+ TH,
r1+ T +2s+ 26+ +r3+T5 = T2+ T3+ T6,

Ty +x2+x3+xa+T1+22+T5+T6+ 2 +x3+25 = T+ 24+ T6,

and these are the only linear combinations possible for binary equations. There are 8
solutions to these equations: 000000, 001111, 010101, 011010, 100110, 101001, 110011,
111100.

On the other hand, the equations ©1 + 22 + 3 + 24 = 0,21 + 2 + 25 + ¢ = O and
23 4+ 24 + x5 + x¢ = 0 have 16 solutions since the third equation is the sum of the first
two and so there are only two independent equations. O

We have defined regular fractions by setting linear combinations of the z; equal to 0.
This is called the principal fraction. Other fractions are obtained by equating some (or all)
of the linear combinations to 1. Indeed if we use the same linear combinations with all
possible solutions we obtain a partition of the complete factorial into regular fractions, as
the following example shows.

W EXAMPLE 2.2.3.
Let k£ = 5 and consider the linear combinations x; + xo + x3 and 3 + x4 + z5. The

corresponding partition of the complete 25 factorial into four regular fractions is given in
Table 2.6. O

Table 2.6 Non-overlapping Regular 2°2 Designs

T1+z2+ 23 =0 Ti+z2+23=0 T1+x2ta3=1 Ti+r2+a3=1
T3+ T4 +25 =0 r3+ra+as =1 T3 +Ta+75 =0 T3t+ra+zs =1
00000 000 01 01000 01 00 1
000 1 1 00010 010 11 0101 0
01 1 01 01100 001 01 0010 0
01110 011 11 00110 0 0 11 1
1 01 01 1 01 0O I 11 01 1110 0
10110 1 01 11 I 1110 11 1 1 1
1 1.0 00 1 1 0 0 1 1 00 00 1 0 00 1
I 1 01 1t 1 1010 1 0011 1 0 0 1 0




REGULAR FRACTIONAL FACTORIAL DESIGNS 29

For any fractional factorial design, we will estimate an effect by using the same co-
efficients as we would have used for that effect in the complete factorial design. This is
sometimes called definition by restriction.

H EXAMPLE 2.2.4.

Let & = 4 and consider the 2*~! fraction given by x1 + z3 + x3 + x4 = 0; see Table 2.7.
There are 8 treatment combinations and so there will be 8-1=7 orthogonal contrasts possible.
The 15 contrasts from a 2* design are given in Table 2.8. The contrasts that we use for
the fraction are obtained from the contrasts in Table 2.8 by considering only the eight
columns that correspond to the eight treatments in the fractional factorial design. These
are indicated in bold. Doing this, we see that ABCD is indistinguishable from the
mean. This is consistent with Theorem 2.1.1 since all the treatment combinations with
1 + ®2 + x3 + x4 = 0 have the same sign in the ABC D contrast. All the other contrasts
come in pairs with, say, the effects of A and BC'D being indistinguishable. This is because
the two sets with different coefficients in the A contrast are given by 21 = O and xy = 1.
For the BC'D contrast these sets are 72 + x3 +x4 = 1 and o + x3 + x4 = 0. If we know
that 1 + 2o + 13 + x4 = 0, then 21 = 2 + x3 + 74 and so the sets for the A contrast
and the BC'D contrast coincide. Similarly, xo = 2y + 3 + 24, 3 = 2| + 23 + 24,
Ty =21+ X+ X2, X1 +X2 =23+ X4, X1 +23 =22+ 24, and 21 + 24 = To + 3.
So A and BCD, B and ACD, C and ABD, D and ABC, AB and CD, AC and BD,
and AD and BC form pairs of effects with contrasts that are the same in the 2*~! fraction
givenby x1 + a2 + 23 + 24 = 0. a

Table 2.7 A 2%~ Design of Resolution 4

_————— 0 O OO
_—_—0 0 = — 0O
_0 O = O =D
_ OO = O = = O

We say that effects with the same contrast in a fraction are aliased or confounded effects.
The effects which have the same coefficient for every treatment combination in the fraction
are called the defining effects or the defining contrasts. The list of all the aliases for each
effect in a design is called the alias structure of the design. Given the defining contrasts,
we can calculate the alias structure (and conversely).

If we know nothing about the factors and possible interactions, then it is usually best
to be able to estimate low order interactions (main etfects and two-factor interactions)
independently of each other in a fractional factorial design. So fractional factorial designs
are classified by the alias structure of the design. If no main effect is confounded with any
other main effect, but at least one main effect is confounded with a two-factor interaction,
then the design is said to be of resolution 3. If at least one main effect is confounded
with a three-factor interaction but no two main effects are confounded with each other and
no main effect is confounded with a two-factor interaction, then the design is said to be
of resolution 4. So the design in Table 2.7 is of resolution 4 since each main effect is
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confounded with a three-factor interaction. If at least one main effect is confounded with
a four-factor interaction and no main effect is confounded with anything smaller, or if at
least one two-factor interaction is confounded with a three-factor interaction but no pair of
two-factor interactions are confounded, then the design is said to be of resolution 5.

We can determine the resolution of a design directly from the defining equations. If
there are r non-zero coefficients in a defining equation, then main effects corresponding to
the 4, with non-zero coefficients in the equation are confounded with interactions of r — 1
factors, two-factor interactions corresponding to pairs of z, with non-zero coefficients are

FACTORIAL DESIGNS

Table 2.8 Contrasts for the 2¢ design

o 0 0 0 0o 06 6 0 1 1 1 1 1 1 1 1

o 0 o ¢ 1 1t 1 1 0 o0 o0 0o 1t 1 1 1

¢ ¢ 1.t 0o 6 1 1 0 o0 1 1 0 O 1 1

o 1 0 1 0 1 0 1 0 1 o0 1t o0 1 0 1
A -1 -1-1t-1-1-1-1-1 1 1 1 1 1 1 1t 1
B -+1-1-1-1 11 1 I -1-1-1-1 1 1 1 1
c -t -1 1 t1t-1-1 1 1~-1-1 1 1-1~1 11
D -1 1-1 t-1 1-1 1 -1 1-1 1-1 1-1 1
AB 1 11 1t-1-1-1-1-1-1-1-1 1 1 1 1
AC 1 1-t-1 1 1-t~-1-1-1 1 1-1-1 11
AD 1-1 1-t 1-1 1-1-1 1-1 1-1 1-11
BC 1 1-1-1-1-1 1 t 1 1-1-1-1-1 11
BD 1-1 1-t-1 1-1 t 1-1 1-1-1 1~-1 1
CD 1-1-1 1. t-1-1 1t 1-1-1 1 1-1-11
ABC -1-1 1 1 1 1-1-1 1 1-1-1-1-1 1 1
ABD -+ 17-11 1-1 1-1 1 -1 1-1-1 1-1 1
ACD -+t 1 -1-1 1 t-1 1-1-1 1 1-1-1 1
BCD -+ 1 1 -t 1~-1-1 1 -1 1 1-1 1-1-1 1
ABCD 1i-1-1 1t-1 1t 1-1-1 1 1-1 1-1-1 1

confounded with interactions with r — 2 factors, and so on.

M EXAMPLE 2.2.5.
Let k¥ = 5 and consider the fraction given by the defining equations

The aliasing structure is determined by noting, first, that

i+ x2+23 =0and x1 + 29 + T4 + 75 = 0.

T1+axa+r3+r1+x2+24+25 =23 +24+25 =0.

Thus there are in total three defining equations; these are

From these we can now establish the sets of equations that have the same solutions. We get

T
x2
z3
T4
s

o

Ti+Totr3=x1+T2+xsa+25 =23+24+25 =0.

T2 + I3
I1+ T3
1+ 22
T1+ X2+ T3+ 24
r1+T2+ 23+ 7Ts

To+ T4+ Ty
z1+ T4+ 25

1+ 22+ 23+ 24+ T
1+ T2+ o5
1+ T2 + T4

r1+ 23+ 24 + T5,
T2+ T3 + 24 + T,
T4+ 5,
T3 + x5,
T3+ T4,
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Thus we see that the main effect of A, for instance, is confounded with BC, BDE and
ACDE. Asthereis at least one main effect that is confounded with a two-factor interaction
(and no pair of main effects that are confounded), we have confirmed that the design is of
resolution 3. O

B EXAMPLE 2.2.6.
Let & = 6. The defining equations

z1+rotaes+axg=0andaxs +x4+x5+26=0
give a design of resolution 4. We can see this because
Tt axataz+tag a3 tas+ s +re =121+ 10+ 25+ 26 = 0.

Thus each main effect is confounded with two 3-factor interactions and a 5-factor interac-
tion. Each 2-factorinteraction is confounded with at least one other 2-factor interaction. [

If there are more than three factors (k > 3), then we can find a resolution 3 design that
uses fewer treatment combinations than the complete factorial.

Designs of resolution 5 can be used to estimate main effects and two-factor interactions.
If there are four or fewer factors (so & < 4), then the only resolution 5 design is the
complete factorial, independent of the number of levels each of the factors have. If there
are more than four factors (& > 4), then we can find a resolution 5 design that uses fewer
treatment combinations than the complete factorial. We do this by finding a set of defining
equations such that each defining equation has at least 5 non-zero coefficients and such that
each linear combination of the equations has at least 5 non-zero coefficients just as we did
for resolution 4 in Example 2.2.6.

2.2.1.1 Regular Designs with Factors at 2 Levels Regular fractions can be con-
structed from a set of defining equations or, equivalently, from a set of generator vectors.
In this section we give sets of generator vectors that can be used to construct small regular
fractional factorial designs with all factors with 2 levels.

For two vectors a and b we will define a + b using component-wise addition modulo 2
(thatis, 0 +0=1+4+1=0and 0+ 1 =1+ 0 = 1). Thus for the two vectors

a=(0.0.0.0,1,1,1,1) and b=(0,0,1.1,0,0,1,1)

we see that
a+b=(0,0,1,1,1,1,0,0).

We will write a set of generator vectors in a standard order. If the design has 287
treatments then we need to define & — p generators, b; say. We let by have its first 28 —P~!
entries as 0 and the remaining 2k—=p=1 entries as 1. For by we let the first 28=7~2 entries
be 0, the next 2F=P=2 entries be [, the next 27772 be 0 and the final 2*~7~2 be 1. For by
we let the first 2573 entries be 0, the next 2°~2=3 entries be 1, the next 2¢~7~3 be 0 and
so on. We continue defining generators in this way until we get to by_, which alternates
Os and 1s.

For instance when k = 4 and p = 1 we get the three generator vectors

by = (0,0,0,0,1,1,1.1),by = (0,0,1,1,0,0,1,1) and by = (0,1,0,1,0,1,0,1).

We can now define the levels of all the other factors in the design in terms of the b;.
Table 2.9 contains designs with up to 10 factors of resolution 3 and Table 2.10 contains
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Table 2.9 Smallest Known 2-Level Designs with Resolution at Least 3

k N Other Factors

4 8 by =bi+ by +bs

5 3 bs =b; +ba,bs =b; + bs

6 8 bs =b; + by, bs =b; + bz, bsg = by + bs

7 8 bs =b; + bz, bs = by 4+ bz, be = by + ba,

b7 = b1 + bz + bs

8 16 bs = by + bz + by, bg = by + bs + by,
by =b; + b2+ bs,bs =b; + bz + by

9 16 bs = bz + bz + bs,bg = by + b + by,

by = by + b2 + bs,bg = b; + bz + by,
by = by + bz + bs + by
10 16 bs = bz + bs + by, bg = b; + bz + by,
b7 = b1 + b2 + ba,bg = by + by + by,
by =b; + b2+ b3+ bs,big =b1 + by

Table 2.10 Smallest Known 2-Level Designs with Resolution at Least §

k N Other Factors
5 16 bs = b; + bs + b3 + by
6 32 be = bi + bz + bz +bs + bs
7 64 b7 = by 4+ by 4+ b3 + bs + bs + bg
8 64 b7 = by + by + bs + by,
bs = b1 + bz + bs + bg

9 128 bs = b1 +bs + by + bs + by,

by = bz + bz + bs + bg + by
10 128 bs = b; + bz + b; + by,

by = by + bz + by + b,
bio = b; + bz + bs + bs
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designs with up to 10 factors of resolution 5. We let N denote the number of treatment
combinations so N = 2%,

H EXAMPLE 2.2.7.
We use the results in Table 2.9 to construct a binary design with & = 6 factors of resolution
3. The 8 runs of the design are given in Table 2.11. a

Table 2.11 A Design with 6 Binary Factors of Resolution 3

by bs bs by bs bg

0 0 0 0 0 O
0 0 1 0 1 1
01 0 1 0 1
o1 1 1 1 0
1 0 0 1 1 0
1 0 1t 1 0 1
1 1 0 0 1 1
I 1 1 0 0 0

2.2.2 Three-Level Fractions

A regular 3*~P fraction is one that is defined by the solutions to a set of p independent
ternary equations; that is, a set of equations where all the arithmetic is done modulo 3 (so
0+2=141=2+0=2,14+2=2+1=0and0+1=140=24+2=1).
These equations are the defining equations or the defining contrasts of the regular fractional
factorial design.

M EXAMPLE 2.2.8.

A regular 372 fraction has 9 treatment combinations which are the solutions to two
independent ternary equations. The solutionsto x; + 22 + 23 = 0and z1 + 222 + 24 = 0
are given in Table 2.12. (If we had used x1 + 3 + x3 = O and &1 + 22 + x4 = 0, then we
would have had z3 = x4. and so we would not have been able to estimate the effects of the
third and fourth factors independently.) O

A regular 3577 fraction satisfies p independent ternary equations. When checking for
independence, we must now add the original equations in pairs, triples, and so on (as you
do for binary equations), but we must also check each equation plus twice every other
equation, and so on. More formally, if we let £, Es, . ... E, be the defining contrasts,
then we must calculate

> @By 0g=0,1,2, ¢=1,2.....p,
q

and show that none of these 37 equations are identically O except when

ar=ay=...=qap =0
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Table 2.12 A 3%~2 Fractional Factorial Design

06000
0121
0212
1022
1110
1201
2011
2102
2220

M EXAMPLE 2.2.9.
Let k = 6. Consider the defining contrasts

Ty + 22+ a3+ 224 =0, ) + @2 + 223+ 225 =0 and =z + 225 + x5 + 276 = 0.

These are all independent since each of z4, x5 and z¢ is involved in only one equation. [J

M EXAMPLE 2.2.10.
Let k = 5. Consider the defining contrasts

zi+z2+23=0 and z3+z4+175 =0.

Can we find a third independent equation with at least three non-zero coefficients? The
two equations that are linear combinations of the defining contrasts are

Ty +Te+ T3+ X3+ Ta+x5 =21 + 22 +223 + 24 + 25 =

and
T1+ 2o+ 23+ 223 + 204 + 225 = @1 + X9 + 274 + 225 = 0.

(We do not need to double the first equation and add the second equation — this is just
double the sum of the first equation and twice the second equation; similarly, if we double
both equations and add, we just get double the sum of the two equations.) Any equation
other than the original two equations and the two equations we have found by addition will
be independent of the two equations.

What can we say about the possible equations? Given we are using the equations to
construct fractional factorial designs, we do not want an equation with only one Zq in
it since the corresponding factor would not vary in the experiment. Similarly, if we use
Zq, + (iq,, then there is a constant relationship between the corresponding factors and the
associated main effects would be aliased.

If we think about equations with three variables, then we cannot have more than one of
z1, z2 and x3 (since if we used, say, z; + zo + x4 = 0, then

T+ T2+ a3+ 2(@) + 20+ 24) = a3 + 224 =0

and so 3 = x4) and we can not use more than one of z3, x4 and z5. So an equation
involving three of the z, forces two of the z; to be equal.
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A similar argument shows that you can not have equations with four or five variables
either. O

Since any interaction sum of squares is independent of the particular contrasts that are
used to define the interaction effects, in this section we will define the interactions using
contrasts between sets of the form

Zaqmq =6, §=0,1,2.
q

The only attributes whose levels determine the entries in the sets are those with non-zero
coefficients. There are three sets associated with each equation:

{(ry, 20, oak)] Zoqmq =0}, {(ml,mg,....:z*k)lZaqzq =1}

and

{(rl.rg,....mk)|Z(yqacq = 2}.
q

We will let
P(Z (qty) = Plog, o, ... o)

q

be the set of three sets associated with the equation 3~ a4, and we will talk about the
pencil associated with 3 aqrq.

For any interaction involving ¢ attributes, there are 2¢~! associated pencils. For ex-
ample, if we want to calculate the interaction between the first three factors we would
calculate contrasts between the sets in P(1110...0), P{1120...0), P(1210...0) and
P(1220...0). Each pencil gives rise to two independent contrasts. Contrasts from dif-
ferent pencils are orthogonal since any two sets from different pencils intersect in 3k-2
treatment combinations.

B EXAMPLE 2.2.11.

Let k = 2. The sets in each pencil are indicated in Table 2.13. The corresponding contrasts
are given in Table 2.14. O
Table 2.13  Pencils for a 32 Factorial Design

Pencil =0 =1 =2

P(10) or =) = 00, 01.02 10. 11,12 20,21.22

P(01) or xp =6 00, 10. 20 01. 11,21 02,12.22

PO11) or 21+ a2 =0 00, 12.21 01.10.22  02,11.20

P(12) or x4+ 272 =6 00.11,22  02,10.21  01.12.20
B EXAMPLE 2.2.12.

Consider the design constructed in Example 2.2.8 and given in Table 2.12. The contrasts
for the main effects for the design are given in Table 2.15. O
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Table 2.14 Contrasts for a 3% Factorial Design

00

-1

-1

-1

-1

01 02 10 11 12 20 21 22
-1 -1 0 0 0 1 1 1 Ap
11 -2 -2 -2 1 1 1 Aq
0 1 -1 0 1 -1 0 1 B
-2 1 1 -2 1 1-2 1 Bq
01 0 1 -1 1-1 0 P(11)L
-2 1 =2 1 1 1 1 =2 P(11)q
1 0 0-1 1 1 0 -1 P(12)L
1 -2 -2 1 1 1 -1 1 P(12)q

Table 2.15  Contrasts for a 3*~2 Factorial Design

0000 0121 0212 1022 1110 1201 2011 2102 2220

-1
I
-1
1
-1
1
-1
1

-1 -1 0 0 0 I 1 ]
1 I -2 -2 -2 1 1 1
0 -1 0 I -1 0 i

-2 1 1 -2 1 1 =2 ]
1 0 1 0 -1 0 -1 1
| 1 -2 1 =2 1 1
0 1 I -1 0 0 I -1

-2 1 1 1 -2 -2 1 1
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2.2.2.1 Regular Designs with All Factors at 3 Levels For two vectors a and b,
we will define a + b using component-wise addition modulo 3. Thus

0+40=142=2+1=0, 0+1=140=242=1and 04+2=14+1=24+0=2.

Hence, for the two vectorsa = {0,0,0,1,1,1,2,2,2)and b = (0,1,2,0,1,2,0,1,2), we
secthata+b = (0,1,2,1,2,0,2,0,1).

We will write a set of generators in a standard order. If the design has 3*~7 treatments,
then we need to define k& — p generator vectors b;. For by, we let the first 3* 7P~ entries
be 0, the next 3*~P~! entries be 1 and the remaining 3~P~1 entries be 2. For by, we
let the first 3¥7P~2 entries be 0, the next 3*~P~2 entries be 1, the next 3572 be 2, the
next 3*~?=2 entries be 0, and so on. For bs, we let the first 3¥=7=3 entries be 0, the next
3%=P=3 entries be 1, the next 3*~7~3 be 2, and so on. We continue defining generators in
this way until we get to bj._, which has 0, 1 and 2 in turn,

For instance, when k = 4 and p = 1, we get the three generator vectors

b; = (0,0,0.0,0,0.0,0,0,1,1,1,1,1,1,1,1,1,2,2,2.2.2.2,2.2,2),

b, = (0,0,0,1,1,1,2,2.2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2.2,2),

and
b =(0.1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0, 1, 2).

If we write 2a, then that means we multiply each component of a by 2 modulo 3.

We can now define the levels of all the other factors in the design in terms of the
b;. Table 2.16 contains generators for designs of resolution 3 with up to 10 factors and
Table 2.17 contains generators for designs of resolution 5 with up to 10 factors . We let N
denote the number of combinations of factor levels so N = 387,

Table 2.16 Smallest Known Regular 3-Level Designs with Resolution at Least 3

k N Other Factors
4 9 bz = by + by, by = by + 2b,
5 27 bs =b; + by + bs,bs =b; + bs + 2bs
6 27 by = b1 + bz + bz, bs = by + ba + 2bs,bs = b1 + 2bs + by
7 27 bs =b; + bz 4+ b3, bs = b; + by + 2bs,
bs = by + 2bs + bz, by = b, + 2bs + 2bs
8 27 bs = b1 + b2 + bs,bs = b1 + bz + 2bs, bg = by + 2bs + bs,
b7 = b; +2by +2bz.bs =b; + by
9 27 bs = by + bz + bs,bs = by + bz 4 2b3,bg = b; + 2bs + ba,
b7 = by + 2bs + 2bs,bs = b1 + b, bg = by + b3
10 27 by = b; + b2 + b3, bs = by + bz + 2bs, bg = by + 2bs + bg,

b7 = b1 + 2bs + 2bsz, bs = b1 + b2, bg = b; + bs,big = bz + bs

2.2.3 A Brief Introduction to Finite Fields

The ideas developed in the previous two sections make it easy to construct fractions that
confound certain effects. The same ideas will not work for all possible numbers of levels
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Table 2.17 Smallest Known 3-Level Designs with Resolution at Least 5

k N Other Factors

5 81 bs =b;+ by +bs+ by

6 243 bs = b; + by + b3z + bs + bs

7 243 bs = 2b; + 2bs + 2bs + 2by, by = 2b; + 2bs + bg + 2bs

8 243 bs = by + bz + 2bs + bs, by = b1 + 2bs + by + bs,

bs = bi + bs + b4 + 2bs

9 243 bg = by + bs + 2bs + bs, by = b; + 2bs + by + bs,
bs = b1 + ba + by + 2bs, bg = b; + b2 + b3 + 2by

10 243 bs = by + bz + 2bz + bs, b7 = by + 2bs + by + bs,

bg = by + b3 + by + 2bs, bg = by + b2 + b3 + 2by,
bio =2b; +ba+ bz +bs + bs

nor for situations in which not all factors have the same number of levels. In this section
we develop the idea of a finite field. This is an algebraic structure that we need in order to
be able to extend the techniques of the previous two sections.

We begin by looking at four levels. Suppose that there are k = 2 factors. Suppose that
wework modulo4sothat 1+ 1=2,142=3,1+3=0,24+2=0,2+3=1,andso
on. Think about the pencil P(12). It contains the four sets

{(z1,22)|zy + 222 = 0} = {00,02,21,23},

( )
{(@1,x2)|z1 + 222 = 1} = {10, 12,31, 33},
{(x1, z2)|z1 + 229 = 2} = {01, 03,20, 22},
{(z1, x2)|x; + 222 = 3} = {11,13,30,32}.

Note that each of these sets contains either two entries or zero entries from the sets of the
pencil P(10) (from which we calculate the A main effect). Since these intersections are
not of a constant size, the arguments that we have used in the previous sections, to establish
the orthogonality of the contrasts used to estimate the effects, do not work. How can we
overcome this problem?

The reason that all the sets from different pencils intersected in a constant number of
points when working modulo 2 and 3 is that every non-zero element could be multiplied by
some other element to get 1; that is, all non-zero elements have multiplicative inverses. For
instance, 1 x 1 = 1 modulo both 2 and 3 and 2 x 2 = 1 modulo 3. When we work modulo
4dweseethat2 x 1 = 2,2 x 2=0and 2 x 3 = 2. Thus 2 does not have a multiplicative
inverse. So we want to get a set of 4 elements in which multiplicative inverses exist.

We do this by using an appropriate polynomial which we evaluate over the integers
modulo 2, Z;. To get such a polynomial, consider the quadratics over Z,, namely, z2,
+zr=xz(x+1),22+1= (z+1)%2and 2% + x + 1. The first three quadratic equations
factor over Z, but 12 41+ 1 = 1and 02 + 0+ 1 = 1 in Z3, and hence the quadratic
polynomial 2% + = + 1 does not factor over Z,. It is said to be irreducible over Z,. We
now try to embed Z in a larger field in which 22 + z + 1 will factor.

Suppose we let o be a solution of 22 + z + 1 = 0. So a® + o + 1 = 0 and hence

% = a + 1. Since we are working modulo 2, we have

(23

(a+1)2+(a+D)+1=(@*+1)+(a+)+1l=c’+a+1=0.
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Consequently, o + 1 is the other solution of our equation. Thus we get the addition and
multiplication tables shown in Table 2.18.

Table 2.18 The Finite Field with 4 Elements

+ |0 1 o a+l x [0 1 a  a+l
0 0 1 a a+1 0 0 0 0 0

1 i 0 o+ 1 @ 1 0 1 a o+l
¢ a a+l 0 1 « 0 a a+1 ]
at+1|la+1 o | 0 a+1l 0 a+1 I o

We are, in fact, taking the ring of polynomials over Z, and working with them modulo
x? + z + | to give the field of order 4. We will write G F'[4] for the field of order 4 (where
G'I stands for “Galois field” after the French mathematician Evariste Galois (1811-1832)).
The integers modulo n form a field if and only if n is prime. In the same way, if we start
from Z, for some prime p, and consider the ring of polynomials Z,[z] over Z,, modulo a
polynomial f(x), this forms a field if and only if f(z) is irreducible over 7Z,,.

We will write the entries in (7 F[4] as ordered pairs: (11) = a + 1 and (01) = 1,
for instance. The only other thing that we need to know about finite fields is that the
multiplicative group of the finite field is cyclic. Thus, if we take all the elements in the
field other than 0, then each element can be expressed as a power of a primitive element of
the field. In the case of GF'[4] the primitive element can be taken as « since a2 = « + 1
and o® = 1. For GF[5], we can use 2 as the primitive element since 22 = 4, 2% = 3 and
2% = 1. or we can use 3 as the primitive element (32 = 4, 3% = 2 and 3* = 1) but we can
not use 4 (since 42 = 1).

Of course if we represent the entries in GF[4] as ordered pairs then we have the same
representation for the levels of a four-level factor as we would have from having two
factors each with two levels. This can be a useful way of thinking about a four-level
factor; we say that the two new factors are the pseudo-factors corresponding to the original
four-level factor. Three orthogonal contrasts for the four-level factor can be represented
by linear, quadratic, and cubic orthogonal polynomials, or they can be represented by the
main effects and the two-factor interaction of the pseudo-factors. We will see later that
both representations are useful, depending on the circumstances.

Armed with these finite fields, we can now give constructions of regular fractions for
any symmetric design with a prime or prime-power number of levels.

2.2.4 Fractions for Prime-Power Levels

In this section we will use # to represent either a prime or a prime power. We will write

GFllasag = 0,01 = l,ay = x,...,0¢_; = =2 where x is a primitive element of

GFY).

2.2.4.1 Regular Resolution 3 Fractions

B CONSTRUCTION 2.2.1.
There is a resolution 3 design with ¢ + 1 factors on ¢ symbols.
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Proof. We will let by be a vector with £ 0’s, then £ 1's, then £ a2’s and so on. We will let
b, be a vector with the elements of G F'[¢] repeated in order ¢ times. Thus the pairs from
the corresponding positions of by and by give one copy of each of the possible ordered
pairs with entries from GF[¢]. We can construct a resolution 3 design with up to £ + 1
factors and with £2 treatment combinations by using b for the levels of the first factor,
by for the levels of the second factor and by + a4 b; for the levels of the (¢ + 2)th factor,
g=1,2,...,6—1. O

B EXAMPLE 2.2.13.

Let{ =4. Letz = o Thena; = 1,7 = aand a3 = o2

= a+ 1. Thus we get
by = (0,0,0,0,1,1,1,1, 0, v, ¢y, + 1, + l,a+ 1,a+ 1)

and
by =(0,1,0,0+1,0,1, 0,0+ 1,0,1,0,+ 1,0, 1, ¢, + 1).

The third factor has levels given by by + by, the fourth factor has levels given by by + abg
and the fifth factor has levels given by by + (@ + 1)by. The final design is given in
Table 2.19. O

Table 2.19 A Resolution 3 4°~2 Fractional Factorial Design

Factors
1 2 3 4 5
0 0 0 0 0
0 1 1 a a-+1l
0 o a o+l 1
0 a+1 a+1l 1 o
1 0 1 1 1
1 1 0 a+l1 «
1 a a+l « 0
1 a+l « 0 a+1
« 0 «a «a o
« I a4+l O 1
« « 0 1 a+1
a a+1 1 a+1 0
a+1 0 a+l! a+l1 a+1
a+1 1 o 1 0
a+l « 1 0 o
a+1l a+1l 0 « 1

This construction gives us resolution 3 designs for up to five 4-level factors, up to six
S-level factors, up to eight 7-level factors, up to 9 8-level factors and so on. If we need
more factors then we will need other constructions; see Section 2.3.

2.2.4.2 Regular Resolution 5 Fractions Here is an easy construction for regular
resolution 5 designs that works only when the number of levels is a prime or a prime power.
Itis a special case of a more general construction given by Bush (1952); see also Hedayat
et al. (1999).
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W CONSTRUCTION 2.2.2.
Let ¢ be a prime or a prime power with £ < 4. Then there is a resolution 5 fractional
factorial design with 5 factors and €* treatment combinations.

Proof. Let the elements of the Galois field be ap = 0, 3 = 1,...,a¢—1. Construct the
generators by, by, bs, and by in the usual way. Then construct one further factor, where
bs = by + bz + bs + b,. Verifying that this construction works is left as an exercise. [J

The three designs from this construction have five 2-level factors or five 3-level factors
or five 4-level factors.

There are other constructions for such designs available when the restriction about
regularity is removed; see Section 2.3.

2.2.5 Exercises
1. Construct a regular design of resolution 3 with five factors each with two levels.

2. Construct a regular design of resolution 3 with five factors each with two levels
and with N = 16. How many inequivalent designs can you get for this situation?
(Two designs are said to be inequivalent if you cannot gel from one to the other by
permuting factors or levels within factors.)

3. Let & = 6 and suppose that all factors have two levels. Consider the fractional
factorial design givenby xy + 20 +124 = 0,21 + 23+ 25 = Oand 29 + 23 + 26 = 0.
Find the sum of the three pairs of equations and the sum of all three equations. Hence
give the resolution of the design.

4. Give the 9 treatment combinations in the regular 3-level design with k = 4 factors.

5. List all the quadratic polynomials over G F'[3]. Hence construct the Galois field
GF9.

6. Use Construction 2.2.1 to construct a resolution 3 design for 6 factors each with 5
levels.

7. Proof that the construction given in Construction 2.2.2 works.

2.3 IRREGULAR FRACTIONS

When they exist, the defining equations of a regular fraction provide a convenient way
of summarizing the treatment combinations in a fraction. For asymmetric factorials, it
is not possible to define fractions in such a neat way; instead, we must list explicitly the
treatment combinations in the fraction. Even for a symmetric factorial, it is sometimes
more convenient to list the treatment combinations rather than just the defining contrasts.

We begin by considering the properties that the treatment combinations in regular
fractions have and consider how to apply these to asymmetric factorials.

We first consider fractions of resolution 3. Because the treatment combinations in a
regular fraction are the solutions to a set of independent linear equations, each with at least
three non-zero coefficients, each level of each factor appears equally often. So this is one
feature that we would like to be true for any irregular fraction as well.
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In fact, since each of the independent linear equations has at least three non-zero
coefficients in it, the levels of any two factors can be specified and there are the same
number of solutions to the equations with the specified levels of these two factors. This
means that, in the regular fraction for any two factors, each pair of levels appears in the
same number of treatment combinations. This is the second feature that we would like for
an irregular fraction.

If an irregular fraction has these two features then the main effects contrasts from any
two factors will be orthogonal, and so the corresponding effects will be independently
estimated. Thus irregular fractions in which each level of each factor appears equally
often and any pair of levels from any two factors appears equally often are the natural
generalization of regular fractions of resolution 3. In such fractions, the main effects can
be estimated independently.

In a similar way, we can generalize the features of a regular fraction of resolution 5.
In addition to the two features discussed above, we know that the defining equations for a
design of resolution 5 all have at least 5 non-zero coefficients. Thus we can independently
specify levels for 4 of the factors, and there will be the same number of treatment combi-
nations for any such combination of levels for each set of four factors. This becomes the
third feature that we need to get a fraction that is a generalization of a regular fraction of
resolution 5. Because for each pair of factors each possible level combination appears with
each possible level combination for any other pair of factors, the two-factor interactions
can be estimated independently of each other.

For symmetric designs we can formalize these observations in the following definition
which is a natural generalization of the requirements for fractions of resolution 3 and 5.

An orthogonal array OA[N, k,¢,t] is a N x k array with elements from a set of ¢
symbols such that any N x ¢ subarray has each ¢-tuple appearing as a row N/t times.
Often N/¢" is calted the index of the array, t the strength of the array, k is the number of
constraints and £ is the number of levels. The fractional factorial design in Table 2.5 is
an example of an OA with £k = 4 and n = 8. We see that in each column there are 4 Os
and 4 Is. In any pair of columns, there are 2 copies of each of the pairs (0,0), (0,1), (1,0)
and (1,1); thus the array has strength 2. We know that this array has resolution 3 since
the defining equation has three non-zero coefficients. This illustrates a general result: An
orthogonal array of strength ¢ is a fractional factorial design of resolution ¢ + 1. To establish
that a design is of resolution 4, it may be easier to establish that any set of three columns
has each of the possible ordered triples appearing as rows equally often. Similarly, a design
has resolution § if any set of four columns has each of the possible ordered quadruples
appearing as rows equally often.

This gives us a definition that we can easily generalize to asymmetric factorials. The
estimability properties of these asymmetric orthogonal arrays are the same as those of
symmetric orthogonal arrays of the same strength; see Hedayat et al. (1999) for a formal
proof.

An asymmetric orthogonal array OA[N; {1, 02, ..., 0x; t]isa N x k array with elements
froma set of £, symbolsin column g such that any NV x ¢ subarray has each ¢-tuple appearing
as a row an equal number of times. Such an array is said to have strength t.

We will usually use “orthogonal array” for either an asymmetric or a symmetric array.

Orthogonal arrays of strength two are a subset of the class of orthogonal main effect
plans. We let ng4 be the number of times that level z appears in column q of the array. A
k factor, V run, £,-level, 1 < g < k, orthogonal main effects plan (OMEP) is an N x k
array with symbols 0,1,...,%, — 1 in column g such that, for any pair of columns ¢ and
p, the number of times that the ordered pair (i, y) appears in the columns is nygn,,/N.
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It can be shown that the main effects can be estimated orthogonally from the results of an
OMEP; see Dey (1985).

If we represent the two levels of each binary factor in an OMEP by —1 and 1 then the
inner product of any two binary columns of the OMEP is 0.

Sometimes several factors will have the same number of levels and this is often indicated
by powers. So an OA[32:2,2,2,4,4;4] is written as OA[32:23,4%:4). Another common
notation for an OA oran OMEPistouse £1x 8y x... XL,/ /N foran OA[N: £y, by, ... {4 t],
most often when ¢ = 2 or the fact that ¢ > 2 is not relevant.

2.3.1 Two Constructions for Symmetric OAs

Various constructions for orthogonal arrays have been found; a nice summary is given in
Hedayat et al. (1999). We give two of the most useful constructions in this section.

The next construction gives a resolution 3 design with 2¢2 treatment combinations for
up to 2¢ + 1 factors when £ is odd.

W CONSTRUCTION 2.3.1.
If £ is an odd prime or prime power then there is an O A[2¢%,2¢ +1,¢,2].

Proof. Let the elements in GFf] = {ap = 0,1 = 1,aq,...,ca¢_1}. The design is
constructed in two parts. As in Sections 2.2.1 and 2.2.2 we let by be a vector of length 22
with the first £ entries equal to ap, the next £ entries equal to 1 and so on until the final ¢
entries are equal to ay—;. We let by have first entry ap, second entry ¢v; and so on until
entry £ is a1 and these entries are repeated in order ¢ times. For the first £? treatment
combinations we use by for the levels of the first factor, by for the levels of the second
factor, and by + agbs for the levels of the (¢ + 2)th factor, ¢ = 1,2,....£ — 1. To get

the levels for the remaining £ factors, we use b% +agby + by, ¢g=0,...,¢— 1. For the
remaining 22 treatment combinations, we use by for the levels of the first factor, b for the
levels of the second factor, by +a4ba+1v4, ¢ =1,...,7— 1, for the levels of the next £ — 1
factors and 6b? + by, 6b? +6,by +bo +py, g=1,.. ., ¢ — 1, for the levels of the final ¢
factors, where we have to determine vq, Vo, ..., Vg—1, 01,02, - -+, Pe—-1,0,01,02. ..., Ge_1.

We let § be any non-square element of GF[¢]. We let v, = (6 — 1)(40a,) 1, 8, = faq
andp, = a2(0 - 1)471 g=1,2,... .- 1 O

The result sometimes holds for £ even; see Hedayat et al. (1999) (p. 47) for a discussion
and another way of constructing OAs with 2" symbols. The smallest design for £ a power
of 2 that would be given by this construction is an OA with 9 factors each with 4 levels
with N = 32.

B EXAMPLE 2.3.1.

Let £ = 3. Since 2is not asquare in G F[3], weletd = 2. Sowehaver; = (dx2x1)71 =
2,y =(4x2x2)7" ' =1,0,=2,0,=1,py =4—1=1and po = 47! = 1. Thus the
treatment combinations in the second half are given by by, by, by +bo +2, by +2bs + 1,
2b? +by. 2b? +2b; + bz + 1 and 2b? + b + by + 1. The final 18 treatment combinations
are given in Table 2.20.

The next result is a special case of a result in Bush (1952) and gives an orthogonal array
of strength 4, equivalently a resolution 5 fractional factorial design.

M CONSTRUCTION 2.3.2.
If ¢ is a prime or a prime power and { > 3, then there is an OA[£*,€ + 1,0,4].
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Table 2.20 A Resolution 3 Fractional Factorial Design for Seven 3-Level Factors

NN == — COONNNN———0O 00
N = O™ ON == ON—= O O —=O
SN =N = O O = O NON =N —O
— N OO = NN O~O—=NNO == —ND
—_ O N ONN - OON~ON—N~O
O — — ONONN =N — O —0O NN —=O
—- OO =, ON == ONN~—~,ON~—~O

Proof. Use the elements of G F'[£] to label the columns of the array and the polynomials of
degree at most 3 to label the rows of the array. Suppose that v/; is the polynomial associated
with row ¢ and that field element a; is associated with column j. Then the (7, j) entry is
¥:(a ). The final column contains the coefficient of 2% in ;. The verification that this
array has the desired properties is left as an exercise. |

M EXAMPLE 2.3.2.

Let £ = 3. Then we can use Construction 2.3.2 to construct an OA[81,4,3,4]. There are
three polynomials of order 0: 0, 1 and 2. There are 6 polynomials of order 1: x, z + 1,
x+ 2, 2z, 2z + 1 and 2z + 2. There are 18 polynomials of order 2: the 9 with leading
coefficient 1 are 2%, 22 + 1,22 +2,2° +x, 22 + 2+ 1,22 + 2+ 2, 22 + 22, 2% + 22+ 1 and
2% + 2z + 2. There are a further 9 quadratics with leading coefficient equal to 2. Finally
each of these 27 polynomials can have 2® or 223 added to it to give the 81 polynomials
required in the construction. O

2.3.2 Constructing OA[2%; 2k, 4F2; 4]

Addelman (1972) gave some useful constructions for these designs. He described each
4-level factor by three 2-level generators and he gave a set of generators for the 2-level
factors. This set had to be such that no linear combination of two or three of the generators
in the set was also in the set.

We give the six designs that he gave in Table 2.21.

H EXAMPLE 2.3.3.

To construct an OA[64;23,4%;4] we need the generators of length 64. So by has 32 Os and
then 32 1s, by has 16 0s, then 16 1s then 16 Os then 16 1s and so on until bg which alternates
Os and 1s. Then we use bs, bg and b; + b3 + bg + bg to determine the 2-level factors and



Table 2.21

IRREGULAR FRACTIONS

Generators for OA[2F; 251 4k2; 4]

OA

Two-Level Factors

Four-Level Factors

OA[32;2% 4:4)

0A[64:2° 4:4]

OA[64:2% 42:4)

OA[128:2° 4:4]

OA[128:2°,42:4)

OA[128;23 43:4)

b3,byg,bs,
b: + bz + bs + bs

bs,bq,bs.bs
b1 + bs + bs + bs,
bs + bs + bs + bg

bs., be.,
b1 + b3 + bs + be

b3, by, bs, be, b7,
b1 + b3 + by + bs,
by + ba + bg + br,
b2 + b3 + bs + bg,
by + by + bs + by

bs, be, bz,
b1 + bz 4+ bs 4+ be,
b1 + bs + bs + b,
bz + bz + bg + b~

b7,
b1 + b3z +bs + by,
bz + by + be + b~

(b1. ba,b; + b)

(b1.ba. b1 + by)

(b1, bz, b1 + b2)
(b3, by, bs + by)

(b1. b2, by + by)

(b1. b2, b1 + bz)
(bz.b4. bz + by)

(b1, b2, b1 + ba)
(bs, by, bz + by)
(bs. bs. bs + bs)

45
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use by, by, by 4 b; and bs, by, bz + by for the two 4-level factors. The resulting design
is given Table 2.22. O

Table 2.22 The OA[64;2°%,4%:4]

00000 01100 10100 11000
00001 01101 10101 11001
00102 01002 100602 11102
00103 01003 10003 11103
00010 01110 10110 11010
00011 01111 10111 11011
00112 01012 10012 r1 112
00113 01013 10013 11113
00120 01020 10020 11120
00121 01021 10021 11121
00022 01122 10122 11022
00023 01123 10123 11023
00130 01030 10030 11130
00131 01031 10031 11131
00032 0tri132 10132 11032
00033 o0rtr3s3 10133 11033

2.3.3 Obtaining New Arrays from Old

Given an orthogonal array, symmetric or asymmetric, it is possible to get other arrays from
it by deleting one, or more, factors and by equating some of the levels for one, or more, of
the factors. Sometimes it is possible to replace the entries in one factor by several factors,
each with fewer levels, and sometimes it is possible to combine several factors to get one
factor with more levels. In this section we will discuss each of these situations in turn.

B CONSTRUCTION 2.3.3. Collapsing Levels

Consider an orthogonal array with a factor with £, levels. Suppose that we want to make
this into a factor with £, < £ levels. We can do this by changing level £ 10 0, {5 + 1to 1,
45 + 210 2, and so on, until all the levels in the original factor have been changed to ones
for the new factor. O

This way of making the changes guarantees that each level of the new factor appears about
the same number of times (exactly the same number of times if £,|¢;) and the properties of
the original array guarantee that the final array is an OMEP. But any collapsing that results
in levels appearing about the same number of times is just as good.

This procedure is almost impossible to reverse.

Bl EXAMPLE 2.3.4.

Consider the array in Table 2.20. Suppose that we want an array with 7 factors, 3 with two
levels and 4 with three levels. Then we could collapse the levels in the first three factors to
get the OMEP shown in Table 2.23. Note that the first three factors have level O repeated
12 times and level 1 repeated 6 times. 0

The next construction only applies to orthogonal arrays of strength 2.
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Table 2.23 A Resolution 3 Fractional Factorial Design for Three 2-Level Factors and Four
3-Level Factors

0000000
0112111
0001222
1ot 1 120
1100201
1002012
0002102
0101210
0010021
0001011
0100122
0012200
1002221
1111002
1000110
0010212
0102020
000110t

B CONSTRUCTION 2.3.4. Expansive Replacement

Suppose that we have an orthogonal array of strength 2 in which there is one factor with
¢y levels. Suppose that there is an orthogonal array of strength 2 which has €1 runs. Label
these runs from 0 to £1 — 1. Then we can replace each level of the factor with {1 levels in
the first arrav by the corresponding run of the second array. a

The name arises because the new array has more factors than the original array.

B EXAMPLE 2.3.5.

Consider the array in Table 2.24. Suppose that we want to replace one of the factors with
the runs from the OA[4,3,2.2]. The runs of this array are given in Table 2.25. The resulting
0A[16;2,2,2,4,4,4,4,2] is given in Table 2.26. If we make this replacement for all five of
the 4-level factors, then we get the array in Table 2.27. 1

The most common examples of expansive replacement are replacement of a factor with
4 levels by three factors each with 2 levels and replacement of a factor with 8§ levels by
seven factors each with 2 levels.

It is sometimes possible to replace several factors with one factor with more levels.
Before we describe this contractive replacement we need to define the idea of a a right
or saturated orthogonal array. In a tight or saturated orthogonal array with & factors,
N=1+ Z’;:l(&z — 1). Thus we see that there is no room for any more factors.

l CONSTRUCTION 2.3.5. Contractive Replacement

Let A be an OA[N; 0y, €a,...,Fr; 2] such that the first s columns of A form N/Ny copies
of an OA[Ny: 81,65, ..., L5 2], B say, that is tight. Use 0,1,..., N1 — 1 10 label the rows
of B, and then use these labels to replace the first s columns of A. The resulting design is
an OA[N: N, loiq,... £i: 2] a
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Table 2.24 An OA[16,5.4,2]

00000

3

2
02231

1

03312

1
1

0

1032
12320

13203
20222
21301

22013

23130
30333

31210
32102
33021

Table 2.25 An OA[4,3,2.2]

(=

S O -

oo — —

Table 2.26 An OA[16;2.2,2.4,4,4.4:2]

0000000

23

0002231

1

0001

3312

000

—F NN AN —~N OO N —
— N NONO —~n e — ON
O N NNNO - N — O
O~ ANNO—~NNO —~ ™
11111111 cooo
—_—,E e, —_ 0 OO O — — — —
C O OO =
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Table 2.27 An OA[16,15,2.2]

000000000000000
000011011101 110
60001011011 10011
000t1011001 1101
01100001 1011011
0110110001 10T101
011101110101 00°0
0111101010001 1°80
101000101 101101
1010111 10000011
10110100001 1110
101110011 110000
1100001101 10110
110011101011000
11010101 1000101
1101100001 01011

Bl EXAMPLE 2.3.6.

Consider the design in Table 2.26. The first three columns form four copies of a tight
0A[4, 3,2, 2] and so replacing 000 with 0, 011 with I, 101 with 2 and 110 with 3 gives the
0A[16,5,4,2] in Table 2.24. |

The same construction will work if the array A could have columns adjoined so that
B would be tight. The construction does not work if the original array is not tight, or
cannot be made tight, or if only some columns of the tight subarray are replaced, as the
next example shows.

