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preface

Preface

, ,

Humans are continuously exposed to carcinogens from environmental,
occupational, and endogenous sources. Health professionals, regulatory
agencies, and cancer researchers are frequently challenged to identify the
causes of cancer, to predict risks, and to develop methods to prevent cancer.
The assessment of cancer risk in individuals or the population is a complex
process that reflects both actual science and scientific intuition. There is an
exploding amount of information—in many cases conflicting information—
and a confusing array of sources to consider about the applicability and use
of biomarkers. New data from the Human Genome Project, the latest
technologies in molecular genetics (e.g., proteomics, microarrays, high-
throughput assay methods), are rapidly being incorporated into risk assess-
ment and epidemiological studies, and there are many challenges to the
interpretation of the resulting data. Clearly, the use of biomarkers and
genetic susceptibility analysis is improving our ability to predict risk in
the population and the individual, but it is a rapidly evolving and compli-
cated area of research. Students of molecular epidemiology and people
outside of the field need guidance to use and interpret biomarker data,
and a context from to evaluate whether the data improve the risk assessment
process.

This book is intended for health professionals, public health specia-
lists, persons within regulatory agencies, and cancer researchers who need
more than a summary of recent data. It provides a practical approach to
conducting risk assessment for the population and the individual in the

xi



context of biomarkers and genetic susceptibilities, especially within a
broader perspective of background cancer risk and an individual’s expo-
sures within a complex environment. While the risk assessment process
usually focuses on a single particular exposure, people are constantly
exposed to a multitude of known and potential human carcinogens—from
the air, their diet and lifestyle, etc. When setting public health priorities or
evaluating a person with cancer, this broader context makes the risk assess-
ment process much more challenging. This text helps the reader place cancer
risk within such a context, and understand the relative risks from different
exposures and how biomarkers and genetic susceptibilities help in the risk
assessment process.

Biomarkers are tests conducted on any biological tissue or fluid,
including air. Assays to assess an individual’s risk through specific genes,
thereby assessing genetic susceptibilities, also are a type of biomarker. How-
ever, the term biomarker usually refers to an assay of exposure, biologically
effective dose, or some effect of exposure. The term genetic susceptibility
refers to an individual’s heritable capacity to respond to exposures, which
would therefore result in modifying cancer risk. Biomarkers can be used
as intermediate markers of cancer risk, reflecting a mechanistic pathway
to cancer. Genetic susceptibilities would therefore affect the level of biomar-
kers, reflecting a gene–environment interaction. Therefore, the term gene–
environment interaction refers to an effect of exposure that is increased or
decreased by genetic susceptibilities; it is used generically and there are
formal statistical methods to assess interactions. Most cancers are considered
to be caused by carcinogenic exposures, although with most cancers and
therefore in most people, the causes have not been identified. Although the
body has the capacity to repair much of the damage from gene–environment
interactions, it is the sheer number of gene–environment interactions that
actually contribute to the carcinogenic process. Biomarkers now are enhan-
cing our understanding about the causes of cancer, and in some cases are
helping identify what specifically caused a cancer in a particular person.

The use of biomarkers is not new and has been around for more than
50 years. But the last 20 years have seen rapidly developing technologies,
which recently have greatly accelerated. These newer methods bring analy-
tical and bioinformatic challenges but nonetheless show great promise for
enhancing our risk assessment processes further.

Frequently the public and individuals with cancer make conclusions
about the causes of cancer that are not founded upon sound data or based
on appropriate assessment methodologies. The public health community is
obligated to understand and communicate the latest scientific data in the
context of the risk assessment process for the general population, persons
at high risk, and individuals within the general population. This text
provides the reader with the tools to assess cancer causation with specific
methodologies, rather than relying on intuition and speculation.
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Cancer is a multistage process that is triggered by multiple steps
through many pathways. There are many repair and protective mechanisms
in the human body to prevent most DNA damage that would otherwise lead
to cancer. Typically, the determination of a cancer risk factor requires the
examination of a potential etiological agent against a background of many
real etiological agents. Many new laboratory and epidemiological findings
are impacting how we think about cancer risk, while many principles used
in the assessment of causation remain conceptually important. This book
presents recent data that impact cancer risk for the general population and
individual, and reviews data for some known and potential human carcino-
gens. It reviews the methods for determining what causes cancer and what
does not. Practical approaches to the determination of cancer risk in indivi-
duals and the population are offered, including counseling of individuals,
groups of exposed persons, and society as a whole.

This text is organized to provide the most current information in two
ways. The first approaches risk assessment from a methodological perspec-
tive. The reader is provided information about carcinogenesis in general and
then specifically for chemical, radiation, viral, occupational, and familial
cancers. While there is overlap in some of these mechanisms (e.g., chemical
and occupational carcinogenesis), there are different mechanistic approaches
to consider depending on the perspective. One particular focus includes
recent data for tobacco, alcohol, and hormonal mechanisms in cancer risk,
as these are among the major known human carcinogens and carcinogenic
mechanisms. Additionally, how people are exposed to known and suspected
carcinogens is identified, with particulars on how to measure this in the
workplace using industrial hygiene methods. Information about differences
in cancer risk among various ethnic and racial populations in the context of
different exposures and mechanistic etiologies are also discussed.

The second methodology includes basic epidemiological approaches as
they apply to molecular epidemiology, including both the use of biomarkers
and genetics within an epidemiological framework. Detailed approaches in
the use of genetic testing for cancer risk, using both markers in cancers
and then measures of genetic damage in persons without cancer, are given.
The actual approach to risk assessment is highlighted in detail in three sepa-
rate chapters. The readers are provided with the distinct approaches to
population and individual risk assessment, and also with information about
how regulatory agencies determine what is a carcinogen. The chapter on
individual risk assessment is particularly unique as the reader is provided
with a framework for evaluating an individual who has cancer, or is thought
to be at risk for cancer.

The second half of the text provides the reader with cancer risk infor-
mation by organ system for major cancers. It uses the principals established
in the first part of the text, which provided the reader with the tools to eval-
uate risk, and applies them to single organ sites. While this text provides a
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summary of the latest data for biomarkers and genetic susceptibilities within
the risk assessment process, it cannot provide a critique of all available data.
However, it will equip the reader to explore and assess further data.

The production of this text required the hard work of many people,
and I would like to thank my co-authors and contributors specifically for
their patience and multiple iterations to produce what are outstanding chap-
ters. I also will like to thank Sandi Crawford and Regina Jackson for the
expert organizational assistance, without which this book would never have
been completed.

Peter G. Shields
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Carcinogenesis and Molecular Genetics

Diane L. Carlisle

Department of Pharmacology, University of Pittsburgh, Pittsburgh,
Pennsylvania, U.S.A.

Steven R. Patierno

Department of Pharmacology, George Washington University,
Washington, D.C., U.S.A.

1. INTRODUCTION

All tissues have a rate at which cells naturally die, while other cells divide to take
their place. The skin, for example, consists of large numbers of cells that are
dying or dead and are constantly sloughed off, while new layers of skin regen-
erate by cell division beneath the cell surface. Maintaining the homeostatic bal-
ance of cell loss and cell gain is crucial to the health and survival of the tissue
and organism, and so the balance is tightly regulated in all tissues throughout
the body. Disturbing this balance of cell loss and cell proliferation can lead to
disease. Tumor formation occurs when cell division exceeds cell death. This
happens in one of two ways: either cell proliferation is increased so that it
occurs faster than cell death or cell death is prevented or slowed so that it no
longer keeps up with cell division. The progression of cellular changes leading
to this excess growth and formation of a malignant tumor is the process known
as multistage carcinogenesis. Most, if not all, of the morphological and bio-
chemical characteristics of malignant cells have as their source either genetical
or epigenetical alterations in gene expression. Therefore, the controls that
usually tightly regulate the cell growth and death processes on a molecular level
must be examined and manipulated in order to fully understand multistage
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carcinogenesis. Many factors can contribute to carcinogenesis, including
viruses, chemicals, radiation, diet, hormones, and genetical predisposition.

Currently, there is much attention ascribed to cancer genes that can
increase or decrease an individual’s chance of getting cancer and influence
a person’s prognosis after the diagnosis of cancer has been made. In addition
to providing risk assessment information, knowledge of why these genes are
important and how they work may yield important clues to the molecular
causes of cancer. Genes that are important in cancer come in two general
types, operationally defined as oncogenes and tumor suppressor genes (1).

Oncogenes are genes which act to stimulate cell division or increase cell
survival, when expressed in a biochemically abnormal environment which is
permissive for their growth stimulatory effects. When overexpressed or
expressed aberrantly, they may disrupt the division–death ratio. Tumor sup-
pressor genes have an equally important role in tissues, but in preventing in
tumor formation. Normally, they protect cells from abnormal growth in
several ways and, in cancers, are often found to be mutated so that their
function is either altered or lost entirely. The complex interplay between
oncogenes and tumor suppressor genes can be exemplified using the ras
oncogene which becomes oncogenic by expressing altered function after a
single base change, and the bcl-2 gene, which codes for a mitochondrial
protein that helps prevent apoptotic cell death. Overexpression of a mutant
ras oncogene is actually lethal to normal cells, but in the context of a cell
which has lost expression of bcl-2, mutant ras becomes promitogenic (2).

2. STEPS IN CARCINOGENESIS

The carcinogenic process is complex and involves many genetical changes.
For example, mutation of the brca1 or brca2 gene, which has been impli-
cated in familial breast cancer (3,4), leads only to an increased risk of breast
cancer; it does not mean that there is a 100% certainty of any particular
woman having breast cancer during her lifetime. In fact, the penetrance of
brca1 mutation, i.e., the chance that a woman with a brca1 mutation will
be diagnosed with breast cancer by age 70, has been shown to be anywhere
from 37% to 90%, depending on the population studied (5). In order to
study carcinogenesis, the process has been historically and conceptually
divided operationally into three steps: initiation, promotion, and progres-
sion. These divisions are a helpful starting point, but as we learn more about
the molecular genetics and epigenetics of cancer, the distinctions between
these divisions become less and less clear.

The first step in carcinogenesis, historically referred to as initiation, is
one that produces an altered cell that has some selectable growth advantage
over other cells. This step can be facilitated by genetical predisposition, and
caused by exposure to chemicals, radiation, viruses, or other permanent
cellular changes. These changes reduce the stringency of the regulation of
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cell growth and death. Initiation is always a permanent event and may occur
at any time during a person’s lifetime, but usually many years before cancer
is diagnosed. Historically, the initiation event was thought to be nearly
synonymous with mutation after genotoxic insult. Recently, however, this
notion has been challenged. More and more evidence is accumulating,
linking cancer initiation with epigenetical alterations in transcriptional pat-
terning, perhaps invoked as a cellular response to genotoxic insult and other
forms of cellular stress (6,7).

The next operationally defined stage in the development of cancer is
promotion. Promotion is not a permanent event, but a transient process that
promotes cell growth. However, because initiation is permanent, promotion
can occur at any time, either at the same time as initiation, or many years
after initiation takes place (Fig. 1). The role of promotion is to stimulate
an initiated cell to divide, and then to stimulate the net accumulation of
initiated cells by either stimulating cell division or inhibiting cell death (8).
Promotion may have indirect effects as well. For example, the stimulation
of cell division increases the possibility that a mistake in the fidelity of
DNA replication may occur, leading to mutation. This situation could be
especially dangerous if the cell being provoked to divide has already
incurred alterations in the function of genes required for DNA repair or
for governing the cell cycle. For example, the p53 gene, often referred to
as the guardian of the genome, functions to inhibit the cell from entering
the DNA synthesis (S) phase of the cell cycle, in the presence of unrepaired
DNA damage (9). Forcing a cell with defective p53 to enter the S phase with
unrepaired DNA damage may increase the frequency of mutation and lead
to genomic instability and development of the mutator phenotype (see
below).

While some agents are strictly initiating agents, and others strictly
promoting agents, many of the most potent carcinogens are both initiators
and promoters. Cigarette smoke is one such example (10). Many of the che-
micals in cigarette smoke are both genotoxic and toxic, cause mutations and
gene expression changes, as well as cell death. The events associated with the
genotoxic insult may be initiating events, creating populations of abnormal
cells. Cigarette smoke also serves as a promoter, for example, by stimulating
proliferation of genetically damaged cells following cytotoxicity and loss of
neighboring cells.

The final stage of carcinogenesis is historically defined as progression.
Progression occurs when an initiated cell undergoes promotion, and that
promotion leads to cellular changes that deregulate the cell growth controls.
This stage of carcinogenesis is self-sustaining, but occurs in part by chance.
Cells that are growing without the normal controls will, by chance, gain
mutations. If a mutation occurs in a tumor suppressor gene such as a
DNA repair gene, this will allow that cell to acquire mutations at an even
higher rate. A cell which has this type of mutation is said to have a mutator
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phenotype or genomic instability, exhibiting acceleration of accumulation of
mutations (11,12). Eventually, due to a decrease of negative growth controls
and an increase in expression of regulators that encourage cell division, the
growth of these cells becomes independent of the signals of the surrounding
tissue. Over time, these neoplastic cells may also acquire the ability to
undergo neo-vascularization (angiogenesis) and may gradually metastasize
and establish new tumors elsewhere in the body (13,14). Potent carcinogens
such as tobacco smoke may have a role in this stage of carcinogenesis
because exposure to cigarette smoke is ongoing, unless the person decides
to quit. The continuous inhalation of mutagenic chemicals may encourage
cells through the progression stage of carcinogenesis as well.

It only takes clonal expansion of one cell (and its progeny) with many
types of mutations to go through the process of carcinogenesis to establish a
tumor, and it is thought that most cancers arise from one precursor cell (the
monoclonal origin theory of cancer). When one considers the number of
mutagens we are exposed to daily, the number of times our cells divide over
our lifetime, and the realization that it takes only one cell to go awry to
cause cancer, it is actually surprising that cancer is not more prevalent in
our society. Fortunately, our cells and tissues have many mechanisms
designed to keep this process from occurring.

3. MOLECULAR GENETICS

3.1. The Role of Oncogenes

Oncogenes, the genes that encourage cell growth, can come from an outside
source, such as viruses, or can be our own genes (proto-oncogenes) that are
expressed inappropriately. Viral oncogenes, such as those found in the
human papilloma virus (HPV) genome, take advantage of our genetics to
promote cell division in order to increase the number of viral infected cells,
and therefore the number of viruses. HPV, known in oncology for its asso-
ciation with cervical cancer, does this by making two oncogenes, E6 and E7
(15). The proteins produced by these oncogenes work by binding to, and
altering the function of the proteins that control the cell cycle. E6 binds
to p53, a protein that stops the cell cycle and initiates cell death. The binding
of E6 to p53 targets p53 for degradation. E7 acts by binding to the Rb pro-
tein. Rb normally binds to and inactivates the E2F protein, which pushes
the cell through the cell cycle. E7 prevents this interaction, leaving E2F free
to start the process of cell division. In some cases, the viral genome may inte-
grate into the host cell genome, allowing permanent expression of these viral
oncogenes, beginning the process of carcinogenesis (15).

Proto-oncogenes are genes that have a normal role in cells and only
become oncogenes when they are expressed inappropriately. One example
of this is the role of the c-myc gene in Burkitt’s lymphoma, a B cell tumor
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(16). c-myc is involved in the cell cycle, and it is expressed in a tightly
controlled manner in response to normal stimuli when cell growth is
required. However, in Burkitt’s lymphoma, the c-myc gene is translocated
from its normal position on chromosome 8 to chromosome 14. This puts
c-myc in the place of an immunoglobulin heavy-chain gene. The immuno-
globulin gene is normally highly expressed in B cells. This translocation
causes an overexpression of c-myc in B cells, which leads to Burkitt’s
lymphoma. Other B cell lymphomas have similar causes. bcl-2, a gene which
promotes cell survival, has been implicated in a large number of B cell
tumors because it is often translocated from its position on chromosome
18 to chromosome 14, much as c-myc is in Burkitt’s lymphoma (17).

3.2. The Role of Tumor Suppressor Genes

There are a number of types of genes in the tumor suppressor category. The
most obvious are genes that ‘‘turn off’’ cell growth or increase cell death.
These are sometimes called the gatekeepers (18). Other tumor suppressors
include genes that safeguard the genome, protecting the integrity of other
important growth-regulating genes, and are called the caretakers (18). The
final, less defined type of tumor suppressor gene is the landscaper gene.
The landscaper genes define the interaction of epithelial cells with their
environment, the supporting stromal cells (18). If the stromal cells do not
send the correct signals, through cell–cell interactions, about cell growth
to epithelial cells, the epithelial cells may grow inappropriately. When any
of these types of tumor suppressor genes are mutated or prevented from
functioning as they normally do, they become important in the pathogenesis
of cancer (Table 1).

One of the most well-known tumor suppressors is the p53 gene. This
gatekeeper gene was first identified in colorectal cancer because it is mutated
in up to 50% of all colorectal cancers (75). Since then, mutation of this gene
has been recognized in a large percentage of other types of cancers (76),
including 70–80% of small-cell lung cancers (77,78). The p53 gene is thought
to play an important regulatory role in both inhibition of cell growth and
initiation of cell death.

The brca1 and brca2 genes are also examples of tumor suppressors.
Genetical tests that analyze these caretaker genes for mutations are being
examined for use both as risk factors in women who have a family history
of breast cancer and as prognostic indicators after women are diagnosed
with breast cancer. These genes may be involved in DNA repair (79). Their
role in cancer is therefore more complicated. These tumor suppressors
protect cells not by directly preventing uncontrolled cell growth, but by
protecting the integrity of the genome in general. Mutations in the caretaker
genes may predispose women to cancer by allowing any DNA damage that
does occur to go unrepaired. This increases the chance that they will acquire
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Table 1 Gatekeeper Tumor Suppressor Genes

Function Gene Cancers often inactivated in

Growth and
apoptosis
regulators

APC Colorectal (19), gastric (20),
ovarian (21)

CTCF Breast (22)
FHIT Gastric (23), leukemia (24),

lung (25), pancreatic (26),
thyroid (27)

ING1 Head and neck (28)
p53 Astrocytoma (29),

breast (30), colorectal (31),
esophageal (32), gastric (33),
head and neck (34),
leukemia (35), lung (36),
osteosarcoma (37), ovarian (38),
skin (39)

PTENS=MMAC Breast (40), glioma (41),
hepatic (42), prostate (43),
thyroid (44)

RB1 Bladder (45), lung (46),
osteosarcoma (47),
retinoblastoma (48)

SMAD4 Pancreatic (49)
STK11=LKB1 Colorectal (50), gastric (50),

ovarian (51), pancreatic (50)
CDK inhibitors p15Ink4A Glioma (52), leukemia (53),

melanoma (54)
p16Ink4B Glioma (52), head and neck (55),

leukemia (53), melanoma (54)
p21Waf1=cip1 Lymphoma (56), prostate (57)

Oncogene
inactivators

Bax Colorectal (58), gastric (59),
lymphoma (60), oral (61)

MS11 Neurofibromatosis (62),
glioma (63), prostate (64),

Miscellaneous DLC1 Esophageal, lung, kidney (65)
LEU1, LEU2 Leukemia (66)
MCC Colorectal (67), esophageal (68),

lung (69)
MEN1 Pancreatic parathyroid, pituitary (70)
NF2 Neurofibromatosis (71)
PRLTS Prostate (72)
STK11=LKB1 Colon, gastric, melanoma, ovarian
VHL Renal (73)
WT1, WT2 Wilms tumor (74)
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dangerous mutations in oncogenes or other tumor suppressors. These
changes act together to accelerate a cell through the process of carcinogene-
sis (Table 2).

Less is known about the role of landscaper genes in cancer, but they
are believed to play a role in several kinds of cancers, such as colon cancer
in patient who also suffer from ulcerative colitis, colorectal cancer in
patients with juvenile polypopis syndrome, and endometrial cancer in
patients who suffer from endomedrial polyps (18). The common link that
defines cancers that may develop from mutations in landscaper genes is that
there is overgrowth of stromal, noncancerous cells first. This provides an
environment that encourages inappropriate growth and, in some cases, car-
cinogenesis in neighboring epithelial cells.

3.3. Other Molecular Events in Cancer

Not all changes that lead to cancer are necessarily genetical changes. Other
types of changes can throw off the careful cellular balance that usually keeps
uncontrolled growth in check. Cellular controls of transcription and transla-
tion, as well as RNA and protein degradation, can lead to inappropriately
high or low expression of oncogenes or tumor suppressors, respectively.

Methylation of DNA is one such nongenetical control of gene expres-
sion. Normally, genes that are not expressed in cells are highly methylated,
while those genes that are actively suppressed are not. Inappropriate meth-
ylation of genes prevents their expression. This usually occurs in CpG
islands of DNA at specific gene promotors, which are responsible for allow-
ing transcription of the gene. Hypermethylation prevents transcription from
occuring and allows for changes in a cell’s phenotype with any actual

Table 2 Caretaker Tumor Suppressor Genes

Function Gene Cancers often inactivated in

DNA repair ATM Breast (80), cervical (81),
leukemia (82,83)

BRCA1, BRCA2 Breast (84,85),
ovarian (86), prostate (87)

ERCC1, ERCC2 Ovarian (88), glioma (89)
MLH1 Breast (90), colorectal (91),

endometrial (92), ovarian (93)
MSH2, MSH3,
MSH6

Endometrial (94),
leukemia (95)

PMS1, PMS2 Colorectal (96)
XPA, XPB, XPC,
XPD

Skin (97)
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mutation of the DNA. Because methylation patterns are inherited from cell
to cell, a potentially neoplastic cell may pass this aberrant methylation pat-
tern down to its daughter cells when it divides (98). The p16 gene, an impor-
tant tumor suppressor, is one gene that is frequently inactivated in this
manner. Inactivation of p16 has been shown to occur in several tumor types,
including pancreatic cancer and lung cancer. In addition, it was shown that
in lung cancer, inactivation of p16 by hypermethylation is a very early event
in carcinogenesis and may be a marker to help identify lung tumors
earlier (99).

4. CONCLUDING COMMENTS

At the cellular level, cancer is heritable. This means that the characteristic
(phenotypic) alterations in a cell that make it malignant are somehow
caused by heritable alterations of genetical structure and function. It is gen-
erally accepted that most cancers arise from a complex interaction between
genetics and the environment (here, loosely defined as anything of either
intracellular or extracellular origin that can impact genetical structure
and=or function). Genetical factors influencing carcinogenesis and cancer
risk include heritable susceptibility factors, such as genetical polymorphisms
in carcinogen metabolism, heritable defects in DNA repair genes, and even
gender, ethnicity, and race. On the environmental side, cancer risk is influ-
enced by cultural and lifestyle factors (such as smoking, diet and nutritional
status, and infectious disease), environmental and occupational exposure to
potentially carcinogenic chemicals and radiation, and endogenous genotoxic
challenges that arise from living in an oxidative atmosphere (i.e., intracellu-
lar production of reactive oxygen species, organic free radicals, and nitric
oxide). It is often argued that cancer is largely a preventable disease, and this
is certainly true if the focus is on the major cancers with the most easily iden-
tifiable environmental risk factors. Stopping smoking would markedly
reduce the incidence of lung and other cancers, minimizing gross exposure
to sunlight would drastically cut the incidence of skin cancer, modifying diet
would likely have an enormous impact on the rates of stomach and colon
cancer, and preventing viral infections would significantly decrease the glo-
bal cancer incidence. Perhaps a more challenging question is if the measures
just described were fully implemented and successful, could the incidence of
cancer be significantly decreased even further by more stringent controls on
low-level environmental exposures?

Most smoking-induced lung cancers are associated with high dose and
long duration of exposure (resulting in concomitant chronic tissue damage)
to multiple carcinogens present in cigarette smoke. Nevertheless, only 1 in
10 heavy smokers develop lung cancer. This underscores the importance
of answering some key questions. How vast and effective are the body’s
natural anticancer protective mechanisms? Is it more important to identify
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genetically susceptible individuals than to more stringently regulate general
environmental exposures? What potentially unchangeable proportion of the
overall cancer incidence is simply a function of genetics, hormones, aging,
and the natural promutagenic consequences of life at the molecular level?
Further research into the molecular genetics of carcinogenesis will help
elucidate answers to these important questions.
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1. INTRODUCTION

In recent years, several authors have advocated the use of epidemiological
data, if available, in developing cancer risk assessments (1–5). Epidemiolo-
gical data may be used in a variety of ways in risk assessment, principally in
hazard identification and exposure–response analysis (4). This chapter will
review basic concepts in the design and interpretation of epidemiological
studies, focusing on their application in risk assessment.

Two major epidemiological study designs have contributed substan-
tially to understanding the etiology of human cancer. Cohort studies are
studies in which a defined group of people are followed for a period of time.
They can be either retrospective studies, in which the group is defined at a
point or period in the past and followed to the present, or prospective, in
which the group is defined in the present and followed into the future.
The cohorts can be derived from the general population, to study the effects
of common exposures such as smoking and diet, or selected on the basis of a
particular exposure. Outcomes measured may be intermediate markers,
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incident disease, or death. Cohort studies can detect the effect of a rare
exposure because by design a relatively large number of exposed subjects
can be assembled and studied; cohort studies often focus on a single expo-
sure and multiple outcomes. Case–control studies are studies in which risk
factors for disease are compared between individuals with the disease and
those without. Case–control studies may be community based or nested
within cohorts. In community based case–control studies, information
about risk factors is generally obtained directly from study subjects, but
in some cases, additional measurements are made of biological tissues or
environmental exposures, or supplementary information is gained from
medical or other records. Case–control studies are particularly useful for
studying rare diseases; they examine the relationship between a single out-
come and multiple exposures. General aspects of the design and analysis
of both types of studies are covered in textbooks of epidemiology (6,7).

Cohort studies of occupational groups or populations with environ-
mental exposure to radiological or chemical hazards have been the primary
source of information for a number of important risk assessments to date
(e.g., asbestos, arsenic, benzene, and radon daughters) (1). The use of
case–control studies in risk assessment has been more limited, with some
noteworthy exceptions, such as environmental tobacco smoke and lung can-
cer (8,9) and residential radon exposure and lung Cancer (10).

Epidemiological studies may be hypothesis testing or hypothesis gen-
erating. Ecological studies, in which correlations are made at a group level
(i.e., comparing fat consumption and breast cancer incidence by country)
are often used to generate hypotheses about exposure–disease associations
and typically cannot do more than that. Cohort and case–control studies
may be hypothesis generating when the basis for a priori hypotheses is limi-
ted, but they are often designed to test hypotheses about disease causation.
A causal association between an exposure and disease is rarely established
by the results of a single epidemiological study. A number of investigators
have proposed criteria for defining causality based on epidemiological study
results (6). Some of the most important criteria include temporal sequence
(the cause must precede the effect), strength of the association, dose–
response relationship, replication of the findings, and biological plausibility
(6). Table 1 defines some important terms used in epidemiological studies.

2. COHORT STUDIES

Occupational cohort studies have played a central role in the understanding
of radiation-induced and chemically related cancer, because occupational
exposures are often orders of magnitude higher than exposures in the gen-
eral population, making exposure effects easier to observe in relatively small
populations. As early as the 1950s, occupational cohort studies documented
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the risk of cancer associated with occupational exposure to aromatic amines
(beta-naphthylamine, benzidine) (11) and asbestos (12). Many occupational
cohort studies have used duration of employment in the occupation or
industry under study as an index of cumulative exposure. However, as meth-
ods were developed and utilized to measure air concentrations of chemicals
in the workplace, studies began to incorporate quantitative estimates of
exposure, enabling researchers to associate level of exposure with level of
risk (13). In some studies, exposure estimates are generated for multiple
agents in a single population, with the goal of evaluating which agents are
associated with observed cancer excesses. For example, in a study of the

Table 1 Definitions of Some Important Terms Used in Epidemiological Studies

Term Definition

Incidence The number of new cases of a disease that occur in a
specified period of time divided by the number of people
in the population at risk of developing the disease

Prevalence The number of cases of a disease present in a population
at a specified time divided by the number of persons at
that point in time

Period
prevalence

How many people have had the disease at any time during
a certain period

Mortality rate The number of deaths in the population divided by the
number of persons in the population at midyear

Proportionate
mortality
ratio (PMR)

The number of deaths from a particular cause divided by
the total number of deaths

Standardized
mortality
ratio (SMR)

Observed number of deaths per year divided by expected
number of deaths; expected number of deaths based on
age, calendar time, gender- and race-specific death rates
in the referent population

Standardized
incidence
ratio (SIR)

Observed number of new cases per year divided by
expected number of new cases; expected number of new
cases based on age, calendar time, gender- and race-
specific incidence rates in the referent population

Relative risk
(RR)

Disease risk (incidence rate) in an exposed population
divided by disease risk (incidence rate) in an unexposed
population

Odds ratio Estimate of association calculated in a case-control study;
approximates relative risk when the risk of disease is
low (see Section 3 for how to calculate)

Attributable
risk

The amount or proportion of disease incidence (or disease
risk) that can be attributed to a specific exposure

Source: Adapted from Refs. 6, 7, 63, 64.
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synthetic rubber industry, quantitative estimates of exposure to 1,3-buta-
diene, styrene, and benzene were developed to evaluate exposure–response
relationships with leukemia (14).

Occupational cohort studies include all individuals entering and leav-
ing a workforce during a defined time period (for example, from January 1,
1940, to January 1, 1979) and observe the number of incident cases or deaths
during the time interval of study per number of person-years of observation
(15). Most commonly, occupational cohort studies use mortality as the out-
come, ascertaining deaths from national vital registry data. Use of mortality
as the outcome has the advantage that it is possible to achieve nearly 100%
ascertainment of deaths, at least in the United States. There is, however, a
significant possibility of misclassification of cancer site on death certificates
(16) and histologic type is often unspecified. Occupational cohort studies
may be analyzed using life table methods, in which person-years-at-risk
(PYAR) are accumulated for each individual from the time they enter the
cohort until death, loss to follow-up, or end of study. Person-years-at-risk
may be stratified by age, calendar time, race, time since first employment,
duration of employment, and other occupational exposure characteristics.
The number of expected deaths is calculated by multiplying age, calendar
time, and race-specific PYAR by the relevant referent rates in the general
population, such as national mortality or state-based cancer registry data.
Life table analysis yields standardized mortality ratios (SMRs) or standard-
ized incidence ratios (SIRs), which compare the number of observed and
expected deaths, based on indirect standardization to control for age, calen-
dar time, and race. Life table analysis programs are available from several
sources (17–19). Analysis of cohort studies using external referents suffers
from the problem that the external referent population may not be compar-
able to the study population in attributes other than the one under study.
For example, it is common to find that occupational cohorts have substan-
tially lower mortality than the general population due to selection of healthy
individuals into the workforce and the survival of healthier individuals,
which permits long-term employment (this has been called the ‘‘healthy
worker effect’’) (13). This effect is strongest for cardiovascular disease and
is less apparent for cancer (13). Use of internal referents, i.e., members of
the cohort with no or minimal exposure, may circumvent this problem.
Internal comparisons within cohort studies require additional analytical
methods, such as direct standardization or Mantel–Haenzel techniques, to
adjust for age and other factors that may differ between subcohorts. Poisson
regression analysis can be utilized to to examine the effect of all the study
variables on the disease incidence or mortality rate simultaneously (6,20).

There are a number of important issues to be considered in the design
of cohort studies intended to assess the carcinogenicity of chemical or phy-
sical exposures. Often chemical studies are triggered by new, positive animal
bioassay results. The first step in designing a cohort study is to determine in
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what occupations and industries the chemical is used, the numbers of
workers exposed, and a selection of those industries or occupations that pro-
vide the best opportunity for study. Important factors in choosing the occu-
pation or industry to study include the level of exposure to the chemical and
the presence of potential confounding exposures. Once an industry or occu-
pational group has been selected, factors considered in choosing the actual
study sites include length of operation, numbers of workers, and quality of
personnel, production, and exposure records (21). Great care must be taken
to ensure that the entire targeted study population is identified, because
nonrandom losses, such as failing to identify records of retirees or other
subgroups, may seriously bias the study results.

Exposure assessment in occupational cohort studies should include, at
a minimum, a complete history of plant operations, including major pro-
ducts, starting materials, by-products, and potential contaminants present
in all major departments or process areas and review of existing environ-
mental or personal monitoring data. Such data can be used to classify work-
ers (through their department and job codes) as exposed or unexposed to the
chemical of interest, as well as potential confounders, and to establish the
date at which exposure began and its duration. Once preliminary data have
been collected for a retrospective study, a decision is made about whether it
is feasible to reconstruct historical exposures and conduct an exposure–
response assessment. Factors in this decision include whether there is suffi-
cient detail in the personnel records to determine the detailed job history of
individuals (i.e., department, operation, starting and ending dates) and
whether there are sufficient monitoring data available to generate meaning-
ful exposure estimates. Often these conditions are not met, but a decision is
made to proceed with a study because it is the best available population or
because there is interest in the health effects in a specific population
although it does not have sufficient information to characterize exposure–
response.

Issues in the reconstruction of historical exposures for occupational
cohort studies have recently been reviewed (22,23). Stewart et al. (22) define
several steps in developing quantitative retrospective exposure estimates for
epidemiological studies: (1) identification of appropriate agents of exposure,
including consideration of physical states and routes of exposure; (2) devel-
opment of ‘‘exposure groups,’’ defined as groups of persons whose expo-
sures are similar enough so that monitoring of any worker in the group
provides data useful for predicting the exposure of the remaining workers;
(3) evaluation of availability and representativeness of existing sampling
data; development of procedures for generating quantitative estimates by
exposure group, including methods of extrapolation or interpolation for
time periods and exposure groups where data are sparse or nonexistent.
Often there are no exposure measurements for early decades of plant opera-
tion. Assumptions made in deriving exposure estimates for these time
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periods may lead to considerable variation in the estimates (24,25) and the
resulting risk assessments (26,27).

Cohort studies also have been conducted among individuals in the
general population who have one-time (or short term) exposure to chemical
or physical agents as a result of accidental or intentional releases. One of the
earliest such studies was initiated in 1946 among atomic bomb survivors in
Hiroshima and Nagasaki (28). Prospective study cohorts (or registries) have
been established for individuals exposed to 2,3,7,8-tetradichlorodibenzo
dioxin (TCDD) after an accidental release in Seveso, Italy, in 1976 (29)
and individuals exposed to radioactive isotopes after a nuclear reactor mal-
functioned in Chernobyl, USSR, in 1986 (30). Cox regression may be used
to analyze clinical trials or cohort study in which the event times are
observed (17). When the relationship between predictor variables and
disease outcome are modeled using Cox regression, the partial regression
coefficients of the model are the natural logarithms of the respective rate
ratios (6).

Prospective study cohorts may also be established to study chronic
rather than one-time exposures. In the United States, a large prospective
cohort has been established of registered pesticide applicators in two states;
the cohort will be followed periodically to ascertain pesticide exposure and
health status (31). Because of the high cost and great effort required by
researchers, a prospective study should be launched only for high-priority
topics for which retrospective studies cannot provide adequate data, for
example, when retrospective exposure assessment is difficult due to substitu-
tion of products over time and varied use over workers in similar job cate-
gories (31).

Cohorts may also be assembled from the general population without
regard to a specific exposure, and subsequently exposure groups can be iden-
tified (e.g., smokers). Population-based cohort studies, such as the Framing-
ham study, have been invaluable in understanding the etiology of
cardiovascular disease (33), and have contributed to the understanding of
cancer etiology as well (34). Prospective studies of the general population
may be geographically based, including a sample or the total of a defined
population, or defined by other criteria, such as membership in a health
maintenance organization (35). For example, a prospective mortality study
[Cancer Prevention II Study (CPS II)] of about 1.2 million U.S. men and
women was begun by the American Cancer Society in 1982. Participants
were identified and enrolled in by more than 77,000 ACS volunteers in all
50 states, the District of Columbia, and Puerto Rico. Data collected at base-
line included personal identifiers, demographic characteristics, personal and
family history of cancer and other diseases, reproductive history, and
various behavioral, environmental, occupational, and dietary exposures.
This study has yielded information on health effects of occupational expo-
sure to diesel exhaust (36), aspirin use, and reduced risk of gastrointestinal
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tract cancers (37) and the relationship between exposure to environmental
tobacco smoke and lung cancer (38). Other recent findings from popula-
tion-based cohort studies relate to the relationship between aflatoxin expo-
sure, hepatitis B infection, and hepatocellular carcinoma (39,40) the effects
of hepatitis B and hepatitis C infection on the development of hepatocellular
carcinoma (41), and the relationship between alcohol consumption and
breast cancer in women (42). While some population-based studies have
involved measurement of risk factors at baseline and follow-up for mortality
as the outcome, prospective studies may involve multiple measurements of
risk factors in individuals over time, intermediate outcomes, and incident
disease. Studies in which there are repeated measures of exposure and out-
come over time, and whose focus is to examine individual heterogeneity,
time-dependent changes, rates of change, or natural history of complex
disease states have been termed ‘‘longitudinal’’ cohort studies (43). Such
studies may play an important role in understanding gene–environment
interaction, and the interplay of multiple risk factors, in cancer and other
diseases.

3. CASE–CONTROL STUDIES

The case–control design has played an important role in the understanding
of lifestyle, infections, and familial risk factors for cancer, and in generating
and testing hypotheses about environmental and occupational causes. For
example, the first evidence for a strong association between cigarette smok-
ing and lung cancer was derived from two case–control studies, published in
1950 (44,45). Much of our current knowledge of the contribution of alcohol
consumption and cigarette smoking to esophageal cancer (46,47) and hepa-
titis B and C infection to liver cancer (48) has been derived from case–
control studies, to give just two of numerous examples.

Unlike cohort studies, which measure rates of disease and relative
risks, case–control studies compare probabilities (or odds ratios) of expo-
sure and disease between cases and controls. Case–control studies are often
community based, where both cases and controls are drawn from the
general population. A second type of case–control study is nested within a
retrospective cohort study; this design is often used in occupational studies
when the cost of obtaining detailed exposure information for every cohort
member is high. The nested case–control design is also an integral part of
many prospective studies. For example, in a large prospective study of
pesticide applicators in the United States (known as the Agricultural Health
Study), nested case–control studies will be conducted to examine the asso-
ciation between specific cancers and pesticide exposures (31). In the EPIC
project, a prospective study of nutritional and other risk factors for cancer,
blood samples have been collected from approximately 400,000 men and
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women; plasma, serum, white blood cells, and erythrocytes have been
banked for future analyses on cancer cases and matched healthy controls
(49). The emergence of new technologies for gene sequencing, identifying
genetic polymorphisms, and determining their functional significance
(50,51) will make this and similar studies particularly powerful tools in
the assessment of gene–environment interactions.

Methods for the design and analysis of case–control studies are avail-
able from many sources (6,7,52). Case definition for cancer studies is facili-
tated by highly standardized methods for classification and coding of
neoplasms (53); cases may be selected from hospital records or from geo-
graphically based cancer registries. In some instances, cases may be further
restricted by age or other factors. For example, in designing a study of the
relationship between oral contraceptives, which began being marketed in
the United States in the 1960s, and breast cancer, cases were restricted to
women under 45 years who had opportunity for exposure throughout their
entire reproductive years (54).

Perhaps the most difficult and critical issue in case–control studies is
appropriate control selection. Issues in control selection are best understood
in the conceptual context that every case-control study takes place within
some hypothetical cohort (55). Cases and controls should be ‘‘representative
of the same base experience’’ or members of the same underlying cohort or
source population (55). In order to meet this condition when hospital con-
trols are utilized, care must be taken that the catchment area and referral
patterns for the disease under study and diseases included in the control
group are similar (56). A second important feature in selecting hospitalized
controls is that diseases or conditions thought to be related to the exposure
of interest should be excluded (56). Population controls are an appropriate
choice when there is a high degree of case ascertainment from the base popu-
lation (56). Population controls have been identified by a variety of meth-
ods, including random digit dialing, selection from neighborhood rosters
or Department of Motor Vehicle records, and selection from case-nomi-
nated friends or relatives (56,57). In all of these methods, procedures must
be carefully evaluated to ensure as much as possible that the control group
is representative of the base population (or that a random sample of eligible
subjects is obtained). For example, in the use of random digit dialing to
identify controls, factors such as incomplete phone coverage, residences that
can be reached by more than one telephone number, more than one person
in the house who is eligible to be a control, and nonresponse bias among
selected individuals can lead to possible selection bias (56).

Another important issue in the design of case-control studies is
whether individual matching will be employed in the selection of controls.
Matching is often done to improve efficiency in the estimation of the effect
of exposure by protecting against the situation where the distributions of a
confounder (a factor that is related to both the exposure and the disease
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under study, but not in the causal pathway between the exposure and the
disease of interest) are substantially different in cases and controls (58).
Other reasons to match are to control unmeasured confounders and to
ensure time comparability for exposures that vary over time (58). On the
other hand, there is a danger of overmatching, where reducing the variabil-
ity of potential confounding variables may also reduce variability in expo-
sures of interest (58). The latter are critical to observe differences in
disease rate by exposure level. In studies where individual matching is
employed, analysis methods must be used that take the matching into
account.

The data layout for an unmatched case–control study with a bivariate
risk factor is shown below:

Exposure status Cases Controls

Yes a b
No c d

The odds ratio is the ratio ad=bc and is interpretable as the ratio of incidence
rates for disease among exposed vs. unexposed members of the population
(59). The data layout for a matched study, with one control per case, is
shown below:

Control exposed Control not exposed

Case exposed a b
Control exposed c d

For an analysis that incorporates control only for the matching vari-
ables, the odds ratio is calculated as b=c (59). Multivariate methods for
the analysis of case–control studies are covered in textbooks of epidemiol-
ogy (6,7) and other sources (59). The goals of such analyses are: (1) to deter-
mine whether there is a statistically significant association between the
exposure and the disease of interest after accounting for the possibly con-
founding variables; (2) to determine whether there is evidence for effect
modification (heterogeneity in the association under study across the strata);
and (3) to provide an estimate of the overall odds ratio and confidence limits
(6). Unmatched case–control studies may be analyzed using multiple logistic
regression, in which the partial regression coefficients are estimates of the
natural logarithms of the adjusted odds ratios contrasting exposed (coded
as 1) with unexposed (coded as 0) persons (6). Matched case–control studies
are analyzed using conditional logistical regression (6).

One of the frequently cited concerns about the case–control study
design relates to the reliability and validity of the (necessarily retrospective)
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exposure data (60). Correa et al. (60) reviewed exposure measurement meth-
ods in 223 reports of population-based case–control studies conducted in 34
countries and published in 25 journals during 1992; 143 of these studies had
cancer as the outcome. Most of these studies relied on a questionnaire as the
primary source of exposure data; relatively few employed biological
monitoring or other types of information (60). Recent methodological
refinements increase the potential for case–control data to generate
semiquantitative or even quantitative information on occupational and
environmental exposures. These methods include expert review of detailed
occupational history data to identify potential exposures and estimate the
level, frequency, and mode of exposure (61) and use of computer assisted
interviews with job-specific modules that ask detailed questions relevant
to exposure assessment for that particular job (62).

4. ISSUES IN INTERPRETING EPIDEMIOLOGICAL
STUDY RESULTS

4.1. Statistical Power

Statistical power is the ability of a study to demonstrate an association if
one exists. The power of a study is determined by several factors, including
the frequency of the condition under study, the magnitude of the effect, the
study design, and the sample size (63).

4.2. Bias

Bias has been defined as ‘‘any systematic error in the design, conduct, or
analysis of a study that results in a mistaken estimate of an exposure’s effect
on the risk of disease’’ (63). Some important potential biases in epidemiolo-
gical studies are:

Selection bias: Error due to systematic differences in characteristics
between members of the source or base population who are selected for
study and those who are not (63).

Ascertainment bias: Error due to systematic failure to represent equally
all classes of cases or persons supposed to be represented in a sample. Ascer-
tainment bias may arise from the nature of the sources from which the per-
sons come (63).

Response (or participation) bias: Error due to systematic differences in
characteristics between those who choose to volunteer to take part in a
study and those who do not (63).

Information (or observational) bias: A flaw in measuring exposure or
outcome data that results in differences in the quality (accuracy) of informa-
tion between comparison groups (63).

Recall bias: Systematic error due to differences in accuracy or complete-
ness of recall to memory of past events or experiences (63). For example, a
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mother whose child has leukemia is more likely than the mother of a healthy
child to remember details of past experiences such as the use of x-ray services
when the child was in utero.

Surveillance bias: Systematic error due to differences in monitoring
between the groups under study: for example, better detection of cases of
thrombophlebitis among patients taking oral contraceptives than among
those who are not (64).

Interviewer bias: Systematic error due to interviewers’ subconscious or
conscious gathering of selective data (63), for example, more extensive prob-
ing when interviewing cases compared to controls.

Minimizing the potential for such biases is important in the design of
epidemiological studies. Interviewer bias may be avoided if it is possible to
blind interviewers to case or control status. Other biases, such as recall bias,
may be unavoidable, but measures may be taken to evaluate or control for
them. For example, recall bias may be evaluated by asking questions about
exposures thought not to be plausibly related to the disease under study, and
comparing the responses of cases and controls. Some reported exposures,
such as in utero x-rays, may be subject to validation from record sources,
thus minimizing the impact of recall bias.

4.3. Confounding and Interaction

Confounding refers to a distortion in the apparent effect of the exposure of
interest due to an extraneous factor. Confounding is of particular concern in
epidemiological studies because if it is not recognized, study results may be
interpreted as suggesting a causal relationship between the risk factor and
the disease of interest, when in fact there is none. An example of confound-
ing that is easy to understand is provided in Rothman and Greenland (7). In
this example, an investigator wishes to examine the relationship between
alcohol consumption and oral cancer. Even in the absence of any causal
association, alcohol drinkers will have a higher incidence of oral cancer than
nondrinkers because consumers of alcoholic beverages are more likely to be
smokers, and smoking is associated with oral cancer. In order to understand
whether alcohol consumption itself is associated with oral cancer, one would
have to analyze this relationship separately in smokers and nonsmokers. A
stratified analysis of this sort, with a subsequent calculation of a single rela-
tive risk (a weighted average across strata), is what is meant by ‘‘adjusting
for’’ or ‘‘controlling for’’ smoking. In order to be a confounder, the extra-
neous variable must be associated with both the exposure under study
and the disease.

Factors that are on the causal pathway between exposure and disease
should not be considered confounders. Determining whether a factor is
likely to be on the causal pathway requires integration of clinical, epidemio-
logical, and mechanistic data, and the answer may not be clear-cut (7).
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Controlling for a factor that is on the causal pathway may lead to underes-
timation of the relationship between the exposure and the disease.

Many epidemiological studies, particularly case–control studies, exam-
ine the relationship between multiple risk factors and disease outcome. For
example, in the study of oral cancer discussed above, the investigator might
be interested in the independent effects of alcohol and smoking, and also
their effects in combination. The concept of interaction in the simplest sense
means that the effect of factor A differs depending on the level of factor B.
Such would be the case, for example, if after examining the effects of alcohol
consumption and smoking, one found that among nonsmokers, alcohol
consumption was not associated with oral cancer, but among smokers, it
was highly associated. In practice, the definition of interaction depends on
whether an expected relationship under conditions of no interaction is
defined to be additive or multiplicative. For example, if there is a fivefold
risk of oral cancer associated with smoking and a threefold risk associated
with alcohol consumption, a multiplicative model would predict a 15-fold
risk among those with both exposures, while an additive model would pre-
dict an eightfold risk. While there has been considerable debate in the epi-
demiological literature on the statistical and conceptual meaning of
interaction, a pragmatic approach is to evaluate whether an additive or a
multiplicative model provides the best fit to the data (65).

In occupational cancer studies, concerns about confounding often
relate to a higher prevalence of adverse lifestyle factors, such as smoking,
in the study population than in the referent population, and also to the
presence of potential confounding exposures in the work environment.
Siemiatycki et al. (66) have shown, however, that even for lung cancer, dif-
ferences in smoking habits between an occupational group and the general
population from which referent rates are derived are unlikely to result in a
relative risk or SMR greater than 1.2–1.4. Although there are rarely any
data on smoking status available for all members of an occupational cohort,
smoking data may be available for a subset of the cohort, which are used to
estimate the magnitude of the predicted smoking related effect (67). With
regard to the potential confounding effect of concomitant chemical expo-
sures in the work environment, a preliminary assessment may be made from
the toxicological and epidemiological literature of whether the chemicals
present are likely to be carcinogenic. Depending on the distribution of the
exposures and hypothesized target organs, it may or may not be possible
to control for potential confounding. For example, in a study of bladder
cancer incidence related to occupational exposure to o-toluidine and aniline,
the presence of vinyl chloride at the study plant was considered unlikely to
be a confounding exposure, because the bladder is not a target organ for
vinyl chloride. In addition, potential confounding by vinyl chloride could
be assessed in the analysis because exposure to aromatic amines and vinyl
chloride took place in separate areas of the plant. However, it was not
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possible to separate the effects of o-toluidine and aniline because these expo-
sures occurred in the same area and both chemicals were likely to have the
bladder as a target organ (68).

4.4. Measurement Error and Misclassification

Exposure measurement error is an inherent part of epidemiological studies
because of the way information is obtained. Table 2 summarizes the sources
of information for epidemiological studies and their advantages and limita-
tions. No source of information can be considered absolutely accurate; even
‘‘objective’’ measurements such as levels of a contaminant in the environ-
ment or in biological fluids may be affected by sampling method, biological
variability, or laboratory error (69). The terms ‘‘measurement error’’ and
‘‘misclassification’’ both refer to any discrepancy between the true value
of a variable x and its measured value z, although the term misclassification
is more often used with categorical variables and measurement error with
continuous variables (69). Errors may be systematic or random; systematic
errors refer to errors that are not distributed randomly around the true
value (69). Both systematic and random errors may be ‘‘differential’’ or
‘‘nondifferential’’ with respect to disease status. In nondifferential misclassi-
fication, the probability and=or direction of misclassification differs between
those with disease and those without, as might occur, for example, if an
interviewer who knew the health status of the subjects and the study hypo-
theses probed more intensely when asking about these exposures in case
compared to control interviews. Nondifferential misclassification can intro-
duce serious bias in the study results, but can often be avoided by a good
study design, i.e., blinded assessment of the study variables (69). Prior to
the late 1980s, it was thought that nondifferential exposure measurement
error or misclassification would bias studies toward the null (i.e., in the direc-
tion of finding no effect), but it is now recognized that there are exceptions to
this rule (71).

Where possible, epidemiologic studies try to minimize measurement
error and also to estimate its magnitude. For example, in classifying subjects
with respect to current smoking status, self-reported data may be compared
to the serum cotinine level; for self-reported exposures, data reported at two
different times may be evaluated for consistency; in studies where laboratory
analyses are done, blinded split sample analysis and spiked samples with
known standard compounds may be used to estimate laboratory error.

5. OTHER STUDY DESIGNS

In reviewing the epidemiological literature on cancer, there are a number of
other epidemiological study designs that the reader should be familiar with.
All of the study designs are covered in detail in epidemiology textbooks
(6,7,64).
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Table 2 Commonly Used Assessments for Exposures in Epidemiological Studies

Source of exposure data Advantages=limitations

Measurement of substance in
biological samples

Good methods available for measuring recent
exposures (i.e., cotinine and current
smoking status) or retrospective exposure to
chemical or physical agents with long half-
lives (i.e., organochlorines such as DDT)

Time period of interest in cancer studies is
often 20–30 years prior to onset of disease;
some shorter half-lived exposures can be
detected in stored sera or urine, if available

Accessible samples in living individuals
(blood, urine, buccal cells, etc.) may not
reflect exposure at the target tissue of
interest (i.e., asbestos in lung tissue)

Studying intermediate markers such as
hemoglobin or urothelial cell adducts may
yield information about biologically effective
dose (84)

Interview data Able to gain information about a wide range of
risk factors throughout life, which is
generally not possible with any single
record source

Interview data are dependent on the accuracy
and completeness of participant recall, may
lack detail on specific exposures, such as
chemicals or medications, and may be
influenced by recall bias

Medical records May be an excellent source for confirming self-
reported medically related exposures;
medical records are especially valuable for
identifying cohorts for follow-up of medical
exposures, i.e., children exposed to
diethylstilbestrol during pregnancy

Location and retrieval of medical records may
be difficult in retrospective studies;
investigator may need patient’s permission
to access medical records

Work history records Generally a good source to identify individuals
for cohort studies, provided that they are
complete; may or may not contain detailed
information about jobs held, which is needed

(Continued)
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Ecological studies: There are enormous variations in the incidence of
some cancers worldwide; correlations between site-specific cancer incidence
and dietary and other risk factors may lead to potential clues about cancer
etiology. Studies looking at such correlations on a population level are
termed ecological studies; the unit of observation is a group and not an indi-
vidual.

Cross-sectional (or prevalence) studies: These studies examine risk fac-
tors and the presence of disease or disease markers simultaneously. In the
area of cancer risk assessment, cross-sectional studies may provide valuable
information on exposure, including biological indicators such as levels of
DNA adducts.

Proportionate mortality ratio (PMR) studies: In some instances, it is
not possible to enumerate the entire population at risk for a cohort study,
but it is possible to identify deaths that have occurred, for example, from
a union-based pension plan. Proportionate mortality ratio studies compare
the proportion of deaths by cause in the study and the referent populations,
with appropriate control for age, calendar time, gender and race.

Table 2 Commonly Used Assessments for Exposures in Epidemiological Studies
(Continued )

Source of exposure data Advantages=limitations

to provide a more detailed assessment of
exposure

Industrial hygiene
monitoring data

Only in rare instances, such as film badge
data available for radiation workers, is it
possible to reconstruct exposure data for
individuals based on their own measured
exposures

Exposure reconstruction in cohort studies is
based on industrial hygiene samples to
characterize exposures by work area, rather
than on sampling results for individuals;
sampling data are often incomplete and may
not cover specific jobs or time periods;
assumptions are made to extrapolate data to
these periods; often there are no air
sampling results available for early decades
of operation

Exposure reconstruction for case-control
studies is usually based on information
provided by the study subject combined with

(Continued)
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Case–cohort studies: A variant of the nested case–control study design,
in which cases occurring in a study cohort are compared to a sample of the
whole cohort (which may include some cases).

6. METHODS FOR COMBINING THE RESULTS
OF EPIDEMIOLOGICAL STUDIES

There are two main methods for combining the results of epidemiological
studies: meta-analysis and pooled analysis. These methods are important
for the application of epidemiological study results to risk assessment, as
they may provide an overall summary of effect across all studies.

Meta-analysis: A meta-analysis is a statistical analysis of a collection
of studies with the aim of identifying consistent patterns and sources of dis-
agreement among the results. Meta-analysis generally relies on study results
provided in the published literature (72).

Pooled analysis: In a pooled analysis, the investigator conducts a com-
bined analysis of a collection of studies, after standardization of the studies
to allow exposure variables to be combined. Unlike in meta-analysis, in
pooled analysis the investigator uses the primary data (73). A recent article
compared the results of a meta-analysis and a pooled analysis of studies of
sinonasal cancer among wood workers and proposed criteria for whether a
pooled analysis of raw data or a meta-analysis should be carried out (74).

7. CANCER CLUSTERS

A cluster refers to an unusual aggregation of health events that are grouped
together in time and space. Although clusters may come to light through
surveillance systems, more often they are reported to public health agencies
by concerned citizens or groups. Responses to inquiries about perceived
clusters may consume substantial resources on the part of public health
agencies, yet rarely lead to the identification of etiological agents (75–78).
Those clusters that have led to important etiological findings have often
been clusters of new or rare diseases, and=or clusters of disease in very
highly defined populations. For example, the well-known association
between vinyl chloride and angiosarcoma of the liver was first recognized
through a cluster of cases at a single company (79).

Many observations of apparent clusters since the early part of this cen-
tury have involved leukemia (80), childhood leukemia in particular (81).
There is currently little understanding of the causes of leukemia, which is
the most common childhood cancer. There has been considerable interest
in the possibility that childhood leukemia has an infectious etiology,
although in recent years, residence near nuclear facilities, contaminated
water, and electromagnetic fields have been studied (81). A systematic
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investigation of spatial clustering of 13,351 cases of childhood leukemia in
17 European countries between 1980 and 1989 found evidence of clustering
of total childhood leukemia within small census areas, but the magnitude of
the clustering was small (81). No specific cell type, age group, or etiology
was highlighted.

Although the study of cancer clusters has not had direct applicability
to regulatory risk assessment to date, knowledge and perspective on this
topic are of considerable value to the public health and medical practitioner.
The U.S. Centers for Disease Control and Prevention has provided recom-
mendations for local and state health departments in the management and
investigation of cancer and other disease clusters reported by the public
(82). A scientific publication of the International Agency for Research on
Cancer provides information on choices of statistical methods for investigat-
ing localized clustering of disease (83).
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Epidemiological Approaches to Studying
Cancer II: Molecular Epidemiology

Loı̈c Le Marchand

Cancer Research Center of Hawaii, University of Hawaii, Honolulu,
Hawaii, U.S.A.

1. INTRODUCTION

It is thought thatmost cancers result from the combined effects of environmen-
tal factors and inherited susceptibilities and that only few cancers (5–10%) are
due to purely genetic or endogenous factors (1,2). Thus substantial prevention
opportunities should result from the identification of key environmental risk
factors (i.e., lifestyle factors, environmental pollutants, drugs, radiation, and
infectious agents) and the characterization of genetic susceptibilities involved
in the process. Epidemiology has already played a crucial role in identifying
important causes of cancer in populations, such as smoking in lung cancer,
hepatitis B virus in liver cancer, and UV radiation in skin cancer. However,
the traditional epidemiologic approach, relying mainly on record and ques-
tionnaire information, has had difficulty detecting weak or attenuated associ-
ations. Studies have often been inconsistent when the relative risk associated
with exposure has been smaller than 2.0. For example, despite 20 years of
intense effort, only few specific dietary components have been convincingly
demonstrated to be risk factors for cancer (3).Difficulty inmeasuring exposure
accurately and the inability to distinguish susceptible from resistant indivi-
duals have been major impediments to the study of cancer risk.

The field of epidemiology has dramatically changed in the past
10 years and, as a result, is poised to make new major contributions to our
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understanding of cancer etiology, risk assessment and prevention. Taking
advantage of new advances in laboratory methods, epidemiologists and
laboratory scientists have worked toward refining measurement of study
variables through the use of biomarkers. The widespread incorporation of
biological measurements at the cellular and molecular levels into large-scale
studies has given rise to the termmolecular epidemiology, which characterizes
more an evolutionary step than the birth of a new discipline. In this regard,
an analogy can be drawn with the effects of the computer revolution in the
1980s and the 1990s on the field of epidemiology. Enhanced computational
power has made possible the application of sophisticated statistical tech-
niques (e.g., logistic regression, proportional hazards regression, generalized
estimating equation) aimed at identifying new risk factors from an intricate
web of causal factors, confounders, and effect modifiers. These methods have
allowed the investigation of inter-related exposures (e.g., lifestyle factors) in
the etiology of complex diseases, such as cancer and coronary heart disease.
The sequencing of the human genome and the genomics=proteomics revolu-
tion that is currently unfolding, and other technical advances, such as in ana-
lytical chemistry, are providing epidemiologists with the capability for
an even greater methodological leap based on increasingly sensitive and
accurate measurements of susceptibility, exposure, and disease. With some
of these scientific advances, however, come social and ethical issues that need
to be addressed before the potential benefits can be fully realized.

This chapter provides an overview of the opportunities offered by the
use of biomarkers in cancer epidemiology and risk assessment, as well as
summarizes the main categories of biomarkers and the issues related to their
application. For further exploration of these topics, we refer the reader to
recent textbooks on molecular epidemiology (4–6).

2. APPLICATIONS OF BIOMARKERS

Although biomarkers have limitations of their own (see secs. 4 and 5), their
use offers new opportunities in cancer epidemiology. At the least, the use of
biomarkers can provide independent confirmation of results obtained with
exposure information collected through questionnaire or external monitor-
ing. More importantly, it can also help to identify new associations or refine
risk estimates for exposures that have been difficult to assess or quantify by
conventional means. It also offers the possibility of delineating mechanistic
pathways between exposures and disease, and identifying milestones along
these pathways that could not be tested or recognized before. Thus, molecu-
lar epidemiology has the potential for contributing greatly to our further
understanding of cancer biology, as well as to early detection and risk
assessment. The current paradigm guiding molecular epidemiology and risk
assessment is illustrated in Figure 1.
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2.1. Assessing Health Effects of Small Doses and Past Exposures

Powerful analytical techniques have markedly lowered the detection limits
of many biological measurements, making possible the study of the health
effects associated with low-dose exposures, such as those typically experi-
enced by the general population. Most health regulations for suspected or
established carcinogens have been derived from data obtained in individuals
exposed to moderate or high doses; for example, in occupational settings or
in the aftermath of an environmental disaster. Because, in most cases, the
marked reduction or complete elimination of a known carcinogen from
the environment is socially and economically costly, it is important
to determine with greater certainty the risk associated with low-dose expo-
sures and whether such exposures can be tolerated.

Biomarkers can also be used to integrate past exposure over an
extended period of time; thus, better reflecting usual exposure [e.g., trace
elements in toenails (9)], or to ‘‘reconstruct’’ doses received in the past by
estimating body burden through, for example, sampling adipose tissue for
lipid soluble compounds or detecting protein adducts, somatic mutations,
or chromosome aberrations (7).

2.2. Focusing on Mechanistic Pathways

Recent advances in our biological understanding of cancer has led to the
unraveling of some of the many steps in the sequence of events leading to
clinically detectable tumors. This new information provides opportunities
for epidemiologists to refine etiologic hypotheses, identify the most appro-
priate study design, examine more specific forms of exposure, and consider
new possible effect modifiers. All these improvements lead to a more effec-
tive testing of an hypothesis. Epidemiologists now have the capability of
contributing significantly not only to the identification of cancer causes
but also to the further clarification of the mechanisms involved, potentially
leading to major new opportunities for prevention. Information can poten-
tially be gained not only on the specific nature and extent of the needed
intervention but also on its most appropriate target groups, defined by
inherited or acquired susceptibility and=or preclinical events (7).

2.3. Better Defining Disease Entities

Tumor characterization is increasingly based on the use of molecular mar-
kers. They help to define disease variants that are unrecognizable through
traditional clinical and pathological tools. For example, molecular assays
applied to tumor tissue may reveal an absence of expression, or overexpres-
sion, of a particular protein (e.g., through immunohistochemistry), or the
presence of a localized or genome-wide genetic defect (e.g., chromosome
translocation or microsatellite instability due a DNA mismatch repair
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deficiency). These defects may point to a specific disease pathway or help to
identify a subgroup of patients that may differ in their prognosis or respond
differently to treatment.

Recent progress in the development of DNA microarrays and in bioin-
formatics have also made possible the classification of tumors based on their
genome-wide patterns of gene expression. Through these techniques, the
expression of thousands of genes can be assessed in a semiquantitative fash-
ion and clustering algorithms are used to identify tumor expression profiles.
These expression patterns can then be statistically associated with different
exposures or clinical outcomes (10).

2.4. Assessing Host Susceptibility

The fact that not all similarly exposed individuals (e.g., smokers) get the
same disease (e.g., lung cancer, coronary heart disease), or any disease at
all, is central to assessing risk at the individual level. However, health and
regulatory policies have historically been based on the working assumption
that all individuals in a population have the same biological response to a
specified dose of carcinogens (10). Molecular epidemiology techniques have
allowed for major advances in our ability to define the role of host factors,
particularly genetic factors, in accounting for the interindividual variation in
response.

The discoveries of a number of familial cancer genes (e.g., BRCA1,
BRCA2) have received a great deal of attention from the public in recent
years because an inherited mutation in one of these genes confers a dramatic
increase in cancer risk. However, these highly penetrant mutations are rare
and explain only a small percentage of cancer cases in the population. More
common and, thus, potentially more important to public heath, are a num-
ber of inherited sequence variations (polymorphisms) in genes regulating
key physiological processes (e.g., carcinogen metabolism, growth factors,
cell signaling, cell cycle regulation, angiogenesis, oxidative stress, inflamma-
tion, DNA synthesis and repair) or health-related behaviors (e.g., nicotine
addiction), which may affect cancer risk. Because their effects on cancer risk
are usually small to moderate, these genetic polymorphisms are unlikely to
be useful for predictive genetic testing in individuals. However, these asso-
ciations may provide a basis for defining population groups with an
increased susceptibility to a specific exposure, for example, based on ethnic
origin, which could be the focus of special interventions (11). At the least,
associations of functional genetic variants with disease are helpful in estab-
lishing the relevance of the mechanistic pathway under study.

2.5. Improving Early Detection

In the past 10 years, there has only been limited progress in the application
of biomarkers to the early detection of cancer. Only the prostate-specific
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antigen (PSA) test has been widely adopted in clinical practice to screen for
prostate cancer. Elevated and, especially, rising PSA indicates cell prolifera-
tion in prostatic tissue and, thus, is a marker of disease progression. Simi-
larly, a decrease in the level of this marker can be used as an endpoint for
interventions. Unfortunately, no comparable markers have been identified
for other common cancers.

Molecular genetics may provide new sensitive detection methods in the
coming years. Recent studies have shown that circulating tumor DNA
(‘‘cell-free DNA’’) can be isolated in peripheral blood and used to detect
selected mutations that, individually or as a group, can be highly specific
of the solid tumor from which the DNA originated (12). Tumor DNA with
signature mutations have also been detected in sputum, breast fluid, and
feces. However, it is still unclear how early in the disease process these tests
could be used. Another emerging approach, namely proteomics, allows for
the screening of hundreds or thousands of proteins in peripheral blood to
detect patterns that may be highly specific for certain diseases, including
cancers (13).

2.6. Improving Risk Assessment

More homogeneous disease groupings, improved measurement of study
variables, and accounting for effect modification due to genetic or acquired
susceptibility result in reduced misclassification in epidemiological studies,
allowing for risk estimates that are more precise and that pertain to more
refined subgroups of the population. Since epidemiological data are used
in risk assessment to formulate individual risk functions, molecular epide-
miologic studies can increase the validity and specificity of these functions.

3. CATEGORIES OF BIOMARKERS

Biomarkers used in epidemiological studies have been classified into mar-
kers of internal dose, markers of biologically effective dose, markers of sus-
ceptibility, and markers of early biological effects. These categories of
biomarkers are better suited to some study designs than others, as described
below.

3.1. Markers of Internal Dose

Biomarkers of internal dose typically measure a compound in biological
specimens to assess the subjects’ exposure to biological, nutritional, occupa-
tional, medical, or environmental agents, or to levels of endogenously pro-
duced compounds, such as hormones (7). Examples of markers of internal
dose are given in Table 1. The utility of this type of biomarkers depends
upon the half-life of the agent in the body and the pattern of the exposure
it is measuring (e.g., daily vs. episodic). If the compound measured is rapidly
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eliminated or if the exposure is episodic, multiple measurements may be
required in order to reduce the ratio of within- to between-individual vari-
ance (see Sec. 4) and estimate a ‘‘usual’’ level. Biomarkers of internal dose
are particularly useful in prospective studies because the problem of reverse
causality (i.e., disease status affecting the level of the biomarker) that can
plague case–control studies is minimized or eliminated. However, markers
of internal dose can sometimes be used in case–control studies when it is
unlikely that either the exposure or the markers have been affected by the
disease process or treatment (i.e., when studying a precursor lesion or early
disease stage), or when the marker reflects past (presumably, prediagnostic)
exposure (e.g., DDT metabolites in adipose tissue) and is not affected by
disease status.

3.2. Markers of Biologically Effective Dose

In contrast to markers of internal dose, which measure the internal level of a
compound or its metabolites, markers of biologically effective dose assess
the amount of this compound that interacts with critical subcellular or cel-
lular targets. Thus, these markers have the advantage of integrating the
effects of both exposure and host susceptibility. For example, certain chemi-
cals can bind covalently to proteins in the cell to form an adduct (Table 2).
DNA adduct formation often occurs after metabolic activation of a carcino-
gen and can be followed by DNA repair. Thus, measurement of adducts can
assess both exposure to a specific carcinogen and the individual’s capacity to
activate this carcinogen and repair DNA, as well as other possible host fac-
tors. Since formation of chemical–DNA adducts are thought to be impor-
tant in carcinogenesis, individuals with the highest levels of DNA adducts
are expected to be at greater cancer risk. A frequent limitation of adduct
studies is that samples of target tissues are often not available and that
surrogate tissue needs to be used. DNA adducts have limited applications
in case–control studies due to the relatively short life of most adducts evalu-
ated to date. However, protein adducts (hemoglobin or albumin adducts)
have a longer half-life and, thus, their use may be possible in retrospective
studies of early-stage cancers.

3.3. Markers of Susceptibility/Resistance

Cancer families have been noted for centuries. Linkage studies followed by
positional cloning have allowed the identification of the genes responsible
for a number of familial cancer syndromes, such as retinoblastoma, Wilm’s
tumor, Li–Fraumeni syndrome, Von Hipple–Lindau disease, familial ade-
nomatous polyposis (FAP), hereditary nonpolyposis colorectal cancer
(HNPCC), and familial breast–ovary cancers (44). These mutations are typi-
cally rare in populations but carry a high disease risk (high penetrance).
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They can be used for predictive genetic testing in situations where preventive
interventions are possible.

Potentially more relevant to public health are low-penetrance but com-
mon susceptibility genes, such as those listed in Table 3. Examples include
genetic polymorphisms associated with interindividual differences in the
metabolism of xenobiotics, DNA repair, or metabolism of hormones or
key nutrients. Markers of susceptibility to behavioral exposures include
genetic polymorphisms controlling metabolic processes affecting one’s
adoption of healthy or unhealthy lifestyle habits (e.g., toxic reaction to alco-
hol curtailing ethanol consumption; biological basis for susceptibility to
nicotine or ethanol addiction).

Measuring enzymes or hormones that are thought to be the basis for
the susceptibility, directly by assessing their levels in plasma or tissue, or

Table 3 Examples of Low Penetrance Susceptibilty Genes

Mechanism Gene examples Cancer Reference

Dominant
oncogene

ras, myc Lung 28

Tumor
suppressor
genes

p53, rb Lung, bladder 29

Carcinogen
activation

CYP1A1 Lung 30

CYP1A2 Bladder, colon 31
CYP2E1 Lung, NPC 30, 32, 33
NAT2 Colon 31

Carcinogen
detoxification

GSTM1 Lung, bladder 34

NAT2 Bladder 35
Hormone
metabolism

CYP17 Breast 36

Hormone
receptor

Androgen receptor Prostate 37

Vitamin
metabolism

Vitamin D receptor Prostate 38

MTHFR Colon 39
Alcohol

metabolism
ADH, ALDH Oral 40

Addiction Dopamine receptors Smoking related
cancers

41

DNA repair XP, AT hOGGI Skin, Burkitt
lymphoma, lung

43

Source: Modified from Ref. 44.
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indirectly by using a pharmacological probe (e.g., caffeine for NAT2 or
CYP1A2 activity, chlorzoxazone for CYP2E1), is often possible in order
to characterize the phenotype of interest. Such phenotyping assays are often
difficult to use in case–control studies as the disease or its treatment may
affect these measurements. In contrast, genotyping using genomic DNA
has often been favored in case–control studies since the genotype of an indi-
vidual is determined at birth and remains unaffected by disease or treat-
ment. However, even with genotyping, the prospective design remains
optimal when studying rapidly lethal diseases because of biases resulting
from potential differential survival (e.g., due to differences in response to
therapy by genotypes (45)) that may plague case–control studies. Moreover,
the genes studied may convey an increased or decreased risk only in indivi-
duals who have been exposed (gene–environment interaction); hence, the
importance of carefully assessing exposure. Compared to case–control stu-
dies, prospective studies offer the advantage of generating exposure data
that are devoid of recall bias since this information is collected before the
disease develops.

3.4. Markers of Early Biological Effects

Markers of early biological effects represent processes that are intermediate
on the etiological pathway between exposure and clinically detectable disease.
Examples of such markers are given in Table 4. These markers may help iden-
tify a mechanistic link between exposure and disease. They may also be used
as disease surrogates for intervention studies or as screening tools for primary

Table 4 Examples of Markers of Early Biological Effect

Marker Exposure Biospecimen Reference

Sister chromatid
exchange

Industrial,
radiation

WBC 46

Micronuclei Cigarette smoke WBC 47
Betal quid Buccal cells 48

Chromosomal
aberrations

Industrial,
radiation

WBC 49

Mutations in tumor
suppressor genes
Codon 249ser p53 Dietary AFB1 Liver cells 50
p53 hot spot
mutations at
codons 157, 248
and 273

Benzo[a]pyrene Bronchial
epithelial cells

51

CC to TT mutation
in p53

UV Skin 52
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and secondary prevention. For example, somatic mutations may be identified
in target genes (e.g., p53), providing evidence of irreversible genetic damage.
In some cases, specific mutations in the gene may indicate exposure to specific
agents (DNA fingerprints) or may point to specific mechanisms. They may
also be used clinically as prognostic factors or as endpoints in intervention
studies evaluating genetic responses to various exposures.

Chromosomal aberrations are less specific markers but they are also
thought to be intermediate in the etiological pathway to cancer. They have
been used as markers of exposure or to evaluate individual sensitivity to
mutagens or carcinogens.

4. DEVELOPMENT OF A BIOMARKER

A model for the development and validation of a biomarker is illustrated in
Figure 2. Biomarkers are selected on their biological relevance to the ques-
tion under study and on their practicality and validity. The biological rele-
vance of a biomarker is usually established in animal studies and other
experimental systems. It is based on specific knowledge about metabolism,
product formation, and general mechanism of action. The development of
a biomarker in the laboratory also includes the optimization of the specifi-
city, sensitivity, and reproducibility of the assay used in its measurement, as
well as the determination of the most appropriate biospecimen for the mea-
surement (serum, plasma, red blood cells, spot urine, overnight urine, 24-h
urine, etc.). In addition, optimal conditions are established for collecting,
processing, and storing the samples in which the assay will be performed.

Whether a biomarker appears promising for use in large-scale studies
rests on its validity, reliability, and practicality, which need to be assessed in
preliminary field studies. A biomarker is considered valid if it measures well
what it is supposed to measure. Although the concept is straightforward,
validity is often difficult to establish as it requires a comparison to a gold
standard that is rarely available. In contrast, reliability measures the extent
to which a marker provides consistent results across repeated measurements.
Although high validity implies high precision and reliability, high reliability
can be obtained with a highly biased measure. Validity and reliability are,
thus, two different attributes that are important in assessing the potential
value of a biomarker (54). Considerations about the feasibility of using a
biomarker in the field include the amount and type of biological specimen
needed, the time required for the assay, and its cost.

When the potential value of a biomarker has been established, infor-
mation on the extent and sources of its variability needs to be collected in
order to adequately design studies that will use the biomarker. An estimate
of the variation in the biomarker measurement in the population under
study is required in order to carry out power estimations. Information on
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Figure 2 Model for the development of a biomarker. Source: Modified fromRef. 59.
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sources of variability is needed in order to identify potential confounders
and effect modifiers that will need to be assessed as covariates.

The variation in a biomarker measurement is made up of two compo-
nents, the intra- and interindividual variations. The intraindividual variabil-
ity represents the extent to which the biomarker changes when measured
several times on the same individual. Intraindividual variability is itself com-
posed of laboratory variation (due to technical variation in the laboratory),
sampling variation (variation resulting from a change in the way the sample
was collected, processed, or stored), and intrasubject variation (true varia-
tion in the marker over a certain period of time). The components of labora-
tory variability are described in Table 5, along with the types of quality
control samples required to assess them. Sources of sampling variability
due to differences in biospecimen collection, processing, and storage are
listed in Table 6. The true interindividual variability is the extent to which
the level of the marker differs among individuals (due to exposure, host
characteristics, etc.). The intraindividual variability can be considered as

Table 5 Determinants of Variability in Laboratory Results

Relative degree
of variability Comparison Assessment

Minimal Same analytical run Duplicate samples
Different analytical runs Duplicate samples of known

concentration
Different laboratories Exchange of samples

Maximal Different methods Split samples

Source: Modified from Ref. 54.

Table 6 Sources of Variability in Sample Collection, Processing, and Storage

Collection Processing Storage

Donor (e.g., fasting vs.
nonfasting; sitting
vs. supine)

Time of venipuncture
Type of collection
tube=additives

Duration of collection
(e.g., spot vs. 12 hr
urine)

Hemolysis

Time since collection
Refrigeration
Exposure to light

(carotenoids)
Speed of centrifugation
Contamination

Temperature
(�20�C, �70�C,
�150�C, �196�C)

Thawing history
Evaporation
Duration
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noise and the interindividual variability as the signal of interest. Biomarkers
that have a high interindividual variability compared to its intraindividual
variability (i.e., a high signal-to-noise ratio) are particularly useful and will
require a smaller sample size to test an hypothesis.

When the inter- vs. intraindividual variability of a biomarker has been
described, additional investigations need to be conducted to characterize the
main sources for this variability. These studies will help to identify potential
confounders or effect modifiers that should be considered in hypothesis-test-
ing studies using the biomarker. These preliminary studies typically use a
cross-sectional design to assess the level of the marker by subject character-
istics, such as age, sex, ethnic group, and other known risk factors for the
disease of interest (e.g., dietary factors, smoking, and genotypes). They
may also be small intervention studies assessing the effects of important
modifiable variables (e.g., diet, smoking) on the level of a marker.

5. METHODOLOGICAL ISSUES

Although the use of biomarkers may increase the amount of useful informa-
tion gained from epidemiological studies, the validity of the results, as in tra-
ditional epidemiology, rests on the adherence of these studies to time-tested
epidemiologic principles. Of primary importance are the concepts of selec-
tion bias, random and systematic errors, confounding, and effect-modifica-
tion. As primarily an observational science, molecular epidemiology is
subject to the same biases and limitations as traditional epidemiology and
should be practiced and evaluated with the same rigor.

It has been construed that molecular epidemiologic studies, because
they deal with biological measurements, are less affected by selection bias
or confounding. This view is untenable and should be rejected. In biology,
cause and effect relationships rarely occur in isolation. They are often
impacted upon by multiple host or extraneous factors that, themselves,
may correlate with subject selection factors (resulting in selection bias) or
other risk factors (resulting in confounding).

Although the justification for using biomarkers in an epidemiological
study is that they will yield better measurements of study variables than con-
ventional methods, minimizing measurement error and avoiding systematic
error is even more a priority in molecular epidemiology than in traditional
epidemiology. This is because inferences in traditional epidemiology are typi-
cally made based on relative differences using categorical exposures (e.g.,
quartiles), whereas the interpretation of biomarker data emphasizes more
absolute levels and individual results. Strict quality standards are required
in the laboratory and in the field to maximize the accuracy of the results
and minimize measurement error due to laboratory and sampling variability.
Particularly problematic is the systematic error that may occur if samples of
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cases and controls (or ‘‘exposed’’ and ‘‘nonexposed’’ subjects in prospective
studies) are collected, processed, stored, or analyzed under different condi-
tions. As a rule, samples for cases and controls (or ‘‘exposed’’ and ‘‘nonex-
posed’’ subjects) should be matched on collection conditions and storage
duration, and the matched samples analyzed together in the same batch.
Also, laboratory personnel analyzing the samples should remain blind to
the case–control status of the samples. Duplicate samples should be used
to monitor both intra- and inter-run laboratory variability throughout the
study and those data should be published with the study findings.

Also of particular relevance to molecular epidemiological studies is the
need for adequate statistical power in order to accept or reject the null
hypothesis with confidence. Because molecular epidemiological studies are
often expensive and logistically complex to carry out, many studies have been
small and, as the result, inconclusive. Since studies with positive findings, even
if they are inadequately small, are more likely to be published than negative
studies, the influence on the field of these small studies tends to be excessive.
Furthermore, when studying complex diseases, such as cancer, using a mole-
cular epidemiology approach to home in on a specific step of a particular bio-
logical pathway, effect size is expected to be smaller than when studying a
complex exposure that acts throughmultiple pathways (e.g., smoking, specific
dietary components or patterns, hormones). Thus, it is an imperative for null
studies to report their statistical power to detect weak effects. Finally, sample
size requirements are especially taxing when interactions are tested, as very
large sample sizes (sometimes in the thousands) are typically needed (55).

Because molecular epidemiological studies often attempt to identify
individual susceptibility factors, the relationships observed are often found
to be limited to, or stronger for, subgroups of the study population (56).
Sometimes even opposite effects are expected for different study subgroups
(57). Exploration of these interactions must be part of an a priori, biology-
based hypothesis since the testing of an association in multiple subgroups
increases the likelihood of a chance finding. A related problem is the testing
of multiple hypotheses in the same study, a common practice to increase
cost-efficiency. This practice also increases the probability that a chance
association emerges as statistically significant. Thus, the knowledge of the
number of hypotheses tested in a study is useful in interpreting the results.
Similarly, findings that were not part of the initial study hypotheses should
clearly be identified as such, as they need to be reproduced in other studies
before being given much credence.

6. ETHICAL ISSUES

The use of biomarkers may present ethical issues that do not manifest them-
selves as acutely in traditional epidemiological studies. Biomarker studies
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may generate particularly sensitive information on exposure, early biologi-
cal effects, or susceptibility to cancer about individual research participants.
This information may be misused, for example, as the basis for denying
insurance coverage or employment. In order to protect the participants from
any kind of stigmatization or discrimination, as well as to assure their pri-
vacy in general, strict confidentiality measures are required. Access to physi-
cal and electronic files must be severely restricted. This includes the use of
encryption, fire walls, and passwords to protect electronic datafiles. In addi-
tion, in the United States, when the information to be collected is particularly
sensitive, investigators may apply, at the start of the study, for a ‘‘Certificate
of Confidentiality,’’ which would prevent the researcher from having to
release data to a third party, even if required as part of a legal proceeding
(58). There remains differences in opinion as to whether research participants
should be told of test results obtained in a research setting. This is particu-
larly relevant to those biomarkers that have a high predictive value. In addi-
tion to the risks involved in participating in the study, the type of tests
conducted and the significance and limitations of the test results should be
explained to the subjects as part of the study informed consent process.
The decision to report results to the subjects should be limited to preventable
conditions and should be based on the degree of clinical usefulness and the
reliability of the information provided by the biomarker. Positive results
may require repeat testing, counseling, and diagnostic evaluation.

7. CONCLUSION

Historically, epidemiologists have investigated the distributions of diseases
by person, time, and place in order to make inferences about their causes.
Over the years, methodological tools have been introduced in order to bet-
ter characterize each of these three key elements. For example, laboratory
assays have been used to monitor the ambient environment (air, food, soil,
water, etc.) or to detect present or past exposure to an infectious agent.
The recent interest in the development of exquisitely sensitive and specific
biomarkers offers much promise for the continued contributions of epide-
miology to our knowledge of cancer etiology, risk assessment, and preven-
tion. The purpose of this chapter was to summarize the applications of
biomarkers, as well as the methodological aspects of their use. It should
be stressed that, although the current technology permits the detection of
changes at the cellular and molecular levels, and of very low doses of expo-
sure, at these levels inherited and acquired host factors can be strong
sources of variability and confounding. Thus, more than ever, the sound-
ness of the epidemiological approach remains critical to the quality of
the data.
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1. INTRODUCTION

There are over 100,000 human genes located on 46 chromosomes. Genes are
composed of deoxyribonucleic acid (DNA) in two strands joined by nucleo-
tide base pairing. The DNA sequence provides a written language of three
base codons that are transcribed to mRNA, which then are translated to pro-
teins. These expressed proteins then govern cellular function. The codons
code for specific amino acids. Not all of a gene, however, and not all of a
chromosome, codes for amino acids. The nucleotides are organized together
into either exons, which are transcribed, and introns, which are not. There
also are promoter regions within introns that decide when and how much
a gene is transcribed. Among people, most of the genetical sequence is the
same, but there are important differences too, which affect such things as hair
color, height, and facial characteristics. This diversity is controlled through
variations in DNA sequence. Any variation that occurs in more than 1%
of the population is considered a polymorphism (a single-base polymorphism
also is known as an SNP). It is estimated that genetical polymorphisms occur
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approximately every 500 bases. But other polymorphisms include more than
one base insertion or deletion (and there can be variable numbers in different
people—variable nucleotide tandem repeats). In some cases, whole exons or
large parts of genes can be inserted or deleted.

Familial cancers involving highly penetrant mutations of single genes
account for less than 5–10% of human cancers (1,2). The identification of
these cancers is not difficult with an adequate level of curiosity and know-
ledge. But to do this, it is essential that clinicians make a thorough record
of clinical information, including the onset of symptoms, other sites of
malignancy, family history, the ages of both affected and unaffected family
members, lifestyle information, occupations, ethnicity, and consanguity.
This information is confirmed or supplemented with mutational analysis.
But, molecular techniques for detecting inherited mutations cannot compen-
sate for a lack of clinical data.

Human tumors occur through an accumulation of multiple mutations
and genetical changes (3–5). They affect gene function and the coding of pro-
teins, which allows cancer to develop. The study ofmutations provides insights
into tumorigenesis and forecasting of clinical behavior. The significance of
mutations also provide etiological clues for associations with individual and
population cancer risks. Genetical changes that are acquired and seen in
tumors include point mutations, base deletions, base insertions, loss of hetero-
zygosity (LOH) (gene deletion), chromosomal loss, amplifications, microsatel-
lite instability, rearrangements, translocation, and chromosomal instability.

Mutations affect genetical function as they alter the genetical code in
an exon, splice-site region or promoter region. Thus, mutations can be non-
sense (change into stop codon), frame-shift (three bases plus one or two
bases insertion or deletion change a reading frame or possibly generate a
premature stop codon), or missense (amino acid substitution) mutations.
Mutations also can be silent (no amino acid change). Nonsense and
frame-shift mutations have potentially drastic effects on the gene product
by causing a truncated protein. Amino acid substitutions may or may not
be associated with a change in protein function, polarity, or pKa.

In this chapter, possible interpretations of the mutations in tumors and
how they are identified are addressed from the standpoint of individual can-
cer risk. The assessment of mutations in cancer must always be done from
the viewpoint of its primary role in initial tumorigenesis.

2. MUTATED GENES IN HUMAN CANCERS

Mutations in the early stages of cancer and precancerous lesions are among
the most informative for providing information about the carcinogenic pro-
cess. These mutations can be directly involved in augmenting carcinogenesis.
However, some mutations occur without consequence and result from an
abnormal cellular process (6). These mutations are also called ‘‘passenger’’
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mutations, the sequels of the genetical instability during the tumorigenesis,
and are probably not the cause of the tumor development, although, it is
still possible that these ‘‘passenger’’ mutations may confer some peculiar
characteristics to the biological behavior of the tumors. When studying can-
cer risk and the resulting mutations, lesions in genes affecting early stages
probably represent early exposures.

We can categorize cancer genes as oncogenes (including signal trans-
duction molecules, receptor and nonreceptor kinases and phosphatases)
and suppressor genes (nuclear transcription factors, cell cycle dependent
genes, and cell adhesion molecules). The former are genes that augment cell
proliferation and tumorigenesis by increasing gene expression. The latter
augments cell proliferation and tumorigenesis when function is lost due to
a mutation. Oncogenes and tumor suppressor genes are mutated in essen-
tially every human tumor. Interestingly, only a few genes play a role in can-
cers from multiple organs, but most appear to be specific to some tumors.

Cancer-related genes also can be categorized into gatekeeper, caretaker,
and landscaper genes (7). Caretaker genes are responsible for maintaining cell
integrity (i.e., DNA repair). Mutations in gatekeeper genes are nearly always
found in early precursor lesions and their (in) activation is essential for initia-
tion of specific neoplasms. These genes include BRCa1, p53, and others. Inac-
tivation of gatekeeper genes may be necessary for passing the genetical
‘‘threshhold’’ of the neoplastic process. Gatekeepers control cell proliferation
in each tissue and include APC (8–10), beta-catenin (11–14); NF1 (15),
patched (16), and others. Generally speaking, once inactivation occurs (for
example, in the case of ret) in a gatekeeper gene, clonal expansion is more
likely to occur followed by the accumulation of multiple genetical events.

An individual’s risk for cancer is a function of their genetical predispo-
sition (preinherited mutations found in the germline) and environmental
exposures. This is then added to by acquired mutations that occur as a result
of those gene–environment interactions, such as a mutation in a caretaker
gene. We believe that mutations are nonrandom profiles of what caused a
particular cancer. Nonrandomness of the mutations of certain genes (p53,
ATM, Brca1, APC, and others) help us understand what causes cancer,
especially when studied in animal and in vitro cell culture models. This
so-called ‘‘carcinogen fingerprint,’’ as methodologies are further developed,
is considered among the best ways of determining carcinogenic etiologies.

3. GENETICAL ASSAYS

In this chapter, the practical aspects of mutation assessment are reviewed.
Physicians, surgeons, diagnostic pathologists, laboratory technologists,
nurses, epidemiologists, and other health workers need to be prepared for
research studies and clinical decision making (17,18). Health professionals
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working in developing countries also are encouraged to participate in this field
(19). Every cancer patient, whether suspected as representing a familial cancer
syndrome or not, should be considered unique and their tissues irreplaceable.
Biopsy and other surgical specimens must be properly handled, and different
simultaneous pathological processing procedures should be used to allow for
different types of assays. More and more, tissues collected in community hos-
pitals, otherwise not involved in research, are serving as a valuable resource in
large studies. So, staff members must prevent autolysis. It is helpful to use dif-
ferent fixations because these provide different DNA yields. As described
later, a success rate for DNA recovery from the paraffin blocks depends on
appropriate fixation. For example, long immersion of resected tissues in for-
malin fixatives damages tissues for further molecular investigations. Frozen
tissue is essential for many genetical assays, but is not sufficient for RNA ana-
lysis or cell culture without special processing. Quick fixation is required for
electron microscopy, but not for DNA extraction.

Good pathological examination using standard techniques is required
to ensure success at subsequent analysis. The histological type of cancer
should be confirmed when planning to assay DNA, then microdisection is
needed so tumor cells are separated from other cells. This is best done from
fixed tissues.

Every step in the process of tumor collection, fixation, and storage
affects the ability to perform subsequent genetical assays because they can
affect DNA quality and quantity. The most commonly used fixative is for-
maldehyde (so-called 1=10, which is 3.6%). Many laboratories recommend
neutral buffered formalin. Some institutes use AMEX fixation, which has
been asserted to be one of the best ways to keep the tissues as a possible
good source of DNA, RNA, and protein (20,21). This procedure takes some
extra steps in the routine histopathological laboratory and at least one per-
son knowledgable in that procedure is needed. The time between resection
and fixation should be short and the fixation time should be short. An alter-
nate fixative is ethanol, which is better for subsequent DNA studies. And
more laboratories are using OCT with rapid freezing with success.

Other variables that affect DNA quality and quantity occur during
DNA extraction, such as insufficient time for dewaxing with xylene, deter-
gent (SDS or tween-20) or insufficient time for proteinase K digestion.
Greater quantities of the paraffin embedded tissue are not necessarily better
for DNA assays, because this allows for greater amounts of inhibitors from
the blocks. Several agents are available for extracting DNA from fixed
tissues that are thought to reduce these inhibitors, e.g., Chelex-100 (22).

Table 1 lists the biomarker assays used for risk assessment and diag-
nosis. Basic and additional protocols are available elsewhere (23–26).

There are many types of genetical assays in use today. Some of these
will be described below. The majority of molecular genetical tests used
today begin with the polymerase chain reaction (PCR). There are emerging
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Table 1 Biomarkers of Cancer Risk and Diagnosis

Biomarkers for disease risk
Markers of inherited susceptibility

Genetical variation causing impaired metabolic activation or excretion of
toxins

Genetical variation causing defects in the repair of DNA, cell cycle control, or
programmed cell death

Markers of acquired susceptibility
Formation of DNA adducts
Integration of viral DNA
Mutations in critical genes
Mutations in noncritical genes
Hypermethylation of gene promoter region
Altered gene expression
Clastogenic abnormalities
Antibodies to DNA adducts
Altered protein or mRNA expression patterns

Biomarkers for preclinical disease
Markers of cellular alteration

Altered morphology of cells
Altered phenotypic expression of cells
Clonal proliferation of cells
Altered gene expression
Antibodies to gene products
Altered protein or mRNA expression patterns

Biomarkers for clinical disease
Markers of cellular alteration

Altered morphology of cells
Altered phenotypic expression of cells
Immunohistochemical staining
Clonal proliferation of cells
Altered gene expression
Antibodies to gene products
Altered protein or mRNA expression patterns

Markers of prognosis
Pathological diagnosis
Immunohistochemical staining
Altered gene expression
Cytogenetic abnormalities
Altered protein or mRNA expression patterns
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technologies that will eliminate this need, but none have been sufficiently
validated for use in the clinical setting. Polymerase chain reaction, in fact,
is among the most important recent advances in molecular genetics. The reac-
tion is the amplification of small amounts of DNA to make lots of DNA,
which are then available for subsequent analyses. Polymerase chain reaction
is facile and inexpensive. It has been used in forensic medicine for DNA fin-
gerprinting from a single hair follicle or blood stain (27); mutation detection
in single sperm cells to assess teratogenicity rates (28); and amplification of
DNA from paraffin embedded tissue blocks (29), serum (30) or ancient
DNA (31). It also forms the basis for microarray technology (32,33). Poly-
merase chain reaction relies upon a temperature stable enzyme (Taq polymer-
ase) that can replicate DNA when using gene- and site-specific primers that
begin the reaction. While PCR is generally used for DNA amplification, it
also can be used for RNA amplification using a different enzyme (reverse
transcriptase) (34). The major limitations of PCR lie in its sensitivity that
allows for contamination by unwanted DNA from other sources. It also is cri-
tical to choose primers carefully to ensure specificity and prevent amplifying
the wrong gene.

There are many applications for PCR. It is being used directly without
other techniques for diagnosing viral infections (e.g., HIV in lymphocytes
(35), hepatitis B virus in liver and serum (36), and papilloma virus in uterine
cervix (37)). It can be used to amplify mutated and structurally altered regions
of a given gene (e.g., translocation of chromosomes by determining the break-
point cluster region for the bcr-abl oncogene for the diagnosis of chronic
myelogenous leukemia (38). Other applications involve the identification of
single-base mutations or genetical polymorphisms by designing primers that
anneal only if matched to the unique sequence (e.g., oligo-specific PCR for
the identification of polymorphisms in theN-acetyl transferase gene predictive
of cancer risk in workers exposed to aromatic amines (39). Polymerase chain
reaction also is combined with other techniques whereby PCR amplification
products can be subjected to restriction enzyme digestion to identify genetical
polymorphisms or mutations [e.g., restriction fragment length polymorphism
(RFLP) analysis for cytochrome P450 genetical polymorphisms (40)] or used
for hybridization with mutation-specific probes (e.g., oligonucleotide hybridi-
zation for the detection ofRasmutations (41). Another important application
is the use of PCR to amplify sufficient quantities ofDNAfragments for nucleo-
tide sequencing.Thismethod allows for thedeterminationof specific sequences
from unknown genes or for the detection of mutations (42).

3.1. Genotyping

Genotyping to determine genetical variation (e.g., color of hair, metabolic
activity, DNA repair) can be done by using different types of detection
methods following PCR. This genetical variation can happen via SNPs, or
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multiple-base pair insertions or deletions. A common way is to utilize RFLP
analysis. Restriction fragment length polymorphism enzymes identify short,
specific DNA sequences, cutting the DNA at those sequences into uniquely
sized fragments that can be separated electrophoretically. Restriction
enzymes recognize palindromic sites where the sequence on each strand is
identical with each other (when read in 50 to 30 direction). Restriction frag-
ment length polymorphism enzymes are only useful when a palindromic site
exists. In other cases, the variant may be determined using single-strand con-
formational polymorphism (SSCP) analysis. If the variant results in the
insertion or deletion of a base or bases, then electrophoretic methods that
separate fragments based on size can be used. The fortunate property of
DNA, where each strand is complementary and annealed by nucleic acid
base-pairing (guanine to cytosine and adenine to thymine), can be taken
advantage of to identify specific genetical sequences. Under experimental
conditions the two complementary DNA strands can be separated and rean-
nealed. Single-stranded probes of short DNA fragments can be used to iden-
tify a specific genetical sequence by exposing DNA to the probe. Using
oligo-specific hybridization, a radioactive or fluorescently labeled probe
marker will bind to the matched DNA. Two probes are used in tandem that
are matched to one variant or the other. This unique property allows for
Southern blot analysis of DNA (43), which subjects DNA to restriction
enzyme digestion, separation of the resulting fragments by electrophoresis,
and then probing the fragments for the genetical sequence and measuring
the lengths of the fragments. The method also is used for northern blot
analysis of messenger RNA (mRNA) (44), which is almost identical with
Southern blot analysis except that RNA is used instead of DNA.

Several new methodologies exist for high through-put genotyping.
These include microarrays that can determine 2000 SNPs following 24 dif-
ferent PCR assays, real-time PCR that allows for detection of SNPs without
gel electrophoresis, matrix-assisted laser desorbtion=ionization time of flight
(Maldi-TOF) mass spectroscopy (45), denatured high-performance liquid
chromatography (46), capillary gel electrophoresis, and flourescence detec-
tion (47) and pyrosequencing (48).

3.2. Sequencing

DNA sequencing can be used to determine the actual genetical code. This
may be used for identifying an inherited code (i.e., sequence of entire gene
or SNPs) or mutations in tumors. The dideoxy-mediated chain termination
method was among the first established and allows for the determination of
the nucleic acid sequence of a gene (49). For example, a PCR fragment is
amplified and four dideoxy reactions are carried out for each of the four
nucleotides. The amplified product, radiolabeled nucleotides, 2,30- dideoxy-
nucleotides, and a polymerase are mixed so that the 2,30-dideoxynucleotide
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is randomly incorporated into the DNA. Based on the location of the
dideoxynucleotide incorporation, the DNA sequence can be determined
after electrophoretic separation. More recent high-throughput methods rely
on microarray technology following PCR (32) or capillary electrophoresis.

Because sequencing can be labor intensive, some investigators use
methods to screen for mutations. The SSCP analysis was originally devel-
oped by Orita et al. (50) as such a screening method. Here, DNA is dena-
tured into single strands and analyzed by gel electrophoresis. If there are
base changes, then the migratory distance on the gel changes. The basis
for this technique is still empirical, thus the sensitivity of the detection of
mutation depends on which product you like to screen (51). The electro-
phoresis conditions including the glycerol content and gel temperature
determine the specifity and sensitivity of the procedures, but there is no gen-
eral principle about which condition is the best. For some fragments, only
12.5% glycerol can identify the migrationdifferences while at other times
electrophoresis at 4�C is needed.

3.3. Gene Loss and Loss of Heterozygosity

Assessing for loss at heterozygosity (LOH) is a major way for determining
gene deletions. Using PCR and SNP analysis, we examine tumors in people
who are heterozygous for the loci (germline polymorphisms where each
allele is different) and determine if both or only one allele is present in the
tumor. This only works in persons who have inherited different sequences
on the allele from each parent, but then in the tumor only one of those
alleles is seen. Southern blotting is the classical technique for LOH, named
after the inventor. In this procedure, extracted DNA is enzymatically
digested with restriction enzymes and the digested products are transferred
to a membrane. The membrane with the products is then hybridized to a
‘‘probe.’’ The probe is a labeled marker matching the gene of interest.
The procedure usually takes 3 days or more including electrophoresis, trans-
ferring, hybridization, washing, and exposure to the film. The required
DNA amounts are greater than in other procedures described in the follow-
ing sections. This method requires that the DNA is of good quality. Pre-
viously a few years ago, Southern blotting has essentially been replaced
by PCR amplification of several genes assessment for loss of heterozygosity,
using the SNP analysis. This allows for greater odds for informative cases,
especially if the loci is a minisatellite (tandem repeats of 20–30 DNA bases).

Several methods are available to analyze the gross structure of chromo-
somes in metaphase and prophase of mitosis. Chromosome aberrations can
be observed by identifying each of the 23 chromosomal pairs for completeness
and number (52). Common uses of such analyses include the detection of tri-
somy 21, which is diagnostic for Down’s syndrome, and the detection of a
translocation between chromosomes 9 and 21, which is diagnostic for chronic
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myelogenous leukemia and the Philadelphia chromosome. The availability of
specific chromosomal markers nowmakes this methodmore specific. Another
gross chromosomal change detectable in human cells includes the sister chro-
matid exchange (53). In this case, sister chromatids of one chromosome are
switched, which can be counted using nonspecific markers and correlated with
exposures to tobacco and certain chemicals. A method of detecting DNA
damage that does not require cell culture and examination of chromosomes
during mitosis is the detection of micronuclei (54). Small chromosomal frag-
ments are sometimes found to exist outside the nucleus.

3.4. Microsatellite Instability

The assessment of microsatellite instability is a marker for altered DNA
repair. Analysis of tumors indicates that there are increased numbers of
repeat DNA sequences that are not present in the patient’s nontumor tis-
sues. Thus, there were errors during DNA replication. Mono-, di-, tri-,
quadra-, and pentanucleotide repeats are ubiquitous in human genomes,
probably due to replication errors through evolution, but then in tumors,
these loci are possible sites for more slippage during replication. Microsatel-
lite instability is one of the common genetical alterations in human tumors
where the repeats might be more or less. They are caused by somatic
changes, and also occur in people with genetical mismatch repair deficiencies
in hereditary nonpolyposis colorectal cancer. The germline mutations of
MLH1 and MSH2 (PMS1, PMS2, MSH6) have been most commonly docu-
mented in some, not all, families with high rates of colon cancer (55,56) .
Target molecules can be surrogate markers for microsatellite instability
(replication error type). These include TGF beta II receptor, MSH3,
MSH6, IGF II receptor, and Bax gene (57). The alterations in repetitive
sequences in the coding exon of these genes can be predictive of progress.

