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PREFACE 

Stated choice experiments are widely used in various areas including marketing, transport, 
environmental resource economics and public ,welfare analysis. Many aspects of the 
design of a stated choice experiment are independent of its area of application, however, 
and the goal of this book is to present constructions for optimal designs for stated choice 
experiments. Although we will define “optimal” formally later, informally an optimal 
design is one which gets as much information as; possible from an experiment of a given 
size . 

We assume throughout that all the options in each choice set are described by several 
attributes, and that each attribute has two or more levels. Usually we will assume that all 
the choice sets i n  a particular experiment have the same number of options, although we 
will relax this constraint in  the penultimate chapter. We assume that a multinomial logit 
model will be used to analyze the results of the stated choice experiment. 

In the first chapter we describe typical stated choice experiments and give several 
examples of published choice experiments. We introduce the terminology that we will use 
throughout the book. 

In Chapter 2 we define and construct factorial designs. These designs are used in 
various settings to determine the effect of each of several factors, or attributes, on one 
or more response variables. Factorial designs are appropriate when discussing the design 
of stated choice experiments, since in most stated choice experiments the options to be 
considered are described by attributes each of which can take one of several levels. We 
show how the effects of each factor can be calculated independently of the other factors in 
the experiment and we show how the joint effects of two or more factors can be determined. 
We show the relationship between fractional factorial designs and orthogonal arrays, give 

xvii 
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relevant constructions and discuss how to use some of the tables of such designs that are 
available. 

In Chapter 3 we discuss the use of the multinomial logit (MNL) model to analyze the 
results of a stated choice experiment. We derive the Bradley-Terry model and extend it 
to choice sets with more than two options. We show how the attributes that are used to 
describe the options can be incorporated into the MNL model and hence how to derive 
the appropriate variance-covariance matrix for the effects of interest. Functions of this 
matrix are traditionally used to compare designs and we indicate how any two stated choice 
experiments can be compared so that the “better” design can be determined. We develop 
the theory for the determination of the optimal stated choice experiment and we show how 
the optimality value associated with any set of choice sets of any size involving attributes 
with any number of levels can be calculated. This theory provides a non-subjective way to 
compare any set of stated choice experiments. We briefly discuss comparing designs using 
the structural properties of the choice experiments under consideration but as yet there is 
no firm l ink between these properties and those of the optimal designs. 

In the remaining chapters we discuss some specific choice situations in turn. 
In Chapter 4 we discuss the construction of choice experiments in which all of the 

attributes describing the options have two levels and in which all choice sets have two 
options. These are often called paired comparison choice experiments. We find the optimal 
designs for estimating main effects, and main effects plus two-factor interactions. We 
get the designs from the complete factorial and show how equally good designs can be 
constructed from fractional factorials, which were constructed in Chapter 2. In both cases 
the designs always have known efficiency properties. 

In Chapter 5 we extend the ideas of the previous chapter to choice sets of any size, 
although we still retain the restriction that the attributes each have only two levels. We 
work initially with designs based on thecomplete factorial and then show how to get smaller 
designs that are just as good from regular fractional factorial designs. 

In Chapter 6 we extend the ideas of the previous two chapters to construct optimal stated 
choice designs for any number of attributes with any number of levels using choice sets 
of any size. We derive the upper bound for D-optimal designs and show how to construct 
small designs that reach this bound for the estimation of main effects. In this case there 
are no general constructions for optimal designs for the estimation of main effects and 
two-factor interactions but we give heuristics that give designs that work well in practice. 
We give tables of optimal designs for some small situations. 

In Chapter 7 we briefly consider other important topics in the construction of optimal 
choice experiments. We look at how to construct optimal designs when there is either a 
“none of these” option in each choice set or a common base alternative in each choice set. 
We consider how to design optimal experiments when there are restrictions on the number 
of attributes that can be different between any two options in a choice set, find the optimal 
size of the number of options for the choice sets in a choice experiment and look briefly at 
the use of prior point estimates. 

The constructions we have given in the previous chapters are not necessarily the easiest 
way to construct choice experiments so in Chapter 8 we discuss some techniques that we 
have used in practice to construct optimal or near-optimal choice experiments. We also 
compare some commonly used strategies for constructing choice experiments. 

For each chapter we provide references to the mathematical and statistical literature for 
the constructions, to various literature including the marketing literature and the health 
services literature for examples of applications of the designs, and we provide a number 
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of exercises to help the reader test their understanding of the material presented. Some of 
these exercises provide interesting extensions to the topics discussed in the chapter. 

Software that allows readers to construct choice sets from a starting design by adding 
sets of generators is available at http://maths.science.uts.edu.au/maths/wiki/SP~xpts. For 
these choice sets, or indeed any set ofchoice sets, the software will calculate the information 
matrix and the corresponding variance-covariance matrix. 

Our biggest thank you is to Jordan Louviere who introduced the first author to choice 
experiments a decade ago and who has been a constant source of questions and encourage- 
rnent ever since. While writing this manuscript we have benefitted greatly from feedback 
from various pcople. We would particularly like to thank David Pihlens, Stephen Bush and 
Amanda Parnis for constructive comments that improved the clarity of the presentation. 
Each author would like to blame the other author for any mistakes that remain. 
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CHAPTER 1 

TYPICAL STATED CHOICE EXPERIMENTS 

People make choices all the time; some of these decisions are of interest to governments 
and businesses. Governments might want to model demand for health services in the future 
or to assess the likely electoral impact of a decision to allow logging in a national park. 
Businesses want to predict the likely market for new goods and services. 

Information about choices can be captured from sources like supermarket scanners. 
However, this “revealed preference” data tells you nothing about products that do not 
yet exist. Here an experimental approach can help. Such experiments are called “stated 
preference” or “stated choice” experiments. This book describes the best way to design 
generic stated preference choice experiments, from a mathematical perspective. 

Stated choice experiments are widely used in business although often not published. Ac- 
cording to the results of a survey sent out to businesses, there were about 1000 commercial 
applications in the United States in  the 1970s and there were about 400 per year in the early 
1980s (Cattin and Wittink (1982); Wittink and Cattin (1989)). Wittink et al. (1994) found 
less extensive use in Europe in the period 1986-1 991, but Hartmann and Sattler (2002) have 
found that the number of companies using stated choice experiments and the number of 
experiments conducted had more than doubled in German-speaking Europe by 2001. The 
range of application areas has also increased and now includes transport (Hensher (1994)), 
health economics (Bryan and Dolan (2004)), and environmental evaluation (Hanley et al. 
(2001)), among others. 

In the rest of this chapter we will define some concepts that we will use throughout the 
book. We will use published choice experiments from various application areas to illustrate 
these concepts. These examples will also illustrate the range of issues that needs to be 
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2 TYPICAL STATED CHOICE EXPERIMENTS 

addressed when designing such an experiment. The mathematical and statistical issues 
raised will be considered in the remainder of this book. 

1.1 DEFINITIONS 

Stated choice experiments are easy to describe. A stated choice experiment consists of 
a set of choice sets. Each choice set consists of two or more options (or alternatives). 
Each respondent (also called subject) is shown each choice set in turn and asked to choose 
one of the options presented in the choice set. The number of options in a choice set 
is called the choice set size. A stated choice or stated preference choice experiment is 
often called a discrete choice experiment and the abbreviations SP experiment and DCE 
are very common. We will look at the design of choice experiments for the simplest 
stated preference situation in this book - the so-called generic stated preference choice 
experiment. In such an experiment, all options in each choice set are described by the same 
set of attributes, and each of these attributes can take one level from a set of possible levels. 

An example involving one choice set might ask members of a group of employees how 
they will travel to work tomorrow. The five options are {drive, catch a bus, walk, cycle, 
other} and these five options comprise the choice set. Each respondent will then choose 
one of these five methods of getting to work. 

This simple example illustrates the fact that in many choice experiments people are 
forced to choose one of the options presented. We call such an experiment a forced choice 
experiment. In this case, being compelled to choose is easy since the respondents were 
employees (so would be going to work) and every possible way of getting to work was in 
the choice set since there was an option “other”. Thus the list of options presented was 
exhaustive. 

Sometimes a forced choice experiment is used even though the list of options presented 
is not exhaustive. This is done to try to find out how respondents “trade-off” the different 
characteristics of the options presented. A simple example is to offer a cheap flight with 
restrictive check-in times or a more expensive flight where there are fewer restrictions on 
check-in times. In reality, there might be intermediate choices, but these are not offered in 
the choice set. 

However, there are certainly situations where i t  simply does not make sense to force 
people to choose. People may well spend several weeks deciding which car to buy and 
will defer choice on the first few cars that they consider. To allow for this situation, choice 
experiments include an option variously called “no choice” or “delay choice” or “none of 
these”. We will just talk about having a none option to cover all of these situations. 

A related situation arises when there is an option which needs to appear in every choice 
set. This can happen when respondents are being asked to compare a new treatment with 
an existing, standard treatment for a medical condition, for instance. We speak then of all 
choice sets having a common base option. 

Sometimes just one option is described to respondents who are then asked whether or 
not they would be prepared to use that good or service. Usually several descriptions are 
shown to each respondent in turn. This is called a binary response experiment, and in many 
ways i t  is the simplest choice experiment of all. It does not allow for the investigation of 
trade-offs between levels of different attributes, but i t  gives an indication of combinations 
of levels that would be acceptable to respondents. 

When constructing choice sets, it is often best to avoid choice sets where one option 
is going to be preferred by every respondent. In the flight example above, there will be 
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respondents who prefer to save money and so put up with the restrictive check-in conditions, 
and there will be respondents for whom a more relaxed attitude to the check-in time will 
be very important. I t  seems obvious, though, that a cheap flight with the relaxed check-in 
conditions would be preferred by all respondents. An option which is preferred by all 
respondents is called a dominnting or dominant option, and it is often important to be able 
to design choice experiments where it is less likely that there are choice sets in which any 
option dominates (or where there is an option that is dominated by all others in  the choice 
set). There is a discussion about dominating options with some discussion of earlier work 
in Huber and Zwerina (1996). 

When constructing options which are described by two or more attributes, i t  can be nec- 
essary to avoid unrealistic combinations of attribute levels. For example, when describing a 
health state and asking respondents whether they think they would want a hip replacement 
if they were i n  this health state, i t  would be unrealistic to describe a state in  which the 
person had constant pain but could easily walk 5 kilometers. 

Throughout this book, we will only consider situations where the options in the ex- 
periment can be described by several different attributes. Each attribute has two or more 
levels. For the flight example we have been describing, the options have two attributes, 
the cost and the check-in conditions. In general. attributes need to have levels that are 
plausible and that are varied over a relevant range. For example, health insurance plans can 
be described by maximum cost to the subscriber per hospital stay, whether or not visits to 
the dentist are covered, whether or not visits to the physiotherapist are covered, and so on. 
Although attributes like cost are continuous, in the choice experiment setting we choose a 
few different costs and use these as discrete levels for the attribute. Thus we do not consider 
continuous attributes in this book. 

Finally, we stress that we will be talking about generic- stated preference choice experi- 
ments throughout this book. We do not consider the construction of optimal designs when 
the options are labeled, perhaps by brand or perhaps by type of transport, say, and hence the 
attributes, and the levels, depend on the label. We only consider designs that are analyzed 
using the M N L  model. 

1.2 BINARY RESPONSE EXPERIMENTS 

As we said above, in binary response experiments the respondents are shown a description 
of a good or service, and they are asked whether they would be interested in buying or 
using that good or service. For each option they are shown, they answer “yes” or “no”. 

One published example o f a  binary response experiment appears i n  Gerard et al. (2003). 
This study was carried out to develop strategies that were likely to increase the participation 
rates in  breast screening programs. The goal of a breast screening program is to achieve a 
target participation rate across the relevant population since then there should be a reduction 
in breast cancer mortality across that population. To get this participation rate requires that 
women participate at the recommended screening rate. The aim of the study described in 
Gerard et al. (2003) was to “identify attributes of service delivery that eligible screenees 
value most and over which decision makers have control”. The attributes and levels used 
in the study are given in Table I .  I .  

Given these attributes and levels, what does a respondent actually see? The respondent 
sees a number of options, like the one in Table I .2, and just has to answer the question. 
In this particular survey each respondent saw 16 options (invitations) and so answered the 
question about each of these I6 different possible invitations i n  turn. 



4 TYPICAL STATED CHOICE EXPERIMENTS 

Table 1.1 Attributes and Levels for the Survey to Enhance Breast Screening Participation 

Attributes Attribute Levels 

Method of inviting women for screening Personal reminder letter 
Personal reminder letter and 

Media campaign 
Recommendation from 

family/friends 

recommendation by your GP 

Information included with invitation No information sheet 
Sheet about the procedure, 

benefits and risks 
of breast screening 

Time to wait for an appointment 1 week 
4 weeks 

Choice of appointment times Usual office hours 
Usual office hours, one evening per 

Saturday morning 

Not more than 20 minutes 
Between 20 and 40 minutes 
Between 40 and 60 minutes 
Between 1 and 2 hours 

week 

Time spent traveling 

How staff at the service relate to you Welcoming manner 
Reserved manner 

Private changing area 
Open changing area 

Attention paid to privacy 

~ 

Time spent waiting for mammogram 20 minutes 
30 minutes 
40 minutes 
50 minutes 

8 working days 
10 working days 
12 working days 
14 working days 

Time to notification of results 

Level of accuracy of the screening test 70% 
80% 
90% 
100% 
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Table 1.2 One Option from a Survey about Breast Screening Participation 

Screening Service 

How are you informed 
Information provided with invitation 
Wait for an appointment 
Appointment choices 

Time spent traveling (one way) 
How staff relate to you 
Changing area 
Time spent having screen 
Time waiting for results 
Accuracy of the results 

~ 

Personal reminder letter 
No information sheet 
4 weeks 
Usual office hours and one evening 

Not more than 20 minutes 
Reserved manner 
Private changing area 
40 minutes 
10 working days 
90% 

per week 

Imagine that your next invitation to be screened is approaching. 
Would you choose to attend the screening service described above? 

(rick one only) 

Yes 0 No 0 

The statistical question here is: “which options (that is, combinations of attribute levels) 
should we be showing to respondents so that we can decide which of these attributes, i f  
any, is important, and whether there are any pairs of attribute levels which jointly influence 
the decision to participate in the breast screening service?” The design of such informative 
binary response designs is described in Section 7.1.2. 

1.3 FORCED CHOICE EXPERIMENTS 

In a forced choice experiment, each respondent is shown a number of choice sets i n  turn 
and asked to choose the best option from each choice set. There is no opportunity to avoid 
making a choice in each choice set. 

Severin (2000) investigated which attributes made take-out pizza outlets more attractive. 
In her first experiment, she used the six attributes in Table 1.3 with the levels indicated. 
A sample choice set for an experiment looking at these six attributes describing take-out 
pizza outlets is given in ‘Table 1.4. There are three things to observe here. 

The first is that all the attributes have two levels; an attribute with only two levels is 
called a bii?flq attribute, and it is often easier to design small, but informative, experiments 
when all the attributes are binary. We focus on designs for binary attributes in Chapters 4 
and 5 .  

The second is that the question has been phrased so that the respondents are asked 
to imagine that the two choices presented to them are the last two options that they are 
considering in their search for a take-out pizza outlet. This assumption means that the 
respondents are naturally in a setting where i t  does not make sense not to choose an option, 
and so they are forced to make a selection even though the options presented are not 
exhaustive. 
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Finally, observe that each respondent has been shown only two options and has been 
asked to state which one is preferred. While it is very common to present only two options 
in each choice set, it is not necessarily the best choice set size to use; see Section 7.2 for a 
discussion about the statistically optimal choice set size. Larger choice sets do place more 
cognitive demands on respondents, and this is discussed in Iyengar and Lepper (2000), 
Schwartz et al. (2002), and Iyengar et al. (2004). 

Table 1.3 Six Attributes to be Used in an Experiment to Compare Pizza Outlets 

Attributes Attribute Levels 

Pizza type Traditional 
Gourmet 

Type of Crust Thick 
Thin 

Ingredients All fresh 
Some tinned 

Size Small only 
Three sizes 

Price $17 
$13 

Delivery time 30 minutes 
45 minutes 

Table 1.4 One Choice Set in an Experiment to Compare Pizza Outlets 

Outlet A Outlet B 

Pizza type Traditional Gourmet 
Type of crust Thick Thin 
Ingredients All fresh Some tinned 
Size Small only Small only 
Price $17 $13 
Delivery time 30 minutes 30 minutes 

Suppose that you have already narrowed down your choice 
of take-out pizza outlet to the two alternatives above. 

Which of these two would you choose? 
(tick one onlv) 

Outlet A 0 Outlet B 0 

Most forced choice experiments do not use only binary attributes. Chapter 6 deals with 
the construction of forced choice experiments for attributes with any number of levels. For 
example, Maddalaet al. (2002) used 6 attributes with 3,4,5, 3,s. and 2 levels, respectively, 
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in a choice experiment examining preferences for HIV testing methods. The attributes, 
together with the attribute levels, are given in Table 1.5, and one choice set from the study 
is given in Table 1.6. Each respondent was presented with 1 1 choice sets and for each of 
these was asked to choose one of two options. As the respondents were all surveyed at HIV 
testing locations a forced choice experiment was appropriate. 

Tahle 1.5 
Methods 

Attributes and Levels for the Study Examining Preferences for HIV Testing 

Attribute Attribute Levels 

Location Doctor’s office 
Public clinic 
Home 

Price $0 
$10 
$50 
$100 

Sample collection Draw blood 
Swab mouth 
Urine sample 
Prick finger 

Timeliness/iiccuracy Results in 1-2 weeks; almost always accurate 
Immediate results; almost always accurate 
Immediate results; less accurate 

Privacy/anonymity Only you know; not linked 
Phones; not linked 
In person: not linked 
Phone; linked 
In person; linked 

Counseling Talk to a counselor 
Read brochure then talk to counselor 

Both of the experiments discussed above used only six attributes. Hartmann and Sattler 
(2002) found that about 75% of commercially conducted stated choice experiments used 
6 or fewer attributes and they speculated that this might be because commonly available 
software often used to generate choice experiments would not allow more than 6 attributes. 
However, there are choice experiments where many attributes are used; see Section 1.7.2. 

1.4 THE “NONE” OPTION 

As we said above, sometimes it does not make sense to compel people to choose one of the 
options in a choice set and so some choice experiments include an option variously called 
“no choice” or “delay choice” or “none of these” in each choice set. 

Often an existing forced choice experiment can be easily modified to include an option 
not to choose. For instance, in the pizza outlet experiment described in the previous section, 
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Table 1.6 One Choice Set from the Study Examining Preferences for HIV Testing Methods 

Attribute 

Location 
Price 
Sample collection 
Timeliness/accuracy 

Privacy/anonymi ty 
Counselling 

Option A 

Doctor’s office 
$100 
Swab mouth 
Results in 1-2 weeks; 

In person; not linked 
Talk to a counselor 

almost always accurate 

Option B 

Public clinic 
$10 
Urine sample 
Immediate results; 
less accurate 

Only you know; not linked 
Read brochure then talk to 
counselor 

Which of these two testing methods would you choose? (tick one  on!.^) 
Option A 0 Option B 0 

we could change the question to ask: “Suppose that you have decided to get a take-out 
meal. Which of these pizza outlets would you select, or would you go somewhere else?’ 

Dhar (1997) looks at the situations in which consumers find it hard to choose and 
so will opt to defer choice if they can. Haaijer et al. (2001) summarize his results by 
saying “respondents may choose the no-choice when none of the alternatives appears to 
be attractive, or when the decision-maker expects to find better alternatives by continuing 
to search. ... adding an attractive alternative to an already attractive choice set increases 
the preference of the no-choice option and adding an unattractive alternative to the choice 
set decreases the preference of the no-choice.” In Section 7.1 .l, we discuss how to design 
good designs when there is a “none of these” option in each choice set. 

1.5 A COMMON BASE OPTION 

Some choice experiments have a common (or base) option, sometimes called constant 
comparator, in each choice set, together with one or more other options. This is often done 
so that the current situation can be compared to other possibilities. A typical example arises 
in medicine when the standard treatment option can be compared to a number of possible 
alternative treatment options. 

Ryan and Hughes (1997) questioned women about various possible alternatives to the 
surgical removal of the product of conception after a miscarriage (note that some such 
treatment is essential after a miscarriage). They identified the attributes and levels given in 
Table 1.7 as being appropriate. 

In the choice experiment, the common base, which is the current treatment option of 
surgical management, was described as “having a low level of pain, requiring 1 day and 0 
nights in hospital, taking 3-4 days to return to normal activities, costing $350, and there 
would be complications post-surgery”. This raises the question of whether it is sensible 
to have an option in which it is known with certainty that there will be complications; it 
might have made more sense to talk of the probability of complications given a particular 
treatment. This interesting non-mathematical issue will not be addressed in this book. 
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Table 1.7 
Management Preferences 

Five Attributes to he Used in an Experiment to Investigate Miscarriage 

Attributes Attribute Levels 

Level of pain Low 
Moderate 
Severe 

Time in hospital I day and 0 nights 
2 days and I night 
3 days and 2 nights 
4 days and 3 nights 

Time taken to return to normal activities 1-2 days 
3 4  days 
5-6 days 
More than 7 days 

Cost to you of‘ treatment $100 
$200 
$350 
$500 

Complications following treatment Yes 
NO 

Having a common option in all choice sets is not as good as allowing all the options 
to be different from one choice set to another but when a common base is appropriate we 
show how to design as well as possible for this setting in Section 7.1.3. 

1.6 AVOIDING PARTICULAR LEVEL COMBINATIONS 

Sometimes a set of level combinations of at least two of the attributes is unrealistic and 
sometimes a set of level combinations is clearly the best for all respondents and so will 
always he chosen. 

We discuss examples of each of these situations here. We give some ideas for how to 
design choice experiments when these circumstances pertain i n  Chapters 4, 5, and 8. 

1.6.1 Unrealistic Treatment Combinations 

To illustrate this idea consider the descriptions of 5 attributes describing health states 
devised by EuroQol; see EuroQoL (2006). These attributes and levels are given in Table 
1.8 and are used to describe health states for various purposes. In the context of a stated 
preference choice experiment we might describe two health states and ask respondents 
which one they prefer. 

But even a quick look at the levels shows that some combinations of attribute levels do not 
make sense. A health state in  which a person is “Confined to bed” in the mobility attribute is 
not going to be able to be linked with “No problems with self-care” in the self-care attrihute. 
Thus it is necessary to determine the level Combinations that are unwolistir before using 
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choice sets that are generated for these attributes using the techniques developed in later 
chapters. 

Table 1.8 Five Attributes Used to Compare Aspects of Quality of Life 

Attributes Attribute Levels 

Mobility No problems in walking about 
Some problems in walking about 
Confined to bed 