M EXAMPLE 2.3.7.
Consider the first two columns of the orthogonal array in Table 2.26. Then these two
columns form 16/4=4 copies of an OA[4,2,2,2], although it is not tight since

1+ (/=) 4+ —1)=1+1+1=3#4,

If we replace 00 by 0, 01 by I, 10 by 2 and 11 by 3 we see that the Os in the third column
of the original array only appear with 0 and 2 in the proposed new 4-level column. This
is because the third column is the binary sum of the first two columns and so its levels
are not independently determined. The first three columns of the array do form a tight
0A[4,3,2,2]. O

By juxtaposing several copies of an array it is possible to get a larger array with k& + 1
factors.

B CONSTRUCTION 2.3.6. Adding One More Factor

Take any OA[N;l1,£q, ... lx;t] and write down £ 1 copies of the array, one above the
other, and then adjoin a (k + 1)st factor with N copies of 0, then N copies of 1, and so on,
until there are N copies of €11 — 1. The resultis an OA[N X fri1:41, 82, ... €, frprit).

O
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The levels of the last factor appear equally often with every pair of levels for any other
two factors and so the array has strength 3 with respect to the last factor; this property is
useful when constructing an OA to estimate two-factor interactions all of which involve
one factor.

W EXAMPLE 2.3.8.

Consider the OA[4,3,2,2] given in Table 2.25. By writing down three copies of this array
and adjoining one further column for the three-level factor, we obtain the OA[12:2,2,2,3;2]
in Table 2.28. O

Table 2.28 An OA[12;2,2,2,3:2]

—_—_ e O~ — 00 = — OO
—_, O O O OO = O
[ R = R R o =
NV — — - = O O o

The next construction extends this idea by adding several factors simultaneously.

B CONSTRUCTION 2.3.7. Juxtaposing Two OAs

Take an OA[Nl, 511, £12, . ,Z]kQ t]and an OA[NQ; ézl,pgg, BN ,ng; t] and write down N2
copies of the first array, one above the other. Adjoin the first row of the second array to the
first copy of the first array, adjoin the second row of the second array to the second copy of the
first array and so on. The result is an OA[N{Ny; 11,012, . .. b1k, €01, 820, ..., lor;t]. O

In an OA obtained from Construction 2.3.7 there are several sets of three factors in
which every triple of levels appears equally often. These include every set of two factors
from the original OA and one factor from the adjoined OA and every set with one factor
from the original OA and two factors from the adjoined OA.

B EXAMPLE 2.3.9.

Consider the OA[4:3,2;2] given in Table 2.25. Use this as both the original OA and as the
adjoined OA. Then we get the OA[16;6,2;2] in Table 2.29. Notice that the only two sets of
three factors which do not contain all the triples of levels are factors 1, 2, and 3 and factors
4,5, and 6. O

W CONSTRUCTION 2.3.8. Obtaining One Factor with Many Levels

Take any orthogonal array OA[N; £1,8a,. .., Lk;t] and write down £ copies of the array,
one above the other, and then leave the levels of the kth factor unaltered in the first copy of the
array, use £y, different levels in the second copy of the array, use a further { levels in the third
copy of the array and so on. The resulting arrayisan OA[NE; 01,05, . .. fr_1, 0 t]. O
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Table 2.29 An OA[16:6.2:2]

== = R R = R =
=T R R R N
= e A e = = = I = I
R T = N - I B S
—_—— e, 00O, - OO OO
QOO — vt = e OO DO

H EXAMPLE 2.3.10.

The OA[12:2,2,6;2]in Table 2.30 is obtained by writing down three copies of the OA[4,3,2,2]
given in Table 2.25 and replacing the final column with three distinct sets of two symbols
for the final factor. O

Table 2.30  An OA[12:2.2.6:2]

—_ —_ 0O = O = — OO
—_—0 = O = O = O e O = O
S BNW W NO = —= O

The next construction shows how to remove an unrealistic (or unwanted) treatment
combination from a fractional factorial.

B CONSTRUCTION 2.3.9. Avoiding an Unrealistic Treatment Combination

Given an orthogonal array OA[N:¢1,€q, ... €x_1,€r;t] which contains an unrealistic
treatment combination, the treatment combination can be removed by adding another
treatment combination to every treatment combination in the array. This addition is done
component-wise mod £, in position q. O



52 FACTORIAL DESIGNS

The treatment combination to add needs to be chosen so all the resulting treatment
combinations are acceptable; often such a treatment combination can only be found by trial
and error.

M EXAMPLE 2.3.11.

Suppose that we want an OA[12;2,2,6;2] without the treatment combination 000. Then
we need to add a treatment combination to those in the array in Table 2.30 so that 000
is avoided. This means that we need to add some treatment combination that is not the
negative of any of the treatment combinations that are already there. So we try using 113,
This gives the array in Table 2.31. O

Table 2.31 An OA[12:2,2,6:2] without 000

OO m OO — = OO =
OO O = O =D~ O =
—_NN =N O W WA R W

2.3.4 Exercises

1. Use Construction 2.3.2 to construct an OA[81,4,3,4].
2. Prove that the array constructed in Construction 2.3.2 has the desired properties.
3. Consider the design in Table 2.32.

(a) Verify that the design is of resolution 3.
(b) Is it resolution 4?
(c) Show that the final three columns can be replaced by one column with 4 levels.

(d) Are there any other sets of three columns for which you could make this
replacement?

(e) In particular, can you write the design as a resolution 3 array with two factors
each with 4 levels?

4. Construct an OA[32:24.4:4].
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Table 2.32 An OA[8,6,2.2]

000000
011011
101101
110110
001110
010101
100011
111000

2.4 OTHER USEFUL DESIGNS

There are various other combinatorial designs that have been used in the construction of
stated preference choice experiments. We collect the definitions here for convenience.

Consider a set of v items. From this set of v items construct b subsets, or blocks, each
with w distinct items. Suppose that any two items appear together in exactly A of the b
blocks. Then the set of b blocks form a balanced incomplete block design (BIBD). Let r;
be the number of times that item /; appears in the BIBD. If we count the pairs that item /]
appears in the BIBD we have that 7; appears in r; blocks and there are u — 1 other items
in the blocks. So there are 7;(u — 1) pairs involving item 1;. On the other hand there are
v — 1 other items in the BIBD and item 7 appears with each of these A times in the BIBD.
So there are A(v — 1) pairs involving item 1. Equating we get that r;(u — 1) = A(v — 1)
and so we see that all of the items appear equally often in the BIBD. We call this replication
number r and talk about a (v, b, r,u, A) BIBD. If v = b then r = w and the design is said
to be a symmetric BIBD (SBIBD), written (v, r, ). Tables of balanced incomplete block
designs may be found in Mathon and Rosa (2006) and Abel and Greig (2006).

B EXAMPLE 2.4.1.

Let v = 7 and consider the blocks in Table 2.33. These blocks form a BIBD on 7 items
with 7 blocks each of size 3 and with each item appearing in 3 blocks. There is a unique
block which contains every pair of items so A = 1. O

Table 2.33 The Blocks a (7,3,1) BIBD

1 2 3
1 4 5
! 6 7
2 4 6
2 5 7
34 7
3 5 6
One easy way to construct BIBDs is to use difference sets. Let X = {z1,20,... .2}

be a set of integers modulo v. Suppose that every non-zero value mod v can be represented
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as a difference z; — x;, x5, x; € X, in exactly A ways. Then X is said to be a (v, u, A)
difference set.

B EXAMPLE 24.2.

Letv = 7and u = 3 and let X = {0,1,3}. Then X is a (7,3,1)-difference set since each
of the non-zero integers mod 7 can be represented as a difference in exactly one way using
the elements from X. Infact wehave 1 =1-0,2=3-1,3=3-0,4=0-3,
5=1-3and6=0- 1. O

We give some small difference sets in Table 2.34. More extensive tables of difference
sets are given by Jungnickel et al. (2006).

Table 2.34 Some Small Difference Sets

vou,A Set
7 31 0,1,3
7 42 0,124
13 4 1 0,1,39
21 5 1 3,6.7,12,14
1152 1,3,459
11 6 3 0,2,6,7,8.10
1573 0,1,2,4,58,10
Of course, if X = {zy,xa,...,2,} is a (v, u, A) difference set then so is

{z1+ 1,z +1,...,2y +1}.

Ttisalso truethat X = {0,1,...,v~11\X isan (v,v — u,v — 2u + A) difference set. We
can see that this is true by counting the number of times that each non-zero value mod v
appears as a difference. The total number of differences in X is (v — u)(v — u — 1). The
total number of differences in X is u(u — 1) and each of the v — 1 non-zero values mod v
appear as a difference A times so u(u — 1) = A(v — 1). Thus we see that

(v-—uw)v-—u-1) = viv-1-u)—ulv—-1-u)
= v(v—1)=vu—uv — +u(u+1)
= vv—-1)+Av-1)+2u—2uw
= vv—-1+XAMv—-1)—-2u(v-1)
X

= (v—-1v+A-2u).

Since {0,1,...,v — 1} isa (v,v,v) difference set the result follows.

It is not essential for a difference set to be defined over the integers mod v. Any group
can be used although the only extension that we will make here is to give one difference set
defined on ordered pairs where differences on each element of the pair are evaluated mod
4.- Thus there are 16 levels in total and each is represented by an ordered pair. If u = 6
then the ordered pairs {(0,0), (0,1}, (1,0), (1, 2),(2,0), (2, 3)} form a (16,6,2) difference
set. For example we see that the element (1,3) arises as a difference twice: (2,3) — (1,0)
and (1,0) — (0,1).

A further extension is to have several sets and look at the differences across all the
sets. Formally suppose that X; = {z;1, Zi2, ..., @iy } is a set of integers modulo v. Then
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X1.Xs,.... Xy forma (v,u, \) difference family if every non-zero value mod v can be
represented as a difference i, — 4, Tia, Tip € X4, 1 <1 < f, in exactly A ways.

Il EXAMPLE 2.4.3.
The sets (0,1,4) and (0,2,7) form a (13,3,1) difference family. O

Table 2.35 contains some small difference families.

Table 2.35 Some Small Difference Families

vou A Sets
13 31 0,1,4 0,27
19 3 1 0.1,4 0,2.9 0,5.11
16 3 2 0.1.2 0,2.8 03,7 04,7 0,510
11 4 6 0,1,8.9 0.2,5.7 0,1,4,5 0,2,3.5 0.4.59
15 4 6 0,1,2.3 0.24.6 0,4,8,12 0.1,89
0.3.69 0.1,5,10 0.2.5,10
19 4 2 0.1.3,12 0,1,5,13 04,69
13 55 0.1.248 0,13,6,12 0,2,56,10
17 55 0.1,4.13,16 0.3,5,12,14 0,2,89.15 0,6,7,10,11

A Hadamard matrix of order h is an h x h matrix with entries 1 and —1 satisfying
HH' = I. A table of Hadamard matrices is maintained by Sloane (2006a).

B EXAMPLE 2.4.4.
Here is a Hadamard matrix of order 4.

11 1 1
11 -1 -1
1 -1 1 =1
1 -1 -1 1 O

2.5 TABLES OF FRACTIONAL FACTORIAL DESIGNS AND ORTHOGONAL
ARRAYS

There are two extensive tables of orthogonal arrays available on the web. One is the table
of orthogonal arrays maintained by Sloane (2006b). This website uses “oa.N.k.s.t.name”
to denote an orthogonal array with N runs, k factors, s levels (for each of the factors),
and strength ¢ (equivalently resolution ¢ + 1). This site sometimes gives mathematically
inequivalent designs with the same parameters and it makes no claim that it lists all possible
parameters, even for small designs. It has many designs of resolution 3 and some designs
for larger resolutions.

The other tables are maintained by Kuhfeld (2006) and list all parent designs of res-
olution 3 with up to 143 treatment combinations as well as many designs with more. A
parent design is an orthogonal array in which no further contractive replacement is pos-
sible. As well as listing the parent arrays, Kuhfeld has a list of the number of parent
designs for a given value of N and the number of designs that exist for that value of
N. For example, there are 4 parent designs and 4 designs with N = 12 (OA[12,11,2,2],
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0A[12;2,2,2,2,3;2], OA[12;2,2,6;2] and OA[12;3,4;2]), while there are 2 parerit designs
with N = 16 (0A[16:2,2,2,2,2,2,2,2,8;2] and OA[16,5.4,2]) but 7 designs obtainable from
them by expansive replacement. This site has no designs of resolution other than 3.

When trying to find a design that you need from these or any other tables, remember
that you can omit factors without affecting the resolution of the design. Frequently, designs
that are not tight are not listed and such designs are often what is required. Thus you need
to think in terms of collapsing levels and omitting factors from the tabulated designs to get
the ones that you want.

2.5.1 Exercises

1. Go to the website http://www.research.att.com/~njas/oadir/ and find a design with
k = 5 factors, four with 2 levels and one with 3 levels. How many treatment
combinations does it have? How would you define the main effects for each of these
factors?

2. Consider the column (1,1,1,0,1,0,0)’. Obtain 6 further columns by rotating one
position for each new column. Adjoin a row of 0’s. Verify that the resulting array
has 7 binary factors and is of resolution 3.

3. Use one of the websites mentioned above to find an OA of strength 2 for eight 4-level
factors and an 8-level factor in 32 runs. Now make an OA with 288 runs with one
more factor with nine levels. Show how to use this design to get an OA with two
2-level factors, four 4-level factors, an 8-level factor and one factor with 36 levels
still in 288 runs.

2.6 REFERENCES AND COMMENTS

Although used in some agricultural experiments from the mid-1800s, the first formal
exposition of factorial experiments was given by Yates (1935) and they appeared in Fisher
(1935).

There are various books that develop factorial designs for use in comparative experiments
including Kuehl (1999), Mason et al. (2003) and Montgomery (2001). These books also
discuss the derivation of orthogonal polynomials, for equally spaced levels, whose use in
model fitting was first pointed out by Fisher. The links between fractional factorial designs
and finite geometries were pointed out by Bose and Kishen (1940) and exploited by Bose
(1947). Much of the early work in the area is summarized in Raghavarao (1971) and Raktoe
et al. (1981).

There is a close relationship between fractional factorial designs and orthogonal arrays,
and an extensive treatment of results pertaining to orthogonal arrays can be found in Hedayat
et al. (1999). They give a number of constructions that rely on the structural properties
of the original OA to allow further factors to be added. The simplest of these ideas was
presented in Section 2.3.3. The initial theoretical development of regular fractional factorial
designs appeared in Fisher (1945) and Finney (1945). Dey (1985) provides a number of
constructions for fractional factorial designs and OMEPs.

There has been some debate about the appropriate contrasts to use in a fractional design
and some of the issues are addressed in Beder (2004) and John and Dean (1975).



CHAPTER 3

THE MNL MODEL AND COMPARING
DESIGNS

As we explained in Chapter 1, a stated preference choice experiment consists of a (inite
set of choice sets and each choice set consists of a finite number of options. The options
within each choice set must be distinct and they must be exhaustive, either because there
is an “other” option, a “none of these™ option or because the subjects are asked to assume
that they have narrowed down the possible options to those given in the choice set. This
final assumption is often described by saying that the subjects have participated in a forced
choice stated preference experiment.

We assume that each subject chooses, from each choice set, the option that is “best” for
them. The researcher knows which options have been compared in each choice set and
which option has been selected but has no idea how the subject has decided the relative
value of each option. However, the researcher assumes that these relative values are a
function of the levels of the attributes of the options under consideration, some of which
have been deliberately varied by the researcher.

In this chapter we begin by defining utility and showing how a choice process that
bases choices on the principle of random utility maximization can result in the multinomial
logit (MNL) model for a specific assumption about the errors. We then derive the choice
probabilities for the MNL model. Next we consider the Bradley-Terry model which arises
when all choice sets have only two options, before looking at the MNL model for any choice
set size. We assume that the MNL model is the discrete choice model that is the decision
rule subjects are employing. The results on optimality that we present will depend on this
assumption. Should a different model be used, then different designs may well prove to
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be optimal. We also discuss how to decide objectively which of a set of proposed choice
experiments is the best one to use, from a statistical perspective, for a given situation.

At times in this chapter, and indeed throughout the rest of the book, we will talk about
options that are described by the levels of k attributes. These attributes are precisely the
same as the factors of the previous chapter.

3.1 UTILITY AND CHOICE PROBABILITIES

In this section we define utility and show how a choice process that bases choices on
the principle of random utility maximization can result in the MNL model for a specific
assumption about the errors.

3.1.1  Utility

Train (2003) has defined utility as “the net benefit derived from taking some action”; in
a choice experiment, we assume that each subject chooses the option that has maximum
utility from the ones available in each choice set. Thus each subject assigns some utility
to each option in a choice set and then the subject chooses the option with the maximum
utility.

If we let Uy, be the utility assigned by subject « to option j,j = 1,...,m, in a choice
set with m options, then option ¢ is chosen if and only if U;, > U Vj # i. The researcher
does not see the utilities but only the options offered and the choice made (from each of
the choice sets). These options are usually described by levels of several attributes. The
systematic component of the utility that the researcher captures will be denoted by V;,, and
we assume that U, = Vjo + €;o, Where €, includes all the things that affect the utility
that have not been included in Vj,. Thus the ¢;, are random terms, and we get different
choice models depending on the assumptions that we make about the distribution of the
6]'a.

We know that

Pr(option ¢ is chosen by subject &) = Pr{Uiq > Ujo ¥j # 1)
= PT(Via +6ia>vja+5javj?éi)
= Pr(Vis - Vja > €ja ~ €ia Yj # ).

If the ¢, are independently identically distributed extreme value type 1 random variables
then the resulting mode! is the multinomial logit (MNL) model. This assumption on the
€5 is equivalent to assuming that the unobserved attributes have the same variance for all
options in each choice set and that these attributes are uncorrelated over all the options in
each choice set (Train (2003)). Train (2003) gives an example for choosing travel options
where this independence assumption is not reasonable: If a subject does not want to travel
by bus because of the presence of strangers on the bus, then that subject is also unlikely to
choose to travel by train; and discusses other models that have been proposed which avoid
this independence assumption.

These models are the generalized extreme value (GEV) models, the probit model and
the mixed logit (ML) model. In the generalized extreme value models, the unobserved
portions of the utility are assumed to be jointly distributed as generalized extreme value.
Consequently, correlation in the unobserved attributes is allowed, but this model collapses
to an extreme value model if the correlation is O for all attributes. In the probit model, the
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unobserved attributes are assumed to be normally distributed. This means that unobserved
attributes can be assumed to be jointly normal and be modeled with any appropriate
correlation structure over both options and time (for example, with panel data where the
same individuals are asked to respond on several successive occasions). Of course it is
rarely appropriate for a price attribute to come from a normal distribution since few people
want to pay more for the same or worse features (but consider those who like to emphasize
their wealth through conspicuous consumption). This imposes some limitations on the
application of the probit model. In the mixed logit model, the unobserved attributes can
be decomposed into two parts: one with the correlation, which may have any distribution,
and one which is extreme value. Variations on these models, such as nested logit, are also
possible. While there are many different choice models, we will only discuss designing
choice experiments for the multinomial logit model in this book.

3.1.2 Choice Probabilities

We assume that each unobserved component of the utility ¢, is independently identically
distributed Type 1 extreme value, sometimes called the Gumbel distribution. It has density

fle)=e %™ —o0<e< 0
and cumulative distribution function
Fle)=e°

We now derive the choice probabilities using the argument given in Train (2003, pp.
40-44, 78-79). From the results above, we have that

P = Pr(option i is chosen by subject &) = Pr(Via — Vi + €ia > €50 Vj # 7).

. . i Vi = Vo) .
If we regard €;,, as given, then P, is just Fejq + Vig — Vjo) = e7° """, again
for all j # . Now the ¢’s are independent and hence the cumulative distribution over all
J # 1 is just the product of the cumulative distributions over all j # 7. This gives

(Cin+Vin = Vi)

Pr(option i is chosen by subject ale;q ) = H e~¢
J#i

In practice, we do not actually know ¢;, and so we need to integrate out €;,, weighting
the values by their density, to give

€m0 ,
e intVia—Via) - —eT i
P, = / l Ie € e ire® deia.

T\ G
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To evaluate this integral, observe that V;, — Vi, = 0550 € + Via — Via = €io. Hence we
can remove the restriction on the product by using the last term. This gives

Po = /em:Oo He_e—(u,ﬁv,,,—vj,,) e deiq
Sy =—X .]

€iy =00

= / exp i — Ze_("”“/’“_v]") e " deiq
€in="—0C ]
Eimg =00

= / exp | —e™" Ze—(v,,(,—v,,,) e deiq.
€in=—00 J

Now we let 2 = e~ %>, Thendz = —e “~de;n. AS €4 tends to oo, 2 tends to 0, and as

€0 tends to —0o, z approaches 0o. So we get

Pia

z=0
/ exp —zZe‘W’”‘_VV‘) (~d2)
z=0 ]

I

Z2=00
/ exp —zZe'(V""‘V-"’) dz
2 ,

=0 B

exp(—2 3 e~V —Vin)) ™
_ —(Via Vi)
Z]’e (
exp(0)
S e V=V
1
> eVin Vi)
Vi

e
e

Vi

For the time being we let m; = ¢", constant for all subjects, and we write In(7;) = ;.

3.2 THE BRADLEY-TERRY MODEL

A paired comparison experiment is « choice experiment in which subjects are shown two
options at a time and are asked to say which one they prefer. Thus it is simply a choice
experiment in which all choice sets are of size 2.

Such experiments were being used by psychophysicists in the mid-nineteenth century.
They were interested in looking at how much two objects had to differ to be perceived as
different. For example, Thurstone (1927) describes an experiment in which 19 offences,
ranging (alphabetically) from abortion to vagrancy, were shown, in pairs, to subjects who
were asked to decide which offence was more serious. He developed various models to
analyze data of this type. Zermelo (1929) independently used one of these models to rank
chess players. More details may be found in MacKay (1988).
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Unaware of the earlier work by Thurstone (1927) and Zermelo (1929), Bradley and
Terry (1952) proposed using the Zermelo model in a psychological setting and developed
likelihood estimates and appropriate test procedures for the unknown parameters. The
mode! that they proposed is now known as the Bradley-Terry model. We will consider this
model, and develop appropriate estimates and distribution results, in the remainder of this
section.

In the Bradley-Terry model, we assume that altogether there are ¢ items, 17,15, .... 7%,

to be compared, although any choice set will only compare two of the items. We assume
that each of the items has a constant

™ = eV
associated with it so the MNL model becomes a special case of the Bradley—Terry model.
As we saw in the previous section, the logarithms of these constants are the utilities of the
items and these constants may be called the merits of the items. Each choice set consists
of a pair of items which are called the options in the choice set.
Using the argument of the previous section, we get

i

Pr(T; is preferred to 1) = e
i ﬂ'j

Li# g i =1t
We assume that all subjects see the same pairs and that there are no repeated pairs in the
experiment. We let

= 1 when the pair (13, 7}) is in the choice experiment,
771 0 when the pair (13,7}) is not in the choice experiment.

We will assume that the order of presentation of options within a pair and of pairs within the
experiment is unimportant although for some situations there is evidence that order effects
exist (Timmermans et al. (2006)). In practice we would randomly permute the order of the
choice sets within the experiment before presenting them to respondents.

B EXAMPLE 3.2.1.

Suppose that ¢ = 4. Then the 6 possible pairs are (17, 1%), (11,13), (11,14), (12,13),
(15,1%), and (13, 1y). If all pairs are shown to all subjects, then n;; = 1 for each of the 6
pairs. If we only use the pairs (17, 15), (11,73), and (11,14) thenny; = 1 forj = 2,3,4
anan]:()lf?j;’: L. |

We want to be able to find estimates of the 7; since these can be used to assess the relative
attractiveness of the items under consideration. Since the properties of the maximum
likelihood estimates (MLESs) of the m; values have been well-established (see, for instance,
David (1988)), we find such estimates for the Bradley—Terry model in what follows.

3.2.1 The Likelihood Function
We begin by evaluating the likelihood function. For subject ct, we let

A 1 when 1} is preferred to 17,
1 0 when 1} is preferred to 1.

Note that 1 — Wija = Wjia- We let 7r=(7r1,7r2,. .. ,7Tt) and we let fjja<1('ija,7r) be
the probability density function for subject o and choice set (13,7%), where, for ease of
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presentation, we assume that w;;o = Wjie = 0if ny; = 0. Thus

Wija  Wiin
i Ty
J

(my +mj)™s

ks
fijcz(wijaa ™) =

We assume there are s subjects in total and we let Za Wijq = w;;. Then the likelihood
function is given by

s o ST T
L(m) = H H fijo (Wijo, ™) = H (W) '

i<ja=l i<j

We can simplify this further if we let w; = Zj w;; be the total number of times that 75
is chosen from all choice sets containing ;. Then
TP .. L

K S Mg my™

3.2.2 WMaximum Likelihood Estimation

The usual way to estimate 7 is to find the maximum likelihood estimators. This requires
setting the first derivative of the likelihood function, or, equivalently, the first derivative of
the log-likelihood function, to zero and solving iteratively.

We have that the log-tikelihood is

t
In(L(m)) = Z w; In(m;) — Z sng; In(m; + ;).
i=1

i<j
To get the maximum likelihood estimates, we solve

Oln(L(m)) _ wi _Z sni;

on; 7 T+ 7

J#i
together with the normalizing constraint [ [, #; = 1. Rearranging, we need to solve

. Wy Wi

= o = ~
> %ﬁ 2 i STag(Ri + #5) 71

3.

iteratively. We let frlm be the estimate of 7; at the rth iteration. We continue iterations
until agreement between #\" " and #{™ is close enough.
Bradley (1985) says that convergence is fast and initial estimates of 1 suffice. In practice

most statistical software does not even require that initial estimates be provided.

H EXAMPLE 3.2.2.

Suppose that £ = 4 and that we show all 6 possible pairs (11,7%), (11,13), (T7,14),
(15,T3), (T2,1y), and (13, Ty) to each of s = 5 subjects. The results of this experiment
are given in Table 3.1. We see that

wi2r = 1 = wy31 = wig1 = wagzy = Waq1 = W341

and hence
wo11 = 0 = w311 = w411 = W31 = W41 = W43y,
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Similarly
wige = 0 = wize = Wiz = Wazn = W42 = W342

and hence

wa12 = 1 = w3ip = wqie = W32o = We22 = W432.

Using all the results, we get that wy = 8, wp =6, w3 = 7and wy = 9.

Table 3.1 Choice Sets and Choices for Example 3.2.2, witht = 4,5 = 5

Choice Subject
Set T2 3 45
(T1,T5) TWT. T Ty Tz
(T, T3) T I3 Th T3 Th
(Th. Ty) Tn Ty Ty Th Ty
(T2.T3) T, Tz Tr Tz T3
(T, Ty) T, Ty To Ty Ty
(T35, Ty) Ts Ty Tz Ty Ty
Thus we have that
min§ninrd

Lim) = ,
(Tl') <7T1 + 7r2‘)5(7r1 + 71'3)5(7T1 +7r4)5(7r2 +7T3)5<7(‘2 + 7(4)5(71'3 +7T4)5'

and the corresponding log-likelihood is given by
4
In(L(m)) = Zwi In(m;) — 5 Zln(m +75).
i=1 i<j

The maximum likelihood estimates are the solutions to the partial derivatives of the log-
likelihood and we get the following equations:

8 1

™ ;Wl—f'ﬁj

6 1

— =5 — = O
up) j;ﬂ”g—!—ﬂ'j

7 1

— -9 — = 0
T3 j;ﬂg—}-ﬂ'j

9 1

— =5 — = 0.
T4 j§7'r4+7rj

We start the recursion by assuming that all the items are equally attractive; thus we are
assuming that 7?7(-0) =1.1=1,2,3,4.
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Using Equation (3.1), we get
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7}(1) _ wl{ 1 1 1 ]-1
1 5 a7 44 aY a0 Y 42
8 1 1 1 17!
- 5[1+1+1+1+1+1
16
T

-1
(1) Wy 1 1 1
Ty = — +
5 [*g” PO IO NG
6 1 1 1]
= 5116 +
5lgE+1 141 1+1
93
o115
To get frgl), wEe use r‘rgl), frél), frgo) and ﬁ,io). The results of the first 8 iterations, before

normalization, are given in Table 3.2.

Table 3.2 Estimates of m; from All Six Choice Sets

Iteration 1 D) 73 T4
0 1.000 1.000 1.000 1.000
1 1.067 0.8087 09110 1.154
2 1.074 0.7398 0.8784 1.225
3 1.068 0.7143 0.8658 1.259
4 1.061 0.7047 0.8608 1.275
5 1.056 0.7010 0.8588 1.282
6 1.053 0.6996 0.8580 1.286
7 1.052 0.6990 0.8577 1.287
8 1.051 0.6988 0.8575 1.288
8(normalized) 1.107 0.7363 0.9036 1.357

To normalize these estimates we divide each estimate by

i=1

4
Hm = 0.94905.

We get 7 = 1.107, 7o = 0.7363, 73 = 0.9036, and 74 = 1.357. So, based on these
results, we would rank the items (from best to worst) as 4, 1, 3, and 2. (In general we would

divide by the tth root of the product.)

If we suppose that only the pairs involving 17 were shown to the subjects, we would

then have
L(m) =

8,22

3

M{TaTM3Ty

(my +7r2)5(7r1 + 7T3)5(7T1 + 7T4)5’
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and the corresponding log-likelihood would be given by

Zu' In(n;) — SZln T+ 7).

1<j

The maximum likelihood estimates are the solutions to the partial derivatives of the log-
likelihood, and we get the following equations:

8 1
— -5 = 0
1 #17F1+7r3
2 1
— — 5= = 0
Ty g + M
2 1
— — 9% = 0
3 T3 +
3 1
— ~ 5= ~ = 0.
T4 T4 + T

Again we start the recursion by assuming that all the items are equally attractive; so again
we have w(m =1.1=1,2,3,4. Weget

-1

1 1
+( <+

A (1) wy
Ty

5 OB

1
T+ 7y

fr
8 1
= - +
51141 1 + 1 1+ 1
16
15
We now use this estimate of 7y to help estimate 7. We get

-1

A0 w2 1
2 = (1, ~(0)
5 1+
o2 1 77
RS
62
75

~(1) (0,

To get 7r3 ,weuse 7, and 7 7r : to get 7r‘(1 ), we use frﬁl) and ﬁio). The results of three of
the first 10 iterations, before normallzatlon are given in Table 3.3.

Normalizing, we get 7; = 1.107, 72 = 0.738 = 73, and 74 = 1.658. Based on these
results we would rank the items (from best to worst) as 4, 1 and then 2 and 3 equal. ;|

Two questions still need to be addressed. How do we know that the iterations will
converge? What do we know about the properties of the maximum likelihood estimates?
3.23 Convergence

Convergence is assured if the n,; are all equal to 1, although it may be slow (p 62, David
(1988) quoting Dykstra (1956)). If the n,; are not equal then Zermelo (1929) and Ford Jr.
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Table 3.3 Estimates of m; from the First Three Choice Sets Only

Iteration gl 7o 73 T4
0 1.000 1.000 1.000 1.000
5 1.061 0.7115 0.7115 1.550
9 1.056 0.7045 0.7045 1.581
10 1.056 0.7042 0.7042 1.582
10 (normalized) 1.107 0.738 0.738 1.658

(1957), quoted in David (1988), have established that the iterative process will converge
provided that: “In every possible partition of the objects into two non-empty subsets, some
object in the first set has been preferred at least once to some object in the second set.”
If this condition is not satisfied, then cither there are two sets of items which have never
been compared (so how could they be ranked relative to each other), or every comparison
favours one set, P; say, and so the w; values of all the items in the other set, P, say, must
be 0. This follows by noting that, if the m; associated with the items in P, were not 0, then
the likelihood function could be increased by multiplying all these 7; by a constant less
than 1 and dividing the 7; values of the items in P; by a constant greater than 1 so that the
constraint [ ], 7; = 1 is preserved (from David (1988), pp. 63-64)).

We choose the pairs that we present to ensure that there are no sets of items that are not
compared. This does not require that all pairs of items be compared directly, as we saw in
Example 3.2.2, but it does require that for any two items, 7; and 73, it is possible to form a
list of items 13,15, ,15,,..., 1}, such that adjacent items in the list correspond to pairs in
the design. Such a design is said to be connected.

W EXAMPLE 3.2.3.

If we have four items of interest and we use the pairs (11, 75%), (11,173) and (1, 1}), then
any item is directly compared to item'/7. Consider the pairs of items not involving 1.
Then the list for the pair 15, 15 is 15,11, 13, and for the pair 1%, 1 is 13,11, Ty, and for the
pair 13,1y is 13,11, Ty. Thus the original set of three pairs forms a connected design. (]

Even with a connected design, it can still be possible for every comparison to favour one
set.

W EXAMPLE 3.2.4.

In Example 3.2.2, for instance, there is at least one subject who has chosen each of the
items. So, if we divide the items into two sets, say P, = {1%,1%} and P, = {13,14}, then
there is at least one time when an object in P; has been preferred, and at least one time
that an object in P, has been preferred. On the other hand, if we let Py = {13,715, 73}
and P, = {1}} and consider only subject 1, then the option from P, is never chosen. The
likelihood for the first subject is given by

mingming

Lm) = (my +m){(my + m3)(my + ma)(ma + mw3)(me + 7wy ) (w3 + m4)

Observe that the value of the likelihood function is largest when w4 = 0 and that the
likelihood function gets smaller for larger values of m4. So, if we start by assuming the
null hypothesis that all the m; = 1, then we get L(1,1,1,1) = 0.015625. If we let 74 = 0,
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then we have L(1,1,1,0) = 0.125. If we try to have a small positive value for 4, say
74 = 1/1000, then L(10, 10, 10,1/1000) = 0.124963 which is somewhat smaller than the
likelihood when w3 = 0. If instead we give m4 a value which suggests that item 7 was
very popular, say w4 = 8, then L(1/2.1/2,1/2,8) = 0.0000254427 which is very much
smaller than the value with all the 7;s equal to 1 and certainly smaller than the largest value
of the likelihood possible. This illustrates the discussion about maximizing the likelihood
when the items chosen have resulted in a disconnected design. [

3.2.4 Properties of the MLEs

Assuming that we have used a connected design and that each item has been chosen at least
once, we know that the maximum likelihood estimates will exist. In this section, we outline
the results that lead to the asymptotic distribution of the maximum likelihood estimates,
;. We briefly recall the results on the distribution of the MLEs for a random sample from
one population and then we outline how the results need to be modified to apply to the
Bradley-Terry model.

Let x; be a random vector of length ¢. Let @1, 2, ..., x5 be a random sample of size
s from a common distribution f(x,8) with unknown parameter vector 8. Suppose that
the distribution satisfies some mild smoothness assumptions that are stated explicitly in
Cramer (1946) or Scholz (1985). Then, for large values of s, the distribution of \/Eés
is approximately ¢-variate normal with mean vector € and variance-covariance matrix
[1(0)]'1, where [(0) is the Fisher information matrix. The Fisher information matrix has
entries given by

1O = £ <<alngg,¢9)> (alngéj:,e)» - £ (igg%ﬂ) .

When we consider finding parameter estimates from a choice experiment, choice sets
that contain treatment 7} also share the parameter 7; in the corresponding distribution
function. Thus these distributions are not independent but are said to be associated. In this
situation, the result quoted above needs to be modified; see Bradley and Gart (1962) for
details. We now outline the relevant result for the Bradley—Terry model when all subjects
see the same choice sets.

As in El-Helbawy and Bradley (1978), we view each choice set as one of the associated
populations. We have sn;; observations from the pair (1, 1;) and sN = s, nij
observations in total. Thus the proportion of observations that come from any choice set is
Ai; = n4;/N. Then the elements of the information matrix for VsN# are given by

() = 3 Aaskr ((5111 fabgsrzjaba,w) <aln fabgg:jaba,m)) |

a<b

If 7 # j the only pair which has both of these partial derivatives non-zero is the pair in
which 1; and 1; are compared. In that case we have

n (fija(Wijo. ™)) = (Wijo In(m;) + wia In{7;) — nyj In(m; + 75))
from which we get

3ln[f(u','ja,7r)] - w,-ja _ 1
on; s m; + 75 '




68 THE MNL MODEL AND COMPARING DESIGNS

Substituting, we have

(I(m))s; = Msor [(wija 1 > (wjia o1 )] .
5 T+ Ty Ly T + T

Now w;;,, is a Bernoulli random variable which takes the value 1 with probability

71'1'/(71'1' +7Tj).
So
E(wija) = myf (7 + m5)
and .
Var(wija) = mi/(m + m)(1 = mi/(m + m)) = mmy/ (m + ;)2

If n;; = 0, then w;jo = 0 and is not a random variable. For fixed but arbitrary i, any two
W;ho Tandom variables are independent by assumption (that is, choices made in one choice
set are independent of choices made in any other choice set). Hence we have

o B Wijo _ 1 Wi _ 1
(I(m))i; = Mijér K p 7Ti+7rj)< M 7ri+77j>}

= A [Sn (wijawjia) _ (gw(wija) _ Ernlwjia) N 1 ]

T mtmm (m T (w4 )2
e 5 1
= X |0— ) _ J
t { (71'i+71’j)27ri (ﬂ’i +7rj)27rj + (7(1'—!—71‘]')2]
1
= A—
v (7ri+7rj)2’
when i #£ j.
If i = 7, then
dln f, o, T Ol f, abas
(I(Tf))n = Z)\abgﬂ (( f bzg:f)ab )> ( nf bc(');sru.) : 1r)>>
a<b ¢ g
2
= Z)\mgr ((81nfzaa0(l€mmﬂ')> )
a#i Wi
Wiga \ 2 1 m 1
— . iac _ 1 i
B az#./\m Iigﬁ (( 5 ) ) (i + 7o) mi (T + 73) + (m; +7ra)2}
- T [ 1 1 }
I E IO R
Ta
- ;Aia(ﬂa+m)2m
since
E(wh,) = Var(wia) + (E(wiaa))?
TaT; 71'1-2

(mi +ma)? (i + 7a)?
(7 + 7o)
(mi +ma)?
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We also want to calculate the information matrix for the +; values. Since v, = (n(#;),
Oi/0m; = 1/m; 80 Oy /Ov; = ;. Hence I(v) = PI(mw)P, where P is a diagonal matrix
with ith entry equal to ;. Following El-Helbawy et al. (1994), we let A(w) = /() be the
information matrix for vsN#.

Putting this altogether we have that

-~
Ayi(m) = 7 Nj ", i=1,..., t,
() i Z i (7Ti T 7‘_]’)2/ 3 by
FES
and —
Ajj(m) = = Njj——2L—, i#j, i.j=1,... .t
i () ij (i +75)2 FJ, 1] ‘
The A(7) matrix for the 6 pairs in Example 3.2.2 is
P p
r L] —TyTe — T T -7 E
1 Ej#l (m+m,;)? (m1+72)2 (m1+ms)2 (mr1+m4)?
—TW1T ’ Uy — Ty —ToTg
1 (ri+72)? 2 Zj?f? (motm;)? (mot+m3)? (mo+ms)
8
— T3 —MoT3 T4 — T3y
(mi+73)2 (m2+m3)? 3 Zj#3 (ra+m;)? (mat+ms)?
—T T4 —TT — T3 Ty
L (m1+7a)? (71_2—?—2#_:)7 ‘(?3—‘#)_5 T4 Zj;éél matn )7 4

(Recall that A\;; = 1/6 for every pair.)
The A(7r) matrix for the three pairs in Example 3.2.2 is

i T2 8 () — W14
™ ZJ#] (mi+7;) (mi+72)?  (mi+m)? (mi+me)?
_—mWiTe TIT2
1 (71 +72) (mi+m2) 0 0
3 _—mymy 0 Ty 0
(mi+73)2 (m1+m3)?
_ oWy T4
(mi+ma} 0 0 (m1+m4)?

(Recall that A;; = 1/3 or O for every pair.)

The estimated A matrix would be obtained by substituting the estimates for the 7; values.
(This illustrates one of the main differences between the Bradley-Terry model (indeed any
non-linear model) and the familiar least squares models; here the estimate of the covariance
matrix depends on the unknown parameters, not just on the design that has been chosen.)
For example, the A(7r) matrix under the nuil hypothesis of equally attractive options, that

is, assuming Ho : 71 = 2 = ... = 7w = 1, 18 given by
. 1 .
Ai(Ge) = 1 Z Aijy =1, 8
J.j#d
and

. 1 L
Aij(Jt):"ZAm iFE G L =101

where j; isa ¢ x 1 vector of 1s.
The A(j4) matrix for the 6 pairs in Example 3.2.2, when we assume that all the options
are equally attractive (m; = w9 = w3 = m4 = 1), is given by

3 -1 -1 -1
-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3

— _1
A_6><4
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The A(j4) matrix for the three pairs in Example 3.2.2, when we assume that all the
options are equally attractive, is given by

3 -1 -1 -1
-1 1 0 0

=1
A=ra -1 0 1 0
-1 0 0 1

Further discussion about the use of prior information when designing choice experiments
may be found in Section 7.4.

3.2.5 Representing Options Using k Attributes

Usually choice experiments are conducted using items that are described by the levels of
each of £ attributes. With such a representation it then becomes natural to ask whether
the main effects of the attributes are significant, whether the two-factor interaction effects
of pairs of attributes are significant and so on. In this section, we derive the parameter
estimates for the factorial effects of interest and establish the asymptotic distributional
properties of these estimates.

Consider the k attributes. We assume that attribute ¢ has £; levels. Thus there are
L =[], ¢, items all together. We will assume that the level combinations are ordered
lexicographically, just as we did in Chapter 2, so 1) corresponds to (0,0,...,0), 15
correspondsto (0,0,...,0,1), and so onuntil 7', correspondsto (/1 — 1,4, —1,..., £, —1).
Sometimes we will replace the subscript “2” on 7; by the corresponding vector of attribute
levels.

We want this representation to be reflected in the way we represent the «;; so we write

’Y(flan ----- fk) = Z/@‘Lf'l + Z ﬁqﬂl%fqlfqg + - +/612...k,f1f2-~fk7
q q1<q2

where 3, ;, is the effect of attribute ¢ when at level f;, 84,4, .1, £,, i the joint effect of
attributes g1 and g7 at levels fg, and f,, and so on. This representation has more parameters
than it requires. Specifically it has

Stg+ D> gl +-+ L= +1) -1
q q

q1<q2

parameters; SO we must impose Hq(éq +1) - Hq ¢, independent constraints. We see that
this is exactly analogous to the situation for the usual representation of a full factorial model
in an ordinary least squares setting and we impose the familiar constraints

Zﬁq-fq =0, Z/BQIQQvfrllfqz = Zﬁqu.fﬂfﬂ =0

fa fn faz

and so on.

Many authors represent ¥, 1,....s,) by Vi = B'x;, where (f1, f2,. .., fx) represents
the ith treatment combination in lexicographic order, 3 contains all the possible 3 values
and x; is a (0, 1) indicator vector.

Another common representation incorporates the constraints into the vector 3. Thus
instead of having ¢, elements in 3 for attribute g, there are only ¢, — 1 entries and there
are (£, — 1){#,, — 1) parameters for the joint effect of attributes ¢; and g and so on. This
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means that x; uses £, — 1 entries for each attribute, with all entries O except for the position
corresponding to f,, whichiis I, for the first £, — 1 levels and level f;, —; corresponding to
¢, — 1 entries of —1. In either case, the null hypothesis = = j; is equivalent to having all
entries in 3 equal to 0.

We illustrate these ideas in the next example.

H EXAMPLE 3.2.5.
Let & = 2 and let #; = 2 and ¢5 = 3. Then, for the first representation, we have

’ ) ‘ .
B = (810,811,520, 321, B2.2, B12,00, B12,01, Fr12.02: B12.10: B12.11. F12.12).

The treatment combinations and the corresponding x; and ; are given in Table 3.4. In this
representation the constraints are

Bro+811=0, Boo+ P21+ B22=0,

B12,00 + 12,10 = 0, Br2.01 + B12,11 =0, Biz02 + Bi212 = 0,

and
Br2.00 + B12.01 + B1202 = 0, Fi2,10 + Brz.11 + Pr212 = 0.

To get the second representation we need to incorporate these constraints into 3. We
see that

Bi1 = ~B10
Ba2 = —PB20— Ba1,
B12,10 = —B12,00,
Brz2,11 = —B12,01,
B12,02 = —B12,00 — Bi2,01,
and
Bia.12 = =B12,02 = Br2.00 + J12,01-

Thus we have
B' = (31,0, B2.0 82,1, B12,00, F12.01)-

The treatment combinations, and the corresponding x; and +;, are given in Table 3.5. O

Table 3.4 Unconstrained Representation of Treatment Combinations

Treatment
Combination X; Yi
0.0 1,0,1,0,0,1,0,0,0,0,0 B0+ B2.0 + Biz.00
0,1 1,0.0,1,0,0,1,0,0,0,0 B10 + B2 + P1z.01
0.2 1.0,0,0,1,0,0,1,0,0,0 Bio+ B22+ Bino2
1,0 0,1,1,0,0,0,0,0,1,0,0 B1.1 + B2.0 + Bi2.10
I.1 0,1,0,1,0,0,0,0,0,1,0 B11+ B + B0
1.2 0,1,0,0,1,0,0,0,0,0,1 B1.1 4 B2z + P22

We will be using the first representation in this book.



72 THE MNL MODEL AND COMPARING DESIGNS

Table 3.5 Constrained Representation of Treatment Combinations

Treatment

Combination X; Yi
0.0 1,1,0.1,0 Br.o+ 520 + B12.00
0,1 1,0,1,0,1 Bro+ B21 + Bi2.01
0,2 1,-1,-1,-1,-1 Bio = B2.0 — B2.1 — B12.00 — B1z.01
1,0 -1,1,0,-1,0 —B10+ B20 — B12.00
1,1 -1,0,1,0,—-1 =810+ P21 — Br2.01
1,2 -1,-1,-1,11 —B1.0 = B2.0 — B2 + Biz.00 + Bi2.01

Questions about the main effects of attribute g are answered by considering contrasts of
the 3, 1, questions about the two-factor interaction of attributes ¢; and ¢; are answered by
considering contrasts of the 3y, 4, f,, f,, and so on. If we want to develop the best design
to test if some particular effects are zero, we do this by specifying which effects we want
to test are zero, and which effects (if any) we are going to assume are zero, and then we
find the parameter estimates and determine the asymptotic properties of these estimates.

We write the p contrasts that we want to test as the rows of the matrix Bj,. We choose
the coefficients in the contrast matrix By, so that By, B), = I, where I, is the identity matrix
of order p. That is, we say that the matrix B}, is orthonormal. If any row of By, is not
already of unit length then we divide the entries in that row by the square root of the sum
of the squares of the entries in that row. All contrasts that we assume are O appear as rows
of the orthonormal matrix B, which we will assume has a rows. Finally, B, contains
any remaining contrasts from the complete set of L — 1 independent contrasts. The next
example illustrates these ideas for three binary attributes.

B EXAMPLE 3.2.6.
Let k = 3 andlet ¢, = 45 = {3 = 2. So the eight items are represented by 000, 001, 010,
011, 100, 101, 110 and 111, in lexicographic order. Then

Yor1 = P10 + B2.1 + B3,1 + Br2,01 + Biz.01 + Bez11 + Fi2s,011.