3.5. Immunohistochemistry

Overexpression of genes relating to DNA damage can be detected with
immunohistochemistry. Using tumor tissues fixed on slides, antibodies
raised against specific proteins can be labeled and used to bind to the protein
on the slide. The more the binding, the more the overexpression. This
method, though, can have pitfalls like false positives (the antibody is not
specific for the protein of interest) and negatives (the antibody is not good
enough to stay bound to the protein during binding). In addition to the
quality of the antibody, these can occur because of poor slide preparation,
denatured antibodies, or high background.

3.6. Carcinogen–DNA Adducts

There are many types of DNA damage that can be detected using molecular
genetical methods, such as carcinogen–DNA adduct detection. Chemicals or
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their reactive metabolites can bind to DNA, resulting in promutagenic
lesions. The combination of the chemical and the nucleotide is an adduct.
The measurement of DNA adducts allows for the distinction between the
measurement of chemicals in the environment and exposures inside the body
and in target organs, because the former is not always indicative of the lat-
ter. DNA adducts reflect the biologically effective dose of an exposure,
resulting from the competition of exposure, absorption, activation, detoxifi-
cation, and DNA repair. Thus, the measurement of DNA adducts reflects
both exposure and inherited susceptibilities. Elevated levels of DNA adducts
have been correlated with cigarette use (58), occupational exposures to poly-
cyclic aromatic hydrocarbons (59), and air pollution (60).

Several methods are currently available for the measurement of DNA
adducts, although all remain research tools. These include the 32P-postlabel-
ing assay that uses hydrolytic enzymes to reduce DNA to individual nucleo-
tides and then uses another enzyme to radiolabel the nucleotides (61). Any
adducts that are present are then resolved chromatographically and quanti-
tated by measuring the radioactivity incorporated into the nucleotide. This
assay can be used as a screening method to detect unknown adducts (61) or
can be combined with purification techniques to identify specific compounds
such as adducts formed from polycyclic aromatic hydrocarbons (62) and N-
nitrosamines (63). Several important immunological methods are available
for the detection of DNA adducts. Using procedures such as enzyme-linked
immunoadsorbant assays (ELISA) or radioimmunoassays, adducts for poly-
cyclic aromatic hydrocarbons can be measured (64–66). More recent methods
utilize improved mass spectroscopy methods (67) and flourescence detection.

4. CONCLUSIONS

Advances in technology will improve accuracy, cost, and speed of genetical
testing. Further studies will elucidate the mechanistic relationships of gene-
tics to disease, while epidemiology will assist in the identification of relevant
assays for human risk. Ultimately, the institution of any clinical test depends
on its reliability, sensitivity, specificity, predictive value, and cost. Quality
control and quality insurance are critical parts of genetical testing (68).
The evaluation of research findings requires an understanding and evalua-
tion of the research tools that produce the findings. New assays should be
evaluated against proven assays, and methods should be shown to measure
what they purport to measure. The technological advances happening today
are coming more rapidly then ever before.
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1. INTRODUCTION

Cancer is an abnormal genetic phenomenon, involving multiple steps of
somatic mutation (1,2). Genetic damage can occur at the level of the gene
(e.g., point mutations and deletions) or the chromosome (e.g., aneuploidy,
translocations). During the last two decades, a wide spectrum of biomarkers
of genetic damage have been developed to detect early mutational and chro-
mosomal effects of carcinogenic exposure in humans (3). Historically, bio-
markers have tended to measure mutations in surrogate genes, including
hypoxanthine phosphoribosyltransferase (HPRT) and glycophorin A
(GPA) (4), or use cytogenetics to assess overall changes in chromosome
structure and number, such as classical and banded chromosomal aberra-
tions (CAS), sister chromatid exchanges (SCEs), and micronucleus forma-
tion (MN) (5–7). These biomarkers have been shown to be associated
with a wide range of carcinogenic exposures, but they are not truly biomar-
kers of early effect as they are not on the causal pathway of disease.

Identification of early causal genetic events in cancer has been the key to
the recent development of novel biomarkers of early effect in high-risk popula-
tions. These novel biomarkers measure changes frequently observed among
cancer patients, including point mutations in genes such as p53 and RAS,
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altered gene methylation, aneuploidy (chromosome loss or gain) including
monosomy 7 and trisomy 8, and specific chromosome rearrangements such
as translocations. Application of these biomarkers to study individuals who
may be at risk, but who do not yet have cancer, will result in improved early
detection, as well as better understanding of carcinogenesis itself.

The development of valid biomarkers of early effect in individuals
without cancer depends on the ability to detect infrequent mutational events
at critical loci in a large background of normal DNA. Therefore, detection
of these novel biomarkers employs cutting edge technologies, such as real-
time quantitative polymerase chain reaction (PCR), fluorescence in situ
hybridization (FISH) analysis, and genotypic selection methods which intro-
duce new levels of sensitivity and specificity. Such biomarkers will be useful
in epidemiological studies of environmentally induced cancers which have
long latency periods as well as provide early detection for those individuals
at risk. This chapter outlines a number of these new methods and examines
their potential application in detecting novel biomarkers of early effect.

2. ROLE OF DIFFERENT TYPES OF GENETIC DAMAGE
IN CANCER

Carcinogenesis is a complex, multistage process which involves the accumu-
lation of a variety of mutations within a particular cell and its progeny (1).
Although carcinogenesis depends on a number of factors including exposure,
genetics, and target tissue, certain general characteristics of cancers are
known. The role of particular genes in cancer has opened a new avenue of
research over the past two decades. Oncogenes and tumor suppressor genes
have taken center stage with their respective roles in cancer. Alterations in
these genes ranging from small insertions, deletions, point mutations, and
aberrant methylation, to gross chromosomal aberrations, like translocations,
and gene amplification either enhance or inactivate the normal function of
the gene and lead to abnormal proliferation, lack of cell cycle control, geno-
mical instability, and eventually cancer. Mutations in these genes provide
telltale signs of genetical changes or damage and possible cancer risk, often
long before the onset of cancer. Particular genes, chromosomal regions, or
entire chromosomes are vulnerable to mutation at variable points in carcino-
genesis (1). This suggests that certain mutations play a specific role in the
ability of a cell to survive and continue to the next step of this multistep pro-
cess, as well as potentially determining what the next mutation will be. These
mutations, particularly early events, may provide markers, which are indica-
tive of genetical damage and potential cancer risk.

Thus far, few cancers have been well characterized in terms of which
mutations occur at what point in the multistep process. Because much of
cancer research depends on backtracking from tumor tissue, it is virtually
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impossible to assess the point at which one mutation arose relative to
another and how that mutation may encourage future hits. However, a
few models exist which have provided valuable information about the clonal
evolution of cancer. Possibly the best known model that exists is the Vogel-
stein and Kinzler (1) model of colon cancer (Fig. 1A). This model provides a
unique opportunity to observe morphological changes resulting from each
mutation acquired in a stepwise progression. From normal tissue, the cells
acquire one mutation after another, beginning with the loss of a key gene
involved in cell proliferation (APC), aberrant methylation, further mutation
of oncogenes (RAS), and finally, loss of the DCC and p53 genes, which
pushes the cell over the cancer threshold. Although the order of mutation
may vary slightly in the later stages, the pattern is strikingly similar in
approximately 50% of colorectal cancers. For example, late events such as
the loss of p53 and DCC are only observed in late adenomas, whereas loss
of APC is observed even in benign polyps. This suggests that each type of
mutation plays a unique, key role in the clonal evolution, without which
the cells might not transform to malignancy.

Since the original model of colon cancer, a few other models have
emerged demonstrating similar patterns of mutation accumulation. Figure
1 shows three hypothetical models for three different cancer types. It is
important to observe the differences in mutation pattern in each cancer type;
for example, p53mutations are believed to be early events in astrocytoma, in
contrast to p53 mutations in colon cancer, which are later events. However,
although the specific mutation varies among different cancers, the pattern of
accumulation of mutation and the progressive impact of each mutation on
cell proliferation and morphology are similar in each.

3. MEASURING POINT MUTATIONS IN
CANCER-RELATED GENES

Conventional methods used to detect point mutations such as single-
stranded conformation polymorphism (SSCP) and sequencing, are labor
intensive and require the use of radionucleotides. Recently, a number of
assays, most of which employ PCR, have been developed which do not
require radioactivity, are relatively quick, and are much more sensitive than
conventional methods.

The use of PCR technology has vastly improved detection and identi-
fication of mutations in cancers. Increased sensitivity and reproducibility
have provided the possibility of utilizing these mutation assays as biomar-
kers of early effect, and for detection of minimal residual disease or precur-
sors to relapse. Because of the low frequency of many of these mutations in
the normal population, the normal background levels and variability have
not yet been established. Recently, a number of assays have been developed
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which improve sensitivity orders of magnitude over previously used
methods. Many of these assays employ methods to selectively amplify the
relative number of mutants in a large pool of wild type in order to increase
the sensitivity of detecting rare mutant alleles, a method referred to as
genotypic selection.

3.1. Measurement of Point Mutations in RAS

One recently published assay used genotype selection for the detection of
mutations in the H-RAS gene. By combining two previously published
methods (8,9), the MutExþ allele-specific competitive blocker PCR (ACB-
PCR) technique (10) is one of the most sensitive methods of genotypic selec-
tion. This assay begins with the denaturation of a heterogenous sample of
mutant and wild-type double-stranded DNA. When reannealing, mutant
DNA forms heteroduplex DNA with normal strands, while normal DNA
strands form homoduplexes. Mut S, a thermostable protein, is added which
binds to the mispaired sequence of the heteroduplex which protects the short
sequence of mutant DNA from digestion from 30–50 exonuclease activity of
T7 DNA polymerase, whereas the wild-type DNA is digested. This Mut-Ex
step results in a 1000-fold enrichment of mutant alleles relative to wild type.
To further increase sensitivity, the next step utilizes an additional selection
technique, ACB-PCR. This genotypic selection method is based on preferen-
tial amplification by allele-specific primers. The first primer has more mis-
matches to wild type than mutant, resulting in preferential amplification
of mutant DNA. The second primer is blocker primer, which preferentially
anneals to the wild-type sequence, but is modified with a 30-dideoxyguano-
sine residue, which prevents extension. The ACB-PCR method therefore
results in preferential amplification of mutant with a sensitivity of as few
as 10 mutant alleles detected in the presence of 108 copies of the wild-type
allele.

As one of the most sensitive methods available for mutation detection,
the MutExþ ACB-PCR technique has many potential applications for
mutation detection. This method is based on increasing the ratio of mutant
DNA relative to wild type and is therefore a sensitive method for the detec-
tion of rare mutations. However, this method is not appropriate for
unknown mutations, as the sequence of the mutated region is necessary
for the design of ACB-PCR primers.

3.2. Measurement of Point Mutations in p53

Genotypic selection methods have also been applied to p53 mutation detec-
tion. Sites which are commonly mutated in the p53 gene, referred to as
mutational hotspots, have been targeted as potential biomarkers of early
effect. Assays utilizing allele-specific PCR have been designed to detect
and preferentially amplify mutations in these hotspots. These assays either
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used alone or in combination with SSCP and sequencing result in a
considerable improvement in sensitivity over conventional methods of
mutation detection. For example, an allele-specific PCR method developed
by Wada et al. (11) has been shown to be more sensitive than SSCP alone.
Allele-specific PCR resulted in the detection of mutated cells accounting for
0.01–1% of cells, in comparison to SSCP alone which has a detection limit of
approximately 10% mutant cells. This method has been successfully applied
to p53 hotspots to detect rare point mutations in acute myeloid leukemia
(AML) and acute lymphocytic leukemia (ALL) relapse cases (12). Behn
and Schuermann (13) developed a similar method called p53-mutant
enriched PCR-SSCP which also targets mutational hotspots in the p53 gene.
This method combines PCR-SSCP with sequence specific-clamping by pep-
tide nucleic acids (PNAs). Peptide nucleic acids are designed to preferen-
tially bind to wild-type DNA, and do not extend, thereby blocking
amplification of wild-type DNA. This results in a mutant enriched sample.
Mutations are then detected by SSCP and identified by sequencing. This
combination of PCR with PNAs and SSCP improves sensitivity 10–50-fold
higher than conventional PCR-SSCP.

As in Mut-EXþACB-PCR, these methods are only appropriate for
certain applications. Because they target mutational hotspots of p53, they
do not account for mutations outside this region, and are therefore not
applicable to mutation spectrum analysis. In general, genotypic selection
methods offer higher specificity and sensitivity than traditional methods.
Although they are not appropriate for all applications, they are vast
improvements over conventional methods previously used for these applica-
tions, including SSCP analysis.

4. MEASURING GENETIC DAMAGE AT THE
CHROMOSOME LEVEL

Genetic damage at the chromosome level has been shown to be involved in
the development of cancer. For example, leukemias and lymphomas are
characterized by clonal chromosomal aberrations that appear to have a cen-
tral role in tumorigenesis (14,15). Chromosome aberrations encompass all
types of changes in chromosome structure and number. The most common
numerical changes called aneuploidy are the loss (monosomy) or gain (tri-
somy) of one chromosome; less frequent types include the loss of both
copies or the gain of more than one copy of a chromosome. Structural
changes include translocations, inversions, breaks, and deletions. Generally,
chromosome loss can lead to the loss of tumor suppressor genes, while
chromosome gain can lead to increased oncogene expression. Further, chro-
mosome translocations or other types of chromosome rearrangements may
lead to the formation of fusion genes that are oncogenic.
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4.1. Conventional Cytogenetics

Classical chromosome aberrations are the only cytogenetical end point that
have been shown to have predictive value for risk of cancer (6,16), particu-
larly for hematologic malignancies (17). Therefore, classical chromosome
aberrations appear to be a particularly promising early-effect biomarker
of carcinogen exposure. However, classical aberrations are a measure of
overall chromosome damage, not of specific events on the causal pathways
of particular diseases. In order to understand the mechanisms of exposure-
related diseases, we need to measure specific events on the causal pathways
of those diseases. Since these specific events are relatively rare among non-
diseased populations, it is important to screen levels among much larger
populations or examine much greater quantities of cells from each subject
in order to attain sufficient statistical power.

In myeloid leukemia, loss of part or all of chromosomes 5 and 7 is a
common event, along with trisomy of chromosome 8 and various specific
translocations and inversions including inv(16), t(8;21), t(9;22), t(15;17),
and t(11q23) (18). These rearrangements are associated with particular types
of myeloid leukemia (Fig. 2). In ALL,particularly in childhood ALL, trans-
location t(12;21) is common (�25%) and in non-Hodgkin lymphomas the
translocation t(14;18) is found in follicular lymphoma (14). Therefore, the

Figure 2 Chromosome rearrangements in leukemias and lymphomas. AML ¼
acute myeloid leukemia; CML ¼ chronic myeloid leukemia, ALL ¼ acute lympho-
cytic leukemia.
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detection of these changes at the chromosomal level could be very important
in predicting risk of these diseases.

Many specific chromosome aberrations have been recognized using
classic karyotyping among patients with clinical syndromes. For example,
an extra copy of chromosome 21 is routinely detected among children born
with Down syndrome. As a result, classic karyotyping has become a widely
used tool of clinical diagnosis for many diseases, including leukemia. How-
ever, classic cytogenetical techniques have several drawbacks for the detec-
tion of chromosome-specific aneusomy and rearrangements. For example,
the cells must be cultured to make metaphase spreads, a limited number
(25–100) of scorable cells can be examined, and recognition of specific chro-
mosomes is problematic. In addition, certain rearrangements, such as
t(12;21), cannot be detected by classic banding assays because the rear-
ranged fragments barely affect the morphology of the involved chromo-
somes. These problems can be now overcome by using FISH to measure
aberrations in specific chromosomes in large numbers of interphase cells
and metaphase spreads (19,20).

4.2. Measurement of Specific Chromosome Aberrations by
Molecular Cytogenetics

Fluorescence in situ hybridization has several advantages over conventional
cytogenetics, including selectivity of specific DNA probes, multiple color
labeling, sensitivity of detection, and speed of microscopic analysis. Inter-
phase FISH, in particular, offers several advantages over classical cytoge-
netics (21). First, interphase FISH allows analysis of non-dividing cells.
Second, a much larger number of cells, at least 1000 or more, may be ana-
lyzed. Third, the detection of aneuploidy is facilitated by simply counting
the number of labeled regions representing a particular chromosome of
interest within the isolated interphase nucleus. By contrast, metaphase FISH
can readily detect structural rearrangements in addition to aneuploidy.
Furthermore, because metaphase FISH, like classical cytogenetics, analyzes
dividing cells, the results from these two methods may be directly compared.
A number of studies have determined that FISH is both more sensitive and
convenient than classical cytogenetics (22–24). Therefore, FISH appears to
be the more suitable method for large-scale population biomonitoring

Fluorescence in situ hybridization is now a widely used tool in the ana-
lysis of chromosomal changes in human cancers, including leukemias, and in
prenatal diagnostics (20,25). It has been extensively used to analyze chromo-
somal damage induced by exposure to ionizing radiation (26,27) and has
also been gradually applied to populations exposed to chemicals and various
carcinogens (28–30).

One example of a specialized FISH assay primarily employed in radia-
tion research is that developed by Tucker and coworkers (31,32). This assay

84 Gunn et al.



uses single-color FISH by painting the chromosome pairs 1, 2, and 4 (or 3,
5, and 6) the same color, which allows for the detection of (1) numerical and
structural chromosome aberrations among these painted chromosomes and
(2) structural rearrangements between these and other untargeted chromo-
somes. This assay has been applied in vitro and in vivo in both animal and
human studies (31–33). Since radiation is thought to cause equal levels of
damage across all chromosomes (34), and chromosomes 1 through 6 (the
largest chromosomes) make up 40% of the genome (35), it is hypothesized
that measurement of damage in these large chromosomes can be extrapo-
lated to the whole genome (31). This may not be true for chemical expo-
sures as certain chemicals may have selective or preferential effects on
certain chromosomes (36). For example, we showed that epoxide metabo-
lites of 1,3-butadiene had more effect on some chromosomes than on others
(37). Indeed, the hypothesis of equal levels of damage across the genome
may not hold true even for low doses of radiation, as inversion of chromo-
some 10 has been shown to be highly sensitive to low-intensity radiation
exposure (38). Interestingly, inv(10) rearranges the RET gene and is asso-
ciated with thyroid cancer, potentially caused by linear energy transfer
(LET) radiation.

Our laboratory is currently employing FISH to examine the cytogene-
tical changes in human blood cells caused by exposure to the established
leukemogen, benzene. Our plan is to examine all 22 autosomes and to par-
ticularly examine for chromosome changes associated with the development
of leukemia. This study is being performed along with Drs. Rothman and
Hayes of the National Cancer Institute (NCI), Drs. Li and Yin at the Chi-
nese Academy of Preventive Medicine in Beijing, and others at the Shanghai
Anti-Epidemic Center as well as other institutions in the United States. We
have applied various FISH techniques in this collaborative study of 43 Chi-
nese workers highly exposed to benzene (median exposure level¼ 31 ppm,
8 h. time-weighted average) and 44 frequency-matched controls. To date,
five chromosomes (1, 5, 7, 8, and 21) have been examined by metaphase
FISH in these highly exposed Chinese workers and their matched controls.
Frequencies of monosomy 5, 7, and 8, but not 1 or 21, increased with ele-
vated exposure levels, whereas a significant trend was observed for trisomy
of all five chromosomes (36,39). The most striking dose-dependent increases
were found in monosomy 7 and trisomy 7, 8 and 21. The most common
structural changes detected among chromosomes 1, 5, 7, 8, and 21 were
t(8;21), t(8;?) (translocation between chromosome 8 and another unidenti-
fied chromosome), breakage of chromosome 8, and deletions of the long
(q) arms of chromosomes 5 and 7. A significant trend was observed for
all these changes (36,39). The loss and long arm deletion of chromosomes
5 and 7, two of the most common cytogenetical changes in therapy- and che-
mical-related leukemia, were significantly increased in benzene-exposed
workers over controls (36).

Genetic Testing II: Acquired DNA Damage 85



Since the development and popularization of FISH, other novel
cytogenetical methods, such as comparative genome hybridization (CGH),
spectral karyotyping (SKY), and color banding, have been developed. Com-
parative genome hybridization involves the comparison of total DNA
extracted from normal and cancerous cells in order to look for specific gains
or losses in genetical material associated with cancer (27). The SKY method
involves painting each of the 24 different chromosomes a different color
using four or five fluorophores with combined binary ratio labeling, which
allows the entire karyotype to be screened for chromosome aberrations
(40). Since the human eye cannot effectively distinguish the 24 colors, this
method requires the use of an automated imaging system. In color banding,
which is based on traditional banding techniques, each chromosome is
labeled by subregional DNA probes in different colors, resulting in a unique
‘‘chromosome bar code’’ (41). This method allows the rapid identification of
chromosomes and chromosome rearrangements. These techniques, how-
ever, are at present relatively new and have not been employed as widely
or as extensively as FISH.

4.3. Limitations of FISH

While FISH can be used to measure both structural and numerical chromo-
some aberrations and is a powerful tool in molecular epidemiology, its sen-
sitivity is limited to 1 in 103–4 cells and it is relatively expensive because of
the high cost of probes. This makes it difficult to use FISH to detect rare
translocations between multiple chromosomes, such as t(21q22) and
t(11q23). The PCR technique allows much more sensitive detection of these
types of changes and is also less expensive in comparison with FISH.

5. MEASUREMENT OF CHROMOSOME
REARRANGEMENTS BY PCR

Chromosome translocations produce novel fusion genes or products that
can be detected at the DNA or RNA level by PCR or reverse-transcriptase
PCR (RT-PCR) as well as by FISH. Polymerase chain reaction holds a
number of advantages over FISH, including: (1) the ability to detect very
rare events (1 copy=106–7 cells vs. 1=103–4 cells by FISH) and (2) the ability
to study large numbers of people easily and at low cost. These potent advan-
tages are accompanied, however, by two disadvantages. First, the high
sensitivity of PCR makes it prone to false-positive results caused by sample
contamination. However, contamination artifacts can be overcome with
extremely rigorous laboratory procedures (42) as well as the use of dUTP
and uracil glycosylase in PCR reactions to prevent carryover contamination.
Second, until recently, quantitation was difficult, especially for RT-PCR.
Quantitation has also become feasible through recent advances in
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exonuclease-dependent real-time PCR. This quantitative PCR assay, now
generally called real-time PCR, allows for an absolute number of novel
sequences to be quantified in a cell population without the need for gel elec-
trophoresis. In addition, real-time PCR is more sensitive than conventional
PCR, where a sensitivity of 1 in 107 can be reached if a stochastic multitube
approach is taken (43,44). This technology has therefore paved the way for a
new generation of biomarkers to be developed. While no methods yet exist
which employ PCR to measure rare aneuploidies or genome-wide structural
damage, real-time and conventional PCR techniques which measure specific
chromosome rearrangements, such as translocations and inversions, and
the methylation status of genes have become available.

5.1. Conventional PCR Detection of
Chromosome Rearrangements

Reverse-transcriptase PCR and PCR have previously been used to detect a
number of translocations including t(14;18), t(8;21), t(9;22) and t(4;11).
Using these techniques, t(9;22) and t(14;18) have been detected in unexposed
individuals of different ages and in smokers (45–47). Both translocations
were found to increase with age and the t(14;18) translocation was increased
in cigarette smokers (48). Studies from our laboratory showing detectable
t(8;21) by RT-PCR in an otherwise healthy benzene exposed worker (39)
clearly demonstrate the potential of RT-PCR for monitoring specific aberra-
tions in populations exposed to suspected or established leukemogens.
Because many of these translocations have multiple breakpoints or translo-
cation partners, multiplex assays have also been developed to detect multi-
ple or unknown rearrangements. Despite recent improvements in sensitivity
and applicability, conventional PCR methods remain semiquantitative.
However, with the recent advent of real-time PCR, quantitation is no longer
an obstacle. Now that quantitation problems can be overcome, a whole new
avenue of biological monitoring for early detection of cancer has been
opened. Polymerase chain reaction-based procedures therefore hold further
promise for detecting specific chromosome aberrations, especially when
used in combination with FISH.

5.2. The Development of Quantitative Real-Time PCR Methods
for Chromosome Rearrangements

Real-time PCR is comparable to conventional PCR in that it uses sense and
antisense primers to amplify a targeted sequence of DNA. However, real-
time PCR employs an additional, nonextendable oligonucleotide probe,
which is positioned between the two primers during the annealing phase
of amplification (Fig. 3) (49). The oligonucleotide probe is labeled with a
fluorescent reporter dye [such as FAM 6-carboxy-fluorescein] at the 50 end
and a quencher fluorescent dye [such as TAMRA 6-carboxy-tetramethyl-
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rhodamine] at the 30 end. When the probe is intact, fluorescence resonance
energy transfer to TAMRA quenches the FAM emission. During the exten-
sion phase of amplification, the Taq polymerase extends the primer to the
region of the probe, at which point the 50 exonuclease property of Taq
cleaves the reporter dye from the probe. This results in an increase in fluo-
rescent signal that is proportional to the amount of amplification product.
The increase in reporter molecules is measured in real time by the ABI Prism
5700 or 7700 Sequence Detection Systems (PE Applied Biosystems). After
each cycle fluorescence signal is measured resulting in an amplification plot,
in which the point at which the fluorescence crosses a defined threshold, Ct,
is proportional to the starting copy number. Cts of positive control samples
are used to generate a standard curve. From this standard curve, it is
possible to calculate the copy number of unknown samples. Methods for
the quantitative detection of translocations using the above TaqMan

Figure 3 Diagram of TaqMan technology in quantitative PCR R, reporter dye; Q,
quencher dye. Source: Adapted from PCR Applications (49), 1999.
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technology have recently been reported. For example, methods for the
analysis of t(14;18), t(8;21), t(9;22), and other translocations have been
presented or published (43,50–53).

5.3. Measurement of t(14;18) Found in Lymphocytic Leukemia
and Lymphoma

The structural rearrangements observed in lymphocytic leukemia and lym-
phoma may be caused by mistakes made by the V(D)J recombinase enzyme
complex while it is generating new immunoglobulin and T-cell receptor gene
rearrangements (54). Illegitimate V(D)J recombinase activity could there-
fore be centrally involved in the development of these blood cancers and
could result from mistakes brought on by chemical exposure.

The t(14;18) translocation is thought to arise by illegitimate V(D)J
recombination in pre-B cells as a result of aberrant immoglobulin gene rear-
rangement. Liu et al. (45) first described the fact that this translocation was
found at low levels in normal, healthy individuals. They subsequently
showed that the incidence of t(14;18) increased with age and was higher in
the blood of smokers (48). Recently, two groups have described novel quan-
titative PCR procedures that measure very low levels of t(14;18) (43,44).
Luthra et al. (43) detected rearrangements at the bcl-2 mbr in 36% of lym-
phoma cases and found a 98% concordance between real-time PCR and
conventional PCR (43). In addition, using serial dilution they demonstrated
that real-time PCR was 100-fold more sensitive than conventional PCR.
BCL-2=JH fusion sequences were consistently detected when diluted 105

fold with normal genomic DNA. Doelken et al. (44) confirmed the sensiti-
vity of this assay and concluded that the detection of single-genome copies
is possible if a stochastic multiple tube approach is taken.

5.4. Measurement of t(8;21) Associated with Acute Myeloid
Leukemia and Myelodysplasia

The t(8;21) translocation results in the fusion of the ETO gene, at 8q22, with
the AML1 gene at chromosome 21q22. This translocation is one of the most
frequent karyotypic abnormalities observed in acute myeloid leukemia. The
presence of t(8;21) is associated with a high complete remission rate and a
high survival rate (55), suggesting that the levels of the translocation may
be predictive of relapse. On the basis of potential prognostic value of the
t(8;21), Marcucci et al. (56) developed a real-time reverse-transcriptase
PCR method to detect AML1=ETO fusion transcript in patients with
AML. Each patient showed 103copies of AML1=ETO transcript at diagno-
sis and each showed a 2–4-log decrease in copy number following successful
induction chemotherapy. The sixth patient had a high copy number imme-
diately following successful remission induction chemotherapy, which con-
tinued to increase during early remission, and was followed by relapse.
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These results suggest that t(8;21) translocation is detectable at low levels and
may be a valuable biomarker of early effect or potential relapse.

5.5. Measurement of t(9;22) Associated with Leukemia

A real-time RT-PCR method has also been developed for the detection of
the t(9;22) translocation (57), which is common in CML (chronic myeloge-
nous leukemia). This translocation results in the fusion of the ABL gene, an
oncogene, with the BCR gene (58). Under the regulation of the BCR promo-
ter, a fusion gene product is expressed in malignant cells. By performing
serial dilutions of a positive control diluted in wild-type RNA, a sensitivity
of 10�5 was achieved, which is comparable to conventional PCR methods.

6. OTHER POTENTIAL APPLICATIONS OF REAL-TIME PCR

6.1. Measurement of Aberrant Gene Methylation

In addition to the wide range of genetical damage involved in carcinogenesis,
epigenetic mechanisms, such as DNA methylation, have gained attention as
potential key players in certain cancer types. Aberrant methylation, which
may be induced by environmental exposures, may result in altered carcino-
gen metabolism, cell cycle regulation, and DNA repair. For example, in leu-
kemia and lymphoma translocations cause the formation of novel fusion
genes that produce excessive growth (14,15), and other genes undergo tran-
scriptional silencing by methylation, which causes aberrant cell cycle control
(59). Aberrant methylation and transcriptional silencing appear to be early
events in both solid tumors, including lung (60), colon (61), hepatocellular
(62), and bladder (63), as well as hematological malignancies (59). A number
of different methods have been developed to detect aberrant methylation of
genes, including the use of methylation sensitive restriction enzymes, bisulfite
sequencing, and methylation-specific PCR (MSP).

Perhaps one of the most interesting targets of aberrant methylation is
the tumor suppressor gene p16INK4a, which is a key component in the G1=S
cell cycle check point and has been shown to be involved in colon cancer,
leukemia, and lung cancer. Recently, a real-time methylation specific PCR
protocol has been developed by Lo et al. (64) and applied to bone marrow
samples of patients with multiple myeloma as well as cell lines with known
methylation status. The authors demonstrated that the real-time method
had very high concordance with the conventional method, but with the
added sensitivity and specificity of the real-time technology. In addition,
the authors correlated methylation status with p16 mRNA expression and
observed that transcription was inversely correlated with methylation status.
As with other real-time methods, this application shows great potential for
future studies involving methylation of key genes in carcinogenesis as well as
other biological processes.

90 Gunn et al.



6.2. Multiplex Real-Time PCR with Molecular Beacons

Yet another novel application of real-time PCR technology is the multiplex
amplification of DNA by Vet et al. (65). Using molecular beacons (MB)
rather than TaqMan probes, the authors successfully performed multiplex
PCR reactions which were monitored in real time. Although similar to Taq-
Man probes, molecular beacons do not require the 5’ exonuclease properties
of Taq polymerase. Instead, when unbound, the fluorescent moiety is kept in
physical proximity to the quencher in a loop conformation. When the probe
anneals to a target sequence, the loop is linearized and the reporter and
quencher are separated in space, and the reporter emits fluorescence. In a
multiplex reaction, different colored fluorescent moieties are used for each
amplicon. The potential applications of this assay are very promising.
Unfortunately, research potential is often limited by the amount of material
available for analysis. The possibility of real-time multiplex PCR provides
the opportunity to examine multiple points of interest simultaneously with
the same amount of material previously required for one point.

6.3. Digital PCR

Another recent contribution to this spectrum of novel methods combines
the process of genotypic selection with the sensitive new molecular bea-
con-based PCR methodologies. Digital PCR, developed by Vogelstein and
Kinzler (66) is an assay designed to quantitatively measure the proportion
of mutant sequences within a DNA sample. Single molecules of DNA are
isolated and amplified by PCR in a multiple-well plate, resulting in com-
pletely mutant or completely wild-type products. After amplification, asym-
metric PCR is used to generate a single-stranded product to which the mole-
cular beacons could anneal. Two molecular beacons (red and green) are
added, one which recognizes only wild-type sequence and one which is com-
mon to all PCR products. Using mutations in the RAS gene, the authors
designed the wild-type beacon which would react better with the wild type
than any mutant sequence within the target sequence. In other words, any
mutations in the region complementary to the molecular beacon sequence
would inhibit wild-type beacon binding. This was possible due to the fact
that RAS has proximal mutational hotspots within codons 12, 13 which
are within the range of the probe sequence. This assay, however, in most
cases, would require molecular beacons for the expected mutational
sequences, as well as wild-type beacons. Each well is then analyzed sepa-
rately for the presence (or absence) of mutation by the fluorescent probes.
The ratio of red=green is determined and normalized against known
controls. Those wells containing mutant sequences are then analyzed by
sequencing to determine the nature of the mutation. Although the authors
chose to add the molecular beacons after amplification, the beacons may
also be used during the amplification process and monitored in real time.
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Digital PCR is only appropriate for predefined mutations. As with
genotypic selection methods, the specific area or mutational hotspot must
be known in order to design primers and beacon sequences. In addition,
unless the molecular beacons are added prior to amplification, the amplifica-
tion will not be monitored in real time. Like many other PCR methods, this
method assumes 100% efficient PCR and that both wild type and mutant
will amplify with equal efficiencies. Because the results are based on the ratio
of the red=green signal, any discrepancies in amplification efficiencies may
affect this ratio. Finally, it is important to understand that this method is
only a quantitative measure of the proportion of mutant sequences within
a sample, but is not a measure of the starting number of mutant and
wild-type copies.

7. CONCLUSIONS

A new generation of biomarkers of early effect in carcinogenesis are now
available and widely employed. These methods utilize the latest advances
in molecular cytogenetics and PCR allowing for mutations to be detected
and measured in cancer-related genes and in specific regions of chromosomes
that are rearranged, lost, or amplified in carcinogenesis. Measurement of
aberrant gene methylation and loss of heterozygosity is also possible. These
new early-effect biomarkers are on the causal pathway to disease and, as
such, should be predictive markers of future cancer risk. In addition, the high
sensitivity of these assays will allow the detection of genetical damage in nor-
mal, healthy individuals, which is a key to the validation of these potential
biomarkers. However, their true value can only be tested in prospective epi-
demiological studies. It is important that epidemiologists begin to collect bio-
logical samples from large cohorts of people being followed for disease onset
and process them in a sophisticated manner so that large quantities of RNA
and DNA are available for analysis as the studies progress. In this manner
development and validation can proceed hand in hand.
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1. INTRODUCTION

Risk assessment provides a quantitative approach to toxicology and chemi-
cal carcinogenesis. Before the development of risk assessment methods,
there was no established method to determine the probability of disease
due to measured exposure levels. The Food Additives Amendment of
1958 included the Delaney Clause, which required that no chemical deter-
mined to be carcinogenic in either humans or animals be allowed as a food
additive by the Food and Drug Administration (FDA). As a consequence,
food additives were regulated without risk assessment determinations.
Later, in the case of residues of animal drugs in foods, acceptable levels were
determined by the FDA based upon calculated risks of cancer. However,
these risk estimates developed by the FDA were not derived using a parti-
cular model of carcinogenesis, but were calculated based upon probabilities
of differences in sensitivities of individuals within a population.

During the 1970s, risk assessment methods were developed by the U.S.
Environmental Protection Agency (EPA) and the U.S. Occupational Health
and Safety Administration (OSHA). It was largely assumed that all carcino-
gens were DNA reactive, and that such interactions requiring only one event
could be additive to ongoing, spontaneous gene mutation. The Armitage
and Doll multistage model of cancer (1) proposed that the carcinogenic
agent caused several irreversible steps of genetic change. Cancer policy
and statistical methods for high- to low-dose extrapolations were developed
using this model, which included an assumption of the lack of a threshold
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for chemicals producing neoplastic development. However, it is now known
that carcinogens may act by mechanisms that may exhibit a threshold due to
the role of target organ toxicity in the carcinogenic process.

In 1983, the National Academy of Sciences (NAS) published a study
of how risk assessment should be conducted in the Federal government
(2). The NAS established a framework to guide future risk assessment by
Federal agencies, which included the use of default assumptions where gaps
were present in general knowledge or available data for a particular chemi-
cal. As defined by the NAS and is now generally recognized, risk assessment
consists of the following four steps:

1. Hazard identification
2. Dose–response assessment
3. Exposure assessment
4. Risk characterization

Hazard identification is the review of relevant biological and medical infor-
mation to determine whether or not particular substances may cause adverse
health effects. Dose–response assessment defines the relationships between
the exposure or dose of an agent and the magnitude of the health response.
This includes a quantitative estimate of the possible impact of a health effect
for a range of doses. Exposure assessment produces an estimate of the extent
of exposure to the populations of interest. Risk characterization integrates
the hazard identification, dose–response assessment, and exposure assess-
ment, in order to describe the nature and the magnitude of health risk.
The risk characterization includes presentation of uncertainties and provides
a framework to help judge the significance of the risks.

2. HAZARD IDENTIFICATION FOR CARCINOGENS

Carcinogen risk assessment begins with an evaluation of whether a chemical
has been shown to cause increased rates of specific neoplasms in either
humans or animals. Various types of information are available for determin-
ing the carcinogenic potential of a compound. Useful data for hazard
identification comes from epidemiological studies, controlled human
experiments, in vivo and in vitro toxicological tests, and analysis of physi-
cal=chemical properties, structure–activity relationships, and pharmacoki-
netic properties. Epidemiological studies of humans and toxicological
studies of experimental animals provide the most important information
and are essential in determining the hazardous potential of a compound.
The other types of information serve mainly as supporting data to the
toxicological and epidemiological studies, although data on cancer mecha-
nisms are being increasingly used to evaluate whether certain rodent tumors
are relevant to human cancer risk determination.
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The resulting data are evaluated and chemicals have been classified
according to the ‘‘strength of evidence’’ for positive responses, and usually
with little regard for studies showing no carcinogenic effects. Major default
assumptions used by regulatory agencies are that neoplastic responses in
rodents are potentially relevant to human cancer and that target organ site
concordance in not necessary for extrapolation to humans. However, it is
now recognized that these assumptions are naive and that many tumor types
are not relevant for human cancer risk assessment.

One source of hazard identification information is the EPA’s Inte-
grated Risk Information System (IRIS), which is available on-line
(http:==www.epa.gov=iris). Another source is the IARC Monographs on
the Evaluation of the Carcinogenic Risks to Humans, published by the
International Agency for Research on Cancer (IARC), which is part of
the World Health Organization.

2.1. Carcinogen Classifications

An EPA carcinogen group designation that characterizes the strength of
evidence for human cancer risk, has been established for each substance
reviewed by the intra-agency work group, which consists of scientists from
throughout the EPA. The basis for the classification is included in the IRIS
database. In the case of the IARC, the classification is based upon the delib-
erations by cancer experts from throughout the world at meetings that
develop the monographs. The classifications systems for carcinogens vary
somewhat among the IARC, other nations and regulatory agencies within
the United States.

Traditionally, there has been an alphanumeric system used with
Group A (EPA) and Group 1 (IARC) identifying chemicals known to pro-
duce cancer in humans based upon epidemiology studies. Other groups such
as Groups B and C (EPA) or Group 2 (IARC) identify chemicals that are
known to produce cancer in animals but not proven in humans. These are
termed probable or possible carcinogens based upon the premise that it is
prudent for regulatory purposes to act as if they represent a risk to humans.
However, this does not imply that a causal relationship has been proven
between the agent and human cancer. The EPA classification system for
the characterization of the overall weight of evidence (animal, human,
and other supportive data) of carcinogenicity of a substance includes the
following five groups (3):

1. Group A: Human carcinogens. Sufficient evidence from epidemio-
logical studies to support a causal association between exposure
to the agents and cancer.

2. Group B: Probable human carcinogens. Sufficient evidence of car-
cinogenicity based on animal studies. This group is divided into
two subgroups. Group B1 is reserved for agents for which there
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is limited evidence of carcinogenicity from epidemiological
studies. Agents for which there is ‘‘sufficient’’ evidence from ani-
mal studies and for which there is ‘‘inadequate evidence’’ or ‘‘no
data’’ from epidemiological studies would usually be categorized
under Group B2.

3. Group C: Possible human carcinogens. Limited evidence of carci-
nogenicity in animals in the absence of human data. This group
includes a wide variety of evidence such as (1) a malignant tumor
response in a single well-conducted experiment that does not
meet conditions for sufficient evidence, (2) tumor responses of
marginal statistical significance in studies having inadequate
design or reporting, (3) benign, but not malignant tumors with
an agent showing no response in a variety of short-term tests
for mutagenicity, and (4) responses of marginal statistical signi-
ficance in a tissue known to have a high or variable background
rate.

4. Group D: Not classifiable as to human carcinogenicity. Inadequate
(or negative) human and animal evidence of carcinogenicity, or
no data are available.

5. Group E: Evidence of noncarcinogenicity for humans. No evidence
for carcinogenicity in at least two adequate animal tests in differ-
ent species or in both adequate animal tests in different species or
in both adequate epidemiological and animal studies.

Groups A and B and, in some cases, C are treated similarly for risk
assessment purposes. In general, once a chemical has been shown to produce
a particular tumor type in rodents by two independent studies, risk assess-
ment proceeds regardless of whether humans studies are positive, negative
or nonexistent.

2.2. Changes in the Carcinogen Classification Systems

Recently, the EPA has begun to move away from alphanumeric systems for
classification and instead to integrate additional information into a weight
of evidence approach, which includes the mode of action and exposure
conditions required to express a neoplastic response (4). One category
‘‘known=likely’’ may approximately replace the designation of known and
probable according to proposed new regulations (5). In the case of agents
that have data that raise the suspicion of carcinogenicity, but the data
is not adequate to convincingly demonstrate a carcinogenic potential, the
designation would be ‘‘cannot be determined.’’

In addition, regulatory agencies have been changing hazard identi-
fication methodology by using additional information available for the
chemicals. For example, they have been incorporating a ‘‘weight of
evidence’’ approach, whereby well-conducted negative studies are used in
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the evaluation process (5). Such negative studies may be used to contradict
poorly conducted studies that have reported a positive finding.

It is now recognized that certain chemical-induced neoplastic effects in
animalswithin certain target organsmay not be predictors of risks for humans,
especially at human exposure levels. Such mechanistic evaluations formed the
basis for a monograph published by the International Expert Panel on Carci-
nogen Risk Assessment (6). In these series of evaluations, evidence whether a
chemical produced cancer in animals by a DNA-reactive mechanisms was
found to be of primary importance in the assessment of human cancer risk.
The designation of a chemical as producing tumors in animals by a non-
DNA-reactive mechanism raises the possibility that these chemicals would
not produce cancer in humans. Several chemicals have been evaluated and
found to be unlikely to cause cancer in humans. These include the food addi-
tives d-limonene (7), butylated hydroxyanisole (8), and saccharin (9).

In those cases where a chemical has been shown to produce neoplasms
in animals by a mode of action that could not be operative in humans, risk
assessment is not performed based upon such neoplasms. In the case of the
EPA’s proposed descriptors (5), such agents would be designated as ‘‘not
likely to be carcinogenic in humans.’’ This is the same designation as for
chemical that have been shown to be negative in adequate well-conducted
rodent testing. The IARC has also begun using cancer mechanism data
for risk assessment, and several chemicals including melamine, d-limonene,
saccharin, and atrazine were placed in Group 3 (insufficient evidence) based
on such considerations (10).

3. DOSE–RESPONSE ASSESSMENT

After a chemical has been identified as a human or experimental carcinogen,
the dose–response for the tumor response is assessed. Dose–response assess-
ment for a chemical is the key element in the risk assessment process,
because this forms the basis for the quantitative nature of the process. Epi-
demiological data are preferred over animal data when conducting a dose–
response assessment since extrapolation from animals to humans is not
required (3). This eliminates the uncertainty associated with interspecies
extrapolation. For many known human carcinogens, studies of humans
have included exposure information sufficient to determine the dose–
response relationship. In most instances, human exposure information
comes from industrial hygiene measures in the workplace.

In order to estimate the dose–response, either an upper bound estimate
or a maximum likelihood estimate (MLE) is derived, which is the statisti-
cally best estimate of the value of a parameter from a given data set. The
difference between the upper bound estimate and the MLE is that the upper
bound is more conservative in the face of uncertainty due to a lesser amount
of data, whereas the MLE is better if there is a significant level of confidence
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in deriving point estimates of risk. An MLE approach is better to use with
large numbers of data points. For most chemicals, the only reliable dose–
response information comes from studies in rats or mice. In these cases
the upper bound estimate is used, and various mathematical models can
be used to fit the data (Fig. 1A).

3.1. Extrapolation to Doses Below the Observed Effects

The relationship between dose and toxicological response of any particular
chemical is usually a complex one and may involve sublinear, linear, and
supralinear components (Fig. 1). This is also true of neoplastic responses
and depends upon the mode of action. When cancer risk assessment was first
developed, all carcinogens were believed to act as mutagens producing irre-
versible changes and acting at one or more steps in a sequence of events
leading to neoplasia. It is now known that chemicals may be involved in
many steps of a neoplastic process in which they may directly or indirectly
produce mutagenic effects, alternatively they may produce other changes
that enhance neoplastic conversion or development.

The underlying default assumption for dose–response has been that
the low-dose portion of the curve is linear unless proven otherwise. The ori-
ginal justification for this assumption was mathematical and derived from
the multistage model of carcinogenesis. Animal tumor data is analyzed by
the linearized multistage (LMS) procedure, which provides a first-order
cancer potency factor at low dosage levels. The cancer slope factor (q1

�) is

Figure 1 Dose–response extrapolation for carcinogens. Data points represent
hypothetical data for tumor response versus dose. (A) Dose–response extrapolation
using a linear-at-low-dose approach for estimates of human risk. (B) Dose response
extrapolation using the margin of exposure (MOE) approach. Abbreviations are
defined in the text. Note that the ‘‘human exposure of interest’’ is usually much
nearer to the zero dose than shown.
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the linear extrapolation line of the dose–response data and is expressed in
units of risk per dosage (mg=kg b.w.=day)�1. The q1

� represents the 95%
upper confidence limit on that slope.

Since the early 1980s, the FDA has used a somewhat different low-dose
extrapolation where linear extrapolation to zero proceeds from the upper
confidence limit on the lowest experimental dose (11). In this procedure, a
point on the dose–response curve (tumor incidence vs. dose) for a chemical
is chosen below which the data no longer appear to be reliable and a straight
line is drawn form the upper confidence limit to the origin. The EPA has
recently developed a similar method for deriving the relationship between
dose and response for low doses (4,5), which uses a straight line extrapolation
to the origin from the low-end dose of the observed tumor data, usually the
10% tumor response, which is termed the LED10 (Fig. 1A).

Several other procedures have been used for dose–response extrapola-
tion, which lead to widely differing estimates of potency. The model with the
most significant departure from the LMS model is the threshold model,
which assumes that no significant risk is present below an identified expo-
sure. In this model, a no-observed-adverse effect level (NOAEL) is deter-
mined, which serves a point of departure for the development of an
acceptable dose. The NOAEL approach has been used extensively along
with safety or uncertainty factors for the determination of acceptable doses
for toxic effects other than cancer. However, this procedure has also been
used by some European nations and on a limited basis in the United States
where the chemical is believed to produce neoplasia by a process that
involves a threshold (12). The major determinant for the use of a threshold
model for a chemical is the lack of DNA reactivity coupled with a plausible
explanation, such as chronic toxicity of the target organ, as the basis for the
tumorigenic response.

The EPA has recently developed a similar procedure for carcinogens
that exhibit a dose–response that either has a lack of demonstrated effect
at low doses (threshold dose) or a much lower than expected effect at low
doses (sublinear dose–response) (5). In this case a margin of exposure
(MOE) is determined, which is the difference between the LED10 and the
estimated human exposure level (Fig. 1B). This procedure is similar to the
use of uncertainty factors with a NOAEL; however, the use of the MOE
method does not require the experimental determination of a threshold dose
for the neoplastic effect.

3.2. Rodent-to-Human Extrapolation

Although humans have been exposed to many chemicals classified as carci-
nogens, usually adequate exposure information is lacking from epidemiology
studies for use in dose–response development. Also, for most chemicals that
have been found to produce tumors in experimental animals, human studies
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are lacking or have not found increases in cancer that can be quantified. Con-
sequently, the estimation of cancer risks for humans are usually based upon
extrapolation from rodents. In addition, animal studies have two primary
advantages over epidemiological studies: 1) dose, environmental, and extra-
neous exposures are strictly controlled, and 2) adverse affects are directly
measured through pathological examination and necropsy. The obvious dis-
advantage is that humans may not respond to chemicals in the same manner
as rodents either qualitatively or quantitatively.

For carcinogens, the EPA’s default method of extrapolation from
animals to humans has been traditionally based upon comparative surface
areas, which is related to metabolic rate. The surface area is approximately
proportional to the two-third power of body weight. However, based upon
empirical data for chemotherapeutic drugs in rodents and humans, the ratio
of the three-quarter power of body weight or (BW1)

3=4=(BW2)
3=4 is now

used both by the EPA and FDA (13). In practice, this means that the cancer
slope factor in mg=kg=day for the rat or mouse would be multiplied by a
factor of between 5 and 10 for humans.

If data regarding the chemical-specific relative metabolic rates, tissue
distributions, or other factors are available for rodents and humans, phar-
macologically based pharmacokinetic (PBPK) modeling may be used to
extrapolate between species. PBPK modeling is a mathematical method
for extrapolating between species that accounts for differences in target
organ concentrations of the reactive metabolite(s) due to absorption, bio-
transformation, distribution and elimination. Difficulty in applying this
level of sophistication to the species-to-species extrapolation is usually due
to the lack of information in human parameters for many chemicals.
Furthermore, individual differences among humans for many of these
parameters requires that PBPK modeling use statistical distributions of
parameters, and the combinations of distributions may give a result with
a large range of values.

Ideally, the route of administration of animal studies used for dose–
response data should be the same as the human route of exposure (i.e.,
inhalation, dermal contact, ingestion). If it is not, an extrapolation from
the animal route of administration to the human route of exposure may
be possible. The target organ(s) and mechanism(s) of action determine
whether route-to-route extrapolation is appropriate. For an agent causing
adverse effects at the point of contact (e.g., skin, lung) extrapolation from
one route of administration is usually not valid. But for carcinogens with a
systemic mode of action, route-to-route extrapolation may be biologically
plausible. In order to perform route-to-route extrapolation, pharmacoki-
netic data for the substance being evaluated are desirable, but not always
available, and estimates can be made in the absence of such data. Pharma-
cokinetic data can also be used in PBPK models to convert the dose to a
different route.
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4. EXPOSURE ASSESSMENT

In exposure assessment, the amount of a chemical that may contact the
human body is determined, but there is also a difference between external
exposure and internal exposure, which is the dose, and this depends on
the efficiency of absorption. The dosage is summed for all pathways and
routes of exposure resulting in an numerical estimate that is usually
expressed in units of milligrams per kilogram body weight per day
(mg=kg=day).

For pharmaceuticals, food additives, food contaminants, and drinking
water contaminants, the only pathway of concern is usually oral ingestion
and the amount of the medicine, food, or water can be estimated with some
degree of certainty. As a default assumption, the external and internal expo-
sure is often considered to be the same, i.e., there is 100% absorption. For
contaminants in food regulated by the FDA, the average total diet of an
adult is generally assumed to include 1500 g of solid food and 1500 g of
liquid per day. In the absence of a measured distribution of intakes among
individuals in a population or a direct measure of the 90th percentile, a two-
to three-fold excess is used on the observed average consumption of the
medium that contains the contaminant (11).

The exposure assessment process varies in complexity depending upon
the conditions under which individuals may contact the agent. For example,
dermal exposure usually results in a lower dose to the target organ than an
oral dose, and in the dermal exposure scenario, the chemical may be bound
to a matrix such as soil, which would be expected to decrease dermal absorp-
tion. In other cases, the exposure estimate includes the use of sophisticated
mathematical models, and the exposures related to all significant potential
pathways are estimated (14). An example of a complicated site-specific expo-
sure assessment is that of a hazardous waste incinerator where air levels are
models based upon meteorological data, and deposition of particulates on
edible plants and water are estimated. These data are then used to calculate
the amount inhaled or ingested from consumption of plants and animals
including fish. Route- and chemical-specific absorption factors are then used
to translate exposure to doses, which are summed for all exposure pathways.
Current EPA risk assessment guidelines promote estimating ‘‘high end’’ and
‘‘central tendency’’ exposures (14). High end exposure scenarios are sup-
posed to result in reasonable but highly conservative estimates of risk that
generally represent the degree of exposure to only the most exposed members
of the population (2–10%). Central tendency exposure scenarios reflect the
degree of exposure of typical or average individuals. Unfortunately, the
exposure assessment may also include highly implausible estimates that
would include few, if any, of the people with potential exposures.

A detailed description of exposure assessment methods is beyond
the scope of this chapter. However, two of the most common and direct risk

Quantitative Cancer Risk Assessment 107



scenarios will be briefly described: oral ingestion of contaminated drinking
water and inhalation of contaminated air. These will provide the reader with
some understanding of the estimates made of exposure. More detailed gui-
dance for exposure assessment is available from EPA publications (14–16).

4.1. Drinking Water

Exposure to drinking water is direct and does not require the differentiation
between external and internal exposure. A default assumption used is that
adults can consume up to 2L of water per day. Therefore, for a one part
per billion (ppb) level of contamination in drinking water, a person may
consume the following:

1 mg contaminant

kg water
� 1 kg water

1 L water
� 2L water

day

� 1

70 kg b:w:
¼ 3� 10�5 mg=kg=day

4.2. Inhalation and the Inhalation Unit Risk

For breathing contaminants in air, the amount of exposure is usually deter-
mined by the breathing volume per day divided by the human body weight.
In this case there usually are no adjustments made for the difference between
external and internal dose. The calculation of exposure for microgram per
cubic meter contaminant level in air is shown below:

1 mg=m3 � 20m3=per day� 1=70 kg ðb:w:Þ
� 10�3 mg=mg ¼ 0:0003mg=kg=day

For some inhalation exposures, it is a relatively straightforward proce-
dure to translate cancer slope factors into mathematical relationships that
are termed unit risk levels, which represent an estimate of the increased can-
cer risk from a lifetime (70-year) exposure to a concentration of one unit of
exposure. Unit risk values incorporate the cancer potency and the amount
of air consumed per day. The inhalation unit risk (IUR) is expressed as risk
per micrograms per cubic meter.

For radionuclides in air such as uranium-238 and thorium-232, data is
published yearly by the EPA in the Health Effects Assessment Summary
Tables (HEAST) that estimate risks based upon total lifetime dose in
risk=pCi, which is irrespective of body weight. In the case of radionuclides,
the IUR can be calculated from the data presented in the HEAST tables as
follows:

IUR ¼ risk

pCi
� 20m3

day
� 25; 550 days

lifetime
¼ RiskðpCi=m3Þ�1
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5. RISK CHARACTERIZATION

In risk characterization, exposure assessment is coupled with the dose–
response information. By this method risks can be estimated based upon
various exposure scenarios. Along with quantitative estimates of risk, risk
characterization should identify the key assumptions, their rationale, and
the effect of reasonable alternative assumptions on the conclusions and esti-
mates. Second, the risk characterization identifies any important uncertain-
ties in the assessment.

In order to calculate risk, the dose determined by exposure assessment
is multiplied by the cancer slope factor, which in this example is 0.1 risk
(mg=kg=day)�1, as in the following example:

3 � 10�5 mg=kg b:w:=day � 0:1 risk ðmg=kg=dayÞ�1

¼ 3 � 10�6 risk

In site-specific risk assessment, all significant exposure routes are
determined related to contaminant levels in a specific situation such as a
Superfund site. Based upon exposure assessment calculations, a risk is deter-
mined. Alternatively, the calculation can be performed in reverse order to
develop regulatory levels for chemicals in air, water, soil, or food based
upon specified risk levels.

The risk assessment of chemical mixtures results in an estimation of
the total risk for all chemicals to which an individual is exposed from a par-
ticular source. In the case of carcinogens, the risks are assumed to be addi-
tive, since most risks are calculated assuming a linear risk–dose relationship,
and the risks calculated are incremental risks.

5.1. Individual vs. Population Risks

Maximum individual lifetime risk (MIR) is commonly used to express indi-
vidual risks. MIR is defined as the hypothetical probability of cancer follow-
ing exposure to an agent at the maximum modeled long-term exposures
assuming a 70-year (lifetime) duration of exposure. Estimates of MIR are
usually expressed as a probability represented in scientific notation as a
negative exponent of 10, which may be indicated in the tables by ‘‘e.’’ For
example, 5e-8 is the same as 5� 10�8, which is 0.00000005.

Population risk descriptors are intended to estimate the extent of
risk for the population as a whole. This typically represents the sum total
of individual risks within the exposed population. Two important population
risk descriptors are usually estimated and presented (14):

� the probabilistic number of health effect cases estimated in the
population of interest over a specified time period; and

� the percentage of the population, or the number of persons, above
a specified level of risk or range of health benchmark levels.
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5.2. Sensitive Subpopulations

Individual risk descriptors are intended to estimate the risk borne by indivi-
duals within a specified population or subpopulation. These descriptors are
used to answer questions concerning the affected population, the risk levels
of various groups within the population, and the maximum risk for indivi-
duals within the population. The ‘‘high end’’ risk descriptor is intended to
estimate the risk that is expected to occur in a small but definable segment
of the population. The intent is to convey an estimate of risk in the upper
range of the distribution, but to avoid estimates which are beyond the true
distribution. Conceptually, high end risk means risk above the 90th percen-
tile of the population distribution, but not higher than the individual in the
population who has the highest risk (14).

Certain groups within a population may be more sensitive to environ-
mental exposure than other groups. However, EPA considers the linear
default assumption for low-dose extrapolation to be health protective to
the extent that human variability of response would be taken into account
(5). Concerns regarding exposures to children have been given special atten-
tion. However, for carcinogens and most noncarcinogens, the particular
sensitivity of children has not been characterized. In risk assessment calcula-
tions involving contaminated soil that could be ingested by children, the
young child’s exposure is calculated separately due to the possibility of chil-
dren ingesting soil directly. Contamination of food sources are also calcu-
lated separately for children due to the greater consumption of certain
foods per body weight compared to adults.

5.3. Uncertainty Analysis

EPA guidance calls for a full characterization of risk, not just the single point
estimate, which has become synonymous with risk characterization. Critical
to full characterization of risk is a discussion of the uncertainty in the overall
assessment and in each of its components. Uncertainty in risk assessment can
be classified into three broad categories according to EPA (14):

1. Uncertainty regarding missing or incomplete information needed
to fully define the exposure and dose (scenario uncertainty)

2. Uncertainty regarding some parameter (parameter uncertainty)
3. Uncertainty regarding gaps in scientific theory required to make

predictions on the basis of causal inferences (model uncertainty)

Uncertainty can be introduced into a health risk assessment at many
steps in the process. It occurs because risk assessment is a complex process,
requiring the integration of many items. The fate and transport of sub-
stances in a variable environment that require complex models with uncer-
tain assumptions. The potential for adverse health effects in humans may
require uncertain extrapolations from animal bioassays; and the probability
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of adverse effects in a human population may be variable genetically, in age,
in activity level, and in lifestyle.

Even using the most accurate data with the most sophisticated models,
uncertainty is inherent in the process. In order to account for uncertainty,
risk assessment generally uses assumptions that overestimate the risks so
that the risks are likely to be less, rather than greater, than those predicted.

6. RISK MANAGEMENT CONSIDERATIONS

Risk management has been described as the process of evaluating alterna-
tive regulatory actions and selecting among them. This selection process
necessarily requires the use of value judgements on such issues as the accept-
ability of risk (2). Risk levels that have been deemed ‘‘acceptable’’ range
from one per thousand (10�3) lifetimes to less than one per million (10�6).
Differences in acceptable risk depend upon judgments that are based on
societal values. Risk assessment has been used by the OSHA to regulate can-
cer risks resulting in air levels that have associated risks of one per thousand
(10�3) lifetimes or less. The use of risk assessment by OSHA balances the
reduction of risk with practical concerns in the workplace. The resulting unit
dose is called the permissible exposure limit (PEL), which is based upon
exposures over a working lifetime, 8 hr per day, 5 days per week.

For the general public, air levels have also been developed by air toxics
programs of the states. In the case of the general public, risks of one per one-
hundred thousand (10�5) or one per million (10�6) are generally used as a
starting point. The 10�6 risk level has been chosen historically in an arbi-
trary manner as a basis for regulation (17), and the EPA has regulated che-
micals involving exposures to large populations at about this risk level. For
decisions where the population risk is a fraction of a cancer case per year for
the entire population, a 10�5 risk level seems to be in the range of what EPA
might consider to be an insignificant average individual lifetime risk (18). A
review of policies by Travis et al. (19) has found that EPA does not consider
individual risks of less than 10�4 in small geographic areas to necessarily
require regulation. The legislation that created superfund clean-up
standards has indicated that a range of 10�4–10�6 risk level is generally
acceptable. At these specified hypothetical risk levels, the actual risk to an
individual is usually negligible due to the many health protective assump-
tions that are incorporated into the risk assessment process.

7. DISCUSSION AND FUTURE DIRECTIONS

The risk assessment methodology has now been used extensively in a wide
variety of circumstances, and due to the quality of the database the results
have ranged from reasonable estimates of cancer probability for known
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human carcinogens to controversial risk speculations that are seemingly
improbable. Consequently, it is important to understand that quality and
validity of the data regarding a particular chemical greatly affects the relia-
bility of the risk estimate. Even where the data are technically sound but the
extrapolation of risk to humans is unclear, the relevance to human risks may
be questionable. It is likely that many chemicals pose no cancer risk to
humans at any realistic exposure level although risks can be calculated.

Risk assessment does not determine real probabilities of an individual
or a population developing cancer from a particular agent. Calculated risks
are intended to provide upper-bound estimates, and one must understand
that the real risks may be much lower or zero (3). In other words, one cannot
deduce the true probability of cancer causation by doing a risk assessment
calculation since there are usually several health protective assumptions that
inflate the risk. An excellent argument has been made that a MOE-type
approach (Fig. 1) be used for assessment of all toxic effects including cancer,
since the toxicological information generally available does not warrant
numerical estimates of risk at low levels of human exposure (20).

Risk assessment does provide a framework for decreasing the prob-
ability of harm from chemical exposures. Consequently, it is useful for reg-
ulatory purposes. The coincidence of real probability and risk assessment
calculations will be greater for those agents that have been shown to cause
cancer in epidemiology studies, which can be used for dose-response assess-
ment and in which the exposure levels are close to or within the range of
observation. However, for those agents that are positive in animal studies
but are negative or untested in epidemiology studies, extrapolation is always
problematic.

The mode of action by which an agent causes cancer in animals is of
primary importance for extrapolation to humans. The induction of neopla-
sia through a mechanism that is likely to operate both in humans and
rodents, such as DNA adduct formation leading to mutation, tends to
increase the validity of risk assessment. In contrast, many chemical-related
cancer mechanisms are now known to be either unique to the rodent or are
suspected to only occur in the rodent at very high exposure levels. In such
cases, risk assessment would unrealistically calculate risks to humans.

One of the most important developments in risk assessment is the iden-
tification of species-specific modes of actions for some carcinogenic effects in
rodents. As a consequence, the EPA has determined that tumors formed in
the male rat related to a2m-globulin nephropathy are not relevant to humans
(21). Also, the IARC has determined that chemicals producing tumors by
this mode of action do not pose a risk to humans (22). In addition, IARC
has found that other agents producing bladder tumors involving calcium
phosphate-containing precipitate formation, such as saccharin and certain
chemicals producing thyroid follicular-cell neoplasms, do not pose a risk
to humans.
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The future of risk assessment lies in the development of better epide-
miology data and the diversification of rodent to human extrapolation
methods based upon sound scientific data regarding mode of action. Conse-
quently, more and more emphasis is being placed on the generation of data
regarding cancer mechanisms for use in quantitative risk assessment. As
additional data becomes available, the use of chemical-specific information
that replaces the traditional default assumptions will provide a enhanced
scientific certainty in the risk assessment process.
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7

Cancer Risk Assessment I: How
Regulatory Agencies Determine What

Is a Carcinogen

Jerry M. Rice�

Department of Oncology, Lombardi Comprehensive Cancer Center,
Georgetown University, Washington, D.C., U.S.A.

1. INTRODUCTION

The first stage in cancer risk assessment is the process known as carcinogenic
hazard identification. This is the qualitative determination that a substance,
complex mixture, agent, or exposure is capable of causing cancer in humans,
that is, it is a carcinogen.

An agent is a carcinogen if exposure to it causes an increased incidence
of malignant neoplasms at one or more anatomic sites in humans, experi-
mental animals, or both. In experimental animal studies, carcinogenicity
may also be indicated by increased multiplicity or accelerated appearance
of neoplasms. Known human carcinogens include certain infectious agents;
all forms of ionizing radiation; and a wide variety of chemical agents and
mixtures, some of which occur naturally and some of which are produced
by human activities. Carcinogens rarely increase the frequency of tumors
at all organ sites, in either humans or experimental animals. Most carcino-
gens cause tumors at a single site or at a limited number of sites, which in the

� Chief (Emeritus), IARC Monographs Programme, International Agency for
Research on Cancer, Lyon, France.
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case of chemicals is largely determined by pathways of metabolism and by
the routes of exposure, which affect the dose of active carcinogen delivered
to various tissues. Inorganic arsenic, for example, causes human skin cancer
when taken in medicinals by ingestion; lung cancer when inhaled under
occupational circumstances such as smelting of metal-containing ores; and
both of the above plus cancers of the urinary tract and certain other internal
organs when present at high concentrations in drinking water (1).

Essentially, all neoplasms occur at some ‘‘natural’’ or ‘‘background’’
frequency. Some human neoplasms are so regularly associated with expo-
sure to a specific agent that diagnosis of a case automatically raises the
suspicion that the patient was exposed to a known carcinogen (e.g.,
mesothelioma suggests previous exposure to asbestos; clear-cell carcinoma
of the female reproductive tract suggests prenatal exposure to diethylstilbes-
trol), but these are exceptions. For most kinds of tumors, at nearly all
anatomic sites, it is rarely possible, on the basis of either morphological
or molecular characteristics of an individual neoplasm that has been caused
by a specific agent, to distinguish it reliably from other cancers of the same
kind that may occur naturally or as a result of concurrent exposure to some
other carcinogen. This applies to both humans and experimental animals.
Accordingly, conclusions regarding causality are almost always based on
statistical analyses of tumor frequencies in exposed vs. nonexposed popula-
tions. Genetical, molecular, or morphological markers of exposure to a spe-
cific carcinogen may sometimes indicate that a specific case of cancer has
resulted from exposure to a specific agent (e.g., base-pair-specific mutation
of the tumor suppressor gene TP53 can implicate exposure to aflatoxin B1 in
human hepatocellular carcinoma). At present, for chemicals and chemical
mixtures this situation is the exception rather than the rule.

For suspect agents that are already present in the environment, data
that are relevant for carcinogenic hazard identification may be available
in the international scientific literature. These may include epidemiological
studies of health effects, including cancer experience, in exposed human
populations. When such studies exist, they are of primary interest for assess-
ing possible carcinogenic hazard. In the case of widely studied agents or
exposures (e.g., ionizing radiation, human papillomaviruses, tobacco use)
the database for carcinogenic hazard identification may be extremely robust,
and is often strengthened by the existence of studies from several different
laboratories or study groups. This allows assessment of the consistency of
findings among different studies. Consistently positive findings from several
independent studies are strong evidence that a carcinogenic hazard truly
exists. However, even for many agents whose existence in the environment
has been recognized for decades, epidemiological studies that are adequate
to establish whether a given substance is or probably is not a human carci-
nogen do not exist. Those studies that do exist often are limited by the fact
that most environmental exposures are not ‘‘pure’’ exposures to a single
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substance (e.g., 1-nitropyrene), but rather to multiple suspect substances or
to complex mixtures of substances (e.g., to many different nitro-polynuclear
aromatic hydrocarbons and other substances that occur together in diesel
engine exhaust). In such cases additional data are needed to decide whether
a specific substance is in fact a carcinogen.

Carcinogenicity, like most other forms of toxicity, increases in severity
with increasing duration and intensity of exposure. However, the relative
potencies of various carcinogens are highly variable. Low levels of exposure,
especially to weak carcinogens, may not be detectable, either by epidemio-
logical methods in human populations or by increased tumor frequency in
bioassays in experimental animals. For this reason, negative epidemiological
and experimental findings must be treated with caution when there are
strong reasons to suspect that an agent may be carcinogenic, as when a
substance is markedly similar in chemical structure to known carcinogens,
or if it possesses biological properties that are often associated with carcino-
genicity, such as mutagenicity in mammalian or nonmammalian cells and
organisms. The most convincing data for establishing carcinogenicity are
those that show a statistically significant increasing trend in tumor incidence
with increasing intensity and duration of exposure, as well as statistically
significantly increased incidences of tumors in populations that have been
exposed to doses above the minimum level of detection.

A broadly based data set on which carcinogenic hazard identification
can be based includes:

� Epidemiological studies
� Carcinogenicity bioassays in laboratory animals (where appropri-

ate)
� Studies of genetical and related effects in laboratory animals and in

human cells, or even in exposed humans
� Studies of mode(s) of carcinogenic action of the agent.

Commonly, however, decisions on whether to treat a substance as a carcino-
gen must be taken on the basis of incomplete data sets, which lack data from
one or more of these categories. For example, for truly novel substances,
such as new agricultural chemicals (e.g., herbicides or insecticides) or new
drugs, there is no epidemiology. The basis for carcinogenic hazard identifi-
cation then consists of carcinogenicity studies in experimental animals, gen-
erally rats and conventional and=or genetically engineered mice, together
with studies on the metabolism of the agent, its genetical and related effects
in experimental animals in vivo and in microorganisms, animal cells, and
often human cells in vitro. There may also be studies on the mode of action
of the agent as a carcinogen in animals. Such studies will usually have been
conducted, or contracted for, by a single commercial entity for purposes of
compliance with regulatory requirements. Results of such studies that are
submitted to regulatory agencies are often unpublished and are usually
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regarded by the sponsor as proprietary information, i.e., trade secrets, that
may never be published in a scientific journal. The database for evaluation
of new chemicals as possible carcinogens may therefore be much more
limited, and previous scientific peer review much less vigorous, than for
environmental agents that have been studied more widely.

Agencies that have responsibilities for carcinogenic hazard identifica-
tion exist in several international organizations, including the Commission
of the European Union and the World Health Organization (WHO). Such
agencies also exist in many individual countries, at the national level and
sometimes also within the governments of constituent geopolitical units,
such as individual states of the United states of America (e.g., California).
Generally, all such agencies work from the same basic kinds of data, but
they differ fundamentally in whether they evaluate:

� Agents and exposures that already exist in the human environment
or

� Novel substances proposed for introduction into that environment.

Within the WHO, an internationally recognized carcinogen identification
program is conducted by the International Agency for Research on Cancer
(IARC). The IARC Monographs on the Evaluation of Carcinogenic Risks to
Humans is an international, interdisciplinary approach to carcinogenic
hazard identification. Monographs evaluations are assessments of the
strength of the published scientific evidence for the existence of an environ-
mental carcinogenic hazard to humans, but they are qualitative rather than
quantitative in nature and do not address issues of relative carcinogenic
potency. Also, the Monographs are confined to published scientific data,
and therefore do not evaluate novel agents about which only proprietary
data exist. The Monographs are published as a basis for cancer prevention
initiatives, which are not limited to regulation. The IARC is not a regulatory
agency, and theMonographs explicitly avoid any recommendation regarding
regulation or legislation. The Monographs are widely consulted by regula-
tory agencies worldwide, however, and the series can serve as a model for
how regulatory agencies determine what is a carcinogen, and how different
kinds of data are used to make carcinogenic hazard identifications. The
criteria applied, and some examples of overall evaluations based on those
criteria, are summarized in the following pages.

2. IARC MONOGRAPHS IDENTIFICATIONS
OF CARCINOGENIC HAZARD

During the period 1972–2002 a total of 888 agents and exposure circum-
stances have been reviewed by the IARC Monographs Programme in
Volumes 1–84 of the series. Many have been evaluated more than once as
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new data have become available in the scientific literature. Because the
nature and the strength of published evidence for carcinogenicity vary
greatly from one agent or exposure circumstance to another, in most cases
it is not possible to conclude definitively whether a given agent or exposure
is either definitely a human carcinogen or is probably not one. Of these 888
agents and exposure circumstances, only 89 are currently classified as defi-
nitely carcinogenic to humans. In 1987 a classification system was intro-
duced (2) which stratifies agents according to the strength of the total
evidence for carcinogenicity to humans. This evidence may include epide-
miological studies of cancer risk in humans; bioassays for carcinogenicity
in experimental animals; and other relevant data of various kinds that
may modify the conclusions that would be drawn on the basis of epidemiol-
ogy and=or bioassays alone.

2.1. Epidemiological Studies

Epidemiological Studies to assess the possibly increased risks of cancer
in exposed humans are critically reviewed, and the strength of that evi-
dence is evaluated according to the criteria listed in Table 1. The IARC
Monographs criteria require specific, critical consideration of the possibility
that the results of each published study may be affected by chance, bias or
confounding.

The strength of an association between an exposure and a disease out-
come, and the possible role of chance are estimated by standard statistical
methods. These methods commonly report the strength of an association
as an odds ratio, relative risk, standardized mortality ratio, or other mea-
surement that presents the observed incidence of disease in a study popula-
tion relative to that in an unexposed control population. For example,

Table 1 IARC Criteria for Strength of Evidence for Increased Cancer Risk in
Exposed Humans

Sufficient—a positive relationship has been established between exposure to the
agent and increased risk of cancer in humans, in which chance, bias, and
confounding can be ruled out with reasonable confidence.

Limited—a positive relationship has been observed between exposure to the agent
and human cancer for which a causal association is credible, but chance, bias, and
confounding cannot be ruled out with reasonable confidence.

Inadequate—available studies are of insufficient quality, consistency, or statistical
power to permit a conclusion regarding presence or absence of a causal association
(or no data are available).

Evidence suggesting lack of carcinogenicity—several adequate studies covering the
full range of exposures encountered by humans are mutually consistent in showing
no positive association between exposure to the agent and human cancer, at any
observed level of exposure.
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a ratio of 5.0 indicates that there were five times as many cases of the disease
in question among members of the study population as among controls.
Whether this ratio is consistent with simple chance association or not is indi-
cated by the calculated confidence interval surrounding the point estimate;
in this hypothetical case, a 95% confidence interval of 2.8–7.7 would
strongly support a significant association. On the other hand, a confidence
interval of 0.3–15 for the same ratio would indicate that the ratio is not
statistically significant and is likely due to chance. Any confidence interval
that includes unity indicates lack of statistical significance at the level
specified.

In epidemiology, bias refers to ‘‘systematic errors in the way subjects
are selected or followed up, or in the way information was obtained from
them. Confounding occurs when an estimate of the association between an
exposure [e.g., occupational exposure to mineral dusts containing crystalline
silica] and an outcome [e.g., lung cancer] is mixed up with the real effect of
another exposure [e.g., cigarette smoking] on the same outcome, the two
exposures being correlated’’ (3).

In general, the criteria for causality in epidemiological studies are those
articulated by Hill (4) (Table 2). A comment is in order, however, on the
criterion of biological plausibility. What is considered biologically plausible
at any given point in time depends on the state of knowledge at that time.
Observations of increased cancer rates in certain populations have often been
made before the cause was understood. A striking example is that of lung

Table 2 Hill Criteria for Causality

Temporal relationship: for an exposure to be the cause of a disease, it has to precede
its biological onset.

Biological plausibility: the association is more likely to be causal if it is consistent
with other biological knowledge.

Consistency: the association is more likely to be causal if similar results have been
found in different populations (however, a lack of consistency does not exclude a
causal association).

Strength: the stronger the association—the greater the relative measure of effect—the
more likely it is to reflect a true causal association.

Exposure–response relationship: further evidence is provided if increasing levels of
exposure are associated with increasing incidence of disease.

Specificity: if a particular exposure increases the risk of a certain disease, but not the
risk of other diseases, this provides evidence favoring a cause–effect relationship.

Reversibility: when the removal of a possible cause results in a reduced incidence of
the disease, the likelihood that the association is causal is strengthened.

Coherence: the putative cause–effect relationship should not seriously conflict with
the natural history and biology of the disease.

Source: From Hill (4), modified by Silva (3).
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cancer among hard-rock underground miners in Europe (5), which was a
mystery when first described but is now generally attributed to high levels
of radon in the atmosphere in poorly ventilated mines. This observation
preceded the discovery of radioactivity, and of radon, by more than a decade.

Credible evaluation of chance, bias, and confounding and application
of the Hill criteria to establish causality require considerable experience. For
further details, a textbook (3) or a treatise (6) on cancer epidemiology
should be consulted.

2.2. Bioassay Data for Carcinogenicity in Experimental Animals

Bioassay data for carcinogenicity in experimental animals (generally
rats and mice) are similarly evaluated according to the criteria listed in
Table 3. For sufficiency of evidence, these criteria emphasize reproducibility
of outcomes among studies and malignant tumors, evaluated and confirmed
histologically, as experimental findings. As all kinds of tumors do occur
naturally in untreated animals, at frequencies that can range from 1% or less
(e.g., tumors of the brain or intestine in rats) to 50% or more, careful quan-
tification of tumors in treated animals and untreated controls and proper
statistical evaluation of the results is essential.

In the absence of adequate data in humans, in general IARC considers
that ‘‘it is biologically plausible and prudent to regard agents for which there
is sufficient evidence of carcinogenicity in experimental animals as if they

Table 3 IARC Criteria for Strength of Evidence for Carcinogenicity in
Experimental Animals

Sufficient—a causal relationship has been established between exposure to the agent
and increased incidence of malignant neoplasms, or an appropriate combination
of benign and malignant neoplasms, in two or more species or in two or more
independent studies in one species, conducted at different times or in different
laboratories or under different protocols; exceptionally, a single study in one
species may suffice when malignant neoplasms occur to an unusual degree with
regard to incidence, site, tumor type, or age at onset.

Limited—data suggest a carcinogenic effect, but consist of a single experiment; or
questions regarding adequacy of design, conduct, or interpretation of the studies
are unresolved; or the effect is limited to benign tumors or lesions of uncertain
neoplastic potential only, or to certain neoplasms that may occur spontaneously
in high incidences in certain strains.

Inadequate—the studies cannot be interpreted as showing either presence or absence
of a carcinogenic effect because of major qualitative or quantitative limitations; or
no data are available.

Evidence suggesting lack of carcinogenicity—adequate studies in at least two species
are negative, within the limits of the tests used.
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presented a carcinogenic risk to humans.’’ However, not all tumors
in experimental animals are considered equally predictive of cancer hazard
to humans. Some kinds of tumors occur in such high and variable incidence
in the inbred strains of mice and rats that are conventionally used in bioas-
says (e.g., Leydig cell tumors of the testis in male Fischer 344 rats, hepatocel-
lular tumors in male mice of many inbred strains and their F1 hybrids) that
when an apparent increase in tumor frequency in treated animals is limited to
these kinds of tumors, the evidence for carcinogenicity may be considered
suggestive (‘‘limited’’ in the IARC vocabulary) rather than conclusive.

It is now clearly established that tumors can be induced in certain
tissues through several distinct mechanisms of carcinogenic action, and that
not all these mechanisms operate in all species. Animal carcinogenicity data
may not predict carcinogenic risk to humans when tumors are induced in
animals by a mechanism of carcinogenicity that does not operate in humans.
This subject is discussed further below, and in the Appendix, and represents
another exception to the basic principle that carcinogenicity in experimental
animals predicts human cancer risk.

2.3. Other Relevant Data

These are data other than tumor incidence in humans and in experimental
animals, and include how a substance is metabolized in experimental
animals and in humans, whether the substance and=or its metabolites are
genotoxic, manifestations of toxicity other than carcinogenicity, and the
mode of action by which the substance acts as a carcinogen.

2.4. Overall Evaluations of Carcinogenicity

Evidence from epidemiological and experimental studies is finally combined
with other relevant data to produce an overall qualitative evaluation and
classification in one of the five groups defined in Table 4. This table reflects
criteria that were introduced in 1992 for use of ‘‘other relevant data’’ in
overall evaluations of carcinogenicity (7). Carcinogenic hazard identifica-
tions formulated on the basis of bioassay data in rodents can be either
strengthened or weakened by additional information on the mode of action
of the carcinogen in animals.

As new data are published, agents are re-evaluated. When the strength
of the total evidence for carcinogenicity of an agent changes as a result of
new data, the classification of the agent may also change. All evaluations,
and narrative summaries of the supporting data, are available in the Internet
at http:==monographs.iarc.fr.

Some representative examples of IARC Monographs evaluations and
classifications at various levels of evidence are presented in the sections that
follow. These are intended to illustrate how the IARC criteria have been
applied to a variety of substances and exposures, but are necessarily
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abbreviated. The serious student of the process of carcinogenic hazard iden-
tification will find numerous additional examples in the Monographs data-
base at the above website.

3. IARC GROUP 1—CARCINOGENIC TO HUMANS

When epidemiological evidence of increased cancer risk in exposed humans
is sufficient, according to the definition given in Table 1, the agent is classi-
fied in Group 1—carcinogenic to humans. Even without any further informa-
tion about the mode of action of the agent, such carcinogenic hazard
identifications carry a very high level of certainty. In rare cases where the
evidence for increased cancer risk is less than sufficient but other relevant
data including carcinogenicity in experimental animals are compelling, an
agent may also be classified in Group 1. Some examples of IARC Group 1
carcinogens are presented in Table 5.

Table 4 IARC Monographs Overall Evaluations of Carcinogenicity to Humans

Group 1—carcinogenic to humans
Sufficient epidemiological evidence of increased risk of cancer in exposed
humans; exceptionally, human evidence that is less than sufficient, but is
supported by sufficient evidence of carcinogenicity in experimental animals
together with strong evidence in exposed humans that the agent acts through
a relevant mechanism of carcinogenicity

Group 2A—probably carcinogenic to humans
Limited epidemiological evidence of increased cancer risk in humans, but sufficient
evidence of carcinogenicity in experimental animals; or inadequate evidence in
humans but sufficient evidence in experimental animals, together with strong
evidence that the carcinogenic mechanism also operates in humans

Group 2B—possibly carcinogenic to humans
Inadequate evidence in humans but sufficient evidence of carcinogenicity in
experimental animals; or inadequate evidence in humans but limited evidence in
animals supported by other relevant data

Group 3—not classifiable as to carcinogenicity to humans
Inadequate evidence in humans and less than sufficient evidence in animals;
exceptionally, agents for which there is inadequate evidence in humans but
sufficient evidence in animals may be placed in this category when there is strong
evidence that the mechanism of carcinogenicity does not operate in humans

Group 4—probably not carcinogenic to humans
Evidence suggesting lack of carcinogenicity in both humans and animals; or
inadequate evidence in humans, and evidence suggesting lack of carcinogenicity
in experimental animals, consistently and strongly supported by a broad range
of other relevant data
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Table 5 Some IARC Monographs Evaluations from Group 1—Carcinogenic
to Humansa

Sufficient evidence in both exposed humans and experimental animals
Vinyl chloride (8,9)

Sufficient evidence of angiosarcoma of the liver and possibly other kinds of
tumors at other sites in occupationally exposed chemical workers

Sufficient evidence in experimental animals: angiosarcoma of liver
and at other sites, also tumors of lung, mammary gland, external auditory
canal (Zymbal’s gland), and kidney in mice and rats

2-Naphthylamine (10,11)
Sufficient evidence in humans: urinary bladder carcinomas in occupationally
exposed chemical workers

Sufficient evidence in experimental animals other than standard bioassay
species: hepatocellular tumors in mice; marginal effects in rats; urinary
bladder carcinomas in dogs, monkeys, and Syrian golden hamsters

Sufficient evidence in exposed humans; less than sufficient evidence or no
data in experimental animals
Smokeless tobacco products (12,13)

Sufficient evidence of oral cancers in individuals who chew tobacco
Analgesic mixtures containing phenacetin (14,15)

Sufficient evidence of urothelial carcinomas of renal pelvis and urinary
bladder in patients who ingested large quantities of phenacetin-containing
analgesics

Although phenacetin alone causes urinary tract tumors in rats and mice, the
combination of phenacetin with aspirin and caffeine (formerly a standard
formulation for over-the-counter analgesics) was tested in animals only once,
with negative results in mice; very few urinary tract tumors were seen in rats,
their incidence was not statistically significant.

Less than sufficient evidence in humans, sufficient evidence in experimental animals,
and strong support from other relevant data
Ethylene oxide (16,17)

Limited evidence of increased risk of lymphoid and hematopoietic neoplasms in
workers using ethylene oxide as a sterilant

Sufficient evidence that ethylene oxide induced brain tumors, peritoneal
mesotheliomas, and other tumors in rats, and lung and Harderian gland
tumors in mice plus lymphomas in female mice when given by inhalation

Other relevant data include evidence that ethylene oxide is a genotoxic chemical
that causes increased frequencies of chromosomal aberrations in lymphocytes
and micronuclei in bone marrow cells of exposed workers, forms DNA and
hemoglobin adducts, and is a powerful mutagen and clastogen at all
phylogenetic levels.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (18)
Limited evidence of slight increased risk of all cancers combined (relative
risk¼ 1.4) in workers most highly exposed in industrial accidents

Sufficient evidence for carcinogenicity in both mice and rats at various sites,

(Continued)
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For a significant number of agents, there is sufficient evidence of car-
cinogenicity in both exposed humans and experimental animals. In Table 5
vinyl chloride and 2-naphthylamine are examples of such agents. Both of
these are (or were, in the case of 2-naphthylamine) industrial chemicals,
and human risk was from occupational exposures, but there are many other
IARC Group 1 agents that do not necessarily present primarily occupa-
tional hazards. Vinyl chloride causes one relatively rare kind of tumor,
hepatic angiosarcoma, in both humans and experimental animals, as well
as tumors at additional sites in rodents. This overlapping tumor spectrum
is not always seen; in fact, it is relatively uncommon for tumor sites in rats
and mice to be the same in response to a given carcinogen, or to overlap
with cancer sites in humans where those are known. For example,
2-naphthylamine is one of the most potent human urinary bladder carcino-
gens known, but in mice it causes only hepatocellular tumors (limited
evidence of carcinogenicity!), and it has only marginal carcinogenic effects
in rats. In certain other species that are not commonly used in bioassays,
2-naphthylamine induces bladder tumors like those seen in humans, but if
the only data for carcinogenic hazard of 2-naphthylamine that were avail-
able at the time of evaluation had been conventional bioassays in rats and
mice, and this compound had not yet been used industrially, it would almost
certainly not have been identified as a carcinogen. Bioassays in rats and mice
are very useful for identifying possible human carcinogens, but they are not
infallible. When positive, they should not be overinterpreted as necessarily
predicting what kind of tumor a substance would cause in a human being.

Table 5 Some IARC Monographs Evaluations from Group 1—Carcinogenic
to Humansa (Continued )

including thyroid, liver, skin, oral cavity, lung, and soft connective tissues
Other relevant data supporting the concept that TCDD acts by binding to
human and rodent Ah receptors, which are transcription factors, rather than
by genotoxic effects

Neutron radiation (19)
Inadequate evidence in humans
Sufficient evidence for induction of leukemia and of ovarian, mammary, lung,
and liver tumors in mice, and at various sites in rats, rabbits, dogs, and
Rhesus monkeys

Gross chromosomal aberrations are induced in lymphocytes of people exposed
to neutrons, and the spectrum of DNA damage induced by neutrons is similar
to that of X rays (for which evidence of carcinogenicity to humans is sufficient),
but contains more of the more serious, less readily reparable types of damage.

aExamples given are illustrative only and are not a comprehensive listing. For a complete and

regularly updated listing of agents evaluated by the IARC Monographs Programme, and for

narrative summaries of the evidence supporting each evaluation, consult the Internet posting at

http:==monographs.iarc.fr.
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Agents can also be placed in IARC Group 1 on the strength of suffi-
cient evidence for cancer causation in humans only. Supporting bioassays
for carcinogenicity in experimental animals are not necessary for classifica-
tion in Group 1. Agents and exposures for which there are only human data
include certain biological agents that have a host range that is restricted to
humans only, and occupational circumstances or personal or cultural habits
that cannot be tested in experimental animals. Rats, for example, obsti-
nately refuse to chew tobacco, and the carcinogenicity of ‘‘tobacco habits
other than smoking’’ depends solely on epidemiological studies of humans
who do chew tobacco (12,13).

Analgesic mixtures containing phenacetin, taken as over-the-counter
analgesics, can clearly cause urothelial tumors in humans when taken in
excessive quantities for prolonged periods. The phenacetin in the mixture
(which by itself causes urothelial tumors when fed to rats in bioassays) is
almost certainly responsible for this effect, but there is no direct evidence
for this, as phenacetin alone has not been taken by humans for pain relief.
Accordingly, while there is sufficient evidence in humans that the mixture
is carcinogenic, there is only limited evidence for the carcinogenicity to
humans of phenacetin itself, which is therefore classified in Group 2A (see
Table 6).

Ethylene oxide and neutron radiation are two examples of agents that
are classified as human carcinogens, but with only limited evidence of
increased cancer risk in exposed humans (ethylene oxide) or even inadequate
evidence (neutrons). In both cases, animal carcinogenicity data are convin-
cing, and other relevant data supporting genetical damage as a mode of
action are compelling.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an example of a
compound that is carcinogenic, not by a genotoxic mechanism, but by inter-
action with a cellular receptor. Other examples of receptor-based carcino-
gens are natural and synthetic estrogens.

4. IARC GROUP 2A—PROBABLY CARCINOGENIC
TO HUMANS

Agents which are carcinogenic in experimental animals and for which there
are also certain kinds of supplementary data may be classified in Group
2A—probably carcinogenic to humans (Table 6). Such supplementary data
may consist of limited evidence, of cancer in exposed humans, as in the case
of phenacetin, or may include various kinds of experimental data, for exam-
ple, on genetical and related effects of an agent in microbial and mammalian
cells and in experimental animals in vivo (as for acrylamide). Certain kinds
of exposures that are not amenable to testing in experimental animals (for
example, occupational exposures in petroleum refining) may be classified
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in Group 2A based only on limited evidence for increased cancer risks in
exposed humans when other relevant data support this evaluation.

5. IARC GROUP 2B—POSSIBLY CARCINOGENIC
TO HUMANS

Carcinogenic hazard identifications are frequently made only on the basis of
empirical carcinogenicity data in experimental animals, when there are no
data on human exposures and nothing else is known about the mode of
action of the agent. When this is the only information available, the identi-
fication is generally qualified as having a lower level of certainty than human
data. Agents for which there is sufficient evidence of carcinogenicity in
experimental animals by the criteria of Table 3, but for which there are
few or no other data, are classified in Group 2B as possibly carcinogenic
to humans (Table 7).

For some chemicals, such as 1,2-epoxybutane, bioassay data are too
weak to meet the criteria for sufficient evidence of carcinogenicity in

Table 6 Some IARC Monographs Evaluations in Group 2A—Probably
Carcinogenic to Humans

Limited evidence in exposed humans but sufficient evidence in experimental animals
Phenacetin (14,15)
Limited evidence of urothelial tumors of kidney and urinary bladder in patients
who took mixtures containing phenacetin, but no data are available on the
possible carcinogenic effects of phenacetin alone

Sufficient evidence for tumors of urinary tract in experimental rats and mice,
and of the nasal cavity in rats

Limited evidence in exposed humans; no data in experimental animals
Occupational exposures in petroleum refining (20)
Limited evidence that working in petroleum refineries entails increased risk of
skin cancer and leukemia

Other relevant data include the fact that various petroleum fractions are
carcinogenic in experimental animals and that benzene and certain mineral oils
present in or derived from petroleum are carcinogenic to humans

Inadequate evidence or no data in humans, sufficient evidence in experimental animals,
and strong support from other relevant data
Acrylamide (17)
No consistent evidence of increased cancer risk at any site in workers engaged in
acrylamide manufacture (no data on possible cancer risk from exposures to
acrylamide in foods)

Sufficient evidence of cancers at multiple sites in rats treated with acrylamide,
including thyroid, mesothelium, brain, and other sites

Other relevant data: biotransformation of acrylamide to a genotoxic epoxide
metabolite, glycidamide, occurs both in rodent species and in humans
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animals, but other relevant data support the likelihood that the agent is
potentially carcinogenic. This is especially common when the agent or its
metabolites are genotoxic. However, in the Monographs Programme, there
must be at least some empirical evidence of carcinogenicity or an agent
would not be placed in Group 2B—and, in fact, would not be selected for
evaluation in the first place.

Exposures and agents may also be classified in Group 2B on the basis
of limited epidemiological data alone, in the absence of bioassay data in
experimental animals or when the bioassays are negative. Extremely low-
frequency magnetic fields are an example; the only evidence that these fields
may be causally related to human cancer is a consistent, statistically signifi-
cant increased incidence of childhood leukemia in households where such
fields are high. It was the consistency of this finding in several independent
studies that determined the outcome of limited, rather than inadequate,

Table 7 Some Representative IARC Monographs Evaluations from Group 2B—
Possibly Carcinogenic to Animals

Inadequate evidence or no data in humans; sufficient evidence in experimental animals
Acrylonitrile (21)a

Inadequate evidence in humans; no consistent evidence of increased lung or
other cancer risk in exposed workers

Sufficient evidence (brain, mammary gland, liver, and other tumors) in rats
exposed by inhalation, in several independent studies

Naphthalene (22)
No data in exposed humans
Olfactory carcinomas in rats on inhalation; lung tumors in mice

Less than sufficient evidence in experimental animals, but support from other
relevant data
1,2-Epoxybutane (23)

No data on exposed humans
Limited evidence in experimental animals: nasal adenomas (benign tumors) and
a low incidence of lung tumors including both adenomas and carcinomas in
rats on inhalation; no significant carcinogenic effect in mice

Other relevant data: direct-acting alkylating agent that is mutagenic in a variety
of test systems

Limited evidence in humans; no evidence of carcinogenicity in experimental animals
Extremely low-frequency magnetic fields (24)

Limited evidence in humans: consistent excess risk of childhood leukemia in
households where magnetic fields are highest

No support of causality from either bioassays in experimental animals or data
on putative mechanism of carcinogenic action

aSee also the previous classification in Group 2A, in part on the basis of limited evidence of

increased lung cancer risk in occupationally exposed workers that was not confirmed by sub-

sequent epidemiological studies with greater statistical power (25).
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evidence for increased cancer risk in exposed humans. This is also a good
example of a case where the criterion of biological plausibility was consid-
ered inapplicable by the IARC Working Group (24).

6. IARC GROUP 3—NOT CLASSIFIABLE AS TO
CARCINOGENICITY TO HUMANS

An agent is placed in Group 3 when there are no epidemiological data,
or published studies provide inadequate evidence for increased cancer risk
in humans, and experimental animal data are less than sufficient. More
than half of all the agents ever evaluated by the IARC Monographs Pro-
gramme are in Group 3, most of them because of various limitations in
the available data.

Agents may also be placed in Group 3 when experimental carcinogeni-
city data are sufficient but the mechanism of carcinogenicity in animals is
considered not to predict human risk. Of most practical importance are
mechanisms that operate in experimental rodent species to cause tumors
in a specific tissue, but that because of physiological differences between
rodent species and humans do not lead to human cancer. Tumors can
arise in certain tissues in rodents—sometimes in a single sex of a single
species—by such ‘‘rodent-specific’’ mechanisms. The most important and
best characterized of these modes of action are summarized in Table 8. Con-
siderations of how such data should be used in carcinogenic hazard identi-
fication are summarized in the Appendix; these are condensed from the

Table 8 Mechanisms=Modes of Carcinogenic Action That Occur in One or Both
Sexes of One or More Species of Rodents, but Are Considered Not to Predict
Carcinogenic Risk to Humans

Species Organ site Mechanism=mode of carcinogenic action

Rat, mouse Thyroid follicular
epithelium

Thyroid-stimulating hormone (TSH)
dysregulationa

Rat (males only) Renal cortical
epithelium

á2-Urinary globulin nephropathya

Rat Urinary bladder Urinary calculus formationab

Rat Urinary bladder Calcium phosphate-containing urinary
precipitatesa

Rat, mouse Liver Peroxisome proliferationc

aFor details see Capen et al. (26).
bIndividuals with urinary tract stones do have a small excess risk of urothelial cancers; this

mode of carcinogenic action in rodents is considered not to predict human risk at levels of

exposure where urinary calculi do not form.
cFor details see IARC (27).
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consensus statements from IARC publications on these subjects (26,27). The
full consensus statements can be found at http:==monographs.iarc.fr.

Some examples of IARCMonographs evaluations that have been made
on the basis of such mechanistic data are listed in Table 9.

7. IARC GROUP 4—PROBABLY NOT CARCINOGENIC
TO HUMANS

When regulatory agencies conclude that an agent or exposure is not carcino-
genic, typically no action is taken to broadcast such findings. The IARC
selects agents for evaluation on the basis of two criteria: there must be evi-
dence or suspicion of carcinogenicity, and there must be human exposure,
but occasionally on review it is found that there is evidence suggesting lack
of carcinogenicity in humans or in experimental animals. When there are
adequate data both from epidemiological studies of exposed humans and
from bioassays in experimental animals, and both the human and the animal
data are negative, an agent may be placed in Group 4—probably not
carcinogenic to humans. At the present time there is only one substance,
caprolactam, in Group 4.

APPENDIX

IARC Monographs guidelines on the use of mode-of-action data for extra-
polation of organ-specific rodent carcinogenicity findings to humans when
the mode of carcinogenic action in rodents does not exist in humans,

Table 9 Some IARCMonographs Evaluations of Chemicals That are Carcinogenic
to Experimental Animals by Modes of Action Listed in Table 8, and Placed by the
IARC Monographs in Group 3—Not Classifiable as to Carcinogenicity to Humans

Chemical
Target tissue and mechanism
of carcinogenicity in rodents Reference

Saccharin and
its salts

Rat urinary bladder: calcium
phosphate-containing urinary precipitates

28

Melamine Rat urinary bladder: urinary calculi 29
d-Limonene Rat kidney (males only): á2-urinary

globulin nephropathy
30

Ethylene thiourea Rat and mouse thyroid follicular epithelium:
TSH dysregulation

31

Di (2-ethylhexyl)
phthalate (DEHP)

Rat and mouse liver parenchyma:
peroxisome proliferation

32
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under realistic conditions of human exposures to the agent. This appendix
is condensed from the consensus statements for the various mecha-
nisms=modes of carcinogenic action originally published in Capen et al.
(26) and in IARC (27).

Thyroid-Stimulating Hormone-Associated
Follicular-Cell Neoplasms

Agents that lead to the development of thyroid neoplasia through an adap-
tive physiological mechanism belong to a different category from those that
lead to neoplasia through genotoxic mechanisms or through mechanisms
involving pathological responses with necrosis and repair.

Agents causing thyroid follicular-cell neoplasia in rodents solely
through hormonal imbalance can be identified using the following criteria:

� There is a lack of genotoxic activity (agent and=or metabolite)
based on an overall evaluation of in vitro and in vivo data

� The presence of hormone imbalance has been demonstrated under
the conditions of the carcinogenicity assay

� The mechanism whereby the agent leads to hormone imbalance has
been defined.

When tumors are observed both in the thyroid and at other sites, they
should be evaluated separately on the basis of the modes of action of the
agent.

Agents that induce thyroid follicular tumors in rodents through inter-
ference with a thyroid hormone homeostasis can, with a few exceptions, also
interfere with thyroid hormone homeostasis in humans if given at a suffi-
cient dose for a sufficient period of time. These agents can be assumed
not to be carcinogenic in humans at exposure levels which do not lead to
alterations in thyroid hormone homeostasis.

á2-Urinary Globulin Nephropathy and Renal Cell
Tumors in Male Rats

In making overall evaluations of carcinogenicity to humans, it can be con-
cluded that production of renal cell tumors in male rats by agents that fulfill
all of the following criteria for an á2u-globulin-associated response is not
predictive of carcinogenic hazard to humans:

� Lack of genotoxic activity (agent and=or metabolites) based on an
overall evaluation of in vitro and in vivo data

� Male rat specificity for nephropathy and renal tumorigenicity
� Induction of the characteristic sequence of histopathological

changes in shorter-term studies, of which protein droplet accumu-
lation is obligatory
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� Identification of the protein accumulating in tubule cells as á2u-
globulin

� Reversible binding of the chemical or metabolite to á2u-globulin
� Induction of sustained increased cell proliferation in the renal

cortex
� Similarities in dose–response relationship of the tumor outcome

with the histopathological end points (protein droplets, á2u-globu-
lin accumulation, cell proliferation).

In situations where an agent induces tumors at other sites in the male
rat or tumors in other laboratory animals, the evidence regarding these
other tumor responses should be used independently of the á2u-globulin-
associated tumorigenicity in making the overall evaluation of carcinogeni-
city to humans.

Urinary Bladder Calculi and Urothelial Neoplasms
of the Bladder in Rats

For chemicals producing bladder neoplasms in rats and mice as a result of
calculus formation in the urinary bladder, the response cannot be consid-
ered to be species specific; thus, the tumor response is relevant to an evalua-
tion of carcinogenicity to humans. There are quantitative differences in
response between species and sexes. Calculus formation is dependent on
the attainment in the urine of critical concentrations of constituent chemi-
cals which form the calculus; therefore, the biological effects are dependent
on reaching threshold concentrations for calculus formation. Microcrystal-
luria is often associated with calculus formation, but its relevance to species-
specific mechanisms cannot be assessed.