Self-care No problems with self-care 
Some problems with self-care 
Unable to wash or dress one’s self 

~~~~ 

Usual Activities 
(e.g., work, study 
housework) 

Pain/Discomfort 

AnxietyDepression 

No problems with performing one’s usual activities 
Some problems with performing one’s usual activities 
Unable to perform one’s usual activities 

No pain or discomfort 
Moderate pain or discomfort 
Extreme pain or discomfort 

Not anxious or depressed 
Moderately anxious or depressed 
Extremely anxious or depressed 

1.6.2 Dominating Options 

Many attributes can have ordered levels in the sense that all respondents agree on the same 
ordering of the levels for the attribute. In the levels presented in Table 1.8 it is clear that 
in  every attribute the levels go from the best to the worst. Thus a choice set that asks 
people to choose between the health state (No problems in walking about, No problems 
with self-care, No problems with performing one’s usual activities, No pain or discomfort, 
Not anxious or depressed) and any other health state is not going to give any information - 
all respondents will choose the first health state. We say that the first health state dominates 
the other possible health states. 

It is possible to have a choice set in which one option dominates the other options in 
the choice set even though the option is not one that dominates all others in the complete 
set of  level combinations. So if we use 0, 1 ,  and 2 to represent the levels for each of the 
attributes in Table I .8 then the best health state overall is 00000. But a choice set that 
contains (001 11,01222, 1221 I), for example, has a dominating option since 001 11  has at 
least as good a level on every attribute as the other two options in the choice set. It is not 
clear, however, whether 01 222 or 1221 1 would be preferred since it is not necessarily true 
that the same utility values apply to the same levels of different attributes. 

We discuss ways of avoiding choice sets with dominating options in Chapters 4, 5 ,  and 
8. 



OTHER ISSUES 11 

1.7 OTHER ISSUES 

In this chapter we have discussed a number of different types of choice experiments that 
have been published in the literature. We have indicated that, in  later chapters, we will 
describe how to construct optimal designs for binary responses, for forced choice stated 
preference experiments, for stated choice experiments where a “none” option is included 
in every choice set, and for stated choice experiments where a common base option is 
included in every choice set. In all cases we consider only generic options analyzed using 
the MNL model. In this section we want to mention a couple of designs that we will 
not be constructing and to discuss briefly some non-mathematical issues that need to be 
considered when designing choice experiments. 

1.7.1 Other Designs 

In  some experiments, options are described not only by attribute levels but also by a brand 
name or label; for example, the name of the airline that is providing the flight. Such 
experiments are said to have branded or labeled options (or alternatives), and these have 
alternative .specific attributes. 

In many situations, people choose from the options that are available at the time they 
make their choice rather than deferring choosing until some other option is available. 
Experimentally, we can model this by having a two-stage design process. We have a design 
which says what options are available and another design that determines the specific 
options to present given what is to be available. Such designs are termed maiIatii/ity 
designs. 

We will not be discussing the construction of designs for branded alternatives or for 
availability experiments in  this book. The interested reader is referred to Louviere et al. 
(2000). 

1.7.2 Non-mathematical Issues for Stated Preference Choice Experiments 

The first issue, and one that we have alluded to in Sections 1.3 and 1.4, is the question of 
task complexity and thus of respondent efficiency. If a task is too complicated (perhaps 
because there are too many attributes being used to describe the options in a choice set 
or because there are too many options in each choice set), then the results from a choice 
experiment are likely to he more variable than expected. Aspects of this problem have been 
investigated by various authors, and several relevant references are discussed i n  lyengar 
and Lepper (2000). Louviere et al. (2007) found that completion rates are high even for 
what would be considered large choice experiments in  terms of the number of attributes 
and the number of options. 

A related issue concerns the number of choice sets that respondents can reasonably be 
expected to complete. If there are too many choice sets, then respondents may well become 
tired and give more variable results over the course of the experiment. This situation has 
been investigated by Brazell and Louviere (1995) and Holling et al. (1998). 

The discrete choice experiment task needs to be thought about in context. Are the 
choices one time only or are they repeated? How important is the outcome of the decision? 
(In a medical setting you could be asking people to think about life-or-death decisions.) 
How familiar is the context? The choice of a health insurance provider may be familiar 
while other choices, such as for liver transplant services, may require the provision of 
detailed information in the experiment so that respondents can make an informed choice. 
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The attributes that are used to describe the options in a choice experiment need to be 
appropriate and plausible, and the combinations that are presented in the experiment need 
to be realistic; otherwise, respondents may take the task less seriously or be confused by it. 

The mechanics of setting up a stated preference experiment are outlined in Chapter 9 of 
Louviere et al. (2000). Dillman and Bowker (2001) discuss many aspects of both mail and 
internet surveys. 

There are various sources of bias that have been identified as sometimes occurring 
in choice experiments. One is what has been termed qfirmafion bias when respondents 
choose responses to be consistent with what they feel the study objectives are. This is why 
experimenters sometimes include attributes that are not of immediate interest to mask the 
main attributes that are under investigation. 

A second possible source of bias is called rationalization bias, where responses are 
given that justify the actual behavior. This serves to reduce cognitive dissonance for the 
respondents. A third possible source of bias results from the fact that there are no transaction 
costs associated with choices in a stated preference study. Some respondents try to respond 
in a way that they believe will influence the chance of, or the magnitude of, changes in 
the real world. This is termed strategic or policy response bias. Finally, people may not 
be prepared to indicate preferences which they feel are socially unacceptable or politically 
incorrect. These terms are defined and used in Walker et al. (2002). 

Other sources of bias can be related to the actual topic under investigation. Carlsson 
(2003) was investigating business passengers preferences, and some of his options were 
more environmentally friendly, but more expensive, than other options, and he spoke of 
respondents perhaps aiming to have a “warm glow” or “purchasing moral satisfaction” 
when making choices. 

Severin (2000) has shown, in a paired comparison experiment, that if there are a large 
number of attributes describing each option, then respondents find the task more difficult 
and she has suggested that about 8 or 9 attributes seem to be effectively processed; see her 
thesis for more details. For a discussion of the role of cognitive complexity in the design of 
choice experiments, readers are referred to DeShazo and Fermo (2002) and Arentze et al. 
(2003) and references cited therein. 

These and other psychological and cognitive issues are beyond the scope of this book, 
and we refer the reader interested in such issues elsewhere. The papers by Iyengar and 
Lepper (2000) and Schwartz et al. (2002) and the references cited therein provide a good 
starting point to find out more about these issues. 

1.7.3 Published Studies 

As we have said before, stated preference choice experiments are used in many areas. Here 
we give references to a few published studies, together with a very brief indication of the 
question being investigated and the type of design being used. 

Chakraborty et al. (1994) describe a choice experiment to investigate how consumers 
choose health insurance. As well as the actual company offering the insurance, 23 other 
attributes were used to describe health insurance plans. Respondents were presented with 
choice sets with 4 options i n  each and asked to indicate their preferred plan. 

Hanley et al. (2001 ) describe a stated preference study to investigate demand for climbing 
in Scotland. Each choice set contained two possible climbs and a “neither of these” option. 
They also give a table with details of about 10 other studies that used DCEs to investigate 
questions in environmental evaluation. 
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Kemperman et al. (2000) used an availability design to decide which of four types of 
theme parks would be available to respondents in each of spring and summer. Each choice 
set contained four theme parks and a “none of these” option. 

McKenzie et al. (2001 ) describe a study in which five attributes that are commonly used 
to describe the symptoms of asthma were included and three levels for each of these chosen. 
Patients with moderate to severe asthma were shown “pairs of scenarios characterized by 
different combinations of asthma symptoms”, and were asked which of the two scenarios 
they thought would be better to have or whether they felt there was no difference. 

Ryan and Gerard (2003) and Bryan and Dolan (2004) give examples of the use of DCEs 
in the health economics context. 

Scarpa et al. (2004) discuss experiments to “characterise the preference for fifteen 
different attributes related to water provision”. 

An example of a choice experiment that involved labeled options is given in Tayyaran 
et al. (2003). The authors were interested in investigating whether telecommuting and 
intelligent transportation systems had an impact on residential location. Each choice set 
contained three residential options as well as a “none of these” option. The residential 
options were “branded” as central cities, ,first-tier satellite nodes, and second-tier satellite 
nodes. Each residential option was described by 7 attributes, 4 of which were the same for 
all of the locations. 

Walker et al. (2002) used two stated choice experiments to model tenants’ choices in the 
public rental market. 

1.8 CONCLUDING REMARKS 

In this chapter we have seen that there are a number of areas where stated choice exper- 
iments have been applied and that there are a number of issues, both mathematical and 
non-mathematical, which need to be considered in the construction of the best possible ex- 
periments for a given situation. In the remainder of this book we look at the mathematical 
issues that need to be considered to design a good generic stated choice experiment to be 
analyzed using the MNL model. In  the next chapter, we collect a number of results about 
factorial designs which are intimately connected with the representation of options by at- 
tributes. We follow this with a discussion about parameter estimators and their distribution. 
Over the following three chapters we show how to get the best designs for any number 
of attributes, each attribute being allowed to have any number of levels and with choice 
sets of any size. In the penultimate chapter we consider how to construct good designs for 
other situations, such as the inclusion of a “none” option in every choice set. The final 
chapter illustrates the application of the results in the book to the construction o f a  number 
of experiments that we have designed in the last five years. 



This Page Intentionally Left Blank



CHAPTER 2 

FACTORIAL DESIGNS 

Comparative experiments are carried out to compare the effects of two or more treatments 
on some response variable (or variables). They were developed in an agricultural setting, 
and often the effects of several factors on the yield of a crop, say, were investigated 
simultaneously. Such experiments are calledfactnrial experinients and were introduced by 
Sir Ronald Fisher in the 1920s. 

Suppose that an experiment is designed to investigate the effect of I; factors on the yield 
of a crop. Then the treatments of interest are in fact combinations of levels of each of the k 
factors under investigation. We refer to these as treatment combinations. If the qth factor 
has tq levels, then there are L = n,=, tq possible treatment combinations, but often only 
a subset of these are actually used in the experiment. 

In this chapter we will show the link between the treatment combinations in a factorial 
design and the options used in a stated preference choice experiment. We will review the 
constructions that exist for obtaining subsets of the treatment combinations from a factorial 
design so that specific effects of interest can still be estimated. While these constructions 
were developed to provide good designs when the results of the experiment are analyzed 
using a linear model with normal errors, it turns out that these constructions are still useful 
when the multinomial logit model is used. Thus the results developed here form the basis 
for much of the rest of the book. 

Throughout this chapter, we will assume that yi,ri2,,..,2b. is the response with the first 
factor at level i ,  the second factor at level j ,  and so on, until the final factor is at level 
q in  a traditional comparative experiment. (In choice experiments the word attribute is 
used instead of the word factor. In this chapter we use the word “factor,” since we are 

k 
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16 FACTORIAL DESIGNS 

summarizing constructions from the statistical literature. In later chapters we will use 
the word “attribute” instead, to make the results more consistent with the use in various 
application areas.) 

2.1 COMPLETE FACTORIAL DESIGNS 

A complete factorial design is one in which each of the possible level combinations appears 
at least once. If all of the factors have the same number of levels, then the factorial design 
is said to be symmetric; otherwise it is asymmetric. 

Suppose that there are k factors and that each of the factors has 4 levels. Then the 
factorial design is said to be a symmetric design with 4 levels, and we talk about an ek 
factorial design. The smallest symmetric factorial design is a design in which two factors 
each have two levels, a 22 design. 

We will represent the levels of an 4 level factor by 0. 1 , .  . . , 4 - 1 .  

EXAMPLE 2.1.1. 
The combinations of factor levels in a 23 factorial design are 000,001,010,011, 100, 101, 
l l0 ,and  1 1 1 .  

In an asymmetric factorial design, the factors may have different numbers of levels. If 
factor q has P, levels, then we speak of an PI x 42 x . . . x ek factorial design. 

EXAMPLE 2.1.2. 
The combinations of factor levels in  a 3 x 4 factorial design are 00,01,02, 03, 10, 1 1 ,  12, 
13, 20, 2 I ,  22, and 23. 0 

2.1.1 2k Designs 

Designs in which all factors have only two levels are the most commonly used factorial 
designs. Typically, the two levels are chosen to be the largest and smallest levels that 
are deemed to be plausible for that attribute (factor). For example, in an experiment to 
investigate treatment preferences for asthma, one of the attributes might be sleep disturbance 
with levels no disturbance and woken more than 5 times per night. In  an experiment 
describing employment conditions, one of the attributes might be amount ofannual leave 
with levels 2 weeks per year and 6 weeks paid leave and up to 4 weeks unpaid leave per 
year. In an experiment to compare plane flights, one of the attributes might be iny7ight 
service with levels beverages and hot meals. 

2.7.1.7 Main Effects As a result of conducting the experiment, we would like to be 
able to estimate the effect of each of the factors, individually, on the response. This is 
termed the main effect of that factor. 

If we fix the levels of all factors except one, and then look at the difference in response 
between the high level and the low level of this one factor, this difference in response is 
called the simple effect of the factor at the particular levels of the other factors. The main 
effect of a factor is the average of all the simple effects for that factor. 

mEXAMPLE2.1.3. 
Suppose that there are k = 3 factors, A ,  B, and C, each with two levels. Suppose that a 
complete experiment has been carried out. Then there are four simple effects to calculate 
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for each of the three factors. Consider factor A.  Then the simple effect of A at level 0 for 
B and level 0 for C' is given by 

Y l O O  - YOOO. 

The simple effect of A at level 0 for B and level 1 for C is given by 

Y l O l  - Y O O l .  

The simple effect of A at level 1 for B and level 0 for C is given by 

Y l l O  - YOlO. 

Finally. the simple effect of A at level 1 for B and level 1 for C is given by 

Yl11  - Y O 1 1  

The main effect of A is the average of these four simple effects and is given by 

1 
;(VIOO - ynoo + ~ i o i  - Y O O ~  + ~ i i o  - Y O ~ O  + ~ i i i  - ~ 0 1 1 ) .  0 

It is often easier to describe the main effect of a factor as the difference between the 
average response to that factor when it is at level 1 and the average response when it is at 
level 0. To write this mathematically, we let the treatment combinations be represented by 
binary k-tuples ( T ~ : c z . .  zk), where zg = 0 or I ,  q = 1..  . . ~ k .  Then we could write the 
main effect of the qth factor as 

2.1.1.2 interaction Effects Two factors are said to interact if the effect of one of the 
factors on the response depends on the level of the other factor. 

Formally the twofactor interaction efect of factors A and B is defined as the average 
difference between the simple effect of A at level 1 of B and the simple effect of il at level 
0 of B. 

EXAMPLE 2.1.4. 
Suppose that k = 2.  Then the simple effect of A at level 1 of B is ( ~ 1 1  - Y o l )  and the 
simple effect of A at level 0 of B is (y10 - ~ 0 0 ) .  The interaction effect of A and R,  denoted 
by AB, is the average difference between these two simple effects, that is, 

In general, a two-factor interaction is 
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Higher-order interactions are defined recursively. Thus the three-factor interaction 
between factors A, B, and C i s  defined as the average difference between the AB interaction 
at level 1 of C and the AB interaction at level 0 of C .  

mEXAMPLE 2.1.5. 
Suppose that k = 4. Then the AB interaction at level 1 of C is 

1 4 (Y1111 + Yo011 - (Yo111 + Y l O l l )  + Y l l l O  + Yo010 - ( Y O l S O  + Y l O l O ) )  

i ( Y l l 0 1  + Yo001 - (Yo101 + Y l O O l )  + Y l l O O  + Yoooo - ( Y O 1 0 0  + Y l O O O ) ) .  

The AB interaction at level 0 of C is 

1 

The average difference between these is 

1 ABC= ; { [i (Y1111 + Yo011 - ( Y O 1 1 1  + Y l O l l )  + Y l l l O  + yo010 - (Yo110 + Y l O l O ) )  

- 4 ( Y l l O l  + Yo001 - ( Y O 1 0 1  + Y l O O l )  + Y l l O O  + yoooo - ( Y O 1 0 0  + Y l O O O ) )  " 
1 - - - ((Y1111 + Yo011 + Y l l l O  + Yo010 + Yo101 + Y l O O l  + Yo100 + Y l O O O )  

- (Yo111 + Y l O l l  + Y O 1 1 0  + Y l O S O  + Y l l O l  + Yo001 + Y l l O O  + Yoooo)) . 

This is a specific case of the following general result. 

THEOREM 2.1.1. 
The interaction effect of factors 91, q 2 ,  . . . , qt in a 2k factorial experiment is estimated by 
1/2k-' times the difference between the sum of the treatment combinations with 

and the sum of the treatment combinations with 

zql + zq2 + . . . + zq, = ( t  + 1) (mod 2). 

Pmo$ We will prove the result by induction on t .  
The main effect of factor 41 is the difference between the sum of the treatment com- 

binations receiving factor 41 at the high level (and so with zql = 1) and the sum of the 
treatment combinations receiving factor q1 at the low level (and so with zql = 0).  Thus 
the result holds f o r t  = 1. 

The interaction between the factors q1 and q 2  is the difference between the main effect 
of q1 at the high level of q2 and the main effect of q1 at the low level of q 2 .  Thus we get 
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Hence the result follows by induction. 0 

EXAMPLE 2.1.6. 
Let k = 4. Then the A13C interaction is estimated by 1/8 of the difference between the 
sum of the treatment combinations with 2 1  + 2 2  + 2 3  = 1 (mod 2 )  and the treatment 
combinations with .rl +n2 +r3 = 0 (mod 2 ) ;  this is consistent with the result of Example 
2.1 5. 0 

2.1.2 3'" Designs 

In a 3 k  design there are k factors and all of the factors have three levels each. The factor 
might be qunntitntive, such as the tempernture with levels 40°, SO", and 60". or the factor 
might be qimlitntive, such as severity of symptoms with levels mild, moderate, and severe. 

I n  either case we are again interested i n  the effect of each factor, independently, on the 
response and on the joint effect of two or more factors on the response. 

2.1.2.1 Main Effects The main efeerr of a factor is the effect of that factor, independent 
of any other factor. on the response. So it seems natural, for each factor, to group the 
3k  responses to the treatment combinations into three sets. For factor q ,  these sets are 
{ Y , P ~ T ~  .... r i  /.xy = O}, {yI1sz...TA lrq = 1} and {yZ,, *... zi. Inq = 2 ) .  

When a factor had two levels, we compared the average response in each of the two 
sets of responses. When there are three sets, there are a number of comparisons that might 
be of interest. We might be interested in comparing the average response of the three sets 
pairwise, giving: 

which compares responses to levels 1 and 0; 

which compares responses to levels 2 and 0; and 

which compares responses to levels 2 and I .  But these three comparisons are not indepen- 
dent, since we can calculate the third comparison if we know the other two. How can we 
get a set of independent comparisons'? 
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We want each comparison to be independent of the mean of all the responses and of 
every other comparison so that each comparison can be tested independently of every other 
comparison and of the mean. (Recall that if y - N ( p ,  C) then a’y N N(a’p, a’Ca). 
By definition, two normally distributed random variables, x and z are independent if 
Cov(x,z) = 0. If A is a matrix and if y N N ( p ,  C ) ,  then Ay - N ( A p ,  ACA’) .  
These results can be used to establish when comparisons are independent; see below and 
Exercise 2.1.4.10.) 

We now give some definitions to formalize the ideas that we need. 
A comparison is any linear combination of the responses. We will write a comparison 

as 

T l X 2  X k  

Thus the mean is a comparison with A,,,, Z k  = &. Two comparisons with coefficients 
X,,,, and v,,,, J k  are orthogonal or independent if 

X T 1 Z 2  X k ’ T I T Z  X k  =’ 
Ill2 Z h  

(see Exercise 2.1.4.10). Thus a comparison is independent of the mean if 

21x2 ... xk 

Any such comparison is called a contrast. 
We want to find two contrasts that are also orthogonal (equivalently pairwise indepen- 

dent). Since all the treatment combinations in each set will have the same coefficient, there 
are only three distinct coefficients that we need to find. We let XO be the coefficient for 
all the treatment combinations in the set {y51x2. . .xk Jxq = 0}, XI be the coefficient for all 
the treatment combinations in the set {y5152..,5c /zq = l}, and we let X2 be the coefficient 
for all the treatment combinations i n  the set {y51xz...xk/x9 = 2) .  We define v0,vl and 
vz similarly. So we need to find XO, XI, XZ, vo, vl and v2 such that XO + A1 + XZ = 0, 
vo + v1 + v2 = 0 and Xovo + Xlvl + X2vz = 0. 

While there are infinitely many solutions to these equations, there is one solution that 
is commonly used. Let XO = -1, X i  = 0 and A2 = 1, and let vo = v2 = 1 and 
v1 = -2.  Then these contrasts give the linear and quadratic components of the response 
to a quantitative factor with equally spaced levels; we prove this below. 

Any two independent sets of contrasts will give the same sum of squares for a main 
effect for a normally distributed random vector (see Exercise 2.1.4.10). 

Suppose that k = 3. Then the three sets of responses for the first factor are 
EXAMPLE 2.1.7. 

{ Y O O O ~  YOOI YOOZ, yoio  YO^ 1. yoiz, YOZO. yozi , yo22 1, 
~ ~ i o o , ~ ~ o i ~ ~ i o z ~ ~ i i o , ~ i i i , ~ i i z , ~ i z o , ~ ~ z i , ~ i z z } ,  

{ ~ z o o , ~ z o i , ~ z o z , ~ 2 1 o , ~ z i i , ~ z i z , ~ z z o , ~ z z i , ~ 2 2 2 } ~  

The contrast corresponding to Xo = -1, A1 = 0 and X2 = 1 is 

1 
F ( ( Y 2 0 0  + Y201 + Y202 + YZlO + y211 + y212 + Y220 + yzz1 + yzzz) 

- (YOOO + yo01 + Yooz + yolo + Yo11 + yoiz + yozo + ~ 0 2 1  + ~022)). 
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21.2.2 Orthogonal Polynomial Contrasts Suppose that we have a set of pairs 
(x,, y ) ,  i = 1 , 2 . .  . . . f and that we want to predict Y as a polynomial function of .c of 
order n = 0.1. . . . ~ f - 1. We usually do this by constructing a matrix X with the first 
column with entries of 1 (for the constant term), second column with the values of the r? ,  
the third column with the values of the xp and so on until the final column of X contains 
the values of 1:;. Thus we can write E ( Y )  = Xp and ,6 = ( X ’ X ) - ’ X ’ Y .  In general, 
nothing can be said about the form of the matrix X’X. However, we could just as readily 
use other polynomials to determine the entries in the X matrix so that the resulting X ‘ X  is 
diagonal (and hence easy to invert). 

To do this we proceed as follows. 
We define 

for 72 = 1 , 2 , .  . . and we let PO(r)  = 1. We will then do a regression on PI (x). P*(.T) and 
so on, and we want the resulting X matrix to be such that X’X is diagonal. 

The off-diagonal entries in X ’ X  are of the form 

and so we require this sum to equal 0. 
We will assume that the values of the z, are equally spaced; thus, xi+l - .T, = rl for all 

The values of the coefficients in P,(z) depend on the value of 0. We illustrate the 
calculations using E = 3. 

As P = 3, we want to evaluate Po(.), Pl(z) and P2(z). But we already know that 
Po(.) = 1 (by assumption, since Po(z) is some constant function). Using Equation (2.1) 

7. 

with n, = 1 gives 
3 

Now substituting for PI we get 

3 3 

i=l 1=1 

So we see that c q , 0  = -y and hence PI (z) = z - F. 
Using Equation (2.1) with n = 2 and j = 1 gives 

= 0. (2.2) 
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Using Equation (2.1) with n = 2 and j = 2 gives 

3 3 c pz(.z)po(.t) = C(xe + Q 2 , 1 5 2  + m . 0 )  

t= 1 2=1 

= 0. (2.3) 

We now use these two equations to solve for C Y ~ J  and a2,o. From Equation (2.2) we get 
(collecting terms) 

a2.1 (Ex: - 3 2 )  f a 2 , o  ( 3 P -  3 P )  +Ex: -??Ex: = 0. 
2 I 1 

from which we see that 
zC2xf - C A  c,x; - 322 . a2.1 = 

Using Equation ( 2 3 ,  we get that 

i 

These are general expressions and we now simplify them by considering the case when 
x1 = 0 , ~  = 1 and 5 3  = 2 .  Then 

- 
z = (0  + 1 + 2 ) / 3  = 1, 

= 0 + 1 + 4  = 5. 
t 

and 
= 0 + 1 + 8 = 9. 

2 

So we get 

and 
a2,1 = ( I  x 5 - 9)/(5 - 3 x 1) = -2 

~12.0 = (-5 - 3 x ( - 2 )  x 1 ) / 3  = 1 / 3 .  

We usually record the values of the orthogonal polynomials for a given value of n rather 
than the actual polynomials. Hence we would get a table like Table 2.1 for n = 3. 

Table 2.1 Values of Orthogonal Polynomials for n = 3 

X 0 1 2  

PI(.) -1 0 1 Linearcomponent 
3 P ~ ( s )  1 -2  1 Quadratic component 

We can find the values of orthogonal polynomials for any value of n in a similar way. 
Tables of orthogonal polynomials may be found in Kuehl(1999) and Montgomery (2001). 

It is possible to evaluate orthogonal polynomials for unequally spaced levels; see Ad- 
delman (1 962) and Narula (1 978). 

For a factor with .!! levels, the values of (z) are the coefficients of the linear contrast 
and the values of Pz (z) are the coefficients of the quadratic contrast. Higher-ordercontrasts 
are defined similarly. 
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2.1.2.3 interaction Effects We start with two-factor interactions. The two-factor 
interaction effect of factors A and B is the joint effect of the two factors on the response 
and is again called AB. Now, however, there are four independent contrasts associated 
with the interaction. This is because there are nine distinct pairs of levels for factors R and 
B and so 8 independent contrasts possible between these sets. Four of these contrasts have 
been used to calculate the main effects of the factors, leaving 4 contrasts for the interaction 
effect. 

The easiest way to determine these contrasts is to divide the responses to the treatment 
combinations into nine sets, basedjointly on the levels of A and B. So we get sets 

ARou = (yZ lTZ lzn = Q , x g  = I,!!}, for 0 = 0 , l .  2 :  4') = 0.1.2;  

for any two factors A and B. There are 8 independent contrasts possible between 9 sets. 
However, these sets are subsets of the sets that we used to define the main effects of factors 
A and R. To ensure that the main effects and the interaction effect are independent, we 
have to use those four contrasts (two from each main effect) to be 4 of the X contrasts. 
Then any other four independent contrasts can be chosen to represent the interaction effect. 
One common way to get the final four independent contrasts is to take the component-wise 
product of the contrasts for main effects. This gives contrasts that are interpretable as 
the linear x linear interaction, the linear x quadratic interaction, the quadra/ic x linear 
interaction and the quadratic x quadratic interaction. It is easy to verify that these contrasts 
are independent of the contrasts for main effects. 

W EXAMPLE 2.1.8. 
Suppose that k = 2.  'Then the contrasts for main effects and for the linear x linear 

contrast, the linear x quadratic contrast, the quadratic x linear contrast and the quadratic 
0 x quadratic contrast are given in Table 2.2. 

Table 2.2 A.  B, and A B  Contrasts for a 32 Factorial 

00 01 02 10 I I  12 20 21 22 Treatmentcombinations 

1 1  I I 1  1 1  1 I M e a n  

I 1 I -2 -2  -2 1 1 1 AQuadratic = A Q  

I -2 I 1 -2  I I -2  I BQuadratic = BQ 
I 0 -1 0 0 0 -1 0 I A L X B L  

-1 2 -1 0 0 0 1 -2  1 A L X B Q  
-1 0 1 2 0 -2  -1 0 I A Q X B L  

I - 2  1 -2 4 - 2  1 -2 I A Q X B Q  

-1 -1 -1 0 0 0 1 1 I ALinear = A L  

-1 0 I -1 0 1 -1 0 1 BLinear  = B L  

Another way to get the four contrasts that correspond to the two-factor interaction effects 
is to use the sets 

and 

Then the linear and quadratic contrasts can be used on these sets, although it is not clear 
what interpretation might be put on them, even for quantitative factors. Note, though, that 

{ Y X 1 T 2 .  zi.lzql +xq2 = Q}? 8 = 0.1.2 

{YrT1.rz...?l'A lzgl + 22q2 = Q}: 8 = 0.1 .2 .  
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these sets are the pencils of an affine plane and that this link has been exploited in proving 
results about fractional factorial designs; see Section 2.2 and Raghavarao (1971) for more 
details. 

EXAMPLE 2.1.9. 
Suppose that k = 3. The set given by z1 + z~ = 0 is 

If we let 

ABoo = ( 2 1 ~ 2 ~ 3 1 2 1  = O , X ~  = 0 } ,  ABol = ( 2 1 2 2 2 3 1 2 1  = O , 2 2  = I}, 

and so on, then the set given by 5 1  + ICZ = 0 is the union of ABoo, AB12, and ABzl. 
The other 5 sets can be defined similarly. The 9 orthogonal contrasts are then as given in 
Table 2.3. 0 

Table 2.3 A. B,  and AB Contrasts for a 33 Factorial 

ABoo ABol ABoz ABio ABii AB12 ABzo AB21 AB22 

1 1 I I 1 1 1 1 I Mean 

B Effect 
1 :i AEffect 

-1 -1 -1 0 0 0 1 1 
1 1 1 -2 -2  -2 1 1 

-1 0 1 -1 0 1 -1 0 
1 -2 1 1 -2  1 1 -2 

-1 0 1 0 1 -1 1 -1 01 

1 -2 1 -2 0 -1 1 1 1 1 1 I;} Al? Effect 

1 1 -2 -2  1 1 1 -2 1 
- 1  1 0 

The definition of the sets of treatment combinations for the determination of higher-order 
interaction terms is similar. We can either take the orthogonal polynomial approach with 
linear x linear x linear and so on, or we can use the second, “geometric”, approach. With 
the geometric approach, the three-factor interaction between factors A ,  B, and C requires 
four sets to define the eight contrasts; these are 

xi + 252 + 2 9  = i (mod 3) ,  z1 + 2x2 + 2x3 = i (mod 3) .  

We will take the geometric approach when we come to construct fractional factorial designs 
in Section 2.2. 

2.1.3 Asymmetric Designs 

As we said earlier, we use 
there are no restrictions on the number of levels for any of the factors. 

x Cz x . . . x e k  to refer to a general factorial design in which 
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2.7.3.1 Main Effects As before, we want to be able to estimate the effect of each of 
the factors, individually, on the response. For factor q ,  we calculate F q  sets associated with 
that factor and use contrasts between these sets to calculate the main effects for that factor. 

EXAMPLE 2.1.10. 
Consider a 2 x 3 x 4 complete factorial design. The two sets for the first factor are 

{000.001,002.003.010.011,012.013~020.021~022~023}~ 

{100.101,102,10~3.110,111,112,113,120.121,122, 123). 

The second factor has three sets associated with it: 

(000,001.002.003, LOO, 101.102,103}. {010,011~012~013.110.111.112.113}, 

{020.021.022.023,120,121,122.123}. 

Similarly, there are four sets associated with the third factor. The corresponding matrix of 
0 contrasts for main effects for the three factors is given in Table 2.4. 

Table 2.4 Main Effects Contrasts for a 2 x 3 x 4 Factorial 

- 1  - 1  -1 --1 - 1  -1 - 1  - 1  - 1  -1 - 1  -1 I I I I I I I I I I I I A 
- 1  - 1  - 1  - - I  11 n 11 11 I I I I --I - 1  - 1  - 1  I! 11 11 11 1 I I I i i L  

I I 1 1 - 2 - 2 - 2 - 2  I I I I I I I 1 - 2 - 2 - 2 - 2  I I I l i l ( 2  

I - 1  - 1  I I - 1  - 1  1 1 - 1  - 1  1 I - 1  -1 I I - 1  -1 I I - I  - I  , ( ' ( 2  

- 1  1 - 3  I -1 3 - -J  I - 1  I - 3  I -1 I - 3  I - 1  3 - 3  1 - 1  l - : < l < ' c  

- ' 1  -1 I I - 3  - 1  I 3 4 - 1  I 3 - 3  - 1  I 3 - -J  - 1  I 1 - J - 1  I l ( ' i .  

2.1.3.2 Interaction Effects For interaction effects, we again use the polynomial 
contrasts for each factor and take all possible component-wise products. 

EXAMPLE 2.1.11. 
Consider the 2 x 3 factorial. Then the six treatment combinations are 00, 01, 02, 10, 1 I ,  

and 12. 
The contrast for the main effect of the first factor is -1, -1, -1, 1, I ,  I .  
Forthesecondfactorthemain-effectcontrastsare-l,O, I ,  -1,0, 1 and I ,  -2, I ,  1, -2, 1 .  
Thus the two contrasts for the interaction are 1,  0, -1, -1, 0, 1 and -1, 2 .-I ,  I ,  -2, I .  

0 

2.1.4 Exercises 

1 .  Give all the level combinations in a 2 x 2 x 3 factorial 

2 .  Give the B and C: main effects for Example 2.1.3. 

1 3. Use m(Ez,j=l y51r2...IA - C,,,=o y I lT2  .... T i )  to confirm the results in Example 
2.1.3 and the previous exercise. 
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4. Consider factors with two levels and let k = 2 Confirm that the AB interaction and 
the B A  interaction are equal. Repeat with k = 3. 

5. Consider factors with two levels and let k = 3. Show that the ABC interaction is 
also equal to the average difference between the AC interaction at level 1 of B and 
the AC interaction at level 0 of B.  Are there any other ways that you could describe 
this interaction? 

6. If .t = 4, verify that the following components are correct 
-3 -1 1 3 Linear 

-1 3 -3 1 Cubic 
1 -1 -1 1 Quadratic 

7. Suppose that k = 2 and that both attributes have 4 levels. Give possible entries for 
the 6 polynomial contrasts for main effects and the 9 polynomial contrasts for the 
two-factor interaction. 

8. Suppose that .t = 3. 

(a) Let x = (0,1,2)’. Let X = [I, x. x2]. Calculate X’X. 
(b) Now let X = [l, PI ( x ) ~  Pz(z)]  and calculate X’X. 
(c) Comment. 
(d) Suppose that you use the representations in both of the first two parts to fit a 

(a) List the 6 sets of treatment combinations in a 3’ factorial experiment corre- 

(b) Give two independent contrasts for the main effects for each of the factors. 

(c) List the six sets that correspond to the two-factor interaction. 

(d) Give four independent contrasts corresponding to the two-factor interaction. 
(e) Verify that all the eight contrasts (for main effects and the two-factor interaction) 

10. Suppose that y1, yz, . . . , yn are independently identically distributed N ( p ,  g 2 )  ran- 

quadratic polynomial. What is the relationship between the estimates? 

9. 
sponding to the main effects. 

that you get are orthogonal (that is, independent) in this case. 

dom variables. 

(a) Let y’ = (y l ,  yz, . . . , yn) and let a’ = ( a l ,  az ,  . . . ,an) .  Then 

i 

Hence deduce that the sum of squares for testing HO : p xi a, = 0 is given by 
( p  C,  a1)2n/ts2 where ,s2 is an unbiased estimate of CT’. 

(b) By definition, two normally distributed random variables, z and z are indepen- 
dent if C O l l ( Z ,  z )  = 0. If A is a matrix, then Ay - N ( A p ,  (r2AA’) ,  where 
p = ( p ,  p ,  . . . , p ) .  Suppose that the rows of A form a set of independent 
contrasts. Then AA’ is a diagonal matrix. Derive the sum of squares for testing 

(c) Hence show that, in an ordinary least squares model, the sum of squares for a 
Ho : Ap. = 0. 

factor is independent of which set of independent contrasts is chosen. 

1 1 .  Verify that the five contrasts in Example 2.1.1 1 are all mutually orthogonal. 



REGULAR FRACTIONAL FACTORIAL DESIGNS 27 

2.2 REGULAR FRACTIONAL FACTORIAL DESIGNS 

A froctional factorial design is one in which only a subset of the level combinations appears. 
Fractional factorial designs are used when the number of treatment combinations i n  the 

complete factorial is just too large to be practical, either because it will take too long to 
complete the experiment or it will cost too much. So a fractional factorial design is faster 
and cheaper and, with a suitably chosen fraction, you can still get all the information that 
you want from the experiment. In this section we will look at the ways of getting fractional 
factorials that allow you to estimate all the effects you are interested in. 

2.2.1 Two-Level Fractions 

Recall that, if each of the k factors has 2 levels, then we talk about a 2k  design. We use 2"-" 
to denote a fractional factorial design in which only 2"-P treatment combinations appear. 
A regirlar,froction of a 'Lk factorial is a fraction in which the treatment combinations can 
be described by the solution to a set of binary equations. Equivalently, a regular fraction 
is one in which there are some generator factors and all other factors can be defined in 
terms of these generators. The binary equations are called the dejning equations or the 
dejnirzg contrasts of the fractional factorial design. A regular 2k--1, fraction is defined by 
p independent binary equations or, equivalently, by k - p generators. 

An irregular fraction is a subset of the treatment combinations from the complete 
factorial, but the subset is determined in some ad-hoc fashion. Usually all treatments 
combinations in an irregular fraction have to be listed explicitly. 

A regular 2"-' has 8 treatment combinations and these 8 treatment combinations are the 
solutions to one binary equation. The solutions to the binary equation 

EXAMPLE 2.2.1. 

x1 +x2 + x 3  = 0 (mod 2)  

are the treatment combinations in Table 2.5 .  If x1 = 1 and 2 2  = 0 then 1 + 0 + 2 3  = 0 
(mod 2); so 2 3  = 1. The defining equation places no restrictions on x4; so both 1010 and 
101 1 are solutions to the defining equation. This fraction may also be written as I = ARC. 
(Recall that. when working modulo 2, 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1.) 0 

Table 2.5 A Regular 24-1 Design 

0 0 0 0  
0 0 0 1  
0 1 1 0  
0 1 1 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  

As we have said, for a regular 2"-P design, the treatment combinations will satisfy p 
independent binary equations. A set of equations is said to be independent if  no non-zero 
linear combination of the equations is identically 0. We now consider an example of this. 
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mEXAMPLE2.2.2. 
Let k = 6. Consider the three binary equations 

To show that these equations are independent, we need to consider all the sums of these 
equations; thus we consider the three sums of two equations and the sum of all three 
equations. We get 

and these are the only linear combinations possible for binary equations. There are 8 
solutions to theseequations: 000000,001l11,010101,011010, 100110, 101001, 110011, 
I I 1  100. 

On the other hand, the equations 21 + 5 2  + 2 3  + 2 4  = 0 , q  + x2 + 25 + 2 6  = 0 and 
23 + 2 4  + 25 + 2 6  = 0 have 16 solutions since the third equation is the sum of the first 

0 

We have defined regular fractions by setting linear combinations of the x2 equal to 0. 
This is called the principalfraction. Other fractions are obtained by equating some (or all) 
of the linear combinations to 1 .  Indeed if we use the same linear combinations with all 
possible solutions we obtain a partition of the complete factorial into regular fractions, as 
the following example shows. 

HEXAMPLE 2.2.3. 
Let k = 5 and consider the linear combinations 2 1  + 2 2  + 23 and 53 + 2 4  + z5. The 
corresponding partition of the complete 25 factorial into four regular fractions is given in 
Table 2.6. 

two and so there are only two independent equations. 

Table 2.6 Non-overlapping Regular 25-2 Designs 

0 0 0 0 0  0 0 0 0 1  0 1 0 0 0  0 1 0 0  1 
0 0 0 1 1  0 0 0 1 0  0 1 0 1 1  0 1 0 1  0 
0 1 1 0 1  0 1 1 0 0  0 0 1 0 1  0 0 1 0  0 
0 1 1 1 0  0 1 1 1 1  0 0 1 1 0  0 0 1 1  1 
1 0 1 0 1  1 0 1 0 0  1 1 1 0 1  1 1 1 0  0 
1 0 1 1 0  1 0 1 1 1  I l l l O  1 1 1 1  1 
I 1 0 0 0  I 1 0 0 1  1 0 0 0 0  1 0 0 0  I 
1 1 0 1 1  1 1 0 1 0  1 0 0  1 1  1 0 0 1  0 
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For any fractional factorial design, we will estimate an effect by using the same co- 
efficients as we would have used for that effect i n  the complete factorial design. This is 
sometimes called definition by restriction. 

wEXAMPLE2.2.4. 
Let k = 4 and consider the 24-' fraction given by .TI + 2 2  + 1 3  + 5 4  = 0; see Table 2.7. 
There are 8 treatment combinations and so there will be 8-1 =7 orthogonal contrasts possible. 
The IS contrasts from a 2" design are given in Table 2.8. The contrasts that we use for 
the fraction are obtained from the contrasts in Table 2.8 by considering only the eight 
columns that correspond to the eight treatments in  the fractional factorial design. These 
are indicated in bold. Doing this, we see that ABCD is indistinguishable from the 
mean. This is consistent with Theorem 2.1.1 since all the treatment combinations with 
21 + n'2 + x 3  + 2-4 = 0 have the same sign i n  the ABCD contrast. All the other contrasts 
come i n  pairs with, say, the effects of A and BCD being indistinguishable. This is because 
the two sets with different coefficients in  the A contrast are given by 2'1 = 0 and 21 = 1. 
For the BCD contrast these sets are 2 2  + 2 3  + 2 4  = 1 and 2 2  + 2 3  + 2 4  = 0. If we know 
that 11'1 + n ' ~  + 5 3  + 2 4  = 0, then 2 1  = x2 + 3 3  + 2 4  and so the sets for the A contrast 
and the BCD contrast coincide. Similarly, x 2  = x1 + x3 + z4, .x3 = xL + xz + .c4, 
54 = .TI + 3:2 + 2 2 ,  21 + 2 2  = 2 3  + ~ 4 ,  x1 + .r3 = rz  + 2 4 ,  and z1 + 5 4  = 29 - + %I . .  7'3 

So A and HCD, B and ACD, C and ,4BD, D and ABC, AB and C D ,  A(' and B D ,  
and AD and BC form pairs of effects with contrasts that are the same in the 2"' fraction 
given by x1 + 1 2  + , ~ 3  $- x$ = 0. 

Table 2.7 A 24p1 Design of Resolution 4 

0 0 0 0  
0 0 1  I 
0 1 0 1  
0 1 1 0  
1 0 0  1 
1 0 1 0  
1 1 0 0  
I 1 1 1  

We say that effects with the same contrast i n  a fraction are aliased or confomdedeffects. 
The effects which have the same coefficient for every treatment combination in the fraction 
are called the dejning efferts or the dejning contrasts. The list of all the aliases for each 
effect in a design is called the alias .strurture of the design. Given the defining contrasts, 
we can calculate the alias structure (and conversely). 

I f  we know nothing about the factors and possible interactions, then it is usually best 
to be able to estimate low order interactions (main effects and two-factor interactions) 
independently of each other i n  a fractional factorial design. So fractional factorial designs 
are classified by the alias structure of the design. If no main effect is confounded with any 
other main effect, but at least one main effect is confounded with a two-factor interaction, 
then the design is said to be of resolution 3. If at least one main effect is confounded 
with a three-factor interaction but no two main effects are confounded with each other and 
no main effect is confounded with a two-factor interaction, then the design is said to be 
of resolution 4. So the design in Table 2.7 is of resolution 4 since each main effect is 
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Table 2.8 Contrasts for the 24 design 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  

A 
B 
C 
D 
AB 
AC 
AD 
BC 
BD 
CD 
ABC 
ABD 
ACD 
BCD 
ABCD 

-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 I 1 
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 I 1 
-1 -1 1 1 -1 -1 1 1 -1 -1 1 I -1 -1 1 1 
-1 1 -1 1 -1 1 -1 1 -1 1 -1 I -1 1 -1 1 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 -1 1 -1 I 1 -1 1 -1 -1 1 -1 1 
1 -1 -1 1 1 -1 -1 I 1 -1 -1 1 1 -1 -1 1 

-1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 
-1 I -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 
-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 
-1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

confounded with a three-factor interaction. If at least one main effect is confounded with 
a four-factor interaction and no main effect is confounded with anything smaller, or if at 
least one two-factor interaction is confounded with a three-factor interaction but no pair of 
two-factor interactions are confounded, then the design is said to be of resolution 5 .  

We can determine the resolution of a design directly from the defining equations. If 
there are r non-zero coefficients in a defining equation, then main effects corresponding to 
the zq with non-zero coefficients in the equation are confounded with interactions of r - 1 
factors, two-factor interactions corresponding to pairs of zq with non-zero coefficients are 
confounded with interactions with r - 2 factors, and so on. 

Let k = 5 and consider the fraction given by the defining equations 
EXAMPLE 2.2.5. 

2 1  + 22 + 2 3  = 0 and + 2 2  + 2 4  + 25 = 0.  

The aliasing structure is determined by noting, first, that 

21 + 2 2  + 2 3  + 2 1  + 2 2  + 5 4  + 2 5  = 5 3  + 2 4  + 2 5  = 0. 

Thus there are in total three defining equations; these are 

2 1  + 2 2  + 2 3  = 2 1  + 2 2  + 2 4  + 5 5  = .23 + 2 4  + 2 5  = 0. 

From these we can now establish the sets of equations that have the same solutions. We get 
5 1  = 2 2  + x 3  - 2 2  + x4 + 2 5  = 2 1  + 2 3  + T4 + 5 5 ,  

5 2  = .c1 +x3 - 2 1  + x4 + x5 = 5 2  + 5 3  + x4 + x5, 

2 3  = x1 +x2 = 2 1  + 2 2  + x 3  + 2 4  + 2.5 = 2 4  + xs. 
2 4  = 5 1  +a2 + 2 3  + 2 4  = 2 1  + x2 + 2s - 2 3  + 3-5, 

2 5  = 2 1  + 2 2  + 53 + 2 5  = 5 1  + 2 2  + 54 - x3 + 2 4  

- 
- 

- 
- 
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Thus we see that the main effect of A,  for instance, is confounded with BC, BDE and 
4CDE. As there is at least one main effect that is confounded with a two-factor interaction 
(and no pair of main effects that are confounded), we have confinned that the design is of 
resolution 3. 0 

EXAMPLE 2.2.6. 
Let k = 6. The defining equations 

3'1 + 5 2  + ~3 + 2 4  = 0 and 2 3  + 2 4  + 2, + 3'6 = 0 

give a design of resolution 4. We can see this because 

3'1 + .x2 + 2 2  t 2 4  + ~3 + 3'4 + + 2 6  = 1-1 + .r2 + 3'5 + .rc = 0 

Thus each main effect is confounded with two 3-factor interactions and a S-factor interac- 
tion. Each 2-factor interaction is confounded with at least one other 2-factor interaction. 

If there are more than three factors ( k  > 3), then we can find a resolution 3 design that 
uses fewer treatment combinations than the complete factorial. 

Designs of resolution S can be used to estimate main effects and two-factor interactions. 
If there are four or fewer factors (so k 5 4), then the only resolution 5 design is the 
complete factorial, independent of the number of levels each of the factors have. If there 
are more than four factors ( k  > 4), then we can find a resolution S design that uses fewer 
treatment combinations than the complete factorial. We do this by finding a set of defining 
equations such that each defining equation has at least S non-zero coefficients and such that 
each linear combination of the equations has at least S non-zero coefficients just as we did 
for resolution 4 in  Example 2.2.6. 

2.2.7.7 Regular Designs with Factors at 2 Levels Regular fractions can be con- 
structed from a set of defining equations or, equivalently, from a set of generator vectors. 
In this section we give sets of generator vectors that can be used to construct small regular 
fractional factorial designs with all factors with 2 levels. 

For two vectors a and b we will define a + b using component-wise addition modulo 2 
(that is, 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1). Thus for the two vectors 

a = (0 .0 .0 .0 .1 ,1 ,1 .1)  and b = (0.0.1.1.0,0.1.1) 

we see that 
a +  b =  ( 0 ~ 0 , 1 ~ 1 , 1 ~ 1 , 0 , 0 ) .  

We will write a set of gariernror vertors i n  a standard order. If the design has 2 k - p  
treatments then we need to define k - p generators, bi say. We let bl have its first 2"-"-' 
entries as 0 and the remaining 2"P-l entries as 1. For b2 we let the first 2"-"-2 entries 
be 0, the next 2"p-2 entries be I ,  the next 2k--P-2 be 0 and the final 2 k - p - 2  be 1 .  For b:3 

we let the first 2k-p-3 entries be 0, the next 2k--P-3 entries be 1 ,  the next 2 k - p - 3  be 0 and 
so on. We continue defining generators i n  this way until we get to b k P p  which alternates 
0s and Is. 

For instance when k == 4 and p = 1 we get the three generator vectors 

bl = (0 ,0 .0 .0 .1 ,1 .  l . l ) .b*  = ( 0 , 0 ~ 1 ~ 1 , 0 , 0 , 1 ,  1) and b3 = (0.1.0.1.0.1.0.1).  

We can now define the levels of all the other factors in the design in terms of the b, .  
Table 2.9 contains designs with up to 10 factors of resolution 3 and Table 2.10 contains 
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Table 2.9 Smallest Known 2-Level Designs with Resolution at Least 3 

k N Other Factors 

4 8 b4 = bl + b2 + b3 
5 8 
6 8 
I 8 b 4 = b i + b z , b 5 = b i + b 3 , b s = b z + b 3 ,  

8 16 

b4 = bi + bz. b 5  = bl + b3 
b4 = bl + bz, b5 = bi + b3, bg = bz + b3 

b7 = bl + bz + b3 
b5 = bz + b3 + b4,bg = bi + b3 + b4, 
b7 = bl + bz+ b3,bs = bi + bz + b4 

9 16 b 5 = b z + b 3 + b 4 , b 6 = b l + b 3 + b 4 ,  
b7 = bi + b2 + b3. b8 = bi + b2 + b4, 

bg = bl + bz + b3 + b4 
b5 = b2 +b3 + b4,bs = bi fb3  + b4. 
b7 = bl + b2 + b3, b8 = bi + bz + b4, 
bg = bi +b2 +b3 + bq,bio = bi +bz 

10 16 

Table 2.10 Smallest Known 2-Level Designs with Resolution at Least S 

k N Other Factors 

ba = bl + bz + b3 + bq 
be = bl + bz + b3 + b4 + bs 

b7 = bl + bz + b3 + bq + b5 + bg 
b7 = bi + b2 + b3 + b4. 
bs = bi + bz + b5 + bg 

b8 = bl +b3 + b4 + b 6  + b7, 
b9 = bz + b3 + bg + btj + b7 

bs = bl + bz + b3 -t b7, 
b9 = bz + b3 + b4 + b5, 
blo = bi + b3 + b4 + b.5 

5 16 
6 32 
7 64 
8 64 

9 128 

10 128 
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designs with up to 10 factors of resolution 5 .  We let 
combinations so IV = 2"p .  

denote the number of treatment 

EXAMPLE2.2.7. 
We use the results in Table 2.9 to construct a binary design with k = 6 factors of resolution 

0 3. The 8 runs of the design are given in Table 2.1 I .  

Table 2.11 A Design with 6 Binary Factor? of Resolution 3 

0 0 0 0 0 0  
0 0 1 0 1 1  
O l O l O l  
0 1 1 1 1 0  
1 0 0 1 1 0  
1 0 1 1 0 1  
1 1 0 0 1 1  
1 1 1 0 0 0  

2.2.2 Three-Level Fractions 

A regular 3 k - p  fraction is one that is defined by the solutions to a set of p independent 
ternary equations; that is, a set of equations where all the arithmetic is done modulo 3 (so 
0 + 2 =  1 + 1  = 2 + 0 =  2 , 1 + 2 =  2 + 1  = O a n d O + l  = 1 t O =  2 + 2 =  1). 
These equations are the defining equations or the defining rontrusts of the regular fractional 
factorial design. 

EXAMPLE 2.2.8. 
A regular 3'-' fraction has 9 treatment combinations which are the solutions to two 

independent ternary equations. The solutions to 2 1  + 2 2  + 2 3  = 0 and 21 + 2x2 + ~4 = 0 
are given in Table 2.12. ( I f  we had used 2 1  + 2 2  + 2 3  = 0 and x1 + 52 + x4 = 0, then we 
would have had 2 3  = x4, and so we would not have been able to estimate the effects of the 

0 

A regular 3 k - p  fraction satisfies p independent ternary equations. When checking for 
independence, we must now add the original equations in pairs, triples, and so on (as you 
do for binary equations), but we must also check each equation plus twice every other 
equation, and so on. More formally, if we let El ~ Ez: .  . . . Ep be the defining contrasts, 
then we must calculate 

third and fourth factors independently.) 

and show that none of these 3 p  equations are identically 0 except when 

CYI = CY2 = . . .  = c lp  = 0. 
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Table 2.12 A 34-2 Fractional Factorial Design 

0 0 0 0  
0 1 2 1  
0 2 1 2  
1 0 2 2  
1 1 1 0  
1 2 0 1  
2 0 1 1  
2 1 0 2  
2 2 2 0  

HEXAMPLE 2.2.9. 
Let k = 6. Consider the defining contrasts 

5 1  + 5 2  + 2 3  + 2 2 4  = 0, 2 1  + 2 2  + 2 2 3  + 2z5 = 0 and 2 1  + 222  + x3 + 2z6 = 0. 

These are all independent since each of 2 4 ,  5 5  and 2 6  is involved in only one equation. 0 

EXAMPLE 2.2.10. 
Let k = 5 .  Consider the defining contrasts 

21 + 2 2  + 2 3  = 0 and 2 3  + 2 4  + 25 = 0. 

Can we find a third independent equation with at least three non-zero coefficients? The 
two equations that are linear combinations of the defining contrasts are 

2 1  + 2 2  + 2 3  + 5 3  + 2 4  + x 5  = z1 + 2 2  + 223 + 54 + 25 = 

and 
z 1  + 2 2  + 2 3  + 2 x 3  + 2 x 4  + 2x5 = 21 + 5 2  + 2 2 4  + 2x5 = 0. 

(We do not need to double the first equation and add the second equation - this is just 
double the sum of the first equation and twice the second equation; similarly, if we double 
both equations and add, we just get double the sum of the two equations.) Any equation 
other than the original two equations and the two equations we have found by addition will 
be independent of the two equations. 

What can we say about the possible equations? Given we are using the equations to 
construct fractional factorial designs, we do not want an equation with only one zq in 
it since the corresponding factor would not vary in the experiment. Similarly, if we use 
zql + mql, then there is a constant relationship between the corresponding factors and the 
associated main effects would be aliased. 

If we think about equations with three variables, then we cannot have more than one of 
5 1 ,  2 2  and 2 3  (since if we used, say, z1 + 2 2  + 5 4  = 0, then 

2 1  + 2 2  + 2 3  -k 2 ( 2 1  + 2 2  + 2 4 )  = 2 3  + 2 2 4  = 0 

and so 2 3  = 2 4 )  and we can not use more than one of 2 3 ,  5 4  and 2 5 .  So an equation 
involving three of the zq forces two of the zq to be equal. 
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A similar argument shows that you can not have equations with four or five variables 
either. 0 

Since any interaction sum of squares is independent of the particular contrasts that are 
used to define the interaction effects, in this section we will define the interactions using 
contrasts between sets ol'the form 

The only attributes whose levels determine the entries i n  the sets are those with non-zero 
coefficients. There are three sets associated with each equation: 

{(.rl .,Q.. . . , x k ) l  C o q x q  = 01, { ( x l , r Z , .  . . , :rk)l C o q x q  = I 1 
'I 9 

We will let 
P(&z, )  = P(n1.02, .  . . . O h )  

ri 

be the set of three sets associated with the equation C, oq.rrl, and we will talk about the 
pencil associated with C,  oq;rq.  

For any interaction involving f attributes, there are 2t-' associated pencils. For ex- 
ample, if  we want to calculate the interaction between the first three factors we would 
calculate contrasts between the sets i n  P(  1110.. . O), P(  11 2 0 . .  . O ) ,  P(  I21 0 . .  . O )  and 
P (  1220.  . . O ) .  Each pencil gives rise to two independent contrasts. Contrasts from dif- 
ferent pencils are orthogonal since any two sets from different pencils intersect in  3'-' 
treatment combinations. 

EXAMPLE 2.2.11. 
Let X: = 2. The sets i n  each pencil are indicated in Table 2.13. The corresponding contrasts 

0 are given i n  Table 2.14. 

Table 2.13 Pencils for a 3' Factorial Design 

Pencil 6 ' = 0  6 ' = 1  0 = 2  

P(10) or T I  = 6' 00,01.02 10. I I .  12 20,21.22 
P(O1) or ~2 = 6' 00, 10. 20 01. I I .  21 02, 12. 22 
P(11) or z1+r2=6' 00, 12, 21 01. 10.22 02, I I .  20 
P( 12) or T I  + 2rl = 6' 00. 1 I ,  22 02, 10.21 01. 12. 20 

EXAMPLE 2.2.12. 
Consider the design constructed in Example 2.2.8 and given i n  Table 2.12. The contraqts 
for the main effects for the design are given in Table 2 .  IS. 
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Table 2.14 Contrasts for a 3' Factorial Design 

00 01 02 10 I I  12 20 21 22 

- 1 - 1 - 1  0 0 0 1 I I 
1 1  1 - 2 - 2 - 2  1 1  1 

-1 0 1 - 1  0 1 - 1  0 1 
1 - 2  1 1 - 2  1 1 - 2  1 

-1 0 I 0  1 - 1  1 - 1  0 
1 - 2  1 - 2  1 1 I 1 - 2  

-1 1 0  0 - 1  1 1  0 - 1  
1 1 - 2 - 2  I 1  1 - 1  1 

Table 2.15 Contrasts for a S4-' Factorial Design 

0000 0121 0212 1022 I l l 0  1201 2011 2102 2220 

- 1 - 1 - 1  0 0 0 I 1  I AL 
1 1 1 - 2 - 2 - 2  I 1  I AQ 

-1 0 1 - 1  0 1 - 1  0 1 BL 
1 - 2  1 1 - 2  1 1 - 2  I BQ 

-1 1 0  1 0 - 1  0 - 1  1 C L  

1 1 - 2  1 - 2  1 - 2  1 1  CQ 
-1 0 1 1 - 1  0 0 1 - 1  DL 

1 - 2  1 1 1 - 2 - 2  I 1  DQ 
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2.2.2.7 
we will define a + b using component-wise addition modulo 3. Thus 

0+0= 1 + 2 = 2 + 1 =  0, 0 + 1 =  1 + 0 = 2 + 2 =  1 and 0+2= 1 + 1 = 2 + 0 = 2 .  

Regular Designs with All Factors at 3 Levels For two vectors a and b, 

Hence, for the two vectors a = (0,O. 0, 1, 1 .1 .2 .2 .2)  and b = (0.1,2.0: 1 . 2 . 0 , l ~  2),  we 
see t h a t a +  b = (0. 1 .2 .1 ,2 ,0 ,2 .0 ,  1). 

We will write a set of genernfors in a standard order. If the design has s k - p  treatments, 
then we need to define k - p generator vectors b,. For bl, we let the first 3"-"-' entries 
be 0, the next 3 k - p - '  entries be 1 and the remaining 3"-P-' entries be 2. For b?, we 
let the first 3k-71-2 entries be 0, the next 3"-P-' entries be I ,  the next 3"-P-'  be 2, the 
next 3"-"-? entries be 0, and so on. For b3, we let the first 3"-PP3 entries be 0, the next 

entries be I ,  the next 3k-1)-3 be 2, and so on. We continue defining generators in 
this way until we get to b k - p  which has 0, 1 and 2 in turn. 

3 k - p - 3  

For instance, when k = 4 and p = 1, we get the three generator vectors 

bl = (O.O,O.O.O,0.0,0,0, 1.1 ,1 ,1 :  1.1.1: 1,1.2.2.2.2.2.2.2.2,2),  

bz = (0 .0 .0 .1 .1 .1 .2 .2 .2 ,0 .0 ,0 .1 ,1 ,1 ,2 .2 .2 .0 .0 .0 .1 .1 .1 .2 .2 .2) .  

and 
b3 = (0 .1 .2 .0 .1 .2 .0 , l .  2,0, I ,  2 .0 .1 ,2 .  0.1.2.0.1,2,0.1.2.0. I ,  2) .  

If we write 2a, then that means we multiply each component of a by 2 modulo 3 
We can now define the levels of all the other factors i n  the design i n  terms of the 

b,. Table 2.16 contains generators for designs of resolution 3 with up to 10 factors and 
Table 2.1 7 contains generators for designs of resolution 5 with up to 10 factors We let AT 
denote the number of combinations of factor levels so N = 3--P. 

Table 2.16 Smallest Known Regular ?,-Level Designs with Resolution at Least 3 

k N 

4 9 
5 21 
6 21 
7 21 

8 27 

9 27 

10 21 

2.2.3 A Brief Introduction to Finite Fields 

The ideas developed in the previous two sections make it easy to construct fractions that 
confound certain effects. The satne ideas will not work for all possible numbers of levels 
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Table 2.17 Smallest Known 3-Level Designs with Resolution at Least 5 

k N 

5 81 
6 243 
I 243 
8 243 

9 243 

10 243 

nor for situations in which not all factors have the same number of levels. In this section 
we develop the idea of aJiniteJield. This is an algebraic structure that we need in order to 
be able to extend the techniques of the previous two sections. 

We hegin by looking at four levels. Suppose that there are k = 2 factors. Suppose that 
we work modulo 4 so that 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 0 , 2  + 2 = 0 , 2  + 3 = 1, and so 
on. Think about the pencil P(12). It contains the four sets 

{ ( 2 1 , 2 2 ) 1 2 1  + 2 ~ 2  = 0 )  = {00,02,21,23), 

{(~l,z2)lzl  +222 = 1) = {10,12,31,33}, 

{ ( ~ 1 , ~ 2 ) 1 ~ 1  + 2 ~ 2  = 2) = {01,03,20,22}, 

{ ( 2 1 , 2 2 ) 1 ~ 1  + 2 ~ 2  = 3) = {11,13,30,32). 

Note that each of these sets contains either two entries or zero entries from the sets of the 
pencil P( 10) (from which we calculate the A main effect). Since these intersections are 
not of a constant size, the arguments that we have used in the previous sections, to establish 
the orthogonality of the contrasts used to estimate the effects, do not work. How can we 
overcome this problem? 

The reason that all the sets from different pencils intersected in a constant number of 
points when working modulo 2 and 3 is that every non-zero element could be multiplied by 
some other element to get 1; that is, all non-zero elements have multiplicative inverses. For 
instance, 1 x 1 = 1 modulo both 2 and 3 and 2 x 2 = 1 modulo 3. When we work modulo 
4 we see that 2 x 1 = 2, 2 x 2 = 0 and 2 x 3 = 2. Thus 2 does not have a multiplicative 
inverse. So we want to get a set of 4 elements in which multiplicative inverses exist. 

We do this by using an appropriate polynomial which we evaluate over the integers 
modulo 2 ,  2 2 .  To get such a polynomial, consider the quadratics over 2 2 ,  namely, x 2 ,  
x2 + z = x(z + l) ,  x 2  + 1 = (x + 1)2 and z2 + z + 1. The first three quadratic equations 
factor over 2 2 ,  but l2  + 1 + 1 = 1 and 0’ + 0 + 1 = 1 in Zz, and hence the quadratic 
polynomial z2 + z + 1 does not factor over Z2. It is said to be irreducible over 2 2 .  We 
now try to embed 2 2  in a larger field in which x2 + z + 1 will factor. 

Suppose we let cy be a solution of z2 + z + 1 = 0. So a2 + N + 1 = 0 and hence 
o2 = N + 1. Since we are working modulo 2 ,  we have 

( a + 1 ) 2 + ( C Y + I ) + l =  ( cy2+1)+(cy+1)+1  = a 2 + o + 1  = O .  
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Consequently, cy + 1 is the other solution of our equation. Thus we get the addition and 
multiplication tables shown in Table 2.1 8. 

Table 2.18 The Finite Field with 4 Elements 

fi :I; 
0 n + l  (2 0 ff n + l  

N a n + l  0 1 ff 0 a a + l  
N + l  n + l  0 I 0 0 + 1  0 N + 1  I (2 

We are, in fact, taking the ring of polynomials over 22 and working with them modulo 
,r2 + z + I to give the field of order 4. We will write G F [ 4 ]  for the field of order 4 (where 
C:F stands for “Galois field” after the French mathematician Evariste Galois ( 1  8 1 1-1 832)). 
The integers modulo 71 form a field if and only if  71 is prime. In the same way, if  we start 
from Zp  for some prime p ,  and consider the ring of polynomials Zp[[.c] over Zr), modulo a 
polynomial f ( x ) ,  this forms a field if and only i f  f ( x )  is irreducible over X p .  

We will write the entries i n  C F [ 4 ]  as ordered pairs: (1 I )  = 0 + 1 and (01) = 1 ,  
for instance. The only other thing that we need to know about finite lields is that the 
multiplicative group of the finite field is cyclic. Thus, i f  we take all the elements i n  the 
field other than 0, then each element can be expressed as a power of a primitive element of 
the field. I n  the case of CF[4]  the primitive element can be taken as N since o2 = (1 + 1 
and o3 = I .  For G F [ 5 ] ,  we can use 2 as the primitive element since 2 2  = 4, 23 = 3 and 
24 = 1, or we can use 3 as the primitive element (3’ = 4,  3:’ = 2 and 34 = 1) hut we can 
not use 4 (since 4‘ = 1 ). 

Of course if we represent the entries in  GF[4] as ordered pairs then we have the same 
representation for the lcvels of a four-level factor as we would have from having two 
factors each with two levels. This can be a useful way of thinking about a four-level 
factor; we say that the two new factors are thepsedo:fnrctor.y corresponding to the original 
four-level factor. Three orthogonal contrasts for the four-level factor can be represented 
by linear. quadratic, and cubic orthogonal polynomials, or they can be represented by the 
main effects and the two-factor interaction of the pseudo-factors. We will see later that 
both representations are useful, depending on the circumstances. 

Armed with these finite fields, we can now give constructions of regular fractions for 
any symmetric design with a prime or prime-power number of levels. 

2.2.4 Fractions for Prime-Power Levels 

In  this section we will use L to represent either a prime or a prime power. We will write 
G F [ t ]  as <vn = 0 ,  01 = 1, 0 2  = T , .  . . . ( 2 ~ - 1  = .d-* where z is a primitive element of 
G F [PI. 

2.2.4.1 Regular Resolution 3 Fractions 

CONSTRUCTION 2.2.1. 
71iere i r  n rerollition 3 rleyign w i t l i  P + 1 foctorr on P winbolr 
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ProoJ We will let bl be a vector with ! O’s, then ! l’s, then ! CYZ’S and so on. We will let 
b2 be a vector with the elements of GF[!] repeated in order ! times. Thus the pairs from 
the corresponding positions of bl and b2 give one copy of each of the possible ordered 
pairs with entries from GF[I] .  We can construct a resolution 3 design with up to C + 1 
factors and with !’ treatment combinations by using bl for the levels of the first factor, 
bz for the levels of the second factor and bl + aqb2 for the levels of the ( q  + 2)th factor, 
q = 1 , 2  , . . . ,  e - 1 .  0 

mEXAMPLE2.2.13. 
Let! = 4. L e t s  = a .  T h e n a l  = 1 , a z  = a a n d a 3  = a2 = a + 1. Thusweget 

bl = (O,O,O,O, 1,1,1, ~ , ~ . c v , c Y , ~ , c Y +  l , a +  l . a+  1 ,a :  + 1) 

and 

The third factor has levels given by bl + bz, the fourth factor has levels given by bl + abZ 
and the fifth factor has levels given by bl + ( a  + 1)bz. The final design is given in 
Table 2.19. 0 

b2 = ( 0 , 1 , ~ , ( ~ + 1 , 0 , 1 , ( ~ , ~ + 1 , 0 , 1 , ~ ~ . ~ ~ +  ~ , O . ~ , C Y , ( Y + ~ ) .  

Table 2.19 A Resolution 3 45-3 Fractional Factorial Design 

Factors 

1 2 3 4 s  

0 0 0 0 0  
0 1 1 a a s 1  
0 a a a + l  1 
0 a + l a + l  1 a 
1 0 1  1 1  
1 I 0 a + l  a 
I a a s 1  a 0 
1 a + l  a 0 a + l  
a o a a a  
a 1 a + l  0 1 
a a 0 1 a + l  
a a + l  1 a s 1  0 

a + l  0 a S 1  a s 1  a + l  
a + l  1 a 1 0 
a S 1  a 1 0 a 
a + l a + 1  0 a 1 

This construction gives us resolution 3 designs for up to five 4-level factors, up to six 
S-level factors, up to eight 7-level factors, up to 9 &level factors and so on. If we need 
more factors then we will need other constructions; see Section 2.3.  

2.2.4.2 Regular Resolution 5 Fractions Here is an easy construction for regular 
resolution 5 designs that works only when the number of levels is a prime or a prime power. 
It is a special case of a more general construction given by Bush ( I  952); see also Hedayat 
et al. ( I  999). 
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CONSTRUCTION 2.2.2. 
k t  L be o prime or o prime power with P 5 4. Then there i s  a re.rolution .'i ,frnctionnl 
fortorid design with 5,fkctor.y ond e" treotment combinotions. 

Proof Let the elements of the Galois field be (YO = 0, 01 = 1:.  . . , ae-1. Construct the 
generators bl, bz. b3, and b4 in the usual way. Then construct one further factor, where 
b g  = bl + bz + b3 + b,,. Verifying that this construction works is left as an exercise. 0 

The three designs from this construction have five 2-level factors or five 3-level factors 

There are other constructions for such designs available when the restriction about 
or five 4-level factors. 

regularity is removed; see Section 2.3. 

2.2.5 Exercises 

I .  Construct a regular design of resolution 3 with five factors each with two levels. 

2 .  Construct a regular design of resolution 3 with five factors each with two levels 
and with h' = 16. How many inequivalent designs can you get for this situation? 
(Two designs are said to be ineqiiivolent if  you cannot get from one to the other by 
permuting factors or levels within factors.) 

3. Let X. = 6 and suppose that all factors have two levels. Consider the fractional 
factorial design given by .TI + ~2 + ~4 = O,z1 + .Q + 2 5  = 0 and 2 2  + 7 . i  + rg =: 0. 
Find the sum of the three pairs of equations and the sum of all three equations. Hence 
give the resolution of the design. 

4. Give the 9 treatment combinations in the regular 3-level design with k = 4 factors. 

5 .  List all the quadratic polynomials over G F [ 3 ] .  Hence construct the Galois field 
GI; [ 91 . 

6. Use Construction 2.2.1 to construct a resolution 3 design for 6 factors each with 5 
levels. 

7 . .  Proof that the construction given in Construction 2.2.2 works. 

2.3 IRREGULAR FRACTIONS 

When they exist, the defining equations of a regular fraction provide a convenient way 
of summarizing the treatment combinations i n  a fraction. For asymmetric factorials, i t  
is not possible to define fractions in such a neat way; instead, we must list explicitly the 
treatment combinations in the fraction. Even for a symmetric factorial. i t  is sometimes 
more convenient to list the treatment combinations rather than just the defining contrasts. 

We begin by considering the properties that the treatment combinations i n  regular 
fractions have and consider how to apply these to asymmetric factorials. 

We first consider fractions of resolution 3. Because the treatment combinations in a 
regular fraction are the solutions to a set of independent linear equations, each with at least 
three non-zero coefficients, each level of each factor appears equally often. So this is one 
feature that we would like to be true for any irregular fraction as well. 
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In fact, since each of the independent linear equations has at least three non-zero 
coefficients in it, the levels of any two factors can be specified and there are the same 
number of solutions to the equations with the specified levels of these two factors. This 
means that, in  the regular fraction for any two factors, each pair of levels appears i n  the 
same number of treatment combinations. This is the second feature that we would like for 
an irregular fraction. 

If an irregular fraction has these two features then the main effects contrasts from any 
two factors will be orthogonal, and so the corresponding effects will be independently 
estimated. Thus irregular fractions in which each level of each factor appears equally 
often and any pair of levels from any two factors appears equally often are the natural 
generalization of regular fractions of resolution 3. In such fractions, the main effects can 
be estimated independently. 

In a similar way, we can generalize the features of a regular fraction of resolution 5. 
In addition to the two features discussed above, we know that the defining equations for a 
design of resolution 5 all have at least 5 non-zero coefficients. Thus we can independently 
specify levels for 4 of the factors, and there will be the same number of treatment combi- 
nations for any such combination of levels for each set of four factors. This becomes the 
third feature that we need to get a fraction that is a generalization of a regular fraction of 
resolution 5. Because for each pair of factors each possible level combination appears with 
each possible level combination for any other pair of factors, the two-factor interactions 
can be estimated independently of each other. 

For symmetric designs we can formalize these observations in the following definition 
which is a natural generalization of the requirements for fractions of resolution 3 and 5. 

An orthogonal array OA[N, k ,  t ,  t ]  is a N x k array with elements from a set of P 
symbols such that any N x t subarray has each t-tuple appearing as a row N/Ct times. 
Often N/f? is called the index of the array, t the strength of the array, k is the number of 
constraints and e is the number of levels. The fractional factorial design in Table 2.5 is 
an example of an OA with k = 4 and n = 8. We see that in each column there are 4 0s 
and 4 Is. In any pair of columns, there are 2 copies of each of the pairs (O,O), (O,l) ,  (1,O) 
and (1,l) ;  thus the array has strength 2.  We know that this array has resolution 3 since 
the defining equation has three non-zero coefficients. This illustrates a general result: An 
orthogonal array of strength t is a fractional factorial design of resolution t + 1. To establish 
that a design is of resolution 4, it may be easier to establish that any set of three columns 
has each of the possible ordered triples appearing as rows equally often. Similarly, a design 
has resolution 5 if any set of four columns has each of the possible ordered quadruples 
appearing as rows equally often. 

This gives us a definition that we can easily generalize to asymmetric factorials. The 
estimability properties of these asymmetric orthogonal arrays are the same as those of 
symmetric orthogonal arrays of the same strength; see Hedayat et al. (1 999) for a formal 
proof. 

An asymmetric orthogonal array OA[ N ;  el ,  ez ,  . . . , e k ;  t] is a N x k array with elements 
from a set of e, symbols in column q such that any N x t subarray has each t-tuple appearing 
as a row an equal number of times. Such an array is said to have strength t. 

We will usually use “orthogonal array” for either an asymmetric or a symmetric array. 
Orthogonal arrays of strength two are a subset of the class of orthogonal main effect 

plans. We let nsq be the number of times that level z appears in column q of the array. A 
k factor, N run, e,-level, 1 5 q 5 k ,  orthogonal main effects plan (OMEP) is an N x k 
array with symbols 0,1,  . . . , e, - 1 in column q such that, for any pair of columns q and 
p ,  the number of times that the ordered pair (z. y)  appears in the columns is nzqnvp /N .  
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It  can be shown that the main effects can be estimated orthogonally from the results of an 
OMEP; see Dey (1  985). 

If we represent the two levels of each binary factor i n  an OMEP by -1 and 1 then the 
inner product of any two binary columns of the OMEP is 0. 

Sometimes several factors will have the same number of levels and this is often indicated 
by powers. So an OA[32:2,2,2,4,4;4] is written as OA[32;23,42;4]. Another common 
notation for an OA oran OMEPis touse C1x& x . . . xC,//lV for an OA[N: L 1 .  L 2 .  . . . , tk,: t 1, 
most often when t = 2 or the fact that t > 2 is not relevant. 

2.3.1 Two Constructions for Symmetric OAs 

Various constructions for orthogonal arrays have been found; a nice summary is given in 
Hedayat et al. (1 999). U7e give two of the most useful constructions in this section. 

The next construction gives a resolution 3 design with 2t2 treatment combinations for 
up to 2L + 1 factors when I' is odd. 

w CONSTRUCTION 2.3.1. 
I f  P is on odd prime or prime power then there is an OA[2F2, 2P + 1; C. 21. 

PmoJ Let the elements in  C:F[C] = (a0 = O : Q ~  = 1 . 0 2 , .  . . . r w e - 1 } .  The design is 
constructed i n  two parts. As in Sections 2.2.1 and 2.2.2 we let bl be a vector of length P 2  
with the first e entries equal to 0 0 ,  the next P entries equal to 0 1  and so on until the final P 
entries are equal to C P C - I .  We let b2 have first entry 00,  second entry al and so on until 
entry e is ar-1 and these entries are repeated in order C times. For the first L 2  treatment 
combinations we use bl for the levels of the first factor, b2 for the levels of the second 
factor, and bl + aqb2 for the levels of the ( q  + 2)th factor. q = 1.2, 
the levels for the remaining l factors, we use b: + aqbl + bz. q = 0, . . . , L - 1. For the 
remaining P2 treatment combinations, we use bl for the levels of the first factor. b2 for the 
levels of the second factor, bl +crqbz + uq; q = 1, . . . , // - 1, for the levels of the next P - 1 
factors and Ob: + b2, Ob: + 8,bl + b2 + pq, q = 1 , .  . . . P - I ,  for the levels of the final C 
factors, where we have to determine u1; 4, . . . ~ p l ,  p2, . . . , pe-', 8. Q1 ~ 82, . . . , Be- 1. 

We let O be any non-squareelement of GF[P]. We let vq = (8 - 1 ) ( 4 6 ' 0 ~ ) - ~ ,  Oq = Ooq 

The result sometimes holds for I even; see Hedayat et al. (1999) (p. 47) for a discussion 
and another way of constructing OAs with 2n symbols. The smallest design for C a power 
of 2 that would be given by this construction is an OA with 9 factors each with 4 levels 
with N = 32.  

=EXAMPLE 2.3.1. 
Let E = 3. Since 2 is not a square in GF[3],  we let 6' = 2. So we have u1 = (4  x 2 x l)- '  = 
2, v2 = (4 x 2 x 2)-l =: 1,81 = 2 , &  = 1, p1 = 4-1 = 1 and p2 = 4-' = 1. Thus the 
treatment combinations i n  the second half are given by bl, b2, bl + b2 + 2, bl + 2b2 + 1, 
2b; + b2.2b: + 2b1+ b2 + 1 and 2b: + bl + b2 + 1. The final 18 treatment combinations 
are given in Table 2.20. 

The next result is a special case of a result in Bush ( 1  952) and gives an orthogonal array 

and pq = ai(8 - 1 ) C 1 ,  q = 1: 2 

of strength 4, equivalently a resolution 5 fractional factorial design. 

IfP is o prime or a prinie power nnd P 2 3, then there is on OA(P4.L + 1,L.4]. 
CONSTRUCTION 2.3.2. 
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Table 2.20 A Resolution 3 Fractional Factorial Design for Seven 3-Level Factors 

0 0 0 0 0 0 0  
0 1 1 2 1 1 1  
0 2 2 1 2 2 2  
1 0 1  1 1  2 0  
1 1 2 0 2 0 1  
1 2 0 2 0 1 2  
2 0 2 2 1 0 2  
2 1 0 1 2 1 0  
2 2 1 0 0 2 1  
0 0 2 1 0 1 1  
0 1 0 0 1 2 2  
0 2 1 2 2 0 0  
1 0 0 2 2 2 1  
1 1  1 1 0 0 2  
1 2 2 0 1 1 0  
2 0 1 0 2  1 2  
2 1 2 2 0 2 0  
2 2 0 1 1 0 1  

Pro08 Use the elements of GF[&] to label the columns of the array and the polynomials of 
degree at most 3 to label the rows of the array. Suppose that & is the polynomial associated 
with row i and that field element cy3 is associated with column j .  Then the (i, j )  entry is 
&(a3).  The final column contains the coefficient of z3 in &. The verification that this 

0 array has the desired properties is left as an exercise. 

4 EXAMPLE 2.3.2. 
Let e = 3. Then we can use Construction 2.3.2 to construct an OA[81,4,3,4]. There are 
three polynomials of order 0: 0, 1 and 2. There are 6 polynomials of order 1 : 2, z + 1, 
z + 2, 22, 22 + 1 and 22 + 2. There are 18 polynomials of order 2: the 9 with leading 
coefficient 1 arez2,  z2 + 1, z* + 2, z2  +z, z2 +z + 1, x 2  +z+ 2, x 2  + 2 z , z 2  +22+  1 and 
z2 + 22 + 2. There are a further 9 quadratics with leading coefficient equal to 2. Finally 
each of these 27 polynomials can have z3 or 2z3 added to it to give the 81 polynomials 
required in the construction. 0 

2.3.2 Constructing OA[2”; 2”l, 4”z; 41 

Addelman (1972) gave some useful constructions for these designs. He described each 
4-level factor by three 2-level generators and he gave a set of generators for the 2-level 
factors. This set had to be such that no linear combination of two or three of the generators 
in the set was also in the set. 

We give the six designs that he gave in Table 2.21. 

EXAMPLE 2.3.3. 
To construct an OA[64;23,42;4] we need the generators of length 64. So bl has 32 0s and 
then 32 1 s, b p  has 16 Os, then I6 1 s then 16 0s then 16 1 s and so on until bG which alternates 
0s and Is. Then we use bg, be and bl + b3 + b5 + b6 to determine the 2-level factors and 
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Table 2.21 Generators for OA[2k: 2 k 1 .  4": 41 

OA Two-Level Factors Four-Level Factors 

OA[ 128:29,4:1] b3. b4. bs, bs, b7. 
bi + b3 + b4 + b5. 
bi + b3 + bs + b7. 
bz + b3 + bq + bs. 
bz + b4 + bs + b7 

OA[ 128:2s,,42:4] bs, bs, b7. 
bi + b3 + bj + bs. 
bi + b4 + be + b7, 
b2 + b3 + bs + b7 

OA[128;23,43:4] b7, 
bi + b3 + b5 + b7, 
bz + b4 + bs + b7 

(bi. bz, bi + b2) 

(bi. b2, bi + bz) 
(b3.b4. b3 + bd) 
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use bi, bz, bl + b2 and bs, b4, b3 + b4 for the two 4-level factors. The resulting design 
is given Table 2.22. 0 

Table 2.22 The OA[64;23,42;4] 

0 0 0 0 0  0 1  1 0 0  1 0 1 0 0  I 1 0 0 0  
0 0 0 0 1  0 1 1 0 1  I O I O l  1 1  0 0  1 
0 0 1 0 2  0 1 0 0 2  1 0 0 0 2  1 1  1 0 2  
0 0 1 0 3  0 1 0 0 3  1 0 0 0 3  1 1 1 0 3  
0 0 0 1 0  0 1  1 1 0  1 0 1 1 0  1 1 0 1 0  
0 0 0 1  1 0 1 1 1 1  1 0 1 1 1  1 1 0 1  1 
0 0 1 1 2  0 1 0 1 2  1 0 0 1 2  1 1 1 1 2  
0 0 1  1 3  0 1 0 1 3  1 0 0 1 3  1 1 1 1 3  
0 0 1 2 0  0 1 0 2 0  1 0 0 2 0  1 1  1 2 0  
0 0 1 2 1  0 1 0 2 1  1 0 0 2 1  1 1 1 2 1  
0 0 0 2 2  0 1 1 2 2  1 0 1 2 2  I 1 0 2 2  
0 0 0 2 3  0 1  1 2 3  I 0 1 2 3  1 1 0 2 3  
0 0 1 3 0  0 1 0 3 0  1 0 0 3 0  1 1  1 3 0  
0 0  1 3  1 0 1 0 3 1  1 0 0 3 1  1 1 1 3 1  
0 0 0 3 2  0 1 1 3 2  1 0 1 3 2  1 1 0 3 2  
0 0 0 3 3  0 1 1 3 3  1 0 1 3 3  I 1 0 3 3  

2.3.3 Obtaining New Arrays from Old 

Given an orthogonal array, symmetric or asymmetric, it is possible to get other arrays from 
it by deleting one, or more, factors and by equating some of the levels for one, or more, of 
the factors. Sometimes it is possible to replace the entries in  one factor by several factors, 
each with fewer levels, and sometimes i t  is possible to combine several factors to get one 
factor with more levels. In this section we will discuss each of these situations in turn. 

CONSTRUCTION 2.3.3. Collapsing Levels 
Consider an orthogonal array with a factor with C, levels. Suppose that we want to make 
this into a factor with 6 ,  < e, levels. We can do this by changing level C, to 0, e, + 1 to 1, 
C, + 2 to 2, and so on, until all the levels in the original factor have been changed to ones 
for the new factot 

This way of making the changes guarantees that each level of the new factor appears about 
the same number of times (exactly the same number of times if P, IC,) and the properties of 
the original array guarantee that the final array is an OMEP. But any collapsing that results 
in  levels appearing about the same number of times is just as good. 

This procedure is almost impossible to reverse. 

EXAMPLE 2.3.4. 
Consider the array in Table 2.20. Suppose that we want an array with 7 factors, 3 with two 
levels and 4 with three levels. Then we could collapse the levels in the first three factors to 
get the OMEP shown in Table 2.23. Note that the first three factors have level 0 repeated 

0 12 times and level 1 repeated 6 times. 

The next construction only applies to orthogonal arrays of strength 2. 
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Table 2.23 
3-Level Factors 

A Resolution 3 Fractional Factorial Design for Three 2-Level Factors and Four 

0 0 0 0 0 0 0  
0 1 1 2 1 1 1  
0 0 0 1 2 2 2  
I 0 1 1 1 2 0  
I 1 0 0 2 0 1  
1 0 0 2 0 1 2  
0 0 0 2 1 0 2  
0 1 0 1 2 1 0  
0 0 1 0 0 2 1  
0 0 0 1 0 1 1  
0 1 0 0 1  2 2  
0 0 1 2 2 0 0  
1 0 0 2 2 2 1  
1 1  1 1 0 0 2  
1 0 0 0  1 I 0  
0 0 1 0 2 1 2  
0 1 0 2 0 2 0  
0 0 0 1 1 0 1  

W CONSTRUCTION 2.3.4. Expansive Replacement 
Suppose that we have an orthogonal array of strength 2 in which there is one,factor u i /h  
01 levels. Sicppose that there is an orthogonal array of strength 2 which has t1 runs. Label 
these rirn.s,frorn 0 to P1 -- 1. Then we ran replace each level of the factor with P I  levels in 
the first array by the corresponding run of the second array. 

The name arises because the new array has more factors than the original array. 

WEXAMPLE2.3.5. 
Consider the array i n  Table 2.24. Suppose that we want to replace one of the factors with 
the runs from the OA[4,3,2,2]. The nins of this array are given in  Table 2.25. The resulting 
OA[ 16;2,2.2,4,4,4,4;21 is given in Table 2.26. If we make this replacement for all five of 

0 

The most common examples of expansive replacement are replacement of a factor with 
4 levels by three factors each with 2 levels and replacement of a factor with 8 levels by 
seven factors each with 2 levels. 

I t  is sometimes possible to replace several factors with one factor with more levels. 
Before we describe this contractive replacement we need to define the idea of a a tight 
or saturated orthogonal array. In a tight or saturated orthogonal array with k factors, 
N = 1 + C,"=, ( k q  - 1) Thus we see that there is no room for any more factors. 

the 4-level factors, then we get the array in Table 2.27. 

CONSTRUCTION 2.3.5. Contractive Replacement 
Let A be nn OA[N;  t1 ~ ( 2 : .  . , ~ p k ;  21 such that thejrs t  s colirrnns of A,forrn N/Nl copies 
of an OA[n', : PI E2,  . . . , E,;  21, B say, that is tight. Use 0 ,  1, . . . . ilil - 1 to label the rows 
of B, and theri use these labels to replace tlze$rst .s colurnns of A .  The resulting design is 

0 an OA[:V; N I .  tq+l ~. . . . F k :  21. 
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Table 2.24 An OA[16,5.4,2] 

0 0 0 0 0  
0 1 1 2 3  
0 2 2 3 1  
0 3 3 1 2  
1 0 1 1 1  
1 1 0 3 2  
1 2 3 2 0  
1 3 2 0 3  
2 0 2 2 2  
2 1 3 0 1  
2 2 0 1 3  
2 3 1 3 0  
3 0 3 3 3  
3 1 2 1 0  
3 2 1 0 2  
3 3 0 2 1  

Table 2.25 An OA[4,3,2.2] 

0 0 0  
0 1 1  
1 0 1  
1 1 0  

Table 2.245 An OA[ 16;2.2,2.4,4,4,4:2] 

0 0 0 0 0 0 0  
0 0 0  I 1  2 3  
0 0 0 2 2 3 1  
0 0 0 3 3 1 2  
0 1 1 0 1 1 1  
0 1  1 1 0 3 2  
0 1 1 2 3 2 0  
0 1 1 3 2 0 3  
I 0 1 0 2 2 2  
1 0 1 1 3 0 1  
1 0 1 2 0 1 3  
1 0 1 3 1 3 0  
I 1 0 0 3 3 3  
1 1 0 1 2 1 0  
1 1 0 2 1 0 2  
1 1 0 3 0 2 1  
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Table 2.27 An OA[I6.15,2,2] 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 1 0 1 1 1 0 1 1 1 0  
0 0 0 1 0 1 1 0 1 1 1 0 0 1 1  
0 0 0 1 1 0 1 1 0 0 1 1 1 0 1  
0 1 1 0 0 0 0 1 1 0 1 1 0 1 1  
0 1 1 0 1 1 0 0 0 1 1 0 1 0 1  
0 1 1 1 0 1 1 1 0 1 0 1 0 0 0  
0 1 1 1 1 0 1 0 1 0 0 0 1 1 0  
1 0 1 0 0 0 1 0 1 1 0 1 1 0 1  
1 0 1 0 1 1 1 1 0 0 0 0 0 1 1  
1 0 1 1 0 1 0 0 0 0 1 1 1 1 0  
1 0 1 1 1 0 0 1 1 1 1 0 0 0 0  
1 1 0 0 0 0 1 1 0 1 1 0 1 1 0  
1 1 0 0 1 1 1 0 1 0 1 1 0 0 0  
1 1 0 1 0 1 0 1 1 0 0 0 1 0 1  
1 1 0 1 1 0 0 0 0 1 0 1 0 1 1  

uEXAMPLE2.3.6. 
Consider the design in Table 2.26. The first three columns form four copies of a tight 
OA[4.3,2.2]  and so replacing 000 with 0,011 with I ,  101 with 2 and I 10 with 3 gives the 
OA[ I6,5,4,2] in Table 2.24. 0 

The same construction will work if the array A could have columns adjoined so that 
B would be tight. The construction does not work if the original array is not tight, or 
cannot be made tight, or if only some columns o f  the tight subarray are replaced, as the 
next example shows. 

uEXAMPLE2.3.7. 
Consider the first two columns of the orthogonal array in Table 2.26. Then these two 
columns form 16/4=4 copies of an OA[4,2,2,2], although it  is not tight since 

1 t (PI - 1) + ( P 2  - 1) = 1 + 1 + 1 = 3 # 4. 

If we replace 00 by 0, 0 1 by I ,  10 by 2 and 1 1 by 3 we see that the 0s in the third column 
of the original array only appear with 0 and 2 in  the proposed new 4-level column. This 
is because the third column is the binary sum of the first two columns and so its levels 
are not independently determined. The first three columns of the array do form a tight 
OA [4,3,2,2]. 

By juxtaposing several copies of an array it is possible to get a larger array with k + 1 
iactors. 

CONSTRUCTION 2.3.6. Adding One More Factor 
Take any OA"; P1 f z ; .  . . , Pk3 t ]  and write down copies of the array, one above the 
other; and then adjoin a ( k  + 1 ).st,factor with N copies of 0, then N copies of I ,  and so on, 
iiiitiltherearen:copiesqfFk+1 - I .  Theres i i l t i sanOA[Nx P k + l ; [ l . i ! 2 , .  . . . c k , i ! k + j : f ] .  
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The levels of the last factor appear equally often with every pair of levels for any other 
two factors and so the array has strength 3 with respect to the last factor; this property is 
useful when constructing an OA to estimate two-factor interactions all of which involve 
one factor. 

n EXAMPLE 2.3.8. 
Consider the OA[4,3,2,2] given in Table 2.25. By writing down three copies of this array 
and adjoining one further column for the three-level factor, we obtain the OA[ 12;2,2,2,3;2] 
in Table 2.28. 0 

Table 2.28 An OA[ 12;2,2,2,3:2] 

0 0 0 0  
0 1 1 0  
1 0 1 0  
1 1 0 0  
0 0 0 1  
0 1 1 1  
1 0 1 1  
1 1 0 1  
0 0 0 2  
0 1 1 2  
1 0 1 2  
1 1 0 2  

The next construction extends this idea by adding several factors simultaneously. 

H CONSTRUCTION 2.3.7. Juxtaposing Two OAs 
Takean OA[N1; e l l ,  P12, . . . , e l k ;  t landan OA[Nz; P21, P 2 2 ,  . . . , .&: tlandwritedown Nz 
copies of thejirst array, one above the othel: Adjoin thejrst row of the second array to the 
Jirst ropy of thejirst array, adjoin the serond row of the serond array to the second copy of the 
jirstarrayandsoon. TheresultisanOAININz;ell, Plz,. . . , t l k , E z 1 , & ~ , .  . . , C z k ; t ] .  0 

In an OA obtained from Construction 2.3.7 there are several sets of three factors in 
which every triple of levels appears equally often. These include every set of two factors 
from the original OA and one factor from the adjoined OA and every set with one factor 
from the original OA and two factors from the ad,joined OA. 

uEXAMPLE2.3.9. 
Consider the OA[4;3,2;2] given in Table 2.25. Use this as both the original OA and as the 
adjoined OA. Then we get the OA[ 16;6,2;2] in Table 2.29. Notice that the only two sets of 
three factors which do not contain all the triples of levels are factors 1, 2, and 3 and factors 
4, 5, and 6. 0 

n CONSTRUCTION 2.3.8. Obtaining One Factor with Many Levels 
Take any orthogonal array OA[N;  e l ,  Cz,  . . . , C k ;  t ]  and write down C copies of the array, 
one above the other, and then leave the levels of the kth factor unaltered in thefirst copy ofthe 
array, use Ck different levels in the second copy of the array, use afrcrtherPk levels in the third 
ropy of the array and so on. The resulting array is an OAINP; f 1, pz . . . , Pk-1.  P&: t]. 0 
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Table 2.29 An OA[16;6.2;2] 

0 0 0 0 0 0  
0 1  1 0 0 0  
1 0 1 0 0 0  
1 1 0 0 0 0  
0 0 0 0 1  I 
0 1 1 0 1 1  
1 0 1 0 1 1  
1 1 0 0 1 1  
0 0 0 1 0 1  
0 1 1 1 0 1  
1 0 1 1 0 1  
1 1 0 1 0 1  
0 0 0 1  1 0  
0 1 1 1 1 0  
1 0 1 1 1 0  
1 1 0 1 1 0  

 EXAMPLE^.^.^^. 
The OA[ 12;2,2,6;2] in  Table 2.30 is obtained by writing down three copies of the OA[4,3,2,2] 
given in Table 2.25 and replacing the final column with three distinct sets of two symbols 
for the final factor. [7 

Table 2.30 An OA[ 12;2,2.6:2] 

0 0 0  
0 1 1  
1 0 1  
1 1 0  
0 0 2  
0 1 . 3  
1 0 3  
1 1 2  
0 0 4  
0 1 5  
1 0 . 5  
1 1 4  

The next construction shows how to remove an unrealistic (or unwanted) treatment 
combination from a fractional factorial. 

CONSTRUCTION 2.3.9. Avoiding an Unrealistic Treatment Combination 
Given an orthogonal array OAlR: P I ,  l z ,  . . . , & I ,  e k ;  t ]  which contains an unreali.stic 
treatment combination, the treatment combination can be removed by adding another 
treatment conibination to even. treatnient coinbination in the arm): This addition is done 
component-wise mod f 4  in position q. 
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The treatment combination to add needs to be chosen so all the resulting treatment 
combinations are acceptable; often such a treatment combination can only be found by trial 
and error. 

EXAMPLE 2.3.11. 
Suppose that we want an OA[12;2,2,6;2] without the treatment combination OOO. Then 
we need to add a treatment combination to those in the array in Table 2.30 so that 000 
is avoided. This means that we need to add some treatment combination that is not the 
negative of any of the treatment combinations that are already there. So we try using 1 13. 

0 This gives the array in Table 2.31. 

Table 2.31 An OA[ 12;2,2,6;2] without 000 

1 1 3  
1 0 4  
0 1 4  
0 0 3  
1 1 s  
1 0 0  
0 1 0  
0 0 s  
1 1 1  
1 0 2  
0 1 2  
0 0 1  

2.3.4 Exercises 

1. Use Construction 2.3.2 to construct an OA[8 1,4,3,4]. 

2. Prove that the array constructed in Construction 2.3.2 has the desired properties. 

3 .  Consider the design in Table 2.32. 

(a) Verify that the design is of resolution 3 .  

(b) Is it resolution 4? 

(c) Show that the final three columns can be replaced by one column with 4 levels. 

(d) Are there any other sets of three columns for which you could make this 

(e) In particular, can you write the design as a resolution 3 array with two factors 

replacement? 

each with 4 levels? 

4. Construct an OA[32:24,4;41. 
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Table 2.32 An OA[8,6.2.2] 

0 0 0 0 0 0  
0 1 1 0 1 1  
1 0 1 1 0 1  
1 1 0 1 1 0  
0 0 1  1 1 0  
0 1 0 1 0 1  
1 0 0 0 1 1  
1 1  1 0 0 0  

2.4 OTHER USEFUL DESIGNS 

There are various other combinatorial designs that have been used in the construction of 
stated preference choice experiments. We collect the definitions here for convenience. 

Consider a set of 2' items. From this set of 7'  items construct b subsets, or blocks, each 
with z( distinct items. Suppose that any two items appear together in exactly X of the h 
blocks. Then the set of 6 blocks form a balanced inromplete block design (BIRD). Let r ,  
be the number of times that item 7; appears in the BIBD. If we count the pairs that item '1 
appears in  the BIBD we have that 7; appears in r ,  blocks and there are i l ~  - 1 other items 
in the blocks. So there are r i (u  - 1) pairs involving item ?;. On the other hand there are 
- 1 other items in the RIBD and item 7; appears with each of these X times in the RIBD. 

So there are X ( r  - 1) pairs involving item Yi. Equating we get that rt (u  - 1) = X(73 - 1 )  
and so we see that all of the items appear equally often in the BIBD. We call this replication 
number r and talk about a (v. h: r .  u; A) BIBD. If 71 = b then r = u and the design is said 
to be a symmetric BIBD (SBIBD), written (v, r,  A). Tables of balanced incomplete block 
designs may be found in Mathon and Rosa (2006) and Abel and Greig (2006). 

EXAMPLE 2.4.1. 

block which contains every pair of items so A = 1. 

Let 1' = 7 and consider the blocks in Table 2.33. These blocks form a BIBD on 7 items 
with 7 blocks each of size 3 and with each item appearing in 3 blocks. There is a unique 

Table 2.33 The Blocks a (7,3,1) BIBD 

1 2 3  
1 4 5  
1 6 7  
2 4 6  
2 5 7  
3 4 7  
3 5 6  

One easy way to construct BlBDs is to use diflerence sets Let X = ( ~ 1 . 2 2 ,  . . n u }  
be a set of integers modulo v .  Suppose that every non-zero value mod 2' can be represented 
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as a difference x, - x3, x,, x3 E X, in exactly X ways. Then X is said to be a (I). 7 ~ ,  A )  
difference set .  

W EXAMPLE2.4.2. 
Let v = 7 and = 3 and let X = {0,1,3). Then X is a (7,3,1)-difference set since each 
of the non-zero integers mod 7 can be represented as a difference in exactly one way using 
the elements from X .  In fact we have 1 = 1 - 0, 2 = 3 - 1, 3 = 3 - 0, 4 = 0 - 3, 
5 = 1 - 3 and 6 = 0 - 1. 0 

We give some small difference sets in Table 2.34. More extensive tables of difference 
sets are given by Jungnickel et al. (2006). 

Table 2.34 Some Small Difference Sets 

v u , x  Set 

7 3 1  0,1,3 
7 4 2  O.I.2.4 
13 4 I 0,1,3,9 
21 5 1 3,6.7,12, I4 
I I  5 2 1.3.4s.9 
1 1  6 3 0,2,6,7,8,10 
IS I 3 0,1,2,4,5,8,10 

Of course, if X = {XI, xz, . . . . 2,) is a (v. u, A)  difference set then so is 

(21 + 1,zz + 1 , .  . . ,xt' + 1). 

It is also true that X = (0.1, . . . , v - 1)\X is an (v, v - 7 ~ ,  v - 271 + A) difference set. We 
can see that this is true by counting the number of times that each non-zero value mod u 
appears as a difference. The total number of differences in X is (21 - .)(ti - u - 1). The 
total number of differences in X is u(u - I )  and each of the 71 - 1 non-zero values mod v 
appear as a difference X times so u ( u  - 1) = X ( w  - 1). Thus we see that 

(2' - u)(u - u - 1) = v(v - 1 - 7 L )  - u(v - 1 - u )  

= 

= 

= 

Z l ( 7 '  - 1) - 2W - U2' - +1L(P/ + 1) 

V ( V  - 1) + X(7l - 1) + 221 - 2 1 L 7 )  

V(7l - 1) + x ( 7 1  - 1) - 2 7 / ( 7 1  - 1) 
= (2'  - l)(v + x - 2u). 

Since {0,1,. . . , V  - 1) is a (v, V ,  v) difference set the result follows. 
It is not essential for a difference set to be defined over the integers mod 11. Any group 

can be used although the only extension that we will make here is to give one difference set 
defined on ordered pairs where differences on each element of the pair are evaluated mod 
4. Thus there are 16 levels in total and each is represented by an ordered pair. If u = 6 
then theorderedpairs { ( O , O ) ,  ( O , l ) ,  ( l , O ) ,  (1,2), (2,0),  (2 ,3) )  forma(l6,6,2)difference 
set. For example we see that the element (1,3) arises as a difference twice: (2 ,3)  -- (1,O) 
and ( 1 , O )  - (0 , l ) .  

A further extension is to have several sets and look at the differences across all the 
sets. Formally suppose that X, = {z,~,  ~ ~ 2 , .  . . , x t U }  is a set of integers modulo v. Then 
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X I .  X z .  . . . , X f  form a (v. u, A) difference fanlily if every non-zero value mod 1 ’  can be 
represented as a difference x t n  - x,b, x,, , T C , ~  E x,, 1 5 i 5 ,f, in exactly A ways. 