The constraints that we impose are
ﬁq,O +ﬁq,1 =0, q= 1,2,3,

B4142,00 + B4142.01 = Bgiga,10 + Barge11 =0, ¢1,02 = 1,2;1,3:2,1;2,3;3,1: 3,2,
B123,000 + B123,001 = B123,010 + B123,011 = B123,100 + F123,101 = Br23,110 + F123,111 = 0,

and similarly for each of the other two attributes for the components of the three-factor
interaction.
Suppose that we want to test if the main effects are 0. Then
1[—1—1—1—1 1 1 11
By=—--{-1 -1 1 1 -1 -1 1
220 1 1 11 a1 1 -

Observe that By B}, = I.
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Suppose that we do this assuming that the three-factor interaction is 0. Then

%l
2v/2
That means that we have made no assumptions about the two-factor interaction contrasts;
SO

B, = -1 11 -1 1 -1 -1 1].

1 1 -1 -1 -1 -1 1 1
P=——= 1 1 -1 -1 1 -1 1
22 1 7 1 1 -1 -1 1

1

The likelihood function itself is independent of any constraints that we impose on the
parameters but the solution will have to reflect the constraints. We summarize the results
in Bradley and El-Helbawy (1976) below.

We want to maximize the likelihood equation

Tyt

Hi<]-(7'f'7 + 7TA7)S77'/'1
subject to the normalizing constraint . In(#;) = 3, v; = 0 and the assumed constraints

B,y = 0, where 0, is a column of Os of length a. Working with the log-likelihood and
using Lagrange multipliers we maximize

Zul'yz Zenu In(m; + 75) +K12’y7 ..... Kat1]Bay

i<}

Lim) =

subject to Z;‘L=1 v = 0 and B,y = 0,. As before we assume that every item has been
chosen at least once.

To maximize the function we differentiate with respect to each 7; in turn. For 7; this
gives

g sy +ZKH Ly
j =90.
gl — T+ T
1 ]# 1 7
STy . _ . _ N "
Leturi—zj#i Tjw, =z,z= <21,~2,...,ZL) and k = (Ko, ...,Kq+1). Then, writing

the derivative in matrix notation, we have
z+kijr + Bik =0p.
Pre-multiplying by j; we get
Jrz+ rk1jijL +iLBok = 0g.

Since j72z = sN — sN and j; B, = 0, we have that Lx; = 0 and since B, B, = I, we
have
B,z + Kk =0p.

Hence x = — B,z and
z— B, B,z= (- B,B,)z=0p.

As before these equations are solved iteratively. Their convergence is guaranteed,
provided that there are no items that are never chosen; see El-Helbawy and Bradley (1977)
for details.
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What about the distribution of these constrained maximum likelihood parameter esti-
mates? To find this we use the ideas of El-Helbawy and Bradley (1978) who apply the

results of Bradley and Gart (1962) to the parameters in [ gh } Y = Bpy = 6. Then the
T

information matrix C of v/sN@ has entries Cyq given by

8h'lfaba(wabou7") 61nfaba(waba~,7r)
S (Tl ) (St

a<b
_ Jdln faba(wabayﬂ') Oln faba(wabayﬂ') ) ) )
- ;; [; AabEx (( a,yi )( 8’Yj )](Bhr)uz(Bhr)q]~

Thus we have
C= BhTA(ﬂ')B;W.

Unless we need to emphasize the value of 7 we are considering, we will write A for A(7)
from now on.

We are really interested in Bp#4 of course, and these are the first p entries of 6. The

. . . A Byy | . .
variance-covariance matrix of VsN8 = vsN [ Y ] is C~1. If we write

B4
Cri Chy
C =
[ Crn Crp :I

then the variance-covariance matrix of v/sNBy¥ is given by C;hl provided, of course,
Chr = Opr_1-p—a. If Chy # 0p1_1_p_, then the variance-covariance matrix of
VsNBp# is obtained from the principal minor of order p of C~!; that is, the subma-
trix of order p starting in position (1,1).

B EXAMPLE 3.2.7.

Consider the situation of Example 3.2.6. Suppose that we use the pairs (000, 111), (001,
110), (010, 101), (011, 100), (000, 011), (000, 101), (000, 110), (111, 001), (111, 010), and
(111, 100) and calculate A assuming that = = jg. We get

4 0 0 -1 0 -1 =1 =1]
0 2 0 0 0 0 -1 -1
0O 0 2 0 0 -1 0 -1
A_i—1oo2—1oo.o
40| 0 0 0 -1 2 0 0 -1
-1 0 -1 0 0 2 0 O
-1 -1 0 0 0 0 2 0
| -1 -1 -1 0 -1 0 0 4]
and ~ _
11 :000
1 41 :000
R 0 00
C = Bn,AB}, = ol
0 0 0 : 11
000 1 21
|0 0 0 11 2|
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The variance-covariance matrix for v/ s N By, is L1, where

sN
100 —20 —-20 0 0 0]
20 100 =20 : 0 0 O
Ll -20 —20 100 0 0 0 0
cl= |
9 0O 0 0 : 270 -90 -90
O 0 0 : —90 270 —90
O 0 0 : -90 —90 270

Thus we see that the elements of By4 and B, are independently estimated (since the
covariance of any element of B4 and B,# is 0) and so the variance-covariance matrix of
V'sN B4 is the principal minor of order 3 of C~1. O

However it is not always the case that the elements of B4 and B4 are independently
estimated, as the next example shows.

B EXAMPLE 3.2.8.
Let k = ¢, = £, = 2. Suppose that we want to test hypotheses about the main effects so

1f-1 -1 11
Br=35|_1 1 -1 1

and we do not want to make any assumptions about the two-factor interaction effect. Then

1
B,.:-Q-“ -1 -1 1].

Suppose that we use the pairs (00, 11), (01, 10), and (00, 01). Then

2 -1 0 -1
. i -1 2 -1 0
712 0 -1 1 0
-1 0 0 1
2 0 0 6 0 0
1 ——
oL 0 3 1 and O = 0 6 6
12 L T,
0 -1 1 0 6 : 18
If we assume instead that
B4 =0,
then
112 0 6 0
# = : -1 _
C—B;,,ABh—]Q{O 3}w1th(] [0 4}.

Hence we see that with these choice sets the variance estimate of the estimate of the main
effect of the second factor, (v11 + vo1 — (Y10 +700)) /2, depends on the assumption, if any,
made about the two-factor interaction. O

The off-diagonal elements of the variance-covariance matrix C~! give the covariance of
pairs of contrasts in v sN By 4. If one of these entries is O then the corresponding contrasts
are independently estimated. So if the variance-covariance matrix is diagonal, then all
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pairs of contrasts are independently estimated. Of course the inverse of a diagonal matrix
is diagonal; so we prefer designs in which the C' matrix is diagonal.

If the attributes that are used to describe the options in a choice experiment have more
than two levels then there are often several different ways in which the contrasts in By,
can be represented. We can move between these different representations of the contrasts
by multiplying appropriate matrices together. Thus we are not concerned if the C' matrix
has non-zero off-diagonal entries that correspond to contrasts for the same effect, main or
interaction.

If we think of C' as being made up of block matrices of order (£;, — 1) x (¢4, — 1), for
the main effects, block matrices of order (¢4, — 1)(£4, — 1) X (£q, — 1)(£q, — 1) for the two-
factor interaction effects, q1, g2, ¢3,94 = 1,2, ..., k, and so on for higher-order interaction
effects, then we want the off-diagonal blocks to be a zero matrix of the appropriate size, but
the diagonal blocks are not restricted in their form. In the case when all the off-diagonal
block matrices are zero, we say that C' is block diagonal and we note that since the inverse
of a block diagonal matrix is block diagonal, the covariance of any two contrasts from
different attributes is 0.

If we want the components of the contrasts for a particular effect to be independent,
then we would have to choose a suitable set of contrasts to achieve that. While this may be
possible, it depends on the choice sets used in the experiment and it is sometimes true that
the contrasts that result do not have an easily interpretable meaning.

Can we say under what circumstances the estimates of the variance-covariance matrix
of B4 is independent of the form of B,? The short answer is yes, when C),,, = 0, and we
discuss this further in Chapters 4, 5, and 6.

It is not essential that the elements in By, be independent contrasts, or even that they
be contrasts. For example, if we want to work with the second representation of 3 in a
main effects only setting, then we merely need to use as By a matrix which calculates
Ba,5, — Bq.e,—1 for the first £, — 1 levels of attribute g. The corresponding information
matrix is still By A B}, given that all other interaction effects are assumed to be 0. We
illustrate this in the next example.

B EXAMPLE 3.2.9.
Consider the situation of Example 3.2.5. Suppose that we assume that the two-factor
interaction is 0. Then for the first representation

B = (B1,0,51,1,020,02.1,5,2)

and hence

v = (Bio+ B2, 010+ P21, 810 + P22, P11 + 820,811 + B2,1, 811 + Ba2).

If we let
=1 =1 =t 1 1
Ve V6 V6 VB VB VB
B=| 3 0 4 F 0 4

-2

L 0o =2 _1_ 1 =2 _1_
2V3  2v3  2v3  2vV3  2v3  2V3
we can test hypotheses about the main effects using By~y.
For the second representation the parameters of interest are

B1.0— B11, Bro— B2, Ba1 — B2
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If
1 1 1 -1 -1 -1
Bg = 1 0 -1 1 0 -1 1,
01 -1 0 1 -1
then
3(B10 — Pi1)
Bay = | 2(B820 — B22)
2(fF2.1 — B2.2)

Suppose that we use the pairs (00, 11), 01, 12), (02, 10), (10, 01), (11, 02), and (12, 00).
Then, under the null hypothesis, we have

2 0 0 0 -1 -1
0 2 0 -1 0 -1

U 0 0 2 -1 -1 0
ix6| 0 -1 -1 2 0 0
-1 0 -1 0 2 0

2

-1 -1 0 0 0

and the information matrix for Bo~y is BoABg = Co.

The information matrix for Bg-y is often expressed in terms of the treatment combi-
nations in each choice set (see Huber and Zwerina (1996), for example). We show the
relationship between these two approaches here. For the second representation the x; are
represented by triples; see Example 3.2.5. These triples are the columns of B and so we
will write

Ba = [ X1, X2, ..., Xg }

Then

1
m [ Zj 711J(X1 - Xj), Zj 722]'()(2 - Xj). Zj 77/6j(x6 - X;)]B&

1
= 176 D3 ni(xi - x)x]
T

1
= 4—)(6 Z n;j(x,- - Xj)(Xl' - Xj)/.

i<j

BQAB& =

Huber and Zwerina (1996) write the information matrix for Bo~y, under the null hy-
pothesis, as

N m
Q ! E E !
Q= — ZinZ; .,
m Ly "I
n=1 j=1
where there are m options in each of N choice sets and

m
_ _ 1
Zjn = Xjn — Xp and X, = - E Xan-
“a=1

In this case m = 2, and hence we have

(Xln - x2n>

N =

Z1p = Xin — (xln + x2n)/2 =
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and

Zan = Xon — (xln + x2n)/2 = (x2n - xln)-

|-

From this we see that

Q =

N~
]

1 1
(Z(xln - xZn)(xln - x2n), + Z(x2n — X1 ) (X2n — xln)l>
1

n

i
e
Mo

(xln - x2n)(xln - x2n)l-

It

n

Since n;; = 1 when x; and x; are in the same choice set and is O otherwise we find

1
Qg = 1 Znij(xi — xj)(xi - xj)’ = GBQABh = NCq.

i<j

The other question is that of connectedness. Since we are no longer interested in the
t treatment combinations specifically but in the main effects (and perhaps the two-factor
interactions), it is no longer necessary to use the definition of connectedness that we
gave previously. Now it is only necessary for the effects that we want to estimate to be
“connected”. This is harder to define combinatorially, but one practical way to see if a set
of choice sets is connected for the effects of interest is simply to calculate C = By, ABj,,
and check that C is invertible. Certainly quite small designs can be useful, particularly if
only the main effects are of interest, as the next example shows.

B EXAMPLE 3.2.10.

If there are k = 3 binary attributes, then the pairs in Table 3.6 might be used as a choice
experiment. (We say that an option has been folded over if all the Os in an option have been
replaced by 1s and vice versa to get the other option in the choice set.) The corresponding
A matrix, under the null hypothesis that all items are equally attractive, is given by

1 0 0 0 0 0 0 -1]

0 1 0 0 0 0 -1 0

0 0 1 0 0 -1 0 0

Ao L 1 0o 0 0 1 -1 0 0 0
i+1? 4/ 0 0 0 -1 1 0 0 0
0 0 -1 0 0 1 0 0

0 -1 0 0 0 0 1 0

-1 0 0 0 0 0 0 1|

Suppose that we are only interested in estimating main effects and that we can assume
that the remaining contrasts of the +; are equal to 0. Then we have the three main effects
contrasts in By and B, is empty. We find that C = %13, showing that we only need these
four choice sets to estimate the main effects for three binary attributes if we can assume
that the interaction effects are 0. O

In this section, we have parameterized the +; in terms of the factorial effects, and have
found the corresponding maximum likelihood estimates and variance-covariance matrices.
We have seen that if Cp, = 0, then B,% is independent of the form of B, and that the
definition of connectedness changes to reflect the effects that we want to estimate.
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Table 3.6 The Fold-over Pairs with k = 3

Option A Option B
000 111
110 001
101 010
011 100

In the next section, we derive the A matrix for larger choice sets and briefly discuss using
k attributes to describe the options in this situation. In Chapter 4 we discuss the structure
of the optimal designs for binary attributes for the estimation of main effects, main effects
plus two-factor interactions and main plus some two-factor interactions when all choice
sets are of size 2. In Chapter 5 we allow the choice sets to have more than 2 options and in
Chapter 6 we allow the attributes to have more than 2 levels each and the choice sets to be
of any size.

3.2.6 Exercises

1. In Example 3.2.2 use the initial estimates 7%1@ = w;/30 and perform 3 iterations.

How do these estimates compare with the ones given in the text?

2. Suppose that & = 4 and that the four attributes are binary. Suppose that the four
pairs (0000, 1111), (0011, 1100), (0101, 1010}, and (0011, 1100} are to be used to
estimate the main effects of the attributes.

(a) Determine the matrix By, for estimating main effects.
(b) Determine the matrix A associated with these pairs.

(¢) Hence determine the information matrix C when B, contains all of the effects
except the main effects and when B, is empty. Comment.

(d) Find the 2y matrix for these choice sets.

3.3 THE MNL MODEL FOR CHOICE SETS OF ANY SIZE

In this section we discuss the MNL model for choice sets of any size. Train (2003) gives
an extensive discussion of other models and of associated estimation questions.

3.3.1 Choice Sets of Any Size

We begin by deriving the information matrix for the 7; when the choice sets may have any
number of options in them. Since all subjects see the same choice sets, we only need to
consider results from one subject in the derivation; so the subscript cv has been suppressed
in what follows.

Consider an experiment in which there are N choice sets of m options, of which

1

,,,,, :,, compare the specific options 15,, 13,,...,1;,,, where

_{ U A (1, Ty, .., Ty, ) is a choice set,

iy ig

iy o i

0 otherwise.
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Then
N = Z LT IR PIE N
I <ipg< - Ly
We define parameters w=(my, 7y, . .., m;) associated with ¢ items 17,73, ..., 7T;. Given
a choice set which contains m options 1zl y 13,, ..., T;,, the probability that option 7}, is

preferred to the other m — 1 options in the choice set is

iy
PRUES
j=1T1

fori; = 1,2,...,¢ (assuming that all options in each choice set are distinct). We also
assume that choices made in one choice set do not affect choices made in any other choice
set. If m = 2, this is just the mode! of the previous section.

We use the method in Bradley (1955) and Pendergrass and Bradley (1960) to derive the
form of the entries in A for any value of m.

Let w;, 4,... 4, beanindicator variable where

PR, e T L
o o 1 lf1i1>-li2a-li3""lim’
Wiy ig,in =

Py, >1,,...,T;,) =

0 otherwise.

Then

o iy 9 oneo T
“ and  Var(wi, iy,...i,,) = s

E;’;l Ti; HEenim s (Z;n:] m,)?

We let w;, be the number of times option T}, is preferred to the other options available
in any choice set in which 73, appears. Then

wyi; = E Wiy i, yim

g(wil V2 eeesimm )=

i<tz < Lim
where the summation is overis < i3 < -+ < imandi; £ forj=2,...,m
It follows that 1
Ewy)=m, Y T
i <ia <o iy fd=1 i
PO
T
Var(wg,) =m, Y (erm—ﬂj)g

T <in < <lm J=1"%

e T

and  Cov(w;, ,w;,) = Z iz

m Y2
o<t (L= )

Il EXAMPLE 3.3.1.

Suppose that the four choice sets (17,73, 15), (11,12, 14), (I1,T3,1y), and (13,13, T4)
are to be used to compare ¢ = 4 items. Then we know that w; = wj33 + wq24 + wias and
we = wWo13 + Wo14 + Wazs. Thus we have that

E(wy) = E(wias + wiza +wizs)
E(wizs) + E(wiza) + E(wizq)
T ™1 ™
+ + .
(my+me+ms)  (m+ma+m)  (m +my+wg)

I
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We can get a similar expression for £(ws ). Next we derive the covariance of w; and ws.

Cov(wy,wz) = Covl{wies + wigq + wisq, wais + warg + Wos4 )
= COV(’LLHQg, 102]3) + COV(wlgg, 1[)214) + COV(wlzg . ’lU234)
+CO\’(’1L‘124, U'le) + COV(UHQ4, w214) + COV(IL‘124, IU234)

+Cov(wizg, waiz) + Cov(wize, wor4) + Cov(wisg, wazg).

The only two non-zero covariances are those of wq23 and wo13 and of wyo4 and wioy4, as
each of these pairs of random variables come from the same choice set. We have

Ty 2
COV(“'123.1U213) = & lezs - m) X <ll’213 - m)}

IS¥IP]

& (wia3worz) — m

il

— T2
(7«’1 + o +7T3)2

since the product wi23twe13 is always O (because only one option can be chosen from the
choice set). So either 1 is chosen, and thus w3 is 0; or 2 is chosen, and w23 is 0; or 3 is
chosen, in which case w23 and wo13 are both 0.

The same argument shows that

— T2

Covlwize, wae) = o=y

giving the result that

b S¥ID] — 172

Cov(wy,we) = .
ov(wy, ws) Eop ey Pap—

as expected. o

We define A;, 4y, 00 = M io....4,,/N. Then the entries of A are given by

m
Z Aihi%--»aim Zj:z T3,

Aig.’il = Ty ™ 5 (32)
fp<ig< - <im (Zj=1 7Tj7 )~
and N
Ah,iz = T Tin Z ( 117;:2 lllll ‘1”52 . (32)
iy <ig <o <im Zi:l i
If we assume that 7; = m9 = --- = 7, = 1 (that is, all items are equally attractive, the
usual null hypothesis), then
m—1
Ai1-71 = 7 ‘ Z , AilviQ-“'aivn (3.4)
tg <y < o <im
and )
Aiiy = 3 Z it gt - (3.5)

I3 <ig < <y,
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B EXAMPLE 3.3.2.

Suppose that we have ¢ = 4 items and that we compare them using the sets (1%, 73, 13),
(' v1,’1’2,’['4), and (Yé,YE,jh). Then ni23 = i, n1,24 = 1, 1n1,34 = 0, and n2,3,4 = 1.
Also observe that N = 3. Under the null hypothesis of equally attractive items, we get the
A matrix

4 -2 -1 -1

-2 6 -2 -2
- 1
A=s3| 1 2 4
-1 -2 -1 4 O

3.3.2 Representing Options Using k Attributes

These ideas can be extended naturally to items that are described by k attributes. We can
calculate the matrices B,, B, and B, in the same way as we have before.

M EXAMPLE 3.3.3.

Suppose that we have three binary attributes and that we conduct a choice experiment using
the following four choice sets each of size 3: (000, 111, 010), (001, 110, 011), (010, 101,
000), (011, 100, 001). We use the same Bj, matrix for main effects as in Example 3.2.6,
but the new A matrix is

4 0 -2 0 0 1 0 -1]
0 4 0 -2 -1 0 -1 0
-2 0 4 0 0 -1 0 -1
1 0 -2 0 4 -1 0 -1 0
Ix4 0 -1 0 -1 2 0 0 O
-1 0 -1 0 0 2 0 O
6 -1 0 -1 0 0 2 0

| -1 0 -1 0 0 0 0 2]

The corresponding C' matrix for estimating main effects is é[g. (This matrix is calculated
assuming B, contains all the contrasts other than those for main effects, but as we shall
show in Chapter 5 the information matrix for any set of effects to be tested is independent
of the way that the remaining contrasts are divided between B, and B:..)

If we use these choice sets to estimate main effects plus two-factor interactions, then we
get the following C' matrix.

2 0 0 : 0 0 O

0 2 0 : -1 0 O

0 0 2 : 0 0 O

c=L ...

0 -1 0 : 2 0 0

0 0 0 : 0 0 O

| 0 0 0 : 0 0 2|

We see that this matrix is not of full rank and hence the choice sets are not connected for
the estimation of these effects. O

3.3.3 The Assumption of Independence from Irrelevant Alternatives

One of the most controversial properties of the MNL model is that of Independence from
Irrelevant Alternatives (ITA). We define this phrase and look at its consequences briefly.
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Recall that the log odds function or logit function for a binomial random variable with
probability 7 of success is defined by logit(7) = In(x/(1 — 7)). Now consider the odds
of subject « choosing 1}, over 73, if the MNL model is used for modelling the choices.

This is .
Viie 5. eVoe Viio
el j e’
In(Pai; / Paiy) :h{—z,-e”* ev—} 211{ v }

e’z
We see that these odds depend only on the two options being compared and not on any
of the other options in the choice set. Thus this model is said to have independence from
irrelevant alternatives (11A), a phrase originally used by Luce (1959).

This assumption does not always makes sense. The classic counter-example is the red
bus-blue bus example. Suppose that there are two ways of getting to work: driving a car
or travelling by (blue) bus. Now suppose that a third option becomes available — a red bus
that in all other ways is exactly the same as the blue bus. Then logic suggests that users of
the red bus will all have been users of the blue bus and none of the drivers will be tempted
by the new service. So the ITA assumption does not make sense here.

The A assumption can be viewed as a restriction or as the natural outcome of a well-
specified model (that is, one in which all sources of correlation are captured). For example,
the generalized extreme value (GEV) model allows for different substitution patterns and
so does not have the HIA property because it allows for the correlation structure to be
modelled; see Train (2003) for more details.

3.3.4 Exercises

1. Consider the following four choice sets of size 3 for four binary attributes:
(0000, 1111, 0011), (0011, 1100, 0000), (0101, 1010, 0110), (0110, 1001, O101).

(a) Give the A and C matrices corresponding to these choice sets, assuming that
you want to estimate the main effects only. Does it matter how you split the
remaining effects between B, and B,.? Comment.

(b) Give the Q2 matrix for these choice sets assuming that all interaction terms are
0.

2. Suppose that ¢ = 4 and that the 4 items to be compared are 14, 15, 15, and Tj.
Suppose that we use the four choice sets (171, 1%), (11, 13), (11, T4), and (15,13, 14).
(a) Find the likelihood function L(#) for this choice experiment.
(b) Hence find A. Comment.
(c) Would you be able to estimate all of the 7;?

3. Show that the ¢ matrix is always NC for the estimation of main effects only
assuming that all interaction effects are 0.

3.4 COMPARING DESIGNS

In the univariate, ordinary least squares, normal errors situation the performance of esti-
mates is often judged by the width of the resulting confidence interval. Estimates that are
minimum variance unbiased are often deemed to be the best. In the multivariate, ordinary
least squares, normal errors situation the performance of estimates is often judged by some
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property of the asymptotic variance-covariance matrix. In the case of a discrete choice ex-
periment we have a non-linear multivariate situation where the variance-covariance matrix
of the unknown parameter estimates depends on the values of those estimates. We find the
variance-covariance matrix as a function of the parameter estimates and define the optimal
design to be the design with the “best” variance-covariance matrix given Hy. Possible
ways of defining “best” are given below.

This means that we have a method to compare different choice experiments objectively
using the variance-covariance matrix, C~}. However, we could use structural properties
of the either the variance-covariance matrix or of the designs.

For the variance-covariance matrix the property that is most of interest is whether or
not the parameters have been independently estimated. This is so if the matrix is diagonal.
When we estimate main effects, for an attribute with ¢ levels, there are £, — 1 contrasts
and these are not uniquely defined. So, in fact, we really only require that C~! be block
diagonal for the effects from different attributes to be independently estimated.

Readers can find software to calculate the information matrix and variance-covariance
matrix of any set of choice sets at http://maths.science.uts.edu.au/maths/wiki/SPExpts.

For the designs, desirable structural properties typically arise from a link between the
structure of the design and the properties of the resulting estimates. Structural properties
of interest could include the frequency with which each level of each attribute appears in
the design or the relationship between the options in each choice set.

We discuss all of these approaches below.

3.4.1 Using Variance Properties to Compare Designs

In the univariate setting, where there is only one parameter to estimate, the variance of the
parameter estimate is often used as a measure of a good estimation procedure. One talks
about a “minimum variance unbiased estimator” for instance, when describing an unbiased
estimator that achieves the Cramér—Rao lower bound.

In the choice experiment setting, we are interested in estimating several effects, typically
the main effects or the main effects plus two-factor interaction effects. So we end up with
a variance-covariance matrix, C' !, to describe the variability of the estimates. Thus we
would like to summarize C~! in a single number and several such summariés have been
proposed.

The D-, A-, and E-optimality measures are appropriate to our situation and we now
define these; see Atkinson and Donev (1992) for more details.

A design is D-optimal if it minimizes the generalized variance of the parameter estimates,
that is, det(C 1) is as small as possible for the D-optimal designs.

A design is A-optimal if it minimizes the average variance of the parameter estimates,
that is, tr(C ") is as small as possible for the A-optimal designs.

A design is E-optimal if it minimizes the variance of the least well-estimated parameter,
that is, the largest eigenvalue of C~! is as small as possible for the £-optimal designs.

It has become usual to look for designs that are D-optimal. The idea of minimizing
the generalized variance seems intuitively reasonable and the D-optimal design does not
depend on the scale used for any quantitative attributes. This is of course less of a
consideration given that we are viewing all the attributes as qualitative, although some
authors, for example Kanninen (2002), do design for quantitative attributes in the discrete
choice setting. The calculations involved in evaluating the determinant are usually more
easily performed than those required to determine an A- or E-optimal design.
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Following El-Helbawy and Bradley (1978), we apply the optimality criteria to the
information matrix C' = By A B}, and the corresponding variance-covariance matrix cC1.
We can make it easier to find the D-optimal designs by noting that det(C 1) = 1/ det{C).
Thus the design which minimizes det(C'~!) is the same as the design which maximizes
det(C). Thus we try to find designs for which det(C') is as large as possible.

From these definitions, we see that for any optimality measure it is necessary to define a
class of competing designs. As we go through the book we describe the class of competing
designs for each new situation that we consider.

B EXAMPLE 3.4.1.

Suppose that we have k == 2 binary attributes and that we want to estimate the main effects
of these attributes using 3 choice sets each with two options. We let By, = B be the
contrast matrix for main effects. We believe that the interaction effect is O and hence we let
B, be the contrast for the two-factor interaction. There are 2% = 4 possible items. There
are (3) = 6 pairs of options and there are (§) = 20 choice experiments involving 3 sets
of these pairs. These 20 sets of three pairs constitute the class of competing designs and
we want to know which of these designs is (are) best. To do this, we must calculate A,
(" = Bj;ABj;.and hence C~', for each design and calculate the D-, A-, and E-optimality
values.

For all of the competing designs

1[-1 -1 11
Br=Bu=3|_1 1 -1 1

We let v;, i = 1, 2, be the two eigenvalues of C~1. Then the D-optimum value is v; 1/, the
A-optimum value is i1 + v2 and the E-optimum value is max(vq, v9).
For the first design in Table 3.7, for example,

3 -1 -1 -1
1=t 1 0 o0
“12l -1 0 1 0
-1 0 0 1
1721
C‘ﬁhz}’

and
8§ —4
+—1 _
=] 51,

Thus 17 = 12, v = 4 and we get a D-optimal value of 48, an A-optimal value of 16 and
an E-optimal value of 12. This is summarized in the first line of Table 3.7.

All 20 designs and the corresponding D-, A-, and E-optimum values are given in Table
3.7.

We can see that in this case the same four designs, designs 5, 11, 17, and 18, are A-, D-,
and E-optimal. O

When we know the minimum value that an optimality measure can take in the class of
competing designs, then we can compare every design to this bound and we talk of the
efficiency of a design.

For the generalized variance, we need to allow for the number of effects that are being
estimated. Let p be the number of independent parameters that are being estimated in an
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Table 3.7  Triples of Pairs for k£ = 2 and the Corresponding D-, A- and E- Optimum Values

Design Triples v, v Dopt Aopt Eopt
1 |00,00 00,10 00,11 412 48 16 12
2 [00,01 00,10 01,10 4,12 48 16 12
310001 00,10 01,11 6.12 72 18 12
4 100,01 00,10 10,11 6,12 72 18 12
5 100,01 00,11 01,10 46 2410 6
6 [00,01 00,11 01,11 4,12 48 16 12
7 10001 00,11 10,11]6(2-+v2)6(2+v2)| 72 24 6(2+2)
8 [00,01 01.10 01,11 4,12 48 16 12
9 100,01 0110 10,11 [6(2~v2).6(2+V2)| 72 24 6(2+ V2)
10 00,01 01,11 10,11 6,12 72 18 12
11 |00,10 00,11 01,10 46 2410 6
12 (00,10 00,11 O1,11|6(2~-v2),6(2+Vv2)| 72 24 6(2+2)
13 (00,10 00,11 10,11 4,12 48 16 12
14 100,10 OL10 01,11]6(2 —v2),6(2+V2)| 72 24 6(2+V2)
15 ]00,10 01,10 10.11 412 48 16 12
16 00,10 01,11 10,11 6.12 72 18 12
17 100,11 01,10 01,11 46 2410 6
18 100,11 01,10 10,11 46 2410 6
19 ]00.11 01,11 10,11 412 48 16 12
20 01,10 01,11 10,11 412 48 16 12

experiment. For example, for £ attributes and a design that is estimating main effects only,
p= Z(gq - 1)
q

for a design that is estimating main effects plus two-factor interactions,

p=S = 1)+ 55 (e = )£y, — 1).
q

a1 92

Thus the D-efficiency of a design is defined to be the pth root of the ratio of the determinant
of the information matrix of the proposed design to that for the optimal design. So

det(C) V7
Effp = | .7/ :
det(copt)
where we have again chosen to work with C rather than with C~! since this means that
we do not need to invert the C matrix.
The A-efficiency of a design is defined to be the ratio of the trace of the covariance matrix
of the proposed design to that for the optimal design. So
Bff, = tr(Copt)
tr(C-1)"
(We can see the computational appeal of D-efficiency since there is no simple way of
evaluating the trace of the inverse of a matrix from the trace of the original matrix.)
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The next example illustrates the importance of considering the structure of the ' matrix
and not just the efficiency value.

M EXAMPLE 3.4.2.
Suppose that there are k& = 3 attributes each with 4 levels. and that the choice sets are those
given in Design 1 in Table 3.8. Then the corresponding C matrix is

ros -1 -3 1T
sz 000 sz 00 0 w0 0 G
0 55 O 0 55 O 0 0 0
0 5 0o o =L Ao 3
0 0 51 512 640 2560
SR R e
s; 0000 sz 000 w0 O &
Cir=| 0 = 0 0 5= 0 0 0 0
2 -1 5 ~1 -3
S , o e
e U 640 2560 840 512 0 0
0 0 0 0 0 o0 0 5= 0
1 3 -1 -3 5
Law U = o 0 o 0 0 55
and the corresponding variance-covariance matrix is
roo768 128 384 512 7
== 0 0 £ 0 0 o 0 -5
0 96 0 0 -32 0 0 0 0
768 128 512 384
0 0 =5 0 0 = -5 0 -
. Co W RN
. = 0 0 = 0 0 -5 0 =
C; = 0 -32 0 0 9% 0 0 0 0
128 768 . 512 384
0 0 = 0 o = = 0 =
384 6 512 _384 o 12 C7e8 a0
35 0 -5 T35 0 35 T 0 0
0 0 0 0 0 0 0o % 0
512 384 512 384 ( 768
L% 0 -5 I -3 o 0 F |

This design is 95.9% efficient but the only effect that is independently estimated is the
quadratic component of the third attribute.

Consider instead the choice sets in Design 2 in Table 3.8. Then the corresponding C
matrix is

r _3 1 1]
7 0 355 0 0 0 0o 0 0
0 4 0 0 0 0 0 0 o0
1 9
= 0 a5 0 0 0 0
o R
0 0 0 35 0 35 0 0 0
Cy = 0 0 0 4 0 0 0 0
0 0 0 w5 0 &% 0 0 0
0 0 o0 0 0 0 a5 0 o
0 0 0 0 0 0 35 O
L 0 0 0 0 0 0 % 0 i
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and the corresponding variance-covariance matrix is

r 57

5
0
_128
5
0
Cyl=1 0

0

0

0

0

0 -l
128 0
384

0 %
00
0o 0
0 0
0 0
0 0
0o 0

o

o

o

0

6

5
1

[

28

o

o o

0
128

0

o OO

0

0
0

_ 128
5
0

384
5

This design is 94.5% efficient and we see that the only correlation that exists is between
the linear and cubic components of the main effect of each attribute.
Thus although the first design is slightly better in terms of the Eff 5 it has a number of
correlations between main effects for different attributes while the other design has all main
effects independently estimated. So Eff  is a guide to the best design but the structure of

the C and the C~! matrices is also important.

Table 3.8 Two Choice Experiments

Option 1 Option 2
310 132
201 132
302 120
222 333
103 230
120 031
012 321
111 000
230 321
023 201
031 213
012 103
333 111
000 222
213 302
310 023

Design 1

Option 1 Option 2
000 111
011 122
022 133
033 100
101 212
110 221
123 230
132 203
202 313
213 320
220 331
231 302
303 010
312 023
321 032
330 001

Design 2

3.4.2 Structural Properties

0

There has been a tradition in the design of experiments to try and identify structural
properties of designs that are linked with desirable statistical properties. Then useful
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designs can be found merely by considering these structural properties. Although some
structural properties have been shown to be linked with desirable properties in choice
experiments, to date the results have not been as clear cut as in the construction of balanced
incomplete block designs for comparing treatments in a linear models setting, for example.

Huber and Zwerina (1996) describe a set of features that they believe are characteristic
of optimal choice designs. These features are:

1. level balance. All the levels of each attribute occur with equal frequency over all
options in all choice sets (often called equi-replicate in the statistical literature).

2. Orthogonality. - This “is satisfied when the joint occurrence of any two levels of
different attributes appear in options with frequencies equal to the product of their
marginal frequencies” (Huber and Zwerina (1996)). This is often described by saying
that the levels of the various attributes appear “with proportional frequencies”.

3. Minimal overlap. “The probability that an attribute level repeats itself in each choice
set should be as small as possible” (Huber and Zwerina (1996)). So, if the number
of items in each choice set is fewer than the number of levels for an attribute, then
no attribute level is repeated within a choice set. Thus the difference between the
number of times that any two levels of an attribute are replicated should be as small
as possible, ideally 0. and at most 1.

4. Utility balance. Options within a choice set should be equally attractive to subjects.

Bunch et al. (1996) introduced the idea of shifted designs in which a set of initial options
is chosen for each of the [V choice sets in an experiment and the subsequent option(s) in each
choice set are obtained by using modular arithmetic to “shift each combination of initial
attribute levels by adding a constant that depends on the number of levels.” In Zwerina
et al. (1996) we find the following sentence and footnote: “For certain families of plans
and assuming all the coefficients are zero, these shifted designs satisfy all four principles,
and thus are optimal. We are not able to analytically prove this, but after examining scores
of designs, we have never found more efficient designs than those that satisfy all four
principles.”

But satisfying these principles does not guarantee that the design is optimal, nor even
that it can estimate main effects, as the following example shows.

M EXAMPLE 3.4.3.

The choice sets in Table 3.9 satisfy the four Huber and Zwerina conditions when the null
hypothesis is true but the main effects for the third attribute can not be estimated, and
the determinant of the information matrix for main effects is 0. Studying the design, we
observe that in each choice set the levels of the third attribute appear in pairs: 0 with 1; 2
with 3; and 4 with 5. So the additional requirement, observed in shifted designs, is that the
levels of each attribute must be connected. O

While the previous example is in some sense pathological, the following example shows
that level balance is not essential for a choice experiment to be optimal.

B EXAMPLE 3.4.4.

The choice sets in Table 3.10 are an optimal set of choice sets of size 5 for the estimation
of main effects. The second attribute has all three levels appearing 30 times each across the
18 choice sets, and the third attribute has all six levels appearing 15 times each across the
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Table 3.9 A Choice Experiment for the Estimation of Main Effects when There Are 3
Attributes with 2, 3, and 6 Levels which Satisfies the Huber-Zwerina Conditions but for which
Main Effects Cannot Be Estimated.

Option A Option B
000 111
001 110
002 113
003 112
004 115
005 114
010 121
011 120
012 123
013 122
014 125
015 124
020 101
021 100
022 103
023 102
024 105
025 104
100 011
101 010
102 013
103 012
104 015
105 014
110 021
111 020
112 023
113 022
114 025
tis 024
120 001
121 000
122 003
123 002
124 005

125 004
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Table 3.10  An Optimal Choice Experiment for the Estimation of Main Effects when There
Are 3 Attributes with 2. 3, and 6 Levels

Option A Option B Option C Option D Option £
000 111 123 012 024
121 002 014 103 115
112 023 005 124 100
023 104 110 005 011
004 115 121 010 022
015 120 102 021 003
025 100 112 001 013
114 025 001 120 102
010 121 103 022 004
001 112 214 013 025
103 014 020 115 121
022 103 115 004 010
013 124 100 025 001
002 113 125 014 020
024 105 111 000 012
105 010 022 111 123
011 122 104 023 005
120 001 013 102 114

18 choice sets. However, the first attribute has one level replicated 48 times and the other
level replicated 42 times. (|

Chapters 4, 5, and 6 give a theoretical description of the optimal designs under the null
hypothesis of no option differences. These results determine the optimal designs for the
estimation of main effects, and of main effects plus two-factor interactions, for any number
of levels and for any choice set size. Minimal overlap is an essential feature of optimal
designs for the estimation of main effects, but precludes the estimation of interaction effects,
a point made in Huber and Zwerina (1996).

3.4.3 Exercises

1. Consider two binary attributes. Assume that all four treatment combinations are
equally attractive; that is, assume that the 7; values are all equal.
(a) Give the 6 possible pairs that can be used as choice sets of size 2.
(b) Give the 15 sets of two pairs.

(¢) For each of these pairs of pairs, evaluate the corresponding C' matrix for
estimating main effects and give its determinant and its trace.

(d) Which of these 15 designs is best?
2. Consider two binary attributes and suppose that mo9 = 71 = 1, 710 = 1/10 and

m11 = 10. Repeat Question 1. Compare the best design for these two situations and
comment.
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3. Consider four binary attributes.

(a) Calculate the 8 pairs that come about by pairing each treatment combination
with its foldover (that is, the treatment combination in which Os and 1s are
interchanged; 0101 is the foldover of 1010, for example).

(b) Calculate the C matrix for main effects for this design. What is det(C)?
(c) Repeat using the half-replicate given by z1 + z9 + 23 + x4 = 0.
(d) Comment.

4. Let £ = 4. Find the 8 treatment combinations in the two half-replicates given by
1+ 29+ x3 + x4 = 0and by 21 + 2 + 3 = 0. Thus there are (2) = 28 pairs
that can be made from the treatment combinations in each of these designs.

(a) For each of these sets of pairs, what is the smallest design that can be used to
estimate main effects?

(b) Which is (are) the best designs for each situation, using both A- and D-
optimality to compare designs.

5. Consider the designs in Question 1.

(a) Which ones have level balance?
(b) Which ones are orthogonal?
(c) Which ones have minimal overlap in all choice sets?

(d) Doall the designs have utility balance in all choice sets?
Which design(s) would be considered best using these criteria?

6. Repeat Question 5 for the designs in Question 2. Compare with the results above
and comment.

7. Comment on the designs in Question 3 with respect to level balance, orthogonality,
minimum overlap and utility balance.

3.5 REFERENCES AND COMMENTS

Train (2003) discusses discrete choice methods with a focus on the use of estimation by
simulation. The first part of his book gives an introduction to the various behavioral models
that have been proposed of which the MNL model is only one.

There is an extensive discussion of the history of paired comparison designs in David
(1988).

Atkinson and Donev (1992) provide an extensive collection of results on optimal designs
for the linear model for a variety of optimality criteria. They briefly discuss some of the
issues in the construction of optimal designs for models in which the covariance matrix
depends on the unknown parameters (as it does for the MNL model).

Many software packages can be used to analyze discrete choice experiments, often
by utilizing the link between the DCEs and Cox’s proportional hazards model. Kuhfeld
(2006) gives a very complete description, including many worked examples, together with
appropriate macros, on how to use SAS to do the analysis. There is a description of
using S-PLUS to fit a Cox’s proportional hazards model in Venables and Ripley (2003).
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Multinomial models, and advice about how to fit them, may be found in Agresti (2002) and
Thompson (2005). Thompson (2005) gives worked examples in both S-PLUS and R. A
detailed description of using GLIM to analyze paired and triple comparisons may be found
in Critchlow and Fligner (1991). Long and Freese (2006) have an extensive discussion on
how to use STATA to analyze MNL models and related models such as the conditional logit
and multinomial probit.
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CHAPTER 4

PAIRED COMPARISON DESIGNS FOR
BINARY ATTRIBUTES

In this chapter we will look at various design possibilities when all attributes have two
levels and all choice sets have two items in them. We start by working with sets of choice
sets of size 2 obtained from the complete factorial and then show that we can get equally
good designs by constructing pairs from suitably chosen fractional factorial designs.

To help set the scene, consider the following example. Severin (2000) investigated
which attributes made take-out pizza outlets more attractive. In her first experiment, she
used the six attributes in Table 4.1 with the levels indicated. A sample choice set for
an experiment looking at these six attributes describing take-out pizza outlets is given in
Table 4.2. Observe that the question has been phrased so that the respondents are asked
to imagine that the two choices presented to them are the last two options that they are
considering in their search for a take-out pizza outlet. This assumption means that the
respondents are naturally in a setting where it does not make sense not to choose an option
and so they are forced to make a selection even though the options presented are not
exhaustive. In Chapter 7, we will consider the design of choice experiments when we want
to allow an option not to choose.

4.1 OPTIMAL PAIRS FROM THE COMPLETE FACTORIAL

In this section we investigate the form of the optimal paired comparison design when there
are k attributes, each with two levels, and the set of possible choice pairs is restricted
so that each pair of treatment combinations in which there are v attributes with different
levels appears equally often. This then defines the class of competing designs. Using this

The Construction of Optimal Stated Choice Experiments. By D. I. Street and L. Burgess 95
Copyright © 2007 John Wiley & Sons, Inc.



96 PAIRED COMPARISON DESIGNS FOR BINARY ATTRIBUTES

Table 4.1 Six Attributes to Be Used in an Experiment to Compare Pizza Outlets

Attributes Levels
Pizza type Traditional

Gourmet
Type of Crust Thick

Thin
Ingredients All fresh

Some tinned
Size Small only

Three sizes
Price $17

$13
Delivery time 30 minutes

45 minutes

Table 4.2 One Choice Set in an Experiment to Compare Pizza Outlets

Outlet A Outlet B
Pizza type Traditional Gourmet
Type of Crust Thick Thin
Ingredients All fresh Some tinned
Size Small only Small only
Price $17 $13
Delivery time 30 minutes 30 minutes

Suppose that you have already narrowed down
your choice of take-out pizza outlet to

the two alternatives above.

Which of these two would you choose?

(tick one only)
Option A O

Option B O
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class of competing designs means that the matrices C~! and ¢ are diagonal and hence
the relevant information matrices can be determined by evaluating BA B’ for the relevant
set of contrasts. Using this class of competing designs ensures that the estimate of the
variance-covariance matrix of By ¥ is independent of which contrasts are in B, and which
are in B,.

H EXAMPLE 4.1.1.
Let k = 2. Then the pairs with v = 2 attributes different, specifically (00,11) and (01,10),
would each appear the same number of times in the design (although that number might be
0), and the pairs with v = | attribute different, specifically (00.01), (00,10), (01,11), and
(10,11), would each appear the same number of times, again possibly O times each, in the
design. Thus the class of competing designs consists of three designs: the two pairs (00,11)
and (01,10); the four pairs (00,01), (00,10}, (01,11), and (10,11); and all six of these pairs.
|

4.1.1 The Derivation of the A Matrix

We derive the A matrix using the method of Section 3.2.4. As we have just said, the
competing designs are those in which the set of possible choice pairs is restricted so that
each pair of treatment combinations in which there are v attributes with different levels
appears equally often. We will let 7, be an indicator variable defined as follows.

1 if all the pairs with v attributes different are to be included in the
i choice experiment,
“ 7} 0 ifnone of the pairs with v attributes different is to be included in
the choice experiment.

We then define N to be the total number of choice sets in the choice experiment and let
Gy = 1y/N.

As we have done before, to make the extension to more attributes easy, we will always
place the treatment combinations in standard order, sometimes called Yares standard order,
or simply lexicographic order.

We will let Dy ,, be a (0,1) matrix of order 2F with rows and columns labeled by the
treatment combinations in a 2% factorial design. There is a 1 in position (x,y) of Dy, if
treatment combinations x and y have v attributes with different levels.

H EXAMPLE 4.1.2.

Let & = 2. Then the four treatment combinations, in standard order, are 00, 01, 10, and
11. These treatment combinations, in this order, are used to label the rows and columns
of all matrices associated with a design. For example, 00 and 01 have one attribute with
different levels and so D5 1(00,01) = D5 (1, 2) = 1. Continuing in this way, we see that

D2_1 = and Dg}g =

— O O
— O D
O = HE O
—_ o0 oo
o= OO

O = = O
oo O
OO O =
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Let k = 3. Then the eight treatment combinations in standard order are 000, 001, 010,
011,100, 101, 110, and 111. Thus we see that

01101000 00010110
10010100 00101001
100100T120 01001001
0110000 1 10000110

Dsi=117 000011 0|®™D2=|¢g 1 1 00001
01001001 100100710
00101001 10010100
L00010110_ L01101000_

For each treatment combination, there is only one other treatment combination in which
all the attributes have different levels; this is the foldover treatment. Thus Dj 3 is a matrix
with 1s on the back-diagonal and all other entries equal to 0. Each treatment combination
has the same levels as itself; so D3 o = Is. O

Consider the 2* treatment combinations in a 2* complete factorial. Because we have
ordered the treatment combinations lexicographically, the first level in the first 25~ treat-
ment combinations is 0, and the remaining entries form the 2k=1 treatment combinations
in a complete 2°~! factorial. The same is true of the second 2~ treatment combinations
if we remove the first level, which is of course a 1. So we can define the entries in Dy, in
terms of those in Dy_1,,, and Dy_; ,—1. Thus we get the following recursive relationship.