Calcium Phosphate-Containing Urinary Precipitates and
Urothelial Bladder Tumors in Rats

Calcium phosphate-containing precipitates in the urine of rats, such as those
produced by the administration of high doses of some sodium salts, includ-
ing sodium saccharin and sodium ascorbate, can result in the production of
urinary bladder tumors. This sequence can be considered to be species and
dose specific and is not known to occur in humans.

In making overall evaluations of carcinogenicity to humans, it can
be concluded that the production of bladder cancer in rats via a mechanism
involving calcium phosphate-containing precipitates is not predictive of car-
cinogenic hazard to humans, provided that the following criteria are met:

� The formation of the calcium phosphate-containing precipitate
occurs under the conditions of the carcinogenicity bioassay which
is positive for cancer induction

� Prevention of the formation of the urinary precipitate results in
prevention of the bladder proliferative effect
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� The agent (and=or metabolites) shows a lack of genotoxic activity,
based on an overall evaluation of in vitro and in vivo data

� The agent being evaluated does not produce tumors at any other
site in experimental animals

� There is evidence from studies in humans that precipitate forma-
tion or cancer does not occur in exposed populations.

In situations where an agent induces tumors at other sites in rats or
tumors in other laboratory animals, the evidence regarding these other
tumor responses should be used independently of information on tumors
associated with calcium phosphate-containing precipitates in making the
overall evaluation of carcinogenicity to humans.

Peroxisome Proliferation and Hepatocellular
Tumors in Rats and Mice

The responses to the following questions are based on the interpretation of
hepatocellular tumor induction in rats and mice, since the mechanisms of
carcinogenesis have been evaluated in detail only in the liver. The available
information on the mechanisms of tumor response elicited by some peroxi-
some proliferators in rats and mice at sites other than the liver suggests that
peroxisome proliferation does not play a role in the formation of tumors at
those sites.

1. What mechanisms are critical to peroxisome proliferation?
The evidence suggests that peroxisome proliferation in mouse and rat

liver is mediated by activation of peroxisome proliferator-activated recep-
tors, which are members of the steroid hormone receptor superfamily.
Receptor activation may be a direct effect of the peroxisome proliferator
or may be mediated through perturbation of lipid metabolism. Such recep-
tors have also been identified in humans.

2. Is peroxisome proliferation an indicator of cancer risk in rats
and mice?

There is a strong concordance between peroxisome proliferation and
hepatocellular carcinogenesis in rats and mice. On the basis of a more limi-
ted database, a similar concordance is seen between hepatocellular prolif-
eration induced by peroxisome proliferators and hepatocellular tumor
induction.

3. What are the mechanisms of carcinogenesis mediated by chemically
induced peroxisome proliferation?

Two major biological responses to peroxisome proliferators are
associated with increased cancer induction in rats and mice. One is peroxi-
some proliferation, and the other is increased hepatocellular proliferation.
The proposed mechanisms of peroxisome proliferator-induced hepatocel-
lular carcinogenesis include oxidative stress, increased hepatocellular
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proliferation, and preferential growth of preneoplastic lesions. These
mechanisms may not be mutually exclusive.

Hepatocellular carcinogenic peroxisome proliferators are generally
inactive in assays for genotoxicity. Some such agents can cause morphologi-
cal cell transformation and inhibit gap-junctional intercellular communica-
tion. These cellular effects appear to be independent of the process of
peroxisome proliferation. Chemicals that induce peroxisome proliferation
may have additional carcinogenic effects unrelated to that phenomenon.

4. Does peroxisome proliferation also occur in humans, and do the
mechanisms of carcinogenesis mediated by peroxisome proliferation in rats
and mice also operate in humans?

Data on the effects in humans of peroxisome proliferators are derived
from studies of subjects receiving hypolipidaemic drugs and from studies of
cultured human hepatocytes. The limited data in vivo suggest that therapeu-
tic doses of hypolipidaemic agents produce little if any peroxisome prolifera-
tion in human liver. Hypolipidaemic fibrates and other chemicals that
induce peroxisome proliferation in rat and mouse hepatocytes when given
at high concentrations do not do so in cultured human hepatocytes.

Marginal, statistically nonsignificant increases in hepatocellular per-
oxisome proliferation in human liver have been reported after exposure to
clofibrate, but a comparable increase in peroxisome proliferation was not
associated with hepatocellular carcinogenesis in rats or mice.

5. How can data on peroxisome proliferation be used in making overall
evaluations of carcinogenicity to humans?

Chemicals that show evidence of inducing peroxisome proliferation
should be evaluated on a case-by-case basis. The evaluation of agents by
independent expert groups is a matter of scientific judgement.

When the database supports the conclusion that a tumor response
in mice or rats is secondary only to peroxisome proliferation, consideration
could be given to modifying the overall evaluation, as described in the Pre-
amble to the IARC Monographs, taking into account the following evidence:

� Information is available to exclude mechanisms of carcinogenesis
other than those related to peroxisome proliferation.

� Peroxisome proliferation (increases in peroxisome volume density
or fatty acid â-oxidation activity) and hepatocellular proliferation
have been demonstrated under the conditions of the bioassay.

� Such effects have not been found in adequately designed and con-
ducted investigations of human groups and systems.
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1. INTRODUCTION

Commonly, patients with cancer wonder why they have become victims.
Physicians and patients alike speculate about the causes of the patients’
cancer. The internet, a wide array of agencies and organizations, and the
public health community are looked to in different ways to provide answers.
But, for the individual, the available data that will allow for less speculation
and a better understanding of causality are frequently limited. There are few
biomarkers or fingerprints of a particular carcinogenic process that have
been sufficiently validated to indicate what actually happened to a person.
An individualized cancer risk assessment or determination of what caused
cancer in an individual necessarily relies on available epidemiological data
that actually provide risk estimates for populations, and have limitations
for use in understanding the risks for an individual within a population.

Patients and health care providers become frustrated at the lack of
answers, and intuition is relied upon. However, there are a multitude of
sources that can be considered, such as epidemiological, laboratory animal,
and in vitro studies. A comprehensive review may be beyond the time,
resources, or expertise of a health care provider. Review articles or

137



documents from regulatory agencies and other organizations may be avail-
able. However, it is important to consider the focus and goals of the authors
for any particular document, because frequently the analysis is not aimed at
providing for a causality assessment in an individual. In fact, usually such
documents are intended to provide insights to protecting the public health.
As such, the authors provide assessments that will focus on safety, and
utilize data that will maximize such.

2. CARCINOGENESIS

Cancers result from multiple gene–environment interactions that occur over
long periods of time. The environment is now defined as the area surround-
ing the affected critical macromolecules, specifically DNA. So, it is more
important to understand what is happening at the cellular level, and the
origin of exposures might be exogenous (from outside of the body) or endo-
genous (produced by the body).

Carcinogenesis is a multistage process of normal growth, differenti-
ation, and development gone awry. It is driven by spontaneous and carcino-
gen-induced genetic and epigenetic events. Tumor initiation involves the
direct effects of carcinogenic agents upon DNA that cause mutations and
altered gene expression. The attendant defects lead to selective reproductive
and clonal expansion of cells. This may be augmented through growth
factors that control signal transduction. Progressive phenotypic changes
and genomic instability occur (aneuploidy, mutations, or gene amplifica-
tion). These genetic changes enhance the probability of ‘‘initiated’’ cells
transforming into a malignancy, the odds of which are increased during
repeated rounds of cell replication. During tumor progression, angiogenesis
allows for a tumor to grow beyond one or two millimeters in size. Ulti-
mately, tumor cells can disseminate through vessels invading distant tissues
and establishing metastatic colonies.

The primary genes involved in driving the cancer process are proto-
oncogenes and tumor suppressor genes. Proto-oncogenes are important to
the regulatory mechanisms of growth, cell cycle, and terminal differentiation.
Activation of proto-oncogenes enhances the probability of neoplastic trans-
formation, which can either be an early or late event. Carcinogens can cause
mutations in proto-oncogene DNA sequences or they can act as tumor pro-
moters enhancing the activity of oncogene protein products. Examples of a
proto-oncogene are those in the RAS family.

Tumor suppressor genes also code for products that regulate cell
growth and terminal differentiation. However, they have the opposite effect
by limiting growth and stimulating terminal differentiation. If inactivated,
then the cell may grow or replicate uncontrollably, with limits defined only
by blood supply and space. For this to occur, both copies of the tumor sup-
pressor genes must be affected, and thus it is a recessive event. This is
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exemplified by inheritance of a predisposition to retinoblastoma and=or
osteosarcoma, where patients possess a homozygous loss of the Rb1 gene
on chromosome 13 (1–3). In the familial form, loss of one allele is inherited
and the other is lost through later mutation. Loss of suppressor and antime-
tastasis genes can be an early or late event involving several steps, including
angiogenesis and metastasis (4).

Another way of considering genes involved in the carcinogenic process
is to classify them as caretaker and gatekeeper genes (5). This recognizes
their respective roles in the maintenance of genomic integrity (e.g., DNA
repair) and cellular proliferation, respectively. Landscaper genes are also
considered that are responsible for maintaining the general environment
around the cells (i.e., effects on stromal cells and signaling between cells).
Some examples of caretaker genes are those that are involved in DNA repair
and carcinogen metabolism, while examples of gatekeeper genes are those
involved in cell cycle control and DNA replication. Dysfunctional caretaker
genes increase the probability of mutations in gatekeeper genes, which are
necessary to initiate the molecular pathogenesis of cancer. It is interesting
that the carcinogenic effects of caretaker and gatekeeper genes appear to
be tissue-specific and lead to cancer only in those organs, even though these
genes are expressed in many different organs.

Carcinogenic agents affect DNA in different ways. They can cova-
lently bind to nucleotides and form adducts. These adducts may be promu-
tagenic, and if present at the time of DNA synthesis, can cause mutations.
N-nitrosamines, for example, present in the diet and linked to esophageal
and gastric carcinoma, result in nucleotide base substitutions due to
mispairing at sites where adducts are formed. Some mutations may reflect
specific carcinogen exposures or endogenous mechanisms, and frequently
exhibit target organ specificity. For example, p53 mutations at codon 249
frequently observed in hepatocellular carcinoma from China (6) or southern
Africa (7) are consistent with the type of damage caused by aflatoxin B1

exposure, a common dietary carcinogen linked to this tumor. In contrast,
several types of p53 mutations have been observed in lung cancer (8), which
is consistent with a multiple carcinogen exposure etiology from tobacco
smoke. To date, however, the mutational spectra of p53 or other genes
cannot be used to determine what caused a cancer in a person.

Independent of carcinogen exposure, human cells are continuously
undergoing spontaneous mutations at a low rate. Oxidative damage, poly-
merase infidelity, chromosomal rearrangement, recombinase infidelity, and
telomere reduction are other sources of error. The process of cell and
DNA replication can increase the rate of mutation (9). When one considers
that the human body contains 1014 cells and that these cells undergo 1016

divisions over a person’s life span, it is quite possible that genomic instabil-
ity plays an important role in carcinogenesis (10,11).
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Balancing the ongoing exposure to carcinogens, cells have the ability
to repair DNA damage, such as the removal of carcinogen DNA adducts
through nucleotide excision repair or gross chromosomal damage through
homologous recombination. When DNA is sufficiently damaged and cannot
be repaired, then cells have the ability to trigger apoptosis (cell death), in
which case it is no longer viable and cannot become a cancer cell.

In almost every step of the multistage process of carcinogenesis,
person-to-person differences in cancer susceptibility can be found (12).
Interindividual differences for particular traits can be acquired, or inherited.
Inherited susceptibilities, manifest through evolutionary changes in nucleo-
tide sequence, may augment human cancer pathogenesis that can vary from
high penetrance with an attendant high likelihood of causing cancer to low
penetrance genes with an attendant increased risk of causing cancer albeit
less likely than high penetrance genes. Nevertheless, the range from low to
high penetrance genes is a continuum, and studies in animal models indicate
that the effects of high penetrance genes can be modified by other genes (13).
High penetrance genes that cause family cancer syndromes can have sub-
stantial impact in affected families (e.g., BRCA1, hereditary nonpolyposis
coli or Li–Fraumeni syndrome) (13), but they affect only a small percentage
of the population. In contrast, the manifestations of cancer susceptibility
genes with less penetrance contribute to common sporadic cancers, and thus
affect a large segment of the population.

2.1. Methods to Assess Carcinogenesis

There are many tests that are used to increase our understanding of carcino-
genesis and risk; these range from in vitro and experimental animal in vivo
studies to human clinical and epidemiological studies. The usefulness of
each method can be contrasted with its limitations (Table 1). Short-term
assays for mutagenesis provide quick and inexpensive screens for potential
carcinogens. Among the most widely used is the Ames’ test (14), which
assesses mutagenic potential in Salmonella typhimurium bacteria. The Ames’
test has also been used as a biomonitor in humans, as exemplified by urine
mutagenicity studies from cigarette smokers (15). While other assays exist,
there are none with proven increased predictive value. Although short-term
assays are useful in identifying potentially carcinogenic compounds, the
same sensitivity makes the results difficult to extrapolate to humans. Posi-
tive results might be unique to the strain, and factors such as metabolism,
repair, and exposure cannot be assessed.

Experimental animal studies provide a short-term ability to assess the
effects of a carcinogen in mammals. However, the predictivity for human
risk is poor, but few better methods to study possible cancer risk and carci-
nogenesis exist. As used by the National Toxicology Program and others,
rodent carcinogenicity studies are performed using lifetime exposures with
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up to maximally tolerated doses (MTD), that is, those not producing clini-
cally evident toxic effects. To infer that a carcinogenic effect is present in
laboratory animals, dose–response relationships are examined, along with
overall mortality rates and consistency with other species. The limitations
in these experiments include the routine use of the MTD, thus potentially
increasing cell replication with resultant increased endogenous mutations;
interspecies, and interstrain differences; use of rodents known to have high
spontaneous rates of cancer; an inability to account for metabolic differ-
ences between high- and low-dose exposure, and difficulty in interpreting
data from doses that commonly exceed those received by humans (16–
18). Also, the tumors of experimental animals may not resemble human
cancer, or may not be malignant.

Human investigations provide the most relevant data regarding
human risk. Clinical studies might be done, where exposures are unavoid-
able. For example, while it is conceivable to intentionally expose a person

Table 1 Testing for Carcinogenicity

Method Advantages Disadvantages

In vitro testing Economical Uncertain in vitro to in vivo
extrapolations

Rapid results Frequent false positives and
negatives

Human cells
can be used

Mutagenicity is not the same as
carcinogenicity

Inter-laboratory variation
Animal bioassay More predictive of

human experience
than short-term tests

Elucidates species
differences

Expensive
Doses are higher than those
experienced by humans

Uncertain animal-to-human
extrapolation

Human clinical
studies

Direct measurement of
human experience

Cancer is not an endpoint

Biomarkers show
biologically effective dose
and intermediate markers
of cancer risk

Short-term results
Epidemiology Direct measurement of

human experience
Insensitive
Does not prove causation

Covariables examined
Dose–response data Unknown confounding variables
Biomarkers can be used
Interindividual variation

considered
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who already smokes to a modified tobacco product intended to reduce
exposure, it would not be advisable to expose a person to a new chemical
that has not been considered to be safe through laboratory testing. Epide-
miology measures the incidence or prevalence of disease in human popula-
tions. One limitation is that epidemiology can inform us about cancer risk
from prior exposures, the latency effect of most carcinogens is so long that
we cannot wait to assess a cancer risk in the future, and these study repeat
effects after too many people get cancer. Also, it must be realized that epi-
demiologic methods, by themselves, do not demonstrate causation. The
assessment of causation can be aided by Sir Austin Bradford–Hill’s (19)
proposed criteria, summarized in Table 2.

A formal quantitative risk assessment using mathematical models is
used by regulatory agencies to estimate a potential cancer risk to a popula-
tion exposed to a particular carcinogen at a specific dose. Risk assessments
serve public health interests as they attempt to predict the frequency of
cancer in a population before epidemiologic investigations can be performed,
that is, before significant exposure and adverse outcomes occur. Among the
reasons that population risk assessment informs little understanding about
individual cancer risk, or causality, is that the risk assessment process makes
a variety of interpretations and assumptions in the public health interest, and
many of these are open to debate. Examples include subjective evaluations of
the literature and extrapolations from laboratory animals to humans, and the
use of safety quotients to compensate for a lack of knowledge in some areas.

2.2. Gathering Risk Factor Information

The initial approach before considering the individual’s situation and pos-
sible risk factors is to assess what risk factors are known, and the scientific
basis that identifies these risk factors. In the case of a potential carcinogen
exposure, the scientific data are considered at any level of exposure. This

Table 2 Evaluating Cancer Etiology—Bradford–Hill Criteria

Criteria Explanation

Strength of association What is magnitude of risk?
Consistency Are there repeated observations

by multiple investigators in different populations?
Specificity Is the effect specific or are there other known causes?
Temporality Does exposure precede effect?
Biological gradient Is there a dose–response relation?
Biological plausibility Is the effect predictable?
Coherence Is the effect consistent with other scientific data?
Analogy Do other similar agents act similarly?

Source: From Ref. 19.
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is done by reviewing scientific textbooks and articles identified by doing
computerized literature searches.

For literature searches, public websites such as the National Library
of Medicine PubMed website can be useful (http:==www.ncbi.nlm.nih.
gov=entrez=query.fcgi). Abstracts of publications are frequently available,
some articles can be downloaded for free, or at a cost, and all can be ordered
through a related service on that site called Loansome Doc. Search strate-
gies should be broad in order to identify related articles that might not be
categorized appropriately. PubMed also includes links to related articles,
which are sometimes helpful.

The websites for governmental agencies and other organizations can
provide information, including downloads of variousmonographs. For exam-
ple, one can view the websites of the Agency for Toxic Substances andDisease
Registry (http:==www.atsdr.cdc.gov)= and its parent website for the Centers
for Disease Control (http:==www.cdc.gov)=, the American Conference of
Governmental Hygienists (http:==www.acgih.org), the Environmental Pro-
tection Agency (http:==www.epa.gov), Food and Drug Administration
(http:==www.fda.gov), the International Agency for Research on Cancer of
the World Health Organization (http:==w=niosh), National Institutes of
Environmental Health Sciences (http:==www.niehs.nih.gov),and the Nuclear
Regulatory Commission (http:==www.nrc.gov). Also, onemight look to links
by various nonprofit and advocacy organizations.

2.3. Assessing Causality in the Individual

The methodology for the determination of cancer causality is described
below. It is important to assess different types of scientific data, relying
on the best studies. Sometimes, a researcher might postulate causality
(i.e., as might be done through a publication of a case report, or a case ser-
ies), but this is different from concluding a causal relationship of exposure to
outcome. Among the types of data that might be useful, human epidemio-
logical data are substantially more helpful than nonhuman data. If there
is sufficient reason to consider that the chemical has a potential to cause
the type of cancer identified for the individual (target organ specificity is
important), then an assessment is made to determine the doses reported in
the literature that may be associated with an increased cancer risk, and in
what settings. A mechanistic understanding of the carcinogenic process
(known or hypothesized) is considered in the context of the alleged exposure
and disease in the patient. Animal and in vitro studies can be helpful in these
mechanistic assessments. A concurrent step for assessing causality in an
individual is to confirm the diagnosis, as sometimes incorrect diagnoses are
made, and so would not be appropriately related to the alleged exposure in
the individual. Assuming that there is sufficient reason to believe that the
chemical might increase cancer risk, then one would consider the individual’s

Determining Individual Cancer Etiology 143



potential exposure or risk factor compared to those from the literature. For
example, exposure level, route of exposure, other exposures or risk factors, or
the type of population would be considered.

It is helpful to consider the Bradford–Hill guidelines (19) mentioned
above and described in Table 2. While not all are criteria are required to
be met, there are some criteria that if violated would exclude the likelihood
of causation; while fulfilling some may not lead to a definitive conclusion of
causation. Among the most important criteria is consistency in the litera-
ture, that is, doing several well-designed and well-conducted epidemiology
studies leading to similar findings in different populations, using different
study designs. It should be noted that no single epidemiological study is defi-
nitive. A determination of a biological gradient also is important, i.e., if
there is a dose–response relationship identified in scientific studies, and if
those doses occur in the human exposure scenario of interest. Another is
the strength of association, which allows one to consider if the reported
association in an epidemiological study is believable (i.e., not too high or
too low). An evaluation of temporality considers if the exposure sufficiently
preceded the cancer effect to allow for latency. Specificity considers if the
cancer has other reported causes and if the effect occurs in the identified tar-
get organ. Coherence refers to an evaluation and agreement of different
types of scientific data (epidemiological, laboratory animal studies, cell cul-
ture models, etc.) and they do provide similar findings that lead to a
mechanistic understanding of how the chemical would cause cancer in
humans. Analogy looks to see if similar chemicals are known to behave
similarly and what is the available scientific data for those chemicals.

2.4. Assessing the Patient

A careful history and physical examination are critical to any medical
assessment, and that is true for cancer risk assessment too. The history,
detailed in Table 3, needs to be thorough. What is critical is to document
all potential exposures. Parenthetically, medical records are often used in
litigation over potential exposures, and so the health care provider needs
to document potential exposures accurately and clearly. This is true for
known cancer risk factors as well.

If a known or suspected carcinogen is identified for a patient, then an
evaluation of the actual exposure can be undertaken. If there are validated
biomarkers for such, then these can be relied upon. Some might reflect only
recent exposure, however, and do not indicate what has possibly occurred
over many years or a lifetime. There is considerable research into the devel-
opment and validation of biomarkers. The validation has to include the
reliability of the test itself as it reflects what it is supposed to be measuring,
but also its validity as a risk factor. The latter can be more complicated, and
the health care provider should use caution when considering the use of a

144 Shields



test that is still experimental. A major limitation is that recommendations
based on results cannot be given in an informed manner.

Environmental monitoring might be taken, and although some of
these are relatively inexpensive (i.e., radon), the cost of some monitoring
and testing can be prohibitive. The use of biomarkers or environmental test-
ing must be carefully considered, including their validity. The choice of
laboratory, and its competency and experience also must be considered.
Resources for environmental testing might include local industrial hygienists

Table 3 Assessing a Patient’s History

Category Examples of questions

Medical History of present illness
History of medical disorders associated with secondary
malignancies

Recent and distant medication use
History of radiation exposure
History of virus exposure

Family History of cancer in different generations, including immediate
and next-to-immediate members

Assess passive smoke exposure (parents, current occupants)
Occupational history of current and past household members
Hereditary disorders associated with secondary malignancies

Social Tobacco consumption (cigarettes and smokeless products)
Alcohol use
Risk factors for viral exposure
Substance abuse
All recreations and hobbies
Diet and nutrition, including vitamin use, health fads, home
gardens and locally grown food products

Foreign travel
Occupational All occupations, including summer and childhood work

Parental occupation
Any jobs with known hazards
Any jobs where protective equipment was used
Any jobs with cancer clusters
Any jobs with bad odors
Any jobs with chemicals, fumes, gases, or dusts

Environmental All residences and types
Residential proximity to industry, waste sites, agriculture, or
other areas with potential exposure

Source of water—well, community, and bottled
Cancer clusters
Use of pesticides, herbicides, and termiticides
House building materials and renovations
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at the company where an exposure might be alleged, or a consulting firm.
Public health departments might also be helpful.

3. SUMMARY

The assessment of cancer risk in an individual can be complex. It requires an
understanding of carcinogenesis, and the resources and abilities to obtain
and interpret the scientific literature. It also includes a careful history and
physical of the patient. Importantly, the best available means to assess con-
sidered risk factors, such as a biomarker, should be utilized. However, cau-
tion is needed for the choice of biomarker, or environmental testing, in that
it must be predictive of risk. The occurrence of cancer in a patient is fre-
quently a life-transforming event, and the health care provider needs to give
the patient accurate information.
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1. INTRODUCTION AND OVERVIEW

1.1. The Epidemiologic Method

Last (1) defines epidemiology as ‘‘the study of the distribution and determi-
nants of health-related states or events in specified populations, and the
application of this study to control of health problems.’’ In the context of
cancer, a more simplistic definition is that epidemiology attempts to answer
the question of who develops cancer and why. If cancer is not random, at
least at the population level, then there must be determinants of the
observed patterns of cancer. This chapter will introduce the reader to the
basic methods of epidemiology used to describe patterns of cancer and to
test hypotheses about the causes of cancer.

Epidemiology is often divided into descriptive and analytical branches.
Descriptive epidemiology describes the occurrence of disease and other
health-related characteristics in human populations. These descriptive pat-
terns are based on aggregate characteristics of disease frequency, person
(age, sex, race, occupation, etc.), place (generally geographical region),
and calendar time. Analytical epidemiology, in contrast, uses specific study
designs (e.g., a cohort or case–control study) to test hypotheses about expo-
sure and disease relationships, frequently incorporating biomarkers and
analyzing disease mechanisms. Of note, it is descriptive epidemiology that
has provided the most compelling evidence that a large proportion of
human cancer should be preventable, and it is analytical epidemiology that
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has helped identify specific agents or risk factors for cancer (e.g., smoking,
certain occupations, and so forth) that have informed preventive actions.

Epidemiology was originally developed to study infectious disease,
and during the later half of the 20th century evolved to address chronic
diseases such as cancer. There are several characteristics of cancer that
impact epidemiologic approaches (2). Cancer is not a single disease, but a
group of diseases that share several key biological and pathological charac-
teristics. Diagnosis, treatment, and survival from cancer vary by organ site,
and thus are usually discussed by site of cancer origin, and this is also true
for the epidemiology of cancer. In addition, not all cancers arising from the
same organ have the same characteristics or epidemiology. For example,
basal cell carcinoma of the skin rarely metastasizes and causes death. In
contrast, melanoma of the skin often metastasizes and causes death. Thus,
both cancer site and cancer histology (i.e., both the cell or tissue of origin
and the cellular=tissue appearance at diagnosis) are important to under-
standing cancer.

A second important concept in cancer epidemiology is the theory of
multistep carcinogenesis (3,4). Experimental animal models identify several
steps. Initiation is the first step in tumor induction, and occurs when a cell’s
growth and regulatory capacity are altered through genetic or epigenetic
changes, such that the potential for unregulated growth is established.
Promotion, the second stage, occurs when a promoting agent induces prolif-
eration and, presumably, the growth advantage of the initiated cell. The
third and final stage, progression, is a process by which the neoplastic
growth begins to invade surrounding tissues or metastasize to other tissues;
the cells of the primary tumor can also change as they acquire more genetic
alterations. These genetic alterations commonly occur in both tumor sup-
pressor genes (e.g., Rb1 or p53) and oncogenes (e.g., c-myc).

In the multistep carcinogenic model, the probability of developing
cancer is the combined probability of individual rare events that lead to
neoplastic growth and eventually clinically evident disease. These events
can be mutagenic (chemical alteration of DNA) as well mitogenic (drive
proliferation). In addition, these events must either affect or overwhelm
intrinsic repair and=or elimination (apoptotic) mechanisms (5). However,
it seems highly likely that the carcinogenic process is more complex than
simply cells acquiring multiple genetic alterations; there are likely to
be determinants at the extracellular matrix and tissue levels that also influ-
ence the carcinogenic process (6). Finally, stochastic processes (i.e., some ele-
ment of randomness) must also be integrated into the conceptual framework
of carcinogenesis.

Epidemiologists attempt to link exposures to cancer risk. Exposure is
broadly defined by epidemiologists, and classically includes direct contact
with an infectious (e.g., the hepatitis B virus, schistosomiasis), chemical
(e.g., arsenic, radon), or physical (e.g., heat, ultraviolet radiation) agent in

150 Cerhan



the environment. However, exposures can also include ‘‘exposure’’ to higher
levels of circulating estrogens (e.g., during pregnancy or with obesity), an
adverse genotype (e.g., BRCA1 carrier), greater educational level, less
physical activity, and so forth. Along with exposure, we often think of dose,
which is the amount of the agent to which the host is exposed. Dose is an
important concept in cancer epidemiology because for many (but not all)
exposures, the greater the dose the greater the biological effect (i.e., a
dose–response relation). Evaluation of exposure (exposure assessment) is a
complex task and is discussed extensively elsewhere (7).

The induction period is defined as ‘‘the interval from the causal action
of a factor to the initiation of the disease’’ while the latent period is defined
as ‘‘period from disease initiation to disease detection’’ (1,8). However, the
terms are often combined and used synonymously as the ‘‘period required
for a specific cause to produce disease’’ (1), in part, because it is generally
not possible to know when a disease was actually initiated. The latent period
for most exposure–cancer associations is unknown. The cancer experience of
persons exposed to short but intensive ionizing radiation (e.g., treatment
with radiotherapy or a survivor of the atomic bombing of Hiroshima and
Nagasaki) shows that incidence of leukemia peaks about five years after
exposure, while the incidence of solid tumors rises for 15–20 years, and then
shows a variable course by tumor site (9). Based on current knowledge, the
latent period for most solid tumors is thought to be several decades, while
the latent period for leukemias and lymphomas is probably more variable,
but not likely less than five years (9).

Observation and experimentation are fundamental components of the
scientific method (10). Epidemiology engages in both. The experimental arm
of epidemiology includes the randomized clinical trial (individual level) and
community intervention trial (group level). In observational epidemiology,
researchers collect data on persons (or groups) without any actual manipu-
lations of the exposure. The main observational study designs used in epide-
miology are ecological, cross-sectional, case-control, and cohort, and they
are briefly introduced in the next section. There are many branches of
science that are based on mainly observational approaches, and this
approach is often (mistakenly) considered an inferior form of evidence
(10). There are many reasons why epidemiology cannot be a purely experi-
mental science. For example, randomized trials are expensive, are not abso-
lutely guaranteed to be free of chance or bias, and are often conducted on
persons not representative of the general population. Most importantly,
however, is that ethical and practical concerns limit the use of experimental
approaches in the study of cancer etiology.

While some authors suggest that epidemiological observation may one
day be displaced by laboratory investigation, this seems unlikely for several
reasons (9). First, moving the study of cancer in human beings from a
free-living population into the laboratory requires a level of scientific
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reductionism that is not likely to ever fully or adequately replicate the com-
plexity of cancer in the human body or in human populations. Second,
many hypotheses of cancer causation have been generated by the observa-
tion of the behavioral repertoire of humans, and would not likely have been
suggested by a purely laboratory-based approach. Conversely, many agents
that cause cancer in in vitro and in vivo experiments in the laboratory do not
appear to be important determinants of risk in individuals or populations.
While epidemiology is not precise enough to rule out associations of
small magnitude, it does provide reliable evidence that a large effect is ex-
tremely unlikely. Epidemiological approaches are also not likely to miss
the main determinants of cancer rates and trends. Thus, epidemiology pro-
vides quantititive data relating directly to humans, in whom we want to
prevent disease.

1.2. Descriptive Epidemiology

Some of the earliest descriptive cancer epidemiology came from observa-
tions of exposures (11,12). In 1713, Ramazzini noted that breast cancer
was unusually common among nuns, which he attributed to their celibacy
and childlessness. A later observation by Rigoni-Stern in 1842 showed that
over the period 1760–1839 in Verona, Italy, the ratio of uterine to breast
cancer mortality for married women was 2:1, for single women other than
nuns it was 1:3, and for nuns it was 1:9. In contrast, cervical cancer was a
rare cause of death for nuns. The London physician, Percivall Pott, noted
in 1775 that scrotal cancer was common in men who worked as chimney
sweeps as boys. He hypothesized that this was due to repeated contact of
the skin with combustion products of coal, and these observations became
one of the foundations of the field of chemical carcinogenesis. Interestingly,
rates of scrotal cancer in German chimney sweeps did not seem to be
unusually high, which was attributed to the fact that German sweeps bathed
frequently in contrast to English sweeps. Skin cancer among radiographers,
lung cancer among miners, and bladder cancer in aniline dye workers are
some of the many additional observations that accumulated and helped
develop the field of descriptive cancer epidemiology.

The task of cancer surveillance is to estimate the amount of cancer in a
population, and describe basic patterns of the disease (e.g., what cancer sites
are most common? what is the age distribution of patients? and so forth).
One approach to answer these questions is to conduct a survey of a defined
population and find out who has cancer (i.e., a prevalence survey). The
number of persons living with cancer in the survey divided by the number
of persons in the survey is the cancer prevalence, giving a ‘‘snapshot’’ of
the cancer burden in a population at a single point in time (13).

Another way to study cancer is to count the number of persons dying
of cancer during a period of time, generally as identified by death certificates
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(14). The number of cancer deaths in a given year divided by the number of
persons in the population is the cancer mortality rate. From a public health
perspective, this is probably the most important statistic to assess the success
of a cancer program (15). A third approach to estimating the cancer burden
in a population is to continuously monitor a population and count the num-
ber of newly diagnosed cases that occur (14). The number of newly diag-
nosed cancer cases within a defined period of time (usually 1 year) divided
by the number of persons in the population is the cancer incidence rate.

A key to the conduct of both descriptive and analytical epidemiologi-
cal studies is the availability of systematically collected data on cancer
patients in a registry. Hospital-based registries collect cancer cases seen in
a hospital without an underlying knowledge of the population that gener-
ated the cases. These registries are mainly kept for hospital-related needs
including planning of cancer services, patient care, and clinical research
(e.g., clinical trials and outcome studies). These tumor registries are most
commonly found in larger, referral hospitals and therefore cancer cases
are usually not representative of all cancers seen in the community, since
they tend to overrepresent rarer or more unusual cases. This problem greatly
limits the usefulness of hospital-based registries in understanding cancer in
the general population.

In contrast, population-based registries collect all cancers occurring in
a geographically defined area, which requires case finding in multiple places,
including hospitals, pathology laboratories, physician offices, radiation
treatment facilities, and so forth, as well as using death certificate data
(16). Data on cancer cases are then related to the underlying population
to derive incidence rates (below). Population data are generally derived from
census data. Population-based cancer registries are much more powerful
than hospital-based registries because they are linked to a defined popula-
tion. Important uses of population-based registries include description of
cancer patterns in space (i.e., between geographical regions) and time
(trends); evaluation of the effectiveness of cancer prevention programs as
well as cancer treatments; formulation and testing of etiological hypotheses
using descriptive and analytical study designs; evaluation of cancer clusters;
and health planning (16). In the United States, the two major sources for
cancer data are the National Center for Health Statistics, which provides
mortality data on all U.S. residents, and population-based cancer registries,
which provide cancer incidence data. Population-based registries include
many state-supported registries (17) and the Surveillance, Epidemiology
and End Results (SEER) Program coordinated by the National Cancer
Institute (http:==seer.cancer.gov) (18).

At the international level, the International Agency for Research on
Cancer (IARC) and the International Association of Cancer Registers
published Cancer Incidence in Five Continents that includes data on 183
populations in 50 countries on 5 continents, although data from Africa
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and South America are limited (19). An electronic version of the database
entitled CI5VII: Electronic Database of Cancer Incidence in Five Continents
Vol. VII is also available (20). In conjunction with the World Health
Organization, IARC also makes available an electronic database of cancer
incidence and mortality for 25 cancer sites for all countries, entitled GLOBO-
CAN 1: Cancer Incidence and Mortality Worldwide (21); these data are
summarized by Parkin et al. (22) and Pisani et al. (23).

It is important for health planners to know the number of cases in a
defined population since these numbers determine the need for medical
and other services used by cancer patients. To compare populations, we
need to use rates, which require both numerators (i.e., number of cases or
deaths during a specified time period) and denominators (e.g., population
size during the same time period that generated the cases). Prevalence,
incidence, or mortality rates (see Table 1 for definitions) are used to
compare populations.

Cancer rates are often termed ‘‘crude’’ rates when they measure
frequency of cancer without taking into account the composition of the
population. A better way to compare populations is to use age-specific rates.
However, presenting age-specific rates is rather cumbersome, and so an
alternative approach is to use a method called age standardization. Age
standardized rates are the weighted average of the age-specific rates, where
a common age structure or standard population is used. The choice of the
standard population is arbitrary, and the SEER Program uses the 2000
U.S. population, while IARC uses the World Standard Population for
Cancer Incidence in Five Continents.

A third cancer statistic that is commonly used is the cumulative rate,
which is the sum over each year of age of the age-specific incidence rates.
This method does not require the use of a standard population, which makes
it a bit more intuitive. For cancer, it has been shown that the cumulative rate
approximates the cumulative risk (24), which is defined as ‘‘the risk that an
individual would have of developing or dying from a given cancer during a
certain age span if no other causes of death were operative.’’ The cumulative
risk is presented as a percentage for a given age span (e.g., 0–64 years), and
can be estimated from the cumulative rate using a conversion formula
(Table 1).

Cancer incidence and mortality rates each have strengths and weak-
nesses when assessing the cancer burden in a population (14). Cancer inci-
dence data almost always need to be collected using a registry set up for
this purpose, while mortality data generally come from routinely collected
data. Thus, incidence data are usually associated with greater quality
controls than mortality data, but with a much greater investment of
resources. Both incidence and mortality data, however, rely on the accuracy
of clinical and pathological diagnosis by practicing physicians, which varies
by place and through time. Cancer mortality data often lack histological
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confirmation, and the site of the cancer is often misspecified, particularly if
the primary site is an internal organ or the cancer was metastatic. Clearly,
cancer mortality data will underestimate the cancer burden in the commu-
nity, as not all cancers will kill the patient and multiple cancers in the same
person will be missed. Incidence data are clearly preferred for most etiolo-
gical studies of cancer because mortality data cannot distinguish between

Table 1 Definition of Commonly Used Rates in Cancer Epidemiology

Rate Definition (source)

Prevalence rate The number of cancers (new and pre-existing) of a
specific site=type in a specified population during a
specified time period, expressed as the number of
cancers per 100,000 people. Cancer cases, regardless
of whether they are cured, are typically considered
prevalent until death (18)

Incidence rate The number of new cancers of a specific site=type
occurring in a specified population during a year,
expressed as the number of cancers per 100,000
people (18)

Mortality rate The number of deaths with cancer as the underlying
cause of death occurring in a specified population
during a year, expressed as the number of cancers
per 100,000 people (18)

Age-specific rate A rate for a defined age group (18)
Age-adjusted rate or

age-standardized
rate

Weighted average of the age-specific cancer incidence (or
mortality) rates, where the weights are the proportions
of persons in the corresponding age groups of a standard
population (18)

Cumulative rate Sum of age-specific rates, giving equal weight to all age
groups (24)

Cumulative risk The cumulative rate is the probability that an individual
will develop cancer during a certain specified age period
(e.g., 0–64 years), in the absence of any competing cause
of death. The cumulative risk, expressed as a percentage,
can be estimated as (1� e�Cumulative rate)� 100 (24)

Observed
survival rate

The proportion of cancer patients surviving for a specified
length of time after diagnosis; obtained using standard
life table procedures (18)

Relative survival
rate

The likelihood that a cancer patient will not die from
causes associated specifically with their cancer at some
specified time after diagnosis; it is essentially the
observed survival rate adjusted for expected mortality;
the relative survival rate will always be greater than the
observed survival rate for the same group of patients (18)
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effects on disease development (incidence) and disease outcome (survival).
However, mortality data are more widely available globally and for a much
longer period of time (i.e., much more historical data), and are thought to be
the best basis for judging progress against cancer by the Extramural Com-
mittee to Assess Measures of Progress Against Cancer (15).

Figure 1 indicates the age standardization rates for the most common
cancers. Cancer risk is not equally distributed across age, and the associa-
tion of age with the risk of developing a site-specific cancer can provide etio-
logical clues. The most typical age–incidence pattern is a logarithmic
increase in the incidence such that cancer is extremely rare in childhood
and very common in old age. This pattern, shown in Fig. 2 for selected can-
cer sites, is characteristic of carcinomas of the lung, colon, rectum, urinary
tract, pancreas, and stomach and multiple myeloma and chronic lymphocy-
tic leukemia. Whether cancer rates continue to rise in the oldest age groups
is not clear, as many cancer rates appear to drop off after age 75 but are also
unstable. The drop-off in rates among the oldest old may be a real pheno-
menon or an artifact due to underascertainment (i.e., missed cases) of cancer
in this age group, since many elderly persons have extensive comorbidities
and may not receive extensive work-ups. This age–incidence pattern sug-
gests that life-long, cumulative exposures are likely to play an important role
in these cancers, and that the latent period is likely to be decades.

Figure 1 Age-standardized (World Standard) incidence and mortality rates for the
most common cancers in the United States, 1990. Source: From Ref. 21.
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While the pattern described above is the most commonly observed,
there are many other age–incidence patterns. As shown in Figure 3, some
cancers occur almost exclusively in childhood, such as retinoblastoma and
nephroblastoma, while some cancers have two peaks in their age–incidence
pattern—one in childhood and one in later life—such as Hodgkin’s disease
and acute lymphocytic leukemia. There are many other patterns, and these
patterns suggest that there are likely to be etiological differences in quantity,
timing, or quality of carcinogenic exposures as well as in the latent period
for specific cancers. Evaluation of age-specific rates for breast cancer
provides an interesting example. Unlike colon and many other cancers
strongly related to aging, the rate of increase for breast cancer slows in
women around age 50 (Fig. 4), the time of menopause when estrogen pro-
duction by the ovaries ceases, suggesting (but by no means proving) a role
for ovarian hormones in the etiology of breast cancer.

Cancer rarely occurs in childhood. In the United States, cancer in
persons under age 15 years accounts for less than 1% of all cancers (25),
while cancer in persons over age 55 accounts for 80% of cancers even though
only 20% of the U.S. population is over the age of 55. One of the interesting
distinctions between adult and childhood cancer is that epithelial tumors are
relatively rare in children but dominate in adults (26). In contrast, tumors of

Figure 2 Age-specific incidence rates for colon, lung, and bladder cancer, males,
United States (SEER Program), 1988–1992. Source: From Ref. 20.
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Figure 3 Age-specific incidence rates for selected cancers, females, United States
(SEER Program), 1988–1992. Source: From Ref. 20.

Figure 4 Age-specific incidence rates for colon, breast, and all (except skin) cancers,
females, United States (SEER Program), 1988–1992. Source: From Ref. 20.
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embryonal cells are very common in children and rare in adults. These
observations also suggest broad etiologic distinctions between cancer in
these age groups: childhood cancer is likely to be informed by understanding
the developmental process, while cancer in adults is likely to be informed by
understanding aging, repair, and senescence.

There are also notable sex differences in cancer incidence and mortal-
ity; the patterns for the top 15 cancers are shown for the United States in
Figure 5. Cancer sites strongly associated with smoking (lung, bladder, kid-
ney, oral cavity) are much more common in men, presumably due to higher
smoking rates in men. Cancers thought to have a hormonal etiology—pros-
tate in men and breast and uterine cancer in women—show a similar mag-
nitude of incidence and mortality rates in each sex, and are in total the most
common cancers seen in the United States. Colorectal cancer incidence and
mortality is slightly more common in males than in females.

Time trends in mortality are generally based on death certificate data
collected by governments. Thus, for long-term trends to be interpretable,
there must be widespread certification of deaths for the vast majority of
the population. Such data are reliably available from the late 1800s for Eng-
land and Wales, and from the 1930s and 1940s for the United States and

Figure 5 Age-adjusted rates (World Standard) and number of cancers for the top
10 cancer sites in children aged 0–14 years by sex, United States (SEER Program),
1988–1992. Source: From Ref. 20.
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Scandinavian countries. Trends in cancer mortality in the United States are
presented in Figure 6. Since 1930, there have been striking changes in the
age-adjusted mortality rates for several cancer sites (note that crude rates
are not used because the population structure of the United States has chan-
ged over this time frame). Rates for lung cancer show the most dramatic
increase, from a relatively rare cause of death in 1930 to the leading cause
of death after 1965. In contrast, stomach, uterine, and liver cancers have
shown dramatic declines since 1930. Other cancers have shown more stable
patterns in mortality over this time frame.

Long-term trends in cancer incidence rates are less available globally,
since population-based cancer registration systems are a relatively new
phenomenon. In the United States, Connecticut has had continuous cancer
registration since 1935, and the SEER Program has conducted continuous
surveillance on approximately 10% of the U.S. population since 1973.
Table 2 shows the percent change in the incidence (SEER Program) and
mortality (United States) rates for selected cancer sites from 1973 to 1996.
Since 1973, cancer incidence for all sites (excluding nonmelanoma skin)
has increased 20% and mortality has increased 3.3%. Data from the SEER
Program from 1975 to 1995 suggest that for the major pediatric tumors there
has been no substantial change in incidence and a dramatic decline in mor-
tality, the latter related to treatment-related improvements in survival (27).

Some time trends are easier to explain than others, and trend data are
often correlated with other data at the population level to suggest or evalu-
ate etiological hypotheses (see ecological studies, below). For example, the
trends in lung cancer incidence and mortality are thought to be almost
entirely due to cigarette smoking. The reason for the decline in stomach

Figure 6 Age-standardized (1970 U.S. Standard) cancer mortality rates for selected
sites, by sex, United States, 1930–1995. Uterus, uterine cervix and corpus combined.
Source: From American Cancer Society, Surveillance Research, 1999 (28). Data
obtained from Vital Statistics of the United States, 1990.
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cancer incidence is less clear, but is thought to be due to improvements in
food preservation by the wide-scale adoption of domestic refrigeration.
The rapid increase in skin melanoma is thought to be due to intermittent
sun exposure occurring during recreational activities that became more
prevalent starting in the 1950s. Declines in cervical cancer mortality are
thought to be attributed to the introduction of effective screening using
the pap smear. Evaluation of time trends can also suggest surprising trends,
such as the rapid increase in the incidence of non-Hodgkin lymphoma in the
United States since 1973, which is largely without explanation (28).

While time trend data provide powerful information, it must be kept in
mind that changes over time may be partially or totally artifacts due to the
effects of a variety of other factors (29). Changes in diagnostic practice, par-
ticularly from new medical technologies including imaging technologies, will
impact incidence rates, particularly for brain and other internal tumors.
There can also be changes in diagnostic criteria, and for cancer, the
histopathologic classification of tumors. At the population level, changes
in the availability of and=or access to medical care (e.g., the implementation
of the Medicare program in the United States in the 1960s) or introduction
of screening programs will also impact rates and thus time trends. Finally,
declines in other diseases, particularly infectious and heart disease will
impact cancer rates through effects on competing mortality.

An epidemic occurs when a disease has much higher rates than
expected based on the usual (background) rates for a given population.
For cancer, data on time trends presented for the United States, as well
as data from elsewhere in the world (29), give no evidence that there has
been an overall epidemic of cancer in the last 50 years. Total cancer rates,
however, hide often dramatic changes occurring for individual cancers,
and of all the changes in the 20th century, the most striking observation
is the clear epidemic of lung cancer caused by cigarette smoking.

In migrant studies, the cancer rates of immigrants in a new country are
compared with the cancer rates in their home country, generally using
descriptive statistics (30,31). For example, in Figure 7, the incidence rates
for stomach, colorectal, and breast cancer are compared for Chinese women
in selected geographical locations. Rates for stomach cancer were highest in
China, intermediate in Hong Kong and Singapore, and lowest in the United
States; in contrast, breast cancer rates show the opposite pattern, and colo-
rectal rates are intermediate. Migrant studies represent natural experiments
in that genetic factors are essentially held constant while environmental fac-
tors, both physical (e.g., air, water, ultraviolet radiation, trace elements) and
sociocultural (e.g., diet, alcohol and tobacco use, childbearing patterns, sex-
ual habits, use of medical services), are allowed to vary. Classic studies
include Japanese migration to Hawaii and the western United States, Cen-
tral Europeans to the United States, Europeans to Australia, and Jews of
various locations (United States, Eastern Europe, North Africa) to Israel
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(30). Besides the relative contribution of genetics vs. environment in the
etiology of cancer, migrant studies can also give insight into the timing of
exposure of environmental agents in the carcinogenic process. A rapid
change in cancer rates among adults migrating to a new country strongly
suggests a role for agents that act in the later stages of the carcinogenic pro-
cess (e.g., colon and prostate cancer rates in Japanese) or the effectiveness of
the introduction of preventive strategies (e.g., cervical cancer rates in
migrants to Israel) (30). In contrast, cancer rates that take several genera-
tions to approach those of the host country suggest that exposure in early
life (including in utero) may be important, although the role of persistent
cultural patterns must also be evaluated. It is important to be aware of
the limitations of migrant studies (30,31). First, migrants are self-selected,
and often vary by ethnicity, religion, socioeconomical status, and occupa-
tion from the population from which they are emigrating. These factors
are risk factors for many cancers, and can confound the results. Migrants
also often go from poorer, less developed areas to more industrialized areas.
For valid conclusions, the data quality of the groups being compared should
be comparable. Finally, if mortality rates are being compared, there is con-
cern that migrants (particularly first-generation migrants) might return
home to die.

Figure 7 Age-adjusted (World Standard) incidence rates for stomach, colorectal,
and breast cancer among Chinese women from selected geographical areas, 1988–
1992. Source: From Ref. 20.
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1.3. Analytical Epidemiology

The goal of observational study designs is to make valid comparisons
between individuals (or populations) with and without cancer or between
those ‘‘naturally’’ exposed or unexposed to a factor of interest. The impor-
tant strengths and limitations of the major observational study designs are
summarized in Table 3.

1.3.1. Cross-Sectional Studies

In a cross-sectional study, a survey is conducted in a population during a
defined time period. Both the predictor (exposure) and the outcome (in this
context, having a cancer) variables are measured at the same time (note that
there is no structural distinction between predictor and outcome variables;
rather it is the investigator who makes the distinction). One common name
for this study design is a prevalence survey. For example, the National
Health and Nutrition Examination II (NHANES-II) was a cross-sectional
survey of a national sample of adults who were selected to be representative
of the U.S. population (32). The study provided data on the prevalence of
average daily fat intake, physical activity, and many other health-related
exposures. The survey also inquired about current and past disease history,
and could be used to estimate the prevalence of cancer. However, as dis-
cussed earlier, the prevalence rate is of limited usefulness because it includes
persons at all stages of the natural history of cancer (i.e., from recently diag-
nosed to long-term survivors), but underrepresents persons with rapidly
fatal disease. Another major limitation of the cross-sectional study design
is that it cannot easily distinguish the temporal sequence of events and
whether the predictor event occured before or after the outcome. Finally,
incidence rates cannot be calculated, and as discussed previously, this is
one of the most useful cancer statistics.

1.3.2. Prospective and Retrospective Cohort Studies

In a cohort study, a group of people who are at risk of developing cancer are
characterized as exposed or not exposed, and then they are followed through
time in order to compare the rate of later cancers that develop in each
group. The cohort can be a sample from the general population, workers
in an industry, alumni or professional group, and so forth; a cohort is often
chosen based on the ability to efficiently follow it over a long period of time.
The cohort design can take place in real time (prospective) or can be histori-
cal (retrospective). The characterization of exposure can be through a ques-
tionnaire, medical records, biological testing, work records, and so forth.
Methods of follow-up can include passive linkage to population-based can-
cer registries, mortality data, health claims databases, or active follow-up
(recontact) of the cohort. The key to a valid cohort study is the nearly com-
plete follow-up of the cohort, although as long as follow-up mechanisms do
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Table 3 Comparison of Strengths and Limitations of the Major Study Designs
Used in Cancer Epidemiology

Design Strengths Limitations

Ecological Usually based on large populations
(stable rates); capitalizes on existing

and routinely collected data (mainly
mortality); obtains populations

markedly divergent in exposure
levels; very useful to rapidly generate

hypotheses for further study or to
evaluate associations at the national=

international level identified in other
analytical studies

Ecological fallacy; no control
over subject selection; no

control over measurement
of exposures or evaluation=

classification of cancer;
difficult to control for

confounding; does not
establish the sequence of

events (temporality); can
only be conducted once

Cross-
sectional

Can potentially study multiple
exposures and cancer endpoints

simultaneously; control over
subject selection; control over

exposure measurement and
evaluation=classification of

cancer; can often be conducted
relatively quickly; can calculate

prevalence; useful to generate
hypotheses; often used to

initiate a cohort study

Measurement of exposure
could be biased in

persons with cancer;
likely to miss persons

with severe or rapidly
fatal cancer (survivor bias);

does not yield incidence;
not feasible to study most

cancers (due to rarity)

Cohort Clearly establishes sequence of

events; no potential for
recall bias based on

subsequent cancer outcome;

can study several cancers
simultaneously; good

for studying rapidly fatal
cancers (avoids survivor

bias); number of cancers
accumulates over time; can

calculate incidence, relative
risk, and excess risk

Needs large sample sizes

to study site-specific
cancers; not feasible for

rare cancers; often can

only collect a limited
amount of exposure

data due to feasibility
and cost issues

Prospective More control over exposure
measurements and

evaluation=classification of
cancer; more control

over subject selection

More expensive; long-
term time commitment

Retrospective Less costly and time

consuming than
prospective studies

Less control over

selection of subjects;
less control over

(Continued)
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not favor a particular exposure group, the comparison of disease experience
between groups should be unbiased. The male British doctors study is one of
the earliest and most famous prospective cohort studies in cancer epidemiol-
ogy. The 40-year follow-up was recently published for cigarette smoking and
cancer mortality (33). One of the conclusions of these data is that earlier
studies appeared to underestimate the hazard of long-term smoking, and that
approximately 50% of regular smokers will eventually be killed by a tobacco-
related disease. There are many advantages of the cohort study design
(Table 3), including the ability to clearly establish a temporal sequence, the
lack of recall bias by disease status, and the ability to calculate true
incidence rates and relative risks. In addition, as seen in the example of the
British doctors, multiple outcomes from a single exposure can be evaluated.

A double-cohort study or standard mortality ratio (SMR), compares
the rates of two separate cohorts, one highly exposed to an agent of interest
and the other having low or no exposure. The most common application of

Table 3 (Continued )

Design Strengths Limitations

measurement of
exposures (what is

measured; quality of
measurement); often

missing data on
important confounders

SMR May be the only feasible
approach to study very

rare exposures

Potential for bias in
studying two popula-

tions with data often
collected in very

different ways; often
no data on important

confounders
Case-control Efficient for studying rarer

cancers where a cohort study
would not be feasible; can study

multiple etiological factors

simultaneously; can evaluate
different latency periods for a

given exposure; relatively few
subjects needed; relatively short

duration and inexpensive
(compared to cohort studies);

yields the odds ratio, generally
good approximation of the

relative risk

Potential for selection

bias in sampling for
cases and controls;

limited to the study of one

cancer; potential for
differential recall bias

in measuring exposure;
does not necessarily

establish sequence of
events (temporality);

potential for survivor
bias; cannot calculate

prevalence, incidence
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this design is in occupational or environmental studies where the exposure
of interest is rare in the general population. In practice, the comparison
cohort is often the general population in the area where the exposed group
was obtained.

There is great interest in whether radon causes lung cancer. This
hypothesis was originally evaluated in underground uranium miners, but
many of these men also smoked cigarettes and this was often not documen-
ted in any records, so there was a concern that any association between
radon and lung cancer might be due to confounding by smoking. One
approach to evaluate this possibility was to study nonsmoking uranium
miners, since there would be no possibility of confounding by smoking.
An example is the study of 516 nonsmoking uranium miners followed from
1950 to 1984 for lung cancer mortality (34). Lung cancer mortality rates for
these men were compared to age-specific mortality rates for nonsmokers
from a study of U.S. veterans. The latter group was chosen as the compari-
son group over the general population, since the general population rates
would reflect the experience of a population with a large number of smokers,
and thus would weaken the ability of the study to detect an association with
lung cancer. Fourteen lung cancer deaths were observed in these 516 men
through 1984, but only 1.1 deaths were expected, yielding an SMR of 13,
suggesting a very strong association between radon and lung cancer mortal-
ity in nonsmokers, at least at the levels of radon exposure in these miners.

This SMR study design retains many of the advantages of the cohort
study, but the use of an external comparison group, in contrast to internal
comparisons in the classic cohort study, leads to the potential for bias that
can occur when comparing two different populations. In the context of
occupational cohort studies, where the comparison cohort is the general
population, the concern is that employed persons are on average healthier
and have better access to medical care than the general population. How-
ever, it should be noted that such a bias would be expected to move the
SMR toward the null (i.e., make it harder to detect an association). The
other major limitation of this study design is that data on confounding
factors often are not available. Nevertheless, this study design is extremely
useful for studying rare exposures in the population.

1.3.3. Case–Control Studies

In a case–control study, the exposure histories of cancer cases are compared
with a group of individuals who are free of the cancer (controls) using the
exposure odds ratio.

The advantages of the case–control study design include the ability to
study multiple etiological factors, the ability to study exposures over a broad
period of time (to better identify latency periods), and the efficiency in
studying rare diseases. The two most common concerns in the conduct of
a case–control study are selection bias and recall bias. Selection bias occurs
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when the case or control group is not representative of cases or controls in
the underlying study base. Recall bias occurs when cases or controls differ-
entially recall past exposures, leading to biased associations. A recent exam-
ple of concern about differential recall bias is in the evaluation of induced
abortion and breast cancer risk. There is evidence that while cases fairly
accurately report induced abortions, healthy controls are likely to systema-
tically underreport this procedure leading to a bias that suggests that there is
an association (35). While case–control studies are susceptible to these types
of biases, there are clear approaches to minimize their effect (36–38).

Case–control studies are also conducted from within cohort studies.
This is a nested case–control study. Cases that occur during follow-up of
the cohort are matched to controls who were disease free at the time the case
developed their cancer. The exposure histories of cases and controls are then
compared. The most useful situation for this design is when the predictor
variables are expensive to evaluate and can be validly measured at a later
time (e.g., DNA studies, certain serological assays). This study design is
particularly useful in cancer epidemiology to evaluate the association of
biomarkers with cancer risk in the context where the biomarker could
potentially be affected by a cancer and thus the traditional case–control
design (where cases already have a cancer when their biomarker is mea-
sured) may not be valid. The major limitation of the study design is that
the time and expense of collecting and properly storing biological specimens
for all cohort members must have been done at baseline, and thus there are
relatively few cohorts available for such studies.

1.4. Integration of Laboratory Methodology

Epidemiologists have a long history of working closely with laboratory
colleagues, dating back to the roots of infectious disease epidemiology.
The explosive growth in molecular biology and other biomedical sciences
has led to the rapidly evolving field called molecular epidemiology. Labora-
tory methods help in at least three critical areas in cancer epidemiology:
exposure assessment, preclinical biological effects, and individual suscep-
tibility (39, Fig. 8). Some of the more commonly utilized laboratory tech-
niques in epidemiological studies of cancer etiology are listed in Table 4.

Exposure assessment is a long-standing problem in epidemiology,
since questionnaire-based approaches often have great difficulty estimating
average past exposure or cumulative exposure to an agent, and random
measurement error is often large enough to overwhelm the ability to detect
even large associations (7). Questionnaires are also subject to nonrandom
error, in that cases or controls may differentially recall past exposures,
and the direction of this type of bias is not always easy to predict. Biological
markers of internal dose (e.g., measurement of a parent compound or meta-
bolite in serum) or biologically effective dose (e.g., measurement of DNA or
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protein adducts) of exposure to a carcinogen (‘‘biomarkers of exposure’’)
should allow for a much more precise and valid exposure assessment.
However, much development in this field is required since issues of tissue
sampling, use of surrogates for target tissues, biomarker validation, and
approaches to estimating cumulative exposure are still being developed
(5,40).

Preclinical biological effects (e.g., cytogenetic damage, gene mutation)
and altered structure=function (e.g., premalignant alterations such as hyper-
proliferation or abnormal gene products) are the intermediate events
between exposure and disease (39). These events can be used as specific
‘‘fingerprints’’ of prior exposure (e.g., mutational spectra of the p53 tumor
suppressor gene due to different environmental exposures) or as a surrogate
endpoint for use in studies of chemoprevention. However, this is the least
developed component of the model in Fig. 8, and the relationship of these
events to preclinical and clinical cancer is still being elucidated. In addition,
‘‘fingerprints’’ at this point in the pathway are not necessarily specific to an
exposure, since there are often multiple ways to induce the same pathologi-
cal changes, and thus confounding can be introduced into the study.

Host susceptibility in this model is hypothesized to influence events at
multiple points along the continuum from exposure to clinical disease
(Fig. 8). Susceptibility is broadly defined, and includes effects of age and
nutrition, as well as genetic effects. Genetic effects include inherited variabil-
ity in the ability to activate=inactivate carcinogens (e.g., polymorphisms in
cytochromes P-450 enzymes), repair DNA, and maintain genomic stability,

Figure 8 Schematic comparison of traditional and molecular epidemiology. Source:
Adpated from Schulte PA, Perera FP, ed. Molecular Epidemiology: Principles and
Practices. New York: Academic Press, 1993.
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as well as genetic and epigenetic alterations in oncogenes and tumor
suppressor genes.

The rapid inclusion of laboratory-based components to epidemiologic
studies of cancer should provide better risk estimates by more accurately
defining exposure, disease, and the interaction of exposure and genetic
susceptibility; better accounting for individual level variability and effect
modification; enhancing risk assessment; and better identifying potential
points for screening and=or early intervention in the carcinogenic pathway
(5,40–42). Integration of these methods into epidemiological studies also
allows insight into the mechanisms of carcinogenesis, in part helping to fill
in the ‘‘black box’’ between environmental exposure and cancer. However,
many of these laboratory methods are cumbersome or expensive, and these
studies require the collection of biological specimens, which often strains
traditional approaches to conducting epidemiologic research. Nevertheless,
the basic concepts in study design apply to studies incorporating biological
data, and must be considered carefully in designing studies to prevent the
introduction of bias (43,44).

1.5. Framework for Interpretation of Analytical
Epidemiological Studies

1.5.1. Evaluation of Causality

Ultimately, we are interested in knowingwhat causes cancer. At themost basic
level, a cause is something that brings about any condition or produces any
effect. Unfortunately causation is in general not directly observable, and it is
not possible to provide absolute proof of causation in any empirical science
(8).However, the goal at hand is not absolute proof, butmight be better viewed
as the accumulation of sufficient evidence to convince most skeptics beyond a
reasonable doubt. The two most well-known approaches to the evaluation of
causation are the Henle–Koch postulates and Hill’s criteria of causality (45).

The Henle–Koch postulates (1890) were developed to evaluate
whether an infectious agent caused a particular disease, and they have
had a major influence on how we think about causality. The postulates,
listed in Table 5, while clearly useful in many situations, are limited even
in infectious disease epidemiology (e.g., they do not apply to many viral,
parasitic, spirochetal, and fungal diseases), and have severe limitations as
useful guidelines in chronic disease (46). This is in part because they do
not account for the concepts of multiple causation, biological spectrum of
disease, and host response.

The most commonly used framework for evaluation of causality in
cancer (and other chronic diseases) came from the Surgeon General’s first
report on smoking and health (47), published by Hill (45). The general
approach to evaluating causality is to first rule out the likelihood of
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noncausal explanations (i.e., bias, confounding, and chance), and then to
evaluate each of the points in Table 5. Not all of the criteria are considered
equally useful (8), and in literature reviews the first six criteria in Table 5 are
the most commonly used (48). Further critiques of the evaluation
of causality and the role of Hill’s criteria can be found elsewhere (8,49).

1.5.2. Population Attributable Risk

While there are many causes of cancer, not all causes are equally important
in the primary prevention of cancer at the population level. While the mag-
nitude of the association (i.e., size of the relative risk or odds ratio) is an
important criterion in the evaluation of causality, it takes somewhat of a
secondary role in evaluating the importance of an exposure at the popula-
tion level. That is because the population attributable risk (PAR), which
is defined as the ‘‘reduction in incidence that would be achieved if the
population had been entirely unexposed, compared with its current (actual)

Table 5 Criteria to Evaluate Causation

Causal criterion Nature of inquiry

Henle-Koch’s postulates (1890)
Single cause The parasite occurs in every case of the disease in

question and under circumstances which can
account for the pathological changes and clinical
course of the disease

Virulence The parasite occurs in no other disease as a
fortuitous and nonpathogenic parasite

Culturability After being fully isolated from the body and
repeatedly grown in pure culture, the parasite
can induce the disease anew

Hill’s criteria (45)
Strength of association What is the relative risk?
Consistency of association Is there an agreement among repeated observations

in different places, at different times, using
different methodologies, by different researchers,
under different circumstances?

Temporality Does exposure precede the outcome variable?
Biological gradient Is there evidence of a dose–response relationship?
Plausibility Does the causal association make biological sense?
Specificity of association Is the outcome unique to the association?
Coherence Is the causal association compatible with present

knowledge of the disease?
Experimentation Does controlled manipulation of the exposure

change the outcome?
Analogy Does the causal relationship conform to a

previously described relationship?
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exposure pattern’’ (8), is a function of the risk ratio and the prevalence of
exposure in the population. This relationship is summarized in Fig. 9. For
example, a risk factor with a modest relative risk (e.g., 1.75) but a high
prevalence in the population (e.g., 60%) has a PAR of 31%, while a risk
factor with a high relative risk (e.g., 16) but rare (e.g., 0.1%) has a PAR
of 1.5%; the former risk factor, then, explains much more of the cancer
burden in the population.

A couple of caveats about using the PAR (8,50) deserve mention.
First, for the PAR to be valid, the risk factor must be considered to be a
causal factor of the disease, and the risk ratio is assumed to be estimated
without significant bias. Second, the interpretation assumes that removal
of the exposure does not affect the size of the at-risk population; however,
this assumption needs to be scrutinized on a case-by-case basis as removal of
an exposure may have multiple effects on the at-risk population through
effects on competing mortality.

2. THE CAUSES OF CANCER

Cancer patients want to know what caused their cancer. Pragmatically,
the causes of cancer in an individual can be broadly classified into

Figure 9 Relationship between relative risk and risk factor prevalence on the
population attributable risk.
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environmental (cumulative exposure over a lifetime to a variety of
carcinogenic and protective factors), genetic, and spontaneous (51).

1. Spontaneous. Often overlooked are the spontaneous causes of can-
cer. By spontaneous, what is meant is that a certain amount of cancer is
due to ‘‘spontaneous’’ or ‘‘background’’ mutation rates (51). These muta-
tions generally show a different pattern of DNA lesions compared to those
induced by carcinogens. The exact causes of these mutations are not known,
but are likely due to things such as background cosmic radiation and body
temperature, and reflect the instability of DNA as a result of oxidative
damage and other cellular processes. These factors would be expected to
show little or no variability in terms of geographical distribution, and thus
there will always be a certain background level of cancer in any population.
Doll and Peto (9) have also termed this ‘‘chance,’’ or more simply good or
bad luck. At the level of the individual, spontaneous causes of cancer may
play an important explanatory role. Knudson (51) has estimated
that approximately 15% of cancer may be explained by spontaneous factors.

2. Genetic. Cancer has long been known to aggregate in families,
strongly supporting a hereditary component for a certain portion of cancer.
Familial cancers are generally characterized by early age at onset, bilateral
tumors in paired organs, multiple primary foci within an organ, distinctive
pathology, and often prominent physical findings. They may also be a part
of a syndrome that includes multiple cancer sites and=or other diseases
(e.g., Von Hippel–Lindau disease and renal cell carcinoma), and are caused
by germline (i.e., changes in the constitutional DNA) alterations in single
genes that often follow Mendelian patterns of inheritance (i.e. ‘‘major
genes’’). However, it must be kept in mind that cancer is a relatively com-
mon disease, and thus many persons will have a positive family history of
cancer, and some cancer will cluster in families by chance alone. In addition,
families often share similar environmental exposures (including residence,
diet, and so forth) and this may explain some clustering of cancer within
families. Thus, ‘‘familial’’ is not synonymous with ‘‘genetic.’’ Geneticists
and genetic epidemiologists use family studies to evaluate the relative con-
tribution of genes vs. environment, and to identify new cancer genes.

In contrast to cancer caused by major genes, a second class of genes,
often termed ‘‘susceptibility’’ genes (52) are also likely to be important in
cancer causation. Susceptibility genes are common variants (polymor-
phisms) of genes generally involved in the metabolic activation and detoxi-
fication of carcinogens, but they can be involved in other pathways relevant
to carcinogenesis including DNA repair. This concept is highly influenced
by the field of pharmacogenetics, and examples of this approach include stu-
dies of lung cancer and debrisoquine metabolism and GST-mu deficient
phenotype and bladder cancer.

An important distinction between these two types of genetic causes of
cancer are that while major genes carry a high absolute and relative risk,
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they are uncommon in the population and thus have a low population attri-
butable risk. In contrast, susceptibility genes are associated with a low abso-
lute and relative risk of cancer, but because many of these variants are
common in the population, they may have a high population attributable
risk. Another important distinction is that the major genes are expected
to be less influenced by environmental exposures relative to the suscepti-
bility genes, which primarily influence host response to the environment.
Understanding hereditary cancer is expected to give mechanistic insight into
the causes of sporadic (i.e., nonhereditary) cancer. However, in the popula-
tion, only about 5% of cancer is thought to be due to purely genetic (major
gene) causes (51).

3. Environmental, lifestyle, and behavioral factors. A conclusion from
the descriptive and analytical epidemiology of cancer is that cancer should
be largely, although not completely, preventable and that environmental
and behavioral factors should account for a large percentage of the total
cases, often estimated at up to 80% of cancer (51). Doll and Peto (9,53) ori-
ginally published their estimates of cancer deaths attributable to various
environmental and behavioral factors in western populations in 1981, and
recently updated this in 1996. As shown in Table 6, tobacco and diet are

Table 6 Estimates of the Proportion of Cancer Deaths Attributable to
Environmental and Lifestyle Factors in Western Countries

Factor(s)
Best estimate of
proportion (%)

Range of acceptable
estimates (%)

Tobacco 33 25–40
Diet 30 20–60
Infection 9 5–15
Hormones 7 5–10
Ionizing radiation 4 2–6

Background 3.5
Medical procedures 0.5
Industry <0.1

Alcohol 3 2–4
Occupation 3 2–4
Pollution <2 < 1–2

Atmospheric <1
Water <1

Ultraviolet light 1 0.5–1
Industrial products <1 <1–2
Medical drugs <1 <1–2
Food additives <1 �2–1
Other and unknown ? ?

Source: From Ref. 9. Copyright 1996 Oxford University Press.
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thought to be the most important causes of cancer, although clearly the ulti-
mate role of diet in the etiology of cancer is still being unraveled. The next
most important group of factors are infection, hormones, background ioniz-
ing radiation, occupation, and alcohol. Of relatively less importance
are ultraviolet radiation, industrial products, water and air pollution, and
food additives, exposures that tend to receive a disproportionate amount
of media attention.

One limitation in interpreting Table 6 is that it does not take into
account interactions between exposures. For example, smoking increases
the risk of lung cancer, as does exposure to asbestos; however, the risk of
lung cancer in smokers exposed to asbestos is much greater than expected
based on each risk factor considered individually. Other well-established
interactions include smoking and radon for lung cancer, smoking and alco-
hol for esophageal cancer, and hepatitis B infection and exposure to afla-
toxin for liver cancer. Other interactions are likely.

4. Gene–environment interaction. While carcinogen exposure triggers
the onset of cancer, a person’s genetic makeup determines how they respond
to the exposure. Thus, genes may increase or decrease risk from the expo-
sure and so this is considered a gene–environment interaction. There is cur-
rently great interest in identifying interactions between genetic and
environmental causes of cancer. As alluded to above, most (but by no means
all) of the interest is focused on the interaction of susceptibility genes with
environmental exposures. Although unknown at this time, much of the
80% of cancer thought to be due to environmental causes may be due to
gene–environment interactions (39). The study of gene–environment
interactions will consume much of epidemiological research over the next
decade.

3. CONCLUSIONS AND FUTURE DIRECTIONS

An initial task of epidemiology is to describe the variability in cancer risk. It
is clear that risk of cancer is highly variable at the population level based on
observations of geographic, time trend, and migrant data, and these results
strongly suggest that a large proportion of cancer is not random and there
must be an explanation. Analytic epidemiology has identified many causal
factors for cancer risk, and removal of the exposure has led to changes in
cancer incidence. Two conclusions from these observations are that much
of cancer is likely due to environmental factors and much of the cancer bur-
den in the population should be preventable. Due to the explosion in our
understanding of the molecular basis of carcino-genesis, including the quan-
tification of genetic susceptibility and the interaction of susceptibility with
environmental exposures (gene–environment interaction) these have become
evolving research areas that should better define the causes and primary pre-
vention of cancer in the population.
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Cancer Susceptibility Genes and
Common Gene Variants That Increase

Cancer Risk

Ragnhild A. Lothe and Anne-Lise Børresen-Dale

Department of Genetics, Institute for Cancer Research, University Clinic of
the Norwegian Radium Hospital, Oslo, Norway

Most cancers result from an interaction between genetic and environmental
factors and these factors can determine an individual’s cancer risk. Approxi-
mately 1% of all cancers arise in individuals with a clear hereditary cancer
syndrome following Mendelian inheritance where environmental factors
are thought to play a minor role (Fig. 1). Further, it is estimated that
10–15% of all cancers are due to inherited components, resulting in the
so-called familial clustering of cancer. However, in most other cancers, a
substantial genetic predisposition may also be present without obvious
familial clustering. These genetic components include dominant mutations
with a reduced penetrance, as well as more common genetic polymorphisms
that influence an individual’s response to environmental exposure. Most
cancers however occur in the genetically low-risk population group, referred
to as sporadic cases. The influence of genetic factors decreases and the
impact of environmental factors increases with aging (Fig. l). Knowledge
of the spectrum of both genetic and environmental risk factors for
developing cancer and how they interact, will be instrumental in future risk
assessment and in prevention programs.
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1. HEREDITARY CANCER SYNDROMES

An inherited cancer syndrome is defined by Mendelian inheritance of
susceptibility in a dominant, recessive, or X-linked manner. Many of the
known cancer diseases follow a dominant mode of inheritance and have can-
cer as the main phenotype (Table 1a). Among other hereditary syndromes,
both dominant and recessive, cancer can be one of several phenotypic traits
(Table 1b and c). A hereditary cancer syndrome should be considered if
several family members develop cancer at a young age, if both of paired
organs are affected, or if affected individuals develop multiple primary
cancers, including common cancers. Finally, family members with cancer
who also manifest other rare conditions, particularly congenital abnormal-
ities are suggestive of a cancer syndrome.

Many of the genes involved in these cancer syndromes have been iden-
tified (Table 1a–c) and they are referred to as ‘‘inherited cancer genes’’ or
‘‘susceptibility genes.’’ Germline mutations in some of these genes approach
a 100% risk of cancer during a lifetime. If a gene has incomplete penetrance,
some mutation carriers will not develop the expected cancer. Environmental
factors and=or other modifying genes (see below) may cause this reduced
penetrance. In addition, non-carriers within a hereditary cancer family
may develop sporadic cancer of the same type as the mutation carriers.
These are termed phenocopies. Thus, accumulation of rare cancers in a
family is more likely to be caused by an inherited predisposition than is
the case for accumulation of common cancers.

2. IDENTIFICATION OF INHERITED CANCER GENES

The first step in identifying high penetrance genes is usually to do linkage
analyses. These analyses are done within cancer families, to identify the
chromosomal location of the predisposing gene. These studies may be diffi-
cult due to incomplete variable penetrance and different possible pheno-
types. Nevertheless, by use of strict selection criteria for the families
submitted to such analyses, the target genes for diseases such as hereditary
breast cancer, hereditary nonpolyposis colorectal cancer, multiple endocrine
neoplasia, have been localized. The chromosomal map position of the
potential gene is the initial step of the positional cloning strategy, followed
by cloning of the gene, identification of possible germline mutations, and
finally description of the protein function. The BRCA1 and the BRCA2
breast cancer genes were identified through this method, for example. The
cellular locations of the proteins encoded by hereditary cancer genes are
shown in Fig. 2 and the protein functions are listed in Table 1.

Cytogenetical studies have also been useful in pinpointing the chromo-
somal location of cancer genes. Studies of constitutional (normal) cells from
patients with retinoblastoma and Wilms’ tumor revealed deletions of 13q14
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and 11p13, respectively (48,49). These two chromosome bands were later
shown to harbor the predisposing genes RB1 at 13q14.2 and WT1 at
11p13 (19–21). Similar studies of individuals with von Recklinghausen
neurofibromatosis identified two cases with balanced translocations, both

Figure 2 Cellular localization of proteins encoded by inherited cancer genes. Pro-
teins encoded by hereditary cancer genes are shown in red and include APC, adeno-
matous polyposis coli; ATM, ataxia telangiectasia protein—mutated; BRCA 1 and
2, proteins encoded by breast cancer (and ovarian cancer) susceptibility genes;
CDK4: cyclin dependent kinase 4; LKB1¼STK11: serine threonine kinase 11;
MEN: multiple endocrine neoplasia 1; MET: transmembrane receptor encoded by
a susceptibility gene for hereditary papillary renal cancer; MLH1: mut L homolog
1; MSH2 and 6: mut S homologs 2 and 6; NF1 and 2: neurofibromatosis types 1
and 2; p16: cyclin dependent kinase inhibitor¼CDKN2A; PMS1 and 2: mut L
homologs that, if inactivated in yeast, cause a high frequency of postmeiotic segrega-
tion; PTCH: patched; PTEN: phosphatase and tensin homolog deleted on chromo-
some 10; RB1: retinoblastoma 1; RET: transmembrane receptor tyrosine kinase
encoded by the susceptibility gene for multiple endocrine neoplasia; TSC2: tuberous
sclerosis protein 2; TP53: tumor protein 53; VHL: von Hippel Lindau protein; WT1:
Wilms’tumor protein 1. Other abbreviations: b-cat: b-catenin; CYC D1; cyclin D1;
E2F: transcription factor that binds to the adenovirus E2 promoter; ELG-B and
C: elongin B and C; GDNF: glial-derived neutrophic factor, HGF: hepatocyte
growth factor; MCC: mutated in colorectal cancer; MDM2: mouse double minutes
protein 2; SMO: smoothened; Tcf4: T-cell factor 4.
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involving 17q11, and these samples were then used in the cloning process of
the NF1 gene (50,51). The map position of the APC gene predisposing to
familial adenomatous polyposis (FAP) was found at 5q21 due to an intersti-
tial deletion in the germline of a mentally retarded patient with FAP (52).
The chromosomal locations for susceptibility genes for 17 hereditary cancer
diseases and 15 other syndromes with cancer as a phenotypic trait are listed
in Table 1.

Individuals who are predisposed to cancer through an inherited or
acquired mutation in the germline usually develop cancer at an early age,
but are rarely born with cancer. For a cancer to develop in these individuals
additional somatic changes are needed to initiate and establish a tumor. One
hallmark of an inherited cancer gene is that they are often more frequently
altered in somatic cells than in the germline. In accordance with the two-hit
theory for inactivation of a tumor suppressor gene (53), deletion of the
remaining allele is often found in the tumor from patients with an inherited
mutated gene copy. In a sporadic case of the same type both events have to
occur in the same cell line. The deletions are often identified by use of poly-
morphic markers within or flanking the gene in question. By comparing the
heterozygous constitutional genotype with the tumor genotype, a possible
loss of one allele will be detected. Cavenee et al. initially described this type
of study applied on retinoblastomas in 1983 (54). Loss of hetorozygosity
(LOH) studies have aided in identifying the location of several hereditary
cancer genes exemplified by multiple endocrine neoplasia type 1, neurofibro-
matosis 2, and basal cell carcinoma syndrome (17,55,56).

3. FUNCTION OF INHERITED CANCER GENES�

Genes predisposing to hereditary cancer diseases can be subdivided into
three major groups: the oncogenes that are activated through a mutated
protooncogene creating a gain-of-function mutant, as opposed to an inacti-
vated tumor suppressor gene resulting in a loss-of-function mutant. The
third category is defect repair genes that indirectly cause alterations in other
genes due to lack of repair. Such changes may give selective growth advan-
tage if they affect oncogenes and tumor suppressor genes. (For a complete
review, see Ref. 57.)

The proteins encoded by the inherited cancer genes are involved in a
wide range of cellular processes (Fig. 2, Table 1). In the dominant inherited
diseases, inactivating germline mutations are found in the tumor suppressor
genes and activating mutations are found in the oncogenes. In accordance
with the two-hit theory of Knudson, many of the cases with a germline
mutation in a tumor suppressor gene exhibit a somatic alteration in the

� For review, see Ref. 57.
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remaining gene copy in the tumor. Although a mutated protooncogene acts
dominantly at the cellular level, additional somatic changes are necessary
for development of tumors. Among the known susceptibility genes for can-
cer, three are classified as oncogenes, CDK4, MET, and RET (Table 1).
Germline mutations in alternative components of the mismatch repair
(MMR) system predispose to hereditary nonpolyposis colorectal cancer
(HNPCC). Often the second allele is inactivated either by DNA sequence
change or hypermethylation, and thus these genes resemble the tumor sup-
pressor model of homozygous gene inactivation at the cellular level. Even
though the tumor suppressor gene acts recessively at the cellular level, the
disease follows a dominant mode of inheritance. This is due to the high
probability of mutating the second allele in one cell resulting in a selective
growth advantage.

The recessive cancer syndromes are similar in that they typically have
defects in genes encoding proteins involved in DNA maintenance and DNA-
damage repair. In these recessive conditions, homozygous gene mutation
carriers have an increased cancer risk except for heterozygous ATM muta-
tion carriers that have increased risk of breast cancer.

Hereditary cancer genes are often altered in sporadic tumors although
the mutation frequency as well as the mutation spectrum might differ. The
APC germline mutations cause the familial adenomatous polyposis disease
with an incidence of approximately 1% among the population. However, the
APC gene is found altered in 70% of sporadic colorectal adenomas and
carcinomas. The APC protein functions in the Wingless (WNT) signaling
pathway as part of the cytoplasmic protein complex that regulates the level
of the b-catenin. Interestingly, where APC is normal in colorectal carcino-
mas, it tends to exhibit b-catenin mutations. Mutated APC or b-catenin will
deregulate cell growth via T-cell factor (TCF 4) transcriptional activation.
This example shows mutual exclusive mutations in different components
resulting in dysfunction of the same pathway, and illustrates the intersection
between important pathways in colorectal carcinogenesis. Further, TCF4
containing a poly(A) 9 tract (58) is a downstream target for MMR dysfunc-
tion. Short nucleotide repeat sequences are prone to replication errors, and
defect in the (MMR) system will thus indirectly cause such changes to accu-
mulate. Germline mutations in components of the MMR system are respon-
sible for the HNPCC syndrome that accounts for 2–4% of the colorectal
cancer cases.

The disruption of essential pathways through alternative components
has been described as a somatic alteration pattern in several tumor types.
Although to a lesser extent in the germline, some examples are known. In
addition to the above-mentioned MMR system, defects in CDKN2A or
CDK4 cause familial melanoma, and CDKN2A is an inhibitor of CDK4
in the cell cycle. Other examples are the proteins encoded by BRCA1 and
BRCA2 both of which work in complex with RAD51 (and other proteins)
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to repair damaged DNA (59). Mutations in BRCA1 or BRCA2 will lead to
accumulation of DNA damage and checkpoint activation, including activa-
tion of TP53.However, if TP53 is damaged, cell cycle checkpoints cannot be
activated and the cells will proliferate uncontrolled. Still we do not fully
understand why BRCA1 and BRCA2 germline mutations specifically predis-
pose to breast and ovarian cancer. The Li–Fraumeni syndrome commonly is
due to an inherited, altered TP53 gene. p53 Mutations have not been found
in all families clinically characterized as Li–Fraumeni-like. Germline muta-
tions in the CKH2 gene, encoding another cell cycle checkpoint protein,
were responsible for predisposition in a subgroup of these families (16).

4. CANCER RISK IN CARRIERS

Carriers of germline mutations in genes described in Table 1a are known to
be at high risk of developing cancer. However, there is a substantial inter-
individual variation in the age of onset and the risk of developing a cancer.
For example, when population screening for carriers of germline mutations
in BRCA1 or BRCA2 have been performed, mutation carriers without
family history have been identified, and the penetrance estimates have varied
between 28% and 80% (60). Carriers of the same mutation may show a great
phenotypic variability, also within the same family. These observations
imply that germline mutations in these genes are necessary to explain the
Mendelian pattern of cancer in some families, but are not sufficient to com-
pletely describe the variability seen between individuals. Risk modulating
factors like modifier genes or environmental exposures are therefore likely
to contribute. Examples of allelic variation in genes where such modifying
effects have been observed are different VNTR alleles within the HRAS1
oncogene (61) and CAG repeats in the androgen receptor gene (62). A pro-
tective effect of cigarette smoking on mutation carriers has also been
observed, and it has been speculated that cigarette smoke lowers the estro-
gen level (63). The Min (multiple intestinal neoplasia) mouse model provides
a clear-cut example of a modifying locus. In mice, Min mutation causes pre-
mature truncation of the APC protein, as for APC mutations in familial
adenomatous polyposis in humans. Mice heterozygous for Min develop
multiple polyps in the intestine, but with a significant variation in the num-
ber of tumors due to the Mom (modifier of Min) locus that encodes a phos-
pholipase A2 (64). The human homolog, PLA2A, does not seem to modify
colorectal cancer risk (65). The PLA2A and several other potential target
genes map to 1p36, which is frequently deleted in colorectal adenomas
and carcinomas (66,67). However, the target gene in this region with poten-
tial impact on colorectal tumor development remains to be identified.

It is likely that in the future we will be able to identify a number of
allelic variants that can modify the risk in mutation carriers. The ability
to apply risk prediction or cancer prevention strategies in carriers with
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germline mutations will depend on our knowledge of risk-modulating
factors and mutation carrier status.

5. FAMILIAL CLUSTERING OF CANCER

Almost all types of cancer have been reported in familial clusters, but the
sites most commonly involved are the breast, ovary, endometrium, colon,
lymphoid and hematopoetic tissue, and brain. The strength of familial clus-
tering varies; it maybe caused by dominant inherited predisposition as seen
in the HNPCC or BRCA1 families, by common environmental factors, or
by a combined influence of environmental and genetic factors. It is often dif-
ficult to distinguish between a dominant hereditary cancer syndrome with
reduced penetrance and familial clustering caused by several genetic suscept-
ibility alleles segregating in the family acting in combination with environ-
mental factors. Breast cancer, for example, fits best a dominant gene
model in which the predisposition leads to cancer at a young age. But, famil-
ial clustering of cancer cases occurring at an older age also can be seen. In
these families, a dominant model is not obvious and polygenic inheritance is
more likely.

Cancer is a complex disease and can be caused by a combination of
multiple gene variants, each with a weak to moderate effect, interacting with
each other and with the environment. Identification of the gene and gene
variants involved in familial clustering of cancer is challenging. Analyses
of siblings and twins, association studies using case–control or cohort ana-
lyses, are methods that have been applied. Candidate genes, in which there is
biological evidence to suggest association to a specific phenotype, are
screened for variations. Identified alterations are then compared to
control individuals from the same population cohort.

6. COMMON GENE VARIANTS PREDISPOSING TO
INCREASED CANCER RISK�

So far, familial clustering has been the main indicator of inherited cancer
risk. However, a substantial predisposition may also be present without
obvious familial clustering. Some genes with relatively common disease-
associated variant allele frequencies may confer a small to moderate indivi-
dual cancer risk. Since these variants are carried by a large number of indi-
viduals, the population attributable risk is high. Genes with allele variants
reported to be associated with increased cancer risk (low to moderate) are
listed in Table 2. (For review see Ref. 68.)

In analogy with strain differences in susceptibility to experimental
carcinogenesis in mice, genetic variation in the metabolic activation or

� For review, see Ref. 68.
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detoxification of carcinogenic chemicals can be important determinants of
population risk. The current candidates include the genes of the cytochrome
P450 (CYP) system, which has a central role in the oxidative metabolism of
many classes of exogenous and endogenous compounds, including steroid

Figure 3 Cancer risk assessment in individuals with high risk. A simplified flow
chart. The health institution is contacted by the index person or by potentially
at-risk family members. A medical genetic evaluation of the family is performed
and gene test(s) may be offered if available. The results of such testing as well
as family information over time may adjust the risk assessment, implying the
dynamic nature of this process. Screening, prevention, and treatment procedures
should be recommended according to the existing guidelines at the time. A poten-
tial scenario is indicated by the broken arrow. If the cancer patients and family
members immediately are offered relevant and complete gene tests, the results
may in conjunction with family history make the diagnosis firmer as well as influ-
ence the clinical management of the patient.
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hormones. During the oxidative process, electrophilic and carcinogenic inter-
mediates can be created. Many of these genes are highly polymorphic. One of
the first genes studied was CYP1A1, whose product metabolizes polycyclic
aromatic hydrocarbons such as benzo-a-pyrene. About 10% of the Caucasian
population have a highly inducible form of CYP1A1. A number of studies
involving different ethnic populations have been performed, and although
not conclusive, certain alleles seem to be associated with increased lung cancer
risk in smokers. OtherCYP genes have been analyzed in different case control
studies, and common genetic variants have been associated with increased
cancer risk. In breast cancer, genes involved in the metabolism of steroid hor-
mones like CYP17, CYP19, CYP3A4, and catechol-O-methyltransferase
(COMT) have been associatedwith increased risk. It has also been speculated
whether any of these gene variants may modify breast cancer risk in gene car-
riers ofBRCA1 andBRCA2mutations bymodulating the bioavailable steroid
hormone levels. Polymorphisms in androgen and estrogen receptors are also
interesting candidates in this respect.

Detoxifying enzymes, such as epoxide hydrolase, glutation-S-trans-
ferases (GSTs) and N-acetyl-transferases (NATs) are highly polymorphic,
and a number of studies have investigated their role in cancer risk of a vari-
ety of different cancers (Table 2). The GSTM1 deletion allele has been asso-
ciated with increased risk of bladder cancer, lung cancer, and possibly breast
and colorectal cancers. The null genotype had little risk of bladder cancer in
the absence of exposure to tobacco smoke, while the opposite was the case
for lung cancer, demonstrating the importance of gene–environment interac-
tions. Individuals with the NAT2 slow acetylator genotype have a higher
risk of bladder cancer if they are exposed to carcinogens metabolized by this
enzyme. Among postmenopausal women, smoking increased breast cancer
risk only in those with the NAT2 slow acetylator genotype.

Much of this research suggests that genetic variation in both metabolic
activity and detoxifying enzymes plays a role in modulating cancer risk of
exogenous and endogenous compounds. It is, however, difficult to estimate
the exact risk of these genetic variants since, in addition to the gene–envi-
ronment interaction, there also seem to be gene–gene interactions that can
result in a greater-than-additive effect on risk. Many of the studies have
so far suffered from small or poorly designed sample sets, and additional
research using carefully defined, large samples with known exposures is
needed to elucidate the role of these genes in cancer etiology.

Several other candidate genes with cancer associated alleles have been
suggested. These include genes encoding proteins involved in cell cycle regu-
lation and development, DNA repair and repair capacity, immune response,
and angiogenesis and other correlates of metastasis. An example of a poly-
morphism in a tumor suppressor gene associated with increased risk of
colon cancer is the population-specific I1307K polymorphism
in the APC gene in Ashkenazi Jews. A T-to-A transversion creates an
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eight-base mononucleotide tract and indirectly causes cancer predisposition
in these individuals. The mutation results in an amino acid exchange that
does not alter the protein, but the mononucleotide repeat sequence is hyper-
mutable, which may lead to truncation of the APC protein. This poly-
morphism is characteristic to Ashkenazims (101,102).

Several approaches to identify common alleles in cancer-associated
genes are emerging. Direct gene analysis of large cohorts of patients and
controls is feasible with new technologies. The type of variation that most
likely is responsible for a disease association is single-nucleotide polymorph-
ism (SNP) in the coding region of the gene. A huge international effort is
taken to identify SNPs in cancer related genes, and since linkage disequili-
brium normally does not extend over large distances, analyses of SNPs in
candidate genes seem very promising. Results from such analyses will hope-
fully provide a much clearer pictured of what role the genetic background
contributes to by either raising or lowering the cancer risk (103).

7. HOW TO IDENTIFY CANCER PATIENTS WHO ARE
GENETICALLY PREDISPOSED

7.1. High Risk

The identification of cancer predisposing genes over the past few years have
led to important changes in the clinical practice for cancer risk assessments.
Although evaluation of risk assessment based exclusively on the family his-
tory is still most important, gene tests for a number of cancer genes are
offered and used in this process (Fig. 3). There are many challenges at the
individual level, within the family, and in the society, as well as in the gene
tests themselves. ‘‘Gene testing’’ often includes a variety of modalities like
linkage analyses, analysis of one or more founder mutations, analysis of a
known private family mutation, screening for unknown mutation, and=or
indirect tests as immunohistochemical analyses of relevant proteins or
microsatellite instability test in the patient’s tumor. It often is necessary to
use several techniques in order to perform the ‘‘optimal gene test,’’ based
on a stepwise analysis process requiring skilled laboratory personnel. The
evaluation of the consequences of the genetic test results is best obtained
by close communication between molecular biologists responsible for the
laboratory work and the health professionals responsible for the genetic
counseling service.

7.2. Low Risk

Low to moderate risk may be assessed for relatives to cancer patients. Mod-
erate risk assessment can also be performed for patients without family
history of cancer but with bilateral disease or multiple cancers. However,
the influence the common gene variants may have on an individual’s cancer
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risk cannot currently be determined. The microarray technology ensures the
analyses of thousands of genes, providing a tool to obtain the genetic
portrait of a tumor as well the individual constitutional variation. The inter-
pretation of the computer assisted analysis is a challenge in itself, but as
better software continuously is developed, our focus now also turn to the
low to moderate cancer risk associated DNA now sequence alterations.
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1. CHEMICAL CARCINOGENESIS

The development of neoplasms mediated by chemicals in both experimental
animals and humans is a complex, multistep process (1–3), as illustrated in
(Fig. 1), involving a series of genetic and epigenetic alterations (4–7). Che-
micals operate in a variety of ways to either facilitate or inhibit the process
of oncogenesis (8–10). As far as is currently known, the process is generally
the same in humans and in animals, although many strains of rodents have
much higher incidences of neoplasms (11) than occur in humans, in the
absence of specific genetic susceptibility. Rodents are often much more
susceptible to chemical induction of neoplasms (12) and exhibit certain
responses (see section 3.2 Epigenetic Organic Carcinogens) to chemicals
not observed in humans (11,13,14).

Ultimately, the outcome of exposure to a chemical carcinogen is a
function of the internal or effective dose and duration of exposure to the
chemical and cancer-modifying agents and intrinsic susceptibility of the
exposed animal or human. The understanding of some of the differences
in response between animals and humans is discussed.

1.1. Neoplastic Transformation

The first sequence of events in oncogenesis or carcinogenesis, termed initia-
tion by Berenblum (2), consists of the transformation or conversion of a
normal cell into an initiated or transformed neoplastic cell. Transformation
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is almost certainly the consequence of changes in gene expression in these
cells which are either inherited, spontaneous or induced by chemicals or
radiation. Mutations, and likely permanent epigenetic changes, require
DNA replication, and hence the critical target cells for carcinogens are
principally the renewing stem cells in tissues.

Spontaneous mutations can arise from DNA hydrolysis, errors in
DNA synthesis, (6) or errors of repair process acting on intact DNA (15).
Induced mutations result from chemical modification of DNA that escapes
DNA damage repair and, during DNA replication, gives rise to DNA or
chromosomal alterations (see Section 4.4 Mutations). Epigenetic changes in
DNA expression can also be produced by one or more alterations. One is
alteration of the normal pattern of cytosine methylation carried out by
DNA methyltransferases, which are encoded by the cytosine DNA-methyl-
transferase (DNMT) gene family (16). Another is alteration in histone acety-
lation, which is mediated by histone acetyltransferase (HAT), and reduced by
histone deacetylase (HDAC) (17).

Both foreign chemicals (xenobiotics) and endogenous chemicals
(endobiotics) may interact with DNA either directly or indirectly to produce
transformation. Endogenous agents, such as hormones, reactive oxygen
species, nitric oxide, and lipid peroxidation products, as discussed later,
may contribute to some sporadic or ‘‘spontaneous’’ cancers.

Figure 1 Sequences of oncogenesis. Outlines the events in neoplastic transforma-
tion and development.
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In the evolution of a neoplastic cell, focal preneoplastic populations
usually precede the appearance of neoplasms and are considered to be the
progenitors of the neoplastic cells that constitute tumors (1,2,18–20).
Preneoplastic cells, which are not necessarily committed to progress to
neoplasms, presumably lack all the requisite genetic changes that character-
ize neoplastic cells. In contrast, fully transformed cells are neoplastic and
will form neoplasms under permissive conditions (Fig. 1). Preneoplastic
lesions in both rodents and humans often express phenotypic abnormalities
found in neoplastic cells; these include changes in enzyme activities and
functional properties (21), alterations in expression of regulatory molecules
such as erbB-2 (22), b-catenin (23,24), and fibronectin (25) and increases in
inducible cyclooxygenase-2 (COX-2) (26) and nitric oxide synthase (26,27).
These alterations probably are a consequence of gene mutations and,
indeed, certain preneoplastic lesions are demonstrated to carry gene muta-
tions found in the tumors that develop in association with the precursor
lesions (28–30), including aberrant methylation (31). Also, preneoplastic
lesions have been reported to have reduced DNA repair capacity (32).
Hypermethylation of the promoter region of the DNA repair genes human
Mut L homolog (hMLH1) and O6-alkylguanine-DNA alkyltransferase
(AGAT), associated with gene silencing (33), is present in a variety of neo-
plasms (34). Whether this could occur earlier in preneoplastic cells, thereby
enhancing their susceptibility to DNA-reactive carcinogens, remains to be
investigated.

Thus, preneoplastic populations represent pathological hyperplasia of
altered cells resulting from dysregulation of growth control. Even at the
stage of preneoplasia, impairment of growth control may result from dimi-
nished gap junctional intercellular communication (35–37), discussed
further below. Promoting agents enhance the development of preneoplastic
lesions, for some agents through inhibition of cell–cell communication.
Increased cell proliferation and impaired DNA repair capability may be
involved in rendering preneoplastic cells more susceptible to transformation
with continued exposure to DNA-reactive carcinogens.

Mutations that underlie transformation are primarily those in the
growth control genes, the proto-oncogenes and tumor suppressor genes,
or genes that regulate expression of oncogenes and tumor suppressor genes
(38,39), some of which are listed in Table 1. In addition to the mutations in
growth control genes, there are numerous interactions between their gene
products. Proto-oncogenes function as positive regulators of cell prolif-
eration. They become activated oncogenes (Table 1a) by point mutation,
partial deletion, amplification, or translocation. Tumor suppressor genes
(Table 1b) are negative regulators of proliferation. They are inactivated
mainly by deletions and point mutations. Deletions are often manifested
as loss of heterozygosity (LOH). Other epigenetic mechanisms of gene silenc-
ing are under or over methylation of DNA (40) and alterations in histone
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Table 1 Mutations in Growth Control Genes in Some Human Cancers

Gene Mutation Tumor site (type)

(a) Oncogenes

Growth factor

PDGF (platelet derived

growth factor)

Distal deletion Brain (meningioma)

FGF-4 (fibrobast growth

factor-4; HST-1)

Amplification Head and neck

(squamous cell)

EGF (Epidermal growth

factor)

Growth factor receptor

EGFR1 (epidermal growth

factor receptor 1; HER-1;

human epidermal growth

factor receptor-1; ERB B-1

avian erythroblastosis)

Overexpression Breast, lung, head

and neck,

esophagus, pancreas

(ductal)

ERB B-2 (HER-2=neu;

EGFR2)

Amplification

Point mutation

Transactivation

Breast, lung, prostate,

esophagus, gall

bladder, stomach,

colon, thyroid,

pancreas (ductal)

FGFR-1 (fibroblast growth

factor receptor-1

Astrocytoma

FGFR-3 (fibroblast growth

factor receptor-3

Multiple myeloma

HGFR (Hepatocyte growth

factor receptor; MET,

N-methyl-N0-nitro-N-

nitrosoguanidine-treated)

Rearrangement

Point mutation

Breast, thyroid, colon,

pancreas, ovary,

stomach, brain,

prostate, endometrium,

kidney, bone, liver

MET (mediate chemically

induced transformation)

Point mutation

Overexpression

Thyroid, colon,

pancreas, ovary,

stomach, kidney,

head and neck

RET (Rearranged during

transfection)

Rearrangement Thyroid, multiple

endocrine neoplasia

type 2

SCFR (Stem cell growth

factor receptor; KIT,

kitten)

Deletion,

insertion

Blood (myeloid

leukemia),

gastrointestinal tract

(stromal tumors),

lung (small cell),

testes (seminoma),

colon

Signal transduction element

HRAS (Harvey Rasheed

rat sarcoma virus)

Guanine point

in codons

Bladder, lung, thyroid,

head and neck

(Continued)
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Table 1 Mutations in Growth Control Genes in Some Human Cancers (Continued )

Gene Mutation Tumor site (type)

12, 13, 59, 61

KRAS (Kirsten sarcoma

virus)

Colon, esophagus,

lung, pancreas,

thyroid

NRAS (neuroblastoma) Leukemia, breast,

thyroid

BRAF (rapid

fibrosarcoma) B

Point mutation Melanocyte (melanoma)

colon, ovary, thyroid

CRAF (RAF1)

(rapid fibrosarcoma) C

Point mutation,

LOH

Lung, breast, stomach,

brain

SRC (Rous sarcoma virus) Deletion, Q531

stop

Breast, colon

ABL (Abelson leukemia

virus)

Translocation

9!22 (Philadelphia

Chr)

Blood (chronic

myelogenous

leukemia)

Fos (FBJ murine

osteosarcoma virus)

Brain (meningioma)

Jun (avian sarcoma virus 17:

ju-nana in Japanese

means 17)

PI3K (phosphatidylinositol

30-kinase)
Amplification Cervix, ovary, colon,

bladder

RhoA (RAS homolog gene

family, member A)

Lung (nonsmallcell)

STAT3 (signal transducer

and activator of

transcription)

Leukocytes (leukemia),

leukocytes (lymphoma),

leukocytes (multiple

myeloma), head and

neck, breast

Transcriptional activation factor

CTNNB1 (b-catenin) Missense,

deletion, exon 3

mutation

Liver, colon, uterus

(endometrium), skin,

kidney, esophagus,

ovary, melanoma,

stomach

MYB (myeoblast) Partial deletion Colon, breast, blood

(leukemia)

MYC (avian

myelocytomatosis)

Translocation,

amplification

Lymphoma, lung,

neuroblastoma, brain

(meningioma), breast

MYCN (avian

myelocytomatosis,

neuroblastoma derived)

Amplification Neuroblastoma

Rel (reticuloendotheliosis

virus)

Chr 2p14–15

Rearrangement,

amplification

Lymphoma, lung

CCND1 (cyclin D1) Amplification Breast, colon, lung,

head and neck,

bladder

(Continued)
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Table 1 Mutations in Growth Control Genes in Some Human Cancers (Continued )

Gene Mutation Tumor site (type)

Antiapoptotic factor

BCL-2 (B-cell lymphoma) Translocation

Chr.18!14

Lymphoma, leukemia,

colon, prostate

BCL-XL Prostate

HDM2 (human double

minute 2; MDM2, mouse

DM2)

Amplification

Overexpression

Soft-tissue sarcoma,

osteosarcoma,

esophagus, breast,

bladder

Other

NF1,2 (neurofibromatosis

type 1,2)

Aberrant splicing Peripheral nervous

system, brain

(b) Tumor Suppressor Genes

DNA repair

MSH2 (Mut s homolog) Colon (hereditary

nonpolyposis and

sporadic), ovary

MLH1 (Mut L homolog) Colorectal, ovary

BRCA 1 (breast cancer) Deletion, promoter

methylation

Breast=ovary (familial),

breast (sporadic)

LOH

BRCA 2 (breast cancer) Deletion

LOH

Breast=ovary (familial),

breast (sporadic)

Cell cycle arrest=apoptosis

TP53 (53 kD protein) Point mutations

LOH

Colon, lung, skin,

bladder, pancreas,

thyroid, esophagus,

adrenal cortex

ATM (ataxia

telangiectasia

mutated)

Missense

mutations

In frame deletions

Lymphocyte (lymphoma,

leukemia)

BAK (Bcl-2

homologous antagonist=killer)

Missense

mutations

Stomach, colon,

rectum

DAPK1 (death

associated protein

kinase 1)

Promoter

methylation

Lymphocyte (lymphoma),

lung, colon, breast

(ductal)

ING (inhibitor of growth) Downregulation Mouth, esophagus

Chr 13q33–34 LOH

TGFBR (transforming

growth factor

receptor-b) 1,2

Mutation,

downregulation

Stomach, colon, breast,

thyroid, prostate,

pancreatic (ductal)

TNFRSF6 (tumor

necrosis factor

receptor superfamily,

member 6; APO1;

APT1; CD95; FAS)

Splice variation,

point mutation

Head and neck,

lymphocyte

(lymphoma)

(Continued)
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Table 1 Mutations in Growth Control Genes in Some Human Cancers (Continued )

Gene Mutation Tumor site (type)

Cell cycle inhibitors

INK4a=ARF

(alternative reading

frame)

p16 deletion

mutation, Chr.