BEXAMPLE2.4.3. 
The sets (0,1,4) and (0,2,7) form a (1 3,3,1) difference family. 

Table 2.35 contains some small difference families. 

Table 2.35 Some Small Difference Families 

v 11 x Sets 

13 3 1 
19 3 1 
I6 3 2 
1 1  4 6 
IS 4 6 

19 4 2 
13 s 5 
17 5 S 

0,1,4 0,2.7 
0.1.4 0 2 9  0,s. 1 1 
0.1.2 02.8 0,3,7 0.4.7 0,S.lO 
0,1,8,9 0.2S.7 0,1,4,S 0,2,3.S 0.43.9 
0.1.2.3 0,2,4,6 0,4,8.120.1,8.9 
0.3.6.9 0.1.5.10 0.2,S.IO 
0.1.3,12 0.1,5,13 0,4,6,9 
0.1.2,4,8 0,1,3,6.12 0,2,5,6.10 
0.1,4.13.16 0.3,5,12,14 0,2,8,9.lS 0.6,7,10,11 

0 

A Hadamard matrix of order h is an h x h matrix with entries 1 and -1 satisfying 
HH’ = It,. A table of Hadainard matrices is maintained by Sloane (2006a). 

mEXAMPLE2.4.4. 
Here is a Hadamard matrix of order 4. 

1 1 1 1  [ i -; -1 -; -1 I;] 
0 

2.5 TABLES OF FRACTIONAL FACTORIAL DESIGNS AND ORTHOGONAL 
ARRAYS 

There are two extensive tables of orthogonal arrays available on the web. One is the table 
of orthogonal arrays maintained by Sloane (2006b). This website uses “oa.N.k.s.t.name” 
to denote an orthogonal array with A; runs, k factors, s levels (for each of the factors), 
and strength t (equivalently resolution t + I). This site sometimes gives mathematically 
inequivalent designs with the same parameters and it makes no claim that it lists all possible 
parameters, even for small designs. I t  has many designs of resolution 3 and some designs 
for larger resolutions. 

The other tables are maintained by Kuhfeld (2006) and list all parent designs of res- 
olution 3 with up to 143 treatment combinations as well as many designs with more. A 
parent design is an orthogonal array i n  which no further contractive replacement is pos- 
sible. As well as listing the parent arrays, Kuhfeld has a list of the number of parent 
designs for a given value of N and the number of designs that exist for that value of 
,V. For example, there are 4 parent designs and 4 designs with N = 12 (OA[ 12.1 1,2,2], 
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OA[ 12;2,2,2,2,3;2], OA[ 12;2,2,6;2] and OA[ 12;3,4;2]), while there are 2 parent designs 
with N = 16 (OA[ 16;2,2,2,2,2,2,2,2,8;2] and OA[16,5,4,2]) but 7 designs obtainable from 
them by expansive replacement. This site has no designs of resolution other than 3. 

When trying to find a design that you need from these or any other tables, remember 
that you can omit factors without affecting the resolution of the design. Frequently, designs 
that are not tight are not listed and such designs are often what is required. Thus you need 
to think in terms of collapsing levels and omitting factors from the tabulated designs to get 
the ones that you want. 

2.5.1 Exercises 

I .  Go to the website http://www.research.att.com/-njas/oadir/ and find a design with 
k = 5 factors, four with 2 levels and one with 3 levels. How many treatment 
combinations does it have? How would you define the main effects for each of these 
factors? 

2. Consider the column (1, 1, 1,0,1,0,0)’. Obtain 6 further columns by rotating one 
position for each new column. Adjoin a row of 0’s. Verify that the resulting array 
has 7 binary factors and is of resolution 3. 

3. Use one of the websites mentioned above to find an OA of strength 2 for eight 4-level 
factors and an 8-level factor in 32 runs. Now make an OA with 288 runs with one 
more factor with nine levels. Show how to use this design to get an OA with two 
2-level factors, four 4-level factors, an 8-level factor and one factor with 36 levels 
still in 288 runs. 

2.6 REFERENCES AND COMMENTS 

Although used in some agricultural experiments from the mid-1800s. the first formal 
exposition of factorial experiments was given by Yates (1935) and they appeared in Fisher 
(1 935). 

There are various books that develop factorial designs for use in comparative experiments 
including Kuehl (1999), Mason et al. (2003) and Montgomery (2001). These books also 
discuss the derivation of orthogonal polynomials, for equally spaced levels, whose use in 
model fitting was first pointed out by Fisher. The links between fractional factorial designs 
and finite geometries were pointed out by Bose and Kishen (1940) and exploited by Bose 
( I  947). Much of the early work in the area is summarized in Raghavarao (1 971 ) and Raktoe 
et al. (1981). 

There is a close relationship between fractional factorial designs and orthogonal arrays, 
and an extensive treatment of results pertaining to orthogonal arrays can be found in Hedayat 
et al. (1999). They give a number of constructions that rely on the structural properties 
of the original OA to allow further factors to be added. The simplest of these ideas was 
presented in Section 2.3.3. The initial theoretical development of regular fractional factorial 
designs appeared in Fisher (1 945) and Finney ( 1  945). Dey ( I  985) provides a number of 
constructions for fractional factorial designs and OMEPs. 

There has been some debate about the appropriate contrasts to use in a fractional design 
and some of the issues are addressed in Beder (2004) and John and Dean ( 1  975). 



CHAPTER 3 

THE MNL MODEL AND COMPARING 
DESIGNS 

As we explained in Chapter 1 ,  a stated preference choice experiment consists of a finite 
set of choice sets and each choice set consists of a finite number of options. The options 
within each choice set must be distinct and they must be exhaustive, either because there 
is an “other” option, a “none of these” option or because the subjects are asked to assume 
that they have narrowed down the possible options to those given in the choice set. This 
final assumption is often described by saying that the subjects have participated in a,forced 
choice stated preference experiment. 

We assume that each subject chooses, from each choice set, the option that is “best“ for 
them. The researcher knows which options have been compared in each choice set and 
which option has been selected but has no idea how the subject has decided the relative 
value of each option. However, the researcher assumes that these relative values are a 
function of the levels of the attributes of the options under consideration, some of which 
have been deliberately varied by the researcher. 

In this chapter we begin by defining utility and showing how a choice process that 
bases choices on the principle of random utility maximization can result in  the multinomial 
logit (MNL) model for a specific assumption about the errors. We then derive the choice 
probabilities for the MNL model. Next we consider the Bradley-Terry model which arises 
when all choice sets have only two options, before looking at the MNL model for any choice 
set size. We assume that the MNL model is the discrete choice model that is the decision 
rule sub.jects are employing. The results on optimality that we present will depend on this 
assumption. Should a different model be used, then different designs may well prove to 
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be optimal. We also discuss how to decide objectively which of a set of proposed choice 
experiments is the best one to use, from a statistical perspective, for a given situation. 

At times in this chapter, and indeed throughout the rest of the book, we will talk about 
options that are described by the levels of k attributes. These attributes are precisely the 
same as the factors of the previous chapter. 

3.1 UTILITY AND CHOICE PROBABILITIES 

In this section we define utility and show how a choice process that bases choices on 
the principle of random utility maximization can result in the MNL model for a specific 
assumption about the errors. 

3.1.1 Utility 

Train (2003) has defined utiliry as “the net benefit derived from taking some action”; in 
a choice experiment, we assume that each subject chooses the option that has maximum 
utility from the ones available in each choice set. Thus each subject assigns some utility 
to each option in a choice set and then the subject chooses the option with the maximum 
utility. 

If we let U,, be the utility assigned by subject a to option J , J  = 1 ,  . . . , m, in a choice 
set with m options, then option i is chosen if  and only if U,, > U,, V J  # i. The researcher 
does not see the utilities but only the options offered and the choice made (from each of 
the choice sets). These options are usually described by levels of several attributes. The 
systematic component of the utility that the researcher captures will be denoted by V,,, and 
we assume that U,, = V,, + el,, where cJa  includes all the things that affect the utility 
that have not been included in V,, . Thus the cJa are random terms, and we get different 
choice models depending on the assumptions that we make about the distribution of the 
E p .  

We know that 

Pr(option i is chosen by subject a )  = PT(U,, > U,, V J  # i) 
= PT(v,, + €z, > V,, + €,a v j  # 2) 

P r ( K ,  - V,, > f,, - €%, v j  # i). = 

If the E ~ ,  are independently identically distributed extreme value type 1 random variables 
then the resulting model is the multinomial logit (MNL) model. This assumption on the 
e J a  is equivalent to assuming that the unobserved attributes have the same variance for all 
options in each choice set and that these attributes are uncorrelated over all the options in 
each choice set (Train (2003)). Train (2003) gives an example for choosing travel options 
where this independence assumption is not reasonable: If a subject does not want to travel 
by bus because of the presence of strangers on the bus, then that subject is also unlikely to 
choose to travel by train; and discusses other models that have been proposed which avoid 
this independence assumption. 

These models are the generalized extreme value (GEV) models, the probit model and 
the mixed logit (ML) model. In the generalized extreme value models, the unobserved 
portions of the utility are assumed to be jointly distributed as generalized extreme value. 
Consequently, correlation in the unobserved attributes is allowed, but this model collapses 
to an extreme value model if the correlation is 0 for all attributes. In the probit model, the 
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unobserved attributes are assumed to be normally distributed. This means that unobserved 
attributes can be assumed to be jointly normal and be modeled with any appropriate 
correlation structure over both options and time (for example, with panel data where the 
same individuals are asked to respond on several successive occasions). Of course it is 
rarely appropriate for a price attribute to come from a normal distribution since few people 
want to pay more for the same or worse features (but consider those who like to emphasize 
their wealth through corispicuous consumption). This imposes some limitations on the 
application of the probit model. In the mixed logit model, the unobserved attributes can 
be decomposed into two parts: one with the correlation, which may have any distribution, 
and one which is extreme value. Variations on these models, such as nested logit, are also 
possible. While there are many different choice models, we will only discuss designing 
choice experiments for the multinomial logit model in this book. 

3.1.2 Choice Probabilities 

We assume that each unobserved component of the utility F,, is independently identically 
distributed Type 1 extreme value, sometimes called the Gumhel distribution. It has density 

f ( E )  = p- te -e  I ,  --35 < F < 92 

and cumulative distribution function 

F(E) = e - e - ‘ .  

We now derive the choice probabilities using the argument given in Train (2003, pp. 
4044,78-79). From the results above, we have that 

P,, = Pr(option i is chosen by subject a )  = Pr(& - l / Ja  + E,, > b’l # i )  

If we regard E,, as given, then P,, is just F(t,, + V,, - 4,) = P - ~ - ( “  ’-‘ ’ - ‘ I  ” )  , again 
for all J # z .  Now the F’S  are independent and hence the cumulative distribution over all 
J # z is lust the product of the cumulative distributions over all J # 2 .  This gives 

-(,,,+L,, ‘ , , )  
Pr(optioi1 i is chosen by subject ajt,,) = n c - ~  

3 # ,  

In practice, we do not actually know F,, and so we need to integrate out weighting 
the values by their density, to give 
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To evaluate this integral, observe that V,, - V,, = 0; so E , ,  + V,, - V,, = fz,. Hence we 
can remove the restriction on the product by using the last term. This gives 

I/, m - V?,Y ) - € 10 dE, ,  . 
3 1 J c,,, = -m 

Now we let z = e-"<*. Then d z  = -e+?-dEZa. As E , ,  tends to so, z tends to 0, and as 
can tends to -m, z approaches m. So we get 

For the time being we let K ,  = eVT, constant for all subjects, and we write In(.,) = yZ. 

3.2 THE BRADLEY-TERRY MODEL 

A paired comparison experiment is a choice experiment in which subjects are shown two 
options at a time and are asked to say which one they prefer. Thus it is simply a choice 
experiment in which all choice sets are of size 2. 

Such experiments were being used by psychophysicists in the mid-nineteenth century. 
They were interested in looking at how much two objects had to differ to be perceived as 
different. For example, Thurstone (1927) describes an experiment in which 19 offences, 
ranging (alphabetically) from abortion to vagrancy, were shown, in pairs, to subjects who 
were asked to decide which offence was more serious. He developed various models to 
analyze data of this type. Zermelo ( 1  929) independently used one of these models to rank 
chess players. More details may be found in MacKay ( I  988). 
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Unaware of the earlier work by Thurstone (1927) and Zermelo (1929), Bradley and 
Terry (1952) proposed using the Zennelo model i n  a psychological setting and developed 
likelihood estimates and appropriate test procedures for the unknown parameters. The 
model that they proposed is now known as the Bmdley-Tery model. We will consider this 
model, and develop appropriate estimates and distribution results, in  the remainder of this 
section. 

In the Bradley-Terry model, we assume that altogether there are t items, Y'l.  72,. . . , I I ; ,  
to be compared, although any choice set will only compare two of the items. We assume 
that each of the i t e m  has a constant 

associated with it  so the MNL model becomes a special case of the Bradley-Terry model. 
As we saw in the previous section, the logarithms of these constants are the utilities of the 
items and these constants may be called the merits of the items. Each choice set consists 
of a pair of items which are called the options in the choice set. 

Using the argument of the previous section, we get 

Pi-(?; is preferred to I I ) )  = . i # j .  i . , j = l 3  . . . .  t .  Ti 

(nz + .irj) 

We assume that all subjects see the same pairs and that there are no repeated pairs in  the 
experiment. We let 

1 when the pair (IIi> IIj) is in the choice experiment. { 0 when the pair ( I I ; .  Y j )  is not in the choice experiment. 
niJ = 

We will assume that the order of presentation of options within a pair and of pairs within the 
experiment is unimportant although for some situations there is evidence that order effects 
exist (Timmermans et a]. (2006)). In practice we would randomly permute the order of the 
choice sets within the experiment before presenting them to respondents. 

EXAMPLE 3.2.1. 
Suppose that t = 4. Then the 6 possible pairs are ( I I ' I ; ~ ~ ) ,  (II'l,T's), (7'1>IIi) ,  ( I I b - Y i ) ,  

( Y i .  Y i ) ,  and ( I I h ;  I I h ) .  Il'all pairs are shown to all subjects, then n,J = 1 for each of the 6 
pairs. I fweonlyuse thepairs (Y'1,7b), (IIi.IIi),and (II '1.2i) thennl, = 1 f o r j  = 2 . 3 . 4  

0 

We want to be able to find estimates of the 7ri since these can be used to assess the relative 
attractiveness of the iterns under consideration. Since the properties of the maximum 
likelihood estimates (MLEs) of the rri values have been well-established (see, for instance, 
David (1988)), we find such estimates for the Bradley-Terry model in what follows. 

and nzJ  = 0 if i : j  # I .  

3.2.1 The Likelihood Function 

We begin by evaluating the likelihood function. For subject 01, we let 

1 when Y Z  is preferred to 7;. { 0 when 7 j is preferred to Y,  . 1 c I J n  = 

Note that 1 - wZJa = usJIn. We let T = ( T ~ .  7 r 2 . .  , . , r t )  and we let f I J a ( w z J a .  T )  be 
the probability density function for subject 01 and choice set ( I I ; ,  Y j ) ,  where, for ease of 
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presentation, we assume that wZJa = wJaa = 0 if nt3 = 0. Thus 

T,w77n T;7%<l 

( T ,  + T3)n ' ,  ' 
f t3a (WZja, T) = 

We assume there are s subjects in total and we let C ,  wtJa = wZ3.  Then the likelihood 
function is given by 

We can simplify this further if we let w, = C, wtI be the total number of times that 7; 
is chosen from all choice sets containing 2;. Then 

3.2.2 Maximum Likelihood Estimation 

The usual way to estimate T is to find the maximum likelihood estimators. This requires 
setting the first derivative of the likelihood function, or, equivalently, the first derivative of 
the log-likelihood function, to zero and solving iteratively. 

We have that the log-likelihood is 

t 

To get the maximum likelihood estimates, we solve 

together with the normalizing constraint ni i?i = 1. Rearranging, we need to solve 

(3.1) 

iteratively. We let 
until agreement between i?:T- l )  and 

most statistical software does not even require that initial estimates be provided. 

HEXAMPLE3.2.2. 
Suppose that t = 4 and that we show all 6 possible pairs (7'1, Ti), (TI, 7>) ,  ( T I ,  T i ) ,  

(7 \ ,  T3), (Ti, Ti), and (Ts, 7'4) to each of s = 5 subjects. The results of this experiment 
are given in Table 3.1. We see that 

be the estimate of 7r2 at the rth iteration. We continue iterations 

Bradley (1985) says that convergence is fast and initial estimates of 1 suffice. In practice 
is close enough. 

w121 = 1 = w131 = w141 = w231 = w241 = w341 

and hence 
~ ' 2 1 1  = 0 = ~ 3 1 1  = ~ 4 1 1  = ~ 3 2 1  = ~ 4 2 1  = ~ 4 3 1 .  
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Using all the results, we get that ~1 = 8, 202 = 6, ul3 = 7 and 1114 = 9 

Table 3.1 Choice Sets and Choices for Example 3.2.2. with t = 4, s = 5 

Choice Subject 
Set 1 2 3 4 s  

Thus we have that 

and the corresponding log-likelihood is given by 

The maximum likelihood estimates are the solutions to the partial derivatives of the log- 
likelihood and we get the following equations: 

We start the recursion by assuming that all the items are equally attractive; thus w e  are 
assuming that ?!') = 1. i = 1 . 2 . 3 , 4 .  
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Using Equation (3.1), we get 

16 - _  - 
15' 

We now use this estimate of "1 to help estimate 7rz. We get 

- 6 [  +- 1 1 -l  

5 g+1 1 + 1 + 1 + 1 ]  
- - -  

93 
115' 

- - - 

To get ep), we use +!'), ?$I), irF) and .irjo). The results of the first 8 iterations, before 
normalization, are given in Table 3.2. 

Table 3.2 Estimates of T ,  from All Six Choice Sets 

Iteration + l  2 2  2 3  ff4 

1 .ooo 
1.067 
1.074 
1.068 
1.06 1 
1.056 
1.053 
1.052 
1 .05 I 

1.000 
0.8087 
0.7398 
0.7143 
0.7047 
0.7010 
0.6996 
0.6990 
0.6988 

1.000 
0.91 10 
0.8784 
0.8658 
0.8608 
0.8588 
0.8580 
0.8577 
0.8575 

1.000 
1.154 
1.225 
1.259 
1.275 
1.282 
1.286 
1.287 
1.288 

E(normalized) 1.107 0.7363 0.9036 1.357 

To normalize these estimates we divide each estimate by 

1 4  4 7ri = 0.94905. 

We get = 1.107, jT2 = 0.7363, +3 = 0.9036, and jT4 = 1.357. So, based on these 
results, we would rank the items (from best to worst) as 4, 1,3, and 2. (In general we would 
divide by the tth root of the product.) 

If we suppose that only the pairs involving 7; were shown to the subjects, we would 
then have 
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and the corresponding log-likelihood would be given by 

4 

In( c(.rr)) = w, 1n(7rt) - 5 ln(7rl + 7 r j )  

The maximum likelihood estimates are the solutions to the partial derivatives of the log- 
likelihood, and we get the following equations: 

1=1 

= 0: 
8 1 _ _  

+I “C,, 3 f l  

1 2 

2 1 

5- = 0: 

5- = 0; 

_ _  
+2 $2 + ? I  

?3 7r3 + 7 r l  

- _  

Again we start the recursion by assuming that all the items are equally attractive: so again 
we have ?lo) = 1. i = 1,2.3.4.  We get 

_1-1 

1 1 1 -l  
- - ;[-I+I-l+I-l] 

16 
15’ 

- _  - 

We now use this estimate of 7r1 to help estimate 7 r 2 .  We get 

62 
75’ 

- - - 

To get ?rhl), we use ?ri’) and ??): to get +il), we use ?il) and +p). The results of three of 
the first 10 iterations, before normalization, are given in Table 3.3. 

Normalizing, we get ?I = 1.107, +z = 0.738 = fi-3, and ?4 = 1.658. Based on these 
results we would rank the items (from best to worst) as 4, 1 and then 2 and 3 equal. 0 

Two questions still need to be addressed. How do we know that the iterations will 
converge? What do we know about the properties of the maximum likelihood estimates? 

3.2.3 Convergence 

Convergence is assured if  the n17 are all equal to I ,  although it may be slow (p 62, David 
( I  988) quoting Dykstra (1 956)). If the nt3 are not equal then Zermelo (1  929) and Ford Jr. 
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Table 3.3 Estimates of K, from the First Three Choice Sets Only 

Iteration el * 2  A3 A4 

0 1.OOo 1.000 1.000 1.000 
5 1.061 0.7115 0.7115 1.550 
9 1.056 0.7045 0.7045 1.581 
10 1.056 0.7042 0.7042 1.582 

10 (normalized) 1.107 0.738 0.738 1.658 

(1 957), quoted in David (1 988), have established that the iterative process will converge 
provided that: “In every possible partition of the objects into two non-empty subsets, some 
object in  the first set has been preferred at least once to some object in the second set.” 
If this condition is not satisfied, then either there are two sets of items which have never 
been compared (so how could they be ranked relative to each other), or every comparison 
favours one set, PI say, and so the xi values of all the items in the other set, P2 say, must 
be 0. This follows by noting that, if the xi associated with the items in Pz were not 0, then 
the likelihood function could be increased by multiplying all these 7ri by a constant less 
than 1 and dividing the xi values of the items in PI by a constant greater than 1 so that the 
constraint n, x, = 1 is preserved (from David (1988), pp. 63-64)). 

We choose the pairs that we present to ensure that there are no sets of items that are not 
compared. This does not require that all pairs of items be compared directly, as we saw in 
Example 3.2.2, but it does require that for any two items, ‘1; and ‘I;, it is possible to form a 
list of items Yi, ’I;,, ‘I;,, . . . , ?>, such that adjacent items in the list correspond to pairs i n  
the design. Such a design is said to be connected. 

mEXAMPLE3.2.3. 
If we have four items of interest and we use the pairs (?’I, Yb), (Yi, ’ I h )  and cl’], ‘I;), then 
any item is directly compared to item.?’]. Consider the pairs of items not involving ?’], 
Thenthelistforthepair’Ii,?> is?i,?’],Yh,andforthepair?i,?’4 is‘Ii,?’],Yi, and forthe 
pair ? h ,  7; is Yh, Y’], ‘ I h .  Thus the original set of three pairs forms a connected design. 0 

Even with a connected design, it can still be possible for every comparison to favour one 
set. 

mEXAMPLE3.2.4. 
In Example 3.2.2, for instance, there is at least one subject who has chosen each of the 
items. So, if we divide the items into two sets, say PI = (7’1, Y b }  and PZ = {Yh,  ‘Ii}, then 
there is at least one time when an object in PI has been preferred, and at least one time 
that an object in P2 has been preferred. On the other hand, if we let PI = {TI, Ti, ?;} 
and Pz = (7’4) and consider only subject 1,  then the option from P2 is never chosen. The 
likelihood for the first subject is given by 

Observe that the value of the likelihood function is largest when 7r4 = 0 and that the 
likelihood function gets smaller for larger values of 7r4.  So, if we start by assuming the 
null hypothesis that all the 7rt = 1, then we get L(  1,1 ,1 ,  I )  = 0.015625. If we let 7r4 = 0, 
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then we have L(1. 1 . 1 . 0 )  = 0.125. If we try to have a small positive value for 7r4, say 
7 ~ 4  = 1/1000, then L(10,10.10,1/1000) = 0.124963 which is somewhat smaller than the 
likelihood when 7~4 = 0. I f  instead we give 7r4 a value which suggests that item Y i  was 
very popular, say 7r4 = 8, then L(1/2.1/2,1/2,8) = 0.0000254427 which is very much 
smaller than the value with all the 7r is equal to 1 and certainly smaller than the largest value 
of the likelihood possible. This illustrates the discussion about maximizing the likelihood 
when the items chosen have resulted in a disconnected design. n 

3.2.4 Properties of the MLEs 

Assuming that we have used a connected design and that each item has been chosen at least 
once, we know that the maximum likelihood estimates will exist. In this section, we outline 
the results that lead to the asymptotic distribution of the maximum likelihood estimates. 
??. We briefly recall the results on the distribution of the MLEs for a random sample from 
one population and then we outline how the results need to be modified to apply to the 
Bradley-Terry model. 

Let zi be a random vector of length t. Let zl. x2., . . zs be a random sample of size 
s from a common distribution f(z: 13) with unknown parameter vector 8. Suppose that 
the distribution satisfies some mild smoothness assumptions that are stated explicitly in 
Cramer (1946) or Scholz (1985). Then, for large values o f s ,  the distribution of fie, 
is approximately t-variate normal with mean vector I3 and variance-covariance matrix 
[ I ( @ ) ] - * ,  where I ( I 3 )  is the Fisher infonizatioii matrix. The Fisher information matrix has 
entries given by 

When we consider finding parameter estimates from a choice experiment, choice sets 
that contain treatment Y; also share the parameter 7rz in the corresponding distribution 
function. Thus these distributions are not independent but are said to be associated. In  this 
situation, the result quoted above needs to be modified; see Bradley and Cart (1962) for 
details. We now outline the relevant result for the Bradley-Terry model when all sub,jects 
see the same choice sets. 

As in El-Helbawy and Bradley (1978), we view each choice set as one of the associated 
populations. We have sn,J observations from the pair (Y;; ? j )  and siV = s cZcJ nL3 
observations in total. Thus the proportion of observations that come from any choice set is 
A,, = ~ L ~ ~ / ~ V .  Then the elements of the information matrix for are given by 

If i # j the only pair which has both of these partial derivatives non-zero is the pair in 
which '1; and Y; are compared. In  that case we have 
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Substituting, we have 

NOW 2 ~ 1 , ~ ~  is a Bernoulli random variable which takes the value I with probability 

%/(% + .,). 

&(%a)  = % / ( T ,  + x,) 
so 

and 

If n,, = 0, then wZJa = 0 and is not a random variable. For fixed but arbitrary i, any two 
W h  random variables are independent by assumption (that is, choices made in one choice 
set are independent of choices made in any other choice set). Hence we have 

Var(wlJa) = rl/(nl + TJ)(1 - rl/(xl + K J ) )  = I J  /(TI + TJ)'. 

when i # j. 
If i = j, then 

since 
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We also want to calculate the information matrix for the -ft values. Since 3, = In(7r7), 

r ? ? L / L 3 ~ t  = l /7r t ;  so r ? ~ % / r ? ? ~  = 7r7. Hence Z(y) = PZ(7r)P. where P i s  a diagonal matrix 
with ith entry equal to T,. Following El-Helbawy et al. (1994), we let A(7r) = [(y) be the 
information matrix for vGi7-i.. 

Putting this altogether we have that 

and 

The h(7r) matrix for the 6 pairs in Example 3.2.2 is 

(Recall that X,j = 1/3 or 0 for every pair.) 
The estimated h matrix would be obtained by substituting the estimates for the 7i7 values. 

(This illustrates one of the main differences between the Bradley-Terry model (indeed any 
non-linear model) and the familiar least squares models; here the estimate of the covariance 
matrix depends on the unknown parameters, not just on the design that has been chosen.) 
For example. the A(7r) matrix under the null hypothesis of equally attractive options, that 
is, assuming Ho : T I  = 'ir2 = . . . = Tt  = 1, is given by 

and 
1 

AiJ( j t )  = Z J ,  i f j ,  i . j  = 1 , . . .  . t .  

where j, is a t x 1 vector of 1 s. 

are equally attractive (xl = TZ = 7r3 = ~4 = l), is given by 
The A(j , )  matrix for the 6 pairs in  Example 3.2.2, when we assume that all the options 
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The A(j4)  matrix for the three pairs in Example 3.2.2, when we assume that all the 
options are equally attractive, is given by 

3 -1 -1 -1 

1 - 1  0 0 1 J  

Further discussion about the use of prior information when designing choice experiments 
may be found in Section 7.4. 

3.2.5 Representing Options Using k Attributes 

Usually choice experiments are conducted using items that are described by the levels of 
each of k attributes. With such a representation it  then becomes natural to ask whether 
the main effects of the attributes are significant, whether the two-factor interaction effects 
of pairs of attributes are significant and so on. In this section, we derive the parameter 
estimates for the factorial effects of interest and establish the asymptotic distributional 
properties of these estimates. 

Consider the k attributes. We assume that attribute q has C, levels. Thus there are 
1, = nq eq items all together. We will assume that the level combinations are ordered 
lexicographically, just as we did in Chapter 2 ,  so 7’1 corresponds to (0.0, .  . . , 0), ?i 
corresponds to (0, 0, . . . , 0, I) ,  and so on until ‘li corresponds to (el - 1, e 2  - 1, . . . , f k  - 1). 
Sometimes we will replace the subscript “i” on 7; by the corresponding vector of attribute 
levels. 

We want this representation to be reflected in the way we represent the yz; so we write 

4 41 <42 

where Dq,fq is the effect of attribute q when at level f,, & q 2 , ~ , , l f , 1 2  is the joint effect of 
attributes g1 and q 2  at levels f,, and f,, and so on. This representation has more parameters 
than it requires. Specifically it has 

P 41<42 4 

parameters; so we must impose n,(t, + 1) - n4 t, independent constraints. We see that 
this is exactly analogous to the situation for the usual representation of a full factorial model 
in an ordinary least squares setting and we impose the familiar constraints 

f ‘1 fm f‘i2 

and so on. 
Many authors represent Y ( ~ ~ , ~ ~ ,  , , f k )  by V, = p’x,, where ( f l ,  fz, . . . , f k )  represents 

the ith treatment combination in lexicographic order, ,B contains all the possible 19 values 
and x E  is a (0,l) indicator vector. 

Another common representation incorporates the constraints into the vector p. Thus 
instead of having C, elements in for attribute q, there are only Cq - 1 entries and there 
are ( P q l  - l ) ( P q 2  - 1) parameters for the joint effect of attributes q1 and q2  and so on. This 
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means that x, uses e, - 1 entries for each attribute, with all entries 0 except for the position 
corresponding to j,, which is I ,  for the first &, - 1 levels and level fe,, -1 corresponding to 
P, - 1 entries of - 1. In either case, the null hypothesis r = j, is equivalent to having all 
entries in  P equal to 0. 

We illustrate these ideas in the next example. 

EXAMPLE 3.2.5. 
Let k = 2 and let P I  = 2 and P2 = 3. Then, for the first representation, we have 

P’ = i&,o .Bi . i .  32 .0 .  ~ ? 2 , 1 !  32.2.312,00,P12,01,1~12.02. 312.10:  & . i i . . 112 .12 ) .  

The treatment combinations and the corresponding x, and yi are given i n  Table 3.4. In this 
representation the constraints are 

h . 0  + 1%.1 = 0: 32,0 + h . 1  + 5 2 . 2  = 0. 

3 i n . m  + 4 1 2 , i o  = 0; 612.01 + A z . i i  = 0, R i 2 . m  + d12 .12  = 0, 

ij112.00 + !+12,01 + .?12,02 = 0, P12 , lO  + 812 .11  + lj112,12 = 0. 
and 

To get the second representation we need to incorporate these constraints into p. We 
see that 

0 1 , l  = - 3 1 , 0 ,  

&,2 = -P2.0  - 9 2 , l .  

3 1 2 , l O  = -P12 ,00 .  

8 1 2 , l l  = -1312,01: 

h , o z  = -P12 ,00  - .012,01. 

i%2.12 = -P12 ,02  = 1312.00 + 312 .01 .  

and 

Thus we have 
P’ = (&.o> &ol , /%,I> ~ 1 2 , 0 0 ,  i ~ i P . 0 1 ) .  

The treatment combinations, and the corresponding xi and yz, are given in Table 3.5. 0 

Table 3.4 Lnconstrained Representation of Treatment Combinations 

Treatment 
Combination Xi 

0.0 91 0 + 0 2  0 + 1312 00 

0.1 01 0 + 0 2  1 + 312 01 

0 2  I.0.0,0,1,0,0,1,0,0,0 01 0 + $2 2 + 8 1 2  02 

I ,o, 1 ,o,o, 1 ,o,o,o,o,o 
I .0.0,1,0,0,1,0,0,0,0 

1 ,o 3 1  I + 4 2  o + 312 10 

1.1 0,I.0,1,0,0,0,0,0,1,0 41 1 + 8 2  1 + 312 11 

0,I,1,0,0.0,0.0,1,0,0 

I .2 0,1.0,0.I.0,0,0,0,0,1 91 1 + 0 2  2 + 1312 1 2  

We will be using the first representation in this book. 
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Table 3.5 Constrained Representation of Treatment Combinations 

Treatment 
Combination Xa YP 

Questions about the main effects of attribute q are answered by considering contrasts of 
the bq,f,, questions about the two-factor interaction of attributes q1 and qz are answered by 
considering contrasts of the /3qlq2,fql f,,z and so on. I f  we want to develop the best design 
to test if some particular effects are zero, we do this by specifying which effects we want 
to test are zero, and which effects (if any) we are going to assume are zero, and then we 
find the parameter estimates and determine the asymptotic properties of these estimates. 

We write the p contrasts that we want to test as the rows of the matrix Bh. We choose 
the coefficients in the contrast matrix Bh so that BhBk = I p  where Z p  is the identity matrix 
of order p .  That is, we say that the matrix Bh is orthonormal. If any row of Bh is not 
already of unit length then we divide the entries in that row by the square root of the sum 
of the squares of the entries in that row. All contrasts that we assume are 0 appear as rows 
of the orthonormal matrix B, which we will assume has a rows. Finally, B, contains 
any remaining contrasts from the complete set of L - 1 independent contrasts. The next 
example illustrates these ideas for three binary attributes. 

mEXAMPLE3.2.6. 
Let k = 3 and let 
01 I ,  100, 101, 1 10 and 1 I 1, in  lexicographic order. Then 

= e 2  = e3 = 2. So the eight items are represented by 000,001,010, 

Toil = P i , o  + D2.1 + P 3 , i  + P12,o i  + Pi3.01 + Pz3.11 + P123,oii 

The constraints that we impose are 

Pq,o + P q , l  = 0, 9 = 1 , 2 , 3 .  

b q 1 q z , O O + P q l q z , O l  = P q 1 q ~ , 1 0 f P q ~ q ~ , 1 1  = O ,  = 1 , 2 ; 1 , 3 : 2 , 1 ; 2 , 3 ; 3 , 1 : 3 , 2 ,  

~ 1 2 3 , 0 0 0 f b 1 2 3 . 0 0 1  = ~123 ,010+4123 .011  = fl123,100+/j123,101 = ~ 1 2 3 , 1 1 0 + ~ 1 2 3 , 1 1 1  = 0, 

and similarly for each of the other two attributes for the components of the three-factor 
interaction. 

Suppose that we want to test if the main effects are 0. Then 

-1 -1 -1 -1 1 1 1 1 

-1 1 -1 1 -1 1 -1 1 
Bh = - -1 -1 1 1 -1 -1 1 1 

Observe that RhBk = 13. 
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Suppose that we do this assuming that the three-factor interaction is 0. Then 

1 
B - - - - 1  1 1 -1 1 -1 -1 1 1  

- 2J;T 

That means that we have made no assumptions about the two-factor interaction contrasts; 
SO 

B 1 -1 1 -1 -1 1 -1 1 . 
1 1 -1 -1 -1 -1 

l 1  

-L [ 
2J;T 1 -1 -1 1 1 -1 -1 1 

The likelihood function itself is independent of any constraints that we impose on the 
parameters but the solution will have to reflect the constraints. We summarize the results 
in  Bradley and El-Helbawy (1976) below. 

We want to maximize the likelihood equation 

subject to the normalizing constraint C ,  ln(nt) = C,  yl = 0 and the assumed constraints 
Boy = 0, where 0, is a column of 0s of length a. Working with the log-likelihood and 
using Lagrange multipliers we maximbe 

L subject to 
chosen at least once. 

gives 

y1 = 0 and Ray = 0,. As before we assume that every item has been 

To maximize the function we differentiate with respect to each T? in turn. For T~ this 

Let us7 - C,+ 
the derivative in matrix notation, we have 

= z1 ,  z = ( ~ 1 . ~ 2 , .  . . , ZL)' and K = ( ~ 2 . .  . . , K , + I ) ' .  Then, writing 

z + K 1 j L  + BAK = Or. 

Pre-multiplying by j ;  we get 

j i z  + K j j i , j 1 2  + j',BAK = 01,. 

Since j i z  = sly - s N  and j;,Ba = 0, we have that L K ~  = 0 and 5ince R,RA = I, we 
have 

B,z + K = O L .  

Hence K = -I?, z and 

z - B;&z = ( I  - B:Ba)z  = 01,. 

As before these equations are solved iteratively. Their convergence is guaranteed, 
provided that there are no items that are never chosen; see El-Helbawy and Bradley (1977) 
for details. 
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4 1 1 : o o o  
1 4 1 : o o o  
1 1 4 : o o o  

0 0 0 : 2 1 1  
0 0 0 : 1 2 1  

. . . . . . . . . . 

0 0 0 : 1 1 2  - 

What about the distribution of these constrained maximum likelihood parameter esti- 
mates? To find this we use the ideas of El-Helbawy and Bradley (1 978) who apply the 

results of Bradley and Gart ( 1  962) to the parameters in [ E: ] 7 = BhTy = e. m e n  the 

information matrix C of 0 6  has entries Cuq given by 

. 

Thus we have 
C = BhTA(T)BkT. 

Unless we need to emphasize the value of n we are considering, we will write A for A ( n )  
from now on. 

We are really interested in BhT of course, and these are the first p entries of 6. The 

variance-covariance matrix of 0 6  = [ i:; ] is c-1. If we write 

then the variance-covariance matrix of m B h T  is given by (3;; provided, of course, 
Chr = O p , L - l - p - a .  If ChT # O p , ~ - l - p - a  then the variance-covariance matrix of 
m B h T  is obtained from the principal minor of order p of C - * ;  that is, the subma- 
trix of order p starting in position (1  , l ) .  

Consider the situation of Example 3.2.6. Suppose that we use the pairs (000, 1 1 I ) ,  (001, 
1 l O ) , ( O l O ,  I O l ) ,  (01 I ,  loo), (000,Ol I ) ,  (000,101),(000, 1 lo), (1  1 I ,  001),(11 l , O l O ) ,  and 
(1 1 1 ,  100) and calculate A assuming that n = j,. We get 

EXAMPLE3.2.7. 

1 
40 

A = -  

and 

4 0 0 -1 0 -1 -1 -1 
0 2 0 0 0 0 - 1 - 1  
0 0 2 0 0 - 1  0 - 1  

-1 0 0 2 - 1  0 0 0 
0 0 0 - 1  2 0 0 - ' 1  

-1 0 - 1  0 0 2 0 0 
- 1 - 1  0 0 0 0 2 0 
-1 -1 -1 0 -1 0 0 4 
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The variance-covariance matrix for m l ? h l . ?  is AC-', where 

100 -20 -20 : 0 0 0 
-20 100 -20 : 0 0 0 
-20 -20 100 : 0 0 0 

0 0 0 : 270 -90 -90 
0 0 0 : -90 270 -90 
0 0 0 : -90 -90 270 

. . . . . . . . . . . . . . . . . .  

Thus we see that the elements of Bh? and l??? are independently estimated (since the 
covariance of any element of Bh? and B,.? is 0) and so the variance-covariance matrix of 

0 

However it is not always the case that the elements of l?h? and B,.? are independently 

m B I L ?  is the principal minor of order 3 of C-l. 

estimated, as the next example shows. 

mEXAMPLE3.2.8. 
Let k = el = E 2  = 2. Suppose that we want to test hypotheses about the main effects so 

Rh = - 
2 T1 -1 -l  1 -1 1 l l  

and we do not want to make any assumptions about the two-factor interaction effect. Then 

1 
l? - - [ l  -1 -1 1 1 .  

7 ' - 2  

Suppose that we use the pairs (00, I I ) ,  (01, lo), and (00,Ol). Then 

2 -1 0 -1 
1 A = -  

If we assume instead that 
B,+ = 0. 

then 

Hence we see that with these choice sets the variance estimate of the estimate of the main 
effect of the second factor, (71 1 + ;i~l - (710 + 7 0 0 ) ) / 2 ,  depends on the assumption, if any, 
made about the two-factor interaction. 0 

The off-diagonal elements of the variance-covariancematrix C-' give the covariance of 
pairs of contrasts in  m B h ? .  If one of these entries is 0 then the corresponding contrasts 
are independently estimated. So if the variance-covariance matrix is diagonal, then all 
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pairs of contrasts are independently estimated. Of course the inverse of a diagonal matrix 
is diagonal; so we prefer designs in which the C matrix is diagonal. 

If the attributes that are used to describe the options in a choice experiment have more 
than two levels then there are often several different ways in which the contrasts in Bh 

can be represented. We can move between these different representations of the contrasts 
by multiplying appropriate matrices together. Thus we are not concerned if the C matrix 
has non-zero off-diagonal entries that correspond to contrasts for the same effect, main or 
interaction. 

If we think of C as being made up of block matrices of order (& - 1) x (& - l) ,  for 
the main effects, block matrices of order (tql - 1) (lq2 - 1) x (lqJ - 1) (Pq4 - 1) for the two- 
factor interaction effects, q l ,  92, q3, q4 = 1,2 ,  . . . , k, and so on for higher-order interaction 
effects, then we want the off-diagonal blocks to be a zero matrix of the appropriate size, but 
the diagonal blocks are not restricted in their form. In the case when all the off-diagonal 
block matrices are zero, we say that C is block diagonal and we note that since the inverse 
of a block diagonal matrix is block diagonal, the covariance of any two contrasts from 
different attributes is 0. 

If we want the components of the contrasts for a particular effect to be independent, 
then we would have to choose a suitable set of contrasts to achieve that. While this may be 
possible, it depends on the choice sets used in the experiment and it is sometimes true that 
the contrasts that result do not have an easily interpretable meaning. 

Can we say under what circumstances the estimates of the variance-covariance matrix 
of BhT is independent of the form of B,? The short answer is yes, when Chr = 0, and we 
discuss this further in Chapters 4, 5 ,  and 6. 

It is not essential that the elements in Bh be independent contrasts, or even that they 
be contrasts. For example, if we want to work with the second representation of P in a 
main effects only setting, then we merely need to use as Bh a matrix which calculates 
Pq,f, - P q , p , - l  for the first eq - 1 levels of attribute q. The corresponding information 
matrix is still BhABL, given that all other interaction effects are assumed to be 0. We 
illustrate this in the next example. 

EXAMPLE 3.2.9. 
Consider the situation of Example 3.2.5. Suppose that we assume that the two-factor 
interaction is 0. Then for the first representation 

and hence 

If we let 

we can test hypotheses about the main effects using Bhy. 
For the second representation the parameters of interest are 

&,o  - PLl, Pz,o - P 2 , 2 ,  P2,l - P2,2. 
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If 

then 

I 1 1 -1 -1 -1 

0 1 - 1  0 1 - 1  
& = [ l  0 -1 1 0 - 1 1  

Supposethatweuse thepairs(00, l l ) , O l .  12),(02, lO),~lO,Ol) . ( l l ,O2) ,and (12,OO). 
Then, under the nul l  hypothesis, we have 

1 A = -  
4 x 6  

2 0 0 0 - 1 - 1  
0 2 0 - 1  0 - 1  
0 0 2 - 1 - 1  0 
0 - 1 - 1  2 0 0 

-1 0 - 1  0 2 0 
- 1 - 1  0 0 0 2 

and the information matrix for R ~ Y  is Bc2ABL = Cn. 
The information matrix for BQY is often expressed in terms of the treatment combi- 

nations in each choice set (see Huber and Zwerina (1996), for example). We show the 
relationship between these two approaches here. For the second representation the x ,  are 
represented by triples; see Example 3.2.5. These triples are the columns of Bn and so we 
will write 

Bn = [ X I .  x2, . . .  , xfj 1 .  
Then 

Huber and Zwerina (1996) write the information matrix for Bay, under the null hy- 
Qothesis, as 

where there are ITL options in each of N choice sets and 

In this case m = 2. and hence we have 
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Since nZzJ = 1 when x, and x7 are in the same choice set and is 0 otherwise we find 

The other question is that of connectedness. Since we are no longer interested in the 
t treatment combinations specifically but in the main effects (and perhaps the two-factor 
interactions), it is no longer necessary to use the definition of connectedness that we 
gave previously. Now it is only necessary for the effects that we want to estimate to be 
“connected”. This is harder to define combinatorially, but one practical way to see if a set 
of choice sets is connected for the effects of interest is simply to calculate C = Bh,AB&, 
and check that C is invertible. Certainly quite small designs can be useful, particularly if 
only the main effects are of interest, as the next example shows. 

EXAMPLE 3.2.10. 
If there are k = 3 binary attributes, then the pairs in Table 3.6 might be used as a choice 
experiment. (We say that an option has beenfoldedover if all the 0s i n  an option have been 
replaced by 1 s and vice versa to get the other option in the choice set.) The corresponding 
A matrix, under the null hypothesis that all items are equally attractive, is given by 

1 1 A = -  
(1 + 1 ) 2  4 

1 0  0 0 0 0 0 - 1  
0 1 0  0 0 0 - 1  0 
0 0 1 0  0 - 1  0 0 
0 0 0 1 - 1  0 0 0 
0 0 0 - 1  1 0  0 0 
0 0 - 1  0 0 1 0  0 
0 - 1  0 0 0 0 1 0  

-1 0 0 0 0 0 0 1 

Suppose that we are only interested in estimating main effects and that we can assume 
that the remaining contrasts of the yi are equal to 0. Then we have the three main effects 
contrasts in  Bh and B, is empty. We find that C: = i I 3 ,  showing that we only need these 
four choice sets to estimate the main effects for three binary attributes if we can assume 
that the interaction effects arc 0. 0 

In this section, we have parameterized the yi i n  terms of the factorial effects, and have 
found the corresponding maximum likelihood estimates and variance-covariance matrices. 
We have seen that if Chr = 0, then BhT is independent of the form of B,. and that the 
definition of connectedness changes to reflect the effects that we want to estimate. 
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Table 3.6 The Fold-over Pairs with k = 3 

Option A Option B 

000 1 1 1  
110 00 1 
101 010 
01 I 100 

In  the next section, we derive the A matrix for largerchoice sets and briefly discuss using 
k attributes to describe the options in this situation. In Chapter 4 we discuss the structure 
of the optimal designs for binary attributes for the estimation of main effects, main effects 
plus two-factor interactions and main plus some two-factor interactions when all choice 
sets are of size 2. In Chapter 5 we allow the choice sets to have more than 2 options and in 
Chapter 6 we allow the attributes to have more than 2 levels each and the choice sets to be 
of any size. 

3.2.6 Exercises 

1 ,  In Example 3.2.2 use the initial estimates %‘jo) = tui/30 and perform 5 iterations. 

2. Suppose that k = 4 and that the four attributes are binary. Suppose that the four 
pairs (0000, 1 1  1 I ) ,  (001 I ,  1 loo), (0101, 1010), and (001 1 ,  1100) are to be used to 
estimate the main effects of the attributes. 

How do these estimates compare with the ones given in the text? 

(a) Determine the matrix Bh for estimating main effects. 

(b) Determine the matrix A associated with these pairs. 

(c) Hence detemiine the information matrix C when B, contains all of the effects 

(d) Find the !lo matrix for these choice sets. 

except the main effects and when B, is empty. Comment. 

3.3 THE MNL MODEL FOR CHOICE SETS OF ANY SIZE 

In this section we discuss the MNL model for choice sets of any size. Train (2003) gives 
an extensive discussion of other models and of associated estimation questions. 

3.3.1 

We begin by deriving the information matrix for the 7r7 when the choice sets may have any 
number of options in them. Since all subjects see the same choice sets, we only need to 
consider results from one subject in the derivation; so the subscript cy has been suppressed 
in what follows. 

Consider an experiment i n  which there are N choice sets of m options, of which 
nI,.i *.. . . .  ?,,, compare the specific options T i l ,  71, ~. . . , Yi,,, , where 

Choice Sets of Any Size 

1 if (Yil, Yi2 ~ . . . , Yi,,,) is a choice set. 
7’,,.?,. , I , , ,  = { 0 otherwise. 
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Then 
N =  c ~ , i 1 , z , , . . . , z " 7  

a1 < ? , 2 < , , . < i , , ,  

We define parameters X = ( T ~ ,  "2, . . . , rt) associated with t items Y;, Yi,. . . ,Ti. Given 
a choice set which contains m options Y;, , Y;,, . . . , Y i n ,  the probability that option 71, is 
preferred to the other m - 1 options in the choice set is 

I ,  Ti1 P(Til > 21,:. . . , IZn, ) = 
C,"=1 Ti7 

for i j  = 1 , 2 , .  . . , t (assuming that all options in each choice set are distinct). We also 
assume that choices made in one choice set do not affect choices made in any other choice 
set. If m = 2, this is just the model of the previous section. 

We use the method in Bradley (1955) and Pendergrass and Bradley (1960) to derive the 
form of the entries in A for any value of m. 

Let to,, ,iz ,..., i,, be an indicator variable where 

1 
0 otherwise. 

if '11, > Y;,, 71, . . . , 'li,,, , 
wil, iz ,..., i,,, = { 

Then 

We let wtl be the number of times option Ti, is preferred to the other options available 
in any choice set in  which ?1, appears. Then 

Wil  = C t u i l r i 2  ,..., in , ,  
i l  < i:,  <. , , < i,, 

where the summation is over i 2  < i3 < . . < i, and ij # i l  for j = 2, . . . , m. 
It follows that 

EXAMPLE 3.3.1. 
Suppose that the four choice sets ( T I ,  T i ,  Y i ) ,  (TI, ?i, Y k ) ,  ('['I, 7'3, Ti), and (75, Yi, 7'4) 
are to be used to compare t = 4 items. Then we know that w1 = ~ 1 2 3  + ~ 1 2 4  + w 1 3 4  and 
w z  = ~ 2 1 3  + w 2 1 4  + u'234 .  Thus we have that 

&(wl)  = E(W123  + 70124 + w 1 3 4 )  

= E(111123) f E(U'124)  f E ( 2 C 1 3 4 )  

"I + "1 + "1 - - 
("1 + r2 + " 3 )  (TI + "2 + "4) (", + "3  + x4) 
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- -"1T2 
- 

(TI  + "2 + 7r3)2 

since the product U'123&213 is always 0 (because only one option can be chosen from the 
choice set). So either 1 is chosen, and thus ~ ' 2 1 3  is 0; or 2 is chosen, and 711123 is 0; or 3 is 
chosen. i n  which case 11'123 and ZL'213 are both 0. 

The same argument shows that 

giving the result that 

as expected. 

- We define A,, . , 2 .  .?,,, - n 1 , . z 2 ,  , zn ,  / N .  Then the entries of A are given by 

and 

0 

(3.2) 

(3.3) 

If we assume that T I  = 7 ~ 2  = . = 7rt = 1 (that is, all items are equally attractive, the 
usual null hypothesis), then 

(3.4) 

and 

(3 .5)  
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H EXAMPLE 3.3.2. 
Suppose that we have t = 4 items and that we compare them using the sets ( T I ,  Ti, Ts), 
(Yi,Y;,Yi), and ( Y i , Y i , Y > ) .  Then n 1 , 2 , 3  = 1, n1,z.d = 1, 711,3,.1 = 0, and n 2 , 3 , 4  = 1. 
Also observe that N = 3. Under the null hypothesis of equally attractive items, we get the 
A matrix 

3.3.2 Representing Options Using k Attributes 

These ideas can be extended naturally to items that are described by k attributes. We can 
calculate the matrices R,, Bh, and B, in the same way as we have before. 

HEXAMPLE3.3.3. 
Suppose that we have three binary attributes and that we conduct a choice experiment using 
the following four choice sets each of size 3: (000, 1 1  1, O I O ) ,  (001, 110, 01 l ) ,  (010, 101, 
ooo), (01 1, 100, 001). We use the same Bh matrix for main effects as in Example 3.2.6, 
but the new A matrix is - - 

L l "  L " " " "  ' J  

The corresponding C matrix for estimating main effects is $ 1 3 .  (This matrix is calculated 
assuming B, contains all the contrasts other than those for main effects, but as we shall 
show in Chapter 5 the information matrix for any set of effects to be tested is independent 
of the way that the remaining contrasts are divided between B, and I??.) 

If we use these choice sets to estimate main effects plus two-factor interactions, then we 
get the following C matrix. 

We see that this matrix is not of full rank and hence the choice sets are not connected for 
the estimation of these effects. 0 

3.3.3 The Assumption of Independence from Irrelevant Alternatives 

One of the most controversial properties of the MNL model is that of Independence from 
Irrelevant Alternatives (IIA). We define this phrase and look at its consequences briefly. 
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Recall that the log odds function or logit function for a binomial random variable with 
probability ir of success is defined by logit(n) = ln (n / ( l  - T ) ) .  Now consider the odds 
of subject cy choosing Yi, over 7 i2  if the MNL model is used for modelling the choices. 
This is 

In(Pni,  /Pep,)  = ln 

We see that these odds depend only on the two options being compared and not on any 
of the other options in the choice set. Thus this model is said to have independence~from 
irrelevant alternatives (IIA), a phrase originally used by Luce (1 959). 

This assumption does not always makes sense. The classic counter-example is the red 
bus-blue bus example. Suppose that there are two ways of getting to work: driving a car 
or travelling by (blue) bus. Now suppose that a third option becomes available - a red bus 
that in all other ways is exactly the same as the blue bus. Then logic suggests that users of 
the red bus will all have been users of the blue bus and none of the drivers will be tempted 
by the new service. So the IIA assumption does not make sense here. 

The IIA assumption can be viewed as a restriction or as the natural outcome of a well- 
specified model (that is, one in which all sources of correlation are captured). For example, 
the generalized extreme value (GEV) model allows for different substitution patterns and 
so does not have the IIA property because it allows for the correlation structure to be 
modelled: see Train (2003) for more details. 

3.3.4 Exercises 

1 .  Consider the following four choice sets of size 3 for four binary attributes: 
(0000,l I 11,001 1 j, (001 I ,  I100,0000), (0101, 1010,Ol lo), (01 10,1001,0101). 

(a) Give the A and C matrices corresponding to these choice sets, assuming that 
you want to estimate the main effects only. Does it matter how you split the 
remaining effects between B, and B,? Comment. 

(b) Give the b ! ~  matrix for these choice sets assuming that all interaction terms are 
0. 

2. Suppose that t = 4 and that the 4 items to be compared are T i ,  Ti, 73, and ’fh. 
Suppose that we use the four choice sets (7’1 ~ Yi), cl’l, Yh), (Ti, Y;), and (7 5 , Y j .  74).  

(a) Find the likelihood function L ( T )  for this choice experiment. 

(b) Hence find A. Comment. 

(c) Would you be able to estimate all of the nt? 

3. Show that the Ro matrix is always N C  for the estimation of main effects only 
assuming that all interaction effects are 0. 

3.4 COMPARING DESIGNS 

In the univariate, ordinary least squares, normal errors situation the performance of esti- 
mates is often judged by the width of the resulting confidence interval. Estimates that are 
minimum variance unbiased are often deemed to be the best. In the multivariate, ordinary 
least squares, normal errors situation the performance of estimates is often judged by some 
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property of the asymptotic variance-covariance matrix. In the case of a discrete choice ex- 
periment we have a non-linear multivariate situation where the variance-covariance matrix 
of the unknown parameter estimates depends on the values of those estimates. We find the 
variance-covariance matrix as a function of the parameter estimates and define the optimal 
design to be the design with the “best” variance-covariance matrix given Ho. Possible 
ways of defining “best” are given below. 

This means that we have a method to compare different choice experiments objectively 
using the variance-covariance matrix, C-’ . However, we could use structural properties 
of the either the variance-covariance matrix or of the designs. 

For the variance-covariance matrix the property that is most of interest is whether or 
not the parameters have been independently estimated. This is so if  the matrix is diagonal. 
When we estimate main effects, for an attribute with C, levels, there are C, - 1 contrasts 
and these are not uniquely defined. So, in fact, we really only require that C-’ be block 
diagonal for the effects from different attributes to be independently estimated. 

Readers can find software to calculate the information matrix and variance-covariance 
matrix of any set of choice sets at http://maths,science.uts.edu.aulmaths/wiki/SPExpts. 

For the designs, desirable structural properties typically arise from a link between the 
structure of the design and the properties of the resulting estimates. Structural properties 
of interest could include the frequency with which each level of each attribute appears in 
the design or the relationship between the options i n  each choice set. 

We discuss all of these approaches below. 

3.4.1 Using Variance Properties to Compare Designs 

In the univariate setting, where there is only one parameter to estimate, the variance of the 
parameter estimate is often used as a measure of a good estimation procedure. One talks 
about a “minimum variance unbiased estimator” for instance, when describing an unbiased 
estimator that achieves the CramCr-Rao lower bound. 

In the choice experiment setting, we are interested in estimating several effects, typically 
the main effects or the main effects plus two-factor interaction effects. So we end up with 
a variance-covariance matrix, C-’, to describe the variability of the estimates. Thus we 
would like to summarize C-l in a single number and several such summaries have been 
proposed. 

The D-,  A-, and E-optimality measures are appropriate to our situation and we now 
define these; see Atkinson and Donev (1992) for more details. 

Adesign is D-optimal if it minimizes the generalized variance of the parameter estimates, 
that is, det(C-’) is as small as possible for the D-optimal designs. 

A design is A-optimal if it minimizes the average variance of the parameter estimates, 
that is, tr(C-’) is as small as possible for the A-optimal designs. 

A design is E-optimal if  it minimizes the variance of the least well-estimated parameter, 
that is, the largest eigenvalue of C-‘ is as small as possible for the E-optimal designs. 

I t  has become usual to look for designs that are D-optimal. The idea of minimizing 
the generalized variance seems intuitively reasonable and the D-optimal design does not 
depend on the scale used for any quantitative attributes. This is of course less of a 
consideration given that we are viewing all the attributes as qualitative, although some 
authors, for example Kanninen (2002),  do design for quantitative attributes in the discrete 
choice setting. The calculations involved in evaluating the determinant are usually more 
easily performed than those required to determine an A- or E-optimal design. 
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Following El-Helbawy and Bradley (1978), we apply the optimality criteria to the 
information matrix C = BhABh, and the corresponding variance-covariance matrix C- ' .  
We can make it easier to find the D-optimal designs by noting that det(C-') = 1 / det(C). 
Thus the design which minimizes det(C-') is the same as the design which maximizes 
det(C). Thus we try to find designs for which det(C) is as large as possible. 

From these definitions, we see that for any optimality measure it is necessary to define a 
class of competing designs. As we go through the book we describe the class of competing 
designs for each new situation that we consider. 

EXAMPLE 3.4.1. 
Suppose that we have k := 2 binary attributes and that we want to estimate the main effects 
of these attributes using 3 choice sets each with two options. We let Bh, = BAr be the 
contrast matrix for main effects. We believe that the interaction effect is 0 and hence we let 
B, be the contrast for the two-factor interaction. There are 2' = 4 possible items. There 
are (i) = 6 pairs of options and there are (:) = 20 choice experiments involving 3 sets 
of these pairs. These 20 sets of three pairs constitute the class of competing designs and 
we want to know which of these designs is (are) best. To do this, we must calculate A, 
C' = B.i,[ABi,, and hence C- ' ,  for each design and calculate the D-, A-, and E-optimality 
values. 

For all of the competing designs 

We let v,. a = 1 . 2 ,  be the two eigenvalues of C-l. Then the D-optimum value is v1u2, the 
A-optimum value is v1 $- v2 and the E-optimum value is max(v1, Q). 

For the first design in Table 3.7, for example, 

3 -1 -1 -1 
1 0  

c=-[; 1 ; I .  
12 

and 

L J 

Thus v1 = 12, v:, = 4 and we get a D-optimal value of 48, an A-optimal value of 16 and 
an E-optimal value of 12. This is summarized i n  the first line of Table 3.7. 

All 20 designs and the corresponding D-,  A-, and E-optimum values are given in Table 
3.7. 

We can see that in this case the same four designs, designs 5 ,  1 I ,  17, and 18, are A-. D-,  
and E-optimal. 0 

When we know the minimum value that an optimality measure can take in the class of 
competing designs, then we can compare every design to this bound and we talk of the 
eflciency of a design. 

For the generalized variance, we need to allow for the number of effects that are being 
estimated. Let p be the number of independent parameters that are being estimated i n  an 
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Design 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table 3.7 Triples of Pairs for k = 2 and the Corresponding D-, A- and E- Optimum Values 

Triples v1, v2 

00,Ol 00,lO 0 0 , I l  4.12 
00,Ol 0 0 , l O  01,IO 4.12 
00,Ol 0 0 , l O  01,ll 6.12 
00,Ol 0 0 , l O  10,ll 6,12 
00,Ol 00 , I l  01,lO 4.6 
00,Ol 00.11 01,ll 4,12 
00.01 00 , I l  10.11 6(2 - &),6(2 + fi) 
00,Ol 01.10 01,Il 4,12 
00,Ol 01.10 10.11 6(2 - &),6(2 + fi) 
00,Ol 01,Il 10,ll 6,12 
00,lO 00.11 01,IO 4 6  
00.10 0 0 , l l  01,ll 6(2 - fi),6(2 + fi) 
00,lO 0 0 , l l  10,ll 4,12 
00,lO 01,IO 01,Il 6(2 - &),6(2 + fi) 
00.10 01,lO 10.11 4,12 
00.10 01,Il 10,l 1 6.12 
00,ll 01,lO 01.11 4 6  
00.11 0 1 , l O  10.11 4 6  
00.11 01,Il 10.11 4.12 
01.10 01.11 10.11 4.12 

Dopt Aopt Eopt  

48 16 12 
48 16 12 
72 18 12 
72 18 12 
24 10 6 
48 16 12 
72 24 6 ( 2 + f i )  
48 16 12 
72 24 6 ( 2 + f i )  
72 I8 12 
24 10 6 
72 24 6 ( 2 + f i )  
48 16 12 
72 24 6(2+&) 
48 16 12 
72 18 12 
24 10 6 
24 10 6 
48 16 12 
48 16 12 

experiment. For example, for k attributes and a design that is estimating main effects only, 

Q 

for a design that is estimating main effects plus two-factor interactions, 

4 41 42 

Thus the D-eficiency of a design is defined to be the pth root of the ratio of the determinant 
of the information matrix of the proposed design to that for the optimal design. So 

where we have again chosen to work with C' rather than with C-' since this means that 
we do not need to invert the C matrix. 

The A-eficiency of a design is defined to be the ratio of the trace of the covariance matrix 
of the proposed design to that for the optimal design. So 

(We can see the computational appeal of D-efficiency since there is no simple way of 
evaluating the trace of the inverse of a matrix from the trace of the original matrix.) 
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The next example illustrates the importance of considering the structure of the C matrix 
and not just the efficiency value. 

mEXAMPLE3.4.2. 
Suppose that there are I; = 3 attributes each with 4 levels. and that the choice sets are those 
given in Design 1 in Table 3.8. Then the corresponding C matrix is 

c1 = 

512 ' 640 
. . . . . . . . . . . . . . . . . . . . . . .  
- -1 0 0 : & 0  o : &  

3 
512 
0 L 

2:,6 0 : 0 0 : 0 

512 ' 640 
. . . . . . . . . . . . . . . . . . . . . . .  
- -3 1 . 3 0 3 . L  
2560 2560 640 ' 512 

640 & ' 640 

0 0 O : o  0 0 : 0  
1 . _ = 1 .  0 - 3 .  

2560 ' 
- 

and the corresponding variance-covariance matrix is 

c;l = 

O h  

O & i  

0 0  

. . . . .  
0 - 1  

0 - 3  

640 
0 0  

2560 
. . . . .  
0 0  
- 
2 6  O 
0 5 5  

- 768 0 0 : y  0 0 : x  384 0 - 5  512 

0 96 0 : 0 - 3 2 0 : 0  0 0 
7 

0 0 7 :  0 0 L y - u  
35 0 -% 

- 384 0 512 
7 0 0 : m  0 0 : - x  35 

0 0 1 2 8 .  0 7 6 8 : "  0 84 
7 ' 0  35 35 

35 3 5 '  35 0 K '  7 
0 0 0 : 0  0 0 : o y o  

-- 512 3 8 4 . 5 1 2  0 g :  0 0 y 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 - 3 2 0 :  6 96 0 :  0 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 384 0 -512 . -384 512 . 768 0 0 

3.5 -3T ' 35 

This design is 9S.97~ efficient but the only effect that is independently estimated is the 

Consider instead the choice sets in Design 2 in Table 3.8. Then the corresponding C 
quadratic component of the third attribute. 

matrix is 

c z  = 

' 3  m p & : O  0 O : o  0 0 

0 m 0 : 0  0 0 : 0  0 0 

& ) 0 & : 0  0 0 : 0  0 0 

0 0 0 : & 0 & : 0  0 0 
0 0 0 : 0 & 0 : 0  0 0 
0 0 0 : & 0 & : 0  0 0 

0 0 0 : 0  0 o : & i ' &  
O : O m :  0 0 O : o  0 0 : & O m  

. . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  . . . . . . . . . . .  

0 0 0 : 0  0 
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and the corresponding variance-covariance matrix is 

- 576 0 - = :  0 0 0 :  0 0 0 

-_ l 2 8 o = : 0  0 0 : o  0 0 
E 1 2 8 ; : O  0 0 : O  0 0 

5 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 0 0 : y  0 - 1 2 8 :  0 0 0 
0 0 0 : 0 1 2 8 < : 0  0 0 
0 0 0 : - 1 2 8 0  3 8 4 :  0 0 0 

5 5 

0 0 0 : o  0 o : m o - -  128 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0 0 : O  0 0 : : 1 2 8 <  
0 0 0 : o  0 o : - y o =  5 

This design is 94.5% efficient and we see that the only correlation that exists is between 
the linear and cubic components of the main effect of each attribute. 

Thus although the first design is slightly better in terms of the E f f ~  it has a number of 
correlations between main effects for different attributes while the other design has all main 
effects independently estimated. So E f f ~  is a guide to the best design but the structure of 

0 the C and the C-' matrices is also important. 

Table 3.8 Two Choice Experiments 

Option 1 Option 2 Option 1 Option 2 

3 10 132 OOO 111  
20 1 I32 01 I 122 
302 120 022 I33 
222 333 033 100 
103 230 101 212 
120 03 1 110 22 I 
012 321 123 230 
111 000 132 203 
230 321 202 313 
023 201 213 320 
03 1 213 220 331 
012 103 23 I 302 
333 111  303 010 
000 222 312 023 
213 302 32 1 032 
3 10 023 330 00 1 

Design 1 Design 2 

3.4.2 Structural Properties 

There has been a tradition in the design of experiments to try and identify structural 
properties of designs that are linked with desirable statistical properties. Then useful 
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designs can be found merely by considering these structural properties. Although some 
structural properties have been shown to be linked with desirable properties in choice 
experiments, to date the results have not been as clear cut as in  the construction of balanced 
incomplete block designs for comparing treatments in  a linear models setting, for example. 

Huber and Zwerina (1996) describe a set of features that they believe are characteristic 
of optimal choice designs. These features are: 

I .  level balance. All the levels of each attribute occur with equal frequency over all 
options in all choice sets (often called equi-replicate in  the statistical literature). 

2 .  Orthogonality. - This “is satisfied when the joint occurrence of any two levels of 
different attributes appear i n  options with frequencies equal to the product of their 
marginal frequencies” (Huber and Zwerina (1 996)). This is often described by saying 
that the levels of the various attributes appear “with proportional frequencies”. 

3. Minimal ovevlap. “The probability that an attribute level repeats itself in  each choice 
set should be as small as possible” (Huber and Zwerina (1996)). So, if the number 
of items in each choice set is fewer than the number of levels for an attribute, then 
no attribute level is repeated within a choice set. Thus the difference between the 
number of times that any two levels of an attribute are replicated should he as small 
as possible, ideally 0. and at most I .  

4. Utility balanre. Options within a choice set should be equally attractive to sub.iects. 

Bunch et al. (1996) introduced the ideaof .shifreddesign.s in which a set of initial options 
is chosen for each of the N choice sets i n  an experiment and the subsequent option(s) in each 
choice set are obtained by using modular arithmetic to “shift each combination of initial 
attribute levels by adding a constant that depends on the number of levels.” In Zwerina 
et al. (1996) we find the following sentence and footnote: “For certain families of plans 
and assuming all the coefficients are zero, these shifted designs satisfy all four principles, 
and thus are optimal. We are not able to analytically prove this, but after examining scores 
of designs, we have never found more efficient designs than those that satisfy all four 
principles.” 

Rut satisfying these principles does not guarantee that the design is optimal, nor even 
that it can estimate main effects, as the following example shows. 

EXAMPLE 3.4.3. 
The choice sets in  Table 3.9 satisfy the four Huber and Zwerina conditions when the null 
hypothesis is true but the main effects for the third attribute can not be estimated, and 
the determinant of the information matrix for main effects is 0. Studying the design, we 
observe that in  each choice set the levels of the third attribute appear in  pairs: 0 with 1 ; 2 
with 3; and 4 with 5. So the additional requirement, observed in shifted designs, is that the 
levels of each attribute must be connected. 

While the previous example is in some sense pathological, the following example shows 
that level balance is not essential for a choice experiment to be optimal. 

EXAMPLE 3.4.4. 
The choice sets in Table 3.10 are an optimal set of choice sets of size 5 for the estimation 
of main effects. The second attribute has all three levels appearing 30 times each across the 
18 choice sets, and the third attribute has all six levels appearing 15 times each acros? the 
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Table 3.9 
Attributes with 2, 3, and 6 Levels which Satisfies the Huber-Zwerina Conditions but for which 
Main Effects Cannot Be Estimated. 

A Choice Experiment for the Estimation of Main Effects when There Are 3 

Option A Option B 

000 111 
001 i10 
002 113 
003 112 
004 115 
005 114 
010 121 
01 1 120 
012 123 
013 122 
014 125 
015 124 
020 101 
02 1 100 
022 103 
023 102 
024 105 
025 104 
100 011 
101 010 
102 013 
103 012 
104 015 
I05 014 
110 02 1 
111 020 
112 023 
113 022 
114 025 
115 024 
120 00 1 
121 000 
122 003 
123 002 
124 005 
I25 004 
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Table 3.10 
Are 3 Attributes with 2. 3. and 6 Levels 

An Optimal Choice Experiment for the Estimation of Main Effects when There 

Option A Option B Option C Option D Option E; 

000 
121 
I12 
02 3 
004 
01s 
02s 
I I4 
010 
00 I 
I03 
022 
013 
002 
024 
10s 
01 I 
I20 

I l l  
002 
023 
104 
11s 
120 
1 00 
02s 
121 
112 
014 
I03 
124 
113 
10s 
010 
I22 
00 1 

I23 
014 
00s 
I10 
121 
I02 
I12 
00 I 
I03 
214 
020 
I IS 
100 
12s 
I l l  

104 
013 

022 

012 
I03 
I24 
005 
010 
02 I 
001 
I20 
022 
013 
I IS 
004 
025 
014 
000 
I l l  
023 
102 

024 
1 IS 
100 
01 1 
022 
00.3 
013 
I02 
004 
02s 
121 
010 
00 I 
020 
012 
123 
00s 
1 I4 

18 choice sets. However, the first attribute has one level replicated 48 times and the other 
level replicated 42 times. 0 

Chapters 4, 5 ,  and 6 give a theoretical description of the optimal designs under the null 
hypothesis of no option differences. These results determine the optimal designs for the 
estimation of main effects, and of main effects plus two-factor interactions, for any number 
of levels and for any choice set size. Minimal overlap is an essential feature of optimal 
designs for the estimation of main effects, but precludes the estimation of interaction effects, 
a point made in Huber and Zwerina ( I  996). 

3.4.3 Exercises 

1 .  Consider two binary attributes. Assume that all four treatment cornhinations are 
equally attractive: that is, assume that the 7ri  values are all equal. 

(a) Give the 6 possible pairs that can be used as choice sets of size 2. 

(b) Give the IS sets of two pairs. 

(c) For each of these pairs of pairs, evaluate the corresponding C matrix for 

(d) Which of these IS designs is best? 

estimating main effects and give its determinant and its trace. 

2. Consider two binary attributes and suppose that = = 1, 7r10 = 1/10 and 
T I  1 = 10. Repeat Question 1 .  Compare the best design for these two situations and 
comment. 
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3. Consider four binary attributes. 

(a) Calculate the 8 pairs that come about by pairing each treatment combination 
with its foldover (that is, the treatment combination in which 0s and Is are 
interchanged; 0101 is the foldover of 1010, for example). 

(b) Calculate the C matrix for main effects for this design. What is det(C)? 

(c) Repeat using the half-replicate given by 2 1  + 52 + 2 3  + 2 4  = 0. 

(d) Comment. 

4. Let k = 4. Find the 8 treatment combinations in the two half-replicates given by 
2 1  + x2 + 2 3  + 2 4  = 0 and by 5 1  + x2 + z3 = 0. Thus there are (:) = 28 pairs 
that can be made from the treatment combinations in each of these designs. 

(a) For each of these sets of pairs, what is the smallest design that can be used to 

(b) Which is (are) the best designs for each situation, using both A- and D- 

estimate main effects? 

optimality to compare designs. 

5 .  Consider the designs in Question 1 ,  

(a) Which ones have level balance? 

(b) Which ones are orthogonal? 

(c) Which ones have minimal overlap in all choice sets? 

(d) Do all the designs have utility balance in all choice sets? 

Which design(s) would be considered best using these criteria? 

6. Repeat Question 5 for the designs in Question 2. Compare with the results above 
and comment. 

7. Comment on the designs in Question 3 with respect to level balance, orthogonality, 
minimum overlap and utility balance. 

3.5 REFERENCES AND COMMENTS 

Train (2003) discusses discrete choice methods with a focus on the use of estimation by 
simulation. The first part of his book gives an introduction to the various behavioral models 
that have been proposed of which the MNL model is only one. 

There is an extensive discussion of the history of paired comparison designs in David 
(1988). 

Atkinson and Donev ( 1  992) provide an extensive collection of results on optimal designs 
for the linear model for a variety of optimality criteria. They briefly discuss some of the 
issues in the construction of optimal designs for models in which the covariance matrix 
depends on the unknown parameters (as it does for the MNL model). 

Many software packages can be used to analyze discrete choice experiments, often 
by utilizing the link between the DCEs and Cox’s proportional hazards model. Kuhfeld 
(2006) gives a very complete description, including many worked examples, together with 
appropriate macros, on how to use SAS to do the analysis. There is a description of 
using S-PLUS to fit a Cox’s proportional hazards model in  Venables and Ripiey (2003). 
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Multinomial models, and advice about how to fit them, may be found in Agresti (2002) and 
Thompson (2005). Thompson (2005) gives worked examples in both S-PLUS and K. A 
detailed description of using GLIM to analyze paired and triple comparisons may be found 
in Critchlow and Fligner (1991). Long and Freese (2006) have an extensive discussion on 
how to use STATA to analyze MNL models and related models such as the conditional logit 
and multinomial probit. 
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CHAPTER 4 

PAIRED COMPARISON DESIGNS FOR 
B I NARY ATTR I B UTES 

In  this chapter we will look at various design possibilities when all attrihutes have two 
levels and all choice sets have two items in them. We start by working with sets of choice 
sets of size 2 obtained from the complete factorial and then show that we can get equally 
good designs by constructing pairs from suitably chosen fractional factorial designs. 

To help set the scene, consider the following example. Severin (2000) investigated 
which attributes made take-out pizza outlets more attractive. In her first experiment, she 
used the six attributes i n  Table 4.1 with the levels indicated. A sample choice set for 
an experiment looking at these six attributes describing take-out pizza outlets is given in 
Table 4.2. Observe that the question has been phrased so that the respondents are asked 
to imagine that the two choices presented to them are the last two options that they are 
considering in their search for a take-out pizza outlet. This assumption means that the 
respondents are naturally in a setting where it does not make sense not to choose an option 
and so they are forced to make a selection even though the options presented are not 
exhaustive. In Chapter 7, we will consider the design of choice experiments when we want 
to allow an option not to choose. 

4.1 OPTIMAL PAIRS FROM THE COMPLETE FACTORIAL 

In this section we investigate the form of the optimal paired comparison design when there 
are k attributes, each with two levels, and the set of possible choice pairs is restricted 
so that each pair of treatment combinations in which there are ‘o attributes with different 
levels appears equally often. This then defines the class of competing de.sign.r. Using this 

The Corulrrrcrion o(Op/inzn/ h / e d  Chor<.e E.rper iwn / ,~ .  By D. J.  Street and L. Burgess 95 
Copyright @ 2007 John Wiley & Sons. Inc. 
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Table 4.1 Six Attributes to Be Used in an Experiment to Compare Pizza Outlets 

Attributes Levels 

Pizza type Traditional 
Gourmet 

Type of Crust Thick 
Thin 

Ingredients All fresh 
Some tinned 

Size Small only 
Three sizes 

Price $17 
$13 

Delivery time 30 minutes 
45 minutes 

Table 4.2 One Choice Set in an Experiment to Compare Pizza Outlets 

Outlet A Outlet B 

Pizza type Traditional Gourmet 
Type of Crust Thick Thin 
Ingredients All fresh Some tinned 
Size Small only Small only 
Price $17 $13 
Delivery time 30 minutes 30 minutes 

Suppose that you have already narrowed down 
your choice of take-out pizza outlet to 

the two alternatives above. 
Which of these two would you choose? 

(tick one only) 
Option A 0 Option B 0 
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class of competing designs means that the matrices C-' and C are diagonal and hence 
the relevant information matrices can be determined by evaluating BAB' for the relevant 
set of contrasts. Using this class of competing designs ensures that the estimate of the 
variance-covariance matrix of Rh? is independent of which contrasts are in R, and which 
are i n  E.. 

EXAMPLE 4.1.1. 
Let k = 2. Then the pairs with v = 2 attributes different, specifically (00.1 1) and (01 ,lo), 
would each appear the same number of times in the design (although that number might be 
O), and the pairs with v = 1 attribute different, specifically (00.01), (00,10), (01,l I ) ,  and 
(10,l I ) ,  would each appear the same number of times, again possibly 0 times each, in  the 
design. Thus the class of competing designs consists of three designs: the two pairs (00,l I ) 
and (01,lO); the four pairs (00,01), (00,10), (01,l l ) ,  and (10,l I ) ;  and all six of these pairs. 

0 

4.1.1 The Derivation of the A Matrix 

We derive the A matrix using the method of Section 3.2.4. As we have just said. the 
competing designs are those in which the set of possible choice pairs is restricted so that 
each pair of treatment combinations in which there are ' 1 3  attributes with different levels 
appears equally often. We will let i ,  be an indicator variable defined as follows. 

1 

0 

if all the pairs with 21 attributes different are to be included in the 
choice experiment, 
if none of the pairs with 7' attributes different is to be included in 
the choice experiment. 

i,, = 

We then define N to be the total number of choice sets in the choice experiment and let 

a, = &IN. 

As we have done before, to make the extension to more attributes easy, we will always 
place the treatment combinations in .standard order, sometimes called Yates standard order, 
or simply lexicographic order. 

We will let Dk,v be a (0, I )  matrix of order 2k with rows and columns labeled by the 
treatment combinations in a 2 k  factorial design. There is a 1 in  position (x, y) of D k . l ,  if  
treatment combinations x and y have 1' attributes with different levels. 

EXAMPLE 4.1.2. 
Let k = 2. Then the four treatment combinations, in standard order, are 00, 01, 10, and 

1 I .  These treatment combinations, in this order, are used to label the rows and columns 
of all matrices associated with a design. For example, 00 and 01 have one attribute with 
different levels and so D2,1(00.01) = D z , ~ ( l ,  2) = 1. Continuing in this way, we see that 
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Let k = 3. Then the eight treatment combinations in standard order are 000, 001,010, 
01 1,100,101,I10, and 1 1  I .  Thus we see that 

0 1 1 0 1 0 0 0  
1 0 0 1 0 1 0 0  
1 0 0 1 0 0 1 0  
0 1 1 0 0 0 0 1  
1 0 0 0 0 1 1 0  
0 1 0 0 1 0 0 1  
0 0 1 0 1 0 0 1  
0 0 0 1 0 1 1 0  

and D3,2 = 

0 0 0 1 0 1 1 0  
0 0 1 0 1 0 0 1  
0 1 0 0 1 0 0 1  
1 0 0 0 0 1 1 0  
0 1 1 0 0 0 0 1  
1 0 0 1 0 0 1 0  
1 0 0 1 0 1 0 0  
0 1 1 0 1 0 0 0  

For each treatment combination, there is only one other treatment combination in which 
all the attributes have different levels; this is the foldover treatment. Thus D3,3 is a matrix 
with I s  on the back-diagonal and all other entries equal to 0. Each treatment combination 

0 

Consider the 2' treatment combinations in a 2k complete factorial. Because we have 
ordered the treatment combinations lexicographically, the first level in the first Z k - l  treat- 
ment combinations is 0, and the remaining entries form the 2 k - 1  treatment combinations 
in a complete 2"' factorial. The same is true of the second 2"' treatment combinations 
if we remove the first level, which is of course a 1 .  So we can define the entries in Dk,,, in 
terms of those in Dk-l,v and Dk-l ,v - l .  Thus we get the following recursive relationship. 

LEMMA 4.1.1. 

has the same levels as itself; so 0 3 . 0  = 1 8 .  

With this notation, the a,  defined above, the A notation of Section 3.2.4, and the 
assumption that the usual null hypothesis, x1 = ~2 = . . . = x p  = 1 is true, we get the 
following expression for A. 

w LEMMA 4.1.2. 

w EXAMPLE 4.1.3. 
When lc = 2 we have 

and when k = 3 we have 
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EXAMPLE 4.1.4. 
Let k = 2. Then the pairs with 1 attribute different (that is, the pairs (00,01), (00,10), 
(01,l 1). and (10,l I ) )  would each appear either il = 0 or i l  = 1 times in the design. If 
there are 1%’ pairs in the design in total, then al  = 0,” or a1 = 1,”. In either case, the 
corresponding entries in h would be nlDz,l .  The same is true for the entries corresponding 
to the pairs (00, I I )  and (01, 10). So the possible values of N are 2, using the pairs (00, 
11)  and (01, 10); 4, using the pairs (00,01), (00,10), (01,l I ) ,  and (10,l I ) ;  or 6, using all the 

0 pairs. The corresponding values of A are given in Table 4.3. 

Table 4.3 The Possible Designs and Corresponding 11 Matrices for k = 2 

F’airs 

(00, 1 I ) .  (01, 10) 2 - $DL z 

(00,OI ), (00.10). (01 . I  I ) .  ( I  0. I I )  

(00, I I ) ,  (01, lo), (00.01). (00,10), (01,l I ) .  (10.1 I )  

4 &I4 - &D2 1 

6 A 1 4  - A D Z  1 - A D ,  2 

w EXAMPLE 4.1.5. 
Let k = 3 .  The 28 pairs are listed in Table 4.4. We can see that there are 7 possible designs: 
the 12 pairs with 1 attribute different, the 12 pairs with 2 attributes different, the 4 pairs 
with 3 attributes different, the 24 pairs with 1 or 2 attributes different, the 16 pairs with 1 
or 3 attributes different, the 16 pairs with 2 or 3 attributes different, and all 28 pairs. 0 

Table 4.4 All Possible Pairs when k = 3 

One Attribute Different 
(000.001) (000.010) (000. 100) (001,011) 
(001.101) (010.011) (010,ll0) (011. I l l )  
(101. I l l )  (110, I l l )  (100, 101) (100. 110) 

Two Attributes Different 
(000,011) (000, 101) (000,110) (001,010) 
(001. 100) (001, 1 1  1) (010, I I I )  (010, 100) 
(011. 110) (011, 101) (100, I l l )  (101, 110) 

Three Attributes Different 
(000, 1 1  I )  (001, 110) (010, 101) (01 I ,  100) 

4.1.2 Calculation of the Relevant Contrast Matrices 

Let B,i be the ( 2 k  - 1) x 2k matrix of the usual contrasts associated with a 2 k  factorial 
design, where the column labels are the treatment combinations in standard order, and 
B2, l?ii 1 I z i  -1. 
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EXAMPLE 4.1.6. 
Let k = 2 .  Then the columns of B p  are labeled by 00,01, 10, and 1 1. Write the contrasts 
in the following order: the main effect of the first attribute, then the main effect of the 
second attribute, and finally the interaction effect. The result is 

1 -1 -1 1 0 

EXAMPLE 4.1.7. 
Let k = 3. Write the contrasts in the following order: the main effects of the first, second 
and third attributes; then the interaction effect of the second and third attributes; then the 
interaction effect of the first and second attributes; the interaction effect of the first and 
third attributes; and finally the three-factor interaction effect. We get 

-1 -1 -1 -1 1 1 1 1 
-1 -1 1 1 -1 -1 1 1 
-1 1 -1 1 -1 1 -1 1 

1 -1 -1 1 1 -1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 -1 1 -1 1 

-1 1 1 -1 1 -1 -1 1 

Observe that we can write 

1 -j’p j’p 

.\/s - 2 B p  2B.p 
B23 = - [ 2 B p  2 B p  ] 

This happens because of the lexicographic ordering imposed on the treatment combinations; 
the second and third attributes are repeated in the same order while the first attribute is 0, 
and then again while it is 1. 

The previous example illustrates the following general recursive result: 

The factor of 1/& is to normalize B2k. Note that, when written like this, the main effects 
contrasts are not the first k rows of B2k but are in rows I ,  2,4, 8, and so on. 

Sometimes we only want a contrast matrix for main effects or for main effects plus 
two-factor interactions. We let B 2 t , ~ 4  be a contrast matrix that contains only the contrasts 
for main effects and we let B2e ,MT be a contrast matrix that contains only the contrasts for 
main effects plus two-factor interactions. 

4.1.3 The Model for Main Effects Only 

Suppose that we want to estimate the main effects only. We know the general form of 
the h matrix and we now explicitly evaluate the k x k principal minor of C = BztABzk 
associated with the main effects so that we can determine the A- and D-optimal designs. 
Thus we are evaluating the information matrix when Bh = Bzk,n,. 
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We want to get a neat expression for &h ,nlDk,7. and the following example indicates 
the form that such a result might take. 

EXAMPLE 4.1.8. 
Let k = 2 .  Then 

L A 

It is clear that B22.~1D2,1 = OBp,nI. Obviously B 2 2 . A 1 0 2 . 0  = B ~ z , A ~ I ~  = R p . ~ l .  By 

The following result can be proved in various ways; an alternative method of proof 

straight-forward multiplication, we can show that B2z.n1 0 2 . 2  = - B ~ , A I .  

appears i n  Section 6.3. 

LEMMA 4.1.3. 

for  nll k 2 2. for ail nllowwble 71. 

Proof: This is the sort of result that lends itself to proof by induction. So we must establish 
the result for a small value of k and then show that assuming the result for k we can prove 
the result for k + 1. From Example 4.1.8, we know that the result holds for k = 2 for all 
allowable 1: .  

Assume that the result is true for k and consider k + 1. Thus we can assume that 
B2i , n l D k , v  = [ (kil) - (:::)I Bp ,nr and we must see what happens when we consider 

B2~A~, ,71Dk+l . v .  We get 

Now 

and 

I t  can be easily shown that 

and 
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so 

and hence the result is proved for k + 1 for all u. 0 

We now show that at this stage we do not need to make any assumptions about the 
contrasts in  B, since the class of competing designs that we have chosen ensures that 
Ch, = 0 for any choice of B, (also see Exercise 4.1.5.5). By definition, 

Since Bh = BZh,,M, we can see that 

= O k . Z k  

This is true for any choice of B, as long as the set of competing designs remains the same 
so that the form of A stays as a linear combination of the Dk,v. 

Using the result in Lemma 4.1 3, we can get an explicit expression for the information 
matrix, Chf, for the k main effects. 

L E M M A  4.1.4. 
The information matrix for main effects under the null hypothesis is given by 

and the determinant of CM is 

Pmo$ The information matrix for main effects under the null hypothesis is 
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and the determinant of C A ~  is 

2-k 

ar required. 

Recall that the a ,  are the proporti 
we know that 2"-' cE=, ( : )nz  = 1. 

EXAMPLE 4.1.9. 
Let k = 3. Then 

0 

ns of the pairs that have w attributes different. Thus 

subject to the constraint 

[ (;)a1 + ( i ) U Z  + (34 = 1. 

So we want to maximize 
1 
8 
- (a1 + 2a2 + n3)3  

subject to 12nl  + 1202 t 403 = 1. We can write a3 = (1 - 12a l  - 12n2)/4 and so we 
want to maximize 

This is largest when a1 = a2 = 0. Thus the optimal paired comparison design for 
estimating main effects consists of the four pairs (000, 1 1 I ) ,  (001, 1 lo), (010. 101). and 
(01 1 ,  I OO), each appearing once; so a3 = 1/4. In Table 4.5, we give all the possible designs 
and the corresponding values of det(Cnf). We know there are (:) = 28 pairs of distinct 
treatment combinations; 4 have three attributes different, 12 have two attributes different 
and 12 have one attribute different. Since we are including all pairs with a given number of 
attributes different, or none of them, there are 7 possible sets of pairs to consider. We see 
that the first design in Table 4.5 consists of all the pairs with only one attribute different, 
the second design consists of all the pairs with 2 attributes different, and so on; the final 

0 

We now extend this idea to get the D-optimal paired comparison design for binary 

design consists of all 28 pairs. 

attributes for any value of A-. 

THEOREM 4.1.1. 
The D-optimal paired comparison design for estimating rnain effects consists of the 

,foldover pairs only; that i.s, all k attributes appear at different levels in the t w v  options in 
each choice .set. For the optinial designs 
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Table 4.5 The 7 Competing Designs for Main Effects Only for Pairs with k = 3 

a1 a2 a3 N 12a1+12a2+4a3  det(Cn4) 

0 0 12 1 2 & + 0 + 0 = 1  1 8 ( ')3 12 = 7.234 x 

0 8 0 12 0 + 1 2 & + 0 = 1  i ( i )3  = 5.787 x 

0 0 $ 4 0 + 0 + 4 $ = 1  = 1.953 x lop3 

0 & & 16 0 + 1 2 & + 4 & = 1  i(&)3 = 8.240 x 

& 0 & 16 1 2 & + 0 + 4 & = 1  f ( f ) 3  = 2.441 x lop4 

- i4 & 0 24 1 2 & + 1 2 & + 0 = 1  i( $ ) 3  = 2.441 x lop4 

- &j & 28 12& + 1 2 &  + 4 & = 1  i ( 3 ) 3  =3.644 x 10K4 

Prooj To find the D-optimal design, we must maximize 

subject to the constraint 2k-1 xi=, (:)av = 1. Rearranging this constraint, we get 

2k-1ak = 1 - 2k-1 x:~i (!)av. Substituting forak into the expression for det(C,,t.nl), 
we get 

k-1 

which can be rearranged to give 

k 

Consider this expression; it is clear that the maximum value of det(Chf) is attained when 
0 

For any design that we construct we can calculate the D-efficiency of that design, relative 

a,  = 0 , ~  # k and a k  = 1/2k-1. 

to the optimal design, using the expression 

wherep = k .  

4 EXAMPLE 4.1.10. 
When k = 3, we see from Table 4.5, that det(C,,t,nf) = 1.953 x 
with i l  = i3 = 0 and i2 = 1 has 

and so the design 
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w THEOREM 4.1.2. 
The A-optittialpaired comparison design for estimating main efferfs consists of the foldover 
pairs onlv. For the optimal designs 

tr(C;d,Af) = k 2 k .  

Proof To find the A-optimal design, we must minimize tr(Ci;) subject to the constraint 
2k-1 Cr;'=, ( : )aI .  = 1. Because C.41 is diagonal and all entries are equal, this is equivalent 

to maximizing tr(CA1). Since tr(CA1) = $ C,"=, (r; ' I i )ov, this must be maximized, again 
sub.ject to the constraint. As above, this maximum is obtained when n ,  = 1/2"' and all 
other civ are 0. 

We can also calculate the A-efficiency of any design, 
using the expression 

0 

relative to the optimal design, 

Thus we find that the A- and D-optimal designs coincide for the estimation of main 
effects only. 

4.1.4 The Model for Main Effects and Two-factor Interactions 

We evaluate the information matrix associated with the estimation of main effects and 
two-factor interactions so that we can determine the A- and D-optimal designs. 

As before, we let Rzi,nr be the rows of Bp that correspond to main effects and 
we now let B2r ,T be the rows of that correspond to two-factor interactions. Thus the 
matrix associated with main effects and two-factor interactions is the concatenation of these 
matrices and we denote i t  by R 2 ~  ,AfT. We want to get a neat expression for B2r ,TI)k .T , .  

EXAMPLE 4.1.11. 
Let k = 3. Then 

1 1 -1 -1 -1 -1 

1 -1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 -; :I 

and. using the results from Example 4.1 3, we see that 

These results are extended in the next lemma. 

w LEMMA 4.1.5. 

f o r  all k 2 3 for all allowable 1% 

Proof By straight-forward multiplication, we know that the result holds fork = 3 for all 
allowable 1' .  
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Assume that the result is true for k and consider k + 1. Then 

Using the results of Lemma4.1.3, we have that the (2 , l )  position is 

k - 2  k - 2  k - 2  

as required. The ( 2 , 2 )  position is the negative of the (2 , l )  position. 
The ( 1 , l )  (and the (1,2)) positions are given by 

by the induction hypothesis. Observing that 

and 

( “ 1 )  = ( “ ‘ ) + ( “ 2 )  v - 2  ’ 

(k - 1) = ( k  - 2 )  + (k - 2 )  

2 1 - 1  v - 1  

2’ - 2 v - 2  2 1 - 3  ’ 
we see that we have established the result. 

Using this result, we can evaluate the information matrix for main effects plus two-factor 
interactions. Note that we now have Bh = B ~ ~ , A { T .  

Under the null hypothesis, the information matrix,for main effects plus two-factor interac- 
tions i s  given by 

LEMMA 4.1.6. 

Proof: Using the definition for the information matrix and Lemmas 4.1.3 and 4.1.4, we 
have that 

CAiT = B 2 k  J~TAB:~  ,MT  
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Now 

subject to the constraint that 2'-' EL, (:)au = 1. We look at a small example before 
proving a general result. 

EXAMPLE 4.1.12. 
Let k = 3. Then 

and we want to maximize this, subject to the constraint 4(3nl + 3az + as)  = 1 ,  the same 
constraint that we had when considering the estimation of main effects only. Simplifying, 
we see that we want to maximize 

subject to the constraint. We can calculate the possible values of N and the corresponding 
values of det (C'nfr). We know there are (:) = 28 pairs of distinct treatment combinations; 
4 have three attributes different, I2 have two attributes different and 12 have one attribute 
different. Since we are including all pairs with a given number of attributes different, or 
none of them, there are 7 possible sets of pairs to consider. These are given i n  Table 4.6 
together with the corresponding values of N and det(CnlT). We see that the first design 
consists of all the pairs with only one attribute different, the second design consists of all 
the pairs with 2 attributes different, and so on until the final design consists of all 28 pairs. 
From the table, we see that the optimal design for estimating main effects and two-factor 

0 interactions has the 12 pairs with two attributes different. 

mTHEOREM4.1.3. 

effecty are aminied to be zero rs given by 
The D-optimal design for testing ntain effects and two-factor interaction Y when 011 other 

a,. = { {2"-'(  ( k + 1 ) / 2  IC )}-I L' = ( k  + 1 ) / 2 %  ( f k  isodd 

0 o the wise,  

and 

a,, - - { {2k-1( i$)} -1  v = k / 2 . k / 2 +  1, i f k i seven  

0 otherwise. 
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Table 4.6 
with k = 3 

The 7 Competing Designs for Main Effects and Two-Factor Interactions for Pairs 

a1 a2 a3 N det( C M T )  t r (Ci ik1  

o h 0  12 = 3.3490 x 72 

$ o h  16 ( $ ) 3 ( & ) 3  = 5.9605 x 96 

A 0 0  12 ( & ) 3 ( $ ) 3  = 4.1862 x 108 

0 0 ;  4 ( 3 3 0 3  = o not defined 

0'1 16 16 16 ( = 2.0117 x lo-' 80 

A h 0  24 ( $ ) 3 ( & ) 3  = 1.4129 x 84 

L I  28 28 % 1 28 ( $ ) 3 ( $ ) 3  = 1.3281 x 84 

The determinant of the optimal design is given by 

Proof Let 

Thus we want to maximize f = W Z ( k - ' ) / 2 ,  subject to the constraint that C,"=, (:)xu = 1. 
Substituting for xk = 1 - k - 1  k (u)xlJ in  w gives 

k - 1  k - 1  

u = l  

Thus f is a function of ( k  - 1) variables and needs to be maximized over the region 
described by the inequalities c::: (:)xu 5 1 with xu 2 0 for 2: = 1 , .  . . , k - 1. In this 
region, we note that f 2 0. 

Any local extreme values o f f  will be found by solving the system of equations 

3- - 0 ,  7 1 = 1 ,  . . . (  ( k - 1 ) .  
ax, 

For k 2 3 this gives 

Hence 

k - 1  k - 2  ( ; 1)  z = 2 ( 2, - J W = 4 ( ; 1) W. 2: = 1 . .  . . , ( k  - 1) 
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and so we have that 
22 = 2.I.I.: 1' = 1:. . . . ( k  - 1) 

Either these equations are inconsistent or W = 0 = 2, and hence f = 0 at all local 
extrema; thus the maximum value off  will occur on the boundary of the region of allowed 
values of .r, in Wli- l .  (We use Y? to denote the set of real numbers and Y ? ( k - l )  to denote 