HLEMMA 4.1.1.

Dy Dt y—
Dk.v_— k=10 k—-1,0-1

= k—=1>v>1, Deog= I, D11 = 0.
Di_1y-1 Dr-1 == k.0 2k, Di—1k

With this notation, the a, defined above, the A notation of Section 3.2.4, and the
assumption that the usual null hypothesis, m; = 7y = ... = 7y = 1 is true, we get the
following expression for A.

BLEMMA 4.1.2.

1 k k k
A = 1 [(kal + (2>a2+~--+ <U>av+~-+ak) Iy —Zaka,v}

v=1

v=1 v= 0
H EXAMPLE 4.1.3.
When k = 2 we have
A= % [(2a1 + a2)}]s — a1 Doy — aaDa 2],
and when k£ = 3 we have
A= % [(3ay + 3as + a3)lg — a1 D31 — agD3 2 — azDs3). 0
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B EXAMPLE 4.1.4.

Let k& = 2. Then the pairs with 1 attribute different (that is, the pairs (00,01}, (00,10),
(01,11), and (10,11)) would each appear either ¢1 = 0 or i1 = 1 times in the design. If
there are NV pairs in the design in total, then a; = 0/N ora; = 1/N. In either case, the
corresponding entries in A would be a; Dy ;. The same is true for the entries corresponding
to the pairs (00, 11) and (01, 10). So the possible values of N are 2, using the pairs (00,
11)and (01, 10); 4, using the pairs (00,01), (00,10), (01,11), and (10,11); or 6, using all the
pairs. The corresponding values of A are given in Table 4.3. |

Table 4.3 The Possible Designs and Corresponding A Matrices for £ = 2

Pairs N A
(00, 11). (01, 10) 2 $14— 3Dy
(00,01), (00.10). (01.11). (10.11) 4 21y~ D2y
(00, 11), (01, 10), (00,01). (00,10, (O1,11), (10,11) 6 2li— £ D21 — 5 D2s

B EXAMPLE 4.1.5.

Let k = 3. The 28 pairs are listed in Table 4.4. We can see that there are 7 possible designs:
the 12 pairs with 1 attribute different, the 12 pairs with 2 attributes different, the 4 pairs
with 3 attributes different, the 24 pairs with 1 or 2 attributes different, the 16 pairs with 1
or 3 attributes different, the 16 pairs with 2 or 3 attributes different, and all 28 pairs. O

Table 4.4  All Possible Pairs when k = 3

One Attribute Different
(000, 001) (000, 010) (000, 100) (001,011)
(001.101) (010, 011) (010, 110) (011, 111)
(101, 111y (110, 111y (100, 101) (100, 110)

Two Attributes Different
(000, 011) (000, 101) (000,110) (001, 010)
(001, 100) (001, 111) (010, 111) (010, 100)
(011, 110) (011, 101) (100, 111) (101, 110)

Three Attributes Different
(000, 111) (001, 110) (010, 101) (011, 100)

4.1.2 Calculation of the Relevant Contrast Matrices

Let Bo be the (2% — 1) x 2% matrix of the usual contrasts associated with a 2% factorial
design, where the column labels are the treatment combinations in standard order, and
sz‘ B;; == ]2h ~1-
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B EXAMPLE 4.1.6.

Let k& = 2. Then the columns of Bj: are labeled by 00, 01, 10, and 11. Write the contrasts
in the following order: the main effect of the first attribute, then the main effect of the
second attribute, and finally the interaction effect. The result is

-1 -1 1
Bp=3| -1 1 -1 1]/
1 -1 -1 1 0

M EXAMPLE 4.1.7.

Let k = 3. Write the contrasts in the following order: the main effects of the first, second
and third attributes; then the interaction effect of the second and third attributes; then the
interaction effect of the first and second attributes; the interaction effect of the first and
third attributes; and finally the three-factor interaction effect. We get

f—-1 -1 -1 -1 1 1 1
-1 -1 1 1 -1 =1 1
;| -t 1t -1 1 -1 1 -1
—]! 1 -1 -1 1 1 -1 =1
\/511—1—1—1—11
1 -1 1 -1 -1 1 -1
-1 1 1 -1 1 =1 -1

323 =

bt pmd i e e ek et

Observe that we can write

H !

[k i
By = — 2B,2 22
V8| 2By 2By

This happens because of the lexicographic ordering imposed on the treatment combinations;
the second and third attributes are repeated in the same order while the first attribute is 0,
and then again while it is 1. O

The previous example illustrates the following general recursive result:

“j/2k~1 j/zk—l

Bor = —ﬁ V2k=1Bo 1 V2k-1Bo
28| _V2F1Bu, V2F1B

The factorof 1/ V/2F is to normalize By Note that, when written like this, the main effects
contrasts are not the first k£ rows of Byx but are in rows 1, 2, 4, 8, and so on.

Sometimes we only want a contrast matrix for main effects or for main effects plus
two-factor interactions. We let By« s be a contrast matrix that contains only the contrasts
for main effects and we let Box 7 be a contrast matrix that contains only the contrasts for
main effects plus two-factor interactions.

4.1.3 The Model for Main Effects Only

Suppose that we want to estimate the main effects only. We know the general form of
the A matrix and we now explicitly evaluate the k x k principal minor of C' = Bor A Box
associated with the main effects so that we can determine the A- and D-optimal designs.
Thus we are evaluating the information matrix when By, = Bgx ay.
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We want to get a neat expression for Bys 57 Dy 4, and the following example indicates
the form that such a result might take.

M EXAMPLE 4.1.8.

Let k = 2. Then
0110
17 -1 -1 11 1 0 0 1
Baa=5| 1 1 1 g |dDu=1y g g
01 1 0
It is clear that By2 5y Doy = 0Bz 3;. Obviously BQQ_’A[DQ'O = Bo2 arls = Ba2 7. By
straight-forward multiplication, we can show that Bgz 3y D22 = —Bg2 ;. a

The following result can be proved in various ways; an alternative method of proof
appears in Section 6.3.

k-1 k-1
Bor arDiw = K Y ) - (z,' B 1)} Bos ar

Jorallk > 2, for all allowable v.

B LEMMA 4.1.3.

Proof. This is the sort of result that lends itself to proof by induction. So we must establish
the result for a small value of k and then show that assuming the result for £ we can prove
the result for £ + 1. From Example 4.1.8, we know that the result holds for £ = 2 for all
allowable .

Assume that the result is true for k£ and consider £ + 1. Thus we can assume that
Bar 31Dy = [(kzl) — (f:}) Bsyx 5y and we must see what happens when we consider

B2L+1,1\[Dk+1‘v. We get

. .

NG Disr . = —J ok Jor Dry  Diw-1

BQL +1’A[ k+1'L \/Q_szk‘“)\[ \/2—sz’\"1\[ Dk,u_l Dk_u
- { “j/Dk.v +j/Dk.v—1 j/Dk,v - j/Dk,v—l }
V2 By ar(Diw + Diw=1) V2B 3y (Dkw + Diut) |

Now . A
_‘j/Dk.v +j/Dk,v—1 = _j/ I:( ) - ( >}
v v—1
and

k-1 k-1 E—1 k-1
Bor a1(Diw + Diew—1) = K v ) - (L _ 1) + (Z'A 1) - <v 3 2>} Box ar-

It can be easily shown that
() -(00)+C2)
= +
v v v—1
k (k-1 n E—1\.
v—1/ " \v—-1 v—2)"

and
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()-(E)=(0)-C)

and hence the result is proved for k£ + 1 for all v. |

SO

We now show that at this stage we do not need to make any assumptions about the
contrasts in B, since the class of competing designs that we have chosen ensures that
Cry = 0 for any choice of B, (also see Exercise 4.1.5.5). By definition,

| B t oy | BeAB), BrABL | | Chn Cher
Chr = [ B, }A[Bh B.]= [ B,AB, BAB. |~ | Cw Cn |’
Since By, = Bar py, we can see that

5 ()

v=1

Chr

il

k
Bh12’"B;‘ - Z avBth.vB;
v=1

k k
k-1 k-1
= |: E <k)av B2k MB;‘ - E Ay [( ) - ( )} B2k ]\/[B;
v ' v v—1 '
v=1 =1
= Ok'2k.

This is true for any choice of B, as long as the set of competing designs remains the same
so that the form of A stays as a linear combination of the Dy ,,.

Using the result in Lemma 4.1.3, we can get an explicit expression for the information
matrix, Cyy, for the £ main effects.

H LEMMA 4.14.
The information matrix for main effects under the null hypothesis is given by

[ k
1 k-1
O = 2 o (1: — 1)] Ik

v=1

a0

v=1

and the determinant of Cyy is

Proof. The information matrix for main effects under the null hypothesis is

/
C}\{ = BZ"'J\{ABT‘,M

k k
k
= 4B2’° M l:v=1 <U>avl2" _;akav BékvM
k k k-1 k—1
S Lo (IS TR oI CH TG B () EE.

(]
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and the determinant of Cyy is

as required. O

Recall that the a,, are the proportions of the pairs that have v attributes different. Thus
we know that 281 5% (F)q, = 1.

H EXAMPLE 4.1.9.
Let & = 3. Then

) 1 2 2 A1
= @)+l (3]
subject to the constraint
3 3 3
4 =1.
(RN HERHE

(ay + 2aq + (1,3)3

So we want to maximize

W | ==

subject to 12a; + 12as -+ 4az = 1. We can write a3 = (1 ~ 12a; ~ 12a2)/4 and so we
want to maximize

3
1 11
3 [a1 + 2ay + (1 — 12a1 — 12(12)/4]3 =3 {Z —2a; — az} .

This is largest when a; = ap = 0. Thus the optimal paired comparison design for
estimating main effects consists of the four pairs (000, 111), (001, 110), (010, 101), and
(011, 100), each appearing once; so az = 1/4. In Table 4.5, we give all the possible designs
and the corresponding values of det(Cxs). We know there are (3) = 28 pairs of distinct
treatment combinations; 4 have three attributes different, 12 have two attributes different
and 12 have one attribute different. Since we are including all pairs with a given number of
attributes different, or none of them, there are 7 possible sets of pairs to consider. We see
that the first design in Table 4.5 consists of all the pairs with only one attribute different,
the second design consists of all the pairs with 2 attributes different, and so on; the final
design consists of all 28 pairs. d

We now extend this idea to get the D-optimal paired comparison design for binary
attributes for any value of k.

B THEOREM 4.1.1.

The D-optimal paired comparison design for estimating main effects consists of the
Joldover pairs only; that is, all k attributes appear at different levels in the two options in
each choice set. For the optimal designs

BL
det(Copt,ar) = [Q—k} :
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Table 4.5 The 7 Competing Designs for Main Effects Only for Pairs with £ = 3

>
iy

£
[\

o
%)

N 12a1 + 12a2 + 4as det(Car)
12 124, +0+40=1

12 04125 +0=1

4 0+0+43=1

16 0+124% +4%=1

16 125 +0+45=1
24 1255 +125;+0=1
28 1255+ 125 +455 =1

(£)=7.234 x107°
(3 =5.787 x 107*
(3)?® =1.953 x 1073
(£)*=8.240 x 107*
(L)? =2441 x 107
(3)? =2441x107*
(3)® =3644x107*

B B35~ © o o g
BB © 5~ @ g~ ©
Bl © 5l-a~w~ o ©
00|= 00|~ 00| GOl GOl GOl Qo

Proof. To find the D-optimal design, we must maximize

—_ a k——l k
det(Cpy) = 27" L; e (v - 1)]

subject to the constraint 25~1°%_ (¥)a, = 1. Rearranging this constraint, we get
2k=lg, =1—2k~1 Zﬁ;} (ﬁ)av. Substituting for ay, into the expression for det(Cops. a1),

we get k
B[] s 210

v=1

which can be rearranged to give

1 =k-1 )
-k -
-2 ()=
v=1
Consider this expression; it is clear that the maximum value of det(Cjy) is attained when
ay=0,v#kandap = 1/2¢k"1, a

For any design that we construct we can calculate the D-efficiency of that design, relative
to the optimal design, using the expression

det(Car) \''?
)

ffp={ ——m—
Effp (det(Copt‘M

where p = k.

M EXAMPLE 4.1.10.
When k = 3, we see from Table 4.5, that det(Cypt 21) = 1.953 x 1073 and so the design
with 4; = ¢3 =0 and i3 = 1 has

5.787 x 1074

Effp =100 ( 22— —
b (1.953 x 103

1/3
) = 66.6679%.
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B THEOREM 4.1.2.
The A-optimal paired comparison design for estimating main effects consists of the foldover
pairs only. For the optimal designs

tr(Coear) = k2k.

Proof. To find the A-optimal design, we must minimize tr(C';; 1) subject to the constraint
ok=15°k (Ma, = 1. Because Cy; is dlagona] and all entries are equal, this is equivalent
to maximizing tr(Cpy). Since tr{Cp;) = k ZU 1 ( )ab, this must be maximized, again

subject to the constraint. As above, this maximum is obtained when a, = 1/2*~" and all
other a,, are 0. O

We can also calculate the A-efficiency of any design, relative to the optimal design,

using the expression
-1
Eff4 = —tr(c°"f‘f") :
tr(Chy)

Thus we find that the A- and D-optimal designs coincide for the estimation of main
effects only.

4.1.4 The Model for Main Effects and Two-factor Interactions

We evaluate the information matrix associated with the estimation of main effects and
two-factor interactions so that we can determine the A- and D-optimal designs.

As before, we let Boi p; be the rows of By that correspond to main effects and
we now let By 1 be the rows of By that correspond to two-factor interactions. Thus the
matrix associated with main effects and two-factor interactions is the concatenation of these
matrices and we denote it by Bow ;. We want to get a neat expression for Bas 7Dk o

M EXAMPLE 4.1.11.
Let £ = 3. Then

1 1 1 -1 -1 -1 -1 11
Byr=—7]1 -1 1 -1 -1 1 -1 1
V8 1 -1 -1 1 1 -1 -1 1
and, using the results from Example 4.1.8, we see that

Bys D31 = —Bys 1, Bys 7 Dss = —Bsr, and By v Dy a = Bas 1. -

These results are extended in the next lemma.

B LEMMA 4.1.5.

k-2 k—2\ | (k-2
b= [(157) )+ (e

SJorall k > 3 for all allowable v.

Proof. By straight-forward multiplication, we know that the result holds for & = 3 for all
allowable v.
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Assume that the result is true for £ and consider k + 1. Then

1 B B D Dy o

Bortr 1 Di10 = ﬁ[ 2t T T ] [Dk,kv'il Dk,:,vl }

_1_ BZ’“‘T(Dk,v + Dk,v—l) BZ",T(Dk.v + Dk.v—l)
Bk p(Dgw-1 — Diw)  Bor ar(Diw — Diw-1) |

V2

Using the results of Lemma 4.1.3, we have that the (2,1) position is
k-1 B k—1 B k-1 N k-1 .
v—1 v -2 v v—1 ok M
k—2 k_2 k—2
T [( v ) _2(11—1> +<1,_2)] Bax a1

as required. The (2,2) position is the negative of the (2,1) position.
The (1,1) (and the (1,2)) positions are given by

mrrtne o) = {{(07) =2 7)) (%)
o o R |

by the induction hypothesis. Observing that
(k‘—l) (k—?) (k—2>

= + s

v v v—1

-1\ (k-2 L k-2
v—1/ \v-1 v—-2/)°

E-1\ (k-2 4 k-2
v—-2) \v~2 v—3)"

we see that we have established the result. a

~Barm Boren

and

Using this result, we can evaluate the information matrix for main effects plus two-factor
interactions. Note that we now have By, = Bar prr.

B LEMMA 4.1.6.
Under the null hypothesis, the information matrix for main effects plus two-factor interac-
tions is given by

k k-1
CMT — %szl (v—l)a‘vlk X X 20 .
0 o= (21 avlkk-1)/2

Proof. Using the definition for the information matrix and Lemmas 4.1.3 and 4.1.4, we
have that

Cur = sz,MTAB;k,MT
! . /
_ { sz,MAsz,M sz.MABQk,T }
- ! 7
sz,TAB%.M sz.TABw,T

k _
%Evzl (ﬁ_i)avlk 0 ,
0 sz.TABw,T
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Now
k
BQk_TA = Z( >GL12" Za Dkl:'
v=1
_ Z (k 2)
—r\v - 1
Thus By, 7ABy: 7 = Zf-:l (k 2)ab‘[k‘ k—1)/2- U

To find the D-optimal design, we need to maximize

A k ko
det(Carr) = [';‘ Z <f, : i)a“:| % [Z <f - f) av}
=1 / v=1

subject to the constraint that 2*=1 3> (¥)a, = 1. We look at a small example before
proving a general result.

k(k-1)/2

M EXAMPLE 4.1.12.
Let &£ = 3. Then

=3[ - @ Qo [ (v (]

and we want to maximize this, subject to the constraint 4(3a; + 3as + a3) = 1, the same
constraint that we had when considering the estimation of main effects only. Simplifying,
we see that we want to maximize

1
g [(11 + 2a0 +a3]3 X [al —+ (12]3

subject to the constraint. We can calculate the possible values of N and the corresponding
values of det(Cp 7). We know there are ( ) = 28 pairs of distinct treatment combinations;
4 have three attributes different, 12 have two attributes different and 12 have one attribute
different. Since we are including all pairs with a given number of attributes different, or
none of them, there are 7 possible sets of pairs to consider. These are given in Table 4.6
together with the corresponding values of NV and det(Ch;7). We see that the first design
consists of all the pairs with only one attribute different, the second design consists of all
the pairs with 2 attributes different, and so on until the final design consists of all 28 pairs.
From the table, we see that the optimal design for estimating main effects and two-factor
interactions has the 12 pairs with two attributes different. 0

B THEOREM 4.1.3.
The D-optimal design for testing main effects and two-factor interactions when all other
effects are assumed to be zero is given by

-1
o — {2**—1((“’3)/2)} v=(k+1)/2. ifkisodd
0 otherwise,

and
1
av:{ {27150} v=k/2 k241 irkiseven

0 otherwise.
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Table 4.6 The 7 Competing Designs for Main Effects and Two-Factor Interactions for Pairs
withk =3

a1 a2z a3 N det(Carr) tr(Cisr)
& 0 0 12 (£)%(%)® =4.1862 x 107° 108

0 £ 0 12 ($)%(%)* =3.3490 x 1077 72

0 0 4 4 (2Po* =0 not defined
0 & & 16 (£)(F)? =20117x 1077 80

£ 0 L 16 (£)%(&)° =5.9605 x 1078 96

& a0 24 (£)(35)* =1.4129 x 1077 84

RO s 28 (£ (&)P=13281x1077 84

The determinant of the optimal design is given by

(et Y rrRtem s ifk is odd,

det(Copt.m1) = }k+k(k—1)/2

k ol s
{#‘QH 5D if k is even.

Proof. Let
k k
k-1 k-2
z,=2""a, W= ,and Z=Y .
o v = (v - 1>$1 an = (z,‘ - 1)%

Thus we want to maximize f = W Z*~1/2 subjectto the constraint that 3¢ _, (¥)z, = 1.
Substituting for zj, = 1 — Y521

v=1

k-1
k-1
W=1—2< v )zu.

v=1

(M, in W gives

Thus f is a function of (k — 1) variables and needs to be maximized over the region
described by the inequalities 25;% (5)% < 1witha, > 0forv=1,...,k— 1. In this
region, we note that f > 0.

Any local extreme vatues of f will be found by solving the system of equations

af
O8x,

e L D

0, v=1,...,(k-—1).

For k > 3 this gives

Hence
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and so we have that
27 =W, v=1,...,(k—1).

Either these equations are inconsistent or W = 0 = Z, and hence f = 0 at all local
extrema; thus the maximum value of f will occur on the boundary of the region of allowed
values of x, in RF~1. (We use R to denote the set of real numbers and R* 1 to denote
the set of (k-1)-dimensional vectors over the real numbers. So R? is the set of pairs over
the real numbers, familiar from the two-dimensional graphs of high school.)

There are k subspaces of dimension k£ — 2; they are given by the equations

=1
tp=0v=1,...(k=1) a N = 1.
r 1 , (k—1) and ;(1)r

For the first & — 1 of these subspaces, the above analysis still holds; we simply delete the
mth equation from the system and put z,, = O in the remaining equations. We either
obtain inconsistent equations or W = 0 = Z; thus f = 0 at all local extrema of f in these
subspaces, and so the maximum allowed value of f will occur on the boundaries of the
region of allowed values of ., in these subspaces of R(F~1),

In the subspace given by
k=1 g
> (F)a =1
(3

v=1

we use Lagrange multipliers to locate the extreme values of f; this gives

("’; 1) {-7+ gw} = ,\C‘)

Eliminating A between two of these equations gives

{lg+v—kW -2z} I (’“) <’t> — o

This gives
27 =(g+v—kW, v=1,...{(k=1), v#g, v#k—g.

Fither these equations are inconsistentor W = Z = 0, and so f = 0 provided k > 4.

Thus we find that f = 0 at all local extrema of f in this subspace; so the maximum
allowed value of f will occur on the boundaries of the region of allowed values of x, in
this subspace of R*~!. We continue in this way, projecting the region of allowed values
of z, onto subspaces of lower and lower dimension. It is only when we reach the one-
dimensional subspaces (the edges of the region of the allowed values of z,)) that we obtain
just one equation to be solved to locate extreme values of f in this subspace; in general,
f # 0 at these points.

There are two types of edges that need to be considered:

1. those along the coordinate axis with

Ty = 0,v # g,and0 < (Z):rg <1
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2. those bounding the constraint surface with

k k
(g)mg + <h>“’h =1, g#h 7o=0, v#£g.h,

0< <k>$9 <1, and 0< (k)rh <1.
g h

Along the coordinate axes,

W,f=1_<k;1>wg’ Z:(:_2>$g and ﬁzo

2Z = gW,

=7 wa ()

It is only when g = 1 that this value of x, lies in the interval of allowed values of xz4; in
this case

requires

which gives

R 2 1
We=iqad 2= 7

For all other values of g, the maximum value of f on0 < (:)xg < loccursatzy = (Z) _1,
where k)
g g\r -
W = E and Z = m

For2 < g < k — 1 with k > 3 these values of W and Z are larger than those found above
for g = 1. To determine which value of g maximizes f amongst these alternatives, we use
these expressions for W and Z in f and set gf_ = 0. This gives a maximum when g = %
- provided this is an integer. If (k+1)/2 is not an integer, we shall show that the maximum
allowed value of f occurs along the edge joining g = k/2 and g = k/2 + 1.

It remains to consider the behavior of f along the edges of the constraint surface; in
particular, we consider what happens along the edge given by

(I;):zg—i—(:)xh:l, g#h, zv=0, v#g.h,

0< <k>.rg <1, and 0< (k)xh <1.
g h

Along this edge
h g—h(k
W ()
and
7 - htk—h) (h—g)h+g—k) [k
T k(k—-1) E(k—1) g/ ¢
Setting
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gives
(g+h—kW =22
If g+ h—k =0, Zis constant and the equation is inconsistent; thus the maximum

allowed valuc of f will occur at the endpoint of the interval (that is, at one of the vertices
studied above). If g + h — k # 0, we solve for z, and get

<k> . nl(k+ 1)k —h) —glk-1)]
9)"  (g-hMg+h-k)(k+1) "

This gives the location of a local maximum along the edge. At this local maximum,

2gh gh
V= p 7=
G+ h—kk(k+1) Kk+1)

The value of i which maximizes f for a particular value of g is obtained from ﬁff = 0 this
gives
k+1 gk —g)
! kE—g), W=%2 and Z = Z—-2¢
=tk ka” K= 1)
The value of g which gives the overall maximum allowed value of f is obtained from
= 0; this gives g = —i— In this case, i = g which is not a]lowed along an edge. If

dg
g # h the sntuatlon closcst to equallty holds wheng = h+1 = (k g) + 1 this gives
g = 5 +1- k and h = 5 — 5. When k is an even integer, thls result gives values for g

and i which are close to £ /2 + 1 and k/2respectively. Along the edge where g = ‘k +1land

h = £ (for k even), the maximum value of [ occurs where ;)2 = 2p/241 = [('j’/}l)}
We now determine the maximum value of the determinant at these a, values. For k
even, only two values of v will give the maximum determinant. These arc v = k/2 and

v=Fk/24 1, where
L (k+1 -t
M/ e = {Qk 1( % ﬂ

and all other a,, = 0. Then

k k(k=1)/2

k
] 1 k-1 k-2
d@l‘((»]\nﬁ 5 Z (1r _ 1>av X Z <l _ 1>(lzy

v=k/2.k/2+1 v=k/2.k/2+1
k

#) () ()]
[ ) (G - (3]

o (o) = ) = () () + (50) = ()

|

k(k--1)/2

(k}?) _ k+2 and (12721): k+2
(’27;) 2k + 1) (’;721) 4k +1)
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Therefore, for k even,

(k + 2) )k+k(k—1)/2

det(Cpyr) = <m

For k odd, the only value of v that will give the maximum determinantis v = (k +1)/2,

where
k-1 k -
Ak+1)/2 = |2 (k+1)/2

and all other a,, = 0. Then

det(Cur) = [gik((lg+k1)/2>_1<("~"|'k1;/;"1>}’C

< [ 1 ( k )‘1< k-2 )]W“’M
2k-1\(k+1)/2 (k+1)/2-1
Now
((k+k1)—/12——1) _ ((kk—_l;/Z) _ kE+1
((k+k1)/2) ((kﬁ)/z) 2k
and

((k+’§;/22—-1) _ ((kli_1)2/2) _k+1
B T4k

((k«ﬁ)/z) ((k+kl)/2)
Therefore, for k odd,

k+k(k~1)/2
(k+ 1)) . 0

det(Cur) = (W

When k = 3, this result says that the pairs to use are those with (k +1)/2=4/2 =2
attributes different, just as we found in Example 4.1.12.

For any design that we construct we can calculate the D-efficiency of that design, relative
to the optimal design, using the expression

det(CMT) Vp
) ki

Effp =
p <det(copt,]\,n*

where p =k + k(k — 1)/2.
We now want to establish a similar result for A-optimal designs. We begin by looking
at an example.

W EXAMPLE 4.1.13.
Let £ = 3. We know that

%(a1 + 2ay + a3)lz 0

Onr = 0 (a1 + a2)1;3
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So tr(C,\_,lT) = 6(a; + 2as +a3) "' + 3(a; + az) !, These values are given in Table 4.6,
and we see that the A-optimal design has the 12 pairs with two attributes different. O

The A-optimal design in the previous example is the same as the D-optimal design when
k = 3. In the next result. we determine the A-optimal design by minimizing tr(C';%-) and
find that the A-optimal design is always the same as the D-optimal design for the same
value of k.

Bl THEOREM 4.1.4.
The A-optimal design for testing main effects and two-factor interactions, when all other
interaction effects are assumed to be zero, is given by

-1
v = { {ij_l(u-fn/z)} »ov=(k+1)/2, ifkisodd
Os

otherwise,

and

-1
ay = {2k_1(i72})} . i=k/2,k/2+ 1, ifkiseven
0. otherwise.

The trace of the optimal design is given by

W 2;;%} x (k + k(k - 1)/2), if k is odd.

‘opt. M T 2t *;(+k2+1>} x (k+k(k=1)/2), ifkiseven.

Proof. Let

k k-1
k-1 k—2
Ty = 2"_1(11,. W = E (1’ 3 1).1'1,, and Z = E_l (7: N 1).7’,..

Thus we want to minimize

oy k=)
%14 1 7 1
/ 4
subject to the constraint
k
k
> (4)e =1
v=1 v

We use the constraint to obtain

k-1
k-1
W=1- E To-

v=1

In this way, f is now a function of (k — 1) variables which needs to be minimized over the
region described by the inequalities Zf: (i)mv < lwitha, > 0forv =1,2,..., (k—1).
In this region f > 0 because z, > 0V ¢.

Any local extreme value of f will be found by solving the system of equations
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[ = G505

which we can re-write as

Thus

2 _ Vi
Z—4W.

Asboth W > 0 and Z > 0, we require that

Zz\/;w Vo=1,2...(k=1).

Thus we have obtained a system of inconsistent equations which has no solution; so the
minimum allowed value of f will occur on the boundary of the region of allowed values of
@, in REF-1,

Along the coordinate axis with z, = 0,v # 0, and 0 < (’;)zg < 1, we have that

1 k-1
R T G P P
of ;") 2_(k—1>(’;:f)2
S e L I [ B

when
i) = 2 p-(

(k‘ 1>xg —neY

>~
@ |
—
N
]
@
—_

Thus we see that

g 2(k—1)
However this value of x, lies outside the interval of allowed values as
k
— g[l + 2(];/_51)]"1 > 1 forall allowed g.

Thus the extreme values of f will occur at (’;)zg = 0 and (:)zg = 1; the minimum
value occurs at l
by, o1

k
(g):cg = 1 where f = p 1+ m]

To find the value of g which minimizes f amongst these alternatives, we require

4 _
dg —

(s ) - o

0,

which gives
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So we have

However, the second root lies outside the interval of allowed values [1,k — 1].
Thus, provided that & is odd, the minimum value of f along the coordinate axes

k
Ty =0, v#g 0< (q)rcg <1

occurs at
_k+1
9=
where
f=k
When k is even, we find that
k
=3
gives
f=k+ !
Tk
while
g=5+1
gives
f=k+ ! >k + !
k—4/k k

Along the edge

k k
(g)‘”“ (h)"’*‘: bk

k k
0< < >mg§1, 0< <h>wh§1. x, =0, v#gh

aq
. h g—h/(k

h(k—h)  (h—g)(h+g—k) (k
FF—1) T k(k—1) ()r"

with

we have that

and

7 ==

We find that

4
dx,
when
Z:LE¥;£W

provided that
h+g—k#£0.

115
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When
h+g—-k=0,

i#o:

dx,g
thus f will be minimized at a vertex studied previously. When

h+g—-k#0,

(k)zg: hh {Z(Z(k—h)—(k—l)\/m }

g —g h+g-k)+(k—-1)Vvh+g-k
which gives
2gh -1
W o= -%—[2(g+h—k)+(k—l)\/h+g—k} :
7 = h_+29___kw7
and
k 2
;o= 4g——h[4(g+h—k)+4(k—1) g+h—k+(k—1)].

To find the value of A which minimizes f for a particular value of g, we require %,é = 0.

Thus 5 k{ 2(k-—1)]
+ :

0= -2+ |44+ ol
T R ey ey

which gives

L 2
VorhoE= 29 h:[z(’” ")} Fk—g).

k-1 k-1

To find the pair of numbers (g, h) which minimizes f for a particular value of k, we
attempt to solve

of _,_0f,
éh ~ ~ 8g’

this gives
k+1
g—h———2—,

which is not allowed as g # h, but agrees with the earlier result for the location of the
minimum value of f along a coordinate axis.

When kiseven, (£, & +1) is the pair of integers closest to (&2, ££1); indeed substitut-
ing g = & in the expression for h givesh = ¥ +1+ T % 4 1 and the corresponding
value for f is

2
1
(k+1) =k+ ! <k+

f=%2 ~ s k

Thus, when k is even, tr(C~!) is minimized when g = % and h = g— + 1, giving the result
in the statement of the theorem.
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To determine the maximum value of the trace of Co_plt'MT, we substitute the a, values

into the expression for Cp;7 in Lemma 4.1.6 and invert. C]\“IlT is a diagonal matrix and the
(k + k(k — 1)/2) diagonal entries are given by

zlx’lk . .
eyt if k is odd,
A Cn o DRI
“htz if k is even.

Then, if & is odd,

1 2k+1k
t(Coptonrr) = 4 g (% 6+ k(E = 10/2)

and, if k is even,

k+1
tr((/‘;)l(uMT) = {2—7%3—1—)} x (k+k(k—1)/2). g

We can calculate the A-efficiency of any design, relative to the optimal design. using
the expression
tr(C-1
Eff 4 = Copiarr) °‘j§§’T) :
tr(Chrr)

Hence we see that the D- and A-optimal designs for estimating main effects and two-
factor interactions coincide.

B EXAMPLE 4.1.14.
If k = 4, then the D- and A-optimal design consists of the 80 pairs with two and three
attributes different. So a; = a4 = 0and ap = as = & O

80"

4.1.5 Exercises

1. If k = 4, give the set of pairs with v = 1, v = 2, v = 3, and v = 4 attributes
different.

2. Give D3 3. Verify the recursive formula given for the Dy , fork = 4 forv = 1.2, 3,
and 4.

=il Jp

3. For k = 3 give Bys and verify that By = ﬁ 2By 2By
—QB‘ZQ 2B22

4. Show that Bys s Das = [(2) = (;2,)] Bas.as fori = 0,1,2,and 3.

3

5. (a) Let k = 3. Show that Cp, = 0 for the estimation of main effects when B,
contains the two-factor interaction contrasts.
(b) Let & = 3. Show that Cy, = 0 for the estimation of main effects when B,
contains the three-factor interaction contrast only.

6. Suppose that k = 5.
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(a) Using Theorem4.1.1, give the D-optimal set of pairs from the complete factorial
for estimating main effects.

(b) Calculate the corresponding C matrix.
7. Suppose that k = 5.

(a) Using Theorem 4.1.3, give the D-optimal pairs for estimating main effects plus
two-factor interactions.

(b) Calculate the corresponding C matrix.

(c) Compare this to the C matrix of the previous exercise. Comment.
8. Suppose that k = 2.

(a) Give the optimal pairs for estimating main effects.
(b) Give the optimal pairs for estimating main effects and the two-factor interaction.

(c) Use the ideas developed in this section to find the optimal pairs for estimating
the two-factor interaction only. Comment.

9. Let k = 4. There are 15 possible sets of pairs to consider. Draw up a table like Table
4.6 for k = 4, and hence confirm the results in Theorems 4.1.3 and 4.1.4.

4.2 SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR PAIRS

In this section we show how a fractional factorial design can be used to provide the
treatment combinations for an optimal paired comparison design. We begin by deriving
the information matrix when the treatment combinations come from a fractional factoriat
design.

4.2.1 The Derivation of the A Matrix

The A matrix is defined in the same way as in Section 4.1.1 but because we are working
with a fractional factorial design it is possible that some of the rows and columns of A will
be 0. Similarly the contrast matrix, By, will be the same as before, being a contrast matrix
for main effects or for main effects plus two-factor interactions, depending on what effects
are of interest. As before the information matrix C for the effects of interest is given by
C = BpABj, but now we need to assume that all contrasts other than the ones we want
to estimate must be O because fractional factorial designs are constructed assuming that
higher order interaction effects are 0. So B, includes all the contrasts that are not in By,
and B, is empty.
We iltustrate these comments with a small example.

B EXAMPLE 4.2.1.
Let k£ = 4, and consider the 4 pairs in Design | in Table 4.7. Then there are § treatment
combinations that do not appear in the choice experiment and so 8 rows and columns of A
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are equal to 0, as we can see below.

1 0 O O 0 O 0 U 0 1 u O 0 U 0 1
o 0 a 0 O 0 O 0 4] o O 0 Q o 3 0
[ o 3 5] 1] 8 O 0 O 0 0 0 0 o 0 0
U O 1 1 Q 0 0 0 a o 1) o -1 0 0 0
0 o a 3] o 0 8] 0 0 0 O 4] 4 o 0 o
O 0 0 O O 1 0 0 O o -1 0 O 1] 0 0"
1 0 0 n 3] 0 0 1 0 0 -1 4 O 0] 0 o O

A - u O {l G 3] 4] 8 0 0 0 0 0 0 1] 0 O
- 0 0 4 0 3 O O 0 0 0 4 0 o 4] O O
16 0 0 « O 0 0 -1 O 0 1 O % 0 0 o o

U O o O 0 =1 O o 0 a 1 2 ] 1) O 0
n 0 0 " O 0 O a 0 o O 0 Q 0 u O
o 0 0 -1 O 0 0 O 0 0 0 O 1 0 0 9
0] 0 O 0 t 0 3 o a 9 9 0 0 4 0 [
0 ] 4 o 5 O 0 o 0 G 0 0 5] O o 4
-1 ) o o ) 9 a Q o G a 0 ) o 0 1

Using By, = By 37 and the A matrix above we see that

(/‘]\[ = B24_1\1AB;4.A[ = i14
16
This is the same C' matrix obtained by using the foldover pairs from the complete factorial.
Thus the 4 pairs in Design | in Table 4.7 give an optimal choice experiment for estimating
main effects. The 4 pairs in Design 2 in Table 4.7 are also optimal for estimating main
effects. Within both of these designs, for the first attribute, the level is the same for all
of the treatment combinations within an option. If this is a problem in a practical sense,
then combining the two designs to get 8 pairs will ensure that both of the levels of the first
attribute appear in both options. The combined design consists of all the foldover pairs and
hence is optimal too. O

Table 4.7 Two Designs with Four Pairs for k& = 4 Binary Attributes

Option A  Option B Option A  Option B
0000 1111 1110 0001
0011 1100 1101 0010
0101 1010 1011 0100
0110 1001 1000 0111
Design 1 Design 2

4.2.2 The Model for Main Effects Only

In Section 4.1.3 we showed that the optimal pairs for the estimation of main effects in a
forced choice stated preference experiment were all the foldover pairs. This suggests that
an optimal choice experiment might be obtainable from a fractional factorial by taking the
foldover pairs. From Section 2.2.1, we know that that all contrasts for main effects can
be independently estimated in a resolution 3 fraction provided that we assume that all the
other contrasts are 0. That is, we assume that B, will contain all the contrasts except those
in Byi 5;. This suggests that a resolution 3 fraction could be the starting design for the
foldover pairs in a construction for an optimal design with fewer pairs. The only additional
constraint that we need to impose is that the resolution 3 fraction must be regular. The
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following construction, without the regularity constraint, is found as Option 3 in Appendix
AS of Louviere et al. (2000), although no formal proof of the properties of these designs is
given there.

#l CONSTRUCTION 4.2.1.

To construct a set of pairs to compare products described by k binary attributes, first
construct a regular orthogonal main effect plan with k binary attributes. From each row
of this OMEP obtain a choice pair by pairing the row with its foldover. If any pair appears
twice then the duplicate choice set is omitted. Thus each treatment combination, and
each pair, appears only once in the final set of choice pairs. The design has a diagonal
information matrix C and a D-efficiency of 100% for estimating main effects.

Proof. Assume that all the equations that define the OMEP have an even number of non-
zero coefficients. Let
Z nizi =0
i

be one of these equations. Then
Z 7n; = 0.
i

If (a1, as, . .., ak) is a solution of this equation then
Zniai =0
i

Hence

Zni(l —ai) = Z'fh‘ —Zniai =0.

Thus for each treatment combination in the OMERP its foldover also appeats.
Let the levels for the attributes be —1 and 1 and let A denote the N x k array for the
OMERP. Since for each treatment combination that is in A, its foldover is also in A, we can

A Thus

sent A as .
represent _ A

AA=NI, =244,

We can write the pairs as (A7, —A;). We will order the treatment combinations by writing
all the treatment combinations in A; first, then all the treatment combinations in — A; and
then the remaining treatment combinations in any order. Then the B matrix for main effects
is
1 / ’
Bak v = \72:19( 1 —A1, Bi),

where Bz contains the coefficients of the main effect contrasts for the treatment combina-
tions that are not in A. Using the same ordering for the treatment combinations, we have

that

1 I -1 0O
A=—1| I I 0
2N o 0 0
Then we get
. 11, 1
B?",MABQ*‘,]\J = 2/0 Z—]—V_AlAI - —Q—EIJC
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Thus
ik
(161‘((71\1) = I:TZ?:| R
which is equal to det(Coypi.a7) in Theorem 4.1.1, and so this design has a D-efficiency of
100%.

Next, suppose that the set of binary equations that define the OMEP, A, has at least one
equation with an odd number of non-zero coefficients. Thus there are no foldover pairs in
the experiment and the pairs in the choice experiment are given by (A, ~ A); the argument
then proceeds as above. O

B EXAMPLE 4.2.2.

Let & = 4, and consider the OMEP in Table 2.7. The pairs derived from Construction 4.2.1
and this OMEP are given as Design | in Table 4.7. As we have remarked previously, there
are only 8 of the 16 possible treatment combinations involved in these pairs, but this design
is as efficient as the design based on all 8 foldover pairs. If the same construction is used on
the OMEP given in Table 2.5, we get the same design as we get when we take the foldover
pairs in the complete factorial. a

As initially described, Construction 4.2.1 did not include the restriction that the OMEP
used in the construction be regular. However, Example 4.2.3 shows that, without that
restriction, the pairs that result may not have a diagonal information matrix or be 100%
efficient; see Exercise 4.2.5.2.

B EXAMPLE 4.2.3.

Let £ = 6, and consider the OMEP in Table 4.8(a). Observe that it has one foldover
pair of treatment combinations and that it is not regular; see Exercise 4.2.5.2. Applying
Construction 4.2.1 to this OMEP gives |1 distinct pairs with information matrix

Crr = (481 — 4.])

26 x 44
and a D-efficiency of 97.2%. O

Construction 4.2.1 can be extended to the union of regular designs. For example the
design in Table 4.8(b) is the union of a 2*~! and two copies of a 2472, Thus it has 8
treatment combinations in which the foldover occurs in the design and four which do not
{and which are repeated). However, Construction 4.2.1 applied to this design gives a set of
pairs that is 100% efficient.

4.2.3 The Model for Main Effects and Two-Factor Interactions

We begin by recalling that a resolution 5 fractional factorial design allows for the inde-
pendent estimation of all main effects and all two-factor interactions in the ordinary least
squares setting. Also recall that when deriving pairs from the complete factorial the optimal
pairs for estimation of all main effects plus two-factor interactions are all those pairs in
which cither (k + 1)/2 attributes are different (k odd) or k/2 and £/2 + 1 attributes are
different (k even). These ideas are exploited in the remainder of this section (o give sets of
generators to use to define the choice sets. Although the resulting designs are near-optimal,
it is not yet possible to give a definitive construction method for optimal pairs for the esti-
mation of main effects plus two-factor interactions except when starting with the complete
factorial.
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Table 4.8 Non-regular OMEPs of Resolution 3

0000

1111
000000 0001
I 11111 1110
010110 0100
101010 1011
011100 0101
000111 1010
001011 1000
100101 1000
110010 0011
110001 0011
011001 1101
101100 1101

0110
@ k=6 0110

bYk=4

Consider a regular fractional factorial design F' of resolution 5. Choose any treatment
combination not in the fraction, e say, and form pairs by pairing f € F with f+e, where
the addition is done component-wise modulo 2. We will write the complete set of pairs as
(F, F + e). We refer to e as the generator of the pairs.

To evaluate the information matrix of these pairs easily, we need to define two incidence
matrices, Das e and D1 e. We let X and Z be any two attributes in the experiment. We

define a diagonal matrix Dpse by (Dape)xx = lifex = 0and (Dpre)xx = —1if
ex = 1, where the attributes label the rows and columns of Dy .. We define a diagonal
matrix Dy e of size k(k—1)/2by (Dre)xz xz = lifex =ezand (Dre)xz xz = —1

ifex # ez (where we label the rows and columns of D ¢ by the unordered pairs of distinct
attributes).

H EXAMPLE 4.2.4.
Let k = 5, and let F be the solutions to &1 + x2 + x3 + 74 + x5 = 0. So F contains the
treatment combinations

00000 00011 00101 00110 01001 01010 01100 01111
10001 10010 10100 1011t 11000 11011 11101 11110

Let e = (00111). Then the treatment combinations in F + e are given by
00111 00100 00010 00001 01110 01101 01011 01000

10110 10101 10011 10001 11111 11100 11010 11001,
1 0 0 0 O
01 0 0 0
Dye=| 0 0 -1 0 0|,
00 0 -1 0
00 0 0 -1
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and

OO OO OO~ OO

DO O DD OO OO O

cCCoOo0OOOoOROOOO
I

DT,e =

|

OO OO OO0 O
OO DO OO OO
OO OO OO OO 0O
OO, OO OO oo
OO OO OO0 OO
O OO0 OO OO
_ OO0 O 00O

L J

The treatment combinations in the pairs (F, F + e) include all the treatment combinations
in the complete factorial. If we write the treatment combinations in F' in the order we gave
them above, then the contrast, within F, for the main effect of the first attribute is

(=1,-1,-1,-1,-1,-1,-1,—1,1,1,1,1,1.1,1,1).

If we then add e to each treatment combination in £ we see that the contrast, within ' + e,
for the main effect of the first attribute is exactly the same as that in F since the first entry
of e is 0; so the first levels of the treatment combinations in F' and F' + e are the same.
However, the contrast for the main effect of the third attribute is

(=1,-1,1,1,-1,-1,1,1,—=1,=1,1,1,-1,-1,1,1)

in F andis

(1,1,-1.-1,1.1,-1,-1,1,1, -1, —1,1,1, =1, ~1)

in ' + e. This is the negative of the contrast in F* and happens because the third entry in e
is 1.

Similarly, the coefficients for the interaction of the first two attributes are the same in F
as they are in F' + e since the addition of the generator e does not change the levels of these
two attributes. The coefficients for the interaction of the last two attributes are the same in
F as they are in F' + e since the addition of the generator e changes the levels of both of
these two attributes.

Thus we have that

Byr = Buarr DareBarr
’ Brr DreBrr

where Bj; r and By g are the matrices of the coefficients for main effects and two-factor
interactions, respectively, in the fraction F" only. Specifically, we have +/32Bx; F is

-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1
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and \/3_23qu is

]

1 1 1 1 -1 -1 -1 -1 =1 =1 =1 -1 1 1 1 1
1 1 -1 -1 1 1 -1 -1 -1-1 1 1 =1 -1 1 1
1 -1 1 -1 1 -1 1 -1 -1 1+-1 1-1 1-1 1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1 1 -1 -1 -1-1 1 1 1 1 -1 =1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 =1 -1 1
1 -1 -1 1 1-1-1 1-1 1 1-1-1 1 1 =1
1 -1 -1 1 1-1-1 1 1-1-1 1 1-1 -1 1
1 -1 1 -1 -1 1-1 1 -1 1 -1 1 1 -1 1 -1

1 1 -1 -1 -1-1 1 1 -1-1 1 1 1 1 -1 —1]

Calculating Cps7, we get

'000000000000000}
00000O0O0OGOOOO0O0O0 0
0010000000000 TO0 O
000100000 GO0O0O0GO0O0 D
0000710000GO0O0O0GO0O00O0
0000O0O0OOO0GO0O0DO0GO0O0 D0
L lo0o0o000100000000
Cyr=—]0 0000001000000 0
3210 0000000100000 0
0000O0O0O0DOGOT1O0GO0GO0O00
0000OGOOOO0O0T1000 0
00000 O0O0DOO0O0OTLO0O0 D0
O 0000000000000 0
0 000O0O0ODOO0O0O0O00O0O0 0
10 0000000000000 O|

Notice that the 0 entries on the diagonal in C'ys7 correspond to 1s on the diagonal in Dy
(for the first 5 values) and Dt (for the remaining 10 values). O

The following result lets us say something about the ¢ matrix in terms of the generator
e in general.