9p21 LOH,

promoter

methylation

Esophagus, skin

(familial melanoma),

colorectum, lung,

breast

RB1 (retinoblastoma) LOH, promoter

methylation,

microdeletion

Eye (rentinoblastoma),

bladder, kidney,

prostate, pancreatic

(ductal), breast, lung

(small cell)

Cell cycle control

CDKN1A (p21WAF1=CIPI)

(cyclin dependent kinase

inhibitor)

CDKN2A (p16ink4=MTS1)

(cyclin dependent kinase

inhibitor)

Chr. 9p21 LOH

Promoter methylation

Breast, colon, lung,

ovary, skin

(melanoma)

CDC4 Mutation, LOH Uterus (endometrium),

breast, ovary

PHB (prohibitin) Breast

PTEN (MMAC=TEP1)

(phosphatase and

tensin homolog)

Chr. 10q 23.3

deletions

Promoter

methylation

Endometrium, brain

(glioma), breast,

prostate, kidney,

lung, skin

(melanoma), thyroid,

bladder

Cell signaling

RASSF1A (RAS

association domain

family protein 1A)

Promoter

hypermethylation

LOH

Breast, lung (small

cell) kidney,

prostate, adrenal

medulla

(medulloblastoma),

nervous system

(neuroblastoma),

striated muscle

(rhabdomyosarcoma),

retina (retinoblastoma),

melanocyte (melanoma)

SHP-1 (Src homology

region 2 (SH2)

domain-containing

phosphatase)

Promoter

methylation

Leukocyte (leukemia=

lymphoma)

Cell differentiation

RAR-b (retinoic

acid receptor)

Promoter

methylation

Breast, lung, mouth,

colon

(Continued)
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Table 1 Mutations in Growth Control Genes in Some Human Cancers (Continued )

Gene Mutation Tumor site (type)

DMBT 1 (deleted

in malignant brain

tumors

Chr 10q 25.3-q 26.1 Brain, lung,

esophagus, stomach,

colon-rectum

Cell adhesion

CDH1 (E-cadherin-1) LOH Breast (lobular)

Promoter

methylation

Stomach, breast, lung, head,

and neck

Proapoptotic factor

BAX (Bcl-2 associated

protein X)

Frameshift Colon, uterus

(endometrium)

Other

APC (adenomatous

polyposis coli)

Frameshift,

nonsense,

promoter

methylation

Colorectal, esophagus,

pancreas

CNX (connexin) Stomach, liver, breast,

prostate

DCC (deleted in

colon cancer)

Deletion Colon

DBC2 (deleted in

breast cancer 2)

Deletion, mutation Breast

DLC (deleted in liver

cancer)

Chr 8 p21.3–22 LOH Liver, colorectum, lung

DPC4 (deleted in

pancreatic cancer

locus 4)

Biallelic inactivation Pancreas

FHIT (fragile histidine

triad)

FRA3B deletions Lung, kidney, breast,

cervix, esophagus,

stomach, liver,

estes germ cell

MCC (mutated in

colon cancer)

Colon

MEN1 (multiple

endocrine neoplasia

type 1)

Parathyroid, pancreas,

anterior pituitary

TSC-1,2 (tuberous

sclerosis complex)

Kidney

TSLC1 (tumor suppressor

in lung cancer 1, BL2,

IGSF4)

Chr 11 11q

23.2 LOH

Promoter

methylation

Lung (nonsmall cell),

liver, pancreas

VHL (Von Hippel Lindau) Chr. 3p LOH

Promoter

methylation

Kidney (clear cell),

hemangioblastoma,

pheochromacytoma,

lung

WT (Wilms tumor) Chr. 11p13 LOH Kidney (Wilms)

(Continued)
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acetylation (17). Methylation of CpG islands not normally methylated has
been implicated in the inactivation of tumor suppressor genes (41,42). Some
of these genetic changes may occur in the genesis of the neoplastic cell, as
discussed above, while others emerge during further neoplastic development
(38). Various lines of evidence implicate at least four to seven critical muta-
tions in growth control genes in the evolution of human cancer cells (43,44),
whereas fewer may be sufficient in rodent cells. Nevertheless, it is important
to recognize that over time both normal and neoplastic cells accumulate
very large numbers of mutations, in the range of 104–106, as a consequence
of spontaneous mutations during cell replication (45,46), although the
majority of these are noninformative. Also, gene expression profiling of
tumors reveals changes in expression of a large number of genes.

Tumor promoters, which are discussed later, facilitate the growth of
both preneoplastic cells and neoplastic cells through a variety of mecha-
nisms (Table 2). Promoters include both endogenous agents, such as hor-
mones, and exogenous agents (Table 3), all of which show specificity in
the species and organs affected. Their main action in transformation is to
facilitate clonal expansion of responsive preneoplastic cells.

Eventually, the preneoplastic cells with the requisite genetic alterations
for selective growth emerge as preneoplastic populations in which transfor-
mation to neoplastic cells occurs.

1.2. Neoplastic Development

In the second sequence of oncogenesis (Fig. 1), the neoplastic cell or popula-
tion proliferates disproportionately to the surrounding tissue thereby
achieving clonal expansion to eventually form a neoplasm (2,47). The clonal
expansion can result from either enhancement of proliferation or reduction
in programmed cell death referred to as apoptosis.

Neoplasms may be well differentiated, i.e., they express morphological
and functional features of their progenitor tissue, and are benign in their
biologic behavior. Qualitative changes in the biologic behavior of a neo-
plasm toward the malignant phenotype are known as progression (1) and
is due to accumulation of changes in gene expression. As originally

Table 1 Mutations in Growth Control Genes in Some Human Cancers (Continued )

Gene Mutation Tumor site (type)

WWOX (WW¼ two

tryptophans in

sequence motif;

domain-containing

oxidoreductase; FORII)

Chr 16q (FRA16D)

deletion,

Chromosomal

fragility

Breast, prostate, ovary,

esophagus, lung

Chr, chromosome; LOH, loss of heterozygosity; FRA, chromosomal fragile site.
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proposed by Loeb (48), progression may be the consequence of a mutator
phenotype which introduces mutations in replicating neoplastic cells (6),
adding to those occurring spontaneously and induced by carcinogen expo-
sure. The basis for the mutator phenotype includes reduced fidelity of
DNA replication and diminished DNA repair processes (33,49). The high
incidence of mutations in neoplastic cells can be readily identified in short
tandem repeats in DNA (microsatellites) (50,51), a phenomenon known as
microsatellite instability (MSI). One basis for the mutator phenotype is
mutations in mismatch repair genes whose gene products edit errors in newly
replicated DNA. Mutation or transcriptional silencing of either of two of
these, the MHL1 or MSH2 genes, leads to high levels of MSI (52,53). Tran-
scriptional silencing can be a consequence of promoter region hypermethyla-
tion, which has been estimated to occur in about 400 genes in cancer cells
(54). Another type of mutation frequently present in neoplasms is hemizy-
gous chromosomal deletions, detected as LOH. Chromosomal fragile site
loci (FRA) (55) may have a role in chromosomal instability in regions asso-
ciated with tumor suppressor genes (56–58). The two most frequently
expressed of the 80 fragile sites are FRA 16D and FRA 3B (56). Ultimately,
most, if not all, neoplasms develop chromosome aberrations (59).

An essential alteration in neoplastic cells is dysregulation of growth
control (60–62). This stems either from overexpression of the gene products

Table 2 Mechanisms of Interactions in Chemical Carcinogenesis

Cocarcinogenesis
Increased carcinogen delivery to target cells
Sensitization of target cells to effects of carcinogen, e.g., enhanced cell

proliferation
Promotion
Inhibition of cell–cell communication
Inhibition of immune effector cells
Induction of tumor necrosis factor-a
Induction of cyclooxygenase-2
Inhibition of apoptosis in preneoplastic or neoplastic cells

Syncarcinogenesis
Summation of genotoxic effects of two carcinogens

Photochemical skin carcinogenesis
Increased distribution of carcinogen to skin
Photoactivation of carcinogen
Photochemical generation of reactive oxygen species
Sensitization of target cells

Anticarcinogenesis
Inhibition of carcinogen formation
Blocking of interaction of carcinogen with target cells
Suppression of expression of transformation
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Table 3 Classification of Chemicals with Carcinogenic Activity

A. DNA-reactive
1. Activation-independent alkylating agents

N-nitrosomethylurea, N-methyl-N0-nitro-N-nitrosoguanidine
Epoxides: ethylene oxide, styrene oxide
Azoxymethane, methylazoxymethanol

2. Activation-dependent
Metabolic
Aliphatic halides: vinyl chloride
Aromatic amines: monocyclic-o-toludine; polycyclic-4-aminobiphenyl,
benzidine

Nitroaromatic compounds: 1-nitropyrene, 3-nitrofluoranthene
Heterocyclic amines: 2-amino-3-methylimidazo[4,5-b]pyridine (PhIP)
Aminoazo dyes: dimethylaminoazobenzene
Polycyclic aromatic hydrocarbons: benzo[a]pyrene; substituted
polycyclic aromatic hydrocarbons: 3-methlycholanthrene

N-nitroso compounds: dialkyl-dimethylnitrosamine,
diethylnitrosamine; cyclic-N-nitrosonornicotine (NNK),
nitrosomorpholine

Triazines, hydrazines
Benzene
Mycotoxins: aflatoxin B1, aflatoxin G1

Plant products: pyrrolizidine alkaloids, aristolochic acid, cycasin
Pharmaceuticals: cyclophosphamide, phenacetin, tamoxifen

Photochemical
Psoralens

B. Epigenetic
1. Promoter

Liver enzyme-inducer type hepatocarcinogens: chlordane, DDT,
pentachlorophenol, phenobarbital, polybrominated biphenyls,
polychlorinated biphenyls

Bladder: sodium saccharin
Forestomach: butylated hydroxyanisole

2. Endocrine-modifier
Hormones: estrogens-17b-estradiol; catechol estrogens-4-hydroxy-estradiol,

2-hydroxyestradiol
Estrogen agonists: 17a-ethinyl estradiol, diethylstillbestrol (DES)
Prolactin inducers: chloro-s-triazines-atrazine
Antiandrogens: finasteride, vinclozolin
Antithyroid enhancers of thyroid tumors: thyroperoxidase inhibitors-

amitrole, sulfamethazine; thyroid hormone conjugation enhancers-
phenobarbital, spironolactone

Gastrin-elevating inducers of gastric neuroendocrine tumors:
lansoprazole, omeprazole

(Continued)
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of activated oncogenes, which regulate cell survival and proliferation, or
from functional loss of the gene products of tumor suppressor genes which
inhibit cell proliferation (the full names of these genes are given in Table 1a
and b). A dynamic review of this dysfunction is available through the
Cancer Genome Anatomy Project (63). Thus, the progressive growth of
neoplasms is due to an imbalance of a higher percentage of dysregulated
neoplastic cells traversing the cell cycle (i.e., a high growth fraction), exceed-
ing the percentage leaving the cell cycle to the resting state (G0), differentia-
tion, or apoptosis. Cell cycle progression is controlled by the reversible
phosphorylation and ubiquitin-mediated proteosomal degradation of key
regulatory proteins (61,64). Phosphorylation is carried out by a family of
cyclin-dependent kinases (cdks) which are regulated positively by certain
cyclins, such as cyclin D, and negatively by cdk inhibitors such as p16. In
addition, the gene products of growth control genes regulate cdks. Cyclin
E, which is involved in the initiation of DNA replication, is dysregulated
in many types of tumors (65), apparently as a consequence of mutation in
the gene CDC4 that codes for a protein involved in targeting phosphory-
lated cyclin E for ubiquitination and proteasome degradation (66).

The progressive growth of a neoplasm is a function of acquired
abnormalities either in growth control or in the response to host permissive
factors or promoters. The normal growth control genes that are mutated
in neoplasms, are proto-oncogenes (or dominant oncogenes) and tumor
suppressor genes (or recessive oncogenes).

Table 3 Classification of Chemicals with Carcinogenic Activity (Continued )

3. Immunosuppressor
Cyclosporin
Purine analogs

4. Cytotoxin
Mouse forestomach toxicants: propionic acid, diallyl phthalate, ethyl

acrylate
Rat nasal toxicants: chloracetanilide herbicides-alcohol
Rat renal toxicants: potassium bromate, nitrilotriacetic acid
Male rat a2u-globulin nephropathy inducers: d-limonene, p-dichloro-

benzene
5. Peroxisome proliferator-activated receptor a (PPAR a) agonists
Hypolipidemic fibrates: ciprofibrate, clofibrate, gemfibrozil
Phthalates: di(2-ethylhexyl)phthalate (DEHP), di(isononyl)phthalate
Herbicides: lactofen

C. Inorganics
Fibers: Asbestos, silica
Arsenic, beryllium, cadmium, chromium (IV), nickel

D. Unclassified
Acrylamide, acrylonitrile, dioxane
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Approximately 150 mutated oncogenes have been identified (67).
The proto-oncogenes which are activated by mutation include genes
whose oncoproteins function as growth factors (e.g., PDGF), growth
factor recfeptors (e.g., EGFR1), signal transduction elements (e.g., H-
RAS), transcriptional activation factors (e.g., b-catenin), and antiapoptotic
factors (e.g., BCL-2). Most are activated in a variety of cancers, but a few
have been found to be mutated only in some specific cancers, as shown in
Table 1a. Additionally, oncogene expression can be upregulated by signal-
ing cascades.

The most frequently activated oncogenes in tumors are those of the
RAS superfamily of genes, which consists of at least six families, including
RAS, Rho, and Arf, of over 90 genes. Activation of K-RAS, H-RAS, or
N-RAS proto-oncogenes occurs in about 15% of many different types of
human cancer (68,69). Oncogenic forms of RAS p21 protein, a guanine
nucleotide binding protein, with guanosine triphosphatase activity, drive cell
proliferation through several downstream effectors. In one pathway, RAS
activates the mitogen-activated protein kinase (MAPK) signaling cascade
(70). MAPKs are serine=threonine kinases which phosphorylate transcrip-
tional factors (71), including nuclear factor-kB (NF-kB), a member of the
Rel=NF-kB transcription factor family (72), which is a central regulator
of stress response (73,74).

The protein kinase activity altered with RAS mutation is one of many
such alterations that are produced by oncogene mutations (75). Another
family of oncogenes encodes growth factor receptors (Table 1a). These
receptors, for example members of the epidermal growth factor receptor
(EGFR) family, are transmembrane receptor protein-tyrosine kinases
(RPTK), which regulate tyrosine phosphorylation and mediate intracellular
signal-transduction pathways, including the MAPK cascade (76). RPTK
activity is negatively controlled by cytoplasmic or transmembrane protein
tyrosine phosphatases (PTP) (77) and inhibition of PTP produces ligand-
independent RPTK activation. Another growth factor receptor, peroxisome
proliferation activated receptor (PPAR)-g, which is a member of the mem-
brane hormone receptor superfamily, is widely expressed in many tumors
(78).

Cellular responses to growth factors or cytokines are also mediated by
proteins known as signal transducers and activators of transcription (STAT)
(79). STATs are activated through tyrosine phosphorylation, which can be
produced by nonreceptor tyrosine kinases such as scr and abl oncoproteins.
STATs are constitutively activated in various types of tumors (80) (Table
1a), which can result in overexpression of cyclin D1 (81).

CTNNB1 encodes b-catenin, a multifunctional protein which operates
in cell adhesion by binding to E-cadherin and, in cell proliferation, through
the Wnt signaling pathway (82). b-Catenin is degraded by ubiquination fol-
lowing phosphorylation by glycogen synthase kinase (GSK)3b as part of a
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multiprotein complex including the APC and axin proteins. Mutations in
CTNNB1, APC, or AXIN genes lead to stabilized b-catenin which com-
plexes with members of the T-cell transcription factor (TCF)=lymphoid
enhancer factor (LEF) family of DNA binding proteins and acts as a tran-
scription factor for target genes, possibly including MYC (83), whose gene
product is involved in proliferation, apoptosis, and cell differentiation (84)
and also is an inducer of telomerase (see below).

Myb has been identified as an activator of transcription of the cyclo-
oxygenase-2 (COX-2) gene (85), also referred to as prostaglandin endoper-
oxide synthase, an inducible enzyme which is implicated in carcinogen
metabolism (86) and cancer progression through induction of neoangiogene-
sis (see below).

Thus, activated oncogenes are involved in cancer development in a
variety of ways. In some cancers sustained overexpression of the encoded
oncoprotein is required to maintain the neoplastic phenotype.

The other type of gene involved in neoplastic transformation is the
tumor suppressor gene of which over 170 are known (67). These encode pro-
teins that restrain cell proliferation either by inhibiting cell cycle progression
(e.g., p53), exerting cell cycle control (e.g., pRB), mediating cell differentia-
tion (e.g., RAR-b) or serving as receptors for growth inhibition factors (e.g.,
transforming growth factor-b receptor, TGFBR). Also, a few tumor sup-
pressor genes are involved in response to genetic damage. Some tumor sup-
pressor genes have multiple functions. Examples are given in Table 1b. The
function of tumor suppressor genes is lost by inactivation of both alleles.
This occurs through point mutation or deletion, partial or complete (class
I) or downregulation (class II) resulting from promoter methylation. Most
tumor suppressor genes have been found to be mutated in a variety of
tumors, but some are mutated only in specific tumors.

Abnormalities of TP53 are the most frequent tumor suppressor gene
alterations in human cancers (87) (Table 1b); the gene is mutated in 10–
70% of common cancers (88), with a high fraction of missense mutations,
which result in full-length mutant proteins. TP53 codes for a gene product,
p53, that is a 53 kD transcription factor which controls cell cycle arrest
and apoptosis (89). The p53 protein transactivates other genes by interacting
with the p53 responsive element (RE) present in their promoter regions (90).
Among these genes, p53 regulates the expression of BAX, and APAF-1
(apoptosis activating factor), which direct apoptosis, and CDKN1A, which
encodes p21WAF1=CIP1, an inhibitor of cyclin E- and A-dependent kinases,
and GADD45, thereby producing cell cycle arrest. Alterations of TP53-type
function may be even more frequent than evidenced by TP53mutations since
TP53 is one of a gene family including TP63 and TP73, which have some
similar functions (91). TP53 function is regulated by several proteins whose
genes may be altered in neoplastic cells. The product of the oncogene
HDM2 (MDM2 in mice named for double minute centromeric
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extrachromosomal nuclear bodies), HDM2 protein, is involved in the
degradation of p53 protein through a protesome mechanism (92), and
hence HDM2 overexpression abrogates p53 function. Mutations in TP53
and HDM2 do not commonly occur in the same tumor (93). Conversely,
several proteins enhance p53 activity. The tumor suppressor gene product
of INK can attenuate the interaction between p53 and MDM2 (94) and the
product of the oncogene ARF inactivates HDM2. Two isoforms of the
ING tumor suppressor gene bind to p53 and enhance its activity (95).

The second most frequently inactivated tumor suppressor locus is
INK4a=ARF (96). One of the gene products, p14ARF, activates TP53 in
response to activated oncogenes by neutralizing the effects of HDM2,
thereby preventing transformation. The other product p16INK4a is an inhibi-
tor of cyclin D-dependent kinase, maintaining Rb protein in the unphos-
phorylated state, thereby inhibiting cell cycle progression (97).

Also, a key alteration in many types of neoplasm is loss of function of
the RB1 tumor suppressor gene (Table 1). Its protein product, pRB, in its
hypophosphorylated form binds several transcription factors, especially
E2 factors (E2F), required for cell cycle progression from G1 to S phase
in which DNA is replicated.(98). When pRB is phosphorylated by the
cyclin=CDK complexes in late G1, its function is blocked, allowing E2F
to activate expression of genes whose products facilitate cell cycle transition
(99). Loss of function of RB1 occurs through mutation of the gene, by muta-
tions in the INK4a=ARF gene, amplification of cyclin D1=CDK4 activity or
by hypermethylation in its promoter region (100). Subsequent to identifica-
tion of silencing of Rb by promoter methylation, at least eight other tumor
suppressor genes have been shown to be silenced by this alteration (Table
1b), which maybe a consequence of the overall increase in DNA methyl-
transferase activity found in tumors (101). Other members of the RB gene
family, which include p107 and Rb2=p130, encode proteins with similar
functions as pRB (102) and may play a role in neoplasia.

The receptor for growth inhibition factors, transforming growth factor
receptor b (TGFBR), contains a protein kinase with serine=threonine speci-
ficity (RSK), which phosphorylates Smads [merger of Small gene in C. ele-
gans and Mad (mothers against decapentaplegic) gene in Drosophila], which
are signal mediation proteins which act as transcriptional regulators.

In individual cancers, various oncogenes and tumor suppressor genes
are abnormal. Some of those identified in human cancers are given in
Table 1. No oncogene is activated in all types of cancer and likewise, no
tumor suppressor gene is deleted in all types. Among the genes mutated
in cancers, K-RAS and TP53 are the only two consistently mutated in a high
proportion of cancers of different types. Cancers can exhibit a variety of
genetic alterations, depending upon the extent of progression. For example,
the sequential development of gene changes in colon cancer has been
described by Fearon and Vogelstein (103). Recently, Hahn et al. (44) have
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provided evidence that changes in at least four distinct signaling pathways
may be required for transformation of human cells. Certainly, the more
mutations in the regulatory pathways that a tumor incurs, the more aggres-
sive its behavior can become. Interestingly, pediatric tumors exhibit rela-
tively few mutations (104), but high frequencies of promoter methylation,
especially in RASSF1A (105) (Table 1b).

Tumor cells can also acquire resistance to apoptosis or programmed
cell death, which results from a variety of factors. For one, loss of matrix
attachment leads to death of epithelial cells, a phenomenon termed anoikis
(106). Also, a rapid process of apoptosis (2–8 hr) is evoked by various fac-
tors including extracellular factors such as tumor necrosis factor (TNF)
family members, including TNF-a, Fas ligand (Fas L; also known as
TNFSF6, tumor necrosis factor super family, member 6; APT1 APO1 or
CD95) and TNF-related apoptosis-inducing ligand (TRAIL) (107), whereas
a slower intrinsic process (8–48 hr) is mediated by intracellular factors such
as proapoptotic products of the BCL-2 gene family (108). This slower form
of apoptosis is initiated by mitochondrial release of proapoptotic factors
and cytochrome C, which can result from translocation of BAX to mito-
chondria (109). Apoptosis is effected by caspases, which comprise three
families of cysteine aspartate proteases (hence caspase) residing in the cyto-
sol as inactive zymogens (110). Specific caspases are involved in either the
initiation or execution phases of cell death. Members of one family, caspases
8 and 10, associate through a death effector domain with the cell membrane
death receptors of TNF-a, Fas L or TRAIL. Another family of caspases, 1,
2, 4, 5, and 9, have a caspase recruiting domain. The downstream effector
caspases are 3, 6, and 7, which are activated by members of the other two
families. Deregulation of the death receptor pathway to apoptosis is fre-
quent in many types of pediatric tumors due to methylation and gene silenc-
ing of CASP8 (111). Apoptosis can be inhibited by prevention of increased
mitochondrial permeability transition and=or stabilization of the barrier
function of the outer mitochondrial membrane (112) or through interaction
with Apaf (apoptosis activation factor)-1 to inhibit activation of caspases
(113). Antiapoptotic members of the BCL-2 gene family include BCL-2,
BCL-XL, and MCL-1 which encode proteins that prevent release of
proapoptotic factors, thereby conferring resistance to apoptosis. Because
elevated expression of BCL-2 and BCL-XL results in enhanced cell survival,
they are considered to be proto-oncogenes (Table 1a), although in some cir-
cumstances BCL-2 inhibits tumorigenesis (114). Inactivating mutations in
the proapoptotic BAX and BAK genes are found in some cancers (115),
and hence these are considered to be tumor suppressor genes (Table 1b).
Another proapoptotic protein is death-associated protein (DAP) which is
localized to the cytoskeleton and mediates interferon-g-induced cell death
(116). The gene for DAP kinase (DAPK1) is considered to be a tumor sup-
pressor gene (Table 1b). Activation of RPTKs, including EGFR, ILGF-1R
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and Met, can alleviate anoikis (117). Overexpression of COX-2 can also
inhibit apoptosis (118). Thus, tumor cells can acquire resistance to apoptosis
through alteration of a number of signaling pathways, several of which are
regulated by p53 (90).

The transforming growth factor (TGF) gene family proteins are
involved in various cell functions including growth, differentiation, apopto-
sis, and migration (119). TGF-b1 is growth inhibitory to certain cancers, but
they can lose their responsiveness through mutations of the receptor (TbR).
The alterations, however, are complex; in some tumors TGF-b1 is overex-
pressed and TGF-b1 and RAS can counteract one another collaborate
(120).

Enhanced cell proliferation is facilitated by reduced intercellular gap
junction communication (35–37). The gap junction is a membrane channel
between adjacent cells that is composed of junctional hemichannels, connex-
ons, in the cell membranes of communicating cells. Connexons are made up
of subunit proteins, connexins, of about 15 different types, which are
expressed differently in connexons formed in various tissues. The gap junc-
tions allow transport of hydrophylic molecules of low molecular weight (up
to 1 kD). A decrease or loss of connexin expression and gap junction forma-
tion occurs often in tumors, particularly connexin 43 (121). Thus, the
connexin gene family (CNX) may be considered tumor suppresor genes
(122). Also, expression of oncogene-coded kinases that produce connexin
phosphorylation downregulates gap-junctional communication.

In addition to alterations that drive cell proliferation, neoplastic cells
acquire a variety of phenotypic alterations that support growth. Important
among these is an increased glycolysis for generation of ATP, known as the
Warburg effect, which facilitates growth in a hypoxic micro environment.
An inducible isozyme of 6-phosphofructo-2 kinase has been implicated in
this phenomenon (123). Also, upregulation of glutamine synthetase (124),
which catalyzes synthesis of glutamine, and downregulation of 10-formylte-
trahydrofolate dehydrogenase (125), which regulates purine biosynthesis
through controlling the levels of 10-formyltetrahydrofolate, contribute to
tumor cell growth. Additionally, some tumors have diminished biotransfor-
mation activities, although not all Phase I and II enzymes are equally affected
(126–130) and some enzymes may be increased (126). The basis for most such
differences is not known, but it is established that glutathione S-transferase
P1 gene, GSTP1, can be silenced by promoter methylation (131).

For tumor cells to continue to proliferate, an important element is the
maintenance of the length of their telomeres, the terminal portion of the
chromosome consisting of TTAGGG repeats. Due to the inability of
DNA polymerase to replicate the extreme ends of the lagging strand of
DNA, telomeres are shortened by approximately 50–200 bp with each cell
division in normal cells, eventually leading to senescence. Telomere length
is maintained by a ribonucleoprotein complex, telomerase, consisting of
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the enzyme telomerase reverse transcriptase (TERT) and a 451 nucleotide
RNA template for the hexanucleotide repeats that are added to the ends
of replicating chromosomes. Telomerase is active in cells of many tumors
due to increased expression of TERT (132). The oncoprotein myc binds
to the TERT promoter and induces telomerase activity (133,134).

In addition to these intrinsic alterations in neoplastic cells, the develop-
ment of a tumor can be facilitated by host factors. Among these, hormones,
such as estrogen and insulin-like growth factor-1 (IGF-1), are implicated in
the development of several types of cancer, including colon, breast, prostate,
and lung (135–137). Also, enhanced expression of hormone receptors, such as
estrogen receptor (ER) or insulin-like growth factor-binding protein (IGFBP)
2 (138), increases tumor response to trophic hormones, although IGFBPs are
both positive and negative regulators of insulin-like growth factor signaling
(139). Cytokines, such as interlukin-6 (IL-6), have been implicated in the patho-
genesis of several types of tumors through activation of STATs (140,141).

As the neoplastic population expands, establishment of a new blood
supply is necessary to sustain the increased number of cells (142). Tumor
vascularization is stimulated by a number of factors including vascular
endothelial growth factor (VEGF) (142,143), and prostaglandin E2

(PGE2) produced from arachidonic acid by COX-2, which is elevated in
tumor cells including those of the colon, lung, stomach, pancreas, and breast
(144,145), as well as in their neovasculature (146). COX-2 is upregulated by
Myb and TNF-a. Angiogenic factors may be elaborated by the tumor cells
or by other cells, such as mast cells stimulated by stem cell factor produced
by tumor cells (147). The angiogenesis inhibitor endostatin, which is a clea-
vage product of collagen XVIII, has produced antitumor effects (148).

Neoplasms also must evade the host immune system and overcome
other host factors that restrain growth. Some tumors express factors inhibi-
tory to immune effector cells such as TGF-b, interleukin-10, and Fas-L
(149). Also, tumor cells can develop defects in proteosome function that
results in impairment of presentation of antigenic peptides and lack of
recognition by cytotoxic T lymphocytes.

The malignant phenotype in neoplasms is defined by the ability to
invade adjacent tissue and to metastasize to remote sites. Invasiveness
requires altered expression of specific cellular properties leading to decreased
cell adhesion or degradation of the adjacent extracellular matrix (ECM)
(19,150). Cell adhesion molecules include the tight junctions, the connexins,
which couple cells by formation of gap junctions (35), cadherins, which are
cell surface glycoproteins that bridge the extracellular space (151) and inte-
grins, which are signaling receptors which connect the ECM to the actin
fiber cytoskeleton, thereby regulating the cytoskeleton (152). E-cadherin
is the major epithelial cell–cell adhesion molecule which is connected to
the cytoskeleton by association with the cytoplasmic proteins, catenins.
E-cadherin is downregulated in a variety of carcinomas and its gene
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CDH1 displays LOH in some carcinomas (153). A variety of alterations of
the ECM occur in tumors. Fibronectin is reported to be decreased, even in
preneoplastic lesions (25). Recently, DMBT1 (deleted in malignant brain
tumor-1), a mucin-like molecule, which is the product of the putative
tumor supressor gene DMBT1 (Table 1b) was found to be reduced in
digestive tract cancers (154). Proteases that degrade the extracellular
matrix include the zinc-dependent matrix metaloproteases (MMP), of
which gelatinase A (MMP-2) is the most abundant and plasmin=urokinase
urokinase plasminogen activator (uPA) (150), an activator of MMP9
which is involved in basement membrane transgression. MMP activities
are inhibited by homologous tissue inhibitors of MMP (TIMPs) (155).
In some tumors, MMP activities are directed by overexpression of mem-
bers of the protein kinase C family, which consists of 11 serine–threonine
kinases, or the mitogen-activated protein (MAP) kinases. Also, NF-kB,
which is increased in malignancies, is a transcriptional activator of
MMP9 and uPA (156).

Each type of malignancy has a specific pattern of metastasis which is
determined both by lymphatic and blood drainage from the tumor, and also
by factors produced by disseminated cells allowing them to establish
metastases (157,158). Genes regulating metastasis of tumor cells have been
categorized as either metastasis-promoting (CDH2, CXCRy, MTA1) or
metastasis-suppressing (CD9, CD44, Nm 23, KiSS1, Ka11=CD82, CDH1,
MAP2K4, MKK4, TIMP, and BRMS1) (159). Several of these (CD9,
CD44, and CD82) code for transmembrane proteins. One possible mecha-
nism for metastasis inhibition is the maintenance of gap junction intracellu-
lar communication (160).

In addition to the alterations in genes critical to neoplastic develop-
ment and progression, neoplasms acquire a variety of alterations in other
genes, a phenomenon referred to as aberrant gene expression. Such genes
include those for hormones that would not normally be produced by the cell
type of origin of the neoplasm, such as secretion of vasopressin by small cell
lung carcinomas and those for proteins such as bone morphogenetic protein
(BMP) which can produce osseous differentiation in nonoesteogenic tumors.

In summary, neoplastic development, in which the neoplastic cell aris-
ing from transformation evolves into a malignant neoplasm, comprises the
phenomena of clonal expansion of the neoplastic population, which is facili-
tated by promotion, and the progression of genetic abnormalities in the
evolving neoplasm.

2. INTERACTIVE CARCINOGENESIS

Interaction between a carcinogen and other chemicals, including a second
carcinogen, can enhance or reduce carcinogenesis through different
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mechanisms listed in Table 2. As described above, replicating cells are
susceptible to neoplastic transformation by carcinogens and, because of
that, factors that increase cell replication can enhance the response of a
tissue to a carcinogen, while those that suppress replication can diminish
susceptibility.

Chemicals that are not themselves carcinogenic, but that enhance
carcinogenicity are referred to as cocarcinogens (8,9). These generally
operate in concert with carcinogens either by increasing the exposure of
target cells to the carcinogen or by enhancing the effect of the carcinogen
on the target cell, such as by increasing cell proliferation. An example of
human cocarcinogenesis is the enhancement of tobacco-induced oral cancer
by heavy alcohol consumption (161).

Agents that operate after carcinogen exposure to facilitate manifesta-
tion of carcinogenicity are referred to as promoters (8). As described above,
these operate in the sequence of neoplastic development, often by increasing
cell proliferation whereby a selective growth advantage is achieved by neo-
plastic cells. A wide variety of experimental agents with promoting activity
is known (Table 3). Various possible mechanisms of tumor promotion are
listed in Table 2. One that characterizes a wide spectrum of promoters is
inhibition of cell–cell communication (36,122,162), which results in libera-
tion of tumor cells from the growth regulatory signals of surrounding nor-
mal cells, as discussed above. Promoters also modulate gene expression,
including in critical genes such as COX-2 (163).

Under the influence of promoting agents, which include endogenous
substances such as hormones and growth factors, as well as xenobiotics,
the growth of initiated or transformed neoplastic cells is facilitated to form
a neoplastic population with progressive growth capability (2). The promot-
ing action of chemicals is generally characterized by increased cell prolifera-
tion in both the affected tissue and the preneoplastic or neoplastic cells
present in it. In response to promoters, preneoplastic populations, in some
tissues, exhibit reduced apoptosis (164).

Unlike cocarcinogens, promoters are often weakly carcinogenic in the
target tissue (Table 3), probably through promotion of cryptogenically
transformed cells. A likely example of human tumor promotion is increased
risk of breast cancer with hormone replacement therapy (165).

Both cocarcinogenisis and promotion are highly species and tissue
specific.

Syncarcinogenesis refers to the additive or synergistic effect of two car-
cinogens applied simultaneously or sequentially (8). Syncarcinogenesis is
well recognized for DNA-reactive carcinogens with the same target organ
(166), but apparently occurs infrequently among pairs of carcinogens
(167). Typically, syncarcinogenesis results from summation of the genetic
effects produced by each carcinogen in the target tissue (168), which could
possibly be a consequence of the accumulation of different DNA adducts,

224 Williams and Jeffrey



saturation of DNA repair, or the interference of one type of adduct with the
repair of another. A possible example in human carcinogenesis is cigarette
smoking in which there is exposure to several carcinogens, formed during
tobacco consumption.

Table 4 Classification of Chemicals and Mixtures Judged to Be Carcinogenic to
Humans by the International Agency Research Cancera

DNA-Reactive
Aflatoxins Myleran [1,4-butanediol

dimethanesulfonate]
4-Aminobiphenyl MOPP (nitrogen mustard,

vincristine, procarbazine, and
prednisone)

2-Aminonaphthalene Phenacetin-containing analgesic mixtures
5-Azacytidine Soot
Benzidine Sulfur mustard
Betel quid with tobacco Tamoxifen
Bis(chloromethyl)ether Tobacco smoke and products
Chlorambucil Thiotepa
Chlornaphazine [N,N-bis(2-

chloroethyl)-2-naphthylamine]
[triethylenethiophosphoramide]

Ethylene oxide

Chromium compounds,
hexavalent

Treosulphan

Coal-tars Vinyl chloride
Cyclophosphamide
Melphalan
Methyl CCNU [1-(2-chloroethyl)-3-

(4-methylcyclohexyl)-1-
nitrosourea]

Epigenetic
Azathioprine Postmenopausal estrogen therapy
2,3,7,8-Tetrachlorodibenzo-p-

dioxin (TCDD)b
Cyclosporin A

Oral contraceptives, combined and
sequential

Unclassified
Alcoholic beverages Diethylstilbestrol
Arsenic and arsenic compounds Mineral oils
Asbestos Nickel compounds
Benzene Shale-oils
Cadmium compounds Silica
Chromium compounds Wood dust

aWWW.IARC.fr
bBased on relevent mechanism
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A type of interaction of potential importance in skin carcinogenesis is
photochemical carcinogenicity, which results from the combined action of a
chemical carcinogen and ultraviolet radiation. The interaction can be of
various types. An example of one type is the photoactivation of psoralens to
DNA binding species (169) that induce skin cancer (170). In humans, skin can-
cer has occurred with 8-methoxypsoralen-UVA (PUVA) treatment of skin
conditions (171). Another type of interaction is the photodegradation of che-
micals, such as the fluoroquinolone antibiotics, resulting in formation of reac-
tive oxygen species, which may be implicated in the mouse skin photochemical
carcinogenicity of some of these chemicals (172). UVA is the predominant UV
radiation reaching the earth’s surface and could contribute to human skin
through such amechanism, involving either endogenous photosensitizers, such
as riboflavin, or exogenous ones.

Mechanisms of anticarcinogenesis are of several types (10,173,174).
Examples of experimental inhibition of the formation of an ultimate car-
cinogen include inhibition by vitamin C of N-nitrosation of amines to
form carcinogens (175) and inhibition of formation of sulfate esters of
aromatic amines by acetaminophen (176). Other anticarcinogens that
increase detoxification of carcinogens include oltipraz (177), the phenolic
antioxidants, butylated hydroxyanisole and butylated hydroxytoluene
(178) and the isothiocyantes, sulforaphane (179). Agents that block the
effects of carcinogens, possibly by free radical scavenging, include pheno-
lic antioxidants (178). Among agents that suppress tumor development,
the most generally effective experimentally is caloric restriction (180).
Other suppressing agents include antiestrogens, such as tamoxifen (181)
and nonsteroidal anti-inflammatory drugs (182). Several of these agents
are now in clinical development, as discussed below in Section 6, Cancer
Prophylaxis.

These types of interactive carcinogenesis contribute to the multi-
factorial nature of cancer in humans, as discussed below.

3. TYPES OF CHEMICAL CARCINOGENS

A wide variety of chemicals, both natural and synthetic, have carcinogenic
activity in rodents (183–185). The diversity of carcinogens reflects the fact
that the multistep process of oncogenesis can be influenced by chemicals
in various ways, mainly involving either DNA reactivity of the chemical,
leading to genetic alteration, or epigenetic modulation of cell growth or
function, as discussed above. Accordingly, carcinogens have been broadly
characterized as either DNA-reactive or epigenetic (9,186). Examples of
the types of chemicals that can be assigned to these two categories and those
for which data are insufficient for classification are given in Table 3. These
are described further below.
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3.1. DNA-Reactive Organic Carcinogens

DNA-reactive carcinogens are defined by their ability to bind covalently to
DNA (186). This reactivity is a consequence of their molecular structure
which gives rise to an electrophilic reactant, either directly or after bioacti-
vation, capable of reacting covalently with cellular nucleophiles, particularly
DNA (187). These aspects are discussed further in Section 4.2, Types of
Interactions with DNA. As a consequence of their DNA-reactivity, carcino-
gens of this type produce mutations in the target tissue and this is the most
rigorous basis for their categorization. They also are generally positive in
genotoxicity assays, although activity in certain tests such as those for chro-
mosomal effects are not necessarily indicative of DNA reactivity. DNA-
reactive carcinogens operate primarily in the first steps of oncogenesis by
binding to the DNA of target cells to effect initiation and neoplastic trans-
formation. DNA-reactive agents can also enhance tumor development by
producing cytotoxicity leading to compensatory cell proliferation, thereby
causing further progression in neoplastic cells through additional DNA
modification in these highly susceptible proliferating cells.

In experimental systems, most DNA-reactive carcinogens produce
neoplasms, usually malignant, in several species, in several organs, and often
in high incidence with short latencies. They can be carcinogenic with no
other observable toxic effect and with a single exposure. A number of
DNA-reactive carcinogens are active transplacentally in rodents (188). Sev-
eral DNA-reactive carcinogens have been active in nonhuman primates
(189), including transplacentally (190).

Owing to their mechanism of action, DNA-reactive carcinogens are
presumptive human carcinogens with sufficient exposure (191) and, indeed,
most human carcinogens are DNA reactive (Table 4).

The category of DNA-reactive carcinogens comprises mainly the
classic organic carcinogens that operate as alkylating agents, e.g., epoxides,
aliphatic nitrosamines, or arylating agents, e.g., polycyclic aromatic hydro-
carbons (PAH) and aromatic amines (Table 3). DNA-reactive carcinogens
with intrinsic reactivity occur mainly as products of the chemical and
pharmaceutical industries or as products of pyrolysis in which very reactive
chemicals are formed.

3.2. Epigenetic Organic Carcinogens

Epigenetic carcinogens have structures that do not give rise to reactive elec-
trophiles and thus they lack the ability to bind covalently to DNA and are
generally negative in genotoxicity assays, particularly in those that directly
measure DNA damage.

Some epigenetic carcinogens may be indirectly genotoxic and produce
neoplastic transformation by generating reactive chemical compounds intra-
cellularly, such as reactive oxygen species (192,193) or other reactive
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compounds such as nitric oxide (194,195) a,b-unsaturated aldehydes (enals)
(196,197), and dialdehydes from lipid peroxidation (198). Also, epigenetic
agents may enhance spontaneous transformation rates by increasing cell
proliferation. Many operate in the sequence of neoplastic development
as promoters by facilitating tumor development from cryptogenically
transformed cells.

Epigenetic carcinogens often are active in only one species and have
limited sites of activity, for example tissues that are hormonally responsive.
To be effective, they usually require prolonged exposure at levels sufficient
to produce the cellular effect that underlies their carcinogenic activity. While
only a few have been tested in primates, none has been active (189).

A few epigenetic carcinogens have been tumorigenic in humans
(Table 4) under conditions in which they produce the cellular effect that
underlies their carcinogenicity in rodents, i.e., hormonal perturbation and
immunosuppression. Thus, epigenetic carcinogens in animal models do
not necessarily represent human cancer hazards except under specific
exposure conditions (191).

Epigenetic carcinogens are extremely diverse in their structures, with
varied modes of action (Table 3). Some require bioactivation, for example
the chloracetanilide herbicides are bioactivated to cytotoxic products, but
many elicit their critical cellular effect in their parent form and are metaboli-
cally detoxified.

3.3. Inorganics

Inorganic carcinogens include fibers, such as asbestos, and metals and their
salts, including arsenic, chromium, and nickel (Table 3). The mode of action
of these is not well defined. For the metals, it has been suggested that inhibi-
tion of DNA repair processes (199,200), in the case of arsenic leading to
cocarcinogenesis (201), or disruption of normal oxidation=reduction bal-
ance affecting signaling molecules (202), are involved in their carcinogeni-
city. Such mechanisms would require substantial exposure to effect
carcinogenicity and these proposed mechanisms have not been demon-
strated with exposures comparable to implicated environmental exposures.

4. CARCINOGEN BIOTRANSFORMATION AND
CELLULAR EFFECTS

4.1. Bioactivation and Reactivity

Many DNA-reactive carcinogens require bioactivation to form reactive
electrophiles, the ultimate carcinogen, and hence are activation-dependent
(Table 3). In target cells, bioconversion generally takes place in the cytoplas-
mic smooth endoplasmic reticulum catalyzed by the cytochrome
P450 (CYP) oxidases. Initial oxidation reactions, referred to as Phase I
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bioconversion, function to convert xenobiotics to more water soluble forms
which are either excretable directly or may be conjugated in Phase II reac-
tions to excretable products (Fig. 2). Epoxide hydrolase, another Phase I
microsomal enzyme, adds functional groups (hydroxyl) to substrates (cyclic
ethers) which are often chemically quite reactive but otherwise unsuited for
conjugation reactions, apart from reaction with glutathione. Subsequent to
oxidation or at already available suitable molecular sites, bioconversion is
further carried out by Phase II conjugation reactions, catalyzed principally
by cytosolic enzymes glutathione S-transferases (GST), glucuronyl trans-
ferases (GT), sulfotransferases (ST), and N-acetyltransferases (NAT). Other
conjugates are potentially formed which are often species specific. The Phase
I and II enzyme systems exhibit polymorphisms, as discussed below.

The main role of the biotransformation systems is in excretion of
endogenous substrates such as steroid hormones. In the biotransformation
of xenobiotics, most products are less toxic than the parent compound
and are readily excreted, mainly in urine or bile. However, oxidation of
DNA-reactive carcinogens occurs at molecular sites that lead to formation
of an electrophile, an ultimate carcinogenic species. Thus, although both
Phase I and Phase II reactions generally lead to detoxification, some
chemicals such as PAHs (Phase I) or dibromoethane, tamoxifen and many
carcinogenic aromatic amines are activated by Phase I and Phase II bio-
conversion leading to reactive species. Hence, most Phase I and II enzymes
can either activate or detoxify depending upon the substrate.

Besides tissue biotransformation capabilities, the gastrointestinal tract
contains organisms capable of a wide variety of chemical biotransforma-
tions (203,204). A classical example is the activation by bacteria of cycasin,

Figure 2 Relationship between drug metabolism and DNA adduct formation.
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the b-glycoside of methylazoxymethanol, which occurs in the cycad nut.
Cycasin is only carcinogenic when hydrolyzed to the aglycone by bacterial
gut flora. More recent studies have shown that bacterial gut flora are
involved in the specific activation of several nitroarenes and more generally
by causing enterohepatic circulation of conjugates excreted in the bile. In
addition to their role in the overall biotransformation of potential carcino-
gens, bacteria also produce mutagens such as the fecapentaenes, which may
act as promoters (205).

The CYPs, which are involved in Phase I biotransformation, are a
super family currently subdivided into 76 different families in animals with
genes coding for more than 1000 enzymes with broad versatility in oxidative,
peroxidative, and reductive activities for both endogenous and exogenous
substrates (206) and are inducible by a variety of xenobiotics (207). The
CYPs that are most important in carcinogen bioactivation are 1A1
(PAH), 1A2 (arylamines), 1B1 (arylamines, PAH), 2A6 (aflatoxin, nitrosa-
mines), and 2E1 (benzene, nitrosamines, vinyl chloride). CYPs involved in
hormone metabolism include 1A2, 4, 5, and 17. Another Phase I enzyme,
epoxide hydrolase catalyzes the inactivation of chemically reactive epoxides
to dihydrodiols, but dihydrodiol products are intermediates in the activation
of many carcinogenic PAH to bay region diol epoxides.

The Phase II GSTs are a supergene family with several classes includ-
ing five cytosolic classes, GSTA, GSTK, GSTM, GSTP, and GSTT and one
microsomal class, MGST (208,209). Each GST enzyme has substrate speci-
ficity for conjugation with glutathione, although considerable overlaps exist.

NATs are the products of two active genes NAT1 and NAT2 (210).
They acetylate xenobiotics at accessible nitrogen and oxygen sites. In the
case of aromatic amines, acetylation results in either detoxification or acti-
vation (211); certain aromatic amines are acetylated by NAT2 in the liver to
less reactive forms (211), while alternatively they can be N-hydroxylated by
CYP1A2 and reach the bladder where they undergo O-acetylation by NAT1
resulting in the formation of highly reactive metabolites (212).

Likewise, GTs are a family of enzymes (213). An important GT
substrate which undergoes glucuronidation and urinary excretion is the
metabolite 4-(methynitrosoamino)-1-(3-pyridyl)-1-butanal (NNAL) of the
tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-buta-
none (NNN) (214). GTs, but not NATs, are inducible by xenobiotics. Genes
for these, and other enzymes, exhibit polymorphisms (215,216), often due to
single nucleotide polymorphisms (SNPs). The polymorphic enzymes exhibit
different catalytic activities which influence the disposition of carcinogens.

The liver has the greatest capacity for biotransformation, reflecting its
situation as the first pass organ for absorbed chemicals from the gastroin-
testinal tract. Other organs, notably the intestinal tract, lung, and kidney
express in lesser levels the Phase I and Phase II enzymes. The content and
composition of biotransformation enzymes within an organ is a major
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determinant of susceptibility to chemical carcinogens (217). However, the
variability of phenotypic expression of biotransformation enzymes in tissues
is high (218), possibly due in part to hormonal or xenobiotic influences on
activity levels (219).

Biotransformation processes are generally qualitatively similar
between animal species and humans (206), although quantitative differences,
sometimes major, exist. For example, the selective estrogen receptor modula-
tor, tamoxifen, is readily bioactivated in rat liver by hydroxylation and sulfate
conjugation leading to DNA reactivity (220,221) and is a potent hepatocarci-
nogen (222), whereas in mice and humans these reactions appear to take place
only to a limited extent (220). Consequently, significant carcinogenicity has
been observed in humans only in the endometrium (223) and it is unresolved
whether this involves DNA reactivity, since the evidence for adduct forma-
tion is contradictory (224–226). Also, species may differ in the organ expres-
sion of Phase I and II enzymes; for example, CYP1A1 which is involved in
biotransformation of PAH is highly expressed in rodent liver, whereas in
humans the lung is the principal organ of expression, which appears to be a
determinant for the risk of lung cancer from cigarette smoking.

Humans and some animals exhibit variations in genes encoding
biotransformation enzymes that influence toxicity and carcinogenicity
(227–231). Most of these allelic variations are due to single nucleotide poly-
morphisms (SNPs) which affect the catalytic activity of the encoded protein.
Among the Phase I reactions, CYPIAI SNP has been linked to lung cancer
risk in cigarette smokers (232). In a population exposed to PAH environmen-
tally and through cigarette smoking, PAH adducts in lung tissue were greater
in individuals with a combined CYP1A1 polymorphism and GST M1 (null)
phenotype (233). CYP1B1 polymorphisms, which are numerous (234),
include an SNP which is a susceptibility factor for head and neck cancers
in cigarette smokers (235). Among male Japanese cigarette smokers, the nor-
mal genotype of CYP2A6 gene was associated with greater risk for lung can-
cer than a polymorphism which results in a lack of CYP2A6 activity (236). A
polymorphism in CYP2E1, which catalyzes the activation of many nitrosa-
mines (237), has been associated with increased risk of rectal cancer (238).

Polymorphisms in the CYPs involved in steroid metabolism have been
linked to cancer risk in hormone-dependent tissues. CYP1B1 polymor-
phisms result in differences in estrogen hydroxylation which may relate to
individual susceptibility to breast cancer (239). Also a polymorphism in
CYP17 (A2=A2 genotype), which encodes the enzyme responsible for testos-
terone biosynthesis, has been associated with elevated risk of prostate cancer
in white men with a family history of cancer (240).

A polymorphism in EPHX1 that encodes microsomal epoxide hydro-
lase has been associated with increased risk of oral, pharynx, and larynx
cancers (241), although this has not been confirmed (242). A mutant allele
ALDH2�2, prevalent in East Asians, which results in a loss of aldehyde
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dehydrogenase activity and accumulation of acetaldehyde in alcoholic
patients, has been associated with increases in esophageal and oropharyngo-
laryngeal squamous cell carcinomas (243).

The most widely expressed polymorphism is in the Phase II NAT con-
jugating enzymes, rendering individuals either rapid or slow acetylators
(244). There are over 25 alleles for the NAT2 gene, of which NAT2�4 is asso-
ciated with the rapid acetylator phenotype (245). Slow acetylation is due to
lack of expression of the NAT2 gene or an SNP (246). With reduced or
absent NAT2 activity, acetylation is carried out by NAT1, resulting in slow
acetylation. Slow acetylation activity has been associated with elevated risk
for bladder cancer in workers exposed to aromatic amines in some studies
but the results are inconsistent (247,248). Also, slow acetylation status
increases the risk of bladder cancer risk in cigarette smokers (249). Slow
acetylation status has been associated with risk of sporadic colorectal cancer
(250), risk of breast cancer in postmenopausal women who are cigarette
smokers (251). Likewise, GSTs display polymorphisms (209); about half
of Caucasians are homozygous for deletion of GSTM1 and lack any func-
tional enzyme. A positive association has been identified between the null
phenotype of GSTM1 and cancers of the lung (252), bladder (229,253),
and breast (254). The null phenotype is also associated with a high rate of
TP53 transversion mutations in lung and bladder cancer.

The association of these various polymorphisms in biotransformation
enzymes with cancer risks clearly implicates an important role for their sub-
strates in cancer etiology.

4.2. Types of Interactions with DNA

Intrinsically reactive or bioactivated carcinogens that form electrophiles
(Fig. 3) react with all cellular nucleophiles and, since protein is the most
abundant nucleophile and has very reactive sites, most adducts are formed
on proteins. In addition, adducts are also formed at nucleophilic sites on
DNA, most often guanine residues (Fig. 3), although the other bases and
the phosphotriester backbone (255) are normally also modified. Modification
of the guanine N7 position results in a protonated imidazole ring which is
unstable and can easily result in depurination or opening of the imidazole ring
to give relatively stable adducts as happens, for example with aflatoxin B1

(256). This unifying concept of DNA adduct formation for initiating carcino-
gens was proposed by James and Elizabeth Miller (187). In another type of
interaction planar chemicals can intercalate between bases without DNA
binding (257).

DNA is also continuously modified by endogenous processes (258),
including methylation of cytosine at position 5 by DNMT (16). The base–
sugar bonds in DNA are susceptible to hydrolysis resulting in loss of bases
at a rate of about 104 per cell per day creating apurinic=apyrimidinic sites
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(Fig. 4) (259). Deamination of 5-methylcytosine to thymine (Fig. 4) is a fre-
quent reaction while deamination of cytosine to uracil is less frequent. Nitric
oxide can deaminate 5-methylcytosine to produce thymine (260), which
represents a greater challenge for DNA repair pathways (261). Keto=enol
tautomerism may be responsible for some G!A point mutations (262).
Oxygen metabolism generates reactive oxygen species such as hydroxyl radi-
cals and singlet oxygen that produce in oxidation of dGTP and bases in
DNA (263). The oxidation of deoxyguanine residues in DNA to 7,8-dihy-
dro-8-oxodeoxyguanine (8-oxodG) (Fig. 5) has been reported to occur in

Figure 3 Structure of electrophiles and the nucleophilic sites in DNA with which
they react. Electrophiles are the generalized structures of common electrophilic spe-
cies which react with DNA. These electrophiles react with nucleophilic sites in DNA.
Guanine residues are the most common target and the most frequently modified sites
are indicated with arrows. Sometimes more than one site may be involved or the initial
DNA adduct may undergo rearrangements (Fig. 6). Source: Data from Ref. 471.
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up to 1 in 103 residues (264), although there is considerable uncertainty
about precise levels due to artifacts in DNA preparation. A variety of other
oxidized bases have also been found (198). Peroxidation of unsaturated fatty
acids leads to formation of a,b-unsaturated aldehydes which produce cyclic

Figure 4 DNA deductions and rearrangements. Deamination and depurination are
significant events. The role of keto=enol tautomerism in guanine and thymine resi-
dues is less clear. Photochemical damage to DNA can result from effects such as
rearrangements of thymine residues to form dimers, photochemical oxidations in
the presence of endogenous (riboflavin) or exogenous (fluoroquinolones) to form a
variety of modification including 8-oxo-20-deoxyguanosine (Fig. 5).
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adducts with a propano ring moiety in DNA (Fig. 5) (196,265). These are all
premutagenic lesions as detailed below. Additionally, cytosine is methylated
by DNMT using S-adenosylmethionine as the methyl donor (16). Methy-
lene tetrahydrofolate reductase (MTHFR) plays a central role in converting
folate to methyl donors and polymorphisms in MTHFR reduce DNA

Figure 5 Examples of structure of DNA adducts. DNA adducts found in vivo
range from the addition of small molecules such as oxygen (top) to bulky adducts
such as those derived from the reaction with (7R,8S)-dihydroxy-(9R,10R)-epoxy-
7,8,9,10-tetrahydrobenzo[a]pyrene (bottom).

Chemical Causes of Cancer 235



methylation (266). Chemicals, such as 5-azacytidine, can modify methyla-
tion patterns (266,267).

Using the sensitive 32P-postlabeling assay for DNA adducts, nonpolar
adducts of two types, referred to as I-compounds for indigenous compounds,
have been found in tissues of rodents not exposed to exogenous carcinogens
(268–270). In these animals, Type I I-compounds are affected by age, gender,
diet, hormone, and chemicals. Type II compounds are oxidative adducts.

Two main types of interactions of chemical carcinogens with DNA
have been recognized: noncovalent and covalent (271). Several types of non-
covalent interaction occur. For example, bleomycin forms a complex with
DNA and, together with chelated iron and oxygen, causes base loss. Planar
molecules like actinomycin D intercalate between the base pairs of DNA,
without covalent DNA binding (257). Covalent interactions of carcinogens
with DNA may result from the intrinsic reactivity of a particular chemical
with DNA. This occurs with antineoplastic alkylating agents which are
designed for this property, or with reactive industrial chemicals. Such carci-
nogens have been designated as ultimate carcinogens or activation-indepen-
dent DNA-reactive carcinogens (Table 3). Other compounds, of both
natural and synthetic origins, which lack this intrinsic reactivity, need meta-
bolic activation by one or more Phase I enzymes, as discussed above, to
form DNA-reactive products. Such carcinogens are known as precarcino-
gens or activation-dependent DNA-reactive carcinogens (Table 3).

4.2.1. Chemistry and Conformation of DNA Adducts

Once the ultimate reactive carcinogens are formed, there are numerous fac-
tors that can influence their reactivity with DNA, including the reaction
mechanism (SN1 or SN2), the hardness of the nucleophilic center in the
nucleoside or nucleotide (oxygen generally being hard and poorly reactive
in contrast to nitrogen which is intermediate and sulfur, which is soft and
reactive) and the presence of adjacent groups which can influence the reac-
tivity of a compound either electronically or sterically. Most alkylating
reagents modify the purine (guanine and adenine) ring nitrogens, especially
at the N-7 position, and both purine and pyrimidine (thymine and cystosine)
oxygens. Alkylation can also occur on the phosphate backbone of DNA
(255), but the biological significance of this is uncertain. Their repair has
been better studied in E. coli than mammalian systems. Arylhydroxyla-
mines, formed by reduction of nitroarenes or oxidation of arylamines, react
at the C-8 and N-7 position of purines, possibly by rearrangement of tran-
sient N-7 adducts (Fig. 6). PAH diol epoxides react mainly with the exocy-
clic amino groups (Fig. 5). DNA is chiral and therefore any reactive
carcinogen containing one or more chiral centers may show preferential
isomeric reactivity.

The biotransformation enzymes described above, while often having
broad substrate specificity, can show remarkable specificity in the chirality
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of products formed; for example, in biotransformation of B[a]P, the dihy-
drodiols are always trans, whereas one of the four possible isomers of
B[a]P diolepoxide (BPDE), the R,S-dihydrodiol S,R-epoxide, is formed
predominately and also reacts with DNA preferentially (272). No proteins
have been described which specifically assist in the binding of the ultimate
carcinogens to DNA, although the structure of chromatin is important
(273) and numerous enzyme systems are involved in repair of such damage
(see below). Consequently, shortly after exposure to DNA-reactive carci-
nogens, patterns of DNA adducts formed in vivo and in vitro are generally
similar.

The reactivity of PAH diol epoxides with DNA, compared to hydro-
lysis by water to tetraols, varies considerably. For example, binding of
BPDE in contrast to the sterically hindered fjord diol epoxide of benzo[c]-
phenanthrene, ranges from about 10% to 75% of the diol epoxide added,
respectively. The binding pattern of adducts also changes from only minor
quantities of adenine adducts formed from BPDE compared to large
amounts for benzo[c]phenanthrene. Not surprisingly, for a given PAH,
the various isomeric diol epoxides differ markedly in their DNA binding
and ratios of guanine and adenine adducts. Examples of the various types
of interaction with DNA are illustrated in Fig. 5.

In addition to the chemical structure of DNA adducts, their conforma-
tion is important in determining their potential to escape repair and induce
mutations during replication. Studies of two examples, DNA adducts
formed from the reaction of BPDE or N-acetoxy-2-acetylaminofluorene
(274), show quite different conformations. The former causes little disrup-
tion of the DNA helix as the pyrene moiety lies in the minor groove of
the DNA helix, while the latter displaces the normal base to become inter-
calated into and opens the DNA helix. Some PAH diolepoxide adducts that
bind to adenine residues also intercalate into DNA (275,276). Alkylation at
the N-7 guanines is initially in the major groove while N3 adenine adducts
are in the minor groove. Cross-linking agents such as cisplatin cause major
disruptions of the DNA helix by binding in the minor groove, displacing
the opposite cytosines, causing bending and considerable unwinding of
the helix (277).

Figure 6 Formation of C-8 arylamine-DNA adduct via rearrangement of a
transient N-7 adduct.
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There are few studies of the binding of carcinogens to specific genes.
Among these, B[a]P has been shown to bind preferentially to mutational
hotspots in TP53 (278).

Measurement of DNA adducts is an important tool in biomonitoring
or molecular epidemiology of exposure to DNA-reactive carcinogens
(279–283) to provide information on the summation of the effects of expo-
sure, absorption, bioactivation of the genotoxin to the final DNA adduct,
and rate of repair (279). Tobacco smokers have been the primary source
of DNA since their exposure to known carcinogens is much higher than
any other population. Industrial exposures and the effects of food contami-
nants, such as aflatoxin B1, have also been monitored. These measurements
have been used primarily to monitor cohort exposure, but, as improvement
takes place in the ability to measure adduct levels more accurately and
understand their significance, information on individual risk should be pos-
sible. Since DNA adduct levels are extremely low, highly sensitive techni-
ques are needed. These include primarily immunological approaches such
as the ELISA assay (280), or radiochemical techniques, particularly 32P-
postlabeling (284). Other techniques such as fluorescence or electrochemical
analysis may be used depending upon the type of adduct being detected. The
level of adduct formation resulting from exogenous exposures is of the order
of one adduct per 107–109 normal DNA bases (285). Protein adduct detec-
tion is a valuable surrogate for DNA adduct formation since many carcino-
gens form adducts with both hemoglobin and serum albumin, which are
readily accessible (286).

The presence of DNA adducts in both animal and human tissues has
been applied to risk assessment of specific chemicals. Quantification of
adducts in animals exposed to a specific, often single, dose of the 14C-labeled
chemical carcinogen, has been used to establish a chemical binding index
(CBI) for the ratio of adducts formed per mole of DNA per kg body weight
for the particular compound administered (287,288). In a few exceptional
circumstances, it may be possible to extend these studies to humans (289).
These values range over many orders of magnitude, but if above unity,
i.e., significant levels of DNA adduct formation, the compounds are gener-
ally known to be DNA-reactive carcinogens.

Determination of adduct profiles after short-term administration may be
misleading since many chemical carcinogens produce multiple DNA adducts
which may show marked differences in repair rates. For example, N-7 and
O6-alkyl guanine lesions are better repaired than O4-alkyl thymine (290) and
C-8 adducts of N2-acetylaminofluorene (AAF) are better repaired than N-7
adducts (291,292). Hence, with continued administration of carcinogen, the
pattern of adducts can change as more slowly repaired ones accumulate.

It is important to keep in mind that formation of DNA adducts may
not be sufficient to induce tumors. One line of evidence for this is the fact
that DNA adducts are often formed in nontarget tissues for carcinogens.
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4.2.2. Isolation and Structure Determination
of DNA Adducts

Major challenges still exist in the structural elucidation of many adducts of
DNA-reactive carcinogens formed in vivo. Their presence is often known,
but, since the levels of modification of DNA are typically less than
one adduct in 106 normal nucleotides and often three or four orders of
magnitude less, the quantities of these adducts that can be isolated are,
consequently, extremely small. In general, clues as to possible structures
of an adduct have been inferred from the structure of the chemical
producing the adduct, its metabolism, and the possible structure of the
ultimate carcinogenic metabolite. The latter can then be prepared
synthetically or biosynthetically, at least in a transient state, and reacted
directly with DNA or homopolymers in vitro. Digestion of the DNA to
the modified nucleotides will often provide sufficient material for
comparison with adducts formed in vivo and subsequent structural elucida-
tion. Only a few adducts have been prepared by direct chemical synthesis.
Structure identification is normally by nuclear magnetic resonance (NMR)
and mass spectrometry (MS) analysis. However, if isolated at the deoxyribo-
nucleotide level, adducts with chiral centers will frequently separate as dia-
stereomeric pairs with often approximately mirror image circular dichroism
spectra. Such pairing of spectra simplifies the identification of multiple
adducts, and can provide information on their absolute steriochemistry.
Formation of some DNA adducts results in unstable products; for
example aflatoxin forms several DNA adducts including those at N-7 posi-
tion of guanine residues (256). This charged product is released from DNA
either by depurination to yield 2,3-dihydro-2-(N-7-guanyl)-3-hydroxyafla-
toxin B1 which can be found in the urine of exposed animals or, by opening
of the imidazole ring of the guanine, forms chemically stable adducts.
Anthramycin reacts with DNA to produce adducts which are unstable
during DNA digestion but whose structure can be determined in oligonu-
cleotides (293).

As an approach to the identification of unknown DNA adducts, we, in
collaboration with Dr. Esmans’s group at the University of Antwerp, have
used nanoliter HPLC coupled to ms=ms following the loss of the deoxyri-
bose moiety to identify ‘‘unknown’’ DNA adducts. Digests of DNA isolated
from the liver of rats treated with AAF and having adduct levels of about 3
in 107 were initially separated on OASIS HLB columns. Both acetylated and
deacetylated adducts were detected as the specific adducts present when
scanning for the constant neutral loss (CNL) of 116 M=e (unpublished
results). Once identified by the CNL spectra, much stronger spectra could
be obtained by scanning for these specific ions and, in conjunction with high
resolution mass analysis, provides valuable initial clues as to adduct struc-
ture when reference materials are not available.
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The most structural information regarding the conformation of DNA
adducts comes from NMR data involving nuclear Overhauser effect spec-
troscopy (NOESY) and correlation spectroscopy (COSY) analysis, which
have provided very detailed three-dimensional information regarding the
solution conformation of the DNA adducts. Such analyses complement
and provide proof for molecular modeling studies (294). It is, however, often
difficult to prepare sufficient material for this type of analysis and the
sequences of oligonucleotides into which the adduct can be incorporated
may also be limited if the reactive ultimate carcinogen is used to modify
the oligonucleotides.

4.3. DNA Damage Responses and Repair

Prokaryotic and eukaryotic cells possess a variety of enzymes capable of
repairing DNA alterations in order to maintain its integrity (295,296). In rest-
ing mammalian cells, these operate with high efficiency and fidelity thereby
restoring damaged DNA to its original molecular state. However, in cycling
cells, complete repair may not be achieved in DNA that is being replicated
and consequently, misincorporation can occur opposite unrepaired sites.
Also, DNA damage and evoked repair processes may lead to apoptosis.

In addition to the proteins directly involved in DNA repair, the repair
process is assisted by other DNA damage-responsive proteins including
some encoded by tumor suppressor genes (297) (Table 1b). Of particular
importance is p53, which, with DNA damage, is phosphorylated by
DNA-dependent protein kinases (DNA-PK) leading to decreased interac-
tion with dm2 protein, which targets p53 for proteolytic degradation
(298,299). The resulting stabilization of p53 leads to increased activation
of target genes including CDKN1A, GADD45 (growth arrest and DNA
damage 45) and HDM2. P21WAF1=CIP1 inhibits activation of cyclin E=cdk
2 complexes thereby preventing phosphorylation of pRB and blocking pro-
gression from G1 to S phase (300). Gadd45 protein interacts with the repli-
cation factor, proliferating cell nuclear antigen (PCNA) to arrest DNA
synthesis (301). Dm2 protein maintains p53 under negative control, which
is subject to an autoregulatory feedback loop (298). Thus, with increased
functional p53, cell cycle progression is arrested, allowing a greater oppor-
tunity for DNA repair. Likewise, ATM, a pleiotropic kinase, is activated by
double-strand DNA breaks and activates several factors that arrest cell
cycling (302). The enzyme poly (ADP-ribosyl) polymerase (PARP), which
catalyzes post-translational modification of proteins, also is activated by
DNA strand breaks and appears to be involved in DNA repair by interact-
ing with effectors of repair (303). PARP occupies DNA break sites to pre-
vent recombination between homologous ends of DNA (304). The
double-stranded RNA-activated protein kinase (RPK), which is a compo-
nent of the cellular reaction to stress (21), has been shown to function in
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regulation of DNA damage response, possibly by modulation of DNA
repair processes (305).

The DNA repair capacity of eukaryotic cells is maintained by six main
eukaryotic repair processes are as follows: (a) nucleotide excision repair
(NER) in which a region of DNA including the damaged nucleotide is
removed; (b) base excision repair (BER) in which the damaged base and a
few adjacent bases are removed by DNA glycosylases such as the alkylpur-
ine-DNA-N-glycosylase (APNG); (c) alkylguanine-DNA alkyl transferase
(AGAT) repair in which alkylation products on the O6 position of guanine
are removed by a repair protein without excision of the base; (d) mismatch
repair (MMR) in which an incorrect base misincorporated during DNA
replication is edited by an exonuclease; (e) postreplication repair in which
gaps in newly replicated DNA created by polymerase bypass are closed;
and (f) nonhomologous end-joining (NHEJ) of double-strand breaks or
homologous recombination repair (HRR) of double-strand breaks. These
processes are mediated by numerous proteins.

The first step in repair is lesion recognition. In NER, the xeroderma
pigmentosum group C (XPC) protein complex 3 is the initiator (306). For
some types of lesions, p53 is involved (307). Lesion recognition is followed
by removal of the damaged DNA, which in NER involves about 20 pro-
teins, including the excision repair cross-complementation (ERCC) group
proteins (308). In NER, in which lesion-containing segments of approxi-
mately 30 nucleotides in length are removed, there are two subpathways,
global genome repair (GNER) which occurs over the entire genome and
transcription-coupled repair (TCNER) which is directed preferentially to
the template strand of actively transcribed DNA and thereby serves to pre-
vent interruption of RNA transcription. Following removal of bases or
nucleotides, polymerases (most likely pol-d and e in the case of NER and
b in the case of BER, although polymerases can participate) positioned by
the replication factor PCNA gap fill the eliminated bases or nucleotides
and finally, ligases rejoin the strands, restoring the DNA to its original
structure, if no mutations have been introduced.

Nucleotide exision repair is elicited by a variety of DNA lesions, nota-
bly bulky adducts from arylating agents (309) and photoproducts (310).
BER and AGAT processes are elicited by smaller alkylating agents (311),
with NER serving as backup. Oxidative DNA damage is repaired by a
BER glycosylase encoded by the OGG1 (8-oxoguanine glycosylase 1) gene
(312) and possibly NER (313). BER also repairs strand breaks through
the protein XRCC1 (x-ray repair cross-complementing group 1) (314). If
repair processes are complete before the cell replicates, its DNA, the
DNA damage will not have a biological consequence, unless it is sufficient
to affect gene transcription or cell viability (i.e., trigger apoptosis). When
unrepaired DNA serves as the template for synthesis of new DNA, muta-
tions can occur, as detailed below.
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Some adducts are repaired better than others, as noted above. For
example, N-7 and O6-alkylation of guanine are better repaired than O4-alkyl
thymine, which is therefore more persistent (290). The basis for the efficient
repair of O6-alkylation is that it is a substrate for the AGAT repair process.
The dealkylation by AGAT is stoichiometric and the repair molecule is inac-
tivated by transferring the alkyl group to one of its cysteine residues (315).
AGAT is also inactivated by reaction with nitric oxide (316).

The types and amounts of DNA damage can also initiate toxicity or
apoptosis. DNA alkylation can elicit MMR leading to apoptosis (317)
through the reduction of the antiapoptotic protein Bcl-2 (318) or inhibition
of transcription by the MLH1 MMR protein (319). Also, if DNA damage is
so extensive that repair fails, damaged cells are eliminated by apoptosis
(320), involving both p53-dependent and -independent pathways. Among
the latter, poly(ADP-ribose) polymerase activity depletes cellular energy
pools leading to cell death (321).

The factors that regulate the many DNA repair genes are poorly
understood. Some, such as AGAT, may be regulated by methylation of pro-
moter regions (322). Transcripts of repair genes such as those for MMR are
at the highest level during maximal DNA synthesis (323), which would, of
course, serve to make available high levels of repair enzymes to protect
the integrity of DNA in a critical state. Some DNA repair genes can be upre-
gulated (324). The MAPK signaling pathway plays a role in upregulation of
some genes through phosphorylation of transcription factors including
members of the activator protein (AP) and specificity protein (SP) families,
which have regulatory elements within the enhancer region of promoter
sequences of many DNA repair genes (325)

DNA repair capacity varies between tissues and species, with human
cells being generally the most proficient and about sixfold greater than
rodent cells (326,327). As a specific example, adducts of 2-aminofluorene
and AAF introduced into phage are largely repaired within 4 hr when the
phage are transfected into human cells (328). In contrast, in the rat liver,
some AAF adducts persist for weeks after exposure (292).

Despite the general proficiency of DNA repair in humans, variations
in repair capacity exist among individuals, for example in AGAT (329).
One basis for such variation is genetic polymorphisms in the DNA repair
genes, several of which have been identified. These include an SNP in the
polymerase b gene which has been identified in bladder cancer cells (330).
Allelic variations in the XRCC1 gene (331), whose gene product is involved
in BER, have been associated with reduced DNA repair capacity (332), and
higher risks of skin (333) and bladder (334) cancers. An SNP in the XRCC3
gene, which codes for homologous double-stranded repair, is associated
with increased melanoma risk (335). An SNP in OGG-1, resulting in reduced
repair of oxidative DNA damage, is associated with a two-fold increase in
risk of lung cancer (336). Lastly, an SNP in the promoter region of the
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DNMT gene is associated with increased risk of lung cancer, possibly related
to reduced DNA repair (337).

A variety of DNA repair deficient conditions arise from germ line
mutations, including the hereditary nonpolyposis colorectal cancer (HNPCC)
condition in which one of five mismatch repair genes MLH1, PMS1, PMS2,
MSH2, and MSH6 is mutated (338,339), xeroderma pigmentosum in which
XP genes are mutated and NER is impaired (340) and ataxia telangiectasia
in which the ATM gene is mutated resulting in deficient double-strand break
recognition (341) and familial breast=ovarian cancer in which mutations are
present, the BRACA1 and BRAC2 tumor suppressor genes whose encoded
proteins are involved in postreplicational homologous recombination DNA
repair (342).

As noted above, neoplastic cells display abnormalities in repair systems,
including mismatch repair (33), AGAT (33), BRCA1 function in double-
strand break repair (343), and DNA polymerase b (49). Recently, the
HR6B (human homolog of yeast Rad6) DNA repair gene, which encodes
ubiquitin-conjugating enzymes (E2), has been reported to be overexpressed
in breast cancers, leading to genetic instability (344).

4.4. Mutations

At the molecular level, a mutation is a permanent change in the linear struc-
ture of DNA. Carcinogens can mutate critical genes either by producing
DNA alteration such as point mutations, frameshifts, deletions and translo-
cations or structural or numerical (aneuploidy) chromosomal alterations.
DNA alterations occur only when damaged DNA is used as the template
for DNA synthesis or when DNA polymerases introduce errors not cor-
rected by mismatch repair. In either case, the proliferative status of the cell
is critical.

As an example of point mutations, the non-Watson–Crick base pairing
due to O6-alkylation of guanine residues, a highly promutagenic lesion, is
shown in Fig. 7. This mispairing with T (345) leads to the G!A transitions
of one purine for another, which is found in genes mutated by many alkylat-
ing agents. The oxidation product 8-oxodG leads to G!T transversions in
which a pyrimidine replaces the purine. Unrepaired apurinic sites lead to
A!T and G!T base substitutions, while deamination of C to U can yield
C!T mutations. A major form of DNA modification in mammalian cells is
methylation of the C5 of cytosines in CpG dinucleotides (346). 5MeC can
undergo spontaneous deamination to thymine resulting in 5MeC!T muta-
tions (Fig. 4). A high frequency of mutations in the TP53 gene in tumors
occurs at presumably methylated CpG sites (88).

Point mutations are generally missense mutations that result in amino
acid substitutions in the encoded proteins. Owing to the redundancy of the
gene code, they may be silent or change to stop signals.
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Individual adducts have different mutagenic potential. For example,
the acetylated C-8 guanine adduct of AAF, dG-AAF, leads primarily to
misincorporation of dTMP whereas the deacetylated adduct, dG-AF,
mispairs with dAMP, dTMP, and dCMP approximately equally (347).

The critical mutations for cancer occur in growth control genes, proto-
oncogenes, tumor suppressor genes, or genes regulating tumor suppressor
genes, leading to dysregulation of these genes. The mutated growth control
genes identified in the most common human cancers are given in Table 1,
together with the type of mutation.

In oncogenes, specific point mutations lead to activation. For example,
in the RAS gene family, activating mutations occur at codons 12, 13, and 61
(348) and rarely in codons 22 (349) and 59 (350).

In tumor suppressor genes or their regulatory genes, mutations are
usually deletions (LOH) or point mutations leading to functional loss of
the gene product. As noted, promoter methylation also leads to silencing.

Signature mutations for specific carcinogens are uncommon. In liver
cancers that arise in geographic regions where mycotoxin contamination
of foods is prevalent, mutations in TP53 are mainly G!T transversion in
the third base of codon 249 (87). Also, in nonsmall cell lung cancer, frequent
TP53 mutations occur in codons 157, 158, 245, 248, and 273 at methylated
CpG sites which preferentially bind PAHs (351). Interestingly, the pattern of
mutations in TP53 in human bladder cancer were mostly G!A transitions
in codons 175, 248, and 273 (352). In contrast, the proximate form of a
rodent bladder carcinogen, 4-aminobiphenyl, produced predominantly
mostlyG!T transversion at five preferential adduction sites, raising the ques-
tion as to the involvement of aromatic amines in human carcinogenesis (353).
Measurement of mutated alleles in nontumorous tissue, like measurement

Figure 7 DNA base pairing. Normal Watson–Crick G:C base paring (left). Mis-
pairing of thymine with an O6-allylguanine base in DNA resulting from misincor-
poration during DNA synthesis (right). Source: From Ref. 472.
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of adducts, can suggest linkage of exposure to a carcinogen with cancer
known to arise at the site (354).

Although some specific carcinogen-associated mutations have been
identified, the cells of neoplasms harbor 104–106 mutations from various
sources, as noted above, and thus many remain to be characterized.

4.5. Spectrum of Chemicals with Carcinogenic Activity

A number of chemicals were found to cause cancer in humans before they
were tested for carcinogenicity in animals, for example, bis(chloromethyl)
ether, 2-naphthylamine, and vinyl chloride. The demonstration of the carci-
nogenic activity of chemicals in animals (2) began with the report in 1916 by
Yamagiwa and Ichikawa of induction of skin cancer in rabbits by coal tar.
Subsequent salient advances included induction of liver cancer in rats by o-
aminoazotoluene described by Yoshida in 1934 and the induction of urinary
bladder tumors in dogs by 2-naphthylamine reported by Hueper and cow-
orkers in 1938. Hundreds of chemicals have now been identified to produce
increases in neoplasia in rodent tests (9,183,184). A brief listing of some
examples, including both naturally occurring, i.e., mycotoxins, as well as
synthetic chemicals, notably industrial chemicals and pharmaceuticals, is
provided in Table 4 .

Relatively few of the many rodent carcinogens for which there is
human exposure have been implicated in human cancer (Table 4). This
may reflect lack of robust epidemiological data, but where good data are
available, explanations lie in the fact that humans are not susceptible to
some of the mechanisms operating in rodents or the exposures of humans
are orders of magnitude less than in animal experiments. In particular, no
food additive that elicits tumors in rodents, e.g., saccharin, has been asso-
ciated with cancer in humans and likewise, no rodent carcinogenic organic
pesticide, e.g., DDT, or other organochlorine compound, e.g., polychlori-
nated biphenyls, with the possible exception of TCDD (Table 4), has been
found to cause human cancer (13). As noted, most identified human carcino-
gens are of the DNA-reactive type.

4.5.1. Industrial Chemicals

The first association of human cancer with a chemical exposure was the clas-
sic observation by Pott in 1775 of scrotal skin cancer in chimney sweeps,
which is now known to be due to DNA-reactive PAH in chimney soot. Soot
and related coal-tars are recognized as human carcinogens (Table 4) and are
carcinogenic in rodents, particularly when applied to mouse skin. Subse-
quently, several other industrial chemicals were found to cause cancer in
humans, i.e., 4-aminobiphenyl, benzene, bis(chloromethyl) ether, 2-naph-
thylamine, and vinyl chloride. All of these are of the DNA-reactive type.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been concluded by IARC
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to cause cancer in humans (355), based on mechanistic considerations,
although the data in humans were judged to be limited. In rodents, TCDD
appears to act as an epigenetic agent (74). Similarly, polychlorinated biphe-
nyls are rodent liver promoters (356) and have not been conclusively asso-
ciated with cancer risk to humans (357–359). Several minerals with
occupational exposure, including chromium and nickel salts, have also been
associated with increases in cancer. Numerous other industrial chemicals are
known to produce cancer in animals, for example acrylamide, acrylonitrile,
phthalates, but have not been established to cause cancer even in the most
highly exposed worker populations. Likewise, a number of pesticides that
are carcinogenic in rodents have been suggested to be associated with
increased cancer, for example 2,4-dichlorophenoxy acetic acid and soft-tis-
sue sacromas (360,361), but the evidence is not conclusive (362,363). Studies
of agricultural workers do reveal increases in rates of several cancers such as
non-Hodgkins lymphoma (364,365).

4.5.2. Natural Substances

Endogenous hormones, such as estradiol and its catechol metabolites and
thyroid stimulating hormone, are carcinogenic in animal models when admi-
nistered at super physiologic doses or when persistently elevated by physio-
logic perturbations. Considerable evidence exists that the cumulative
exposure to estrogen increases risk of breast cancer (366) and the catechol
metabolites of estrogens also have been implicated, possibly as indirectly
genotoxic (367). A class of mutagen and potential carcinogen formed in
the body is the fecapentaenes, which are conjugated ether lipids produced
by intestinal bacteria (368). Their role in human cancer remains unresolved.

Several substances found in nature have been associated with cancer in
humans. The most important occur as lifestyle exposures. Tobacco, in vari-
ous forms of voluntary use results in exposure to tobacco-specific nitrosa-
mines, and PAH, both of which are DNA reactive (369). Also, alcohol,
which as noted above, can act as a cocarcinogen, under conditions of exces-
sive use leads to liver injury and cancer in humans, as well as increases in
cancers of the oral cavity, pharynx, larynx, and esophagus (161). In addi-
tion, the human diet contains a number of carcinogens and anticarcinogens
(370).

A variety of microbial and plant products are carcinogenic. The afla-
toxins are products of the mold Aspergillus and contaminate certain crops
such as peanuts and corn (371). Aflatoxin B1 is a potent hepatocarcinogen
in rats and has been implicated as causing human liver cancer (371). Among
the many plant products which are carcinogenic in animals, those that have
produced toxicity in humans are the pyrrolizidine alkaloids and aristolochic
acid. DNA adducts have been found in patients consuming herbs containing
aristolochic acid (372).
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High levels of inorganic arsenic in well water (i.e., > 50 mg=L) in rural
areas of Asia and South America have been associated with increased
human cancer risks, notably skin cancer (373) and also lung, bladder, liver,
and kidney (374). The mode of action of arsenic carcinogenesis is not under-
stood, as discussed above, and no mechanistic data are available from
individuals exposed to arsenic (375).

Carcinogens are also formed during processing of food. Urethane is
formed during fermentation. The cooking of protein-containing food results
in generation by pyrolysis of at least 14 distinct potent carcinogenic hetero-
cyclic amines (376). Three of these, 2-amino-1-methyl-1H-6-phenyl-imi-
dazo[4,5-b] pyridine (PhIP), 2-amino-3-methyl-3H-imidazo[4,5-f] quinoline
(IQ), and 2-amino-3,4-dimethyl-3H-imidazo[4,5-f] quinoline (MeIQ) have
been shown to induce mammary cancer in rodents. Colon cancer has been
induced in rodents by IQ and MeIQ, as well as 2-amino-6-methyldipyrido
[1,2-a:30,2;-d]imidazole (Glu-P-1). Recently, acrylamide has been found in
fried starch-containing foods (377). Some of these are suspect human carci-
nogens, as discussed below.

4.5.3. Medicines

Iatrogenic cancer, mainly leukemia, was first observed with alkylating agents
used to treat cancer. The carcinogenic chemotherapeutics include chloram-
bucil, cyclophosphamide, methyl-CCNU, myleran, MOPP, nitrogen mus-
tards, and thiotepa (378), all of which are DNA reactive (Table 4). Other
pharmaceuticals, which are DNA-reactive in rodents such as tamoxifen,
induce cancer in treated patients (223). A few epigenetic carcinogens,
mainly hormones and immunosuppressants (Table 4), have also been asso-
ciated with increased cancer risk under conditions in which they produce
the pharmacological effect that underlies their carcinogenicity in rodents.
For example, use of combination oral contraceptives leads to increased
risk of hepatocellular carcinoma, but reduced risk for endometrial and
ovarian cancer (379). Postmenopausal estrogen therapy conveys small
increased risks for breast and endometrial cancers (379). Medical use of
arsenic (Fowler’s solution) has been associated with bladder cancer
(380). Otherwise, over 80 medicines known to increase tumors in rodents
(381) by epigenetic mechanisms have been used extensively without indica-
tion of increased cancer risk.

4.5.4. Food Additives

Several agents used in food such as saccharin and butylated hydroxytoluene
are tumorigenic in rodents under specific conditions. None of these has been
linked to human cancer. Sodium nitrite, which is used in the preservation of
cured meats, has been the subject of several studies, but has not been found
to be carcinogenic (382).
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5. CHEMICALS AND HUMAN CANCER

The environmental agents sunlight and chemicals, particularly those derived
from smoking and diet, are believed to be the major causes of human can-
cers (383,384). Nevertheless, cancer is a multifactorial disease and individual
genetic susceptibility is important (385), as well as interaction between
carcinogens and enhancing or inhibitory factors.

Excess body weight appears to increase the risk of several types of
cancer, notably kidney and endometrium. This may relate to hormonal
abnormalities (386).

Age is also an important determinant. Certain cancers such as leuke-
mia and bone cancer have their greatest incidence in childhood when these
tissues are highly proliferative. Most other cancers peak later in life, which
may reflect prolonged accumulation of DNA alterations and increased car-
cinogen sensitivity (387).

To date, 88 specific chemicals or mixtures have been established by the
International Agency for Research on Cancer to cause cancer in humans
(Table 4), some of which have been discussed above. Most of these are of
the DNA-reactive type and virtually all of them, apart from cigarette smoke
and mycotoxins, affect humans either through occupational or therapeutic
exposures, which are substantial compared to general environmental expo-
sures to chemicals. These industrial chemicals and pharmaceuticals, how-
ever, account for only a small fraction of human cancer (Table 5).

The few epigenetic carcinogens implicated in human cancer are mainly
hormones or immunosuppressants, which are associated with increased risk
of cancer only under conditions of exposure in which they produce the phar-
macological effects that is the basis for their carcinogenicity in rodents. No
food additive or pesticide that has produced increases in tumors in rodents
through an epigenetic mechanism has been definitively identified to be a
cause of human cancer (Table 4), although a number of associations have
been reported for pesticides (364).

Inorganic carcinogens, mainly asbestos and arsenic, account for only a
small proportion of cancers. In both cases, substantial chronic exposures
were involved; for asbestos, occupational exposure is implicated (388), while
for arsenic, both occupational exposure and consumption of highly con-
taminated well water is involved (375).

The calculated contribution of various agents to cancer incidence in
the United States is given in Table 5. These numbers are based upon the
numbers of new cancer cases estimated by the American Cancer Society
to occur in 2005 (389) and the fraction of each type of cancer that can be
attributed to implicated etiologic agents. The etiologic agents or risk factors
include both carcinogens and enhancing or promoting factors.

The cancer with the highest incidence is skin cancer, including basal
and squamous cell cancers, making sunlight the most effective human
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Table 5 Estimated Causes of Cancer Incidence in the United States 2002

Type
Percent of total
(excluding skin)a

Lifestyle cancers
Diet related:

High fat, low fiber, low vegetables and fruits,
high, broiled or fried foods?—large bowel, breast,
pancreas, prostate, ovary, endometrium

25–30

Low vegetables and fruits—stomachb 2–3
Tobacco related: lung, larynx, oral cavity, bladder,

pancreas, kidney, stomach, cervix
20–25

Tobacco and alcohol related: oral cavity, esophagus,
lung

2–3

Alcohol: liver, pharynx, larynx, esophagus, breast 3–4
Sunlight: melanoma of the skin 1–2
Lifestyle and occupational exposures
Tobacco and asbestos, tobacco and mining, tobacco

and uranium=radium: respiratory tract, lung
1–2

Occupational cancers
Various carcinogens, e.g., aromatic amines—bladder

and other organs
�1

Asbestos—mesothelioma > 0.5
Bacteria-related cancers
Helicobacter pylori—stomach 1–2
Virus-related cancers
Hepatitis B,C—liver; human papilloma—cervix,

penis, anus; Epstein–Barr—B-cell lymphoma,
Hodgkins lymphoma; HIV-1, Kaposi’s sarcoma,
non-Hodgkins lymphoma

2–5

Genetically determined cancers
Tumor suppressor gene mutations: APC, familial

adenomatous polyposis, colon; BRCA1, 2, familial
breast, ovary; CDKN2A, familial melanoma;
LKB1, various in Peutz–Jeghers syndrome;
MEN1, multiple endocrine; RB1, retinoblastoma;
WT1, Wilms tumor

3–5

Other genetic predispositions: mismatch repair
genes in hereditary nonpolyposis colorectal
cancer, colorectal, endometrial, stomach;
hemochromatosis, liver cancer; steroidogenesis
(HSD3B), prostate; ATM dysfunction in
processing of double-strand breaks in Ataxia
telangiectasia, lymphorecticular; defects in BLM
DNA helicase in Bloom’s syndrome, various; rare

(Continued)

Chemical Causes of Cancer 249



carcinogen. After this, the most frequent cancer incidence in women is
breast and in men, prostate. Both of these are believed to be attributable
in part to diet.

The main causative agents of human cancer are lifestyle factors,
including damaging sunlight exposure, unhealthy diets, tobacco smoking,
and excess alcohol consumption (384,390,391). In the United States, body
weight and obesity contribute significantly to cancer mortality (392). Many
types of human cancer result from specific carcinogens as the initiating
agents and contributing enhancing or inhibiting elements. Table 6 gives
the agents proven or suspected to influence the occurrence of the major can-
cers worldwide. In addition, a significant fraction of cancer is genetically
determined and genetic predisposition influences susceptibility to exposures,
as discussed below.

Specific carcinogens have been implicated in the etiology of several
cancers. For lung cancer due to tobacco smoking, there is strong evidence
for the involvement of DNA-reactive carcinogens, particularly polycyclic
aromatic hydrocarbons, such as benzo[a]pyrene, and possibly tobacco-spe-
cific nitrosamines (369). For breast, large intestine and prostate cancers
attributable to diet, certain of the carcinogenic heterocyclic amines formed
during cooking of food have been implicated as carcinogens for the mam-
mary gland and large intestine and possibly the prostate (376). Specifically,
PhIP, IQ, and MeIQ, discussed above, are suspected human mammary car-
cinogens (393). The risk calculated for ingestion of heterocyclic amines,
however, is small (394) and accordingly other factors appear to be involved
in these diet-related cancers. For bladder cancer associated with
cigarette smoking, the DNA-reactive carcinogens 4-aminobiphenyl and

Table 5 Estimated Causes of Cancer Incidence in the United States 2002 (Continued )

Type
Percent of total
(excluding skin)a

HRAS-VNTR alleles, sporadic ovary
Iatrogenic:
Radiation—leukemia, thyroid, brain �1
Medicines—leukemia, endometrium �1
Unknown
Leukemia, lymphoma, brain 3–25c

a1,284,900 total cases exculding basal cell and squamous cell cancers of the skin which account

for about 1,000,000 cases
bHelicobactor pylori has an interactive role
cThis large variation is a function of the broad range calculated for the main diet and tobacco

associated cancers

Source: Ref. 389
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2-naphthylamine have been implicated (395). The likely role of aromatic
amines is supported by the observation of increased risk in slow acetylators
(249), as discussed above. In the stomach, foods high in salt, nitrates, and
nitrites, under certain conditions, may contribute to the formation of N-
nitroso carcinogens, although the evidence for current cancer causation by
these is not conclusive (396). Aflatoxins are fungal products that cause liver
cancer in both experimental animals and in humans consuming contami-
nated foods (371).

In addition to specific carcinogens, enhancing agents (promoters),
largely derived from diet, are involved in human cancers (384,397). The role
of diet in the etiology of breast (398,399), colon (400), and prostate (401)
cancers has been detailed. Diets associated with these cancers are character-
ized by being high in calories, high in fat, and low in starch and fiber,
although the relationship of these dietary components to cancer risk remains
unresolved (402–404). In animal models, high energy and fat intake have
enhancing effects on breast and colon cancer (405). Accordingly, it has been
postulated that the incidence of these cancers in humans may be influenced
by the promoting stimulus of high fat diets, but this remains unproven.
Nevertheless, in each tissue, specific effectors appear to be involved in
human carcinogenesis, some related to diet. In postmenopausal breast can-
cer, estrogen is clearly involved, probably through stimulation of ductal
epithelial cell proliferation (366) mediated by estrogen receptor a (406). In
the large intestine, high levels of excreted bile acids have been implicated
in colon cancer as part of a complex set of interacting factors (407), includ-
ing elevated blood levels of insulin-like growth factor-1 (IGF-1) (136), which
is regulated by growth hormone and nutritional status. For prostate cancer
also, the blood level of IGF-1 is a risk factor (408). In individuals with a
genetic susceptibility to insulin resistance, excessive weight gain and=or a
diet high in fat can trigger hyperinsulinemia which may contribute to breast
and colon cancer risk (409). The specificity of the effects of fats is exempli-
fied by the fact that they differ in their modulating effects on experimental
cancer, with n-6 fatty acids enhancing cancer development and long chain n-
3 fatty acids inhibiting (410,411). The mechanism of the anticancer effect of
n-3 fatty acids may involve inhibition of translation initiation (412).

Microbial agents play a definite role in several human cancers, both as
carcinogenic and enhancing agents (413). It is estimated that about 80% of
liver cancer worldwide is attributable to infection with hepatitis B virus
(HBV) and=or hepatitis C virus (HCV) (413). Hepatitis B plays a major role
in liver cancer in sub-Saharan Africa, and parts of Asia, while rising rates in
Japan (414), the United States (415), and parts of Europe (416) are attribu-
ted to increases in HCV infection. Stomach cancer often arises on a back-
ground of chronic gastritis and frequently involves Helicobacter pylori
(417,418). The human papilloma virus (HPV) (types 16 and 18) is involved
in cervical cancer by producing oncoproteins that inactivate tumor
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suppressor genes (419). The E6 protein promotes degradation of p53
through the ubiquitin–proteosome pathway (420), while the HPV 16 E7
oncoprotein binds to Rb (421). In persons infected with human immunode-
ficiency virus (HIV) type 1, the incidences of Kaposi’s sarcoma and Non-
Hodgkin’s lymphoma are greatly increased (422). Human T-lymphotropic
virus-I (HTLV-1) infection is prevalent in southwest Japan, the Caribbean,
parts of South American and Central and West Africa and is associated with
adult T-cell leukemia=lymphoma (423). Other cancer-associated microbial
agents include Schistosoma hematobium, whose chronic bladder infestation
leads to increased risk of bladder cancer, and the flukes, Clonorchis sinensis
and Opisthorchis viverrini, whose infestation of the biliary tract leads to
increased occurrence of cholangiocarcinoma (424).

The carcinogenicity of these microbial agents, as well as that of some
other forms of chronic tissue injury, may relate to oxidative damage. With
chronic inflammation, high levels of nitric oxide are produced by the in-
ducible nitric oxide synthetase (iNOS) which is highly expressed in activated
macrophages (425). Nitric oxide may be an endogenous carcinogen (194)
and it also inhibits the ogg1 protein repair enzyme involved in excision of
8-oxoguanine (426).

A factor contributing to an increasing fraction of human cancers is
family cancer syndromes, which number about 35, resulting from both auto-
somal dominant and autosomal recessive patterns of inheritance (427,428).
Polymorphisms in tumor suppressor genes, such as TP53, appear to elevate
risks of some cancers (429). Germ line mutations in tumor suppressor genes,
such as BRCA1and BRCA2 in familial breast cancer and APC in colon
cancer arising in the condition adenomatous polyposis coli, clearly predis-
pose to cancer (Table 5). Also, germ line mutations in DNA repair genes,
discussed above, increase cancer risks; examples include the hereditary non-
polyposis colorectal cancer mutation which leads to increased colorectal,
endometrial, stomach, and other cancers (339,430), the xeroderma pigmen-
tosum mutation which increases risk of sunlight-induced skin cancer 2000-
fold (431) and the ataxia telangiectasia mutation which conveys extreme
predisposition to lymphoreticular malignancies (432) and is associated with
an increased risk of breast cancer (433). In addition, it is likely that numer-
ous tumor susceptibility alleles or quantitative trait loci exist (434). Finally,
inheritance of predisposing factors can elevate cancer risk as in male germ
cell tumors for which cryptorchidism, spermatogenic or testicular dysgene-
sis, Klinefelter’s syndrome, and a positive family history can elevate risk sev-
eral fold (435).

For the cancers for which a specific initiating carcinogen has not been
identified, a potential explanation gaining in support is that the accumula-
tion of oxidative DNA damage leads to cancer (192,263). Oxidation of
DNA is established to be mutagenic (436) and is clearly carcinogenic, as
demonstrated by the example of ionizing radiation. A variety of rodent
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carcinogens give rise to oxidative DNA damage (193,437), suggesting that
similar effects could occur in humans. Levels of 8-oxodG in human tissues
range from one adduct per 107 nucleotides to one adduct per 103 nucleotides
(264). Although the exact levels of this promutagenic lesion may be uncer-
tain, the existence of repair enzymes to remove it clearly indicates that
DNA oxidation is an important biological problem. Further support for a
role of oxidative damage in human cancer comes from the fact that diets
high in fruits and vegetables protect against a variety of cancers (438), as
listed in Table 6, and have been shown to reduce endogenous oxidation of
DNA (439). Moreover, a novel ‘‘signature mutation’’ for oxidative DNA
damage, discontinuous loss of heterozygosity, has been identified as an
effect of H2O2 (440) and this mutation purportedly resembles a mutation
pattern found in human cancers such as those of the head and neck, lung,
prostate, breast, and colorectum (see Ref. 440 for references).