the set of (k-1)-dimensional vectors over the real numbers. So Y?' is the set of pairs over 
the real numbers, familiar from the two-dimensional graphs of high school.) 

There are k subspaces of dimension k - 2; they are given by the equations 

.rt = 0.7s = 1 . .  . . , ( k  - 1) and y (s>& = 1. 
u = l  

For the first k - 1 of these subspaces, the above analysis still holds; we simply delete the 
mth equation from the system and put 2, = 0 in the remaining equations. We either 
obtain inconsistent equations or IY = 0 = 2; thus f = 0 at all local extrema of f in these 
subspaces, and so the maximum allowed value of f will occur on the boundaries of the 
region of allowed values of ,c, in  these subspaces of ?R(k-l). 

In the subspace given by 

we use Lagrange multipliers to locate the extreme values o f f ;  this gives 

( k - 1  4' ) { - z + p } = X (  k !) 
Eliminating X between two of these equations gives 

{ ( 9  + 4 '  - k ) W  - 22) - I, z1 (1:) (i) = 0 

This gives 

22 = (g  + v - k ) W ,  1 :  = I : .  . . , (I; - I); 1' # 9 ,  2) # k - g .  

Either these equations are inconsistent or W = 2 = 0, and so f = 0 provided k 2 4. 
Thus we find that f := 0 at all local extrema of f in this subspace; so the maximum 

allowed value of f will occur on the boundaries of the region of allowed values of 2 ,  in 
this subspace of We continue in this way, projecting the region of allowed values 
of T ,  onto subspaces of lower and lower dimension. It is only when we reach the one- 
dimensional subspaces (the edges of the region of the allowed values of xu) that we obtain 
just one equation to be solved to locate extreme values o f f  i n  this subspace; in  general, 
f # 0 at these points. 

There are two types of edges that need to be considered: 

1 .  those along the coordinate axis with 

T,, = 0.1' # g ,  and0 5 xg 5 1; (t) 
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2. those bounding the constraint surface with 

Along the coordinate axes, 

M . = l - (  5 - 1  )zg, Z=( k - 2  )xg and - = O  8.f 
9 - 1  8x9 

requires 

which gives 

2 2  = gW, 

It is only when g = 1 that this value of xg lies in the interval of allowed values of zg; in 
this case 

1 
and Z = - I.li = - 

k + l  k + l '  
2 

For all other valuesof g ,  the maximum value o f f  on 0 I (t)xg 5 1 occurs at zg = (:)-', 
where 

9 g(k - 9 )  W = -  and Z=- 
k k(k - 1)' 

For 2 I g I k - 1 with k 2 3 these values of W and Z are larger than those found above 
for g = 1. To determine which value of g maximizes f amongst these alternatives, we use 
these expressions for W and Z in f and set 5 = 0. This gives a maximum when g = y ,  
provided this is an integer. If (k+1)/2 is not an integer, we shall show that the maximum 
allowed value o f f  occurs along the edge joining g = k/2 and g = k/2 + 1. 

It remains to consider the behavior of f along the edges of the constraint surface; in 
particular, we consider what happens along the edge given by 

Along this edge 
h g - h  k 

w =  z + 7 ( ( J x g  

and 
h(k  - h)  ( h  - g ) ( h  + g - k )  

k ( k -  1) 
z=- 

k(k - 1) + 
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gives 
($1 + I ,  - k ) W  = 2 2 .  

I f  g + 11 -- k = 0, Z is constant and the equation is inconsistent; thus the maximum 
allowed value of f will occur at the endpoint of the interval (that is, at one of the vertices 
studied above). I f  9 + h - k # 0, we solve for xIl and get 

n [ ( k  + l ) ( k  - 1 ~ )  - g ( k  - I ) ]  
(:),rq = (g - h ) ( g  + 1 L  - k ) ( k  + 1)  

This gives the location of a local maximum along the edge. At this local maximum, 

The value of 11 which maximizes f for a particular value of g is obtained from 
gives 

= 0; this 

The value of y which gives the overall maximum allowed value of f is obtained from 
= 0; this gives g = y. In this case, 11 = ,9 which is not allowed along an edge. I f  

g # h, the situation closest to equality holds when g = h + 1 = E(k - 9 )  + 1 ;  this gives 

g = - $. When k is an even integer, this result gives values for ,9 
and 11 which are close to k / 2  + 1 and k / 2  respectively. Along the edge where g = $ + 1 and 

11 = 5 (for k even), the maximum value of occurs where 2 ~ . / 2  = 2 k / 2 + 1  = [(!;;)I . 
We now determine the maximum value of the determinant at these a ,  values. For k 

even, only two values of  I :  will give the maximum determinant. These arc 1’ = k / 2  and 
19 = k / 2  $- 1, where 

k 1 + 1 - - and 11 =I 2 k  2 

- 1  

and all other = 0. Then 

k 

= [;(khj;)-l + (“;7?’)]] 



112 PAIRED COMPARISON DESIGNS FOR BINARY ATTRIBUTES 

Therefore, for 5 even, 

Fork odd, the only value of w that will give the maximum determinant is v = ( k  + 1)/2, 
where 

and all other a,, = 0. Then 

k( k-  1) /Z 
k [ & ( ( k  + l ) / 2 )  - I  (( k :I;/; - 1) ] 

Now 

and 

Therefore, fork odd, 

When k = 3, this result says that the pairs to use are those with ( k  + 1)/2 = 4/2 = 2 

For any design that we construct we can calculate the D-efficiency of that design, relative 
attributes different, just as we found in Example 4.1.12. 

to the optimal design, using the expression 

wherep = k + k ( k  - 1)/2.  

at an example. 
We now want to establish a similar result for A-optimal designs. We begin by looking 

EXAMPLE 4.1.13. 
Let k = 3. We know that 
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So tr(C'ir;) = 6 ( a l  + 2/12 + a x )  
and we see that the A-optimal design has the 12 pairs with two attributes different. 

+ 3(nl + a 2 ) - ' .  These values are given i n  Table 4.6, 
0 

The A-optimal design i n  the previous example is the same as the D-optimal design when 
k = 3. In  the next result. we determine the A-optimal design by minimizing lr(C,'i!I ) and 
find that the A-optimal design is always the same as the D-optimal design for the same 
value of k .  

THEOREM 4.1.4. 
The A-optinial design ,for te.sting main effects and iwo7factor interactions, when nll other 

internrtioli qfecrs are nssurned to be zero, is given by 

Proof Let 

Thus we want to minimize 
( k -  I )  

f = "-1 + - z- 
4 

suhject to the constraint 

We use the constraint to ohtain 

k - 1  
k - 1  

v = l  

In  this way, f is now a function of ( k  - 1) variables which needs to he minimbed over the 
regiondescrihedbytheinequalitiesC;:: (:)xu 5 lwithn,  2 Ofor79= 1 . 2  . . .  . . ( I ; -  1 ) .  
In this region f 2 0 because .rl, 2 0 V 13. 

Any local extreme value o f f  will be found by solving the system of equations 
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Thus 

which we can re-write as 
V 

2 2  = -w2 
4 

As both 1Y > 0 and Z > 0, we require that 

4 Z=-W 'd ~ = 1 , 2  , . . . ,  ( k - 1 ) .  
2 

Thus we have obtained a system of inconsistent equations which has no solution; so the 
minimum allowed value of f  will occur on the boundary of the region of allowed values of 
2, in Rk-'. 

Along the coordinate axis with z, = 0, w # 0, and 0 5 (t)zg 5 1. we have that 

= o  

when 

( " d - : ) x g  = @ 2 [I - ( k  yrg] 

However this value of zg lies outside the interval of allowed values as 

f i  > 1 for all allowed g. 
k 

-I1 + 2(k  - I ) ] -  - k - g  

Thus the extreme values o f f  will occur at ( i)zg = 0 and (,")rg = 1; the minimum 
value occurs at 

k ( k -  1 y  
zg = 1 where f = -[1 + ~ 

9 4(k -dl .  
To find the value of g which minimizes f amongst these alternatives, we require 

df - = 0, 
dg 

which gives 
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So we have 

k + l  k + 1  
9 = -  2 % k F '  

However, the second root lies outside the interval of allowed values [ 1, k - I]. 
Thus, provided that k is odd, the minimum value o f f  along the coordinate axes 

occurs at 
k + l  

9 = 2 
where 

f = k .  

k 
9 : -  

2 

When k is even, we find that 

gives 
1 
k 

f = k + -  

while 

gives 

k 
g = - + I  

2 

we have that 

and 

We find that 

when 

h(1; - h )  ( h  - g ) ( h  + g - k )  
k ( k -  1)  

z == ~ 

k ( k  - 1)  + 

provided that 

dh + 9 - k Lv, z= 
2 

11 $ 9  - k # 0 
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When 
h + g -  k = 0 ,  

thus f will be minimized at a vertex studied previously. When 

h + g  - k # 0, 

2 ( k  - h )  - ( k  - I)&- 

which gives 

L 

and 

k )  + 4(k - l)Jg+h-l; + ( k  - 

To find the value of h which minimizes f for a particular value of g, we require 
n u s  

= 0. 

f 2 ( k  - 1) o = - - + -  4 +  
h 4:h [ & T i F E  

which gives 

To find the pair of numbers (9 ,  h )  which minimizes f for a particular value of k ,  we 
attemDt to solve 

this gives 
k + 1  g = h = -  

2 ’  

which is not allowed as g # h, but agrees with the earlier result for the location of the 
minimum value o f f  along a coordinate axis. 

, 9); indeed substitut- 
ing g = 2 in the expression for h gives h = $ + 1 + &% N $ + 1 and the corresponding 
value for f is 

When k is even, ( 2 ,  2 + 1) is the pair of integers closest to ( 

Thus, when k is even, t r (C-l)  is minimized when g = 2 and h = 
in  the statement of the theorem. 

+ 1, giving the result 
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To determine the maximum value of the trace of Co;:,AIT, we substitute the o,, values 
into the expression for C ~ I T  in  Lemma 4.1.6 and invert. C,& is a diagonal matrix and the 
( k  + k ( k  - 1) /2)  diagonal entries are given by 

k+l, 2"-'k if k is odd. 

Then, if k is odd, 

and, if k is even, 

We can calculate the A-efficiency of any design, relative to the optimal design. using 
the expression 

Hence we see that the D- and A-optimal designs for estimating main effects and two- 
factor interactions coincide. 

H EXAMPLE 4.1.14. 
If k = 4, then the D- and A-optimal design consists of the 80 pairs with two and three 

0 attributes different. So 01 = 04 = 0 and a2 = 0 3  = 3. 1 

4.1.5 Exercises 

1 ,  If k = 4, give the set of pairs with 1' = I ,  7' = 2, 21 = 3, and 29 = 1 attributes 
different. 

2 .  Give D3,3. Verify the recursive formula given for the 

3 .  Fork = 3give B2' and verify that Bp = 1 [ 2Bp k z z  1 .  
for k = 4 for I' = I .  2 . 3 ,  

and 4. 

-j'p 

JK -2R.22 2B22 

4. Show that B p , ~ , l I j  = [ (:) - (221)]  B 2 ~ , A I  for z = 0 , l .  2, and 3. 

5 .  (a) Let k = 3. Show that Chr = 0 for the estimation of main effects when R, 

(b) Let k = 3. Show that Chr = 0 for the estimation of main effects when R, 

contains the two-factor interaction contrasts. 

contains the three-factor interaction contrast only. 

6. Suppose that k = <5. 
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(a) Using Theorem 4.1. I ,give the D-optimal set of pairs from the complete factorial 

(b) Calculate the corresponding C matrix. 

for estimating main effects. 

7. Suppose that k = 5 .  

(a) Using Theorem 4.1 3, give the D-optimal pairs for estimating main effects plus 

(b) Calculate the corresponding C matrix. 

(c) Compare this to the C matrix of the previous exercise. Comment. 

two-factor interactions. 

8. Suppose that k = 2. 

(a) Give the optimal pairs for estimating main effects. 

(b) Give the optimal pairs for estimating main effects and the two-factor interaction. 

(c) Use the ideas developed in this section to find the optimal pairs for estimating 
the two-factor interaction only. Comment. 

9. Let k = 4. There are 1.5 possible sets of pairs to consider. Draw up a table like Table 
4.6 for k = 4, and hence confirm the results in  Theorems 4.1.3 and 4.1.4. 

4.2 SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR PAIRS 

In this section we show how a fractional factorial design can be used to provide the 
treatment combinations for an optimal paired comparison design. We begin by deriving 
the information matrix when the treatment combinations come from a fractional factorial 
design. 

4.2.1 The Derivation of the A Matrix 

The A matrix is defined in the same way as in Section 4.1.1 but because we are working 
with a fractional factorial design it is possible that some of the rows and columns of A will 
be 0. Similarly the contrast matrix, Bh, will be the same as before, being a contrast matrix 
for main effects or for main effects plus two-factor interactions, depending on what effects 
are of interest. As before the information matrix C for the effects of interest is given by 
C = RhABL but now we need to assume that all contrasts other than the ones we want 
to estimate must be 0 because fractional factorial designs are constructed assuming that 
higher order interaction effects are 0. So B, includes all the contrasts that are not in  Rh 

and B, is empty. 
We illustrate these comments with a small example. 

EXAMPLE 4.2.1. 
Let k = 4, and consider the 4 pairs in Design 1 in  Table 4.7. Then there are 8 treatment 
combinations that do not appear in the choice experiment and so 8 rows and columns of A 
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are equal to 0, as we can see below. 

Using Bh = &4,2\1 and the A matrix above we see that 

This is the same C matrix obtained by using the foldover pairs from the complete factorial. 
Thus the 4 pairs in Design I in  Table 4.7 give an optimal choice experiment for estimating 
main effects. The 4 pairs in  Design 2 in Table 4.7 are also optimal for estimating main 
effects. Within both of these designs, for the first attribute, the level is the same for all 
of the treatment combinations within an option. If this is a problem in a practical sense, 
then combining the two designs to get 8 pairs will ensure that both of the levels of the first 
attribute appear in both options. The combined design consists of all the foldover pairs and 
hence is optimal too. 0 

Table 4.7 Two Designs with Four Pairs for k = 4 Binary Attributes 

Option A Option B 

0 0 0 0  I l l !  
0 0 1  1 I 1 0 0  
0 1 0 1  1 0 1 0  
0 1  1 0  1 0 0 1  

Option A Option B 

1 1 1 0  0 0 0 1  
1 1 0 1  0 0 1 0  
1 0 1  1 0 1 0 0  
1 0 0 0  0 1 1 1  

Design 1 Design 2 

4.2.2 The Model for Main Effects Only 

In Section 4.1.3 we showed that the optimal pairs for the estimation of main effects in a 
forced choice stated preference experiment were all the foldover pairs. This suggests that 
an optimal choice experiment might be obtainable from a fractional factorial by taking the 
foldover pairs. From Section 2.2.1, we know that that all contrasts for main effects can 
be independently estimated in a resolution 3 fraction provided that we assume that all the 
other contrasts are 0. That is, we assume that B, will contain all the contrasts except those 
in B,L This suggests that a resolution 3 fraction could be the starting design for the 
foldover pairs i n  a construction for an optimal design with fewer pairs. The only additional 
constraint that we need to impose is that the resolution 3 fraction must be regular. The 
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following construction, without the regularity constraint, is found as Option 3 in Appendix 
A5 of Louviere et al. (2000), although no formal proof of the properties of these designs is 
given there. 

CONSTRUCTION 4.2.1. 
To construct a set of pairs to compare products described by k binary attributes, j r s t  
construct a regular orthogonal main effect plan with k binary attributes. From each row 
of this OMEP obtain a choice pair by pairing the row with its foldovel: If any pair appears 
twice then the duplicate choice set is omitted. Thus each treatment combination, and 
each pair; appears only once in the j n a l  set of choice pairs. The design has a diagonal 
information matrix C and a D-eflciency of 100% for estimating main effects. 

Proo$ Assume that all the equations that define the OMEP have an even number of non- 
zero coefficients. Let 

CW = 0 
i 

be one of these equations. Then 

If ( a ] ,  a2, . . . , a k )  is a solution of this equation then 

i 

Hence 

Thus for each treatment combination in the OMEP its foldover also appears. 
Let the levels for the attributes be -1 and 1 and let A denote the N x k array for the 

OMEP. Since for each treatment combination that is in A ,  its foldover is also in A,  we can 
A1 represent A as 1.  n u s  

A'A = N I k  = 2AiA1. 

We can write the pairs as ( A l ,  - A l ) .  We will order the treatment combinations by writing 
all the treatment combinations in Al  first, then all the treatment combinations in - A l  and 
then the remaining treatment combinations in any order. Then the R matrix for main effects 
is 

1 
&&,ill = - ( A ~ Y - A ~ ~ B A ) ,  @ 

where BA contains the coefficients of the main effect contrasts for the treatment combina- 
tions that are not in A. Using the same ordering for the treatment combinations, we have 
that 

Then we get 

I - I  0 A = = [ - :  1 ; 4 
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T h u s  

which is equal to det ((:,pt.nl) in  Theorem 4. I .  I ,  and so this design has a D-efficiency of 
100%. 

Next. suppose that the set of binary equations that define the OMEP, A ,  has at least one 
equation with an odd number of non-zero coefficients. Thus there are no foldover pairs in  
the experiment and the pairs in the choice experiment are given by ( A ,  - A ) ;  the argument 
then proceeds as above. 0 

HEXAMPLE 4.2.2. 
Let k = 4, and consider the OMEP in Table 2.7. The pairs derived from Construction 4.2. I 
and this OMEP are given as Design I in Table 4.7. As we have remarked previously, there 
are only 8 of the 16 possible treatment combinations involved in these pairs, but this design 
is as efficient as the design based on all 8 foldover pairs. I f  the same construction is used on 
the OMEP given i n  Table 2.5, we get the same design as we get when we take the foldover 

0 

As initially described, Construction 4.2. I did not include the restriction that the OMEP 
used i n  the construction be regular. However, Example 4.2.3 shows that, without that 
restriction. the pairs that result may not have a diagonal information matrix or be 100% 
efficient; see Exercise 4.2.5.2. 

HEXAMPLE 4.2.3. 
Let k = 6, and consider the OMEP in Table 4.8(a). Observe that i t  has one foldover 
pair of treatment combinations and that it is not regular; see Exercise 4.2.5.2. Applying 
Construction 4.2.1 to this OMEP gives I I distinct pairs with information matrix 

pairs in  the complete factorial. 

1 

= (481 - 4.1) 
26 x 44 

and a D-efficiency of 97.2%. 0 

Construction 4.2.1 can be extended to the union of regular designs. For example the 
design in Table 4.8(b) is the union of a 2"-' and two copies of a 24-2. Thus i t  has 8 
treatment combinations in which the foldover occurs i n  the design and four which do not 
(and which are repeated). However, Construction 4.2.1 applied to this design gives a set of 
pairs that is 100% efficient. 

4.2.3 The Model for Main Effects and Two-Factor Interactions 

We begin by recalling that a resolution 5 fractional factorial design allows for the inde- 
pendent estimation of all main effects and all two-factor interactions in the ordinary least 
squares setting. Also recall that when derivingpairs from the complete factorial the optimal 
pairs for estimation of all main effects plus two-factor interactions are all those pairs in  
which either ( k  + 1 ) / 2  attributes are different ( k  odd) or k / 2  and k / 2  + 1 attributes are 
different ( k  even). These ideas are exploited in the remainder of this section to give sets of 
generators to use to define the choice sets. Although the resulting designs are near-optimal, 
i t  is not yet possible to give a definitive construction method for optimal pairs for the esti- 
mation of main effects plus two-factor interactions except when starting with the complete 
factorial. 
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D M , e =  

Table 4.8 Non-regular OMEPs of Resolution 3 

1 0  0 0 0 
0 1  0 0 0 
0 0 -1 0 0 , 
0 0  0 - 1  0 
0 0  0 0 - 1  

0 0 0 0 0 0  
1 1 1 1 1 1  
0 1 0 1 1 0  
1 0 1 0 1 0  
0 1 1 1 0 0  
0 0 0 1 1 1  
0 0 1 0 1 1  
1 0 0 1 0 1  
1 1 0 0 1 0  
1 1  0 0 0  1 
0 1 1 0 0 1  
1 0 1 1 0 0  

(a) k = 6 

0 0 0 0  
1 1 1 1  
0 0 0  1 
1 1 1 0  
0 1 0 0  
1 0 1  1 
0 1 0 1  
1 0 1 0  
1 0 0 0  
1 0 0 0  
0 0 1  1 
0 0 1  1 
1 1 0 1  
I 1 0  I 
0 1 1 0  
0 1 1 0  

(b) k = 4 

Consider a regular fractional factorial design F of resolution 5 .  Choose any treatment 
combination not in the fraction, e say, and form pairs by pairing f E F with f+e, where 
the addition is done component-wise modulo 2. We will write the complete set of pairs as 
( F ,  F + e) .  We refer to e as the generator of the pairs. 

To evaluate the information matrix of these pairs easily, we need to define two incidence 
matrices, Dhf,e and D T , ~ .  We let X and 2 be any two attributes i n  the experiment. We 
define a diagonal matrix D M , ~  by ( D M , ~ ) x x  = 1 if ex = 0 and ( D h i , e ) x x  = -1 if 
ex = 1, where the attributes label the rows and columns of D M , ~ .  We define a diagonal 
matrix D T , ~  ofsize k ( k  - 1) /2  by (DT,~)xz ,xz  = 1 i f e x  = ez and ( D T , ~ ) x z , x z  = -1 
if ex # ez (where we label the rows and columns of D T , ~  by the unordered pairs of distinct 
attributes). 

EXAMPLE4.2.4. 
Let k = 5 ,  and let F be the solutions to 2 1  + 2 2  + 53 + ~4 + 5 5  = 0. So F contains the 

treatment combinations 
00000 00011 00101 00110 01001 01010 01100 01111 
lo001 10010 10100 10111 11000 11011 11101 11110. 

Let e = (001 11). Then the treatment combinations in F + e are given by 
00111 00100 OOOIO 00001 01110 01101 01011 01000 
10110 10101 1001l 10001 1 1 1 1 1  1 1 1 0 0  11010 11001, 
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and 

0 0 0 0 0 0 0 0 0  
1 0  0 0 0 0 0 0 0  
0 - 1  0 0 0 0 0 0 0  
0 0 - 1  0 0 0 0 0 0  
0 0 0 - 1  0 0 0 0 0  
0 0 0 0 - 1  0 0 0 0  
0 0 0 0 0 - 1 0 0 0  
0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 1  

The treatment combinations in the pairs ( F ,  F + e )  include all the treatment combinations 
in the complete factorial. If we write the treatment combinations in F in the order we gave 
them above, then the contrast, within F ,  for the main effect of the first attribute is 

(-1. - 1 .  -1. -1.-1.-1, -1. -1.1.1,l. 1 , l .  1 , l .  1). 

If we then add e to each treatment combination in F we see that the contrast, within F + e,  
for the main effect of the first attribute is exactly the same as that in F since the first entry 
of e is 0: so the first levels of the treatment combinations in F and F + e are the same. 
However. the contrast for the main effect of the third attribute is 

( -1 .  --I .  1.1, -1, -1.1,1, -1. -1 , l .  1. -1. -1.1.1) 

i n  F and is 

( I .  1. - - I .  -1.1. I ,  -1. -1.1.1, -1. -1.1.1. -1, -1) 

i n  F + e .  This is the negative of the contrast in F and happens because the third entry in e 
is I .  

Similarly, the coefficients for the interaction of the first two attributes are the same in F 
as they are in F + e since the addition of the generator e does not change the levels of these 
two attributes. The Coefficients for the interaction of the last two attributes are the same in 
F as they are in F + e since the addition of the generator e changes the levels of both of 
these two attributes. 

Thus we have that 

where B A 1 . F  and B ~ , F  are the matrices of the coefficients for main effects and two-factor 
interactions, respectively, in the fraction F only. Specifically, we have ~ B . T , , F  is 

-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 
-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 
-1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 I 1 - 1  
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and &BT,F is 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 I 1 -1 -1 

Calculating (;(h*~, we get 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Notice that the 0 entries on the diagonal in  CJ,~T correspond to 1 s on the diagonal in D J , ~  
0 

The following result lets us say something about the C matrix in terms of the generator 

(for the first 5 values) and DT (for the remaining 10 values). 

e in general. 

LEMMA 4.2.1. 
Consider the pairs ( F ,  F + e), where F is a fractional factorial design for k attributes and 
e is any treatment combination not in F .  Then the information matrix C, i s  given by  

4 x 2 k  [ 21k -:D"3e 2 I k ( k - 1 ) / 2  O - 2DT.e I .  ce = - 

Pro05 Let B h f , ~  be the submatrix of the contrast matrix for main effects associated with 
the treatment combinations in F ,  and let BT,F be the submatrix of the contrast matrix for 
two-factor interactions associated with the treatment combinations in F .  Then, assuming 
that there are k attributes and that there are N treatment combinations in F ,  we know that 
B A . I , F ~ ~ ~ , F  = $ I k ,  B ~ , ~ B k , ~  = $ I k ( k - 1 ) / 2  and B,W,FB~,F = 0. 

For convenience, we order the treatment combinations in the paired comparison exper- 
iment as f l ,  f2.  ~ ~ . , f N  (for some fixed but arbitrary order), the treatment combinations in 
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F ,  followed by fl + e,  f 2  + e,  , . . , fhr + e and then the remaining treatment combinations. 
Using this order to label the rows and columns of A we get 

1 - 1 0  

[ -; : 4 Ae = 4~ 

To calculate the information matrix C,, we need to calculate the B matrix for the treatment 
combinations in this order. If a particular attribute X has a 0 in e ,  then the X contrast in 
F + e is the same as it is in F :  if attribute X has a 1 in e, then the X contrast in E;‘ + e is 
the negative of the one in F .  So the matrix for main effect contrasts is given by 

BAI  = [ H M . F  D A I , ~ B A ~ . F  BA,.A ] , 

where A = F U ( F  + e) .  
Similarly, consider two attributes X and Z. If ex  = e z ,  then the two-factor interaction 

contrast for the attributes X and 2 is the same in F + e as it is in F .  If ex  # e z  then 
the two-factor interaction contrast for attributes X and Z is the negative in F + e of the 
corresponding contrast i n  F .  So the matrix for two-factor interaction contrasts is given by 

RT = [ BT.F D T , ~ B T , F  BT,A ] . 

Then we get 

Now the ( I ,  1) position of this matrix is given by 

Proceeding similarly with the other entries in  Ce we get 

Thus Ce is diagonal, and the non-zero entries in C, correspond to those positions in e 
where there is a 1 for the main effects part of Ce, and to those positions in the two-factor 
interaction part where one attribute corresponds to a 1 and one to a 0 in e. One can see this 
by considering the matrices calculated in Example 4.2.4. 

The next result extends the previous result to two generators. 
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ULEMMA 4.2.2. 
Consider the pairs generated by e and g where e. g $ F but where e + g E F. Then the 
information matrix CeSg is given by 

Proofi As e + g E F ,  only treatment combinations in F and F + e have been used in the 
construction of the additional pairs. Hence we can write 

Ae,g = 8~ [ -;!p - y  : ] ,  
0 0 0  

where P is a permutation matrix that ensures that Ae,g contains the correct pairs. Consider 
Ce.g = Bnf~h,,,B;,, as a 2 x 2 block matrix. Then similar calculations to those in 
Lemma 4.2.1 give 

(BMTAe,gBhT)12 = -DM,eBM,FPBb,F - BAf>FPB&,FDh,e. 

If we define D A ~ , ~  and D T , ~  for the generator g in the same way we defined D M , ~  and 
D T , ~  for the generator e,  then we have that 

BAt,FP = DMM,eDM,gBM,F 

since B A ~ , F P  is a permutation of the columns of B M , F  and can be thought of as a 
permutation of the treatment combinations in F. P is a permutation of the treatment 
combinations in F + e so that the order of the treatment combinations corresponds to that 
of F + g. Since we know F = F + e + g, we see that the contrast matrix for the treatment 
combinations in this order is 

D ~ , e + g B h f , ~  = DAf,eDAf,gBAf,F; 

this gives the result. Thus 

Again we find that 

( B ~ ~ A e , g B k ) 1 2  = 0. 

1 
8 x 2k  

(BhlTAe.gB;fT)ll = - (411, - 2D~1,e - 2D~r,g) .  

Finally, noting that 

we see that 

BT.FP = DT.eDT,gBT,F> 

1 
( B A I T A ~ , ~ B ~ T ) z  = ( 4 1 k ( k - 1 ) / 2  - 2DT,e - 2DT,g). 

Hence we see that Ce,g is diagonal, and the effects that can be estimated are those that 
correspond to a non-zero entry in one of the generators (for main effects) and those that 

0 correspond to positions with unequal entries (for two-factor interactions). 

mEXAMPLE 4.2.5. 
Let k = 5 and use the F of Example4.2.4. Let e = (00111) and let g = (11100). Then 
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e,  g @ F but e + g E F .  We use the order of the treatment combinations in F + e to give 
the order to use when labelling the final 16 rows and columns of the A matrix. Since the 
entries in  F + g are 

11100 I I I I I  I1001 11010 10101 10110 10000 10011 
01101 01110 01000 01011 00100 00111 00001 00010 

we see that the P matrix for these pairs is given by 

P =  

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  0 

LEMMA 4.2.3. 
Consider the pairs generated by e and g ,  where e .  g $! F ond h,here e + g $ F .  The 
infonnation matrix, is given b y  

1 1 ‘$1, - 2D2?J3e - 2 D ~ , g  0 
0 4 I k ( k - 1 ) / 2  - 2 D ~ , e  - 2 n T . g  

c e , g  = 7 [ 8 x 2  

Proqf: We have pairs ( F >  F + e )  and (F .  F + g). Thus there are 2iV pairs; S treatment 
combinations are in 2 pairs each and 2N treatment combinations are in one pair each. From 
the discussion above, we know that 

BM.F D A ~ ~ ~ M , F  D A I , ~ B A J . F  BA, = 

where 4 = F U ( F  + e )  U ( F  + g) ,  and 

1: BT.F Dll.,eBT.F DT.gBT.F 

r 21 - I  - I  o 1 

Evaluating the information matrix, we get 

Finally, we need to consider generators that come from F .  In this case, we can use such 
a generator to define a fraction of I: and use one of the results that we have given above 
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on that smaller fraction. The next examples show that the smaller fraction need not be 
uniquely determined and that it does not need to be of resolution 5 provided that all the 
treatment combinations that eventually appear correspond to a design of resolution 5. 

HEXAMPLE4.2.6. 
Let k = 3. Then F must be the complete factorial since anything smaller will not be of 
resolution 5. Let e = (0,1, 1). Then we get the 4 distinct pairs given in Table 4.9. If we 
use the entries in the first column to define the fraction F then we can use the results above 
to determine the C, matrix. 0 

Table 4.9 The Pairs from the Complete Factorial when k = 3 and e = (0. 1, l )  

Option A Option B 

000 01 1 
001 010 
100 1 1 1  
101 110 

H EXAMPLE4.2.7. 
Suppose that we use the F from Example 4.2.4. Let e = (01111); then we can see 
that we get the 8 pairs given in Table 4.1 0. The problem is how to decide which treatment 
combinations should be in the new fraction. Since the new fraction need not be of resolution 
5, we use 5 1  + 2 2  + z3 + 2 4  + z5 = 0 and 5 3  + 5 4  + z5 = 0 to define the fraction. These 
equations give rise to the treatment combinations 00000, 0001 1 ,  00101, 001 10, 1 1 1  10, 
11 101, 10100, 101 1 1 ,  and have resolution 2. The same pairs would arise from using the 
equations 2 1  + 5 2  + 2 3  + 2 4  + z5 = 0 and z1 = 0 to define the fraction. Again, we can 
use the results above to derive the C, matrix. 

Table 4.10 The Pairs from the Fraction in Example 4.2.4 when e = (0, 1 , l )  

Option A Option B 

00000 01111 
0001 1 01 100 
00101 01010 
001 10 01001 
10001 11110 
I0010 1 1  101 
10100 11011 
101 1 1  1 lo00 

Thus whether or not the generators are in F ,  or whether their sum is in F ,  does not 
have any bearing on the estimability properties of main effects and two-factor interactions. 
We can generalize the results in Lemmas 4.2.1,4.2.2, and 4.2.3 to get the following result 
about the properties of a set of generators required to be able to estimate all main effects 
and two-factor interactions. 
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mTHEOREM 4.2.1. 
Consider a set of generators such that 

for  each attribute there is at least one generator with a I in the corresponding 
position, and 

,for any two a/tributes there is at least one generator in which the corresponding 
positions have a 0 and n I. 

Then all main effects and two~factor interactions will be estimable,from the pairs generated 
bj  thi.s set of generators. 

Prooj From Lemmas 4.2.2 and 4.2.3, we see that diagonal entries in C will be 0 only if 
all the D matrices have entries of 1 in some position. For main effects, this happens only 
if none of the generators has a 1 for that attribute. For two-factor interactions, this happens 
only if all of the generators have the same entry for two particular attributes. But the 
properties of the generators given i n  the statement of the theorem preclude these situations 
from arising. 0 

We will define an estimable set ofgenerators to be a set of generators that satisfies the 
conditions of Theorem 4.2. I .  

In Construction 4.2.1, we have shown that using a regular OMEP and the single generator 
(1.1; . . . , 1) gives designs that are l W %  efficient for estimating main effects. Thus we 
only consider sets of pairs for estimating main effects and two-factor interactions in the 
remainder of this section. 

We would like to find a minimum set of generators from which all main effects and 
two-factor interactions can be estimated. For the estimation of main effects and two-factor 
interactions in the complete factorial, generators of weight ( k  + l ) / 2  have been shown to 
be optimal for odd k .  For even k ,  generators of weights k / 2  and k / 2  + 1 have been shown 
to be optimal. We choose generators with these weights below, although we stress that we 
do not know that these weights are optimal in this setting. 

In the next result, we give a recursive construction for sets of generators with ( k  + 1)/2 
non-zero entries i f  k is odd and k / 2  non-zero entries if k is even. A similar result appears 
in Roberts (2000). 

HLEMMA 4.2.4. 
I f2m 5 k < 2m+1, then there is an estimable set with in + 1 generators. 

Proof: The proof proceeds recursively once we have the first two cases. When k = 2, use 
the generators (1,O) and (0, I ). When k = 3, use the generators ( 1 ,  I ,  0) and (0, 1 ,  1 ). 

For the recursive construction, it is advantageous to write each generator as two sets, 
those positions in which the generator contains a 1 and those positions in which the generator 
contains a 0. Hence we get the partitions [{(l),(2)}, {(2),(1)}] fork = 2 and [{(1,2), (3)}, 
{(2,3), ( I ) } ]  fork = 3. 

Consider k = 2k1 + L .  We write the first partition as 

{ ( I ,  2 , .  . . . kl + 1). ( k l  + 2,k l  + 3 

We then partition the sets of size k1 and kl + 1 and take the union of the first set in the 
first partition of each and the union of the second set in the first partition of each to get 
the second partition for k = 2k1 + 1. We continue in this way to get all the partitions for 
k = 2k1 + 1. The only time that this might not work is when k - 1  + 1 is a power of 2 since in 
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that case kl  + 1 has one more partition than kl . However, using the initial generators given 
above, we see that the final generator for a power of 2 is just the foldover of the second last 
generator. This generator is required only so that main effects for the first t + 1 attributes 
can be estimated, not for the estimation of two-factor interactions, and all the main effects 
for the first t + 1 attributes can be estimated from the first generator. Hence we can ignore 
this generator when doing the recursive construction. This completes the construction for 
odd k .  

Consider k = 2k1. Do exactly the same construction as for odd k ,  using an initial 
partition of 

{ ( 1 , 2 , .  . . , k l ) ,  ( k l  + 1, k1 + 2 , .  . . . 2 k i ) } .  

This proof is completed by noting that the set of generators satisfies the conditions of 
Theorem 4.2.1. 0 

mEXAMPLE4.2.8. 
Let k = 8. Then the first partition is {(1,2,3,4), (5,6,7,8)}. For the first set, {1,2,3,4}, 
the partitions are {(I ,2),(3,4)}, {(1,3),(2,4)}, and {(2,4),( l ,3)}. For the second set, the 
partitions are {(S,6),(7,8)}, {(5,7),(6,8)} and {(6,8),(S,7)}. We combine these to get 

[ { ( 1 , 2 , 5 , 6 ) , ( 3 , 4 , 7 , S ) ) . ( ( 1 , 3 , 5 , 7 ) , ( 2 . 4 , 6 , 8 ) } , { ( 2 , 4 , 6 , 8 ) .  (1 .3 ,5 ,7)}1.  

The final partition is only required to ensure that the main effect of attribute 8 can be 
estimated. Now construct the partitions for k = 15. We get 

[ {  (1,2,3,4,5,6,7,8), (9,A,B,C,D,E,F)}, { (1,2,3,4,9,A,B,C), (5,6,7,8,D,E,F)}, 
{ (1,2,5,6,9,A,D,E), (3,4,7,8,B,C,F)}, { 1,3,5,7,9,B,E,F), (2,4,6,8,A,C,D)}I, 

and the final partition from k = 8 is not required since the main effect of attribute 8 can be 
0 

The efficiency of the designs that result from Lemma 4.2.4 depends on the particular 
resolution 5 design that is used as the starting design. For example when k = 8 using the 
fraction given by 1 = ABCDE = DEFGH, where we use this notation to represent the 
solutionstoboththeequationsq + Q + Z ~ + Z ~ + X ~  = O a n d x 4 + ~ 5 + ~ 6 + ~ 7 + ~ 8  = 0, 
and the generators from Lemma 4.2.4, gives 256 pairs that are 92.96% efficient. If we use 
the fraction given by I = AHCDEF = DEFGH we get 224 pairs that are 86.51% 
efficient; see Table 4.12. 

While Lemma 4.2.4 gives one set of generators for each value of k ,  it is often possible 
to get sets of generators that are better than these. For odd k ,  for example, it is possible 
to use a balanced incomplete block design (BIBD) (defined in Section 2.4) to give a set 
of generators in which each main effect and each two-factor interaction effect is estimated 
using the same number of generators. This idea is illustrated in the following example. 

mEXAMPLE4.2.9. 
The blocks in Table 4.1 1 form a BIBD on 7 items with 7 blocks each of size 3 and with 
each item appearing in 3 blocks. There is a unique block which contains every pair of items 
hence X = 1. 

Now suppose that we use the attributes as the items and let each block define a generator 
by placing a 1 for those attributes that appear in  the block and a 0 for those attributes that 
do not appear in the block. Thus we would get the generator 1 1 loo00 from the first block, 
1001 100 from the second block and so on. The properties of the BIBD guarantee that the 

0 

estimated because there is a 1 in position 8 in the first generator. 

construction gives an estimable set of generators. 
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k 

3t 
3* 
4 
4 

4 

Table 4.11 The Blocks a (7,3,1) BIRD 

F Generators Number Efficiency 
ofpairs (5%) 

Complete 011,101,110 12 100 
Complete 01 1,101 8 94.5 
Complete All vectors of weights 2 and 3 80 100 
Complete 

Complete 

Omit any one weight 2 

Omit any two weight 2 vectors 
or weight 3 vector 72 99.6 

or any two weight 3 vectors 64 99.21 

1 2 3  
1 4 s  
1 6 7  
2 4 6  
2 5 7  
3 4 7  
3 5 6  

We can now use these BlBDs to give sets of generators. The pairs that result from 
Lemma 4.2.5 are often very efficient and relatively small. However there does not appear 
to be a general expression for the efficiency of these designs. 

LEMMA 4.2.5. 

1. The blocks of a (31 + 3 . 2 f  + 2, f + 1) SBIBD can be used to give 4t + 3 generatory, 
eocli with weight 2f + 2, wch that each inain effect oiid each two-factor iiiteroctioiz 
can be estitnotedfintn 2t + 2 of the generators. 

2. The blocks o f a  ( 4 t  + 1,2(4f + 1) .2(2 t  + 1 ) , 2 t  + 1 , t  + 1) BIBD can be uwd to 
give 2(4 t  + 1) gerreratorr, each with weight 2t + 1, such that earl? niain effect con 
be estimated from 4t + 2 of the generatorr and each two-factor interaction can be 
estimated from 6t  f 2 of the generators. 

3. For even k ,  estimable rets with high eficiencv can be found by deleting one treatment 
from the designs above. 

Proof: The results follow by counting the number of blocks with one specific treatment, for 
main effect$, and the number of blocks with only one of two specific treatment combinations, 
for interaction effects. 0 

In the following table, we give some fractions and generators, the number of pairs in  the 
choice set and the D-efficiency of the set of pairs. For each value of k ,  the generators that 
come from Lemma 4.2.4 are indicated by an * and those that come from Lemma 4.2.5 are 
indicated by t. In  Table 4.12. M R  refers to Mathon and Rosa (2006), the largest published 
table of BIBDs. 
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Complete 

Complete 1100,1010,1001 

Six weight 2 vectors and 
any weight 3 vector 56 98.95 

99.03 
98.01 

I = ABCDE All weight 3 vectors 160 100 
I = ABCDE Any nine weight 3 

5*1 I = A B C D E F  I 111000.001011.100110 I 96 I 91.85 
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(9,18,1 O,S,S) in  M R  

4.2.4 Dominating Options 

A binary attribute can have ordered levels in  the sense that all respondents will prefer one 
level to the other level. For instance, everyone prefers to  have wider rather than narrower 
seats on a plane, all other things being equal. So if all the attributes i n  an experiment have 
ordered levels, then, since foldover pairs are optimal for the estimation of main effects, i t  is 
clear that I 11 . . . 1 will be preferred to 000 . . . 0 by all respondents. So we say that 1 11  . . . I 
dominates 000. . . 0. When estimating main effects the only way that we can avoid having 
a pair with a dominating option is to start with a fractional factorial that does not contain 
either 11 1 . . . I or 000..  . O .  We saw how to do this in  Section 2.3.9. 

I f  we want to estimate main effects and two-factor interactions optimally then we want 
to have all pairs in  which about half the attributes are different. So again we would need 
to avoid having either 000. . . 0 or 1 11 . . . I in any choice set. But there are other choice 
sets that can have an option which dominates. For example, if  k = 7, then pairs with 
( k  + 1 ) /2  = 4 attributes different form the optimal design. So the pair ( I  000000, 1 1 1 I 100) 
would be in the choice experiment and the second option dominates the first. For k > 5 we 
can choose fractions thal do not contain either 000. . .0 or 1 1  1 . . . 1, but it is not usually 
possible to choose a fraction so that all pairs with about half the attributes different do not 
contain a dominating option. 



134 PAIRED COMPARISON DESIGNS FOR BINARY ATTRIBUTES 

4.2.5 Exercises 

1 .  Let k = 5 .  

(a) Using the results in Table 2.9, or otherwise, construct a regular fractional 

(b) Use Construction 4.2.1 to construct a set of pairs. 

(c) Verify that the resulting pairs are optimal for the estimation of main effects. 

2. We have said that Construction 4.2.1 can be extended to the union of regular designs. 

(a) Show that the first 8 rows of the design in Table 4.8(b) is a regular 24-’. Show 

(b) Apply Construction 4.2.1 to this design and confirm that the resulting pairs are 

(c) Show that the design in Table 4.8(a) is not regular. 

factorial design of resolution 3. 

that the final 8 rows consist of two copies of 4 rows that form a regular 24-2. 

100% efficient. 

3. Letk = jandletFbethesolutionstozl+zz$.z3+z4tz5 = 1. Le te  = (10011). 

(a) Find the B matrix for the pairs (F ,  F + e ) .  

(b) Find the information matrix C, for these pairs. 

(c) Comment on which effects can be estimated and which effects can not be 

(d) Can you find some other generators so that the resulting set of pairs allows all 

estimated. 

main effects plus two-factor interactions to be estimated’? 

4. Confirm the results in  Table 4.12 when k = 4 and there are 48 pairs and 24 pairs. 

4.3 REFERENCES AND COMMENTS 

Most of the results in this chapter originally appeared in Street et al. (2001) and Street and 
Burgess (2004a). Readers can find software to construct choice sets from an initial factorial 
design and sets of generators, as well as calculate the corresponding information matrix 
and variance-covariance matrix, at http://maths.science.uts.edu.au/maths/wiki/SPExpts. 

Comparisons of pairs of items have been used to study choices for nearly IS0 years. 
There is a detailed account of a paired comparison experiment, allowing for order effects, 
in Fechner ( 1  860), while MacKay (1988) notes that Thorndike (1 9 10) “used paired com- 
parisons to test hypotheses in discrimination”. The idea of paired comparisons arose from 
consideration of problems where there are t items (products, individuals, options) that are 
to be ranked, but no natural measurement scale, such as height, is available to accomplish 
this objective. Such situations arise naturally when trying to rate players in tournaments 
or when trying to rank preferences for products in particular product categories or when 
trying to rank the quality of objects like wines or beers. 

An extensive discussion of the literature on paired comparisons up until 1988 appears 
in David (1 988). He discusses estimation, including Bayesian approaches, dealing with 
ties, models in which the order of presentation is taken into account and the early work on 
dealing with a factorial treatment structure. 

This was considered in the 2 x 2 case by Abelson and Bradley (1 954) and was extended 
to items with more than two binary attributes by Bradley and El-Helhawy (1976). These 
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authors also provided a method to test for contrasts of the parameters, thus making it easy 
to extend the results to finding optimal paired comparison designs for particular effects 
of interest and for particular classes of competing designs: see El-Helbawy and Bradley 
(1978), El-Helbawy and Ahmed (1984), van Berkum (1987b), El-Helbawy et al. (1994) 
and Street et al. (2001). 

Designs which use only some of the pairs are clearly essential if the number of items, 
t ,  is large and such designs appear to have been investigated first by McCormick and 
Bachus ( 1  952) and McCormick and Roberts ( 1  952); see David ( 1  988) for a more extensive 
discussion. 

The designs in Table 4.12 for k. = 4 with 48 pairs and with 32 pairs are equivalent to 
designs given in Chapter 5 of van Berkum (1987a). The method of constmction is quite 
different, however, as he focuses on finding sets of pairs within one or more fractions and 
we specify the fraction and one or more generators for the pairs, where the generators need 
not come from the fraction. For k = 5 for example, van Berkum’s design with 80 pairs has 
an efficiency of 84% compared to our design with 80 pairs with an efficiency of96.5%. 
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CHAPTER 5 

LARGER CHOICE SET SIZES FOR BINARY 
ATTR I B UTE S 

So far we have only considered stated preference designs in which all choice sets have two 
options each. These designs are certainly frequently used in practice but, as we have seen, 
they can require a very large number of choice sets. In many cases, however, choice sets 
with three or more options in them would be just as acceptable. If it is possible to use 
larger choice sets, then often fewer choice sets are needed in total to give the same accuracy 
as a paired comparison design. The optimal number of options i n  a choice set, as well as 
choice experiments in which choice experiments may have choice sets of different sizes, 
are considered i n  Section 7.2. In  this chapter, we investigate the form of optimal forced 
choice stated preference designs fork  binary attributes when all choice sets have the same 
number of options, which is at least two (that is, 7n 2 2). thus generalizing the results of 
the previous chapter. 

We begin by considering an example based on a choice experiment used i n  Severin 
(2000). 

EXAMPLE 5.0.1. 
Suppose that we are interested in the effects of 16 attributes on the choice of holiday 
packages. The 16 attributes, together with the corresponding levels, are given in Table 
5.1.  Using these attributes we can describe 216 = 65,536 possible holiday packages or 
treatment combinations. One such holiday package is ($I 200, Overseas, Qantas, 12 nights, 
No meals, No local tours, Peak, 4 star hotel, 3 hours, Museum, 100 yards, Pool, Friendly 
staff, Individual, No beach, Creative Holidays) which is equivalent to 1101 110101 10001 I 
using the coded levels. A possible choice set from an experiment with choice sets of size 

0 4 is given in Table 5 . 2 .  

The Con.t/rrrc,rion o/Opii!nol  Srnird Choice trpurirnenrs. By D. J .  Street and L. Burgess 
Copyright @ 2007 John Wiley & Son\. Inc. 
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Table 5.1 Attributes and Levels for Holiday Packages 

Attributes Level 0 Level 1 
Price $999 $1200 
Type of destination 
Airline 
Length of stay 
Meal inclusion 
Local tours availability 
Season in destination 
Type of accommodation 
Length of trip 
Cultural activities 
Distance from hotel to attractions 
Swimming pool availability 
Helpfulness of booking staff 
Type of holiday 
Beach availability 
Brand 

Domestic 
Qantas 
7 nights 
Yes 
Yes 
Peak 
2 star hotel 
3 hours 
Historical sites 
3 miles 
Yes 
Friendly 
Individual 
Yes 
Jetset 

Overseas 
Ansett 
12 nights 
No 
No 
Off peak 
4 star hotel 
5 hours 
Museum 
100 yards 
No 
Unfriendly 
Organized tour 
No 
Creative Holidays 

We have seen that when the choice sets are only of size 2 the number of attributes in 
which the levels in the two options are different is important in determining the optimal 
design. Thus we know that the optimal design for estimating main effects is one in which 
all the levels are different between the two options in each choice set. For optimal designs 
for estimating main effects plus two-factor interactions, about half the attributes need to 
have different levels. This leads us to generalize the idea of the number of attributes that 
differ between two options by defining a difference vector for a choice set of size m. 

We then define the class of competing designs, derive a general expression for the 
information matrix A, and use that to determine the optimal designs for estimating main 
effects and main effects plus two-factor interactions. Initially we work with choice sets 
determined from the complete factorial, but in the final section of the chapter we give a 
construction to get smaller optimal and near-optimal choice experiments. 

5.1 OPTIMAL DESIGNS FROM THE COMPLETE FACTORIAL 

We know from our study of optimal pairs that results from the complete factorial make i t  
possible to decide how good any other proposed design is, and also give us some ideas 
about how to find constructions based on fractional factorial designs. So the goal of this 
section is to establish the optimal designs for the estimation of main effects and main effects 
plus two-factor interactions from the complete factorial. 

5.1.1 Difference Vectors 

In a choice set of size m, there are (7) pairs of options in the choice set. We record 
the number of attributes different for each pair in the choice set in a difference vector 
v = ( d l ,  dz, . . . , d m ~ m . - l ~ p ) ,  where 1 5 d, 5 k.  Note that d, # 0, so no repeated options 
are allowed in a choice set. We define dl to be the number of attributes different (the 
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Table 5.2 One Choice Set for the Possible Holiday Packages 

Attributes Option A Option B Option C Option D 

Price $999 $999 $1200 $ I  200 
Type of Domestic Domestic Overseas Overseas 
destination 
Aiiline Qantas Qantas Ansett Ansett 
Length of stay 7 nights 7 nights 12 nights 12 nights 
Meal inclusion Yes Yes No No 
Local tours Yes Yes No  No 
availability 
Season in Peak Peak Off peak Off peak 
destination 
Type of 2 star hotel 2 star hotel 4 star hotel 4 star hotel 
accommodation 
Length of trip 3 hours 5 hours 3 hours 5 hours 
Cultural activities Historical Museum Historical Museum 

sites sites 
Distance to 3 miles 100 yards 3 miles 100 yards 
attractions 
Swimming pool Yes No  Yes No _ .  
availability 
Helpfulness of Friendly Unfriendly Friendly Unfriendly 
booking staff 
Type of holiday liidividual Organized Individual Organized 

tour tour 
Beach availability Yes No Yes No 
Brand Jetset Creative Jetset Creative 

Holidays Holidays 

Suppose that you have already narrowed down your choice of 
holiday packages to the four alternatives above. 

Which of these four would you choose? (lick one 0id.v) 

Option A 0 Option B 0 Option C 0 Option D 0 
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difference) between the first and second treatment combinations in the choice set; dz is the 
difference between the first and third treatment combinations, and so on. 

This order is fixed but arbitrary. Since we can write the treatment combinations in the 
choice set in any order, the order of the d, in v is not important; so we assume that any 
difference vector has d l  5 dz 5 . . . 5 d m ~ m - l ~ , z .  Thus the d, are written in increasing 
order. 

EXAMPLE 5.1.1. 
Let k = 3 and m = 3. There are 8 treatment combinations in a 23 factorial. For the choice 
set (OOO,OOl,l lo), there is one attribute different when comparing 000 and 001 ( d l  = l ) ,  
there are two attributes different when comparing 000 and I 10 (d2 = 2 )  and there are three 
attributes different when comparing 001 and 110 (d3 = 3). So the difference vector is 
v =  (dir&,d3)  = (1 ,2 ,3) .  

d l = l  d3=3 - 
d 2 = 2  

~n 
000,  0 0 1 ,  1 1 0  

The choice set (011,100,101) has difference vector v = ( d l ,  dz, d3) = (3.2, I), but 
this difference vector is considered to be the same as v = (1.2,3) since we can reorder the 
options in the choice set. The (:) = 56 possible choice sets of size 4 (triples), and their 
corresponding difference vectors (in lexicographic order) are given in Table 5.3. We see 

0 

When we had choice sets of size m = 2, the optimal designs for estimating main effects 
had each attribute level different between the two options. In the next result, we establish 
how “different” the options in a choice set with m options can be by finding an upper bound 
for the sum of the entries in the difference vector. 

that there are three distinct values of v that can arise: (1,1,2), ( I  ,2,3) and (2,2,2). 

LEMMA 5.1.1. 
For a particular difference vector v, for a given m and k 2 a, where Zap’ < m 5 2a, the 
least upper bound for the sum of the differences is 

l )k /4  f o r m  odd, .={ $;; f o r m  even. 

ProoJ: Write the treatment combinations in the choice set as the rows of an m x k array. 
Then, for each column of length m, the maximum contribution to Cz(n=(Tt-1)’2 d, comes 
by having half the entries 1 and half 0 if m is even, or (m - 1) /2  entries 1 and (m + 1)/2 
entries 0 (or the other way round) if m is odd. To get m distinct rows, we must have at 
least a columns where Za-’ < m 5 2a. Thus we get m distinct rows of a columns with 
the maximum difference by writing down the rows in foldover pairs. So we write 

0 0 . . .  0 0 
1 1 . . .  1 1 
0 0 . . .  0 1 
1 1 . . .  1 0 

and so on. If m is odd, we have (m - 1)/2 foldover pairs and one extra row, which can be 
any treatment not already used. It does not matter which particular treatment combinations 
are used to construct the rows. Because the rows appear in foldover pairs, half the entries 
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Table 5.3 All Possible Triples when k = 3 

Triple 
(000.00l.0l0) 

(000,OO 1 ,o 1 1 ) 

(000,00 1,100) 

(000,00 I ,  I 0  I ) 

(000,001,110) 

(000,00 1. I I 1 ) 

(000,010,0I I )  
(000,0l0,100) 

(000,010.101) 

(000,010.1 10) 

(00O.OlO.lll) 

(000,O 1 1.100) 

(000,0l1,101) 

(000,011.1 10) 

(OOO,Ol1,11 I )  
(000,100.10 I )  

(000,100, I 10) 

(ooo,loo,r 1 1 )  

(000.101,110) 

(000,101.1 1 I )  

(000,110.1 1 I )  

(001,010.01 I )  
(ool,oro.loo) 
(00 I ,010,101 ) 

(001,010.1 10) 

(001,010.1 1 1 )  

(001,011.100) 
(001,011.101) 

-____ Triple 
(001.01 1 , I  10) 

(001,011,1 I I )  

(00 I ,  100,101 ) 

(001,100,110) 

(001,100,11 I )  
(001,101,110) 

(001.101,11 I )  

(001.1 10,Il I )  
(010,011.100) 

(010.01 1,101) 

(010.01 1,110) 

(010.01 1 , l l  I )  

(01 0. 100, 101 ) 

(010,100,110) 

(010.100,1 I I )  
(010,101,110) 

(010,101,11 I )  
(010,110,11 I )  

(01 1,100,101) 

(01 1.100.1 10) 

(01 1.100,11 I )  

(01 1,101,110) 

(01 1,101,l I I )  
( o l l , l l o , l l l )  

(100,101,110) 

(100.101,1 I I )  

(loo,] 10.1 1 I )  

(101,110,11 I )  
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are 1 and half are 0 (m even) and so Czy-1)/2 d, is a maximum. Since these a columns 
guarantee that the rows are distinct, larger values of k can be obtained by writing down any 
columns of maximum difference for the remaining k - a columns. The result follows. 

The treatment combinations given in Lemma 5.1 . I  are not the only treatment combina- 
tions which achieve the bound; it is sufficient to have any foldover pairs in any order. 

HEXAMPLE 5.1.2. 
Let k = m = 3. Then we have seen that there are three different difference vectors: (1,1,2) 
with sum 4, (1,2,3) with sum 6, and (2,2,2) with sum 6. The upper bound is (3* - 1)3/4 = 6. 
The value of a is 2 (since 22-1 < 3 5 2'), and a set of rows constructed as in the lemma is 

0 0  
1 1  
0 1. 

These rows give the levels for the first two attributes for the three options in the choice set. 
To get a choice set which meets the bound, we can now adjoin any column with a 1 and 
two Os, or a 0 and two 1 s, for the levels of the third attribute. So we might adjoin 0 , 0  and 1 
and get (000,110,011) which has difference vector (2,2,2). Or we could adjoin 0, 1 ,  and 

0 

For particular values of m and k ,  there can be several distinct difference vectors; these are 
denoted by v3. In Example 5.1.1, we saw that there were three distinct difference vectors 
when m = 3 and k = 3. We now define four scalars which are needed subsequently. 

0 and get (000,111, OlO), which has difference vector (1,2,3). 

1. We define cvJ to be the number of choice sets containing the treatment 00. . . 0 with 

2.  We define zv, to be the number of times the difference i appears in the difference 

the difference vector v3. 

vector v3. Then C, zv, ,, = ( y )  , since this is the total number of entries in v3. 

3. We define iv7 to be an indicator variable, where 

0 if no choice sets have the difference vector v3 , 

1 if all the choice sets with the difference vector v3 appear i in the choice experiment. 

Zv, = 

At least one of the ivJ values must be non-zero; otherwise the experiment contains 
no choice sets. 

4. We define avJ = i V , / N .  These are similar to the a, defined in Section 4.1 . I  

Using these definitions, we see that the total number of choice sets, N ,  is given by 

N=&C CV,ZV,' ' 

3 

mEXAMPLE5.1.3. 
Let m = 3, k = 3. We have seen that there are three different difference vectors and 

we let v1 = (1,1,2), v 2  = (1,2,3) and v3 = (2,2,2).  Table 5.4 is Table 5.3 reordered 
to show all the triples associated with each of the difference vectors. Consider just the 
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triples containing the treatment 000. Then we see that cvl = c,, = 9 and c , , ~  = 3,  since 
(000,011,101).(000,01l.110),and (000,101,110)are thethreechoicesets withm = 3 
which contain 000 and which have difference vector ( 2 . 2 , 2 ) .  We also see that 

x t > l : l  = 2 xuz; l  = 1 x,,, : 1 = 0 
n:,,;2 = 1 xu,;2 = 1 X t l 3 : 2  = 3 

Table 5.4 All Possible Triples when k = 3 Sorted by Difference Vector 

vz = (1 ,2 ,3 )  
(000,001.1 10) 

(000.001,111) 

(000,OlO.I01) 

(000,010,1 I I )  
(000.0l1,100) 

(000.0l1,1I1) 
(000.100.1 I I )  
(000,101,11 I )  
(000,110,111) 

(001,010.101) 

(001,010,110) 

(001,011,100) 

(001,011,110) 

(001,100,110) 

(001,101.1 10) 

(00 1 , I  1 0,111) 

(010,011,100) 

(0l0,0I 1.101) 

(010,100.I01) 

(01 1,100.101) 

(010.101.110) 

(010,101.1 11) 

(011,100.110) 

(01 1.100,1l1) 

5.1.2 The Derivation of the A Matrix 

v3 = ( 2 , 2 , 2 )  

(000.0l1,101) 

(000.01 1,110) 

(000,101,110) 

(001,010,100) 

(001,010.1 1 1 )  

(001.100,1 I I )  
(010.100.111) 

(01 1.101,1l0) 

In this section, we derive the A matrix when we assume that the class of competing designs 
consists of all designs in which all choice sets with a given difference vector are either all 
included in the choice experiment or none of them are. So, in  Example 5.1 3, the competing 
designs are the choice sets from one or more of the columns of Table 5.4. Thus there are 7 
competing designs to be considered in that case. 
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The matrix of contrasts is unaffected by the choice set size. However, we do need to 

From the results in Section 3.3.1, we know that, if we assume that 
derive the appropriate A matrix. 

= T2 = .  . .  = Rp = 1 

(that is, all treatment combinations are equally attractive, the usual null hypothesis), then 

(5 .2 )  

r ,  and n,, r 2 2 ,  ,,, indicates whether or not the choice experiment contains (Ti l ,  Ti,, . . . , I,,n ) 
as a choice set. Thus the diagonal entries of A are 5 times the proportion of choice sets 
containing the treatment combination Ttl, and the off-diagonal entries are 5 times the 
negative of the proportion of choice sets containing both T,, and 71,. 

In Section 4.1.1, the general form of the A matrix for m = 2 was given as a linear 
combination of the identity matrix of order 2k and the Dk,% matrices. We now derive a 
similar result for any value of m. 

LEMMA 5.1.2. 
Under the usual null hypothesis, 

where 

and 

z = c c v , a v l  = - 
3 

The row and column sums of A are equal to 0. 

Proof. We begin by counting the number of times each treatment combination appears in  
the design. 

The number of times that the treatment combination 00 . .  . O  appears in the choice 
experiment is cv, iv, , and this is the number of times that any treatment combination 
appears in the choice experiment because of the assumption that all choice sets with a 
given difference vector appear (or do not appear) in the choice experiment. (Throughout 
this section the summations over j are over all possible difference vectors v3 for the 
appropriate values of k and m.) So the proportion of choice sets in which any treatment 
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as required. 
Now we count the number ofpairs in the choice experiment that have i attributes different. 

If choice sets with difference vector v3 are in the design, then each treatment combination 
appears in c,, choice sets with difference vector v3. and zv,;f of the differences are equal 
to i .  Altogether, there are 'Lk treatment combinations and each treatment combination can 
appear in  any of the m positions in the choice set. Thus the total number of pairs in  the 
choice experiment with i attributes different is 

2" TY1 ~ c v , i v , x v ,  2 

J 

(5.3) 

Considering the 2k treatment combinations, the number of pairs with i attributes different 
is 

Each of these pairs appears in  the choice experiment the same number of times, say r,. 
Then the total number of pairs in  the choice experiment with i attributes different can also 
be expressed as 

(5.4) 

Equating (5.3) and (5.4), we get 

So, if the proportion of choice sets in which each pair with 2 attributes different appears is 
y1 = r , / N ,  then 

Thus 

3 

from which we see that 

?A = 2 (;) - c,, a,  , 2, , : j  . 
1 n  

.I 

Hence we have established that 
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Finally, we establish that the row and column sums of A are equal to 0. Summing over 
i ,  we get 

as required. 0 

WEXAMPLE 5.1.4. 
Let m = 3, k = 3, with v3, cV3 and xvJii as in Example 5.1.3. Assume that choice 

sets with difference vectors v2 and v3 only are in the choice experiment. Then i,, = 0,  
i,, = i,, = I ,  N = 24 + 8 = 32, a,, = 0, and avz = avs = 1/32. Thus we have 

and 

2 1  1 1 
3 3  32 32 
2 

32 ’ 

= - x - (0 + 9 x - x 1 + 3 x - x 0) 

- - - 

2 1  1 1 
3 3  32 32 

= - x - ( 0 + 9  x - x 1 + 3  x - x 3) 



OPTIMAL DESIGNS FROM THE COMPLETE FACTORIAL 147 

- - 1 
288 

- 

2 1 1 
- ( 0 + 9  x - x 1 + 3  x - x 0) 
3 32 32 
6 
32 .  

= 

__ - - 

Note that y? is the proportion of choice sets in which each pair with i attributes different 
appears in the choice experiment. For example, each pair with one attribute different 
appears in  2 of the 32 choice sets in the choice experiment: the pair 000 and 001 has one 
attribute different and appears in two choice sets, (000,001 , I  10) and (OOO,OoI,l 1 I ) ,  out of 
the 32 in the experiment 

Now that we have calculated the z and y, values, we can calculate the A matrix. For the 
A matrix we need the matrices. 0 3 , ~  and 0 3 . 2  are given in Example 4.1.2 and the 
0 3  3 matrix consists of 1 s down the back diagonal and 0s in  all the other positions. We get 

- 
24 -2 -2 -4 -2 -4 
-2 24 -4 -2 -4 -2 
-2 -4 24 -2 -4 -6 
-4 -2 - 2  24 -6 -4 
-2 -4 -4 -6 24 -2 
-4 -2 -6 -4 -2 24 
-4 -6 -2 -4 -2 -4 
-6 -4 -4 - 2  -4 - 2  

-4 -6 
-6 -4 
-2 -3;  

-4 -2 
- 2  -4 
-4 -2 
24 -2 
- 2  24 

In this section, we evaluate the information matrix for estimating main effects only and use 
this to determine the optimal choice experiment fork binary attributes using choice sets of 
size ni. 

be the contrast matrix for main effects and we let CAf 
be the k x k principal minor of C = B2k AB;, associated with the main effects. Thus we 
are evaluating the information matrix when Bh = Bzk , A r .  

As in Section 4.1.3 we let B2r 

In Lemma 4. I .3 we have shown that 

k - 1  k - 1  
R 2 k . A l D k . i  = [( ) - ( i - 1  )] Bzb,Af 

for all allowable i. 
We now show that at this stage we do not need to make any assumptions about the 

contrasts in B,. since the class of competing designs that we have chosen ensures that 
Ch,. = 0 for any choice of R,. By definition, 
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Since Bh = B 2 k , A - I  we can see that 

- - 0 k , 2 F - k - a .  

This is true for any choice of B, as long as the set of competing designs remains the same 
so that the form of A stays as a linear combination of the D k , z .  

Using the result in Lemma 4.1.3, we now can get an explicit expression for the informa- 
tion matrix, Chi, for the k main effects. 

H LEMMA 5.1.3. 
The infomation matrix for main effects under the null hypothesis i s  given by 

Proof The information matrix for main effects under the null hypothesis is 

CM = B ~ ~ , A . I A B ~ ~ , A ~  

Since 

as required. 

Thus the determinant of C ~ . i s  



OPTIMAL DESIGNS FROM THE COMPLETE FACTORIAL 149 

w EXAMPLE 5.1.5. 
Let m = 3 and k = 3. There are two ways that we can calculate CAI: by evaluating 

CAI = B ~ J  nrABi,,,, or by using the expression for given i n  Lemma 5.1.3. In  this 
example we will do both. 

The matrix B2i nr  is rhe contrast matrix for main effects and is given by 

-1 -1 -1 -1 1 1 
-1 -1 1 1 -1 -1 
-1 1 -1 1 -1 1 -1 1 

In this example, we assume that all choice sets with difference vectors v2 or v3 are in the 
choice experiment. Then we can use the A matrix from Example 5.1.4 to calculate 

1 

(;)3 
CAI = B2’  n1ABaJ = 9 1 3 :  thus det(C41) = 

Alternatively, we can use Lemma 5.1 3 to calculate C,ql Then, using the y1 values given 
in Example 5.1.4, 

8 

0 

To find the D-optimal design, we must maximize det(CA1) subject to the constraint 

and using the fact that (:I;)/(:) = z / k  

1 
9 

2”/m = 1 (since the total number of choice sets must equal AV). 

= -13. 

1 

= ?(:)- 1, Substituting gJz 
gives 

df?t (CAI 

The following theorem establishes that the D-optimal design, for estimating main effects 
only, is one which consists of choice sets i n  which the sum of the differences attains the 
maximum value given in Lemma 5.1. I. 

w THEOREM 5.1.1. 
The D-optimal designfor testing main effects only, when all other effects are a.ssitmed to 

be zero. is given by choice sets in which, ,for each v,j present, 

(m2 - l ) k / 4 .  111 odd. 

m 2 k / 4 ,  in cveii, 

111 (m- 1 ) / 2  c ” I ,  = 
,=1 
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and there is at least one vI with a non-zero av3; that is, the choice experiment is noiz-empty. 
For the optimal designs 

Proof Recall that 
zv, - iv, - _  av7 = 

2k  ch cVir iV, 

and that i,, is an indicator variable indicating the difference vectors corresponding to the 
choice sets that are included in the choice experiment. Thus at least one of these i V 7 ,  and 
therefore av, , values must be non-zero. 

Substituting for uv, in det(CA[), we have 

Since xv, ; i  denotes the number of times the difference i appears in the difference vector 
vg, multiplying by i and summing these is equivalent to summing the ( y )  entries in v3; 
thus, 

k 

1 = 1  i = l  

Therefore 

m ( m - l ) / 2  When rn is even, Lemma 5.1.1 states that the maximum value that Cz=l d,, can 

attain is m2k/4 .  Then it follows that CI"_'y-1'/2 d,, = rn2k/4 - p,  for some p ,  2 0. 
Thus 

= [-- 1 c, PJCV, iv, 
2 k  r n 2 k 2 k - 2  xh cvl,iv, 

The cv, values are all positive and the i,, are either 0 or 1 ;  so, for rn even, det(C~4) has a 
maximum of ( 1 / 2 k ) k  when p ,  = 0 for all 2.  Thus we obtain the maximum det(CAr) when 

C d,, = rn2k /4  
i = l  
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Similarly when m is odd, Lemma 5.1 . I  states that the maximum value of ~ ~ ' ~ - ' ) ' '  d 2 7  
is ( 7 1 7 ~  - 1)k/4. Then cE(r-1)/2 d,, = (in' - l )k /4-p ,  forsomep, 2 0. Substituting, 
we have 

Since the cv, values are all positive and the i,, are either 0 or 1 ,  det(CA1) has a maximum 
of ((771' - 1)/(m22k))k when p ,  = 0 for all 3.  For m odd, we obtain the maximum 
det(Cn1) when 

m(m- l ) /Z  

c d,, = (7n' - 1)k /4 .  
1=1 

Therefore, the maximum value of det(C,ff) is 

This occurs when 

(m2 - l)k/4, m odd, 

m2k/4,  m even. 

m(m-1) /2  c 4, = 
1=1 

The D-efficiency relative to the optimal design is calculated using the expression 

where p = X: ,  the number of main effects we estimate. 
We now look at all possible designs for a small example. 

EXAMPLE 5.1.6. 
Recall that, for V L  = 3 and k = 3 ,  there are three difference vectors: v1 = (1 .1 .2) ,  
v2 = (1 ,2 .  3 )  and v g  := (2 ,2 .2) .  All the possible designs for choice experiments in 
this situation are given in Table 5.5. Since m, is odd, Theorem 5.1.1 states that the D- 
optimal designs have choice sets in  which the entries in the difference vectors sum to 
( m 2  - l)X:/4 = 'Lk = 6 and a maximum det(Copt.nl) = (l /9)3.  The difference vectors 
VP and v3 have entries which sum to 6; so there are three D-optimal designs: 

1 .  All 24 triples with difference vector v'. So a,? = 1/24 and a,, = n,, = 0. 

2.  All 8 triples with difference vector v3. So a,,, = 1/8 and a,, = a,, = 0. 

3. All 32 triples with difference vectors v2 and v3. So ( r v z  = a,,,3 = 1/32 and n,, = 0. 

The smallest of these D-optimal designs is the second one, consisting of the following 
eight triples, each with difference vector v3: 

(000,011; 101). (000,011,110), (000,101,110), (001,010; 100). 
(001.010,111). (00l,100,111)~ (010,100.111). (011.101.110). 0 
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Table 5.5 
m = 3  

All Possible Choice Experiment Designs for Binary Attributes when k = 3 and 

Vi in Design Ei&j i,, i,, i,, N a,, a,, av3 Efficiency (%) 

v1 4 1 0 0  24 k 0 0  66.67 

Vl &vz 4 , 6  1 1 0  48 L L :  4p 48 83.33 
v1 &v3 4 , 6  1 0 1  

32 z!+ 15 
vz &v3 6 0 1 1  32 O - -  100 

85.71 

v2 6 0 1 0  24 O h 0  100 
v3 6 0 0 1  8 o o ? -  100 

1 3: 1 1 1  56 - -  56 56 56 v1, v2 & v3 4, 6 

5.1.4 The Model for Main Effects and Two-Factor Interactions 

To find the D-optimal designs for estimating main effects and two-factor interactions for 
any choice set size m, we generalize the results of Section 4.1.4. 

As in Section 4.1.4, we let B2k,,M be the rows of B2k that correspond to main effects 
and we let B2k,T be the rows of B2k that correspond to the two-factor interactions. The 
matrix associated with main effects and two-factor interactions is denoted by 
and is the concatenation of B2k and B2k,T. For the D-optimal design we evaluate the 

[ k + (k)] x [ k + (i)] principal minor of C = B2k As we are working with the 
complete factorial, it is not important how the contrasts for interactions of more than two 
factors are divided between B, and Bh. 

In Lemma 4.1.5. we established that 

k - 2  k - 2  k - 2  
B 2 k , T D k t =  [( ) - 2 ( i - I ) + ( i - 2 ) ] B 2 k . T  

for all allowable i. 

LEMMA 5.1.4. 
Under the null hypothesis, the information matrix for main effects plus two-factor interac- 

tions is given by 

Proof. We let Bh = B2k,AfT and then 
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Now 

As we noted previously, 

(f) = ( "1 )  +(;I;): 
so (r I i) = (! 1 ;) + (:I :) and ( k  i I) = ( k  i ' )  + ( k - 2  l ) .  

and hence 

(;) - ("2)  +2(fI?) - (;I;) =(;I;). 

and we have 

as required. 0 

Hence the determinant of ( 7 . 4 1 ~  is 

EXAMPLE 5.1.7. 
Let in = 3 and k = 3. We can calculate CAIT either by evaluating 

CI?IT = BZJ.AlTAB43 A l T '  
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or by using Lemma 5.1.4. In this example, we will do both. 
The matrix B 2 3 , M T  is the contrast matrix for main effects plus all two-factor interactions 

and is given by 

1 
BZ~,AIT = - 

2 8  

-1 -1 -1 -1 1 1 1 1 
-1 -1 1 1 -1 -1 1 1 
-1 1 -1 1 -1 1 -1 1 

1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 -1 1 -1 1 
1 -1 -1 1 1 -1 -1 1 

In this example, we assume that all choice sets with difference vectors vz or v3 are in the 
choice experiment. Then we can use the A matrix from Example 5.1.4 to calculate 

We can also use Lemma 5.1.4 to calculate CbfT. From Example 5.1 .S, 

Then, using the yi values given in Example 5.1.4, 

1 
= -13. 

12 

Hence 

To find the D-optimal design, we need to maximize d e t ( c , t f T ) ,  subject to the constraint 
that 2%/m = 1. 

THEOREM 5.1.2. 
The D-optimal design for testing main effects and two-factor interactions, when all other 

efferts are assumed to be zero, is given by designs where 

T ( ~ , ~ ) - ' ,  m(m-1) k+l kevenandi=  k/2,  k / 2 + 1 ,  

w((k$),z)-l, koddandi  = ( k  + 1) /2 ,  

0 ,  otherwise, 
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when thiy results in non-zetv y7 valuev that correspond to difference vector7 that artually 
eiirt. The niaximum \ulue of the determinant is then 

PmoJ In Theorem 4.1.3, we proved that f o r m  = 2 the D-optimal design for testing main 
effects and two-factor interactions is given by 

{2k-'($i)}-1 

{2k-'((A.4),2)} 
0 otherwise. 

k even and?,  = k / 2 .  k / 2  + 1. 

k odd and L' = ( k  + 1)/2.  

In the proof of this theorem, the function f = W2(k-1)/2, and therefore det ( ( ' I Y I T ) ,  15 

maximbed subject to the constraint C,"=, (!)xu = 1. where 

and 
k 

k - 2  

v = l  

For choice sets of size vi the constraint is 

In order to use the results in  the proof of Theorem 4.1.3, we let 

2, = 2 ' g y z / ( m ( ? n  - I ) )  

(suggested by Moore (2001) when 7n = 3). Then we have the same form of the constraint 
a$ we had for 7n = 2.  

Now we let 

and 
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is maximized subject to the constraint zf=, (t)z, = 1 for the same z, values given above 
for the m = 2 case. Using z, = 2 k y t / ( m ( m  - l)), we obtain the optimal designs in terms 
of the yz values, as required. 

We now determine the maximum value of the determinant at these y, values. For k 
even, only two values of i will give the maximum determinant. These are i = k /2  and 
i = k/2 + 1, where 

y k / 2  = Yk/2+1 = 
2k  

and all other yz = 0. Then 

r i k  r 

Therefore, for k even, 

k+k(k-l)/Z 
det(CAfT) = ( (m  - 'Itk i- 'I) 

m(k + 1)2k 

For Ic odd, the only value of i that will give the maximum determinant is i = ( k  + 1)/2, 
where 

k 
Y(k+1)/2 = "':; ') ((k + 1112) 

and all other y, = 0. Then 
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Therefore, for k odd, 

Hence the maximum value of the determinant is 

Note that for any design we can calculate the D-efficiency relative to the optimal design 
using the expression 

where p = k + k ( k  - 1)/2,  the total number of main effects and two-factor interactions 
that we are estimating. 

The following two examples illustrate the use of Theorem 5.1.2 to obtain choice sets 
with the maximum value of the determinant of C;tlr. 

EXAMPLE 5.1.8. 
For m = 3 and k = 3,  Theorem 5.1.2 states that the D-optimal design is given by 

I O. otherwise. 

The maximum value of [let ( C J ~ T )  is 

Since 

y1 = 4av, +2nv,  = 0, 

y 2  = 2av, + 2nv, + 2av3 = +. 
y3 = 6 l v 2  = 0, 

we see that av, = a,vn := 0 and nvs = $. Thus the D-optimal design consists of the 8 
triples with difference vector v3 = (2 ,2 ,2 ) .  Information about the 7 competing designs is 
shown in Table 5.6. 0 

EXAMPLE 5.1.9. 
For 7~ = 3 and k = 4 the possible difference vectors are v1 = (1,1, a),  v 2  = (1,2,:3), 

v g  = (1 ,3 .4) ,  v4 = (2 .2 .2) ,  v 5  = (2 .2 ,4) ,  and v g  = ( 2 . 3 . 3 ) .  Using Theorem 5.1.2, 
the D-optimal design is given by 
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Table 5.6 
of the 7 Competing Designs when k = 3 and m = 3 

The Efficiency, for the Estimation of Main Effects plus Two-Factor Interactions, 

The maximum value of det(CA,rT) iS 

Since yz and y3 are the only yE values that are non-zero and v4 and VG are the only difference 
vectors containing all 2s, all 3s, or a combination of 2s and 3s, we see that a,? = 0 unless 
j = 4 , 6 .  Thus we have 

y1 = 6avl + 6av, + 2av, = 0, 

YZ = 2avl + 4av2 + 4av4 + 2av5 + 2av6 = 6/160, 

y3 = 6av2 + 2a,, + 6av, = 6/160, 

y4 = 8ava +6a,, = 0. 

The solution is a,, = avz = av3 = ava = 0 and avr = a,, = 1/160. Thus the D-optimal 
design consists of the 64 triples with difference vector v 4  = (2 ,2 ,2)  and the 96 triples with 
difference vector v6 = (2 ,3 ,3) .  If we use just the 64 triples with difference vector v4, 

then this design is 99.03% efficient, and for the 96 triples with difference vector v g  only, 
0 

However, for some values of m and k ,  solutions to the yz equations do not exist. For 
example, when m = 3 and k =. 1 (mod 4), no solution exists; the following example 
illustrates this case. 

EXAMPLE 5.1.10. 
If we let m = 3 and k = 5 ,  then the D-optimal design given by Theorem 51.2 is 

the design is 99.60% efficient. 

-1 

y3 = y (0 > y1 = yz = y4 = y5 = 0, 

This means that triples with difference vector (3 ,3 ,3)  are required since any other triple 
would result in one of the other gi values being non-zero. However, the only possible 
difference vectors are 

~1 = (1.1,2), vz = (1 ,2 ,3) ,  ~3 = (1,3,4), ~4 = (1 ,4 ,5) ,  ~5 = (2 ,2 ,2) ,  
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vf, (2, 2.4). v7 = ( 2 . 3 .  : 3 ) .  Vg = (2,3.5),  V9 = (2,4,4), V10 = (3.3.4): 

so no triple with the difference vector ( 3 , 3 , 3 )  exists. By checking all possible designs, 
it can easily be shown that the optimal design consists of the 960 triples with difference 
vector vi = ( 2 . 3 , 3 )  and the 480 triples with difference vector vl0 = ( 3 . 3 . 4 ) ,  where 
y? = 1/1440. = 9/1440, y4 = 3/1440 and y1 = y,5 = 0. Thus avr = a,,,, = ] / I 4 4 0  
and nvi = 0 for . j  = 1.2.3.4.5,6,8.9.  The maximum obtainable determinant is 

As Example 5. I .  10 shows, the optimal designs derived in this and the preceding sections 
can become very large as the number of attributes increases. The question of how many 
choice sets can be included in a stated choice experiment has been considered by various 
authors. Braze11 and Louviere (1 995) show that choice experiments with up to 128 choice 
sets can be effective in parameter estimation. In the next section, we investigate the 
D-efficiency of small designs obtained from a generalization of the constant difference 
construction in Section 4.2.3. 

5.1.5 Exercises 

1 .  Let k = 3 and m = 4. Give the 35 sets of 4 treatment combinations with 000. 
Calculate the difference vector for each. Hence calculate the cy, and, for each vJ, 
calculate the zv,:i. Verify that the bound of Lemma 5.1 . I  is correct. 

2. Use Lemma 5. I .  1 when k = 3 and m = 4. Can you get more than one set of rows 
in this case? 

3. Let k = 3 and m == 4. Evaluate 2 ,  y1, yz and y3. Hence give an expression for A. 

4. I f  in = 2 show that yz = 

5. Let k = 3 and rn == 4. Using Theorem 5.1 . I  give all the possible D-optimal designs 
for estimating main effects. Can you use a smaller subset of any of these to get a 
smaller design which is still D-optimal‘? 

6. Let k = 3 and m = 4. Use Theorem 5.1.2 to give the v, that would correspond to 
the D-optimal designs for estimating main effects plus two-factor interactions. Do 
the y, correspond lo an actual design? If so, give it. If not. try 2 or 3 designs “close 
to” the optimal p 1  and compare them. Which would you recommend? 

5.2 SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR LARGER 
CHOICE SET SIZES 

In this section, we give constructions for small optimal and near-optimal designs for choice 
sets of size m. The results are an extension of results in  Section 4.2, where we gave 
constructions for optimal and near-optimal designs for estimating main effects only, and 
for estimating main effects plus two-factor interactions. Recall that the constructions there 
started with a fraction of resolution 3 (for estimating main effects only) or resolution 5 
(for estimating main effects plus two-factor interactions). Pairs were formed by adding 
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one or more generators to the treatment combinations in the fraction, where the addition is 
performed component-wise modulo 2. Each generator gave rise to a set of pairs. We had 
to assume that all contrasts other than the ones we were estimating were 0 however. So B, 
contains all the contrasts that not in Bh and B,. is empty. 

5.2.1 The Model for Main Effects Only 

When estimating main effects only, for each attribute there must be at least one generator 
with a 1 in the corresponding position. Using one generator consisting of all 1 s, which is 
equivalent to using the resolution 3 fraction and its foldover, results in a D-optimal design 
in a minimum number of pairs, in which all main effects can be estimated. 

The next result gives generators for small optimal designs for estimating main effects 
when m 2 2. 

  THEOREM 5.2.1. 
Let F be a fractional factorial design of resolution at least 3 and with k factors. Let G be 

a .set of generators G = (gl, g2, . . . , gm), where each g ,  is a binary k-tuple, and gl = 0. 
kt v = ( d l ,  d2, .  . . , d m ( m - l ) / 2 )  be the differenre vector consisting of all the pairwise 
differences between the generators in G, where 

m(m-1)/2 
(m2 - l ) k / 4 ,  m odd, 

m even. di = { m2k/4, 
i=l 

Then the choice sets given by ( F ,  F + gp, . . . , F + g m ) ,  where the addition is done 
component-wise modulo 2, ore optimal for  estimating main effects only. 

Pro06 Let IF1 = 2 k - p  and let BF be the columns of Bhf corresponding to the treatment 
combinations in F.  Thus BpB; = T I k .  Let D,, be the diagonal matrix with an entry 
of 1 in  position j if the j th  entry of g ,  is 0 and an entry of -1 in position j if  the j th  entry 
of g ,  is 1 .  Then D,, RF has the same columns as the columns of Rnf for the treatment 
combinations in F + g , .  

We construct the choice sets from F by adding the generators to F ,  using modulo 2 
arithmetic. Then the choice sets are ( F ,  F + gz ,  . . . F + g m ) ,  where each row represents 
a choice set. Let N be the number of choice sets of size m (hence N = 2 k - p  if there are 
no repeated choice sets) and let n,, be the number of choice sets that contain the pair of 
treatment combinations u, w. This number may be 0 if at least one of PL and w does not appear 
in thechoice sets. Let n,,,,d be the number of choice sets which contain u and PI in columns 
c and d (unordered). Then nu, = xc,d n,,,,d, and we define nu, = - xu+, nuv. Then 
the values nu, and n,,, are the entries of m2 N A .  

Consider two columns c and d .  Then we know that column c contains the treatment 
combinations in F + g, (in some order) and column d contains the treatment combinations 
in F + gd in some order. I f  F + g, = F + g d ,  then g ,  + gd E F and we can write F 
as F1 U (F1 + g ,  + g d ) .  Then, using this order for the elements of F ,  we have that the 
submatrix of A corresponding to the elements in F can be written as (reordering rowq and 
columns if necessary) 
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since we know that each treatment combination in F gives rise to a distinct choice set. We 
can write R,jr as Bnr = [RF,  Dg,+g, ,H~I  BF] .  Now 

so 

If g ,  + g d  $ F ,  then the same argument establishes that 

Now we know that 

m w - 1 ) / 2  
(m2 - l )k /4 .  m odd. 

in even. d’ = { m2k/4.  
7 = 1  

Consider the contribution to the C ,  d, in a choice set from just one attribute. The attribute 
will have T 0s and ( r n  - z) 1 s to give a total of z (m - T ) .  This contribution is maximized 
by having m / Z  Is and ? n / 2  0s for 172 even, and (m - 1)/2 0s and ( m  + 1)/2 1 s (or vice 
versa) for I J J  odd. Thus the maximum contribution to C,  d, from any one attribute is m2/4 
for 772 even and (m2 - 1 ) / 4  for m odd. Thus we see that each attribute must contribute 
exactly this amount to C7 d, for the optimal designs. 

suppose 7n = 21711 + 1. NOW c ~ , ~  D ~ ,  +g,, is summing (71) + (””+’) entries of 1 in 
each diagonal position and ml(7nl  + 1) entries of -1 in each diagonal poGtion. Thus, if 
rn is odd. 

Similarly, if ?n is even, 

Suppose that none of the g, is in F and that g, + g d  $ F for any pair c and rl. Let A be 
the set of treatment combinations that appear in the choice experiment. Then 



162 LARGER CHOICE SET SIZES FOR BINARY ATTRIBUTES 

Thus we have 

as required. 

is, F + g ,  = F + gd for some c, d). Then we see that 
Now suppose that, for at least one pair of columns, the number of pairs is 2 k - p - 1  (that 

2 k - P  

NBhZhcdB61 = T ( I k  - D g , + g , , ) .  

Although this works out for the pairs, once the pairs are considered as part of the larger 
choice sets, then the pairs will i n  fact appear twice and so we need to use 

2 k - p + l  

2NBnlA,dBb = - ( I k  - D g < + g , { )  
2 k  

when evaluating C,. Thus the proof from before can be used. 
The only situation that is not covered by the above proof is when m is a power of 2.  In 

that case, the optimal set of generators must form a subgroup and the choice sets are this 
subgroup and its distinct cosets formed by adding elements of F .  Making this observation, 
a straightforward modification of the proof above establishes the result. 

EXAMPLE 5.2.1. 
Let m = 5 and Ic = 9. To obtain an optimal design for estimating main effects, we 
require a fraction F of the 29 factorial which has resolution at least 3. The 16 treatment 
combinations given in the first column of Table 5.7 are a 1/32 fraction of resolution 3 with 
defining contrast I = BCE = C D F  z ACG = ARH 5 ADJ.  To obtain the choice 
sets, we need m = 5 generators G = (gl. gz.  g3, g4, g s ) ,  where gl = 0, so that the 
differences in the difference vector sum to (mZ - l)k/4 = 6k = 54. One set of generators 
that satisfies this condition is 

c: = (000000000, 000000111, 111111000, 000111111. 111111111), 

which has the difference vector ( 3 , 3 , 3 , 3 , 6 , 6 , 6 , 6 , 9 , 9 ) .  The 16 choice sets are given by 
( F l  F + g z ,  F f g 3 ,  F f g 4 ,  F + g 5 ) ,  wheretheadditionisdonecomponent-wisemodulo 
2.  The choice sets are given in Table 5.7, where the choice sets are represented by the rows. 
The B matrix has one row for each of the 9 main effects and 80 columns for the treatment 
combinations. This matrix is normalized by dividing the entries by f l . The CAI matrix 

0 for these choice sets is &I,, and the design is therefore 100% efficient. 



SMALL OPTIMAL AND NEAR-OPTIMAL DESIGNS FOR LARGER CHOICE SET SIZES 163 

Table 5.7 Optimal Choice Sets for Estimating Main Effects Only for m = 5 and k = 9. 

F 

000000000 
0001 01 001 
00101 I100 
001 I10101 
0 I00 I00 I0 
0101 I101 1 
01 1001 110 
01 I1001 1 I 
I00000 1 I 1 
100101 110 
I O l O I  101 I 
101 110010 
1 lOOI0lOl 
1101 1 I100 
I l1001001 
I 1  I100000 

F + g2 

0000001 11 
000101 110 
00101 101 1 
001 I10010 
0 1 00 I0 10 I 
0101 I 1  100 
01 1001001 
01 1100000 
100000000 
1001 0 1001 
I O l O I  1100 
101 I I0101 
110010010 
1101 1101 1 
1 I1001 110 
1 I I1001 I 1  

F + g3 

11 I I I1000 
1 1  lOlO0OI 
110100100 
110001 101 
101101010 
10100001 1 
1001 101 10 
10001 1 I I I 
01 111 1 1  1 1  
01 10101 10 
01010001 I 
0 1000 I0 I0 
001 101 101 
00 10001 00 
000 1 1000 I 
0000 1 I000 

F + g4 
0001 1 1  1 I I 
0000101 10 
001 10001 I 
001 00 10 I0 
010101 I01 
01 0000 100 
01 1 1  10001 
01 101 1000 
1001 11000 
10001 000 I 
I01 100100 
I01001 101 
l10101010 
11000001 I 
I 1  I I101 10 
1 1  1011 I I  I 

F + g 5  

1 1 1 1 1 1 1 1 1  
111010110 
11010001 1 
I10001010 
101 101 101 
101 0001 00 
1001 10001 
I000 1 I000 
01 1 1  11000 
01 1010001 
01 01001 00 
010001 101 
001 l O I O I 0  
00100001 1 
0001 101 10 
00001 1 1  1 I 

5.2.2 The Model for Main Effects and Two-Factor Interactions 

To estimate main effects plus two-factor interactions in paired comparisons, a construction 
is given in Lemma 4.2.1. I t  starts with a resolution 5 (or greater) fraction of the complete 
2k factorial and a set of generators. The set of generators needs to satisfy two conditions: 

1. For each attribute, there must be at least one generator with a 1 in the corresponding 
position (to estimate main effects); 

2. For any two attributes there must be at least one generator in which the corresponding 
positions have a 0 and a 1 (to estimate the two-factor interactions). 

These sets of generators are added to the fraction to obtain near-optimal pairs. This method 
can easily be extended lo obtain near-optimal choice sets of size m. 

Let G,) = ( g l J %  g Z J , .  . . , g m j ) ,  where g l j  = 0, be binary Ic-tuples which we will call 
generators. Let vJ = ( d l J ,  d 2 j :  . . . , d m ( m - l ) / ~ , j )  be the difference vector consisting of all 
the pairwise differences between the generators in G,. The possible vj vectors are those 
difference vectors detennined in Theorem 5.1.2 for an optimal design for the particular 
values of 7 ~ 2  and k.  Thus the G j  are not unique, and several different near-optimal designs 
are possible. The construction of the choice sets proceeds as follows: 

1 .  Start with a resolution 5 (or greater) fraction F of the complete 2k factorial design. 
Let E: have 2"P treatment combinations. 

2.  Add the the elements of the set of generators, GI ,  to F ,  where the addition is done 

3. Repeat step 2 to form another 2"P choice sets of size m, until all main effects and 
two-factor interactions can be estimated. Thus for each attribute there must be at least 
one generator with a 1 in the corresponding position (to estimate main effects) and, 

component-wise modulo 2, to form 2 k - p  choice sets of size m. 
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for any two attributes, there must be at least one generator in which the corresponding 
positions have a 0 and a 1 (to estimate the two-factor interactions). 

The number of times that step 2 is repeated will depend on the number of attributes and the 
choice set size. In some cases step 2 is only repeated once; so the number of choice sets 
required in this instance for a near-optimal design is 2"-P+l. 

mEXAMPLE5.2.2. 
Let m = 3 and k = 4. There are no fractions of the 24 factorial which are resolution 5 ;  so 
we must use the 16 treatment combinations from the complete factorial. These treatment 
combinations are given in the first column of Table 5.8. In Example 5.1.9, the difference 
vectors for the optimal designs are ( 2 , 2 , 2 )  and (2 ,3 ,3 ) ;  so 92, and gsl must be chosen so 
that the difference vector for G, is either ( 2 , 2 , 2 )  or (2 ,3 ,3 ) .  We choose 

G 1  = ( O I g 2 1 . g 3 1 )  = (0000,1100,0110) with v 1  = ( 2 , 2 , 2 )  

and form 2e = 16 triples by adding the elements of G 1  to F .  From these we can estimate 
all the main effects and two-factor interactions except the main effect of the fourth attribute. 
So we repeat step 2 adding 

Gz = ( O , g 2 2 , g 3 2 )  = (0000,1100,0111), where v2 = (2 ,3 ,3) ,  

to F to get an additional 16 triples. If we use Gz only then the two-factor interaction 
between attributes 3 and 4 cannot be estimated. With both G 1  and Gz, all main effects and 
two-factor interactions can now be estimated; so we have no need to generate any more 
triples. The 32 triples shown in Table 5.8 form a design with 

From Example 5.1.9, the maximum value of the determinant is 

Thus the design in Table 5.8 is 96.73% efficient and is therefore near-optimal. This design 
is much smaller than the optimal design in Example 5.1.9 which consists of I60 triples. 

5.2.3 Dominating Options 

If all the binary attributes involved in an experiment have ordered levels, so that 1 is 
preferred 0, say, by all respondents, then we see that 000 . . . 0 will never be chosen in any 
choice set in which it appears and 11 1 . . .1  will be chosen in every choice set in which it 
appears. For the estimation of main effects it is not possible to have choice sets in which, 
effectively, only a subset of the k attributes are involved and the remaining attributes have 
the same levels for all options in the choice set. So provided we work with a fractional 
factorial which does not contain 000. . . 0 or 111 . . .1 and do not add any generator which 
results in either of these two treatment combinations then dominating alternatives are not 
an issue in this situation. 

If we want to estimate main effects and two-factor interactions optimally, then we will 
need to consider fractions and sets of generators on a case-by-case basis. For example, for 
the triples in Table 5.4 we see that only 2 of the 8 triples with difference vector v 3  do not 
have a dominated or dominating option and that 12 of the 24 triples with difference vector 
v 2  do not have such an option. 
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Table 5.8 
Interactions for m = 3 and k = 4.  

Near-Optimal Choice Sets for Eqtimating Main Effectr and Two-Factor 

F F + g l l  F+g31 

0 0 0 0  1 1 0 0  0 1 1 0  
0 0 0 1  I 1 0 1  0 1 1 1  
0 0 1 0  1 1 1 0  0 1 0 0  
0 0 1 1  1 1 1 1  0 1 0 1  
0 1 0 0  1 0 0 0  0 0 1 0  
0 1 0 1  1 0 0 1  0 0 1 1  
0 1 1 0  l o l o  0 0 0 0  
0 1 1 1  1 0 1 1  0 0 0 1  
1 0 0 0  0 1 0 0  1 1 1 0  
1 0 0 1  0 1 0 1  I l l 1  
1 0 1 0  0 1 1 0  I 1 0 0  
I 0 1 1  0 1 1 1  1 1 0 1  
1 1 0 0  0 0 0 0  1 0 1 0  
1 1 0 1  0 0 0 1  1 0 1 1  
1 1 1 0  0 0 1 0  1 0 0 0  
I 1 1 1  0 0 1 1  1 0 0 1  

F F+g22 F+g32 

0 0 0 0  1 1 0 0  0 1 1 1  
0 0 0 1  1 1 0 1  0 1 1 0  
0 0 1 0  Ill0 0 1 0 1  
0 0 1 1  1 1 1 1  0 1 0 0  
0 1 0 0  1 0 0 0  0 0 1 1  
0 1 0 1  1 0 0 1  0 0 1 0  
0 1 1 0  1 0 1 0  0 0 0 1  
0 1 1 1  1011  0 0 0 0  
1 0 0 0  0 1 0 0  I l l 1  
1 0 0 1  0 1 0 1  1 1 1 0  
1 0 1 0  0 1 1 0  1 1 0 1  
1 0 1 1  0 1 1 1  1 1 0 0  
1 1 0 0  0 0 0 0  1 0 1 1  
1 1 0 1  0 0 0 1  l o l o  
I 1 1 0  0 0 1 0  1 0 0 1  
1 1 1 1  0 0 1 1  1 0 0 0  

5.2.4 Exercises 

I .  Let k = 6 and rn := 3. Using Theorem 5.2.1, find a set of triples that is optimal for 
estimating main effects. 

2 .  Let k = 5 and m = 5. Find a choice experiment i n  which all main effects and 
two-factor interactions can be estimated. 

5.3 REFERENCES AND COMMENTS 

Most of the results i n  this chapter originally appeared in Burgess and Street (2003). Readers 
can find software to construct choice sets from an initial factorial design and sets of gen- 
erators, as well as calculate the corresponding information matrix and variance-covariance 
matrix, at the following website: http:Nmaths.science.uts.edu.au/mathslwiki/SPExpts. 

The need for designs that perform well but have a smaller number of choice sets is partly 
a cognitive issue (see Iyengar and Lepper (2000), Schwartz et al. (2002), and Iyengar et al. 
(2004)), and partly a cost issue. 
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CHAPTER 6 

DESIGNS FOR ASYMMETRIC 
ATT R I BUT E S 

In this chapter we extend the results of the previous two chapters from binary attributes to 
attributes with any number of levels. There is no requirement that all the attributes in  a 
particular situation have the same number of levels. 

We begin by considering an example of a choice experiment with asymmetric attributes 
from Maddala et al. (2002). 

EXAMPLE 6.0.1. 
There are 6 attributes with 3, 4, 5 ,  3, 5 ,  and 2 levels, respectively, in a choice experiment 
examining preferences for HIV testing methods. The attributes, together with the attribute 
levels. are given i n  Table 6. I ,  and one choice set from the study is given in Table 6.2. Each 
respondent was presented with 1 I choice sets and, for each of these, was asked to choose 
one of two options. The respondents were all surveyed at HIV testing locations and so a 

0 

Thus we are considering the design of experiments in which options are described by 
k attributes and the qth attribute has P, 2 2 levels. The choice sets may have any number 
ofoptions, denoted by I n  2 2, although all choice sets in  a particular experiment have all 
choice sets of  thc same size; choice experiments in which choice sets may have different 
sizes, and the optimal choice set size, are considered in Section 7.2. Once again we are 
only considering forced choice experiments; choice experiments i n  which “none” is an 
option are considered in Section 7. I .  1 .  Throughout this chapter, we assume there are X: 
attributes, that the qth attribute has P, levels which are 0 .1  . . . , !‘, - 1 for q = I .  . . . . A. and 
that I, = J&l P, is the number of possible treatment combinations. 

forced choice experiment was appropriate. 

167 
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Table 6.1 
Methods 

Attributes and Levels for the Study Examining Preferences for HIV Testing 

Attribute Attribute Levels 

Location Doctor’s office 
Public clinic 
Home 

Price $0 
$10 
$50 
$100 

Sample collection Draw blood 
Swab mouth 
Urine sample 
Prick finger 

Timeliness/accuracy Results in 1-2 weeks; almost always accurate 
immediate results: almost always accurate 
immediate results; less accurate 

Only you know; not linked 
Phones; not linked 
In person; not linked 
Phone: linked 
In person; linked 

Privacy/anonymity 

Counseling Talk to a counselor 
Read brochure and then talk to counselor 

Table 6.2 One Choice Set from the Study Examining Preferences for HIV Testing Methods 