Bl LEMMA 4.2.1.
Consider the pairs (F, F + e), where F is a fractional factorial design for k attributes and
e is any treatment combination not in F'. Then the information matrix Cy is given by

o1 [ 25 2Due 0
e 4 x 2k 0 21k(k—~1)/2 — 2DT.e '

Proof. Let By, be the submatrix of the contrast matrix for main effects associated with
the treatment combinations in F), and let By ¢ be the submatrix of the contrast matrix for
two-factor interactions associated with the treatment combinations in £'. Then, assuming
that there are k attributes and that there are N treatment combinations in £, we know that
By rBirr = g¢ Ik, BrpBrp = gk lk(e—1y/2 and By, pBr p = 0.

For convenience, we order the treatment combinations in the paired comparison exper-
iment as fy,f;,.. ., fx (for some fixed but arbitrary order), the treatment combinations in
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F, followed by f; +e,fs +e,...,fxy + e and then the remaining treatment combinations.
Using this order to label the rows and columns of A we get

. I -1 0
Ae=— | -1 I 0
N1 9 o0 o0

To calculate the information matrix Cy, we need to calculate the B matrix for the treatment
combinations in this order. If a particular attribute X has a 0 in e, then the X contrast in
F + eis the same as it is in F'; if attribute X has a 1 in e, then the X contrastin F + e s
the negative of the one in F'. So the matrix for main effect contrasts is given by

B = Bur DareBarr Bari |,

where A = FU(F +e).

Similarly, consider two attributes X and Z. If ex = ez, then the two-factor interaction
contrast for the attributes X and Z is the same in F' + e asitisin F. If ex # ez then
the two-factor interaction contrast for attributes X and Z is the negative in F + e of the
corresponding contrast in F'. So the matrix for two-factor interaction contrasts is given by

BT = [ BT,F DT,eBT,F BT.A } :

Then we get
(1 -T O ; !
. = 1 B_/\[.F D}\[,eB}\LF‘ BJ\[.A I 70 B AIJ? I T‘F/
‘e = AN BT‘F DT,eBT,F BTAA - o 1\[,},5‘ M,e T§ Te
Lo o M, A T,A
-B/, _ B/ D/ B/ _ B/« - /1
B —‘1_ BJ\I.F D_"\]AeB]\I,F B]\[.A f\I.FDl l\I;FB/A[,e B’}"FD, 7,—F [7 e
- AN BT,F DT.eBT.F BT.A_ A F ]\[(,)e M.F T.F T.(z)e “T.F}-

Now the (1,1) position of this matrix is given by

! ' ’ / ! /
BarrBayr— Bai By rDire = DareBarrBarr + DareBarr By r Do

v

N
= Q_k(lk —Dpre— Dare + Ii).

Proceeding similarly with the other entries in C, we get

o - 1 2Ik — 2Dhse 0
e - 4 X Qk 0 21k(k—])/2 - QDT.e ’
as required. O

Thus C, is diagonal, and the non-zero entries in Ce correspond to those positions in e
where there is a 1 for the main effects part of Ce, and to those positions in the two-factor
interaction part where one attribute corresponds to a 1 and one to a 0 in e. One can see this
by considering the matrices calculated in Example 4.2.4.

The next result extends the previous result to two generators,
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M LEMMA 4.2.2.
Consider the pairs generated by e and g where e, g ¢ F but where e + g € F. Then the
information matrix Cg g is given by

1 4y —2Dpre — 2D g 0
8 x 2k 0 4Ik(k—1)/2 - QDT,E - 2DT.g '

Cog =

Proof. Ase + g € F, only treatment combinations in £ and F' + e have been used in the
construction of the additional pairs. Hence we can write

. 9] —I-P 0
Aeg=—| -I-P 2 0],
8N 0 0 0

where P is a permutation matrix that ensures that A¢ g contains the correct pairs. Consider
Ceg = ByrAegBiyr as a 2 x 2 block matrix. Then similar calculations to those in
Lemma 4.2.1 give

(BurAegByr)i12 = —Due Bu,p PBT p — Br,p PBr p Dy

If we define Dar g and D g for the generator g in the same way we defined Dy o and
Dr , for the generator e, then we have that

BuyrP = DpeDygBarr

since Bps,pP is a permutation of the columns of Bas r and can be thought of as a
permutation of the treatment combinations in F'. P is a permutation of the treatment
combinations in ' + e so that the order of the treatment combinations corresponds to that
of F +g. Since we know F' = I + e + g, we see that the contrast matrix for the treatment
combinations in this order is

DitergBur,r = DareDargBar i

this gives the result. Thus
(BrrAegBir)iz =0.
Again we find that

1
(BMTAe.gB;\/{T)ll = (41k - 2Dpe — QD]\[!g).
8

x 2k
Finally, noting that
Br pP = DreDreBr F,

we see that

1
(BarrAegBirr)ae = m(‘llk(k—l)/? — 2D — 2Drg).
Hence we see that Ce g is diagonal, and the effects that can be estimated are those that
correspond to a non-zero entry in one of the generators (for main effects) and those that
correspond to positions with unequal entries (for two-factor interactions). O

M EXAMPLE 4.2.5.
Let k = 5 and use the ' of Example 4.2.4. Lete = (00111) and let g = (11100). Then
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e,g ¢ Fbute + g & F. We use the order of the treatment combinations in F' + e to give
the order to use when labelling the final 16 rows and columns of the A matrix. Since the
entries in F' + g are

11100 (1§11 11001 11010 10101 10110 10000 10011

01101 01110 01000 01011 00100 0011 00001 00010

we see that the P matrix for these pairs is given by

(0000 O O0O0ODO0OOUOOO0O0T1 0 0]
0 000O0O0O0OO0OOO0O0O0T1O000
6 000O0OOO0O0O0O0O0O0O0O0TO01
0 000O0ODO0ODO0DO0O0O0O0OO00O0T10
00 00O0O0DDO0O0O0OT11O0D000O0OQ0
000 0O0O0DO0O0OT10000TO0GO00
000000000001 O00GO00Q0
p_|0000000000100000
000001 000O0G0O0O0O0O0O0
0 0001000O0CO0O0O0TUO0O0OD0O0
000000010 000O0O0O0TD0O0
000 00O01O00O0D0DGOGOO0O0 0
01 000O0O0O0O0O0O0O0O0OO0TD0O0
1 00000O0O0O0O0OO0COO0O0O0O0
0 001 0O0O0O0O0TO0O0O0O0O0O0O0
(0001 0000O0O0O0O0O0O0O0O0 O] O
B LEMMA 4.2.3.

Consider the pairs generated by e and g, where e, g ¢ F and where e +g ¢ F. The
information matrix, Ce g is given by

1 [ 4Ik—2Dye—2Dug 0
©8 8 x 2k 0 4Ik(k—1)/2 — QDT.e — QDT.g ’

Proof. We have pairs (F, F + e) and (F, F + g). Thus there are 2N pairs; N treatment
combinations are in 2 pairs each and 2NV treatment combinations are in one pair each. From
the discussion above, we know that

Buarr DareBarr DargBarr B}\I.A:‘

B =
M7\ Brr DreBrr DrgBrr Bra

where A = FU(F +e)U(F +g), and

2 -1 -1 O
A _1_ -I I 00
T8N | -I 0 I 0
0 0 00
Evaluating the information matrix, we get
., _ 1 {4k —2Dne —2Dnrg 0
‘e 2k 0 4Ik(k—l)/2 — ZDT,e — QDT.g ’ 0

Finally, we need to consider generators that come from F'. In this case, we can use such
a generator to define a fraction of [ and use one of the results that we have given above
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on that smaller fraction. The next examples show that the smaller fraction need not be
uniquely determined and that it does not need to be of resolution 5 provided that all the
treatment combinations that eventually appear correspond to a design of resolution 5.

W EXAMPLE 4.2.6.
Let £ = 3. Then F must be the complete factorial since anything smaller will not be of
resolution 5. Let e = (0,1, 1). Then we get the 4 distinct pairs given in Table 4.9. If we

use the entries in the first column to define the fraction F' then we can use the results above
to determine the Cg matrix. |

Table 4.9 The Pairs from the Complete Factorial when k = 3and e = (0,1, 1)

Option A Option B
000 011
001 010
100 111
101 110

W EXAMPLE 4.2.7.

Suppose that we use the F from Example 424. Let e = (01111); then we can see
that we get the 8 pairs given in Table 4.10. The problem is how to decide which treatment
combinations should be in the new fraction. Since the new fraction need not be of resolution
S,weusex; +xo + 23 + 24 + 25 = 0and z3 + x4 + x5 = 0 to define the fraction. These
equations give rise to the treatment combinations 00000, 00011, 00101, 00110, 11110,
11101, 10100, 10111, and have resolution 2. The same pairs would arise from using the
equations 1 + x2 + x3 + x4 + x5 = 0 and x; = 0 to define the fraction. Again, we can
use the results above to derive the Cq matrix. O

Table 4.10 The Pairs from the Fraction in Example 4.2.4 whene = (0,1, 1)

Option A Option B
00000 01111
00011 01100
00101 01010
00110 01001
10001 11110
10010 11101
10100 11011
10111 11000

Thus whether or not the generators are in F, or whether their sum is in F, does not
have any bearing on the estimability properties of main effects and two-factor interactions.
We can generalize the results in Lemmas 4.2.1,4.2.2, and 4.2.3 to get the following result
about the properties of a set of generators required to be able to estimate all main effects
and two-factor interactions.
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B THEOREM 4.2.1.
Consider a set of generators such that

o for each attribute there is at least one generator with a 1 in the corresponding
position, and

e for any two attributes there is at least one generator in which the corresponding
positions have a 0 and a |.

Then all main effects and two-factor interactions will be estimable from the pairs generated
by this set of generators.

Proof. From Lemmas 4.2.2 and 4.2.3, we see that diagonal entries in C will be 0 only if
all the D matrices have entries of | in some position. For main effects, this happens only
if none of the generators has a 1 for that attribute. For two-factor interactions, this happens
only if all of the generators have the same entry for two particular attributes. But the
properties of the generators given in the statement of the theorem preclude these situations
from arising. O

We will define an estimable set of generators to be a set of generators that satisfies the
conditions of Theorem 4.2.1.

In Construction4.2.1, we have shown that using a regular OMEP and the single generator
(1,1,...,1) gives designs that are 100% efficient for estimating main effects. Thus we
only consider sets of pairs for estimating main effects and two-factor interactions in the
remainder of this section.

We would like to find a minimum set of generators from which all main effects and
two-factor interactions can be estimated. For the estimation of main effects and two-factor
interactions in the complete factorial, generators of weight (k + 1)/2 have been shown to
be optimal for odd k. For even k, generators of weights £/2 and k/2 + 1 have been shown
to be optimal. We choose generators with these weights below, although we stress that we
do not know that these weights are optimal in this setting.

In the next result, we give a recursive construction for sets of generators with (k +1)/2
non-zero entries if & is odd and & /2 non-zero entries if k is even. A similar result appears
in Roberts (2000).

M LEMMA 4.24.
If2™ < k < 2™+ then there is an estimable set with m + 1 generators.

Proof. The proof proceeds recursively once we have the first two cases. When & = 2, use
the generators (1,0) and (0,1). When k = 3, use the generators (1, 1,0) and (0, 1, 1).

For the recursive construction, it is advantageous to write each generator as two sets,
those positions in which the generator contains a I and those positions in which the generator
contains a 0. Hence we get the partitions [{(1),(2)}, {(2),(D)}I for & = 2 and [{(1,2), (3)},
{(2,3), (D} fork = 3.

Consider k = 2k; 4 1. We write the first partition as

{(],2,...,]€1+1),(1‘J1 +2,kl+3,...,2k1+1)}.

We then partition the sets of size k; and k; + 1 and take the union of the first set in the
first partition of each and the union of the second set in the first partition of each to get
the second partition for & = 2k 4+ 1. We continue in this way to get all the partitions for
k = 2k; + 1. The only time that this might not work is when k1 + 1 is a power of 2 since in
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that case k1 + 1 has one more partition than k;. However, using the initial generators given
above, we see that the final generator for a power of 2 is just the foldover of the second last
generator. This generator is required only so that main effects for the first ¢ + 1 attributes
can be estimated, not for the estimation of two-factor interactions, and all the main effects
for the first £ + 1 attributes can be estimated from the first generator. Hence we can ignore
this generator when doing the recursive construction. This completes the construction for
odd k.

Consider k£ = 2k;. Do exactly the same construction as for odd k, using an initial
partition of

{(1,2, - ,kl), (k1 + 1,k +2,. :..2]4,‘1)},

This proof is completed by noting that the set of generators satisfies the conditions of
Theorem 4.2.1. a

B EXAMPLE 4.2.8.

Let k = 8. Then the first partition is {(1,2,3.4), (5,6,7,8)}. For the first set, {1,2,3,4},
the partitions are {(1,2),(3,4)}, {(1,3),(2,4)}, and {(2,4),(1,3)}. For the second set, the
partitions are {(5,6),(7,8)}, {(5,7).(6,8)} and {(6,8),(5.7)}. We combine these to get

[{(1,2,5,6),(3,4,7,8)},{(1,3,5,7),(2,4,6,8)},{(2,4,6,8), (1,3,5,7)}].

The final partition is only required to ensure that the main effect of attribute 8 can be
estimated. Now construct the partitions for k = 15. We get

1{(1,2,3,4,5.6,7,8),(9,A,B.CD,EB)}, {(1,2,349,A,B,C), (56,78, D.EF)},
{(1,25.6,9,A,D,E), (3,4,7,8,B,C.H}, {1,3,5,7.9,B,EF),(2,4,6,8,A,C,D)}],

and the final partition from k£ = 8 is not required since the main effect of attribute 8 can be
estimated because there is a 1 in position 8 in the first generator. O

The efficiency of the designs that result from Lemma 4.2.4 depends on the particular
resolution 5 design that is used as the starting design. For example when k = 8 using the
fraction givenby I = ABCDFE = DEFGH, where we use this notation to represent the
solutions to both the equations xy + 1o +x3+x4+x5 = Oand x4+ x5 + g +x7 + 28 = 0,
and the generators from Lemma 4.2.4, gives 256 pairs that are 92.96% efficient. If we use
the fraction given by | = ABCDEF = DEFGH we get 224 pairs that are 86.51%
efficient; see Table 4.12.

While Lemma 4.2.4 gives one set of generators for each value of £, it is often possible
to get sets of generators that are better than these. For odd k, for example, it is possible
to use a balanced incomplete block design (BIBD) (defined in Section 2.4) to give a set
of generators in which each main effect and each two-factor interaction effect is estimated
using the same number of generators. This idea is illustrated in the following example.

B EXAMPLE 4.2.9.

The blocks in Table 4.11 form a BIBD on 7 items with 7 blocks each of size 3 and with
each item appearing in 3 blocks. There is a unique block which contains every pair of items
hence A = 1.

Now suppose that we use the attributes as the items and let each block define a generator
by placing a 1 for those attributes that appear in the block and a O for those attributes that
do not appear in the block. Thus we would get the generator 1110000 from the first block,
1001100 from the second block and so on. The properties of the BIBD guarantee that the
construction gives an estimable set of generators. 0



SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR PAIRS

Table 4.11 The Blocks a (7,3,1) BIBD
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We can now use these BIBDs to give sets of generators. The pairs that result from
Lemma 4.2.5 are often very efficient and relatively small. However there does not appear
to be a general expression for the efficiency of these designs.

B LEMMA 4.2.5.

1. The blocks of a (4t + 3,2t + 2,t + 1) SBIBD can be used to give 4t + 3 generators,
each with weight 2t + 2, such that each main effect and each two-factor interaction
can be estimated from 2t + 2 of the generators.

2. The blocks of a (4t + 1,2(4t 4- 1), 2(2t + 1),2t + 1,t + 1) BIBD can be used 1o
give 2(4t + 1) generators, each with weight 2t + 1, such that each main effect can
be estimated from 41 + 2 of the generators and each two-factor interaction can be
estimated from 6t + 2 of the generators.

3. Foreven k, estimable sets with high efficiency can be found by deleting one treatment
Jrom the designs above.

Proof. The results follow by counting the number of blocks with one specific treatment, for
main effects, and the number of blocks with only one of two specific treatment combinations,

for interaction effects.

|

In the following table, we give some fractions and generators, the number of pairs in the
choice set and the D-efficiency of the set of pairs. For each value of k, the gencrators that
come from Lemma 4.2.4 are indicated by an * and those that come from Lemma 4.2.5 are
indicated by 1. In Table 4.12, MR refers to Mathon and Rosa (2006), the largest published

table of BIBDs.

Table 4.12: D-Efficiency and Number of Pairs for Some Constant Dif-
ference Choice Pairs

k F Generators Number | Efficiency
of pairs (%)
3t Complete 011,101,110 12 100
3% Complete 011,101 8 94.5
4 Complete All vectors of weights 2 and 3 80 100
4 Complete Omit any one weight 2
or weight 3 vector 72 99.6
4 Complete Omit any two weight 2 vectors
or any two weight 3 vectors 64 99.21
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4 Complete Six weight 2 vectors and
any weight 3 vector 56 98.95
4% Complete 1100, 1010, 1001
0110, 0101, 0011 48 99.03
4 Complete 1110, 1101, 1011,0111 32 98.01
4% Complete 1100, 1010, 0101 24 93.98
5t| I=ABCDE All weight 3 vectors 160 100
51 I=ABCDE Any nine weight 3
vectors 144 99.60
5| I=ABCDE Any eight weight 3
vectors 128 99.08
5| I=ABCDE 11100, 10011, 10101,
11010,01110, 00111,
11001 112 98.46
5| 1=ABCDE 11100, 10110, 10101,
11010, 11001, 10110 96 97.92
5| I=ABCDE 11100, 10110, 10101,
11010, 11001 80 96.49
5| I=ABCDE 11100, 10110, 10101,
11010 64 95.72
5*| I=ABCDE 11100, 11010, 01101 48 91.32
6t Complete 110100, 111010,011101,
001110,100111, 010011,
101001 224 100
6 Complete Any 6 of the generators above 192 98.98
6 Complete Any 5 of the generators above 160 97.44
6 Complete The four weight 3 vectors
from above 128 96.61
6t I= ABCDEF 110100, 111010, 011101,
001110, 100111, 010011,
101001 176 99.46
6| I = ABCDEF 111100,001111, 100111,
111010, 111001, 010111
110011, 101101, 011110 144 98.06
6| I=ABCDEF 111100,00111t, 100111,
111010, 111001, 010111
110011, 101101 128 97.42
6| I=ABCDEF 111100,001111, 100111,
111010, 111001, 010111
110011 112 96.48
6| I=ABCDEF 111100,001111, 100111,
111010, 111001, 010111 96 95.71
6| [ = ABCDEF 111100,001111, 100111,
111010, 111001 80 93.75
6 | I =ABCDEF 111100,001111, 100111,
111010 64 92.49
6*| I = ABCDEF 111000, 001011, 100110 96 91.85




SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR PAIRS 133

7111 = ABCDEFG| 1110100,0111010,0011101,
1001110,0100111, 1010011,
1101001 224 100

711 =ABCDEFG Any 6 of these 7 veclors 192 98.98
7|1 =ABCDEFG Any 5 of these 7 vectors 160 97.44
7%|1 = ABCDEFG| 1111000, 1100110, 1010011 96 91.85
8*| I=ABCDE |11110000,11001100, 10101010,

= DEFGH 01010101 256 92.96
8t| I=ABCDE Generators from first

= DEFGH (9,18,10,5,5) in MR 1120 99.97
871 I =ABCDE Generators from sixth

= DEFGH (9,18,10,5,5)in MR 1120 99.88
81| I = ABCDE Generators from 1 Ith

= DEFGH (9,18,10,5,5) in MR 1056 99.90
81 I = ABCDEF [11110000, 11001100, 10101010,

= DEFGH 01010101 224 86.51
81| I = ABCDEF Generators from first

= DEFGH (9,18,10,5,5) in MR 992 99.81
81| I = ABCDEF Generators trom sixth

= DEFGH (9,18.10,5,5)in MR 960 99.68
81| [ = ABCDEF Generators from 11th

= DEFGH (9,18.10,5,5)in MR 1056 99.9

4.2.4 Dominating Options

A binary attribute can have ordered levels in the sense that all respondents will prefer one
level to the other level. For instance, everyone prefers to have wider rather than narrower
seats on a plane. all other things being equal. So if all the attributes in an experiment have
ordered levels, then, since foldover pairs are optimal for the estimation of main effects, it is
clearthat 111...1 will be preferred to 000 . . . 0 by all respondents. So we say that 111 ... 1
dominates 000 . ..0. When estimating main effects the only way that we can avoid having
a pair with a dominating option is to start with a fractional factorial that does not contain
either 111...1 0or 000...0. We saw how to do this in Section 2.3.9.

If we want to estimate main effects and two-factor interactions optimally then we want
to have all pairs in which about half the attributes are different. So again we would need
to avoid having either 000 ...0 or 111...1 in any choice sct. But there are other choice
sets that can have an option which dominates. For example, if £ = 7, then pairs with
(k+1)/2 = 4 attributes different form the optimal design. So the pair (1000000. 1111100)
would be in the choice experiment and the second option dominates the first. For k > 5 we
can choose fractions that do not contain either 000...0 or 111...1, but it is not usually
possible to choose a fraction so that all pairs with about half the attributes different do not
contain a dominating option.
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4.2.5 Exercises
1. Letk = 5.

(a) Using the results in Table 2.9, or otherwise, construct a regular fractional
factorial design of resolution 3.

(b) Use Construction 4.2.1 to construct a set of pairs.
(c) Verify that the resulting pairs are optimal for the estimation of main effects.

2. We have said that Construction 4.2.1 can be extended to the union of regular designs.

(a) Show that the first 8 rows of the design in Table 4.8(b) is a regular 24-1 Show
that the final 8 rows consist of two copies of 4 rows that form a regular 242,

(b) Apply Construction 4.2.1 to this design and confirm that the resulting pairs are
100% efficient.

(c) Show that the design in Table 4.8(a) is not regular.
3. Letk = 5andlet F be the solutionsto 1 +x2 +x3+x4+x5 = 1. Lete = (10011).
(a) Find the B matrix for the pairs (F, F +e).

(b) Find the information matrix C, for these pairs.

(c) Comment on which effects can be estimated and which effects can not be
estimated.

(d) Can you find some other generators so that the resulting set of pairs allows all
main effects plus two-factor interactions to be estimated?

4. Confirm the results in Table 4.12 when k& = 4 and there are 48 pairs and 24 pairs.

4.3 REFERENCES AND COMMENTS

Most of the results in this chapter originally appeared in Street et al. (2001) and Street and
Burgess (2004a). Readers can find software to construct choice sets from an initial factorial
design and sets of generators, as well as calculate the corresponding information matrix
and variance-covariance matrix, at http://maths.science.uts.edu.au/maths/wiki/SPExpts.

Comparisons of pairs of items have been used to study choices for nearly 150 years.
There is a detailed account of a paired comparison experiment, allowing for order effects,
in Fechner (1860), while MacKay (1988) notes that Thorndike (1910) “used paired com-
parisons to test hypotheses in discrimination”. The idea of paired comparisons arose from
consideration of problems where there are ¢ items (products, individuals, options) that are
to be ranked, but no natural measurement scale, such as height, is available to accomplish
this objective. Such situations arise naturally when trying to rate players in tournaments
or when trying to rank preferences for products in particular product categories or when
trying to rank the quality of objects like wines or beers.

An extensive discussion of the literature on paired comparisons up until 1988 appears
in David (1988). He discusses estimation, including Bayesian approaches, dealing with
ties, models in which the order of presentation is taken into account and the early work on
dealing with a factorial treatment structure.

This was considered in the 2 x 2 case by Abelson and Bradley (1954) and was extended
to items with more than two binary attributes by Bradley and El-Helbawy (1976). These
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authors also provided a method to test for contrasts of the parameters, thus making it easy
to extend the results to finding optimal paired comparison designs for particular effects
of interest and for particular classes of competing designs; see El-Helbawy and Bradley
(1978), El-Helbawy and Ahmed (1984), van Berkum (1987b), El-Helbawy et al. (1994)
and Street et al. (2001).

Designs which use only some of the pairs are clearly essential if the number of items,
t, is large and such designs appear to have been investigated first by McCormick and
Bachus (1952) and McCormick and Roberts (1952); see David (1988) for a more extensive
discussion.

The designs in Table 4.12 for & = 4 with 48 pairs and with 32 pairs are equivalent to
designs given in Chapter 5 of van Berkum (1987a). The method of construction is quite
different, however, as he focuses on finding sets of pairs within one or more fractions and
we specity the fraction and one or more generators for the pairs, where the generators need
not come from the fraction. For & = 5 for example, van Berkum’s design with 80 pairs has
an efficiency of 84% compared to our design with 80 pairs with an efficiency of 96.5%.
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CHAPTER 5

LARGER CHOICE SET SIZES FOR BINARY
ATTRIBUTES

So far we have only considered stated preference designs in which all choice sets have two
options each. These designs are certainly frequently used in practice but, as we have seen,
they can require a very large number of choice sets. In many cases, however, choice sets
with three or more options in them would be just as acceptable. If it is possible to use
larger choice sets, then often fewer choice sets are needed in total to give the same accuracy
as a paired comparison design. The optimal number of options in a choice set, as well as
choice experiments in which choice experiments may have choice sets of different sizes,
are considered in Section 7.2. In this chapter, we investigate the form of optimal forced
choice stated preference designs for & binary attributes when all choice sets have the same
number of options, which is at least two (that is, m > 2), thus generalizing the results of
the previous chapter.

~We begin by considering an example based on a choice experiment used in Severin
(2000).

B EXAMPLE 5.0.1.

Suppose that we are interested in the effects of 16 attributes on the choice of holiday
packages. The 16 attributes, together with the corresponding levels, are given in Table
5.1. Using these attributes we can describe 21¢ = 65, 536 possible holiday packages or
treatment combinations. One such holiday package is ($1200, Overseas, Qantas, 12 nights,
No meals, No local tours, Peak, 4 star hotel, 3 hours, Museum, 100 yards, Pool, Friendly
staff, Individual, No beach, Creative Holidays) which is equivalent to 1101110101100011
using the coded levels. A possible choice set from an experiment with choice sets of size
4 is given in Table 5.2. U

The Construction of Optimal Siated Choice Experiments. By D. J. Street and L. Burgess 137
Copyright © 2007 John Wiley & Sons. Inc.
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Table 5.1 Attributes and Levels for Holiday Packages

Attributes Level 0 Level 1

Price $999 $1200

Type of destination Domestic Overseas
Airline Qantas Ansett

Length of stay 7 nights 12 nights

Meal inclusion Yes No

Local tours availability Yes No

Season in destination Peak Off peak

Type of accommodation 2 star hotel 4 star hotel
Length of trip 3 hours 5 hours
Cultural activities Historical sites ~ Museum
Distance from hotel to attractions 3 miles 100 yards
Swimming pool availability Yes No
Helpfulness of booking staff Friendly Unfriendly
Type of holiday Individual Organized tour
Beach availability Yes No

Brand Jetset Creative Holidays

We have seen that when the choice sets are only of size 2 the number of attributes in
which the levels in the two options are different is important in determining the optimal
design. Thus we know that the optimal design for estimating main effects is one in which
all the levels are different between the two options in each choice set. For optimal designs
for estimating main effects plus two-factor interactions, about half the attributes need to
have different levels. This leads us to generalize the idea of the number of attributes that
differ between two options by defining a difference vector for a choice set of size m.

We then define the class of competing designs, derive a general expression for the
information matrix A, and use that to determine the optimal designs for estimating main
effects and main effects plus two-factor interactions. Initially we work with choice sets
determined from the complete factorial, but in the final section of the chapter we give a
construction to get smaller optimal and near-optimal choice experiments.

5.1 OPTIMAL DESIGNS FROM THE COMPLETE FACTORIAL

We know from our study of optimal pairs that results from the complete factorial make it
possible to decide how good any other proposed design is, and also give us some ideas
about how to find constructions based on fractional factorial designs. So the goal of this
section is to establish the optimal designs for the estimation of main effects and main effects
plus two-factor interactions from the complete factorial.

5.1.1 Difference Vectors

In a choice set of size m, there are (’;) pairs of options in the choice set. We record

the number of attributes different for each pair in the choice set in a difference vector
v = (d1,da, -, dm(m-1)/2), where 1 < d; < k. Note that d; # 0, so no repeated options
are allowed in a choice set. We define d; to be the number of attributes different (the
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Table 5.2 One Choice Set for the Possible Holiday Packages
Attributes Option A Option B Option C Option D
Price $999 $999 $1200 $1200
Type of Domestic Domestic Overseas Overseas
destination
Airline Qantas Qantas Ansett Ansett
Length of stay 7 nights 7 nights 12 nights 12 nights
Meal inclusion Yes Yes No No
Local tours Yes Yes No No
availability
Season in Peak Peak Off peak Off peak
destination
Type of 2 star hotel 2 star hotel 4 star hotel 4 star hotel
accommodation
Length of trip 3 hours 5 hours 3 hours 5 hours
Cultural activities Historical Museum Historical Museum

sites sites
Distance to 3 miles 100 yards 3 miles 100 yards
attractions
Swimming pool Yes No Yes No
availability
Helpfulness of Friendly Unfriendly  Friendly Unfriendly
booking staff
Type of holiday Individual Organized Individual Organized
tour tour
Beach availability Yes No Yes No
Brand Jetset Creative Jetset Creative
Holidays Holidays

Suppose that you have already narrowed down your choice of
holiday packages to the four alternatives above.

Which of these four would you choose? (tick one only)

Option A O

Option B O

Option C O

Option D O

139
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difference) between the first and second treatment combinations in the choice set; d; is the
difference between the first and third treatment combinations, and so on.

This order is fixed but arbitrary. Since we can write the treatment combinations in the
choice set in any order, the order of the d; in v is not important; so we assume that any
difference vector has dq < dy < -+ < dpy(m—1)/2. Thus the d; are written in increasing
order.

B EXAMPLE 5.1.1.

Letk = 3 and m = 3. There are 8 treatment combinations in a 23 factorial. For the choice
set (000,001,110), there is one attribute different when comparing 000 and 001 (d; = 1),
there are two attributes different when comparing 000 and 110 (d; = 2) and there are three
attributes different when comparing 001 and 110 (ds = 3). So the difference vector is
V= (dl, dz, dg) = (1, 2, 3)

di=1 dg=3
N N
000, 00T, 110
| —
do=2

The choice set (011,100, 101) has difference vector v = (dy,dz2,d3) = (3,2,1), but
this difference vector is considered to be the same as v = (1, 2, 3) since we can reorder the
options in the choice set. The (g) = 56 possible choice sets of size 4 (triples), and their
corresponding difference vectors (in lexicographic order) are given in Table 5.3. We see
that there are three distinct values of v that can arise: (1,1,2), (1,2,3) and (2,2,2). O

When we had choice sets of size m = 2, the optimal designs for estimating main effects
had each attribute level different between the two options. In the next result, we establish
how “different” the options in a choice set with m options can be by finding an upper bound
for the sum of the entries in the difference vector.

B LEMMA5.1.1.
For a particular difference vector v, for a given m and k > a, where 2°~1 < m < 2°, the
least upper bound for the sum of the differences is

S { (m? — 1)k/4 form odd,

m2k/4 for m even.

Proof. Write the treatment combinations in the choice set as the rows of an m x k array.
Then, for each column of length m, the maximum contribution to Z:T;(lm —1)/2 d; comes
by having half the entries 1 and half 0 if m is even, or (m — 1)/2 entries 1 and (m + 1) /2
entries O (or the other way round) if m is odd. To get m distinct rows, we must have at
least a columns where 22~ < m < 2%, Thus we get m distinct rows of a columns with

the maximum difference by writing down the rows in foldover pairs. So we write

= O = O
— QO = O
—_ O e O
[ B )

and so on. If m is odd, we have (m — 1)/2 foldover pairs and one extra row, which can be
any treatment not already used. It does not matter which particular treatment combinations
are used to construct the rows. Because the rows appear in foldover pairs, half the entries



Table 5.3  All Possible Triples when £ = 3

OPTIMAL DESIGNS FROM THE COMPLETE FACTORIAL

Triple v Triple v
(000,001,010)  (1,1,2) 001,011,110y (1,2,3)
(000,001,011 (1,1.2) (00101111 (1,1,2)
(000,001,100)  (1,1,2) (001,100,101)  (1.1,2)
(000,001,101  (1,1,2) (001,100,110)  (1,2,3)
000,001,110y  (1,2,3) (001,100,111)  (2,2.2)
000,001,111y (1,2,3) (001,101,110)  (1,2,3)
000,010,011y (L,1,2) (001,101,111 (1,1,2)
000,010,100y  (1,1,2) 001,110,111)  (1.2,3)
(000,010.101)  (1,2,3) (010,011,100  (1,2,3)
000,010,110y (1,1.2) 010.011.101)  (1,2.3)
000,010,111y  (1,2,3) 010,011,110  (1,1,2)
(000,011.100)  (1,2,3) (010,011,11H  (1.1.2)
(000,011,101)  (2.2,2) (010,100,101)  (1,2,3)
(000,011.110)  (2,2,2) (010,100,110)  (1,1,2)
(000,011,111 (1,2,3) (010,100,111 (2.2.2)
(000,100.101)  (1,1,2) (010,101,110)  (1,2,3)
(000,100,110  (1,1,2) 010,101,111y (1,2,3)
(000,100,111)  (1,2,3) 010,110,111)  (1,1,2)
(000.101,110)  (2,2,2) 011,100,101y  (1.2,3)
000,101,111y (1,2,3) 011,100,110y  (1.2,3)
000,110,111 (1,2,3) 011,100,111y (1.2,3)
(001,010,011  (1,1,2) (011,101,110 (2.2,2)
001,010,100y  (2,2,2) (o1,101,11h - (1,1,2)
(001,010,101)  (1,2,3) O1L110,11h)  (1L,1L,2)
001,010,110y (1,2,3) (100,101,110~ (1,1,2)
(001,010,111)  (2.2,2) (100.101,111)  (1.1,2)
(001.011,100)  (1,2,3) (100,110,111 (1.1,2)
(001,011,101  (1,1,2) 101,110,111y~ (1,1.2)
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are 1 and half are O (m even) and so Z;’;(lm“lw d; is a maximum. Since these a columns

guarantee that the rows are distinct, larger values of k can be obtained by writing down any
columns of maximum difference for the remaining k& — a columns. The result follows. [

The treatment combinations given in Lemma 5.1.1 are not the only treatment combina-
tions which achieve the bound; it is sufficient to have any foldover pairs in any order.

W EXAMPLE 5.1.2. .

Let K = m = 3. Then we have seen that there are three different difference vectors: (1,1,2)
with sum4, (1,2,3) with sum 6, and (2,2,2) with sum 6. The upper boundis (32—1)3/4 = 6.
The value of a is 2 (since 22~ ! < 3 < 2?), and a set of rows constructed as in the lemma is

O = QO
—_——

These rows give the levels for the first two attributes for the three options in the choice set.
To get a choice set which meets the bound, we can now adjoin any column with a 1 and
two Os, or a 0 and two 1s, for the levels of the third attribute. So we might adjoin 0, 0 and 1
and get (000, 110, 011) which has difference vector (2, 2, 2). Or we could adjoin 0, 1, and
0 and get (000, 111, 010), which has difference vector (1, 2, 3). [

For particular values of m and k, there can be several distinct difference vectors; these are
denoted by v;. In Example 5.1.1, we saw that there were three distinct difference vectors
whenm = 3 and k = 3. We now define four scalars which are needed subsequently.

1. We define ¢y, to be the number of choice sets containing the treatment 00 . . . 0 with
the difference vector v;.

2. We define xv,;; to be the number of times the difference ¢ appears in the difference

vector v;. Then 3", zv,.i = ('), since this is the total number of entries in v;.

3. We define iy, to be an indicator variable, where
0 if no choice sets have the difference vector v;,

i =Y 1 ifall the choice sets with the difference vector v; appear
in the choice experiment.

At least one of the i, values must be non-zero; otherwise the experiment contains
no choice sets.

4. We define ay; = iy, /N. These are similar to the a, defined in Section 4.1.1.

Using these definitions, we see that the total number of choice sets, N, is given by
k .
N = '21'77 Z Cv;lv;-
J

M EXAMPLE 5.1.3.

Let m = 3, k = 3. We have seen that there are three different difference vectors and
welet vy = (1,1,2), vo = (1,2,3) and v3 = (2,2,2). Table 5.4 is Table 5.3 reordered
to show all the triples associated with each of the difference vectors. Consider just the
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triples containing the treatment 000. Then we see that ¢y, = ¢y, = 9 and ¢y, = 3, since
(000,011, 101), (000,011, 110), and (000, 101, 110) are the three choice sets with m = 3
which contain 000 and which have difference vector (2, 2, 2). We also see that

Ly =2 Tyy1 =1 Ty =0
Lyp2 = 1 Typz =1 Tyyo =3
XLyy:3 = 0 Tyy3 = 1 Tyy:3 = 0
YT =3 Y Tvai =3 3 T = 3. O

Table 5.4 All Possible Triples when k = 3 Sorted by Difference Vector

vi=(1,1.2) ve = (1,2,3) vs = (2.2,2)
(000.001.010) (000,001,110) (000.011,101)
(000,001,011 (000.001,111) (000.011,110)
(000,001.100) (000,010,101 (000,101,110)
(000,001.101) (000,010.111) (001.010,100)
(000.010,011) (000.011,100) (001,010.111)
(000,010.100) (000.011,111) (001,100,111)
(000,010.110) (000,100.111) (010.100,111)
{000,100,101) (000.101,111) (011,101,110)
(000,100, 110) (000,110,111
(001,010.011) (001,010,101
(001,011,101) (001,010,110)
(001,011,411 (001,011,100)
(001,100,101) (001,011,110)
(001,101,111) (001,100,110)
(010,011,110 (001.101.110)
(010,011,111 (001,110,111
(010,100.110) (010,011,100)
(010,110.111) (010,011,101
(011,101,111) (010,100,101)
(011,110,111 (011,100.101)
(100,101, 110) (010.101.110)
(100,101.111) (010,101.111)
(100,110,111) (011,100.110)
(101,110,111) (011,100,111)

5.1.2 The Derivation of the A Matrix

In this section, we derive the A matrix when we assume that the class of competing designs
consists of all designs in which all choice sets with a given difference vector are either all
included in the choice experiment or none of them are. So, in Example 5.1.3, the competing
designs are the choice sets from one or more of the columns of Table 5.4. Thus there are 7
competing designs to be considered in that case.
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The matrix of contrasts is unaffected by the choice set size. However, we do need to
derive the appropriate A matrix.
From the results in Section 3.3.1, we know that, if we assume that

(that is, all treatment combinations are equally attractive, the usual null hypothesis), then

m—1
Aiyi, = DI YAF 5.1
71,31 m2 ' ’ , 21,22,0-09tm. ( )
tg <tz < <im
1
11,02 m2 . , , 21,221 1tm )
13<ig < <im
where
A 41 ,i2,....im
i1,dgentm =& N
and n;, i,....i,, indicates whether or not the choice experiment contains (13,, 15,, . .., 13, )

as a choice set. Thus the diagonal entries of A are ’"—m‘} times the proportion of choice sets
containing the treatment combination T}, , and the off-diagonal entries are —n%; times the
negative of the proportion of choice sets containing both 73, and T5,.

In Section 4.1.1, the general form of the A matrix for m = 2 was given as a linear
combination of the identity matrix of order 2% and the Dy ; matrices. We now derive a
similar result for any value of m.

B LEMMA 5.1.2.
Under the usual null hypothesis,

where

and .
2 (k\ "~
j

The row and column sums of A are equal to 0.

Proof. We begin by counting the number of times each treatment combination appears in
the design.

The number of times that the treatment combination 00...0 appears in the choice
experiment is > j Cv, iv,, and this is the number of times that any treatment combination
appears in the choice experiment because of the assumption that all choice sets with a
given difference vector appear (or do not appear) in the choice experiment. (Throughout
this section the summations over j are over all possible difference vectors v; for the
appropriate values of k and m.) So the proportion of choice sets in which any treatment
combination appears is

EPYL N 3
z= ~ = Cv,; Qv
J
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as required.

Now we count the number of pairs in the choice experiment that have ¢ attributes different.
If choice sets with difference vector v; are in the design, then each treatment combination
appears in ¢, choice sets with difference vector v;, and xy,; of the differences are equal
to 7. Altogether, there are 2¥ treatment combinations and each treatment combination can
appear in any of the m positions-in the choice set. Thus the total number of pairs in the
choice experiment with ¢ attributes different is

Qk
pooy Cv,lv; Ty, (5.3)
J

Considering the 2* treatment combinations, the number of pairs with i attributes different

A
<1:)2 2

Each of these pairs appears in the choice experiment the same number of times, say ;.
Then the total number of pairs in the choice experiment with { attributes different can also

be expressed as
k 1
<i>2k§r,;. (5.4)

is

Equating (5.3) and (5.4), we get

E\ .1 2k
(’)riri’: - Cvii"wm"u?i‘
1 2 m 7

So, if the proportion of choice sets in which each pair with 7 attributes different appears is
Yi = T,',/N, then

B\ 1 2k )

Thus
from which we see that

Hence we have established that

m—1 1<
A = 3 ZIQ&- — m—z Zyil)k,i~
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Finally, we establish that the row and column sums of A are equal to 0. Summing over
i, we get

SE( - SEiEen

12
SRS DR
j i=1
7

m-—1
= . .avj
m—1
= zZ,
m?2
. as required. a

B EXAMPLE 5.1.4.

Let m = 3, k = 3, with v;, ¢y, and xv,;; as in Example 5.1.3. Assume that choice
sets with difference vectors vy and V3 only are in the choice experiment. Then i, = 0,
fvy =iy, =1, N =24 + 8 = 32, ay, = 0, and ay, = ay, = 1/32. Thus we have

z = E Cv; Oy,
J

= (9% 0)+ (9% 55) + (3% 53)
- 12
32

and
2/3\7!
Vi = :.); 1 (Cvlavle1:1+CV2aV2mV2:1+CV3(LV3$V3:1)
= § —(O+9x$x1+3x§-x0)
2
VX
273
Yo = 5 9 Cvl Oyy Tyy;2 F Cvy Oy, Tyy:a + CV3GV3$V3;2)
2 1 1 1
= =Xx-(0+9x —x1+3x —x3
g <30 H9x g x143x35x3)
4

o))
L]
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2/3\7"
Yy = g 3 (('vlavlwvl:B’l’Cvzavzxvz:S +CV3QV3IV3:3)
2 1 1
= (04+9x —=x1+4+3x —x0
509X g5 X143 55 x0)
_ 6
BT

Note that y; is the proportion of choice sets in which each pair with 1 attributes different
appears in the choice experiment. For example, each pair with one attribute different
appears in 2 of the 32 choice sets in the choice experiment: the pair 000 and 001 has one
attribute different and appears in two choice sets, (000,001,110) and (000,001,111), out of
the 32 in the experiment.

Now that we have calculated the z and y; values, we can calculate the A matrix. For the
A matrix we need the Dy ; matrices. D3 1 and Dj  are given in Example 4.1.2 and the
D3 3 matrix consists of 1s down the back diagonal and Os in all the other positions. We get

A=2zly - L(y1 D31 +y2Dso + ysDs3)
= gk (24]s — 2D31 — 4D32 ~ 6 D3 3]
[(24 -2 -2 -4 -2 —4 —4 -6
-2 24 -4 -2 —4 -2 —6 -4
-2 -4 24 -2 —4 -6 -2 -4

1 | -4 -2 -2 24 -6 —4 —4 -2

TR | -2 -4 -4 -6 24 -2 -2 -4
—4 -2 -6 -4 -2 24 —4 -2
—4 -6 -2 -4 -2 —4 24 -2 O
—6 —4 —4 -2 —4 -2 -2 24

5.1.3 The Model for Main Effects Only

In this section, we evaluate the information matrix for estimating main effects only and use
this to determine the optimal choice experiment for & binary attributes using choice sets of
size m.

As in Section 4.1.3 we let Bys s be the contrast matrix for main effects and we let Cpy
be the k£ x k principal minor of C' = Byx A B}, associated with the main effects. Thus we
are evaluating the information matrix when B, = Bgx ;.

In Lemma 4.1.3 we have shown that

k—1 k-1
Bos py D = K . ) - ( ﬂ Bai
i i—1
for all allowable 7.

We now show that at this stage we do not need to make any assumptions about the
contrasts in B, since the class of competing designs that we have chosen ensures that
Chy = 0 for any choice of B,.. By definition,

Chr = gh}A[B,’l B]

[ BrAB; BpAB.
] B.AB; B.AB,
_ [ Chn Chr

L C'rh Crr |7
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Since By, = Bax 5y we can see that

()

- [ ()

= O gk —fa-

Chr

Bhlsz - Bth lB,

1 k
o 2 Y
i=1
1 & k-1
sz,MB;——;Z [( ) (z_l)]BQkMB

This is true for any choice of B, as long as the set of competing designs remains the same
so that the form of A stays as a linear combination of the Dy ;.

Using the result in Lemma 4.1.3, we now can get an explicit expression for the informa-
tion matrix, Cyys, for the k main effects.

B LEMMA 5.1.3.
The information matrix for main effects under the null hypothesis is given by

k
2 k-1
On = [Zy@'(i_xﬂf’“'

i=1
Proof. The information matrix for main effects under the null hypothesis is

/
C]\j = BQ"'JWABQk M

Ml - = Zysz

1 k 1

i=1

AT () (0
2

2".1\1

k
1 k k-1 k-1
< B0 ()
Since
(=) + ()
o) o= . +1{. ;
1 1 1—1
k
2 k-1
Cyn = ”—g[z;yz(i_l)}fk
as required. O

Thus the determinant of Cjp4.is

. k
i = 230 ()
i=1
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B EXAMPLE 5.1.5.

Let m = 3 and k = 3. There are two ways that we can calculate C'yr: by evaluating
Crr = BQ:J‘MAB;%M or by using the expression for C; given in Lemma 5.1.3. In this
example we will do both.

The matrix By: 5 is the contrast matrix for main effects and is given by

1 -1 -1 -1 -1 1 1 11
-1 -1 1 1 -1 -1 1

Bos yp = —= 1
2 R T T S

In this example, we assume that all choice sets with difference vectors v, or v3 are in the
choice experiment. Then we can use the A matrix from Example 5.1.4 to calculate

1 1\
C’]\[ = ng_]\[ABég.A[ = 5[3: thus det(CM) = (6) .