As noted, in addition to enhancing agents, a variety of inhibitors have
been identified (Table 6). Among these, high consumption of fruits and
vegetables, especially cruciferous vegetables, is associated with reduced risks
for several cancers (438,441). Soy foods (442) and tea (443) consumption
also appear to be protective. However, consumption of a high fiber diet
has not been shown to reduce occurrence of colorectal adenomas (444,445).

6. CANCER PROPHYLAXIS

The most effective approach to prevention of cancer is designated as primor-
dial prevention in which exposure to causative agents such as such as cigar-
ette smoking, high risk diets, excessive alcohol consumption, and damaging
sunlight exposure is abrogated. Since cancer is a disease which has a pro-
longed development time, and evidence exists for influences on some cancers
of exogenous agents acting very early in life, primordial prevention really
must begin in childhood through appropriate education and behavior modi-
fication (222). Next in the hierarchy of prophylaxis is primary prevention of
cancer which is achieved with reduction or elimination of existing exposures
to causative agents before the inception of cancer. Again, managerial pre-
ventive medicine is an important modality here. Secondary prevention
involves the application of factors to reduce the effects of carcinogenic expo-
sures. For example, prophylaxis for several types of cancer is furthered by
consumption of a diet rich in protective components, as detailed in Table
6. Important among these are fruits and vegetables consumed at three or
more servings per day (446–448), which reduce risks of colon, pancreas,
bladder, lung, oral cavity, larynx, esophagus, and stomach cancer (449).
The protective agents involved appear to be vitamin A and carotenoids, par-
ticularly cryptoxanthin. Also, high intake of fish, which contain n-3 fatty
acids, particularly eicosapentaenoic acid and docosahexaenoic acid is asso-
ciated with reduced risks of breast, prostate, and colorectal cancers (450).

256 Williams and Jeffrey



These foods together with food sources of monounsaturated fats (olive oil)
characterize Mediterranean-type diets, which convey reduced risks of sev-
eral cancers (451). A diet devised to provide these components is the Fiber
First Diet which implements adequate fiber content derived from vegetables,
fruits, whole grain breads, and wheat bran cereals and reduces fat intake
(391). Consumption of soy-containing foods is associated with reduced risk
of prostate cancer (452) possibly due to iso-flavones. Several vitamins
appear to reduce cancer risks (Table 6) and hence it is important that diets
provide recommended intakes (453), or otherwise regular use of a multivita-
min is indicated.

One component of secondary prevention is the use of anticancer or che-
mopreventive agents whose mechanisms were discussed earlier. A wide vari-
ety of experimental cancer preventive agents, both naturally occurring and
synthetic, is known (177,391,454,455). Several of these have shown promise
in humans (456), mostly as inhibitors of the growth of neoplastic cells.
Among agents of this type, retinoids have been evaluated for suppression
of oral cancer but high relapse rates and serious side effects occur (457).
The selective estrogen receptor modulator tamoxifen reduces breast cancer
risk (223,458). Also, breast (459) and colon (460) cancer risks are reduced
by regular use of nonsteriodal anti-inflammatory drugs. Of particular interest
is specific COX-2 inhibitors such as celecoxib, whose anticancer activity may
result from a variety of effects (461), including reduction of enzyme-derived
prostaglandins, particularly PGE2. Another strategy, the enhancement of
carcinogen detoxification, is being pursued with agents such as oltipraz (177).

With potent pharmaceuticals, however, there are complexities to be
recognized. For example, tamoxifen, although reducing breast cancer risk,
also increases endometrial cancer risk (223). Thus, efforts in chemopreven-
tion are being directed toward synthesis of analogs with greater specificity
for specific molecular targets. An example is the rexinoids which bind selec-
tively to retinoid X receptors (RXR) but not retinoic acid receptors (RAR)
(462). Similarly, vitamin D analogs that do not produce hypercalcemia are
under investigation (463).

The utility for cancer prevention of supplemental intake of specific
components of foods that are associated with reduced cancer risks also mer-
its further investigation. Although substantial observational epidemiologic
data exist for a preventive role of diets high in carotenoids, intervention stu-
dies with b carotene at 20–50mg daily either showed an increase in lung can-
cer or no reduction (464). In contrast, selenium supplementation was found
to reduce the risk of prostate cancer (465,466), and lung cancer in indivi-
duals with low selenium levels (467).

For cancers related to infections, primordial protection can be
achieved by good public health measures. Also, primary prevention can
be afforded by therapy for parasites (424) and bacteria (418) and vaccines
for viruses such as HBV (468) and HPV (469).
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The opportunities and challenges to chemoprevention were formu-
lated by the Chemoprevention Working Group several years ago (470).
While further progress is to be expected, it remains that prevention offers
the best prospect for reduction of cancer attributable to chemical and micro-
bial agents.

7. CONCLUDING REMARKS

It is clear from the above review that many of the agents involved in human
cancer have been identified and critical factors that influence their effects
have been elucidated. Various appropriate intervention strategies are avail-
able and others are being developed. Accordingly, it can be anticipated that
control or reductions in many cancers can be achieved in the near future.
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1. INTRODUCTION

A viral etiology of cancer was first recognized in 1911 when a cell-free fil-
trate from a chicken sarcoma, later identified and named as Rous sarcoma
virus, was demonstrated to induce a tumor in another chicken to which the
filtrate was transmitted. A number of mammalian oncoviruses were identi-
fied subsequent to this observation. A cause of a disease may be an agent,
event, condition, or characteristic that plays a vital role in the occurrence
of the disease. Cause must be distinguished from pathogenesis, in that the
implication of the former is not limited to what happens but also includes
the mechanisms by which it happens. Cause must also be distinguished from
mere association, as causation implies the temporal relationship where the
causal event precedes the disease consequences by direct or indirect mecha-
nism. A formal model of disease causation by an infectious agent was enun-
ciated in 1840 by Jakob Henle and further developed by his successor
Robert Koch. In this formulation, there are three basic conditions by which
the association between the agent and the disease can be considered no
longer accidental but causal.

1. The agent occurs in every case of the disease in question and
under circumstances that can account for the pathological
changes and clinical course of the disease.

2. The agent occurs in no other disease as a fortuitous and non-
pathogenic parasite.
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3. The agent can induce the disease anew, after being fully isolated
from the body and repeatedly grown in pure culture.

While correctly identifying many human pathogens, the Henle–Koch
criteria, if strictly applied, would exclude other presumed pathogens, parti-
cularly many viruses. To overcome some of these limitations, the classical
Henle–Koch postulates were modified and expanded to nine criteria
proposed by Sir Austin Bradford Hill (1):

1. Exposures strongly associated with disease are more likely to be
a true cause (strength of association).

2. Relationships can be demonstrated in multiple studies in differ-
ent populations and=or different study designs. Strength of
association may differ, but direction should be the same (consis-
tency).

3. One exposure is associated with one disease (specificity).
4. Exposure precedes disease (temporality).
5. Changes in exposure relate to changes in risk (dose–response

relationship).
6. The proposed causal mechanism—direct or indirect—is biologi-

cally plausible (plausibility).
7. The cause–effect interpretation does not seriously conflict with

the generally known facts of the natural history and biology
of the disease (coherence).

8. Experimental removal or blockage of the cause prevents the
disease (experimental evidence).

9. Similarity to other disease–agent associations provides support
for causation by another agent (analogy).

The concepts of sufficient and component causes—where a sufficient
cause is a set of minimal conditions that inevitably produce disease whereas
each of the contributing conditions to a sufficient cause is considered a com-
ponent cause—provided further foundation for causal associations in epide-
miological studies (2). In contrast, a condition invariably associated with all
cases of a particular disease became known as a necessary cause.

Viral-associated cancers in humans became a major focus of cancer
research when Epstein–Barr virus (EBV)—the first human oncovirus—
was found in 1964 (3). Followed by this discovery, a series of human
oncogenic viruses were found through the 1980s and 1990s, including hepa-
titis viruses (HBV and HCV), human retroviruses (HTLV-I and HIV),
human herpesviruses, and human papillomaviruses. Evans and Mueller
(4) noted common characteristics for the epidemiology of virus-associated
cancers:

1. The long induction period between initial infection and the onset
of cancer.
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2. Most candidate viruses are ubiquitous but cancer incidence is
rare.

3. The initial infection is often subclinical and the time of infection
is rarely known.

4. Most viral-related cancers require cofactors.
5. The causes of cancer may vary by age and by geographic area.
6. Different viral strains may have different oncogenic potentials.
7. The host factors, especially age of infection, genetic characteris-

tics, and immune status, play a critical role in susceptibility to
cancer.

8. A virus may play a role at different points in a complex, multi-
stage process of pathogenesis by altering the host’s immune
system or by causing a variety of events at the molecular level.

9. Many human cancers cannot be reproduced in experimental
animals with the putative virus.

10. A virus-induced cancer could have the same histologic features
with cancers caused by a toxin, chemical, altered gene, or other
causal factors.

To establish associations between a putative viral cause and a human
cancer, the following guidelines were proposed:

1. The geographic distribution of virus infection is similar to that of
the associated tumor when adjusted for the age of infection and
the presence of cofactors.

2. Viral markers (antibody titers or antigenemia) are higher in cases
than in matched controls in the same geographic setting, as shown
in case–control studies.

3. The viral marker precedes the tumor and a significantly higher
incidence of the tumor follows in persons with the marker than
in those without it.

4. Prevention of the viral infection (e.g., by vaccination) or control
of the host’s response to the virus (such as by delaying the time
of infection) decreases the tumor incidence.

5. The virus transforms human cells in vitro.
6. The viral genome is present in tumor cells but not in normal cells.
7. The virus induces the tumor in a susceptible experimental animal,

while neutralization of the virus prior to injection prevents tumor
development.

As evident in these guidelines, mere detection of a virus in a tumor is
not strong evidence for a causal association. In seroepidemiological
studies, the following provide additional support in relating a virus to a
cancer (5):
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1. Specific antibody is present more frequently in cancer patients
than in healthy controls in the same geographic area.

2. Antibody levels (i.e., geometric mean titer or prevalence of
elevated titers) are higher in cancer patients than in seropositive
controls.

3. Antibody profiles by epitope or immunoglobulin subclass suggest
persistence or reactivation of the putative agent.

4. Antibody is specific for the virus being considered and other viral
antibodies are not elevated.

5. Sera obtained prior to cancer show antibody to be absent (if the
cancer is due to primary infection) or elevated (if cancer is a con-
sequence of reactivation).

6. Variation in the virus–cancer association is explainable by differ-
ences in distribution of co-factors.

This chapter outlines the well-established associations of viruses with
cancers in humans. We primarily focus on the epidemiology and mecha-
nisms of these associations as well as on biomarkers of cancer risk in humans.

2. EPSTEIN–BARR VIRUS

Since its discovery in the 1960s, EBV and its oncogenesis have been exten-
sively studied. The unique feature of this virus is its association with mul-
tiple types of cancer of different cellular origins. EBV infection is not
associated with apparent immune suppression, but in some instances
EBV-associated malignancies appear to develop in the presence of subclini-
cal immune suppression (6).

2.1. Molecular Biology

EBV is a member of the herpes family of viruses. It has a linear, double-
stranded DNA genome consisting of about 100 genes, surrounded by a viral
capsid and a lipid envelope. The virus infects B-lymphocytes and can repli-
cate via both lytic and latent pathways. EBV-infected cells express a variety
of EBV-encoded products, including EBV-encoded RNA (EBERs), nuclear
antigens (EBNA), and latent membrane proteins (LMP). Correspondingly,
infected individuals produce antibodies to composites of these viral
products, including viral capsid antigen (VCA), early antigen (EA), and
EBNA.

2.2. Epidemiology of EBV Infection

EBV is primarily transmitted by the oral route. Infection leads to a life-long
carrier state, characterized by latent infection of a subset of B-lymphocytes
and persistent shedding of infectious virus in saliva. Infection is nearly

290 Hisada and Rabkin



ubiquitous by adulthood in all populations worldwide, with age-specific
seroprevalence of younger individuals varying by socioeconomic status,
family size, and hygiene. In developing countries, 70%–95% of children
are infected with EBV by the age of 5 years, whereas in industrialized
countries infection is normally delayed until young adulthood. Primary
infection in early childhood is usually asymptomatic, whereas infection later
in life often results in a self-limiting lymphoproliferative syndrome, recog-
nized clinically as infectious mononucleosis.

2.3. EBV-Associated Malignancies in Humans

Since the normal reservoir of latent infection is the B lymphocyte, EBV-
infected lymphocytes in tumor tissue may be either incidental or an effect
of the tumor rather than evidence for an etiological role of this virus in
cancer development. Thus, the causality of association with a given tumor
should be judged with consideration to other factors, such as the proportion
of EBV-positive cases in a given tumor type, the proportion of tumor cells
that carry the virus in any given case, the monoclonality of EBV in the
tumor (indicating that the malignant clone expanded from a single EBV-
infected cell), and evidence of active infection such as the expression of
EBV proteins. Based on these and other criteria, four major tumor types
have well-established associations with EBV: Burkitt’s lymphoma (BL),
other non-Hodgkin’s lymphomas (NHL), Hodgkin’s lymphomas (HL),
and nasopharyngeal carcinoma (NPC).

EBV infection of B-lymphocytes in vitro efficiently induces transfor-
mation into immortalized cell lines. In EBV-transformed B-cells, 13 viral
genes are expressed: six nuclear antigens, three LMPs, two small nontrans-
lated RNAs, and two other transcripts. The viral proteins regulate mainte-
nance of episomal viral DNA and viral gene expression, drive cellular
proliferation, and block apoptosis.

2.3.1. Burkitt’s Lymphoma

Patients with BL have high titers of antibodies to EBV VCA and EA, pre-
ceding the appearance of tumor by months to years (7). Viral DNA is pre-
sent in tumor cells and is monoclonal. Viral protein expression is almost
entirely restricted to a nuclear antigen, EBNA-1. Notably, the frequency
of association between EBV and BL varies geographically. In most devel-
oped countries, 20% or fewer tumors contain EBV, while in equatorial
Africa about 95% are positive. A characteristic chromosomal translocation
between the c-myc protooncogene and an immunoglobulin gene is invari-
ably present in BL, although the molecular features of these translocations
vary geographically in parallel with differences in EBV prevalence in
tumors. In equatorial Africa, infection with Plasmodium falciparum, a
malaria parasite, is an important cofactor for the incidence of BL, which
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accounts for 30–70% of childhood cancers (8). Incidence outside of this
region, with the exception of AIDS-related cases, is much less than 1 per
100,000 children per year (9).

2.3.2. Other Non-Hodgkin’s Lymphomas

EBV is particularly important in tumors occurring in immunosuppressed
individuals, who are at elevated risk for these malignancies. In patients
with congenital immunodeficiency or receiving immunosuppressive ther-
apy, NHLs are nearly always EBV-positive. In HIV-positive subjects,
EBV is uniformly found in NHL of the central nervous system and also
in a fraction of systemic NHL. In the absence of immunosuppression,
EBV is strongly associated with some uncommon types of NHL, parti-
cularly sinonasal angiocentric T-cell lymphoma and other peripheral T-cell
tumors.

2.3.3. Hodgkin’s Lymphoma

Monoclonal EBV genome and latent viral protein expression may be found
in the putative tumor cells (Reed–Sternberg cells) of one-third of HL cases.
In particular, HL occurring in association with immunodeficiency, such as
in HIV infection, is usually EBV-positive. HL patients also have altered
antibody profiles to EBV prior to the disease onset (10).

2.3.4. Nasopharyngeal Carcinoma

Incidence rates are two to three times higher in males than females, and
reach 25–40 per 100,000 in the highest incidence areas of southern China,
but are <1 per 100,000 in most parts of the world (9). EBV DNA and viral
products are regularly found in malignant cells but not in normal nasopha-
ryngeal epithelium. Patients with this tumor have elevated levels of IgA anti-
bodies to EBV VCA and EA. Consumption of Chinese-style salted fish
appears to be an important cofactor in high-risk populations (11).

3. HUMAN T-LYMPHOTROPIC VIRUS TYPE I

In the early 1980s, HTLV-I was isolated by cell culture from a patient with
T-cell lymphoma in the United States (12) and a patient with adult T-cell
leukemia (ATL) in Japan (13). A number of other diseases in addition
to ATL were subsequently associated with this infection, including
HTLV-I-associated myelopathy=tropical spastic paraparesis (HAM=TSP),
HTLV-I associated uveitis (HU), and infective dermatitis (ID) in children
(6). The infection causes subclinical immune suppression, which is evidenced
by an increased frequency and severity of opportunistic infections in HTLV-
I-positive individuals (14,15).
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3.1. Molecular Biology

HTLV-I is an enveloped, type C retrovirus with an RNA dimer of two iden-
tical subunits (16). The viral genome contains three structural genes (gag,
pol, and env) and two regulatory genes (tax and rex) flanked by two long
terminal repeats (LTRs). The gag gene encodes core proteins p19 and
p24, pol encodes RNA-dependent DNA polymerase (reverse transcriptase),
and env encodes the small transmembrane (gp21) and large external enve-
lope (gp46) glycoproteins. The tax and rex regulatory genes transactivate
viral replication and control expression of viral proteins. The virus uses
reverse transcriptase to synthesize DNA copies of its genome within the host
cell that integrate into the host’s genome as aprovirus.

3.2. Epidemiology and Biomarkers of HTLV-I Infection

HTLV-I infection can be detected by the presence of antibodies to core,
envelope, and Tax proteins in serum, as measured by an enzyme-linked
immunosorbent assay (ELISA) or a particle agglutination assay (PAA). A
recombinant western blot (WB) assay is used as a confirmatory test, in
which reactivity to gag (p19 or p24) and env (gp21 or gp46) gene products
is considered indicative of true positivity.

HTLV-I infection affects several million people worldwide (6). Ende-
mic areas include southern Japan, the Caribbean, parts of West Africa,
the Middle East, South America, and the Pacific Melanesian islands. Sero-
prevalence varies from <1% among populations in the United States and
Europe to ~5% in the Caribbean islands (17,18) and ~30% in rural Kyushu,
Japan (19,20). Seroprevalence increases with age and is twice as high in
females than in males (6). The virus is usually acquired early in life by
way of breast feeding (21). Early age of infection is considered to be a risk
factor for ATL (22). Among adults, the virus may be transmitted via sexual
contact (23) or transfusion of cellular components of blood products (24).
Thus, effective prevention strategies against HTLV-I infection include
screening of blood products to eliminate contaminated units, curtailment
of breastfeeding by HTLV-I-positive mothers, and use of barrier contracep-
tives by HTLV-I-discordant sexual partners.

A high proviral load and high levels of antibody to the whole
virus (anti-HTLV-I) and the Tax regulatory protein (anti-Tax) are the pri-
mary markers of increased infectivity (23,25). These biomarkers are also
markers of HTLV-I pathogenesis, since both ATL and HAM=TSP patients
generally have a high proviral load (26) and high anti-HTLV-I titer. A
population-based prospective study of asymptomatic HTLV-I carriers
found that carriers who later developed ATL had a higher anti-HTLV-I titer
as compared to those who did not develop the disease, but the ATL patients
lacked anti-Tax antibody prior to diagnosis (27). The lack of tax mRNA
expression and anti-Tax antibody (28) are particularly useful markers for
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distinguishing those at risk of ATL from those at risk of HAM=TSP, as the
latter tend to express a high level of tax mRNA (29,30). In addition, the
level of soluble interleukin 2 receptor (sIL-2R), presence of circulating
‘‘flower cell’’-like abnormal lymphocytes, and mono- or oligoclonal
expansion of HTLV-I infected cells (31–33), may be used as intermediate
markers of ATL risk.

Determinants of cytotoxic T-lymphocyte (CTL) response, such as the
human leukocyte antigens (HLA), have also been hypothesized to play a
role in HTLV-I disease pathogenesis (34). DRB1�1501 and DQB1�0602
appear to be associated with risk of ATL both in Japanese and Caribbean
populations (35). However, the possible influence of linkage disequilibrium
in these associations greatly complicates their proper interpretation.

3.3. HTLV-I Associated Malignancies in Humans

The oncogenicity of HTLV-I is not related to host cell protooncogenes.
Instead, Tax regulatory protein, which promotes transcription of viral
mRNA and of host cellular genes that modulate cell growth (36,37), is
thought to play an important role (38–40). Multiple pathways appear to
be involved in HTLV-I oncogenesis. Tax indirectly binds to the enhancer-
binding transcription factors, resulting in the activation of these factors.
Tax also binds to IkB protein resulting in repression of the cyclin-dependent
kinase inhibitor, tumor suppressor, and apoptosis-associated proteins (41).
Furthermore, Tax protein inactivates the p53 tumor suppressor protein by
post-translational phosphorylation (42,43) and inhibits DNA repair
mechanisms (44,45), which may explain, at least in part, the propensity
for transformation of HTLV-I-infected T-cells.

Because Tax protein is a known target for CTL activity (46,47), ATL
cells that do not express tax are likely to escape CTL-mediated cell killing.
Genetic events that alter immunogenicity of the tax protein, such as muta-
tions in the tax gene or changes in viral transcription and translation, may
play an additional role (48,49). However, the lack of tax mRNA and Tax
protein expression in ATL cells (47,50) suggests that HTLV-I-induced onco-
genesis becomes independent of tax gene activity after a critical period of
cellular transformation.

3.3.1. Adult T-Cell Leukemia=Lymphoma

ATL is a rapidly progressive malignancy of activated CD4-, CD25-positive
T-lymphocytes (51). The integrated HTLV-I proviral genome is frequently
defective in ATL cells, which may help them escape from immune surveil-
lance (52). The disease is characterized by the presence of circulating ‘‘flower
cells,’’ which are leukemic cells with cleaved, convoluted nuclei. The tumor
cells express CD2, CD3, and CD5 as well as the activation markers IL-2R
(CD25 Tac antigen) and HLA-DR, but may lack CD7. Based on the total
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leukocyte count, level of flower cells, presence of clonal provirus integration,
presence of immune suppression, and other biochemical data, the disease
may be classified into different clinical subtypes (53). The incidence of
ATL among HTLV-I carriers is estimated to be 2–4 per 100,000 person-
years, with a lifetime risk of ~5% (54,55). Risk seems to be higher in men
as compared to women in Japan, but no such difference is evident in the
Caribbean. The average age of disease onset is much later in Japan than
in the Caribbean (60 vs. 40 years), perhaps due in part to differences in life
expectancy, as well as host and environmental factors.

The broad clinical spectrum of ATL sometimes overlaps with that of
mycosis fungoides (MF) (56), a T-cell NHL with a propensity for skin
involvement, or with the MF variant, Sezary syndrome (SS) (57). The tumor
cells of MF and SS can be distinguished from ATL cells by their lack of
expression of activation markers. The majority of MF patients do not have
antibody to HTLV-I (58). A possible role of HTLV-I in the development of
MF has been speculated because portions of its genome were found in skin
lesions and peripheral lymphocytes of MF patients (59,60). However, these
observations could not be confirmed by other investigators (61,62), and the
association of HTLV-I with MF remains inconclusive.

4. HUMAN IMMUNODEFICIENCY VIRUSES

HIV type 1 (HIV-1) was discovered in 1983 (63) and definitively associated
with acquired immunodeficiency syndrome (AIDS) in 1984 (64). A related
but distinct virus, HIV type 2 (HIV-2), was later discovered in AIDS
patients from West Africa (65). HIV-2 infected persons can have the same
immunological and clinical spectrum of disease as HIV-1, although there
is some evidence that HIV-2 may be less pathogenic than HIV-1 (6).

4.1. Molecular Biology

Human immunodeficiency virus is also a type C retrovirus, with a single-
stranded RNA genome (6). HIV targets CD4þ T-lymphocytes and macro-
phages and replicates via a DNA intermediate integrated into the host
genome. HIV-2 is likely identical to the primate infection, simian immuno-
deficiency virus (SIV). The genome contains three structural genes (gag, pol,
and env), two regulatory genes (tat and rev), and four accessory genes (nef,
vif, vpr, and vpu=vpx).

4.2. Epidemiology and Biomarkers of Infection

The virus is transmitted sexually, parenterally through contaminated blood
products and injection equipment, as well as vertically from mother-to-
child in utero or via breast milk. Risk of transmission is associated with viral
load in the infected person. Prevalence of infection varies by age, sex,
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geographical area, risk behavior, and calendar year. In the United States
and Europe, homosexual men, the earliest affected group, still account for
the largest number of HIV- carriers, followed by injection drug users, as well
as their sexual partners and children. In Africa, heterosexual contact is the
predominant mode of transmission, with extensive incidence of mother-to-
child transmission. In Asia, all modes of transmission are frequent.

The first biomarker for HIV infection was antibody to the virus
detected by ELISA and Western blot. Western blot, which simultaneously
assesses antibodies to multiple antigenic determinants, is a better tool to
handle cross reactivity and detect HIV infection with higher specificity.
Early studies of HIV seropositivity in the 1980s in several populations docu-
mented elevated prevalence of HIV antibodies in groups at higher risk of
AIDS, including homosexual men, injection drug users, and transfusion
recipients (66). These studies provided insight into the exposure–biomarker
relationship and demonstrated that within groups at higher risk of HIV,
HIV seropositivity was quantitatively associated with AIDS risk behaviors
or exposures (67). Later, careful epidemiological studies revealed an
association of HIV antibody with AIDS and AIDS-related complex (64,68).

Today, an improved laboratory assay for detecting HIV antibody is
a useful, valid biomarker of widespread application in risk assessment to
identify high-risk groups and in screening and early intervention (69).
HIV testing also has stimulated enormous attention to the issues of
confidentiality, insurability, employability, informed consent, and individual
rights, as well as behavioral modification regarding sexual practice.

4.3. HIV-Associated Malignancies in Humans

The strongest associations of HIV infection with cancers are observed in
Kaposi’s sarcoma (KS), NHL, and, to a lesser extent, HL. NHL and KS
are also seen in other immunosuppressed groups, such as transplant recipi-
ents. Smooth muscle tumors (leiomyosarcoma and leiomyomas) in children
and conjunctival squamous cell carcinoma in equatorial Africa also appear
to be associated with HIV, despite prevailing lack of association in other
populations. With rare exceptions, HIV is not present in the tumor cells,
suggesting an indirect induction of tumor via immune alterations. In con-
trast, the angiogenic and spindle cell stimulatory effects of the HIV-1 tat
gene product in vitro may indicate direct induction of KS, explaining the
uniquely elevated risk of this condition in HIV infection.

4.3.1. Kaposi’s Sarcoma

HIV-infected individuals are at greatly increased risk of KS, an otherwise
rare tumor associated with the cofactor human herpesvirus type 8 (HHV-8).
Homosexual=bisexual men with HIV are at 5–10-fold greater risk than other
HIV-infected groups (70), which may reflect differences in HHV-8
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prevalence. Highly active antiretroviral therapy appears to strongly diminish
the risk of KS. The nature of KS is uncertain, but a recent study has indi-
cated that it is a disseminated monoclonal neoplasm.

4.3.2. Non-Hodgkin’s Lymphoma

NHL incidence is greatly increased in HIV infection and the risk increases
with duration of infection. Unlike KS, NHL incidence has increased simi-
larly (up to 100-fold) in all HIV transmission groups. In AIDS-related
tumors, EBV coinfection is uniformly found in the primary lymphoma of
the brain as well as in a fraction of systemic lymphomas; HHV-8 coinfection
is found in a rare subtype, primary effusion lymphoma (PEL).

4.3.3. Hodgkin’s Lymphoma

The association of HIV with HL is weaker than that with KS or NHL (RR
5–10). HIV-associated HL is more likely to have mixed cellularity or lym-
phocyte-depleted histology and in most instances the tumors contain
EBV, as discussed above.

4.3.4. Anogenital Dysplasia

Although invasive cervical cancer in an HIV-infected person is one of the
AIDS-defining malignancies, there is little evidence that cervical cancer is
specifically associated with HIV apart from shared risk factors with human
papillomavirus (HPV). Nevertheless, dysplasia and in situ carcinoma of the
cervix do appear to be increased with HIV infection and associated immune
alteration. Similarly, the incidence of HPV-associated anal dysplasia
appears accelerated in HIV infection. Anal cancer incidence, however, does
not appear to be substantially increased.

4.3.5. Other Neoplasms

Smooth muscle tumors are the second most common neoplasm in
HIV-infected children (71), yet no increase has been demonstrable in
HIV-infected adults. These tumors uniformly contain EBV. Conjunctival
squamous cell carcinoma, an HPV-associated tumor, has been noted to be
increased with HIV in equatorial Africa, but is extremely rare in other
locales. Testicular germ-cell tumors may be increased in HIV, although this
association is not firmly established. Most other tumors, including those
most common in the general population, do not appear increased in HIV
infection.

5. HUMAN HERPESVIRUS TYPE 8

A condition invariably associated with all cases of a particular disease is
considered to be a necessary cause. This concept is particularly relevant
to the question of causation of a few malignancies by HHV-8, or

Viral Causes of Cancer 297



KS-associated herpesvirus, where the virus is found in 100% of the tumors.
The HHV-8 genome is detectable in virtually all cases of KS, PEL and a
subset of Castleman’s disease (9).

5.1. Molecular Biology

HHV-8 is a herpesvirus with a 165-kb genome, which encodes a number of
homologs of cell growth regulatory proteins. One of these proteins, cyclin
D, may play a role in virally induced cellular transformation. In vivo,
HHV-8 infects B-cells, macrophages, and dendritic cells, with lytic replica-
tion occurring in subpopulations of infected cells. Specific patterns of latent
gene expression characterize KS and PEL.

5.2. Epidemiology and Biomarkers of HHV-8 Infection

The prevalence of HHV-8 in populations without KS is controversial.
Current serologic assays for HHV-8 antibody have uncertain sensitivity
and specificity for detecting asymptomatic infection, and frequently disagree
in individual samples. Thus, the HHV-8 antibody prevalence determined by
these tests for a low risk population may either over- or underestimate the
true prevalence of infection. Geographic variation in HHV-8 seroprevalence
reflects variation in incidence of endemic KS. In contrast, geographical vari-
ation in AIDS-related cases is minimal. Male homosexual contact likely
accounts for the high seroprevalence among gay men, whereas heterosexual
contact does not appear to spread the infection. Other modes of transmis-
sion remain uncertain.

5.3. HHV8-Associated Malignancies in Humans

The universal presence of the HHV-8 genome in tumor tissue of both KS
and PEL suggests direct oncogenic effects of HHV-8. The viral homolog
of D-type cyclins, which can disrupt cell cycle control, is expressed in both
these tumor types, as are other proteins of less-defined function. Lytic repli-
cation occurs in a subset of HHV-8-infected KS spindle cells, upregulating
expression of several viral growth factors and a growth factor regulatory
protein that may stimulate expansion of latently infected cells nearby.
PEL similarly expresses virally encoded growth factors and their regulatory
proteins and receptors. The large number of HHV-8 genes corresponding
to human genes regulating cell growth may reflect a viral strategy for
replication that as a corollary mediates HHV-8 oncogenesis.

5.3.1. Kaposi’s Sarcoma

KS was most common in eastern European and Mediterranean populations
and in central and eastern Africa in endemic forms before the onset of
the AIDS epidemic. It is also known to occur in excess in persons with
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iatrogenic immune suppression. Today, KS is the most common tumor in
persons with AIDS. In immunocompromised hosts, HHV-8 seropositivity
and the presence of viremia are predictors for subsequent development of
KS (72). The pathological features of the tumor are similar in both endemic
and AIDS-associated cases, with proliferating ‘‘spindle cells’’ thought to be
the primary abnormality, including thin-walled neovascular formations,
extravasated red blood cells, and inflammatory lymphocytes.

5.3.2. Primary Effusion Lymphoma

This lymphoma is a rare, distinct subtype of NHL morphologically resem-
bling immunoblastic and anaplastic large-cell lymphomas. A B-cell origin is
suspected based on clonal immunoglobulin gene rearrangement. Although
first recognized in association with AIDS, cases have also been reported
in HIV-negative individuals. Like KS, these tumors always contain HHV-8.

6. HUMAN PAPILLOMAVIRUS

The malignant papillomatous tumors induced in cottontail rabbits by
the Shope papillomavirus serve as a valuable model for papillomavirus-
associated carcinogenesis (73). The presence of papillomaviruses in
humans, or HPV, has been recognized in association with warts of various
sites (74,75). Over 70 HPV types have been identified, each sharing less
than 90% homology in the nucleotide sequence of specific regions of the
genome (E6, E7, and L1 open reading frames) (76). Each type appears
to be associated with specific clinical lesions, but not all types are asso-
ciated with cancer. HPV types strongly associated with cancer are often
referred as ‘‘high-risk’’ types (type 16, 18, 31, and 33 among others), while
others are classified as ‘‘low-risk’’ types. The genomic DNA of high-risk
HPVs can immortalize primary human genital keratinocytes, the normal
host cells for the HPVs (77–79). Because of the virus’ tropism for
squamous epithelial cells, most cancers associated with HPV are of epithe-
lial origin.

6.1. Molecular Biology

HPVs are small, nonenveloped DNA viruses that have a circular double-
stranded genome of approximately 8000 bp. Only one DNA strand is tran-
scribed. The HPV genome consists of three distinct sections, the early, late,
and long control regions (LCRs). The early region (E) encodes viral proteins
involved in viral DNA replication, transcriptional regulation, and cellular
transformation. Within this region, the E2 gene encodes a viral regulatory
factor that represses the promoter for transcription of the E6 and E7 genes
(80,81). The late region (L) encodes the two viral capsid proteins. The LCR,
with no apparent open reading frame, contains cis elements of the viral
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genome required for viral DNA replication and gene expression. The HPV
genome is generally maintained as an episome in benign precancerous
lesions, but integration into the host DNA frequently accompanies carcino-
genic progression of these lesions. Viral integration occurs at multiple sites
throughout the host genome, although it is unclear whether integration near
protooncogenes such as c-myc is relevant for oncogenesis.

6.2. Epidemiology and Biomarkers of HPV Infection

HPV infection is common worldwide although seroprevalence varies,
ranging from<5% in Europe to nearly 50% in Africa in asymptomatic
women with normal Pap smears (82). While less data are available on men,
HPV seroprevalence appears to be similar in both sexes. Seroprevalence is
higher among younger than older individuals, indicating that the infection
may resolve over time.

Although HPV infection in particular tissues (e.g., cervical scrapings)
can be detected by the presence of DNA sequences with polymerase chain
reaction (PCR) assays, such methods are less suitable than serological assays
for large population studies. However, different HPV types generally cannot
be distinguished by available serologic assays because of cross reactivity
between types, which presents a major challenge for epidemiological studies.
A new ELISA assay utilizing HPV-16 virus-like particles (VLPs) is a promis-
ing specific approach for detecting HPV-16 infection serologically.

6.3. HPV-Associated Malignancies in Humans

HPVs are found in over 90% of all invasive cervical cancers, the leading
cause of cancer death in women in developing countries. Other anogenital
cancers (e.g., anal, vulvar, and penile) are also strongly associated with
HPV infection. These cancers share similar anatomic features, pathology,
and associations with sexual behavior. In addition, HPV is found in some
rare types of skin cancer, including cases associated with immune suppres-
sion.

In cervical cancer, integration of the HPV genome precedes the clonal
outgrowth of the tumor, indicating that the virus plays an essential role in
the malignant progression to cancer. Disruption of the E1 or E2 regulatory
genes of HPV-16 results in an increased immortalization capacity of the
viral genome (81). Not surprisingly, expression of E1 and E2 is frequently
absent in HPV-transformed cells, whereas the E6 and E7 genes are
selectively retained and highly expressed.

The E6 and E7 protein products act together to immortalize primary
human cells (82–84). E6 of high-risk HPV types complexes with the tumor
suppressor protein p53 (85), and reduces the steady state levels of p53
(86,87). On the other hand, E7 protein of high-risk HPV interacts with
the tumor suppressor protein pRB and related proteins, leading to their
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destabilization and modulation of the E2F family of transcription factors.
Thus, by disrupting a regulatory network, E7 causes overexpression of
E2F, which results in cell cycle progression and induced morphological
changes. E7 also interacts with the AP-1 family of transcription factors
and the cyclin-dependent kinase inhibitors (CKIs) to further disrupt the cell
cycle.

7. HEPATITIS B VIRUS AND HEPATITIS C VIRUS

Hepatitis B virus (HBV) was one of the first DNA viruses found to be asso-
ciated with human cancer. HBV is associated with acute and chronic hepa-
titis, liver cirrhosis and hepatocellular carcinoma (HCC). Chronic sequelae
of HBV infection are highest in carriers who had been infected during child-
hood (88), while symptoms of acute infection are more likely to manifest in
persons who are infected later in life.

The pathogenesis of HCV is distinct from that of HBV in that the
former is associated with a variety of systemic autoimmune diseases, such
as mixed cryoglobulinemia, in addition to liver disease. While HCV infection
alone does not appear to suppress the host’s immune response, there is some
evidence that HCV infection may compound preexisting cellular immune
suppression among persons with HTLV-I infection (89), and may accelerate
the progression of liver diseases.

7.1. Molecular Biology

HBV is a partially double-stranded DNA virus and replicates through
an RNA intermediate by the use of a reverse transcriptase (90). The HBV
genome is circular, 3200 kb in length, and consists of four partially overlap-
ping reading frames. The virus predominantly infects hepatocytes and estab-
lishes persistent infection. The virus can integrate into the host DNA, which
is an important step in viral oncogenesis, although it is uncertain whether
integration occurs in acute infection.

HCV, on the other hand, is a positive-sense, single-stranded RNA
virus, without reverse transcriptase. Unlike HBV, the virus does not inte-
grate into the host genome (91). The large single open reading frame encodes
a polypeptide precursor of roughly 3000 amino acids. Viral isolates from
different geographical regions significantly differ. Multiple subtypes and
quasispecies may exist in an individual at the same time.

7.2. Epidemiology and Biomarkers of HBV and HCV Infections

HBV infection can be detected by the presence of surface antigen (HBsAg),
envelope antigen (HBeAg) and antibody (HBeAb), and core antibody
(HBcAb). High titer (>212) of HBcAb is often reflective of perinatally
acquired infection and usually chronic carriage of HBV. Antibody to
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surface antigen (HBsAb), on the other hand, may result from immunization
against HBV, and thus is not a suitable marker of natural infection. The
prevalence of HBV varies geographically. The highest rates (>8%) are seen
in China, Southeast Asia, and sub-Saharan Africa, while the lowest
rates (<2%) are found in western Europe, North and South America, and
Australia. Intermediate prevalences (2–8%) are found in eastern and south-
ern Europe, the Middle East, Japan, and south Asia. Perinatal infection will
result in chronic carriage of HBV in more than 90% of infected children,
while acquisition later in life will result in chronic carriage in only about
10% of infected persons.

HCV infection can be detected by third-generation antibody assays
as well as by more sensitive branched DNA- or PCR-based methods.
Approximately 0.5–2% of the general population is seropositive for
HCV worldwide. In addition, pockets of high prevalence have been
reported in Japan, where up to 10–20% of the population is infected
(92,93). The major route of transmission appears to be parenteral exposure
to contaminated blood and needles (94), although sexual transmission also
may play a role (92). It is thought that about 85% of those infected with
HCV will develop a persistent infection, although most remain asympto-
matic (95).

7.3. HBV- and HCV-Associated Malignancies in Humans

Random integration of HBV could function as a tumor initiator, promoter,
and=or progressor in a given patient (96). HBV is thought to cause cancer
indirectly through chronic inflammation. The virus may also affect
growth-controlling genes at distant sites by transactivation, as is the case
with HTLV-I. The protein product of a truncated sequence of the pre-
S2=S region of HBV transactivates the c-myc promoter in vitro (97). HBV
X-protein, on the other hand, increases transcription of c-fos and c-myc
(98) and activates the transcription factor AP-1 through which many onco-
genes function (99). HBV X also binds to p53 and blocks p53-mediated
apoptosis (100). Mutations of p53 have been found in over 60% of HCC
cases, but such mutations are likely a late event that primarily affects cancer
progression (101).

The mechanisms by which HCV causes HCC are less understood. This
nonintegrating virus is less likely than HBV to serve as an initiator, but
rather, indirectly through cirrhosis and inflammation, may function as a
promoter in the development of HCC (102). Coinfection with both HCV
and HBV may have a synergistic effect on hepatic carcinogenesis (103). In
cases of HCV-associated HCC, p53 has been found to be overexpressed only
in the less-differentiated area of the tumor, indicating that p53 contributes
to dedifferentiation during tumor progression (104). Many HCC cases also
have mutations of the RB tumor suppressor gene.
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7.3.1. Hepatocellular Carcinoma

The association of HBV with HCC was first recognized (105) through detec-
tion of HBsAg in sera from HCC patients, and confirmed by many others
around the world (96,106,107). HCC cells have multiple integrated copies
of the HBV genome, but no common integration site has been identified
(108). Early age of infection is an important risk factor for the development
of HCC among chronic HBV carriers (109–111). It is estimated that 60% of
liver cancer worldwide may be attributable to chronic HBV infection, with
the proportion much higher in developing countries than in industrialized
nations (112).

It is not known whether cancer risk is age-dependent in the case of
HCV-associated HCC. Overall, about one-fourth of liver cancer cases
worldwide are estimated to be attributable to HCV (112). Over 70% of
HBV-negative HCC cases have anti-HCV antibodies. Seventy to 95% of
HCV-seropositive HCC patients also have a detectable level of serum
HCV RNA by PCR (113). HCV RNA also is detectable in up to two-thirds
of HCV-antibody negative HCC patients (114), indicating that a high
proportion of HCC cases in endemic areas may be attributable to HCV.
Interestingly, the incidence of HCC in Japan has doubled in the past 25
years, mostly due to HCV-associated cases (115). In endemic areas such
as Japan, Greece, and Singapore, the estimated mortality from HCC is
approximately 15–25 per 100,000 per year in men, but only 5–7 per
100,000 per year in women (116). The incidence of HCC is much higher
in Japanese men (greater than 22 per 100,000) than in Caucasian men in
the United States (less than 0.6 per 100,000), although the general popula-
tion prevalence of HCV is similar (~1%) in the two countries. The reasons
for this difference are uncertain, but environmental exposures, such as
alcohol and smoking behavior and genetic factors, may each play a role.

8. CONCLUSIONS

Approximately 10–15% of newly diagnosed cancer cases worldwide are esti-
mated to be attributable to infectious agents (112,117,118). The estimated
proportion is twice as high in developing countries as compared to that in
developed countries (112). These estimated proportions may be on the rise,
as new infectious agents of uncertain pathogenesis continue to be identified
every year. Furthermore, infectious causes have been speculated for some
chronic diseases associated with malignancies, including ulcerative colitis,
Crohn’s disease, rheumatoid arthritis, sarcoidosis, and multiple sclerosis.
These observations raise the possibility that the proportion of cancer attri-
butable to infectious agents may become even higher as the underlying
etiologies of these diseases unfold. With the aging trends of the world’s
population, infectious agents and viruses in particular are increasingly
important causes of malignancy.
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1. OVERVIEW

Ionizing radiation is an established and well-quantified cancer risk factor,
based on a large body of experimental and epidemiological studies. The
application of quantitative estimates of radiation-related risk must take into
account a number of differences between the exposures and populations on
which the estimates are based and those exposures and populations of
immediate interest. This problem is discussed in the context of quantitative
uncertainty analysis, a method that is increasingly being applied to areas
related to radiation risk protection, and relies on the recent work of several
expert committees involved in issues of radiation protection. Particular
issues discussed are uncertainties and biases associated with dose reconstruc-
tion error in studied populations, transfer of estimates between populations
with different baseline cancer rates, low-dose extrapolation of risk estimates,
and projection to different qualities of radiation. Depending on the applica-
tion, taking account of these and other uncertainties can substantially
change estimates of risk and their associated uncertainties.
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2. INTRODUCTION

A history of exposure to ionizing radiation is an established human cancer
risk factor in the sense that, for cancer sites making up the majority of the
human cancer burden, there is solid scientific evidence of increased risk asso-
ciated with high levels of exposure. Some level of exposure to ionizing radia-
tion is unavoidable, e.g., from natural background, and there are undeniable
benefits associated with many medical and industrial uses of radiation. The
human evidence on risk is based on epidemiological studies of populations
exposed for medical and occupational reasons and, especially, on follow-up
studies of a large cohort of atomic bomb survivors from Hiroshima and
Nagasaki, Japan. There is also a substantial body of research in experimen-
tal radiobiology. The experimental evidence is particularly informative
about variation in effect as a function of the amount and quality of radia-
tion energy deposited in tissue and its distribution in time and space, and
as a function of time following exposure, for different animal models.
Although radiation-related cancer risk is among the most comprehensively
documented risks associated with a common environmental carcinogen,
estimates are subject to considerable uncertainty, which must be taken into
account in any activity where radiation-related risk is a consideration. Some
of this uncertainty is observational in nature and can be quantified on the
basis of statistical data analyses. However, the analyses are usually condi-
tional upon assumptions that are themselves uncertain. Quantitative uncer-
tainty analysis involves an assessment of all the uncertainties involved in risk
estimation, many of which may require subjective input based on expert
judgment, and the cumulative effect of all these uncertainties on estimated
risk and its policy implications. Amore detailed discussion of this methodology
as applied to radiation-related risk can be found in reports of the National
Council on Radiation Protection andMeasurement (NCRP) (1,2) the Environ-
mental Protection Agency (3), the Colorado State Health Department (4), and
the National Cancer Institute (NCI) and Centers for disease Control and
Prevention (CDC) (5). The present paper illustrates some, but not all, of the
uncertain factors that need to be taken into account when applying our know-
ledge of ionizing radiation effects to radiation protection and informed consent.

3. IONIZING RADIATION

The term ‘‘radiation’’ covers the electromagnetic spectrum, which includes
static fields like the earth’s magnetic field, fields generated by 50- or 60-cycle
alternating currents, radio waves, microwaves, infrared, visible, and ultra-
violet (UV) light, and ionizing radiation, which has the highest frequencies
and energies. It is well established that exposure to the more energetic wave-
lengths, like UV light and ionizing radiation, is associated with increased
risk of cancer at certain sites. Ionizing radiation is sufficiently energetic to
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remove electrons from atoms, creating ions that are highly reactive with
other molecules, and thus may weaken or disrupt chemical bonds. If that
disruption occurs in the genetical material of a somatic cell, and is not prop-
erly repaired, a possible outcome is a mutation that may contribute to the
process of carcinogenesis. A more usual outcome is cell death, which is
why ionizing radiation is used successfully to treat some kinds of cancer.

Radiation dose, corresponding to the amount of energy absorbed per
unit volume of tissue, is expressed in units of gray (Gy). However, some
types of radiation, such as neutrons and alpha particles, produce patterns
of ionizing events that are more dense, and therefore more likely to cause
lasting damage, than more sparsely ionizing forms of radiation such as
x rays and gamma rays. The concept of ‘‘dose equivalent,’’ expressed in
sieverts (Sv), was introduced to facilitate comparison of exposures involving
different types of ionizing radiation, alone or mixed, in terms of likely
biological effect.

Ionizing radiation is ubiquitous and cannot be avoided altogether, but
exposure is to some extent controllable. All of us are exposed, all of the time,
to cosmic rays from the sun and stars, terrestrial radiation from rocks, soil,
and building materials, naturally occurring radioactive isotopes incorpo-
rated in our tissues (mainly potassium and carbon), and, by inhalation,
radon and its decay products (Table 1). Radon itself results from the decay
of radium in the soil and accumulates inside buildings and other closed
spaces, especially if ventilation is poor. Levels of environmental radiation
depend on altitude, geology, and how we construct our dwellings. For most
organs, the average yearly environmental dose equivalent� is about 1mSv;
for the lung it is about 15 times as high due to alpha radiation from inhaled
radon and its decay products (6).

Ionizing radiation is used extensively in medicine, for imaging and
therapy. On the average, annual doses from diagnostic x ray are comparable
to natural background radiation (Table 2) (7) Chest x-ray doses are very
low, and breast tissue dose from a two-view film-screen mammography is
somewhat higher than annual background. Therapeutic radiation, on the
other hand, can reach dose levels thousands to tens of thousands of times
higher than those from natural background to affected tissues, and can pose
substantial risks of treatment-related cancer occurring years afterward. The
trade-off is a chance of survival from the current cancer or disease, in

� ‘‘Dose’’ of ionizing radiation expresses the energy absorbed per unit volume of
tissue. ‘‘Dose equivalent’’ is used when different types of ionizing radiation are quan-
tified on a common scale in terms of biological effectiveness. Thus, in the present dis-
cussion, a dose of 100mGy of neutrons is assumed to have the same carcinogenic
effectiveness as 1000mGy of gamma ray; both therefore correspond to a dose
equivalent of 1000mSv. In the present discussion, dose when expressed in millisie-
verts should be understood to mean dose equivalent.
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exchange for the possibility that, if successful, the treatment may produce
another cancer later. That trade-off is also associated with treatment
modalities other than radiation. Collimation, shielding, fractionation of
exposure, and other protective measures often can be used to reduce
subsequent risk without compromising on the therapeutic benefit.

3.1. Evaluation of Risk

Ionizing radiation is a proven and well-quantified cancer risk factor, but
there is variation by organ site and histological subtype. The primary basis
for risk assessment is epidemiological data from exposed populations. These
include patient populations exposed to therapeutic and diagnostic radiation,
occupationally defined cohorts like radiologists, uranium miners, and
nuclear industry workers, and (notably) survivors of the atomic bombings
of Hiroshima and Nagasaki, Japan. The last group is particularly important
because it is a representative Japanese urban population in 1945, unselected
for disease, and exposed at the same instant to acute doses of mixed gamma

Table 1 Annual Average Exposure to Ionizing Radiation from the Environment

Source
Average yearly dose

equivalent (mSv)

Cosmic rays 0.3–0.5, depending on altitude
Rocks and soil 0.15–1.4
Naturally occurring radionuclides
in the body

0.4

Inhaled radionuclides (radon, thoron,
and their decay products)

15, to the lung

Table 2 Organ-Specific Radiation Dose (X-ray) from Common
Radiological Examinations

Examination Dose (mGy)

Cervical spine 0.2
Lumbar spine 1.27
Upper gastrointestinal 2.44
Abdomen 0.56
Pelvis 0.44
Skull 0.22
Chest 0.08
Film screen mammogram,
two films, with grid (breast dose)

2.7
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and neutron radiation ranging from near zero to near lethal levels. More-
over, the population has been followed over time since 1950 for mortality
at the level of death certificate diagnosis (8) and since 1958 for cancer mor-
bidity as monitored by high-quality tumor registries in Hiroshima and
Nagasaki (9,10). Evaluation of these data is influenced by a large body of
experimental research in radiation biology.

The most informative data pertain to observations of cancer risk
following exposure to radiation doses in the range 0.2–5Gy (or neutron-
weighted dose from mixed gamma–neutron radiation in the range
0.2–5 Sv), because at such levels the radiation-related excess risk can often
(but not always) be distinguished statistically from the normal random varia-
tion in baseline cancer risk. Above 5Gy (5 Sv), acute, whole-body exposures
are usually lethal, whereas below 0.1 Sv, inferences may be severely con-
strained by lack of statistical power and by possible confounding from
unknown or uncontrolled risk factors whose carcinogenic influences may be
greater than those of low-dose radiation exposure. Moreover, radiation pro-
tection procedures already limit exposure [current International Commission
on Radiation Protection (ICRP) recommendations (11) are no more than
20mSv=year from occupational exposures and 2mSv=year to the general
public], and nontherapeutic exposures greater than 0.1 Sv are extremely rare
in the general population. Thus, except for accidents and for medical proce-
dures, the more controversial applications of risk estimates are to exposures
that are considerably lower than those at which risk can be estimated directly.

Cancer risk can be expressed in absolute terms, as a rate or excess rate
(e.g., cases per 105 persons per year), or in relative terms as a multiple of the
baseline cancer rate. Figure 1 shows estimates of relative risk (RR) for solid
cancer morbidity (all cancers except leukemia) during 1958–1987 among,
members of the Life Span Study (LSS) population of atomic bomb survivors
of both sexes and all ages combined, by interval of neutron-weighted whole-
body dose (colon dose is assumed here to represent average dose to all tissues
combined). Weighted dose is expressed in sieverts and reflects a 10-fold weight
assigned to dose from neutrons compared to gamma rays, originally expressed
in grays. Figure 1 also shows a fitted linear dose–response function with 90%
confidence limits and a fitted quadratic function of dose which suggests a sub-
linear dose–response at high dose levels (p < 0.07). The values in Figs. 1 and 2
were computed by the present author from LSS tumor registry data available
from the Radiation Effects Research Foundation (RERF) website (12), using
the AMFIT algorithm of the EPICURE statistical package (13).

Figure 2 illustrates the effect of fitting successive linear dose–responses
based on data sets from which the higher-dose data have been progressively
trimmed. Trimming observations at doses above 3 Sv increased the linear-
model estimate, but there was no major change, except for a gradual widen-
ing of confidence bounds, until all the data above 0.2 Sv had been trimmed.
The two estimates on the left, representing observations at 0–50 and
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0–0.2 Sv, respectively, are substantially lower than the estimates based on
higher-dose data, but the confidence limits of these estimates are very wide,
and there is no lack of statistical consistency among the estimates. Excess
risk clearly is proportional to dose over a wide dose range, and there is
no clear epidemiological or statistical reason (although there may be other
reasons) why the fitted, linear dose–response should not hold at lower as
well as higher doses.

3.1.1. Statistical Evidence Concerning Radiation-Related
Excess Risk

Cancer risk among atomic bomb survivors increases significantly with
increasing radiation dose. This statement implies, and is implied by, the
observation that the lower confidence bound for the fitted linear dose–
response curve in Figure 1 increases with increasing dose. Another way of
putting it is that it is unlikely that radiation exposure among atomic bomb
survivors is not associated with increased cancer risk. The lower confidence
bound on the dose–response in Figure 1 implies more than statistical signif-
icance. It also implies, for example, that a dose-related excess relative risk
(ERR) less than 0.5 at 1 Sv is unlikely. Similarly, the upper confidence

Figure 1 Dose-specific relative risk estimates, with dose <5mSv as the referent.
Exposed members of the RERF Life-Span Study population, all solid cancers com-
bined. Error bars correspond to 90% confidence limits. The solid lines represent a
fitted linear dose–response with 90% confidence limits; the dashed line represents a
fitted quadratic dose–response function that does not fit significantly better than
the linear dose–response (p¼ 0.07).
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bound implies that it is unlikely that the ERR at 1 Sv is greater than 0.7. If
one should wish to argue that a certain radiation dose is ‘‘unsafe,’’ in the
sense that the risk is greater than some agreed, ‘‘tolerable’’ limit, an argu-
ment based on the lower confidence bound (e.g., ‘‘the lifetime cancer risk
associated with a 0.1 Sv exposure is unlikely to be less than 2 per 100
exposed persons’’) would have more logical force than one based on the cen-
tral estimate or on the upper bound. Conversely, an argument that another
radiation dose is ‘‘safe,’’ in the sense that risk is less than a presumably toler-
able limit, would have more force if based on the upper confidence bound
(e.g., ‘‘the lifetime risk associated with a 5mSv exposure is unlikely to be
greater than 1 per 1000’’).

3.1.2. Factors Affecting Radiation Dose–Response

The most thoroughly studied modifiers of radiation-related risk are factors
that are almost always obtainable with information about exposure and dis-
ease incidence or mortality: sex, age at exposure, age at observation for risk,
and time following exposure. Aside from cancers of gender-specific organs,
age-specific baseline cancer rates of other organs often differ between men
and women. Some of this may reflect differential exposure to cancer risk

Figure 2 Effect on estimated dose–response of successively censoring high-dose
data. The horizontal lines and the rightmost data point with error bars represent
the slope of the fitted linear-model dose–response (excess relative risk per sievert,
or ERR=Sv) in Fig. 1. The next data point to the left represents the slope based
on data with doses in the 0–4.5 Sv range, the next 0–3 Sv, and so on.
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factors such as tobacco smoke, alcohol, and carcinogens in the workplace.
Dose-specific ERR estimates for thyroid cancer and female breast cancer,
among others, vary inversely with age at exposure, whereas age at observa-
tion appears to be a more important modifier of risk for cancers of the lung
and colon (10). Leukemia risk [the combination of all types excluding
chronic lymphoblastic leukemia (CLL)] clearly depends on both age at
exposure and time following exposure (14).

Continuing with the data used to obtain Figures 1 and 2, excess rela-
tive risk of all solid cancers combined among atomic bomb survivors can be
modeled as a linear function of neutron-weighted dose in sieverts times an
exponential term that expresses modification by sex, exposure age, and
attained age:

ERRðD; s; e; aÞ ¼ aD expðbsþ geþ daÞ

where a, b, g, and d are unknown parameters, D is the dose, s¼�1 for males
and þ1 for females, e¼ age at exposure minus 40 for exposure age < 40 and
zero for exposure age �40, and a¼ log(age=60) for age < 60 and zero for
age �60. [This model, according to which estimated risk for a population
equally distributed by sex does not vary by exposure age over 40 or attained
age over 60, was chosen for this presentation in part because it gives a par-
ticularly simple description of risk at older ages, but in fact it fits these par-
ticular data somewhat better than a more conventional (in the radiation
literature) model in which radiation-related risk continues to decline expo-
nentially with exposure age >40 and as a power function of attained
age >60, according to calculations carried out by the author for this report.]
If we use E1 to denote the estimated ERR per sievert for solid cancer risk at
age 60 or older following an exposure at age 40 or older, in an exposed
population with equal numbers of men and women, the statistical uncer-
tainty of E1 is obtained from the statistical likelihood function for the
parameter a (Fig. 3, left-hand panel). That uncertainty distribution is
approximately normal on the logarithmic scale and, therefore, on the arith-
metic scale, approximately lognormal, with geometric mean (GM) 0.334 and
geometric standard deviation (GSD) 1.167 (Fig. 3, right-hand panel). The
arithmetic mean of this distribution is 0.34, and the 5th and 95th percentiles
are 0.26 and 0.43, respectively.

3.1.3. Risk Estimate Based on Statistical Information Only

According to the 1973–1996 SEER Cancer Statistics Review (15), the like-
lihood of eventually being diagnosed with a solid cancer, given that this
has not occurred by age 50, is about 44.3% for U.S. males and 35.3% for
U.S. females, or about 39.8% for a population composed of equal numbers
of 50-year-old males and females (to simplify, we will ignore the uncertain-
ties of this and other SEER estimates, and treat the estimated values as
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known quantities). The values for a comparable population at age 60 are
35.3% for males and 31.9% for females. Because the rate of survival from
age 50 to age 60 differs between males and females (92% and 95%,
respectively) (16) the lifetime solid cancer rate from 60 onward for a
50-year-old population evenly distributed by sex would be (0.92� 35.3%
þ 0.95� 31.9%)=2¼ 31.4%. Assuming a whole-body radiation exposure at
age 50, and allowing for a 10 year minimum latent period for radiation-
related cancer (and ignoring the uncertainty of that assumption), the cancer
consequence, per unit dose in sieverts, would be estimated as an increment in
lifetime risk of about 31.4 times 0.34¼ 11% times dose in sieverts. For a dose
of 0.01 Sv, that would be an excess lifetime risk of 0.11% or a total lifetime
risk of about 39.8%þ 0.11%¼ 39.9% (the likelihood that an early death
from a radiation-related cancer would preclude later diagnosis of a non-
radiation-related cancer is sufficiently small, at 0.01 Sv, to be ignored).
According to the statistical uncertainty distribution in Fig. 3, an excess risk
less than 31.4% times 0.26 times 0.01¼ 0.08%, or greater than 31.4% times
0.43 times 0.01¼ 0.13%, is unlikely in the sense that such an excess is incon-
sistent with the statistical data.

3.1.4. Other Relevant Information

We know more about radiation-related cancer risk than is contained in the
data used to obtain Figure 3. There is additional information on a number
of other important factors that need to be taken into consideration when

Figure 3 Estimated ERR=Sv after age 60 following radiation exposure at age 40
or older, for a population evenly distributed by sex, based on the model,
ERR(D,s,e,a)¼ aD exp(bsþ geþ da). Here, a, b, g, and d are unknown parameters,
D is the neutron-weighted radiation dose in sieverts, s¼�1 for males and þ1 for
females, e¼ age at exposure minus 40 for exposure age <40 and zero for exposure
age �40, and a¼ log(age=60) for age < 60 and zero for age �60. The left-hand panel
shows the statistical likelihood function, which corresponds closely to the lognormal
uncertainty distribution shown in the right-hand panel.
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estimating radiation-related cancer risk in different populations and expo-
sure situations, information which affects both estimated risk and its uncer-
tainty. The information is objective in nature and is a part of a broad
scientific consensus among investigators in this field, yet (unlike the statisti-
cal information summarized in Figure 4) its quantitative expression, particu-
larly with respect to uncertainty, is largely subjective and, therefore, may
vary by investigator. The important thing, however, is that the process is
transparent: alternative subjective uncertainty distributions may be pro-
posed, justified, and substituted into the calculations, and the results com-
pared with those presented here.

3.1.5. Dosimetric Factors

Figure 3 and the related risk estimates discussed above apply to survivors of
the atomic bombings of Hiroshima and Nagasaki. They depend on the data
and algorithms used to estimate individual doses among A-bomb survivors,
and possible biases and uncertainties in dose reconstruction for that popula-
tion are sources of additional uncertainty for application of the estimates to
other populations. The uncertain factors include source terms for the neu-
tron and gamma-ray components of dose from the Hiroshima and Nagasaki
bombs and information about the location of individual survivors and their
shielding by buildings and terrain. An NCRP committee (2) evaluating this
question judged that the effect of these factors might be to underestimate
gamma-ray dose, and thus overestimate excess risk per unit dose by an
uncertain amount. The committee developed a partly subjective, uncertain

Figure 4 Effect of adjustment for uncertain error in dose reconstruction. The left-
hand panel shows a normally distributed, subjective uncertainty distribution for a
correction factor recommended by an expert panel of the National Council on
Radiation Protection and Measurements (2) and the right-hand panel the simulated
uncertainty distribution (vertical lines) of the uncertain ERR=Sv estimate represented
on the right in Fig. 3, after multiplication by this correction factor. This distribution
is well approximated by the lognormal distribution represented by the smooth out-
line drawn around the simulation results.
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correction factor determined by Monte Carlo simulation to be approxi-
mately normally distributed with mean 0.84 and standard deviation 0.11
(Fig. 4, left-hand panel). The right-hand panel of Figure 4 shows the results
of a Monte Carlo simulation to describe the effect, on the uncertainty dis-
tribution in Figure 3, of applying the uncertain correction factor represented
in the left-hand panel of the figure. Since estimated risk is a multiple of dose,
the correction involves multiplying an uncertain risk estimate by an uncer-
tain dose correction factor. If we use E2 to denote E1 adjusted for dose
reconstruction error, the uncertainty distribution of E2 is approximately log-
normal with GM¼ 0.28 and GSD¼ 1.22. The mean of that uncertainty dis-
tribution is 0.29 and the 5th and 95th percentiles are 0.20 and 0.39,
respectively; thus, the adjusted central risk estimate is 31.4%� 0.29� 0.01
¼ 0.09%, with 90% probability limits 0.06% and 0.12%.

3.1.6. Transfer of Risk Coefficients Between Populations

According to statistics for the combined SEER tumor registries in the
United States and theHiroshima andNagasaki tumor registries in Japan (17),
age-standardized (world) cancer rates for all solid cancers combined, exclud-
ing skin, are about 30% higher in the United States than in the (present day)
populations of Hiroshima and Nagasaki. For female breast cancer, U.S.
rates are threefold higher, while for stomach cancer U.S. rates are only
one-tenth as high as those in Japan. These differences complicate the prob-
lem of transferring estimates of radiation-related risk from the A-bomb sur-
vivors to a U.S. population, because different transfer rules give different
results. Suppose, for example, that a certain radiation exposure at age 10
(say) is thought to increase breast cancer rates by 50% at all subsequent ages
among the A-bomb survivors. Then the total (baseline plus excess) lifetime
breast cancer risk would be 1.5 times the baseline, or about 6 (as against 4 in
the absence of exposure) per 100 exposed, female A-bomb survivors. Apply-
ing the same multiplicative factor to U.S. rates would yield about 18 lifetime
cases per 100, compared to 12 in the absence of exposure. If we knew that
radiation acts primarily as an early-stage carcinogen and that the higher
breast cancer rates in the U.S. population reflect greater exposure to later-
stage factors that cause or allow cells affected by early-stage carcinogens
to progress to cancer, a multiplicative transfer of risk would be logical. If,
on the other hand, the U.S. population is more heavily exposed to other
early-stage carcinogens that act much the same as radiation, we might just
as logically assume that the differences, rather than the ratios, between
breast cancer rates in exposed and nonexposed women should be the same
in the United States and Japan and that the ERR per sievert for Americans
would be one-third the value for the A-bomb survivors. In that case, the
estimated lifetime rate among exposed American women would be about
14 per 100.
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As it happens, combined analyses of breast cancer risks in A-bomb
survivors and medically irradiated populations (18) suggest that the additive
transfer model is more nearly correct for radiation-related breast cancer, but
for most cancers we have very little guidance on the risk transfer problem.
There are a number of cancer sites, notably stomach, liver, and prostate
gland, for which age-specific baseline rates differ by an order of magnitude
or more between the United States and Japan. With the possible exceptions
of stomach (20) and liver (21), we have almost no information about which
one, if either, of the two simple transfer models is correct. A reasonable pre-
sumption is that the truth is somewhere between them. Expert committees
(2,3,5) have considered the problem and come up with different approaches
involving subjectively weighted mixtures of additive and multiplicative
transfer. The NCI=Centers for Disease Control and Prevention (CDC) com-
mittee (5) reasoned that, because of the almost total lack of information for
the vast majority of cancer sites, on transfer of estimated radiation-related
cancer risk between populations with different baseline cancer rates, equal
allowance might be made for all linear combinations of additive and multi-
plicative transfer of the form, in this case multiplying estimated ERR=Sv by
1 for multiplicative transfer and (reflecting the 30% greater U.S. baseline) by
1=1.3¼ 0.769 for additive transfer: T¼ uþ (1� u)=1.3, for u between 0
and 1, with a very small weight given to u as low as �0.1 or as high as
1.1 (Fig. 5). The right-hand panel of Figure 5 shows the simulated uncer-
tainty distribution of ERR per sievert for solid cancer morbidity risk after
correction for both dose reconstruction error and transfer from the A-bomb
survivors to a general U.S. population (call it E3, or E2 adjusted for trans-
fer). The simulated distribution in Fig. 5 is approximately lognormal with
GM¼ 0.24 and GSD¼ 1.25, with mean 0.25, and 5th and 95th percentiles

Figure 5 Effect of adjustment for uncertainty in transferring ERR=Sv from a Japanese
to aU.S. population, given that age-standardized (world) solid cancer rates are 30%higher
in the United States than in Japan. The uncertain transfer model is ERR=Sv(U.S.)
¼ERR=Sv(Japan)� (1�UþU=1.3), where the subjective uncertainty distribution of the
random quantity U is given in the left-hand panel (5). The right-hand panel shows the
simulated uncertainty distribution of ERR=Sv(U.S.) and its lognormal approximation.
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0.17 and 0.35, respectively. The adjusted risk estimate is 0.08% with 90%
probability limits 0.05% and 0.11%.

3.2. Extrapolation to Low Doses and Low Dose Rates

As mentioned earlier, one of the most difficult and controversial risk estima-
tion problems is the extent to which estimates of ERR per unit dose based
on high-dose data apply to low-dose exposures. Based on findings from
experimental radiation biology, the ICRP (11) has recommended dividing
linear-model risk estimates by a ‘‘dose and dose rate effectiveness factor’’
(DDREF) of 2 for sparsely ionizing radiation at acute doses under
200mSv or chronic exposures at any dose level delivered at dose rates less
than 6mGy=h, and this recommendation was also accepted by the NCRP.
In their most recent discussion of the application of DDREF, the United
Nations Subcommittee on Effects of Atomic Radiation (22) recommended
that the chosen DDREF be applied to chronic exposures (dose rates less
than 6mGy=h averaged over the first few hours) and to acute (high dose
rate) exposures at total doses less than 0.2Gy, a recommendation that
was subsequently adopted by the Environmental Protection Agency (EPA,
1999). More recently, however, in quantitative uncertainty analyses by
expert committees (2–5) subjective uncertainty distributions for DDREF
have been used that place substantial probability on DDREF values
between 1 and 5 and, in two instances (4,5) some probability on values less
than 1. These new uncertainty distributions reflect new information from
epidemiological studies, like that in Figs. 1 and 2, suggesting the possibility
of DDREF values near 1. Figure 6 shows the discrete subjective uncertainty
distribution for DDREF used by the NCI=CDC committee (5), and the

Figure 6 Effect of extrapolation to low doses and dose rates. The left-hand panel
shows the subjective, discrete uncertainty distribution for DDREF used by an
NCI=CDC working group to provide scientific guidance for the adjudication of com-
pensation claims for cancer following exposure to ionizing radiation (5). The right-
hand panel gives the simulated, approximately lognormal uncertainty distribution
for ERR=Sv associated with high-energy photon irradiation at low doses and=or
low dose rates.
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right-hand panel shows the effect of the DDREF factor on the adjusted esti-
mate (call it E4) of ERR=Sv, and its uncertainty distribution, in Fig. 5. The
new uncertainty distribution is roughly lognormal with GM¼ 0.15 and
GSD¼ 1.63. The mean is 0.17 and the 5th and 95th percentiles are 0.07
and 0.34, corresponding to an adjusted risk estimate of 0.05%, with 90%
probability limits 0.02%–0.11%.

3.2.1. Extrapolation from High-Energy to
Lower-Energy Photons

It is well known, from experimental radiobiology, that different types of
radiation vary in their effectiveness as agents for somatic damage to cellular
DNA and therefore as contributors to carcinogenesis. Most uses of medical
x-ray produce photons with energies in the 30–250 keV range. The biological
effectiveness of such radiation per unit dose, at low doses and dose rates, is
thought to be greater than that of higher-energy photons. The risk esti-
mates, and their uncertainty distributions, discussed so far in the current
example, pertain to fairly high-dose, acute exposures to sparsely ionizing
radiation like that received from the atomic bombs, mainly photons at
energy levels greater than 250 keV. In a report commissioned by the
National Institute for Occupational Safety and Health, Kocher et al. (23)
proposed an uncertainty distribution for the biological effectiveness of
30–250 keV photons, relative to higher-energy photons, that assigned 25%
probability to 1 (identical effectiveness) and 75% to a lognormal distribution
with 2.5% probability assigned to values less than 1 (i.e., less effective than
higher-energy photons), 2.5% to values greater than 5, and the central 95%
to values between 1 and 5 (GM¼ 2.236, GSD¼ 1.508; Fig. 7, left-hand
panel). The resulting uncertainty distribution for E5, denoting ERR per

Figure 7 Effect of extrapolation from high-energy photon radiation to 30–250 keV
photons (e.g., diagnostic X ray). Left-hand panel: subjective uncertainty distribution
derived by Kocher et al. (23) for the relative effectiveness of this type of radiation
compared to higher-energy photons, e.g., from the atomic bombings. The right-hand
panel shows the simulated uncertainty distribution for ERR=Sv of 30–250 keV
photons delivered at low doses and=or low dose rates.
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sievert from low-dose or chronic medical x-ray exposure, is reasonably well
approximated by a lognormal distribution with GM¼ 0.28 and GSD¼ 2.01
(Fig. 7, right-hand panel); the mean is 0.35, and the 5th and 95th percentiles
0.09 and 0.87. Thus, the estimated lifetime excess cancer risk associated with
a 0.01 whole-body x-ray exposure at age 50 is 0.11% with 90% probability
limits 0.03–0.27%, or a total solid cancer risk of 39.91% (39.83–40.07%)
compared to a nominal risk of 39.8% in the absence of exposure.

4. SUMMARY AND CONCLUSIONS

Most of what we know about radiation-related cancer risk is based on
follow-up studies of atomic bomb survivors who were exposed acutely, in
1945, predominantly to high-energy gamma-ray photons with an admixture
of neutrons. The dosimetric basis for these studies is somewhat uncertain,
and this uncertainty should be taken into account when applying risk esti-
mates based on the A-bomb survivor studies to other populations; another
source of uncertainty is how to adjust for differences in baseline cancer rates
between the United States and Japan. The most informative data from the
A-bomb survivor studies pertain to neutron-weighted whole-body doses in
excess of 0.2 Sv. Annual background radiation from natural sources is on
the order of 0.001 Sv to most tissues and 0.015 Sv to the lungs. Partial-body
exposures from therapeutic radiation for cancer treatment can be tens of sie-
verts, but the vast majority of radiation exposures in excess of background
are from diagnostic medical x-ray, at doses well under 0.1 Sv (24). Thus,
additional uncertainty is attached to extrapolation of risk estimates to low
doses and to types of radiation qualitatively different from that affecting
A-bomb survivors. These (and other) additional sources of uncertainty
can be factored into the risk estimation process through the use of largely
subjective uncertainty distributions for correction factors and propagation
of error through analytical or simulation methods. Thus, the validity of
conclusions reached in this way can be evaluated in terms of the reasonable-
ness of the algorithms and uncertainty distributions employed, and by
comparison with plausible alternative formulations.

The results of the current exercise are summarized in Table 3. Begin-
ning with the statistical dose–response coefficient estimate E1, the amount
of change and additional uncertainty introduced by adjustment for dose
reconstruction error and (because baseline rates for all solid cancers com-
bined are not very different between Japan and the United States) popula-
tion transfer were relatively minor. More substantial changes were
associated with low-dose extrapolation and, especially, extrapolation from
high-energy photons to 30–250 keV photons from medical x-ray.

Low-dose extrapolation has long been considered one of the most
important unresolved questions for radiation risk protection. Table 3
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suggests that a problem of equal importance is the relative effectiveness of
medical x-ray vs. high-energy photons.

It should be kept in mind that the statistical risk estimates and the
uncertain correction factors presented here are representative of information
available at the time of writing, and can be expected to change as newer
information is developed. The present document is an illustration of a par-
ticular approach, quantitative uncertainty analysis, as it is being increasingly
applied to estimation of radiation-related risk, and is in no way a definitive
presentation of radiation-related risk.
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1. INTRODUCTION

This chapter is designed to provide an overview of occupational cancer, its
causes, risks, and prevention. The subject is vast and extends into clinical,
epidemiological, legal, toxicological, and ethical areas, among others. As a
result, a complete discussion of this topic is beyond the scope of this chapter.
It is intended, however, to be a basic resource on the subject for researchers,
physicians, nurses, and other health professionals with a particular emphasis
on biomarkers. The chapter includes a brief history of early occupational
cancer, contemporary issues related to occupational cancer risks, and meth-
ods for determining such risks through epidemiological, animal and in vitro
investigations. Sections on assessing risks of occupational cancer and its pre-
vention follow, along with a discussion on addressing casual associations.

An occupational carcinogen can be any chemical, physical, or biologic
agent that increases the risk of cancer associated with work. Although fig-
ures vary, approximately 2–8% of all human cancers may be due to exposure
to occupational carcinogens (1–4). The proportion of cancers associated
with certain occupations can be significantly higher (3–5). According to
the National Occupational Research Agenda (NORA), about 10% of lung
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cancers, 21–27% of bladder cancers, and up to 80% of mesotheliomas in the
United States are related to occupational exposure to carcinogens. In workers
sufficiently exposed to specific carcinogens, such as vinyl chloride, the percen-
tage of site-specific cancer (i.e., angiosarcoma of the liver) approaches 100%.

The assessment of risk associated with certain types of work and
agents is not only challenging but also incomplete. As many as 6 million che-
micals and approximately 4 million chemical mixtures are registered with the
Chemical Abstracts Service and in commercial use. More than 50,000 chemi-
cals are used regularly, but fewer than 1000 chemicals or work settings have
been assessed in some way for their potential to cause cancer (3,6). An under-
standing of occupational cancer risk, however, has implications not only for
the workplace but also for public and environmental health. In fact, public
health policy is often based on occupational studies, despite limitations in
extrapolations of the data. The workplace represents a unique environment
in which a relatively large number of people may be exposed to relatively high
concentrations of potential carcinogens. From these workplace exposures,
adverse health effects can be assessed and extrapolated to larger populations.

Occupational cancers are theoretically completely preventable with
appropriate engineering controls, personnel practices, and the use of protec-
tive equipment. In fact, exposure to potential carcinogens can be vigorously
controlled and often eliminated in many work settings. Often, the efforts
associated with reducing exposure to occupational carcinogens have resulted
in efficient improvements in the process. Controls can be extraordinarily
effective in preventing occupational cancer. Witness, for example, the vinyl
chloride industry. As a result of measures taken to lower exposure levels
below 1 ppm, no case of angiosarcoma has occurred in a worker hired in
North America or Western Europe since 1974. Nonetheless, millions of
workers may be exposed to potential carcinogens. Continued prevention
of cancers that may result from certain jobs, however, will require refined
assessments of risk. Clinicians, in particular, can make substantial contribu-
tions to assessing risk by keeping a keen awareness of potential links
between work and illness and making note of them as appropriate.

2. HISTORY

A detailed history of occupational cancer is available in other sources (7,8).
Although the association between work and ill health dates back to Ramaz-
zini, an Italian physician in the early 18th century, the first clear link
between cancer and a specific cause is attributed to Sir Percival Pott who
in the late 18th century identified soot as responsible for scrotal cancer in
young British chimney sweeps. It was not until the 1930s to the 1940s,
however, that the probable causative agent was identified as benzo(a)pyrene
(BAP), one of the many carcinogens found in soots, tars, and cigarette
smoke (9,10). The work of Pott represents more than a historical highlight,
because it illustrates that occupational cancers—then and now—were
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initially detected by astute physicians. In fact, nearly all occupational
carcinogens were initially recognized in this manner (7,11).

The discovery of specific occupational carcinogens continued after
Pott. In 1875, clinicians noted excess rates of skin cancer secondary to expo-
sure to coal tar products, including mineral oils used in the Scottish shale
and the English cotton industries (7). For centuries, miners suffered a multi-
tude of breathing disorders associated with work. In 1879, Haerting and
Hesse identified excess lung cancer among German uranium minors,
although the potential contributions of arsenic and radioactive materials
were yet to be recognized, until decades later. When large-scale uranium
mining began in the United States in the late 1940s, it was finally recognized
that radon caused lung cancer (7,10). The hazards of ionizing radiation were
first reported in 1902, shortly after the discovery of x-rays when radiation-
induced skin cancer was observed. Excess rates of leukemia occurred among
radiologists and technicians, whereas excess rates of bone cancer (sarcomas)
of the lower jaw were found among radium dial painters.

In 1948,Machle andGregorius described an excess of lung cancer among
chromate workers, and Hill and Fanning observed excess lung and skin cancer
in a British arsenic factory (7). In 1955, Doll and Peto (12,13) published an
epidemiological study associating asbestos with increased cancer of the lung;
later, synergism between cigarette smoke and asbestos was reported.

In 1974, a cluster of angiosarcoma led to a proportional mortality
study, a retrospective cohort study, and animal evaluations that uncovered
vinyl chloride as a cause of liver cancer (14–16). In a similar fashion,
exposure to bischloromethylether (BCME) was noted to increase risk of
lung cancer among workers in the plexiglass industry.

By 1950, many occupational cancer risks recognized today had been
discovered (Table 1), including bladder cancer among German dystuff
workers (due to aniline dyes) and leukemia among Italian shoe workers
exposed to benzene. Asbestos-related lung cancer was first reported in
1934; in 1947, Britains’ Chief Factory Inspector reported lung cancer in
31 of 235 men with asbestosis who died between 1924 and 1946 (10). In
1932, the first reports associating arsenic with lung cancer and nickel with
sinonasal carcinoma appeared.

Eventually, the recognition of occupational cancer underwent a transi-
tion from clinical case reporting to more formal quantitative epidemiologi-
cal studies. Such studies included proportional mortality analyses of death
certificates, retrospective follow-up studies among exposed workers, case–
control evaluations, and prospective assessments. Their role in evaluating
potential work place carcinogens will be described later in this chapter.

In the 1970s, a variety of Federal legislation was enacted, related to the
formation of agencies charged with responsibilities for occupational and
environmental health. The Occupational Safety and Health Administration
(OSHA), theNational Institute forOccupational Safety andHealth (NIOSH),
and the Environmental Protection Agency (EPA), are major examples.
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3. IDENTIFYING CARCINOGENS

Currently, the process of identifying substances and occupations associated
with cancer is performed by a variety of state, national, and international
organizations. The International Agency for Research on Cancer (IARC),
the National Institute for Occupational Safety and Health, the U.S. Public
Health Services’ National Toxicology Program (NTP), the Environmental
Protection Agency (EPA), the American Conference of Governmental
Industrial Hygienists (ACGIH), and OSHA are noteworthy examples.
These organizations establish lists of hazards and occupations with carcino-
genic potential. Hazard identification tends to be based on assessments of
epidemiological and clinical reports, as well as animal research and in vitro
studies. Each agency classifies carcinogens differently, with criteria varying
considerably. Some organizations simply identify a hazard, whereas others
propose or require occupational exposure limits. Such variability under-
scores the complexity of occupational risk assessment. Case reports, epide-
miology, and animal investigations form the basis of scientific information
used to identify occupational carcinogens. Their scope, benefits, and limita-
tions in the occupational setting are described below.

3.1. Case Reports and Series

Case reports and case series describe the experience of a single patient (case
report) or group of patients (case series). Usually, the case (or cases) repre-
sents a previously unrecognized health effect from exposure to a certain
hazard or work in a particular industry. These types of reports often provide
the first clue about potentially unrecognized effects of exposure to hazard-

Table 1 Established Occupational Carcinogens

Bladder Benzidin, 2-naphthylamine, 4-aminobiphenyl
(xenylamine), manufacture of certain dyes
(e.g., auramine and magenta), gas retorts,
rubber and cable making industries,
coal tar pitch volatiles (aluminum
reduction plant, chimney sweeps)

Blood (leukemia) Benzene, X-radiation
Bone Radium, mesothorium
Larynx Mustard gas, sulfuric acid mist
Liver (angiosarcoma) Arsenic (inorganic compounds), vinyl chloride
Lung, bronchus Arsenic (inorganic compounds), asbestos,

beryllium and beryllium compounds,
bis-chloromethyl ether, cadmium and
cadmium compounds, chromium compounds

Source: Adapted fromMonson R. Occupational. In: Schottenfeld D, Fraumeni, JF, eds. Cancer

Epidemiology and Preventive. New York: Oxford University Press, 1996.
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ous agents and may prompt the need for a formal epidemiological study.
Once suspected exposures are identified by a case series, the potential causal
link between the exposure and the disease outcome can be formally tested
through cohort studies. Case reports, although inexpensive and straightfor-
ward to prepare, are limited in their usefulness for drawing causal
inferences. One obvious shortcoming is that the risk of exposure identified
by a case series lacks an appropriate comparison group (17). Nonetheless,
case reports have played an important role in the identification of occupa-
tional carcinogens and will likely continue to be of value as early warning
signals.

3.2. Cohort Studies

A cohort study refers to an epidemiologic assessment designed to evaluate a
potential occupational cancer risk. In a classic cohort study, the investigator
defines two or more groups of people (the cohorts) that are free of disease
and which differ only according to the extent of their exposure to a potential
agent (18) One group represents the exposed individuals; the other (the
reference group) represents those unexposed. Workers from a common
industry or plant process are identified as the exposure group, then com-
pared to a nonexposed group, often workers from the same factory or mem-
bers of the general population. The vital status (alive or deceased) or disease
status (ill or not, depending on criteria) of each group is noted. Both groups
can then be followed over time (prospectively) for the development of
isease(s). In another approach, the exposed and unexposed cohorts are iden-
tified through historical records (a retrospective study) and then evaluated
through a designated date in the past.

Retrospective cohort studies (in which defined records are used to
characterize the exposure and disease status until a designated date) are
most commonly found in the occupational literature (19). A useful type of
retrospective study is the cohort mortality study, in which a group of
exposed workers is identified and then followed to a designated date; the
vital status of each cohort member is then determined from death certificates
or disease registries. The rates of death, including specific types, among the
work cohort are compared to national or local rates. Results are described
in terms of the standardized mortality ratio (SMR), which is calculated by
dividing the number of observed cases (deaths or new cancers) among the
exposed population by the number (actual or expected based on standard-
ized disease rates) in the unexposed (control) group. Calculated SMRs are
usually adjusted for known confounders through stratification by age, sex,
year of birth, and race (19). The major limitations of this type of study is
the quality of available data used in both the health or mortality
assessment of the cohort and the categorization of exposure. Inaccurate
or missing information can limit the validity of certain results. Nonetheless,
over the past 25 years, cohort mortality studies have identified many occu-
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pational carcinogens and have had a major impact on IARC’s identification
of carcinogens. From some studies, individual dose estimates have been
calculated to enhance risk assessments and the establishment of effective
control limits.

When death certificates are available, but the characterization of the
exposure is incomplete, a proportionate mortality ratio (PMR) study may
be valuable for an early assessment of potential occupational cancer risk.
The PMR, which compares distributions of the causes of death among a
group in comparison to the general population, can be used to test an
hypothesis (7,19,20). The PMR is calculated by comparing the ratio of each
type of cancer to the total number of cancer and noncancer deaths in the
exposed population with similar ratios in the reference population (3).
Although this method can provide valuable preliminary information, the
method has distinct drawbacks. The PMR, for example, does not include
information on years of exposure. Its critical flaw, however, is that an
apparent excess of cancer may only be a reflection of a deficit in another
cause of death (19).

The prospective cohort design is the ideal epidemiological study for
occupational cancer risk assessment. This study design, however, is seldom
used due to cost and long latency of most occupational cancers, which can
be 5–30 years or longer. These studies have the major benefit in that expo-
sure to suspected carcinogens can be accurately assessed, whereas in
retrospective studies exposure may need to be approximated.

3.3. Case–Control Studies

In a case–control study, subjects are selected on the basis of whether they do
(cases) or do not (controls) have a designated disease (17). They can be con-
ducted de novo or following a retrospective or proportional mortality study
in which an excess risk of disease is noted. In case–control studies, when a
types of cancers are identified their occupational exposure histories are com-
pared to matched control groups. Case–control studies are particularly
suited for evaluating rare diseases, such as some types of occupational
cancer. Diseases with long latency periods can be assessed, since the disease
has already occurred at the time of the study. The proper definition of the
disease under study and the selection of cases and controls is critical to
the value of case–control studies. In any case–control study, the disease out-
come of interest must be defined according to widely acknowledged diagnos-
tic and histopathologic criteria. Cancer diagnoses affecting the same organ
system often have different subtypes and separate etiologies and must be
accounted for in the analysis.

Case–control studies are subject to a number of special issues that
affect the interpretation of results. Since exposure information is obtained
after the disease has occurred, the results can be affected by recall bias,
which may occur if patients with a given disease report exposures differently
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than controls. In fact, people who have been diagnosed with a rare or life
threatening disease tend to think about the possible ‘‘causes’’ of their illness
and thus are likely to remember their exposure histories differently from
those unaffected by the disease (17). Recall bias may be particularly acute
when the disease is cancer and the cause may be related to work.

Case–control studies may also suffer from selection bias in that both
exposure and disease have occurred prior to the time subjects are selected
into the study. These studies can also be prone to misclassification and in
some situations, the temporal relationship between exposure and disease
is unclear, which limits interpretations of causality.

A ‘‘nested’’ case–control study is usually conducted as part of a large
cohort evaluation. Although all case–control studies can be thought of as
‘‘nested’’ within a source population of exposed and unexposed people,
the term nested case–control study refers to a case–control study where the
population is obtained from a well-defined cohort. Such studies are usually
performed after completion of a retrospective cohort study, which identifies
an expected excess in cancer or other disease. Personnel and exposure
records, where available, are reviewed in an attempt to identify agents sus-
pected to be responsible for the excess in cancer mortality noted in the
cohort study.

Similarly, a disease can be identified and then evaluated to determine
specific risk factors. Employment records of those with a disease are analyzed
by job and=or exposure or both and then compared to records of workers
without disease. This effort is designed to identify the particular exposure
or work process responsible for increased disease risk; confounding factors
are addressed by interviews of the worker or next of kin. The nested case–
control study focuses on interviews and examinations of records only on
people with the disease of interest rather than on the entire original cohort.

4. SPECIAL ISSUES IN OCCUPATIONAL EPIDEMIOLOGY

4.1. Exposure Assessment

Occupational epidemiology is fundamentally concerned with the often-
difficult task of relating exposure to outcomes. As a result, accurate exposure
assessment has been described as the Achilles heel of the discipline. Limited
or inaccurate information of a worker’s exposure can lead to misclassifica-
tion and weakening of the exposure–outcome assessment. This problem is
exagerated in evaluating diseases of long latency. Clearly, as time passes,
accurate retrospective exposure assessments can become increasingly
problematic. As discussed earlier, the ideal epidemiologic study for assessing
exposure–outcome relationships is the prospective cohort study, in which
exposure is well categorized and health effects are properly assessed and fol-
lowed into the future. Such ideal circumstances, however, are rarely present.

Several techniques have been developed to improve retrospective
exposure assessments, because of their importance in assessing dose–
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response relationships, latency, and combined effects of several exposures.
Exposure reconstruction is frequently based on interviews with workers
and others knowledgeable about historical events and procedures. Another
approach is based on expert assessments, which, despite their value, are at
their core only refined estimates. To address challenges of exposure recon-
struction, job–exposure matrices (JEMs) evolved in the early 1980s to help
quantify exposures and improve epidemiological analyses. A JEM is usually
a two-entry data matrix with job depicted on one axis (including occupation,
position, or task) and risk factors such as hazards, level of exposure, and
time on the other axis. Numerous JEMs have been established for specific
occupations, industries, and industrial processes (21). These matrices are
relatively cost- and time-efficient. Nonetheless, the validity of JEMs
can be weakened because of misclassification (13). More recent methods
for conducting exposure assessment include the use of computer generated
questionnaires (22).

4.1.1. Biomarkers

Genetic and molecular epidemiology methods have advanced the use of bio-
markers, as indicators of exposure, risk and effect (23–26). In fact, biomark-
ers can be a significant component of medical surveillance protocols for
many occupational exposures (27). Examples include blood lead levels, clara
cell levels for silica, and urinary beta-2-microglobulin for cadmium, among
numerous others. Genetic biomarkers offer particular promise for the detec-
tion of subtle preclinical effects of exposure to carcinogens.

Biomarkers are commonly divided into three categories: markers
of exposure, markers of effect, and markers of susceptibility. Examples of
biomarkers of exposure include DNA–protein adducts, which ideally can
provide ‘‘an integrated measure of carcinogen exposure, uptake and absorp-
tion, and metabolism.’’ They offer considerable value in providing an
objective and relevant measure of exposure in contrast to questionnaires
and nonspecific biological testing. The interpretation of DNA-adduct mea-
surements in human tissues and body fluids, however, requires an under-
standing of a number of factors, including the sensitivity and specificity of
the measurement, the temporal relationship between the exposure and
the corresponding adduct levels, and the mechanistic role of adducts in
carcinogenesis (28). Their use in occupational medical practice today
remains limited but they remain a research focus with great potential (29).

Markers of effect indicate that the carcinogen has reached a cellular
site and altered genetic material. Sister chromatid exchanges, micronuclei,
abnormal genes, and gene products are notable examples. The interpreta-
tion of cytogenetic abnormalities and of abnormal gene products in relation
to exposure remains problematic, despite their role in research initiatives.
Cytogenic abnormalities and abnormal gene products have been studied
in a variety of occupational settings involving benzene, vinyl chloride, asbes-
tos, and ethylene oxide and in firefighters and hazardous materials workers.
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Their use in routine settings, however, remains limited because they are in
an early stage of validation.

Markers of risk offer promise in the prevention of occupational
cancer. Although epidemiological studies have identified various exposure-
related associations with cancer, the determination of individual susceptibil-
ity remains a considerable challenge. Recent advances in molecular biology
have led to novel approaches in defining the role of genetic susceptibility in
cancer etiology. Ongoing studies of the associations of inheritable poly-
morphisms and metabolic genes with specific carcinogen exposures reflect
the most recent research. Future efforts will likely include examination of
inherited variation in DNA repair, among other factors associated with
cancer. Methods are also being developed to allow for analysis of gene–
environment interaction in the development of cancer. These approaches
hold considerable promise for defining the nature of genetic susceptibility
in exposure related cancers (23).

An example of markers of risk is the relationship of polymorphic vari-
ants of cytochrome P450 in the metabolic activation of precarcinogens.
Many Phase I P450 enzymes bioactivate carcinogens, whereas Phase II
enzymes participate in the deactivation process. Both the CYP1A1 and
CYP2E1 variants of Phase I P450 enzymes are involved in the metabolism
of many suspected and established carcinogens. Since genetic polymorph-
isms have been identified for both Phase I and Phase II enzymes, risk assess-
ments could be enhanced if polymorphisms in both enzyme categories are
considered as biomarkers for susceptibility to cancer (30). Genetic and mole-
cular epidemiology research involving the use of biomarkers also raises ethi-
cal questions, related to the potential for such information to be used for
discriminatory purposes (31–33).

4.2. Outcome Assessment

Health outcome assessment is usually less of a problem than exposure
assessment in occupational cancer epidemiology. Nonetheless, accurate
determination of health end points presents challenges for many studies
due to both the accuracy of diagnoses and underreporting of illnesses.
Although most industrialized countries maintain cancer, occupational
injury, and disease registries, the accuracy of these registries is questionable
because many occupational diseases tend to be underreported. The Scandi-
navian countries, which are noted for their superior occupational illness and
injury data collection systems, also showed limitations, when between 1983
and 1987, only 34% of occupationally related cancers were reported (1).
Other industrialized countries have found similar results.

4.3. Combined Effects of Several Exposures

The combined effect of several exposures raises a number of challenges in
occupational epidemiology, including accounting for confounding, synergy,
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interaction, and effect modification (9). In occupational epidemiological stu-
dies, age and smoking status are common confounders. Interaction has a
number of connotations depending on the literature, whether statistical, epi-
demiological, chemical, biological, or public health. For risk assessment, the
concept of ‘‘mechanical interaction’’ that can occur between chemicals and
biological systems encompasses the notion of direct physical or chemical
reactions among exposures, their metabolites, or their reaction products
(34). Mechanical interaction occurs when the combined effect of two or
more carcinogens is greater than what would have been anticipated based
on individual exposures. The exposure effect may change depending on
the presence, or level, of other chemicals involved. Synergistic interactions
occur when the combined effects of certain hazards exceed their individual
effects. In contrast, antagonism results when the combined effects are less
than individual effects. Notable synergistic effects include those of asbestos
and smoking, whose coexposure results in much higher risks of lung.

4.4. Healthy Worker Effect

When the mortality and disease patterns of a group of workers are com-
pared to those of the general population, the working group is generally
found to be healthier. This phenomenon—termed the healthy worker
effect—has particular importance in the assessment of epidemiological stu-
dies. The basis of the healthy worker effect is multifactorial. First, working
populations are generally more physically and emotionally fit than the gen-
eral population, which includes persons unable to work due to a variety of
restrictions. The healthy worker effect is also affected by healthy survival, in
that those more physically and emotionally fit are less likely to need to leave
work. Workers also tend to have improved access to healthcare services and
a higher standard of living, other factors contributing to the healthy worker
effect. Some studies have demonstrated that the healthy worker effect plays
a role in some occupational epidemiology studies, whereas others urge cau-
tion in applying it to the assessment of cancer, since its development is not
strongly associated to ‘‘fitness’’ for employment.

5. IN VITRO STUDIES

Occupational epidemiology studies assess exposure–disease associations in
human populations under actual conditions. The long latency periods,
however, between initial exposure and the onset of cancers, render the
timely epidemiologic evaluation of potential carcinogens in the workplace
pressingly difficult (19). Moreover, epidemiological studies tend to be ineffi-
cient in detecting low-level cancer risks since relatively large sample sizes are
needed to uncover true increases of disease. In vivo and in vitro studies can
be valuable supplements to epidemiology in assessing occupational cancer
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risk. These studies, extensively used over the past 30 years, have also yielded
advances in understanding mechanisms of cancer (4).

In vitro studies refer to short-term assays used to evaluate the muta-
genicity of a substance as a surrogate for carcinogenicity. Historically, such
assays screen potential carcinogens to set priorities for other methods of car-
cinogen risk assessment. More recently, several cell lines and animal strains
have been developed to assess classes of carcinogens (35). Short-term assays
can shed light on mechanisms and tend to be time-efficient and inexpensive
to perform.

The most widely used in vitro study in cancer risk assessment is the
mutagenicity assay, developed by Bruce Ames and colleagues in 1973 (36).
The Ames test involves testing a substances’ ability to mutate a strain of
Salmonella typhimurium. This strain is a mutant form that is deficient in
DNA repair, and in its ability to synthesize the amino acid histidine. As a
result, the bacteria cannot grow in culture media that lacks histidine. In
the assay, S. typhimurium is treated with several doses of the compound
of interest, plated on histidine deficient medium, and then examined later
for growth. Growth represents a back mutation of the defective gene into
revertants that synthesize histidine and multiply. In humans and mammals,
many chemicals are only activated into mutagens and=or carcinogens after
metabolism in the body. Furthermore, bacteria and mammals differ in the
metabolic capabilities. Therefore, in the Ames test, a mixture of rat liver
enzymes that includes multiple P-450s is used in conjunction with an
NADPH regenerating system. Several lines of Salmonella have been created
for the detection of point and frameshift mutations. Certain carcinogens
cannot be detected by these bacterial assays such as metals, hormonal
agents, and nongenotoxic hazards (35).

A variety of other in vitro tests is available for carcinogen identifica-
tion, including: (1) gene mutation assays, (2) chromosome aberration, and
(3) primary DNA damage assays. The scope of this chapter precludes a
detailed discussion of the specific tests in each of these groups; however,
some of the more common tests for each group are described. Gene muta-
tion assays include the Ames test and the mammalian mouse lymphoma
thymidine kinase assay. Chromosome aberration assays include assays of
specific cell lines, mouse micronuclei, and rat bone marrow cytogenic stu-
dies. Primary DNA breakage assays include examination of animal cell lines
for DNA adducts through 32P postlabelling, assays of DNA strand
breakage, sister chromatid exchange assays, and assays assessing DNA
repair.

The application of short-term assays in occupational risk assessment
has limitations; as a result their use is regarded by some as controversial.
Although most short-term assays for mutagenicity are considered a proxy
for assessing carcinogenicity, a mutagenic substance, per se, is not
necessarily carcinogenic. Although almost half of the known carcinogens
are mutagenic, not all substances that test positive in 2-year in vivo animal
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assays are mutagenic in short-term assays (21). The sensitivity, specificity,
and positive predictive value of many in vitro tests are unclear in their impli-
cations to humans (37,38). Nonetheless, in vitro studies will likely continue
to play a role in the investigation of occupational carcinogens as screening
tests.

6. IN VIVO EXPERIMENTS

In vivo experiments refer to animal bioassays used to test the carcinogenicity
of substances under controlled conditions. Animal bioassays, an essential
component of occupational cancer risk assessment, are particularly effective
in screening suspected carcinogens for which epidemiological studies are not
practical or impossible.

The controlled nature of in vivo assays allows investigators to manip-
ulate experimental conditions to evaluate many biological responses to che-
mical exposures. Standard cancer animal bioassays commonly involve
testing two species of animals, typically rats and mice. Testing of both sexes,
using 50 animals per dose group, and using near-lifetime exposures prior to
assessing cancer endpoints are routine (37). Individual studies usually vary
by the strains of rats and mice selected, and the number and concentration
of doses of the suspected carcinogen administered. Most animal bioassays
involve incidence studies with 2 years of follow-up. The National Cancer
Institute and the National Toxicology Program have established guidelines
for the conduction of animal bioassays for the purposes of evaluating carci-
nogens (35). Dose levels given to animals under study are most often percen-
tages of the maximum tolerated dose (MTD). In addition to the carcinogen
tested in the exposed group, there is frequently a solvent treated control
group and an untreated control group. Exposed animals are subjected to
90, 50, and 10–25% of the MTD, and then sacrificed after 2 years to assess
designated cancer endpoints (35).

Cancer endpoints in animal studies can vary, especially as to how can-
cer (or lack thereof) is defined histopathologically. Carcinogenicity in ani-
mal studies is confirmed by an increase in the number of tumors at a
given site as compared to controls, the induction of atypical tumors, earlier
induction of common tumors, and=or increases in the absolute number of
tumors (37).

Most often, chemicals that consistently cause tumors in animals are
presumed to be human carcinogens, since all known human carcinogens
are carcinogenic when tested in animals (4,37). On the interpretation of ani-
mal carcinogens as applied to humans, IARC states: ‘‘in the absence of ade-
quate data on humans, it is biologically plausible and prudent to regard
agents and mixtures for which there is sufficient evidence of carcinogenicity
in experimental animals as if they presented a carcinogenic risk to humans’’
(37,39). Ideally, the animal bioassays should simulate the exposure pathways
that are applicable to humans.
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The use of animal bioassays to determine human carcinogenicity has
certain limitations, including the extrapolation of high exposures in animal
studies to the lower exposures experienced by people at work (40). Tumors
in animals are often only increased at the highest dose tested, which is often
just below the dose that causes systemic toxicity (41). Furthermore, high
doses of a potential carcinogen may produce entirely different effects than
the lower doses human workers might encounter. High exposure concentra-
tions in animal bioassays may saturate ‘‘detoxification’’ pathways and pro-
duce different effects than those at lower concentrations, when such
pathways are not saturated. A notable example is the particle overload phe-
nomenon associated with inorganic particles and lung cancer in rodents (42).