~~~ ~ 

Attribute Option A Option B 

Location Doctor’s office 
Price $100 
Sample collection Swab mouth 
Timeliness/accuracy Results in 1-2 weeks; 

Privacylanonymity In person; not linked 
Counseling Talk to a counselor 

almost always accurate 

to 

Public clinic 
$10 
Urine sample 
immediate results; 
less accurate 
Only you know; not linked 
Read brochure and then talk 
counselor 

Suppose that you have already narrowed down your choice of HIV testing 
methods to the two alternatives above. 

Which of these two would you choose‘? (rick one only) 
Option A 0 Option B 0 
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In Chapter 5 we defined a difference vector which did not differentiate between the at- 
tributes since all attributes had two levels. For asymmetric attributes, we define a difference 
vector which records the differences by attributes. We then derive a general expression 
for the information matrix A and use that to determine the optimal designs for estimating 
main effects only. We do not detennine the optimal designs for main effects and two-factor 
interactions, but we do give an expression for the determinant (to allow comparison of 
designs). and some tables giving the optimal designs for small values of k ,  r n ,  and T q ,  
( I  = 1, .  . . . k .  

6.1 DIFFERENCE VECTORS 

In Section 5.1.1, we defined a difference vector for choice sets in which all the attributes 
had two levels. We now define the difference vector for a choice set with options described 
by k asymmetric attributes with levels 4 2 ,  . . . . pk. We are interested in the number of 
attributes with equal levels and the number with different levels i n  the choice set, as this is 
linked to how efficiently main effects and interaction effects can be estimated. In a choice 
set of size there are (7)  pairs of options (or treatment combinations) i n  the choice 
set and we record the pairwise differences between the attributes in a difference vector. 
For example, for treatment Combinations 2401 and 1403, the levels of the first and fourth 
attributes are different while the levels of the second and third attributes are the same. We 
write this difference as 1001. Thus each entry in the difference vector is a binary A*-tuple 
which indicates whether the levels of the attributes are the same or different. (When all 
attributes are binary we merely record the sum of the entries in each k-tuple and not the 
k-tuple itself; see Section 5. I .  1 .) We assume that all choice sets with a particular difference 
vector are either all in the experiment or none of them is included. 

In general, let 
” = (dl? dz, . ‘ ’ > dm(m-1)/2)  

be a difference vector, where 

and 

1 i f  the levels of attribute q are different in the rth pairwise 
comparison of two treatment combinations in the choice set, i 0 otherwise. 

i ,  = 

Since we can write the treatment combinations in the choice set in any order. the order 
of the comparison of pairs of treatment combinations is not important; so we assume that 
any difference vector has dl 5 d2 5 . . . 5 dm(o , - l )p .  

=EXAMPLE 6.1.1. 
Suppose m = 3 and that there are X: = 2 attributes with levels 41 = 2 and F 2  = 3 .  We 

consider the attribute differences in all the pairwise comparisons of treatment combinations 
in the choice set (00,10,12). The first and second treatment combinations have the first 
attribute different and the second attribute the same; so that entry in the difference vector 
is d,=IO. The first and third treatment combinations have both attributes different; so 
that entry i n  the difference vector is d2=l I .  When comparing the second and third 
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treatment combinations, only the second attribute is different; so the final entry in the 
difference vector is d3=01. Thus the difference vector for choice set (00,10,12) is v = 
(dl,d2,d3)=(10,1 1 , O l )  which we write as v = (01,10,11). 

di=10, &=01 
A+ 

0 0 .  10. 1 2  .- 
d i = l l  

Choice sets (00,10,12) and (01,02,11) have difference vectors (lO,ll,Ol) and (Ol , lO , l  I ) ,  
respectively. These difference vectors are considered to be the same, since we can reorder 
the options in a choice set, and both are written as (01,10,11). However, the entries 01 and 
10 in the difference vector denote which factor is different and are not considered to be the 
same. In Table 6.3 we list all the (i) = 20 choice sets of size 3 (or triples) together with 
the corresponding difference vector. 0 

Table 6.3 All Possible Choice Sets when rn = 3, A: = 2, i ? ~  = 2, and e 2  = 3 

Choice Set Difference Vector 
(00,01,02) (01,01,01) 

(00,01.10) (0l,l0,1l) 

(00,01,11) (01,IO,1 I )  
(00,01,12) ( O l , l I , l 1 )  

(00,02,10) (01,IO,1 I )  
(00,02,11) (01,1l,l1) 

(00,02,12) (01,10,11) 
(00,10,11) (01,10,1l) 

(00,10,12) ( O l , I O , l 1 )  

(00,11,12) (01, I 1 , I  1) 

Choice Set Difference Vector 
(01,02,10) (01,1l,1l) 

(01.02,11) (OI.I0,11) 

(01.02,12) ( O l . I O , l  I )  
(01,10,11) ( O l . I O , l 1 )  

(01,10,12) (01.1 1 , l  I )  
(01,11,12) (01,l0,l1) 

(02,10,1 I )  (01.1 1,11) 

(02,10,12) (01,l0,1l) 

(02,11,12) (0l.l0,1l) 

(l0,11,12) (01,01,01) 

We now establish the upper bound for the sum of the differences in a difference vector 
for attribute q. 

THEOREM 6.1.1. 
For a particular difference vector v, for a given m, the least upper bound for the sum of 
the differences for a particular attribute q is 

(m2 - 1)/4 e, = 2, m odd, 
e,  = 2, nL even, 

(m2 - (t,x2 + 2xy + y))/2 2 < e,  < m, 
m(m - 1)/2 e,  2 m, 

where positive integers x and y satisfy the equation m = e,x + y for 0 5 y < C,. 

Proof. The upper bound for the sum of the differences for two-level attributes for m odd 
and even has been established in Lemma 5.1 . l .  When P, 2 m, there are enough levels 
of the factor so that the level can change in each treatment in the choice set. There are 
( y )  entries in the difference vector and, in this case, each entry will be 1. Therefore the 
maximum sum of the differences is ( y ) .  
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When 2 < E ,  < 7n, we write the treatment combinations in the choice set as the rows 
of an r r ~  x k array. Suppose that, i n  column q olthis array, p1 of the entries are 0,112 ofthe 
entries are I ,  and so o n  unt i l  p p , ,  of the entries are Pq - 1. where I,:, p ,  = 1 7 ~ .  By looking 
at the pairwise differences between the entries in column q, the contribution to the sum of 
the differences S, is 

e 

F.. - 1 1.. e, .  

1=1  j= i+1  i = l  , = I  

I e We wish to maximize ( n i 2  - c,:, p : ) / 2  subject to the constraint z2L1 p7 = 112. and we 
do this by minimizing cfl, 1):. 

Now the global minimum has p ,  = rn/4,. Suppose n,  = P , r  + y. Then 

211 pis are equal t,o irrt/f,j  = s 

and 
b2 p,s a rp  equal t,o Lm/P,j + 1. 

where bl  + h 2  = E,. Thus 

P,IT + y = m = bl.7; + b2(x  + 1) .  

P 
Hence b 2  = y and bl = i7, - 11, and the minimum value of c7Ll pp is 

p,, c pp = h , X 2  + b 2 ( 2  + 1)* = P,r2 + 2:cy + y. 
1 x 1  

Hence, for column (or attribute) q. the maximum contribution to S, is 

(n? -- ((,:r2 + 2x9 + y)) /2  whew = B,x + y.  0 

EXAMPLE 6.1.2. 
Let 11)  = 3 and k = 2 with E l  = 2 and Pz = 3. Considering Table 6.3, we see that the 
possible difference vectors are (0 I ,  01,Ol) with S1 = O + O + O  = 0 and S2 = 1 + 1 + 1 = 3; 
(01, 10.11) with SI = 0 + 1 + 1 = 2 and S2 = 1 + O  + 1 = 2; and ( O l , l I , l l )  with 
S1 = 0 + 1 + 1 = 2 and S2 = 1 + 1 + 1 = 3. Using Theorem 6.1 . I ,  the upper bound for 
the attribute with two levels is S1 = (7n2 - 1)/4 = 2 and for the attribute with three levels 
S 2  = m(m - 1 ) / 2  = 3. Only the difference vector (01,l I ,I 1 )  achieves the upper hound 
for both attributes. 0 

EXAMPLE 6.1.3. 
Let r r i  = 4 and I; = 2 with Cl = 2 and P2 = 3. All possible choice sets and corre- 
sponding difference vectors are shown in Table 6.4. The possible difference vectors are 
(01.01.01.10,11,11)withS~=0+0+0+1+1+1=3andS~= l + l + l + O + l + l  =S; 
(01 ,01 .10 ,10 ,11 ,11)wi thS~ = O + O + l + l + l + l =  4andS2 = l + l + O + O + l + l  = 4; 
(01,01.10,11.11.11)withS~ = 0+0+1+1+1+1 = 4andSz = l+l+O+l+l+I = 5 .  
Using Theorem 6. I .  I ,  the upper bound for the attribute with two levels is S1 = r t t2 /4  = 4. 
Now 2 < t2 < r n  so we solve 4 = 31. + y for IC and y. Thus 1. = y = 1 and the upper 
bound for the attribute with 3 levels is S1 = ( m 2  - (P,.r2 + 2n.y + y) ) /2  = 5. Only the 

0 final difference vector achieves the upper bound for both attrihutes. 
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Table 6.4 All Possible Choice Sets when rn = 4, k = 2, el = 2, and e z  = 3 

Choice Set Difference Vector 
(00,01,02,10) 
(00,01,02,11) 
(00,01,02,12) 
(00,01,10,11) 
(00,01,10,12) 
(00,01,11,12) 
(00,02,10,11) 

(00,02,10,12) 
(00,02,11,12) 
(00,10,11,12) 

Choice Set Difference Vector 

For particular values of m and k ,  there are usually several difference vectors. We denote 
these by v3 and add a subscript j to the previous definitions of the difference vector entries. 
Thus 

v.7 = (dl,,d23’. . . ,  drn(n-l)/Z,,), 

where d, = i 1 2 2 .  . . i k  and i,= 1 or 0 as before. As we said above, in this chapter we 
restrict the set of competing designs so that all the choice sets with a particular difference 
vector appear equally often. 

As in Section 5.1.1, we define four scalars that are needed subsequently. 

1 .  c,, is the number of choice sets containing the treatment 00 . . . 0 with the difference 
vector vI. 

Then Ed z,, ,d = (T), since this is the total number of entries in vJ. 
2 .  Zv,,d is the number of times the difference d appears in the difference vector vl . 

3. i,, is an indicator variable, where 

0 if no choice sets have the difference vector v3, 

1 if all the choice sets with the difference vector v, appear i in the choice experiment. 

Zv, = 

At least one of the i,, values must be non-zero, otherwise the experiment contains 
no choice sets. 

4. a,? = i v , / N .  

Using these definitions we see that the total number of choice sets, N, is given by 

EXAMPLE6.1.4. 
Let m = 3, k = 2 with P1 = 2 and 6, = 3. Using all treatment combinations from 
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the complete 2 x 3 factorial, there are (!) = 20 distinct choice sets of size 3, two with 
differencevectorvl = (01.01.01), 12withdifferencevectorv2 = (01.10.11)and6with 
difference vector v3 = (01,11,11). Table 6.5 is Table 6.3 reordered to show all the choice 
sets associated with each of the difference vectors. Consider the choice sets containing the 
treatment combination 00: (00,01,02) with difference vector v l ;  (00,Ol ,lo), (00,Ol , I  I ) ,  
(00,02,1 O), (00,02,12), (00, lO.  1 1 ) and (00,10, 12) with difference vector v2; and (00,01,12), 
(00,02,11) and (00,l I ,  12) with difference vector v3. Thus we have 

cvl = I ,  c,, = 6. and cy, = 3. 

Now we consider the T,, d values. For v1 the only possible value of d is 01, which appears 
3 times: 50 s,, 01 = 3 .  The x,, d values are given below. 

Tahle 6.5 All Possible Triples when k = 2. PI  = 2. and t2 = 3 Sorted by Difference Vector 

v1 = (01,01,01) 

(00.01,02) 

(10.1 1.12) 

v 2  = (01.10, l l )  

(00,Ol. 10) 

(00,01,11) 

(00,02.IO) 

(00,02,12) 

(00,10.1 I )  
(00,lO. 12) 

(01,02,11) 

(01,02,12) 

(01,10,l1) 

(Ol,ll.12) 

(02,10.12) 
(02,11,12) 

13 = (01,11,11) 

(00.0 I ,  12) 

(00.02.1 I )  
(00, I I .  12) 

(01,02,10) 

(0I110,I2) 

(02,10,1 I )  

6.1.1 Exercises 

I .  Give all the choice sets of size 3 when k = 2, g1 = 2, and t2  = 4 and give the values 
 of^,, and ~ ' , , ; d .  

2. Let t i )  = 2, k: = 3, PI = 2 ,  T z  = 3, and t3 = 4. Find the values of S1. Sz,  and S,. 
Find all the possihle values of v and of c,. 

3. Let = 3 ,  k = 3, .C1 = 2, t2 = 3, and t3 = 4. Find the values of S1, Sz, and S3. 
Find all the possible values of v and of c,. (Hint: You do not need to find all ( y )  
triples with 000 to do this. Instead try counting differences.) 
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6.2 THE DERIVATION OF THE INFORMATION MATRIX A 

The class of competing designs consists of all designs in which all choice sets with a 
given difference vector are either all included in the choice experiment or none of them is 
included. 

The matrix of contrasts is unaffected by the choice set size. However, we need to derive 
the appropriate A matrix. 

From the results in Equations (3.4) and (IS) ,  we know that if we assume that 

(that is, all items are equally attractive, the usual null hypothesis), then 

m - 1  
m2 c Xi,& ,.... i,,, A . .  -- 

22 < f 3  < ., . <i,,, 
2 1 . 1 ,  - 

and 

where 

and n,, ,%,, ,%", indicates whether or not (Tt, , T2, , . . . , Ttm) is a choice set in the choice 
experiment. Thus the diagonal entries of A are (m - 1)/m2 times the proportion of choice 
sets containing the treatment combination lz, and the off-diagonal entries are l / m 2  times 
the negative of the proportion of choice sets containing both Tt, and 1'2,. 

In Section 4.1.1, the general form of the A matrix for m = 2 was given as a linear 
combination of the identity matrix of order 2k and the Dk,v matrices. We want to do 
something similar here. The general form of A is a linear combination of the identity 
matrix and some D matrices. Now, however, the D matrices need to indicate which 
attributes are different, not just that v attributes are different. 

We define Dd to be a ( 0 , l )  matrix of order L with rows and columns labeled by the 
treatment combinations, and with a 1 in position (5, y) if the attribute differences between 
treatment combinations z and y are represented by the binary k-tuple d. 

In general, Dd = M,, 8 MZ2 8 . . '8 hl,, , where 

and Je, is a matrix of 1 s of order t,. 

mEXAMPLE 6.2.1. 
Let m = 3, k = 2, C1 = 2, and t2 = 3. The treatment combinations are TI = 00, Ti = 01, 
1(3 = 02, = 10, l's = 11, T6 = 12. From Example 6.1.4, we see that the distinct d, 
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- - 

- 
0 1 1 0 0 0  
1 0 1 0 0 0  
1 1 0 0 0 0  
0 0 0 0 1 1 ~  
0 0 0 1 0 1  
0 0 0 1 1 0  - 

- - 

and 

~ 0 0 0 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  
1 0 0 0 0 0  
0 1 0 0 0 0  

- 0 0 1 0 0 0  

In the following lemma we give the general form of the A matrix for any choice set size 
for asymmetric attributes. 
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1 LEMMA 6.2.1. 
Under the usual null hypothesis 

where 

and 
k 

1 

m - 1  
z = C c v , a v ,  = - C(rJ(4 - l)$ ' )Yd .  

d 9=1 3 

The summations over j and d are over all possible difference vectors v3 and all distinct 
difference vector entries d, respectively. 

Proo$ The diagonal elements of A are 

where 

ni 1, iz , . . . ,i, 
N 

k 
- 

X i l , i 2  ,..., i m  - 

if (Til, Y i z , .  . . , Z:"*) is a choice set 
in the choice experiment, = I  0 otherwise. 

Summing the Xil,il ,..., i,, over iz:. . . , i,, we get 

- 
the  number of choice sets containing 7'2, 

N c X i i . 2 2  ,.... i n , -  
i2 <i3  <...<i,, 

Then the diagonal elements of A are 

Now the off-diagonal elements of A are 

1 
m2 

1 
m2 

c X Z l , t , ,  3Z"l 
_-  - 

2 3 < 2 4 <  < a ,  

X 

~ 7 , J Z  - 

number of choice sets in which 71, & 71, appear together 
N 

- -- - 
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In order to calculate the number of choice sets in which Y>l and Y i 2  appear together, we 
first need to calculate the number of pairs in  the experiment with difference d.  If choice 
sets with difference vector vJ are in the design, then each treatment combination appears 
in c,, choice sets with difference vector vj and Xy,;d of the differences are equal to d. 
Altogether there are L treatment combinations, and each treatment combination can appear 
i n  any of the m positions i n  the choice set. Thus the total numher of pairs in  the choice 
experiment with an attribute difference of d is 

In ~ C V , l V , X V , , d .  
3 

(6.1 i 

Consider any treatment combination t. To construct another treatment combination 
with difference d from t ,  we must include the same level for all attributes corresponding 
to 7 ¶  = 0 i n  d, while if = 1, then any of the other (a, - 1 )  distinct levels can be used. 
So. in total, there are 

q=l 

treatment combinations with differenced from t. If we consider the 1, treatment combina- 
tions, the number of  pair5 with an attribute difference of d is 

- k  
1 1 
-IJ x (the numl,er of ways difference d can occur) = - L  r ] : ( P ,  - 1)"1 

2 2 
q = l  

Each of these pairs appears i n  the choice experiment the same number of times, say rd.  

Then the total number of pairs in the choice experiment with attribute difference d can also 
he expressed as 

Equating (6.1 ) and (6.2), we get 

So, if the proportion of choice sets in which each pair with attribute difference d appears is 
yd = T ~ / N ,  then 

Thus 

from which we see that 
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Then the off-diagonal elements of A are 

Hence we have established that 

as required. 

d we get 
Finally we establish that the row and column sums of A are equal to 0. Summing over 

2 
= - x C V ) a v , ( y )  m3 

as required. 0 

mEXAMPLE6.2.2. 
Let m = 3, k = 2 with el = 2 and e2 = 3. Assume that the choice sets in the choice 

experiment are the ones with difference vectors v1 and v3 only. Then the total number of 
choice sets is N = 2 + 6 = 8 and we have 

i,, = i,, = 1 and i,, = 0 

and hence 
a,, = a", = & = Q and avz = 0. 

From Example 6.1.4 we have the cv, and z,, ,d  values; now we need to calculate the Yd 

Ford = iliz = 01, 
values. 

k n(e4 - 1)'q = (el - l)"(e, - 1)" = (2  - 1)'(3 - 1)l  = 2 
q= 1 

F o r d  = iliz = 10, 

k n(eq - l) io = (Pi - 1)"(P2 - l) iz = (2  - 1 ) l ( 3  - I)' = 1 
a=1 
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F o r d  = i l i2  = 11, 

k n(pq - 1)"j = (PI - 1)"(pz - I)', = (2 - 1)'(3 - 
q=l 

Then we have 

= 2 

and 

2 1 1 
-11 X - x 0 + 6  X 0 X 1 + 3  x - x 0) 
3 x 1  8 8 

2 1 1 
-(1 x - x O + ~ X O X  l + 3 x  - x 2) 
3 x 2  8 8 
2 
8 '  

3 

Note that ya is the proportion of choice sets in which each pair of treatment combinations 
with attribute difference d appears in the choice experiment. For example, there are no 
pairs in the choice experiment with attribute differenced = 10 (that is,  y10 = 0 ) .  The pairs 
with attribute difference d = 01 in the experiment are 

00 01 
00 02 
11 12 
01 02 
10 12 
10 11. 

Each of these pairs appears in  only two of the 8 choice sets in the experiment (that is, 
yo1 = 2,'s). Similarly, the pairs with attribute difference d = 11 appear i n  two out of the 
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1 
72 

- _  - 

8 choice sets in the choice experiment (that is, y11 = 2/8). For example, the pair 00,12 
appears in choice sets (00, 01 , 12) and (00, 1 1 ,  12). 

Now that we have calculated the yd and z values, we can use the Dd matrices given in 
Example 6.2.1 to calculate the A matrix. In general we have 

- 8 -2 -2 0 -2 - 2 -  
-2 8 -2 -2 0 -2 
-2 -2 8 -2 -2 0 

0 -2 -2 8 -2 -2 
-2 0 -2 -2 8 -2 
-2 -2 0 -2 -2  8 

Thus when k = 2 and m = 3 we have 

BAf = 

2 x 4  1 
3 2 x 8  9 

A = -  I6 - -(y01Do1 +YlODlO + Yllnll) 

- Be, @ L j ’  @ . . . @  1’’ 
- 

1 Ju; e 2  ./;“;:;I. 

- Ji.;$, @ Be, @ . . ’ @ X J e k  

1 1 - 8 xji2 cz . . . @ Be, 

0 

6.2.1 Exercises 

1 .  Let m = 2, k = 2, C1 = 3 ,  and (2 = 4. Find the A matrix for the pairs with 
difference vector (1  I ) .  

2. Let In = 3, k = 3, el = 2, e 2  = 3 and C3 = 4. Give the A matrix for the triples with 
difference vector (01 1 , l l  I ,  1 1 I ) .  Give the A matrix for the other possible difference 
vectors in this case. 

6.3 THE MODEL FOR MAIN EFFECTS ONLY 
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and for the second attrihute is 

Then 

Although H Z  is uniquely determined, up to a change in the order in  which the rows and 
columns are written down, this is not true if E ,  2 3, as the next example shows. 

Let 0, = 1. Then here are three quite distinct possibilities for B4: 
EXAMPLE 6.3.2. 

1 - 1  -1  1 
2 2 1 2  

-1 3 - 3  1 - - - -  
2 J 5  2 f i I  2& 2JT; 

r r  

The first matrix consists of thc linear, quadratic and cubic contrasts, which are given in 
Exercise 2.1.4.6. When there is intercst in  particular contrasts between the levels of an 
attribute, then contrasts such as those in the second matrix can be used. The contrasts 
in the third matrix represent the main effects and two-factor interaction of two 2-level 
pseudo-factors (see Section 2.2.3). 

We will see subsequently that the choice of R can have an effect on the form of the <' 
matrix hut not on the cffciency of the design. 

If E ,  is the product of ('1 and e 2 ,  say, then one easy way to get a contrast matrix HP,, 
is to take the Kronecker product of the matrices I?,, (with the constant row ad,joined) and 
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Be, (with the constant row adjoined) and then discard the constant row to get the required 
matrix. The following example illustrates this construction. 

WEXAMPLE 6.3.3. 
Suppose that I1  = 2, t 2  = 3 and t 3  = 6. Then we can get the matrix R6 by discarding the 
first row of the matrix 

1 
2 

1 - 
2 d 3  

& 
-1 - 

1 
2 

-- 

1 
2 

_ _  

1 - 
2& 

1 - 
d5 

1 
2 

_ _  

0 

-1 - 
& .. 
0 

1 - 

In the following lemma, we derive an expression for BnfDdBi, for attribute q; this 
result is then used to obtain the block diagonal matrices of CAf for each attribute and an 
expression for det(Cnc). 

LEMMA 6.3.1. 
The (P, - 1) x (tq - 1) block matrix ofBn,DdBig for  attribute q i s  

and Je, is a matrix of ones of order tq. 
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For a particular attribute difference d, 

If  AI,,l = then 

and 
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Hence 

and 

if i ,  = 0, 
P , - 1  i f i , = l  

1 1 
-&Mi,, -.it,? = 

v% 
= ( P ,  - 1 p .  

Now the ( P q  - 1) x (P ,  - 1) block matrix of BhfDdBif  for attribute q is 

where there is one BpqMzq B;, term and ( k  - 1) terms of the form L . j > 3 M , 3  l j p 7  for 

j = 1. . . . , k: j # q .  Then for attribute q, 
fi 6 

as required. 0 

Note that the proof did not depend on the specific form of the B matrix; see Exercise 

Also observe that the same argument used in the proof can be used to show that Ch, is 

Using Lemma 6.3.1, for attribute q we can calculate the block matrix of the information 

6.3.1.2. 

a zero matrix for any choice of Bh and B,, as long as no contrast appears in both. 

matrix Be,,AR;q that is relevant to the main effect for that attribute. 

HLEMMA 6.3.2. 

of nttribute q is given by 
Under the null hypothesis, the block matrix of the information matrix for the main efect 

and the determinant of the information matrix CM for all the attributes is then 
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For attribute q ,  the determinant of Bp,i AkBi,, is 

Then the determinant of CAI is 

mEXAMPLE6.3.4. 
Let nz = 3,  k = 2, f l  = 2, and C2 = 3. Assume that the choice sets in the choice 

experiment are the ones with difference vectors v1 and v g  only. First we calculate C,jf by 
evaluating 

We also calculate ( 7 ~ 1  by using Lemma 6.3.2. The matrices A and Bhf are given in 
Examples 6.2.2 and 6.3. I ,  respectively. Then 

CAI = B A ~ A B ~ I .  

Cnr = B A ~ A B ~ ~  

6 
0 : o z  

Alternatively, using Lemma 6.3.2 and the Yd from Example 6.2.2, the ( I 1  - 1 )  x (41 - I )  
block matrix of (?,!I for the first attribute (that is, q = 1) is 
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= i{yOl(3 - 1)l[(2 - 1)'- (-I)'] 
9 

+ Ylo(3 - 1)'[(2 - 

+ Y11(3 - 1)'[(2 - 1)' - (-1)']} 

- (-I)'] 

1 

1 2 

1 
9 '  

= g j 2 ~ ~ ~  + 4~111 

= #2 x 0) + (4 x ,)I 
- - - 

Similarly, the (Pz - 1) x (& - 1) block matrix of C A ~  for the second attribute (that is, 
q = 2) is 

1 
6 

= -I2. 

Then, as before, 

; : o o  

0 : ; o  
0 : o ;  

. . . . . .  
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To find the D-optimal design, we must maximize det(C'A:nr), sub.ject to the constraint 
n,=, P,2/7n = 1. 

The following theorem establishes that the D-optimal design, for estimating main effects 
only, is one which consists of choice sets in which the sum of the differences attains the 
maximum value given i n  Theorem 6. I .  I .  

THEOREM 6.3.1. 
The D-optimal design, for  estirnating main effects only, is given by choice setS in M?hich 

there is at least one vj with a non-zero av, (thnt is, the choice set is non-einpry) and, for 
enrh vJ present, ,for each attribute q, 

k 

(771' - 1)/4, 
m2/4. 

P, = 2, m odd: 
e, = 2, m even, 

eq 2 m: 
(d - (t,$ + 2xy + y) ) /2 ,  2 < e, < nl. i m ( m  - 1)/2,  

s, = 

where positive integers x and ?J .ratisjj! the equation ni = T,x + y for 0 5 y < l,. The 
maxiinurn valiie of the detenninant of CAI is given b,y 

Proof: From Lemma 6.3.2, 

gives 

J J 

Now 
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so 

. r  

= fi [ 2Eq c [ c v . a v ,  c xv.;d] 
d,r, ,  =1 

" 3 ( 4  - 1) 
q=1 3 

Since 

e,-1 

Zv,;d = the  number of differences for attribute q. 
d,t,=l 

det(Chf) is maximized when xd,z,=l xv, ;d is maximized ; this is achieved when 

Then the maximum det(Cbf) is given by 

since N = ( L  Ci cv, ivI /m).  0 

The D-efficiency relative to the optimal design is calculated using the expression 

where p = C, (e, - l), the number of main effects we estimate. 

EXAMPLE6.3.5. 
Recall that form = 3 and k = 2 with = 2 and C2 = 3, there are three difference vectors 
v1 = (01,01,01), v2 = (01,10,11) and v g  = (01,11,11). Theorem 6.3.1 states that 
the D-optimal design has choice sets in which the entries in the difference vectors sum to 
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S1 = (in2 - 1)/4 = 2 for attribute I ,  and Sz = m(m - 1)/2 = 3 for attribute 2. and 

1 2-'  = [ 3 2 x 2 x 3 x ! 2 - 1 )  
2 X 2 X 2  2 x 3 ~ 3  

3 2  x 2 x 3 x (3 - 1 )  

Only difference vector v,3 satisfies S1 = 2 and 5'2 = 3; so the D-optimal design consists of 
the six triples, each with difference vector v3. All possible choice experiment designs are 
given i n  Table 6.6. In  this example the design consisting of choice sets from the difference 
vector vg only has the maximum det,(Cnf) of (4/27)(1/6)'. The efficiencies of the other 
designs are calculated relative to this maximum. Recall that the total number of parameters 
to be estimated is 

k 

p = X(tq  - 1 )  = ( 2  - 1) + (3 - 1) = 3. 
q = l  

Then, for example, the efficiency of the design consisting of choice sets with difference 
vector v2 only is 

Choice sets with difference vector v1 only, have an efficiency of 0 because the level of the 
first attribute does not change across the options in the choice sets and therefore the main 
effect cannot he estimated. 0 

6.3.1 Exercises 

1. Let i n  = 3,  k = 3, PI = 2, f 2  = 3, and & = 4. Give the maximum possible 
determinant of the information matrix for estimating main effects for this situation. 
Find a set of choice sets that realize this maximum. Can you find fewer choice sets 
that are just as good? 

2. Show that Lemma 6.3.1 holds for each of the B matrices given in Example 6.3.2. 

6.4 CONSTRUCTING OPTIMAL DESIGNS FOR MAIN EFFECTS ONLY 

In Theorem 5.2.1 a construction for small optimal designs for two-level attributes for choice 
sets of size 771 is given. A fraction of a factorial design is required as a starting design then 
the choice sets are formed by adding one or more sets of generators. For an optimal design 
for testing main effects only, the generators must have a difference vector in which the sum 
of the differences is the maximum. 

Using the same method, we now give a construction for optimal choice sets of size In for 
the estimation of main effects only for asymmetric attributes with two or mnre levels. using 
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Table 6.6 All Possible Choice Experiments for k = 2, l~ = 2, and l z  = 3 when m = 3 

- 
N vj 

in Design 
Efficiency 

(%) 

1 0 0  2 0 0 3 I O ( + ) Z  v1 

0 1 0  12 76.3 1 v2 

0 0 1  6 I00 V3 

1 1 0  14 75.90 

1 0 1  8 90.86 

18 

- 

20 

84.57 0 1 1  

1 1 1  83.20 

2 3 1  
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the complete factorial as the starting design. In order to do this, we need to consider the 
magnitude of the difterences between the attributes in  a choice set rather than just whether 
the attributes are different, as we did in the previous sections of this chapter. 

I n  a choice set of size 112 there will be m(m - 1 )  differences i n  the levels of the 
attributes between pairs of treatment combinations. Let e = ( e ~ e ~ .  . . e k )  represent the 
differences between one pair of treatment combinations. The differences are calculated 
component-wise modulo Q, for attribute q. 

w EXAMPLE 6.4.1. 
Suppose 771 = 3 and k == 2 with f l  = 2 and e, = 3. For the choice set (00. 10, 12) the 
713(111 - 1 )  = 6 differences are 

00 -  10 f 10, 
10 -00  = 10. 
00 -12  f 11. 
12 -00  3 12, 
10 -  12 = 01. 
1 2 - 1 0  3 02. 

For the first attribute, the difference 0 appears twice and 1 appears 4 times; for the second 
attribute the differences 0, I ,  and 2 all appear twice. 0 

In the following theorem we give a construction for optimal choice sets for estimating 
main effects only. 

THEOREM 6.4.1. 
Let F be the coniplete ,fortorial ,for k attributes where the qth attribute has P, levels. 

Slippose flint we choose o set of i n  generotors G = {gl = 0, g2. . . . , g?,,} sirch thot 
g,  # gj for i # j .  Suppose that g ,  = ( g j l , g i z , .  . . , g l k )  ,for i = 1, 
tho1 the milltiset qf dlfferences for  attribute q { * ( g ; , ,  - g 1 2 , )  I 1 5 i 
contains ench non-zero difference modirlo tQ eqiially often. Then thc choice sets given by 
the rows of F + gl , F + g l ,  F + g,, for  one or inore sets of gei1erntor.s G, are optimal 
for the estitnntion o f  rnniii effects only, provided that there are o.r , fw zero difereiice.s ns 
possible in ench choice ,set. 

Proof: Let P ~ , , , p , ,  be an L,  x P, (0.1) matrix, where there is a 1 in  position ( 1 1  , f z )  i f  
f z  - f l  = P,. Thus 

e,, - 1 

P,, = I 

pf,, ,n = Ip,,and C ~ t , ~ , ~ ~ ~  = .J@,, - ~ p , , .  

Now 

indicates those combinati 
are calculated component-wise modulo P,. 

We let ne be the total 
between elements in (7. Thus we know that 

e k ) ,  where all differences 

k )  appears as a difference 
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independent of e ,  for each e, # 0. We also know that 

1 

ei ek 1 

where N is the number of choice sets in the experiment. 
Consider 

C...Cae = (ez-l)az+x...x C . . . x a e 1  e,-lOe,+l e k  

(C, - 1)a, + azo 

e l  e k  el e , - t  e , + l  ek 

= 

a - - 

for i = 1.. . . , k .  Note that (!I - l)alo = (& - 1)alo = . . . = (& - 1)ako = a. 
Using the contrast matrix BAf from Section 6.3, it can easily be shown that the informa- 

tion matrix, C = B b f A B i 4 ,  is a block diagonal matrix where the qth block diagonal for 
attribute q is given by P ,~ql~ , - l / (m2N) .  Now we wish to have as few zero differences 
as possible. Recall that m = !,z + y where 0 5 y < C,. Then we need to have y 
entries which are repeated z + 1 times each and eq - y entries that are repeated z times 
each. This gives (z + 1)zy + x(z - l)(lq - y) differences that are zero; so the number 
of non-zero differences is m(m - 1) - (x + 1)zy - x(z - l)(C, - y) = 2Sq where S, is 
defined in Lemma 5.1 . I .  So considering all the choice sets, the total number of differences 
for attribute q is 2S,N. We also know that each non-zero level of attribute q appears a, 
times as a difference between elements of the sets of generators, Hence the total number 
of non-zero differences for attribute q is (C, - l)a,L. 

Equating gives 2SqN = (e ,  - l ) aqL .  Thus the coefficient of the qth block diagonal 
matrix for the designs constructed in this way is 

e,cYp= 2sg 
m2N (P, - l,(rI,,, 4 )m2 ' 

hence the designs are optimal by Theorem 5.1 . I .  

While the optimal designs have equal replication of all of the possible Kronecker products 
of the Pe,, designs in which the A can be written as a linear combination of the Kronecker 
products of the Pe,, still give rise to information matrices i n  which the main effects are 
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Now j;,, re,,,?,, = j;,, so --&$,, PF,~ ,~ , ,  -&jpf, = 1 and RP,, PP gives a matrix with the 

0 

How do we go about using the construction in Theorem 6.4.1 ? There are probably many 
ways of doing this but here is one technique which works. We begin by calculating the 
values of 1): and (where m = t g x  + y) so we know that we have y values (between 0 
and f ,  - 1) that are repeated .T + 1 times each and (e, - y) values which are repeated z 
times each. We then partition the values between 0 and P, - 1 into two disjoint sets, one 
containing y entries and the other containing the remaining (eg - y) entries. There are (2) 
ways to do this. For each partition we calculate the differences that arise from a vector 
with 7n entries in which the entries in the set with y entries are each repeated .I' + 1 times 
and the entries in  the other set are each repeated x times. All such vectors have as few 
0 differences as possible i n  the m(m - 1) differences. Next we partition the vectors into 
sets based on the number of times each non-zero entry modulo f, appears as a difference. 
We then choose how many vectors to take from each partition so that we have all non-zero 
differences appearing equally often over the set of vectors chosen. If there are several 
attributes, perhaps with different numbers of levels, then we must choose the same number 
of vectors for each attribute. Once we have the vectors for each attribute then we can 
calculate the entries for the sets of generators by choosing one entry from each vector for 
each generator i n  such a way that no generator is repeated. A couple of examples should 
make this clearer. 

HEXAMPLE 6.4.2. 
Suppose that k = 2, (1 = 2 and t 2  = 3, and that in = 3. 

Since 3 = 2 x 1 + 1, 0; = y = 1 and we have two partitions for the first attribute, 
where the entries in the first set are repeated twice and those in the second set are repeated 
once. Hence the vectors for the first attribute are (0,0,1) and (0.1 , I ) .  Each of these vectors 
has the difference 0 appearing twice and the difference 1 appearing 4 times. Based on the 
differences, there is only one partition of the vectors. 

Since 3 = 3 x 1, y = 0 and we have one partition, (0,l ,2}, and hence one vector (0,1,2) 
for the second attribute. Each non-zero difference appears three times in this vector. 

To get equal replication of the non-zero differences. we need only choose one vector for 
each attribute. Hence we calculate our generators by choosing the first position for each 
of the three generators from (0,0,1) and the second position from (0,l ,2). We have always 
assumed, without loss of generality, that the first generator is gl = 0 = 00. So the other 
two generators are 01 and 12, or 02 and 1 1 .  Thus the two possible sets of generators, G, 
are (00,01,12) and (00,02,1 I ) .  The choice sets that arise from these sets of generators are 
given in Table 6.7. Notice that since the order of the options within each choice set and 
of the choice sets within the experiment is immaterial; in this case both sets of generators 

columns of BP,, permuted. So we get the required result. 

give rise to the same choice experiment. 

mEXAMPLE6.4.3. 
Suppose that k = 2, P1 = L 2  = 4 and m = 6. 

Since 6 = 4 x 1 + 2, y > 0 and there are (i) = 6 partitions to consider where the 
entries in  the first set are repeated twice and those in the second set are repeated once. 
Thus we get the following 6 vectors to consider: (0,0,1,1,2,3), (0,0,1.2,2,3), (0,0,1,2,3,3), 
(0,l , I  ,2,2,3), (0,1, I ,2,3,3), (0,1,2,2,3,3). We can partition these vectors into two sets based 
on the differences between the elements of the vectors in each set. If we let 

A = { (0.0. I. 1 . 2 . 3 ) .  (0 ,  0,1,2.3,3),  (0, I ,  I ,  2 ,2 ,3) .  (0.1 , 2 . 2 , 3 , 3 ) }  
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Table 6.7 Choice Sets when k = 2, PI = 2, e2 = 3. and m = 3 

Option A Option B Option C Option A Option B Option C 
0 0  0 1  1 2  0 0  0 2  I 1  
0 1  0 2  1 0  0 1  0 0  1 2  
0 2  0 0  1 1  0 2  0 1  1 0  
I 0  I 1  0 2  1 0  1 2  0 1  
I 1  1 2  0 0  1 1  I 0  0 2  
1 2  I 0  0 1  1 2  I 1  0 0  

Design I Design 2 

and 
B = { (0, 0, 1 ,2 ,2 .3) ,  (0.1,1, 2,3,3)}, 

then the differences from any vector in A are 0, which appears four times (as it should by 
construction), 1 and 3, which appear nine times each, and 2, which appears eight times. 
The differences from any vector in B are 0, which appears four times, 1 and 3, which 
appear eight times each, and 2, which appears ten times. 

We want to choose a set of partitions such that each non-zero difference appears equally 
often. Suppose that we have 21 vectors from A and x2 vectors from B. Then the number 
of times 1 appears as a difference equals the number of times that 3 appears and we need 
only equate this to the number of times that 2 appears. Thus 9x1 + 822 = 821 + 10x2. 
Solving we have 2 1  = 2x2 and so we let 2 1  = 2 and 2 2  = 1. So for each attribute we 
choose two vectors from A (possibly the same vector twice) and one vector from B. 

Thus we could use (0,0,1,1,2,3) and (0,0,1,2,3,3) from A and (0,0,1,2,2,3) from B as 
the entries in the generators for the first attribute and (0.1,2,2,3,3) and (O,O, 1 , I  ,2,3) from A 
and (0,0,1,2,2,3) from B for the second attribute. 

Now we need to pair up the entries from these sets to get the actual sets of generators 
and we must do so without getting any repeated generator (g,) within a set of generators 
(G), or any repeated set of generators. Recall that we prefer to have 00 as one generator 
in each set of generators. So we could pair the first set from A for the first attribute with 
the set from B for the second attribute to get the set of generators G1=(00,01 , I  0,12,22,33), 
pair the second set from A for the first attribute with the first set from A for the second 
attribute to get the set of generators G2=(00,01 , I  2,23,32,33), and finally pair the remaining 
sets to get the set of generators G3=(00,01,10,21,22,~~). These three sets of generators 
give 48 choice sets of size 6 which are 100% efficient for estimating main effects. Pairing 
in a different way gives another optimal design with three sets of generators; 

GI = (00,02,10,11,23,32), 

G2 = (00,03,30,11,21,22), 

G3 = (00,01,13,22,32,33), 

for example. 
Suppose instead that our initial vectors for each of the two attributes has the vectors 

(0,0,1,1,2,3)and (0,0,1,2,3,3)from A,  the vector (0,0,1,2,2,3)from B for the first attribute, 
and vectors (0,l , I  ,2,2,3) and (0,1,2,2,3,3) from A and (0,I ,1.2,3,3) from B for the second 
attribute. 
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Pairing, we can get the sets of generators 

GI = (00.01:11,12,22.33), 

G2 = (00.01:11.22:23.3:3). 

G:< = (00, Ol. ,  12.23.32,33). 

which results in an optimal design. However, there are only 40 distinct choice sets and if 
these alone are used, then the design is 99.99% efficient. It is usual to remove repeated 
choice sets because their presence can confuse the respondents. The repeated choice sets 
arise because there are three pairs with difference 22 (00 and 22; 01 and 23; I I and 33). 
Hence the differences 1 and 3 only appear four times and the difference 2 only appears 
five times from this pairing. Since 1 and 3 appear eight times and 2 appears nine times as 
differences from any vector i n  A this suggests that using either GI or G3, together with 
G2, will give 24 sets which are 100% efficient (since each non-zero difference will be 
represented 13 times over the two sets); this is indeed the case. 

It is also worth noting that we can use different contrast matrices to calculate the C,  and 
therefore C - ' ,  matrices. Although the structure of the C-' matrices may be different, the 
determinants, and hence the efficiencies, will be equal. If we use as B 4  the contrast matrix 
based on the orthogonal polynomial contrasts for the 40 distinct choice sets discussed in 
the previous paragraph, we have 

and 

Bq = 

7884 

-3 -1 1 3 - - - -  
2& 2 6  2 6  2& 

1 -1 -1 1 
2 2 2 2  

-1 3 - 3  1 - - - -  
2& 2& 2& 2 &  

0 ~l 
. . . . .  I 

If, instead, we use the 22 factorial contrast for B 4  (see Example 6.3.2), then 

& = -  -1 1 -; : ]  i 1 -1 -1 1 

and 
0 : o  0 0 - 720 0 - 

43 
0 = 0 : 0  0 0 

0 0 0 . 7 2 0 0  0 
: ? s o  

0 0 0 .  11 
0 0 0 : o  0 %  

0 " 7 2 .  a 3 . 0  0 0 

. . . . . . . . . . . . . . . .  
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In both cases, the determinant of the C matrix is 4.75099 x and the efficiency is 
99.99%. 0 

WEXAMPLE 6.4.4. 
Let k = 3, 

Since we want each set of generators to contain 000 we only consider vectors which 
contain 0 for each attribute. 

Suppose m = 2. For the first attribute we have one vector (0,l) with difference 1 twice. 
For the second attribute we have two vectors, (0,l) and (0,2), both giving each non-zero 
difference once. For the third attribute there are five vectors which form three sets in 
a partition based on differences: (0,l) and (0,S) with non-zero differences 1 and S once 
each; (0,2) and (0,4) with non-zero differences 2 and 4 once each; and (0,3) with non-zero 
difference 3 twice. So for the third attribute we need to have two vectors from each of 
the first two sets of the partition and one from the third set to ensure that all non-zero 
differences mod 6 appear equally often. Consequently we must have 5 sets of generators 
altogether. For the second attribute we can either repeat the same vector 5 times or have 
both vectors represented. One possible solution is (O,l) ,  (O,l) ,  (O,l), ( O , ] ) ,  and (0,l) for 
attribute 1; (O , l ) ,  (0,2), (O,l) ,  (0,2), and (0,l) for attribute 2; and (0,1), (0,2), (0,3), (0,4), 
and (0,s) for attribute 3 .  Using these sets in order gives the five sets of generators 

= 2, &2 = 3, and & = 6. 

G I  = (000. ill), G2 = (000.122), G3 = (000,113), 

Gq = (000,124), G5 = (000.115). 

There are 180 pairs and the design is 100% efficient. 
Suppose m = 3. There is one partition of the vectors for the first attribute with entries 

(0,0,1) and (O,l,l). There is one vector for the second attribute: (0,1,2). There are 
(i) = 10 vectors for the third attribute (since we must include 0) and these are partitioned 
into three sets. The first set consists of (0,1,2), (0,l ,S) and (0,4,5) with non-zero differences 
1 and 5 twice each and 2 and 4 once each. The second set has (0,2,4) with non-zero 
differences 2 and 4 thrice each. The third set has the remaining 6 vectors and each of 
these has non-zero differences 1, 2, 4, and 5 once each and 3 twice. Suppose that we 
have 2 1  vectors from the first partition for attribute 3, 2 2  from the second and 2 3  from the 
third. Because we want to have each non-zero difference appearing equally often, we get 
221 + 2 3  = 2 1  + 322 + 2 3  = 2x3. Suppose 2 2  = 0. Then 2 1  = 2 3  = 0 which is a 
contradiction. Instead, try 2 2  = 1. Then 221 + 2 3  = 2 1  + z3 + 3; so 2 1  = 3, and hence 
2 3  = 6. Thus for an optimal design we need to have 10 sets of generators and 360 choice 
sets. We could use ( O , l , l )  in all 10 sets of generators for attribute 1 ,  (0,1,2) in all 10 sets 
of generators for attribute 2 and (0,1,2), (0,1,3), (0,1,4), (O,I,S), (0,2,3), (0,2,4), (0,2,5), 
(0,3,4), (0,3,5), and (0,4,5) for attribute 3. This gives the 10 sets of generators 

GI = (000,111,122), Gz = (000,111,123), G3 = (000,111,124), 

Gq = (000,111,125), G5 = (000,112,123), G6 = (000.112.124), 

G7 = (000,112,125), G8 = (000,113,124), Gg = (000,113.125), 

Glo = (000,114,125). 

Although there is nothing in the results that we have presented here that would allow 
you to calculate this, it is true that using only G1 gives a design with 36 choice sets which 
is 97.80% efficient and using only Gz gives 36 choice sets which are 99.39% efficient. 
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In both cases the C,T~ and C,' matrices are block diagonal. This improvement is not 
surprising; Gz has a more equal representation of the non-zero differences for the third 
attribute than does G z .  On the other hand, using only Gc with elements (O,2,4) for the third 
attribute results in det~(C,lf) = 0, which is not surprising since only two of the differences 
are represented. 

For 772 = 4, a similar argument shows that 5 sets of generators are required. For TTL = 5, 
the third attribute only requires one set of generators, and 36 choice sets are 100% efficient 
in  this case. 0 

We have seen in the previous example that often i t  is only necessary to use one set of 
generators to get a few choice sets that are near-optimal. In some cases, one set of generators 
will give rise to an optimal design if  there is a difference set for the appropriate values o f t ,  
and 111. For example, there is an optimal set of 56 choice sets when k = 4, P I  = 2 ,  E z  = 4, 
43 = 7 ,  and ~n = 4 obtained by using the set of generators G=(OOO,Ol 1,122,134). This is 
because the differences from the set {0,1,2,4} contain each non-zero difference modulo 7 
exactly once. Other difference sets given in Section 2.4 can be used to construct small sets 
of optimal generators. 

6.4.1 Exercises 

1.  Let 771 = 3,  k = 3,  (1 = 2, ez = 3,  and e 3  = 4. Use the ideas in this section to find 
some small but good designs for estimating main effects. 

2. Green ( 1  974) gave a construction for choice experiments designed to estimate main 
effects. His idea involved using the runs of an orthogonal array to correspond to 
the treatments of an incomplete block design and to let each block of the RlBD 
correspond to one choice set of size 7n in the choice experiment. 

The properties of these choice experiments are not readily determined i n  general, as 
they will depend on both the BIBD and the OA used. 

Suppose that we have k = 7 binary attributes. Use the OA[8,7,2,2] and a (8,14,7,4,3) 
BIBD and Green's construction to get the 14 choice sets. Show that these choice sets 
have CAI = 

3. Use Green's construction, described in Exercise 6.4.1.2, with k = 5 attributes and 
4, = 4 levels, q = 1.2, . . . ~ 5 to construct a choice experiment with 16 choice sets 
of size 4. What is the efficiency of the resulting design for the estimation of main 
eflects? 

17 and are 85.7 143% efficient for the estimation of main effects. 

6.5 THE MODEL FOR MAIN EFFECTS AND TWO-FACTOR INTERACTIONS 

To find the D-optimal designs for estimating main effects and two-factor interactions for 
k attributes with any number of levels and for any choice set size 171, we now evaluate the 
p x p information matrix = B A ~ T A B ~ , , ,  where 

y = l  41=1,2=,1+1 

As in  Section 6.3, we let B,jr be the normalized rows of B that correspond to main 
effects, and we now let € 3 ~  be the normalized rows of B that correspond to the two-factor 



198 DESIGNS FOR ASYMMETRIC ATTRIBUTES 

interactions. The contrast matrix associated with main effects and two-factor interactions 
is denoted by B n l ~  and is the concatenation of Bbf and BT 

where 

The following example illustrates the construction of the contrast matrix for main effects 
and two-factor interactions. 

DEXAMPLE 6.5.1. 
Let k = 2 and (1 = 2, & = 3. From Example 6.3.1, the contrast matrix for main effects 

is given by 

The contrast matrix for the two-factor interactions using B2 and B3 from Example 6.3.1 is 
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Then 

In the following lemma. we derive an expression for f? ,v~ D d  BiiT which is then used 
to obtain the determinant of Cnfi-. 

LEMMA 6.5.1. 

 her^ the ( P ,  - 1) x ( P ,  - 1)  block niatrix of B,jiDdBj,, for crttribute q is 

First, we consider Rnf Dd B;!. From Lemma 6.3. I ,  we see that the (4q - 1 ) x (Pp - 1 ) 
block matrix of R,qr I ) d  €?if lor attribute q is 
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We now show that the off-diagonal block matrices Bnf DdB!, and B T D ~ B A ~  are both 
equal to 0. For a particular attribute difference d, 
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41 and q 2  contains ( k  - 2) terms of the form 

L j i  AI L j y  = (t, - I) 'J  for 3 = I . .  . . . k j # 41, 42 
1 7'fi ' 

and there are two tenns 
BY,,, A f z , l l  B& = 

B v , ~ ~  AfLr i z  Bic12 = (- 1 

kTl - 1  

Iti2 - 1. 

and 

Then the (tyl - l ) ( tq2  - 1) x ( P q ,  - I)(& - 1) block matrix of B T D ~ B ~  for attributes 
ql and 92 is 

as required. 

In the following lemma we derive an expression for the determinant of dpt (rm) 
LEMMA 6.5.2. 

Under the nidl kvpothesi~. the defeiminnnt of CnlT is given by 
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where L d  = n,k=l(!, - 1)’j 

Pmo$ Recall that p is the total number of parameters to be estimated and is defined to be 

k k-1 k 

From Lemma 6.2.1, under the null hypothesis, 

C A ~ T  = BMTAB;,, 

1 

d 

Thus C A ~ T  is a block diagonal matrix with block matrices for the main effects of attributes 
1 , .  . . , k down the diagonal, then block matrices for the each of the interaction effects 
between all pairs of attributes down the rest of the diagonal. 

Using Lemma 6.3.2, the block diagonal term of C A ~ T  for main effects for factor q is 
given by 

and the component of the determinant for the main effects for all attributes is 

Now consider the (& - I ) (& - 1) x (& - l ) (& - 1) block matrix of C A ~ T  for the 
interaction effect of attributes q1 and 42. Using Lemma 6.5.1, we have 
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EXAMPLE 6.5.2. 
Let 771  = 3, k = 2, f1 = 2, and ez = 3. Assume that the choice sets in  the choice 
experiment are the ones with difference vectors v1 and v3 only. First, we calculate ( I I I T  

and hence d '? t (cAIT)  by evaluating 

CMT = B A ~ T A B L ~ .  

The matrices A and BAIT are given in Examples 6.2.2 and 6.5.1, respectively. Thus 
Then we also calculate d'?t(fArT) by using Lemma 65.2.  

Alternatively, we can use the results from Lemma 65.2.  The yd given in Example 6.2.2 
are 

2 2 
901 = -. y10 = 0, and y11 = -.  

8 8 



204 DESIGNS FOR ASYMMETRIC ATTRIBUTES 

Then the main effects part of det(CAfT) is 

11 3-1 

2 
8 

+ - (2  - 1)'[(3 - 1)' - ( - I ) ' ]  

}] x 

The two-factor interaction part of det(CA4T) is 

= [; {Yol(el - 1)0( t ,  - 1)' [ 1 - (1 - e l ) o ( i  11 - e2)l  
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z ( 2 -  1)'(3- 1)'  ] + o  (1 - 2)"(1 - 3)1 
( 2 - 1 ~ 3 - 1 )  

(1 - 2)1(1 - 3)1 
2 
8 

+ -(2 - 1)1(3 - I ) '  

Then 

All possible designs for n2 = 3, k = 2 ,  I1  = 2, and .t2 = 3 are shown in Table 6.8. In 
this example, the design consisting of choice sets from all three difference vectors has the 
maximum det(C.ylT) of 

The efficiencies of the other designs are calculated relative to this design. Recall that the 
total number of parameters to  be estimated is 

k k-1 k 

p = C(Pq - 1) + c c (4, - 1 ) ( P n  - 1) 
q= 1 q l = l 4 2 = Y 1 + 1  

= [ (2  - 1) + (3 - 1)] + ( 2  - 1)(3 - 1) 

= 5 .  

Then, for example, the efficiency of the design consisting of choice sets with difference 
vector v2 only, is 

We have been unable to get any general results, true for all m, for the form of the designs 

We can get specific results for fixed 771 and k .  For instance, for particular 771 and A. 
that are optimal for estimating main effects and two-factor interactions. 

values, we can evaluate det(CA1T) for all possible designs. 

=EXAMPLE 6.5.3. 
Suppose tn = 2 and k = 2. Then the main effects part of det(CnfT) is 
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Table 6.8 
m = 3: Main Effects and Two-Factor Interactions 

All Possible Choice Experiment Designs for k = 2, = 2, and & = 3 when 

vj in Design N det( C M T )  Efficiency (%) 

I1 e2-1 
+ Yll(t1 - l)"(& - 1)1 - (-1)1] 

11 e2-1 
= [ { e l Y l o  + C l ( t 2  - 1 ) Y l l  } ] p l - l  x [; {bl +!,(el - 1)Yll 

= [ $ { YlO + (& - 1 ) Y l l  }] x [; { YO1 + (Cl  - 1 ) Y l l  }] ez-l . 