Alternatively, we can use Lemma 5.1.3 to calculate Cps. Then, using the y; values given

in Example 5.1.4,
3
. 2 3-1
Car 7 [Zyl(z—lﬂ I

272 /2 4 /2 6 (2
= — | — + — ]3
9{32 0) 32(1 32(2)}
= _2._%_+§+E, I
T 9132 327327
1
= Z]a. O
93

To find the D-optimal design, we must maximize det(Cs) subject to the constraint
2%z /m = 1 (since the total number of choice sets must equal N).

Substituting y; = 2 (¥) - 3", €v,av, Ty, .; and using the fact that (h/(%) = i/k
gives

- ,‘.
2 k—1)2 (K
det(CM) = ;I?Z<7—1)E<Z) ch,mv,;i“v,
J

r k
k

4 .
= ek E 7 E Cv; Ty, iy,
J

i=1

The following theorem establishes that the D-optimal design, for estimating main effects
only, is one which consists of choice sets in which the sum of the differences attains the
maximum value given in Lemma 5.1.1.

Hl THEOREM 5.1.1.
The D-optimal design for testing main effects only, when all other effects are assumed to
be zero, is given by choice sets in which, for each v; present,

(m=-1)/2 (m? — 1)k/4, m odd,
> =
i=1

m

m2k/4, m even,
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and there is at least one v ; with a non-zero ay,; that is, the choice experiment is non-empty.
For the optimal designs

k
2
-1
%35;‘) y modd,

det(Copt,M) =
1\k
(5,;) , m even.

Proof. Recall that
w = v iy, m
VN 2Ry ey,
and that 4., is an indicator variable indicating the difference vectors corresponding to the
choice sets that are included in the choice experiment. Thus at least one of these i, and
therefore a,,, values must be non-zero.

Substituting for a, in det(Cas), we have

k
k .
()
— m2k2k=2%", ¢y, tv,
Zj Cv;lv, (Zi:l z‘r"y’ﬂ)

m2k2k-2 3", ey, iy,

det{Car)

Il

k

Since zv,,; denotes the number of times the difference ¢ appears in the difference vector
v;, multiplying by ¢ and summing these is equivalent to summing the () entries in v;;
thus,

k m(m—1)/2
Mo X dy
=1 =1

Therefore
et 2 cv,iv, (Z?;(fnml)/z di]-)
t = -
e ( IW) m2kok—2 Zh Cuy v,
When m is even, Lemma 5.1.1 states that the maximum value that 7™~/ ¢, can

attain is m2k/4. Then it follows that Zi:(lm'l)/z di; = m%k/4 — p; for some p; > 0.
Thus

i

: k
det(C]u) [E] ch Zvj (mzk/‘l - p]):l

MR 2 3y e,

k

- I: 1 Ej ijvj‘ivi ]

2k m2k2k-237, ey, iy,

The cy, values are all positive and the iy, are either 0 or 1; so, for m even, det(C ) hasa
maximum of (1/2%)* when p; = 0 for all j. Thus we obtain the maximum det(Cxs) when

m{m-—1)/2

z dij == mzk/4
i=1
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Similarly when 1 is odd, Lemma 5.1.1 states that the maximum value of Zir';(fl‘l)/‘z di;

is (m2 —1)k/4. Then """~ D/2 4,5 = (m% —1)k/4— p; for some p; > 0. Substituting,
we have

det(CM)

. k

Ej Cv;lv; ((mg - 1)k/4 "pj)
m2k2k-23", ey, iy,

k

m2—1 _ }:jpjcv,iv,

m22k  m2E2k-2%0, ey, iy,
Since the ¢y, values are all positive and the i, are either O or 1, det(Cjpy) has a maximum
of ((m? — 1)/(1n?2%))* when p; = 0 for all j. For m odd, we obtain the maximum

det(Chs) when
m(m—1)/2

> diy=(m®—1)k/4.
i=1

Therefore, the maximum value of det(Cjy) is

m2-1 k
(W) , modd,
det(copt.ﬂf) =

(%;—)k, m even.
This occurs when
m(m=1)/2 (m? — 1)k/4, modd,
> dy=
i=1 m2k/4, m even. =

The D-efficiency relative to the optimal design is calculated using the expression

det(Car) )1/”
det‘(copt.l\f) '

where p = k, the number of main effects we estimate.
We now look at all possible designs for a small example.

B EXAMPLE 5.1.6.

Recall that, for m = 3 and k = 3, there are three difference vectors: vy = (1.1,2),
vy = (1,2,3) and v3 = (2,2,2). All the possible designs for choice experiments in
this situation are given in Table 5.5. Since m is odd, Theorem 5.1.1 states that the D-
optimal designs have choice sets in which the entries in the difference vectors sum to
(m? — D)k/4 = 2k = 6 and a maximum det(Cop;. 27} = (1/9)%. The difference vectors
vy and v3 have entries which sum to 6; so there are three D-optimal designs:

EFFD:<

1. All 24 triples with difference vector v,. So ay, = 1/24 and ay, = ay, = 0.
2. All 8 triples with difference vector vs. So ay, = 1/8 and ay, = ay, = 0.
3. All 32 triples with difference vectors v, and vs. So ay, = ay, = 1/32and a,, = 0.

The smallest of these D-optimal designs is the second one, consisting of the following
eight triples, each with difference vector vg:
(000,011, 101), (000,011,110), (000,101,110), (001,010, 100),
{001,010,111), (001,100,111}, (010,100,111), (011,101,110). O
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Table 5.5  All Possible Choice Experiment Designs for Binary Attributes when k = 3 and

m=3
v; in Design > dij vy fve fvg N Ov, Qv, Qvg Efficiency (%)
vi 4 1 00 24 L o o0 66.67
v 6 0o 1L 0o 24 0 L o0 100
v 6 0 0 1 8 0o o 100
Vi & V2 4,6 oo 48 g g 0 83.33
vi&vs 4,6 1 0 1 32 5 0 # 75
V2 & V3 6 0 1 1 32 0 » 100
vi,va & v3 4,6 [ 56 &= % % 85.71

5.1.4 The Model for Main Effects and Two-Factor Interactions

To find the D-optimal designs for estimating main effects and two-factor interactions for
any choice set size m, we generalize the results of Section 4.1.4.

As in Section 4.1.4, we let Byx 57 be the rows of By that correspond to main effects
and we let By~ 7 be the rows of By« that correspond to the two-factor interactions. The
matrix associated with main effects and two-factor interactions is denoted by Box prp
and is the concatenation of Byx as and Bgx 7. For the D-optimal design we evaluate the

[k + (’;)] X [k + (’5)] principal minor of C = ByxAByr. As we are working with the
complete factorial, it is not important how the contrasts for interactions of more than two

factors are divided between B, and Bj,.
In Lemma 4.1.5, we established that

k-2 k—2 k-2
[ s R o

for all allowable 7.

H LEMMA 5.14.
Under the null hypothesis, the information matrix for main effects plus two-factor interac-
tions is given by

= [21;1 yi(llel)} Iy 0

Cur = _
0 A (2w (D) -2

Proof. We let By, = Bax ppp and then

/
Cur = BQ",MTABQI‘J\[T

BQ",I\IAB;K]\{ 0
0 BQ;‘,TAB;%‘T

_ [ 2 (O 0

0 B+ 7ABY, 1
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Now

BQA ’TAB;)\ T BQA T

m -
7,2 Zy1Dk1

2k
k
ng Z( )yifzk Zyka,f Bl 1
— i=1
|:< )BQ" T — BZ" TDk zj| Bék'T
k—2 k—2
p (Y- (* >+2(i_1>_(Z._mek(k_w.

As we noted previously,

()= +62)
.= . + 1. ;

1 ) i—1

kF—1\ [k-2 n k-2 d E—1\ (k-2 n k-2
©\i-1) T i—2) " i )T i-1)
It follows that

(““) (’“‘2) (D) (

L] = . + 2% . +

7 7 t—1

and hence
(kw2 k—=2\ (k-2 4 k-2
i~1 i-2)  \i-1)
4 [& (k-2
Therefore Byr 7ABg 1 = — [;yj(i—l)] Tigke—1y/2
and we have
k
y HQ’ [Zz 13/1(17C 11)] Iy 0
Chr = . N
0 i [ D] ke
as required. O

Hence the determinant of C'yyr is

2 & h-n]T (a4 & m-n] T
det(Cuyr) = [FZ%(Z__J] X{Fﬁzy(i—l)] |
i=1 i=1

B EXAMPLE 5.1.7.
Letm = 3 and k = 3. We can calculate C'ysr either by evaluating

’
Crnr = Bys pyrrABgs jyp
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or by using Lemma 5.1.4. In this example, we will do both.
The matrix Bas _ps is the contrast matrix for main effects plus all two-factor interactions
and is given by

-1 -1 -1 -1 1 1 11
-1 -1 1 1 -1 -1 1 1
B 1 -1 1 -1 1 ~1 1 -1 1
PMI=951 1 1 -1 -1 -1 -1 11
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1

In this example, we assume that all choice sets with difference vectors v, or vs are in the
choice experiment. Then we can use the A matrix from Example 5.1.4 to calculate

iI; o AN
Cur = Bys mTABy y7 = { g03 L1 and det(Cmr) = (5) (ﬁ) '

We can also use Lemma 5.1.4 to calculate Cpsr. From Example 5.1.5,
2 & k-n]"
[ET? ;y’(z - 1)} =gk
Then, using the y; values given in Example 5.1.4,
4 (k-2 4 (1 1 1
;7—22:1%’(2._ 1>1k(k—1)/2 7 [yl <0) +y2(1) +y3<2)} I3
i=

_.4_2__+_i[
~ 9l32 "32|"

i

Hence

Cur = I: %({3 LOI :! .
3 O

To find the D-optimal design, we need to maximize det(Cs7), subject to the constraint
that 262 /m = 1.

B THEOREM 5.1.2.
The D-optimal design for testing main effects and two-factor interactions, when all other
effects are assumed to be zero, is given by designs where

mm=D (RN kevenand i = k/2, k/24 1,

yi=q mom=( k)7, koddandi=(k+1)/2,

0, otherwise,
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when this results in non-zero y; values that correspond to difference vectors that actually
exist. The maximum value of the determinant is then

((m—l)(k+2) ) ktk(k=1)/2

T D)2 k even,

det(Carr) =

((m—l)(k+1)
(=D kt1)

k+k(k—-1)/2
mk2 )

k odd.

Proof. In Theorem 4.1.3, we proved that for m = 2 the D-optimal design for testing main
effects and two-factor interactions is given by

~1
() oz e
Gy = ok—1( Kk i koddandv = (k +1)/2
{ ((A~+l)/2)} oddandv = (k +1)/2,
0 otherwise.

In the proof of this theorem, the function f = WZ*=1/2 and therefore det (Cy;7), i
maximized subject to the constraint Y _ (M)ay = 1, where

W= Z(U_J

v=1

=5 ()

and

For choice sets of size m the constraint is

2* 2 k vi=1
m~ m(m—1) o

In order to use the results in the proof of Theorem 4.1.3, we let

@ =25/ (m(m — 1))

(suggested by Moore (2001) when m = 3). Then we have the same form of the constraint
as we had for mn = 2.
Now we let

k

s 2 (= ()

=1
and

ok Efk-2 u
Z= e ; =
m(m ~ 1) Z; <z - 1)?;2 “

= =

Using the results in Theorem 4.1.3, the function f = W Z{*~1/2_and therefore

det(Crr) [,,,_Zyz( _ )rx {%éyc:fﬂ

k(k-1)/2
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is maximized subject to the constraint Y% | (*)z; = 1 for the same x; values given above
for the m = 2 case. Using ; = 2¥y;/(m(m — 1)), we obtain the optimal designs in terms
of the y; values, as required.

We now determine the maximum value of the determinant at these y; values. For &
even, only two values of ¢ will give the maximum determinant. These are { = k/2 and

i=k/24 1, where

m(m—=1) (k+1\"}
Ye/2 = Yk/241 = 2—k k/2

and all other y; = 0. Then

& \ k(k—1)/2
2 k-1 4 k-2
det(Cnr) =155 D yi(i—lﬂ ) [’”—2 > y’(i—l)

i=k/2,k/2+1 i=k/2,k/2+1
- k
[ ) () - ()]
() 02 ()
o ) ()= ) () () (i)

]k(k-—l)/Z

(o) k+2 and (k2) _ k42
(';le) T2k (’;le) 4k +1)

Therefore, for k even,

(m = 1)(k + 2))Ic+k(k—1)/2 |

det(Chr) = < mik + 1)2F

For k odd, the only value of 7 that will give the maximum determinantis i = (k+1)/2,

where
m{m — 1) k -1
Yik+1)/2 = TToE (k+1)/2

and all other y; = 0. Then

k
_ 2 m(m —1) k - k-1
det(Cnr) = [WT((kH)/z) ((k+1)/2—1)]

1 k(k—1)/2
4 m(m-1) k k-2 )
m2 2k (k+1)/2 (k+1)/2-1
Now ((k+k1-)_/12—1) _ ('(kk-—xi/z)) _ k+1 and ((k+1;)_/22—1) _ ((klf—_l)z/z) _ k+1
((k+l§)/2) ((k+k1)/2) 2k ((k+kl)/2) ((k+k1)/2) 4k
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Therefore, for k odd,

(m —1)(k+1) k+k(k—1)/2
mk2k .

det(Chrr) = (

Hence the maximum value of the determinant is

((m—l)(k+2)

k+k(k—1)/2
m{k+1)2F >

k even,
det(Cyr) =
((m-1)(k+1))k+k(k‘”/2 k odd
mk2F ’ : : 0

Note that for any design we can calculate the D-efficiency relative to the optimal design
using the expression

det(Cyr) )UP
)

Effp =
P (dEt(Copt.AlT

where p = k 4+ k(k — 1)/2, the total number of main effects and two-factor interactions
that we are estimating.

The following two examples illustrate the use of Theorem 5.1.2 to obtain choice sets
with the maximum value of the determinant of Cps7.

B EXAMPLE 5.1.8.
Form = 3 and k = 3, Theorem 5.1.2 states that the D-optimal design is given by

RO =1 =2
Yi =

0, otherwise.

The maximum value of det(Chsr) is

2x4 P 1\®
deiComair) = (r57) = (5) |

Since
1 = 4av1 + 2(lvg = Oa
Y2 = 20y, + 20y, + 20y, = i.,
y3 = 6ay, =0,

we see that ay, = ay, = 0 and ay, = % Thus the D-optimal design consists of the 8
triples with difference vector v = (2, 2, 2). Information about the 7 competing designs is
shown in Table 5.6. O
M EXAMPLE 5.1.9.

For m = 3 and k = 4 the possible difference vectors are vi = (1,1,2), vo = (1,2,3),
vz = (1.3,4), v4 = (2,2,2), v5 = {2,2,4), and v¢ = (2.3,3). Using Theorem 5.1.2,
the D-optimal design is given by
R0 =1 i=-23
Yi =
0, otherwise.
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Table 5.6  The Efficiency, for the Estimation of Main Effects plus Two-Factor Interactions,
of the 7 Competing Designs when k = 3and m = 3

v; in Design det(Cumr Efficiency (%)

J

vy (£2)P(3)? 81.65

va ($)3(£)? 81.65

va (3)° 100
vi& vy (£)° 83.33
vi&vs (£33 86.60
vo & V3 (5¥(d)? 86.60

(£)°

Vi, v2 & V3 85.71

21

The maximum value of det(Cyyr) is

2x6 \**° 1\"
det(Copt,mT) = (m) = (56) :

Since y; and y3 are the only y; values that are non-zero and v, and v are the only difference
vectors containing all 2s, all 3s, or a combination of 2s and 3s, we see that a, = O unless
j = 4,6. Thus we have

y1 = 6ay, +6ay, +2av, =0,

Y2 = 2ay, +4day, +4ayv, + 2avs + 2ay, = 6/160,
ys = 6ay, + 2ay, + 6ay, = 6/160,

Ya = 8ay, +6ay, =0.

The solution is av, = av, = av, = av, = 0and ay, = ay, = 1/160. Thus the D-optimal
design consists of the 64 triples with difference vector vy = (2, 2, 2) and the 96 triples with
difference vector vg = (2,3,3). If we use just the 64 triples with difference vector vy,
then this design is 99.03% efficient, and for the 96 triples with difference vector vg only,
the design is 99.60% efficient. O

However, for some values of m and k, solutions to the y; equations do not exist. For
example, when m = 3 and £ = 1 (mod 4), no solution exists; the following example
illustrates this case.

W EXAMPLE 5.1.10.
If we let m = 3 and k = 5, then the D-optimal design given by Theorem 5.1.2 is

3x2/5\}
=" \g) > n=y2=ys=ys =0.

This means that triples with difference vector (3, 3,3) are required since any other triple
would result in one of the other y; values being non-zero. However, the only possible
difference vectors are

Vi = (1?1>2)7 V2 = (1a2a3)7 V3 = (1a374)9 V4 = (1,4,5), V5 = (27272)7
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Ve =(2,2,4), vr=(2,3,3), vs=(2,3,5), vg=(24.4), vio=(3.3,4):

so no triple with the difference vector (3, 3, 3) exists. By checking all possible designs,
it can easily be shown that the optimal design consists of the 960 triples with difference
vector vy = (2,3,3) and the 480 triples with difference vector viy = (3,3.4), where
yo = 1/1440, y5 = 9/1440, yg = 3/1440 and y; = y5 = 0. Thus ay., = ay,, = 1/1440
and a,, = Oforj = 1,2,3,4,5,6,8,9. The maximum obtainable determinant is

13 15
det’(copt.]\[’r) = <—5—4—6> .

As Example 5.1.10 shows, the optimal designs derived in this and the preceding sections
can become very large as the number of attributes increases. The question of how many
choice sets can be included in a stated choice experiment has been considered by various
authors. Brazell and Louviere (1995) show that choice experiments with up to 128 choice
sets can be effective in parameter estimation. In the next section, we investigate the
D-efficiency of small designs obtained from a generalization of the constant difference
construction in Section 4.2.3.

5.1.5 Exercises

1. Let k = 3 and m = 4. Give the 35 sets of 4 treatment combinations with 000.
Calculate the difference vector for each. Hence calculate the ¢y, and, for each v;,
calculate the zy ;. Verify that the bound of Lemma 5.1.1 is correct.

2. Use Lemma 5.1.1 when k = 3 and m = 4. Can you get more than one set of rows
in this case?

3. Let k = 3 and m == 4. Evaluate z, y1, y2 and y3. Hence give an expression for A.
4. If m = 2 show that y; = q;.

5. Letk = 3 and m == 4. Using Theorem 5.1.1 give all the possible D-optimal designs
for estimating main effects. Can you use a smaller subset of any of these to get a
smaller design which is still D-optimal?

6. Let k = 3and m = 4. Use Theorem 5.1.2 to give the y; that would correspond to
the D-optimal designs for estimating main effects plus two-factor interactions. Do
the y; correspond (o an actual design? If so, give it. If not, try 2 or 3 designs “close
to” the optimal y; and compare them. Which would you recommend?

5.2 SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR LARGER
CHOICE SET SIZES

In this section, we give constructions for small optimal and near-optimal designs for choice
sets of size m. The results are an extension of results in Section 4.2, where we gave
constructions for optimal and near-optimal designs for estimating main effects only, and
for estimating main effects plus two-factor interactions. Recall that the constructions there
started with a fraction of resolution 3 (for estimating main effects only) or resolution 5
(for estimating main effects plus two-factor interactions). Pairs were formed by adding
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one or more generators to the treatment combinations in the fraction, where the addition is
performed component-wise modulo 2. Each generator gave rise to a set of pairs. We had
to assume that all contrasts other than the ones we were estimating were 0 however. So B,
contains all the contrasts that not in By, and B, is empty.

5.2.1 The Model for Main Effects Only

When estimating main effects only, for each attribute there must be at least one generator
with a 1 in the corresponding position. Using one generator consisting of all 1s, which is
equivalent to using the resolution 3 fraction and its foldover, results in a D-optimal design
in a minimum number of pairs, in which all main effects can be estimated.

The next result gives generators for small optimal designs for estimating main effects
whenm > 2.

B THEOREM 5.2.1.

Let F be a fractional factorial design of resolution at least 3 and with k factors. Let G be
a set of generators G = (81,82, . . - ,Em ), where each g; is a binary k-tuple, and g1 = 0.
Let v = (di,da, ..., dm(m-1)/2) be the difference vector consisting of all the pairwise
differences between the generators in G, where

’"""i)/"’d._ (m2— 1)k/4, modd,
— LTl mPk/4, m even.

Then the choice sets given by (F\F' + ga,...,F + gm), where the addition is done
component-wise modulo 2, are optimal for estimating main effects only.

Proof. Let |F| = 257 and let By be the columns of By corresponding to the treatment

combinations in F'. Thus Bp B} = %;Ik. Let Dg, be the diagonal matrix with an entry
of 1 in position j if the jth entry of g; is 0 and an entry of —1 in position j if the jth entry
of g; is 1. Then Dg, Br has the same columns as the columns of Ba; for the treatment
combinations in F' + g;.

We construct the choice sets from F by adding the generators to F', using modulo 2
arithmetic. Then the choice sets are (F, F' + g, ..., F + g ). where each row represents
a choice set. Let NV be the number of choice sets of size m (hence N = 2577 if there are
no repeated choice sets) and let n,, be the number of choice sets that contain the pair of
treatment combinations u, v. This number may be 0 if at least one of « and v does not appear
in the choice sets. Let 14, 4 be the number of choice sets which contain v and v in columns
c and d (unordered). Then ny, = ZC,d Nuyw,ed> and we define ny, = — Zu;éu Tiuw. Then
the values n,, and n,,, are the entries of m2NA.

Consider two columns ¢ and d. Then we know that column ¢ contains the treatment
combinations in F + g, (in some order) and column d contains the treatment combinations
in F' + gg in some order. If FF + g. = F + g4, then g. + g4 € F and we can write F'
as Fy U (Fy + gc + g4). Then, using this order for the elements of F, we have that the
submatrix of A corresponding to the elements in F" can be written as (reordering rows and
columns if necessary)

1 Tor—p-r —Iok—p-1 0ok jim1 gk _gk—n
A = 3k —Iok-p-1 Ins-p-1 Ok -p-1 ok _gk—p
02}\‘_2‘\"—77‘2’(‘—77—1 02k_21\“py2k—p-—1 02k‘2k-~-p_2k__2k—p
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since we know that each treatment combination in F" gives rise to a distinct choice set. We
can write Bar as By = [Bp, Dg +g,Br, Bp]. Now

, 2k—p»1
Bp, By, = le;

SO

Il

(m*2° ") BarAca By Bp,Bp, — Dg, +g,Br, B,
+ Dgw+gd-BF1 }leg« +81 BFIB,Fl Dgr +8u
2k-p

= Q—k(lk = Dg, 1g,).

Ifg. + gy ¢ F, then the same argument establishes that

, 2k—p+1 1
BuAwBy = ok X m2ok—p (I = Dg,+gs)
Now we know that
mim—1)/2
"”Z” o[ = DE/4, modd,
T mPk/a, m even.

i=1

Consider the contribution to the > d; in a choice set from just one attribute. The attribute
will have = 0s and (m — z) 1s to give a total of z(m — ). This contribution is maximized
by having m/2 1s and m/2 Os for m even, and (m — 1)/2 0s and (m + 1)/2 1s (or vice
versa) for m odd. Thus the maximum contributionto >_. d; from any one attribute is m?/4
for m even and (m? — 1)/4 for m odd. Thus we see that each attribute must contribute
exactly this amount to ). d; for the optimal designs.

Suppose n = 2my + 1. Now 3", Dg +g, is summing ("3') + (™,"") entries of 1 in
each diagonal position and mq(mq - 1) entries of —1 in each diagonal position. Thus, if
m is odd,

m my + 1 m—1
> Dgigs = (( 21> +< ’2 >~m1(m,1+1)> e = ==5—Ii.
c.d

Similarly, if m is even,

m
> Dg g = ~5 I
c,d

Suppose that none of the g; isin F' and that g. + gq & F for any paircand d. Let A be
the set of treatment combinations that appear in the choice experiment. Then

Br
lgFl)gz
(m?2""P) [ Bp Dg,Br ... Dg 1g,Br BA]E Acd
ed B%Dgﬁ-g,z
B’

A
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= Z (2%712([k - Dg, +g,;))
c.d

Qk—;ii () + 251) I, modd,

2 () +3) e, meven

2
=1
) X an]k, modd,

ok—p+1 m?

Er— % I, m even.
Thus we have
2
r—"jpg,}lk, m odd,
Cypy =
Elglk, m even,
as required.

Now suppose that, for at least one pair of columns, the number of pairs is 25=71 (that
is, ' + g. = F + g4 for some ¢, d). Then we see that

2k-»

Z—k(fk ~ Dg.+ga)-

Although this works out for the pairs, once the pairs are considered as part of the larger
choice sets, then the pairs will in fact appear twice and so we need to use

2k—p+1
T(Ik - Ds(-+g,;)

when evaluating Cs. Thus the proof from before can be used.

The only situation that is not covered by the above proof is when m is a power of 2. In
that case, the optimal set of generators must form a subgroup and the choice sets are this
subgroup and its distinct cosets formed by adding elements of F'. Making this observation,
a straightforward modification of the proof above establishes the result. O

ZNBMACdBﬁw =

B EXAMPLE 5.2.1.

Let m = 5 and k = 9. To obtain an optimal design for estimating main effects, we
require a fraction F of the 2° factorial which has resolution at least 3. The 16 treatment
combinations given in the first column of Table 5.7 are a 1/32 fraction of resolution 3 with
defining contrast ] = BCE = CDF = ACG = ABH = ADJ. To obtain the choice
sets, we need m = 5 generators G = (g1, g2, E3,84,&5), where g; = 0, so that the
differences in the difference vector sum to (m? — 1)k/4 = 6k = 54. One set of generators
that satisfies this condition is

G = (000000000, 000000111, 111111000, 000111111, 111111111},

which has the difference vector (3, 3,3,3,6,6,6,6,9,9). The 16 choice sets are given by
(F, F+gs, F4+g3, F+g4, F+gs), where the addition is done component-wise modulo
2. The choice sets are given in Table 5.7, where the choice sets are represented by the rows.
The B matrix has one row for each of the 9 main effects and 80 columns for the treatment
combinations. This matrix is normalized by dividing the entries by v/2°. The 'y, matrix

for these choice sets is %51'9, and the design is therefore 100% efficient. O
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Table 5.7  Optimal Choice Sets for Estimating Main Effects Only for m = 5 and & = 9.

F F+ge F+gs F+gy F+egs

000000000 000000111 111111000 000111111 [RRRRRRRE
000101001 000101110 111010001 000010110 111010110
001011100 001011011 110100100 001100011 110100011
001110101 001110010 110001101 001001010 110001010
010010010 010010101 101101010 010101101 101101101
010111011 010111100 101000011 010000100 101000100
011001110 011001001 100110110 011110001 100110001
011100111 011100000 100011111 011011000 100011000
1000001 T 1 100000000 01111111 100111000 011111000
100101110 100101001 011010110 100010001 011010001

101011011 101011100 010100011 101100100 016100100
101110010 101110101 010001010 101001101 010001101
110010101 110010010 001101101 110101010 001101010
110111100 110111011 001000100 110000011 001000011
111001001 111001110 000110001 111110110 000110110
111100000 FTHHT00T1T] 000011000 111011 EH 000011111

5.2.2 The Model for Main Effects and Two-Factor Interactions

To estimate main effects plus two-factor interactions in paired comparisons, a construction
is given in Lemma 4.2.1. It starts with a resolution 5 (or greater) fraction of the complete
2% factorial and a set of generators. The set of generators needs to satisfy two conditions:

1. For each attribute, there must be at least one generator with a 1 in the corresponding
position (to estimate main effects);

2. For any two attributes there must be at least one generator in which the corresponding
positions have a 0 and a | (to estimate the two-factor interactions).

These sets of generators are added to the fraction to obtain near-optimal pairs. This method
can easily be extended to obtain near-optimal choice sets of size m.

Let G5 = (81,825, ---.8mj)> where g1; = 0, be binary k-tuples which we will call
generators. Let v; = (dy;,daj, . . ., dym—1y/2,;) be the difference vector consisting of all
the pairwise differences between the generators in G;. The possible v; vectors are those
difference vectors determined in Theorem 5.1.2 for an optimal design for the particular
values of m and k. Thus the G; are not unique, and several different near-optimal designs
are possible. The construction of the choice sets proceeds as follows:

1. Start with a resolution 5 (or greater) fraction F of the complete 2% factorial design.
Let F have 2°~P treatment combinations.

2. Add the the elements of the set of generators, G, to F', where the addition is done
component-wise modulo 2, to form 257 choice sets of size m.

3. Repeat step 2 to form another 257 choice sets of size m, until all main effects and
two-factor interactions can be estimated. Thus for each attribute there must be at least
one generator with a 1 in the corresponding position (to estimate main effects) and,
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for any two attributes, there must be at least one generator in which the corresponding
positions have a 0 and a 1 (to estimate the two-factor interactions). )

The number of times that step 2 is repeated will depend on the number of attributes and the
choice set size. In some cases step 2 is only repeated once; so the number of choice sets
required in this instance for a near-optimal design is 25—P+1,

B EXAMPLE 5.2.2

Let m = 3 and k = 4. There are no fractions of the 2 factorial which are resolution 5; so
we must use the 16 treatment combinations from the complete factorial. These treatment
combinations are given in the first column of Table 5.8. In Example 5.1.9, the difference
vectors for the optimat designs are (2, 2,2) and (2, 3, 3); so g2; and g3; must be chosen so
that the difference vector for G; is either (2, 2,2) or (2, 3,3). We choose

Gi = (O,gzl,ggl) = (0000, 1100,0110) with vy = (2,2,2)

and form 2¢ = 16 triples by adding the elements of G; to F'. From these we can estimate
all the main effects and two-factor interactions except the main effect of the fourth attribute.
So we repeat step 2 adding

Gy = (0, g22,gs2) = (0000,1100,0111), where vs = (2,3,3),

to F to get an additional 16 triples. If we use 3 only then the two-factor interaction
between attributes 3 and 4 cannot be estimated. With both G and G, all main effects and
two-factor interactions can now be estimated; so we have no need to generate any more
triples. The 32 triples shown in Table 5.8 form a design with

det(Crrr) = (%)8 (%)2

From Example 5.1.9, the maximum value of the determinant is

1\1°
det(Copt,MT) = (%) .

Thus the design in Table 5.8 is 96.73% efficient and is therefore near-optimal. This design

is much smaller than the optimal design in Example 5.1.9 which consists of 160 triples. [

5.2.3 Dominating Options

If all the binary attributes involved in an experiment have ordered levels, so that 1 is
preferred O, say, by all respondents, then we see that 000 . . .0 will never be chosen in any
choice set in which it appears and 111 ...1 will be chosen in every choice set in which it
appears. For the estimation of main effects it is not possible to have choice sets in which,
effectively, only a subset of the k attributes are involved and the remaining attributes have
the same levels for all options in the choice set. So provided we work with a fractional
factorial which does not contain 000...0or 111...1 and do not add any generator which
results in either of these two treatment combinations then dominating alternatives are not
an issue in this situation.

If we want to estimate main effects and two-factor interactions optimally, then we will
need to consider fractions and sets of generators on a case-by-case basis. For example, for
the triples in Table 5.4 we see that only 2 of the 8 triples with difference vector v3 do not
have a dominated or dominating option and that 12 of the 24 triples with difference vector
vo do not have such an option.
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Table 5.8  Near-Optimal Choice Sets for Estimating Main Effects and Two-Factor
Interactions for rn = 3and k = 4.

F F4+gan F+gs: F  FHgo Figs
0000 1100 0110 0000 1100 O11t1
0001 110t 0111 0001 1101 0110
0010 t110 0100 0010 1110 0101
0011 1111 0101 0011 1111 0100
0100 1000 0010 0100 1000 0011
0101 1001 0011 0101 1001 0010
0110 1010 0000 0110 1010 0001
0111 1011 0001 0111 1011 0000
1000 0100 1110 1000 0100 1111
1001 0101 1111 1001 0101 1110
1010 0110 1100 1010 0110 1101
1011 0111 1101 1011 0111 1100
100 0000 1010 1100 0000 1011
101 0001 1011 1101 0001 1010
1110 0010 1000 1110 0010 1001
1t11 0011 1001 1111 0011 1000

5.2.4 Exercises

1. Let k = 6 and m = 3. Using Theorem 5.2.1, find a set of triples that is optimal for
estimating main effects.

2. Let k = 5 and m = 5. Find a choice experiment in which all main effects and
two-factor interactions can be estimated.

5.3 REFERENCES AND COMMENTS

Most of the results in this chapter originally appeared in Burgess and Street (2003). Readers
can find software to construct choice sets from an initial factorial design and sets of gen-
erators, as well as calculate the corresponding information matrix and variance-covariance
matrix, at the following website: http://maths.science.uts.edu.au/maths/wiki/SPExpts.

The need for designs that perform well but have a smaller number of choice sets is partly
a cognitive issue (see Iyengar and Lepper (2000), Schwartz et al. (2002), and [yengar et al.
(2004)), and partly a cost issue.
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CHAPTER 6

DESIGNS FOR ASYMMETRIC
ATTRIBUTES

In this chapter we extend the results of the previous two chapters from binary attributes to
attributes with any number of levels. There is no requirement that all the attributes in a
particular situation have the same number of levels.

We begin by considering an example of a choice experiment with asymmetric attributes
from Maddala et al. (2002).

B EXAMPLE 6.0.1.

There are 6 attributes with 3, 4, 5, 3, 5, and 2 levels, respectively, in a choice experiment
examining preferences for HIV testing methods. The attributes, together with the attribute
levels, are given in Table 6.1, and one choice set from the study is given in Table 6.2. Each
respondent was presented with 11 choice sets and, for each of these, was asked to choose
one of two options. The respondents were all surveyed at HIV testing locations and so a
forced choice experiment was appropriate. O

Thus we are considering the design of experiments in which options are described by
k attributes and the gth attribute has £, > 2 levels. The choice sets may have any number
of options, denoted by m > 2, although all choice sets in a particular experiment have all
choice sets of the same size, choice experiments in which choice sets may have different
sizes, and the optimal choice set size, are considered in Section 7.2. Once again we are
only considering forced choice experiments; choice experiments in which “none” is an
option are considered in Section 7.1.1. Throughout this chapter, we assume there are &
attributes, that the gth attribute has ¢, levels whichare 0,1,.... 6, —1forg=1..... k and

that L = H:Zl ¢, is the number of possible treatment combinations.

The Construction of Optimal Stated Choice Experiments. By D. J. Street and L. Burgess 167
Copyright © 2007 John Wiley & Sons. Inc.
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Table 6.1  Attributes and Levels for the Study Examining Preferences for HIV Testing

Methods

Attribute

Attribute Levels

Location

Doctor’s office
Public clinic
Home

Price

$0
$10
$50
$100

Sample collection

Draw blood
Swab mouth
Urine sample
Prick finger

Timeliness/accuracy

Results in 1-2 weeks; almost always accurate
immediate results; almost always accurate
immediate results; less accurate

Privacy/anonymity

Only you know; not linked
Phones; not linked

In person; not linked
Phone; linked

In person; linked

Counseling

Talk to a counselor
Read brochure and then taik to counselor

Table 6.2 One Choice Set from the Study Examining Preferences for HIV Testing Methods

Attribute Option A Option B
Location Doctor’s office Public clinic
Price $100 $10

Sample collection ~ Swab mouth Urine sample

Timeliness/accuracy Results in 1-2 weeks; immediate results;

almost always accurate less accurate
Privacy/anonymity  In person; not linked  Only you know; not linked
Counseling Talk to a counselor Read brochure and then talk

to

counselor

Suppose that you have already narrowed down your choice of HIV testing
methods to the two alternatives above.
Which of these two would you choose? (tick one only)

Option A O Option B O




DIFFERENCE VECTORS 169

In Chapter 5 we defined a difference vector which did not differentiate between the at-
tributes since all attributes had two levels. For asymmetric attributes, we define a difference
vector which records the differences by attributes. We then derive a general expression
for the information matrix A and use that to determine the optimal designs for estimating
main effects only. We do not determine the optimal designs for main effects and two-factor
interactions, but we do give an expression for the determinant (to allow comparison of
designs), and some tables giving the optimal designs for small values of &, m, and £,
q=1,... k.

6.1 DIFFERENCE VECTORS

In Section 5.1.1, we defined a difference vector for choice sets in which all the attributes
had two levels. We now define the difference vector for a choice set with options described
by k asymmetric attributes with levels £1, 45, ..., f,. We are interested in the number of
attributes with equal levels and the number with different levels in the choice set, as this is
linked to how efficiently main effects and interaction effects can be estimated. In a choice
set of size m there are (’,:,Z) pairs of options (or treatment combinations) in the choice
set and we record the pairwise differences between the attributes in a difference vector.
For example, for treatment combinations 2401 and 1403, the levels of the first and fourth
attributes are different while the levels of the second and third attributes are the same. We
write this difference as 1001. Thus each entry in the difference vector is a binary k-tuple
which indicates whether the levels of the attributes are the same or different. (When all
attributes are binary we merely record the sum of the entries in each k-tuple and not the
k-tuple itself; see Section 5.1.1.) We assume that all choice sets with a particular difference
vector are cither all in the experiment or none of them is included.
In general, fet

v = (dy,dy,....dpn-1)/2)

be a difference vector, where

d, =iyig...ip forr=1,2,....(7)

and

1 if the levels of attribute ¢ are different in the rth pairwise
P comparison of two treatment combinations in the choice set,
g =

0 otherwise.

Since we can write the treatment combinations in the choice set in any order, the order
of the comparison of pairs of treatment combinations is not important; so we assume that
any difference vectorhasdy < dz <--- < dpyn_1)/2-

M EXAMPLE 6.1.1.

Suppose m = 3 and that there are & = 2 attributes with levels £; = 2 and ¢, = 3. We
consider the attribute differences in all the pairwise comparisons of treatment combinations
in the choice set (00,10,12). The first and second treatment combinations have the first
attribute different and the second attribute the same; so that entry in the difference vector
is d1=10. The first and third treatment combinations have both attributes different; so
that entry in the difference vector is dy=11. When comparing the second and third
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treatment combinations, only the second attribute is different; so the final entry in the
difference vector is d3=01. Thus the difference vector for choice set (00,10,12)is v =
(d1,d2, d3)=(10,11,01) which we write as v = (01,10, 11).

d1=10, d3=01
A
00,10, 12
do=11

Choice sets (00,10,12) and (01,02,11) have difference vectors (10,11,01) and (01,10,11),
respectively. These difference vectors are considered to be the same, since we can reorder
the options in a choice set, and both are written as (01,10,11). However, the entries 01 and
10 in the difference vector denote which factor is different and are not considered to be the
same. In Table 6.3 we list all the (g) = 20 choice sets of size 3 (or triples) together with
the corresponding difference vector. 0

Table 6.3 All Possible Choice Sets whenm = 3,k = 2,41 =2,and {3 = 3

Choice Set Difference Vector Choice Set Difference Vector
(00,01,02) (01,01,01) (01,02,10) O1,11,11)
(00,01,10) 0L,10,11) (01,02,11) 0L10,11H)
(00,01,11) (01,10,11) (01,02,12) (01.10,11)
(00,01,12) (01,11,11) 01,10,11) (01,10,11)
(00,02,10) (01,10,11) (01,10,12) OL11,1D)
00,02,11) (01,11,11) (01,11,12) (01,10,11)
(00,02,12) (01,10,11) (02,10,11) (01,11,11)
(00,10,11) (01,10,11) (02,10,12) (01,10,11)
(00,10,12) (01,10,11) (02,11,12) 01.10,11)
00,11,12) (01,11,11) (10,11,12) (01,01,01)

We now establish the upper bound for the sum of the differences in a difference vector
for attribute g.

B THEOREM 6.1.1.
For a particular difference vector v, for a given m, the least upper bound for the sum of
the differences for a particular attribute q is

(m? -1)/4 £, =2, modd,
S - m?/4 £, = 2, m even,
7 (m?—(fex?+2zy+y))/2 2< €< m,
m{m —1)/2 £y >m,

where positive integers T and y satisfy the equation m = £,x 4y for 0 < y < £,.

Proof. The upper bound for the sum of the differences for two-level attributes for m odd
and even has been established in Lemma 5.1.1. When £; > m, there are enough levels
of the factor so that the level can change in each treatment in the choice set. There are
(3) entries in the difference vector and, in this case, each entry will be 1. Therefore the
maximum sum of the differences is (7).
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When 2 < £, < mn, we write the treatment combinations in the choice set as the rows
of an m x k array. Suppose that, in column ¢ of this array, p; of the entries are 0, py of the
entries are I, and so on until p,, of the entries are £, — 1, where Zf;l p; = m. By looking
at the pairwise differences between the entries in column ¢, the contribution to the sum of
the differences Sy is

b-1 ¢,

[
Z ZPIP]Z%Z m— P1 =

i=1 j=i+1

[T

-

We wish to maximize (m? ~ 21 , P?)/2 subject to the constraint 21 1 pi = m, and we
do this by minimizing Zf;[ p?.

Now the global minimum has p; = m/€,. Suppose m = £,z + y. Then
by pss are equal to [m/f,] =«

and
by pis areequal to [m/¢, | + 1

where by + by = #4. Thus
box +y=m=bix + balx + 1).

- -, .
Hence by = y and by = {, — y, and the minimum value of 3_,%, p? is

[?'7
ZP? = b2’ + bz +1)° = £,2” + 22y + .

i=1
Hence, for column (or attribute) ¢, the maximum contribution to S, is
(m? - (£oe? + 22y +y))/2 where m = (,x +y. ]

H EXAMPLE 6.1.2.

Let m = 3 and & = 2 with #/; = 2 and £; = 3. Considering Table 6.3, we see that the
possible difference vectorsare (01,01,01) with .S} = 0+0+0=0and S; = 1+1+1 = 3;
(01,10,11) with §; =0+ 1+1=2and So = 1 +0+1 = 2;and (01,11,11) with
Si=0+1+1=2and Sy =1+1+1=23. Using Theorem 6.1.1, the upper bound for
the attribute with two levelsis S; = (m? — 1)/4 = 2 and for the attribute with three levels
Sy = m(m — 1)/2 = 3. Only the difference vector (01,11,11) achieves the upper bound
for both attributes. A

B EXAMPLE 6.1.3.

Let m = 4and k = 2 with £; = 2 and 43 = 3. All possible choice sets and corre-
sponding difference vectors are shown in Table 6.4. The possible difference vectors are
(01,01.01,10,11,11) withS; = 0+04+0+1+1+1=3and So = 1+1+14+0+1+1 =5,
(01,01,10,10,11,11) with Sy = 0+0+1+1+1+1=4and So = 1+14+04+0+14+1 = 4;
{01,01,10,11,11, 1) with S; = 0+0+1+1+1+1 =4and Sy = 1+14+0+14+1+1 = 5.
Using Theorem 6.1.1, the upper bound for the attribute with two levels is §; = m?/4 = 4.
Now 2 < £, < m so we solve 4 = 3z + y forx and y. Thus z = y = 1 and the upper
bound for the attribute with 3 levels is Sy = (m? — (£,2% + 2zy + y))/2 = 5. Only the
final difference vector achieves the upper bound for both attributes. a



172 DESIGNS FOR ASYMMETRIC ATTRIBUTES

Table 6.4 All Possible Choice Sets whenm =4,k =2,¢; =2,and 2 = 3

Choice Set  Difference Vector Choice Set  Difference Vector
(00,01,02,10) (01,01,01,10,11,11) (01,02,10,11) (01,01,10,11,11,11)
(00,01,02,11) (01,01,01,10,11,11) (01,02,10,12) (01,01,10,11,11,11)
(00,01,02,12) (01,01,01,10,11,11) (01,02,11,12) (01,01,10,10,11,11)
(00,01,10,11) (01,01,10,10,11,11) (01,10,11,12) (01,01,01,10,11,1D)
(00,01,10,12) (01,01,10,11,11,11) (02,10,11,12) (01,01,01,10,11,11)
(00,01,11,12) (01,01,10,11,11,11)
(00,02,10,11) (01,01,10,11,11,11)
(00,02,10,12) (01,01,10,10,11,11)
(00,02,11,12) (01,01,10,11,11,11)
(00,10,11,12) (01,01,01,10,11,11)

For particular values of m and k, there are usually several difference vectors. We denote
these by v; and add a subscript j to the previous definitions of the difference vector entries.
Thus

V= (d1j1 d?jv LR dm(m-—l)/2,j)v

where d,; = 41ip...0; and i5= 1 or O as before. As we said above, in this chapter we
restrict the set of competing designs so that all the choice sets with a particular difference
vector appear equally often.

As in Section 5.1.1, we define four scalars that are needed subsequently.

1. ¢y, is the number of choice sets containing the treatment 00. . . 0 with the difference
vector v;.

2. Zy,.q is the number of times the difference d appears in the difference vector v;.
Then 3" @v,.a = (7). since this is the total number of entries in v.

3. iy, is an indicator variable, where

0 if no choice sets have the difference vector v;,

i =1 1 ifall the choice sets with the difference vector v; appear

in the choice experiment.

At least one of the i, values must be non-zero, otherwise the experiment contains
no choice sets.

4. ay, = v, /N.

Using these definitions we see that the total number of choice sets, N, is given by

L .
N=— E Cv,lv,.
m &
J

N EXAMPLE6.1.4.
Letm = 3, k = 2 with £, = 2 and {2 = 3. Using all treatment combinations from



the complete 2 x 3 factorial, there are (§) = 20 distinct choice sets of size 3, two with
difference vector vi = (01,01, 01), 12 with difference vector vo = (01,10, 11} and 6 with
difference vector vz = (01,11,11). Table 6.5 is Table 6.3 reordered to show all the choice
sets associated with each of the difference vectors. Consider the choice sets containing the
treatment combination 00: (00,01,02) with difference vector vy; (00,01,10), (00,01,11),
(00,02,10), (00,02,12), (00,10,11)and (00,10,12) with difference vector va; and (00,01,12),

DIFFERENCE VECTORS

(00,02,11) and (00,11,12) with difference vector vs. Thus we have

v, =1, ¢y, =6, and ¢y, = 3.

Now we consider the v :q values. For vy the only possible value of d is 01, which appears

3 times; 50 Tv,.01 = 3. The xy,,4 values are given below.

Typ:01 = 3 Tpyi01 = 1
Ty:10 = 0 Tyy 10 = 1
Tyq1 =0 Tyy;11 = 1

devlzd =3 deV2:d =3

Lys:01 =1
Tyyi10 =0
Tyyi11 = 2
de\'s:d = 3.

Table 6.5  All Possible Triples when k = 2, £; = 2, and ¢2 = 3 Sorted by Difference Vector

vi = (01,01,01) | v2 = (01,10, 11)

va = (01,11,11)

(00.01,02) (00.01,10)
(10.11.12) (00,01,11)
(00,02,10)
(00,02,12)
(00,10.11)
(00,10.12)
(01,02,11)
(01,02,12)
(01,10,1H
(01,11,12)
(02,10,12)
(02,11,12)

(00.01,12)
(00,02,11)
(00.11,12)
(01,02,10)
(01,10,12)
(02,10,11)

6.1.1 Exercises

1. Give all the choice sets of size 3 when k = 2, £; = 2, and ¢5 = 4 and give the values

of ¢y, and 7y, 4.