Interspecies extrapolation is complicated by factors such as the
greater homogeneity of animal species as compared to humans, well-
regulated living conditions including diet of lab animals, and genetic differ-
ences between animals and humans, among others. Rats and mice, for
example, often demonstrate differences in animal bioassays of carcinogens.
Similar results between rats and mice occur only 70% of the time and even
when the results are similar, differences in dose–response relationships are
usually noted between species. Despite the limitations of animal bioassays,
they provide useful information in the assessment of occupational cancer
risk. The vast majority of chemical exposures that are carcinogenic in
animals have not been evaluated in humans. As a result, new methods are
needed to strengthen the scientific basis for extrapolations of animal bioas-
says to human populations. Of increasing importance are methods that
serve to validate risk in animals as predictive of risks in workers (4).

7. REGULATED CARCINOGENS

In the United States, the Occupational Safety and Health Administration
(OSHA), under the U.S. Department of Labor, is the regulatory agency
responsible for enacting standards regarding carcinogens. OSHA recognizes
that in industry there are many potential exposures to carcinogens and that
workplace exposures are generally higher than public settings. OSHA also
maintains that carcinogen exposure at the workplace should be controlled
primarily through the use of engineering and process controls and that per-
sonal protective equipment should only be used as an extension to these
other measures. Specifically, OSHA in its Identification, Classification, and
Regulation of Carcinogens standard establishes criteria and procedures for
the identification, classification, and regulation of potential occupational
carcinogens found in the U.S. workplace (OSHA;1990.101). According to
OSHA, the term carcinogen applies to individual substances, groups of sub-
stances, or combinations or mixtures of substances. In establishing the
criteria and procedures for which substances will be regulated, the agency
relies on an extensive review of the scientific data and opinions of the
National Toxicology Program, NIOSH, and IARC. Substances with OSHA
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standards are classified into two groups as ‘‘carcinogens’’ or ‘‘potential
carcinogens’’ as established by the National Toxicology Program. Such
substances require medical surveillance and=or screening to protect human
health.

OSHA Standard 1910.1003 (4-nitrobiphenyl, etc.) addresses the regu-
lation of 13 carcinogens as listed in Table 2 with regard to their manufactur-
ing, processing, repackaging, releasing, handling, and storage. Under OSHA
standard 1910.1003, medical surveillance shall be established and implemen-
ted for employees considered for assignment in regulated areas of the work-
place where such carcinogens are present. Before an employee can be
assigned to a regulated area, a preassignment physical examination by a
physician shall be provided and include the personal history of the
employee, and the family and occupational background, including genetic
and environmental factors [1910.1003 (g) (1) (i)]. Authorized employees
shall also be provided with periodic physical examinations, no less often
than annually, following the preassignment examination [1910.1003 (g) (1)
(ii)]. In all examinations, the examining physician is required to consider
whether there exist conditions of increased risk, including reduced immuno-
logical competence, those undergoing treatment with steroids or cytotoxic
agents, pregnancy, and cigarette smoking [1910.1003 (g) (1) (iii)].

The scope of this chapter prohibits a detailed discussion of the medical
surveillance and=or screening of the other carcinogens or suspected
carcinogens.

8. CLINICAL ISSUES

The foregoing sections have included a historical overview of occupational
cancer and a discussion of the major methods used today to evaluate

Table 2 Carcinogens Regulated by OSHA Standard 1910.1003

Carcinogen CAS number Related standard CFR

4-Nitrobiphenyl 92933
Alpha-naphthylamine 134327 1910.1004
Methyl chloromethyl ether 107302 1910.1006
3,30-Dichlorobenzidine 91941 1910.1007
Bis-chloromethyl ether 542881 1910.1008
Beta-naphthylamine 91598 1910.1009
Benzidine 92875 1910.1010
4-Aminodiphenyl 92671 1910.1011
Ethyleneimine 151564 1910.1012
Beta-propiolactone 57578 1910.1013
2-Acetylaminofluorene 53963 1910.1014
4-Dimethylaminoazobenzene 60117 1910.1015
N-Nitrosodimethylamine 62759 1910.1016
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substances and work processes regarding risk for causing cancer. This sec-
tion is designed for the clinician asked to make recommendations for the
prevention and diagnosis of cancers related to work. Guidance is also pro-
vided on determining whether a particular cancer may be related to work.
Clinicians can participate in programs designed for the prevention of occu-
pational cancer and in monitoring workers potentially exposed to carcino-
genic substances and processes. Formulating a diagnosis and evaluating
potential occupational causal connections may also be necessary.

Prevention of occupational cancer requires not only a firm understand-
ing of agents that can cause malignancies but also an awareness of the cri-
tical importance of exposure control methods. Ideally, one should strive to
reduce exposure to carcinogens as much as feasible. Carcinogens tend to fol-
low a straightforward dose–response pattern, in that higher exposures (both
in concentration and duration) tend to be associated with the highest risk.
From a public policy perspective, however, control of occupational cancer
has focused on eliminating exposure to agents that can cause cancer. Future
preventive methods are likely to address genetic risk factors such as
polymorphisms that predict people at higher risk of developing cancer
(Table 3). Work resulting from the human genome project may prove bene-
ficially for identifying people at particularly high risk of developing all sorts
of illnesses, including cancer. In turn, considerations of privacy, discrimina-
tion, and other ethical challenges will surface. At the time of the preparation
of this chapter, the use of genetic screening to predict those at risk of
occupational cancer is not routinely used outside of research settings. At this
time, the prevention of occupational cancer rests not only on the recognition

Table 3 Cancer Susceptibility Genes

Gene Metabolic pathway Cancer sites

GSTM1 Conjugation of organic
epoxides with reduced
glutathione

Lung, bladder, colon, stomach,
breast, liver

CYP2S6 Hydroxylation of lipoophilic
xenobiotics, possibly NNK

Lung, bladder, breast

NAT2 N-acetylation of arylamines
and N-hydroxylated
heterocyclicaryl amines

Bladder, lung, colorectal,
breast

CA1A1 Metabolism of polycyclic
aromatic hydrocarbons,
TCDD, and estrogens

Lung, stomach, colon, breast

CYP2E1 Oxidation of N-nitrosamines,
alcohol

Lung, bladder, colon

Source: Adapted from Garte SJ. Environmental carcinogenesis. In: Rom WN, ed. Environmen-

tal and Occupational Medicine. Philadelphia: Lippincott-Raven, 1998.
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of potential hazards, but also and more importantly on their corresponding
control.

Clinicians may also monitor people exposed to potential carcinogenic
processes and agents in the course of their work. A variety of standards
established by Occupational Safety Health Administration focus on carcino-
gens and specify monitoring protocols to ensure that work does not cause
early effects of cancer (Table 2). Although valuable research has been
performed on studies that have employed DNA adducts as early indicators
of cancer, their use in clinical settings is not routine. Future efforts of
monitoring workers exposed to carcinogens are likely to include assessments
of early effects on DNA because of the role of genetic mutations in
carcinogenesis.

The diagnosis of occupational cancer is conducted in a manner similar
to the diagnosis of any other of cancer. Occupational illnesses, in general,
are diagnosed and treated the same way as any other type of illness. In fact,
cancer and other illnesses due to work have similar manifestations and prog-
noses, and differ primarily in their cause, not in their diagnosis. Through
the occupational exposure assessment, a refined determination can be
conducted regarding the contribution that work may have played in the
development of the illness.

Determining the contribution that work or a specific agent may have
played in the development of cancer is a complicated exercise. In some cases,
such as an evaluating angiosarcoma in association with vinyl chloride
monomer, the exercise can be straightforward. Similarly, determining the
cause of mesothelioma in an asbestos worker is an uncomplicated challenge.
On the other hand, determining the contribution that work played in the
development of lung cancer in an individual who has a long history of
cigarette smoking and work in chromate plating operations can be a daunt-
ing task. Fundamental principles related to evaluating dose–response
effects, confounders, biological plausibility, latency, and the temporal rela-
tionship between exposure and disease must be considered.

An astute causality assessment considers both human and animal lit-
erature, with particular attention to the epidemiological studies described
earlier in this chapter. Evaluations of animal studies regarding their applic-
ability to humans must be undertaken with great care. Although all human
carcinogens are animal carcinogens, not all animal carcinogens have been
shown to cause cancer in humans. In some animal studies, exposure to
the agent under study is often extraordinarily higher than can conceivable
be anticipated to occur in humans.

In evaluating the contribution that work may have played in the devel-
opment of any cancer, a firm review of major epidemiological studies, espe-
cially those that controlled for confounding factors, is essential. Limitations
of the studies such as selection bias and dose–response assessments should
also be addressed. Ultimately, judgment based on a review of the literature
and the individual’s medical and occupational history is required.
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9. FUTURE EFFORTS

The National Cancer Institute’s Occupational Epidemiology (OE) Branch
(43) is currently conducting extensive research in occupational cancer risk
assessment and prevention. Specifically, the OE Branch conducts studies
to identify groups at high risk of cancer. This goal is accomplished through
the execution of case–control and cohort studies to identify occupational
and environmental exposures that are carcinogenic as well as conducting
interdisciplinary studies using biomarkers, environmental measurements,
and genetic susceptibility. The epidemiology branch also performs methodo-
logical studies to evaluate the reliability and validity of occupational and
environmental assessment methods and techniques.

Current work of the branch includes research in agriculture, pesticide
applicators, and farming. New research examining chronic diseases such as
cancer among migrant and seasonal farm workers is also underway. In
women’s health, several studies are examining the role of occupational fac-
tors in the origin of breast cancer. The NCI is conducting a case–control
study of breast cancer and benign breast disease in Michigan, in relation
to exposure to polybrominated biphenyls. Case–control studies are in place
to evaluate the hypothesized relationship between DDT and risk of breast
cancer.

The NCI and NIOSH are currently conducting a number of studies
examining cancer and the use of organic solvents and other industrial che-
micals. A large retrospective cohort mortality and nested case–control study
is underway investigating the risk of lung cancer in relation to quantitative
measures of exposure to diesel exhaust among miners. In China, a cohort of
approximately 75,000 benzene-exposed workers is being compared to 35,000
unexposed workers in order to obtain exposure–response and biological
data. Studies are also underway examining the risk of lung cancer among
workers employed in the production of acrylonitrile and among dry cleaners
to evaluate the cancer risk of exposure to perchloroethylene and other
petroleum solvents.

APPENDIX

International Agency for Research on Cancer (IARC)�

In 1969, the International Agency for Research on Cancer (IARC) began its
program to formally evaluate carcinogenic risks of chemicals to humans and
to produce monographs outlining the identification of individual hazards
and work processes. Subsequently, the monograph program has expanded
to consider human exposures to mixtures of chemicals, certain occupations,

�
IARC web site; October 3, 2000.
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radiation, viruses, and medications. Criteria for the determination of carci-
nogenic risk that were first established in 1971 have subsequently been
updated by the agency (IARC, 1977, 1978, 1979, 1982, 1983, 1987b,
1991a; Vainio et al., 1992).

The objective of the IARCMonograph Program is to provide national
and international authorities and agencies with scientific and qualitative
information on the evidence for or against carcinogenicity for the purposes
of cancer risk assessments and in formulating decisions regarding cancer
prevention. Regulations and exposure limits are delegated to individual gov-
ernments, international organizations, or other agencies.

The monographs include biological and epidemiological data pub-
lished in openly available scientific literature. IARC also considers govern-
ment reports if they have been peer reviewed. In making cancer risk
determinations, IARC working groups rely principally on cohort, case–
control, and correlation studies (ecological) studies but they also consider
randomized trial data when available and on rare occasion consider results
from case series and case reports of cancer in humans. IARC pays particular
attention to the quality of studies, taking into account the possibility of bias,
chance, confounding, and inferences about mechanism of action.

IARC also examines studies of cancer in experimental animals. This
task is based on the fact that all known human carcinogens that have been
studied adequately in experimental animals have produced positive results in
one or more animal species. (Wilbourn et al., 1986; Tomatis et al., 1989).
IARC recognizes, however, that not all agents and mixtures that cause
cancer in experimental animals cause cancer in humans. Nonetheless, in
the absence of adequate data on humans, it is biologically plausible and pru-
dent to consider agents and mixtures for which there is sufficient evidence of
carcinogenicity and experimental animals as if they presented a carcinogenic
risk to humans. IARC, in examining studies of cancer in experimental
animals, considers numerous qualitative and quantitative aspects of such
studies.

Once an overall valuation of the carcinogenicity to humans of the
agent, mixture, or circumstance of exposure has been completed, IARC
assigns the agent, mixture, and exposure circumstance to a designated
group. The group designation ‘‘is a matter of scientific judgment, reflecting
the strength of the evidence derived from studies in humans and experimen-
tal animals and from other relevant data.’’ IARC assigns an agent, mixture,
or circumstance of exposure to Group 1, Group 2A, Group 2B, Group 3, or
Group 4 under the criteria outlined below.

� Group 1: The agent (mixture) is carcinogenic to humans. The exposure cir-
cumstance entails exposures that are carcinogenic to humans. This cate-
gory is used when there is sufficient evidence of carcinogenicity in
humans. Exceptionally, an agent (mixture) may be placed in this category
when evidence of carcinogenicity in humans is less than sufficient but there
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is sufficient evidence of carcinogenicity in experimental animals and strong
evidence in exposed humans that the agent (mixture) acts through a rele-
vant mechanism of carcinogenicity.

� Group 2: This category includes agents, mixtures and exposure circum-
stances for which, at one extreme, the degree of evidence of carcinogenicity
in humans is almost sufficient, as well as those for which, at the other
extreme, there are no human data but for which there is evidence of carci-
nogenicity in experimental animals. Agents, mixtures and exposure circum-
stances are assigned to either group 2A (probably carcinogenic to humans)
or group 2B (possibly carcinogenic to humans) on the basis of epidemiolo-
gical and experimental evidence of carcinogenicity and other relevant data.

� Group 2A: The agent (mixture) is probably carcinogenic to humans. The
exposure circumstance entails exposures that are probably carcinogenic
to humans. This category is used when there is limited evidence of carcino-
genicity in humans and sufficient evidence of carcinogenicity in experimen-
tal animals. In some cases, an agent (mixture) may be classified in this
category when there is inadequate evidence of carcinogenicity in humans
and sufficient evidence of carcinogenicity in experimental animals and
strong evidence that the carcinogenesis is mediated by a mechanism that
also operates in humans. Exceptionally, an agent, mixture or exposure cir-
cumstance may be classified in this category solely on the basis of limited
evidence of carcinogenicity in humans.

� Group 2B: The agent (mixture) is possibly carcinogenic to humans. The
exposure circumstance entails exposures that are possibly carcinogenic to
humans. This category is used for agents, mixtures and exposure circum-
stances for which there is limited evidence of carcinogenicity in humans
and less than sufficient evidence of carcinogenicity in experimental ani-
mals. It may also be used when there is inadequate evidence of carcinogeni-
city in humans but there is sufficient evidence of carcinogenicity in
experimental animals. In some instances, an agent, mixture or exposure cir-
cumstance for which there is inadequate evidence of carcinogenicity in
humans but limited evidence of carcinogenicity in experimental animals
together with supporting evidence from other relevant data may be placed
in this group.

� Group 3: The agent (mixture or exposure circumstance) is not classifiable
as to its carcinogenicity to humans. This category is used most commonly
for agents, mixtures and exposure circumstances for which the evidence of
carcinogenicity is inadequate in humans and inadequate or limited in
experimental animals. Exceptionally, agents (mixtures) for which the evi-
dence of carcinogenicity is inadequate in humans but sufficient in experi-
mental animals may be placed in this category when there is strong
evidence that the mechanism of carcinogenicity in experimental animals
does not operate in humans. Agents, mixtures and exposure circumstances
that do not fall into any other group are also placed in this category.

� Group 4: The agent (mixture) is probably not carcinogenic to humans.
This category is used for agents or mixtures for which there is evidence sug-
gesting lack of carcinogenicity in humans and in experimental animals. In
some instances, agents or mixtures for which there is inadequate evidence
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of carcinogenicity in humans but evidence suggesting lack of carcinogeni-
city in experimental animals, consistently and— strongly supported by a
broad range of other relevant data, may be classified in this group
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1. BACKGROUND

Accurate assessment of exposure to occupational and environmental risk
factors is needed to ensure that epidemiological studies meet their objectives
in investigating the exposure–disease relationship. The basic principle of
exposure assessment for epidemiological studies is to identify the determi-
nants of exposure variability within the study population and to classify
study subjects accurately with respect to their level of exposure to the risk
factor of interest. In the last 20 years or so, the quantification of exposure
to occupational and environmental risk factors in the evaluation of dose–
response relationships has been improved significantly in various epidemio-
logical studies, including cohort follow-up, case–control and cross-sectional
epidemiological studies. In this chapter, improvements in quantifying expo-
sure to occupational and environmental risk factors, starting from very
crude assessment by occupation or industries to detailed subject-specific
biological effective dose, are presented. In addition, exposure related meth-
odological issues, such as effects of misclassification of exposure on risk esti-
mates, selection of appropriate exposure indices in the evaluation of
exposure–disease relationship, and issues that need to be considered when
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an epidemiological study is used in risk management or a standard setting,
are also covered in this chapter.

2. EXPOSURE ASSESSMENT METHODS USED
IN EPIDEMIOLOGICAL STUDIES

2.1. Exposure Assessment by Occupation and Industry Title

In early occupational epidemiological studies on chronic diseases, job or
industry titles have been used as surrogates of exposure to occupational risk
factors, assuming that every study subject with the same job or industry title
has the same level of exposure to all the risk factors in that occupation or
industry. Epidemiological analyses usually have been carried out by evalu-
ating the risk of disease in either a single or a group of occupations [e.g.,
leukemia among farmers (1,2) or bladder cancer among truck drivers
(3,4)], or industries [e.g., liver cancer in the paint manufacturing industry
(5,6), and in some cases occupation=industry combinations (7)]. This
approach is still being used particularly in cross-sectional surveillance and
case–control studies for hypothesis generating and screening purposes (8–
12). For example, a death certificate-based mortality study from 24 states
of the United States showed excess risk of prostate cancer among power
plant operators and stationary engineers, brick masons, machinery mainte-
nance workers, airplane pilots, longshoreman, and railroad industry
workers (12). In this crude assessment approach, the variability of exposure
among different work places, departments, and study subjects has been
ignored and this omission caused a great deal of exposure misclassification
in the evaluation of associations between exposures and diseases. Although
these type of associations do not give us direct information on specific expo-
sures and may suffer from potential exposure misclassification due to the
neglected variability, they still provide us with some clues about potential
risk factors. For example, based on associations between various occupa-
tions and prostate cancer risk observed in the above study (12), the authors
suggested that polycyclic aromatic hydrocarbons (PAHs) may play an
etiological role in prostate cancer risk. Evaluation of cancer risk by occupa-
tion or industry may not be an appropriate approach to hypothesis testing
studies, but they may be very useful for screening or hypothesis generating
studies.

2.2. Exposure Assessment by Application of Job
Exposure Matrices

Job exposure matrices (JEMs) are designed to assign a priori exposure levels
for study subjects based on their job and industry titles obtained from their
work histories in case–control and surveillance studies. In applications of
JEMs to occupational epidemiological studies, job and industry titles are
coded using one of the standard occupational and industrial coding
schemes, such as Standardized Occupational Classification codes (SOC)
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and Standardized Industrial Classification codes (SOC) or Census
Occupational and Industrial Coding Schemes. Then, a priori exposure
levels are merged with those job and industry titles using the same standar-
dized coding scheme. In earlier applications of JEMs, exposure levels have
been usually assigned directly on job title=industry combinations and they
were limited to the specific study and were not applicable for other studies
(13–16). However, in recent JEM applications (17,18), assignments of
exposure levels have been carried out separately for job titles and indus-
tries and then integrated to specific occupation=industry combinations
using an algorithm (19) to be applicable to any data set having work
histories with the same coding scheme. The new JEMs are generic, can
be applied to any occupational study, and have assignments of exposure
levels (i.e., level of intensity), exposure probabilities (i.e., likelihood of
occurrence of exposure), confidence in the assignments (i.e., accuracy of
the estimates), and source indicators (i.e., whether the origin of exposure
is based on the occupation or the industry). Some of these generic JEMs,
such as the one for solvents and chlorinated aliphatic hydrocarbons, also
have decade indicators that determine the existence of exposure by decades
since 1920 (17). Although JEMs provide us with semiquantitative evalua-
tions, assessing exposure by JEMs is a very practical approach in the
evaluation of dose–response relationships. For example, JEMs for methy-
lene chloride and other aliphatic chlorinated hydrocarbons have been
applied in a case–control study of astrocytic brain cancer (20). Three new fea-
tures (i.e., probability of exposure, more specific five-digit occupational and
industrial codes, and changes in exposure status over decades) have been
introduced to reduce the misclassification of exposure (17). Risk estimates
with and without these features in the assessment of exposure to methylene
chloride were compared. The introduction of each feature had a striking
effect on the estimate of risk, from OR¼ 1.5 with intensity only and without
any of these new features, to 2.5 with the high probability feature, to 4.2 with
high probability and more specific occupational coding features, and to 6.1
with all three features, suggesting that the degree of exposure misclassifica-
tion was significantly reduced by the introduction of these three features into
these new job exposure matrices (21).

Another application of JEMs has been carried out recently in a renal
cell cancer; case–control study in Minnesota (22). In earlier studies, organic
solvents have been associated with renal cell cancer, however, the risk by
gender and type of solvents was unclear (23–26). A priori JEMs for all
organic solvents combined, all chlorinated aliphatic hydrocarbons com-
bined, and nine individual chlorinated aliphatic hydrocarbons were devel-
oped to evaluate the risk of renal cell carcinoma among men and women
in a population-based case–control study in Minnesota, USA. Work his-
tories were collected for 438 renal cell cancer cases (273 men and 165
women) and 687 controls (462 men and 225 women) through a self-adminis-
tered interview. Overall, 34% of male cases and 21% of female cases were
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exposed to organic solvents in general. Both intensity level and probability
of exposure to these chlorinated hydrocarbons were assigned using JEMs
similar to those used in the earlier study (17,18). The risk of renal cell
carcinoma was significantly elevated among women exposed to all organic
solvents combined [odds ratio (OR)¼ 2.3; 95% CI ¼ 1.3–4.2)], to chlorinated
aliphatic hydrocarbons combined (OR ¼ 2.1; 95% CI¼ 1.1–3.9), and to
trichloroethylene (TCE) (OR¼ 2.0; 95% CI¼ 1.0–4.0). In the case of men,
no significant excess risk was observed among men exposed to any of these
nine individual chlorinated aliphatic hydrocarbons, all chlorinated aliphatic
hydrocarbons combined, or all organic solvents combined. These observed
gender differences in the risk of renal cell carcinoma in relation to exposure
to organic solvents may be explained by the differences in body fat contents
(27), the metabolic activity (28,29), the rate of elimination of xenobiotics
from the body (27), or the differences in the level of exposure between men
and women, even though they have the same job title (30–32).

Job exposure matrices are very useful tools for investigations of an
occupational or environmental agent and cancer risk. They provide us with
an opportunity to group several occupations and industries by common
exposures. However, they have some limitations compared to the workplace
or subject-specific exposure evaluation. For example, even though JEMs
consider the exposure variability for a given job title in various industrial
classifications, they do not provide us with a variability of information
among different workplaces. They still assume that the level of exposure
for the same job title=industry combination is the same regardless of the
variability among different workplaces in the same industry, which we know,
from most of the previous studies, is not the case (33–36). Even though some
JEMs have information on the time-dependent exposure variability (17), they
are still not as accurate as the workplace-=calendar time-specific exposure
assessment, which is usually used in cohort or nested case-control studies.
Job exposure matrices also have a potential for exposure misclassification
by ignoring the variability of exposure among study subjects who held the
same job title=industry combination and assuming that every worker with
the same job title=industry combination has the same level of exposure,
whereas earlier studies show significant variability among subjects and even
within subjects (37,38). If that level of quantification is needed, as in some risk
assessment studies, then either work place=department=job title=calendar
year- or subject-specific exposure assessment approaches would be preferable.

2.3. Exposure Assessment by the Facility=Department=Job
Title=Calendar Year Approach

In most occupational cohort studies, work histories and historical exposure
information are collected from written records existing in the workplace. In
contrast to case-control and cross-sectional surveillance studies, cohort
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studies usually have facility-specific exposure information that allows the
exposure assessor to consider the variability of exposure for the same job
titles in different workplaces, and even in different departments within the
same facility. In this approach, jobs in work histories are usually categorized
in facility=department=job title combinations using the study-specific occu-
pational coding schemes. Historical exposure information is collected for
each standardized facility=department=job title combination, starting from
the beginning of cohort enrollment. For example, a study has been
conducted to develop an exposure assessment method to be used in a cohort
follow-up study of workers exposed to benzene (34). Assessment of exposure
to benzene was carried out in 672 factories in 12 Chinese cities. Historical
exposure data were collected for 3179 unique facility=department=job title
combinations over seven time periods between 1949 and 1987. A total of
18,435 exposure estimates was developed for 75,000 benzene exposed sub-
jects, using all available historical information, including 8477 monitoring
data, work activities, amount of benzene use, control measures in the
departments, and personal protective equipment use. Levels of exposure
for each combination are then merged with subject-specific work histories
to calculate various exposure indices, such as cumulative exposure, life-time
average exposure, or peak exposures. Overall, 38% of the estimates were
based on benzene monitoring data. The highest time-weighted average expo-
sures occurred in the rubber industry (30.7 ppm), particularly for rubber
glue applicators (52.6 ppm) (34).

n the follow-up study, because of its recognized link with benzene
exposure, the association between a clinical diagnosis of benzene poisoning
(hematotoxicity) and benzene exposure was evaluated (412 cases and
614,509 person-years) to validate the exposure assessment method (39).
Relative risks of benzene hematotoxicity increased very sharply with
increasing estimated intensity of benzene exposure. Odds ratios were 1.0,
2.2, 4.7, and 7.2 for the intensity levels of <5, 5–19, 20–39, and 40þ ppm,
respectively (Table 1). This sharp trend between benzene hematotoxicity
and estimated exposure to benzene indicated that the consideration of
variability of exposure among facilities and departments provides us with
an important tool in reducing misclassification of exposure.

Table 1 Odds Ratios for Benzene Poisoning by Duration and Intensity of Benzene

Exposure years < 5 years 5–9 years 10–19 years 20þ years

Duration of
exposure

1.0a (—) 1.3 (1.0–1.8)b 1.6 (1.2–2.1) 2.7 (1.9–3.9)

Concentration <5 ppm 5–19 ppm 20–39 ppm 40þ ppm
Intensity of

exposure
1.0a (—) 2.2 (1.7–2.9)b 4.7 (3.4–6.5) 7.2 (5.3–9.8)
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Another facility-specific exposure assessment procedure has been car-
ried out among workers exposed to acrylonitrile (40). The study comprised
over 25,000 workers in eight monomer, fiber, and resin companies from
1952 to 1983. Multiple visits to the companies were made and over 100 inter-
views of workers with more than 10 years of employment were conducted at
the companies. Historical records, including data on over 18,000 measure-
ments taken by the companies since 1977 and over 400 measurements, were
collected by the study investigators. Three thousand six hundred exposure
groups were formed from 127,000 job entries noted in personnel records,
based on similar tasks, locations, and other exposures, and a similar distri-
bution of exposures to acrylonitrile. Special procedures were used to reduce
the exposure misclassification that may occur with maintenance workers,
engineers, and other workers who may perform specialized tasks that vary
in time and are not adequately reflected by a job title. Names of workers
in these jobs were sent to the companies and unions to quantify the time
each worker spent in acrylonitrile areas. A software program developed
specifically for this study (Job Exposure Profiles), was used to organize
and retain all the information available by exposure group. Quantitative
estimates of acrylonitrile exposure were developed using a second software
program that documented the derivation of each estimate and facilitated
data review. Four methods were used to estimate exposures in a hierarchical
fashion: arithmetic means; a time-weighting method, which weighted acrylo-
nitrile concentrations in different areas by the time spent in those areas; a
deterministic method that estimated the impact of changes in the workplace
on exposures; and professional judgment. Over 85% of the estimates based
on professional judgment were for jobs in areas without acrylonitrile expo-
sure. Only a qualitative assessment was performed for exposures other than
acrylonitrile. To evaluate the ability of the time-weighting and deterministic
methods to predict actual measurement data, estimates derived from these
two methods were developed independently of the study and compared to
actual measurement data. The estimates from the time-weighting method
underestimated the measurements by 24% and had a standard deviation
relative to the measurement mean of 166%. The estimates from the determi-
nistic method had a positive bias of 1% and a relative standard deviation of
236%. The methodologies developed for this study have pragmatic and
theoretical applications.

Although this approach provides us with a great deal of advancement
in accuracy of assessing exposure to occupational risk factors compared to
previous approaches such as JEMs or the occupational and industrial title
approach, it still has potential misclassification of exposure due to the
assumption that every subject in the same facility=department=job title=
calendar year combination has the same exposure levels, which may not
be a valid assumption based on our previous studies (35,41).
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2.4. Subject-Specific Exposure Assessment

Because of the high exposure variability between workers within the same
job title, subject-specific exposure information can play a significant role in
reducing the potential exposure misclassification by considering the
between-individual variability. One of the efficient ways of collecting sub-
ject-specific exposure information is the administration of the interview to
study subjects. Questions related to the determinants of subject-specific
exposures provide us with a great opportunity to calculate the overall
exposure level for each study subject. For example, a quantitative method
was developed to estimate pesticide exposures in a large cohort study of
over 58,000 pesticide applicators in North Carolina and Iowa (42). An
enrolment questionnaire was administered to applicators to collect basic
time- and intensity-related information on pesticide exposure such as dura-
tion and frequency of application, specific chemicals used, mixing condi-
tion, application methods, and personal protective equipment used. In
addition, a detailed take-home questionnaire was administered to collect
further intensity-related exposure information such as maintenance or
repair of mixing and application equipment, work practices, and personal
hygiene.

Two algorithms were developed to estimate the intensity level of
exposure for applicators, using the responses from the questionnaires and
the information from the literature. The first algorithm was based on the
enrollment questionnaire and included variables of the mixing status
(Mix, with exposure scores ranging from 3 to 9), application method (Appl,
with scores ranging from 1 to 9), status of repairing of mixing and=or appli-
cation equipment (Repair, with score of 2), and personal protective equip-
ment use (PPE, 0.1 to 1.0).

The algorithm based on the enrollment questionnaire

Intensity scoreðISÞ ¼ ðMix þ Appl þ RepairÞ � PPE

The scores assigned to each of these exposure variables were derived
from the published pesticide exposure literature, the Pesticide Handlers
Exposure Database (PHED), and the Environmental protection Agency’s
pilot monitoring survey conducted as part of the AHS.

The second algorithm was based on the take-home questionnaire, and
included additional exposure variables, such as types of enclosed mixing sys-
tem [Enclosed], having a tractor with an enclosed cab and=or charcoal filter
(Cab), status of equipment washed after application (Wash), personal
hygiene (Hyg) (e.g., changing into clean clothes and washing hands or
taking a bath=shower), status of changing clothes after a spill (Spill), and
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frequency of replacing old gloves (Gloves-life).

The algorithm based on the enrollment questionnaire

IS ¼ fðMix � EnclosedÞ þ ðAppl � CabÞ þ Repair

þWashg
�
Hyg� Spill� Gloves-life

The exposure levels associated with these variables were estimated using pri-
marily measurement data from the published pesticide exposure literature
and professional judgments. For each study subject, a pesticide-specific life-
time cumulative exposure level was estimated by merging the intensity scores
calculated from algorithms and the duration and frequency of pesticide use
identified in the questionnaire. Although this approach provides us with an
opportunity to consider the variability among subjects with the same job
titles, it takes into account only the level of external exposure and does
not consider the variability in host factors for subjects with the same level
of external exposure. Due to the differences in genetical susceptibility mar-
kers among study subjects, their biologically effective doses (i.e., the internal
doses that may have an impact on disease development) may be totally dif-
ferent, even though they may have the same external exposure.

2.5. Exposure Assessment by Biologically Effective Dose

The main goal of the exposure assessment for epidemiological studies is to
identify the variability of an exposure in the study population and then clas-
sify study subjects accurately with respect to their variability of exposure. In
traditional exposure assessment approaches, we usually limit ourselves to
dealing with the variability of external risk factors either in their concentra-
tions in the ambient air or their intake into the body without considering the
variability of host factors that determine the amount of the internal dose
from the external exposure. Because our main goal is to reduce the exposure
misclassification in the evaluation of dose–response relationships between
occupational=environmental exposures and cancer risks, there is also a need
to consider the variability of genetical susceptibility factors that eventually
determine the internal dose, the biologically effective dose, or in the case
of evaluating cancer risk, the cancer-causing dose of the external risk fac-
tors. The evaluation of gene–environment interactions has power limitations
when the prevalence of environmental risk factors and=or genetical suscep-
tibility markers is low in the study population and multiple genetical mar-
kers interact with the exposure of interest. Recently, a method for estimating
the biologically effective dose has been developed by integrating levels of
external exposure with the protective ability of genetical susceptibility mar-
kers. In this process, the level of external occupational or environmental
exposure may either be reduced or increased depending on the capacity of
phase I (activation), phase II (detoxification), and DNA repair enzymes.
In this approach, genetical susceptibility markers (e.g., CYP1A1, CYP2E1,
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NAT1, NAT2, GSTM1, GSTT1, or DNA repair capacity) are used as if
they were internal personal protective equipment. For example, low capacity
of activation enzymes (e.g., CYP1A1), and high capacity of detoxification
(e.g., NAT2) and DNA repair enzymes would have higher protective
functions than high capacity of activation enzymes, and low capacity of
detoxification and DNA repair enzymes, which may result in reducing can-
cer-causing doses of xenobiotics. This approach allows us to evaluate rela-
tionships between an unlimited number of genetic susceptibility markers
and the exposure under investigation, without losing power. For example,
in the application of this approach to the effects of interactions between
NAT2, GSTM1, and CYP1A1 genetical polymorphisms and exposure to
smoking on breast cancer risk (43), the smoking status of each study subject
was reclassified based on the protective effects of a wild-type gene against its
mutant type. Subjects with NAT2 wild-type gene had 60% protection from
smoking in the development breast cancer compared to subjects with
mutant NAT2 genotype. Similarly, subjects with wild-type CYP1A1 geno-
type showed 76% protection, while subjects with GSTM1 showed only 6%
protection compared to subjects with mutant genotypes. Depending on
the subject’s genotype status (i.e., wild type or mutant type), we either
reduced or increased the amount of smoking based on the protection factor
of each genotype. After recalculation of the smoking status, the odds ratios
for the high smoking category increased from 1.3 to 2.2, indicating that the
estimated biologically effective dose of cigarette smoking has less misclassi-
fication than the reported amount of cigarette smoking.

3. SELECTION OF THE OPTIMAL INDEX OF EXPOSURE
IN OCCUPATIONAL EPIDEMIOLOGY

A wide variety of exposure indices, ranging from very simple ones (e.g.,
ever=never exposed or duration of exposure) to complex ones (e.g., time-
weighted cumulative exposure or biologically effective dose), have been
developed and are used in occupational epidemiological analyses. They
can be classified into three major categories according to their associations
with disease outcomes. The first group consists of the time-dependent
exposure indices, such as duration of exposure, frequency of exposure,
latency of exposure, and recency of exposure. The second category is the
intensity-dependent exposure indices, such as average intensity, highest
intensity, longest intensity, and peak exposure. The last category is the com-
bination of the first and the second, the time-and-intensity-dependent
indices, such as cumulative exposure, time-weighted cumulative exposure,
intensity by duration, intensity by latency, intensity by recency, cumulative
exposure by latency, cumulative exposure by recency, internal dose, or
biologically effective dose. The selection of the optimum exposure index is
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based on the mechanism of the exposure–disease relationship. An exposure
index may be an optimum one for certain relationships, an acceptable one
for others, or a totally inappropriate one for some other relationships.
For example, duration of benzene exposure would be an acceptable index
for the benzene–lymphoma relationship, but it is an inappropriate index
for the benzene–leukemia relationship. The optimum benzene exposure
index for lymphomas would be cumulative exposure, while for leukemia,
it would be the intensity of benzene exposure. For silicosis, the optimum
silica exposure index would be time-weighted respirable cumulative silica
dust exposure, while the average intensity of respirable silica dust would
be a poor exposure index. Before deciding which index would be optimal,
it is important to know about the characteristics of the metabolism of the
agent of interest, such as the level of metabolic saturation, half-life in the
body, and activity of metabolic enzymes. The other important clue may
come from the epidemiological observations. For example, a cross-tabula-
tion of the risk of the disease by a time-dependent exposure, such as dura-
tion of exposure, and by an intensity-dependent exposure index, such as
average intensity, could give us useful information for the selection of an
optimum exposure index. If both the duration of exposure at various inten-
sity levels and the intensity of exposure at various duration levels do not
show associations with the disease risk, then it is unlikely that cumulative
exposure would be an optimum index for that association. Because the role
of exposure in the disease process is the key factor for the selection of the
optimum exposure index, and because the biologically effective does
requires an understanding of the mechanism, it is recommended to consider
the use of either of these indices as a potential optimal index of exposure in
the evaluation of an exposure–disease relationship.

4. RECOMMENDATION TO EXPOSURE ASSESSORS TO
MINIMIZE THE EFFECTS OF EXPOSURE
MISCLASSIFICATION ON RISK ESTIMATES

Misclassification of exposure can severely affect estimates of disease risks,
and even in some extreme situations, cause misleading interpretations about
exposure–disease associations. Although several studies have evaluated the
effects of misclassification on risk estimates (44–48), no recommendation
to exposure assessors is available to reduce these adverse effects of misclas-
sification of exposure. There are four major determinants of exposure
misclassification which are usually observed in epidemiological studies.
These determinants are: (1) the size of the true risk, (2) the amount of mis-
classification, (3) the exposure prevalence of the true distribution, and (4)
the direction of misclassification. For cohort-type distributions, where
the exposure prevalence is high, extreme distortions are observed when
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misclassification occurred from the exposed categories to the unexposed
category (49). Little effect is observed when the misclassification occurred
from the unexposed to the exposed categories. For the type of distributions
seen in case–control studies, where the exposure prevalence is low, greater
effects are observed when misclassification occurred from the unexposed
category to the exposed categories, while little effect was observed when
the misclassification occurred from the unexposed category to the exposed
ones or occurred between the exposed categories.

5. ISSUES TO BE CONSIDERED IN USING RETROSPECTIVE
EPIDEMIOLOGICAL STUDIES FOR RISK ASSESSMENT

The majority of established occupational and environmental exposure limits
(e.g., TLV, MAK, PEL, PDK, REL, or BEI) are based on available infor-
mation from industrial or environmental experiences; from experimental
human and animal studies; and, when possible, from a combination of
the two. Although, the use of information from retrospective epidemiologi-
cal studies for the development of exposure limits has been limited in the
past, there has been a growing interest in the use of these studies among
the institutions responsible for the occupational and environmental regula-
tions. Exposure limits are defined as airborne concentrations of substances
to which nearly all workers or general population may be exposed on a daily
basis without adverse health effects. There are various issues that need to be
taken into account when data from retrospective epidemiological studies are
used by regulatory institutions to develop these exposure limits:

1. Selection of an appropriate exposure index: Almost all exposure
limits represent an ‘‘intensity of exposure’’ (in ppm, mg=M3, or
fiber=cc, etc.). However, epidemiological studies use a variety of
exposure indices, such as duration of exposure, intensity of
exposure, or cumulative exposure, in the evaluation of the expo-
sure–disease relationship. The optimum index depends on the
mechanism by which the exposure affects the disease. For some
exposure–disease relationships, intensity of exposure is the best
index, while for others, duration of exposure or lifetime cumula-
tive exposure may be more appropriate. Use of an inappropriate
exposure index may result in the development of unrealistic expo-
sure limits.

2. Mechanistic considerations: The mechanisms underlying the expo-
sure–disease relationships need to be taken into account when
interpreting epidemiological studies. For example, if there are
saturation effects at a certain concentration level, extrapolating
risk estimates from high doses to low doses may lead to an under-
estimate of true risk at low-level exposures. Similarly, if there is a
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threshold effect in the relationship, extrapolating risk from high
to low doses may lead to an overestimate of risk at low levels.
There has been some concern about the relevance of risk estimates
obtained at very high exposure levels. For example, the validity of
the linear extrapolation of risk from high to lower doses has been
questioned, with the argument that at low exposure levels, risk
might be overestimated if there is a threshold level in the dose–
response relationship (50). However, it was also argued that,
linear extrapolation from high to low doses might actually under-
estimate risk in some circumstances (51). Indeed, it has been
showed that metabolic saturations exist for some chemicals, and
calculated distortion from linearity for benzene, tetrachloroethy-
lene, and trichloroethylene starts at levels of 63, 22, and 178mg=m3,
respectively, indicating that the risks of solvent-related outcomes
do not necessarily rise linearly with increasing dose above the
saturation point (52). Because of metabolic saturation at high
levels of exposure, the actual risk at such exposures would
be below the dose–response line, and linear extrapolation of
risk from high to low doses could underestimate the risk at low
levels (53).

3. Estimating effective durations and doses: In most exposure–disease
relationships, we do not know the exact time at which the expo-
sure of interest induces the disease. Therefore, it may be quite dif-
ficult to estimate the effective duration of exposure and effective
dose that has induced the disease in an epidemiological study.
For example, a disease might be initiated in the early stage of expo-
sure and the remaining duration of exposure may not be relevant
for the disease development, or the disease might be initiated in the
later stage of the exposure duration, and at that time, effective
duration should be calculated from the beginning of the exposure.

4. Absoluteness of the quantitative estimates: In most retrospective
occupational epidemiological studies, quantitative assessments
of exposures are based on a few historical measurements for a
few job titles. Because of this limitation, exposure assessors often
extrapolate or interpolate from the available exposure informa-
tion to estimate the quantitative level of exposure. Even though
these estimates may be quite accurate on a relative scale, they
may not be accurate on an absolute scale. This may not be an
important issue for etiological studies, but it may be crucial when
the studies are used as a basis for developing exposure limits.
Carefully designed prospective epidemiological studies may solve
most of the issues associated with retrospective epidemiological
studies.
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1. INTRODUCTION

In the 1960s, the first Surgeon General’s Report (1) clearly demonstrated
that lung cancer was caused by smoking. Since then, we have recognized
that smoking contributes to many other cancers, such as leukemia, bladder,
oral cavity, and cervical cancers. Tobacco smoke contains more than 100
carcinogens and mutagens, many of which are classified as carcinogens
based on human and animal studies. The effect on people has been obvious.
Before the widespread use of cigarettes in this century, lung cancer was a
rare illness. Over the last 40 years, the type of cigarettes most frequently
used has been changing, namely the increased use of low-tar and low-nico-
tine yield cigarettes. While initially thought to confer some decreased risk
compared with higher-tar cigarettes, a benefit has not been realized. The
use of low-tar and low-nicotine yield cigarettes has been paradoxically
accompanied by an increased risk of lung cancer due to increased tobacco
use and exposure to cigarette yields with higher mutagen and carcinogen
content. This higher consumption has been due to a smoker’s need to main-
tain blood nicotine levels, which in turn causes the need for smoking more
cigarettes per day and deeper inhalation. This phenomenon has led to the
increasing rates of lung adenocarcinoma, compared to squamous cell carci-
noma. It also probably explains, in part, the greater risk of lung cancer in
women compared to men (in addition to some biological differences).
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The study of tobacco-related cancer involves many types of biomarkers,
including those that measure exposure, the biologically effective dose, and
harm. Genetic susceptibilities for smoking behavior, carcinogen metabo-
lism, DNA repair, and others likely also play a large role in cancer risk.

Alcoholic beverages clearly increase the risk of oral cavity, liver, eso-
phageal, breast, and other cancers. However, the actual mechanisms that
alcohol drinking contributes to carcinogenesis have not been well defined.
It is clear that ethanol has mutagenic metabolites, that free radicals are gen-
erated during ethanol metabolism, that there is an interaction and under-
utilization with vitamins (e.g., folic acid), and that there is an effect on
steroid hormones. Also, various alcoholic beverages contain contaminants
that might contribute to cancer risk, such as urethane in wines and n-nitro-
samines in beer. The increased risk from alcohol drinking must be weighed
against the reduction in mortality and heart disease risk from lower levels of
drinking. Thus, there are data to indicate that taking one drink per day con-
fers some benefit, but taking more than that might be offset by increased
cancer risks. How this risk changes by genetic susceptibilities is unknown.
But, some people might get more benefits, and some might be more easily
harmed, from alcohol use.

2. TOBACCO

2.1. Tobacco Mutagens and Carcinogens

Theuseof tobaccoproducts, as theyare intended tobeused, results in the expo-
sure to more than 100 mutagens and carcinogens (2,3). A partial list of these
constituents is provided in Table 1. It is thought that tobacco-specific nitrosa-
mines (TSNs) and polycyclic aromatic hydrocarbons (PAHs) are classes of
compounds that most affect human cancer risk (4). Tobacco and tobacco pro-
ducts have changed over time, with resultant differences in predicted exposure
using the Federal Trade Commission (FTC) method for the measurement of
‘‘tar’’ and ‘‘nicotine’’ (2). It is known that the FTC method for estimating tar
exposure provides substantial underestimates of actual human exposure
because it does not sufficiently mimic human smoking behavior (2).

Prior to the 1950s, most manufactured cigarettes did not have filters,
but now, almost all cigarettes are filtered and fall into the category of low
tar and nicotine (2,5). Tar yield actually has declined since the 1950s, from
about 37mg to less than 15mg (2,5). Because of similar decreases in nico-
tine, and increased quitting among lighter smokers, the actual number of
cigarettes smoked per person has increased (5). The introduction of low-
tar and low-nicotine cigarettes was conceptualized to make cigarettes
‘‘safer,’’ but currently available scientific data suggest that potential benefits
may not be realized for some or most persons, and in fact these products
are probably more dangerous. Many persons who smoke low-tar and
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low-nicotine cigarettes compensate for lower nicotine delivery by smoking
more (6–10). But also, the tar from ‘‘light’’ cigarettes is more mutagenic
and levels of TSNs and benzo(a)pyrene in tobacco smoke can be similar
for low- and high-tar cigarettes when people oversmoke their cigarettes
(11,12).

PAHs are formed from the incomplete pyrolysis of tobacco leaves, and
many types of PAHs are present in tobacco smoke. Parent PAHs can be
detected in human lung tissue (13,14). As a class, they are mutagenic and
carcinogenic in experimental animals (including the lung) and human
(2,15,16). PAHs are metabolically activated in humans through cytochrome
P450 (CYP) 1A1, CYP1B1, and CYP3A4 (17,18). They are conjugated for
excretion by glutathione-S-transferases, sulfuronyl transferases, and glucu-
ronyl transferases (19), and the lack of such activity increases mutagenic
potential (20). PAH-related DNA adducts have been demonstrated in
human lung (21), while the presence of hemoglobin and albumen adducts
also show that these compounds circulate in human blood (22,23). In vitro
studies indicate that PAHs can cause the same types of p53 mutations
observed in human tumors (24,25).

N-nitrosamines (26–29) are among the most potent rodent carcinogens
(30). There are some N-nitrosamines that are only found in tobacco smoke
(TSNs). N-nitrosamines cause cancer in more than 40 animal species and
there is target organ specificity, including for TSNs and lung tumors
(30,31). Experimental animal studies show that higher doses of exposure
cause tumors in less time, suggesting that intensity and duration are equally
important (30,32). Mutations in K-Ras have been found in the lung tumors
of experimentally exposed animals. TSNs can transform human bronchial
epithelial cells (33). The same type of adducts that occur from TSNs in
experimental animals also have been detected in humans, including in lung
tissue (34). Different types of tobacco have different TSN yields (29). In
humans, metabolites of TSNs are found in urine (35) and adducts are
detected in blood, so TSNs circulate through the body, including in persons
who are passively exposed (36–38). N-nitrosamines undergo metabolic acti-
vation by human CYPs located in the lung, buccal mucosa, and other tissues
(e.g., CYP2E1 and CYP2A6) (39–41). The metabolic activation of TSNs
and other tobacco N-nitrosamines leads to the formation of DNA adducts
in target tissues associated with specific cancers (32,42–46). Different
tobacco products contain widely differing amounts of TSNs (28), and
changing smoking patterns can result in higher delivery of TSNs (47). For
example, Swedish snuff products contain substantially less TSNs than snuff
sold in the United States. Lower-tar and -nicotine cigarettes result in greater
exposure to TSNs than high-tar and -nicotine cigarettes (2,29).

Both the gaseous and the particulate phases of cigarette smoke contain
free radicals (such as nitric oxides in the gaseous phase) which induce oxida-
tive damage (2,48). Many components of cigarette smoke can individually
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cause oxidative damage (49). While free radicals cause DNA damage in
experimental systems and are suspected to be involved in carcinogenesis
(50), a direct relationship to human carcinogenesis has been suspected but
not proven (51,52). It is difficult to measure free radicals and oxidative
damage in humans from tobacco smoke or any other source (endogenous
or exogenous), because it is impossible to distinguish sources of free radicals
and biomarker methods can artifactually induce oxidative damage (51,53).
Nonetheless, levels are generally higher in leucocytes excreted in the urine
of smokers than in nonsmokers (54,55).

2.2. Biomarkers for Assessing Risks in Humans

Different types of methods for assessing tobacco-related cancer risk in
humans are available. External exposure markers attempt to predict expo-
sure without regard to interindividual differences in smoking behavior
and cellular processes. Biomarker assays can assess internal exposure, the
biologically effective dose, and harm. Biomarkers of exposure represent
an internal dose, of a tobacco smoke or tobacco product constituent that
is either the parent compound or its metabolite (e.g., exhaled carbon mon-
oxide, nicotine boosts, carboxyhemoglobin, urinary TSNs or PAH metabo-
lites, and urine mutagenicity). These markers have been the most extensively
studied of biomarkers, because they better estimate exposure to individual
cigarettes, are technically feasible, and can provide information about
short-term (e.g., from a single cigarette) and long-term exposure.

The biologically effective dose (56) is the amount of tobacco smoke or
tobacco toxin that binds to a macromolecule in a cell. The biologically effec-
tive dose represents the net effect of toxic metabolic activation, lack of
detoxification, lack of repair or control mechanisms, and lack of cell death.
One measure of the biologically effective dose are the carcinogen–DNA
adduct levels. In humans, tobacco smoking leads to increased adduct forma-
tion in target tissues such as the lung (57–59) and in surrogate tissues such as
the blood (58,60,61). Evidence exists that carcinogen–DNA adduct levels in
target and nontarget organs are modulated by genetics (21,62,63–67). In
humans, a link between carcinogen–DNA adducts and tobacco-related
cancer risk has been reported using different study designs (69,68–70).

Biomarkers of harm can range from isolated early changes with or
without effects on function to events that clearly lead to carcinogenesis and
can be observed in cancer cells. Several types of assays are available. Chromo-
somal damage can be measured using classical cytogenetic methods, micronu-
clei formation (71,82), COMET (73,74), fluorescent in situ hybridization,
and PCR methods assessing loss of heterozygosity (using tandem repeats or
comparative genomic hybridization). Mutations in reporter genes, such as
HPRT (75,76) or GPA, have been used, but it is better to identify mutation
rates in cancer susceptibility genes such as p53 (77,78) or K-Ras (77,79–81).
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Biomarkers of harm that reflect later stages of carcinogenesis include
morphological markers of preneoplastic lesions (e.g., dysplasia), altered phe-
notypic expression of normal cellular functions (e.g., overexpression of the
proto-oncogene Erb-B2), and mutations in cancer-related genes, such as
the p53 tumor suppressor gene. It is possible to measure p53 mutation rates
in normal tissues (82–84) of persons without cancer, and to measure muta-
tions in sputum for persons with cancer (85). It also has been found that mea-
suring loss of heterozygosity (86) or hypermethylation of genes involved in
neoplasia (87) might be useful for assessing the effects of tobacco smoke.

2.3. Lung Cancer

In this country, there were about 171,000 newly diagnosed lung cancer cases
in 1999; 92.6% of these are in curable (88). A dose–response relationship for
cigarette smoking and lung cancer is consistently shown in cohort studies of
both men and women (89–91).

Lung cancer consists of four major histological types, namely squa-
mous cell cancer (SCC), small cell lung cancer (SCLC), adenocarcinoma
(AD) and large cell carcinoma (LCC) (90). There has been a shift in the pre-
valence of histology types over time, where AD has been increasing relative
to SCC (90–94). Associations between cigarette smoking and death from
AD vs. SCC in Connecticut increased nearly 17-fold in women and nearly
10-fold in men from 1959 through 1991, while smoking-related lung cancer
risk increased from 4.6 to 19 in men and from 1.5 to 8.1 in women (93). This
is likely due to the use of lower-nicotine cigarettes, increased exposures to
TSNs, and greater depths of inhalation.

Less women tend to smoke than men and consequently there are lower
rates of lung cancer (95) and preneoplastic lesions (96) in women. Lung can-
cer rates have been decreasing for men but not for women (97). Women
more commonly have AD than SCC, even after controlling for smoking
status (98). In a study of 1108 males and 781 females with lung cancer, com-
pared with 1122 male and 948 female controls, women were found to have a
1.2- to 1.7-fold higher risk, which was limited to AD and SCLC, rather than
SCC (99). Other studies have provided similar findings (100–104), although
some have not (91,105). While some might hypothesize that the differences
in cancer risks between men and women are due to differing baseline non-
smoking rates (106), this was found not to be the case using summary sta-
tistics from several large cohort studies (107). An increased risk in women
is also evidenced by data showing that there is a higher risk for lung cancer
in women at similar ages of initiation, and the risks are the same in women
over the age of 25 years compared to men over the age of 20 years (108).
There are several plausible explanations for the increased risk that relate
to the fact that women tend to smoke ‘‘light’’ cigarettes and also that
biological differences might also be a factor. Women more commonly have
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estrogen or progesterone receptors in their lung cancers (109) [one study
found such a high abundance in both males and females that a difference
between the two could not be discerned (110)], or by estrogens that can induce
metabolizing enzymes carcinogen activation. Women have higher levels of
carcinogen–DNA adducts in lung tissues, even though they have the same
or lower levels of smoking (111), which supports the latter hypothesis.
Womenmight also bemore susceptible if they have particular metabolic poly-
morphisms affecting carcinogen detoxification (63,112–115).

The risk of lung cancer in former smokers is less than in current
smokers, as demonstrated by both case–control and prospective studies
(91,105,115).

Heritable susceptibilities can affect tobacco-related cancer risks
(116–118,119). Evidence for familial transmission of risk has been
reported (120,121). Specific genes that have been studied include the gluta-
thione-S-transferase M1 (GSTM1) (118,122–128), CYP1A1 (129,130),
glutathione-S-transferase Pi72, and others (125,131,132). These genetic
polymorphisms, and others, are believed to affect biomarker levels, such
as DNA adducts (21,63,67,133). Also, several biomarker phenotypes repre-
senting carcinogen metabolism and DNA repair also have been shown to
modify the effects of smoking-related risks (134–136).

Environmental tobacco smoke (ETS), also termed passive smoking or
exposure to second-hand smoke, has been estimated to cause 2600–7400
lung cancer deaths per year among nonsmokers in the United States,
according to a review of nine studies of lung cancer mortality (137). The
conclusion that ETS is a cause of lung cancer has been opined by several
reviewers and persons conducting meta-analysis (138–142). Until recently,
it was not possible to show that ETS affects biomarkers of cancer risk
(143). But, improved methodologies now show that ETS-exposed persons
have elevated levels of TSN metabolites in their urine (4). Other studies have
reported an increase in aryl aromatic amine-related adducts (144).

2.4. Oropharyngeal Cancers

Almost all oropharyngeal cancers are SCCs. Their annual incidence is about
40,000 cases, of whom about 12,000 will eventually die from their disease
(145). The major risk factors for oropharyngeal cancers are tobacco (cigar-
ettes and smokeless tobacco products) and alcohol use. There is a dose–
response for both smoking and alcohol use; together the two agents act
synergistically (146–159). Some studies suggest that tobacco consumption
is more likely than alcohol consumption to give rise to precursor lesions
(160,161) and to cancer (149,162). Talamini and coworkers (151) studied
60 nonsmoking drinkers and 32 nondrinking smokers and compared them
to controls. Depending on the amount of drinks per week, the OR reached
5.3 (95% CI¼ 1.1–24.8) in the nonsmokers and 7.2 (95% CI¼ 1.1–46) in the
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smokers. Three published studies indicate that there is an increased risk for
women compared to men, especially at the highest levels of smoking
(147,152,156).

Cessation of smoking decreases the risk of oropharyngeal cancers
(159). In one study, cancer of the larynx was found to be markedly less likely
among ex-smokers than among current cigarette smokers (1).

Smokeless tobacco is consumed in a variety of different ways in vari-
ous cultures around the world. Examples of smokeless tobacco products
include chewing tobacco, dry snuff (used in the nasal cavity), wet snuff
(a moist wad of tobacco, usually placed between the lips and gums), and
nass (a mixture of tobacco, lime, ash, and cotton oil), with many local vari-
ations in Asia and Africa. Large geographical differences in the prevalence
of smokeless tobacco consumption are evident, with particularly high con-
sumption in Scandinavia (where a popular form of snuff is known as snus),
India, southeastern Asia, Sudan, and parts of the United States. Smokeless
tobacco products from these different regions are produced differently and
have different levels of carcinogens (163–165). Smokeless tobacco products
are associated with cancers of the head and neck, depending on the type of
tobacco used (166–172). In some of these studies it is difficult to separate the
effects of chewing tobacco from alcohol drinking because of few nondrin-
kers. In the United States, Winn and coworkers (170) reported a 4.2-fold
increased risk (95% CI¼ 2.6–6.7) in Southern white women who exclusively
use snuff. In contrast, an analysis of the relationship between smokeless
tobacco and cancer of the oral cavity in the National Mortality Followback
Study did not detect increased risk (173). Evidence for an elevated risk of
nasal cancer in association with the use of snuff was reported in a case–
control study in North Carolina and Virginia (171).

Oropharyngeal tissues clearly have the capacity to metabolically acti-
vate tobacco smoke carcinogens and cause DNA damage (174,175). Several
studies have indicated that there is increased risk of oropharyngeal cancers
in those who have a heritable trait demonstrated by genetical polymor-
phisms, although which markers play the greatest role is not yet known
(122,124,129,176,177), and there is some evidence for a greater effect in
persons with lower levels of smoking (127). In one study, heritable traits
in carcinogen metabolism increased the frequency of p53 mutations (178).
When cultured lymphocytes are exposed to mutagens and the resultant
chromosomal breaks are counted, there is a greater mutagen sensitivity in
cases, especially in smokers (179–182). This trait also predicts the risk of
secondary cancers in persons with oropharyngeal cancers (183).

2.5. Bladder Cancer

Over 53,000 cases of bladder cancer occured in the United States in the year
2000, and approximately 12,000 will eventually die from their disease (145).
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The male to female ratio is about 2.6:1. Many studies have shown
a dose–response effect of smoking on bladder cancer risk, and a decreased
risk with cessation (184–188). Doll and Peto (91) found that among male
British physicians followed for 20 years since an initial survey on smoking
habits the annual age-adjusted rate of bladder cancer deaths was 11 per
100,000 among men who had quit smoking, compared to 9 among nonsmo-
kers and 19 among men who smoked cigarettes exclusively (189). There is a
higher risk with black tobaccos compared with blond tobaccos (184,186,190).

Studies have shown that smoking-related bladder cancer risk increases
with genetical susceptibilities for carcinogen metabolism and detoxification,
mostly for GSTM1 and NAT2 (118,122,126,191–196). Persons with low
activity of CYP3A were associated with higher p53 overexpression (197).
There is only one study that relates adduct levels to bladder cancer risk
(70), but because this was a case–control study, conclusions are limited.
However, in a small group of patients (n¼ 45), adduct levels were not
related to p53 mutations in the tumors, but this was not a prospective study
(198).

2.6. Studies of Nicotine Mutagenicity and Carcinogenicity

Several studies have been conducted to determine if nicotine is genotoxic.
Almost all studies that could be identified failed to find increased genotoxi-
city (199–204), although there are conflicting data about the potential for
nicotine to have mutagenic activity (200,201). Urine from rats exposed to
nicotine was not mutagenic (199). The effects of coculture of nicotine and
known genotoxic substances indicated an increased rate of mutations for
some compounds and a decrease for others (200). Experimental animal
studies using nicotine alone have not found that nicotine is carcinogenic
(205–207), or in offspring of animals treated with nicotine (207). However,
in experimental animals, nicotine can increase the frequency of tumors
induced by other agents such as 7,12-dimethylbenz(a) anthracene
(208), N-nitrosamines (209), and N-[4-(5-nitro-2-furyl)-2-thiazolyl]forma-
mide (210), although there was no effect for other N-nitrosamines (211)
and there was an antitumor effect in some cases (212). Nicotine also is
reported to reduce apoptosis (213).

Long-term studies of persons treated with nicotine replacement ther-
apy are not yet possible because of the short time that such products have
been available. Even though it is possible that nicotine might be increasing
tumor occurrence due to other agents (e.g., a promotional effect), the risk
from cotreatment with nicotine replacement therapy in persons who con-
tinue to smoke is likely to be small compared to continued use of tobacco
products at a higher rate. The amount of nicotine replaced is less than that
available from cigarettes and it does not have the spectrum of carcinogens
present in tobacco products. Human studies have shown that the use of
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nicotine replacement products do not result in the formation of TSNs such
as NNK (214).

3. ALCOHOL DRINKING

Alcohol beverages are known risk factors for several cancers. However, the
etiological mechanism remains obscure. Given that all types of alcoholic
beverages have been associated with cancers, it is reasonable to assume that
ethanol is the carcinogenic agent. However, animal models have not demon-
strated that ethanol causes cancer. Still, there are ways in which ethanol may
cause cancer in humans that can be inferred from experimental animal stu-
dies. It is known that ethanol causes cell damage and inflammation, oxida-
tive damage, mutations via acetaldehyde, pertubations in estrogen
metabolism and response, and alterations in folic acid utilization. Also,
there are contaminants that might have contribute to cancer risk, such as
urethane in wine, and N-nitrosamines in beer.

Ethanol metabolism occurs in the liver, breast, and other tissues
(215–221). Ethanol is initially oxidized to acetaldehyde, which is then
converted to acetate. This first step is catalyzed mostly by alcohol dehydro-
genase (ADH), and to a lesser extent by CYP2E1. ADH is constitutively
expressed, while CYP2E1 is induced with chronic high-level exposure
(222,223). There are seven ADH genes among five classes, although not
all metabolize ethanol. In the last few years, the nomenclature for ADH
has changed (224). Acetaldehyde is mostly catalyzed by aldehyde dehydro-
genase to form acetate (225). This reaction also is catalyzed by oxoreductase
and aldehyde oxidase.

Acetaldehyde is a highly reactive compound, binding protein and DNA
(226–229), and causes DNA cross-linking (230,231), micronuclei (231), aneu-
ploidy (232,233), and chromosomal aberrations (227,231,233–238). The
interaction of acetaldehyde with DNA bases results in different types of
adducts, especially N2-ethyl-20-deoxyguanosine. Acetaldehyde also induces
hypoxanthine phosphoribosyl transferase mutations, including large dele-
tions (239), and G!A transitions, also seen in esophageal cancer (240).
The DNA damage caused by acetaldehyde is repaired through nucleotide
excision repair pathways (241). Acetaldehyde toxicity occurs, in part,
through the formation of protein adducts, which are measurable in both
experimental animals and humans (222,242–246). Acetaldehyde is a weak
carcinogen (237,238). DNA repair is inhibited by acetaldehyde in vitro
and in vivo (235,236,247), including the repair of induced double-stranded
breaks (248).

There are several ADH polymorphisms that affect functional activity
(249). There is a polymorphism in ADH1B (ADH2, old nomenclature) that
encodes a high-activity �3 isozyme subunit, which is present only in African
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Americans (250,251). Another polymorphism exists in ADH1C (ADH3, old
nomenclature), where the �2 allele increases ethanol oxidation two fold
(252). For this polymorphism, we found that fast oxidizers have an
increased risk of premenopausal breast and oral cavity cancers (253,254).
While another study of breast cancer did not replicate our positive associa-
tion, it was reported that the high-risk variant was associated with increased
endogenous estrogen levels (255). ADH2 (ADH4, old nomenclature) has a
polymorphism at position �75 of the promoter region that has been shown
to increase the activity two fold (�75A is greater than �75C) (256). There is
a second polymorphism in the ADH2 in exon 7 at position 925 (257). This
results in an Ile to Val substitution at amino acid 308, which decreases pro-
tein stability. While there are several known polymorphisms that have been
identified in CYP2E1, such as in the promoter region, the functional signifi-
cance has not been clearly elucidated (258). However, a common allele in
African Americans, consisting of a 96 bp insertion in the regulatory region,
has been identified that increases activity in drinkers (259,260).

The mitochondria respiratory chain is probably the most important
source of superoxide anions (246), and is clearly affected by alcohol (261).
Superoxide dismutase (SOD) catalyzes the dismutation of superoxide to
hydrogen peroxide and oxygen. Thus, it both clears and creates free radicals
(262,263). Importantly, SOD blocks the formation of free radicals by acet-
aldehyde (264). 17-b-Estradiol-related increases of 8-OH-dG can be inhi-
bited by SOD (265,268).

Mitochondrial DNA (mtDNA) is a target for ethanol-induced oxida-
tive stress (261,267,268), which can affect functions such as apoptosis.
mtDNA mutations are present in about 40% of breast tumors (269–277).
Chronic ethanol exposure in animal models shows a cumulative effect of
oxidative damage and mtDNA strand breaks (261). The cycle of ROS
formation and mtDNA damage can be synergistic and exponential (278).
In the mitochondria, base excision, mismatch, recombination, and OGG1
repair occur (261). Ethanol decreases glutathione peroxidase activity,
which increases mitochondrial structural and functional disturbances
(246,261,279,280).

3.1. Liver Cancer

Almost all liver cancer (80%) is associated with cirrhosis (281,282). Even in
noncirrhotic liver cancers, the risk factors are typically the same. Ethanol
induces chronic hepatitis, which in turn results in liver cell necrosis, inflam-
mation, regeneration, and fibrosis. This results in a proliferative process
prone to development of clonal evolution.

Ethanol causes liver cirrhosis in regular drinkers. The resulting alco-
hol-related damage includes liver cell necrosis, inflammation, regeneration,
and fibrosis. The local inflammation results in excessive oxidative damage.
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Alcohol is considered to be responsible for about 15% of liver cancers, but
this can be much higher in regions of low hepatitis virus prevalence (283).
There also are several reports that alcohol and hepatitis viruses interact
to increase liver cancer risk (283), but this is due to an interaction for liver
cirrhosis risk (281). There has been limited study on the role of alcohol
metabolizing genetical polymorphisms in liver cancer risk (284), but null
studies exist (285).

3.2. Gastrointestinal Cancers

Esophageal cancer is relatively rare in the United States. The most common
risk factors are alcohol drinking and tobacco. The effects are considered
multiplicative. Almost a 100-fold risk has been reported for heavy smokers
and drinkers (229). The association is more commonly reported for SCC of
the esophagus, compared with ADs. There is some evidence that genetical
polymorphisms in alcohol metabolizing genes can affect risk (286), including
in persons who develop a new esophageal primary after the diagnosis of oro-
pharyngeal cancer (287).

Overall, alcohol does not appear to be a risk factor for stomach can-
cer, although several studies indicate that when examined by site, there is an
association with ADs of the gastric cardia (288).

Alcohol drinking is a reported risk factor for colon cancer, even at low
levels (289). There are changes in normal colon morphology in alcoholics
(290). Acetaldehyde correlates with colon crypt cell production in animals
(291). While only a few studies have been reported, there is no effect of
ADH polymorphisms on colon cancer risk (292), although there are some
reported interactions with polymorphisms in the methylene tetrahydrofolate
reductase (293).

3.3. Oropharyngeal Cancer

About 75% of oropharyngeal cancers are attributable to smoking and drink-
ing (147,229). Heavy drinkers can have up to a 15-fold risk of cancer (147,
294), and a multiplicative effect has been reported (295,296). More than 95%
of persons with oropharyngeal cancer who smoke also consume alcohol
(296). ADH polymorphisms have been investigated for effects on alcohol-
related oral cavity cancer. There is evidence of effect modification on the
dose–response curve (254,297), although there are some conflicting data
(298–301).

3.4. Breast Cancer

Epidemiological evidence indicates that alcohol drinking is associated with a
moderate increase in breast cancer risk (302–304). Singletary and Gapstur
(305) summarized the relationship of alcohol to breast cancer in a recent
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review. They cited more than 5 separate meta-analyses, 2 major reviews, 5
prospective studies, and 33 other reports. There is a dose–response relation-
ship between drinking and risk (306). Although some studies only identify a
statistical increase for the highest levels of drinking, there is evidence that
one to two drinks per day also contribute to breast cancer risk (307–309),
and threshold values between 5 and 60 g per day have been suggested
(310,311). Overall, there is about a 9% incremental increase in risk for
10 g of alcohol consumed per day (equivalent to less than one drink per
day) (302,303,312). While ethanol generally is not an animal carcinogen,
there are supportive models for breast cancer (313,314). In animal models,
ethanol initiates mammary tumors (315) and dimethylbenzathracene
(DMBA) followed by ethanol caused SD rat tumors (305).

There are several lines of evidence showing that alcohol affects estro-
gen pathways. It is associated with decreased menstrual cycle variability and
more frequent long cycles (316). In premenopausal women mostly, but also
in postmenopausal women, drinking is associated with increased serum and
urinary estrogen metabolites, and decreased sex-hormone binding globulin,
follicle stimulating hormone, and luteinizing hormone levels (317–322).
In drinkers, the half-life of transdermal estrogen replacement is longer
(323,324), and some studies indicate an increased breast cancer risk in post-
menopausal women who use HRT (59). [There are some studies that do
not support the effect of alcohol on hormone replacement therapy related
breast cancer risk (325)]. Alcohol use is associated with decreased bone loss
and osteoporosis (326). Alcohol stimulates the transcriptional activity
of ER-a, upregulates ER-a expression (327,328), and is associated with
estrogen-negative tumors (329–331).

Increased breast density is associated with a 4–6 fold increased breast
cancer risk (332–338). There are many epidemiological studies that have
shown that alcohol drinking is associated with increased breast density
(305). Other risk factors are nulliparity, late age at first birth, younger
age, and low body mass (339). HRT also increases density (341), although
there is some inconsistency (339,341–343). Animal studies with the DMBA
rat model show that alcohol increases mammary terminal end bud density
and reduces the density of differentiated lobules (344). Interestingly, urinary
malondialdehyde is associated with increased breast density, suggesting a
role for oxidative stress (342).
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Neoplasia of hormone-responsive tissues currently accounts for more
that 35% of all newly diagnosed cancers in men, and more than 40% of
all newly diagnosed cancers in women in the United States (1). Bittner (2)
first proposed the idea that hormones may play a role in the formation of
cancer in studies of estrogens and mammary tumors in mice. Since that time,
that theory has been refined and expanded with substantial and convincing
evidence from experimental, clinical, and epidemiological studies. It is now
generally recognized that hormones play an etiological role in cancers of the
breast, prostate, ovary, endometrium, testis, thyroid, and bone.

This chapter will focus primarily on endogenous and exogenous
sources of steroid hormones and their role in carcinogenesis of hormone-
responsive tissue. Further, the chapter will review multigenic models that
are being used to understand the etiology of breast and prostate cancers
and that may serve as examples to establish new models for other hor-
mone-dependent cancers.

1. MODEL OF CARCINOGENESIS

How do hormones fit into the traditional model of carcinogenesis? The nor-
mal growth and function of hormone-responsive organs is controlled by one
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or more steroid or polypeptide hormones. The underlying mechanism pro-
posed for all of these cancers is that neoplasia is a consequence of prolonged
hormonal stimulation of the particular target organ, which may occur from
endogenous sources produced in the body, or through exogenous sources
such as oral contraceptives or hormone replacement therapy (HRT).

The major carcinogenic consequence of hormonal exposure at the end
organ is cellular proliferation. The emergence of a malignant phenotype
depends on a series of somatic mutations that occur during cell division,
but the specific genes involved in progression are unknown at this time.
Candidate genes include those in the endocrine pathway (3,4), as well as
DNA repair genes, tumor suppressor genes, and oncogenes (5–7). BRCA1
and BRCA2 are two such tumor suppressor genes that have been associated
with susceptibility to breast, ovarian, and possibly other cancers in certain
kindreds (8,9). Germline mutations in TP53 are also associated with an
increased risk of breast cancer in certain families (10). However, mutations
in these genes do not appear to be involved in the majority of sporadic
breast cancer. The HER2 oncogene is overexpressed in advanced breast
cancer and probably represents one critical event in the later part of breast
cancer progression (11).

Although there is evidence that hormonal secretion and metabolism
can be environmentally influenced, for example, through diet and physical
activity, the control of hormonal patterns is largely genetically regulated.
We must begin to characterize the complex genetic arrays that contribute
to carcinogenesis in hormone-responsive tissue and identify alleles respon-
sible for interindividual differences in steroid hormone levels. High-risk
alleles will likely be variants in genes involved in steroid hormone metabo-
lism and transport. These allelic variants may alter the encoded protein
structure, function, interaction with other proteins, or half-life and stability
within the cell. Research toward identifying alleles using the candidate gene
approach will be discussed later in this chapter in relation to breast and
prostate cancer.

2. ENDOGENOUS HORMONES

2.1. Steroid Hormone Synthesis

The primary sex steroid hormones are estrogens and progestins for women
and androgens for men. Steroid hormones, including estrogens, androgens,
progestins, mineralocorticoids, and glucorticoids, are synthesized in a
tightly controlled system involving cytochrome P450 enzymes and dehydro-
genases (12) (Fig. 1). The process begins with the conversion of acetate into
cholesterol, which may occur in the liver, skin, adrenals, ovaries, testes,
brain, or intestine (13). Over 25 enzymes are involved in this initial step.
Cholesterol is then converted into pregnenolone by the p450 side chain clea-
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vage enzyme (p450scc, also known as CYP11A1) in the mitochondrion of
the adrenals, ovaries, or testes. The rate-limiting step of steroid biosynthesis
is the diffusion of cholesterol across the mitochondrial membrane (14,15).
At this point of steroidogenesis, pregnenolone may be converted into
17OH-pregnenolone by the p450c17 (CYP17) enzyme or into progesterone
by hydroxysteroid dehydrogenase-3-beta-1 (HSD3B1); both products may
then be converted into estrogens or androgens.

The production of estrogen is accomplished through the conversion of
progesterone or 17OH-pregnenolone into androstenedione in the adrenals
or ovaries. CYP17 is required for both reactions, while HSD3B1 must addi-
tionally be present for the conversion of 17OH-pregnenolone. The reaction
proceeds with the aromatization of androstenedione into estrone (E1)
through CYP19, which occurs primarily in the ovaries of premenopausal
women and in the adipose tissue of postmenopausal women. E1 is then con-
verted to a more biologically active form, 17-beta-estradiol (E2), through
the mediation of 17-beta-hydroxysteroid dehydrogenases (HSD17B1). The
reverse reaction (conversion of E2 back to E1) is catalyzed by HSD17B2.

There are two androgen synthesis pathways that occur in the adrenals
and the testes. The 5-delta pathway is most common in humans, whereas
the 4-delta pathway is common in rodents. Both pathways begin with the
rate-limiting conversion of cholesterol to prenenolone through the action
of CYP11A1, as previously described. The 5-delta pathway consists of
the conversion of pregnenolone to 17-alpha hydroxy-pregnenolone and
subsequently dehydroepiandrosterone (DHEA) through the action of
CYP17 in either the testes or the adrenals. Dehydroepiandrosterone is then

Figure 1 Steroid hormone biosynthesis pathway showing the genes involved in
biosynthesis.
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converted to androstenediol in the testes by HSD17B3. The final step of the
5-delta pathway, also limited to the testes, is the metabolism of androstene-
diol to testosterone by the enzyme HSD3B2.

To exert an effect, steroids must find their way from the cytoplasmic
organelles in the ovarian or testes cells into the cells of the hormone-respon-
sive tissues where they can bind with steroid receptors in the nucleus.
Roughly 95% of total circulating hormones reach the appropriate cells
bound to ‘‘carrier’’ proteins such as sex-hormone binding globulin (SHBG)
and albumin. Steroids enter the cell by diffusion or by interaction between
serum proteins and recognition sites on the cell surface (16). Once the ste-
roid reaches the appropriate cells, the steroid may bind to its associated
receptor, resulting in a conformational change in the receptor that enhances
its affinity for specific hormone response elements (HRE) in the DNA. The
steroid receptor complex, made of a hormone, a receptor dimer, and various
nonreceptor proteins, interacts with specific sights in the preinitiation
complex and proximal promoter (TATA) box to signal the activation of
transcription of target genes. The precise mechanism of how steroid recep-
tors regulate gene expression, however, remains elusive.

3. EXOGENOUS HORMONES

External sources of steroid hormones also influence cell proliferation and,
therefore, risk of hormone-dependent cancers. Hormone replacement
therapy and oral contraceptives are two forms of exogenous hormones that
have been studied extensively. One or both of these agents play a role in
the risk of breast, ovary, cervical, endometrial, and colorectal cancers.
More recently, environmental estrogens and dietary phytoestrogens, plant
substances that are structurally or functionally similar to estrogen, have
been suggested to be important in the etiology of hormone related cancers.

3.1. Oral Contraceptives

Combination oral contraceptives (COC), which include an estrogen and
high-dose progesterone, reduce the risk of ovarian and endometrial cancers.
The relationship of OC use to breast cancer has been the topic of many
review articles (17). A recent meta-analysis of 54 studies, including over
150,000 women, provided important information about the risk of breast
cancer among COC users (18). Results from the meta-analysis indicate that
a modest increase in relative risk (RR) of breast cancer was associated with
current (RR¼ 1.24; p< 0.00001) and recent (RR¼ 1.16; p< 0.00001) COC
use. There is no evidence that this excess in risk continues to persist 10 or
more years after cessation of COC use. However, the degree of the associa-
tion was modified by age at first use of COCs. For recent users, risk was
greatest for those who began COCs before the age of 20, and tended to
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decline with increasing age at diagnosis. Total duration of COC use was not
associated with increased risk of breast cancer once recency of use was taken
into account. Although the scope of this meta-analysis was broad, there is
little information about cancer risk 10 years after cessation of COC use.
Moreover, most women who stopped use 10 or more years ago had used
COCs for only short periods of time. In the next decade, women who began
use as teenagers will reach their late 40s and early 50s. At that time, it will be
important to reexamine the effects of long-term and early use of COCs.

3.2. Hormone Replacement Therapy

Hormone replacement therapy use is associated with endometrial, breast,
colorectal, and possibly ovarian cancers. When the use of HRT to provide
short-term relief of menopausal symptoms was introduced, prescriptions
were for estrogen-only replacement therapy (ERT). What resulted was an
epidemic of endometrial cancers in the 1960s and 1970s that was related
to both dose and duration of therapy (19). Subsequently, progestogens were
added to the estrogen in various doses and schedules and the incidence of
endometrial cancer once again declined. Combination hormone replacement
therapy (CHRT), in which a progestin is given sequentially or continuously
with estrogen during a monthly cycle, has grown rapidly in popularity in the
past three decades.

Until recently, the vast majority of epidemiological studies of HRT
and breast cancer had sufficient data to examine ERT use only. The accu-
mulated evidence suggested that postmenopausal hormone use imparts a
relatively small increased risk of breast cancer. In a meta-analysis including
over 160,000 women, current or recent use of postmenopausal hormones
increased the risk of breast cancer in relation to increasing duration of
use (20). For women whose last use of HRT was less than 5 years before
diagnosis, risk increased by 2.3% (p¼ 0.0002) for each year of use. However,
women who stopped using HRT 5 or more years before diagnosis had no
increased risk, regardless of duration of use. After taking these timing
factors into account, no other index of timing was important, including
age at first use or time between menopause and first use. Although this
meta-analysis suggested that risk of breast cancer associated with CHRT
might be greater than for ERT, there were few long-term users of CHRT
available for analysis so the risk estimates are statistically imprecise (20).

The first observational studies specifically examining the breast cancer
risk associated with CHRT use appeared in 2000. Ross et al. (21) reported
that for every 5 years of use, risk was four times greater for CHRT users than
for ERT users; specifically, the odd ratio (OR) per 5 years of use for CHRT
was 1.24 [95% confidence interval (CI): 1.07–1.45] and the OR per 5 years of
use for ERT was 1.06 (95% CI: 0.97–1.15). Schairer et al. (22) observed simi-
lar risks among a cohort of 46,355 women in the Breast Cancer Detection
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Demonstration Project (BCDDP). The relative risk increased by 1% per year
of estrogen-only use and by 8% per year of CHRT use.

In May 2002 the Women’s Health Initiative (WHI), a set of random-
ized clinical trials designed to determine the efficacy of several strategies to
reduce the incidence of breast cancer, heart disease, colorectal cancer, and
fractures in postmenopausal women, stopped the study arm that was testing
the use of CHRT vs. placebo among 16,600 women (23). The trial was
stopped after a mean of 5.2 years of follow-up when the test statistic for
invasive breast cancer exceeded the stopping boundary. The estimated
hazard ratio (HR) for breast cancer was 1.29 (95% CI: 1.00–1.59) among
women who had taken CHRT vs. placebo. The trial also found that women
in the CHRT group were at increased risk of heart disease and stroke, and
decreased risk of colorectal cancer, endometrial cancer, and hip fractures.
The HR for colorectal cancer was 0.63 (95% CI: 0.43–0.92), and 0.83
(95% CI: 0.48–1.47) for endometrial cancer. Although randomized trials
are considered the gold standard of epidemiological research, controversy
around the use of CHRT remains. A similar trial under way in the United
Kingdom, called the WISDOM study, will continue to study the long-term
health effects of CHRT (24).

Emerging evidence suggests that ERT may also increase the risk of
ovarian cancer (25). In a large prospective study including over 900 cases
of ovarian cancer, Rodriguez et al. found that ERT users had higher ovarian
cancer death rates than nonusers (RR¼ 1.51, 95% CI: 1.16–1.96). Risk was
also slightly increased among former ERT users, and more than doubled
among women who had used ERT for 10 or more years (RR¼ 2.20, 95%
CI: 1.53–3.17). Although lifetime risk of ovarian cancer is low (1.7%) (26),
these data add to concerns about the safety of long-term HRT use. Further
studies are needed to confirm these findings and to examine whether effects
are similar for CHRT use.

3.3. Xenobiotic Pesticides and Phytoestrogens

Both natural and man-made environmental estrogens have been shown to
mimic the estrogenic activity of steroid hormones. Dietary phytoestrogens,
plant substances that are structurally or functionally similar to estrogen,
have been proposed to act as estrogen antagonists in breast, prostate, and
endometrial cells, potentially protecting these tissues from cancer formation.
In contrast, xenobiotics, environmental estrogens such as pesticides, have
been proposed to act as estrogen agonists, possibly increasing the risk of
cancer formation. Although we would expect that a weak estrogen, whether
from natural or synthetic sources, would act in a similar manner when
applied to the same system, the effect is difficult to predict due to variable
characteristics of the estrogen-like substances and the test systems. The size,
structure, and concentration of the chemicals, the presence of other natural
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or synthetic estrogens, the type of cell or animal model being tested, and the
concentration of estrogen receptors (ER) will all influence the effect of
the estrogen-like substance. Further, interpretation of findings may be
influenced by prior beliefs that natural chemicals are beneficial, while
synthetic agents are harmful.

There are several proposed mechanisms by which environmental estro-
gens may act. They may competitively bind with the ER to prevent the more
potent mammalian form of estrogen (17b-estradiol, E2) from binding to the
ER, or act synergistically by increasing the total concentration of estrogen
and estrogen-like substances. Alternatively, environmental estrogens may
interfere with the release of gonadotropins and, therefore, disrupt the
feedback loop of the hypothalamic–pituitary gonadal axis. It also has been
proposed that environmental estrogens may decrease free estrogen concen-
trations via stimulation of SHBG synthesis in the liver, which is one of the
primary estrogen transport proteins in humans. In cell studies, it was shown
that low concentrations (1–10 mM) of the phytoestrogen enterolactone
increased SHBG synthesis by HepG2 cells (27). However, higher production
of SHBG has not been shown among humans consuming phytoestrogen-
rich diets (28). Several nonhormonal actions of environmental estrogens
also have been proposed. Phytoestrogens have been shown to suppress
angiogenesis (29) and inhibit protein tyrosine kinases involved in tumor cell
signal transduction and proliferation (30). Finally, it has been suggested that
phytoestrogens may act as antioxidants, have inhibitory effects on apoptosis
(31), and inhibit the activity of topoisomerases (32).

3.4. Phytoestrogens and Breast Cancer

Epidemiological studies of dietary phytoestrogens and breast cancer indicate
that soy intake may reduce a woman’s risk of premenopausal breast cancer
(33–35), however at least one study found no association between dietary
soy and breast cancer (36). Soy is the most significant source of dietary phy-
toestrogen (37–39), but phytoestrogens also are found in fruits, vegetables,
whole grains, clover, and alfalfa sprouts (28). Of the studies that reported an
association between premenopausal breast cancer and soy intake, one
reported a decrease in risk of postmenopausal breast cancer (35). However,
the postmenopausal finding was restricted largely to non-U.S. born Asians,
suggesting that some other correlate of traditional Asian lifestyle may
explain the association. Ingram et al. (40), re-examined the association
between phytoestrogens and breast cancer by measuring urinary excretion
rates of two classes of phytochemicals (lignans and isoflavonoids). An
inverse relation was found between the risk of both premenopausal and
postmenopausal breast cancer and urinary excretion of daidzein, equol,
and enterolactone (40) and in a subsequent study, of daidzein, glycitein,
and total isoflavonoids (41). It remains untested whether the measured
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phytochemicals actually serve as markers of other correlated dietary
components such as fiber, which also has been postulated to reduce breast
cancer risk (42).

While epidemiological data indicate that dietary phytoestrogens may
decrease a woman’s risk of breast cancer, the results of dietary intervention
studies are less clear. The reported associations between dietary soy and
circulating estrogens are inconsistent (43–45). Dietary studies did find that
premenopausal women on soy-rich diets had lower levels of leutinizing hor-
mone, follicular stimulating hormone, and progesterone, with longer men-
strual cycles (43,44). Of potential concern are two reports that found that
women on soy-rich diets had elevated numbers of hyperplastic epithelial
cells in their breast fluid (46) and significantly increased rates of breast
lobular epithelial proliferation (47).

Experimental studies show that phytoestrogens can exhibit both an
estrogenic and an antiestrogenic effect, depending on the study conditions.
For example, several types of phytoestrogens were shown to stimulate DNA
synthesis and growth of human estrogen-dependent MCF-7 breast cancer
cells at low concentrations (1–10 mM) (48–51), while inhibiting DNA
synthesis at higher concentrations (20–90 mM) (50). Phytoestrogens also
have been shown to inhibit the growth of estrogen receptor-negative human
breast cancer cell lines (52). Animal studies indicate that soy administered
by injection can reduce the incidence (53–55) or multiplicity (54–57) of
chemically induced rat mammary tumors (58) and that they can be inhibited
by soy-based diets as well (59). It is hypothesized that short-term feedings of
dietary phytoestrogens to young rats may decrease carcinogen-induced
breast cancer by increasing the proportion of differentiated cells in the
mammary gland (55).

3.5. Xenobiotic Pesticides and Breast Cancer

Concern over environmental contaminants with estrogenic potential became
an issue in the 1990s when an unusual number of wild animals, including
fish (60–62), reptiles (63,64), and birds, were discovered with developmental
abnormalities. Furthermore, there was concern that if environmental
contaminants were responsible, humans also would be at increased risk.
Fueling these concerns, a number of studies reported associations between
environmental estrogens and increased risks of human breast cancer
(65–67) and a decrease in sperm quality (67,68). Although, the activity level
of most environmental pesticides is at least 1000 times less than that of the
endogenous E2, there was uncertainty whether combinations of pesticides
found in the environment could act in concert to produce stronger effects.
This was supported by findings that a panel of chemical pesticides acted
synergistically in competitive estrogen receptor binding and estrogen-
responsive yeast assays. Specifically, a mixture of the insecticides dieldrin
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and endosulfan produced a 1000-fold higher combined activity level than
either chemical alone (69). However, the findings were not supported by
subsequent studies using over 10 different estrogen-responsive assays
(70,71). More recent studies of turtles showed that endogenous steroid
hormones with differing activity levels (estradiol, estrone, estriol) act syner-
gistically, suggesting that weak environmental estrogens also may synergize
with endogenous steroidal estrogens (72).

Rigorous, systematic study is needed to determine if a relationship
exists between weak environmental estrogens and cancer risk. If the
mechanism of action of environmental estrogens on cancer risk is strictly
hormonal, it is unlikely that estrogenic pesticides and dietary phytoestrogens
would exclusively produce opposite effects. Evaluation of in vitro and in
vivo work for both phytoestrogens and xenobiotics as a whole may lead
to a more objective interpretation of the current data and assessment of
what questions remain unanswered.

4. EPIDEMIOLOGICAL REVIEW OF HORMONE-DEPENDENT
CANCERS

4.1. Breast Cancer

A large and compelling body of epidemiological and experimental data
implicate estrogens in the etiology of human breast cancer (73). Animal
studies repeatedly demonstrated that estrogens can induce and promote
mammary tumors in rodents and that removing the animals’ ovaries or
administering an antiestrogenic drug had the opposite effect (74).

4.1.1. Risk Factors

The most widely accepted risk factors for breast cancer, shown in Table 1,
can be thought of as measures of the cumulative ‘‘dose’’ of estrogen that
breast epithelium is exposed to over time. Early menarche and late

Table 1 Summary of Established Risk and Protective Factors for Breast Cancer

Risk factors (increased hormone exposure)
Early menarche
Late menopause
Alcohol consumption
Postmenopausal obesity
Hormone replacement therapy

Protective factors (decreased hormone exposure)
Young age at first full-term pregnancy
Prolonged lactation
Exercise
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menopause maximize the number of ovulatory cycles experienced over time,
during which a woman is exposed to high levels of estrogen and progester-
one. Prolonged lactation, and more importantly, physical activity can
reduce the number of ovulatory cycles. Both occupational and recreational
types of physical activity have been shown to reduce risk (75–77). Exercise
may decrease the risk of breast cancer by delaying the age of onset of regular
ovulatory cycles, decreasing the frequency of those cycles, and reducing
circulating levels of endogenous steroid hormones and insulin-like growth
factors (IGFs) (78–81). Alcohol appears to increase breast cancer risk by
increasing plasma estrogen and IGF levels (82). In a recent study, alcohol
consumption was associated with a linear increase in breast cancer incidence
for women who drank up to 60g of alcohol per day (two to five drinks) (83).
The primary source of estrogen in postmenopausal women is from the conver-
sion of androstenedione to E1 in adipose tissue; thus, postmenopausal obesity
increases the risk of breast cancer through increased production of estrogen.
Obesity also is associated with decreased SHBG production and increased pro-
portions of free and albumin-bound estrogens. The protective effect of early
age at first birth is complex. During the first trimester of pregnancy, the level
of free E2 rises rapidly. However, as the pregnancy progresses, prolactin and
free E2 levels lower and SHBG levels rise yielding a net overall benefit with
respect to the endogenous estrogen profile. Perhaps more importantly, the
effect of a first pregnancy may be to cause some premalignant cells to termin-
ally differentiate, thereby losing their malignant potential.

4.1.2. Endogenous Hormones

The most carefully conducted international studies comparing estrogen
levels in populations at differing risk of breast cancer support the role of
estrogens, especially E2, in the pathogenesis of breast cancer. Most studies
have focused on women from China and Japan, because Asian women have
experienced lower breast cancer rates than women from North America. In
the early 1970s, MacMahon et al. (84) conducted a series of studies on
teenagers and young women in Asia and North America. They found
that in overnight urine samples collected on the morning of day 21 of
the menstrual cycle, total urinary estrogen was 36% higher in the North
American teenagers than in Asian teenagers. Similar differences were found
among women aged 20–39. In two more recent studies, the relationship
between serum estradiol and breast cancer risk was re-examined in Asian
and North American populations (85,86). In one study, E2 levels were
20% higher in Los Angeles compared to premenopausal controls from
Shanghai (85). In a comparison of postmenopausal women, E2 was 36%
higher in Los Angeles than in age-matched Japanese women (86). The
reasons for these differences remain poorly defined, but part of the explana-
tion may be that there are genetic differences that affect steroid hormone
biosynthesis.
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A recent reanalysis of nine prospective studies of endogenous hor-
mones and postmenopausal breast cancer has clearly demonstrated the
strong association between elevated sex hormones and breast cancer risk
(87). The risk of breast cancer increased statistically significantly with
increasing concentrations of all the hormones examined: total E2, free E2,
non-SHBG bound E2, E1, estrone sulfate, androstenedione, DHEA,
DHEA-S, and testosterone. Women in the highest quintile of E2 were at
twofold increased risk of breast cancer compared to those in the lowest
quintile (RR¼ 2.0, 95% CI: 1.47–2.71, p for trend <0.001). High levels of
free E2 (the form of estrogen that is most bioavailable) were even more
strongly associated with risk (RR¼ 2.58, 95% CI: 1.76–3.78, p for trend
<0.001, highest compared to lowest quintile). Increasing SHBG was asso-
ciated with decreasing breast cancer risk (p for trend¼ 0.04). This study
did not measure progesterone, and the role of elevated progesterone levels
in breast cancer etiology remains controversial (89). Recent experimental
data suggest that progestins are breast mitogens and, as such, are likely to
increase breast cancer risk (90).

4.1.3. Genetic Models of Breast Cancer Susceptibility

It has been hypothesized that a multigenic model of breast cancer predispo-
sition can be developed that includes polymorphisms in genes involved in
estrogen biosynthesis and intracellular binding (3). This model would
include functionally relevant polymorphisms that would act together, and
in combination with established risk factors, to define a high-risk profile
for breast cancer. Although many candidate genes for such a model
exist, the genes originally proposed included three genes of interest: the
17-beta-hydroxysteroid dehydrogenase 1 (HSD17B1) gene, the cytochrome
P459c17a (CYP17) gene, and the estrogen receptor alpha (ESR1) gene. Data
have been published supporting the joint effect of CYP17 and HSD17B1 on
breast cancer risk (91). Huang et al. (92) have also published findings of a
similar model with the estrogen metabolizing genes CYP17, CYP1A1, which
participates in estrogen hydroxylation, and the catechol-O-methyltransfer-
ase (COMT) gene, which encodes the enzyme responsible for O-methylation
leading to inactivation of catechol estrogen (CE). Association studies of
genes in the steroid hormone pathway are being published with increasing
frequency, but little consistency. Several reviews appear elsewhere
(92a,94b–d). As an example of one candidate gene, CYP17 is discussed
below.

4.1.3.1. CYP17: At present, data suggest that variation in CYP17
may influence endocrine function. As summarized below, it has been shown
to be associated with the risk of breast cancer, serum hormone levels in pre-
and postmenopausal women, estrogen metabolites measured in urine, age at
menarche, and use of HRT.
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The CYP17 gene codes for the cytochrome P450c17a enzyme, which
mediates both steroid 17a-hydroxylase and 17,20-lyase activities, and func-
tions at key branch points in human steroidogenesis (93). The 50 untrans-
lated region (UTR) of CYP17 contains a single base-pair polymorphism
34 bp upstream from the initiation of translation, and 27 bp downstream
from the transcription start site (T27C) (94) and has been used to designate
two alleles, A1 (the published sequence) and A2.

An association between risk of breast cancer and this CYP17
polymorphism was first reported in 1997 (95). In a case–control study of
incident breast cancer among Asian, African-American, and Latina women,
a 2.5-fold increased risk of advanced breast cancer was observed among
women who carried the CYP17 A2 allele. This study also presented preli-
minary evidence suggesting that CYP17 may be associated with age at
menarche.

These results suggested that serum hormone levels may differ by
CYP17 genotype. In a follow-up study, it was reported that CYP17 geno-
type was associated with E2 and progesterone levels among young nullipar-
ous women (96). As shown in Fig. 2, serum E2 measured around day 11 of
the menstrual cycle was 11% and 57% higher (p¼ 0.04), respectively, among
women hetero- and homozygous for the CYP17 A2 allele compared to
A1=A1 women. Similarly, around cycle day 22 (Fig. 3), E2 was 7% and
28% higher (p¼ 0.06) and progesterone was 24% and 30% higher
(p¼ 0.04). These data provided direct evidence of genetic control of serum
hormone levels.

Figure 2 Geometric mean serum estradial concentration (pg=ml) among young
nulliparous women on day 11 of the menstrual cycle by CYP17 genotype.
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Since this original study of CYP17 was published, at least 11 other
studies have reported on CYP17 and breast cancer (97–103). The results
of these studies are largely negative and suggest heterogeneity by ethnicity.
Although the two of the largest studies conducted to date found no associa-
tion (97,98), several of the smaller studies (99,100,102) found a modest, but
nonsignificant, elevation in breast cancer risk with the CYP17 A2 allele in
some subgroups. Others have shown an association between CYP17 and
breast cancer only among specific age groups of women. Kristensen et al.
(103) and Miyoshi et al. (104) suggest that the effect of CYP17 may
be limited to older cases (i.e. over 55 years of age at diagnosis) while
Bergman-Jungestrom et al. (102) and Spurdle et al. (105) found increased
risk among premenopausal women.

More consistent data are accumulating to suggest that CYP17 is a
modifier of other breast cancer risk factors, such as age at menarche and
parity (106,92). At least three studies have shown that the protective effect
of later onset of menarche was limited to women with the A1=A1 genotype
(95,97,106). One study has shown that CYP17 genotype was associated
with estrogen metabolites measured in urine (107). The ratio between
2-hydroxyestrone (2OHE) and 16a-hydroxyestrone (16aOHE) demonstrated
a dose–response relationship by which women with the A1=A1 genotype had
the highest urinary ratio of 2OHE to 16aOHE (median¼ 1.47) and women
with the A2=A2 genotype had the lowest ratio (median¼ 1.21, p¼ 0.01.
Lower 2OHE:16aOHE ratios may be associated with increased risk of breast
cancer (108,109). Thus, this observation is compatible with the hypothesis
that the CYP17 A2 allele confers a higher risk of breast cancer.

Figure 3 Geometric mean serum estradiol concentration (pg=ml) and progesterone
concentration (ng=ml) among young nulliparous women on day 22 of the menstrual
cycle by CYP17 genotype.
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4.1.3.2. Other Candidate Genes: Work is emerging on other candi-
date genes that may fit into this model. A polymorphism in the COMT gene
has been investigated in at least three studies (110–112). COMT alleles can
be designated as high activity (the wild-type allele) or low activity. It has
been hypothesized that the low-activity alleles would lead to an increased
risk of breast cancer, secondary to the accumulation of catechol estrogens.
Published results on the association between COMT and breast cancer have
been inconsistent. In fact, two of the studies (110,112) reported opposite
effects and the third found no association (111) and no evidence of effect
modification with other risk factors.

Others have examined the possible role of CYP1A1, which is among
the major enzymes participating in estrogen hydroxylation, in breast cancer
etiology (113–116). Several polymorphisms in CYP1A1 have been described
and two of these polymorphisms have been associated with breast cancer
risk in some (113,114,116) but not all (115) studies. The strongest associa-
tions for CYP1A1 and breast cancer are limited to women who smoke.

4.2. Prostate Cancer

The two most important risk factors for prostate cancer are age and ethni-
city. Prostate cancer is rare before age 40, but the rate of increase with age is
greater than for any other cancer (4). African–American men have the high-
est incidence in prostate cancer in the world. In the United States, prostate
cancer rates among African–Americans are about 50–70% higher compared
to whites (117). Unfortunately, adequate data does not exist on prostate
cancer rates among blacks in Africa. Lowest rates of prostate cancer are
seen among Asian populations (Native Japanese and Chinese men). Japa-
nese- and Chinese-American men have rates higher than men in their respec-
tive homelands; however, their rates still remain much lower than U.S.
whites (4). Years of epidemiological research has failed to uncover any
environmental agents or lifestyle risk factors that can explain these pro-
nounced differences found across different ethnic groups. Like breast can-
cer, risk of prostate cancer appears to be explained by endogenous
hormone levels.

Among participants of the Physician’s Health Study, a strong trend of
increasing prostate cancer risk was observed with increasing levels of plasma
testosterone after simultaneous adjustment for SHBG and other endoge-
nous hormones (118). In the highest quartile of testosterone, risk of prostate
cancer was more than 2.5 times the risk in the lowest quartile (p for
trend¼ 0.004). Further, the study found an inverse trend with increasing
levels of SHBG and with estradiol.

In a comparison of healthy young U.S. white and black men, testoster-
one levels were 19% higher on average among the African–Americans (119).
This study was later extended to include young men from rural Japan (120).
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Although the expectation was that these Asian men would have the lowest
levels of testosterone, they, in fact, had levels that were intermediate
between the black and white U.S. men and did not differ significantly from
either group. However, circulating levels of androstanediol glucuronide, a
reliable index of 5a reductase activity, were 25–35% lower than in either
African-American or U.S. white men. Chinese men have also been shown
to have low androstanediol glucuronide levels (121a).