The two-factor interaction part of det(Ch1T) is 

= [; ( R 1 ( Y *  - 1)0(& - 1)' [ 1 - (1 - e l ) o ( l  l l  - & ) I  
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Then 

Now 
v1 = 01, CV1 = 

v2 = 10, c,, = 

v3 = 11, cv:< = 

2cy1av1 - 
2(!1 - 1)0(Q,  - 1 ) 1  - 

2cv,av, - 

2(P1 - 1 ) 1 ( P *  - 1 ) O  

YO1 = 

- QV2. ?/lo = 

Then 

(e l  -1  ) i F n - l )  

11 
Now we can evaluate explicitly the determinants for each of the possible designs for 

77) = 2 and k = 2. Recall that 

zv, 'n _ -  - ZVI rr,, = 
N LC3CVi% 

since 
L 

N = -c,, i,, . 
I71 

The values for n,, for all the possible designs are given in Table 6.9 and the determinants 
for each of these designs are given in Table 6.10. It is possible to investigate the relative 
magnitudes of these determinants. In all cases, the largest determinant is that obtained from 
the choice experiment containing all the pairs. But this de3ign has a determinant that is only 
about S% larger than that from the choice experiment with only the pairs with difference 
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Table 6.9 Values of av, for m = 2 and k = 2 

vj in Design 

Table 6.10 Values of det(Cn4.r) for m = 2 and k = 2 

vj in Design 

V I  = ( O I )  

v2 = (10) 

v3 = ( I l l  

v1 & v2 

v1& v3 

v2 VB 

v1. v2 & v3 

0 
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vector (1 I )  when P I  = 8 2  = 20. but it is 965 times larger than the determinant for the 
experiment with only the pairs with difference vectors (01) and (10) when i?, = 42 = 20. 
Indeed, as 41 and 82 tend to infinity, the limit of the ratio of the determinant of the design 

0 

Consider now the situation when k = 3 and rri = 2. Here there are 7 difference vectors 
possible and so there are 127 possible choice experiments to consider. For 1'1 = 2,82 = 2,s  
and P3 5 8, the optimal design has all the pairs with difference vectors (01 1). (101). and 
( 1  10). For 41 = 2, 4 5 P2 5 8, 82 5 P3 5 8, the optimal design has all the pairs with 
difference vectors (101) and ( I  10). When = 3, the optimal design has all the pairs with 
differencevectors(011),(IOI),and(ll0) whent2 = 3,4 ,5andP3 = 3,4,5,S;but  ithas 
all the pairs with difference vectors (101) and ( I  10) when 5 5 t 2  5 8 and P? 5 F3 5 8 
(except P 2  = 5, P3 = 5, 6). This situation continues for all the cases we have investigated. 
If we assume, without loss of generality, that t1 5 P2 5 P 3 ,  then for fixed f1 all three 
difference vectors of weight 2 give the optimal design when P2 and 03 are "close enough" 
to 41. As 4, and 83 get larger, i t  is sufficient to have only those pairs with difference vectors 
(101) and ( 1  10). See Appendix 6. A.2 for details. When 4, = 2 then the determinant of the 
design with pairs with difference vectors ( 1  10) and (101) is at most 11.3 times that of the 
determinantof the design with pairs with difference vectors ( 1  lo), (101). and (01 I ) .  When 
P1 = 5 the same multiple is only 1.32. 

5 82 5 P3 5 P? 5 8. 
There are 8 different sets of optimal difference vectors. The most common has three 
difference vectors of weight 3: ( I  01 I ) ,  ( I  lo l ) ,  and ( I  110). The second most common has 
two difference vectors of weight 3: ( I  101) and ( I  1 10). Details may be found in Appendix 
6 .  A.3. These designs all have a large number of choice sets, and we can use the method 
in Section 6.4 to obtain near-optimal designs with a smaller number of choice sets. 

with all pairs to that of the design with pairs with difference (1 1 ) only is I .  

When in  = 2 and k = 4 we have considered all cases with 2 5 

EXAMPLE 6.5.4. 
Suppose n, = 2, k = 4 with t 1  = 2, E2 = 3, P3 = 6, and E4 = 6. By investigating all 
possible designs, we found that the 21 60 pairs with difference vectors ( 1  101 ) and ( 1  1 10) 
form the optimal design. By starting with the complete factorial and adding generators 
( 1  10 I ), ( 1  I lo), and ( 101 I ) we obtain a design in 648 pairs that is 94.4% efficient and the 

0 

Results for ni = 2 and I;  = 3 are given in Appendix 6. A.4. For rn = 3 and k: = 2 for 
2 5 P I  5 /i2 5 8 see Appendix 6. A.S. For rn = 4 and k = 2 for some values of El  and 1'2 

see Appendix 6. A.6. 

C A ~ T  matrix is block diagonal. 

6.5.1 Exercises 

1 .  Let k = 3 and 7n = 2. Let El = Pz = 2 and let E3 = 3. Give the pairs that are optimal 
for the estimation of main effects and two-factor interactions. Suppose that you only 
want to estimate the interaction between factors 1 and 2. What is the determinant of 
the appropriate information matrix? Can you find a set of pairs that do better than 
this'? 

2. Another type of construction that has been developed by Grasshoff et al. (2004) uses 
each row of an OA to construct a choice set of size 2 by letting the symbols of the 
OA refer to ordered pairs of attribute levels (for the two options in each choice set). 
Consider an OA[ZX: 36, 6: 21 and let E l  = . . . = 1'6 = 3 and P7 = 4. Then equate the 
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levels of the factors in  the OA with pairs of levels for each attribute in some way; 
perhaps 0 H 0 , l ;  1 0 ,2  and 2 H 1 ,2  for the 3-level attributes and 0 H 0 , l ;  
1 H 0,2,  2 H 0,3, 3 H 1,2,  4 H 1 , 3  and 5 H 2 ,3  for the 4-level attribute. 
So if one row in the OA was 0221014, then the corresponding choice set would be 
(01 10001,1222123). 

(a) Construct all 18 pairs associated with an OA[ 18; 36, 6: 21. 

(b) What is the efficiency of these pairs for the estimation of main effects? main 

(c) What pairs would you get for these situations if you used the approach outlined 

effects plus two-factor interactions? 

in this chapter and how efficient would they be? 

3. Hadamard matrices are also used in Grasshoff et al. (2004) to construct paired 
comparison designs. Let At have as its rows the pairs in an optimal design with 
k = 1 and m = 2. Let H n , k  be k columns of a Hadamard matrix of order R, 
where k 5 n. Then the pairs are obtained from the matrix Hn,k C3 A t .  For 

instance, if li = 2 = k then A2 = [(0, l ) ]  and H 2 , 2  = [ -: ] . ~ h u s w e g e t  

H2,2 8 A2 = [ (O' ( O '  ') ] . We get the choice set (00, 11) from the first row 

and the choice set (01, 10) from the second row. Give the 12 choice sets of size 2 
that you get from this approach when e = 3 and k = 4. How efficient is the design 
for the estimation of main effects? main effects plus two-factor interactions? 

(031) -(0,1) 

6.6 REFERENCES AND COMMENTS 

Most of the results in this chapter originally appeared in  Burgess and Street (2005). Readers 
can find software to construct choice sets from an initial factorial design and sets of gen- 
erators, as well as calculate the corresponding information matrix and variance-covariance 
matrix, at the following website: http://maths.science.uts.edu.au/maths/wiki/SPExpts. 

The choice of which of the different possible B matrices to use depends very much on 
the effects that are of interest. If you are interested in estimating the linear, quadratic, and so 
on, effects for an attribute with discrete quantitative levels, then the B matrix with contrasts 
that arise from the appropriate orthogonal polynomial contrasts are natural. If, on the 
other hand, you have chosen to represent a pair of binary attributes by one 4-level attribute 
because you want to be able to estimate the main effects and the two-factor interaction 
effect between these two attributes, then it makes sense to use the contrast matrix for the 
22 factorial design. The choice of B will not affect the structure of the C-' matrix if 
the choice experiment is optimal: C-* will be a diagonal matrix. On the other hand, if 
the choice experiment is not optimal, then it is sometimes possible for one B matrix to 
result in a diagonal C-' matrix and for another choice of B to give a C-' matrix which is 
block diagonal (so the effects of interest are estimated independently of each other but the 
particular components within an effect that are determined by the choice of B matrix are 
not estimated independently). 

Bunch et al. (1996) give a construction in which an OMEP is used for the treatment 
combinations in the first option, and subsequent options are constructed by shifting the 
levels of each attribute by adding a constant, using modulo arithmetic. This method is 
really a subset of the methods described in this chapter. 
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Appendix 

6. A . l  Optimal Designs for ~n = 2 and k = 2 

6. A.2 Optimal Designs for 7n = 2 and k = 3 

6. A.3 Optimal Designs form = 2 and k = 4 

6. A.4 Optimal Designs form = 2 and k = 5 

6. A S  Optimal Designs form = 3 and k = 2 

6. A h  Optimal Designs f o r m  = 4 and k = 2 

6. A.7 Optimal Designs for Symmetric Attributes form = 2 
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6. A.l  OPTIMAL DESIGNS FOR m = 2 AND k = 2 

I el e2 

I 2 2  

1 3 7  

3 8  

4 4  

4 5  

4 1  

4 8  

5 5  

5 6  

5 1  

I 5 8  

6 8  

7 1  

7 8  

8 8  
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6. A.2 OPTIMAL DESIGNS FOR m = 2 AND k = 3 

2 2 2  

2 2 3  

2 2 4  

2 2 5  

2 2 6  

2 2 7  

2 2 8  

2 3 3  

2 3 4  

2 3 5  

2 3 6  

2 3 7  

2 3 8  

2 4 4  

2 4 s  

2 4 6  

2 4 7  

2 4 8  

2 5 s  

2 5 6  

2 5 7  

Difference Vectors 

(0ll),(l01)&(ll0) 

(01 I).( 101) & ( I  10) 

(0 l l ) . ( l 0 l )&( l l0 )  

(0l l ) , ( l0l)&(l l0)  

(01 1).(101) & ( I  10) 

(01 1 ),(101) & ( I  10) 

(01 I ) , (  101) & ( I  10) 

(01 I ) ,  (101) & ( I  10) 

(01l ) , ( l0 l )&( l l0)  

(01 I ) .  (101) & ( I  10) 

(01 I ) ,  (101) & (110) 

(0 l l ) . ( l0 l )&( l l0)  

(01 I ) ,  (101) & ( I  10) 

(101)&(110) 

(101) & ( I  10) 

(101)&(110) 

(101)&(110) 

(101) & ( 1  10) 

(101) & (110) 

r l o l ) & ( l l O )  

(101) & (1  10) 
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el ez e3 

2 5 8  

2 6 6  

2 6 1  

2 6 8  

2 1 8  

2 8 8  

3 3 3  

3 3 4  

3 3 5  

3 3 6  

3 3 1  

3 3 8  

3 4 4  

3 4 5  

3 4 6  

3 4 7  

3 4 8  

3 5 5  

3 5 6  

3 5 7  

3 5 8  

3 6 6  

Difference Vector 

(101) & (110) 

(101) & ( I  10) 

(101) & (110) 

(101)&(110) 

(101)&(110) 

(101) & (110) 

(011). (101) & (1  1 

(01l),(l01)&(ll 

(Oll), (101) & ( I  I 

(01 l), (101) & (11 

(0l1),(10l)&(1l 

(01l) , ( l0l)&(l l  

(Oll), (101) & (11 

(Oll), (101) & (11 

(011),(101)&(11 

(01 I), (101) & ( I  1 

(011),(101)&(l1 

(0l l ) , ( l01)&(l1 

(011),(101)&(l' 

(101)&(110) 

(101) & (110) 

(101) & (110) 
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3 6 7  

3 6 8  

3 1 7  

3 7 8  

3 8 8  

4 4 4  

4 4 5  

4 4 6  

4 4 7  

4 4 8  

4 5 5  

4 5 6  

4 5 1  

4 5 8  

4 6 6  

4 6 7  

4 6 8  

4 7 8  

4 8 8  

5 5 5  

5 5 6  

5 . 5 1  

Difference Vectors 

(101) & (1  10) 

(101) & ( I  10) 

(101 ) & ( I  10) 

(101) & ( I  10) 

(101) & ( I  10) 

(01 I ) ,  (101) & ( I  10) 

(0 l l ) , ( l 01 )&( l l0 )  

(011). (101)&(110) 

(01 l ) . ( l 0 l )&( l l0 )  

(01 I ) ,  (101) & ( I  10) 

(01 I ) . ( l 0 l ) & ( l l O )  

(01l).(l01)&(ll0) 

(01l) , ( l0l)&(l l0)  

(01 I ) ,  (101) & ( 1  10) 

(0 l l ) , ( l0 l )&(110~ 

(01 I ) .  (101) & ( I  10) 

~0ll) . (10l)&(110)  

(101) & ( I  10) 

(101)&(110) 

(01 I ) .  (101) & ( 1  10) 

(011).(10l)&(1l0) 

(01 I ) .  (101) & (1 10) 

det( C o p t )  

(l+3( L ) 4 ( L ) 7 ( = ) 1 2 ( 2 ) 2 1 ( " ) 2 8  
4880 1052 2440 9760 4880 9760 

(")3(')"(")"(")1"(1)'5(1)26 
396 330 330 495 4% 264 

(")3 ( 4 ) 5  ( 1 ) 6 (  x ) l 5 (  I+ 18 (2 130 
5292 392 378 10584 L O 4  5292 

( L ) 3 ( + ) 5 ( A ) 7 ( 2 ) 1 5 (  L ) % 1 ( & ) 3 5  
568 2272 426 2272 1704 6816 

( & ) 3 ( L ) 7 ( L ) 7 ( L ) 2 1 ( L ) 2 1 ( L ) 4 9  
384 896 896 448 448 448 

( L ) 4 ( L ) 4 (  L ) 6 (  ")y +)24(+)24 
448 448 400 896 22400 22400 
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5 5 8  

5 6 6  

5 6 1  

5 6 8  

5 1 8  

5 8 8  

6 6 6  

6 6 1  

6 6 8  

6 7 1  

6 1 8  

6 8 8  

I 1 7  

I 7 8  

7 8 8  

8 8 8  

Difference Vectors 

( 0 l l ) , ( l 0 l ) & ( l l 0 ~  

(01 I ) ,  (101) & ( I  10) 

det( Copt) 

( l+4 ( 11 1 4  ( 5760 5760 450 5760 28800 28800 
) 7( 17 ) 16 ( 2 )28 ( 79 ) 28 

( L ) 4 (  ")7( ")7(j9-)28("-)2*(')49 
960 8400 8400 33fi00 33600 600 

(')6('-)7(JL)7(X)42(2-)42(_8)4 

(')7( ')7(')7(")49(")49( L ) 4 9  

1216 14896 14896 59584 59584 7448 

1344 1344 1344 4704 4704 4701 
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2 2 2 2  

2 2 2 3-8 

2 2 3 3  

6. A.3 OPTIMAL DESIGNS FOR m = 2 AND k = 4 

(001 I ) ,  ( O I O I ) ,  (01 10). (01 I I ) .  (IOOI), 

( I O I O ) ,  (101 I ) ,  ( 1  loo), ( I  101) & ( I  110) 

( o l l l ) , ( l o l l ) . ( l l o l ) & ( l l l o )  

( o l l l ) , ( l o l l ) . ( l l o l ) & ( l l l o )  

- 

I el ez e3 p4 I Difference Vectors 

2 2 3 4-8 

2 2 4 4-5 

( 0 l l l ) , ( l l 0 l ) & ( l l l 0 )  

o r ( l O l l ) , ( l l O l ) & ( l l l O )  

( 0 l l l ) , ( l l 0 l ) & ( l l l 0 )  

or ( l o l l ) ,  ( I  101) & ( 1 1  10) 

2 2 4 6-8 (0110).(1101)&(1110) 

or (1010). ( I  101) & ( I  1 10) 

2 2 S 6-8 

2 2 6 6  

(0110),(1101)&(1110) 

or(1010),(l101)&(1110) 

( O I O I ) ,  ( I  101) & ( 1  110) 

or(0110),(l101)&(1110) 

or(1001),(l101)&(1110) 

or ( 101 0), ( 1 10 1) & (1  1 10) 

2 2 6 7-8 

2 2 1 1  

2 2 7 8  

2 2 8 8  

2 3 3 3-8 

(01 lo), (1101) & (1110) 

or(1010),(1101)&(11IO) 

( O I O I ) ,  ( I  101) & (1110) 

or(0110).(1101)&(11lO) 

o r ( l O O l ) , ( l l O l ) & ( I l l 0 )  

or (1010). ( I  101) & (11 10) 

(0110),(1101)&(1110) 

or ( I O I O ) ,  ( I  101) & (11 10) 

(0101).(1101)&(1110) 

or(O110),(l101)&(1110) 

or ( I O O I ) ,  (1101) & ( I 1  10) 

or (1010). ( 1  101) & ( 1  I 10) 

(101 I ) ,  ( I  101) & (1110) 

( 2 4 6 6 1  (101 I ) ,  ( 1  101) & ( 1  110) I 

2 3 4 4-8 

2 3 5 5-8 

2 3 6 6-8 

2 3 7 7-8 

(101 I ) ,  ( I  101) & ( 1  110) 

( I  101) & ( I  110) 

( 1  101) & ( 1 1  10) 

(1101) & ( I  110) 

2 3 8 8  

2 4 4 4-8 

2 4 5 5-8 

(1101)&(1110) 

(101 I ) ,  ( I  101) & ( 1  110) 

( l o l l ) , ( l l o l ) & ( l l l o )  
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2 5 8 8  (1101) & (1110) 

2 4 6 7-8 1 (1101) & ( I  110) 

2 4 7 7-8 I (1101)&(1110) 

2 6 6 6 - 8  

2 6 7 7-8 
2 6 8 8  

2 7 7 7-8 

1 2 4 8 8 1  (1101) & (1110) 

( l o l l ) . ( l l o l ) & ( l l l o )  

(I01 I ) ,  ( I  101) & ( I  110) 

(1011),(1101) &(1110) 

(101 I ) ,  ( I  101) & ( I  110) 

1 2  5 6 6-8 I (101 I ) ,  ( I  101) & ( I  110) 

2 7 8 8  ( lol l ) ,  ( I  101) & ( 1  110) 

2 8 8 8  (1011). (1  101) & ( 1  110) 

3 3 3 3-7 

3 3 3 8  

(011 I), (101 I ) ,  (1101) & ( I  110) 

(0111). (101 I )  &(1110) 
or (011 I ) ,  (1101) & ( I  110) 

o r ( l O l l ) , ( l l O l ) & ( l l l O )  

3 3 5 5-8 I ( I  101) & (1 110) 

3 3 6 6 - 8 1  (1101)&~1110) 

3 3 4 4  

1 3  3 7 7 - 8 1  (1101) & ( I  110) 

(011 l ) , ( I O l l ) ,  (1101) &(1110) 

3 3 8 8  

3 4 5 5 4 1  (1011). (1101) & ( I  110) 

3 4 5 7-8 I (1101) & ( I 1  10) 

(1101) & ( I  110) 

3 4 6 6 - 8 1  
3 4 7 7-8 I (1101)&(1110) 

( I  101) & ( I  1 10) 

3 4 8 8  

3 5 5 5-8 

( 1  101) & ( 1  110) 

(101 I ) ,  ( I  101) & ( I  110) 

3 5 6 6 8  
3 5 7 7  

3 5 7 8  

3 5 8 8  
3 6 6 6 - 8 1  

3 6 7 7-8 I (IOII), (1101) &(1110) 

(1011). ( 1  101) & ( I  110) 

(1011). (1101) &(1110) 

( l o l l ) , ( l l o l ) & ( l l l o )  

(1101) & ( I 1  10) 
(1101) &(1110) 

3 6 8 8  ( l o l l ) ,  (1101) &(1110) 

3 7 8 8  (1011). (1101) &(1110) 

3 8 8 8  ( l o l l ) ,  ( I  101) & ( I 1  10) 
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( 1  YZ p3 p4 Difference Vectors 1 

4 4 5 5  

1 4 4 s 6  I 
(01 1 I ). ( 101 I ). ( I 101 ) & ( 1  I 10) 

(01 1 I ) ,  ( I  101) & ( 1 1  10) 
or (I01 ] ) , ( I  101) & ( I  110) 

4 4 8 8  

4 4 s 7-8 I (1101) & ( I  110) 

4 4 6 6-8 I (1101)&(11IO) 

(1101)&(1110) 

4 s s 5-8 

4 5 6 6 - 8  

4 5 7 7-8 

(101 I ) ,  ( I  101) & ( I  110) 

( l 0 l l ) . ( l l 0 l ) & ( l l l 0 )  

(1101)&(1110) 

8 8  ( I  101) & ( I  110) 

6 6-8 I (I01 I ) ,  ( 1  101) & ( I  110) 

4 7 8 8  (1011). ( 1  101) & ( I 1  10) 

4 8 8 8  

5 S 6 7-8 

5 5 5 5-8 

(101 I ) ,  ( I  101) & ( I  110) 

(01 I I ) .  ( I  101) & ( I  110) 

~ r ( l 0 l l ) , ( l l O l ) & ( l l l 0 )  

(01 I I ) .  (I01 I ) .  ( 1  101) & ( I  110) 

6 6  (0lll).(l0ll).(ll0l)&(lll0) 

6 6-8 (0lll),(l0ll).(ll0l)&(lll0) 

I 7-8 ( O I I I ) ,  (101 I ) .  ( I  101) & ( 1  110) 

(01 I I ) ,  ( I  101) & ( I  110) 

or ( 10 I I ) ,  ( I I0 1 ) & ( I I 10) 

5 5 8 8  

5 6 6 6-8 

5 6 7 7-8 

(1101)&(1110) 

(loll), (1101)&(1110) 

(101 I ) ,  ( I  101) &(1110) 

( l 0 l l ) , ( l l 0 l ) & ( l l l 0 )  

(01 I I ) ,  (101 I ) .  ( I  101) & ( I  110) 

(01 I I ) ,  (101 I ) ,  ( I  101) & ( I  110) 

(01 I I ) ,  (101 I ) .  ( 1  101) & ( I  110) 

8 8 8 8  ( 0 l l l ) , ( l 0 l l ) . ( l l 0 l ) & ( l l l 0 )  

7 

5 6 8 8  ( l 0 l l ) , ( l l 0 l ) & ( l l l 0 )  

6 7 8 8  (1011),(1101) &(1110) 
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2 2 4 8 8  

2 3 3 4 s  

6. A.4 OPTIMAL DESIGNS FOR m = 2 AND k = 5 

(11101), (111 10) &one of ( O I I O I ) ,  (01 I I O ) ,  

(10101)or(10110) 

(10011), (11101) & ( 1 1 1  10) 

I el fz e3 e4 es I Difference Vectors 

2 4 8 8 8  

2 8 8 8 8  

3 3 3 3 3  

2 2 2 2 2  

(IlOIl), (11101)&(11110) 

(101 Il), (11011), (1 1101) & ( 1  1110) 

(00111), (OlOlI), (OllOl), (01110). (Ollll), 

2 2 2 3 3  

4 4 4 4 4  

2 2 4 4 4  

( I  IOIO), (1101 I ) ,  ( I 1  loo), (11101) & ( I  1110) 

(011 1 l), (1011 I),  (1 1011). (11101) & (11 110) 

2 2 4 4 8  

I I 1 7 1  

8 8 8 8 8  

(001 ll),  (0101 I) ,  (01 101), (01 1 lo), (1001 I). 

( I  OIOl), (101 lo), (1 I 0 0 1  ), ( I  1010) & ( 1  1100) 

(00111), (OIOll), (01101), (OIllO), (l00l1),(10l01), 

(10110), (11001), (11010), (11101) & (11110) 

(looll), (10101), (10110), (11011). 

(11101) & (11110) 

(011 lo), (101 lo), (1101 I ) ,  (11 101) & (11110) 

(01 ill), (10111), (11011), (11101) & (11110) 

(01 11  I ) ,  (10111), (11011), (1 1101) & (11 110) 

I 2 4 4 4 4  1 (10111), (lIOll), (11101) & ( I  1110) 

1 2 4 4 4 8 1 ( O l l l l ) , ( l O l l l ) , ( l l O l l ) , ( l l l O l ) & ( l l l l O )  

1 2 4 4 8 8  1 (11101)& (11110) 

I 4 4 4 4 8  ( 1  11 10) and any two of (01 1 1  I ) ,  (101 l l ) ,  

I I (1 101 I )  & (1 1101) 

I 4 4 4 8 8  I ( I  1101) & (111 10) 

I 4 4 8 8 8  I ( I  1011). (11 101) & (1 I 1  10) 

I 4 8 8 8 8  I (101 1 I ) ,  (1 10 I l), (1 1 101) & ( I 1 1 10) 

I s 5 5 s 5 I ( o l l l l ) , ( l o l l l ) , ( l l o l l ) , ( l l l o l ) & ( l l l l o )  

I 6 6 6 6 6 1 (Ollll),(lOlll),(llOll),(lllOl)&(llllO) 
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6. A.5 OPTIMAL DESIGNS FOR m = 3 AND k = 2 

1 7 3  

2 4  

2 5  

2 6  

2 7  

L 
1 3  4 

3 s  

3 6  

3 7  

3 8  

1 4 4  

Difference Vectors 

(0l.0l,0l), (0 l , l 0 , l l )&(0 l , l l , l  I )  

(0l,01,01). (Ol.I0,l I )  & (01,11.1 I )  

(0l,0l.0l), (01,lO.l I )  & (01.1 1 . 1  I )  

(0l,0l,0l), (0l,IO,l I )  & (01,11,1 I )  

(01,Ol ,0l), (10.10,10) & ( I  1. I 1 , I  1 ) 
or(Ol,l0,ll).(Ol,ll,ll~&(l0,ll.ll) 

or(Ol,0l.0l),(Ol.lO.ll), (01.11.11). (l0.l0,l0), 
( l 0 . l l , l l ) & ( l l , l l , l l )  

(0l.0l.0l). (0l,l0,ll), ( O l , l l , I l ) ,  (l0.l0,l0), 
(10,11,1 I )  & ( I  1 , 1 1 , 1 1 )  

(Ol.0I,0l). (0l,I0.l1), (0l,ll ,l  I ) ,  (l0.IO.l0), 
(10.11,1 I )  & ( l l , l l , l l )  

(01.01.01). (0l.l0,ll), (0l . l l , l l) .  (l0.l0.l0), 
( l0 , l l . I l )  & ( l l , l l , l  I )  

(0l,0l,0l). (0l , l0, l l) ,  ( O l , l I , l  I ) ,  (l0,l0,l0), 
( 10,l I ,  I 1 ) & ( 1 1.1 I ,  1 1 ) 

(0 l , l 0 . l l )&( l l , l l , l l )  
or(0l,0l,0l),(0l,ll,ll)&(l0,l0.l0) 

or (Ol ,OI ,0 l ) ,  ( O l , l 0 , I l ) ,  (01,l 1,l  I ) ,  (l0.I0,lO), 
( l 0 , l l , l l ) & ( l l , l l , l l )  

( O l . 0 I , O l ) ,  (0l,l0,l I ) ,  (01,11,1 I ) ,  (10,10.10), 
( l 0 , l l , l l ) & ( l l , l l , l l )  

2 19 in) 
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el e2 

4 6  

4 1  

4 8  

5 5  

5 6  

5 1  

5 8  

6 6  

6 1  

6 8  

7 1  

I 8  

8 8  

Difference Vectors 

(0l,0l,01), (01,IO,11) & ( l l , l l , l l )  
o r ( O l , l l , l l ) , ( l O , l O , l O ) & ( l O , l l , l l )  

or (01,0I,Ol), (Ol,lO,l I), (01,l l , l l ) ,  (lO,lO,lO), 
(10,ll , I  1) & (1 1, l  I , I  I )  

(ol,ol,ol), (0l,l0,ll), (0l,ll,11), (lo,lo,lo), 
(10,l1,ll) & ( l l , l l , l l )  

(0l,0l,0l), (0l,l0,1l), ( O l , l l , I l ) ,  (10,10,lO), 
(10.11.11) &(11,11.111 

( O l , l l , I l )  & ( l O , l l , I l )  
or ( O I , O I , O l ) ,  ( O l , l O , l  I), (10,10,10) & (11,11,1 I )  
or ( O l , O l , O l ) ,  ( O l , l O , l  I ) ,  (01,l l , l l ) ,  ( lO , lO . lO) ,  

( l O , l I , l 1 )  & ( l l , l l , l l )  

(ol,ol,ol), (0l,l0,ll), ( O l , l l , I l ) ,  (lo,lo,lo), 
(10,Il , I  I )  & ( I  1 , I  I , I  I )  

(01,0l,01~, (01,l0,1 I), (01,ll , I  I ) ,  ( I O , l O ,  10). 
(lO,ll,l I )  & ( 1  l , l l , I l )  

(0l,01,0l), (0l,10,ll), (0 l ,1 l , l l ) ,  (IO,10,10), 
( lO, l I , l1)  & (11,) 1,11) 

(01,01,01), (01 ,lo, 1 I), (01,11,1 I ) ,  (10,10, lo), 
(10,11,11) & (1 I , I  1, I I )  

(0l,0l,0l), ( O l , I O , l  I ) ,  (0l,11,11), (l0,l0,10), 
(10.11.11~ & (11.11.111 

(0l,01,01), (Ol,lO,l I), (01,11,l I), (10,10,l0), 
(10.11.11~ &(11.11.11) 
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6. A.6 OPTIMAL DESIGNS FOR m = 4 AND k = 2 

2 4  

2 s  

2 6  

2 1  

2 8  

3 3  

Difference Vectors 

(0l,ol.ol,lo,ll,ll), (01.01,10.10,11.1 I )  
& (01.01,10,1 I ,  I 1. I I ) 

(01,01,01,01,01,01), (0l,0l,l0,l0.l1.I I )  
& (0l ,0l , lI ,I  1 . 1  1 , l l )  

or (01.01,01.01,01,01), (01,01,01.10,l 1 . 1  I ) .  
(0l.01.10,11.11,1 I )  & (0l,0l,l1,11,11.1 I )  

(01.01.01,10.1I.I 1) & (01.01,11,1 1 . 1  1 , 1  I )  

(01,01,01,01,01,01), (01,01,10,10,11.1 I ) .  
~0l,0l.l0,l1,11,1 I )  & (0l.0l,l1.I 1 . 1  1 . 1  I )  

(01,01,01,01.01,01), (01.01,10.10.1I,1 I ) ,  
(0l.0l,l0,l l , l l . l  I )  & (0l,0I,l1,11.11.I I )  

(0l,Ol,I0,l I , I  1 . 1  I )  & (0l,lO,IO.l 1 , l l . l  I )  
or (01.01.01.10,11,1 I ) .  ( O l , O l , l 0 , l O , l  1 . 1  I ) .  
(01,10,10.10.11,1 I )  & (01.10.1 1.1 1 . 1  1 . 1  I )  

or(01,01.01.01,01,01), (01.01.01,10,11,1 I ) ,  
(01.01,01,11.11.11), (ol.ol.lo,lo.ll,l I ) ,  
(01.01,10.1 l , I l , I  I ) ,  (0l,l0.l0,l0,l1.1 I ) ,  
(01.10,10.11,1I,I I ) .  (Ol.0l,l1,I 1 . 1  1 . 1  I ) .  
(01.10.1 1 . 1  1 . 1  1 , l  I )  & (01.1 1 , 1 1 , 1  1.1 1 . 1  I )  
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el e2 

3 4  

Difference Vectors 

(01,01,01,01,01,01), (0l,01,01,1l,11,11), 
(ol,lo,lo,lo,ll,ll) & ( O l , l I , l  1.1 1,11,1 I )  
or (01,01,01,01,01,01), (Ol,Ol,Ol,lO,ll,l l ) ,  

(01,0l,l0,11,11,1 I), (01,1O,IO,l l , l l , l l )  
& (01 , I  0,11,1 I , I  1 , I  1) 

or (01,01,01,01,01,01), (Ol,Ol,lO,lO,ll,ll), 
(0l,0l,l0,l1,11,1 I ) ,  (ol,lo,lo,ll,l1,11) 

& ( o l , l l , l l , l l , l l , l l )  
or (01,01,01,01,01,01), (Ol ,Ol , lO. l l , l  l , l l ) ,  

(01,10,l0,10,ll,1 I ) ,  (Ol,OI,l1,11,11,1 I )  
& (o l , l l , l l , l l , l l , l l )  

or (Ol,Ol,Ol,lO,l l , l l ) ,  ( O l , O l , O l , l l , l  l , l l ) ,  
(ol,ol,lo,lo,ll,l I), (01,l0,10,1l,11,1 I )  

& (01 ,lo, 1 1.1 1,11,1 I )  
or(Ol,Ol,Ol,lO,ll,ll), (Ol,Ol.Ol,ll,ll,ll), 
(ol,lo,lo,lo,ll,ll),(ol,ol,l1,11,I 1,l I )  

& (01,10,11 , I  1, I 1,l I )  
or (0l,01,01,1l,1 l , l l ) ,  (0l,0l,10,10,11,1 I ) ,  

(0l,10.10,10,11,1l). (OI,Ol,l1,11,11,11) 
& (01,ll,11,11,11,l1) 

or(Ol,Ol,Ol,lO,ll,ll), (Ol.Ol,lO,lO,ll,ll), 
(0l,0l,10,l l , l l , l l ) ,  (01,10,10,l l , l l , l l ) ,  
(0l,0l,11,11,11,11) & (Ol,l0,11,11,11,1 I )  

or (01,01,01,01,01,01), (01,01,01,10,11,1 I ) ,  
(ol,ol,ol,ll,ll,ll),(ol,ol,lo,lo,ll,ll), 
(0l,01,l0,11,1 l , l l ) ,  (01,10,10,10,1 l ,ll),  
(01,l0,l0,11.11,1 I ) ,  (0l,0l,11,l l , l l , l l ) ,  
(Ol,IO,l1,11,I 1 , l  I )& (01,11,11,11,11,11) 
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6. A.7 OPTIMAL DESIGNS FOR SYMMETRIC ATTRIBUTES FOR m = 2 

Attributes 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Levels 

2-12 

2-12 

2 

3-12 

2 

3 

4-12 

2 

3 

4 

5-12 

2 

3 4  

S 

6-1 2 

2 

3 

4-5 

6-12 

2 

3 

4-6 

8-12 

2 

3 

4 

5-7 

8-12 

Difference Vectors 

All difference vectors, i.e., ( O I ) ,  (10) & ( I  I )  

All difference vector$ of weight 2 

i.e. (01 I ) .  (101) & ( 1  10) 

All difference vectors of weight 2 & 3 

All difference vectors of weight 3 

All difference vectors of weight 3 

All difference vectors of weight 3 & 4 

All difference vectors of weight 4 

All difference vectors of weight 3 & 4 

All difference vectors of weight 4 

All difference vectors of weight 4 & 5 

All difference vectors of weight S 

All difference vectors of weight 4 

All difference vectors of weight 5 

All difference vectors of weight 5 & 6 

All difference vectors of weight 6 

All difference vectors of weight 4 & 5 

All difference vectors of weight S & 6 

All difference vectors of weight 6 

All difference vectors of weight 7 

All difference vectors of weight 5 

All difference vectors of weight 6 

All difference vectors of weight 7 

All difference vectors of weight 8 

All difference vectors of weight 5 & 6 

All difference vectors of weight 7 

All difference vectors of weight 7 & 8 

All difference vectors of weight 8 

All difference vectors of weight 9 
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CHAPTER 7 

VARIOUS TOPICS 

We have now seen how to construct optimal and near-optimal designs for estimating main 
effects and main effects plus two-factor interactions for any number of attributes each with 
any number of levels and with choice sets of any (constant) size using the MNL model. 
In this chapter we touch on a number of other important topics in the design of choice 
experiments. 

The first topic we consider is the design of optimal choice experiments when all choice 
sets contain a none option or an option which is common to all choice sets, a base alternative, 
or both a none option and a base alternative. 

Next we discuss how to determine the best choice set size, in terms of the number of 
levels of each of the attributes, as well as how to compare choice sets of different sizes. 

So far in this book we have not placed any restrictions on the number of attributes that 
can differ between the options i n  a choice set. Yet there is some evidence that respondents 
do not perfonn as consistently when there are many features to trade-off. We show how to 
construct optimal choice experiments when we limit the number of attributes which can be 
different between the options i n  each choice set. 

All of the designs that have been developed in the earlier chapters have been optimized 
when we have no prior information about the values of the 7r i .  If we do have such prior 
information, then it can be used to calculate a different A matrix. as indicated i n  Chapter 3 ,  
and this matrix can be used to determine a modified C matrix (the matrix of contrasts is, of 
course, unaltered by prior information). We consider the use of prior information for two 
specific examples. 

7%e Corrs/rircriort o /Op / inm/  Sioled Chicr  E,tperimen~,~. By D. J .  Street and L. Burge+ 
Copyright @ 2007 lotin Wiley & Sons. Inc. 
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7.1 OPTIMAL STATED CHOICE EXPERIMENTS WHEN ALL CHOICE SETS 
CONTAIN A SPECIFIC OPTION 

In this section we consider the construction of choice experiments in which all choice sets 
contain either a none option, a common base option, or both a none option and a common 
base option. 

The none option is sometimes viewed as an option to defer choice and is sometimes 
included so that participants do not have to choose between two or more options that they 
find equally attractive (although Davidson (1970) has described an MNL model in which 
ties are allowed). A common base option, described by some combination of the attribute 
levels, is often included in choice experiments to investigate treatment options, where you 
want to compare the standard treatment option with a proposed new treatment option in 
each choice set. Finally we consider the design of choice experiments in which both a 
common base and a none option is included in every choice set. 

7.1.1 Choice Experiments with a None Option 

In this section we consider what happens when we adjoin a none option to each choice set 
in a stated preference choice experiment. It turns out that there is a simple relationship 
between the matrices for a forced choice stated preference experiment and those from the 
same choice sets with a none option adjoined to each choice set. 

For a discussion of how to design experiments to avoid consumers choosing to defer 
choice (another way of viewing the none option) see Haaijer et al. (2001) and references 
cited therein. There are references in Chapter 1 to other non-mathematical issues. 

We let Bf  be the contrast matrix for the forced choice experiment (so B f  = Bh and 
may contain contrasts for main effects and perhaps interaction effects), let A, be the A 
matrix for the forced choice experiment, and let Cf  = B f A f B ;  be the information matrix 
for the forced choice experiment. We assume that B f  is p x L where there are p contrasts 
of interest, and note that Af will contain rows and columns of 0s if not all treatment 
combinations appear in the choice experiment. We will use B,, A,, and Cn = B,AnBL 
for the corresponding matrices when a none option has been included in each choice set. 
We assume that each choice set in the forced choice experiment has m options in it and 
that there are N such choice sets. 

The next result establishes the relationship between B f  and B, and between A, and 
An. As usual we let L = n,=, !,. k 

LEMMA 7.1.1. 

1. Let d2 = L ( L  + 1). Then 

where 0 ,  i s  a p x 1 vector of zeroes and none is the final treatment cornbination. 
T ~ U S  B,B; = I p + l .  

2. Let r, be the number of times the ith treatment combination appears in the stated 
preference experiment and let r = (r1, . . . . rL)’ .  Let I3 be a matrix with these 
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replication numbery on the diagonal. Then 

Proof 

1. The only additional contrast is between none and some treatment combination. The 
divisor d ensures that the contrast is of unit length. 

treatment combination appears in the design so 
2 .  The none option will appear with each treatment combination as many times as that 

r,,,, = m N  = r, .  
1 

Again only one additional row and column need to be adjoined to A. 

Now we are in a position to evaluate (7,. 

0 

THEOREM 7.1.1. 
Consider a forced choice stated preference experiment in which a none option hay been 

adjoined to each choice set. Then 

0 
Proof: This result follows directly from the definition, noting thatj’,r = mlV, A f j L  = 0~ 
and j ’ ,U = r .  

If all the treatment combinations in the complete factorial appear r times in the choice 

1 [ L 

?n2NCf + BfDB;  Y B f r  
y r ’ B ;  7nN( L+ 1 ) 

1 
(m  + 1 ) 2 N  

c, = 

experiment. then we can establish the following result. 

COROLLARY 7.1.1. 
Suppose that all the treatment combinations in the complete factorial appear r time5 in 

the choice experiment. Then 

Proof Since all the treatment combinations appear r‘ times we have that 

mN m AV 
L I, 

r := r j ,  = -jL and D = T I L  = -IL 

Thus we know that 
m N 

R f r  = 0, and that B f D B ;  = 1,. 

The result follows. 

COROLLARY 7.1.2. 
The optinial designs for estimating main effects when a none option is inclirded in each 
choice set have 
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where S,  is the least upper boundfor the sum of the diferences for a particiilar attribute q. 

Proot The optimal designs for estimating main effects given in Chapters 4,5, and 6 satisfy 
the conditions of Corollary 7.1. I .  So if we adjoin a none option to each choice set in one 
of these optimal designs, then 

The result follows. 0 

Hence the same designs that are optimal for the estimation of main effects in the forced 
choice setting are optimal for the estimation of main effects when a none option has been 
adjoined to each choice set. We can also calculate the effect of estimating just the main 
effects (i.e., Cn without the row and column for the none option) relative to the maximum 
determinant of CM for the forced choice setting. We find that the efficiency of the design 
for the estimation of main effects only is reduced from 100% to 

But adjoining a none option does change the properties of the design. If there is no none 
option then the optimal design for main effects cannot be used to give any information 
about two-factor interactions. The inclusion of a none option may make it possible to 
estimate two-factor interactions as well, although the efficiency may not be very high. The 
component of the information matrix corresponding to main effects is given by 

and so correlated effects will remain correlated after the introduction of a none option. 

4 EXAMPLE 7.1.1. 
Suppose that we have k = 3 attributes with k‘, = !2 = 2 and !3 = 3. If m = 2, the 

optimal design for estimating main effects in a forced choice setting is obtained by taking 
the complete factorial and adding the generator ( l , l , l )  to get the following 12 choice sets: 

(000, l l l ) ,  (001,112), (002,110), (010, I O I ) ,  (011,102), (012, loo), 
(100,011), (101,012), (102.010), (110,001), (111,002), (112,000). 

If we adjoin a none option to each of these choice sets then these 12 choice sets are still 
optimal for the estimation of main effects but the component of the information matrix 
corresponding to main effects has changed. 

Let B A ~  be the normalized main effects contrast matrix. Then the normalized contrast 
matrix for the stated preference experiment when the none option is included is given by 
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For main effects only for the forced choice design we have 

4 0 0 0  
1 0 4 0 0  

Cnr..j = - 48 / O o n 3 1  0 0 3 0 ’  

L J 

For main effects only for the “ 1  2 plus none” design we have 

6 0 0 0  0 
0 6 0 0  0 

CA1.n = - 0 0 5 0  0 

0 0 0 0 2 6  

Thus we see that 

2 2 
The determinant for the main efiects only i f  the none option is included is (&) (&) . 
When we compare the efficiencies of the designs with none adjoined to forced choice 
designs, we use the determinant for the main effects only (or for main effect5 plus two- 
factor interactions only)  so that we can see what we gain (or lose) by ad.joining the none. 
In this case we see that i f  we ad.join a none option to the 12 choice sets which are optimal 
for estimating main effects, then the design is 67.2% efficient for estimating main effects 
plus two-factor interactions. The same set of 12 choice Fets is now 70.3% efficient for 
estimating main effects only, however. This is calculated by 

If m = 2 ,  the optimal design for estimating main effects plus two-factor interactions 
is obtained by taking the complete factorial and adding the generators (0, I ,  I ) ,  ( 1  ,O, I ) and 
( I ,  1 ,O) and has the following 30 choice sets: 

(0OO.OI I ) ,  (001,012). (002, OIO), (010, OOI),  (01 I ,  002), (012,000). 
(100. I l l ) ,  ( l0l . i l2) .  (102,110), (110, I O I ) ,  (111,102), (112, 100). 
(000. I O I ) ,  (001,102), (002, loo), (010,111). (011,112), (012. 110). 
(100. OOI) ,  (101,002). (102. OW), ( 1  1 0 , O l  I ) .  ( 1  1 I ,  012), ( 1  12.010). 
(000, 110). (001, I I I ) .  (002, 112). (010. roo), (01 I .  101). (012, 102). 

In this example all effects are independently estimated in all of the designs discussed. 
Table 7.1 gives the efficiencies of all the designs for estimating both main effects only 

and main effects plus two-factor interactions relative to the best forced choice experiment 
n 

In the next example adjoining a none option does not make the two-factor interaction 

and considering only the effects of interest. 

effects estimable. 

EXAMPLE 7.1.2. 
Suppose that we have k = 3 attributes with el = P 2  = 2 and 43 = 4 levels. Suppose that we 
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Table 7.1 Efficiencies of the Four Designs Discussed in Example 7.1. I 

Design Estimating Estimating 
Main Effects ME plus 2fi 

12 forced choice 100% 0% 
12 plus none 70.3% 67.2% 
30 forced choice 69.3% 100% 
30 plus none 56.5470 80.4% 

use the choice sets given in Table 7.2 to estimate main effects plus two-factor interactions. 
Then we get that 

CMT = 

- ; G  - 0 0 0 0 0 0  0 0 -15-2.- 

0 ~~~~~~~~~ 0 0 

0 o g o & j o o  0 0 0 0 0 
0 0 o & o o o  0 0 0 0 0 

0 o g o & o o  0 0 0 0 0 

0 l ~ ~ s o o o o ~  0 .& 0 0 0 

0 & o o o o . &  0 0 0 0 

$ 0 0 0 0 0 0  0 0 0 f t  0 

0 0 0 0 0  0 0 0 G o  

IC>,A 32 1 2 3  

0 0 0 0 0 0 0  0 0 0 0 0 

0 ~ 0 0 0 0 0  & 0 0 0 0 

+ o o o o o o o o  & o . &  

We see that det(chfT) = 0 and so no effects can be estimated. If we now assume that each 
choice set has a none option adjoined, then a row and column is ad,joined to C A ~ T  for the 
none option and we have 

as we would expect from Theorem 7.1.1. Thus we see that the matrix BjDB; is not a 
diagonal matrix and in this case adjoining the none option has not improved the properties 

0 

The result in Theorem 7.1.1 holds for any stated preference choice experiment in which 
a none option has been adjoined to each choice set. Obviously the expression for C, is 
easier to work with if B j r  = 0,. This is true if the treatment combinations that appear 

of the design since we have det(Ch{T.,) = 0. 



OPTIMAL STATED CHOICE EXPERIMENTS WHEN ALL CHOICE SETS CONTAIN A SPECIFIC OPTION 233 

Table 7.2 Choice Sets with k = 3 Attributes (1 = Pz = 2 and 83 = 4 

Option 1 Option 2 

0 0 0  
I 1 0  
I l l  
0 0  I 
0 1 2  
1 0 2  
1 0 3  
0 1 3  

1 1 1  
0 0  1 
0 0 2  
I 1 2  
1 0 3  
0 1 3  
0 1 0  
1 0 0  

in  the choice experiment form a fractional factorial design in which each level of each 
attribute is equally represented. 13~I lR;  will then be a multiple of the identity matrix if  the 
treatment combinations form a regular symmetric fractional factorial design. In this case 
effects which are not independently estimated in the original forced choice experiment will 
not be independently estimated when the none option is djoined but sometimes effects 
which can not be estimated in the original forced choice can be estimated in the extended 
design as we have seen for the complete factorial i n  Example 7. I .  I .  

7.1.2 Optimal Binary Response Experiments 

In a binary response design respondents are shown a set o f  options, in turn, and asked for 
each option whether or not they would choose it. Thus this is really the simplest example of 
having a none option i n  each choice set. The options themselves might be actual products 
for sale or they might he treatments i n  a medical setting, for instance. Hall et at. (2002) 
used a binary response experiments to investigate chickenpox vaccination. 

In  the next result we prove that showing the products determined by a resolution 3 
fraction results in  a diagonal C matrix with the largest possible determinant amongst 
designs with a diagonal (’ matrix. Thus each choice set is of size 2: the product under 
investigation and the “no” option. 

THEOREM 7.1.2. 
Sirppose thot the mnin effect,$ of the nttrihiites for  options descsrihed by A: nttribirtcs, where 
the qth attrihiire /ins f ,  levels3 are to be estimated m i n g  n 17inar.y re.yporzse design. 7’hen 
n re,~olution 3, eqiii-replicnte,fraction gives rise to n diagonal infonnntion mntrix~for the 
rstiriintion of mnin elfects ond it 110.~ the largest determinnnt nniong.ct de,~igri,t with dingono1 
infoomintion mntrice.s. ~ ‘ / ? L I . F  

Proof Let us assume that A’ of the L products are to be presented to respondents. Then 
we can order the products so that these N products are the first N products in  some fixed, 
hut arbitrary, ordering of the L products. We use this ordering to label the first 1, rows and 
columns of A and the first L columns of B. The final row and column of A and the final 
column of B correspond to the “no” option. Thus we obtain the A,, and B7, matrices as we 
did i n  the previous section. Indeed R,, is exactly the same as i t  was i n  Theorem 7.1 . I .  
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Since each product is shown individually to each respondent the number of choice sets 
is N and we can write 

We then get that 

which is a special case of the result in Theorem 7.1 . I .  0 

7.1.3 Common Base Option 

If a particular combination of attribute levels appears in all choice sets then this combination 
is called the common base option. It may represent the current situation or the current 
treatment for a particular health condition (examples in Ryan and Hughes (1997), Ryan 
and Farrar (2000), and Longworth et al. (2001)) or the common base may be randomly 
chosen from the main effects plan and have all the other scenarios from the plan compared 
to it pairwise (examples in Ryan (1999), Ryan et al. (2000), and Scott (2002)) .  

Our first optimality result gives the determinant of the information matrix for any 
resolution 3 fractional factorial design in which any one of the treatment combinations 
may be used as the common base and only one other option appears in each choice set. 
To ensure that the matrix of contrasts for main effects for the treatment combinations that 
appear in  the choice experiment is unambiguously defined, we will insist that the treatment 
combinations that appear in  the choice experiment form a fractional factorial design of 
resolution 3. 

From Theorem 6.3.1, we know that the maximum possible determinant for the informa- 
tion matrix for the estimation of main effects only, when choice sets are of size 2, is given 
by 

We will use Cc for the information matrix when there is a common base. 

THEOREM 7.1.3. 
Let F be a resolution 3 fractional factorial design with equal replication of levels within 

each attribute and with N treatment combinations in total. Choose any treatment combi- 
nation in F to be the common base. Then 

The optimal design arises from the smallest resolution 3 design and so 

Pro05 Without loss of generality, order the treatment combinations so that the first treat- 
ment combination is the common base, the next N - 1 treatment combinations are the other 
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4 ( N  - l ) A ,  = 

- - ( N - 1 )  -1 -1 . . .  -1 - 
-1 1 o . . .  0 

-1 0 1 ” ‘  0 0,V.L-n.  

. . . .  
-1 0 o . . .  1 

O L - N , N  OL-N.L-.V - 

(Recall that det(ITl + J p )  = ( p  + I) .)  0 

1 
[Bl B21 

- - 
4(A: - 1) 

The efficiency of the design, relative to the optimal forced choice stated preference 
experiment with choice sets of size 2, is given by 

- -  ( N - 1 )  -1 -1 . . .  -1 - 
-1 1 0 . . .  0 

[ -1 ’ . .  O,\F,L-K 

, . . .  
-1 0 o . . .  1 

0 L - N. N O L - N . L - K  - 

Using Theorem 7.1.3, we can see that, from the point of view of statistical efficiency, all 
resolution 3 designs with the same number of treatment combinations are equally good for 

1 
BI - - 

4 ( N  - 1) 

1 
B1 - - 

4(1V - 1 )  

- ( N - 1 )  -1 -1 . . .  -1 - 
-1 1 o . . .  0 

-1 0 l . . .  O R; 

. . . .  
-1 0 0 . . .  1 

-1 0 o . . .  0 
-1 0 0 . . .  0 

- (AT-2)  -1 -1 . . .  -1 - 

1 
B* q . B : + * ( N - I )  

. . . .  
-1 0 o . . .  0 - - 
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1 
9(N - 1) Acn = 

a particular number of attributes with given number of levels. It is also immaterial which 
of the treatment combinations is used as the common base. 

EXAMPLE 7.1.3. 
Consider an experiment where there are four attributes describing each option. Three of 
the attributes have 2 levels and one has 4 levels. The smallest fractional factorial design 
of resolution 3 has 8 treatment combinations. Then using any 2 x 2 x 2 x 4//16 and 
using any treatment combination as a common base gives a design which is 93.3% efficient 
relative to a design with 8 treatment combinations and 45.17% efficient relative to a forced 
choice stated preference design. Using the complete factorial and using any treatment 
combination as a common base gives a design which is 90.3% efficient relative to a design 
with 8 treatment combinations and 43.71% efficient relative to a forced choice stated 
preference design. Using a 2 x 2 x 2 x 4//8 gives an efficiency of 48.40% efficient relative 

0 

In Scott (2002) a similar experiment was carried out with four attributes (two with 2 
levels, one with 3 levels, and one with 4 levels) and using 16 choice sets. In this case the 
efficiency depends on the treatment combination chosen to be the common base. If the 
common base has the level of the 3-level attribute which appears 8 times, then the efficiency 
is 44.49%; and if the common base has either of the other levels of the 3-level attribute, 
then the efficiency is 46.12%. 

If we want to use this approach to estimate main effects plus two-factor interactions, 
then we need to start with a resolution 5 fractional factorial design. Unfortunately, in this 
setting we can only know that all effects are estimable and compare particular designs. We 
cannot calculate the efficiency relative to the optimal design since only a general expression 
for det(C) is available; see Chapter 6. 

to a forced choice stated preference design. 

- 2 ( N - 1 )  -1 -1 . . .  -1 0 . . .  0 - ( N - 1 )  
-1 2 0 . . .  0 0 . . .  0 -1 
-1 0 2 . . .  0 0 . . .  0 -1 

. .  . . . .  . . .  . .  
. .  . .  

-1 0 0 . . .  2 0 . . .  0 -1 
0 0 o . . .  0 o . . . o  0 

. .  . 

. . .  . . .  . .  
. .  . .  

0 0 o . . .  0 0 . . . 0  0 
- ( N -  1) -1 -1 . . .  -1 0 . . .  0 2 ( N -  1) 

7.1.4 Common Base and None Option 

The earlier results can be combined to give an expression for the information matrix for 
choice sets when there is both a common base and a none option in each choice set. 
Although in theory the choice sets could be of any size, we will only consider the situation 
when the choice sets are of size m = 3 and contain the common base, the neither of these 
option and one other option which will be different for each choice set. 

In this case the correct contrast matrix is B,, defined in Theorem 7.1 . I .  By re-ordering 
the treatment combinations if necessary, and assuming there are N treatment combinations 

If we assume that the treatment combinations involved in the experiment form a fractional 
factorial design, it is straightforward to show that the information matrix when there is a 
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common base and a none option is Ccn, given by 

where b, is the first column of Bnr. 

7.2 OPTIMAL CHOICE SET SIZE 

In the previous chapters in  the book we have assumed that we want optimal designs for a 
particular choice set size m. In this section we show that the statistically optimal choice 
set size is a function of the number of levels of each of the attributes. We find that although 
pairs are the most common choice set size used they are rarely the most efficient size to 
use. Whether the choice sets in these designs may prove to be too large for respondents to 
manage comfortably is something that potential users need to consider. The results that we 
give can be used to determine the relative efficiency of practical values of 71). 

7.2.1 Main Effects Only for Asymmetric Attributes 

In this section we consider choice experiments in which each of the attributes can have any 
number of levels and in which main effects only are to be estimated. From the results in 
Chapter 6 we know the maximum value of the determinant of CAI for a particular value of 
r n .  This allows the efficiency of any design to be calculated for particular values of ?n, k 
a n d t , , q =  l , . . . > k .  

The following theorem establishes an upper bound for the maximum value of det(Cn1) 
when m is not fixed and gives the values of m for which this bound is attained. 

Forfixed i~alrres of I; and F,, q = 1, .  . . . k ,  when estimating main efects o n l ~ .  the upper 
hound,for the maximum valire qf!fdet(CAr) over all valires of m is 

THEOREM 7.2.1. 

k where p = C,=l ( P 4  - 1). The irpper boirnd i s  attained when ni is a miiltiple of the lemt 
common mitltiple of I ; ,  , P2. . . . , P,. 

ProoJ: Let det,(COPt,,jr), be the maximum possible contribution of attribute q towards 
det (Copt, 4 I .any 1. CI early 

k 

~ e t ( ~ o , t , , ~ ~ , a n ,  7n) = (let((JO,t.nr),. 
,=l 

so we can examine det(CO,,t.nr), for each attribute separately. For each attribute q there 
are four possible cases to consider. 

1 .  Suppose m = cP,, where c is a positive integer and &, 5 m. If kq = 2 ,  then m is 
even and S, = nb2/4. Then for attribute q 
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If e, # 2 ,  then m = t,x + y, where x = c and y = 0. Thus 

S, = (m2 - ( ~ ~ 2  + 2xy + y ) ) / 2  = c2t,( t ,  - I ) /Z  

and for attribute q 

2. Suppose m # c&,, where c is a positive integer and 2 < t, < m. Then we have 
S, = (m2 - (&,z2 + 2xy + y))/2 for 0 < y < C, and the determinant for that 
attribute is given by 

We need to show that this determinant is less than the upper bound. That is, we need 
to show that 

or 
[e,m2 - t,(t,z2 + 2x21 + y)] - m2(e, - 1) < 0.  

This is true because tq(C,x2 + 2zy + y)  > m2 for all possible values of C,, z, and 
y. Thus the determinant for attribute q in this case will be less than the upper bound. 

3. Suppose that 2 5 m < C,. In this case S, = m(m - 1) /2  and therefore 

since (m - l ) / m  < (C, - l ) / C q .  

4. Suppose t ,  = 2 and m is odd. Now S, = (m2 - 1)/4 and for attribute q 

This determinant is less than the upper bound since (m2 - l ) /m2 < 1. 

In cases 2,3, and 4 the maximum value of det(Chf) is always less than the upper bound, 
which is only ever attained for case 1 attributes. Thus the upper bound can only be realized 

0 

In the following examples we determine det(Copt,A.i,m) for values of m from 2 to 16. 
The D-efficiency for each of these values of m is calculated relative to the maximum 
determinant over all values of m, det(Copt,M); that is, 

if all attributes belong to case 1. 
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EXAMPLE 7.2.1. 
Suppose there are five attributes ( k  = S), each with four levels ( P 4  = 4 for q = 
1 , .  . . 5) and that the choice sets each have four options (m = 4). From Theorem 7.2.1 
det(C'oL,t..~~.any rn) is (1/4'))'; which is attained when 7n is a multiple o f 4 .  In Table 7.3 
the determinants and efficiencies are given for different values of In. Note that the choice 
set size of I n  = 4 is optimal, as is the choice set size of ITL = 8 and other multiples of 4, 

0 and that pairs ( 7 n  = 2) are not nearly as efficient as other values of m. 

Table 7.3 
Main Effects Only. 

Efficiency of Different Values of m for Five Attributes, Each with Four Levels for 

m det ( Copt. A T ,  ) Efficiency (%) 

2 1.60004 x 66.67 
3 1.19733 x lopd6 88.89 
4 7.00649 x lop4' 100 
5 3.79812 x 96.00 
6 3.97781 x 96.30 
7 5.142.54 x 97.96 
8 7.00639 x 100 
9 5.81534 x 98.77 
I0 5.72872 x 98.67 
1 1  6.18641 x 99.17 
12 7.00649 x 100 
13 6.40972 x 99.4 I 
14 6.32461 x 99.32 
15 6.55365 99% 
16 7.00649 x 100 

The following example illustrates using the theorem to choose values of m. 

EXAMPLE 7.2.2. 
Consider four attributes where PI = 2, P2 = 3, and P3 = I s  = 4. The least common 
multiple lcm(2.3,4)  is 12 and this is the smallest value of ni for which det(C,'ol,+.,~~.anv ,,,) 
is attained. When IT )  = 12. 

I z;=*(?#/-l) 9 

det(Copt.Af.any m )  = [I] = [ i] = 1.44397 x lo-'' 

since all four attributes belong to case 1. Now choice sets of size 12 are too large for 
respondents in  practice but knowing the efficiency of other values of 177 relative to this 
upper bound is useful when deciding what size the choice sets should be. 

Suppose ~n = 3 .  For 41 = 2 and ~n .  odd (case 4), 

For 8 2  = 3 (case I ) ,  
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and for !3 = & = 4 (case 2), 

Hence 
3 

det>(CAf) = (A) ( & ) 2  ( & ) 3  (A) = 6.33128 x lo-’’ 

The efficiency compared with using m = 12 is 

x 100 = 91.25%. 
(6.33128 x lo-’’) I ”  

1.44397 x 10-18 

Now consider m = 4. Attributes 1 ,  3, and 4 all belong to case 1 and will have 
determinants equal to the upper bound, while attribute 2 belongs to case 3 since 2 < e2 < m. 
Now m, = e2x + y so x = y = 1 and for attribute 2 

Thus 
3 

det(Copt ,~~.4)  = (A) (A) (&) (&) = 1.26912 x 

with an efficiency of 98.58%. 
Table 7.4 gives the maximum determinant and the efficiency for values of m from 2 to 

0 16. Observe that as long as ni > 2 the efficiencies are greater than 90%. 

7.2.2 Main Effects and Two-Factor Interactions for Binary Attributes 

In Chapter 5 the upper bound for the determinant of the information matrix, C A ~ T  is estab- 
lished, when estimating main effects and all two-factor interactions, when all k attributes 
are binary. The maximum possible value of det(Ch1T) for fixed values of m and k is given 
bv 

Clearly, as m --t m, ( m  - l ) / m  --t 1 giving an upper bound for the maximum value 
of det(C:nfT), which is 

Obviously the larger the choice set, the larger the value of det(Copt,AfT) and hence the 
more efficient the design. For example, suppose there are 6 binary attributes. In Table 
7.5 the values of det(Copt,nfT,m) and efficiencies are given for choice sets of size 2 to 
10. The efficiency is calculated with respect to det(C,,t,h{T) with p = k + k ( k  - 1)/2. 
These results show that in this setting the size of the choice sets should be as large as the 
respondents can cope with. 
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Table 7.4 
Effects Only. 

Efficiency of Different Values of 71%. for Four Asymmetric Attributes for Main 

m det(Cnpt AI m )  Efficiency ('36) 

2 
3 
4 
5 
6 
7 
8 
9 
10 
I I  
12 
13 
14 
15 
16 

7.13073 x lo-*' 
6.33128 x 
1.26912 x lo-'* 

1.15137 x 10-Is 
1.19940 x 10-l' 
1.39920 x 
1.32371 x lo-'* 
1.30573 x 
1.34005 x 10-l' 
1.44397 x lo-'' 

1.37192 x lo-'* 
1.39964 x lo-'* 
1.43271 x lo-'' 

1.00000 x lo-'* 

1.36887 x 10-18 

7 1.59 
91.25 
98.58 
96.00 
97.52 
97.96 
99.65 
99.04 
98.89 
99.17 
100 

99.4 1 
99.43 
99.65 
99.9 I 

Table 7.5 
Effects and Two-factor Interactions. 

Efficiency of Different Values of ni for 6 Binary Attributes when Estimating Main 

m 

2 
3 
4 
5 
6 
7 
8 
9 
10 

~ 

Max det(Cnfr) 

9.25596 x 
3.89166 x 
4.61677 x 
1 . 7 9 0 ~  10-39 
,i.21935 x 10-39 
7.62375 x 10-39 
1.17549 x 
1.6:3625 x 
2.12395 x 

Efficiency ('36) 

50.00 
66.67 
75.00 
80.00 
83.33 
85.7 1 
87.50 
88.89 
90.00 
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A =  

7.2.3 Choice Experiments with Choice Sets of Various Sizes 

Although all the work on optimal choice experiments that has been done to date has 
assumed that all choice sets in  a particular experiment are of the same size, there is in  fact 
no mathematical requirement for that to be true. In this section we derive the information 
matrix for a forced choice experiment in which there are N ,  choice sets of size m,,, 
1 5 s 5 T .  We then show that the optimal choice set sizes are the ones that we have found 
in the previous sections. 

Extending the notation in the earlier chapters, we let n!:!z, be the number of times that 
options Y i l  and Y i 2  appear together in  the Ns choice sets of size 772,. Let N = c, N,  
be the total number of choice sets. Under the null hypothesis that all items are equally 
attractive, A contains the proportion of choice sets in which pairs of profiles appear together 
and hence 

- r  

1 1 1 1 -  _ _  _ _  - _ - & + B  27 27 24 27 
-- 

1 1 1 1  
27 

1 1 1 1  
27 24 27 

I 1 

- _  - _  - - &+f 24 27 27 
- _  

- _  A+; 27 
- _  _ _  - - 

A+; - _ _  _-  1 1  _ _  - - 
21 27 27 27 

1 

N 
A = - c N,5A,7. 

s = l  

Substituting, we get 

Since the entries in the matrix for one choice set size have no effect on the entries in the 
matrix for another choice set size, we need to maximize the coefficients for each choice set 
size independently. 

If we are only estimating main effects, then from Theorem 7.2.1 we know that each 
m, needs to be a multiple of the least common multiple of B 1 ,  &, . . . , e k  to get the largest 
determinant. 

I f  we wish to estimate main effects only, these 6 choice sets have an efficiency of 92.52% 
compared to the optimal experiments which are those that contain choice sets of size 2, or 
4, or 2 and 4 together (see Table 7.6). Only using the 4 choice sets of size 3 (design 2) 
gives a design with an efficiency of 88.89% however: so including some choice sets of an 
optimal size improves the efficiency of the triples. 

mEXAMPLE7.2.3. 
Suppose that there are k = 2 binary attributes and that we have choice sets of three different 
sizes: N1 = 2 choice sets, (00, 1 1 )  and (01, lo), each of size ml = 2 (design I ) ;  N2 = 4 
choice sets, (00,01, lo), (00, 01, 1 I ) ,  (00, 10, 1 1 )  and (01, 10, 1 I ) ,  each of size m2 = 3 
(design 2); and N3 = 1 choice set, (00, 01, 10, 1 1 )  of size m3 = 4 (design 3). If we 
use just the choice sets of size 2 and 3 in the choice experiment (designs 1 & 2), then we 

.) For the sets of size 3, nig,)z, = 2 V i l  # 22. The A matrix for these 6 
have that noo,ol (1) - - noo,lo (1) = ol,ll - - 7)(1) = 0 and n&ill = nb:),lo = 1. (Recall that 
n ( s )  - - n ( s )  

2.1.72 9 2 . 9 1  

choice sets is 
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Table 7.6 
Effects Only. 

Choice Sets of Up to Three Different Sizes for 6 Binary Attributes for Main 

Efficiency Design(s) rn, N Max det(C.t,) 
Values (%'r) 

1 2 2 0.0625 I00 
2 3 4 0.0494 88.89 
3 4 1 0.0625 100 

1 & 2  2 & 3  6 0.0536 92.52 
1 & 3  2 & 4  3 0.0625 I00 
2 & 3  3 & 4  5 0.05 I9 9 1.04 

1,2823 2 . 3 & 4  I 0.0548 93.58 

7.2.4 Concluding Comments on Choice Set Size 

We have given results on the best choice set sizes to use to maximize the statistical efficiency 
of the choice experiment. Some authors, like DeShazo and Fenno (2002). have used larger 
choice set size as an indicator of a more complex task and so might argue that choice 
experiments in which several different choice set sizes are used have different values for 
respondent efficiency. Thus practitioners will need to decide how to trade-off gains i n  
statistical efficiency with potential losses i n  respondent efficiency. 

7.3 PARTIAL PROFILES 

If the number of attributes used to describe each option is of the order of 16 and if  all the 
attributes are allowed to differ between the options in each choice set then there is evidence 
that respondents will not perform as consistently as they might; see, for instance, Swait 
and Adamowicz (1996), Severin (2000), and Maddala et al. (2002). Holling et al. (1998) 
provide a summary of a number of studies in which both the number of attributes to be used 
and the the number of choice sets to be answered was compared. More choice sets with 
more options slowed down respondents and decreased the predictive ability of the model. 
In  Maddala et al. (2002), for example. the authors compared a choice experiment in  which 
6 attributes were allowed to differ between options in a choice set with a choice experiment 
in  which only 4 of the 6 attributes were allowed to differ between the options in a choice 
set. They found no significant differences in consistency, perceived difficulty or fatigue but 
they did observe differences i n  the stated preferences which these authors think may link 
with the importance of context to a stated preference experiment. 

Some authors have focused on finding optimal designs when there is a limit on the 
number of attributes that are different between options within a choice set. If only some of 
the attributes may differ between the options within a choice set, then the options are said 
to be described by a pnrtinl profile. 

One way to do this is to show all the attributes but have several attributes with the same 
level for all the options in a choice set. This was the approach taken by Severin (2000) 
using pairs. Another way to limit the number of attributes different is to choose subsets of 
the k attributes and find a choice experiment on the subset of attributes only; the remaining 
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attributes are not shown. Various such subsets are used in turn to get the complete choice 
experiment. This approach was introduced by Green (1974). 

If m = 2 ,  then allowing only f of the k attributes to be different, but showing all k 
attributes, means that the optimal design for estimating main effects is the design in which 
all choice sets with f attributes different are included. The corresponding det(Co,t.hf,pp) 
is given by putting a f  = 1/(2k-' ( r ) )  in the expression for det(Chf) in Theorem 4.1.1, 
This gives an optimal determinant of 

Green (1974) used balanced incomplete block designs (BIBDs) (defined in Section 2.4) 
to determine which attributes would be allowed to vary in a set of choice sets. He used all 
the blocks of the BIBD in turn to get all of the choice sets in an experiment. 

WEXAMPLE 7.3.1. 
Suppose that pizzas are described by the 16 attributes, each with two levels, as given in 
Table 7.7. Then a (16,20,5,4,1) BIBD (Table 7.8, from Mathon and Rosa (2006)) could 
be used to determine which four attributes were varied in the choice sets associated with 
each block. Each block of the BIBD would give rise to four choice sets, as illustrated in 
Table 7.9. Using all 20 x 4 = 80 choice sets gives a design which is 100% efficient if only 
four attributes are allowed to have different levels between the two options in a choice set 
and is 25% efficient if there are no restrictions on the number of attributes which may have 

Kl different levels in the two options in a choice set. 

Table 7.7 Sixteen Attributes Used to Describe Pizzas 

Attribute 

Quality of ingredients 
Price 
Pizza temperature 
Manners of operator 
Delivery charge 
Delivery time 
Vegetarian available 
Pizza type 
Type of outlet 
Baking method 
Range 
Distance to outlet 
Type of crust 
Available sizes 
Opening hours 

Level 0 Level 1 

All fresh 
$13 
Steaming hot 
Friendly 
Free 
30 minutes 
Yes 
Traditional 
Chain 
Woodfire oven 
Large menu 
Same suburb 
Thin 
Single size 
Till 10 pm 

Some tinned 
$17 
warm 
Unfriendly 
$2 
45 minutes 
No 
Gourmet 
Local 
Traditional oven 
Restricted menu 
Next suburb 
Thick 
Three sizes 
Till 1 am 

Green's idea has been extended by using designs in which each pair of treatment 
combinations appears in at least one block by Grasshoff et al. (2004) rather than insisting on 
equality of pair replication as in the incomplete block design. Usually this relaxation means 
that the choice experiment is smaller but the relative efficiency of these two approaches has 
yet to be determined. 
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Table 7.8 (16.20,5,4,1) BIBD 

0 1 2 3  0 4 5 6  0 7 8 9  O a b c  
O d e f  1 4 7 a  1 5 b d  1 6 8 e  
1 9 c f  2 4 c e  2 5 7 f  2 6 9 b  
2 8 a d  3 4 9 d  3 5 8 c  3 6 a f  
3 7 b e  4 8 b f  5 9 a e  6 7 c d  

Table 7.9 The Four Choice Sets from the First Block of the (16, 20, 5.4, I)BIHI) 

Option 1 Option 2 

Fresh $13 Hot Friendly Tinned $17 Warm Unfriendly 

Fresh $13 Warm Unfriendly Tinned $17 Hot Friendly 

Fresh $17 Hot Unfriendly Tinned $13 Warm Friendly 

Fresh $17 Warin Friendly Tinned $13 Hot Unfriendly 

7.4 CHOICE EXPERIMENTS USING PRIOR POINT ESTIMATES 

So far i n  this book we have constructed optimal designs under the null hypothesis of no 
difference between the options. However the expression for the i l  matrix given in Equations 
(3.2) and (3.3) includes the 7ri values and so in fact we could find the optimal designs for 
any prior values of the ir, that we thought were appropriate. We discuss this idea in this 
section. 

Additional information about the relative magnitudes of the 7r7 values may be available 
from earlier studies or from taking a sequential approach to experimentation. Wc give two 
examples below. In the first there is a wide range of values of 7r where the optimal designs 
for the null hypothesis perform well. In the second case the optimal designs for the null 
hypothesis are at best about 63% efficient. 

In the first example we consider two binary attributes and let the class of competing 
designs be any set of pairs. This means that we have extended the class of competing 
designs from what we have considered i n  the remainder of the book. This is possible 
because the computations are not overwhelming in this small case. We have assumed that 
the two-factor interaction effect is 0 so that we can work with the simplest form of the C 
matrix. 

EXAMPLE 7.4.1. 
Suppose that there are k = 2 binary attributes and that the choice sets are of size m = 2. 

There are 4 treatment combinations and 6 pairs of distinct treatment combinations. Each 
such pair could be a choice set in the experiment. Suppose that all 26 - 1 = 63 non-empty 
sets of distinct pairs form the class of competing designs. Suppose also that i r 1  = I//?, 
7r2 = ir:< = 1 and 7r4 = h. When h = 1 the optimal design consists of the two foldover 
pairs (Design I ) .  This is still the optimal design for 0.25 < h < 4.7 while outside that 
range the optimal design contains the three choice sets (00, O l ) ,  (00, lo), and (01. 10) 
(Design 2 ) .  Intuitively this makes sense: For extreme values of h ,  there is no information 
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to be gained from comparing 00 and 1 1  since one,or the other is certain to be chosen. The 
values of det(Chr) for these two designs for various values of h between 0 and 10 are 
shown in Figure 7.1 . 0 

Det C 

0 .  

0 .  

0 .  

0 .  

0 .  

0 .  

Figure 7.1 det(CM) for Design 1 (dashed) and Design 2 (solid) 

In the second example we consider the performance of the designs we have found to be 
optimal under the null hypothesis for the situation described in Carlsson and Martinsson 
(2003) for 4 attributes when prior estimates of K, are assumed. 

 EXAMPLE^.^.^. 
Carlsson and Martinsson (2003) look at designs fork = 4 attributes where t, = t, = I?4 = 
3 and I?3 = 2. They specify a linear utility which we have translated into K% values, and 
these are used to give values consistent with the prior point estimates in the A matrix. The 
54 treatment combinations and the corresponding 7rt are given in Table 7.1 0. 

It is their third case that corresponds to the situation that we have been using with 
generic options and an MNL model. The design that they call “cyclical” is an example 
of the design that is optimal under the null hypothesis. The particular design that they 
have given has an efficiency of about 54% relative to the efficiency of the optimal design 
that they give using the prior 7rz values for the estimation of the linear components of the 
main effects. A different choice of generator could increase the efficiency of the cyclical 
design to about 63% in 18 choice sets but clearly in this case about 60% more respondents 
will be required to get the same accuracy from a design optimal under the null hypothesis 
relative to one of the designs advocated in Carlsson and Martinsson (2003) for these prior 

0 estimates, assuming that this prior information is correct. 

7.5 REFERENCES AND COMMENTS 

Most of the material in Section 7.1 first appeared in Street and Burgess (2004b). The results 
in Section 7.2 first appeared in Burgess and Street (2006). 