2. Letm =2,k = 3,0, = 2, €5 = 3, and €3 = 4. Find the values of S, S5, and S3.

Find all the possible values of v and of ¢,,.

3. Letm =3,k =3,4, =2, ¢, = 3, and 3 = 4. Find the values of S, S, and S3.
Find all the possible values of v and of ¢,.. (Hint: You do not need to find all (2;)

triples with 000 to do this. Instead try counting differences.)
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6.2 THE DERIVATION OF THE INFORMATION MATRIX A

The class of competing designs consists of all designs in which all choice sets with a
given difference vector are either all included in the choice experiment or none of them is
included.

The matrix of contrasts is unaffected by the choice set size. However, we need to derive
the appropriate A matrix.

From the results in Equations (3.4) and (3.5), we know that if we assume that

m=mg=---=7 =1

(that is, all items are equally attractive, the usual null hypothesis), then

In<ia < o L,
and
Ai1,i2 = ‘;@1—2‘ ) Z . Ail,ig """" it
13<ig < <l
where
Aig gy = mﬁﬁ
and n;, i, ,...4, indicates whether or not (15,,T5,,...,T;, ) is a choice set in the choice

experiment. Thus the diagonal entries of A are (m — 1)/m? times the proportion of choice
sets containing the treatment combination 73, and the off-diagonal entries are 1/m? times
the negative of the proportion of choice sets containing both 73, and 73,.

In Section 4.1.1, the general form of the A matrix for m = 2 was given as a linear
combination of the identity matrix of order 2% and the Dy, matrices. We want to do
something similar here. The general form of A is a linear combination of the identity
matrix and some D matrices. Now, however, the D matrices need to indicate which
attributes are different, not just that v attributes are different.

We define Dgq to be a (0,1) matrix of order L with rows and columns labeled by the
treatment combinations, and with a 1 in position (z, y} if the attribute differences between
treatment combinations = and y are represented by the binary k-tuple d.

Ingeneral, Dg = M;, @ M;, ® --- ® M;,, where

and Jy, is a matrix of 1s of order Z,.

M EXAMPLE 6.2.1.
Letm = 3,k = 2,¢; = 2,and £; = 3. The treatment combinations are 77 = 00, F; = 01,
13 = 02,14 = 10,15 = 11, Tg = 12. From Example 6.1.4, we see that the distinct d,,
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entries are 01, 10, and 11; so we need Dgy, D1g, and Dq;.

Dy

fl

i

My R M,

If1®(‘]?2_]€2)

Iy (Ja—I3)

[ Js — I3 0

| 0 J3-L
[0 1 1 0 0 0
1 01 0 0 0O
1 1 0 0 0 O
0 0 0 0 1 1
0 0 0 1 0 1
10001 10

This matrix tells us which pairs of treatment combinations have difference 01. Thus we
are considering all the pairs where the first attribute is the same and the second attribute is
different. For example, the (2,3) position is 1, which means that the treatment combinations
15 = 01 and 15 = 02 have a difference of 01. Similarly,

Dig

and

M ® My
(Jfl - ]fl) & 152
(Jo— L) ®I3

[0 I3
| Is 0
[0 001 00
000010
000001
1 00000
010000
|0 0100 0
M, @ M,

(‘]51 - 151) & (‘]52 - Ifz)
(Joa— L) @ (J3 — I3)

0  Jz—1Is
| J3s—1I3 O

o 0 0 0 1 1

0001 01

0001 10

011000

101000

|11 00 00 a

In the following lemma we give the general form of the A matrix for any choice set size

for asymmetric attributes.
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B LEMMA 6.2.1.
Under the usual null hypothesis

m-—1

1
A= 3 21y - mzydl)d
d

where

2
Ya= ——p———— D Cv,0v,Tv,d
qu=1 (g —1)% ; 7

and k
Z = ch]‘aw = El—_l Z(H(&l - 1)iq)yd'
Kl d g¢=1

The summations over j and d are over all possible difference vectors v; and all distinct
difference vector entries d, respectively.

Proof. The diagonal elements of A are

m-—1
Ay, = 2 § Aisigeeovim

m* )
<ig< <t
where

iy ,da,...,10
Misigooim = o
+ if (T, 1y, ., Ty, is a choice set
in the choice experiment,
0 otherwise.

Il

Summing the A, ;,,.. overis, ..., Im, We get

Slm

the number of choice sets containing T,
Z Ail,iz,....im - N

fg<ig < <im
Z] Cv;lv,

a N
= Z Cyv;Gv;.
J
= z
Then the diagonal elements of A are

m—1
m2

Z.

Now the off-diagonal elements of A are

1.
Ay = ——5 > Aiig,.oi
i3 <ia <o <im
1 9 number of choice sets in which 1}, & 73, appear together
m2 N '
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In order to calculate the number of choice sets in which 13, and 7}, appear together, we
first need to calculate the number of pairs in the experiment with difference d. If choice
sets with difference vector v; are in the design, then each treatment combination appears
in ¢y, choice sets with difference vector v; and zv.q of the differences are equal to d.
Altogether there are L treatment combinations, and each treatment combination can appear
in any of the m positions in the choice set. Thus the total number of pairs in the choice
experiment with an attribute difference of d is

L
— Cv, by, Ty, d- (6.1)
m

Consider any treatment combination t. To construct another treatment combination
with difference d from t, we must include the same level for all attributes corresponding
to iy = 0in d, while if 7, = 1, then any of the other (¢, — 1) distinct levels can be used.

So. in total, there are
k

11 -1

g=1
treatment combinations with difference d from t. If we consider the L treatment combina-
tions, the number of pairs with an attribute difference of d is

1 .
EL x (the number of ways difference d can occur) = 1Y%,

[ VR
t~
=
H:?r
N
—
[y
=]

Each of these pairs appears in the choice experiment the same number of times, say r4.
Then the total number of pairs in the choice experiment with attribute difference d can also
be expressed as

k
1 i
5L I - v)ira. (6.2)

g=1

Equating (6.1) and (6.2), we get

k

1 z(, L § :

E H rq4 = % - Cv,lv, Tv;id-
g=1 J

So, if the proportion of choice sets in which each pair with attribute difference d appears is
Yd —= 7‘(1/]\«", then

L
1, — :
—LII 4 = TN Z Cvjtv, Tvyd-
= J

Thus

o

: 2
H(iq - l)z('yd - —7; Z‘va/av/,‘xv-;:d'«
J

from which we see that

y—-—-__z v o
T s Oy T,
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Then the off-diagonal elements of A are
> vaD
2 a YaLlq.

Hence we have established that

m—1 1
A= — 2l — WzydDd
d

as required.
Finally we establish that the row and column sums of A are equal to 0. Summing over
d we get

k
_TT%ZH(&I N 1)iqyd -W%Z%chja’v7xvj:d
d ¢=1 d J
= %3— chjavf vaﬂd
J d

2
= EE ZCVJ Qv (T;)
J

m—1
= ; a’V]
m—1
fuoemd m2 ,2:7
as required. O

H EXAMPLE 6.2.2.

Letm = 3, k = 2 with ¢ = 2 and ¢5 = 3. Assume that the choice sets in the choice
experiment are the ones with difference vectors vy and v3 only. Then the total number of
choice sets is N = 2 + 6 = 8 and we have

ty, =ly, =1 and 4y, =0
and hence
1 1
Oy, = Qvy = F = § and ay, = 0.

From Example 6.1.4 we have the ¢y, and x,,q values; now we need to calculate the yq
values.
Ford = i1i2 =01,

k
[t -v0e =@ -1 -1 =2-1°3-1)" =2

q=

—

FOI'd = ilig = 10,

=~

(fg— D= (6 — D) (-2 =2-113-1)0=1

Q
Il
-
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Ford = ilig =11,

k
M- =@ - -12=2-1)!3-1) =2

q

Then we have

and

Yo1

Yo

Y11

2
m (C"l a"l le 01 + cVzaV2IV2201 + CV:;G‘V.S 'TV:S 01 )

2

1 1
(1><—><3+6><0><1+3><§><1)

3x2 8
2
8',
2
mm(cvlavlmvl:lﬂ + CvyQy; Tvyi10 + Cuy Gy, Ty 10)
2 1 1
I1x-=x04+6x0x14+3x=x0
3><1(><8>< +6x0x14 ><8><)
0,
2
3(2 - 1)1(3 e 1)1 (cv‘aVICEVUU +Cv2(1rvz.77‘,2;11 + CVBH’V:;TV;:H)
2 (1><1><0+6><0><1+3><1><2)
3x2 8 8
2
3

Note that yq is the proportion of choice sets in which each pair of treatment combinations
with attribute difference d appears in the choice experiment. For example, there are no
pairs in the choice experiment with attribute difference d = 10 (thatis, y19 = 0). The pairs
with attribute difference d = 01 in the experiment are

00 01
00 02
11 12
01 02
10 12
10 11.

Each of these pairs appears in only two of the 8 choice sets in the experiment (that is,
Yo1 = 2/8). Similarly, the pairs with attribute difference d = 11 appear in two out of the
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8 choice sets in the choice experiment (that is, 11 = 2/8). For example, the pair 00,12
appears in choice sets (00, 01, 12) and (00, 11, 12).

Now that we have calculated the y4 and z values, we can use the Dq matrices given in
Example 6.2.1 to calculate the A matrix. In general we have

m—1 1
A= ey ZIL— R—E%:ydl)d'

Thus when & = 2 and m = 3 we have

2x4 1
A = o—Is— =(ynD D D
xR © 9(y01 o1 + Y10D10 + Y11 D11)
1
= =—[8lg-2Dy -2D
=5 1816 01 11]

§ -2 -2 0 -2 -2
2 8§ -2 -2 0 -2
1| -2 -2 8 -2 -2 0
™| 0 -2 -2 8 -2 -2
2 0 -2 -2 8 -2
-2 -2 0 -2 -2 8 O

6.2.1 Exercises

1. Let m = 2, k = 2, ¢, = 3, and 3 = 4. Find the A matrix for the pairs with
difference vector (11).

2. Letm =3,k =3,4, =2,¢; = 3and {3 = 4. Give the A matrix for the triples with
difference vector (011, 111, 111). Give the A matrix for the other possible difference
vectors in this case.

6.3 THE MODEL FOR MAIN EFFECTS ONLY

In this section, we evaluate the information matrix for estimating main effects only and use
this to determine the optimal choice experiment for asymmetric attributes using choice sets
of size m.

We let Bjps be the normalized contrast matrix for main effects and we let Cpy be
the information matrix for estimating main effects only. Thus Cpy = BasABj, is the
E:=1(€q —-1) x Z§=1(€q — 1) information matrix.

We let B, be a normalized contrast matrix for main effects for a factor with £, levels.
Then a normalized contrast matrix for main effects fora £; x 5 x - - - x §; factorial is

B0 8, 0 5 .
\/—ﬁ.]gl &® Bt’g K& \/_ZTJek
By = )

T, ® e, ® - ® By,

B EXAMPLE 6.3.1.

Letm =3,k = 2,4, = 2,and ¢, = 3. Then the contrast matrix for the main effect of the
first attribute is ]

BgI:Bgz[_T;

N
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and for the second attribute is

- o i
V2 V2
Be, = B3z =
Ao=2
Ve V6 VB
Then
B © -Ly
F}]\] == 1[1 st \(g:_?"ér‘)
i W"fl wB(z
I -1 1 1
[ % 7 }@—ﬁ[ 11 1]
- 1 1A
= -z Y 7
V2 [ b ] ® 1 -2 1
L Ve V6 VB
B e T T G
V6 V6 VB VB V6 VB
. 1 1 1
= -z 0 3 -3 0 3
1= 1 1 =1 1
L 2v3 V3 2V3 23 V3 23 d

Although B; is uniquely determined, up to a change in the order in which the rows and
columns are written down, this is not true if £, > 3, as the next example shows.

B EXAMPLE 6.3.2.
Let /, = . Then here are three quite distinct possibilities for By:
-3 -1 _1_ 3 =l =1 1 L
2v5  2VE 2V5 2V 2 2 2 2
1 =1 -1 1 =1 1
: 7 3 3 |i|wow V0
=L 3 =3 _1 0o o =L L1
2v5 25 2VE 2VB V2o V2
-1 -1 1
and 1 | —1 1 -1
1 -1 -1 1

The first matrix consists of the linear, quadratic and cubic contrasts, which are given in
Exercise 2.1.4.6. When there is interest in particular contrasts between the levels of an
attribute, then contrasts such as those in the second matrix can be used. The contrasts
in the third matrix represent the main effects and two-factor interaction of two 2-level
pseudo-factors (see Section 2.2.3). ]

We will see subsequently that the choice of B can have an effect on the form of the
matrix but not on the cfficiency of the design.

If ¢, is the product of ¢, and ¢;, say, then one easy way to get a contrast matrix By,
is to take the Kronecker product of the matrices f3,, (with the constant row adjoined) and
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B, (with the constant row adjoined) and then discard the constant row to get the required
matrix. The following example illustrates this construction.

B EXAMPLE 6.3.3.

Suppose that £; = 2, /3 = 3 and 3 = 6. Then we can get the matrix Bg by discarding the
first row of the matrix

rL L i 1 1 1 7
V6 V6 V& VB VB VB
1 1 1 1
L1 -z 0 5 =3 0 3
IR I Vi VB VB 1 =1 _1i_ 1 =1 _1_
V2 V2 -1 o 4 W3 V3 W3 23 VB 23
K| —= =
=1 1 v V2 =1 =1 =1 1 1 1
V2 2 1 2 Ve V6 V6 VB VB VB
Ve VB VB
1 1 1
S N
=L 1 =1 _1_ =1 _1_
L 2v3 V3 2v3 2vV3 V3 23 ]

In the following lemma, we derive an expression for Bys Dy B}, for attribute ¢; this
result is then used to obtain the block diagonal matrices of C; for each attribute and an
expression for det(Chys).

WM LEMMA 6.3.1.
The (£, — 1) x (€ — 1) block matrix of Bys Dg B, for attribute q is

and Je, is a matrix of ones of order ¢,.
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For a particular attribute difference d,

BZ\IDdB?\]

BMU\[“ o2 f\[,g R AI”]B?\[
[ Be. © 22, @ ® e,

1 s Ly
_.__.Je §§\B[ R & va
e 2 VTS VAL @ My, - ® M, BY,

it @ i, ® - ® By,
BeMy, © pli, M @ - & e Ms,
Trde, Miy @ B, My @ -+ @ =5, M,

—\/%j}lf\fz'l ® \/_17’;.]/[2]\{2'2 ® - ® By, M,

B, & i M, o0 o M
\/—Tl‘]%l]\[“ W‘Vl ® Bg,zj\fizBég R R #J/ﬁ M;, \/;E_jh

—rde, MicFies ® Fdte, My de, © - @ Bo Mi, By,

If M;, = I, then

and

I I 1. . 1
—=jp, M, —=je, = —Jede, =7 xlg=1
q

Ve Vi b by

g4 ! —_— / —
By, M, By = By, 1o, B;, = Ir, 1.

If ]\[7',’ = ng — ng, then

and

1., 1
—jr M; —=] = =, (Jo —I¢)j
\/(i—q.]f,, iy \/Z;JZ'I gq.]liq( £, f,,).leq
1., . 1
= (G, Jeie)— —Gh 3
7 (3%, e, de,) gq(Jg,,M,,)
1
= 7. (2 —¢y)
= fy-1

Bp,] A[jq B;{q ng(ng — ]gq)B;q
= By, Ji,Bi, — B, B,

0-1;

= —I¢ -1

183
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Hence
o I, ifig=0,
Be, M, By, = { ~Ip, ifig=1
= (-7,
and
1, 1 1 ifig=0
——- M‘ —_- — . ‘q )
N/ A { bg—1 ifig=1
= ({g - 1)iq

Now the (£, — 1) x (£, — 1) block matrix of Bas Dq B} for attribute ¢ is

1 1,
\/—J&ALL \/—J31®J€2A[lz \/?;J52®~~'®B37M BZ ®-® \/—JekMur \/——J(’H

. 1 s 1
where there is one By, M;, B{,q term and (k — 1) terms of the form ﬁ_];] M;, W‘M for
j=1,...,kij % q. Then for attribute g,

k

BMDdB$u=[ H (fj—l)i’}(—l)i"[gq_h

J=1.Jj#q

as required. o

Note that the proof did not depend on the specific form of the B matrix; see Exercise
6.3.1.2.

Also observe that the same argument used in the proof can be used to show that C},,- is
a zero matrix for any choice of By, and B;, as long as no contrast appears in both.

Using Lemma 6.3.1, for attribute ¢ we can calculate the block matrix of the information
matrix Be, AB;_that is relevant to the main effect for that attribute.

M LEMMA 6.3.2.
Under the null hypothesis, the block matrix of the information matrix for the main effect
of attribute q is given by

By, AB;, =#Xd:{yd[ ﬁ (¢; — 1) ][(Zq—l)i“ = (—1)1'«”1@,,_],

j=1.J#q
and the determinant of the information matrix Cag for all the attributes is then

. 2y—1

det(Car) = [ Qz{yd( ﬁ e —1)"7)[(4,—1)” - <-1)"“H

q=1 j=1.j#q
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k
m-—1 1 s , 1
ST m -1 {yd( (gf—l)]>}Bf,B€, - ZUde,DdB{
d j=1 d
| ’
=3 Z[Qd<H(€7—1)“>}]e,_1
d j=1
k . .
- Z[?}d( H ((j—l)z’>(-1)z'7:!fgq_1
d J=Lj#g
1 k
:7’,}52{“(*[(1_[(@'1)”) - v ] <4—1>“]}u .
d J=1 i=1.j%#q
1 k
—mz{w[ I «-v H(z “1 - (—1)“]}1,;,4
d J=1.j#q
For attribute g, the determinant of By, AkBéq is
0,1
,,,QZ i TT t6=0) |- 0 = 0]
J=1.j#q
Then the determinant of Cj; is
6,1
Bl l . _
det(CAI)ZH Z{ ( H (6; — 1)} >[(€q—1)’v - (~1)Zv]}
g=1 m? d i=1,j#g ]
B EXAMPLE 6.3.4.

Let m = 3,k = 2, ¢ = 2, and {5 = 3. Assume that the choice sets in the choice
experiment are the ones with difference vectors vy and v3 only. First we calculate Ca; by

evaluatin
¢ C}\[:BMABM.

We also calculate Cjy by using Lemma 6.3.2. The matrices A and B,y are given in
Examples 6.2.2 and 6.3.1, respectively. Then

Cyr = BuABj),
1
Lo o
= 0 ! ?
0 : 0 1

Alternatively, using Lemma 6.3.2 and the yq from Example 6.2.2, the (£; — 1) x (#; — 1)
block matrix of (' for the first attribute (that is, ¢ = 1) is
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=1;¢q
sl o
é—g:{yd = 1) [(31 - - (—1)“} }]l

+ y10(3- D2 - D! = (-1)]
F G- 11 - (—1)11}

2y10 + 4y11]

2
[(2x0)+(4x g)]

Ol ©Of = O

Similarly, the (£5 — 1) x (¢3 — 1) block matrix of Cjs for the second attribute (that is,

q=2)is

BsAB, =

Then, as before,

2

322{yd< II « —1)i’>[(€2—1)i2 - (—1)"2}}&2_1

j=1,j#2

gg{yd el—n“[(ez—l)” - (—1)"2”12

{ym(? - 1B -1 = (=11
+ y10(2 - (3= 1)° = (=1)7]
b -DE-1) - <~1>1]}12

ol

1
5{31101 + 3yulls

S5 2) + (3 x 2N

1
=1I.
62
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To find the D-optimal design, we must maximize det(C};), subject to the constraint

k
[T,=1 fqz/m = 1.

The following theorem establishes that the D-optimal design, for estimating main effects
only, is one which consists of choice sets in which the sum of the differences attains the
maximum value given in Theorem 6.1.1.

B THEOREM 6.3.1.

The D-optimal design, for estimating main effects only. is given by choice sets in which
there is at least one v; with a non-zero ay, (that is. the choice set is non-empry) and, for
each v; present, for each attribute g,

(m? —1)/4, by =2, modd,
g m?/4, £, =2, m even,
TCTY) (mP - (g 22y +y))/2, 2< £, <m,
m{m —1)/2, by > m,

where positive integers x and y satisfy the equation m = fox + y for 0 < y < £,. The
maximum value of the determinant of Cyy is given by

, 26,8, 17"
det((iopt-M H [7772[/ £y — I)J ‘

Proof. From Lemma 6.3.2,

0,—1
k k
det{Chs) = H m2 Z{yd( H £ —1) >[([ — 1) — (_])z,]}
=1 F=1.J%#q
Substituting
Ya = ——3—— Cy; Gy, Ty,\d
qu ¢ Z v
gives
k .
1 2H___ . (€~1)17
det(Chrr) = H[“‘EZ{ j i’#q J ,-
M m Hj=1(€j —1)¥
£,—1
X {(/qﬁ 1)iq - (_1)iqj| ZCv,(Iv,Iv,:d}
J
k €,—1
(b= )it = (=1)"
- H "ﬁz[ (5 —-1) ch7a"7xvy;d]
g=1 ;
k . ¢, —1
- 11220 (25) ) Do
B m?3 1-2, iy, Ty
g=1 d F
Now

Y iy ifig =1
1_(1 f) -
“ 0 if'ig = 0.
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So
. £—1
dei(Cyr) = H i 3 [ Do
k 20 o
— g
= qull G —1);{6”’“”’ dglxv’ d]
Since

Z Zv;.d = the number of differences for attribute g,
d,i,=1

det(Chs) is maximized when >4 ig=1%v;d is maximized ; this is achieved when

Z Ty;d = S

d,i,=1

Then the maximum det(Cy) is given by

Y o
_ q
det(copt,l\l) = qI;[l ms(eq _ 1) zj:cviav7 Sq
o -
2645,
- |5 3, —1NZCV7'V1
=11
_ £,—1
il 20,5,
- (11;11 m3(€ -1) LZ ey, by, ch7zv7
) }
ol | m2L(6, — 1)
since N = (L3, cv,iv,/m). a

The D-efficiency relative to the optimal design is calculated using the expression

det(Cn) )”p
Eff e
b= (det( Copt, M)

wherep = 3 (£, — 1), the number of main effects we estimate.

Ml EXAMPLE 6.3.5.

Recall that form = 3and k£ = 2 with £; = 2 and ¢; = 3, there are three difference vectors
vy = (01,01,01), vo = (01,10,11) and v3 = (01,11,11). Theorem 6.3.1 states that
the D-optimal design has choice sets in which the entries in the difference vectors sum to
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Sy = (m? —1)/4 = 2 forattribute 1, and S, = m(m — 1)/2 = 3 for attribute 2, and
20 N Y
wlCon) = |oatir] i)

m2L{f; ~ 1 m2L(¢; -2

2% 2x%2 2t 2x3x3 !
- {32><2><3><(2—1)} {32><2><3><(3—1)}
1\ /1\?
() (6)

Only difference vector v satisfies 51 = 2 and Sy = 3; so the D-optimal design consists of
the six triples, each with difference vector vs. All possible choice experiment designs are
given in Table 6.6. In this example the design consisting of choice sets from the difference
vector vy only has the maximum det(Chy) of (4/27)(1/6)2. The efficiencies of the other
designs are calculated relative to this maximum. Recall that the total number of parameters
to be estimated is

k
p=> (l-1)=@2-1)+(3-1)=3
g=1
Then, for example, the efficiency of the design consisting of choice sets with difference
vector v only is

1/3

det(Crr) 1177 ()42
Effp =1 _— =1 g = 76.31%.
p =100 Liet(copt.m] R EsTsE 6.31%

27

-3
—

s)

Choice sets with difference vector v; only, have an efficiency of 0 because the level of the
first attribute does not change across the options in the choice sets and therefore the main
effect cannot be estimated. O

6.3.1 Exercises

1. Letm =3,k = 3,0, = 2,0, = 3, and {3 = 4. Give the maximum possible
determinant of the information matrix for estimating main effects for this situation.
Find a set of choice sets that realize this maximum. Can you find fewer choice sets
that are just as good?

2. Show that Lemma 6.3.1 holds for each of the B matrices given in Example 6.3.2.

6.4 CONSTRUCTING OPTIMAL DESIGNS FOR MAIN EFFECTS ONLY

InTheorem 5.2.1 a construction for small optimal designs for two-level attributes for choice
sets of size m is given. A fraction of a factorial design is required as a starting design then
the choice sets are formed by adding one or more sets of generators. For an optimal design
for testing main eftects only, the generators must have a difference vector in which the sum
of the differences is the maximum.

Using the same method, we now give a construction for optimal choice sets of size m for
the estimation of main effects only for asymmetric attributes with two or more levels, using
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Table 6.6  All Possible Choice Experiments for k = 2, £ = 2,and £ = 3 whenm = 3

\Z! Tyy vy vy N S1 S2 | det(Cu) | Efficiency
in Design (%)
vi 1 0 0| 2 |0 3 0(%)? 0
va 0 1 0 12 |2 2| (&GP 76.31
v 0 0 1 6 [ 2 3 VLY 100
vi & v 11 01 14 |0 3 | (&N 75.90
63 /142
2 2
vi & va 1 0 1 8 |0 3| () 90.86
2 3
vo & V3 0 1 1 18 | 2 2 | (X&) 84.57
2 3
vivo&va | 1 1 1] 20| 0 3 (&) 83.20
2 2
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the complete factorial as the starting design. In order to do this, we need to consider the
magnitude of the differences between the attributes in a choice set rather than just whether
the attributes are different, as we did in the previous sections of this chapter.

In a choice set of size m there will be m(m — 1) differences in the levels of the
attributes between pairs of treatment combinations. Let e = (ejez ... ex) represent the
differences between one pair of treatment combinations. The differences are calculated
component-wise modulo £, for attribute ¢.

B EXAMPLE 6.4.1.
Suppose m = 3 and k = 2 with £; = 2 and 5 = 3. For the choice set (00, 10, 12) the
m(m — 1) = 6 differences are

00-10 = 10,
10-00 = 10,
00-12 = 11,
12-00 = 12,
10-12 = 01,
12-10 = 02.

For the first attribute, the difference O appears twice and 1 appears 4 times; for the second
attribute the differences 0, 1, and 2 all appear twice. O

In the following theorem we give a construction for optimal choice sets for estimating
main effects only.

M THEOREM 6.4.1.
Let F be the complete factorial for k attributes where the qth attribute has £ levels.
Suppose that we choose a set of m generators G = {g1 = 0,g2.....8m} such that

g # g; for i # j. Suppose that g; = (gi1.Gi2, ..., gik) for i = 1,....m and suppose
that the multiset of differences for attribute q {£(gi,q — Gizq) | 1 < i1,99 <, 4y # i}
contains each non-zero difference modulo £, equally often. Then the choice sets given by
the rows of F +gy, F 4+ ga, ..., F +gn, for one or more sets of generators G, are optimal
for the estimation of main effects only, provided that there are as few zero differences as
possible in each choice set.

Proof. Let Py, ., be an ¢; x £, (0,1) matrix, where there is a I in position (¢1,15) il
to —t) = €q. Thus
£,~1
Pro=1Ipand > Py e =Jo, = Lo,

e,=1

Now

P’lu'fl ® Pfg,&z X & P&‘P»A
indicates those combinations t and ty with to — ty = (cyea. .. ex), where all differences
are calculated component-wise modulo /.

We let o be the total number of times that e = (ejeq...ex) appears as a difference
between elements in . Thus we know that

Z}:"'ZZ"';%ZW

€i-1 €igt
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independent of e; for each e; # 0. We also know that

— mzN [(Z Zae> P£1,0®Pg2’0®...®}32k‘0)

_Z. . 'ZQE(Pflsex ®Pg,‘,'e2 [ ®P€k.ek)
e ®

where N is the number of choice sets in the experiment.

Consider
Yot = (L=l +Z DD GOk
€1 ek ey eitl €k
(€; = Dai + aip
=
fori=1,...,k Notethat ({; — Vajg = (fa — Daw == (g — Voo = .

Using the contrast matrix B)s from Section 6.3, it can easily be shown that the informa-
tion matrix, C = BasAB),. is a block diagonal matrix where the gth block diagonal for
attribute g is given by £yaqls,—1/(m?N). Now we wish to have as few zero differences
as possible. Recall that m = £,z + y where 0 < y < £;. Then we need to have y
entries which are repeated = + 1 times each and £, — y entries that are repeated z times
each. This gives (z + 1)ay + x(z — 1)(¢, — y) differences that are zero; so the number
of non-zero differences is m(m — 1) — (z + )zy — z(z — 1)(£; — ¥) = 25, where S is
defined in Lemma 5.1.1. So considering all the choice sets, the total number of differences
for attribute g is 25,N. We also know that each non-zero level of attribute g appears a,
times as a difference between elements of the sets of generators. Hence the total number
of non-zero differences for attribute ¢ is (¢ — 1)y, L.

Equating gives 2S,N = ({q — 1)ayL. Thus the coefficient of the gth block diagonal
matrix for the designs constructed in this way is

loog 25, .
miN (£, — 1)(]_[#(7 £;Ym?’
hence the designs are optimal by Theorem 5.1.1.

While the optimal designs have equal replication of all of the possible Kronecker products
of the P, designs in which the A can be written as a linear combination of the Kronecker
products of the Py, still give rise to information matrices in which the main effects are
independent of each other, as the next result shows.

Bl COROLLARY 6.4.1.
Bu(Ppy o, ® Poye, ® -+ Q@ Py, o, ) Bjy is a block diagonal matrix.

Proof. Using the method of Lemma 6.3.1, we have
Bu(Poye; @ Prae, ® -+ @ ng»ek)B;\[
Bl1 Pél,q Bgl & ﬂ—ngpég,e; \/—Jig SIRERY \/—.]gk Plk er \/E-Vk
\/27_361 Pe, ey \/—.)L’l 1Y Btzzpéz,ezBez @B \/r.)ek Pey e \/rJfk

\/L@—{j’fl Pll,el ﬁjfl & ﬁjérz P€2,52 J\/Z_;jfz R B(k Plfk,ek Bék



CONSTRUCTING OPTIMAL DESIGNS FOR MAIN EFFECTS ONLY 193

Now j; Py, e, = Jy, 80 #j’gq P, ., —\/l_g-—qu = land By F;, ., gives a matrix with the
p y

columns of B, permuted. So we get the required result. O

How do we go about using the construction in Theorem 6.4.1?7 There are probably many
ways of doing this but here is one technique which works. We begin by calculating the
values of 2 and y (where m = £,z 4 y) so we know that we have y values (between O
and Z, — 1) that are repeated = + 1 times each and (¢, — y) values which are repeated z
times each. We then partition the values between 0 and ¢, — 1 into two disjoint sets, one
containing y entries and the other containing the remaining (¢, — y) entries. There are (eu’)
ways to do this. For each partition we calculate the differences that arise from a vector
with m entries in which the entries in the set with y entries are each repeated » + 1 times
and the entries in the other set are each repeated x times. All such vectors have as few
0 differences as possible in the m(m — 1) differences. Next we partition the vectors into
sets based on the number of times each non-zero entry modulo £, appears as a difference.
We then choose how many vectors to take from each partition so that we have all non-zero
differences appearing equally often over the set of vectors chosen. If there are several
attributes, perhaps with different numbers of levels, then we must choose the same number
of vectors for each attribute. Once we have the vectors for each attribute then we can
calculate the entries for the sets of generators by choosing one entry from each vector for
each generator in such a way that no generator is repeated. A couple of examples should
make this clearer.

B EXAMPLE 6.4.2.
Suppose that k = 2, ¢1 = 2 and ¢, = 3, and that m = 3.

Since 3 = 2x 1+ 1,2 = y = 1 and we have two partitions for the first attribute,
where the entries in the first set are repeated twice and those in the second set are repeated
once. Hence the vectors for the first attribute are (0,0,1) and (0,1,1). Each of these vectors
has the difference O appearing twice and the difference 1 appearing 4 times. Based on the
differences, there is only one partition of the vectors.

Since 3 = 3 x 1, y = 0 and we have one partition, {0,1,2}, and hence one vector (0,1,2)
for the second attribute. Each non-zero difference appears three times in this vector.

To get equal replication of the non-zero differences, we need only choose one vector for
each attribute. Hence we calculate our generators by choosing the first position for each
of the three generators from (0,0,1) and the second position from (0,1,2). We have always
assumed, without loss of generality, that the first generator is gy = 0 = 00. So the other
two generators are Ol and 12, or 02 and 11. Thus the two possible sets of generators, G,
are (00,01,12) and (00,02,11). The choice sets that arise from these sets of generators are
given in Table 6.7. Notice that since the order of the options within each choice set and
of the choice sets within the experiment is immaterial; in this case both sets of generators
give rise to the same choice experiment, O

B EXAMPLE 6.4.3.
Suppose thatk = 2,46, = > = 4and m = 6.

Since 6 = 4 x 142,y > 0 and there are () = 6 partitions to consider where the
entries in the first set are repeated twice and those in the second set are repeated once.
Thus we get the following 6 vectors to consider: (0,0,1,1,2,3), (0,0,1,2,2,3), (0,0,1,2,3,3),
(0,1,1,2,2,3),(0,1,1,2,3,3), (0,1,2,2,3,3). We can partition these vectors into two sets based
on the differences between the elements of the vectors in each set. If we let

A= {(O-, 0, 1]23) (0,0, 172!313)7 (07 171v2,~2ﬂ3)$ (07132=2v373)}
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Table 6.7 Choice Setswhenk =2,¢1 =2, =3.andm =3

Option A Option B Option C Option A Option B Option C
00 01 1 2 00 0 2 11
0 1 02 1 0 0t 00 12
0 2 00 11 02 01 10
10 I 1 02 1 0 1 2 0 1
Il I 2 00 11 1 0 0 2
1 2 1 0 0 1 1 2 11 00
Design 1 Design 2

and
B ={(0,0,1,2,2,3),(0,1,1,2,3,3)},

then the differences from any vector in A are 0, which appears four times (as it should by
construction), 1 and 3, which appear nine times each, and 2, which appears eight times.
The differences from any vector in B are 0, which appears four times, 1 and 3, which
appear eight times each, and 2, which appears ten times.

We want to choose a set of partitions such that each non-zero difference appears equally
often. Suppose that we have z1 vectors from A and x5 vectors from B. Then the number
of times 1 appears as a difference equals the number of times that 3 appears and we need
only equate this to the number of times that 2 appears. Thus 9z + 8xo = 8x; + 10z5.
Solving we have x1 = 2z3 and so we let z; = 2 and 2 = 1. So for each attribute we
choose two vectors from A (possibly the same vector twice) and one vector from B.

Thus we could use (0,0,1,1,2,3) and (0,0,1,2,3,3) from A and (0,0,1,2,2,3) from B as
the entries in the generators for the first attribute and (0.1,2,2,3,3) and (0,0,1,1,2,3) from A
and (0,0,1,2,2,3) from B for the second attribute.

Now we need to pair up the entries from these sets to get the actual sets of generators
and we must do so without getting any repeated generator (g;) within a set of generators
(@), or any repeated set of generators. Recall that we prefer to have 00 as one generator
in each set of generators. So we could pair the first set from A for the first attribute with
the set from B for the second attribute to get the set of generators G1=(00,01,10,12,22,33),
pair the second set from A for the first attribute with the first set from A for the second
attribute to get the set of generators G9=(00,01,12,23,32,33), and finally pair the remaining
sets to get the set of generators G3=(00,01,10,21,22,33). These three sets of generators
give 48 choice sets of size 6 which are 100% efficient for estimating main effects. Pairing
in a different way gives another optimal design with three sets of generators;

G = (00,02,10, 11, 23,32),

G = (00,03,30,11,21,22),
Gs = (00,01,13,22,32,33),

for example.

Suppose instead that our initial vectors for each of the two attributes has the vectors
(0,0,1,1,2,3)and (0,0,1,2,3,3) from A, the vector (0,0,1,2,2,3) from B for the first attribute,
and vectors (0,1,1,2,2,3) and (0,1,2,2,3,3) from A and (0,1,1,2,3,3) from B for the second
attribute.
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Pairing, we can get the sets of generators
Gy =(00,01,11,12,22.33),

Gy = (00,01, 11,22,23,33),
G3 = (00,01,12,23,32,33),

which results in an optimal design. However, there are only 40 distinct choice sets and if
these alone are used, then the design is 99.99% efficient. It is usual to remove repeated
choice sets because their presence can confuse the respondents. The repeated choice sets
arise because there are three pairs with difference 22 (00 and 22; Ot and 23; 11 and 33).
Hence the differences 1 and 3 only appear four times and the difference 2 only appears
five times from this pairing. Since 1 and 3 appear eight times and 2 appears nine times as
differences from any vector in A this suggests that using either G; or G3, together with
(o, will give 24 sets which are 100% efficient (since each non-zero difference will be
represented 13 times over the two sets); this is indeed the case.

It is also worth noting that we can use different contrast matrices to calculate the C’, and
therefore C'~1, matrices. Although the structure of the C'~! matrices may be different, the
determinants, and hence the efficiencies, will be equal. If we use as By the contrast matrix
based on the orthogonal polynomial contrasts for the 40 distinct choice sets discussed in
the previous paragraph, we have

=3 -1 13
2v5 25 2VF 2V
. 1 —1 -1 1
Ba=1 3 7 7 3
=1L 3 =3 _1_
2v5  2vBE  2vBE  2V5
and r 7884 72 1
0o = o 0o 0 0
~72 7776
1 = 0 2 0 0 0
Co=1...
. 7884 =72
0 0 o - B o0
0o 0o o : 0o B 0
. ~72 7776
L 0 0 0 = 7 0 IF |

If, instead, we use the 22 factorial contrast for By (see Example 6.3.2), then

- -1
Bi=g| -1 1 -1 1
1 -1 -1 1
and -~ _
Zoo 0 : 0 0 O
0 1 o 0 0 0
0o o =2 0 0 O
-1
Oy = o . .
0 0 0 = 0 0
0 0 0 0o & o
L 0 0 0 0o o 220
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In both cases, the determinant of the C' matrix is 4.75099 x 10~ and the efficiency is
99.99%. 3

B EXAMPLE 6.4.4.
Letk=3,/1=2,{, =3,and /3 = 6.

Since we want each set of generators to contain 000 we only consider vectors which
contain 0 for each attribute.

Suppose m = 2. For the first attribute we have one vector (0,1) with difference 1 twice.
For the second attribute we have two vectors, (0,1) and (0,2), both giving each non-zero
difference once. For the third attribute there are five vectors which form three sets in
a partition based on differences: (0,1) and (0,5) with non-zero differences 1 and 5 once
each; (0,2) and (0,4) with non-zero differences 2 and 4 once each; and (0,3) with non-zero
difference 3 twice. So for the third attribute we need to have two vectors from each of
the first two sets of the partition and one from the third set to ensure that all non-zero
differences mod 6 appear equally often. Consequently we must have 5 sets of generators
altogether. For the second attribute we can either repeat the same vector 5 times or have
both vectors represented. One possible solution is (0,1), (0,1), (0.1), (0,1), and (0,1) for
attribute 1; (0,1), (0,2), (0,1), (0,2), and (0,1) for attribute 2; and (0,1), (0,2), (0,3), (0,4),
and (0,5) for attribute 3. Using these sets in order gives the five sets of generators

Gy = (000,111), Ga = (000,122), G; = (000,113),

G4 = (000,124), Gs = (000, 115).

There are 180 pairs and the design is 100% efficient.

Suppose m = 3. There is one partition of the vectors for the first attribute with entries
(0,0,1) and (0,1,1). There is one vector for the second attribute: (0,1,2). There are
(g) = 10 vectors for the third attribute (since we must include 0) and these are partitioned
into three sets. The first set consists of (0,1.2), (0,1,5) and (0,4,5) with non-zero differences
1 and 5 twice each and 2 and 4 once each. The second set has (0,2,4) with non-zero
differences 2 and 4 thrice each. The third set has the remaining 6 vectors and each of
these has non-zero differences 1, 2, 4, and 5 once each and 3 twice. Suppose that we
have z; vectors from the first partition for attribute 3, x5 from the second and z3 from the
third. Because we want to have each non-zero difference appearing equally often, we get
2z1 + 23 = 21 + 3x2 + 3 = 2x3. Suppose x2 = 0. Then 1 = z3 = 0 which is a
contradiction. Instead, try z; = 1. Then 2z; + x3 = 21 + 23 + 3; so 2; = 3, and hence
x3 = 6. Thus for an optimal design we need to have 10 sets of generators and 360 choice
sets. We could use (0,1,1) in all 10 sets of generators for attribute 1, (0,1,2) in all 10 sets
of generators for attribute 2 and (0,1,2), (0,1,3), (0,1,4), (0,1,5), (0,2,3), (0,2,4), (0,2,5),
(0,3,4), (0,3,5), and (0,4,5) for attribute 3. This gives the 10 sets of generators

Gy = (000,111,122), G2 = (000, 111,123), G3 = (000, 111,124),

G4 = (000,111,125), G5 = (000,112,123), Gg = (000, 112,124),

G; = (000,112,125), Gg = (000, 113,124), Gg = (000, 113,125),
G1o = (000,114, 125).

Although there is nothing in the results that we have presented here that would allow
you to calculate this, it is true that using only G gives a design with 36 choice sets which
is 97.80% efficient and using only G2 gives 36 choice sets which are 99.39% efficient.
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In both cases the U5y and C}\_11 matrices are block diagonal. This improvement is not
surprising; (Gp has a more equal representation of the non-zero differences for the third
attribute than does GG2. On the other hand, using only G with elements (0,2,4) for the third
attribute results in det{C'as) = 0, which is not surprising since only two of the differences
are represented.

For m = 4, a similar argument shows that 5 sets of generators are required. Form = 5,
the third attribute only requires one set of generators, and 36 choice sets are 100% efficient
in this case. 0

We have seen in the previous example that often it is only necessary to use one set of
generators to get a few choice sets that are near-optimal. In some cases, one set of generators
will give rise to an optimal design if there is a difference set for the appropriate values of ¢,
and m. For example, there is an optimal set of 56 choice sets when k = 4, £; = 2, £, = 4,
43 = 7, and m = 4 obtained by using the set of generators G=(000,011,122,134). This is
because the differences from the set {0,1,2,4} contain each non-zero difference modulo 7
exactly once. Other difference sets given in Section 2.4 can be used to construct small sets
of optimal generators.

6.4.1 Exercises

1. Letm =3,k = 3,0, = 2,f; =3, and 3 = 4. Use the ideas in this section to find
some small but good designs for estimating main effects.

2. Green (1974) gave a construction for choice experiments designed to estimate main
effects. His idea involved using the runs of an orthogonal array to correspond to
the treatments of an incomplete block design and to let each block of the BIBD
correspond to one choice set of size m in the choice experiment.

The properties of these choice experiments are not readily determined in general, as
they will depend on both the BIBD and the OA used.

Suppose that we have k = 7 binary attributes. Use the OA[8,7,2,2]and a (8,14,7,4,3)
BIBD and Green s construction to get the 14 choice sets. Show that these choice sets

have Cj; = 448 +5= 17 and are 85.7143% efficient for the estimation of main effects.

3. Use Green’s construction, described in Exercise 6.4.1.2, with k& = 5 attributes and

l, = 4levels, ¢ = 1,2,...,5 to construct a choice experiment with 16 choice sets
of size 4. What is the efficiency of the resulting design for the estimation of main
effects?

6.5 THE MODEL FOR MAIN EFFECTS AND TWO-FACTOR INTERACTIONS

To find the D-optimal designs for estimating main effects and two-factor interactions for
k attributes with any number of levels and for any choice set size m, we now evaluate the
p x p information matrix Cyr = BarpABYy,p, where

— k

p= ZU’-l Z 3 G~ D — 1),

1=lge=qi+1

As in Section 6.3, we let B;r be the normalized rows of B that correspond to main
effects, and we now let Br be the normalized rows of B that correspond to the two-factor
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interactions. The contrast matrix associated with main effects and two-factor interactions
is denoted by Bas7 and is the concatenation of By and Br

where

Br

ﬁﬂﬁ@'”@

By
Br

Bunr

s

Bfl ® ——lej’b Q- ® _Tikj/u
o s/
—/—el,]g1 X B€2 KD “‘/—gk,]gk

i, © i, ® - ® By,

le®Be2®ﬁj/ga®-"

® =ity
Bfl @ \/1_72'j/£2 & BZ:; DA

1 .
® g i,

. j,fkuz ® Be,_, ® By,

O2

The following example illustrates the construction of the contrast matrix for main effects

and two-factor interactions.

B EXAMPLE 6.5.1.
Letk=2and ¢, = 2,4y = 3.
is given by

From Example 6.3.1, the contrast matrix for main effects

-1 1l 1 1 1 1
o B B OBV
1 1 1 1
-2 0 3 -3 0 3
1 =1 1 1 -1 _1_
2V3 V3 23 2V3 V3 23

The contrast matrix for the two-factor interactions using By and Bj3 from Example 6.3.1 is

Br = [ By, ®By, |
= [ B:®Bs |

r 1 1

—1 1 vz 0 ﬁ

= [% TE]® 1 -2 1

L V6 V6 Vs

B

B S T U L BRSO R

L 2v3 V3 2V3 2V3 V3 2V3
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Then

Barr

i
| e |
X
¥z
| I

r =1 =1 =1 DU U
Ve V6 Ve Ve V6 VB
1 1
-z 0 7z -3 0 3
_ 1 -t 11 =i _1_
- V3 V3 2v/3 2V3 V3 2v3
1 1 1 1
i 0 -3 -3 0 3
-1 1 =t 1 =1 _1
L 2v3 V3 2v3 2V3 V3 2V3 ] [

In the following lemma, we derive an expression for Basr Da B which is then used
to obtain the determinant of Cpsr.

B LEMMA 6.5.1.

By1Da B, 0

’ —
BarrDaByr = [ 0 BrDaB)

where the ({4 — 1) x (£ — 1) block matrix of By D BY; for attribute q is

k
[ IT @ ~1)’7} (=1 Iy, —

j=1.j#q

and the (€5, — )(£g, — 1) x (€4, — 1)({4, — 1) block matrix of Br D4 BY. for attributes qi
and qq is

k
l: H (fj - 1)7‘:}(—1)1111(—1)77;2 [(P,,l—l)(f.,z—l)-

J=1.7#q1,q2

Proof.

3
BarDaBjyy

By

s
B Da B, BarDq B
BrD4By, BrDaBj

First, we consider BMDdB}\,. From Lemma 6.3.1, we see that the (£, — 1) x (£, — 1)
block matrix of Ba;Dq Bj, for attribute g is

[ f[ (4~ 1)"'} (=1)"" 10, 1.