4.2.1. Genetic Models of Prostate Cancer Susceptibility

These studies suggest that differences in prostate cancer risk among ethnic
groups are a result of differences in hormone biosynthesis and metabolism.
Thus, a multigenic model (similar to the model for breast cancer) has been
proposed to explain the occurrence of prostate cancer (4). In developing a
model of prostate carcinogenesis, genes involved in androgen biosynthesis,
activation, inactivation, and transport are all of interest. Four genes were
initially specified: the androgen receptor gene (AR), steroid 5a-reductase
type II (SRD5A2), CYP17, and 3b-hydroxysteroid dehydrogenase
(HSD3B2). AR is responsible for androgen binding and activation,
SRD5A2 encodes the enzyme responsible for converting testosterone to
the metabolically more active dihydrotestosterone (DHT), and CYP17 (as
described above) encodes an enzyme that functions at key branch points
in human steroidogenesis. HSD3B2 has a dual role: it encodes an enzyme
that catalyzes a critical reaction in testosterone biosynthesis, and it is
involved in the metabolism of dihydrotestosterone in the prostate (possibly
different isozymes). As with genetic susceptibility to breast cancer, the
search for genetic polymorphisms involved in prostate carcinogenesis is an
area of great interest. The AR and SRD5A2 genes provide examples of work
in this field.

4.2.1.1. Androgen Receptor (AR): Within exon 1 of AR, two poly-
morphic polyamino acid tracts (trinucleotide repeats) have been studied: a
poly-glutamine (CAG)n and a poly-glycine (GGC)n. Androgen receptor
activity has been shown to be negatively correlated with the number of
CAG repeats and the association been prostate cancer and this micro-
satellite polymorphism has been the focus of over 20 epidemiological
publications and review articles, but a consistent and reproducible associa-
tion has yet to be confirmed (Refs. 105–109) and (123b).

Other polymorphic markers at the AR locus have also been evaluated
(4,123b). A StuI single-nucleotide polymorphism at codon 211, which desig-
nates two alleles, S1 and S2, is located roughly half-way between the two
trinucleotide repeats. Among African–American men the S1 allele was asso-
ciated with a statistically significant threefold increased risk of prostate can-
cer among men under the age of 65. An excess proportion of this allele was
also found among prostate cancer cases with an affected brother. The StuI
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polymorphism did not seem to simply reflect short CAG repeats as a func-
tion of linkage disequilibrium. These preliminary data suggested that among
African-American men, non-CAG repeat variation at the AR locus might
contribute to hereditary prostate cancer. However, a systematic evaluation
and haplotype analysis of generic variation in AR in a multiethnic popula-
tion failed to show evidence that common genetic variation in AR influences
risk of prostate cancer (123b).

4.2.1.2. SRD5A2: Investigation of the SRD5A2 gene began with a
polymorphic dinucleotide repeat (TA)n in the 30 untranslated region of the
gene. Analysis of this marker suggested that a series of alleles with a rela-
tively high number of repeats (17 or greater) was unique to African-Amer-
icans and somewhat more common in African-American men with prostate
cancer compared to healthy African-American men (127). Subsequent
sequencing of SRD5A2 in a sample of men with either high or low levels
of circulating androstanediol glucoronide (AAG––the biochemical serologi-
cal correlate of prostatic 5a-reductase activity in vivo) identified numerous
sequence variants. Two of these variants, V89L (valine to leucine at codon
89) and A49T (alanine to threonine at codon 49), have been proven to be
strong candidates for conferring risk of prostate cancer (128,129). The
V89L substitution showed marked differences among ethnic groups. The
VV genotype is most common in African-Americans, Latinos, and whites,
but relatively rare among Chinese and Japanese. Among Asian men,
V89L shows a strong correlation with AAG levels. Although the A49T
mutation is uncommon in healthy men, it confers a very high risk, especially
for advanced prostate cancer. In African-American men, the RR¼ 7.22
(p¼ 0.001) for advanced disease and in Latino men the OR¼ 3.60
(p¼ 0.04). These epidemiological findings are supported by in vitro data that
show that the A49T mutation has a fivefold higher Vmax for testosterone
conversion than the normal enzyme and the V89L has approximately 33%
reduced activity compared to the wild type.

These molecular models that are being developed for prostate and
breast cancer illustrate the importance of collaborative efforts between mul-
tiple specialties, such as molecular biology and epidemiology, in determining
the etiology of cancer. We must begin thinking of these hormonally based
cancers as being complex genetic traits and begin to both expand these mod-
els and develop similar multigenic models for the other hormone-related
cancers. In Table 2, we provide a summary of likely candidate genes for such
models.

4.3. Ovarian Cancer

Like other cancers of hormonal etiology, ovarian cancer is driven by stimu-
lation of cell division. The ovulation hypothesis posits that each cycle of
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ovulation, which includes follicle development and repair of ovarian surface
epithelium, increases the risk of ovarian cancer (130). Actions that suppress
ovulation, such as pregnancy or the use of oral contraceptives, permanently
decrease the risk of ovarian cancer. An important paper appearing in 1983
(131) suggested that ovarian cancer risk resulted from excessive gonadotro-
pin secretion. Under this model, excessive stimulation by gonadotropins
(namely FSH or LH) would result in stimulation of the ovarian stroma from
estrogen and estrogen precursors. This, in turn, would lead to proliferation
(and malignant transformation) of the epithelium.

Progesterone may also play a role in ovarian cancer. Risch (132)
suggests that the protective aspect of pregnancy is due not only to the sup-
pression of ovulation, but also to the 8–9 months of elevated progesterone.
Further, a previous finding that increased physical activity leads to an
increased risk of ovarian cancer may be explained by endogenous progester-
one levels. Physical activity may result in a shortened luteal phase and lower
luteal progesterone levels in premenopausal women.

A multigenic model, like we have described for breast and prostate can-
cers, may be emerging to support this hypothesis. Recent evidence suggests
that a common variation in the progesterone receptor may be associated with
increased risk of ovarian cancer (123b). The development of such a model for
ovarian cancer may be able to provide important genetical markers that could
improve early detection and survival of ovarian cancer.

4.4. Endometrial Cancer

The established risk factors for endometrial cancer (Table 3) show that
exposure to estrogens unopposed to progestins can predict the risk of
endometrial cancer (133,135). During the premenopausal period, risk of
endometrial cancer can be attributed to mitotic activity during the first half
of the menstrual cycle when estrogen in unopposed by progesterone (135).

Table 2 Selected Candidate Genes in Hormone-Related Cancers

Cancer site Hormones Potentially important genes

Breast Estrogen,
progesterone

CYP17, CYP19, HSD17B1, ESR1, PGR

Prostate Dihydrotestosterone CYP17, HSD17B3, SRD5A2, AR
Ovary FSH,

progesterone
FSH, FSHR, PGR

Endometrium Estrogen CYP17, HSD17B1, HSD17B2, ESR1
Testis In utero estrogen CYP17, HSD17B1
Thyroid TSH, estrogen TSH, CYP17, HSD17B1
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Use of sequential oral contraceptives doubled the risk of endometrial cancer
among women who used them prior to their removal from the market in
1976 (136). In contrast, combination oral contraceptives, which deliver
estrogen and a high-dose progesterone for 21 days of a 28 day cycle,
decrease the risk of endometrial cancer (137–139). As discussed above, an
alarming increase in endometrial cancer occurred in the 1960s and 1970s,
resulting from widespread use of ERT for menopausal symptoms. The
incidence of endometrial cancer once again declined after progestogens were
added to the estrogen in various doses and schedules.

Obesity is also an important risk factor for endometrial cancer. In
postmenopausal women, it is postulated that the conversion of androstene-
dione to estrone in adipose tissue results in the increased risk. In premeno-
pausal women, obesity is thought to operate through increased anovulatory
cycles and associated progesterone insufficiency (140).

The protective effect of parity can also be explained by the unopposed
estrogen hypothesis (135). The highest risk of endometrial cancer occurs
in nulliparous women and risk decreases with each pregnancy. This is
explained by the fact that no mitotic activity occurs during pregnancy due
to the persistently high progesterone levels.

4.5. Testicular Cancer

Experimental and epidemiological evidence indicates that hormonally
influenced prenatal events are important risk factors for testicular cancer
(141). Excess maternal nausea and vomiting in the prenatal period, prenatal
exposure to diethylstilbestrol, and maternal obesity have been associated
with testes cancer and with cryptorchidism, the most important risk factor
for testes cancer (141–145). It has been hypothesized that in utero exposure
to endogenous and exogenous estrogen could be the common denominator
in these risk factors (141). Consistent with this hypothesis is the observation
that a major determinant of the risk of excessive nausea and vomiting

Table 3 Summary of Established Risk and Protective Factors for
Endometrial Cancer

Risk factors (increased ‘‘unopposed’’ estrogen exposure)
Late menopause
Sequential oral contraceptives
Obesity
Estrogen replacement therapy

Protective factors (decreased unopposed estrogen exposure)
Pregnancy
Combined oral contraceptives
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during pregnancy is an early age at first pregnancy (146). Free estradiol
levels are higher in the first pregnancy.

Several lines of evidence suggest that the risk of testicular cancer has
strong genetical influence. Normal descent of the testes is under hormonal
control (147). Interestingly, surgical correction of cryptorchidism does not
appear to reduce this risk (148). Further, the contralateral testicle which is
normally decended is also at increased risk for the development of cancer,
although the risk is not as high as for the cryptorchid testis (149,150).
Individuals with an affected first-degree relative are themselves at increased
risk, with some studies suggesting the relative risk to be between 2 and 12
(151–154). The risk appears to be higher in brothers of cases than in fathers
of cases. Westergaard et al. (154) found a twofold increased risk in fathers of
cases and a 12.3 (95% CI: 3.3–31.5) times increased risk for brothers of
cases. Swerdlow et al. (155) also reports increased risk for the twin of a
testicular cancer case. Twins of cases were 37.5 times more likely to have
testicular cancer than twins of noncases (OR¼ 37.5, 95% CI: 12.3–115.6).
Finally, a recent segregation analysis suggested that testis cancer follows a
recessive major gene model of inheritance (156). Although these data
suggest a role for genetic factors in the etiology of testis cancer, they also
are compatible with the hypothesis that the in utero hormonal environment
is responsible for increased cancer risk.

Several candidate genes have been studied with regard to risk of testi-
cular cancer. The Wilms’ tumor 1 suppressor gene (WT1) was evaluated
because of the belief that this gene plays a role in urogenital fetal develop-
ment (157). Although the researchers found no overall association between
WT1 and testicular cancer, one allele was more frequently found in patients
with either bilateral or metastatic disease. The ESR gene and several GST
genes have also been studied with little success (158,159). Based on
the existing epidemiological data, genes involved in determining the in utero
hormonal environment, including CYP17 and HSD17B1, may be
more promising candidates to study.

4.6. Thyroid Cancer

The principal hormone regulating the growth and function of the thyroid
gland is the pituitary hormone thyroid-stimulating hormone (TSH). Excess
TSH may be of etiological relevance in the development of thyroid cancer
(160). This is supported by the fact that the growth of some thyroid cancers
is TSH secretion dependent, so that suppression of TSH by administration
of thyroxin is frequently an effective treatment for thyroid carcinomas (161).
Experimental studies show that sustained elevation of TSH levels induces
thyroid tumors in rodents (162,163), which has been achieved by a number
of mechanisms including iodine-deficient diets, blocking thyroid hormone
synthesis, direct administration of TSH, and chemical goitrogens (164).
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A notable trend in thyroid cancer incidence is the dramatic increase in
rates over the past three decades. Although the incidence of thyroid cancer
in men appears to have stabilized by the early 1990s, the incidence in women
has continued to increase, averaging 1.8% per year from 1991 to 1995. In
general, incidence rates for women increase sharply from childhood to age
30 and then plateau; whereas in men, incidence rates increase gradually
between the ages of 20 and 35, during which women have four to five times
the risk of men. This ratio remains above 3 until menopause, when it begins
to level off around 1.5. The differential change in rates by gender and
the high rate of thyroid cancer in women overall compared to men (165),
suggest a probable role of hormones in thyroid cancer etiology.

A number of epidemiological studies have shown a strong association
between select reproductive factors and thyroid cancer risk. A history of
pregnancy has been associated with elevated risk of thyroid cancer in several
case–control studies and risk was especially elevated among women with
pregnancies terminated by spontaneous or induced abortions (166–170).
Diffuse enlargement of the thyroid gland occurs during pregnancy, as a
compensatory response to the increased requirement for thyroid hormone
production (171). This alteration in normal thyroid activity occurs primarily
during the first trimester and seems to plateau by 20 weeks of gestation,
suggesting that changes in thyroid cells may occur early in pregnancy
(172). It is possible that some of these cellular changes during the first few
weeks of a pregnancy may alter thyroid cancer risk and that these
changes may be mitigated by full-term pregnancy, but persist following early
termination of a pregnancy.

The normal level of thyroid binding globulin (TBG) in females is
10–20% higher than in males. During pregnancy, there is a 50% increase
in the level of TBG due to increasing estrogen concentrations (173), which
produces an increase in TSH of similar magnitude (174–176). It is likely that
TSH levels of nonpregnant, normal females also may vary and be elevated
above the level of males at some point during the menstrual cycle.

5. CONCLUSIONS

Our knowledge of the relationship between relevant circulating hormones
and cancer is now contributing to the prevention and treatment of the
disease. Hormonal chemoprevention trials for breast and prostate cancers
are currently under way and hormonal chemoprevention of ovarian and
endometrial cancers has been in process for years with the prescription of
oral contraceptives and in the case of endometrial cancer, CHRT. Further
work is needed to determine the individual risk and benefits from use of
these products. The development of multigene models for hormone related
cancers should help to better define individual susceptibility and determine
who would benefit from specific prevention and treatment programs.
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Cancer in Multiracial and
Multiethnic Populations

Carrie P. Hunter

North Potomac, Maryland, U.S.A.

1. INTRODUCTION

Cancer, a disease of altered cellular growth, is the second most common
cause of death in the United States. It is no respecter of persons and affects
individuals of all ages, sexes, socioeconomic strata, and racial and ethnic
populations. In 2002, the American Cancer Society estimated that approxi-
mately 1,284,900 new cancer cases will be diagnosed and 555,500 deaths will
occur in the United States (1). Cancer increases with advancing age. In year
2000, over 60% of all new cancer cases occurred in men and women age 65
years and older. And, within the next three decades the cancer burden will
increase as the absolute number of cancers in persons 65 years and older is
expected to double (2). A large part of the increasing cancer burden will
occur in multiracial and multiethnic subgroups of the United States who
in year 2000 comprised nearly 30% of the U.S. population and are projected
to increase to 42% by year 2030 (3).

The burden of cancer is not borne equally by all population subgroups
in the United States. Marked variations in cancer incidence, mortality, and
survival rates exits among multiracial and multiethnic populations, and
cancer-related health disparities account for much of the excess morbidity
and mortality observed. A complex spectrum of diseases constitutes what
is defined as ‘‘cancer.’’ Subgroup variations in cancer incidence rates reflect
the dynamics of culture on health, the diversity of host experiences, the
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impact of environmental conditions on health, and the degree of genetic
susceptibility of individuals to cancer. Etiologic or causative factors are
associated with cancer risk, yet may differ in their biological effect and
disease expression within subgroups of the American population. Inherited
genetic susceptibility and environmental exposures to carcinogens that
predispose an individual to cancer may also be different across these groups.

Scientific knowledge of the cellular and molecular basis of disease is
advanced through the examination of diverse relationships and interactions.
The study of molecular and genetic markers of cancer risk in multiracial
and multiethnic populations provides opportunities to identify individuals
at risk, to enhance screening and detection capabilities, to determine
markers of cancer prognosis, and to potentially effect treatment outcomes.
In this report, disparities in cancer incidence rates among multiracial and
multiethnic populations of the United States are presented. Risk factors
and biological markers that may be related to breast cancer risk or prog-
nosis, and which may contribute to differential rates of disease expression,
are discussed.

2. CANCER INCIDENCE

There is considerable variation in cancer incidence rates across racial and
ethnic groups in the United States. The overall cancer incidence rate is
higher in Blacks (444.6 per 100,000) and non-Hispanic Whites (402.1
per 100,000), intermediate in Asian=Pacific Islanders (279.3 per 100,000)
and Hispanics [272.9 per 100,000], and lowest in American Indians (152.8
per 100,000) (Table 1). Rates for all cancers combined in women are
22–26% lower than in men of the same racial=ethnic group, except for
African Americans where the rate in men is 44% higher than in women.
African-Americans also are 1.6 times more likely than Hispanics or
Asian=Pacific Islanders to develop cancer, and three times more likely to
develop cancer than American Indians (Fig. 1) (4)

Between 1973 and 1997, the age-adjusted cancer incidence rate for all
sites combined and all races increased 25.0% in men and 19.9% in women
(5). During this quarter century, trend data of cancer incidence for all sites
combined, both sexes, and all races show that rates increased from 1973
through 1982, accelerated from 1982 through 1992, and declined
from 1992 through 1998 (Table 2) (6). Following several decades of rising
incidence of prostate and lung cancer in men, the incidence rates leveled
or declined between 1992 and 1998 with a decrease of 2.9% per year in white
males and 3.1% per year in black males. Among females, the overall cancer
incidence rate between 1992 and 1998 increased 0.3% per year compared to
rate increases of 1.6% per year from 1980 to 1987. The current lower rate in
females is related to a leveling off of the high breast cancer incidence rate
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due to more screened–detected cancers during the 1980s, and some stabiliza-
tion of lung rates in females since 1991(4,6). These changes in rates reflect a
number of events: advancements in our understanding of tumor biology
and the role of risk factors in cancer development, resulting in better strate-
gies to modulate exposures and reduce risk; improved medical diagnostic
capabilities and screening and early detection practices; and the impact of
targeted prevention efforts and behavioral change strategies related to more
effective public health educational campaigns.

Breast, prostate, lung, and colon and rectum are the most frequent
sites of cancer in all American population subgroups and they account for
approximately 56% of all new cases. Figures 2 and 3 show racial and ethnic
differences in cancer incidence rates for each site (5). Population variations
are most pronounced in breast and prostate cancer, two tumors also strongly
influenced by the intrinsic hormonal environment. Within population sub-
groups (for example: Hispanics and Asian=Pacific Islanders), cancer-specific
incidence rates may also vary according to ancestral origin of different
cultural groups, geographic location, and the phase of epidemiologic transi-
tion of a particular population subgroup from its native country of origin to
full acculturation in its adopted homeland. Rates also differ widely among
indigenous Native American populations (Table 3) (1,4). While incidence

Table 1 Cancer Incidence Ratesa by Site, Race, and Ethnicity (U.S., 1990–1997)

White Black Asian=PI Am. Indian Hispanicb

All sites
Total 402.1 444.6 279.3 152.8 272.9

Males 476.3 597.9 323.5 175.9 323.2
Females 352.4 337.4 246.9 137.3 240.9

Breast (females) 114.0 100.2 74.6 33.4 68.9
Colon and rectum
Total 43.6 50.7 38.1 16.3 28.8

Males 52.7 58.3 47.2 20.4 35.7
Females 36.6 45.2 30.9 13.1 23.6

Lung and bronchus
Total 55.4 73.3 35.5 18.4 27.1

Males 71.9 111.1 51.9 25.1 38.0
Females 43.3 45.8 22.5 13.3 19.4

Prostate 145.8 225.0 80.4 45.8 101.6

aRates are per 100,000 and are age-adjusted to the 1970 standard population.
bHispanic is not mutually exclusive from white, black, Asian/Pacific Islander, or American

Indian.

Source: Data from Surveillance, Epidemiology, and End Results Program, NCI, 2000. Ref. 4,

Table 11, p. 33.
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rates for prostate cancer are similar in American Indians and Alaska
Natives, the rates for total cancers, breast, colon and rectum, and lung
and bronchus cancers are greatly increased when aggregate data are pre-
sented for American Indians and Alaska Natives combined. Differential
expressions of incidence rates among population subgroups suggest that
different levels of etiological factors (for example, environmental exposures,
diet, smoking), host experiences (for example, hormonal milieu, reproduc-
tive factors), and genetic susceptibility, as well as different rates of disease
detection may contribute to variations in incidence rates observed.

There are limitations in the trend statistics for some racial and ethnic
subgroups due to the lack of available cancer data for these groups. Difficul-
ties in case ascertainment by race=ethnicity and the misreporting of race or
ethnicity on basic records (medical records, census reports) from which
information is collected are just a few of the issues that need to be resolved
(2). In addition, the cancer incidence rates presented in this paper are taken
from published articles and reports of data derived from the National
Cancer Institute’s Surveillance, Epidemiology, and End Results Program
(SEER) and the rates utilized are age-adjusted to the 1970 U.S. standard
population. SEER has recently shifted from the 1970 U.S. standard popula-
tion to the 2000 standard population, which will increase cancer incidence
rates and death rates by 20–50% compared to the 1970 standard. This is

Table 3 Cancer Incidence Ratesa by Selected Sites in American Indians & Alaska
Natives (United States, SEER, 1990–1997)

American Indian American Indian & Alaska
1990–1997b Native 1992–1998c

All Sites
Total 152.8 202.7

Males 175.9 227.7
Females 137.3 186.3

Breast (females) 33.4 50.4
Colon and Rectum
Total 16.3 28.6

Males 20.4 33.5
Females 13.1 24.6

Lung and Bronchus
Total 18.4 31.0

Males 25.1 44.3
Females 13.3 20.6

Prostate 45.8 47.8

aRates are per 100,000 and are age-adjusted to the 1970 standard population.
bRef. 1
cRef. 11
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largely due to an increased representation of the older age group in the 2000
standard calculation (2). While rates age-adjusted to the 2000 standard
population are not used in this report, caution must be taken in comparing
and interpreting data using these two standard population reference sources.

3. BREAST CANCER

Breast cancer is the most frequent cancer in all subgroups of American
women, except for Vietnamese American women who have higher rates of
cervical cancer. A comprehensive review of SEER data from 1988 to 1992
shows that rates are highest in non-Hispanic white, Native Hawaiian, and
African-American women; intermediate in Hispanic women; and lowest
among Filipino American, Korean American, Japanese-American, Chinese
American, and American Indian women (Table 4). Differences in cancer
rates must be interpreted with some caution because of less precise rates
in smaller population groups (7). Also aggregate subgroup rates may
not reflect the condition of all populations included in a category. For
example, breast cancer incidence rate for Asian=Pacific Islanders is
approximately 30% lower than in whites. However, the Native Hawaiians

Table 4 Breast Cancer Incidence Rate by Race and Ethnicity (Females) (SEERa)

Race=ethnicity 1988–1992b 1992–1998c Trend 1992–1998

All races 111.2 1.2
White 115.5 1.1
White Hispanic 73.5 72.9 0.4
White Non-Hispanic 115.7 120.5 1.3

Black 95.4 101.5 0.1
Asian=Pacific Islander 78.1 3.9
Chinese American 55.0
Filipino American 73.1
Native Hawaiian 105.6
Japanese American 82.3
Korean American 28.5
Vietnamese American 37.5

Amer. Indian=Alaska Native 50.5 �0.1
Alaska Native 78.9
Amer. Indian (N.M.) 31.6

Hispanic 69.8 68.5 0.3

aRates are age-adjusted per 100,000 to 1970 U.S. population.
bRef. 7.
cFrom Cancer Statistics Review (2001).
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have the second highest rate of any subgroup. The significance of this obser-
vation is obscured when data are combined into the broader category of
Asian=Pacific Islander. Similar disparities in rates are also found among
American Indians and Alaska Natives who live in different geographic
regions and among the diverse groups within the Hispanic category. Such
differences in rates reflect—in large part—the diversities of culture and
environmental exposures, dietary habits, and behavioral characteristics of
the population subgroups.

3.1. Risk Factors

A number of factors may increase the risk of breast cancer. They include
factors that: (1) change the macro-environment by creating or augmenting
conditions that contribute to the risk of disease (e.g., migration from low-
risk to high-risk areas, acculturation within adopted country) (2) modulate
or alter conditions of cellular growth (e.g., exposures to environmental car-
cinogens, smoking, diet, reproductive experiences and hormone replacement
therapy), and (3) are intrinsic to the host (e.g., age, family history of breast
cancer, and BRCA1=BRCA2 susceptibility genes). Racial and ethnic
differences in risk factor profiles may provide clues to possible genetic and
environmental changes in tumor biology.

The ‘‘migration effect’’ on cancer is well established. Descents of
women of Japanese origin who migrated to Hawaii or mainland America
develop within two to three generations a higher rate of breast cancer than
that observed in native Japanese women. A similar pattern has been
observed in women who migrated from Italy to Australia, Poland to the
United States (8) and from Puerto Rico to Long Island, New York (9).
Age at migration affects risks. Asian and Hispanic women who migrated
to the United States at an early age had much higher incidence rates than
those who migrated in adulthood, suggesting that either some exposure
early in life or total years since migration is of etiologic importance (10).
Diet and other environmental exposures have been implicated as major
causative factors for generational changes in incidence rates. Also different
rates of acculturation may explain the continued lower rise in breast cancer
rates among descendents of Japanese, Chinese, and Mexican women who
migrated to the United States (11).

The level of breast cancer risk attributable to a particular factor may
differ in younger and older women (12). Overall, the breast cancer incidence
rate in African-American women is lower than in whites. However, for
African-American women under age 45 years the rate is higher than in
whites, a paradox unexplained by present studies. Reproductive experiences
and intrinsic and exogenous hormone exposures are known to influence
breast cancer development and a number of epidemiological studies show
the magnitude of risk in blacks and whites to be similar (13–15). Pathak et al.
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reviewed the literature on the effects and distribution of reproductive and
hormonal risk factors in black and white populations. They also examined
whether the distribution of reproductive risk factors could explain, in part,
this paradoxical phenomena. They postulated that the crossover in incidence
rates between the races may be expected based on Pike’s ‘‘breast tissue age’’
model, and given the effects and distribution of early age at first
full-term pregnancy and high parity (16). In a case–control study of black
and white breast cancer patients, Brinton et al. observed that whites (age
40–54) had a higher population-attributable risk (62%) than blacks (54%)
that appeared to account for the observed differences in incidence between
the groups. A large part of the difference in population attributable risks
between older whites and blacks was accounted for by whites having fewer
births, later age at first birth, and slightly higher risks associated with repro-
ductive and menstrual factors. Among younger women (ages 20–39) there
was little association with the factors studied, but numbers were small. How-
ever, the data suggest that the difference in breast cancer incidence rate
between younger blacks and whites was not due to established risk factors,
but possibly to some other yet unidentified predictors (17).

Selected dietary factors (e.g., fat, specific fatty acids, heterocyclic
amines, and alcohol) are hypothesized to increase the risk of breast cancer.
Alternatively, a protective role on breast cancer risk of nutrients in fruits
and vegetables and of phytoestrogens has been postulated. Multiracial=
ethnic populations have a wide range of food intakes and great diversity
in food sources of fat and fiber as well as caloric intake. Newell et al.
observed-that the mean caloric intake was highest for whites, followed by
Mexican-Americans, and by African-Americans—a group which also had
lower mean fiber than whites or Mexican-Americans. Hispanics had higher
dietary fiber intake than other groups, and lower breast cancer rates (18).

Well-established differences between racial=ethnic groups in the intake
of specific vegetables, fruits, legunes, and soy have been reported. Zang et al.
studied dietary habits and observed that Hispanic and African-Americans
have a greater consumption of vegetables, citrus fruit, and fish than whites.
Hispanics also consume a greater intake of beans. Carotenoid-containing
fruits and vegetables were substantially higher in African-Americans than
in whites or Hispanics. No significant differences were seen in total fat or fiber
intake in this study (19). Wu et al. examined the diets of multiethnic popula-
tions using data from the 1992 National Health Interview Survey. In this
study, the intake of fiber, carotene, vitamin C, and folate were higher among
African-Americans and Latino women compared to whites. Hawaiian-
Americans had higher intakes of micronutrients whereas Japanese-American
women showed comparable intakes of carotene and vitamin C but lower
intakes of fiber and folate. The intake of legunes was twice as high among
Latino women compared to white women and the intake of tofu (a main
source of isoflavones) was at least four times higher among Japanese-
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American women compared to white women (20). Isoflavonoids in soy, geni-
stein, and diadzein have been shown to possess agonist and antagonist estro-
genic activity similar to that of tamoxifen. They also mimic estrogens. Soy
consumption in the form of tofu was more than twice as high among
Asian-American women born in Asia than among Chinese women born in
the United States (21). These reports strongly suggest that differences in diet-
ary patterns among racial=ethnic groups may account, in part, for the varia-
tions in incidence rates of breast cancers observed in these subgroups. More
definitive results are needed. The NIH Women’s Health Initiative clinical
trial on dietary patterns in postmenopausal women may provide new and
important information on breast cancer risk in multiethnic populations,
when it is available.

Environmental exposures to pesticides, organochlorines, and other
industrial products and carcinogens are postulated to contribute to
cancer development. Epidemiological studies have implicated exposure to
organochlorines such as, dichlorodiphenyltrichloroethane (DDT) and its
metabolite, DDE, as possible risk factors for breast cancer. Dichlorodiphe-
nyltrichloroethane was widely used in the United States for insect control in
forestry, agriculture, and building protection between 1940s and 1960s until
it was banned in 1972. A large proportion of the U.S. population, including
large segments of African-American, Hispanic subgroups, were exposed
as workers in the farming industry. Only a few studies of environmental
exposures and breast cancer risk in multiethnic populations have been done
and they are inconclusive. Krieger et al. found ethnic differences in both
the prevalence of organochlorines and the associated breast cancer risk.
However, the differences in levels among whites, African-American, and
Asian women were not significant (22). Overall, the body of evidence does
not support an association between these chemicals and breast cancer risk
(23,24).

3.2. Biological Markers, Genetic Polymorphisms, and Breast
Cancer Risk

Breast cancer in African-American women is a biologically more aggressive
tumor than that observed in whites (25–30) or Hispanics (26,27). It is well
established that African-American women with breast cancer have less
estrogen receptor positive tumors than Caucasian women. This is especially
true for premenopausal women. Chen et al. examined the histological
features of breast cancer in 573 black and 492 white patients recruited in
the population-based, National Cancer Institute Black=White Cancer Survi-
val Study. African-American women had more poorly differentiated tumors,
higher grade of nuclear atypia, less estrogen receptor positive tumors, and
lesser tubular formation or marked fibrosis when compared to white
women. These differences remained after controlling for socioeconomic
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status, body mass index, use of alcohol or tobacco, reproductive experi-
ences, and health care access and utilization (25). Elledge et al. examined
breast cancer prognostic factors among 777 Hispanic, 1016 black, and
4885 white patients with breast cancer. Whites had a lower S-phase fraction
than Hispanics or blacks. The estrogen receptor and progesterone receptor
levels in Hispanics were intermediate to the level of the other two ethnic
groups. There were no clinically significant differences in DNA ploidy,
HER-2=neu, or p53 expression among the three groups (26). In another
study of prognostic biomarkers among 43 Asian, 48 white, and 44 black
patients with breast cancer, Kreiger et al. observed no differences in distri-
butions of estrogen, progesterone, and epithelial growth factor receptors, in
HER-2=neu and p53, in cytoplasmic proteins cathepsin D and pS2, and
two indices of cell growth, Ki67 and DNA ploidy after adjusting for age
at diagnosis, menopausal status, or place of birth (31). Weiss et al.’s study
of risk and prognostic factors in multiethnic populations (172 white, 32
black, 49 Hispanic) did not reveal significant differences in molecular indices
including estrogen and progesterone receptor, ploidy status, S-phase, Ki-67,
Her-2=neu expression, tumor grade, and epidermal growth factor receptor.
However, small sample size is a limitation in this study (29).

Mutations of the p53 tumor suppressor gene are common in breast
cancer and are associated with poor prognosis and reduced survival (30).
Elledge et al. observed no difference in the nuclear accumulation of p53
protein in tumors of black, white, or Hispanic patients (26). In a subset of
45 black and 47 white breast cancer patients with stage I and Ii disease from
the New Orleans component of the NCI Black=White Cancer Survival
Study, Shioa et al. observed that blacks with p53 alterations had a four-
to five fold excess risk of dying from breast cancer than those without
p53 alterations. An adjustment for stage, age, tumor histopathology,
receptor status and adjuvant treatment did not change the excess risk. This
observation was not seen in whites (32). In addition, further study showed
that blacks more often had p53 mutations without protein accumulation and
whites commonly had p53 protein accumulations without mutations (33).

Her-2 gene amplification and protein overexpression is an important
predictor of disease progression and has been observed in 20–30% of breast
cancers. A polymorphism at codon 655 (Val655Ile) in the transmembrane
domain-coding region of the HER2 gene has been identified and may be
associated with breast cancer risk in young women under age 45 years.
Xie et al. examined the Val(655)Ile polymorphism in a population-based,
case–control study of breast cancer in women of Shanghai, China. They
observed that women with the Ile=Val or Val=Val genotype had an elevated
risk of breast cancer [OR¼1.4 (95% CI 1.0–2.0; p¼ 0.05)] after adjusting
for age, education, study period, history of breast fibroadenoma, leisure
physical activity, and age at first live birth. The risk was highest in younger
women < 45 years (OR ¼ 14.1; 95% CI ¼ 1.8–113.4) than in older
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women (34). A few studies have examined this potential etiological marker
and prognostic predictor of disease in racial=ethnic groups. Ameyaw et al.
studied this polymorphism in a multiethnic population of 257 Caucasians,
90 African-American, and 200 African (Ghanaian) healthy blood donors.
The Val allele was not detected in the African population. There was no
difference in the HER2 allele frequency between African-Americans and
Caucasians. The Val allele was detected in 20% of Caucasian alleles, 24%
of African-American alleles, and 11% of Chinese alleles. The homozygous
Val=Val genotype that is associated with an increased risk of breast cancer
was observed in 5.4% Caucasians, 4.4% African-Americans, and 0.3%
Chinese (35). In another study of postmenopausal breast cancer patients
participating in the Hawaii and Los Angeles Multiethnic Cohort, McKean-
Cowdin et al. observed that women with at least one copy of the Valine vari-
ant were approximately one-half as likely to have high-stage as low-stage
breast cancer. This effect was present across racial=ethnic groups (36).

Cyclin D1 overexpression occurs in 60–80% of female breast cancers.
In a study of 139 female breast cancer patients from multiethnic population,
Joe et al. reported that 77% of non-Caucasians (African-American, N¼19;
Hispanic, N¼ 24; Asian, N¼ 5) vs. 59% of Caucasians (N ¼ 86) had cyclin
D1 overexpression (p¼ 0.051). Although sample sizes were small, when non-
Caucasians were analyzed separately by ethnicity, there was no significant
difference (37).

Overall, about 5–10% of women have an inherited predisposition to
develop breast cancer. Genetic and molecular epidemiology studies indicate
that carriers of the BRCA1 gene have a lifetime risk of developing breast
cancer that is approximately 80%. For BRCA2 mutation carriers, the
lifetime risk is approximately 50%. In the general Ashkenazi population,
the carrier frequency of mutation is estimated to be �0.9% for 185delAG
(Struewing et al. 1995a), � 0.9–1.5% for 6174delT, and �0.13% for
5382ins (Benjamin, 1996; and Oddour, 1996) (38). Identifying women at risk
for BRCA1 and BRCA2 may provide opportunities for earlier diagnosis
and preventive intervention.

Most studies of BRCA1 and BRCA2 mutations to date have been
performed in white populations. Only a few studies of BRCA1 susceptibility
genes have being reported in other racial=ethnic groups, and, samples have
been small. In one of the first preliminary reports on familial aggregation
of BRCA1 mutations in an African-American population, Gao et al. con-
cluded that genetic susceptibility to breast cancer could be explained by
the BRCA1 mutations in nearly half of the high-risk families ascertained
through young African-American breast cancer patients (39). Panguluri
et al. examined germline mutations in 45 African-American families at
high risk for breast cancer. The entire coding region and flanking introns
were analyzed by single-stranded conformation polymorphism analysis
followed by sequencing of variant bands. Eleven different BRCA1 germline
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mutations=variations in seven patients from the 45 high-risk families were
observed: two pathogenic, protein-truncating mutations; four amino acid
substitutions; one amino acid polymorphism; and four substitutions in
noncoding regions (introns). These findings along with reports from other
investigators suggest that a large number of distinct pathological mutations
and variations exist among African-Americans that have not been reported
in Caucasians (39–42). Two mutations (943ins10 and 1832del5) have been
reported to be recurrent in African-American families (39–42). Meffort et
al. also reported finding a 943ins10 mutation in five different families who
may have a common distant African ancestry (43).

In another study, Whittemore et al. examined the prevalence and
contribution of BRCA1 mutations in breast and ovarian cancer using data
from three case–control studies of ovarian cancer. Ethnicity of the women
were: white non-Hispanic, 823; black, 40; Hispanic, 35; and Asian or other
ethnicity, 24. Although data were sparse for non-white and Hispanic
women, there was no difference in familial aggregation by ethnicity of the
probands. Among women < 40 years at diagnosis, it was estimated that
11% of breast cancer and 18% of ovarian cancers are due to BRCA1. They
observed that families with non-white and Hispanic probands had more
cancer clustering at young ages and postulated that this may reflect higher
mutation prevalence in these ethnic groups than in non-Hispanic white
women (44). The Carolina Breast Cancer Study, a population-based,
case–control study, evaluated BRCA1 mutations among women not
selected on the basis of family history of breast cancer or age at diagnosis.
A variant in the 30 untranslated region was observed to be more common in
black cases than in black controls. After adjusting for sampling probabili-
ties, they found that the prevalence of BRCA1 mutations among breast can-
cer patients was 3.3% in whites and 0.0% in blacks (45).

A number of genetic polymorphisms that are involved in the metabo-
lism of estrogen and carcinogens have been studied. Dunning et al. recently
completed a comprehensive reviewed of genetic polymorphisms and breast
cancer risk. Among 46 studies involving 18 genes, 12 studies reported
statistically significant associations. Racial and ethnic groups were described
in only 6 of the 21 American studies. Analyses revealed that genotype
frequencies were statistically significant in case-control comparisons for
three genes: the CYP19 (TTTA) n polymorphism, the GSTP1 Ile105Val
polymorphism, and the TP53 Arg72Pro polymorphism. The GSTM1 gene
deletion was significant in postmenopausal women only (46). Of the six stud-
ies that described racial and ethnic subgroups, only one reported statistically
significant observations. Taioli et al. evaluated the role of estradiol metabo-
lism and CYP1A1 polymorphisms in breast cancer risk of Caucasian and
African-American women. They observed that African-American women
with the wild type CYP1A1 gene showed a significant increase in the
2-OHE1=16-OHE ratio following a 5-day treatment with a 2-OHE inducer.
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In a case–control study of 57 women with breast cancer and 312 female
controls, the frequency of the homozygous Msp1 polymorphism was 4.2%
in African-American controls and 16% in African-American breast cancer
cases. The odds ratio of breast cancer with the Msp1 homozygous variant
was 8.4 (95% CI: 1.7– 41.7), and was not observed in Caucasian women
(47,48).

Studies of other genetic polymorphisms have been less conclusive.
CYP1B1 is a cytochrome P450 enzyme that is involved in the production
of potentially carcinogenic estrogen metabolites and the activation of envi-
ronmental carcinogens. Bailey et al. examined the role of CYP1B1 in normal
breast tissue and breast cancer of 59 African-American and 164 Caucasian
women. There was no association between the CYP1B1 genotype and breast
cancer risk (49). In addition, a study of GSTM1 polymorphism revealed no
association with breast cancer risk, even in environments low in antioxi-
dants (50).

The UDP-glucuronosyltransferase (UGT) plays a major role in phase
II drug metabolism and in detoxification of a wide range of molecules,
including carcinogens and biologically active steroid hormones. The UDP-
1A1 locus (UGT1A1) enzyme is a major UGT involved in estradiol glucu-
ronidation. Genetic variation and breast cancer susceptibility at the
UGT1A1 locus was examined in a population-based case–control study of
200 African-American women with breast cancer and 200 controls of
African ancestry. The study revealed a 1.8-fold (95% CI, 1.0–3.1; p¼ 0.06)
elevated risk in premenopausal women and a 1.0-fold (95% CI, 0.5–1.7;
¼0.9) risk in postmenopausal women. For premenopausal women, the asso-
ciation was strongest for ER negative (OR, 2.1; 95% CI, 1.0–4.2; p¼ 0.04)
than for ER positive (OR, 1.3; 95% CI, 0.6–3.0; p¼ 0.5). These findings
suggest a strong association between the UGT1A1 genotype and premeno-
pausal breast cancer and estrogen negativity (51).

4. SUMMARY

There are marked variations in cancer incidence among multiracial and
multiethnic population subgroups of the United States. Variations in health
measures reflect host, environmental, and genetic attributes of the popula-
tions. The dynamics of cultural experiences and differences in risk factor
profiles and behaviors modulate how biological disease is expressed among
different races and ethnic groups. Alterations in cell growth, biological
markers and genetic polymorphisms in racial and ethnic groups provide
unique opportunities to examine the relationship of these changes to disease
outcomes. Future advancements in knowledge and understanding of cancer
biology, gene–environment interactions, and differential rates of disease
expression will require adequate data on individuals from multiracial and
multiethnic population groups.
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1. OVERVIEW

1.1. Lung Cancer Occurrence

Respiratory tract cancer was a rare disease at the beginning of the twentieth
century with only a few hundred cases of lung cancer reported. In 1912, Adler
was able to collect data on 374 lung cancer cases from the literature. In the
beginning of his paper, he asked the following question, ‘‘Is it worthwhile to
write a monograph on the subject of primary malignant tumors of the lung?’’
(1). A century later, lung cancer is a global problem. The cancer is now the
most frequent and one of the deadliest in the world and is predicted to remain
a major cause of world wide cancer death in the twenty first century (2). The
global incidence of lung cancer is increasing 0.5% per year (3).

The World Health Organization (WHO) estimates that there are
presently about 1.1 billion smokers in the world and about one-third of
the world population older than 15 years are smokers. Tobacco smoking
caused about 3 million deaths in 1995 and it is estimated that in 2025 about
10 million deaths annually will be related to tobacco smoking (4). The
tobacco industry has suffered some setbacks in more developed countries,
but they now focus on developing countries to maintain their profits. China
is now the world’s biggest producer and consumer of tobacco. Every fourth
Chinese now smokes and there are about 750,000 deaths in China every year
due to tobacco-related disease. This number will increase to 2 million in year
2025 if the trend continues (5).
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Tobacco smoking has been identified not only as a cause of lung
cancer but also cancers of oral cavity and pharynx, in addition to cancers
at more remote sites. More than 100 years ago oral cancer was the most com-
mon cancer in many parts of the world. Oral cancer rates then transiently
decreased, but presently oropharyngeal cancers are a significant health
problem in various parts of the world; its prevalence ranges from 5% of
malignancies in the United States to 50% in India and Southeast Asia (6).
The incidence of oral cancers also varies throughout the European countries.

1.2. Lung Cancer Histology

Various respiratory epithelial cell types are exposed chronically to tobacco
smoke. This is reflected in themanyhistological subtypes of lung cancer. There
are fourmainhistological subtypes: adenocarcinoma (AC), squamous cell car-
cinoma (SC), small cell lung carcinoma (SCLC), and large cell carcinoma
(LC). Adenocarcinoma (including bronchiolo-alveolar carcinoma) and SC
are the most frequent subtypes. These two cancers, plus LC are sometimes
referred to as nonsmall cell lung cancer (NSCLC), and represents about 80%
of lung cancers. Many lung tumors are heterogeneous and contain malignant
cells of more than one subtype complicating pathological characterization.

Cigarette smoking can cause any type of lung cancer, while nonsmo-
kers usually get AC. A dramatic change in the frequency of the various
histological subtypes has taken place during the twentieth century. Squa-
mous cell carcinoma was the most frequent histological type but now AC
is more frequent (7). It has been suggested that a combination of changing
diagnostic criteria and changes in cigarette components and smoking beha-
vior may have caused the rise in the proportion of AC (8). Cigarettes were
mainly high tar and nonfilter before the 1960s, resulting in deposition of tar
particulates at the branches of central bronchi. The delivery from cigarettes
of benzo(a)pyrene (B(a)P) and nicotine decreased in U.S. cigarettes by about
50% between 1965 and 1975 while 4-(methylnitrosamino) -1-(3-pyridyl)-1-
butanone (NNK) increased similarly between the late 1970s and the early
1990s (9). Due to the lower nicotine yield, the smokers inhale more deeply,
resulting in higher exposure of the peripheral lung to nitrosamines and
nitrogen oxides, which are thought to induce AC. Furthermore, the smoke
produced by the low tar cigarettes are less irritating for the bronchial
epithelium, permitting deeper inhalation bringing the compounds to deposit
primarily in the lower respiratory tract epithelium and the alveoli, and to a
lesser degree in the upper respiratory tract.

2. LUNG CANCER ETIOLOGY

2.1. Cigarettes

Smoke from cigarettes, both mainstream (inhaled directly by the smoker)
and sidestream (smoke emitted from the burning cigarette), are composed
of many toxic and carcinogenic compounds. A smoker inhales gas-phase
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smoke as well as particulates (tar). At least 50 carcinogenic compounds have
been identified in the tar and vapor phase thus far, namely polycyclic aro-
matic hydrocarbons (PAHs), N-nitrosamines, aromatic amines, aza-arenes,
aldehydes, various organic compounds, inorganic compounds such as
hydrazine, metals, and free radical species (Fig. 1) (10). The highly carcino-
genic compounds PAHs (mainly B(a)P) and tobacco-specific nitrosamines
(mainly NNK) have been postulated to be of major importance in human
lung carcinogenesis (see above).

Experimental studies suggest etiological differences between SC and
AC. Mutations in the p53 tumor suppressor gene are frequently altered in
human lung cancer, and are found twice as common in SC compared to
AC along with a higher frequency of guanine to thymine transversions
(11). Benzo(a)pyrene has been shown to form adducts at guanines in codon
157, 248, and 273, which are major hotspots, consistent with a mechanistic
link between PAHs in tobacco smoke and guanine to thymine transversions
(12). Separately, AC containing mutations in codon 12 in k-ras oncogene is
induced when rodents are exposed to tobacco-specific nitrosamines. Such
mutations are frequent in human lung AC (13).

Cigarette tar contains high concentration of free radicals (14).
Alkenes, nitrosamines, aromatic hydrocarbons, amines, catechols and
hydroquinone are well-known sources of reactive oxygen species.

Concerning oral cancers, alcohol consumption is an important risk
factor in addition to cigarette smoking (15). The effect of these two risk
factors may be synergistic. An association between tobacco chewing and
oral cancer has also been found (16).

2.2. Air Pollution

Studies have shown that air pollution, such as industrial emissions and
traffic exhaust, is a risk factor for lung cancer. These pollutants include
PAHs, benzene, ethylene oxide, gasoline vapors, and metals. However, the

Figure 1 Lung carcinogenesis.
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etiological importance of air pollution as a contributory factor is still under
debate. An association between lung cancer and air pollution have been
reported in studies from cities with a high level of air pollution. Urban
residents seem to have an increased risk of lung cancer of 1.5–2.0 times that
of rural residents. The effect of air pollution on lung cancer may be
identifiable only above a certain threshold level. However, the analysis is
complicated due to the fact that air pollution is a complex mixture with
numerous air pollutants that also varies over time (17).

2.3. Occupation

There is evidence of human lung cancer associated with industrial exposure.
Lung is the major target concerning exposure at work to asbestos, radon,
mustard gas, coal tar and soot, chloromethyl ethers, beryllium, chromium,
nickel, and inorganic arsenic (18). The contribution of occupational exposure
to diesel exhaust is still under debate. There is a strong evidence regarding the
synergistic relation between smoking and asbestos exposure. Occupational
risk factors for oral cancers are less well established. Nickel, chromium,
and mustard gas have been reported as risk factors. In general, occupation
appears to have little substantial effect on the development of oral cancers.

2.4. Environmental Tobacco Smoke

Cigarettes generate large amount of environmental tabacco smoke (ETS).
ETS is a combination of sidestream smoke and smoke that is exhaled by
the smoker. Environmental tabacco smoke contains essentially all the same
carcinogens and toxic=irritating agents that have been identified in main-
stream smoke inhaled by the smokers. Sidestream smoke is composed of
approximately 4000 chemicals and has a higher concentration of many of
the possible carcinogenic compounds such as benzene, formaldehyde, hydra-
zine, nitrosamines, 4-aminobiphenyl, B(a)P, benzo(a)anthracene, and others
(19). Several studies have shown an increased risk of lung cancer among
nonsmokers who live in the same household as smokers. A recent meta-
analysis concluded that marriage to a smoker increased the risk of lung cancer
by 26% (20). A recent large European study demonstrated that lung cancer
risk after ETS exposure is relatively small (21). Many authors are skeptical
to the observed association due to misclassification bias (smoker=nonsmoker
nonsmoker and ETS exposure). However, there is evidence that prolonged
ETS exposure during childhood can lead to an increased risk of lung cancer.

3. LUNG CARCINOGENESIS

3.1. Genetic Changes in Lung Cancer

The karyotype of lung cancer is very complex and many genetic changes
have been identified including specific alterations of proto-oncogens
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(c-myc, K-ras, cyclin D1, erb-B2 and bcl-2) and tumor suppressor genes (p53,
Rb, FHIT, RASSF1A, SEMA3B, p16INK4 ) as well as chromosomal losses
(22). Epigenetic inactivation, such as aberrant promoter hypermethylation,
is a major mode of inactivation of expression of many genes, e.g., p16INK4,
DAPK, RARb, SEMA3B,MGMT, P14ARF, and GSTP1 (23). Chromosomal
regions including 1p, 3p, 4p, 4q, 5q, 8p, 9p, 9q, 10, 11p, 13q, 17p, 18q, 19p,
and 22p are frequently deleted in lung cancer (22). NSCLC and SCLC have
different regions of frequent loss of heterozygosity (LOH). Allelic losses on
3p have been reported as the most frequent event in lung cancer and many
candidate genes have been identified in this region (24). As with lung cancer,
multiple genetic alterations have been reported in oral tumors (25).

The evolutionary sequence of genetic alterations that take place
during the stepwise progression of lung cancer is not known due to lack
of macroscopic premalignant areas in lung epithelium. In SCC, there is
a defined sequence of histological events, begining with hyperplasia and
advancing to metaplasia, dysplasia, carcinoma in situ (CIS), and then inva-
sive cancer. The whole sequence takes about 20–30 years. In AC, precursor
lesions are also possible, but preneoplastic changes have not been established
to date (26).

Due to the continuous insult of cigarette smoke, the entire respiratory
tract can be damaged. There is a very high incidence of allelic loss, identified
though the LOH studies, which can be found in histologically normal and
abnormal epithelium of both current and former smokers. These multifocal
changes in the mucosa are referred to as field cancerization. In preinvasive
lesions, allelic loss (deletions) occurs in chromosomal regions 3p, 9p21, and
17p13. Loss of heterozygosity of 3p is an early change found in dysplastic
lesions, 90% of SCLC and about 50% of tumors from NSCLC. Allelic loss
at several 3p regions (e.g., 3p12, 3p14 (FHIT), 3p21 and 3p24–25) occurs
frequently in the tumor. The size of the 3p deletion in the early stages are
small, but 3p is lost in CIS (27). p53 mutations also appear relatively early
in lung carcinogenesis (bronchial dysplasia and CIS) (22). About 80% of the
SCLC tumors and 50% of NSCLC have p53 mutations (28). p53 mutations
are also observed in premalignant lesions associated with head and neck car-
cinomas (29). K-ras is frequently activated oncogene in NSCLC (13). Muta-
tions in K-ras oncogene, predominantly in codon 12, have been shown to
occur in approximately 30% of pulmonary AC. Results suggest that K-ras
mutations may occur at a relatively early stage in the development of lung
cancer and play a role in the conversion of dysplastic cells to preinvasive can-
cer cells. Apart from p53 and K-ras, Rb gene is frequently inactivated in lung
cancer, especially in SCLC where 90% of the tumors have abnormalities in
Rb. In contrast to Rb, loss of p16INK4 occur more frequently in NSCLC than
in SCLC (30). Most of the RB-positive lung tumors are p16 INK4 inactive
indicating that loss of function of both pRb and p16 INK4 does not contribute
to increased selective cellular growth potential during the process of
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tumor development. The literature clearly indicates that the cycline
D1=p16=pRb pathway is frequently deregulated in lung cancer. Similarly,
in oral cancer deregulated expression in some of these components have been
demonstrated.

3.2. Metabolism of Lung Carcinogens

Metabolic activation of procarcinogens, such as PAHs and N-nitrosamines,
and the covalent binding of the reactive metabolites to DNA forming DNA-
adducts are considered key events in tumor initiation. Other forms of
genetic damage including chromosomal aberrations also can occur. Lung
carcinogens are metabolically activated via complex enzymatic mechanisms
and detoxified by combinations of phase I and phase II enzymes. Enzyme
families involved in these reactions are the cytochrome P450 (CYP)
enzymes, epoxide hydrolases, glutathione S-transferases, uridine 5-dipho-
spho-glucorynyltransferases, and N-acetyltransferases. Phase I enzymes,
which are mainly cytochrome P450s, insert one atom of oxygen into the
substrate; and phase II enzymes which act on oxygenated substrates conju-
gate them with various endogenous moieties producing hydrophilic
products which are excreted easily from the cells (31). The extent of
DNA-adduct formation depends on the balance between the rates of
oxidation of the compound and rates of detoxification of the reactive
products via conjugation.

Cytochrome P450 (CYP) enzymes are expressed at significant levels
in the lung so that reactive genotoxic metabolites from PAHs and N-
nitrosamines can be formed directly in the lung epithelium. Reactive meta-
bolites may also migrate to the lung from distal organs (i.e., the liver)
through the bloodstream inducing DNA damage. Several forms of P450
have been identified as playing a role in lung carcinogenesis. CYP1A1 and
CYP2E1 are of critical importance for the activation of PAH and nitrosa-
mines (and other low molecular weight compounds), respectively (31).
The gene product of CYP1A1 catalyzes the first step in the metabolism of
PAH. Recent studies indicate that the pulmonary system expresses several
CYP enzymes although at low levels (32). Results show that CYP3A4,
CYP1B1, and CYP2C9 also catalyze the formation of mutagenic intermedi-
ates from PAH. In addition to CYP2E1, the nitrosamines are also metabo-
lically activated by CYP1A2, CYP2A6, and CYP2D6. CYP1A2 is expressed
in peripheral lung, CYP2A6 is expressed in both bronchial epithelium and
peripheral tissue. There is no detectable CYP2D6 expression in bronchus
and lungs.

Although a number of different mechanisms can detoxify PAH-
diol epoxides, the most important mechanism in their detoxification is the
glutathione S-transperase (GST)-catalyzed conjugation with reduced
glutathione (GSH). These enzymes have an important role in protecting
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DNA against damage and DNA-adduct formation through conjugation
to electrophilic substances, particularly those with lipophilic groups. The
GSTs comprise a supergene family of phase II enzymes that catalyze
GSH-dependent reactions with many electrophiles. The products of the
alpha, mu, theta, pi, and zeta gene families have been identified (31). The
various enzymes have different but often overlapping substrate specificities.
Epoxides are effective substrates for both mu and pi GST. The GSTP1
enzyme is abundantly expressed in the lung and is relatively more active
than other classes of GSTs in the GSH conjugation of tobacco-derived
B(a)P diol epoxide (33). GSTM1, GSTM2, and GSTM3 also have reactivity
towards epoxides. GSTM1 is expressed at low level in the lung, and at high
level in the liver (31). Many of the substrates of the GSTs also influence the
expression of the GST genes indicating the presence of a adaptive response
mechanisms to chemical stress.

Arylamines in tobacco smoke are carcinogenic and metabolized by
N-acetyltransferases, NAT1 and NAT2 enzymes. These enzymes catalyze
N- and O-acetylation of aromatic and heterocyclic amines. The arylamines
have a higher affinity for NAT2 than for NAT1. N-acetyltransferases are
found in a large number of tissues. Both NAT1 and NAT2 are expressed
in the lung but NAT1 is the predominant form. NAT2 is predominantly
expressed in the liver (31).

Microsomal epoxide hydrolase (mEPHX) is one of the most important
phase II detoxification enzymes. The role of mEPHX is to transform arene,
alkene, and aliphatic epoxides to less reactive, less toxic, and more water
soluble forms. It also activates some PAHs in tobacco smoke into a more
carcinogenic form. Althrough mEPHX is considered a detoxifying enzyme,
the dihydrodiols derived from PAHs may be further catalyzed by CYPs into
still more reactive forms (32).

4. LUNG CANCER SUSCEPTIBILITY

4.1. Cytochrome P450s Polymorphisms

The interplay between genetic and environmental exposures is thought to be
critical factor in lung carcinogenesis despite the fact that tobacco smoke is
very deleterious to the lung; only 1 of 10 lifetime smokers contracts lung
cancer and some degree of familial aggregation of lung cancer is evident
in family studies. Lung cancer susceptibility may be modulated by host-
specific factors including differences in xenobiotic metabolism, DNA repair,
and alterations in oncogenes and tumor suppressor gene functions. The
role of metabolic genes in individual susceptibility to the carcinogenic effects
of tobacco smoke have been investigated in several studies in various
populations. Polymorphisms exist in the several genes responsible for both
activation and inactivation of tobacco carcinogens and may contribute to
the observed susceptibility to lung carcinogens.
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So far the polymorphic genes most studied in lung cancer include
CYP1A1, CYP2E1, CYP2D6 (Table 1), and the phase II genes GSTM1,
GSTP1, NAT2 and EPHX (Table 2). At least four polymorphic variants
of the CYP1A1 gene have been identified, two of which are thought to result
in increased enzyme activity. Japanese studies have shown that high
susceptibility to lung cancer is associated with CYP1A1 gene polymorph-
isms (homozygosity for the rare MspI allele (m2 variant), and exon 7 substi-
tution (Val allele) (34). The association has not been confirmed in European
and North American studies. The CYP1A1 genotype frequencies like many
other genes show inter–ethnic differences. The frequency of the m2 and Val
variant is much less in Caucasians and it will require about 500–1000 cases
to study the association in this ethnic population. This lung cancer
susceptibility is dependent on the cigarette dose, showing a high relative
risk at low dose level of cigarette smoking for individuals with susceptible
genotypes (35,36). However, further studies are required in this area since
the MspI and the exon 7 polymorphisms are not strictly linked and large
differences in catalytic activities for these different alleles have not
been shown.

Several studies have examined lung cancer risk and CYP2D6 pheno-
type but the results have been conflicting. Several mutant CYP2D6 have
been identified (37). Individuals with two defective alleles have been shown
to exhibit decreased CYP2D6 activity (poor metabolizers, PM) when
compared to those having one or two wildtype alleles (extensive metaboli-
zers, EM). The highest risk of lung cancer was observed among smokers
having the highest levels of both tobacco smoking exposure and CYP2D6
activity (38). Since CYP2D6 is not expressed in the lung, but in the liver, this
may reflect that the NNK-metabolites are transported to the lung during
high exposures to tobacco carcinogens.

In Japanese studies, individuals homozygous for the rare Dra I alleles
of CYP2E1 were reported to have decreased lung cancer risk (39). However,

Table 1 Polymorphic CYP Genes Associated with Lung Cancer

Genes Polymorphism alleles Carcinogen Remarks

CYP1A1 �2 MspI mutation PAHs Increased risk
�3 Ile-Val mutation

CYP2D6 �2 Amplification=
duplication

NNK Poor metabolizers:
decreased risk

�3 Frameshift
�4 Frameshift
�5 Deletion

CYP2EI Dra I, intron 2 NNK, butadiene Decreased risk (DraI)
Rsa I=Pst I Benzene, styrene Increased risk (Rsa I)
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among Caucasians no association has been found (40,41). Homozygosity for
the Rsa I variant has been associated with increased risk of lung cancer in
some studies, but no association was found in other studies.

4.2. Glutathione S-Transferase Polymorphisms

Several studies support the view that GST polymorphism influence the sus-
ceptibility to lung cancer. A deletion of both copies of theGSTM1 gene is pre-
sent in 40–60% of the general population (with an ethnic variation
ranging from 30% to 80%) producing a complete lack of GSTM1 enzyme
(null genotype). The GSTM1 gene product is suggested to be particularly
important for detoxifying BP diol epoxide. Individuals lacking GSTM1
activity can potentially be at an enhanced risk for smoking-related lung can-
cer. A meta-analysis suggests a statistically significant but modest increase in
odds ratio for the GSTM1-null genotype among lung cancer patients com-
pared to controls (42). It appears that the GSTM1 genotype is not associated
with oral cancer risk (43). When the influence of the GSTM1 genoptype on
the level of PAH–DNA adduct was evaluated, a higher level in the lung
was found in patients with the null genotype compared to patients with at
least one allele intact. Furthermore, the different genotype distribution found
in patients with transversion and transition mutations in the p53 and K-ras
genes also supports these results (44). G to T transversion mutations at GC
base pairs have been particularly associated with certain PAH compounds
which are known to be metabolized by the GSTM1 enzyme. Other studies
indicate that PAH–DNA adduct levels and CYP1A1 and=or GSTM1
genotypes to be independent lung cancer risk factors (45).

A major GST protein in human lung is GSTP1-1. The GSTP1 gene
has been shown to be polymorphic in humans. A polymorphic site at codon

Table 2 Phase II Polymorphic Genes Associated with Lung Cancer

Genes Polymorphism alleles Carcinogen Remarks

GSTM1 �0 gene deletion PAH epoxides Higher risk
B Ile-Val, exon 5 �C PAH epoxides Higher risk

GSTP1 Ile-Val þ Ala-Val
exon 5

NAT �10 Aromatic amines Lower risk (�10)
�11
�14
�15

EPHX Tyr113 ! His PAH epoxides
and aromatic
amines

Higher risk

His 139 ! Arg (conflicting results)
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104 (Ile105Val substitution) in the P1 gene is known to change the enzyme’s
kinetic properties. A study from our laboratory indicates that individuals
with the low activity alleles had a higher lung cancer risk (44). It appeared
that the described difference was found in the group of SCC and not among
patients with AC. The GSTP1 polymorphism also influences susceptibility
to SCC at the upper aerodigestive tract (46). The impact of the different
GSTP1 genotype on the formation of PAH–DNA adducts in the lung
was also investigated and elevated levels were observed among the low
activity alleles (44).

4.3. N-Acetyltransferase Polymorphisms

The NAT2 and NAT1 genes are known to be polymorphic in humans.
Several genetic polymorphisms have been shown to be associated with
decreased enzyme activity and=or variable stability for the NAT2 gene.
Individuals with slow-acetylator NAT2 alleles have little or no enzyme
activity. This slow acetylator genotype occurs at a frequency of about
50% in Caucasians, but the prevalence varies significantly among ethnic
populations. Since aromatic amines are abundant in tobacco smoke, the
NAT2 polymorphism is also of interest with respect to lung cancer suscepti-
bility. However, most of the studies on lung cancer show no overall lung
cancer risk related to the slow acetylator genotype (47). In a recent Swedish
study, an increased odds ratio was associated with the slow acetylator
genotype among never-smokers and an increased risk for rapid acetylators
among smokers (48). For the slow acetylator genotype, a Japanese study
reported a raised odds ratio for AC (49). The NAT1�10 allele has been
linked to increased risk of lung cancer and other cancer types. Several
different NAT1 mutations have later been reported but with respect to lung
cancer the results are conflicting.

4.4. EPHX Polymorphisms

Two variants of the human mEPHX alleles have been associated with
altered enzyme activity; one in exon 3 (His or Tyr substitution at position
113 decreasing mEPHX activity), another in exon 4 (His or Arg substitution
at position 139 enhancing enzyme activity). However, inconsistent relation-
ships have been found with respect to lung cancer risk. London et al. found
no association between mEPHX and lung cancer risk. The data indicated
that genetically reduced EPHX may be prodective (50). A recent study
by Zhao et al. indicated that the two polymorphisms modulate lung cancer
risk (51).

4.5. Alcohol Dehydrogenase

The association between alcohol and tobacco intake with oral and oropha-
ryngeal carcinoma has been well documented. Ethanol is mainly converted
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to acetaldehyde by ADH forming adducts with DNA. Acetaldehyde may
also inhibit DNA repair processes. ADH3 is polymorphic (two common
alleles, designated 1 and 2), and comparison of the enzymatic properties
have shown that individuals homozygous for ADH3 allele 1 (ADH3-1,1)
metabolize ethanol to acetaldehyde faster than individuals who carry at least
one ADH3 allele 2 (AEH3-1,2 or ADH3-2,2) (52). Recent data show that
the ADH3-1,1 genotype appear to increase the risk of ethanol-related oral
cancers (53).

4.6. Combinations of Risk Genotypes on Lung
Cancer Susceptibility

Individuals with particular combinations of at risk polymorphisms, i.e., in
the P450, GST, NAT, EPHX enzyme systems, may have a higher risk of
contracting lung cancer. Individual genotypes may have a relatively weak
influence on susceptibility, but the effect of genotype combination should
be more pronounced.

Hayashi et al. described a 5.8-fold relative risk for all lung cancer
type and a 9.1-fold relative risk for SCC in Japanese individuals who were
homozygous for both the CYP1A1 val and GSTM1 null risk alleles (54).
Nakashi et al. found that among SCC patients individuals with the CYP1A1
Msp1 genotype combined with deficient GSTM1 were at remarkable high
risk of developing SCC with an odds ratio of 16 (55). These results are
consistent with the notion that some procarcinogens in cigarette smoke
are activated by CYP1A1 and inactivated by GSTM1 enzymes. Case–
control studies have also been combined with genotype analysis and DNA
adduct and mutation measurements. In a study where combined GSTM1
and GSTP1 genotypes were examined, lung cancer patients with the
combined null and AG=GG had significantly higher adduct levels than all
other genotype combinations. The distribution of combined genotypes
was also significantly different in cases and controls, mainly due to increased
frequency of the combination GSTM1 null and GSTP1 AG or GG among
patients (44). The NAT2 slow genotype, in particular when combined with
the GSTM1 null genotype, may confer increased susceptibility to adduct
formation, gene mutation in somatic cells (HPRT) and lung cancer when
the smoking dose is low (45). In a recent study, the joint effects of genotype
combinations (GSTP1, GG, GSTM1-null and GSTP1 GG, p53 variant)
were found to be associated with lung cancer risk and the risk was greatest
among individuals �55 years of age (46).

5. DNA REPAIR

Susceptibility to lung cancer may also be modulated by DNA repair but
whether defects in DNA repair may be a common predisposing factor
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for lung cancer has not yet been established. There is, however, some
evidence indicating that defects in DNA repair may be involved in the
development of lung cancer. Recent findings suggest that individuals with
reduced DNA repair capacity (DRC) are at an increased risk of lung
cancer: in vitro lymphocyte assays has been utilized to measure individual
variation in DRC. Sensitivity to mutagen damage, based on the quantifica-
tion of bleomycin-induced chromatid breaks in vitro, may be a significant
determinant of susceptibility. In case–control studies, lung cancer patients,
and head and neck cancer patients expressed increased sensitivity to muta-
gens (56,57). The underlying mechanisms that account for the observed
differences in chromosomal sensitivity to bleomycin among individuals are
multiple, one mechanism may be alteration in the DNA repair process.
Further, studies have shown that this assay can be used to assess the sensi-
tivity also to other carcinogens such as B(a)P. Molecular epidemiological
studies have also been conducted in which DNA repair capacity is measured
in the host-cell reactivation assay (HCR) where a damaged recombinant
plasmid, i.e., by UV or B(a)P, harboring a chloramphenicol acetyltransfer-
ase reporter gene is introduced into lymphocytes (58). Since B(a)P-adducts
and thymine dimer repair can block reporter gene expression, the measured
chloramphenicol transferase activity is the net result of DNA repair in the
cell. B(a)P-adducts are repaired by the nucleotide excision repair (NER)
pathway and XPD is one of the genetic complementation groups encoding
for proteins involved in the NER pathway. One study on DRC and XPD
genotypes suggested that the XPD variant Gln751Gln (exon 23) and
Asp312Asn (exon 11) genotypes were associated with less DRC and signifi-
cantly increased risk for lung cancer (59). In a case–control study the XPD
Asp312Asp genotype was found to have almost twice the risk of lung cancer
when the Asp=Asn plus Asn=Asn combined genotype served as reference. In
light smokers, the XPD Asp312Asp genotype was more frequent among
cases than in controls and was associated with increase risk for NSCLC
(60). XPD variant alleles have also been associated with reduced repair of
aromatic DNA adducts (61). In a case–control study, a significant interac-
tion between cumultative cigarette smoking and XPD polymorphisms
(Asp312Asn and Lys751Gln) were found (62). XRCC1 protein is involved
in the base excision repair (BER) through the interaction with poly
(ADP-ribose) polymerase, DNA polymerase b, and DNA ligase III. Three
polymorphisms have been identified (63). Recently, XRCC1 polymorphisms
have been show to modulate lung cancer susceptibility (64,65). The human
OGG1 (hOGG1) gene encodes a DNA glycosylase=AP-lyase that catalyzes
the removal of 8-OH-dG adducts. Several polymorphisms at the hOGG1
locus have been found and recent studies have suggested that the Ser326Cys
hOGG1 polymorphism may be associated with increased lung cancer risk
and orolaryngeal cancer risk (66,67).
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6. GENDER DIFFERENCES IN LUNG CANCER RISK

Smoking rates among women are increasing, as are the number of smoking-
related casualties. However, relatively few women in underdeveloped coun-
tries are smokers today. For instance, in China only 20 million women are
smokers compared to 280 million men, but the number of women smokers
will inevitably increase. Tobacco companies have identified women as a key
target group.

Women may be particularly sensitive to certain carcinogenic com-
pounds in tobacco smoke (68). Several recent epidemiological studies
indicate that women may have a higher risk of lung cancer than men
(69,70). These studies are supported by data showing a higher level
of hydrophobic DNA adduct in female lung compared to men (71,72).
Moreover, a higher frequency of G to T mutations in the p53 gene in lung
tumors of females than in males was observed (73,74). In human lung,
CYP1A1 mRNA are induced by PAH in tobacco smoke. One study showed
that women smokers have significantly higher expression of lung CYP1A1
(72). In the same study, hydrophobic DNA adducts were found to be
significantly associated to the level of CYP1A1 expression. Together, these
data indicate that women may be more susceptible for lung cancer than
males. The mechanism(s) is unknown but hormones may be involved,
modulating the expression of enzymes involved in the metabolism of
PAH. Estrogen receptors (ER-alpha and ER-beta) have been identified in
human lung cells (75). There is also recently presented evidence that the
observed sex difference in lung cancer risk may be explained by the expres-
sion of gastrin-releasing peptide receptor (GRPR) at a significant lower
exposure to tobacco smoke in females than males (76). Studies have shown
that bombesin-like peptides such as GRP induce cell proliferation in several
cell types, also human bronchial cells and may thereby stimulate promotion
in lung carcinogenesis (77).

7. CONCLUSION

Lung carcinogenesis is mediated through an interaction between several
putative carcinogens. The interplay between genetics and environmental
exposures is thought to be an important factor in lung carcinogenesis.
Several genetically controlled polymorphic enzymes and enzyme
systems have been recognized which are linked to tobacco carcinogen
activation and deactivation. Genetic differences in DNA repair may also
be important determinants of susceptibility. However, their interaction
and control as well as their contribution to lung cancer susceptibility and
tumor development is presently not well understood. Recent studies may
indicates sex difference in lung cancer risk. The mechanisms are still
unknown.
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1. INTRODUCTION

Head and neck cancers, also known as cancers of the upper aerodigestive
tract, are chiefly squamous cell carcinomas arising in the oral cavity,
pharynx, or larynx. About 40,000 persons are diagnosed with squamous cell
carcinoma of the head and neck (SCCHN) in the United States each year,
and about 12,000 die of the disease (1). The male:female ratio of patients
is about 2:1 for oral and pharyngeal cancer but 4:1 for laryngeal
cancer. Only a fraction of individuals exposed to tobacco smoke and=or
alcohol develop SCCHN, suggesting that there are differences in individual
susceptibility to carcinogenesis and that the impact of gene–environment
interactions should be considered. Tobacco carcinogens undergo a series
of metabolic activation and detoxification steps that determine the internal
dose of exposure and ultimately impact the level of DNA damage incurred.
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Both endogenous and exogenous exposure to carcinogens or genotoxic
agents cause cell-cycle delays (2) that allow cells to repair such DNA damage.
Therefore, the cellular DNA repair capacity (DRC) is central to maintaining
genomic integrity and normal cellular functions (3). Recently, molecular
epidemiological studies of tobacco-induced carcinogenesis were comprehen-
sively reviewed (4–6). Also, studies have shown that polymorphisms of genes
that control drug metabolism (7–9) and DNA repair (10–13) may contribute
to the variation in tobacco-induced carcinogenesis in the general population.
This chapter focuses on recent molecular epidemiological studies with an
emphasis on the role of DNA repair in susceptibility to SCCHN.

2. RISK FACTORS FOR SCCHN

2.1. Tobacco and Alcohol Exposure

Tobacco initiates a linear dose–response carcinogenic effect in which the
duration of exposure is more important than the intensity of exposure.
The major carcinogenic activity of cigarette smoke resides in the particulate
(tar) fraction, which contains a complex mixture of interacting cancer
initiators, promoters, and co-carcinogens. In the late 1950s, a landmark
case–control study by Dr. Ernst Wynder established the link between
tobacco use and oral cavity cancer (14). This was followed a year later by
a cohort study of more than 180,000 men that demonstrated an increased
risk of death due to SCCHN in cigarette smokers when compared with
men who never smoked (15). These studies also demonstrated an elevated
risk of death due to SCCHN in cigar and pipe smokers. Due to limitations
because of the sample size and follow-up time, Hill’s classic cohort study of
more than 40,000 British physicians showed only a borderline risk of
SCCHN related to smoking (16). In 1964, the Advisory Committee to the
Surgeon General on Smoking and Health published a report linking
smoking with cancer based on many of Doll & Hill’s classic criteria of dis-
ease causality, and these criteria have been clearly demonstrated linking
SCCHN and tobacco smoking over the past 40 years in multiple indepen-
dent studies (17–20). Most importantly, the strength and consistency of
the association between smoking and SCCHN have been demonstrated in
numerous case–control and cohort studies with significant relative risks
or odds ratios (ORs) in the 3–12-fold range. Furthermore, these studies
consistently showed a dose–response effect of the duration and dose of
smoking on increasing risk of SCCHN and of the time since quitting on
decreasing risk of SCCHN (17,18,21). The specificity of the link between
tobacco exposure and SCCHN (not identifying nonmucosal=unexposed
head and neck malignancies), coherence and analogy of the explanation
of tobacco-induced SCCHN to lung carcinogenesis, and biological plausibil-
ity of the well-established tobacco-induced carcinogenesis model have all
helped establish tobacco as the chief etiological agent in SCCHN.
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Although the risk of bronchogenic carcinoma appears to be less signi-
ficant for cigar and pipe smokers than for cigarette smokers, these forms of
tobacco use are clearly associated with an increased risk of SCCHN (21–23).
The pooling of saliva containing carcinogens in gravity-dependent regions
may account for the frequent occurrence of oral carcinomas along the
lateral and ventral surfaces of the tongue and in the floor of the mouth
(24). Smokeless tobacco use has also been demonstrated to be associated
with cancer of the oral cavity (25). Smokeless tobacco users and pipe
smokers who habitually use the same position for their quid and pipe stem,
respectively, often develop carcinomas and dysplasias at the specific site of
use, which suggests that physical and thermal trauma may be contributing
factors.

While the smoking rate is declining by approximately 1.5% annually in
the developed world, it is rising by 2% annually in developing countries,
home to four-fifths of the world’s population. In the United States, the
smoking rate has declined since the Surgeon General’s warning in 1964
(26). Specifically, in 1965, 42.4% of the U.S. adult population were
current smokers, while in 1999, only 23.5% were current smokers. While
the reduction in cigarette smoking has been much greater in men than in
women over the past three decades, the rate of current cigarette use remains
higher in men (25.7%) than in women (21.5%). Furthermore, 40.8% of
Native Americans continue to smoke (27). Other concerns include the
increasing rate of cigarette smoking among high school seniors and
dramatic increase in the number of new cigar smokers over the past decade
(26). A dramatic increase in smokeless tobacco use among younger people
has been implicated by some in the rise of oral cancer mortality rates in
this group (28,29). Striking variations in head and neck cancer sites and
incidence seen among different regions, cultures, and demographic groups
are due in large part to differing patterns of abuse of tobacco and other
substances (30). For example, smokeless tobacco and similar products are
used greatly in parts of Asia and Africa (30–32). In south central Asia in
particular, ‘‘pano’’ (betel leaf, lime, catechu, and areca nut) is commonly
chewed and is a strong risk factor independent of tobacco use for carcinoma
of the oral cavity, one of the most common cancers in men and women in
this region (32).

However, tobacco is not the only factor in the complex causality equa-
tion for these cancers. Alcohol is an important promoter of carcinogenesis
and a contributing factor in at least 75% of SCCHNs (17,18). Furthermore,
alcohol consumption appears to have an effect on the risk of SCCHN
independent of tobacco smoking, but this effect is consistently significant
only at the highest level of alcohol consumption (14,17,21). While studies
attempting to correlate the different types of alcoholic beverages with
specific cancer risks have been conflicting, most investigators believe that
ethanol itself is the main causative factor (14,21,33). Nevertheless, it appears

Head and Neck Cancers 477



that the major clinical significance of alcohol consumption is that it potenti-
ates the carcinogenic effect of tobacco at every level of tobacco exposure.
However, this effect is most striking at the highest levels of exposure, and
its magnitude is at least additive but may be multiplicative dependent on
the subsite of SCCHN and level of exposure (17,18).

2.2. Genetic Susceptibility

The predominant risk factor for SCCHN is a history of tobacco and alcohol
use. However, because only a fraction of smokers ever develop cancer,
variations in genetic susceptibility may be equally important in the disease
etiology. A genetic component of this disease is supported by large family
studies demonstrating a three- to eight-fold increased risk of SCCHN in
first-degree relatives of patients with SCCHN (34). Furthermore, there
is molecular epidemiological evidence supporting the concept of genetic
susceptibility in head and neck cancer patients (35). Emerging data from
case–control studies of several phenotyping and genotyping assays support
the hypothesis that genetic susceptibility plays an important role in the
etiology of SCCHN. According to this hypothesis, inherited differences in
the efficiency of carcinogen-metabolizing, DNA repair, and=or cell cycle
control=apoptosis systems influence one’s risk of tobacco-induced cancers.
Identifying such at-risk individuals in the general population using these
biomarker assays would have a profound impact on primary prevention,
early detection, and secondary prevention strategies.

2.3. Infectious Agents

While it has been suggested that various infectious agents play a role in
head and neck carcinogenesis, only Epstein–Barr virus (EBV) and human
papilloma virus (HPV) can be implicated as etiological agents in head and
neck carcinogenesis based on current scientific evidence. Epstein–Barr virus
appears to be associated with most nasopharyngeal carcinomas, while
HPV (most commonly, type 16) is associated with approximately 50% of
oropharyngeal carcinomas. Although herpes simplex viruses have been
suggested as risk factors for oral cavity cancer (36) and Helicobacter pylori
has been suggested as a risk factor for laryngeal cancer (37), confirmation of
these findings is lacking (38).

While laboratory evidence supporting the role of HPV as a risk
factor for SCCHN is largely circumstantial, HPV has been established as
an etiological agent in cervical cancer (39). More recently, several investiga-
tors suggested that infection with HPV, especially the high-risk HPV-16, is a
risk factor for SCCHN (40). The chief oncoproteins of HPV-16 are encoded
by the E6 and E7 genes. The E6 oncoprotein targets the tumor suppressor
gene p53 for ubiquitination and degradation; in fact, degradation of p53
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in HPV-positive cells is fully dependent on the presence of E6 (41). The E7
oncoprotein is involved in suppression of pRb function; reduced pRb
expression is common in HPV-positive tonsillar cancers (42). In vitro experi-
ments support the tumorigenicity of HPV-16 in human epithelial cells.
Furthermore, numerous studies using methods such as polymerase chain
reaction (PCR), Southern blotting, and in situ hybridization detected
HPV DNA in the tumor tissue and sera of SCCHN patients (40). In those
studies, oropharyngeal tumors and tumors in nonsmokers were the most
frequently positive for HPV DNA. However, because they did not include
cancer-free controls, most of these studies were unable to estimate the risk
of SCCHN attributable to HPV-16. Molecular epidemiological evidence
with a case–control design supporting the role of HPV-16 in SCCHN has
emerged, however (36,43). In a recent nested case–control study of 292 cases
and 1568 controls from a Scandinavian cohort of almost 900,000 subjects,
Mork et al. (44) reported that HPV-16 seropositivity was associated with
a 2.2-fold increased risk of SCCHN after multivariate adjustment. However,
25% of the cases in that study were not classic SCCHN: 3% were nasopha-
ryngeal cancers, 20% were lip cancers, and 2% were sinus cancers. Because
subjects with cancers at these sites were less frequently seropositive for
HPV-16, Mork and colleagues may have underestimated the risk of SCCHN
associated with HPV-16 exposure. In their subgroup analysis of oropharyn-
geal cancer, Mork et al. reported an estimated risk of 14.4 [95% confidence
interval (CI), 3.6–58.1]. An additional serological study using a population-
based case–control study design of 284 subjects with newly diagnosed oral
or oropharyngeal carcinoma and 477 cancer-free controls demonstrated a
significantly elevated risk associated with HPV-16 seropositivity (adjusted
OR, 2.3; 95% CI, 1.6–3.3) (45). While the researchers did not perform a
subgroup risk analysis for oropharyngeal cancer, the chief effect again
appeared to be in the oropharyngeal cancer subgroup, approximately 35%
of whom had cancer positive for HPV-16 DNA. The circumstantial,
mechanistic, and molecular epidemiological evidence strongly supports the
role of HPV-16 infection in oropharyngeal carcinogenesis.

2.4. Environmental Tobacco Smoke

A recent high-profile legal case in Australia has brought significant interest
to the risk of SCCHN secondary to exposure to environmental tobacco
smoke. In May 2001, the New South Wales Supreme Court found
that SCCHN in a 62-year-old nonsmoker was associated with long-term
exposure to environmental tobacco smoke in her job as a bar attendant
significant enough to impose liability on her employer (46). Two case–
control studies supported the court’s finding. In the first study of 173
SCCHN patients and 176 cancer-free controls, environmental tobacco
smoke exposure was associated with a greater than two fold increased risk
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of SCCHN, and a dose–response relationship was observed (47). In the
second study of 44 nonsmokers with SCCHN and 132 cancer-free nonsmok-
ing controls, environmental tobacco smoke exposure was associated with a
significantly increased risk of SCCHN (OR, 5.34), particularly in female
subjects (OR, 8.00) and those reporting exposure at their workplace (OR,
10.16) (48).

2.5. Laryngopharyngeal Reflux

Observational and anecdotal studies have long suggested that gastroesopha-
geal reflux is associated with laryngeal cancer (49,50). Furthermore, multiple
studies have objectively documented a high prevalence of gastric reflux into
the laryngopharynx using 24-h pH probe monitoring (50,51). Recently, a
retrospective case–control study of 10,140 inpatients and 12,061 outpatients
with laryngeal or pharyngeal cancer and 40,560 inpatients and 48,244
outpatient controls was performed using computerized hospital and
outpatient databases of the U.S. Department of Veterans Affairs (52).
A diagnosis of gastroesophageal reflux disease was associated with a
significantly elevated risk of laryngeal cancer (OR, 2.40; 95% CI, 2.15–
2.69; and OR, 2.31; 95% CI , 2.10–2.53 for inpatients and outpatient groups,
respectively) and of pharyngeal cancer (OR, 2.38; 95% CI, 1.87–3.02
and OR, 1.92; 96% CI, 1.72–2.15 for inpatients and outpatient groups,
respectively). These risk estimates were adjusted for age, gender, ethnicity,
smoking, and alcohol consumption.

2.6. Marijuana

Compared with tobacco smoke, marijuana smoke has a four times greater
tar burden and 50% higher concentration of benzo[a]pyrene and aromatic
hydrocarbons. While anecdotal evidence has long suggested that marijuana
smoking is a risk factor for SCCHN, few reports have found direct evidence
of marijuana as an etiological factor for SCCHN because most users of
marijuana are also exposed to tobacco and alcohol (53). A recent case–
control study that included 173 SCCHN patients and 176 cancer-free
controls demonstrated a cigarette smoking-adjusted risk of SCCHN of
2.6 (95% CI, 1.1–6.6) associated with marijuana use with evidence of a
dose–response relationship (54). However, a large retrospective cohort of
64,855 health maintenance organization members found no association with
tobacco-related cancers (55).

2.7. Diet

Epidemiological evidence from studies using traditional case–control study
designs suggests that a diet high in animal fats and low in fruits and
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vegetables may be a risk factor for SCCHN (56–59). Specifically, Winn and
colleagues found that the risk of oral and pharyngeal cancer in women was
inversely related to consumption of fresh fruits and vegetables (56). Simi-
larly, in a study of 871 individuals with oral or pharyngeal cancer and
979 cancer-free controls, McLaughlin et al. (57) demonstrated an inverse
relationship between fruit intake and oral and pharyngeal cancer risk. In
a Chinese population-based case–control study, intake of citrus fruits
and dark green=yellow vegetables was associated with a decreased risk of
laryngeal cancer, while intake of salted fish and meat as well as deep-fried
foods was associated with an increased risk of laryngeal cancer (58). More
recently, both European and U.S. studies have confirmed the protective
effects of eating fruits and vegetables and the risk of animal fat consumption
after adjustment for smoking and alcohol use (59,60). Some evidence
suggests that vitamin A and beta-carotene are responsible for the protective
effect of a diet high in fruits and vegetables and that a deficiency of carote-
noids appears to be a risk factor for SCCHN and lung cancers (58). It is not
known, however, which of the more than 500 carotenoids are protective,
which chemical interactions may occur, and which protective roles other
micronutrients in carotenoid-rich foods may play. Others have found that
total intake of vitamins C and E is also protective (56,60). Moreover, diets
are complex and difficult to assess and validate; in particular, there are often
inaccuracies in translating foods into constituent nutrients. Further studies
are needed to more precisely define the relationship between dietary
intake and serum levels of the various carotenoid components. It may be
impossible to determine which of the vast array of compounds is most
beneficial, and controlling for other dietary variables and confounding risk
factors has remained a difficult problem. Further confounding this situation
is that smoking has been associated with reduced dietary intake and
serum levels of carotenoids. Despite these many problems, prospective
and retrospective nutritional (serum and dietary) epidemiological studies
have provided important clues about the development and prevention of
these cancers.

3. MOLECULAR EPIDEMIOLOGY OF SCCHN

The study of genetic susceptibility can improve the accuracy of estimates
of association with carcinogen exposure (61). Tobacco toxicants affect
people to variable degrees. There is considerable interindividual variation
in cellular responses, for example, in metabolism and detoxification of
toxicants, and DRC. As other cellular responses to DNA damage are
identified (e.g., cell cycle delays, heat shock, etc.), interindividual variation
in risk is likely to be attributed to these responses as well. Interindividual
effects of cellular responses may be due to genetically determined differences
in enzyme expression, kinetics, or stability. Induction of enzymes from

Head and Neck Cancers 481



previous exposure or comorbidity also may contribute to cancer risk, and
induction has a genetic component.

Disease risk due to genetic variations ranges from small to large
depending on the genetic penetrance. Highly penetrant cancer susceptibility
genes cause familial cancers but account for less than 1% of all cancers (62).
Lowly penetrant genes cause common sporadic cancers and have greater
public health consequences (4) because they are highly prevalent.

Genetic susceptibility can be assessed either phenotypically (measuring
the resultant enzymatic function) or genotypically (determining the genetic
code). Phenotypic assays may include determination of enzymatic activity
by administering probe drugs and measuring blood levels or urinary
metabolites, assessing the carcinogen metabolic capacity in cultured
lymphocytes, or establishing the ratios of endogenously produced sub-
stances, such as estrogen metabolites. One of the most extensively studied
phenotypes in relation to smoking risk is aryl hydrocarbon hydroxylase
activity (63). In general, using a genotypic assay is preferable to using a
phenotypic assay to assess cancer risk because DNA is easier to obtain
and the assays are technically simpler. However, phenotypes represent a
multigenic trait and may not be adequately characterized with one genetic
assay. Therefore, there is a role for both genotype- and phenotype-based
assays in research studies of cancer risk.

3.1. Xenobiotic Metabolisms of Carcinogens in SCCHN

Mucosa of the upper aerodigestive tract can metabolically activate tobacco-
smoke carcinogens, resulting in DNA damage (64). The highest levels of
CYP1A1 expression have been reported in these tissues compared with that
in other sites (65). Also, NAT1 but not NAT2 activity has been demon-
strated in the mucosa of the head and neck, and there is evidence that
CYP2C plays an important role in these tissues. Furthermore, aromatic
DNA and 4-ABP adducts have been detected in laryngeal tissues at higher
levels in smokers than in nonsmokers (66,67).

N-nitroso compounds in smokeless tobacco have been demonstrated
to cause cancers of the mouth and lip, nasal cavity, esophagus, stomach,
and lungs in laboratory animals. Urinary metabolites of tobacco-specific
nitrosamines have been measured in persons using smokeless tobacco
products, with higher levels associated with oral leukoplakia, indicating
greater use of such products. Hemoglobin adducts to these carcinogens
are measurable in the blood of smokeless tobacco users (68) and thus may
be useful biomarkers for measuring exposure levels in them. For instance,
hemoglobin adduct levels have been found to be higher in snuff users than
in nonusers. Other exposures that occur with the use of smokeless tobacco
products include those to compounds that cause oxidative DNA damage
(69). Several studies have indicated that there is an increased risk of SCCHN
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among individuals who have a heritable trait, such as genetic polymor-
phisms of these genes, although which marker plays the greatest role is
not known (70–73), and there is evidence of a greater effect in persons at
lower levels of smoking (73). In one study, heritable traits in carcinogen
metabolism increased the frequency of p53 mutations (74).

The p53 gene is commonly mutated in cancers associated with the use
of smokeless tobacco products. While some differences in the spectrum
have been reported in different regions of the world, there are no consistent
hotspots or patterns when compared with oral cavity cancers related to
smoking. The mutational spectrum of p53 in SCCHN is similar to that
in lung cancer (75), although some disagree (76). Additionally, mutations
occur more often in smokers than in nonsmokers (75,77,78). In a study
by Brennan et al. (77), the frequency of p53 mutations was higher in
tobacco and alcohol users than in those who did not use tobacco or
alcohol.

3.2. DNA Repair Phenotype and Risk of SCCHN

Through the process of evolution, species of all living organisms have
developed sophisticated DNA repair pathways and mechanisms to battle
genomic insults from environmental hazards to survive and maintain geno-
mic integrity. The DRC appears to meet the challenge from the natural
environment. For instance, the human skin repair capacity just meets the
repair demand from sunlight exposure at midday (79). Overloaded DNA
damage leads to either cell death or mutant cancerous cells that have
escaped from repair systems. It has been reported that more than 150
human genes are involved in various repair pathways, a number that is
likely to increase when the Human Genome Project refines its published
draft of the human genome (80). These repair genes are grossly categorized
into the four most important and well-characterized repair pathways: base
excision repair (BER), nucleotide excision repair (NER), mismatch repair
(MMR), and homologous recombinational repair (HRR).

Assays that measure cellular DNA repair are now being applied in
population studies to investigate the association between DNA repair and
susceptibility to cancer. Generally, cellular responses to DNA damage fall
into three major categories: direct reversal of damage, e.g., enzymatic
photore activation; excision of damage by BER or NER; and postreplica-
tion repair, namely, MMR and HRR (3). While the presence of only one
unrepaired DNA lesion can block the transcription of an essential gene
(81,82), there is a wide range of repair ability in the general population
(83,84), with xeroderma pigmentosum (XP) patients representing the lowest
end of the repair spectrum (85). Because there is a shortage of target tissues
for laboratory experiments, peripheral blood lymphocytes have been used
extensively as surrogate tissues (83,86).
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3.2.1. Host-Cell Reactivation Assay for Nucleotide
Excision Repair

While there are many assays that measure the efficiency of multiple steps of
excision repair individually, the ability to test the whole pathway is needed
for population studies, in which time, cost, and repeatability of the measure-
ments are major concerns. Therefore, the host-cell reactivation (HCR)
assay, which measures the level of expression of a damaged reporter gene
as a marker of the repair proficiency in the host cell is the assay of choice
(87,88). The HCR assay uses undamaged cells, is relatively fast, and is an
objective method of measuring DRC. In this assay, a damaged nonreplicat-
ing recombinant plasmid (pCMVcat or pCVMluv) harboring a chloramphe-
nicol acetyltransferase (or luciferase) reporter gene is introduced into
cultured cells such as primary lymphocytes via transfection (88). For
instance, reactivated chloramphenicol acetyltransferase enzyme activity is
measured as a function of NER of the damaged reporter gene (87). Both
lymphocytes (83) and skin fibroblasts (89) from patients who have basal cell
carcinoma but not XP have lower excision-repair rates of a UV-damaged
reporter gene than individuals without cancer. This finding suggests
that the repair capacity of lymphocytes can be considered a reflection of
an individual’s overall repair capacity.

To investigate whether differences in DRC for repairing tobacco car-
cinogen-induced DNA damage are associated with differential susceptibility
to tobacco-related cancer, the HCR assay with benzo[a]pyrene diol epoxide
(BPDE) -damaged plasmids was used in both an initial pilot study (51
lung cancer patients and 56 frequency-matched controls) (90), and a
subsequent large hospital-based case–control study of lung cancer (316
lung cancer patients and 316 cancer-free controls) (84). Statistically signifi-
cantly lower DRC was observed in the patients when compared with the
controls, which was associated with a greater than two-fold increase in risk
of lung cancer (84). Compared with the highest DRC quartile in the con-
trols, suboptimal DRC was associated with an increased risk of lung cancer
in a dose–response fashion. Patients who were younger at diagnosis
(< 60 years), female, lighter smokers, or reported to have a family history
of cancer exhibited the lowest DRC and therefore were associated with
the highest lung cancer risk, suggesting that these subgroups may be espe-
cially susceptible to lung cancer (84). The low DRC found in women in this
study is consistent with epidemiological findings showing that women are at
higher risk for tobacco-induced cancer than men are at the same exposure
level (91–93). Using the same assay, Cheng et al. (94) investigated the role
of DRC in head and neck cancers. Again, DRC was significantly lower in
the patients than in the controls with a similar dose–response trend, that
is, those in the middle and lowest DRC tertiles had a greater than two-fold
and four-fold increased risk, respectively. These results suggest that
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suboptimal DRC may contribute to susceptibility to tobacco carcinogenesis,
such as in the lung and head and neck.

3.2.2. Mutagen Sensitivity Assay

The mutagen sensitivity assay is another functional assay that measures
chromatid breaks in response to in vitro exposure to carcinogens in short-
term cultures of peripheral blood lymphocytes. Several case–control
(95–97) and cohort studies (98,99) have suggested that induced and sponta-
neous lymphocytic chromosome aberrations can be used as markers of sus-
ceptibility to cancer. The implications of chromosomal aberrations and
genomic instability in carcinogenesis of the head and neck have been com-
prehensively reviewed elsewhere (100,101).

In the general population, the frequency of spontaneous chromosome
aberrations is low (102), and classic cytogenetic assays that assess these types
of aberrations may not be applicable to epidemiological studies requiring a
large number of samples. Therefore, Hsu et al. developed an assay
of mutagen sensitivity to measure genetic susceptibility to cancer by estimat-
ing the frequency of in vitro bleomycin-induced breaks in short-term
lymphocyte cultures (103,104). Bleomycin is considered radiomimetic (i.e.,
it causes the generation of free oxygen radicals), which is relevant to
tobacco-induced carcinogenesis because numerous compounds in tobacco
condensate may generate free oxygen radicals that can induce single- and
double-strand breaks. Mutagen sensitivity has consistently been shown to
be a significant independent predictor of the risk of upper aerodigestive tract
cancers in case–control studies (96,97,103,105,106). For instance, lighter and
former smokers appear to be more sensitive than heavier smokers do as mea-
sured by this bleomycin assay, as do younger patients compared with older
ones. In upper aerodigestive tract cancer patients, bleomycin sensitivity has
been found to be highest in those under the age of 30 years among the age
groups investigated (107). These results suggest that the mutagen sensitivity
assay may serve as a biomarker for susceptibility to tobacco-related cancers.

The bleomycin assay was later modified by using BPDE as the test
mutagen (108), and this BPDE sensitivity was found to be associated with
a significantly elevated risk for head and neck cancer (109). In this pilot
case–control study of 60 SCCHN patients and 112 healthy controls, a high
frequency of BPDE-induced chromatid breaks was associated with a greater
than two-fold increase in the risk of head and neck cancer, and there
was a dose–response relationship between the frequency of BPDE-induced
chromatid breaks and risk of SCCHN, suggesting that the number of
BPDE-induced breaks per cell is a significant risk factor for head and neck
cancer (109). The findings that cancer is more likely to develop in younger
people who have the BPDE sensitive phenotype support the hypothesis that
the presence of BPDE-induced chromatid breaks is a marker for genetic
susceptibility to tobacco-induced carcinogenesis.
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It has been suggested that the mutagen sensitivity assay indirectly
measures the effectiveness of one or more DNA repair mechanisms (110).
A correlation between the cellular DRC measured using the HCR assay
and frequency of mutagen-induced in vitro chromatid breaks has been
reported (11,90,111). Mutagen sensitivity may also be involved in an
inherent chromatin alteration that permits more efficient translation of
DNA damage into chromosome damage after exposure to a mutagen
(112). Although the mechanism underlying the association between induced
chromosomal aberrations and susceptibility to cancer remains to be
unraveled, tobacco smoke causes both oxidative damage and bulky adducts.
Defects in both BER and NER mechanisms may therefore dramatically
increase the risk of smoking-related cancer.

3.2.3. 32P-Postlabeling Assay of DNA Adducts

A relatively large variation has been observed in the level of persistent DNA
adducts in vivo believed to be related to smoking (113,114). Although this
variation may be partly due to the experimental methodology used, it
may also be a true biological variation that is a valid phenotypic marker
for the joint effect of host metabolic activities and DNA repair in response
to carcinogen exposure (115). Using the 32P-postlabeling assay developed by
Reddy and Randerath (116), Phillips et al. (117) noted a linear relationship
between the levels of aromatic DNA adducts in the human lung and number
of cigarettes smoked per day. While some studies have failed to find a
correlation between lymphocyte adduct levels and smoking habits
(118,119), one study did report a significant difference between the aromatic
DNA adduct levels in smokers and nonsmokers (86).

A large variation in adduct levels in vivo may be driven by a variation
in the activities of enzymes involved in carcinogen bioactivation (120,121)
such as CYP1A2 (122), which can be induced by smoking in the target tis-
sues (123). To tackle this problem, Li et al. (115) developed a new assay of in
vitro induction of carcinogen–DNA adducts by an ultimate carcinogen. In
this assay, stimulated lymphocytes were treated with BPDE (the ultimate
carcinogen of benzo[a]pyrene, which does not need bioactivation). There-
fore, variation in the level of BPDE-induced DNA adducts should reflect
only genetic variation in phase II enzymes and DRC. However, phase II
enzymes have little, if any, effect on the in vitro formation of adducts in
this assay because of the relatively high concentration of BPDE used
(4 mM) and the rapid binding of BPDE to DNA, which peaks within
15min (124). This ultimate carcinogen generates in vitro adduct levels that
are 100-fold higher than in vivo adduct levels. Furthermore, the variation in
such induced adduct levels is within 100-fold rather than 1000-fold as often
seen in vivo.

In a pilot study of 91 patients with SCCHN and 115 cancer-free con-
trols, Li et al. (125) found that the levels of BPDE-induced DNA adducts

486 Wei et al.



were significantly higher in patients than in the controls. Using the median
level of control values (35=107) as the cutoff point, they also found that
about 66% of the patients were distributed above this level. High levels of
BPDE-induced DNA adducts were associated with a greater than two-fold
increased risk. There was a statistically significant dose–response relation-
ship between the quartile levels of BPDE-induced DNA adducts and risk
of head and neck cancer, suggesting that this biomarker may compliment
others in identifying individuals at increased risk for developing tobacco-
related cancers. Indeed, similar findings were observed in lung cancer studies
(115,126).

3.2.4. Assays of DNA Repair Gene Transcript (mRNA) Levels

While the DRC phenotype can be affected by polymorphisms of genes that
participate in the repair pathway, epigenetic factors may also influence the
repair outcome. For instance, the level of expression of repair genes may
be affected epigenetically. To investigate the variation in expression, a
multiplex RT-PCR assay has been used to measure the levels of several
DNA repair gene transcripts relative to those of a ubiquitous housekeeping
gene (127). In this technique, transcripts from several repair genes and the
b-actin gene are simultaneously amplified, and the transcript levels are
quantified in relation to the b-actin level using computerized densitometry
analysis of gel electrophoresis of the multiplex RT-PCR products. This
assay is also flexible in that it groups the genes involved in the same repair
pathway such as MMR (128) or NER (129) into one experiment.