There are a number of authors who have chosen to find optimal designs using a Bayesian 
approach, where a prior distribution for the rt, rather than point values, are assumed. Sandor 
and Wedel (2001) and Kessels et al. (2006) provide a good entry to this literature. 
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Table 7.10 The Treatment Combinations and the Corresponding Assumed 7rt 

Treatment " 1  Treatment ", 
Combination Combination 

0 0 0 0  
0 0 0 2  
0 0 1  I 
0 1 0 0  
0 1 0 2  
0 1  I I 
0 2 0 0  
0 2 0 2  
0 2 1  1 
1 0 0 0  
1 0 0 2  
1 0 1  1 
1 I 0 0  
I 1 0 2  
I 1 1 1  
I 2 0 0  
1 2 0 2  
1 2 1  1 
2 0 0 0  
2 0 0 2  
2 0 1  1 
2 1 0 0  
2 1 0 2  
2 1  I 1  
2 2 0 0  
2 2 0 2  
2 2 1  I 

0.045 
0.014 
0.037 
0.549 
0.166 
0.450 
6.686 
2.014 
5.474 
0.122 
0.037 
0.100 
1.49 1 
0.449 
1.221 

18.174 
5.474 

14.880 
0.333 
0.100 
0.273 
4.055 
1.221 
3.320 

49.402 
14.880 
40.447 

0 0 0  1 
0 0 1 0  
0 0 1 2  
0 1 0 1  
0 1  10 
0 1  1 2  
0 2 0  1 
0 2 1 0  
0 2 1 2  
I 0 0 1  
1 0 1 0  
1 0 1 2  
1 1 0 1  
I 1  1 0  
I I 1 2  
1 2 0 1  
1 2 1 0  
1 2 1 2  
2 0 0  1 
2 0 1 0  
2 0 1 2  
2 1 0 1  
2 1  10 
2 1 1 2  
2 2 0  1 
2 2 1 0  
2 2 1 2  

0.025 
0.067 
0.020 
0.301 
0.819 
0.247 
3.669 
9.974 
3.004 
0.067 
0.183 
0.055 
0.819 
2.226 
0.670 
9.914 

27.1 13 
8.167 
0.183 
0.491 
0.150 
2.226 
6.050 
1.822 

21.1 I3 
13.700 
22. I98 
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To date, we have assumed that each attribute has some fixed number of levels, even if the 
attribute describes a continuous measure. Kanninen (2002) has discussed how the levels 
of one continuous attribute should be chosen to get better designs than are available using 
pre-specified levels. Kanninen (2002) makes the assumption that the utility for each option 
will be a linear function of the attributes describing that option. Thus, in keeping with the 
results from simple linear regression, she finds that it is best to have the attributes set at 
the upper and lower endpoints. But if this assumption is wrong, then there is no protection 
hence most people take some measurements in the interval. 

One extension to stated preference choice experiments that has been considered by 
various people is the extension of the choice task to indicate not only the “best” option in 
each choice set but also the “worst” option in each choice set; see Flynn et al. (2007) for an 
example. The task has on occasion been extended to ask respondents to indicate the best 
and worst of the remaining options and so on until at most one option remains. Optimal 
designs for this situation are yet to be developed. 



CHAPTER 8 

PRACTICAL TECHNIQUES FOR 
CONSTRUCTING CHOICE EXPERIMENTS 

In this chapter we discuss some techniques that are commonly used to construct optimal or 
near-optimal choice experiments. In Chapters 4, 5 ,  and 6 we have given constructions for 
optimal or near-optimal choice experiments, but these constructions are not necessarily the 
easiest way to construct choice experiments in practice. Before thinking about the design 
of the choice experiment, the experimenter will have already decided on the number of 
attributes and the numher of levels for each attribute, the number of options in each choice 
set (see Section 7.2 for results about the optimal size of the choice sets), the effects that are 
to be estimated, and the number of choice sets that each respondent can complete. 

The basic idea is to find a suitable starting design, and then add sets of generators to 
obtain the choice sets. We discuss various methods to obtain a fractional factorial design to 
use as a starting design if an appropriate one is not readily available. These methods. which 
are defined in Chapter 2, include collapsing levels of attributes, expansive replacement, 
contractive replacement. and adding one more attribute. There are various ways to get 
a starting design: Find one i n  Sloane (2006hj or Kuhfeld (2006); use the techniques in 
Chapter 2; or use the tables and constructions in Dey (1985) and Hedayat et al. (1999). We 
also give some techniques for choosing the sets of generators to be used to construct the 
choice sets. 

The ideal choice experiment would have the following desirable properties: 

1 .  A manageable number of choice sets for the respondents; 

2 .  Choice sets which are optimal or near-optimal; 

3. The variance-covariance matrix, C-l, should be diagonal or at least block diagonal; 

TIM, Comrnrcrion ofOpinio/ Srorrd Choice E.rprrinimu. By D. J. Street and L. B u r p \  
Copyright 2007 John Wiley & Sons. Inc. 
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4. Equal replication of levels of each attribute across all the choice sets; 

5. Equal replication of levels of each attribute within each option; 

6. All combinations of levels of an attribute should appear equally often over all the 

7. Avoidance of any predictable pattern in the choice sets. 

Unfortunately, it is usually impossible to satisfy all of these properties simultaneously, 
and trade-offs must be made. The properties that are the most important may vary from 
one choice experiment to another. For example, properties 2 to 7 can easily be achieved by 
creating additional choice sets. Then property 1 can only be achieved if the choice sets can 
be split into blocks which consist of a manageable number of choice sets. 

The number of choice sets that each respondent can complete will depend on the 
complexity of the choice sets, including the number of attributes and the number of options 
in the choice set (see Holling et al. (1998) and Brazell and Louviere (1995)). Usually we 
have each of the respondents completing all of the choice sets but if the design has more 
choice sets than a respondent can complete then the choice sets can be split into blocks 
either randomly or using a spare attribute, if there is one available. 

It is desirable for the C-' matrix to be diagonal or block diagonal because that means that 
all of the effects of interest are orthogonal or uncorrelated and can therefore be estimated 
independently of each other. This is discussed in Section 3.4.1. Thus the structure of the 
C-l matrix should be checked for each design constructed. Note that if the C matrix is 
diagonal (or block diagonal) for the effects of interest, then C-' is also diagonal (or block 
diagonal). 

For the analysis i t  is desirable that, for each attribute, each level appears equally often 
over all of the choice sets. For example, if there are 4 binary attributes and 8 choice sets 
of size 2 in the experiment, then for the first attribute we would expect 0 to appear 8 times 
over all the choice sets. However, sometimes having each level of an attribute appearing 
equally often within each option is preferable, so that 0 appears 4 times in the first option 
and 4 times in the second option. It is also desirable to have as many combinations of 
levels of an attribute as possible appearing in the choice experiment. For an attribute with 
4 levels, we would ideally want levels 0 and 1 , O  and 2,O and 3, 1 and 2, 1 and 3, and 2 and 
3, appearing the same number of times in the choice experiment. 

From a psychological point of view, it is often preferable to avoid any predictable pattern 
in the order of presentation of the choice sets, as well as in the options within the choice sets 
themselves. The choice sets should be placed in a random order before being presented to 
the respondents. In addition, if there is a discernable pattern for an attribute in the options 
within the choice sets, then this can be overcome by either reordering the options in some of 
the choice sets or, if that is not possible, by creating additional choice sets with a different 
pattern. 

In this chapter we discuss various techniques that we use to construct designs which 
satisfy as many of these desirable properties as possible. We discuss various ways to obtain 
a starting design from readily available designs and how to generate the choice sets in a 
fairly simple way. We also compare our construction with other commonly used strategies 
for constructing choice experiments. Software that allows readers to construct choice sets 
from a starting design by adding sets of generators is available at the following website: 
h ttp://maths.science.uts.edu.au/maths/wiki/SPExpts. 

Except in one example (Example 8.1.7), in this chapter we have assumed that the levels 
of the attributes are not ordered in any way that would result in the possibility of dominated 

choice sets; 
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alternatives. We also assume that there are no unrealistic treatment combinations to be 
avoided, again except in  Example 8. I .7. 

8.1 SMALL NEAR-OPTIMAL DESIGNS FOR MAIN EFFECTS ONLY 

Designs which estimate main effects only are appropriate when all interactions between the 
attributes are believed to be negligible. The formal construction of designs for estimating 
main effects only in Theorem 6.4.1 is complicated to use and in practice it is often easier to 
follow the approach used in Theorem 5.2.1. This approach requires F ,  a starting design of 
resolution at least 3, and a set of generators (2, which have a difference vector that satislies 
the upper bound for the sum of the differences (&Tq), given in Theorem 6. I .  I .  I t  should be 
noted that just choosing sets of generators that have difference vectors satisfying the upper 
bound for S, does not guarantee an optimal design. Trial and error may be needed i n  the 
selection of F and G to achieve optimality, or to get choice sets which satisfy as many as 
possible of  the desirable properties above. 

8.1.1 

We now look at each of the examples in Section 6.4 and use various methods to construct 
choice sets with as many of the desirable properties as possible. 

Smaller Designs for Examples in Section 6.4 

EXAMPLE 8.1.1. 
Let t t )  = 3 ,  k = 2, = 2, and 112 = 3. In  Example 6.3.5 the 6 choice sets with difference 
vector v:3 = (01 11. 1 I ) are given. These choice sets are optimal. In this example we are 
not going to be able to construct a smaller design, but we will still use i t  to illustrate the 
steps involved and to construct a design that is equally good. I n  this case F is the complete 
2 x 3 factorial design, and so has treatment combinations 00,01, 02, 10, I I and 12. since 
no fraction has resolution 3 as k 5 2. We now need G = (gl = O:gz,g:3) which has a 
difference vector equal to v?. One set of generators which has such a difference vector 
is G = (00. 11. 12),  but C: = (00.01.12) or G = ( 0 0 ~ 0 2 , l l )  also satisfy the condition. 
Then the choice sets are given by 

(F. fi' + g2, F + g 3 )  = ( F ,  F + 11, F + 12),  

wherc the addition is done modulo 2 for the first attribute and modulo 3 for the second 
attribute. These 6 choice sets, shown in Table 8.1, are 100% efficient. I f  we use the set of 
generators C: = (00.01.02) with difference vector v1 = ( O l , O l , O l ) ,  then the efficiency 
is zero. This is because the level of the first attribute does not change across the options of 
the choice sets and therefore the main effect of that attribute cannot be estimated. Sets of 
generators such as C = (00.01. 10) with difference vector v2 = (01, 10, 1 I )  will result i n  
choice sets which have an efficiency of 76.3 1 %. 

The design i n  Table 8.1 satisfies properties I to 6. We can satisfy property 7 by swapping 
the treatment Combinations i n  options 2 and 3 for the last three choice sets. Alternatively. 
we can create an additional 6 choice sets by adding another set of generators, such as 
G = (00.02. 1 I ) .  

EXAMPLE 8.1.2. 
Let 7 t 1  = 6, k = 2, and Y l  = f 2  = 4. In Example 6.4.3 we found that an optimal design 
could be constructed in 24 choice sets. We now look at constructing a (near-)optimal design 



252 PRACTICAL TECHNIQUES FOR CONSTRUCTING CHOICE EXPERIMENTS 

Table 8.1 
Only 

Optimal Choice Sets for k = 2, el = 2. e 2  = 3 when m = 3 for Main Effects 

F F f l l  F+12 

00 1 1  12 
01 12 10 
02 10 I 1  
10 01 02 
1 1  02 00 
12 00 01 

in fewer choice sets. Since k = 2, the starting design F must be the complete 4 x 4 factorial 
with the 16 treatment combinations 00,01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 
32, and 33. We need to choose a set of generators of the form 

G =  (g1 = O,gz,...,gm) = (00,g2,g3,g4,g5,gfi). 

First we choose g2 to be any generator with all attribute levels different from those in 
gl = 0. Every subsequent generator has as many attribute levels as different as possible 
from all preceding generators. In this case we choose 

G = (00,11,22,33,01, lo ) ,  

which has a difference vector 

v = (01,01,10,10,11,11,11,11.11,11,11,11,11,11, l l ) ,  

but many other sets of generators would also be suitable. 
We can check if the difference vector satisfies the upper bound for the sum of the 

differences given in Theorem 6.1 . I .  First we calculate 5’1 and 5’2 using Theorem 6.1.1. 
Nowm = 6 = !,x + y  = 4 x 1 + 2  s o x  = 1 andy = 2. Then 

= 13. 
m2 - ( l q x 2  + 2xy + y) - 6’ - (4 x 1’ + 2 x 1 x 2 + 2) - 

2 2 

Clearly the difference vector above satisfies this upper bound. 

G to F.  The addition is done modulo 4 for both attributes. 

matrix: 

5’1 = sz = 

The 16 choice sets given in Table 8.2 were constructed by adding the set of generators 

These choice sets are 99.96% efficient and have the following block diagonal information 

- - 43 0 & : O  

- 
720 %6 : 
. . . . . . . . . . .  
0 0 0 : g  

0 0 o : &  
0 0  0 : o  

0 0  
0 0  
0 0  
. . . . .  

o s s  
1440 
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The main effects of both attributes can be estimated independently of each other, but the 
components of the main effects are not independent within an attribute. There are many 
sets of generators G that will result in choice experiments with 16 choice sets with similar 
properties. In fact there are 459 different sets of generators G that have a block diagonal 
CJAI matrix and are at least 98% efficient. 

For this example there are three ways i n  which we could get a diagonal C‘,jI matrix. 
We could use the 24 or 48 choice sets that are optimal from Example 6.4.3, we could use 
different contrasts, or we could use a different set of generators that gives a diagonal matrix, 
but with some reduction in the efficiency. If we use different contrasts, such as those from 
a 22 design. 

0 1 2 3  

-1 -1 1 1 
2 2 2 2  

-1 1 -1 1 
2 2 2 2  

1 -1 -1 1 
2 2 2 2  

then we get the same efficiency but the C matrix is now diagonal: 

. . . . .  I :  : 
0 : o o  0 
0 : o o  0 
- g8 : 0 0 0 

. . . . . . .  
0 : g o  0 
0 : O h O  
0 : 0 0 &  

If we want a diagonal C’hl matrix with the orthogonal polynomial contrasts and are 
willing to have a less efficient choice experiment then we can use the set of generators 

G = (00,01, 02,lO. 20,33) 

with difference vector 

(01,01,01.10.10.10.11,11.11,11,11.11.11,11,11). 

where 5’1 = 5’2 = 12 to construct 16 choice sets that are 92.30% efficient with 

There are 168 different sets of generators G that will result in the same CAI matrix. 0 

In the following example we show that the use of different fractional factorial designs 
F may result in  choice experiments with different properties. 

EXAMPLE 8.1.3. 
Let k = 3,  PI = 2 ,  P2 = 3, and P3 = 6. 

I t  is often the case that all seven of the desirable properties cannot be achieved and 
trade-offs must be made depending on the nature of the choice experiment. For example, 
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Table 8.2 
Only 

Near-Optimal Choice Sets for k = 2,  11 = 1 2  = 4 when m = 6 for Main Effects 

F F+11 F + 2 2  F f 3 3  F + 0 1  F+lO 

0 0  1 1  2 2  3 3  0 1  1 0  
0 1  1 2  2 3  3 0  0 2  1 1  
0 2  1 3  2 0  3 1  0 3  1 2  
0 3  10 2 1  3 2  0 0  1 3  
1 0  2 1  3 2  0 3  1 1  2 0  
1 1  2 2  3 3  0 0  1 2  2 1  
1 2  2 3  3 0  0 1  1 3  2 2  
1 3  2 0  3 1  0 2  1 0  2 3  
2 0  3 1  0 2  1 3  2 1  3 0  
2 1  3 2  0 3  1 0  2 2  3 1  
2 2  3 3  0 0  1 1  2 3  3 2  
2 3  3 0  0 1  1 2  2 0  3 3  
3 0  0 1  1 2  2 3  3 1  0 0  
3 1  0 2  I 3  2 0  3 2  0 1  
3 2  0 3  1 0  2 1  3 3  0 2  
3 3  0 0  1 1  2 2  3 0  0 3  

Table 8.3 Difference Vectors and Sets of Generators for k = 3, 1, = 2, 1 2  = 3, and (3 = 6 

m Difference Vector G s1 s2 s3 
2 (111) (000.1 1 I )  1 1 1  
3 (01 l , l l l , l l l )  (000,l 11,123) 2 3 3  
4 (01l,0ll,l0l,1ll,ll1,lll) (000.111,123,012) 4 5 6 
5 (01 1.01 1,011,01 i , l O l , l O l , l 1 1 , 1 1 1 , 1 1 1 , 1 1 1 )  (000,l 11,123,012,024) 6 8 10 
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minimizing the number of choice sets might be the first priority and a design with somewhat 
lower efficiency is perfectly acceptable. In this example, for each of three starting designs 
we will use the same set of generators G for the particular value of rn and thcse, with 
the corresponding difference vectors, are given in Table 8.3. Note that there are many 
sets of generators G' that have the difference vector given in Table 8.3 for the particular 
choice set size. For instance, G = (000,111,022) will be just as efficient for 7n = 3 as 
G = (000 , l l  I ,  123). We now discuss three different ways to obtain a starting design. 

I . There is no 2 x 3 x 6 OMEP readily available, so the complete factorial in 36 treatment 
combinations is used as the starting design F .  In Example 6.4.4 we saw that adding 
one set of generators G to the complete factorial resulted i n  near-optimal or optimal 
designs. In  Table 8.3 the best designs in 36 choice sets are shown for 712. = 2.3 .4 .5  
with efficiencies 90.56%, 99.39%, 99.78%, and 100% respectively. In  all of these 
designs there is equal replication of levels in  the choice experiment and, for the 
orthogonal polynomial contrasts, for m = 2 , 3 , 4 ,  the C:,lr matrix is block diagonal 
for the attribute with 6 levels and diagonal for the other two attributes. When nt = 5 
the C,qr matrix is diagonal for all three attributes. 

2 .  Even though there is no 2 x 3 x 6 OMEP readily available, we can obtain one by 
starting with a 3 x 3 x 0//18 design and transforming a 3-level attribute into one 
with 2 levels by collapsing the levels. In Sloane (2006b) there is a 36 x G//i8design. 
We delete the first four columns and then we collapse the three levels of the first of 
the remaining 3-level column to 2 levels by replacing all 2s by Is and leaving the 
1 s and 0s unchanged. The original 3 x 3 x 6//18 design, along with the 2 x 3 x 6 
design obtained by collapsing one column, is shown i n  Table 8.4. 

Table 8.4 
Collapsing One Attribute 

2 x 3 x 6//18 Fractional Factorial Design Obtained from the 3 x 3 x 6//18 by 

3 x 3 x 6//18 1 2 x 3 x 61/18 

0 0 0  
0 1 1  
1 0 2  
2 2 3  
2 1 4  
1 2 5  
1 1 0  
1 2 1  
2 1 2  
0 0 3  
0 2 4  
2 0 s  
2 2 0  
2 0 1  
0 2 2  
1 1 3  
1 0 4  
0 1 s  

0 0 0  
0 1 1  
I 0 2  
1 2 3  
1 1 4  
1 2 s  
1 1 0  
1 2 1  
1 1 2  
0 0 3  
0 2 4  
1 0 s  
1 2 0  
1 0 1  
0 2 2  
1 1 3  
1 0 4  
0 1 s  

We can now add the sets of generators for the different choice set sizes given in Table 
8.3 to get 18 choice sets and we end up with the same efficiencies and structure of the 



256 PRACTICAL TECHNIQUES FOR CONSTRUCTING CHOICE EXPERIMENTS 

CM matrix as we had in part 1. However, we do not always have equal replication 
of levels of the collapsed attribute over the choice experiment. In particular when 
m = 3, level 0 of attribute 1 appears 30 times overall, while level 1 appears only 24 
times. Similarly, when m = 5 ,  level 0 of attribute I appears 42 times overall, while 
level 1 appears 48 times. For m = 2 and m = 4 we have equal replication of the 
levels of all attributes. 

3. We can also start with a fractional factorial 2 x 2 x 61/12 design which has only 
two levels for the second attribute; this design is the F of Table 8.5. When we add 
the set of generators the addition, for this attribute, will be done modulo 3 so there 
will be three levels for this attribute in the choice experiment. However, in this case, 
the challenge will be in achieving equal replication of levels for this attribute. For 
m = 2 , 4 , 5  equal replication is not possible in 12 choice sets, but for m = 3 we can 
construct a near-optimal design (99.39%) which is given in Table 8.5. This design 
has equal replication of levels in the choice experiment and the Chf matrix has the 
same structure as before. It should be noted that not all levels of the second attribute 
appear in each option. 

Table 8.5 
Main Effects Only 

Near-Optimal Choice Sets for k = 3, el = 2, & = 3, and i?3 = 6 when m = 3 for 

F F -t 111 F + 123 

0 0 0  
0 0  1 
0 0 2  
0 1 3  
0 1 4  
0 1 5  
I 1 0  
1 1 1  
1 1 2  
1 0 3  
1 0 4  
1 0 5  

I l l  
1 1 2  
1 1 3  
1 2 4  
1 2 5  
1 2 0  
0 2  1 
0 2 2  
0 2 3  
0 1 4  
0 1 5  
0 1 0  

1 2 3  
1 2 4  
1 2 5  
1 0 0  
101 
I 0 2  
0 0 3  
0 0 4  
0 0 5  
0 2 0  
0 2  1 
0 2 2  

8.1.2 Getting a Starting Design 

As previously noted, many fractional factorial designs are available in Sloane (2006b) and 
Kuhfeld (2006). From these “parent” designs it is possible to obtain many other designs 
by discarding one or more attributes. Several constructions are given in Chapter 2, as 
well as some techniques for obtaining new fractional factorial designs from existing ones. 
In this section we illustrate various ways to get the fractional factorial designs, and then 
construct the choice sets. In the final example, we show how we can avoid unrealistic 
treatment combinations, and choice sets in which one treatment combination is dominated 
by another. 

When the levels of an attribute need to be collapsed, the collapsing must be done in 
the starting design before the choice sets are constructed. In addition, collapsing levels of 
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an attribute in the starting design, from e, levels to k, levels is straightforward as long as 
I!,9 < 6, and B ,  1 P,. This will ensure that the levels of the collapsed attribute are equally 
replicated. The most common collapsing of levels of this nature are given in the first part 
of Table 8.9. 

When Z, t f ,  there will be unequal replication of levels in the fractional factorial 
design which may or may not be able to be corrected when constructing the choice sets. 
Moreover, collapsing the levels of more than one attribute, where e, f P,, can mean that the 
main effects of the collapsed attributes are correlated. In Example 6.4.4 collapsing levels 
of one attribute worked well in terms of obtaining choice sets which have equal replication 
and a C;: matrix with an orthogonal structure for the main effects. However, collapsing 
more than one attribute usually results in a Ci l  matrix in which the main effects of the 
collapsed attributes are not independent of each other. We illustrate this in  the following 
example. 

EXAMPLE 8.1.4. 
Let k = 4,1'1 = 1 2  = 2. I;:1 = 3. and &4 = 6. Using the 3' x 6//18 OMEP from Sloane 
(2006b), we delete the first three columns and then we collapse the three levels of the 
first two of the remaining %level columns to 2 levels by replacing all 2s by 1 s for the first 
attribute and replacing all 2s by 0 s  for the second attribute. There is now unequal replication 
of the  levels of the 2-level attributes in  the OMEP and we wish to construct choice sets 
so that there is equal replication of levels of the attributes overall. In this example we 
use the R matrix from Example 6.3.3. Consider m = 3. The choice sets in Table 8.6 
were constructed with the set ofgenerators G = (0000. 1111.0123). These choice sets are 
99.43% efficient and the variance-covariance matrix is given by 

c,' = 

2 6 2 4 4 . 1 4 5 8 : 0 0 : 0  0 0 0 0  

1 4 5 R . 2 S 2 4 1 : O O : O  0 0 0 0  

323  ' 321 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

323 ' 323 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

0 :  0 : 7 2 0 : 0  0 0 0 0  
0 :  0 : 0 7 2 : 0  0 0 0 0  

0 :  0 : 0 0 : 1 0 8 0  0 0 0  
0 : 0 : 0 0 : 0  1 0 8 0 0 0  
0 :  0 : 0 0 : 0  0 8 1 0 0  
0 :  0 : o o : o  0 0 8 1 0  
0 :  0 : 0 0 : 0  0 0 0 x 1  

. . . . . . . . . . . . . . . . . . . . . . . . . .  

Note that the main effects of the two attributes with collapsed levels are correlated. We 
get similar results for rn, = 2 and rri = 5 with the set of generators G = (0000, 11 11) with 
efficiency of 91.43% and G = (0000,1111,0123,1012,0114) with efficiency of 97.07%, 
respectively. In  both cases the main effects of the two collapsed attributes are correlated 
and there is unequal replication o f  the levels of those attributes in the choice sets. I t  is also 
worth noting that using a different collapsing scheme does not avoid this problem. 

However. when 771 = 4, equal replication of levels of the attributes can be attained, 
with an efficiency of 99.81%. Furthermore, CAI, and therefore C;:, are diagonal, and 
consequently all pairs of main effects are uncorrelated. The choice sets, constructed with 
the set of generators C: = (0000, 1111.0123,1014), are shown in Table 8.7  and the C,jr 
matrix is given by 
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Table 8.6 
m = 3 for Main Effects Only 

Near-Optimal Choice Sets for k = 4, = P Z  = 2, P3 = 3, and B4 = 6 when 

33 x 61/18 

0 0 0 0  
2 0 1  1 
2 1 0 2  
0 2 2 3  
1 2 1 4  
1 1 2 s  
I 1  10 
0 1 2 1  
0 2 1 2  
1 0 0 3  
2 0 2 4  
2 2 0 5  
2 2 2 0  
1 2 0 1  
I 0 2 2  
2 1  1 3  
0 1 0 4  
0 0 1 5  

F F + 1111 F + 0123 

0 0 0 0  
1 0 1  I 
1 1 0 2  
0 0 2 3  
1 0 1 4  
1 1 2 5  
1 1  10 
0 1 2 1  
0 0 1 2  
1 0 0 3  
1 0 2 4  
1 0 0 s  
1 0 2 0  
1 0 0 1  
1 0 2 2  
1 1 1 3  
0 1 0 4  
0 0 1 5  

I I I I  
0 1 2 2  
0 0 1 3  
1 1 0 4  
0 1 2 s  
0 0 0 0  
0 0 2  1 
1 0 0 2  
1 1 2 3  
0 1  1 4  
0 1 0 s  
0 1  1 0  
0 1 0 1  
0 1  1 2  
0 1 0 3  
0 0 2 4  
1 0 1 s  
1 1 2 0  

0 1 2 3  
1 1 0 4  
1 0 2 5  
0 1  1 0  
1 1 0 1  
1 0 1 2  
1 0 0 3  
0 0 1 4  
0 1 0 s  
1 1 2 0  
I l l 1  
1 1 2 2  
1 1  1 3  
I 1 2 4  
1 1  I S  
1 0 0 0  
0 0 2  1 
0 1 0 2  

- 1  - 7 2 : o : o  o : o o o o o  

0 : A : O  o : o o o o o  

o : o : ~ o : o o o o o  
o : o : o & : o o o o ’ o  

0 : o : o  0 : o z  0 0 0  

0 : o : o  0 : O o o ~ o  
0 : o : o  0 : 0 0 0 0 &  

. . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  
0 : o : o  o : ; 6 y o o o  - 

0 : o : o  0 : o o q o  

0 

The following example looks at collapsing levels of attributes that results in equal 
replication of levels of the attributes. This example also illustrates that caution should be 
exercised when constructing pairs when the number of levels of a particular attribute is not 
a prime number. We also show that i t  may be possible to  choose sets of generators so that 
the number of level changes is equal to S,, but that this does not guarantee that the main 
effect of attribute q can be estimated. 

EXAMPLE 8.1.5. 
Let k = 5 ,  = E2 = E3 = 2, and 4 = Es = 4. Using the 4”//16 OMEP from Sloane 

(2006b), we collapse the levels of the first three attributes from 4 levels to 2 levels by 
changing all 2s to Is and all 3s to 0s. These OMEPs are given in the first two columns of 
Table 8.8; note that all the levels of each of the 2-level attributes appear equally often. 
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Table 8.7 
77) = 4 for Main Effects Only 

Near-Optimal Choice Sets for k = 4. = 02 = 2, E? = 3, and 84 = 6 when 

F F + 1111 F + 0123 F + 1014 

0 0 0 0  
1 0 1  I 
I 1 0 2  
0 0 2 3  
1 0 1 4  
1 1 2 s  
I 1  1 0  
0 1 2 1  
0 0 1 2  
I 0 0 3  
I 0 2 4  
1 0 0 s  
1 0 2 0  
1 0 0 1  
1 0 2 2  
1 1  1 3  
0 1 0 4  
0 0 1 s  

1 1 1 1  
0 1 2 2  
0 0 1 3  
I 1 0 4  
0 1 2 5  
0 0 0 0  
0 0 2  1 
1 0 0 2  
1 1 2 3  
0 1  1 4  
0 1 0 s  
01  10 
0 1 0 1  
0 1  1 2  
0 1 0 3  
0 0 2 4  
1 0 1 s  
1 1 2 0  

0 1 2 3  
1 1 0 4  
1 0 2 s  
0 1  1 0  
1101  
1 0 1 2  
1 0 0 3  
0 0 1 4  
0 1 0 s  
1 1 2 0  
1 1 1 1  
1 1 2 2  
1 1  1 3  
I 1 2 4  
I 1  1 s  
I 0 0 0  
0 0 2  1 
0 1 0 2  

1 0 1 4  
0 0 2 s  
0 1  10  
1 0 0 1  
0 0 2 2  
0 1 0 3  
0 1 2 4  
1 1 0 5  
1 0 2 0  
0 0 1  1 
0 0 0 2  
0 0 1 3  
0 0 0 4  
0 0 1 s  
0 0 0 0  
0 1 2 1  
1 I 1 2  
1 0 2 3  

Suppose that m = 4. The choice sets in Table 8.8 were constructed with the set 
of generators C: = (00000,111 11.10122,01033) and are 100% efficient. This set of 
generators was chosen so that S1 = ,$z = Ss = 4 and S? = S5 = 6. The C . 4 ,  matrix is 
given by 

1 
128 

Suppose that ~n = 2. A design which is 96.29% efficient can be constructed by adding 
1 (mod 2) to the levels of the 2-level attributes and adding 1 or 3 (mod 4) to the levels 
of the 4-level attributes to obtain the treatment combinations for the second option (see 
Design 1 in  Table 8.10), where G = (00000,11111). However, if we add 1 (mod 2) to 
the levels of the 2-level attributes and add 2 (mod 4) to the levels of the 4-level attributes 
to obtain the treatment combinations for the second option (see Design 2 in Table 8.10), 
where G = (00000,11122), we get det(CA1) = 0 since the main effects of the 4-level 
attributes cannot be estimated. This is because, for each 4-level attribute, we have 0 paired 
with 2, 1 with 3 , 2  with 0, and 3 with 1. Thus, only two (02, 13) of the six possible ordered 
pairs (01, 02, 03, 12, 13, 23) result, compared to four of the six (01, 12, 23, 30) if we add 
either 1 or 3 (mod 4). This situation arises because 2 + 2 = 0 (mod 4) and i t  is always an 
issue when constructing pairs when the number of levels of an attribute is not prime. 

I t  is also worth noting that Design I i n  Table 8.10 does not satisfy the desirable properties 
6 and 7 given at the beginning of this chapter. For the 4-level attributes 0 i n  option I is 
always paired with 1 in option 2, I i n  option I is always paired with 2 i n  option 2, 2 in 
option 1 is always paired with 3 in option 2 ,  and 3 in option I is always paired with 0 in 
option 2. Furthermore, the only combinations of levels of each of the 4-level attributes 
that appear in the choice sets are 0 and I ,  1 and 2, 2 and 3, 3 and 0. By adding the sets 
of generators GI = (00000.11111), G2 = (00000,11122), and C:s = (00000,11133), 

C,,r = - I g .  



260 PRACTICAL TECHNIQUES FOR CONSTRUCTING CHOICE EXPERIMENTS 

properties 6 and 7 can be satisfied, but at a cost of an increase in the number of choice sets 
0 from 16 to 48. This larger design is 100% efficient. 

Table 8.8 
e4 = e ,  = 4 when m = 4 for Main Effects Only 

Starting Design and Near-Optimal Choice Sets for k = 5 ,  e l  = e ,  = & = 2, and 

4,1116 1 1  F = 23 x 42/ /16  F + 11111 F + 10122 F + 01033 

0 0 0 0 0  
0 1 1 1 1  
0 2 2 2 2  
0 3 3 3 3  
1 0 1 2 3  
1 1 0 3 2  
1 2 3 0 1  
1 3 2 1 0  
0 0 2 3  1 
0 1 3 2 0  
0 2 0  1 3  
0 3 1 0 2  
1 0 3 1 2  
1 1 2 0 3  
1 2 1 3 0  

0 0 0 0 0  
0 1 1 1 l  
0 1  1 2 2  
0 0 0 3 3  
1 0 1 2 3  
1 1 0 3 2  
1 1 0 0 1  
1 0 1  1 0  
0 0 1 3 1  
0 1 0 2 0  
0 1 0 1 3  
0 0  1 0 2  
1 0 0 1 2  
1 1  1 0 3  
I 1  1 3 0  

1 1 1 1 1  1 0 1 2 2  
1 0 0 2 2  1 1 0 3 3  
1 0 0 3 3  1 1 0 0 0  
1 1 1 0 0  1 0 1 1 1  
0 1 0 3 0  0 0 0 0 1  
0 0 1 0 3  0 1 1 1 0  
0 0 1 1 2  0 1 1 2 3  
0 1 0 2 1  0 0 0 3 2  
1 1 0 0 2  1 0 0 1 3  
1 0 1 3 1  1 1  1 0 2  
1 0 1 2 0  1 1 1 3 1  
1 1 0 1 3  1 0 0 2 0  
0 1 1 2 3  0 0 1 3 0  
0 0 0 1 0  0 1 0 2 1  
0 0 0 0 1  0 1 0 1 2  

0 1 0 3 3  
0 0  1 0 0  
0 0 1  1 1  
0 1 0 2 2  
1 1 1 1 2  
1 0 0 2  I 
I 0 0 3 0  
1 1  1 0 3  
0 1  1 2 0  
0 0 0  1 3  
0 0 0 0 2  
0 1 1 3 1  
1 1 0 0 1  
1 0 1 3 2  
1 0 1 2 3  

1 3 0 2 1  11 1 0 0 2  I 0 1 1 3 2  0 0 1 0 3  1 1 0 1 0  

In the following example we illustrate the use of both expansive replacement of one 
attribute by more than one attribute (see Construction 2.3.4) and contractive replacement 
of several attributes by one attribute (see Construction 2.3.5). The most commonly used 
expansive and contractive replacements of attributes are given in the middle and last 
sections, respectively, of Table 8.9. Contractive replacement is not always possible due to 
the conditions on the structure of the original array. 

WEXAMPLE 8.1.6. 
Suppose k = 13, .fq = 2, for q = 1,.  . . , 12 ,  .f13 = 4, and m = 3. Now there are two 
ways in which we can obtain the starting design: a 212 x 4//16 OMEP. The first way is 
to begin with the 45//16 and use expansive replacement to get the starting design that we 
need. Alternatively, we can begin with the 215//16 and use contractive replacement to get 
the desired starting design. In this example we will illustrate both methods. 

Starting with the 45//16, which is given in the first column in Table 8.1 1, we replace the 
4 levels of the first attribute by the 4 treatment combinations of the 23//4, which is shown 
in Table 2.25. That is, we replace the first 4-level attribute by three 2-level attributes. We 
replace 0 in the first attribute with OOO, 1 with 01 1, 2 with 101, and 3 with 110. We repeat 
this procedure for the second, third and fourth 4-level attributes to get the 2” x 4//16 
design shown in the second column in Table 8.1 I .  If we add the set of generators 

G = (0000000000000,111111111 111 1,1010101010102) 

to this starting design then we get the choice sets which are also given in Table 8.1 I .  This 
design is 100% efficient and the information matrix is 
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Table 8.9 Common Collapsing/Replacement of Attribute Levels 

Starting Column(s) 

# Columns # Levels 

1 I6 
1 8 
1 4 
1 9 
I 6 

1 4 
1 8 

1 8 

1 16 

1 16 

I 16 

1 9 

3 2 

2 3 

2 4 3 

2 

&place with Column(s) 

P Columns # Levels 

1 8 . 4 0 ~ 2  
1 4 or 2 
1 2 
1 3 
1 3 or 2 

3 2 
7 2 

4 
2 

2 
2 

{ :  5 4 

{ {  4 3 
4 

I 8 

1 4 

1 16 

1 9 

Use 

OMEP 

In the second method, we start with the fourth 2I5/ / l6  OMEP, which is called the 
oa. 16.15.2.2.3, from Sloane (2006b). We denote this OMEP by A and it  is shown in the 
first column in Table 8.12. Let H be the 23//4 which is displayed i n  Table 2.25. Then B is 
tight since it satisfies the condition given in Construction 2.3.5 for a tight orthogonal array: 
N1 = 4 = 1 + 3 x (2 - 1). We need three columns of A that contain only the entries in  the 
2“//4,  that is, treatment combinations 000,Ol I ,  101 and 1 10. There are seven possibilities 
trom which we can choose: columns I ,  8, and 9; columns 2 ,  8, and 10; columns 3 , 8 ,  and 
1 1 : columns 4, 8, and 12; columns 5 , 8 ,  and 13; columns 6, 8, and 14: or columns 7 ,  8, and 
15. Suppose we choose columns I ,  8, and 9 and replace them with one 4-level column. 
We can do this since those c = 3 columns of A form N/N1 = 16/4 = 4 copies of B. To 
get the 4-level column in the new design F ,  we replace 000 in the columns I ,  8. and 9 of A 
with 0,Ol I with I ,  101 with 2, and 110 with 3. This new 4-level column is then combined 
with columns 2 to 7 and 10 to 15 of A to get the 212 x 4//16 design. This design is given 
in the second column in Table 8.12. 

The choice sets are then constructed with the same set of generators as the first method 
and the resulting design is 100% efficient with the same CAI matrix as before. The choice 

0 

As we discussed in Sections 1.6.2,4.2.4, and 5.2.3, it is possible to have choice sets in 
which one treatment combination may dominate the other treatment combinations in the 
same choice set. This can happen when the levels of all of the attributes are ordered i n  
some way, from best to worst or vice versa. In this situation we need to avoid starting 
designs which contain the treatment combination 000. . . O  or the treatment combination 
with all attributes at the high level. The best way of choosing sets of generators is to have 

sets are also given i n  Table 8.12. 
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F F + 11111 F F + 11122 

0 0 0 0 0  1 1 1 1 1  
0 1 1 1 1  1 0 0 2 2  
0 1  1 2 2  1 0 0 3 3  
0 0 0 3 3  1 1  1 0 0  
1 0 1 2 3  0 1 0 3 0  
1 1 0 3 2  0 0 1 0 3  
1 1 0 0 1  0 0 1  1 2  
101  I 0  0 1 0 2 1  
1 0 1 3 1  0 1 0 0 2  
1 1 0 2 0  0 0 1 3 1  
1 1 0 1 3  0 0  1 2 0  
1 0 1 0 2  0 1 0 1 3  
0 0 0  I 2  1 1  1 2 3  
01  1 0 3  1 0 0 1 0  
0 1  1 3 0  1 0 0 0 1  
0 0 0 2  1 1 1  I 3 2  

0 0 0 0 0  1 1  1 2 2  
0 1 1 1 1  1 0 0 3 3  
0 1  1 2 2  1 0 0 0 0  
0 0 0 3 3  1 1 1 1 1  
1 0 1 2 3  0 1 0 0 1  
1 1 0 3 2  0 0 1  1 0  
1 1 0 0 1  0 0 1 2 3  
1 0 1  1 0  0 1 0 3 2  
1 0 1 3 1  0 1 0 1 3  
1 1 0 2 0  0 0  I 0 2  
I 1 0 1 3  0 0 1 3 1  
1 0 1 0 2  0 1 0 2 0  
0 0 0  1 2  1 1 1 3 0  
0 1  1 0 3  1 0 0 2  1 
0 1 1 3 0  1 0 0 1 2  
0 0 0 2  1 I 1  1 0 3  

Table 8.11 
for m = 3 

212 x 41/16 Obtained from 4'1116 by Expansive Replacement, and Choice Sets 

45//16 

00000 
01111 
02222 
03333 
10123 
1 I032 
12301 
13210 
2023 1 
21320 
22013 
23102 
30312 
31203 
32130 
33021 

F = 2" x 41/16 F + 1111111111111 

0000000000000 1 I 1  11 1 1  111 I I  1 
oooo110110111 1111001001002 
000101 101 1012 1 1  10100100103 
0001101101103 1110010010010 
0110000111013 1001111000100 
0110110001102 1001001110013 
0111011100001 10001Ooo1l112 
0llll010l0Il0 1000010101001 
101o001011101 0101110100012 
1010111101010 01010oO010101 
1011010000113 0100101111000 
1011100110002 0100011001113 
11oooo1100112 0011110011003 
I1001 11010003 001 1000101 110 
1101010111100 0010101000011 
1101100001011 0010011110102 

F+1010101010102 

1010101010102 
10100111o0013 
1011110001110 
1011000111001 
1100101101111 
1100011011000 
I101 1101 10103 
11010000o0012 
0000100001003 
00000lOl11 I12 
0001111010011 
0001001 100100 
0110100110010 
0110010000101 
0111111101002 
0111001011113 

a mix of levels so that in some attributes a low value is added, in some attributes middle 
values are added, and in the remaining attributes high values are added. Thus no choice 
set will contain treatment combinations that dominate other treatment combinations. In the 
following example we show how to obtain a starting design for the previous example. We 
also discuss avoiding unrealistic treatment combinations. In both cases we are using the 
ideas in Construction 2.3.9. 
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Table 8.12 
Sets for ni = 3 

212 x 41/16 Obtained from 215//16 by Contractive Replacement, and Choice 

A = 2151//1fi 

000000000000000 
l0lolololoIoloI 
011001100110011 
11001 1001 1001 10 
000111100001111 
101101001011010 
0111l0000111100 
110100101101001 
000000011111111 
00101 1 I 1  1101000 
0101 I101 1010001 
01 I1001 110001 10 
1001011l0ll0I00 
101110010100011 
110010110011010 
111001010001101 - 

F = 2’2 x 41/18 

0000000000000 
010l010101012 
1100111100110 
1001101001102 
0011110011110 
0110100110102 
1111001111000 
1010011010012 
0000001 1 1  1 I I I 
0101111010001 
1011100100011 
1110010001101 
0010111101003 
01 110010001 13 
1001010110103 

F+1111111111111 

1 1 1 1 1 1 1 1 1 1 1 1 l  
1010101010103 
0011000011001 
0110010110013 
1100001100001 
1001011001013 
000011000011I 
0101100101103 
1111110000002 
1010000101112 
0100011011102 
0001101110012 
1101000010110 
1000110111000 
01 10101001010 

F+1010101010102 

10 I01 01 01 01 02 
1111111111110 
01 I00101 10012 
0011000011000 
1001011001012 
1 I0000 I 100000 
0101100101102 
0000110000110 
1010100101013 
1111010000103 
0001001110113 
0100111011003 
1000010111101 
I101 10001001 1 
001111ll0000I 

110010001 1013 001 101 1100100 01100010011ll 

EXAMPLE 8.1.7. 
In Table 8.1 1 the first choice set contains the treatment combination 0000000000000. If 

the attribute levels are ordered from least preferred at level 0 to most preferred at level 
6 ,  - 1 then the treatment combination of all zeros will be dominated by the other treatment 
combinations in the choice set. We can use a different fraction for the starting design to 
avoid this problem (see Construction 2.3.9). First we choose a treatment Combination that 
is not in  F .  For example, the treatment combination 1 1  1 1  110000000 is not in  F and if 
we add it to F, using the modular arithmetic appropriate to each attribute, we will obtain a 
different fraction which is also an OMEP. This OMEP is displayed in the first column of 
Table 8.1 3. Neither the treatment combinations with low values, 0000000000000, nor the 
treatment combination with high values, 1 I 1 1  I 1  1 1 11 1 1  3, appears i n  this OMEP. Then by 
adding the same set of generators as we used in the previous example, we get the choice 
sets given i n  Table 8.13. These choice sets have the same efficiency and matrix as 
before. Note that i n  no choice set does one treatment combination dominate another. 0 

We can use the same method if there are treatment combinations that are unrealistic. 
Suppose that i n  Example 8.1.5, (he treatment combination with the 2-level attributes at the 
low level and the 4-level attributes at the high level (00033) is considered unrealistic and 
hence we do not want i t  appearing i n  the choice experiment. This treatment combination 
is in  the starting design (see Table 8.8) and can be avoided either by using a different 
collapsing scheme for the first three 4-level attributes, such as 0 + 0, 1 i 0,  2 + 1 and 
3 --t 1, or by using Construction 2.3.9 to obtain a different starting design. After we have 
chosen the appropriate starting design, the set of generators should be chosen so that no 
unrealistic treatment combination results from the addition of the generators to the starting 
design. 
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Table 8.13 A Different 2'2 x 4//16 and Choice Sets form = 3 

F = 212 x 4//16 
+ 1111110000000 

F + 1111111111111 F + 1010101010102 

1 1  1 1  11o0o0000 
1l110001101 1 1  
1110101011012 
I 1  1001 1101 103 
1001110111013 
1001000001102 
1000101100001 
1000011010110 
olollllolllol 
0l0l00I101010 
0 100 10oO00113 
0100010110002 
0011111100112 
0011001010003 
0010100111100 
001001o0o1011 

0000001111111 
00001 I1001002 
0001010100103 
0001100010010 
01 10001oO0100 
01101 1 1  110013 
011 1010011 112 
0111100101001 
1010000100012 
l010Il0010l0l 
1011011111000 
1011lO1001113 
1100000011003 
1100110101110 
1101011o0o011 
1101101110102 

0101011010102 
0101101100013 
01oO000001110 
0100110111001 
0011011101111 
0011101011000 
0010000110103 
0010110oO0012 
111101o001003 
1111100111112 
1110001010011 
1 I101 1 1  100100 
1001010110010 
1001 I00000101 
1oo0oo1101002 
1000111011113 

8.1.3 More on Choosing Generators 

When the number of levels increases, it is sometimes possible to obtain a more efficient 
choice experiment by using difference sets to choose sets of generators for the choice sets, 
as long as there is a difference set for the appropriate values of tq and m. In the following 
example we use the difference sets given in Tables 2.34 and 2.35. 

EXAMPLE 8.1.8. 
Let k = 17, tq = 2 for q = 1 , .  , . ,16, and = 13. There are two possible starting 
designs, both available in Kuhfeld (2006): 216 x 13//52; or 216 x 16//32 in which the 
16-level attribute will need to be collapsed to 13 levels, resulting in unequal replication of 
levels. In this example we first consider the choice sets constructed from the 216 x 13//52 
starting design for m = 2,3,4,5 (see Table 8.14). 

For m = 2 the only possible entry for the binary attributes in gz is 1. For the 13-level 
attribute the entry in gz can be any of the numbers 1 to 12 and the efficiency will be the 
same. Choice sets are constructed using the set of generators 

G = (00000000000000000,11111111~11111111) 

resulting in 5 2  choice sets with efficiency of 86.23%. For a higher efficiency two or more 
sets of generators are required. For example, if we use the sets of generators 

GI = (00000000000000000,111 1111 1111 11 11 11) 

and 
Gz = (00000000000000000, 1 1 11 11 11 11 11 1 I 115) 

the 104 choice sets have an efficiency of 96.84%. 
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For m = 3 an obvious set of generators to use is 

c: = (00000000000000000,01010101010101 01 I! 101010101010 101 02) 

and the 52 choice sets are 93.10% efficient. While this efficiency is good, we can use the 
elements of either of the difference sets (0,1,4) and (0,2,7), given i n  Table 2.35 for li = 13, 
r ~ i  = 3 and X = 1, as the entries in the generators for the 13-level attribute to increase the 
efficiency. Thus we could use either of the sets of generators GI and ( 2 2 ,  where 

G I  = (00000000000000000.0101010101010101 I ,  1~110101010101010~~) 

and 

G 2  = (00000000000000000,01010101010101012.10101010101010107). 

Either would result in 52 choice sets that are 98.30% efficient. However, if we use both (:I 

and Gz the 104 choice sets are 100% efficient. 
For ~n = 4 we can use the difference set (0,1,3,9) given i n  Table 2.34 for the entries 

in g , ,  i = 1.2.3.3. The 52 choice sets are 100% efficient (see Table 8.14 for the sets of 
generators). On the other hand, if  we use 0, 1 , 2  and 3, which is not a difference set, for the 
entries i n  g , ,  i = I. 2,3,4.  for the 13-level attribute, the 52 choice sets are only 96.31% 
efficient. 

For 'rn = 5 there is the difference family (0,1,2,4,8), (0,1.3,6,12), and (0,2,5,6,10) in 
Table 2.35. Usingjust one difference set from the difference family for the entries i n  g,, 
i = 1. . . . , 5 ,  for the 13-level attribute, gives 52 choice sets that are 99.87% 99.87% and 
99.65% efficient, respectively. However, if we use all three difference sets the IS6 choice 
sets are 100% efficient. 

Now we consider the choice sets constructed from the 216 x 16//32. The 16-level 
attribute is collapsed to I3 levels by replacing all 13s with 0, all 14s with 1 and all 15s with 
2. In  Table 8.14 we give the efficiencies f o r m  = 2 , 3 ;  4: 5 using the same sets of generators 
as for the other starting design. While these designs all have only 32 choice sets, there is 
unequal replication of the levels of the 13-level attribute and the efficiencies are less than 
for the corresponding designs constructed from the 2IG x 13//52. For all of the choice 

0 

I n  the following two examples there is one attribute with a large number of levels. The 
OMEPs required for the starting designs are not already available and must be constructed. 
In both cases the number of choice sets is far more than a respondent can complete, and the 
choice sets need to be split into blocks of a manageable number of choice sets. While some 
practitioners may never use an attribute with such a large number of levels, we have been 
asked to construct choice experiments with large numbers of levels for one of the attributes 
on several occasions. 

EXAMPLE 8.1.9. 
Suppose there are k = 8 attributes with levels C1 = f2 = 2, f 3  = P1 = Cs = E6 = 4, 
/.; = 8. li8 = 36, and ?n = 3. Since there is no starting design readily available. we will 
need to construct one. One way to do this is to start with the 4$ x 8 / / 3 2  shown in the 
first column of Table 8. 15. We discard the first 4-level attribute and collapse the levels of 
the seventh and eighth 4-level attributes to 2 levels (0 and 1 become 0, 2 and 3 become 
I )  to obtain a 4s x 22 x X//32, which is shown in the second column of Table 8.15. We 
then create a 9-level attribute using Construction 2.3.6. We write down 9 copies of the 

experiments in this example, all pairs of main effects are uncorrelated. 
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Table 8.14 
rn = 2 , 3 , 4 , 5  for Main Effects Only 

Different Designs for k = 17, e,  = 2, q = 1 , .  . . , 16, and f?17 = 13 when 

Generators 

m = 2  
0o0o00o0o00o0o000, 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

m = 3  
0o0o000000o0o000, 
01010101010101011, 
10101010101010102 

0o0o0000000o0o000, 
01010101010101011, 
10101010101010104 

m = 4  
0o0o0000000000000, 
10101010101010101, 
01010101010101012, 
11111111111111113 

0o0O00o0o00o0O000, 
10101010101010101, 
01010101010101013, 
11111111111111119 

m = 5  
oooO0000000000000, 
10101010101010101, 
01010101010101012, 
111 111 1100oooo003, 
0o0o0000111111114 

00000000000000000, 
10101010101010101, 
01010101010101012, 
11111111000000004. 
OOOoOo0O111111118 

216 x 131152 

' Choice Efficiencj 
Sets 

52 86.23% 

52 93.10% 

52 98.30% 

52 96.3 1 % 

52 100% 

52 98.02% 

52 99.87% 

2'' x 161132 

Sets 
I Choice Efficiency 

32 84.608 

32 91.68% 

32 97.28% 

32 95.16% 

32 99.38% 

32 97.11% 

32 99.38% 
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4" x 2' x 8 1 / 3 2  OMEP, one above the other, and then adjoin a 9-level attribute with 32 
copies of 0 then 32 copies of I ,  and so on. up to 32 copies of 8, as shown in Table 8.16. 
The resulting array is a 9 x 45 x 2' x 8 / / ( 3 2  x 9 = 288) OMEP. 

We will now create a 36-level attribute from the 9-level attribute and the first 4-level 
attribute by using contractive replacement (see Construction 2.33). The first two columns 
of the 9 x ,I5 x 22 x 8 / / 2 8 8  form 8 copies of an OA[36,4,9,2], which could he extended 
to form a tight OMEP. Thus replacing 00 with 0,01 with I ,  02 with 2, and so on. results in  a 
36 x 4" x 2' x 8 / / 2 8 8  OMEP. Reordering the columns, we get the 44 x 2' x K x 36//288 
design in the columns labeled I.' in  Appendix 8. A. 1. 

Now that we have the starting design, we can create the choice sets of size 3. By trying 
various sets of generators, the most efficient design in 288 choice sets we found is 93.73% 
efficient and can be obtained by adding a set of generators such as 

G = (00000000,1111 101 1.333301 36). 

There are many other combinations of g2 and g3 that result in a design with the same 
efficiency. 

In order to calculate the C',, matrix for this design, we need to be able to calculate the 
rows in the B matrix for all of the attributes, including the 36-level attribute. The orthogonal 
polynomials for the 36-level attribute can be constructed using Kronecker products from 
the orthogonal polynomials for the 4-level and 9-level attributes. This method is illustrated 
in Example 6.3.3. 0 

W EXAMPLE 8.1.10. 
Suppose there are k = 9 attributes with levels tl = i?z = F 3  = li4 = P5 = 4, 00 = 2, 
&i = .18 = 8, t o  = 24, and m = 3. Again there is no starting design readily available. and 
we will need to construct one. First we take the 8'1164 from Sloane (2006b) and collapse 
the first 5 columns from 8 levels to 4 levels (0 and 1 become 0; 2 and 3 become 1 ; 4 and S 
become 2; 6 and 7 become 3). Column 6 is then collapsed from 8 levels to 2 levels (0, 1 , 2  
and 3 become 0; 4 ,5 ,6 ,  and 7 become I ) .  We leave columns 7, 8, and 9 as they arc. thus 
giving us a 45 x 2 x s3//64 OMEP. This design is given in Table 8.1 7. 

We will now create a 24-level attribute from the last 8-level attribute by using Construc- 
tion 2.3.8. We write down 3 copies of the 45 x 2 x 83//64 OMEP, changing the levels of 
column (attribute) 9 in two of the copies in  order to create a column with 24 levels. In the 
first copy, the levels of column 9 remain unchanged (levels 0 to 7), in the 2nd copy add 8 
to the levels of column 9 to get levels 8 to IS, and in the 3rd copy add 16 to the levels of 
column 9 to get levels 16 to 23; this results in a 24-level attribute in column 9. This design 
is now a d5 x 2 x 8' x 24//(64 x 3 = 192) OMEP, which is the required starting design 
(see the first column, F ,  in Appendix 8. A.2). 

To create the choice sets we can add a set of generators such as 

G = (000000000,111111 111,33333033(10)) 

where (10) means that the number 10 is added (modulo 24) to the levels of the ninth 
attribute. This design has an efficiency of 96.3296, and the main effects are all pairwise 
uncorrelated. Various other sets of generators, such as 

G = (000000000,1111 1 1112.333330335). 

arejust as good. To calculate the B matrix, and therefore the CAI matrix, we can calculate 
the orthogonal polynomials for the 24-level attribute from the polynomials for the 6-level 

0 and 4-level attributes (see Example 6.3.3). 
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Table 8.15 4' x 22 x 81/32 and 4' x 81/32 OMEPs 

48 x 81/32 

0 0 0 0 0 0 0 0 0  
0 0 1  1 3 3 2 2 1  
0 1 2 3 0 1 2 3 2  
0 1 3 2 3 2 0 1 3  
0 2 0 2 1  3 1 3 4  
0 2 1  3 2 0 3 1  5 
0 3 2 1  1 2 3 0 6  
0 3 3 0 2 1  I 2 7  
1 0 2 3 2 3 1 0 3  
1 0 3 2  1 0 3 2 2  
1 1 0 0 2 2 3 3  1 
1 1  I 1 1 1  1 1 0  
1 2 2  1 3 0 0 3 7  
1 2 3 0 0 3 2  1 6  
1 3 0 2 3  1 2 0 5  
I 3  1 3 0 2 0 2 4  
2 0 2 0 3  1 3  1 4  
2 0 3  1 0 2  13.5 
2 1 0 3 3 0 1 2 6  
2 1  1 2 0 3 3 0 7  
2 2 2 2 2 2 2 2 0  
2 2 3 3 1  1 0 0 1  
2 3 0 1 2 3 0 1 2  
2 3 1 0 1 0 2 3 3  
3 0 0 3  1 2 2 1 7  
3 0 1 2 2  I 0 3 6  
3 1 2 0  1 3 0 2 5  
3 1 3  1 2 0 2 0 4  
3 2 0 1 0 1  3 2 3  
3 2 1 0 3 2 1 0 2  
3 3 2 2 0 0 1 1 1  
3 3 3 3 3 3 3 3 0  

45 x 2= x 81/32 

0 0 0 0 0 0 0 0 0  
0 0 1  1 3 3  1 1  1 
0 1 2 3 0 1 1 1 2  
0 1  3 2 3 2 0 0 3  
0 2 0 2  1 3 0  1 4  
0 2 1  3 2 0 1  0 5  
0 3 2 1  1 2 1 0 6  
0 3 3 0 2  1 0  1 7  
1 0 2 3 2 3 0 0 3  
1 0 3 2 1 0 1 1 2  
1 1 0 0 2 2 1  1 1  
1 1  I 1  1 1 0 0 0  
I 2 2  I 3 0 0 1 7  
1 2 3 0 0 3 1 0 6  
1 3 0 2 3 1  1 0 5  
1 3 1 3 0 2 0 1 4  
2 0 2 0 3  1 1  0 4  
2 0 3 1 0 2 0 1 5  
2 1 0 3 3 0 0 1 6  
2 1 1 2 0 3 1 0 7  
2 2 2 2 2 2  1 1 0  
2 2 3 3 1 1 0 0 1  
2 3 0 1 2 3 0 0 2  
2 3 1 0 1 0 1 1 3  
3 0 0 3 1 2 1 0 7  
3 0 1  2 2 1 0 1  6 
3 1 2 0 1 3 0 1  5 
3 1 3  1 2 0 1 0 4  
3 2 0 1 0 1  1 1 3  
3 2  1 0 3 2 0 0 2  
3 3 2 2 0 0 0 0 1  
3 3 3 3 3 3  1 1 0  
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Table 8.16 9 x 45 x 2’ x 811288 by Adding Another Attribute to the 45 x 2’ x 81/32 

9-Level Attribute 

;} 
1 1  I 

0 

45 x 2’ x 8Attributes 

45 x 22 x 81/32 

4s x 22 x 81/32 

45 x 22 x 81/32 

8.2 SMALL NEAR-OPTIMAL DESIGNS FOR MAIN EFFECTS PLUS 
TWO-FACTOR INTERACTIONS 

In  this chapter thus far we have been discussing techniques to construct choice experiments 
for main effects only which satisfy as many as possible of the seven desirable properties 
given at the beginning of this chapter. These designs are appropriate if all interactions can 
be assumed to be negligible. However, if there is no reason to believe that this is the case 
then a design that allows for the estimation of two-factor interactions, or even higher-order 
interactions, should be used. 

In this section, we give some techniques for getting a starting design and choosing 
sets of generators to construct the choice sets. I n  Theorem 5.1.2, we give the maximum 
determinant ofthe GAIT matrix for binary attributes and hence we can calculate efficiencies, 
but for the situation in which there is at least one attribute with more than two levels we 
do not know the maximum possible detenninant of the C A ~ T  matrix. For this case we 
can still calculate d e t ( ( ‘ ~ ~ ~ ~ )  for various designs (see Lemma 6.5.2) and choose the most 
appropriate design from those considered. 

It is often the case, when wanting to estimate main effects and all or some of the two- 
factor interactions, that more than one set of generators needs to be added to an already 
large starting design. This results in a large number of choice sets, which will need to be 
split into blocks so that the respondents are presented with a manageable number of choice 
sets. 

8.2.1 Getting a Starting Design 

Designs of resolution 5 can be used to estimate main effects and all two-factor interactions 
although finding such a design can be challenging. If there are four or fewer attributes 
(so k 5 4). then the only resolution 5 design is the complete factorial, independent of the 
number of levels of each of the attributes. If there are more than four attributes ( k  > 4). 
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8'//64 

Table 8.17 
Attributes 

45 x 2 x 83//64 OMEP Obtained from 8'1164 by Collapsing the Levels of 6 

45 x 2 

OooO00ooO 
01 1234567 
02234567 1 
0334567 I2 
044567 123 
055671 234 
0667 12345 
077 123456 
101 1111 I 1  
110472653 
124726530 
137265304 
I42653047 
156530472 
I65304726 
173047265 
202222222 
2 I405 1376 
2205 13764 
235 137640 
241 376405 
25376405 1 
2676405 13 
276405 I37 
303333333 
3 17506241 
325062417 
330624175 
346241 750 
3524 I7506 
364175062 
371750624 

404444444 
4 12 160735 
42 I607352 
436073521 
4407352 I6 
457352 160 
46352 1607 
4752 I6073 
50.5555555 
5 16327014 
5232701 46 
532701463 
54701 4632 
550146327 
561463270 
574632701 
606666666 
615743 102 
62743 1025 
6343 10257 
643 102574 
65 1025743 
66025743 1 
672574310 
707777777 
7 136 IS420 
726154203 
73 IS42036 
745420361 
754203615 
762036 I54 
77036 IS42 

0000oO000 
0001 I IS67 
01 1121671 
01 1221712 
02223 1 123 
022330234 
033300345 
033010456 
00oooo111 
000230653 
01 231 1530 
01 313 1304 
02 1320047 
0232 10472 
0321 01 726 
03 1021265 
101 110222 
102020376 
1 10200764 
11201 I640 
120131405 
12133105 1 
1333205 13 
133201 137 
101 I10333 
103201 241 
112030417 
I1031 1175 
123 120750 
12 1201 SO6 
I3203 I062 
130320624 

83 1/64 

20222 1444 
201030735 
210301352 
2 1303052 1 
22031 I216 
223 120160 
231 210607 
232101073 
20222 I555 
2031 11014 
21 I130146 
2 1 1 3oO463 
223001 632 
22002 I327 
230230270 
232310701 
30333 1666 
302320 102 
3 13210025 
3 12 100257 
321 000574 
32001 1743 
330121 43 I 
331 231 310 
30333 I777 
301 301 420 
3 13021203 
3 10220036 
3222 I036 1 
322 10061 5 
33101 I154 
330130542 
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then we can find a resolution 5 design that uses fewer treatment combinations than the 
complete factorial. 

I f  only some two-factor interactions are to be estimated, under the assumption that the 
remaining two-factor and higher-order interactions are negligible, a resolution 4 fractional 
factorial design can be used, as long as the main effects and interactions of interest are 
orthogonal. Some fractional factorial designs of resolution 5 (strength 4) are given in 
Sloane (2006b); otherwise a fractional or complete factorial will need to be constructed. 
Some constructions for fractional factorial designs of resolution 5 are given in Section 
2.2.1, and inore constructions are given in Dey (1985) and Hedayat et at. (1909). 

8.2.2 Designs for Two-Level Attributes 

In Sloane (2006b) there are some designs for binary attributes with resolution at least 5. In 
Section 2.2. I we give a construction for resolution 5 designs for 2k factorial designs. 

In Theorem 5.1.2 we give the maximum determinant of the CJlT matrix for binary 
attributes and the form of the optimal design. In  Section 5.2.2 we give a construction for 
near-optimal designs. 

EXAMPLE 8.2.1. 
Let k = 7 and I.,  = 2 for (1 = 1. . . . ,7.  From Table 2.10, we see that the smallest known 
2 fractional factorial design of at least resolution 5 has N = 64 treatment Combinations. 
Such a design can be found in Dey ( 1  985) or Sloane (2006b) or by using the construction 
for 2-level fractions in Section 2.2.1. The design in Table 8.1 8 is from Dey (1085). 

‘ 7  

Theorem 5.1.2 states that the D-optimal design is given by 

m(rn - 1) 
y4 = 27(;) 

and all other y, = 0. For the optimal design for m = 2, choice sets with the difference 
vector containing only 4s are required. Hence we need to choose sets of generators so that 
there are four attributes different between any pair of treatment combinations in a choice 
set. 

A method that results in near-optimal choice sets, for binary attributes for m = 2. is 
given in Section 5.2.2. The following sets of generators, 

GI = (0000000.00011 1 I ) .  

G* = (0000000.0110011). 

G3 = (0000000.1010101). 

when added to the starting design in Table 8.19, result in  choice sets that are 91.8S% 
efficient with det(C’,t[T) = ( l /3S4)12(  l / lT2)12( l /128)4 :  Note that there is at least one 
1 in the position corresponding to each attribute, and for any two attributes there is at least 
one g2 in  which the corresponding positions have a 0 and a 1 entry. These conditions 
cannot be satisfied i n  less than three sets of generators. Any repeated choice sets were 
deleted. thereby reducing the number of choice sets from 61 x 3 = 192 to 96. 

For 7)) = 3 the sets of generators 

GI = (0000000,0001 11 1 * 01 100 1 I )  

e 2  = (0000000,1010101,1101001) 
and 
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give us difference vectors containing only 4s. The resulting design is 95.7 1 % efficient. 

Similarly, f o r m  = 4, using 

GI = (0000000,0001111,0110011,1010101) 

results in a design that is 98.98% efficient, and for m = 5 the design obtained using 

GI = (0000000.0001111.0110011,1010101,1101001) 

is 99.09% efficient. 

the main effects and two-factor interactions are all uncorrelated. 
In all of the above designs ChfT ,  and therefore CitT, are diagonal, which means that 

0 

In the previous example we have used a starting design of at least resolution 5. What 
happens if we use a starting design of resolution 3 or 4? In Sloane (2006b) there is a 2' 
resolution 3 design in 8 runs, in which the main effects and two-factor interactions are 
confounded, and a 28 resolution 4 design in 16 runs, in which the two-factor interactions 
are confounded with each other. If either of these designs is used as the starting design, then 
many more sets of generators are required to achieve a non-zero det(ChfT). Moreover, 
the C& matrix will not be diagonal and therefore some, if not all, pairs of effects will be 
correlated. 

Table 8.18 Fractional Factorial of Resolution 7 for kq = 2, q = I . .  . . , 7  

000Oooo 
l00OooI 
01ooO01 
001oO01 
0001001 
0000101 
000001 1 
11ooooo 
101Oooo 
1001000 
1000100 
1000010 
OlIoO00 
OlOI000 
0100100 
0100010 

001 1000 
0010100 
0010010 
oO01 100 
OoolOIO 
oO00110 
111oO01 
1101001 
1100101 
110001 I 
101 1001 
l O l 0 I O l  
101001 1 
1001 101 
100101 1 
10001 1 I 

01 11001 
01 10101 
01 1001 I 
0101 101 
010101 1 
01001 1 I 
001 1101 
001 101 1 
00101 1 1  
0001111 
1111000 
1 I10100 
1 1  I0010 
1101 100 
1101010 
11001 10 

101 1 100 
101 1010 
10101 10 
1001 110 
0111100 
01 11010 
01 101 10 
0101 110 
0011110 
I I  11101 
I111011 
I11011 1 
1101 11 1 
I011 I l l  
01 I I I l l  
I I  I I I  10 

8.2.3 Designs for Attributes with More than Two Levels 

At this stage there are not many fractional factorial designs available when there is at least 
one attribute with more than two levels. There are some available in Sloane (2006b), there 
are Constructions 2.2.2 and 2.3.2, and there are constructions in Section 2.3.2, Dey (1985) 
and Hedayat et al. (1999). Furthermore, if there is at least one attribute with more than two 
levels, we do not know the maximum det(Cil,rT), other than for some small examples in the 
appendices of Chapter 6. However, we do have an expression for det(ChfT) which allows 
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Table 8.19 
and All Two-Factor Interactions 

Near-Optimal Choice Sets for 12, = 2, q = 1.. . . , 7 and m = 2 for Main Effects 

F F + 000111 

0000000 0001 1 I 1 
1000001 1001 110 
0100001 0101 110 
00lO00I 001 1 1  10 
000l00l 00001 10 
0000lOl 0001010 
00000 1 1 000 I I 00 
1100000 1101111 
1010000 101 1 I 1  1 
100l000 10001 1 1  
1000100 100101 1 
1000010 1001 101 
0110000 0111111 
0101000 0lO0l I 1  
0100100 010101 1 
Ol000lO 0101 101 
001 1000 OOlOl I I 
0010100 001 101 1 
0010010 001 1 1 0 1  
1110001 1111110 
I101001 11001 10 
I100101 1101010 
I10001 I 1101 100 
101 1001 10101 10 
l O l 0 l O I  101 1010 
101001 1 101 I100 
01 I1001 01 101 10 
01 10101 01 I lolo 
01 I001 1 01 I I100 
1111000 1110111 
11lO100 1111011 
l1lOO10 1111101 

F F + 0110011 

0000000 01l0011 
100OOOI 1 I10010 
0l0000I 0010010 
0010001 0100010 
0001001 01 11010 
0000101 01 101 10 
00000 1 1 0 1 I0000 
1100000 I01001 I 
1010000 110001 1 
1001000 1 1  1101 I 
I000100 1 1  101 1 1  
1000010 1 1  10001 
0101000 001 101 1 
0100100 00101 1 1  
001 1000 010101 1 
0010100 01001 1 1  
0001100 0111111 
0001010 011 1001 
0000110 01 I O I O l  
1101001 101 1010 
I100101 10101 10 
101 1001 1101010 
1010101 1100110 
1001101 1111110 
100101 I 1 1  11000 
10001 1 I 1 1  10100 
0101 101 001 I I10 
001 I101 01011 10 
0001111 0111100 
llOIl00 1011111 
101 1100 I 1 0 1  1 1  1 
1001110 1111101 

F F t  1010101 

0000000 1010101 
1000001 0010100 
0100001 1 1  10100 
0010001 1000100 
00OlOOI 101 1100 
0000101 1010000 
000001 I 10101 10 
1100000 01 10101 
1001000 001 1101 
1000030 00101 1 I 
01 10000 1100101 
0101000 I I 1  1101 
0100100 I I I0001 
0100010 I 1  101 I I 
001 1000 I001 101 
0010010 100011 1 
0001 100 101 I001 
0001010 101 I I I 1  
00001 10 I01001 I 
I101001 01 I 1  1 0  
110001 I 01 101 10 
lO0IOI 1 001 I 1  10 
01 I I001 1101 100 
01 1001 1 11001 10 
0101 101 1 1  I1000 
0101011 1111110 
01001 I I 1 1  10010 
001101 1 1001 110 
0001 I 1  1 101 1010 
1101010 0111111 
0111010 1101111 
0101110 1111011 
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us to compare different choice experiments. In this situation it is best to construct some 
large designs to try to find a very large det(CnlT), then use this as a basis for determining 
the efficiency of smaller designs that can be used in practice. 

MEXAMPLE 8.2.2. 
Suppose that 5 = 5,  t1 = Pz = t'3 = e4 = 2, and t 5  = 4. There is no resolution 5 
design readily available, so we need to construct an OA[32; 24, 4: 41 using Construction 
2.3.2. The column bl has 16 0s and 16 Is, the column bz has 8 Os, 8 1 s, 8 Os, then 8 Is, 
and so on up to the column b5, which alternates 0s and Is. Then columns b3, b4. bg, and 
bl + b3 + b4 + b5 represent the four columns for the 2-level attributes, where the addition 
is performed modulo 2. Columns bl, bz, and bl + bz become the one column for the 
four-level attribute, by replacing 000 with 0,011 with 1, 101 with 2, and 110 with 3. This 
design is given in  the first column of Table 8.20. 

By looking at the complete factorial, and also the OA[32: 24, 4; 41, plus generators gz 
with at least 2 zeros, the largest det(CMT) we could find is (l/lS0)3(3/320)21. This was 
obtained by taking the OA[32; 24. 4; 41 and adding the 10 sets of generators 

GI = (00000,00111), Gz = (00000,01012), G3 = (00000,01103), 

Gq = (00000,01110), G5 = (00000,10011), G6 = (00000,10102), 

G7 = (00000,10110), Gs = (00000,11003), Gg = (00000,11010), 

and Glo = (00000,11100), 

resulting i n  320 choice sets. However, if we just add the sets of generators GI,  Gg, and Gg, 
we get 96 choice sets which are 90.38% efficient relative to the largest det(CnfT) found. 
This design is given in Table 8.20. 

Form = 3 adding the sets of generators 

G1 = (00000,00111,10102) and Gz = (00000,01103,11010) 

to the OA[32; 24, 4; 41 gives us 64 choice sets that are 96.44% efficient relative to the largest 
det(CnrT) we found. Similarly, for m = 4 the most efficient design i n  32 choice sets was 
obtained by using the set of generators 

G = (00000,00111,10102,01110) 

and for m = 5 using the set of generators 

G = (00000,00111, 10102j01110, 11003). 

These last two designs are 96.29% and 94.66% efficient respectively, relative in each case 
0 to the largest det(CMT) we could find. 

MEXAMPLE8.2.3. 
Let k = 3, .!?I = k'z = 3, and k'3 = 5. Since there are only three attributes, we need to 
use the complete factorial in  45 treatment combinations as the starting design (see the F 
columns in Table 8.21). 

For m = 2 we do know the difference vectors for the optimal design and the maximum 
value of det(CkfT), since this is one of the examples included in Appendix 6. A.2. From 
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Table 8.20 
Effects and All Two-Factor Interactions 

Choice Sets for k = 5,  P I  = PZ = & = Eq = 2, T s  = 4 when m = 2 for Main 

I;' F+00111  

00000 001 I 1  
00110 00001 
01010 01101 
01100 0I0ll 
10010 10101 
10100 10011 
I1000 1 1 1 1 1  
Il l10 11001 
OOOOl 00112 
001 I 1  00002 
O I O I I  01102 
01101 01012 
10011 10102 
l 0 I O l  10012 
11001 11112 
1 1 1 1 1  11002 
00012 00103 
00102 00013 
01002 01113 
01112 01003 
10002 10113 
10112 10003 
I1012 11103 
11102 11013 
00013 00100 
00103 00010 
01003 01110 
01113 0lfw)O 
10003 10110 
10113 10000 
11013 11100 
11103 11010 

F F +  10102 

00000 10102 
00110 10012 
01010 11112 
01100 11002 
10010 00112 
10100 00002 
11000 01102 
11110 01012 
00001 10103 
00111 10013 
O I 0 l l  11113 
01101 11003 
10011 00113 
10101 00003 
11001 01103 
1 1 1 1 1  01013 
00012 10110 
00102 10000 
01002 11100 
01112 11010 
10002 00100 
10112 00010 
11012 01110 
11102 01000 
00013 10111 
00103 10001 
01003 11101 
01113 11011 
10003 00101 
10113 OOOII 
11013 01111 
11103 01001 

F F + 11010 

00m 
001 10 
01010 
01 100 
10010 
10100 
I 1000 
11110 
0000 1 
001 11 
0101 I 
01 101 
1001 1 
10101 
I1001 
1 1 1 1 1  
000 1 2 
00 102 
0 I002 
01 I12 
10002 
101 12 
I1012 
1 I102 
00013 
00 103 
01003 
01 113 
10003 
10113 
11013 
1 I103 

11010 
11 I00 
10000 
101 10 
01000 
01 I10 
00010 
00100 
1101 1 
11101 
10001 
101 I 1  
01001 
01111 
0001 1 
00101 
I1002 
11112 
10012 
I0102 
01012 
01 102 
00002 
001 12 
I1003 
11113 
10013 
10103 
01013 
01 103 
00003 
001 13 
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this table we see that all choice sets with difference vectors 01 1 ,  101 and 110 will give us 
the optimal design with 

This design will have 450 choice sets. To get an efficient design in a smaller number of 
choice sets, we still need to use the complete factorial as the starting design, but we can 
add the two sets of generators 

GI = (000,101) and G2 = (000,110), 

or various other sets of generators that have the difference vectors (101) and ( 1  lo), such as 

G1 = (000,104) and Gz = (000,220), 

or G1 = (000,104) and Gz = (000,220). 