J=1j#q
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We now show that the off-diagonal block matrices By Dy Bl and Br Dgq B, are both
equal to 0. For a particular attribute difference d,

BMDdBrII« = B}\j[Mi1®Mi2®"~®]\’fik]Br’r

Bfl @ \/—Jez & ® \/—JZ,,

Jél @ Bg ‘® Jf}.—
= \/_1 ’ . \/zv [A{n ® M12 ® - A{ulBT

| Jii © i, 0 B

Bg1 M;, & \/%jle?]\lig R R \/——le—-—’:j’gk ]Wik

iy, Mi, @ B, My, ® -+ © =iy, Mi,

Frde, Miy ® 3, My, ® - ® By, My,

By, AIHB& ® \/Z“lejulth &8 \/“‘Jé,,]uu f-]fk
\/rJelMuBe ® B, Mi, \/T-Vz @@ \/—Jek M;, ﬂ—JZk

\/1_j/@1 Mi‘ #jel ® @ ﬁjgx-q]x{”—lB’/?k~1 ® B‘?k ]ui’f Bék

If M;, = Iy, then

If My, = Jo, — I, then

1, 1
3 M Bl _ _-l
Y Y

1 e/ !
= —=jy,Je, B, —

N

= 0¢,-1.

|

(ng — [gq )qu

Ly
. B/
Hence By Dq B = 0 and By 1 Da By pr = (BearDaBy 1) = 0.
Now we consider Br Dy BY.. For a particular attribute difference d,

BTDdB’T = BT[JWZ'I M, ® - ® ]\f,‘,(_]Bﬁr
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B, ® B, ® =iy, @ ® =iy,
B ® Jliy © Bey -9 75l ,
= : [M;, @ My, @ -2 M, | By

\/_lf_Tj;l Q-9 ﬁj“_z & Bh-1 ® ng,

r By, M;, © B[ZJ\[,Q ® o, Miy ® - @ e, Mi,
Be, Mi, @ =y, Mi, ® BQMM ® Zin, M,

T%j/glz\]il QR —t\/:lk__:j,lk QAIU 2 @ By, _ 1 1A . ® B?L A[u

By, M;, By, & Be,M,; B,Zz ® - Q \/ﬂzk M, \f Ja
Bgl]\/li] le & \/;’Zjle?]\[m \/;_]gg & ® fJE* A[u \/7.]!,,

| i Miymde @ ® By, My By ® Be My, By,

Now the (£, — 1)(£g, ~ 1) x (€4, = 1)(£g, — 1) block matrix of By Dq Bf- for attributes

q1 and g2 contains (k — 2) terms of the form

\/_.Jg]]\[“ \/Tj(’ (f - l)ll for ] = 1 ~~~~ k .7# q1,92
J
and there are two terms _
B 1,’1 ngl = (—1)7'!11 I["l_

and ‘
lug Al 2y Béqz = (_1)2112 Ierlz -

Then the (£, — 1){£,, — 1) x (¢;, — 1){£,, — 1) block matrix of By DqB7- for attributes

q1 and gs is
k

11

(0 1)7’1} (=) (=10 T, -1yt —1,
i=1.77q1.92

as required. .

In the following lemma we derive an expression for the determinant of det(Cas7).

W LEMMA 6.5.2.
Under the null hypothesis. the determinant of Cayr is given by
£,—1
k k
det(C ’ _ 1) — (1)
et(Cyr) = ] WZ wa TL 6= |- (-1)"]
q=1 J=1.j#q
—1)

k-1 k (€ —D{fqy
1 (1 1
<11 11 [m?%:[y" “( <1—eq1>i~1<1Aéqmam

g1 =1go=q:+1
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where Lgq = H§=1(€j - 1)k,

Proof. Recall that p is the total number of parameters to be estimated and is defined to be
k k- k
P:Z(gq“I Z Z - 1)
g=1 1=1go=q1 +
From Lemma 6.2.1, under the null hypothesis,
Cur = BurAByr

m—1
= BMT[
m2

= w3

2l — — Z?JdDd} BMT

(& - 1)“)} Barr Byr

3|H7i.’:1*

5y {ydBMTDd BMT}
d

BMDdBM 0
m2 Z{ [ Br Dg B

k
3 i BunDaB), 0
= a2 qua | (T -0 )= [ 2P 0

Thus Cjyr is a block diagonal matrix with block matrices for the main effects of attributes

.,k down the diagonal, then block matrices for the each of the interaction effects
between all pairs of attributes down the rest of the diagonal.

Using Lemma 6.3.2, the block diagonal term of Cpsr for main effects for factor q is

given by
== ) {yd(fl <ej—1>1‘f)[<eq—1>i~ - <—1>""]}fe.,—1

J=1,j%q

and the component of the determinant for the main effects for all attributes is

2;—1
k k
1 . ) )
I1 WZ{%< I1 (fj—l)“)[(%—l)’” - (—1)"’” . (63)
g=1 d i=Lisq
Now consider the (¢, — 1)(¢,, — 1) x (€4, — 1)(£,, — 1) block matrix of C'nsp for the

interaction effect of altnbutes g1 and g2. Using Lemma 6.5.1, we have

1
WZ Yd (Hl’ —-1) )I(ﬂ,,l-l)(é,m—l)_BTDdB’/F
d
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3~

(
(

- 1)7',,,> (—l)i"l (_1)7':;2 ](gql —1)(€y,—1)
i

(
J=1.7#q1.92
Yd

I1¢ -1 )

J=1

k
= > va (H (45 — 1) >1<tfq1—1>(a,2—1>
d j=1

]
3|~
[\

=[]

k . .
i (—1)in (=1
Com? ; yd<H(£7 - ) |:1 - (€g: — 1)t (£g, — 1)t ]([”1_1)({"2_1)

1 1
- L aLa |l . — 1 T iy, -1)-
12 Z {yi 1 [ (1 _ gql)qu (1 _ ng)z‘m }} (Lu 1)(542 1)

d

3

Then the component of the determinant of C'rr for the two-factor interaction effects only
is given by

k 1 ([(11’1)“'12"1)
1l 11 & Z{‘”“L"<1‘<1—@wa(l—&»iw)H ©H

g1=1q2=q+1

To obtain the determinant of C'3;r, Equations (6.3) and (6.4) are multiplied together.  [J

B EXAMPLE 6.5.2.

Let m = 3, k = 2, ¢, = 2, and /5 = 3. Assume that the choice sets in the choice
experiment are the ones with difference vectors v, and v only. First, we calculate Cyp
and hence det(C);r) by evaluating

Crnr = BurABjyr.

Then we also calculate det(Casr) by using Lemma 6.5.2.
The matrices A and B, are given in Examples 6.2.2 and 6.5.1, respectively. Thus

Cur = BurABjyr
S -
: 00 00
0 £ 0 0 0
= |0 0 % 0
0 : 00 § 0
|0 0 0 % |

Hence det(Cprr) = (é)s (%)2

Alternatively, we can use the results from Lemma 6.5.2. The yq4 given in Example 6.2.2
are

I

2 2
vor=g. Yo = 0, and yn = 2
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Then the main effects part of det(Cpsr) is

H[%Xd:{ o I - )[5 1y _(_Uiq}}]eq_l

g=1 j=1j#q

- E {ym(eg Sl - 1) = (=1
+ y1o(le — 1°[(6; — 1)} = (=1)Y
2 —1
T ynlt - DG - 1)} - (—1)11}}
‘ [é {ymwl (e - 1) = (=)
+ yio(61 — {2 — 1)° = (=1)7]

123
oyl = D - 1) = <—1)1]H

FRECERE R EITI,
2-1

S CEINCEIEEIH

x {%{%(2—1)0[(3—1)1—(—1)1] + 0

2 . 3-1
+ Ze-0E- 1 - 0]

2
{%{EXQXO—#;XQXQH X [%{§x1x3+§x1x3}]
1\ /1\?
9 6/
The two-factor interaction part of det(Cs7) is

fI ﬁ[‘;’lizd:{yd“( T2, ) 1(1—/3‘,2) )}r“_l)(%—n

a=1qg2=2

= B {ym(fl -1 -1)! _1 B W-

+ ol = Dl = 1)1 = gy

1 1 ’_ 1 (&1=1)(62—1)
Tyl =D =D = gy H
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i{ze-vo- - o) <

fl
1
Nel o
N

!

X

—

X

[\
|

—

+
N
_

+
ool N

X

—

X

[N}
| ———

—

|

t
—
W—/
bre——1
©

Then

wean=(3) ()~ 6) - (3) (8)

All possible designs for m = 3,k = 2, £; = 2, and £, = 3 are shown in Table 6.8. In
this example, the design consisting of choice sets from all three difference vectors has the

maximum det(Cyyr) of
al 2 5
det((/opt,i\lT) = E

The efficiencies of the other designs are calculated relative to this design. Recall that the
total number of parameters to be estimated is

k - k
p = Zﬁ—mz D (g =Dl = 1)
g=1 1=1qa=q1+1
= +B -+ 2-1DE-1)
= 5.

Then, for example, the efficiency of the design consisting of choice sets with difference
vector va only, is

: 1/8 433712
Effp = 100 [M} =100 {LZ(Q)—] — 99.03%.
det(C opt MT) (“>)

We have been unable to get any general results, true for all m, for the form of the designs
that are optimal for estimating main effects and two-factor interactions.

We can get specific results for fixed m and k. For instance, for particular m and k&
values, we can evaluate det(C;r) for all possible designs.

B EXAMPLE 6.5.3.
Suppose m = 2 and k = 2. Then the main effects part of det(Cp,7) is

£,—1

f[ 2—122 ( fI (#; = 1) ){(zq—niu — (=1)

g=1 d i=1j+#a



206 DESIGNS FOR ASYMMETRIC ATTRIBUTES

Table 6.8 Al Possible Choice Experiment Designs for k = 2, £1 = 2, and /> = 3 when
m = 3. Main Effects and Two-Factor Interactions

v; in Design N det(Cupr) Efficiency (%)
Vi 2 0)(3)* 0
va 12 (£)3(3)? 99.03
va 6 (H)(3)2(F)? 96.51
vi & V2 14 (ENEV(E)? 99.42
vi&vs 8 (52(2)? 98.01
va & v3 18 ()G 99.85
vi.v2 & Vs 20 (Z)® 100

= |3 {mstta = 07110 - )
+ yio(le — 1)°[(61 = 1)} = (=1)']
£-1
+unltn =16 -1 - 1)1}
< |3 {mie - 0@ - 1 - o
+ y10(6s — 1) - 1)° = (-=1)°]

£o—1
+ yn(l - D)6 - 1) - (—1)1]}]

1 £y 1 1 -1
[Z {513/10 +41(fy — 1)911}} X [Z {ezym + Ea(f; — l)yuH

[% {ylo + (62 ~ 1)3/11}} o x [% {ym + (4 — 1)3/11}} o :

The two-factor interaction part of det(Casr) is

[2% § {yd(el ~ 1) (Ll - 1)" (1 - el)ill(l — £y)2 ) }

Il

i

](1’1—1)(52—1)

1
(1~ £1)°%(1 ~ £2)1 ]
) -
(1 —£1)1(1 — £,)°]

- [Hwe-re-0fi-

+ yio{fy — DI - 1)0 |1 —

. . r 1 (£1-1)(€2-1)
1 — - -
+ yll(gl ) (62 1) _1 (1 — 61)1(1 ._ 62)1_ }]
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_ [l {([ﬂ, ~ 1)laym (61 — 1)Yyy10
- 4 (o — 1 £1 -1
Lo Dby — D[ty — 1)(82 — 1) — 1yn1 H (f1-1)((2-1)
(61— 1)(f2 - 1)

1 (L1 —1){E2~1)
[Z {52?101 + f1yi0 + (5152—51—52)911” .

Then
gl £1—-1 (/'2 fo—1
det(Chrrr) = [j‘ {ym + (45 - 1)y11H X [Z {ym + (6 — 1)?/11}}
1' (01— (Fe—1)
X [/— {521/01 + fiyro + (6182~ 4 'fz)yuH .
Now
vy =01, ¢y, =4 — 1,
V3 = 10, Cyy, = 51 - 1,
V3 = ].1, Cyvy = («p1 — 1)(()2 - 1)
So
_ 2¢y, v, —a
Y= S 1), — )
Yio = 2Cvalv =ua
O o T )l —1)0
I 2¢y, Gy, —a
MR D) -
Then
3 11 (,2 -1
det(Crr) = [X {av? + (fg — 1)(1\,3” X [—4- {arvl + (4 — l)an

lj (€1 =1)(f2-1)
X {Z lﬁgavl + €1av? + (b14s — 14 —f,r_))avg}jl R

Now we can evaluate explicitly the determinants for each of the possible designs for
m = 2 and k = 2. Recall that
_ Ty, Ty, m
v, = o5 = m
since

- _Cv-iv, .
m 7

The values for av, for all the possible designs are given in Table 6.9 and the determinants
for each of these designs are given in Table 6.10. It is possible to investigate the relative
magnitudes of these determinants. In all cases, the largest determinant is that obtained from
the choice experiment containing all the pairs. But this design has a determinant that is only
about 5% larger than that from the choice experiment with only the pairs with difference
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Table 6.9 Valuesof av, form = 2and k = 2

v; in Design Qv Qv, v,
vi=(01) oy 0 0
va =(10) 0 e 0
va=(11) 0 0 GHEEDETD
vi& vy eleg(e,zwg—z) 2122(1’124-1’2"2) 0
vi& v Z?m 0 ??m
v & v3 0 ngg(Qel-n hf%(zel—l)
Vi, V2 & v3 % % %

R=£10[(f1 — 1)+ (€2 ~ 1)+ (61 — 1)(€2 = 1)).

Table 6.10 Values of det(Cpr) form = 2and k = 2

v; in Design det{Cumr)
vy =(01) 0
va =(10) 0
£1-1 -1 (£1-1)(£2-1)
_ 1 1 (0 -1)(fa—1)~1
va=(11) [m(zl-—m] [26’1(52--1)} [21’1}’2(?1 ~21><fr1>]
-1 2y—1 (£1=1)(€2-1)
1 £ 4¢
vi& v [2[2(f1+~32—2)] [21?1(&4-1’2“2)} {21’172(71”2—2)}
£-1 £y~ (€3 ~1)(€2-1)
1 1
vi&vs [2@1;2] [2(1(32—1 ] { }
£ -1 - 1)(3 1)
1
va & vs {WH] Ead [ 5l
& -- (S (€3-1)(€2-1)
Vi,V & v 2
1. V2 3 200 62— £’1t’2~1 2£1f2 1
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vector (11) when ¢; = ¢, = 20, but it is 965 times larger than the determinant for the
experiment with only the pairs with difference vectors (01) and (10) when ¢, = ¢, = 20.
Indeed, as #; and /5 tend to infinity, the limit of the ratio of the determinant of the design
with all pairs to that of the design with pairs with difference (11) only is I. a

Consider now the situation when k = 3 and m = 2. Here there are 7 difference vectors
possible and so there are 127 possible choice experiments to consider. For¢; = 2,6y = 2,3
and ¢3 < 8, the optimal design has all the pairs with difference vectors (011), (101), and
(110). For ¢y = 2,4 < £5 < 8, £5 < 3 < 8, the optimal design has all the pairs with
difference vectors (101) and (110). When ¢; = 3, the optimal design has all the pairs with
difference vectors (011), (101), and (110) when £, = 3,4,5 and /3 = 3,4, 5,6; but it has
all the pairs with difference vectors (101) and (110) when 5 < ¢ < 8 and ¢» < /3 < 8
(except £3 = 5, f3 = 5,6). This situation continues for all the cases we have investigated.
If we assume, without loss of generality, that £; < fo < £3, then for fixed ¢; all three
difference vectors of weight 2 give the optimal design when €3 and /5 are “close enough”
to £1. As ¥y and /3 get larger, it is sufficient to have only those pairs with difference vectors
(101) and (110). See Appendix 6. A.2 for details. When ¢; = 2 then the determinant of the
design with pairs with difference vectors (110) and (101) is at most 11.3 times that of the
determinant of the design with pairs with difference vectors (110), (101), and (011). When
¢y = 5 the same multiple is only 1.32.

When m = 2 and £ = 4 we have considered all cases with 2 < £; < fp < f3 < £4 < 8.
There are 8 different sets of optimal difference vectors. The most common has three
difference vectors of weight 3: (1011), (1101), and (1110). The second most common has
two difference vectors of weight 3: (1101) and (1110). Details may be found in Appendix
6. A.3. These designs all have a large number of choice sets, and we can use the method
in Section 6.4 to obtain near-optimal designs with a smaller number of choice sets.

B EXAMPLE 6.5.4.

Suppose m = 2, k = 4 with £, = 2, ¢ = 3, {3 = 6, and £4 = 6. By investigating all
possible designs, we found that the 2160 pairs with difference vectors (1101) and (1110)
form the optimal design. By starting with the complete factorial and adding generators
(1101), (1110), and (1011) we obtain a design in 648 pairs that is 94.4% efficient and the
Cy7 matrix is block diagonal. O

Results for m = 2 and k = 3 are given in Appendix 6. A.4. Form = 3 and k& = 2 for
2 <y < £ < 8Bsee Appendix 6. A.5. Form = 4 and k& = 2 for some values of /1 and /5
see Appendix 6. A.6.

6.5.1 Exercises

1. Letk =3andm = 2. Letf; = £o = 2andlet £3 = 3. Give the pairs that are optimal
for the estimation of main effects and two-factor interactions. Suppose that you only
want to estimate the interaction between factors 1 and 2. What is the determinant of
the appropriate information matrix? Can you find a set of pairs that do better than
this?

2. Another type of construction that has been developed by Grasshoff et al. (2004) uses
each row of an OA to construct a choice set of size 2 by letting the symbols of the
OA refer to ordered pairs of attribute levels (for the two options in each choice set).
Consider an OA[18;3%,6; 2] and let ¢; = ... = #g = 3 and #; = 4. Then equate the
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levels of the factors in the OA with pairs of levels for each attribute in some way;
pethaps 0 — 0,1; 1 — 0,2 and 2 — 1,2 for the 3-level attributes and 0 — 0, 1;
1—-0,2,2+—0,3,3— 1,2,4 — 1,3 and 5 — 2,3 for the 4-level attribute.
So if one row in the OA was 0221014, then the corresponding choice set would be
(0110001, 1222123).

(a) Construct all 18 pairs associated with an OA[18; 3% 6:2].

(b) What is the efficiency of these pairs for the estimation of main effects? main
effects plus two-factor interactions?

(c) What pairs would you get for these situations if you used the approach outlined
in this chapter and how efficient would they be?

3. Hadamard matrices are also used in Grasshoff et al. (2004) to construct paired
comparison designs. Let A, have as its rows the pairs in an optimal design with
k=1land m = 2. Let H,x be k columns of a Hadamard matrix of order n,
where £ < n. Then the pairs are obtained from the matrix H,, » ® A,. For

instance, if £ = 2 = k then A, = [(0,1)] and Hy, = [ i _1 ] . Thus we get
Hyo®A; = Eg’ ig _((()(’]1;) . We get the choice set (00, 11) from the first row

and the choice set (01, 10) from the second row. Give the 12 choice sets of size 2
that you get from this approach when ¢ = 3 and £ = 4. How efficient is the design
for the estimation of main effects? main effects plus two-factor interactions?

6.6 REFERENCES AND COMMENTS

Most of the results in this chapter originally appeared in Burgess and Street (2005). Readers
can find software to construct choice sets from an initial factorial design and sets of gen-
erators, as well as calculate the corresponding information matrix and variance-covariance
matrix, at the following website: http://maths.science.uts.edu.au/maths/wiki/SPExpts.

The choice of which of the different possible B matrices to use depends very much on
the effects that are of interest. If you are interested in estimating the linear, quadratic, and so
on, effects for an attribute with discrete quantitative levels, then the B matrix with contrasts
that arise from the appropriate orthogonal polynomial contrasts are natural. If, on the
other hand, you have chosen to represent a pair of binary attributes by one 4-level attribute
because you want to be able to estimate the main effects and the two-factor interaction
effect between these two attributes, then it makes sense to use the contrast matrix for the
22 factorial design. The choice of B will not affect the structure of the C~* matrix if
the choice experiment is optimal: C'~! will be a diagonal matrix. On the other hand, if
the choice experiment is not optimal, then it is sometimes possible for one B matrix to
result in a diagonal C~! matrix and for another choice of B to give a C~! matrix which is
block diagonal (so the effects of interest are estimated independently of each other but the
particular components within an effect that are determined by the choice of B matrix are
not estimated independently).

Bunch et al. (1996) give a construction in which an OMEDP is used for the treatment
combinations in the first option, and subsequent options are constructed by shifting the
levels of each attribute by adding a constant, using modulo arithmetic. This method is
really a subset of the methods described in this chapter.
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Appendix

. A.1 Optimal Designs for m = 2and k£ = 2
. A.2 Optimal Designs form = 2and k = 3
. A.3 Optimal Designs form = 2and k =4

. A.5 Optimal Designs form =3 and k = 2

6
6
6
6. A.4 Optimal Designs form = 2and k =5
6
6. A.6 Optimal Designs form =4 and k = 2
6

. A.7 Optimal Designs for Symmetric Attributes for m = 2
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6. A1 OPTIMAL DESIGNS FORm =2 AND k = 2

b b Difference Vectors det(Copt)
2 2 (O1), (10) & (1) (1)
2 3 1), (10) & (11) (4
2 4 ©1), (10) & (11) (L)
2 5 (©1), (10) & (11) (&)
2 6 01, (10) & (11) (L
27 1), 10) & (1) (&)
2 8 ©1), (10) & (11) (&)
3 3 (01), (10) & (11) (L)
3 4 OD, (10) & (11) (&)
35 1), (10) & (11) (&)
o6 (01), (10) & (11) (&)
3 1 1), (10) & (11) ()
3 8 ©1), (10) & (11) (&7
4 4 O1), (10) & (1) (&)
43 0D, (10) & (1) (A
4 6 1), (10) & (11) (%)
4 7 ©1), (10) & (11) &)
4 8 ©D), (10) & (1) (&)
505 (O1), (10) & (11) ()2
5 6 ©1), (10) & (11) (&)
5 7 ©1), (10) & (11) (&)
5 8 ©1), (10) & (11) (L)
6 6 (01), (10) & (11) (L)
6 7 1), (10) & (11) (&)
6 8 01, (10) & (11) (&)
7 (O1), (10) & (11) (L)%
8 (01), (10) & (11) ()
8 8 O, (10) & (11) ()
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6. A2 OPTIMALDESIGNS FORm = 2ANDk =3

213

£y (2 f3 Difference Vectors det{ Copt)

2 2 2 (011),(101) & (110) ()8

2 2 3 (O11).(101) & (110) (E)H(&)?

2 2 4 (011),(101) & (110) (56"
2203 (01N(161) & (110) () (36) (36)(H) " (36) " (3)°

2 2 6 (O11).(101) & (110) () (D) ()P () ) &)°

2 2 7 (011,(101) & (110) (EVEE)E N (H)NS)

2 2 8 (011),(101) & (110) () (&) S () (5 (&)

2 3 3 (011). (101) & (110) () ()2 () (2 (25
2 3 4 (011), (101) & (110) (525) (&) (&P () ) ()°
23 5 (011), (101) & (110) (E) (&2 (&) UE) () (&)
2 3 6 (011, (101) & (110) (5) (&) (&P (&) (&) (&)
2 37 OID (0D & (110) | (53) ()2 ()0 (1852 (:225)° (%)™
2 3 8 OID. (10D & (110) | (55) ()2 (&) (&) (27 ()™
244 (101) & (110) (3)M(56)% (550 (z)* (37 (5%)°

2 4 s D& W0 | (3) () (1) (35)* (58 (580"
240 (101 & (110) (36) ! (382)°(85)°(80)° (52 (530)
247 (101) & (110) (350" (353)° (730)°(75)° (303 )" (38) ™
24 A& | ) () () () () ()"
2055 0D&MO) | () (sh) " (sk) () () ()
e D&M | () (5s)* (385)° (1385) (55 (130
2 57 (101) & (110) (560" (355" (a5 (585" (7335 ) " (50)™
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T2 - T £ Difference Vectors det{Copt)

2 5 8 (101) & (110) (%)1(%2.)4(2;0 7(1_%6)4(55_0)7(1%20)28
2 6 6 (10D & (110) (5 (5550 (55 (55 )0 (555 )P ()%
2 6 7 (101) & (110) (&) (b ) (ke ) O (52 ) (25)°( 222 )
2 6 8 (101) & (110) (&) (5 (5 )7 () () ()
27 8 | 00&10) | (53) (e5s) () (30) (i) ()"
2 8 8 (10 & (110) (ﬁ)l(ﬁy(ﬁy(&ﬂ&ﬂﬁ)“
33 3 | (011, (101) & (110) ()2 (3P (A2 () (2)*(25)*
33 4 | (011),(101) & (110) (220)2(53)% (%) () (1250 (1255)°
33 5 | (011),(101) & (110) (135)% (15507 (35) (555" (15 ) (1255 )°
33 6 | (011),(101) & (110) ()2 ()% (2 ()4 (&)10() 0
3003 7 | I, AM&AI0 | () (5 3 (25) (5255) 2 (52"
3003 8 | OI,A0D&A10 | (55)(s5) (F) ()" (a8 (3850
34 4 | (011),(101) & (110) ()2 (2% ) (B2 (2 ()°
3004 5 | 01D, (10D &10) | (155)%(vh) (53) (1550 (53508 (325502
34 6 | D AM&IID | (1) (55 () (8550 () (55)"
3004 7 | I, AD &0 | (5) ()3 (85)0 (52 )0 (ks ) 2 (552
3048 | I, A& M0 | (25)% (%) (27) (1230 (525 (3%
305 05 | OID, (0D&(I0) | (555)% () (s )* (1255812558 (5550 °
35 6 ©11), (10) & (110) | (535)% (3355 ) (355 (oo ) (125) " (5o3)™°
3 5 7 (101) & (110) (ﬁ)z(ﬁ)‘i(é&)e(Té—s)s(%)”(ﬁ—s)“
35 8 (101) & (110) (ks )2 (k) (k)7 () () M (5550
36 6 (101) & (110) (k) (50)° (50)% (2510 (5) 0 (25) %
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i b2 {3 Difference Vectors det{ Copt)

36 7 (101) & (110) (18)(38)° (55)° (5%) (5% ) P (525)™°
i 6 8 (10D & (110) (152)° (5360 () (15) (55 M ()™
377 (10D & (110) (185)° (s )® (oo )P (522 ) 2 (5225 ) P (550
37 8 (101) & (110) w1 (551) (o35 ) T (535) P () ()™
308 8 (101) & (110) (3%6)%(53) (55) (m35)  (3me)  (355)™°
4 44 | OID.(01)&(110) (70 (530)° ()% (1890 (38)° (186)°
44 5 L OID.a0D&A0) | (55) (ms) () (52)° (55) P (25)"
4 4 6 (011), (101) & (110) 1) (5371 ()2 (26)° (55) P () 1°
4 4 7 (011, (101) & (110) (z35)° (5353 (525) % (15)° (1355 ) " (5350
4 48 | OID.A&MO | (535)%(:55)% (55) (21)°(153)7 (350"
45 5 L OID.Ao &0 | (55) (1505) (1555 (smms) soms) (1)
45 6 | OI.A0D&I0) | (55 (5 (55 (5 ) (1) P (5225) %
4 5 7 OID, (101 & (110) | (5535)%(535) (555 (3335) " (1555 ) B (1255 )
45 8 L OID.A0)&(10) | (7)) () (535 ) P (k)" (5255
4 6 6 | (O1.(10)&(110) (558)° (335" (355)° (335) " (358 " (387)™°
46 7 | OID.A0D& M0 | (5385)° (553)° (55) w0) " (580) " (553) ™
4 6 8 O1D. (10D & (110) | (555)% (553)% (36) (5mm3) P (35577 (555 ™
4 7 8 (101) & (110) (z3)" () (7)) (5880) " (3™ (58500
4 8 8 (101) & (110) (307 (555) (58 (1) () ()™
5 5 5 (011). (101) & (110) (385)" (585 (585 ) (55 ) B (53s ) O (L) 16
5 5 6 011), (101) & (110) (155) (135 (556 )° (3520 (2350 (%5)™°
5005 7 [ OIN.AM&AI0) | () () ()0 (5355)  (ams ) (5s )

22400 22400
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{1 2 ¢3 | Difference Vectors det( Copt)

S5 8 [(OI,A0D&I0) | (505) (sh55) (785) (55%) " (odams )™ (7mmm5 )
506 6 [(OID.AM&NO | (z5) (1355)" (1355) " (15355) " (15505) " (335)”°
5006 7 [OID.(10)&A0) | (5) (55)% (1) ek () (1)
56 8 [(OID,0D&I10) | (5h) (hk)® (335) (255)7°(225) % (185)*°

5 7 8 [0, 10D &(110) | (55) (7555)° (5k) (55e) > (857 (55205)
5 8 8 [(OIDA0D&10)| (g5) (555) (5555) (e " (5mem5) " (585 ™
6 6 6 |(O1D,U0D&1I0)| (s5)°(5k5)%(525)% (3m5) (5 ) (55 )

6 6 7 (O, (10D)&110) | (755)°(#55)° (512)° (5 (33 (o0 ™
6 6 8 |(OIN(I0D&II0) |  (2)%(s5)" (ah) (5% (552 (5%5)%

6 7 7 [©IDA0)&10) | (757)(5557)  (5557) (sass ) (5o ) > (3858)°
6 7 8 |OID,A0D)&NI0) | (525 (sk)%(sks) (555)% (5555)%° (125)
6 8 8 [OINAOD&UI0 | (rhs)(5k) (k) (s ) (525)% (5%
707 7 [ OILA0D)&0) | (5h)5(55) (525)° (1) (385 )% (1% )%
707 8 [O1D.(101) & (110) | (55)%( 1% (5 (i) (533k) 2 (522ks )
708 8 [ (OI.(101) & (110) | (1) (122) T (s ) (527) 2 (:2) 2 (55:)°
8 8 8 [(OID.A0D&(I0)| (Fg) (5@ () (m62) " (701) (351
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6. A3 OPTIMAL DESIGNSFORm =2 AND k =4

5

2

{3

{4

Difference Vectors

2

(0011), (0101), (0110), (O111), (100D),
(1010, (1011), (1100), (1101) & (1110)

3-8

(0111), (1011), (1101) & (1110)

3

O111), (101 D). (1101) & (1110)

4-8

O, (110D & (1110)
or (1011), (1101) & (1110)

4-5

O11n), (110D & (1110)
or (1011), (1101) & (1110)

6-8

(0110), (1101) & (1110)
or (1010), (1101) & (1110)

(0111), (1101) & (1110)
or (1011), (1101) & (1110)

6-8

(0110, (1101) & (1110)
or (1010), (1101) & (1110)

0101), (1101 & (1110)
or (0110), (1101) & (1110)
or (1001), (1101) & (1110)
or (1010), (1101) & (1110)

(0110), (1101) & (1110)
or (1010), (1101) & (1110)

(0101), (1101) & (1110)
or (0110), (1101) & (1110)
or (1001), (1101) & (1110)
or (1010), (1101) & (1110)

(0110), (1101) & (1110)
or (1010), (1101) & (1110)

(0101), (1101) & (1110)
or (0110), (1101) & (1110)
or (1001), (1101) & (1110)
or (1010}, (1101) & (1110)

3-8

(1011), (1101) & (1110)

4-8

(1011), (1101) & (1110)

5-8

(110D & (1110)

6-8

(1101) & (1110)

7-8

(1101) & (1110)

(1101) & (1110)

4-8

(101 1), (1101) & (1110)

5-8

(1011), (1101) & (1110)

RN NI N RN

Al B[ W] W W | W

[« N IRV 1 I - B LT BRI e N RV S SN V)

(1011), (1101) & (1110)
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12 lz {3 I Difference Vectors
2 4 6 7-8 (1101) & (1110)

2 4 7 7-8 (1101) & (1110)

2 4 8 8 (110D & (1110)

2 5 5 5-8 (1011), (1101) & (1110)
2 5 6 6-8 (101 1), (1101) & (1110)
2 5 7 7-8 (1011), (1101) & (1110)
2 5 8 8 (110 & (1110)

2 6 6 6-8 (1011), (1101) & (1110)
2 6 7 7-8 (1011), (1101) & (1110)
2 6 8 8 (1011), (1101) & (1110)
2 7 7 7-8 (1011), (1101) & (1110)
2 7 8 8 (1011), (1101) & (1110)
2 8 8 8 (1011), (1101) & (1110)
3 3 3 3-7 0111, (1011), (1101) & (1110)
3 3 3 8 (0111), (1011) & (1110)

or (0111), (1101) & (1110}
or (1011), (1101) & (1110)

3 3 4 4 (0111), (1011), (1101) & (1110)
3 3 4 58 (1101) & (1110)

3 3 5 58 (1101) & (1110)

3 3 6 638 (1101) & (1110)

3 3 7 718 (1101) & (1110)

3 3 8 8 (1101) & (1110)

3 4 4 438 (1011), (1101) & (1110)
3 4 5 56 (1011), (1101) & (1110)
3 4 5 78 (1101) & (1110)

3 4 6 68 (1101) & (1110)

3 4 7 7-8 (1101) & (1110)

3 4 8 8 (1101) & (1110)

3 5 5 58 (1011), (1101) & (1110)
35 6 68 (1011), (1101) & (1110)
35 7 (1011), (1101) & (1110)
35 7 (1101) & (1110)

3 5 8 (1101) & (1110)

3 6 6 68 (1011). (1101) & (1110)
3 6 7 78 (1011), (1101) & (1110)
i 6 8 8 (1011), (1101) & (1110)
3 7 71 7-8 (011), (1101) & (1110)
3 7 8 8 (1011), (1101) & (1110)
3 8 8 8 (1011), (1101) & (1110)
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I (23 {3 In Difference Vectors
4 4 4 4-8 01, (101D, (1101) & (1110)
4 4 5 5 O h, (101D (1101) & (1 110)
4 4 5 6 O111), (1101) & (1110)
or (1011), (1101) & (1110)
4 4 5 7-8 (10 & (1110)
4 4 6 6-8 (110H) & (1110)
4 4 7 7-8 (110 & (1110)
4 4 8 8 (1101 & (1110)
4 5 5 5-8 (1011), (1101) & (1110)
4 5 6 6-8 (1011, (1101) & (1110)
4 5 7 7-8 (1101) & (1110)
4 5 8 8 (1101 & (1110}
4 6 6 6--8 (101D, (1101) & (1110}
4 6 7 7-8 (1011, (1101) & (1110)
4 6 8 8 (10ED. (110D & (1110)
4 7 7 7-8 (1011), (1101) & (1110)
4 7 8 8 (101D, (1101) & (1110)
4 8 8 8 (1011), (1101) & (1110)
5 5 6 7-8 (O111), (1101) & (1110}
or (1011), (1101) & (1110)
5 5 5 5-8 ONH. 011, (1101) & (1110)
5 5 6 6 O11 ). (101D (1101) & (1110)
S 5 7 7-8 (1Mo & (1110)
5 5 8 8 (Mo & (1110)
5 6 6 6-8 (1011), (1101) & (1110)
5 6 7 7-8 (1011), (1101) & (1110)
5 6 8 8 (1011, (1101 & (1110)
5 7 7 7-8 (1011, (1101 & (1110)
5 7 8 8 (1011, (1101) & (1110)
5 8 8 8 (1011, (1101) & (1110)
6 6 6 6-8 O111), (1011), (1101) & (1110)
6 6 7 7-8 O11D), (101 1), (110D & (1110
6 6 8 8 (O111), (1101)y & (1110)
or (1011), (1101) & (1110)
6 7 7 7-8 (IO, (1101 & (1110)
6 7 8 8 (101D, (1101) & (1110)
6 8 8 8 (1011, (1101) & (1110)
7 7 7 7-8 O111), (101 1), (1101 & (1110)
7 7 8 8 O hH, (101D, (1101)Y & (1110)
7 8 8 O1LD, (101 1), (1101) & (1110)
8 8 8 O11D), A0TDH. (1101 & (1110)
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6. A4 OPTIMAL DESIGNS FORm =2ANDk =75

by L2 f3 L4 (s Difference Vectors
2 2 2 2 2 (00111), (01011), (01101), (01110), (1001 1),
(10101), (10110), (11001), (11010) & (11100)
2 2 2 3 3 (00111), (01011), (01101), (01110), (10011), (10101),
(10110), (11001), (11010), (11101) & (11110)
2 2 4 4 4 (100113, (10101), (10110), (11011),
(11101) & (11110)
2 2 4 4 8 (01110), (10110), (11011), (11101) & (11110)
2 2 4 8 8 (11101), (11110) & one of (01101), (01110),
(10101) or (10110)
2 3 3 45 (10011), (11101) & (11110)
2 4 4 4 4 (10111, (11011), (11101) & (11110)
2 4 4 4 8 (01111), (10111), (11011), (11101) & (11110)
2 4 4 8 8 (11101) & (11110}
2 4 8 8 8 (11011, (11101) & (11110)
2 8 8 8 8 (10111), (11011), (11101) & (11110)
3 33 3 3 (00111}, (01011), (01101), (01110), (OF111),
(10011), (10101), (10110), (10111), (11001),
(11010), (1101 1), (L1100), (11101) & (11110)
4 4 4 4 4 (01111), (10111), (11011), (11101) & (11110)
4 4 4 4 (11110) and any two of (01111), (10111),
(11011) & (11101)
4 4 4 8 8 (11101) & (11110)
4 4 8 8 8 (11011), (11101) & (11110)
4 8 8 8 8 (10111), (11011), (11101) & (11110)
5 5§ 5 55 (01111), (10111), (11011), (11101) & (11110)
6 6 6 6 6 (O1111), (10111), (11011), (11101) & (11110)
7 7 7 71 (O1111), (10111), (11011), (11101) & (11110)
8 8 8 8 8 (O1111), (10111), (11011), (11101) & (11110)
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6. A.5 OPTIMAL DESIGNS FORm = 3 AND k£ = 2

221

£ f2 Difference Vectors det{ Copt )
2 2 (01,10,11) (2)?
2 3 (01,01,01), (01,10,11) & (01,11,1D) (%)
2 4 (01.01,01), (01,10,11) & (01,11,11) (%)
2 5 (01,01,01). (01,10,11) & (01,11.11) ()
2 6 (01,01,01), (01,10.11) & (O1,11,11) (Z)0
2 7 (01,01,01), (01,10.11) & (01,11,11) (Z)"
2 8 (01,01,01), (01,10,1 1) & (01,11,11) (2)"°
3 3 (01.01,01), (10,10,10) & (11,11,11) (5)®
or (01,10,11), (0L,11,1D) & (10,11.11)
or (01,01.01), (01,10.11), (OL.11,11), (10.10,10),
(10.11,11) & (11,11,11)
3 4 (01.01,01), (01,10.11), (O1,11,11), (10.10,10), (2
(101,11 & (11,11,11)
3 5 (01.01,01). (01,10.11), (01,11,11), (10,10.10), (F)
(10,11,11) & (11,11,11)
3 6 (01.01.01), (01.10,11), (01,11,11), (10.10.10, (27
(0,11,11) & (11,11,1D)
3 7 (01,01.01), (01,10,11), (01,11,11), (10,10,10), ()%
(10,11,1D & (11,11,11)
3 8 (01,01,01), (01,10.11), (01,11,11), (10,10,10), ()%
(10,11,11) & (11,11,11)
4 4 OL101D) & (11,11,11) (&)
or (01,01,01), (O1,11,11) & (10,10,10)
or (01,01,01), (01,10,11), (O1,11,11), (10.10,10),
(10,11,1D) & (11,11,11)
4 5 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (&)
(0,11L,11) & (11,11,11)
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l £z Difference Vectors det(Copt)
4 6 (01,01,01), (01,10,11) & (11,11,11) (&)
or (01,11,11), (10,10,10) & (10,11,11)
or (01,01,01), (01,10,11), (01,11,11), (10,10,10),
(10,11,11) & (11,11,11)

4 7 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (£
(10,11,11D) & (11,11,11)

4 8 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (&)
(10,11,11) & (11,11,11)

5 5 (01,11,11) & (10,11,11) (&)™
or (01,01,01), (01,10,11), (10,10,10) & (11,11,11)
or (01,01,01), (01,10,11), (01,11,11), (10,10,10),
(10,11,11) & (11,11,11)

5 6 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (£)%®
(10,11,11) & (11,11,11)

5 7 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (&)*
(10,11,1H) & (11,11,11)

5 8 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (%)%
(10,11,11) & (11,11,11)

6 6 (01,01,01), (01,10,11), (01,11,11), (10,10,10). (Z)*
(10,11,11) & (11,11,11)

6 7 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (&)™
(10,1111 & (11,11,11)

6 8 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (3"
(10,11,11) & (11,11,11)

7 7 (01,01,01), (01,10,11), (01,11,11), (10,10,10), &)
(10,11,11) & (11,11,11)

7 8 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (%)%
(10,11,11) & (11,11,11)

8 8 (01,01,01), (01,10,11), (01,11,11), (10,10,10), (%)%

(10,11,11) & (11,11,11)
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6. A6 OPTIMAL DESIGNS FORm =4 AND k = 2

£

£2

Difference Vectors

det{ Copt )

2

3

(01.01,01,10,11,11). (01,01,10,10,11.11)
& (01.01,10,11.11.11)

(01,01,01,01,01.01), (01,01,10,10.11.11)
& (01,01,1L11,11,11)

or (01.01,01,01,01,01), (01,01,01,10,11.11),

(OL0110,11.11,11) & (01,0111, 11,1111

(01.01.01,10,11,11) & (OL.0L,11,11,11,11)

(01.01.01,10.11,11) & (0O1.01,11,11,11,11)

(01,01,01.01,01.01), (01,01,10,10,11.11).
(01.01.10,11,11,11) & (01,0111, FL.IL.ED)

(01,01,01,01.01,01), (01.01.10,10,11,1 1),
(0LOL10,11,11.11) & (01,01, 11,1 1,11.11)

(01.0L10,11,11,11) & (01,10,10,1 1,11.11)

or (01.01.01,10,11,11), (01,01,10,10,11.11).

(01,10,10.10,11,11) & (OL10, 11,1 1,11.11)

or (01,01.01.01,01,01), (01,01,01,10,11.11),

(CLOLOLTLILED, (01,01.10,10.11,1 1),
(01,01,10,11,11,11), (01,10.10,10,L L, 11),
(01.10,10,11,11,11), (01,011 1,11, 11,11,
OLIOLILIN) & (O 1L 1 LT
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2!

L2

Difference Vectors

det ( Copt )

3

4

(01,01,01,01,01,01), (01,01,01,11,11,11),
(01,10,10,10,11,11) & (01,11,11,11,11,1D)
or (01,01,01,01,01,01), (01,01,01,10,11,11),

(01,01,10,11,11,11), (01,10,10,11,11,11)

& (01,10,11,11,11,11)
or (01,01,01,01,01,01), (01,01,10,10,11,11),
(01,01,10,11,11,11), (01,10,10,11,11,11)
& (0L11,11,15,11,11)
or (01,01,01,01,01,01), (01,01,10,11,11,11),
(01,10,10,10,11,11), (01,01,11,11,11,11)
& (01.11,11,11,11,1D)
or (01,01,01,10,11,11), (01,01,01,11,11,11),
(01,01,10,10,11,11), (01,10,10,11,11,11)
& (01,10,11,11,11,11)
or (01,01,01,10,11,11), (01,01,01,11,11,11),
(01,10,10,10,11,11),(01,01,11,11,11,11)
& (01,10,11,11,11,11)
or (01,01,01,11,11,11), (01,01,10,10,11,11),
(01,10,10,10,11,11), (01,01,11,11,11,11)
& (01,11,11,11,11,11)
or (01,01,01,10,11,11), (01,01,10,10,11,11),

(01,01,10,11,11,11), (01,10,10,11,11,11),

(01,01,11,11,11,11) & (01,10,11,11,11,11)
or (01,01,01,01,01,01), (01,01,01,10,11,11),

(01,01,01,11,11,11),(01,01,10,10,11,11),

(01,01,10,11,11,11), (01,10,10,10,11,11),

(01,10,10,11.11,11), (0L,01,11,11,11,11),

(01,10, L,1L,1L,1D& (01,11,11,11,11,11)

( )11

Rleo
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OPTIMAL DESIGNS FOR SYMMETRIC ATTRIBUTES FOR m = 2

Attributes Levels Difference Vectors
2 2-12 All difference vectors, i.e., (01), (10) & (11)
3 2-12 All difference vectors of weight 2
e (011, (101) & (110)
4 2 All difference vectors of weight 2 & 3
3-12 All difference vectors of weight 3
5 2 All difference vectors of weight 3
3 All difference vectors of weight 3 & 4
4-12 All difference vectors of weight 4
6 2 All difference vectors of weight 3 & 4
3 All difference vectors of weight 4
4 All difference vectors of weight 4 & 5
5-12 All difference vectors of weight 5
7 2 All difference vectors of weight 4
34 All difference vectors of weight 5
5 All difference vectors of weight 5 & 6
6-12 All difference vectors of weight 6
8 2 All difference vectors of weight4 & §
3 All difference vectors of weight 5 & 6
4-5 Al difference vectors of weight 6
6-12 All difference vectors of weight 7
9 2 All difference vectors of weight §
3 All difference vectors of weight 6
4-6 All difference vectors of weight 7
8-12 All difference vectors of weight 8
10 2 All difference vectors of weight 5 & 6
3 All difference vectors of weight 7
4 All difference vectors of weight 7 & 8
5-7 All difference vectors of weight 8
8-12 All difference vectors of weight 9
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CHAPTER 7

VARIOUS TOPICS

We have now seen how to construct optimal and near-optimal designs for estimating main
effects and main effects plus two-factor interactions for any number of attributes each with
any number of levels and with choice sets of any (constant) size using the MNL model.
In this chapter we touch on a number of other important topics in the design of choice
experiments.

The first topic we consider is the design of optimal choice experiments when all choice
sets contain a none option or an option which is common to all choice sets, a base alternative,
or both a none option and a base alternative.

Next we discuss how to determine the best choice set size, in terms of the number of
levels of each of the attributes, as well as how to compare choice sets of different sizes.

So far in this book we have not placed any restrictions on the number of attributes that
can differ between the options in a choice set. Yet there is some evidence that respondents
do not perform as consistently when there are many features to trade-off. We show how to
construct optimal choice experiments when we limit the number of attributes which can be
different between the options in each choice set.

Al of the designs that have been developed in the earlier chapters have been optimized
when we have no prior information about the values of the ;. If we do have such prior
information, then it can be used to calculate a different A matrix, as indicated in Chapter 3,
and this matrix can be used to determine a modified C matrix (the matrix of contrasts is, of
course, unaltered by prior information). We consider the use of prior information for two
specific examples.
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228 VARIOUS TOPICS

7.1 OPTIMAL STATED CHOICE EXPERIMENTS WHEN ALL CHOICE SETS
CONTAIN A SPECIFIC OPTION

In this section we consider the construction of choice experiments in which all choice sets
contain either a none option, a common base option, o