Any of these sets of generators results in a design that is 94.80% efficient. 
For larger choice set sizes we do not know the difference vectors for the optimal design 

or the maximum value of det(CAfT). However, we can use the same idea and add sets of 
generators to the complete factorial so that there are two attributes different between any 
pair of treatment combinations in the choice sets. For ~n = 3 we use the set of generators 

G1 = (000,101,110), 

(or indeed others such as G1 = (000,013,203) or G1 = (000,022,102), since they all 
have the difference vector ( O l l , l O l , l l O ) ) ,  to get 45 choice sets with efficiency 97.17% 
relative to the largest det(CAfT) we could find. 

Similarly, f o r m  = 4 we add 

G1 = (000,101,110,011) 

to the complete factorial and for rn = 5 we add 

GI = (000,101,110.011,203). 

Both of these two designs consist of 45 choice sets and are 98.51% and 99.14% efficient, 
respectively, relative in each case to the largest det(Ch1T) we could determine. 

All of the designs constructed for this example have a C A ~ T  matrix which is block 
diagonal. This means that C&. is also block diagonal and therefore the corresponding 

0 pairs of main effects are uncorrelated. 

8.2.4 Designs for Main Effects plus Some Two-Factor Interactions 

When we believe that some of the two-factor interactions and all higher-order interactions 
are zero, then we can sometimes use a resolution 4 starting design as long as the two- 
factor interactions to be estimated are not confounded with each other. The construction of 
resolution 4 designs for 2-level attributes is discussed iwSection 2.2.1. When at least one 
attribute has more than two levels then there are some resolution 4 (strength 3) designs in 
Sloane (2006b), and Dey ( 1  985) and Hedayat et al. (1 999) give constructions for resolution 
4 designs. Alternatively we can construct a starting design from a resolution 3 OMEP in 



SMALL NEAR-OPTIMAL DESIGNS FOR MAIN EFFECTS PLUS TWO-FACTOR INTERACTIONS 277 

Table 8.21 
and All Two-Factor Interactions 

Choice Sets for k = 3, 81 = P Z  = 3, and & = 5 when m = 3 for Main Effects 

F F + 1 0 1  F + l l O  

000 
00 1 
002 
003 
004 
010 
01 1 
012 
013 
014 
020 
02 1 
022 
023 
024 
I 0 0  
101 
I 02 
I03 
I04 
I10 
I l l  
I12 

101 I10 
102 1 1 1  
I03 I12 
I04 I13 
I00 1 I4 
I l l  I20 
112 121 
113 122 
1 I4 123 
I10 124 
121 100 
I22 101 
I23 I02 
124 I03 
120 I04 
20 1 210 
202 21 I 
203 212 
204 213 
200 214 
21 I 220 
212 22 1 
213 222 

F F + 1 0 1  F + 1 1 0  

I13 
I I4 
120 
121 
122 
123 
124 
200 
20 I 
202 
203 
204 
210 
21 1 
212 
213 
214 
220 
22 1 
222 
223 
224 

214 223 
210 224 
22 1 200 
222 20 I 
223 202 
224 203 
220 204 
00 1 010 
002 01 1 
003 012 
004 013 
000 014 
01 1 020 
012 02 1 
013 022 
014 023 
010 024 
02 1 000 
022 001 
023 002 
024 003 
020 004 
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such a way that the interactions of interest are not confounded with each other or the main 
effects (see Construction 2.3.6). 

In the first example below we are only interested in the two-factor interactions between 
a subset of the attributes, and in the following example we wish to estimate the two-factor 
interactions between one attribute and each of the other attributes. 

uEXAMPLE8.2.4. 
Let k = 4 and el = l2 = k'3 = l 4  = 2 .  Suppose that we are confident that two-factor 
interactions AC, BC and CD, and all higher-order interactions are negligible. We wish to 
estimate the main effects and f = 3 of the two-factor interactions AB, AD and BD. Then 
the 24-1 design of resolution 4 in Table 2.7 can be used as the starting design. We can 
check that none of the effects to be estimated is aliased by checking the aliasing structure 
of this design (see Section 2.2.1). 

We use C b f ~ ,  to denote the information matrix for main effects and some two-factor 
interactions. The sets of generators are chosen so that there is a 1 entry in at least one 
g 2  vector, and for each pair of attributes 1 and 2, 1 and 4, and 2 and 4, there is at least 
one g 2  with a 0 entry and a I entry in the corresponding attribute positions. The largest 
det ( C A ~ T ,  ) can be obtained by adding the sets of generators 

GI = (0000,0111), G2 = (0000,1011) and G3 = (0000,1110) 

to the starting design resulting in 24 choice sets. However, by adding just two of these we 
can get the design in 16 choice sets in Table 8.22. This design i s  95.26% efficient relative 
to the largest det(CMT,) found. 

For larger choice set sizes we will need only one set of generators to estimate all of the 
effects of interest in 8 choice sets. 

GI = (0000,0111,1011) form = 3, 

G1 = (0000,0111.1011,1110) €or m = 4, 

G1 = (0000,0111,1011,1101,1110) for m = 5 .  

These designs are loo%, 97.67% and 98.67% efficient respectively, relative to the largest 
det(ChfT,) found for the particular value of m. 

Table 8.22 
Interactions AB. AD, and BD 

Choice Sets for k = 4 Binary Attributes when m = 2 for Main Effects and 

F F + 0111 

0000 0111 
0011 0100 
0101 0010 
0110 o001 
1001 1110 
1010 1101 
1100 I011 
1111 1000 

F F + 1011 

0000 1011 
0011 1000 
0101 1110 
0110 1101 
1001 0010 
I010 0001 
1100 0111 
1111 0100 

uEXAMPLE8.2.5. 
Let Ic = 6, k'1 = 3, t 2  = l 3  = k'4 = &, = 2 ,  and l s  = 4. Suppose that only the two-factor 
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interactions between the first attribute, and each of the other attributes, are to be estimated. 
In this example the f = 5 interactions AB, AC, AD, AE, and AF are to be estimated, and 
all other interactions are assumed to be zero. We can construct a starting design by taking 
a 24 x 4 resolution 3 design in 8 treatment combinations (available in Sloane (2006b)) and 
using Construction 2.3.6 to create the attribute with 3 levels. Three copies of the 24 x 4//8 
OMEP were written down, one above the other. Then the 3-level attribute was ad.joined, as 
the first column, with 8 copies of level 0, 8 copies of level 1 and 8 copies of level 2. The 
3 x 24 x 4//16 OMEP is shown i n  column F i n  Table 8.23. 

When choosing the sets of generators to construct the choice sets, we need to make sure 
that each combination of entries in g2 for the first attribute and each of the other attributes 
contains a 0 entry and at least one non-zero entry. The sets of generators which we used to 
construct the choice sets are 

GI = (000000.llllll)andG~ = ( 0 0 0 0 0 0 . O l l l l l ) f o r m =  2 

G I  = (000000,111110) form = 3 ,  

GI = (000000,011111.1000003,111112) for 771 = 4,  

GI = (000000,111111,2000003,011111,100000) form = 5 

These designs are 92.07%, 98.68%, 99.3976, and 99.874 efficient, respectively. relative to 
the largest [let (CA,~, ) we could find in each case. In all of these designs all effects to be 

0 estimated are uncorrelated The choice Sets for ?n = 3 are given in Table 8.23 

8.3 OTHER STRATEGIES FOR CONSTRUCTING CHOICE EXPERIMENTS 

In this section we compare a number of common strategies for constructing discrete choice 
experiments. We discuss each of the strategies in detail for one example, then give summary 
tables for several designs. This is done for designs for which the main effects only are 
of interest, assuming all of the interactions are negligible, as well as for main effects plus 
some or all of the two-factor interactions, assuming the other interactions are negligible. 

We consider five design strategies that have been routinely adopted in the past and are 
commonly found in the published literature on DCEs in marketing, transportation, and 
applied economics. We also construct a design using the techniques given in the first part 
of this chapter to use as a comparison. The strategies consist of the following methods to 
allocate the treatment combinations to the choice sets: 

I .  Random method 1 ; 

2. Random method 2; 

3. Satisfying the criteria in  Huber and Zwerina (1996): 

4. The Method; 

5. The SAS macros; 

6. The techniques used earlier in this chapter. 

For the purposes ofthis comparison we assume that we have no prior information about 
the parameters to be estimated. In other words, we assume that the treatment combinations 
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Table 8.23 
when m = 3 for Main Effects and Interactions AB, AC, AD, AE, and AF 

Choice Sets for k = 6 Attributes, el = 3, e z  = & = l 4  = eS = 2, and Be = 4 

F F + 111110 F f011113 

00OOOO 
011110 
0001 I 1  
01 1001 
001012 
010102 
001 I03 
010013 

111110 
I00000 
1 1  1001 
1001 11 
110102 
I01012 
I10013 
101 103 

011113 
o00003 
01 1000 
0001 10 
010101 
001011 
010012 
001 102 

l00000 
111110 
1001 11 
1 I1001 
101012 
110102 
101 103 
110013 

2oooOo 
211110 
2001 11 
21 1001 
201012 
210102 
201 I03 
210013 

211110 
200000 
21 1001 
2001 11 
210102 
201012 
210013 
201 103 

01 I 1  10 
000000 
01 1001 
0001 1 1  
010102 
001012 
010013 
001 103 

111113 
100003 
111OOo 
1001 10 
I10101 
101011 
110012 
101 102 

211113 
200003 
21 lo00 
2001 10 
210101 
20101 I 
210012 
201 102 
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are equally attractive. This assumption only applies to three of the strategies: the Huberand 
Zwerina criteria of utility balance; the SAS macros, in which the values are assumed to 
be zero; and the Street-Burgess method, in  which the 7r values are all equal to I .  The other 
three strategies do not allow for the inclusion of prior information about the parameters. 

We now discuss each strategy in detail when there are five attributes all with 4 levels and 
the choice sets are of size 2. For all of the strategies except the LnlA method, we construct 
choice experiments with I6 choice sets. For the L"'" method we cannot construct a design 
in less than 64 choice sets. 

Strategy 7: Random Method 7 For this strategy we take an OMEP in t treatment 
combinations, where t is divisible by m, then randomly place the treatment combinations 
into the 'tn options to create N = t / m  choice sets; see McKenzie et al. (2001 ) for a study in 
which this method was used to construct the choice sets. For the example in which there are 
five 4-level attributes and m = 2, we need a 45 OMEP in 16 x ? r i  treatment combinations. 
So for ni = 2 we take the first 5 columns of the 4'//32 OMEP from Sloane (2006b). The 
32 treatment combinations were then randomly placed in the pairs resulting in a design 
with 16 choice sets. One such design is given in Table 8.24 with the C,qr matrix displayed 
in Table 8.25. C,' can then be calculated, and since this matrix has no off-diagonal block 
matrices consisting of all Os, all pairs of main effects are correlated. This design is 44.44% 
efficient. 

Table 8.24 Random Method I Choice Sets 

Option 1 Option 2 

2 1 0 2 3  0 0 3 1  1 
0 1 2 2 0  0 3 0 1  I 
3 1 1 1 3  3 2 2 3 1  
0 2 1 2 0  2 2 3 2 3  
2 3 2 3 0  1 2 0 3 2  
3 1 1 3 1  2 3 2 1 2  
3 3 3 2 2  1 3 1 2 1  
3 3 3 0 0  0 1 2 0 2  
I 1 3 3 2  3 0 0 2 2  
3 0 0 0 0  3 2 2 1 3  
2 0 1 3 0  1 0 2 2 1  
0 3 0 3 3  1 0 2 0 3  
2 2 3 0 1  1 1 3 1 0  
0 0 3 3 3  0 2 1 0 2  
2 1 0 0  1 1 2 0 1 0  
1 3 1 0 3  2 0 1  1 2  

No general comments can be made about designs that are constructed in this way. We 
constructed 100 different designs for ni = 2 for the five 4-level attributes, and the efficiency 
ranged from 32.04% up to 59.6 I lo, with an average of45.08% for those that were non-zero. 
There were I2 with an efficiency of 0, which means that at least one main effect was not 
able to be estimated. In none of the designs constructed was any pair of main effects 
uncorrelated. 

Strategy 2: Random Method 2 The second design strategy is similar to the first but 
uses 7u different OMEPs, the first OMEP to represent the treatment combinations that 
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appear as the first option in the choice sets, the second OMEP to represent the treatment 
combinations that appear as the second option i n  the choice sets, and so on up to the 711th 
OMEP to represent the treatment combinations in the last option (see Louviere et al. (2000), 
p. 114). 

For the situation with five 4-level attributes and ?n = 2, one such design is shown for 
171 = 2 in Table 8.26. The first OMEP is the d5//16 which is shown in the first column 
of Table 8.8. The second OMEP is also a 4”/16 design obtained by adding the treatment 
combination 01231, using addition modulo 4, to the first OMEP. This method of obtaining 
another OMEP, when we assume that the 16 treatment combinations in the first OMEP are 
unwanted, is described in Construction 2.3.9. We then check that none of the treatment 
combinations which appear i n  the first OMEP are i n  the second OMEP. Note that each 
level of each attribute appears equally often in each option but this does not preclude the 
possibility that all pairs may have the same level of one, or more, attributes. 

The design i n  Table 8.26 is 3 I .  17% efficient and the CAI matrix for this design is given 
in Table 8.27. CG1 can then be calculated, and since this matrix has no off-diagonal block 
matrices consisting of all Os, all pairs of main effects are correlated. 

No general comments can be made about designs that are constructed i n  this way. We 
constructed 100 different designs for m = 2 and the efficiency ranging from 21 54% up to 

9%, with an average of 35.46% for those that were non-zero. There were 53 with an 
efficiency of 0, which means that at least one main effect was not able to be estimated. In 
none of the designs constructed were the main effects uncorrelated. 

Table 8.26 Random Method 2 Choice Sets 

Option 1 Option 2 

0 0 0 0 0  1 2 2 2 3  
0 1  1 I 1  0 2 3 0 2  
0 2 2 2 2  1 3 1 3 2  
0 3 3 3 3  2 2  1 1  I 
1 0 1 2 3  0 1 2 3 1  
1 1 0 3 2  0 0 1 2 0  
1 2 3 0 1  3 1 1 0 3  
1 3 2 1 0  2 0 3 3 3  
2 0 2 3 1  2 3 2 0 0  
2 1 3 2 0  0 3 0 1 3  
2 2 0 1 3  3 3 3 2 1  
2 3 1 0 2  2 1 0 2 2  
3 0 3 1 2  3 2 0 3 0  
3 I 2 0 3  3 0 2 1 2  
3 2 1 3 0  1 1 3 1 0  
3 3 0 2 1  1 0 0 0 1  

Sfrafegy 3: Huber & Zwerina Criteria Huber and Zwerina ( 1996) give four criteria 
for efficient choice designs: level balance, orthogonality, utility balance, and minimal 
overlap (see Section 3.4.2). In  this strategy we construct the choice sets by placing the 
treatment combinations from a fractional factorial design (an OMEP for main effects only) 
into the 7n options, so that the four criteria are satisfied. Orthogonality and level halance 
are satisfied by using an OMEP for the treatment combinations in option I .  
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Minimal overlap is achievcd when there are as many differences in the levels of an 
attribute as possible i n  a choice set. Under the null hypothesis, all treatment combinations 
havc equal utility, which means we have utility balance. If this is not the case, then see 
Section 7.4. Some researchers have used these criteria to construct their choice sets (see, 
for example. Ryan et al. (2001)). 

For rti  = 2. we take a 4'// 16 OMEP from Sloane (2006b). and this gives the treatment 
combinations in option I .  We then use the same OMEP for the treatment combinations in 
option 2, pairing the treatment combinations i n  a choice set so that the minimal overlap 
criterion is satisfied. or the pairs come as close to i t  as possible. In  effect, this means that 
for each attribute there should be the maximum number of different levels in  the choice set. 
Each level appears either 0 or 1 times i n  each pair and, over the whole choice experiment, 
each option displays the possible levels of each attribute equally often. One set of pairs that 
results from this approach is given in Table 8.28. Unfortunately, for this example, i t  is not 
possible for any pairs to have no repeated levels of one attribute. To see this. consider the 
profile 00000. When this profile is paired with any of the other treatment combinations. one 
attribute will have a repeated level because every other profile contains one 0. However, 
it  is possible to change the attribute that is repeated from choice set to choice set. For the 
design in Table 8.28 det,((',fr) = 0 which means that at least one of the main effects can 
not be estimated from this design. 

I t  is possible to get good designs this way, but, as noted in Section 3.4.2, satisfying these 
criteria does not guarantee that the design is optimal and optimal designs do not necessarily 
satisfy all four criteria. The matrix for the design in Table 8.28 is given i n  Table 8.29. 
and since det,((',,/) = 0 we cannot calculate Ci:. 

Table 8.28 Choice Sets which Satisfy Huber & Zwerina Criteria 

Option 1 Option 2 

0 0 0 0 0  1 1 0 3 2  
0 1  1 1  I 0 2 2 2 2  
0 2 2 2 2  2 3 1 0 2  
0 3 3 3 3  1 0 1 2 3  
1 0 1 2 3  0 1  1 1 1  
I 1 0 3 2  3 0 3  1 2  
1 2 3 0 1  1 3 2 1 0  
1 3 2 1 0  3 2 1 3 0  
2 0 2 3 1  2 1 3 2 0  
2 1 3 2 0  0 3 3 3 3  
2 2 0 1 3  3 3 0 2 1  
2 3 1 0 2  3 1 2 0 3  
3 0 3 1 2  2 2 0 1 3  
3 1 2 0 3  1 2 3 0 1  
3 2 1 3 0  2 0 2 3 1  
3 3 0 2 1  0 0 0 0 0  

Strategy4: L M A  Method The fourth strategy requires an OMEP for 7r1 x k attribute\. 
The first k attributes become the treatment combinations in option I ,  the next k attributcc; 
become the treatment combinations in option 2, and so on until the last k attributes which 
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become the treatment combinations in the last option. This strategy is sometimes called an 
L”IA approach, and the details can be found in Louviere et al. (2000). 

In the example where we have five 4-level attributes and m, = 2, we need an OMEP 
with ten 4-level attributes. The smallest such design has 64 treatment combinations. For 
each treatment combination in the OMEP the first five attributes are used to represenl the 
treatment combinations in the first option, and the final five attributes are used to represent 
the treatment combinations i n  the second option. So there are 64 pairs in the experiment in  
total. 

The design, which is given i n  Table 8.30, is 7S% efficient and the information matrix 
for the design is given by 

Since CAI,  and therefore C,‘,:;, are diagonal, the main effects of all the attributes are 
uncorrelated, although this is not always the case. The main disadvantage of this strategy 
is that it usually results in a lot more choice sets than the other strategies. Also pairs of 
main effects are often correlated and there can be repeated treatment Combinations in the 
choice sets which must be deleted. 

Strategy 5: SAS Macros This strategy uses the SAS macros (see Kuhfeld (2006)) 
to generate a starting OMEP and then construct choice sets using a search algorithm. An 
efficiency of the design constructed is provided by SAS, but it is not relative to the optimal 
design and there is no indication of how close to the best possible a design is. The user 
must nominate the number of treatment combinations in the candidate set from which the 
search algorithm selects treatment combinations for the choice sets. Rech (2003) has used 
this method to obtain the choice sets for his study. 

For the example with five 4-level attributes with m = 2, we tried a number of different 
candidate sets, from which the choice sets were constructed. We have selected the choice 
sets with the highest efficiency (1.587), as calculated by SAS. The choice sets are displayed 
in Table 8.31 and we have calculated the efficiency of this design to be 94.49%. 

The C,’ matrix for the design in Table 8.31 is given in Table 8.32. From this matrix 
we can see that the main effects of the first four attributes are correlated and only the 
main effects of the fifth attribute are independent of the main effects of the other attributes. 
Changing the contrasts does not affect the way the main effects are correlated. 

It is worth noting that it is possible toget duplicate choice sets and also repeated treatment 
combinations within a choice set from the SAS macros. 

Strategy 6: Street-Burgess Method This strategy uses the techniques described 
earlier in this chapter to construct the choice sets. 

Again we use the 4’//16 from Sloane (2006b) as the starting design, which becomes the 
treatment combinations in option 1 (see the first column in Table 8.33). We then construct 
the other option by adding a set of generators to this starting design. For rn = 2 we use 
G = (00000, 11 11 l) ,  and this design is 94.49% efficient. 

The design is given in Table 8.33. We use the third Bq matrix given in Example 6.3.2, 
and the corresponding CAI matrix is given i n  Table 8.34. Since Cnr, and therefore <,‘,G’, 
are diagonal, the main effects of all the attributes are uncorrelated. 
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Option 1 

0 1 2 3 0  
I 0 3 1 0  
2 2 0 2 0  
3 3 1 0 0  
0 2 1 0 2  
1 3 0 2 2  
2 1 3 1 2  
3 0 2 3 2  
0 3 3 1 3  
1 2 2 3 3  
2 0 1 0 3  
3 1 0 2 3  
0 0 0 2  1 
1 1  101 
2 3 2 3  1 
3 2 3 1  1 
0 1 3 2 1  
1 0 2 0  1 
2 2 1 3 1  
3 3 0 1  1 
0 2 0 1 3  
1 3 1 3 3  
2 1 2 0 3  
3 0 3 2 3  
0 3 2 0 2  
I 2 3 2 2  
2 0 0  1 2  
3 1  1 3 2  
0 0 1 3 0  
I 1 0 1 0  
2 3 3 2 0  
3 2 2 0 0  

Table 8.30 Choice Sets 

1 2 3 0 1  
3 2 0 2 3  
0 2 1 3 0  
2 2 2 1 2  
1 0 3 1 3  
3 0 0 3  I 
0 0  1 2 2  
2 0 2 0 0  
1 1  3 2 0  
3 1 0 0 2  
0 1 1 1 1  
2 1 2 3 3  
1 3 3 3 2  
3 3 0 1 0  
0 3  1 0 3  
2 3 2 2  I 
3 2 1 0 2  
1 2 2 2 0  
2 2 3 3 3  
0 2 0 1  1 
3 0 1  10 
1 0 2 3 2  
2 0 3 2 1  
0 0 0 0 3  
3 1 1 2 3  
1 1 2 0 1  
2 1 3 1 2  
0 1 0 3 0  
3 3 1 3 1  
1 3 2 1 3  
2 3 3 0 0  
0 3 0 2 2  

0 I 0 0 2  
1 0 1 2 2  
2 2 2 1 2  
3 3 3 3 2  
0 2 3 3 0  
1 3 2 1 0  
2 1 1 2 0  
3 0 0 0 0  
0 3 1 2 1  
1 2 0 0  1 
2 0 3 3  1 
3 1 2 1 1  
0 0 2  1 3  
1 1 3 3 3  
2 3 0 0 3  
3 2 1 2 3  
0 1 1 1 3  
1 0 0 3 3  
2 2 3 0 3  
3 3 2 2 3  
0 2 2 2 1  
1 3 3 0 1  
2 1 0 3 1  
3 0 1  1 1  
0 3 0 3 0  
1 2 1  1 0  
2 0 2 2 0  
3 1 3 0 0  
0 0 3 0 2  
1 1 2 2 2  
2 3 1  1 2  
3 2 0 3 2  

Option 2 

0 2 2 0 3  
2 2 1 2 1  
1 2 0 3 2  
3 2 3 1 0  
0 0 2 1  I 
2 0 1 3 3  
1 0 0 2 0  
3 0 3 0 2  
0 I 2 2 2  
2 1  1 0 0  
1 1 0 1 3  
3 1 3 3 1  
0 3 2 3 0  
2 3  I 1 2  
1 3 0 0 1  
3 3 3 2 3  
2 2 0 0 0  
0 2 3 2 2  
3 2 2 3 1  
1 2 1 1 3  
2 0 0 1 2  
0 0 3 3 0  
3 0 2 2 3  
1 0 1 0 1  
2 1 0 2 1  
0 1 3 0 3  
3 1 2 1 0  
I I 1 3 2  
2 3 0 3 3  
0 3 3 1 1  
3 3 2 0 2  
1 3 1 2 0  
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Table 8.31 Choice Sets from SAS Macros 

Option 1 Option 2 

3 1 0 2 0  1 3 2 0 3  
2 0 1 3 3  1 3 2 0 0  
3 0 2 1  1 1 2 0 3 2  
2 2 2 2 3  3 3 3 3 2  
1 0 3 2 1  2 3 0 1 0  
1 2 0 3 1  0 3 1 2 2  
0 1 2 3 0  3 2 1 0 1  
1 1 1 1 3  0 0 0 0 2  
2 3 0 1  1 3 2 1 0 0  
0 2 3 1 3  2 0 1 3 0  
0 3 1 2 1  2 1 3 0 2  
0 1 2 3 1  1 0 3 2 0  
3 3 3 3 3  1 1 1 1 2  
0 0 0 0 3  2 2 2 2 2  
2 1 3 0 1  3 0 2 1 2  
3 1 0 2 3  0 2 3 1 0  

Table 8.32 Choice Sets from SAS Macros: C,;: Matrix 
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& o o  0 0 0  0 0 0  0 0 0  

o h 0  0 0 0  0 0 0  0 0 0  

o o &  0 0 0  0 0 0  0 0 0  

0 0 0  & 0 0  0 0 0  0 0 0  

0 0 0  o h 0  0 0 0  0 0 0  

0 0 0  o o &  0 0 0  0 0 0  

0 0 0  0 0 0  A 0 0  0 0 0  

0 0 0  0 0 0  o h 0  0 0 0  

0 0 0  0 0 0  o o &  0 0 0  

0 0 0  0 0 0  0 0 0  & o o  
0 0 0  0 0 0  0 0 0  o h 0  

0 0 0  0 0 0  0 0 0  O O &  

0 0 0  0 0 0  0 0 0  0 0 0  

0 0 0  0 0 0  0 0 0  0 0 0  

L O 0 0  0 0 0  0 0 0  0 0 0  

Table 8.33 Street-Burgess Choice Sets 

- 
0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

& g o o  
o & o  
o o &  

Option 1 Option 2 

0 0 0 0 0  l l l l l  
0 1 1 1 1  1 2 2 2 2  
1 3 3 3 3  0 2 2 2 2  
1 0 0 0 0  0 3 3 3 3  
2 1 2 3 0  1 0 1 2 3  
1 1 0 3 2  2 2 1 0 3  
1 2 3 0 1  2 3 0 1 2  
2 0 3 2 1  1 3 2 1 0  
2 0 2 3 1  3 1 3 0 2  
3 2 0 3 1  2 1 3 2 0  
3 3 1 2 0  2 2 0 1 3  
2 3 1 0 2  3 0 2 1 3  
0 1 0 2 3  3 0 3 1 2  
0 2 3 1 0  3 1 2 0 3  
3 2 1 3 0  0 3 2 0 1  
3 3 0 2 1  0 0 1 3 2  

Table 8.34 Street-Burgess Choice Sets: CM Matrix 
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8.4 COMPARISON OF STRATEGIES 

In this section we compare the different strategies for constructing choice sets for main 
effects only. then for main effects plus all two-factor interactions, and finally for main 
effects plus some two-factor interactions. We do this for different design specifications of 
attributes and levels, for choice set sizes from two to five, and for the different effects to 
be estimated. These design specifications were chosen to reflect a variety of numbers of 
attributes and the levels of these attributes. For the first five strategies, any choice set which 
contained a particular treatment combination more than once, or was a duplicate of another 
choice set. was deleted before calculating the efficiency of the design. These duplicates do 
not occur when using the Street-Burgess method. 

For each design specification, the number of choice sets was chosen to be the minimum 
number of choice sets from which the effects of interest could be estimated independently. 
by any of the construction methods. I t  is possible to construct designs with non-7ero 
efficiencies in fewer choice sets for all of the strategies, but the effects are correlated. 

We first compare designs, for estimating main effects only. constructed using the six 
strategies i n  the previous section. The results are shown in Table 8.35. All six strategies are 
considered for the 4' design only, as the results for the two random strategies were similar 
for the other designs considered. The table shows the number of choice sets for each design 
constructed, as well as the efficiency relative to the optimal design (see Theorem 6.3.1 ), 
and an asterisk indicates that all the main effects are uncorrelated. For the two random 
strategies the efficiencies were averaged over I00 designs with non-zero efficiencies. 

As can be seen in Table 8.35, the two random strategies do not produce efficient designs. 
and the main effects are almost always correlated. I t  is possible to construct optimal designs 
by satisfying the Huher & Zwerina criteria, but it is also possible to create designs that 
cannot estimate all of the main effects or designs in which the main effects are correlated, 
even though the designs satisfy the fourcriteria. The main problems with the I,""' method 
are that the number of choice sets is larger than necessary and the efficiency is not as high 
as other methods. The designs produced by the SAS macros are, as expected from a search 
algorithm, highly efficient and sometimes optimal. However. these designs rarely provide 
uncorrelated estimates of the main effects, unlike the Street-Burgess designs which are 
highly efficient with uncorrelated estimates of the main effects. 

We now consider designs for main effects and two-factor interactions. We compare 
designs that have been constructed using the L"IA method, the SAS macros. and the 
Street-Burgess method, as these are the only strategies of the six that routinely produce 
designs that allow for the estimation of the main effects plus interactions. These results are 
displayed in Table 8.36; an asterisk denotes a,choice experiment in  which the main effects 
and two-factor interactions are uncorrelated. There are five different design specifications; 
the first three are for designs that estimate main effects plus all two-factor interactions, and 
the final two are for estimating main effects and only some of the two-factor interactions. 
For the 2" design only the two-factor interactions involving the first, second, and fourth 
attributes are to be estimated - that is, AB, AD, and BD. For the 3 x 2: x 4 design the 
two-factor interactions between the first attribute and each of the other attributes are to he 
estimated - that is. AB, AC. AD AE, and AF. 

For the 27 design we know the maximum value of det,(CnfT) (see Theorem 5.1.2), so i t  is 
possible to calculate the efficiency relative to the optimal design for any choice experiment 
we construct. However, i f  at least one of the attributes has more than two levels, then we do 
not know the maximum value of det(Cn17). In these cases the efficiencies in  Table 8.36, 
which are i n  italics, are calculated relative to the largest drt ( C ' n r ~ )  we could find. 
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Design 

Table 8.35 Comparison of Construction Methods for Main Effects Only 

Construction Choice 
Method m = 2  m = 3  

et Size 
m = 4  m = 5  

4 5  

16 ch sets 

16 ch sets 

16 ch sets 
H & Z Criteria 

82.35% 
16 ch sets 

80.78% 
16 ch sets 

68.96% 
16 ch sets 

65.22% 
16 ch sets 

72.48% 
16 ch sets 

70.86% 
16 ch sets 

83.97% 
16 ch sets 

83.33%* 
128 ch sets 

71.82% 
16 ch sets 

75.oo%* 
64 ch sets 

76.70% 
16 ch sets 

75.00%* 
64 ch sets I I64 ch sets 

~ 1 ;9! 
16 ch sets 

16 ch sets 

18 ch sets 
2 x 3 ~ 6  H&ZCriteria 

99.98% 
16 ch sets 

loo%* 
16 ch sets 

loo%* 
16 ch sets 

loo%* 
16 ch sets 

loo%* 
16 ch sets 

loo%* 
16 ch sets 

99.39% 
18 ch sets 

99.39% 
12 ch sets 

1 OO%* 
36 ch sets 

80.12% 
70 ch sets 

99.71 % 
12 ch sets 

85.04% 
70 ch sets 

99.92% 
18 ch sets 

86.36% 
68 ch sets 

99.995% 
36 ch sets 18 ch sets 1 ~ 90.56%* 

18 ch sets 

26 x 46 H & Z Criteria 63.97% 
32 ch set.: 

67.77%* 

99.39%* 
12 ch sets 

83.70% 
32 ch sets 

75.00%* 
96 ch sets 

99.78%* 
18 ch sets 

85.19% 
32 ch sets 

78.20% 
124 ch set: 

loo%* 
36 ch sets 

95.27% 
32 ch sets 

85.44% 
124 ch sets 64 ch seti 

32 ch set.: 

32 ch set: 

98.95% 
32 ch sets 

loo%* 
32 ch sets 

97.72% 
52 ch sets 

98.30%* 
52 ch sets 

99.33% 
32 ch sets 

loo%* 
32 ch sets 

99.54% 
32 ch sets 

loo%* 
32 ch sets 

99.24% 
52 ch sets 

99.87%* 
52 ch sets 

95.50% 
52 ch sets 

loo%* 
52 ch sets 

52 ch set.: 

52 ch set! 

An asterisk (*)indicates that all the effects are uncorrelated. 



REFERENCES AND COMMENTS 293 

Table 8.36 
Interactions 

Comparison of Construction Methods for Main Effects and Two-Factor 

96.65% 99.38% 
96 ch sets 64 ch sets 

Y0.38%* 96.44%* 
96 ch sets 64 ch sets 

Y8.157~ 98.01% 
90 ch sets 45 ch set? 

94.80%* 97.17%* 
90 ch sets 45 ch sets 

97.79% 100% 
16 ch sets 8 ch sets 

YS.26%* 100%* 
16 ch sets 8 ch sets 

Design I Construction 

98SY% 
32 ch sets 

96.29%* 
32 ch sets 

98.42% 
45 ch sets 

98.51%* 
45 ch sets 

96.76% 
6 ch sets 

97.67%* 
8 ch sets 

All 2fi's 

3 x z4 x 4 

AB,AC,AD. 

AE,AF 

I Resoln. 3 

SASMacros 

S & B  

SAS Macros 

92.07%* 
48 ch sets 

SAS Macros 

All 2fi's 

98.68%* 9Y.39%* 
24 ch sets 24 ch sets 

SAS Macros 
AB.AD,BD 

Choice Set Size 
m = 2  I m = 3  I m = 4  

82.10% 
2043 ch sets 

82.10% 
51 ch sets 

98.92% 
64 ch sets 

98.98%* 
64 ch sets 

59.47% 1 76.02% 0 
32 ch sets 32 ch sets 1 64 ch sets 

98.23% 1 98.34% 1 99.64% 
47 ch sets 24 ch sets 24 ch sets 

m = 5  

- 
- 

80.0S% 
34 ch sets 

99. 15% 
64 ch sets 

99.09%* 
64 ch sets 

0 
64 ch sets 

Y 9.02 7r 

32 ch sets 

94.66% * 
32 ch sets 

99.45% 
45 ch sets 

99.14%* 
45 ch sets 

100% 
7 ch sets 

98.67% * 
8 ch sets 

99.63% 
24 ch sets 

99.~37%~ 
24 ch sets 

An asterisk (") indicateh thai all the effects are uncorrelated: tiuinhers in  italics indicate that the efficiency is 

relative to the largest det,(Ch,r) found. 

The details of the method used for each of the Street-Burgess designs are given in 
Section 8.2.2. 

As we have seen, the Street-Burgess designs are not necessarily the most efficient, nor 
are they in the smallest possible number of choice sets. However, these designs are highly 
efficient and can always independently estimate the effects of interest. 

8.5 REFERENCES AND COMMENTS 

A comparison of the 6 strategies for one example, with five 4-level attributes and m = 2.  
has appeared in Street et al. (2005). 
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Appendix 

8. A.l NEAR-OPTIMAL CHOICE SETS FOR el = t 2  = 2, 
f3 = f4 = e5 = f6 = 4,e7 = 8, e,  = 36, AND TTL = 3 FOR MAIN 
EFFECTS ONLY 

F F + iiiiinii 10 + 33330136 
o o o o o o n o  I I I l I 0 1 1  1 3 3 3 0 1 3 6  
2 2 2 2 0 0 0 2  3 3 3 1 1 0 1 3  1 1 1  1 0 1 3 8  
2 1 0 3 0 0 1  1 3 2 1 0 1 0 2 4  1 0 1 2 0 1 4 9  

F P + 11111lJ11 F + 33330136 
I I I I 1 1 0 1  2 2 2 2 0 1 1 2  0 0 0 0 1  0 3  7 
1 3 1 3 1 1 0 3  o o n o o 1 1 4  22221019 
3 0 1 2 1  I 1 2  0 1 2 3 0 1 2 1  2 1 0 1  1 0 4 8  
1 2 3 0 1 l l O  2 3 n 1 0 1 2 1  0 1 2 3 1 0 4 6  0 3 2 1 0 0 1 1  

I 3 1 2 0 0 2 3  
3 1 3 0 0 0 2 1  

1 0 1 2 1 0 2 2  3 2 1 0 0 1 4 1  
2 0 2 3 1 0 3 4  
0 2 0 1 1 0 3 2  
0 3 2 2 1 0 4 1  

0 2 0 1 0 1 5 9  
2 0 2 3 0 1 5 1  
2 1 0 0 0 1 6 6  
0 3 2 2 0 1 6 8  
1 2 2 0 1  1 1 8  
3 0 0 2 1 1 1 6  
1 1 2 1  I 1 0 1  
1 3 0 3 1  1 0 9  
2 3 1 2 1 1 1 7  
0 1 3 0 1 1 1 9  
0 0 1 3 I I ? R  

0 2 0 ? 1 1 ? 2  
2 0 2 1  I I 2 0  
2 3 0 0 1  1 3 1  
0 1 2 2 1 1 3 3  
1 2 2 0 0 1 4 3  
1 0 0 2 0 1 4 1  
1 3 2 1 0 1 5 0  

2 1 3 2 0 1 6 0  
0 3  I 0 0 1  6 2  
0 0 3 1 0 1  11 
2 2 1 3 0 1 1 1  
I l I I I I 0 5  
3 3 3 3 1 1 0 7  
301  2 1  I I 6  
1 2 3 0 1 1 1 4  
0 2 0 1 1 1 ? 6  
2 0 2 1  1 1 2 4  
2 3 0 0 1 1 1 5  
0 1 2 2 1 1 1 1  
3 2 2 0 0 1 4 1  
1 0 0 2 0 1 4 5  
1 3 2 3 0 1 5 4  
3 1 0 1 0 1 5 6  
2 1  3 2 0 1  h 4  
0 3 1 0 0 1 6 6  
0 0 3 1 0 1 7 7  
2 2 1 3 0 1 7 5  
I I 1  I I l o 9  
3 3 3 3 1  1011 
301  2 I I 110  
I 2 3 0 1  I I 8  
0 2 0 3  I I 2  10 
2 0 2  I I I 2 8  
2 3 0 0 1 1 3 9  
0 1 2 2 1  1 3 1 1  
3 2 2 0 0 1 4 1 1  
I 0 0 2 0  I 4 9  
1 3 2 3 0 1 5 8  
3 10101 510 
2 1 3 2 0 1 6 R  
0 3  I 0 0  1 6  10 
0 0 3 1 0 1 7 1 1  
2 2 1 3 0 1 7 9  
1 1 1 1 1 1 0 1 3  
3 3 1 1  I I 0  I S  
3 0 1  2 1  I 114 
1 2 3 0 1  I 1 1 2  
0 2 0 3 1  I 2 1 4  
2 0 2 1 1 1 2 1 2  
2 3 0 0 1  I 3  13 
0 I 2 2  1 I 3 I5  
3 2 2 0 0 1  4 15 
1 0 0 2 0 1 4 1 3  
I 3 2 3 l 1  I 5 I2 
3 1 0 1 0 1  514 
2 1 3 2 0 1 6 1 2  
0 3  I 0 0  I 6  14 
0 0 3 1 0 1 7 1 5  
2 2 1 1 0 1 7 1 3  
I I l l  I 1 0 1 7  
3 3 3 3  I 1  0 19 

3 1 0 1 0 1 5 2  

I 1 1 0 0 1 3  1 
3 1 3 2 0 1 3 1  

3 1 3 2 1 0 5 8  

0 I 2 1 0 I 2 I 0  

l 3 l O I O S 6  
1 2 3 3 1 0 6 1  3 0 1 1 0 1 4 2  

1 2 0 1 1 0 6 3  2 3 1 2 0 0 1 4  
2 2 3 1 0 0 0 3  

1 0 2 1 1 1 1 3  
I 1 0 2 1  1 0 4  

3 2 0 3 0 0 1 R  
3 3 2 0 0 0 2 9  
1 1 0 2 0 0 2 7  
0 0 0 0 1 0 3 1 1  
2 2 2 2 1 0 1 1 3  
2 3 0 1 1 0 4 1 2  
0 I 2 3 I 0 4  10 
3 1 3 2  I 0 5  12 
1 1  l 0 1 O S  10 
I 2 1 3 1 0 6 1 1  
3 0 1 1 1 0 6 1 3  
2 I I 3 0 0 1 1 3  
0 1 3 1 0 0 7 1 1  
0 2  I 2 0 0 0  10 
2 0  3 0 0 0 0  12 
1 0 2 1 0 0 l 1 0  
3 2 0 3 0 0 1  I 2  
1 1 2 0 0 0 2 1 3  
I 1 0 2 0 0 2 1 1  
0 0 0 0 1  0 3  I5 
2 2 2 2  I 0 3  11 
2 3 0 1 1 0 4 1 6  
0 1  2 1  I 0 4  14 
3 1 7 2  1 0 5  16 
I 3 I 0  1 0 5  14 
I 2 3 3  I 0 6  I 5  
l o 1  1 1 0 6 1 7  
2 1 1 3 0 0 1 1 1  
O f 1 1 0 0 7 1 5  
0 2  I 2 0 0 0  14 
2 0 3 0 0 0 0 1 6  

3 2 1 1 0 0 3 4  
I 0 3 3 0 0 3 6  
2 1 3 1 1 0 4 6  
0 1  I 3  1 0 4 4  
0 2 3 2  l o s s  
2 0 1  0 I 0 5 1  
3 0 2 3 1 0 6 5  
1 2 0 1  1 0 6 1  

3 3 0 2 1 0 7 4  
O O 0 O O O O R  
2 2 ? 2 0 0 0 1 0  
2 1 0 1 0 0 1 1 1  
0 3 2  I 0 0 1  9 
1 3 1  2 0 0 2  11 
3 1 3 0 0 0 2 9  
1 2 1 1 0 0 3 8  
1 0 3 3 0 0 s  I 0  

01 I 3  1 0 4 8  
0 2 3 2 1 0 5 9  
2 0 1 0 1 0 5  I 1  
3 0 2 3 1 0 6 9  
1 2 0 1 1 0 6 1 1  
I 1 2 0  I 0 7  10 

0 0 0 0 0 0 0 1 2  
2 2 2 2 0 0 0 1 4  
2 1 0 3 0 0 1 1 5  
0 3 2 1 0 0 1 1 3  
1 3 1 2 0 0 2 1 5  

1 2 1  1 0 0 3 1 2  
I 0 3  3 0 0 3  14 
2 3 3 1  I 0 4  14 
0 1  I 1  I 0 4  12 
0 2 3 2  I05 13 
2 0 1  0 1 0 5  15 
3 0 2 3  1 0 6 1 1  
1 2 0 1  106 I 5  
1 1 2 0 1 0 1 1 4  
3 3 0 2 1 0 7  I2 
0 0 0 0 0 0 0 1 6  

I I 2 0 1  0 7 6  

2 3 3 1 1 0 4 1 0  

3 3 o 2 i o i n  

~ I ~ O O ~ L I S  

2 2  2 2 0 0 0  18 

0 2 2 2 1 0 4 5  
2 100 I 0 4 1  
3 0 0 2 0 0 5 1  
1 2 2 0 0 0 5 5  
13030066 
3 1 2  1 0 0 6 8  
0 1 3 0 0 0 1 6  
2 3 1 2 0 0 7 8  
2 2 3 1 0 0 0 7  
0 0 1 3 0 0 0 5  
l l l l 1 0 1 9  
? 3 1 3 1 @ 1  11 

0 3 2 2 0 1 6 1 2  
I 2 2 0  I 1  1 1 2  
3 0 0 2 1 1 1 1 0  
3 I 2  1 I I 0 1 1  
1301 I 1 0 1 1  
2 3 1 2 1 1 1  I 1  
0 1  3 0 1  1 I 1 3  
0 0 1 3 l 1 2 1 2  

3 3 3 3 0  I 1  14 
1 I I I 0 1  3 16 
1 0 3 2 0 1 4 1 7  
1 2  I 0 0  1 4  I5 
0 2 0 1 0 1 5 1 1  
? 0 2 3 0 1 5 1 5  
2 1 0 0 0 1 6 1 4  
0 3 2 2 0 1 6 1 6  
I 2 2 0  I I 1  16 
3 0 0 2 1  I 1  14 
3 I 2  1 1  L O I S  
1 3 0 3 1  1 0 1 7  

2 2 1 1 1 1 ? 1 0  

1 2 3 3 0 1 4 ~  
0 3 3 1  I 1 5 R  
2 1 1 7 1 1 5 6  
2 0 3 0 1 1 6 5  
0 2  1 2  I I 6 7  
3 2 0 3 1  1 7 ’  
1 0 2 1 1 1 7 7  

3 3 2 0 1  1 0 6  
2 2 2 2 0 1  I 1 0  
0 0 0 0 0 1  I 1 2  

1 1 0 2 1 i o n  

100200511 
1 2 2 0 0 0 5 9  
1 3 0 1 0 0 6 1 0  

0 3 3 1  I I 5 1 2  
2 1  I 3 1  1 5 1 0  
2 0 3 0 1 l 6 Y  
O 2 1 Z l I 6 l l  

3 2  I 0  I 0 2  16 
I 0 3 2 I 0 2 14 
2 0 2 3 1 0 3 1 6  
0 2 0  I 1 0 3  14 
0 3 2 2 1 0 4 1 3  
2 1 0 0 1 0 4 1 5  
3 0 0 2 0 0 5 1 5  
1 2 2 0 0 0 5 1 3  
1 3 0 3 0 0 6 1 4  

1 0 3 2 0 1 4 2 1  
3 2  I 0 0 1  4 1 9  

0 1 2 1 0 1 2 1 ’  
2 1 0 1 0 1  2 I 3  0 1  2 3  I 0 4  I8  

3 I 3 2  I 0 5 2 0  
1 3 1 0 1 0 S  18 
1 2 1 3 1 0 6 1 9  
3 0 1 1 1 0 6 2 1  
2 I 1 3 0 0 1  21 
0 3  3 I 0 0 7  19 
0 2 1  2 0 0 0 1 8  
2 0 3 0 0 0 0 2 0  

3 I 2  I I 1 0 1 9  
1 3 0 1 1 1 0 ? 1  0 2 1 2 1  I 6 1 5  

I I I I 1 0 1  17 
3 1 3 3  I 0  I 1 9  I I 1  I 0 1  3 2 4  

I 0 3  2 0  I 4 2 5  3 0 1 2 1  1 I 1 8  
1 2 3 0 1 1 1 1 6  2 3 0  1 0  I 2  17 0 I 2 3  I 0 4  22 
0 2 0 3  I 1 2 1 8  1 1 1 0 0 1 3 1 u  3 I 3 2  I 0 5  24 
2 0 2  I I I 2 1 6  1 I 3 2 0 1 3  17 I 7  I 0  I05 22 
2 3 0 0 1  i 3 1 1  3 0 1 1 0 1 4 1 8  1 2  3 3 I 0 6 2 3  
0 1  2 2  I I 3 1 9  I ? 1 1  0 I 4  2 0  301  1 1 0 6 2 s  

3 2 I o n  I 4 2 3  

2 0 2  3 0  I 5 2 3  
0 2  0 I 0  I 5 2 5  

2 1 0 0 0  I 6 2 2  
0 1 2 2 0  1 624 1 0 3 3 0 0 3 1 R  2 I 0 0 1  0 4  19 
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8. A.2 NEAR-OPTIMAL CHOICE SETS FOR l ,  = l ,  = l 3  = l 4  = &j = 4, 
.& = 2 , l ~  = l ,  = 8, l ,  = 24, AND m = 3 FOR MAIN EFFECTS 
ONLY 

F F + 1 1 1  I I 1  1 1  I F + 3 3  3 3 3 0 3  3 10 

0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 5 6 7  
0 1  1 1 2 1 6 7 1  
01  1 2 2 1 7 1 2  
0 2 2 2 3  I I 2 3  
0 2 2 3 3 0 2 3 4  
0 3 3 3 0 0 3 4 5  
0 3 3 0  1 0 4 5 6  
0 0 0 0 0 0 1  1 I 
0 0 0 2 3 0 6 5 3  
0 1  2 3  1 1  5 3 0  
0 1 3 1  3 1 3 0 4  
0 2 1 3 2 0 0 4 7  
0 2 3 2  1 0 4 7 2  
0 3 2 1 0 1 7 2 6  
0 3  1 0 2  1 2 6 5  
1 0 1  1 1 0 2 2 2  
1 0 2 0 2 0 3 7 6  
1 1  0 2 0 0 7 6 4  
1 1 2 0 1  1 6 4 0  
1 2 0 1  3 1 4 0 5  
I 2 1  3 3  1 0 5  1 
I 3 3 3 2 0 5 1 3  
I 3 3 2 0 1 1 3 7  
1 0 1  I 1 0 3 3 3  
1 0 3 2 0 1 2 4 1  
1 1 2 0 3 0 4 1 7  
I 1 0 3 1 1 1 7 5  
1 2 3  1 2 0 7 5 0  
I 2 1 2 0 1  SO6 
1 3 2 0 3 1 0 6 2  
1 3 0 3 2 0 6 2 4  
2 0 2 2 2  1 4 4 4  
2 0 1 0 3 0 7 3 5  
2 1 0 3 0 1  3 5 2  
2 1 3 0 3 0 5 2 1  
2 2 0 3  1 1 2  1 6  
2 2 3  I 2 0 1  6 0  
2 3 1 2 1 0 6 0 7  
2 3 2 1 0 1 0 7 3  
2 0 2 2 2 1  5 5 5  
2 0 3 1  1 1 0 1 4  
2 1 1  1 3 0 1 4 6  
2 1  1 3 0 0 4 6 3  
2 2 3 0 0 1 6 3 2  
2 2 0 0 2  1 3 2 7  

1 1 1 1 1 1 1 1 1  
1 1  1 2 2 0 6 7 8  
1 2 2 2 3 0 7 0 2  
1 2 2 3 3 0 0 2 3  
1 3 3 3 0 0 2 3 4  
1 3 3 0 0 1 3 4 s  
1 0 0 0 1 1 4 5 6  
1 0 0 1 2  I S 6 7  
I 1  1 1  1 1 2 2 2  
1 1 1 3 0 1 7 6 4  
1 2 3 0 2 0 6 4 1  
1 2 0 2 0 0 4  1 5  
1 3 2 0 3  1 1 5 8  
1 3 0 3 2 1 5 0 3  
1 0 3 2 1  0 0 3 7  
1 0 2  1 3 0 3 7 6  
2 1 2 2 2 1 3 3 3  
2 1 3  1 3  1 4 0 7  
2 2 1 3 1  1 0 7 5  
2 2 3  1 2 0 7 5  1 
2 3  1 2 0 0 5  1 6  
2 3 2 0 0 0 1 6 2  
2 0 0 0 3  1 6 2 4  
2 0 0 3 1  0 2 4 8  
2 1 2 2 2  1 4 4 4  
2 1 0 3  1 0 3 5 2  
2 2 3  1 0 1  5 2 8  
2 2  1 0 2 0 2 0 6  
2 3 0 2 3 1 0 6 1  
2 3 2 3 1 0 6 1 7  
2 0 3  1 0 0 1 7 3  
2 0 1 0 3  1 7 3 5  
3 1 3 3 3 0 5 5 5  
3 I 2 1 0 1 0 4 6  
3 2 1 0 1 0 4 6 3  
3 2 0 1 0 1 6 3 2  
3 3 1 0 2 0 3 2 7  
3 3 0 2 3 1 2 7 1  
3 0 2 3 2 1 7 1  8 
3 0 3 2  1 0 1  0 4  
3 1 3 3 3 0 6 6 6  
3 1 0 2 2 0 1  2 5  
3 2 2 2 0  1 2 5 7  
3 2 2 0 1  1 5 7 4  
3 3 0 1  1 0 7 4 3  
3 3 1  1 3 0 4 3 8  

3 3 3 3 3 0 3 3 1 0  
3 3 3 0 0 1 0 1  17 
3 0 0 0 1  1 1 2 1 1  
3 0 0  1 1 1 2 4  12 
3 1  1 1 2 1 4 5 1 3  
3 I 1  2 2 0 5 6  14 
3 2 2 2 3 0 6 7  15 
3 2 2 3 0 0 7 0 1 6  
3 3 3 3 3 0 4 4 1 1  
3 3 3 1 2 0  1 0 13 
3 0 I 2 0 1 0 6  10 
3 0 2 0 2 1 6 3 1 4  
3 1 0 2  1 0 3 7  17 
3 1  2 1 0 0 7 2 1 2  
3 2  1 0 3  I 2 5  16 
3 2 0 3  1 1 5  I 15 
0 3 0 0 0 0 5 5  12 
0 3  1 3  1 0 6 2  16 
0 0 3 1 3 0 2 1  14 
0 0 1 3 0 1 1 7 1 0  
0 I 3  0 2  1 7  3 15 
0 1 0 2 2 1 3 0 1 1  
0 2  2 2  1 0 0 4  13 
0 2 2 1  3 1 4 6 1 7  
0 3 0 0 0 0 6 6  13 
0 3 2 1 3 1 5 7  1 1  
0 0 1 3 2 0 7 4 1 7  
0 0 3 2 0 1 4 2 1 5  
0 1  2 0 1 0 2 0 1 0  
0 1 0  1 3 1 0 3  16 
0 2 1 3 2 1 3 1 1 2  
0 2 3 2  1 0 1 5 1 4  
1 3 1  I 1  1 7 7 1 4  
1 3 0 3 2 0 2 6 1 5  
1 0 3  2 3 1 6 0  12 
1 0 2 3 2 0 0 5 1 1  
1 1 3 2 0  1 5 4  16 
1 1 2 0 1 0 4 1  10 
1 2 0 1 0 0 1 3  17 
1 2  1 0 3  1 3 2  13 
1 3 1 1 1 1 0 0 1 5  
1 3  2 0 0  1 3 4  14 
1 0 0 0 2 0 4 7  16 
I 0 0 2 3 0 7  113 
1 1 2 3 3 1  1 6 1 2  
1 1 3 3  1 1 6 5  17 



F F + 1 1 1 1 1 1 1 1 1  F + 3 3 3 3 0 3 3  10 

2 3 0 2 3 0 2 7 0  
2 3 2 3 1 0 7 0 1  
3 0 3 3 3  I 6 6 6  
3 0 2 3 2 0 1 0 2  
3 1 3 2  1 0 0 2 5  
3 1 2  I 0 0 2 5 7  
3 2  I 0 0 0 5 7 4  
3 2 0 0 1  I 7 4 3  
3 3 0 1 2 1 4 3  1 
3 3  1 2 3 1  3 10 
3 0 3 3 3  1 7 7 7  
3 0 1  3 0  I 4 2 0  
3 1 3 0 2  I 2 0 3  
3 1 0 2 2 0 0 3 6  
3 2 2 2  I 0 3 6  I 
3 2 2  I 0 0 6  I S  
3 3 1 0 1  I 1 5 4  
3 3 0 1  3 0 5 4 2  
0 0 0 0 0 0 0 0 8  
0 0 0 1  1 1 5 6 1 5  
0 1  I 1 2 1 6 7 9  
0 1  1 2 2 1 7 1  10 
0 2 2 2 3  1 1  2 I I  
0 2 2 3 3 0 2 3  12 
0 3 3 3 0 0 3 4  13 
0 3 3 0  I 0 4 5  14 
0 0 0 0 0 0  1 1 9  
0 0 0 2 3 0 6 S  I I  
0 1 2 3 1  1 5 3 8  
0 I 3  1 3  I 3 0  12 
0 2  1 3 2 0 0 4  15 
0 2 3 2  I 0 4 7  10 
0 3 2 1 0 1 7 2 1 4  
0 3  1 0 2 1  2 6 1 3  
1011  1 0 2 2 1 0  
I 0 2 0 2 0 3 7  I4 
1 1 0 2 0 0 7 6  12 
I 1 2 0 1  I 6 4 8  
I 2 0 1  3 1 4 0  13 
1 2 1 3 3  1 0 5 9  
1 3 3 3 2 0 5  I I 1  
1 3 3 2 0 1  I 3 1 5  
1 0 1  I 1 0 3 3 1 1  
I 0 3 2 0  I 2 4 9  
I I 2 0 3 0 4  1 1 s  
I 1  0 3  I I 1  7 13 
1 2 3  1 2 0 7 5 8  
1 2 1  2 0 1 5 0 1 4  
I 3 2 0 3  I 0 6  10 
1 3 0 3 2 0 6 2  12 

3 0 1 3 0 1 3 0 1  
3 0 3 0 2  1 0 1 2  
0 1 0 0 0 0 7 7 7  
0 1 3 0 3  1 2 1 3  
0 2 0 3 2  1 1 3 6  
0 2 3 2  1 1  3 6 8  
0 3 2 1  1 1 6 0 5  
0 3  1 1  2 0 0 5 4  
0 0 1  2 3 0 5 4 2  
0 0 2 3 0 0 4 2 1  
0 1 0 0 0 0 0 0 8  
0 1  2 0 1  0 5 3  1 
0 2 0 1  3 0 3  I 4  
0 2 1 3 3 1  1 4 7  
0 3 3 3 2  I 4 7 2  
0 3 3 2 1  1 7 2 6  
0 0 2  1 2 0 2 6 5  
0 0 1 2 0 1  6 5 3  
I I I l l  1 1  1 9  
I 1  1 2 2 0 6 7 1 6  
I 2 2 2 3 0 7 0 1 0  
I 2 2 3 3 0 0 2 1 1  
I 3 3 3 0 0 2 3  12 
1 3 3 0 0  1 3 4  13 
1 0 0 0 1  1 4 5 1 4  
1 0 0  1 2 I 5  6 IS 
I I 1 1 1 1 2 2  10 
1 I 1 3 0 1 7 6 1 2  
1 2 3 0 2 0 6 4 9  
1 2 0 2 0 0 4  113 
1 3 2 0 3 1  I 5 1 6  
I 3 0 3 2 1  s o 1 1  
1 0 3 2  I 0 0 3  IS 
I 0 2  1 3 0 3 7  14 
2 1 2 2 2  1 3 3  1 1  
2 1 3  1 3  1 4 0 1 s  
2 2 1 3 1 1 0 7 1 3  
2 2 3  1 2 0 7 5 9  
2 3  1 2 0 0 s  114  
2 3 2 0 0 0  1 6  10 
2 0 0 0 3  1 6 2  12 
2 0 0 3  I 0 2 4  I6 
2 1 2 2 2  1 4 4 1 2  
2 1 0 3  1 0 3 5 1 0  
2 2 3  I 0  I S 2  I6 
2 2  1 0 2 0 2 0  14 
2 3 0 2 3  I 0 6 9  
2 3 2 3 1 0 6 1 1 . 5  
2 0 3  1001’7 I I  
2 0 1 0 3  1 7 3 1 3  

1 2 3 1 2 0 5 2 1 0  
1 2 1 2 0 0 2 3  I 1  
2 3 2 2 2 1  1 1  16 
2 3 1 2 1 0 4 3 1 2  
2 0 2 1 0 0 3 5 1 5  
2 0 1 0 3 0 5 0 1 7  
2 I 0 3 3 0 0 2  14 
2 1  3 3 0 1 2 7 1 3  
2 2 3 0 1  1 7 6 1 1  
2 2 0 1 2 I 6 4 10 
2 3 2 2 2 1 2 2 1 7  
2 3 0 2 3  I 7 5  10 
2 0 2 3  1 1 5 3  13 
2 0 3 1  1 0 3 6 1 6  
2 1  1 1 0 0 6 1  I I  
2 1  1 0 3 0 1 4 1 5  
2 2 0 3  0 1 4 0  14 
2 2 3 0 2 0 0 7  12 
3 3 3 3 3 0 3 3 1 8  
3 3 3 0 0 1 0 1  1 
3 0 0 0 1 1 1 2 1 9  
3 0 0 1  I 1 2 4 2 0  
3 1  1 1 2 1 4 5 2 1  
3 1 1  2 2 0 5 6 2 2  
3 2 2 2 3 0 6  1 2 3  
3 2 2 3 0 0 7 0 0  
3 3 3 3 3 0 4 4 1 9  
3 3 3  I 2 0  I 0 2 1  
3 0 1 2 0 1 0 6 1 8  
3 0 2 0 2  1 6 3 2 2  
3 1 0 2 1 0 3 7  I 
3 1 2  I 0 0 7 2 2 0  
3 2 1 0 3 1 2 5 0  
3 2 0 3 1 1 5 1 2 3  
0 3 0 0 0 0 s 5 20 
0 3  1 3 1 0 6 2 0  
0 0 3  1 3 0 2  122 
0 0 1 3 0 1  1 7 1 8  
0 1 3 0 2  1 7  323 
0 1 0 2 2 1 3 0 1 9  
0 2 2 2  1 0 0 4 2 1  
0 2 2  1 3  I 4 6  I 
0 3 0 0 0 0 6 6 2 1  
0 3 2 1  3 1 5 7 1 9  
0 0 1 3 2 0 7 4 1  
0 0 3 2 0 1 4 2 2 3  
0 1 2 0 1 0 2 0 1 8  
0 I 0 1  3 1 0 3 0  
0 2 I 3 2 1 3 1 20 
0 2 3 2 1 0 I 5 22 
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F 

2 0 2 2 2 1 4 4 1 2  
2 0  1 0 3 0 7  3 13 
2 1 0 3 0 1 3 5 1 0  
2 1 3 0 3 0 5 2 9  
2 2 0 3 1  1 2 1  14 
2 2 3  1 2 0 1  6 8  
2 3 1 2 1 0 6 0 1 5  
2 3 2  I 0  1 0 7  11 
2 0 2 2 2 1 5 5 1 3  
2 0 3 1 1 1 0 1 1 2  
2 1 1  1 3 0  1 4  I4 
2 1  1 3 0 0 4 6 1 1  
2 2 3 0 0  1 6 3 I0 
2 2 0 0 2  1 3 2  I5 
2 3 0 2 3 0 2 7 8  
2 3 2 3 1 0 7 0 9  
3 0 3 3 3 1 6 6 1 4  
3 0 2  3 2 0  10 10 
3 1 3 2  I 0 0 2 1 3  
3 1 2 1 0 0 2 5 1 5  
3 2  1 0 0 0 5 7  12 
3 2 0 0 1 1 7 4 1 1  
3 3 0 1 2  I 4 3 9  
3 3 1 2 3  1 3  I 8  
3 0 3 3 3 1 7 7 1 5  
3 0 1 3 0 1 4 2 8  
3 1 3 0 2 1 2 0  I I  
3 1 0 2 2 0 0 3  I4 
3 2 2 2 1 0 3 6 9  
3 2 2 1 0 0 6 1 1 3  
3 3 1 0 1 1  1 5 1 2  
3 3 0  1 3 0 5 4  10 
0 0 0 0 0 0 0 0 1 6  
0 0 0 1 1 1 5 6 2 3  
0 1  1 1 2 1 6 7 1 7  
0 1 1 2 2 1 7 1  I8 
0 2 2 2 3  1 1 2  I9 
0 2 2 3 3 0 2 3 20 
0 3  3 3 0 0 3  421 
0 3 3 0 1 0 4 5  22 
0 0 0 0 0 0 1  1 I7 
0 0 0 2 3 0 6 5  I9 
0 1 2 3 1  1 5 3 1 6  
0 1 3 1 3  1 3 020  
0 2 1 3  2 0 0 4  23 
0 2 3 2 1 0 4 7  18 
0 3 2  1 0  1 7 2 2 2  
0 3  1 0 2  1 2 6 2 1  

F + 1 1 1 1 1 1 1 1 1  

3 1 3 3 3 0 5 5 1 3  
3 I 2  I 0  1 0 4  14 
3 2  1 0  1 0 4 6  I 1  
3 2 0 1 0 1 6 3  10 
3 3 1 0 2 0 3 2 1 5  
3 3 0 2 3  1 2 7 9  
3 0 2 3 2 1 7 1 1 6  
3 0 3 2  1 0 1 0 1 2  
3 1 3 3  3 0 6 6  I4 
3 1 0 2  2 0  1 2  13 
3 2 2 2 0  1 2 5  15 
3 2 2 0 1 1 5 7 1 2  
3 3 0 1  1 0 7 4 1 1  
3 3 1 1 3 0 4 3 1 6  
3 0  1 3 0  1 3 0 9  
3 0 3 0 2 1 0 1  10 
0 1 0 0 0 0 7 7 1 5  
0 1 3 0 3 1 2 1  11 
0 2 0 3 2  1 I 3  I4 
0 2 3 2 1 1 3 6 1 6  
0 3 2 1  I I 6 0 1 3  
0 3  1 1  2 0 0 5  12 
0 0  1 2 3 0 5 4 10 
0 0 2 3 0 0 4 2 9  
0 1 0 0 0 0 0 0  I6 
0 I 2 0  1 0 5 3 9  
0 2 0 1  3 0 3  112 
0 2 1 3 3 1  1 4 1 5  
0 3 3 3 2  I 4 7  10 
0 3 3 2 1 1 7 2 1 4  
0 0 2  1 2 0 2 6  13 
0 0 1 2 0 1 6 5 1 1  
1 1  1 1  1 1  1 1  17 
1 1  1 2 2 0 6 7 0  
1 2 2 2 3 0 7 0 1 8  
1 2  2 3  3 0 0 2  I9 
1 3 3 3 0 0 2 3 2 0  
1 3  3 0 0  1 3 4 2 1  
1 0 0 0 1  I 4 5 2 2  
1 0 0 1 2 1 5 6 2 3  
1 1 1 1 1 1 2 2  I8 
1 1  I 3 0 1 7 6 2 0  
1 2 3 0 2 0 6 4  I7 
I 2 0 2 0 0 4  121 
1 3 2 0 3 1 1 5 0  
1 3 0 3 2 1 5 0 1 9  
1 0 3 2 1 0 0 3 2 3  
1 0 2  1 3 0 3 7 2 2  

F + 3 3 3 3 0 3 3 1 0  

1 3 1  1 I 1 7 7 2 2  
1 3 0 3 2 0 2 6 2 3  
1 0 3 2 3 1 6 0 2 0  
1 0 2 3 2 0 0 5  I9 
1 1 3 2 0 1 5 4 0  
1 1 2 0 1 0 4 1  I8 
1 2 0  1 0 0 1  3 1 
1 2 1 0 3 1 3 2 2 1  
1 3 1  1 1 1 0 0 2 3  
1 3 2 0 0 1  3 4 2 2  
I 0 0 0 2 0 4 7 0  
1 0 0 2 3 0 7 1 2 1  
1 1 2 3 3 1 1 6 20 
1 1 3 3 1  I 6 5 1  
1 2 3  1 2 0 5 2  18 
1 2  1 2 0 0 2  3 19 
2 3 2 2 2 1  1 1 0  
2 3 1 2 1 0 4  3 20 
2 0 2  I 0 0 3 5 2 3  
2 0 1 0 3 0 5 0 1  
2 1 0 3 3 0 0 2 2 2  
2 1  3 3 0 1 2 7 2 1  
2 2 3 0 1  I 7 6 1 9  
2 2 0  1 2 1 6 4 1 8  
2 3 2 2 2  1 2 2  1 
2 3 0 2 3  1 7  5 I8 
2 0 2 3  1 1 5 3 2 1  
2 0 3  1 I 0 3 6 0  
2 1 1 1 0 0 6  1 I9 
2 1  1 0 3 0 1 4 2 3  
2 2 0 3 0 1 4 0 2 2  
2 2 3 0 2 0 0 7 20 
3 3 3 3 3 0 3 3 2  
3 3 3 0 0 1  0 1 9  
3 0 0 0 1  1 1 2 3  
3 0 0 1  I I 2 4 4  
3 1  I 1 2 1 4 5 5  
3 1 1  2 2 0 5 6 6  
3 2 2 2 3 0 6 7 7  
3 2 2 3 0 0 7 0 8  
3 3 3 3 3 0 4 4 3  
3 3 3 1 2 0 1 0 5  
3 0  1 2 0 1  0 6 2  
3 0 2 0 2 1 6 3 6  
3 1 0 2 1 0 3 7 9  
3 1 2  1 0 0 7 2 4  
3 2 1 0 3  1 2 5 8  
3 2 0 3  1 I 5  I 7  
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F F + l  1 1  1 1  1 1  1 I F + 3 3 3 3 0 3 3  10 

1 0 1  1 1 0 2 2 1 8  
1 0 2 0 2 0 3 7 2 2  
1 1  0 2 0 0 7 6 2 0  
1 1 2 0 1  I 6 4 1 6  
1 2 0 1  3 I 4 0 2 1  
1 2 1 3 3 1 0 5 1 7  
1 3 3 3 2 0 5  119 
1 3 3 2 0  I 1  323  
1 0 1  1 1 0 3 3 1 9  
1 0 3 2 0 1 2 4 1 7  
1 I 2 0 3 0 4  I 2 3  
1 1 0 3 1 1 1 7 2 1  
1 2 3  1 2 0 7 5 1 6  
1 2  1 2 0 1  5 0 2 2  
I 3 2 0 3  I 0 6  I8 
1 3 0 3 2 0 6 2 2 0  
2 0 2 2 2  1 4 4 2 0  
2 0  1 0 3 0 7 3 2 1  
2 1 0 3 0  1 3 5  I8 
2 1 3 0 3 0 5 2  17 
2 2 0 3 1 1 2 1 2 2  
2 2 3 1 2 0 1 6 1 6  
2 3  1 2  1 0 6 0 2 3  
2 3 2  1 0 1 0 7  19 
2 0 2 2 2 1 5 5 2 1  
2 0 3 1  1 1 0 1 2 0  
2 1  1 1 3 0 1 4 2 2  
2 1 1 3 0 0 4 6  I9 
2 2 3 0 0  I 6 3  I8 
2 2 0 0 2  I 3 2 2 3  
2 3 0 2 3 0 2 7  I6 
2 3 2 3 1 0 7 0 1 7  
3 0 3 3 3  1 6 6 2 2  
3 0 2 3 2 0  1 0  18 
3 1 3 2 1 0 0 2 2 1  
3 1 2 1 0 0 2 5 2 3  
3 2  1 0 0 0 5 7 2 0  
3 2 0 0 1  1 7 4 1 9  
3 3 0 1  2 I 4 3  17 
3 3 1 2 3 1 3 1 1 6  
3 0 3 3 3  I 7 7 2 3  
3 0 1  3 0 1 4 2 1 6  
3 1 3 0 2  1 2 0  19 
3 I 0 2 2 0 0 3 2 2  
3 2 2 2  1 0 3 6  I7 
3 2 2  I 0 0 6  I21 
3 3 1 0 1  I 1 5 2 0  
3 3 0  I 3 0 5 4  I8 

2 1 2 2 2 1 3 3 1 9  
2 I 3  1 3  1 4 0 2 3  
2 2 1 3 1  1 0 7 2 1  
2 2 3  1 2 0 7 s  17 
2 3  1 2 0 0 s  122 
2 3 2 0 0 0  1 6  18 
2 0 0 0 3  1 6 2 2 0  
2 0 0 3  I 0 2 4 0  
2 1 2 2 2  1 4 4 2 0  
2 1 0 3 1 0 3 5 1 8  
2 2 3  1 0 1  5 2 0  
2 2  I 0 2 0 2 0 2 2  
2 3 0 2  3 1 O h  I7 
2 3 2 3 1 0 6 1 2 3  
2 0 3 1 0 0 1 7 1 9  
2 0 1 0 3 1 7 3 2 1  
3 1 3 3 3 0 5 5 2 1  
3 1 2 1  0 1 0 4 2 2  
3 2 1 0 1 0 4 6 1 9  
3 2 0 1  0 1  6 3  I8 
3 3 1 0 2 0 3 2 23 
3 3 0 2 3  1 2 7  I7 
3 0 2 3 2 1 7 1 0  
3 0 3  2 1 0  1 0 2 0  
3 I 3 3 3 0 6 0 2 2  
3 1 0 2 2 0  1221  
3 2 2 2 0  1 2 5 2 3  
3 2 2 0  I 1  5 7 2 0  
3 3 0 1  I 0 7 4 1 9  
3 3  1 I 3 0 4 3 0  
3 0  I 3 0  I 3 0  I7 
3 0 3 0 2 1 0 1  I8 
0 1 0 0 0 0 7 7 2 3  
0 1 3 0 3 1 2 1  19 
0 2 0 3 2  1 1  322 
0 2 3 2 1  1 3 6 0  
0 3 2  1 1 1 6 0 2 1  
0 3  1 I 2 0 0 5 2 0  
0 0  1 2 3 0 5 4  I8 
0 0 2 3 0 0 4 2  17 
0 1 0 0 0 0 0 0 0  
0 1 2 0  I 0 5 3  17 
0 2 0  1 3 0 3  120 
0 2 1 3 3 1 1 4 2 3  
0 3 3 3 2  1 4 7  18 
0 3 3 2 1  1 7 2 2 2  
0 0 2  1 2 0 2 6 2 1  
0 0 1 2 0 1 6 5 1 9  

0 3 0 0 0 0 5 5 4  
0 3 1 3 1 0 6 2 8  
0 0 3  I 3 0 2  1 6  
0 0 1 3 0 1  1 7 2  
0 1 3 0 2  I 7 3 7  
0 I 0 2 2  1 3 0 3  
0 2 2 2  I 0 0 4 5  
0 2 2 1  3 I 4 6 9  
0 3 0 0 0 0 6 6 5  
0 3 2 1  3 1 5 7 3  
0 0 1 3 2 0 7 4 9  
0 0 3 2 0 1  4 2 7  
0 1 2 0 1 0 2 0 2  
01  0 1  3 I 0 3 8  
0 2 1  3 2 1  3 I 4  
0 2 3 2  1 0 1  5 6  
I 3 1  1 1  I 7 7 6  
1 3 0 3 2 0 2 6 7  
1 0 3 2 3  1 6 0 4  
1 0 2 3 2 0 0 5 3  
1 3 3 2 0 1 S 4 8  
1 1 2 0 1 0 4 1 2  
1 2 0 1 0 0 1  3 9  
1 2 1 0 3 1 3 2 5  
1 3 1  1 1  1 0 0 7  
1 3 2 0 0  I 3 4 6  
I 0 0 0 2 0 4 7 8  
1 0 0 2 3 0 7  1 5  
I 1 2 3 3 1  I 6 4  
I 1 3 3 1  1 6 5 9  
I 2 3 1 2 0 5 2 2  
1 2  1 2 0 0 2 3 3  
2 3 2 2 2 1  1 1 8  
2 3  1 2 1 0 4 3 4  
2 0 2  1 0 0 3 5 7  
2 0  1 0 3 0 5 0 9  
2 1 0 3 3 0 0 2 6  
2 1 3 3 0 1 2 7 s  
2 2 3 0  I 1 7 6 3  
2 2 0 1  2 I 6 4 2  
2 3 2 2 2 1  2 2 9  
2 3 0 2 3  1 7 5 2  
2 0 2 3  1 1  5 3 5  
2 0 3  I 1 0 3 6 8  
2 1  1 I 0 0 6 1  3 
2 1  1 0 3 0 1 4 7  
2 2 0 3 0  I 4 0 6  
2 2 3 0 2 0 0 7 4  
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