Using this multiplex RT-PCR assay, Wei et al. (130) simultaneously
evaluated the relative levels of expression of five MMR genes (hMSH2,
hMLH1, hPMS1, hPMS2, and hGTBP=hMSH6) in the peripheral blood
lymphocytes of 78 patients with head and neck cancer and 86 cancer-free
controls. The relative MMR gene expression was not correlated with the
disease stage or tumor site in the patients or with smoking and alcohol
use in the controls, but it did increase with age in both patients and controls.
The mean level of expression of hMLH1, hPMS1, and hGTBP=hMSH6 was
significantly lower in the patients than in the controls. Low expression of
hMLH1 was associated with a greater than four-fold increase in risk, while
low expression of hGTBP=hMSH6 was associated with a greater than
two-fold increase in risk. Cheng et al. (131) used this assay to measure the
relative level of expression of five NER genes ERCC1 (ERCC, excision
repair cross-complementing), XPB=ERCC3, XPG=ERCC5, CSB=ERCC6
(CSB, Cockayne’s syndrome complementary group B), and XPC and in
phytohemagglutinin-stimulated peripheral blood lymphocytes obtained
from 57 SCCHN patients and 105 cancer-free controls. They found
that the levels of ERCC1, XPB=ERCC3, XPG=ERCC5, and CSB=ERCC6
transcripts were lower in the patients than in the controls. In a multivariate
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logistic regression analysis (adjusting for age, gender, race, smoking status,
and alcohol use), low expression of ERCC1, XPB=ERCC3, XPG=ERCC5,
and CSB=ERCC6 was associated with a statistically significantly increased
risk of SCCHN (adjusted OR (95% CI), 6.42 (2.63–15.69), 2.86 (1.39–
5.90), 3.69 (1.73–7.90), and 2.46 (1.19–5.09), respectively). These results sug-
gest that individuals with low expression of DNA repair genes may be at
higher risk for SCCHN.

3.3. DNA Repair Genotypes and Risk of SCCHN

Polymorphisms of DNA repair genes may also contribute to variations
in DRC. Clearly, functional (phenotypic) studies of DNA repair in indivi-
duals with various DNA repair genotypes are needed. However, it will be
difficult to detect subtle differences in DRC in such studies due to a single
polymorphism of a single gene in a very complex pathway. Recently, the
entire coding regions of the following DNA repair genes on chromosome
19 were resequenced in 12 normal individuals (132): three NER genes
(ERCC1, XPD=ERCC2, and XPF=ERCC4), one HRR gene (XRCC3),
and one BER gene (XRCC1). Among these, 7 variants of ERCC1, 17 vari-
ants of XPD=ERCC2, 6 variants of XPF=ERCC4, 4 variants of XRCC3,
and 12 variants of XRCC1 were identified. Of these variants, 4 of
XPD=ERCC2, 3 of XRCC1, 1 of XRCC3 and 1 of XPF=ERCC4 result in
an amino acid sequence change. Later, another 6 variants of XPF=ERCC4
were identified in 38 individuals (133), 2 variants of XPA (chromosome 9),
and 2 variants of XPB=ERCC3 (chromosome 2) were identified in 35
individuals, and 2 variants of XPC (chromosome 3) (134) and 3 variants
of XPG=ERCC5 (chromosome 13) (135) were also identified. Although
the significance of these variants is largely unknown, the implication is those
that cause amino acid substitutions may have an impact on the function of
the proteins and therefore on the efficiency of DNA repair. Variants that do
not cause an amino acid change may also have an impact on the DNA
repair function through altered splicing, mRNA instability, or linkage with
other genetic changes. Therefore, knowing the impact of these polymor-
phisms on disease risk is important to ultimately understanding their func-
tional relevance.

The XPD protein is an evolutionarily conserved helicase, a subunit of
transcription factor IIH (TFIIH) that is essential for transcription and NER
(136). Mutations in XPD prevent its protein from interacting with p44,
another subunit of TFIIH (137), and decrease helicase activity, resulting
in a defect in NER. Furthermore, mutations at different sites result in
distinct clinical phenotypes (138). XPD is also thought to be involved in
the repair of genetic damage induced by tobacco carcinogens (111).

Several XPD polymorphisms were recently identified in the coding
regions of different exons at a relatively high frequency (132,139). These
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common polymorphisms (allele frequencies> 0.20) included C22541A
(156Arg) of exon 6, C35326T (711Asp) without amino acid changes and
G23592A (Asp312Asn) of exon 10, and A35931C (Lys751Gln) with amino
acid changes of exon 23. The Lys751Gln polymorphism is located about
50 bp upstream from the poly(A) signal and therefore may alter XPD pro-
tein function (139). In a study of 31 women, those with the 751Gln=Gln
genotype were found to have a higher number of chromatid aberrations
induced by X-rays (140). However, this finding was not confirmed in
another study that measured the frequency of smoking-induced sister chro-
matid exchanges and polyphenol DNA adducts (n¼ 61) (141).

In a case–control study of 189 SCCHN patients and 496 cancer-free
controls, Sturgis et al. (111) found that the frequency of the XPD 22541
AA homozygous genotype was lower in the patients (15.9%) than in the
controls (20.4%), but that the difference was not statistically significant.
However, the frequency of the 751Gln=Gln homozygous genotype was
higher in the patients (16.4%) than in the controls (11.5%) and was asso-
ciated with a borderline increased risk (OR, 1.55). The risk was higher in
older subjects (OR, 2.22), current smokers (OR, 1.83), and current drinkers
(OR, 2.59). Although no studies reported the role of the Asp312Asn variant
in the etiology of SCCHN, the Asp312Asn variant was found to be
associated with a nearly two fold increase in the risk of lung cancer in
two independent studies (142,143). The XPD C22541A and C35326T poly-
morphisms are silent, resulting in no amino acid substitutions (132), and
they were not found to be associated with an increased risk of cancer
(11,144). However, it is possible that such a sequence variation could affect
RNA stability or otherwise disturb protein synthesis (139).

Several polymorphisms of XRCC1 have also been identified (132).
They include those that result in a nonconservative amino acid substitu-
tion at C26304T of codon 194 (Arg194Trp) in exon 6, G27466A of codon
280 (Arg280His) in exon 9, and G28152A of codon 399 (Arg399Gln) in
exon 10. Although the functional relevance of these variants is unknown,
codon 399 is within the XRCC1 BRCT (breast cancer susceptibility pro-
tein-1) domain (codons 314–402) (145), which is highly homologous to
BRCA1 (a gene also involved in DNA repair) and contains a binding site
for poly(ADP-ribose) polymerase (PARP) (146). Because the role of
XRCC1 in BER involves bringing together DNA polymerase b (b-pol),
DNA ligase III, and PARP at the site of DNA damage (147–149), the
codon 399 variant may have an impact on repair activity. The codon
194 polymorphism resides in the linker regions of the XRCC1 N-terminal
domain separating the helix 3 and b-pol involved in the binding of a
single-nucleotide gap DNA substrate (150). Lunn et al. (151) reported that
the codon 399 variant was associated with higher levels of both aflatoxin
B1-DNA adducts and glycophorin A variants in a normal population, sug-
gesting that this variant is an adverse genotype. However, few studies have
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examined the associations between polymorphisms of the DNA repair
gene XRCC1 and risk of cancer.

In another case–control study, Sturgis et al. (10) reported that 89% of
203 SCCHN patients and 86% of 424 cancer-free controls lacked the
XRCC1 codon 194 Trp variant, resulting in a significant risk of oral cavity
and pharyngeal cancers (OR, 2.46). Thirty-two patients (16%) and 46
controls (11%) were homozygous for the codon 399 Gln variant (adjusted
OR, 1.59 for all cases). Furthermore, when the two genotypes were
combined, the adjusted OR was 1.51 for either risk genotype and 2.02 for
both risk genotypes. In addition, the codon 399 Arg=Gln and Gln=Gln
genotypes were associated with increased risk of breast cancer in African
Americans (152) and gastric cancer in a Chinese population (153), the codon
280 Arg=His and His=His genotypes were associated with increased risk of
lung cancer in a Chinese population (154), and the 194Trp and 399Gln
variant alleles were associated with increased risk of colon cancer in an
Egyptian population (155). However, not all of these polymorphisms were
found to be associated with increased risk of cancer in other studies
(143,144,156). Despite some conflicting reports, the variants of XRCC1
and their impact on cancer risk have generated much interest recently (157).

The hOGG1 gene is localized on chromosome 3p25 and encodes two
proteins that result from alternative splicing of a single messenger RNA
(158,159). The alpha-hOGG1 protein undergoes nuclear localization,
whereas the beta-hOGG1 protein is targeted to a mitochondrion. A poly-
morphism at codon 326 (Ser326Cys) produces the hOGG1-Ser326 and
hOGG1-Cys326 proteins (160). Also, the mutant forms hOGG1-Gln46
and hOGG1-His154 are defective in their catalytic capacity, especially for
8-OH-Gua (161). The activity in the repair of 8-hydroxyguanine appears
to be greater with the Ser326 protein than with the Cys326 protein. Because
tobacco carcinogens produce 8-hydroxyguanine residues, the capacity to
repair these lesions can be involved in cancer susceptibility. This polymor-
phism was identified in European patients with head and neck or kidney
cancer but not associated with increased risk (162).

In a study using buccal cell DNA isolated from 169 white orolaryngeal
cancer patients and 338 race-, sex-, and age-matched controls, Elahi et al.
(162) screened normal orolaryngeal tissue specimens for hOGG1 expression
and assessed the role of the hOGG1 Ser326Cys polymorphism in the risk of
orolaryngeal cancer. They detected hOGG1 mRNA in all aerodigestive tract
tissues tested, including the tonsil, tongue, floor of the mouth, larynx, and
esophagus. They also found significantly increased risk of orolaryngeal
cancer with the hOGG1 326(Ser)=326(Cys)(OR, 1.6; 95% CI, 1.04–2.60)
and hOGG1 326(Cys)=326(Cys) genotypes (OR, 4.1; 95% CI, 1.3–13).
However, no significant differences in risk of orolaryngeal cancer were
observed with hOGG1 genotypes in never smokers and never drinkers of
alcohol, suggesting that the hOGG1 Ser326Cys polymorphism plays
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an important role in the risk of tobacco- and alcohol-related orolaryngeal
cancer.

In conclusion, studies of the correlation between the DNA repair
genotype and phenotype are needed, and large well-designed, confirmatory
case–control or cohort studies will be required to verify the impact of the
DNA repair phenotype and its genetic variants on cancer risk.
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1. INTRODUCTION

Despite focused efforts over the last two decades to further understand the
causes of breast cancer, little new information has been gained regarding
breast cancer etiology. Risk factors that are ‘‘known’’ explain approxi-
mately 40% of the variability in incidence (1); the remaining risks for
breast cancer are yet to be determined. Breast cancer appears to be ex-
tremely heterogeneous, with multiple factors contributing to the etiology
of the disease. It is plausible that a number of lifetime events and exposures,
in combination with variability in key genes that metabolize steroid hor-
mones, dietary factors, and chemical carcinogens, as well as those involved
in DNA repair, signal transduction, and cell cycle control, are likely to be
responsible for carcinogenesis in the breast. The focus of this chapter will
be to review known and suspected risk factors for breast cancer, and the pos-
sible modification of risk relationships by genetic variability in mechanistic
pathways.
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2. KNOWN BREAST CANCER RISK FACTORS AND
PARADIGMS OF CARCINOGENESIS

Perhaps the most consistent risk factor for breast cancer is diagnosis of
the disease in a first-degree relative. A positive family history of breast
cancer may or may not imply genetic susceptibility, however. It may also
be due to similar environments or lifestyle habits, i.e., risk factors that are
common to the mother are also common to the daughter(s). It is also pos-
sible that familial occurrence due to an inherited susceptibility is heteroge-
neous in mechanism and strength. Genetic susceptibility may reside in
more than one gene locus, i.e., in proto-oncogenes related to signal trans-
duction and cell cycle control, in hormone metabolism or responsiveness,
in allelic loss in tumor suppressor genes, or polymorphisms in genes
involved in carcinogen metabolism and detoxification, DNA repair, and
immune response.

There is considerable clinical and epidemiological evidence to suggest
that breast cancer is influenced by hormones, and to a lesser extent environ-
mental exposures. Well-established risk factors for breast cancer include
early age at menarche, late age at menopause, late age at first full-term preg-
nancy, and nulliparity. Body size also appears to influence breast cancer
risk, but appears to differ according to menopausal status. High body mass
index (BMI) is associated with increased risk of breast cancer among post-
menopausal women, but not premenopausal women. Other putative risk
factors for breast cancers originate in the environment. The presumed rela-
tionship between dietary fat and breast cancer risk has not been supported
in most epidemiologic studies. There are somewhat consistent data to sug-
gest that consumption of fruits and vegetables decreases risk, however.
There are also consistent data indicating that alcohol consumption, even
moderate use, increases risk of breast cancer. Cigarette smoking, despite
being a biologically plausible risk factor, has been associated with increased
risk of breast cancer only among certain subgroups of women.

There are primarily two paradigms proposed to link the above risk
factors to breast carcinogenesis. The historically older model, which has pre-
dominated until recently, is that of two-stage carcinogenesis. Based on
rodent experiments, this is a model of initiation and promotion; cells that
develop mutations through DNA damage replicate and immortalize that
damage. In the case of breast cancer, replication would be driven by the
mitotic stimulation of circulating steroid hormones. While we now know
that there are likely multiple ‘hits’ that damage DNA, and multiple genetic
events occurring over a number of years, this model of DNA damage and
cell replication is still plausible. There are a number of factors that could
initiate DNA damage, including chemical carcinogens, hormone metabo-
lites, spontaneous errors in replication, and reactive oxygen species (ROS)
that could be generated through a number of processes.
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The second paradigm of carcinogenesis in hormonally responsive
tissue asserts that steroid hormones are complete carcinogens. Biosynthesis
and metabolism of estrogens is mediated by a number of enzymes, many
which are polymorphic. Some estrogen metabolites, namely the 4-hydroxy
catechol estrogen, have been shown to bind to DNA and cause mutations.
In this scenario, estrogens would act as both the DNA damaging agent and
the mitotic stimulator.

The ability to link breast cancer risk factors to mechanisms of carcino-
genesis can be enhanced by exploring the role of genetic polymorphisms in
the various pathways related to exposure and response in affecting ultimate
agents that can damage DNA. Polymorphisms in genes involved in the
metabolism of steroid hormones or chemical carcinogens can be related to
levels of ultimate reactive intermediates. The identification of genetic vari-
ants that might modify associations between exposure and disease has the
potential to elucidate risk relationships more clearly, as well as to identify
subsets of the population that are most susceptible to certain exposures.

3. MODIFICATION OF EXPOSURES BY
NONGENETIC FACTORS

The primary focus of this chapter will be the effects of genetic variability on
associations between risk factors and breast cancer. However, in addition to
genetic factors, demographic or lifestyle variables may impact the effects of
exposures on ultimate breast cancer risk. The age at which exposures occur
may influence breast cancer risk and the impact of risk factors may vary
depending on the age at which breast cancer is diagnosed.

3.1. Timing of Exposures

The timing of carcinogenic exposures may be critical to risk of breast cancer.
In rats, carcinogens administered before a first pregnancy result in twice the
tumor load than in rats exposed after mammary cell differentiation (2). As
reviewed by Colditz and Frazier (3) and confirmed by Marcus et al. (4,5),
studies of the effects of irradiation, alcohol consumption, and cigarette
smoking have shown that breast cancer risk is increased by exposure at
an early age. Colditz suggests that genetic damage resulting from exposures
before a first pregnancy may be immortalized by cell proliferation during
breast development and pregnancy, and that the decrease in cell turnover
following pregnancy may prevent further genetic damage, thus reducing
risk. An understanding of the importance of the age at which exposures
occur may be of key importance for strategies in cancer prevention.

3.2. Age at Diagnosis of Breast Cancer

It is possible that etiologic pathways may differ for pre- and postmenopausal
breast cancer, with the effects of specific risk factors having differential
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effects by menopausal status. For example, research indicates that there is a
crossover effect of BMI by menopausal status (6–9). As reviewed by Hunter
and Willett (10), the majority of breast cancer studies have found that higher
BMI increases risk for postmenopausal women, but leaner women are at
increased risk for premenopausal breast cancer. Relationships between
exposures and breast cancer risk may also vary between subsets of indivi-
duals depending upon numerous other modifying factors, a few of which
include dietary intakes of macro- and micronutrients, smoking, and repro-
ductive histories. Another extensively studied putative effect modifier of
breast cancer risk is a history of breast cancer in a first-degree relative.

4. MODIFICATION OF EXPOSURE=DISEASE RELATIONSHIPS
BY GENETIC FACTORS

4.1. Family History of Breast Cancer

In most epidemiological studies, the presence of breast cancer in a first-
degree relative is associated with an approximate twofold elevation in breast
cancer. Among women with a family history of breast cancer, a proportion
of them may carry mutant alleles in BRCA1 or BRCA2, which confer a high
lifetime risk of breast cancer. However, while only a small proportion of the
population of women with breast cancer carry BRCA mutations (<3%),
most studies indicate that approximately 15% of the cases report breast can-
cer in a first-degree relative. Some studies have indicated that a family his-
tory of breast cancer may alter risks associated with other factors. Sellers
and colleagues reported that risks associated with hormone replacement
therapy, body fat distribution, and a number of reproductive factors varied
by family history of breast cancer (11–14). Other investigators have noted
similar modification of risk by reported family history of a number of repro-
ductive and dietary factors (15–22).

4.2. BRCA1 and BRCA2 Genes

The identification of breast cancer susceptibility genes, BRCA1 and
BRCA2, has enabled researchers to more clearly evaluate the effects of
genetic predisposition on breast cancer risk, particularly among younger
women (23,24). The two genes are believed to be responsible for most here-
ditary breast cancers, particularly early-onset breast cancer. Breast cancer
associated with BRCA1 and BRCA2 has high penetrance, and predisposi-
tion is inherited as a dominant genetic trait. While this mutation is present
in families with hereditary breast cancer, it was also found in 10% of a popu-
lation-based cohort of women diagnosed with breast cancer before the age
of 35 (25). Even for women with hereditary breast cancer, however, it
appears that risk and age at onset may be modified by a number of other
exogenous and endogenous factors.
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There is considerable interest in the effect endogenous hormones have
on risk of breast cancer among BRCA1 and BRCA2 mutation carriers. In
an investigation of reproductive factors, Narod and colleagues found that
low parity, but not age at first or last pregnancy, was associated with risk
of developing breast cancer among women who carried the BRCA1 muta-
tion (26). More recent evidence indicates that risk of breast cancer may be
significantly reduced among BRCA1 carriers with a history of bilateral pro-
phylactic oophorectomy (27). The proposed mechanism for this protective
effect relates to the reduced exposure to endogenous ovarian hormones
associated with such a procedure.

Polymorphic genes involved in endocrine processes may also influence
risk of breast cancer among BRCA1 carriers. Rebbeck et al. reported that
among women with a BRCA1 mutation, those with the CAG repeat-length
polymorphism in the androgen receptor (AR) gene (28) and the variant
AlB1 genotype (29) were at greater risk of developing breast cancer than
those without these alterations. Four subsequent studies did not confirm
these findings (30–33), however, Haiman et al. using data from the Nurses’
Health Study, found that longer AR repeat alleles were overrepresented
among women with a family history of breast cancer (34).

There is little existing research on the effects of exogenous exposures
on BRCA1=BRCA2-associated breast cancer risk. Brunet and colleagues
(35) evaluated the effect of smoking on risk of breast cancer among BRCA1
or BRCA2 mutation carriers. Results from this investigation showed that
smokers were at significantly reduced risk of BRCA1=BRCA2-associated
breast cancer, possibly the result of the suspected antiestrogenic effect asso-
ciated with cigarette smoking. Johansson et al. and Jernstrom et al. both
reported that BRCA1=BRCA2 mutation status modified the effects of
pregnancy-related factors on breast cancer risk (36,37).

5. TRADITIONAL AND SUSPECTED RISK FACTORS FOR
BREAST CANCER

5.1. Diet

While ecological and animal studies indicate that dietary fat intake may
increase risk, cohort and case–control studies generally do not supported
this hypothesis (38). Investigators have also studied possible associations
with other related variables, such as total calories, animal fat and meat con-
sumption (10,39,40), with mixed findings. There have been somewhat con-
sistent data to indicate that a diet high in fruits and vegetables decrease
risk of breast cancer, and the data strongly suggest moderate alcohol intake
is associated with increased risk (41,42). Whether or not associations
between these factors and risk are of the same magnitude for all women,
however, has not been established. It is likely that for some women, the
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deleterious or protective effects of diet are more pronounced than for other
women, based on metabolic variability.

5.2. Animal Products, Dietary Fat, and Heterocyclic Amines

Studies of the consumption of animal products, particularly meat, have
yielded inconsistent results, although a meta-analysis of 5 cohort and 12
case–control studies by Boyd and colleagues revealed a summary relative
risk of 1.54 [95% Confidence interval (CI) 1.31–1.82] associated with con-
sumption of red meat (43). A more recent investigation, however, involving
a pooled analysis of cohort studies found no association between meat
consumption and breast cancer (40). The assessment of meat as a risk factor
for breast cancer has focused primarily on its role as a source of dietary fat
or animal protein. Dietary fat intake has long been hypothesized to be
associated with breast cancer risk (44) based on animal studies (45), ecologic
studies (46,47), and studies of migrants from areas with low fat intake to
those with high fat intake (48). However, many analytic epidemiological
studies have not shown an effect of fat, including the results of a pooled
analysis of seven cohort studies (38). Recently, it has been suggested that
diet in childhood and at the time of puberty may be of importance (49). Evi-
dence from animal studies suggests that only fat intake before the first preg-
nancy affects risk (50). It is possible that the failure to identify an
association of fat intake with breast cancer in epidemiological studies may
be because intake early in life, rather than recent consumption, is most
important. Failure to detect an association may also be due to fact that there
is not enough variability in fat consumption within populations (i.e., there
are too few individuals with low intakes) (51,52), or because of measurement
error inherent in dietary questionnaires (52). It may also be that specific
types of dietary fat are more important than total fat, and investigators have
not been evaluating the proper variables.

Blood levels of lipoproteins have been investigated in relation to breast
cancer etiology as a potential mediating factor on the relationship between
dietary fat and risk and as an independent risk factor. The associations
between serum and plasma total cholesterol, high-density lipoprotein
(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycer-
ides have been widely studied, but results from these investigations are
inconsistent.

The apoE protein plays an important role in lipid metabolism (53)
and has three common isoforms (E2, E3, and E) coded by the alleles e2,
e3, and e4. In general, compared to individuals with the e3 allele, levels of
total and LDL cholesterol tend to be lower for those with the e2 allele
and higher for those with the e4. The e4 allele has been associated with
increased risk for coronary heart disease (54,55) and Alzheimer’s disease
(56) and has been found to be underrepresented in elderly populations
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(57), including elderly coronary heart disease patients (55) and elderly smo-
kers (58). With respect to breast cancer, Moysich et. al. (59) reported that
women with the highest serum triglyceride levels had an increase in risk
compared to women with the lowest levels. This effect was not apparent
among women with the e2 or e3 alleles, but much stronger among women
with at least one e4 allele, suggesting that the apoE 4 genotype may modify
the association between serum triglycerides and breast cancer risk.

If meat consumption does increase breast cancer risk, it may not be due
to its fat content, but rather to other components. Three recent studies found
that breast cancer risk was significantly increased by consumption of meat,
after controlling for total fat or protein (39,60,61). It is possible that meat con-
sumption may impact breast cancer risk as a result of mutagens and carcino-
gens, such as heterocyclic amines, which are formed in the cooking of meats
and are potent mammarymutagens and carcinogens in rodent models (62,63).
One of the most abundant heterocyclic amines, PhIP, has been detected in
breast milk indicating direct exposure of ductal epithelial cells to this potent
mutagen (64–66). Ultimate levels of heterocyclic amines depend on cooking
method, cooking time, cooking temperature, and protein source (63).

In addition, metabolism of heterocyclic and aromatic amines varies
among individuals and depends, in part, on polymorphisms in genes
involved in their metabolism, such as N-acetyltransferases NAT1 and
NAT2 and cytochrome P4501A2 (CYP1A2) (67). Several polymorphic sites
have been identified at the NAT2 locus, and result in decreased N-acetyl-
transferase activity (68). Slow NAT2 acetylation of aromatic amines is asso-
ciated with increased risk for bladder cancer (69) and may increase
postmenopausal breast cancer risk associated with cigarette smoking (70).
Heterocyclic amines appear to be poor substrates for N-acetylation at the
liver, however, and rapid O-acetylation of the activated metabolites by
NAT2 in the target tissue appears to be associated with increased risk of
colon cancer related to consumption of red meat (71).

In a pilot study of colon cancer, Lang et al. found that individuals with
rapid activation by CYP1A2 and rapid O-acetylation by NAT2 had almost
three times the risk of colon cancer as those with slow phenotypes (72). More
recently, LeMarchand et al. confirmed this finding in a population-based,
case–control study in Hawaii (73). They found that well-done meat intake
increases risk of colorectal cancer, particularly in people who inherited the
rapid phenotype for both NAT2 and CYP1A2. This association was only
observed among smokers, however, presumably since CYP1A2 is induced
by cigarette smoking. Because heterocyclic amines appear to be mammary
carcinogens, it is possible that rapid hepatic activation by CYP1A2 and
further activation by NAT1 or NAT2, may be related to breast cancer risk
(74–76). Thus, heterocyclic amines may be associated with increased breast
cancer risk among women with rapid CYP1A2 and rapid NAT2 status.
Findings from epidemiological studies, however, have been inconsistent.
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We found no associations between meat consumption, NAT2, and
breast cancer in a study of Caucasian women in western New York (77).
However, the questionnaire used was not designed to evaluate heterocyclic
amines per se, thus substantial misclassification was possible. Using Sinha’s
questionnaire specifically designed for heterocyclic amine exposure, Zheng
et al. (78) recently reported that consumption of well-done meats increased
breast cancer risk in a dose-dependent manner. Deitz et al. also reported an
elevated association between well-done meats and breast cancer risk among
rapid=intermediate NAT2 acetylators (79). In a subsequent paper (80),
Zheng et al. examined the role of NAT1 genetic polymorphisms and risk
related to smoking and meat consumption. They reported that the NAT1�11
allele, thought to result in rapid activation, resulted in a significant sixfold
increase in breast cancer risk among women who were high consumers of
red meat. Among women with low intake, there was a nonsignificant risk
of less than three associated with that putative allele. Contrary to these find-
ings, Gertig and colleagues (81) and Delfino et al. (79) did not report an
increased risk with read meat consumption, and risk was not modified by
NAT2 status.

5.3. Fruit and Vegetable Consumption

There are fairly consistent data indicating that higher consumption of fruits
and vegetables is associated with decreased breast cancer risk (82,83),
although not all studies support such an association (84,85). Fruits and
vegetables are sources of a number of nutrients, including antioxidant vita-
mins such as carotenoids, the tocopherols, and vitamin C. Several nutri-
tional epidemiological studies have noted inverse associations between
dietary antioxidants and breast cancer risk (86–88). The mechanistic rela-
tionship of these putative risk factors, however, has not been elucidated.
One hypothesis is that dietary antioxidants affect oxidative stress and the
production of reactive oxygen species (ROS) by altering the balance between
prooxidant cellular activity and antioxidant defenses (89). Reactive oxygen
species are produced by normal cellular respiration and as a result of inflam-
mation and cellular stress (90). When ROS are the result of normal metabo-
lism, and there is sufficient antioxidant power and repair capacity, there are
presumably few harmful effects. Excessive production of ROS resulting
from toxic agents, such as tobacco smoke, or from insufficient in vivo
defense mechanisms, can result in oxidative stress, leading to damage to
DNA and cell membranes, mitochondrion, and protein (91–96). It is also
possible that a diet low in fruits and vegetables could contribute to excessive
ROS and oxidative stress. Oxidative damage has been reported to be higher
in women with breast cancer, compared to controls, although studies to date
remain small (97–99), and these levels vary with the consumption of meats,
vegetables, and fruits (100–102).
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Endogenous defenses against ROS include glutathione peroxidase,
catalase, and superoxide dismutase (SOD) (90). There are three known
forms of SOD: the cytosolic and extracellular copper=zinc SODs and the
mitochondrial manganese SOD (MnSOD). MnSOD is synthesized in the
cytosol and post-transcriptionally modified for transport into the mitochon-
drion (103,104). In the mitochondrion, it catalyzes the dismutation of two
superoxide radicals, producing H2O2 and oxygen. MnSOD is induced with
free radical challenge (105) and cigarette smoke (106). Recently, two genetic
variants of MnSOD were identified. A nucleotide T to C substitution in the
mitochondrial targeting sequence was found that changes an amino acid.
The investigators who identified the polymorphism predicted that the result-
ing amino acid change would alter the secondary structure of the protein
(104), and Rosenblum and colleagues (107) suggested that the alteration
might affect the cellular allocation of the enzyme and mitochondrial trans-
port of MnSOD into the mitochondrion. They further suggested that ineffi-
cient targeting of MnSOD could leave mitochondria without their full
defense against superoxide radicals, which could lead to protein oxidation,
as well as mitchondrial DNA mutations.

We hypothesized that the polymorphism in MnSOD would result in
higher levels of ROS, and that in women whose diets were low in fruits
and vegetables, this polymorphism would increase risk of breast cancer
(108). Interestingly, we found this to be the case, particularly for premeno-
pausal women (108). Those who were homozygous for the variant allele had
a fourfold increase in breast cancer risk in comparison to those with who
were homozygous or heterozygous for the common allele [odds ratio
(OR) ¼ 4.3, 95% CI, 1.7–10.8]. Risk was most pronounced among women
below the median consumption of fruits and vegetables, and of dietary
ascorbic acid and a-tocopherol, with little increased risk for those with diets
rich in these foods. These findings were supported by Mitrunen et al. in their
study of pre- and postmenopausal Finnish women (109).

These data support the hypothesis that MnSOD and oxidative stress
play a significant role in breast cancer risk, particularly in premenopausal
women. The finding that risk was greatest among women who consumed
lower amounts of dietary antioxidants, and was minimal among high consu-
mers, suggests that a diet rich in sources of antioxidants may compensate for
the effects of the MnSOD polymorphism, thereby supporting public health
recommendations for consumption of diets rich in fruits and vegetables as a
preventive measure against cancer.

5.4. Alcohol

The potential effect of alcohol consumption on breast cancer risk has
been widely studied in the past decades. The importance of determining
such an association has been emphasized due to the major public health
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problem associated with breast cancer as well as the notion that alcohol
consumption is fairly common, yet modifiable (110). Based on findings
from two meta-analyses, there appears to be a modest increase in breast
cancer risk associated with daily consumption of alcoholic beverages
(42,111). Several mechanisms for a role of alcohol consumption in breast
carcinogenesis have been proposed, including increases of bioavailable
estrogen and direct toxic effects associated with ethanol exposure
(112,113).

Recently, efforts have been made to evaluate the role of alcohol meta-
bolizing genes as a potential susceptibility marker for the adverse effect of
alcohol consumption on breast cancer risk. The polymorphic alcohol dehy-
drogenase 3 (ADH3) gene is involved in the oxidation of ethanol to carci-
nogenic acetaldehyde and plays a rate-limiting role in the metabolic
pathway for most human ethanol oxidation (114). The presence of the
ADH31 allele, coding for the more rapid form of the ADH3 enzyme, has
previously been associated with increased risk of cancer of the oral cavity
and pharynx (115,116) and of hepatic cirrhosis and chronic pancreatitis
(117).

In a population–based case–control study, Freudenheim et al. (118)
observed an increased risk of premenopausal breast cancer among women
with the highest self-reported alcohol consumption and at least one
ADH31 allele. These findings are supported by a preliminary report (119)
indicating that among women with at least one ADH31 allele, those who
drank alcohol were at greater risk of breast cancer compared to those
who abstained. Furthermore, there was also evidence for a risk elevation
for women who drank and who carried the GSTM1 null genotype and at
least ADH31 allele. Hines et al. conducted a prospective study on the effect
of alcohol consumption, ADH3 genotype on plasma steroid hormone levels
and breast cancer risk (120). While a modest association was seen for plasma
hormones and alcohol consumption, no association was found between
ADH3 genotype and breast cancer risk, regardless of alcohol consumption
or menopausal status.

The genetic polymorphism in cytochrome P4502E1 (CYP2E1) may
also modify the association between alcohol consumption and breast can-
cer risk. Ethanol-inducible CYP2E1 is an enzyme of major toxicological
interest because it metabolizes a wide range of environmental compounds
to reactive metabolites (121). Shields et al. (122) found a smoking-
associated risk elevation to be restricted to women with the CYP2E1
variant genotype, but did not investigate associations with alcohol con-
sumption due to small numbers in groups with varying alcohol intake
and variant alleles. In fact, molecular epidemiological studies on the
CYP2E1 genetic polymorphism may pose substantial methodological chal-
lenges, due to the low prevalence of the CYP2E1 variant genotype in the
general population.
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5.5. Reproductive Factors and Hormones

Because epidemiological studies indicate that key breast cancer risk fac-
tors are related to endogenous exposure to steroid hormones, intensive
epidemiological research has been targeted at serum and urinary measure-
ment of parent hormones and their metabolites in both case–control and
cohort studies, yielding inconsistent results (123,124). However, measure-
ment of serum levels of estrogens may reflect levels quite different from
those hormone metabolites to which the target tissue is exposed. Many
of the genes involved in the biosynthesis and metabolism of estrogen
are polymorphic, and research attention has begun to focus on the
impact of these variants on breast cancer risk. Investigating the distribu-
tion of functionally relevant genetic polymorphisms that alter the bioa-
vailability of steroid hormones among persons with disease and persons
without may provide more direct evidence for estrogen and estrogen
metabolites as modifiers of human diseases, including breast cancer. A
number of studies, to date, have evaluated relationships between breast
cancer risk and genetic polymorphisms in CYP1A1, CYP17, CYP19,
and COMT.

5.5.1. CYP1A1

Early studies of genetic polymorphisms in cytochrome P450 (CYP) 1A1
focused primarily on its role in lung cancer risk, since it activates polycyclic
aromatic hydrocarbons, which are potent tobacco smoke carcinogens. How-
ever, CYP1A1 is also involved in the metabolism of estradiol. To date, four
polymorphisms have been identified within this gene, one of which is specific
to African-Americans (125). A number of studies have been conducted to
evaluate associations between CYP1A1 and breast cancer risk, with mixed
results (126–129). In a study with African-American and Caucasian women,
Taioli and colleagues (128) noted that among African-American women, the
m1 polymorphism significantly increased breast cancer risk (OR¼ 9.7, 95%
CI: 2.0–47.9). Numbers in these stratified analyses, however, were quite
small. In both the western New York study (129) and the Harvard study
(129) it was found that while there were no main effects of CYP1A1 on
breast cancer risk, the effects of CYP1A1 polymorphisms were modified
by cigarette smoking. Women who were light smokers with variant alleles
were at increased risk of breast cancer in the Ambrosone study (127), and
those with variant alleles who began smoking before age 16 in the Ishibe
study (129). Recently, Bailey et al. evaluated all four known CYP1A1 poly-
morphisms in relation to breast cancer risk, in a case–control study. None of
these polymorphisms, including that specific to African-Americans, was
associated with increased risk; smoking status ‘‘ever=never’’ did not modify
risk. Furthermore, Basham et al. who combined data from their own study
with those of four previously published, failed to observe an association
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between CYP1A1 genotype and breast cancer (130). No interactions were
noted between genotype and alcohol or smoking habits.

5.5.2. CYP17

Another cytochrome P450 enzyme that has received much attention of late
is the P45017a encoded by the CYP17 gene. This enzyme functions at key
branch points in human steroidogenesis. The CYP17 polymorphism has
also been evaluated by a number of groups; again, studies have had conflict-
ing results. Feigelson and colleagues initially found that the variant allele
conferred more than a twofold increase in risk among women with advanced
disease (131). They also noted that late age at menarche was protective only
among women who were homozygous for common allele. Several subse-
quent studies have not corroborated these findings (132–137), although
analyses in the Nurses’ Health study (135) demonstrated that the protective
effect of later age at menarche (>13 years) was only observed among women
with the common allele and not among women carrying variant alleles. The
recent meta-analysis involving data from 15 case–control studies (138) also
showed that the variant allele in CYP17 acts as a weak modifier of breast
cancer risk but is not an independent risk factor.

5.5.3. CYP19

Aromatase or estrogen synthetase, encoded by the CYP19 gene, converts
androgens to estrogens, and completes the pathway for estrogen biosyn-
thesis from cholesterol (139). The conversion of testosterone to estradiol
in adipose tissue is the main source of estrogens in postmenopausal women.
A polymorphic tetranucleotide repeat (TTTA)n has been identified and
although relatively rare, Kristensen et al. (140) noted a significant associa-
tion with breast cancer risk in carriers of the longest repeat variant
(TTTA)12, designated the A1 allele, in a case–control study with 366 cases
and 252 controls. The A1 allele was present in less than 2% of the control
population, but in almost 4% of cases. Siegelmann-Danieli (141) also eval-
uated this association and found increased risk with the variant A1 allele.
Baxter et al. confirmed this association in a study of breast cancer in
England (142). These findings were not confirmed, however, by Haiman
et al. who evaluated CYP19 polymorphisms in relation to breast cancer
and estrogen levels in the Nurses’ Health study (143).

5.5.4. Catechol-O-Methyltransferase

Catechol-O-methyltransferase (COMT) is one of several phase II enzymes
involved in the conjugation and inactivation of catechol estrogens (144).
Because there is evidence that catechol estrogens, particularly the 4-hydroxy
catechol estrogen, may bind to DNA and result in DNA damage (145), the
possible role of lower activity in the enzyme in relation to breast cancer
risk is important. Several groups to date, all with conflicting results, have
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evaluated the role of the COMT genetic polymorphism in relation to breast
cancer risk. Lavigne et al. (146) found that women who were postmeno-
pausal had a greater than twofold increase in risk with the low activity
alleles, but inverse associations were noted for premenopausal women with
the same genotype. Thompson et al. (147) performed similar analyses and
observed that, among premenopausal women with breast cancer, those with
at least one low activity allele showed significantly increased risk (OR¼ 2.4,
CI, 1.4–4.3). In contrast to premenopausal women, there was an inverse
association between low activity alleles and postmenopausal breast cancer.
Mitrunen et al. (148) noted inverse associations for women with low activity
COMT alleles in relation to premenopausal breast cancer risk, and elevated
associations for postmenopausal women, particularly those using exogenous
estrogens or early age at menarche. The authors hypothesized that there
may be an opposing role of catechol estrogen metabolism in breast cancer
etiology depending on the hormonal environment. Yim et al. (149) also
reported that the low activity COMT allele was associated with increased
risk of breast cancer among Asian women. Millikan (150) and Bergman-
Jungestrom (151), however, found no associations with COMT genotypes
and increased breast cancer risk for pre- or postmenopausal women. These
discrepancies may be due to small sample sizes in the previous studies, or
there may be biological factors that differentially impact risk associations.

5.6. Chemical Exposures

Environmental factors have been implicated in breast cancer etiology, due to
the steady increase in incidence over the last decades (152), regional and
international differences in incidence, and observed changes in incidence
rates in migrant populations (153).

5.6.1. Organochlorines

One group of environmental exposures that has been examined in relation
to breast cancer includes organochlorine compounds, such as 2,2-bis(4-
chlorophenyl)-1,1-dichloroethane (DDE), the major metabolite of 2,2-
bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT), and polychlorinated
biphenyls (PCBs). Evidence from laboratory studies has demonstrated a
complex diversity of biological effects associated with these compounds.
DDE and some PCB congeners have been associated with induction of cyto-
chrome P450 enzymes (154,155), which may or may not be associated with
estrogenic (156–158) and antiestrogenic effects (158) shown in some investi-
gations. Studies have also noted changes in immune responses (159) and
tumor promoting effects (154,160,161).

Several recent epidemiologic studies have investigated the role of DDE
and PCBs in breast cancer etiology (162–175), but results from these studies
are inconsistent. While results from an earlier investigation pointed to a
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potential role of organochlorine exposure in breast carcinogenesis, most
subsequent studies did not observe significant risk elevations among women
with the highest blood or adipose levels of these compounds.

Some efforts have been made to examine the effect of environmental
organochlorine exposure among susceptible subgroups, defined by repro-
ductive or genetic factors. Moysich et al. (163) observed a significant
increase in risk of breast cancer among parous postmenopausal women
who never lactated with the highest serum PCB levels compared to those
with the lowest levels. Organochlorine levels were also associated with age
and serum lipids, but not fruit intake (176). It is possible that women who
had lactated were less susceptible to the adverse effect of organochlorine
exposure due to the fact that they had eliminated a substantial amount of
organochlorine body burden at a biologically relevant period of time. Alter-
natively, lactation in itself may contribute to the terminal differentiation of
the mammary epithelium, resulting in larger compartments of nonproliferat-
ing cells (2). It has also been suggested that organochlorine body burden
may have been measured more accurately among women who had never
breastfed an infant. Serum levels in this group may represent a more valid
measure of chronic exposure, uninterrupted by elimination of these com-
pounds through lactation. Based on the same study population, these inves-
tigators also attempted to determine whether or not the genetic
polymorphism in the CYP1A1 gene affected the association between PCB
exposure and risk (177).

In laboratory studies, PCBs are potent inducers of CYP1A1, a drug-
metabolizing gene, involved in the activation of potentially genotoxic
endogenous and exogenous substances (178,179). Their results indicated
that postmenopausal women with the highly inducible CYP1A1 variant
genotype and high PCB levels were at significantly increased risk for breast
cancer compared to women with the CYP1A1 wild genotype and lower PCB
levels. A potential mechanism for this finding relates to the PCB mediated
enhanced induction of polymorphic CYP1A1, leading to increased activa-
tion of environmental carcinogens and subsequently resulting in the produc-
tion of reactive intermediates and DNA damage. Thus, by inducing
CYP1A1, PCBs, and other inducers can trigger the activation of xenobio-
tics, such as those found in tobacco, into mutagenic compounds.

5.6.2. Cigarette Smoking and Breast Cancer

Environmental contaminants other than organochlorines could also be
associated with breast cancer risk, including aryl and heterocyclic aromatic
amines, nitro- and polycyclic aromatic hydrocarbons, and N-nitroso com-
pounds, all of which are known mammary mutagens and carcinogens. In
addition to their presence in an industrialized environment, these carcino-
gens are present in cigarette smoke. Aromatic amines form DNA adducts
in cultured human epithelial cells (180), and cause unscheduled DNA
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synthesis (180). In vivo activated aromatic amine metabolites have been
shown to cause DNA damage in rodents (181,182) to transform mouse
mammary glands (183), and to induce rodent mammary tumors (184,185).
Polycyclic aromatic hydrocarbons are also likely human breast carcinogens.
The PAHs benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene induce
mammary tumors in rodents (186,187) and cause transformation in human
breast epithelial cell lines in vitro (188).

The mutational spectrum of the p53 tumor suppressor gene also sup-
ports a role for chemical carcinogens in breast cancer risk. While the pattern
of p53 mutations in breast cancer differs from the fingerprint mutations
associated with smoking in lung cancer, they occur on sites that are sugges-
tive of an unknown, environmental exposure (189,190). Furthermore, it is
clear that chemical carcinogens reach the breast in laboratory animals and
humans, and because they are lipophilic, they are stored in breast adipose
tissue (191,192). Ductal epithelial cells are directly exposed to nicotine
(193) and mutagenic compounds (194). Heterocyclic amines administered
to nursing rat dams were found at high levels in the breast tissue, and were
excreted in the milk (195). Three studies have identified DNA adducts in
normal breast tissue from women with and without breast cancer (66,
196–199), some of which were putatively related to tobacco smoking. There-
fore, the breast is certainly exposed to chemical carcinogens, and can be
susceptible to the carcinogenic process.

If these compounds are human mammary carcinogens, one would
expect to see an association between smoking and breast cancer risk. How-
ever, in the majority of epidemiological studies, an association between
smoking and breast cancer risk has not been found (200–202). However,
most previous studies combined passive smokers with non-smokers in the
reference category. Sidestream smoke contains higher levels of aromatic
amines than mainstream smoke, as much as 10mg of aniline per cigarette,
as well as many other aromatic amines [e.g., multiple isomers of toluidine,
naphthylamine and aminobiphenyl (ABP)]. Thus, passive smoke exposure
may result in different circulating levels of carcinogens than active smoking.
The presence of passive smokers in the referent ‘non-smoking’ category
would certainly dilute risk estimates. Studies that confined the referent
group to those never exposed to passive smoke all found increased breast
cancer risk for active and passive smokers (203–208). Using data from the
Nurses’ Health study, however, Egan et al. did not find a positive associa-
tion between passive smoking and breast cancer risk, but a small increase
in risk was noted for smoking initiated at young ages (<17 years old) (201).

It has been suggested that some components of tobacco smoke may
have antiestrogenic effects (209,210). For example, cigarette smoking
induces CYP1A2, which decreases the level of circulating estradiol. It is pos-
sible that genetic variability in metabolism of chemical carcinogens may
make some women more susceptible to their carcinogenic effects from
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ubiquitous exposure, dietary intake, and exposure through active and
passive cigarette smoke. Other women may be more affected by the putative
antiestrogenic effect of tobacco smoke. When these subgroups are grouped
together, however, as in population-based studies, the effects of a particular
exposure may not be observable above the background of other exposures
and susceptibilities. In this case, the effects may be diluted and thus, not sta-
tistically significant. Several molecular epidemiological studies have been
conducted to ascertain possible associations between smoking and breast
cancer risk among women likely to be susceptible to their carcinogenic
effects. By evaluating genetic polymorphisms for enzymes involved in the
metabolism of classes of chemical carcinogens, subgroups of the population
who may be susceptible to tobacco smoke carcinogens may be identified.

Aromatic Amine Metabolism: Aromatic amines are likely to be
first metabolized in the liver via two competing pathways. They may be
either activated by CYP1A2, or detoxified through N-acetylation by
NAT2. We hypothesized that among women who had inherited mutations
NAT2 encoding a less efficient form of the enzyme and were thus, ‘slow
acetylators’; aromatic amines would be more likely to be activated by
CYP1A2. In this scenario, activated hydroxylamines could be further acti-
vated either in the liver or in the breast, DNA adducts could form, and
breast cancer could result. In a study of several hundred pre- and postmeno-
pausal women in western New York (70), we found that neither smoking nor
the slow NAT2 genotype impacted breast cancer risk. However, postmeno-
pausal women who had slow NAT2 and smoked were at dose-dependent,
increased risk. This hypothesis was subsequently explored by other groups,
with mixed results (207,211,212).

Polycyclic Aromatic Hydrocarbon Metabolism: PAHs are meta-
bolized by a complex of phase I and phase II enzymes. Those studied in
relation to smoking and breast cancer include CYP1A1 and glutathione
S-transferase M1 (GSTM1). CYP1A1 activates PAHs, and as mentioned
previously, Ambrosone et al. found that the exon 7 polymorphism (m2)
increased risk among postmenopausal women who were light smokers. This
finding was supported by data from the Nurses’ Health study (m1 and m2)
(129), but Bailey and colleagues found no associations with any of the poly-
morphisms (m1–m4) (125). Earlier, Taioli et al. (128) evaluated CYP1A1
polymorphisms (m1–m3) among Caucasians and African-Americans, and
found that the m1 allele increased risk among African-American women.
These data were not presented in relation to smoking, however.

Phase II metabolism includes detoxification of reactive metabolites
by conjugation with glutathione, which is catalyzed by glutathione S-
transferases. GSTM1 has a deletion that is present in approximately 50%
of Caucasian populations, resulting in loss of the enzyme. A number of
groups have evaluated the possible association of the GSTM1 polymorphism
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with breast cancer risk. For the most part, studies have found no association
between the null allele and breast cancer regardless of smoking status
(125,127,213–217). Helzlsouer et al., however, reported an increased risk of
postmenopausal breast cancer associated with GSTM1 deletion (218). This
association was not modified by exposure to tobacco smoke.

6. FUTURE DIRECTIONS

While molecular epidemiology studies hold the promise of elucidating
mechanisms behind breast cancer risk factors, it is still subject to limitations
of traditional epidemiological studies. Much of the molecular epidemiology
literature is rife with inconsistencies, as described in this chapter. This is
likely due to the small sample sizes of the studies, which result in low power
to detect associations. A recent article described the sobering numbers of
participants required to detect stable estimates from epidemiological studies
of gene–environment interactions (219).

Additionally, examining one gene at a time in relation to breast cancer
risk is likely too simplistic. Future studies should consider the roles of other
genes involved in metabolic pathways and examine several genes at a time in
relation to cancer risk (220). Multigenic studies have been conducted
recently with suggestive findings. Feigelson et al. examined CYP17 and
17b-HSD in combination, in relation to breast cancer risk in a large, multi-
ethnic population. They demonstrated an increased risk from high-risk
alleles limited to advanced stage breast cancer and postulated that these
tumors may be more aggressive as a result of increased estrogenic exposure
(221). Huang et al. also considered the effect of several estrogen-metabolizing
genes involved at different points within the pathway, including CYP17,
CYP1A1, and COMT (222). A trend in increasing risk was observed with
increasing number of at risk genotypes. This effect was especially pro-
nounced in women with prolonged estrogen exposure, providing further
support of the possibility that breast cancer can be initiated by estrogen
exposure and is influenced by genotypes. Eventually, techniques that pro-
vide simultaneous assessment of tens-to-hundreds-to-thousands of genes
at a time will be useful in studies of cancer. However, it is unrealistic to
anticipate the incorporation of a large number of genes into current molecu-
lar epidemiological practice, since proper statistical methods are not in
place.

7. CONCLUSION

It is becoming quite clear that the etiology of human breast cancer is exceed-
ingly complex, with probable multiple factors involved in its etiology.
Molecular epidemiology and the use of markers of susceptibility, internal
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dose, and early effects may elucidate not only mechanisms, but also clarify
relationships between risk factors and disease among subsets of the popula-
tion who are specifically at risk. For the public, however, lifestyle modifica-
tion to maintain normal weight, eat a diet high in fruits and vegetables, and
refraining from tobacco use and alcohol consumption, should be advised for
all women, regardless of genetic makeup.
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1. INTRODUCTION

Gynecological malignancies can result in significant morbidity and mortal-
ity. In the United States alone, it is estimated that about 24,000 women will
die from cancers of the ovary, endometrium, and cervix annually (1).
Women diagnosed with ovarian cancer have the highest mortality, when
compared to those with endometrial or cervical cancer. This difference in
mortality for ovarian cancer has been attributed to the delay in the diag-
noses due to a lack of symptoms in early stage disease, and the fact that
we do not have a curative treatment for advanced stage disease (2). The
5-year survival rate for localized disease is 95% (3). Therefore, we could
potentially decrease the overall mortality if we are able to detect ovarian
cancer at an earlier stage. This has been the focus of current research, along
with the search for effective treatment and prevention strategies. In the case
of endometrial cancer the issues are different. Despite being detected at an
early stage, due to symptoms such as vaginal bleeding, the 5-year survival
rates for local-regional disease are still lower than that for breast cancer
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suggesting a need for better treatments. In comparison with ovarian and
endometrial cancer, major advances have been made in cervical cancer.
High-risk human papilloma viruses (HPVs) have been identified as the pri-
mary etiologic factor and early detection testing with regular pap smears is
available the possibility of primary prevention with vaccines exist (4). In
addition, a current challenge is identifying women infected with HPV who
will go on refer sheet attached to develop cervical cancer. At any one time,
up to 6 million women in the United States alone are thought to have con-
tracted HPV (5). Additional challenges include developing effective treat-
ments for HPV, behavioral programs, and effective vaccines to decrease
the rates of high-risk HPV infection.

The focus of this chapter is to review the risk and susceptibility factors
associated with ovarian, endometrial, and cervical cancer. Knowledge of
these factors, help us gain a better understanding of the various carcinogene-
sis pathways and may help us identify susceptible individuals in whom
preventive measures can potentially be implemented (Fig. 1).

2. OVARIAN CANCER

2.1. Overview

During the last three decades, there has been little change in the incidence of
ovarian cancer in North America and Europe (the high-risk countries).
However, a steady increase in the incidence has been observed in developing
countries. This may reflect a true increase in incidence or an increase in
reporting or both. Japan has always been classified along developing coun-
tries as a low-risk country. Up to a fourfold difference in the risk of ovarian
cancer has been reported between the high- and low-risk countries (6).

Figure 1 The influence of risk and susceptibility factors on the carcinogenesis path-
way. Source: Adapted from Schulte and Perera 1993.
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In the United States, the incidence rate of ovarian cancer in the general
population is 14 per 100,000 persons and the mortality rate is 9 per 100,000
persons (3). Incidence rates and mortality rates have decreased over time pri-
marily among women less than 65 years of age. The decrease in mortality
varies according to race and ethnicity; the largest decline was seen among
American Indians (3.3%), Blacks (1.7%), and Asians (1.6%) and the smallest
decrease among the White non-Hispanics (0.6%). A recent study demon-
strated that migrants take on the risk of their adoptive country after succes-
sive generations suggesting environmental and lifestyle factors, such as use of
the oral contraceptive pill (7).

Survival varies by age and stage of disease at diagnosis. The 5-year
survival for ovarian cancer, irrespective of stage is 50% (3). It is 95% for
localized disease, 79% for regional disease, and 28% for distant disease
(3). The 5-year survival of women under 65 was 64% and for 65 years and
over 30% (3).

2.2. Histological Types

Epithelial ovarian tumors are the most common type accounting for
between 80% and 90% of neoplasms, and the remaining are either sex-cord
stromal or germ cell tumors (8). Approximately 10–20% of epithelial carci-
nomas that are primarily serous can be classified as borderline tumors,
which implies that they are of low malignant potential (2). Ovarian cancer
is primarily a disease of peri- and postmenopausal women, with 80–90%
occurring after the age of 40 (3). The peak incidence of epithelial ovarian
cancer is 63 years of age, whereas germ cell tumors commonly occur in
younger patients (2).

2.3. Etiology

The etiology of ovarian cancer is poorly understood. From epidemiological
studies it is evident that multiple pathways are involved, incorporating
genetic, hormonal, and environmental factors. Three major theories or mod-
els of carcinogenesis have been suggested. The first was Fathalla’s theory of
‘‘incessant ovulation’’ (9). This theory suggests that repeated ovulation trau-
matizes the ovarian epithelium, increasing the likelihood of errors occurring
during DNA repair and the exposure of the epithelial cells to the estrogen-
rich follicular fluid that is present during ovulation, thereby making the cells
within the ovary more susceptible to malignant change.

Cramer and Welch proposed a second theory related to persistent
elevation of gonadotropins (10). From their observations that the ovarian
epithelium repeatedly invaginates throughout life to form clefts and
inclusion cysts, they proposed a theory that under excessive stimulation
by gonadotropins (FSH and LH), estrogen and its precursors, the ovarian
epithelium may undergo malignant transformation.
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Risch suggested that ovarian cancer may be increased by factors asso-
ciated with excess androgenic stimulation of ovarian epithelial cells, and
may be decreased by factors related to greater progesterone stimulation (11).

2.4. Risk and Susceptibility Factors

2.4.1. Inherited Factors

Family History: Approximately 5–10% of women diagnosed with
ovarian cancer report a positive family history (12). Depending on the
number of affected relatives on either the maternal and paternal side, and a
family history of breast cancer below the age of 50, the relative risk of devel-
oping ovarian cancer can range anywhere between 2 and 18 times the aver-
age population risk (13). A case–control study by Tavani et al. found that
women with both a positive family history and other known risk factors
had three and a half times the risk of developing ovarian cancer compared
to women without a family history or any other risk factors (14).

In 1990, Lynch et al. reported three separate hereditary ovarian cancer
syndromes; site-specific ovarian cancer; hereditary ovarian and breast can-
cer; and Lynch type II or hereditary nonpolyposis colorectal cancer
(HNPCC), (in which case there is an increased risk of ovarian, colorectal,
endometrial, and=or genitourinary cancers) (15–18). All three syndromes
are associated with an autosommal dominant pattern of inheritance with
variable penetrance and early onset cancer (17,19,20). This means that each
first-degree relative of an individual with a mutation has a 50% chance of
inheriting it. Clues in a family history to suggest such a strong hereditary
predisposition include; multiple cancers occurring in close relatives over
multiple generations, early age of onset of cancer (i.e., before 40 or 50 years),
multiple cancers occurring in a single individual and a pattern consistent
with an autosommal dominant inheritance or a familial association with
tumors of other organs, particularly the breast, colon, and uterus.

Germline Mutations: Specific mutations in two known cancer
susceptibility genes, BRCA1 and BRCA2 can explain some of the ‘‘cancer
families’’ with breast and ovarian cancer. They are both tumor suppressor
genes and may also be involved in DNA repair (21–23). The BRCA1 gene
was cloned in 1994 and codes for a protein of 1863 amino acids (24,25)
whereas the BRCA2 gene was identified in 1995, is located on the 13q12–
13, and codes for a protein twice its size (26). Both these proteins are
expressed in large quantities in the breast and ovaries (24,25). Eighty percent
of the known mutations are due to the insertion or deletion of bases in the
coding sequence (frame shifts) or nonsense mutations that convert the to a
stop codon and results in the truncation of the protein (27). All of the
breast-ovarian cancer families cannot be explained by these two mutations,
it is estimated that between 10% and 20% of cancer families do not have a
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BRCA1 or 2 mutations suggesting the possibility of further mutations in
these genes or unidentified genes (28).

The probability that a woman with ovarian cancer is a mutation carrier
has been shown to vary by the stringency of family history criteria. Prevalence
rises with increasing number of ovarian cancer families and the early onset of
breast cancer. The frequency of BRCA1 mutations in breast=ovarian cancer
families range from 30% to 81%, and the frequency of a BRCA2 mutation
ranges from 7% to 14% (19,29–34). When BRCA1 mutation testing was done
in women with ovarian cancer for whom there was no information on family
history, only 5% of women were found to be mutation carriers (35–38). In the
general population between 0.04% and 0.20% of individuals have been esti-
mated to be BRCA1 mutation carriers (39).

The estimated lifetime risk for women with a BRCA1 mutation of
ovarian cancer varies from 16–63% by the age of 70, to 20–30% for BRCA2
mutation carriers (19,40–43). The range of estimates reflects variation in
penetrance, due to the selection of families into the studies, the analysis of
specific mutations or other unknown genetic or environmental modifying
factors.

BRCA1 and BRCA2 mutations also are associated with an increased
risk of other malignancies. Individuals from high-risk families with BRCA1
mutations have up to 85% cumulative risk for breast cancer by age 70, while
the specific risk varies by mutation and other modifying factors, there is a
6% risk for colon and prostate cancer (39,44). The estimated risk of breast
cancer in BRCA2 mutation carriers is 85% (44). The risk of other cancers
associated with BRCA2 include a 6–14% risk in prostate cancer and gall
bladder and bile duct cancer as well as a threefold increase in pancreatic
cancer and an increase in stomach cancer and malignant melanoma (44).

Certain ethnic populations, for example, the Ashkenazi Jews and the
Icelandic population, have specific founder mutations that account for most
of the mutations identified on the BRCA1 and BRCA2 genes. These muta-
tions occur at a higher than average frequency than in a population of unre-
lated families within a certain ethnic or racial group. Specifically, three
mutations, two in the BRCA1 gene (185delAG and 5382 insC) and one in
the BRCA2 gene (6174delT) 185 have been found in the Ashkenazi Jewish
population (43,45–47). The combined frequency of these three mutations
among 5318 Ashkenazi Jewish volunteers from the Washington, DC area,
(both male and female) was 2.3% (95% CI 1.9–2.7). The individual preva-
lences were 0.8% (185delAG), 0.4% (5382insC), and 1.2% (6174delT). The
probability of an Ashekanzi Jewish women in the study of having one of
the three specific mutations was higher if they were less than 50 years of
age, at the time of breast cancer diagnosis (14%) or had at least one first-
degree relative with ovarian or breast cancer (5.1%). In Iceland, the
999del5 BRCA1 mutation has been described and the 5382insC in the
Eastern European population (48–50).
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HNPCC contributes to approximately 1–2% of all hereditary ovarian
cancers. An individual with HNPCC has a 9–12% lifetime risk of developing
ovarian cancer (51,52). Cancer susceptibility genes in the form of DNA
repair genes (hMSH2, hMLH1, PMS1, PMS2, hMSH6) have also been
identified with the respect to the HNPCC syndrome (53–55). The HNPCC
genes will be discussed further in the section on endometrial cancer.

Genetic Polymorphisms: The role of other inherited factors such as
low penetrant mutations that commonly occur in the population are
unclear. Polymorphisms are genetic mutations occurring with a frequency
of >1% in the general population. These genetic polymorphisms may code
for enzymes involved in the metabolism or detoxification of carcinogens or
in DNA repair. In conjunction with particular exposures they may be
associated with either an increase or decrease an individual’s risk of particu-
lar cancers. Given that the both polymorphisms and exposures are prevalent
in the population, the attributable risk of such a gene environment associa-
tion with respect to the development of ovarian cancer could be high. How-
ever, because ovarian cancer is rare, studies of these associations are
challenging due to the need for large sample sizes. Examples of such genetic
polymorphisms relevant to ovarian cancer include microsomal epoxide
hyrolase and galactose-1-phosphate uridyl transferase (GALT).

Epoxide hydrolases (EPHX) play an important role in both the activa-
tion and detoxification of exogenous chemicals such as polycyclic aromatic
hydrocarbons, a carcinogen found in cigarette smoke. Microsomal epoxide
hydrolase is one of many enzymes that are part of the epoxide hydrolase
family and is strongly expressed in the human ovary (56). A number of
genetic polymorphisms coding for the EPHX gene have been described. In
1994, Hassett et al. identified the Tyr113His polymorphism on the EPHX
gene that is the result of a substitution of Histidine for Tyrosine at codon
113. Further, a 40% decrease in EPHX activity has been demonstrated in
vitro DNA expression studies for the His113His allelic variant compared
to the Tyr113His variant (57). Consistent with these laboratory findings, a
greater than twofold increase in the risk of ovarian cancer was observed
in a case–control study among women who were homozygous for this poly-
morphism (Tyr113Tyr) compared to those who were homozygous or hetero-
zygous (56). A limitation of the study was the lack of information on other
risk factors. In order to confirm these results further replication is required.

A number of other polymorphisms in genes involved in hormone
biosynthesis and detoxification pathways have also been examined.
CYP17 and COMT are examples of two that code for enzymes that are part
of the hormone biosynthesis pathway (59, 59a, Goodman et al., 2001,).
Polymorphisms of the androgen receptor (AR) gene and progesterone
receptor (PR) gene have also been studied (59b). Results from these
studies have been inconsistent so far. No association has been observed
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between polymorphisms of the glutathione S-transferases (GSTM1 and
GSTT1), which encode for enzymes that are responsible for the
detoxification of a large number of carcinogens in the liver (Coughlin SS
et al., 2002).

2.4.2. Hormonal Factors

Hormones, both endogenous and exogenous have been thought to play an
important role in the etiology of ovarian cancer.

Endogenous: Menstrual factors: Early age at menarche and late age
of menopause have not been consistently associated with an increased risk
of ovarian cancer, as one might have expected based on Fathalla’s theory
of incessant ovulation. Some studies have suggested a modest increase in
risk of 10–20% in women who began to menstruate at less than or equal
to 12 years of age compared to women greater than 15 years old (61,62).
Similarly late age of menopause has been associated with anywhere between
1.4 and 4.6 times the risk of ovarian cancer (62–68) while others have
reported no association (69,70).

Serum levels: Consistent with Risch’s androgen hypothesis theory,
serum androgen levels have been shown to be potential predictors of
increased ovarian cancer risk (71). In a nested case–control study after an
average follow up time of 8 years mean levels of androstenedione and dehy-
droepiandrosterone (DHEAS) were significantly higher among cases than
controls (p trend¼ 0.008, and 0.11, respectively). Increasing levels of
androstenedione were associated with increasing risk. Whereas decreasing
levels of gonadotropin, in particular FSH was lower among cases than con-
trols (p for trend¼ 0.02). A similar increase in risk was not reported when
urinary androgen levels were measured (72). Along with hormones, growth
factors, such as insulin are believed to be important in cancer by regulating
cell proliferation, differentiation, and apoptosis. In a pooled case control
analysis of 3 prospective studies there was no overall association between
insulin growth factor (IGF) binding proteins 1 and 2 (Lukanova et al.,
2003). However, a protective effect was observed in women diagnosed
before the age of 55 for both binding proteins. However, the odds ratios
were not statistically significant.

Exogenous: Oral contraceptive pill (OCP): The complex numerical
instructions that may predispose to ovarian cancer require further investiga-
tion. Numerous cohort and case–control studies have demonstrated a
40–50% reduction in the risk of ovarian cancer in women taking the
combined oral contraceptive pill for at least 5 years (62,69,73–78). Biologi-
cally, it has been hypothesized that by inducing ovarian suppression the oral
contraceptives decreases the degree of trauma to the ovary and thereby an
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individual’s risk of ovarian cancer (9,79,80). In some studies the protective
association increased further with longer duration of use for up to 10 years
(77,78,81–83) and continued for up to 15 years after cessation of use
(69,82,84,85). A 40% reduction in mortality from ovarian cancer was also
observed by Beral et al. among women who had ever used the OCP com-
pared to those who had not (relative risk, 0.6; 95% CI, 0.3, 1.0) (77). A pro-
tective association was also observed in women with epithelial borderline
tumors but the sample size was small (75,79,86).

The results have been mixed in BRCA1 and BRCA2 mutation carriers
(87,88). Narod et al. in a family study, reported a similar risk reduction of
ovarian cancer among mutation carriers compared to non mutation carriers
in a population-based case–control study conducted in Israel (88). However,
Modan et al. did not observe a risk reduction associated with OCP use among
mutation carriers. Risk was reduced with increasing parity similar to what
has been observed in the general population of women similar risk (87).

Hormone replacement therapy (HRT): Several studies have observed
a small increase in the risk of ovarian cancer associated with HRT. The
American Cancer Society’s Cancer Prevention Study II, a prospective
cohort study of 211,581 postmenopausal women observed a 20% increase
in mortality from ovarian cancer among women who gave a history of
HRT use compared to those who did not (89). This risk was higher among
current users (relative risk¼ 1.51; 95% CI 1.16, 1.96) and those who used
estrogen replacement therapy (ERT) for 10 or more years (relative risk¼
2.20; 95% CI 1.53, 3.17). After 15 years of cessation of use women were no
longer at risk. Similar results were observed in a large case control study
(Riman et al., 2002). They observed that the risk of invasive epithelial
ovarian cancer was increased among women who use regimens that
sequentially added progestins and not regimens in which progestins were
continually added. In a prospective cohort study only women who used
estrogen only replacements were at significantly increased risk of ovarian
cancer (R.R. 1.6, 95% CI 1.2, 2.0). The risk increase with increasing dura-
tion of use. An increase in risk was not observed in women who used short
term estrogen and progestin replacement therapy (89a). Other studies have
reported no association (60,90) or a modest association between estrogen
replacement therapy use and the risk of ovarian cancer (62,75,91–93).

2.4.3. Reproductive Factors

Pregnancy: A large number of studies have focused on the associa-
tion between reproductive factors and the risk of ovarian cancer. Women
who develop ovarian cancer are significantly more likely to be nulliparous
or to have fewer pregnancies. Pregnancy has been consistently shown to
be associated with a decreased the risk of ovarian cancer by between 10%
and 50% (61,62,65,74,83,94–97). The risk reduction increases with increas-
ing number of births. In a combined analysis of 12 U.S. case–control
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studies, a 40% reduction in risk was found for the first full term pregnancy,
and a 14% reduction for each subsequent birth when compared to nullipa-
rous women (69). The number of years since last pregnancy has also been
associated with an increased risk of ovarian cancer (98). A twofold increase
in risk was observed among women who had been pregnant greater than or
equal to 25 years ago (99). A similar risk reduction has also been reported in
BRCA1 and BRCA2 mutation carriers (87). This protective association was
not seen for mucinous tumors (93). The decreased risk of ovarian cancer
associated with multiparity, pregnancy, and lactation is consistent with
Fathalla’s theory of incessant ovulation.

Tubal ligation has been associated with a decreased risk of ovarian
cancer by between 10% and 40% and persists up to 25 years after surgery
(73,100–102). It has been hypothesized that tubal ligation interrupts
utero-ovarian blood flow decreasing the number of ovulations (10,69,100).
Intrauterine devices (IUD) and the barrier method have all been shown to
decrease the risk of ovarian cancer by 10–20% (73). It has been suggested
that these methods of contraception may protect the ovaries from toxins
reaching the ovaries (103,104).

Lactation has also been shown to be protective resulting in a 10–30%
reduction in the risk of ovarian cancer (10,61,62,80,83,105,106). Whittemore
et al. reported that ovarian cancer risk decreases almost 1% for each month
of lactation (69). The protective association was strongest the months imme-
diately following the birth.

Infertility: It is unclear whether infertility or medications used to treat
infertility are risk factors for ovarian cancer. One of the difficulties in assessing
the impact of infertility is separating the effect of infertility or its treatment
from that of nulliparity by choice.Whittemore et al. in a collaborative analysis
of 12 case–control studies used information on length of longest pregnancy
attempt and total duration of unprotected intercourse as surrogate measure-
ments for infertility along with information on parity, seperating women
who never had children, women who conceived but did not carry to term
and those who had children. A 60% increase in the risk of ovarian cancer
was reported among women who had greater than or equal to 15 years of
unprotected intercourse compared to less than 2 years. Among studies having
information on physician diagnosis of infertility and type of infertility, women
that had an ovulatory abnormality had a twofold increase in risk compared to
women with no physician diagnosed infertility (69). A 60% increase in the risk
of ovarian cancer among a cohort of 2496 infertile Israeli womenwas observed
compared to the general population rates (107). However, this increase could
be partially explained by the increase in positive family history of ovarian can-
cer among the cohort compared to the general population.

Controversy has been raised regarding the impact of fertility drugs.
Whittemore et al. reported almost a threefold increase in the risk of invasive
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epithelial ovarian cancer in women taking fertility drugs (OR¼ 2.8, 95% CI
1.3, 6.1) (69). This risk was significantly greater among nulliparous women
and in women with borderline tumors. Parity was protective, in that infertile
women who used fertility drugs and subsequently became pregnant did not
have a significantly increased risk of ovarian cancer. This finding is consis-
tent with other studies (69,75,108). A large case–cohort study that found
infertile women had an increased risk of developing both invasive epithelial
carcinoma significant (relative risk¼ 1.5; 95% CI 0.4, 3.7) and borderline
tumors (relative risk¼ 3.3; 95% CI 1.1, 7.8) compared to the general popula-
tion. Though, in the case of invasive epithelial tumors this association was
not statistically significant. This study had good detail with regard to type
of infertility and drugs used to treat it, with the majority of women using
Clomiphene as the ovulation induction agent (109). These results are consis-
tent with other studies that have shown an association between fertility drug
use and the risk of borderline ovarian cancers (108). In a cohort of of
women from in vitro fertilisation (IVF) clinics in Australia, Venn et al.
found no increase in the risk of ovarian cancer among women who had
undergone treatment (110).

Hysterectomy without oophorectomy has been associated with a
10–60% decrease in the risk of ovarian cancer (69,101). This risk attenuates
with time since hysterectomy. The risk reduction may be greater in women
who have hysterectomies before the age of 40 (69). Proposed mechanisms
for this risk reduction include a decrease in androstendione which has been
observed in women who have had hysterectomy and would be consistent
with Risch’s hypothesis of androgen excess and a decreased exposure of
the ovaries to external toxins (111,112).

2.4.4. Lifestyle Factors

Diet: The majority of dietary studies have been case–control
studies and the results have been inconsistent. Despite an observed associa-
tion between milk consumption and the risk of ovarian cancer and biologi-
cal evidence that galactose is toxic to the oocytes, a positive association was
not found between the consumption of lactose or free galactose and the risk
of ovarian cancer (83,113–115). Associations between enzymes involved in
the metabolism of galactose and the risk of ovarian cancer have also been
inconsistent. Cramer et al. found the mean activity of erythrocyte galac-
tose-1-phosphate uridyl transferase, a key enzyme in galactose metabolism,
to be lower among cases who had a family history of ovarian cancer com-
pared to controls, however, these findings were not replicated by Herrington
et al. (115,116). A number of studies have reported an increased risk of ovar-
ian cancer due to the intake of saturated fats (68,83) and a protective asso-
ciation between the intake of green leafy vegetables, total dietary fiber, fiber
from vegetables, crude fiber, carotenoids, and carrots (83,117–122). Low
serum levels of vitamin A and selenium among cases compared to controls

544 Visvanathan and Helzlsouer



has been observed but no differences in the levels of total carotenoids and
vitamin E were reported (123–125).

A few prospective studies have also examined the association between
dietary intake or serum micronutrients and the risk of ovarian cancer. Kushi
et al. using information from a dietary questionnaire demonstrated an
increasing risk of ovarian cancer with increasing intake of lactose
(p trend¼ 0.12) and cholesterol (p trend¼ 0.06). Total vegetable intake was
inversely associated with risk of ovarian cancer (p trend¼ 0.21) in particular
green leafy vegetables (P trend¼ 0.010) (117). Knekt et al. found no associa-
tion between prediagnostic alpha-tocopherol levels and the risk of gynecolo-
gical cancers (126). These results were similar to those seen in case–control
studies. In another prospective study, Helzlsouer et al. examined the associa-
tion between serum micronutrients and the risk of ovarian cancer. A protec-
tive association was only observed between serum selenium and the risk of
ovarian cancer (p trend¼ 0.02) (127). The findings on selenium were not
replicated in a prospective study by Garland et al. (128). An incidental find-
ing of the study by Helzlsouer et al. (127) was an increase in the risk of ovar-
ian cancer in women with cholesterol levels greater than 200mg=dL that has
also been reported by Kushi et al. (117) but not by Hiatt and Fireman (129).

Weight: The available studies suggest that distribution of body fat
may be a more important risk factor than absolute weight. Further studies
are needed to confirm this. Mink et al., in a prospective study, observed
almost a two fold increase in the incidence of ovarian cancer among women
who had the greatest waist to hip ratio (>0.89) (130). A similar association
was not seen between BMI and ovarian cancer. The results of other studies
with respect to BMI have been mixed (70,131,132). In a nested case–control
study in England, women with ovarian cancer were found to have
gained significantly more weight during their first year of life than
controls (133). In a prospective study of more than 900,000 U.S. adults,
women with a BMI of 35.0 were at a greater risk of dying from ovarian
cancer (R.R. 1.51, 95% CI 1.12, 2.02) (Calle et al., 2003).

Physical Activity: Only a few studies have specifically examined the
association between physical activity and the risk of ovarian cancer and
their results have been conflicting. In a prospective study of 31,396 women,
Mink et al. reported a twofold increase in the risk of ovarian cancer in post-
menopausal women who currently were undertaking vigorous physical
activity compared to those who took part in low or no physical activity. This
risk was greatest among women who took part in vigorous physical activity
more than four times per week (relative risk¼ 2.52, 95% CI 1.01, 6.8) (130).
Whereas Couttreau et al. in a case–control study, found high levels of life-
time leisure-time physical activity to be protective. A 27% reduction in risk
was observed among women in the highest category of lifetime leisure phy-
sical activity compared with those in the lowest level (134). The degree of
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reduction correlated with the number of hours of leisure physical activity. It
is difficult to explain the conflicting results of these two studies even after
taking into consideration the limitations of their respective study designs.
Possible explanations include the potential difference in risk between pre
and post-menopausal women and current and lifetime physical activity. In
the study by Mink et al. all women were between 55 and 69, whereas in
Couttreau’s study the mean age in the high physical activity group was
47 years (130,134). Two other studies, one retrospectively comparing the
incidence of reproductive cancers among former college nonathletes com-
pared to athletes, and the other comparing physical education teachers
and language teachers with respect to physical activity, reported opposite
results (135,136). In terms of etiology, it is easier to explain why physical
activity may be protective rather than associated with an increased risk of
ovarian cancer, as continuous vigorous activity can delay menarche and
cause ammenorrhea, and anovulatory cycles in young women, as well altera-
tions in hormonal and metabolic pathways (137–144).

Medications: A number of case–control studies have examined the
association between over-the-counter analgesics and the risk of ovarian
cancer, initially based on the protective association seen with colorectal can-
cer. Cramer et al. looked at aspirin, ibuprofen, paracetamol, and prescribed
analgesics in a case–control study (145). A 48% decrease in the risk of ovar-
ian cancer was observed among those women who took paracetamol com-
pared to those who did not. Paracetamol is the same medication as
acetaminophen. This risk decreased further with frequency and duration
of use. Whereas Rosenberg et al. reported a 20% decrease in the risk of ovar-
ian cancer among women who took nonsteroidal anti-inflammatory drugs
(NSAIDS) 1 day per week for at least 6months that began a year before
hospital admission compared with those who did not take NSAIDS (146).
A further reduction up to 50% was found with increasing frequency of
use. They did not observe a decrease in risk in those women taking acet-
aminophen. In another case–control study by Moysich et al. aspirin users
were not at a reduced risk but women who took acetaminophen were
(43%) (147). A decrease in risk was seen with increasing frequency and dura-
tion of use. In a prospective study looking at mortality, a 45% decrease in
the death rate from ovarian cancer was observed among current paraceta-
mol users compared to nonusers. The risk was not lowered with increased
frequency of use (148). The biological mechanism under lying this decrease
in risk seen with acetaminophen is unknown, however, Cramer et al. did
demonstrate lower gonadotropin and estradiol levels in women taking acet-
aminophen compared to women taking no drugs or other analgesics (149).

The use of psychotropic medications was found to increase the risk of
ovarian cancer in three case–control studies done in the North Eastern part
of the United States. It is hypothesized that these medications may increase
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the risk of ovarian cancer by inducing gonadotropin secretion (150). Self-
reported use of psychotropic medications, including amphetamines, sedatives,
antidepressants, and antipsychotics for 6months or longerwas associatedwith
between a 1.6 and twofold increase in the risk of invasive ovarian cancer com-
pared to nonusers (150,151). The risk was greater with longer duration of use.

Other Exposures: Talc powder, has been studied as a potential risk
factor for ovarian cancer for almost 20 years. It was originally examined
because of its chemical similarity to the rod like asbestoses that has been
shown to be associated with ovarian cancer in the occupational setting
(152–155). Talc is thought to cause damage to the ovary by retrograde entry
through fallopian tubes. When 14 case–control studies were combined that
included eight studies with more than 200 cases, women who used talc in the
genital area had a small excess risk compared to those who did not use talc
(OR¼ 1.36; 95% CI 1.24, 1.49) (156). No dose response was seen. However,
in a prospective study of 78,630 women no association was seen for talc
(relative risk¼ 1.09; 95% CI¼ 0.86, 1.37) (152). A modest association was
observed among women who used talc and had invasive serous carcinoma
(relative risk¼ 1.40; 95% CI 1.02, 1.91). However, there were certain limita-
tions to the study including no information on duration of use and a short
follow-up of 9 years. A case–control study by Cramer et al. also suggested
that women might be at an increased risk of ovarian cancer if the male part-
ner used talc on their genital area (156). In the same study, genital talc use
that began after a first pregnancy appeared to be associated with lower risk
compared to use, which began before the first pregnancy. In summary,
further prospective studies are needed to address possible recall or selection
bias and to help decide whether perineal talc is in fact a risk factor for
ovarian cancer.

Weak associations have been reported between tobacco smoke,
radiation exposure, mumps virus, caffeine, hair dye and the development
of ovarian cancer (86,158–160).

2.4.5. Diseases Associated with Ovarian Cancer

Polycystic Ovarian Disease and Endometriosis: The data relating
polycystic ovarian disease (PCOD) to ovarian cancer are conflicting. Based
on Fathalla’s hypothesis one may expect women with polycystic ovarian dis-
ease to have a lower risk of ovarian cancer due to decrease ovulation whereas
based on Risch’s or Cramer and Welch’s theories women may have a higher
risk due to endogenous hormone profiles. The increased use of fertility drugs
among women with PCOD may also affect risk further. From a population-
based case–control study a diagnosis of PCOD was associated with greater
than a twofold increase in the risk of ovarian cancer (OR¼ 2.5, 95% CI
1.1, 5.9) (161). Data from a Mayo Clinic cohort study did not demonstrated
a similar association (162). Further studies are required.
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An increased risk of ovarian cancer has also been observed in women
with a history of endometriosis. Brinton et al. examined the records of
20,686 women who were hospitalized for endometriosis and found almost
a twofold increase in the risk of ovarian cancer compared to the general
population (SIR¼ 1.9, 95% CI 1.3, 2.8) (163).

2.5. Biomarkers of Early Detection

The search for effective screening marker(s) for ovarian cancer is ongoing.
An ideal screening test should have a high sensitivity, that is the ability to
detect true positives, and a high specificity, that is a low number of false
positives, to avoid unnecessary testing and anxiety, particularly when the
prevalence of the disease is low. The positive predictive value (the probabil-
ity that a positive test indicates the presence of disease) is influenced by the
specificity of the test and the prevalence of the disease in the screened popu-
lation. One method of increasing the positive predictive value of the test is to
target high-risk groups, who have higher prevalence rather than the general
population. For this to be effective at a population level, the factors used to
select the high-risk groups should capture most of the women who have dis-
ease. Qualities of a good marker of early detection include the ease at which
it can be done, cost effectiveness, and ultimately, the demonstration that
early detection translates into a reduction in mortality.

2.5.1. CA125

CA125 is a serum marker associated with ovarian cancer first described by
Bast et al. (164). CA125 is a glycoprotein (molecular weight¼ 200,000)
detected by the murine monoclonal antibody OC 125 (164). This antibody
is produced by the somatic hybridization of spleen cells from mice
immunized with ovarian cell lines (164). Its use as a prognostic marker
and in the follow-up and therapy of ovarian cancer has been established,
but not its use as a marker for early detection (165).

The idea that serum CA125 may be a potential biomarker for early
detection came from a report published by Bast et al. in 1985 and was
confirmed by Zurawski et al. in 1988 (166,167). Both these studies demon-
strated the CA125 levels increase between 1 year and 18months preceeding
diagnosis. Subsequently, a number of studies have attempted to assess the
sensitivity and specificity of CA125 as an early detection marker. In a
case–control study, Zurawski et al. reported that only 38% of patients with
stage 1 disease and 75% of women with stage II disease had CA125 levels in
excess of 65U=mL suggesting that the sensitivity of the test was not optimal.
Further, Bast et al. measured the serum CA125 level in 888 healthy women,
143 women with nonmalignant disease, and 101 women with ovarian cancer
and found that the specificity was also low (167). One percent of healthy
women, 6% of women with nonmalignant disease, and 82% of patients
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had a CA125 level greater than 35U=mL (168). In a nested case–control
study Zurawaski et al. reported a sensitivity of 20% for a CA125 level over
35U=mL for a 3-year period prior to the diagnosis (167). They also noticed
an increase in specificity with increasing age and in postmenopausal women.
In a prospective study of 5500 women, Einhorn et al. reported a specificity
of 98.5% for a CA125 level > 35U=mL for women aged 50 years or older
for a 3-year period (169). For the same time period similar results were
reported by Helzlsouer et al. in a nested case–control study of 37 women
who developed ovarian cancer and 73 controls. A maximum sensitivity
of 57% for a serum level CA125 greater 35U=ml within the first 3 years of
follow-up and a specificity of 100% was observed. However, the specificity
and sensitivity decreased over time (170). The new second generation assays,
combining monoclonal antibodies recognize epitopes on two distinct regions
and are potentially more sensitive.

The next phase of studies with regard to CA125 involve looking at
serial levels or CA125 in combination with other tests. The sensitivity of
the screening program can be increased by the use of two parallel tests, to
screen for a disease. Zurawski et al. in 1990, demonstrated the increase of
serial CA125s compared to a single value in a nested case–control study
(171). Among women who had an elevated CA125 level at baseline, they
reported a specificity of 99.9% if a woman’s CA125 level had doubled over
a 6-month period. In a retrospective study of 5550 women from the Stock-
holm study, a sensitivity of 83%, and a specificity of 99.7% to detect ovarian
cancer was reported using serial CA125s (172). Both these studies were
limited by sample size.

Another approach has been to increase the specificity of the test by
using a two-stage screening procedure, where women who test positive for
the first test are then screened using a second test. The drawback is this will
lower over-all program sensitivity. Jacobs et al. designed a two-stage screen-
ing procedure: 22,000 volunteers had a serum CA125 level and if that was
abnormal (defined as greater than 30U=mL), they were called back for an
abdominal ultrasound (173). Those women with an abnormal ultrasound
were then referred to their gynecologist. Transvaginal ultrasongraphy has
an estimated sensitivity between 80% and 100% and a specificity of around
99.6% (174,175). Eleven ovarian cancers were detected as a result of the
two-stage screening. Only 4 of the 11 had early stage disease. As expected
within the short follow-up period of 2 years, the screening program achieved
an increase in specificity (99.9%), but a sensitivity of only 58% (173). This
study was followed by a pilot randomized trial comparing a two-stage screen-
ing program (annual CA125 followed by ultrasound screening in those with
an abnormal CA125 result) with follow-up without screening. Postmenopau-
sal women aged 45 years and older were randomized to either the screened
group (n¼ 10,977) or the control group (n¼ 10,958). The follow-up period
was 7 years. The primary aims of the study were to assess feasibility and
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compliance. Seventy-one percent of women were screened annually over the
3-year period (176). Parallel screening programs also have been instigated in
ovarian cancer with the hope to increase the sensitivity of the program. The
National Cancer Institute is currently conducting the prostate, lung, colo-
rectal, and ovarian (PLCO) cancer screening trial, in which 148,000 men
and women between the ages of 55 and 74 have been enrolled from nine geo-
graphic areas in the United States. The women are randomized to a screening
or control group. Those women who are being screened are receiving an
annual physical examination, CA125 and transvaginal ultrasound.

2.5.2. Other Biomarkers

A number of studies have begun to assess the feasibility of other biomarkers
that could be potentially used in conjunction with CA125 or independently.
So far no biological marker has been proven to be effective in early detection.
Some of the markers that have been investigated include; CEA, CA 19-9, CA
15-3, CA 54-61, CA 72-4, TAG 72, HMFG2, IL-6, IL-10, M-CSF, placental
alkaline phosphatase, tissue peptide antigen, lipid associated sialic acid,
NB70K, OVX1, D Dimer, prostasin, urinary gonadotropin fragment, and
plasma lysophosphatidic acid (177–181).

Proteomics, which examines protein patterns in association with dis-
ease states, has offered hope for developing an effective test for the detection
of ovarian cancer. Preliminary studies identified a pattern of proteins that
could distinguish women with ovarian cancer from healthy women nearly
100% of the time. Clinical research using patterns of proteins as a means
for identifying those with disease are underway. The technology is also used
to identify specific proteins that could then be developed into clinical tests
for early detection. Studies of these has been limited.

3. ENDOMETRIAL CANCER

3.1. Overview

Endometrial cancer, like ovarian cancer, is a disease of the elderly. Most
women diagnosed are over the age of 60 and it rarely occurs below the
age of 40. The overall age-adjusted incidence of endometrial cancer in the
United States is 25 per 100,000 women and the mortality is about 4 per
100,000 women. Stratified by race, the incidence is higher among white
females but the mortality is greater among black women. Incidence and
mortality increase markedly with age (3). For women 65 and older, the inci-
dence and mortality rates are 94 and 23 per 100,000 women, respectively (3).

Historically, the increased use of estrogen replacement therapy in the
late 1960s and early 1970s led to a transient increase in the incidence
of endometrial cancer between 1974 and 1976. Once it became clear that
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unopposed estrogen therapy increased a women’s risk of endometrial can-
cer, a warning was issued by the Food and Drug Administration in 1976
and there was a subsequent decline in the use of unopposed estrogen and
less endometrial cancer.

Stage and age also affects mortality rates. Women less than 65 years old
have a 5-year survival rate of 88% compared to 80% in those who are 65 years
or older (3). The 5-year survival rate for local-regional disease was 64%
compared to 25% for distant disease (3).

3.2. Histological Types

The most common histological type of endometrial cancer is endometriod,
accounting for 75–80% of cases, (squamous differentiation occurs in one-
third of those); 10% are papillary serous carcinomas and 4–5% are clear cell
adenocarcinomas.

There is evidence that atypical hyperplasia in endometrial tissue may
be a precursor or intermediate marker in the development of endometrial
cancer, raising the possibility that early screening or preventive measures
could be implemented. A retrospective study of 170 women with endome-
trial carcinoma who were followed for 13.4 years, only 2% of women with
endometrial hyperplasia without atypia developed carcinoma compared to
23% of those with atypical hyperplasia (182). Ho et al. in a retrospective
study, reported a 27.6% incidence in emdometrial cancer among patients
with atypia compared to a 3.4% incidence among women without atypia
(183).

3.3. Etiology

Both epidemiological and laboratory studies strongly implicate hormonal
exposure, in particular estrogen, in the etiology of endometrial cancer.
The exact mechanism by which estrogen exerts its effect, as well as the con-
tribution of other factors to the carcinogenesis pathway, is still unclear.

The ‘‘unopposed estrogen’’ hypothesis was first coined in the late
1970s and subsequently modified to explain the various associations
observed between many of the known risk factors and the development of
endometrial cancer (184–186). It is based on the premise that prolonged
and uncontrolled mitosis of endometrial cells, as a result of unopposed
estrogen exposure, increases the susceptibility of these cells to developing
endometrial cancer. During a normal menstrual cycle, the mitotic rate of
endometrial cells rises rapidly during menstruation to reach maximum levels
early in the cycle and then stays constant until around day 19, where it falls
due to an increase in progesterone. The maximum endometrial mitotic rate
is induced in the early follicular phase. Progesterone reduces mitotic activity
by decreasing the number of available estrogen receptors, increasing the
metabolism of estradiol to the less active estrone and promoting the prolif-
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erating endometrial cells to move to a secretory state. In postmenopausal
women, plasma estrogen is mainly derived from extraglandular conversion
of androstenedione to estrone. Obese women have higher estrogen levels.
There is a limit to the extent to which estrogen can increase the mitotic rate.
Above a threshold, the mitotic rate remains constant. Because leaner post-
menopausal women have a lower amount of endogenous estrogen than
obese women, exogenous estrogen has greater potential to increase the
mitotic rate before the threshold is reached.

3.4. Risk and Susceptibility Factors

The main risk factors can be divided into: inherited factors, hormonal
factors, reproductive factors, lifestyle factors, diseases associated with
endometrial cancer, and biomarkers of early detection.

3.4.1. Inherited Factors

Germline Mutation: A small percentage of women with endometrial
cancer may have inherited genetic susceptibility to colon cancer. Hereditary
nonpolyposis colorectal cancer (HNPCC) syndrome is associated with
increased risk of colon, endometrial and ovarian cancer. In 1990, the Inter-
national Collaborative Group on HNPCC proposed the Amsterdam cri-
teria (Table 1) to identify high-risk groups predominantly in the research
setting (186a,b). The criteria were revised in 1998 to take into consideration
extracolonic malignancies (186c) (Table 1). A second set of criteria that is
used, is called the revised Bethesda Guidelines. Clinically (186d) in table.
HNPCC is an autosomal dominant disorder that is associated with muta-
tions in DNA mismatch repair genes (53–55,187–191). In particular, germ-
line mutations in hMSH2, hMLH1, PMS1, PMS2, and hMSH6 have been
observed in up to 70% of HNPCC families (192). Microsatellite instability
was also demonstrated in 75% of endometrial tumors associated with
HNPCC (193). It is estimated that between 30% and 60% of women with

Table 1 Amsterdam Criteria for Hereditary Nonpolyposis Colorectal Cancer

1. Histologically confirmed colorectal cancer in at least three relatives, one of whom
is a first-degree relative of the other two

2. Occurrence of disease in at least two successive generations
3. Age at diagnosis below 50 years in at least one colorectal cancer case
4. Exclusion of familial adenomatous polyposis (FAP)

International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-

HNPCC), 1991.

Source: Adapted from Vasen HFA, Mecklin J-P, Meera Khan P, Lynch HT. Dis Colon Rec

1991; 34:424–425.
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this syndrome may develop endometrial cancer by the age of 70
(52,194,195). Little is known about the natural history of women with
HNPCC. On average, women with the HNPCC syndrome were diagnosed
with endometrial cancer 15 years earlier than the general population
(52,196). Vassen et al. collected data on 125 endometrial cancer cases that
were known to have HNPCC (196). Of the 125 women, 61% had a second
primary cancer of which 72% had colorectal cancer, and 9% had both ovary
and stomach cancer. There were also a few reports of synchronous cancers.
In this group the mortality from endometrial cancer was 7% higher than the
expected population rate.

Genetic Polymorphisms: As in ovarian cancer, the role of other
inherited factors in endometrial cancer causation such as low penetrant
mutations that commonly occur in the population are unclear. The focus
has been on polymorphisms in genes encoding for enzymes involved in hor-
mone biosynthesis in particular CYP17, and the androgen receptor CAG
repeat length (197,198). Few studies have been done. Himan et al. examined
the association between a single nucleotide change (T to C) in the 50 region
of CYP17, which encodes a cytochrome P450 enzyme involved in androgen
biosynthesis and the risk of endometrial cancer (197). This polymorphism
was found to be protective in women who were homozygous for the allelic
variant (OR¼ 0.43, 95% CI 0.23, 0.80). In another study, Yaron et al. exam-
ined the CAG length of the androgen receptor gene and the association with
endometrial cancer (198). The mean number of CAG repeats was 19.8 in
cases and 17.9 in controls (p< 0.01).

3.4.2. Hormonal Factors

Endogenous: Menstrual factors: consistent with the estrogen hypo-
thesis both early menarche and late menopause are associated with an
increased risk of endometrial cancer. An early menarche, defined as less than
or equal to 12 years of age, increases a women’s risk of endometrial cancer
anywhere between 1.6 and 3.9 times the risk of women who undergo
menarche at a later age (159,199–204). Similarly, an increased risk, between
1.7 and 2.4, was observed in women who became postmenopausal at the age
of 52 or greater compared to those who were less than 49 years old
(159,199,201–207). Increasing years of ovulation and longer duration of
flow during each menstrual cycle were also observed to be risk factors
(199,200,208).

Serum levels: in line with the ‘‘unopposed estrogen’’ hypothesis and
other risk factors that have been discussed above, several studies have
demonstrated an increased risk of endometrial cancer in women who have
higher endogenous plasma levels of estrogen and androgens and a decreased
risk in women with high levels of sex hormone binding globulin that tightly
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bind estrogen (209–213). In a study by Potischman et al. these hormonal dif-
ferences were only seen among postmenopausal women and they observed
a relative progesterone deficiency among premenopausal women with
endometrial cancer compared to controls, suggesting that progesterone
exposure may be a more important factor in premenopausal women (213).

Exogenous: Oral contraceptive pill: the majority of epidemiological
studies have reported a risk reduction in endometrial cancer of approxi-
mately 50% in women who have used an OCP that contains both progester-
one and estrogen for at least a year (78,82,84,201,203,210,214–222).
This risk continues to decrease with increasing duration of use. Studies also
suggest that the protective effect continues for 15 years or more even after
cessation of the OCP (82,214,217). In some studies, OCPs that contained
higher levels of progesterone correlated with a greater reduction in risk of
endometrial cancer (216,223). It is unclear whether this is due to the dose
of progestogen or their duration of use (224).

In the mid-1970s, case reports indicated an association between
sequential oral contraceptive use (in particular a brand called Oracon that
used a strong estrogen and weak progesterone dose) and a range of endome-
trial lesions including proliferative lesions, severe atypical hyperplasia, and
endometrial cancer and as a result it was withdrawn from the market
(215,225–228).

Hormone replacement therapy: HRT is used to treat many of the symp-
toms and prevent further health risks such as osteporosis and cardiovascular
disease in postmenopausal women. It can be administered in two forms, as
estrogen replacement alone or a combination of both estrogen and proges-
terone. Estrogen alone carries an increased risk of endometrial cancer. In
observational studies, the relative risk of endometrial cancer has been esti-
mated between 1.3 and 12 for women who used estrogen replacement com-
pared to nonusers (159,203,229–245). In some studies, the risk increased
with duration of use (242–247), and although the risk gradually decreased
after cessation of use, it did not return to that of nonusers (240,247–249).
Most of these cancers occurring among users of estrogen replacement ther-
apy have been detected at an early stage and are well differentiated
(232,234,241,242). In some studies, an increased risk was not seen in women
who took estrogen replacement therapy for less than 6months
(232,233,235,238). In the meta-analysis by Grady et al. in 1995 a twofold
increase in risk for estrogen users when compared to nonusers was found
and the risk for less than 1 year of use was 1.4, and for greater than 10 years
was 9.5 (250). Irrespective of estrogen dose or the manner it was admini-
stered (continuously or cyclically), an elevated risk in endometrial cancer
was observed (250). Combining progesterone therapy with estrogen for
women with a uterus attenuates the risk of endometrial cancer
(220,243,245,246,251–253). In a randomized double blind placebo
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controlled trial continuous combines estrogen plus progestin therapy does
not increase a women’s risk of endometrial cancer (H.R. 0.81, 95% CI
0.48, 1.36) (253a).

In some studies, the association between estrogen therapy and endo-
metrial cancer has been modified by weight and smoking. In women taking
estrogen therapy alone, those who did not smoke had a higher risk of devel-
oping endometrial cancer than nonsmokers. It appears that smoking negates
the risk associated with estrogen therapy and may be due to the anti-
estrogen effects of smoking (201,260,261). Leaner women on estrogen
therapy demonstrated a higher risk for endometrial cancer compared to
women with a higher BMI (262).

3.4.3. Reproductive Factors

Pregnancy: Compared with nulliparous women, parous women
have a 10–50% reduction in the risk of endometrial cancer (79,199,200,203,
263–265). Increasing number of pregnancies and increasing age of first
and last pregnancy were also found to be protective in some studies
(82,199,200,203,204,217,264,266). These findings are also consistent with
the estrogen hypothesis since pregnancy reduces the time of exposure to
unopposed estrogens. The increased exposure to progesterone may also
lower the risk.

An ongoing question is whether the increased risk associated with nul-
liparity may be related to infertility. Brinton et al. reported a twofold
increase in risk among nulliparous women who had difficulty conceiving
compared to nulliparous women with no difficulty, and a sevenfold increase
in risk among nulliparous women who had sought medical advice regarding
infertility (200). Infertility is one of the factors attributed to the increased
risk of endometrial cancer observed among nulliparous women who have
married and never had children (264,267).

Studies on the role of induced and spontaneous abortions=miscarriages as
risk factors for endometrial cancer have mixed results (199,200,264,265,267).
McPherson et al. observed 2.5 times the risk of endometrial cancer in women
whohad an induced abortion compared to thosewhodid not but the sample size
was small (199). In contrast, Parazzini et al. hadreported aprotective association
in women who had either an induced or spontaneous abortion, with a greater
effect in premenopausal women (267). An increased risk was observed among
women whose last pregnancy ended in a miscarriage compared with women
who had a miscarriage during their first or middle pregnancy suggesting that
the timing of the unopposed estrogen surge that occurswhen in the case of amis-
carriage may be an important risk factor (199).

3.4.4. Lifestyle Factors

Diet: Evaluating the association of various dietary factors and the risk
of endometrial cancer is complicated by the variations in study design, diet-
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ary assessment tools, and information on potential confounding factors.
However, most of these studies suggest that diets low in fat, high in fiber,
and rich in fruits and vegetables may reduce the risk of endometrial cancer.

Dietary fat has been consistently associated with an increased risk of
endometrial cancer. Reported odds ratios range between 1.5 and 5.6 (268–
272). Both, animal fat (269,270), and saturated fat such as oleic acid and
linoleic acid (269) have been associated with increased risk, whereas, mono-
unsaturated fats may be protective (272). There are some data linking low
fat diets to a reduction in serum estrogen levels or a shift in estrogen meta-
bolism towards less active metabolites which may explain the association
(273–275). In a clinical study, premenopausal women given a low-fat diet
were observed to have decreased plasma levels of free estradiol and free
testosterone (276).

Some studies suggest that the consumption of fruit and vegetables are
protective. A 30–60% reduction in endometrial cancer was observed among
women who consumed the highest fourth of fruit consumption compared to
the lowest fourth (248,270,277). A risk reduction of 50–70% was also seen
with the consumption of green vegetables (271), carotene, which is found
in green and yellow vegetables (248,270,271,278,279), and lycopene (279).
Decreased plasma estradiol levels have been observed in women whose diet
contains large amounts of plant food. Lower plasma estradiol and urinary
estrogen levels have also been measured among postmenopausal women
who are vegetarian compared to those who are nonvegetarians (280,281).
Carotene may alter estrogen metabolism by producing less active metabo-
lites (278).

Increased soy and dietary fiber intakes from cereal, vegetable and fruit,
have also been associated with a decreased risk of endometrial cancer
(279,282). A risk reduction between 29% and 50% for women in the highest
fourth of consumption of cereal, vegetable and fruit fiber compared to the
lowest fourth has been reported (279,282). High consumption of soy pro-
ducts was associated with a 54% decrease in the risk of endometrial cancer
compared to the lowest soy intake. Potentially, both soy and fiber could
alter estrogen levels in the following ways; (1) altering the metabolism of
estrogen at the receptor site (283,284), (2) decreased enterohepatic circula-
tion and increased elimination of estrogen (281,285), or (3) increasing levels
of sex hormone binding globulin resulting in lower levels of free estrogen
(286,287).

Other dietary factors such as alcohol (248,271,288–292), protein intake
(268–270,278,279), and total energy (248,268–270,278,293) have not been
consistently associated with an increased or decreased risk of endometrial
cancer (269,278).

Weight: In postmenopausal women, increasing BMI and increasing
body weight has been consistently associated with an increased risk of
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endometrial cancer. Odds ratios ranging between 1.5 and 4.0 have
been reported in postmenopausal women with BMI of greater than
28 kg=m2 or body weight of greater than 165 lb when compared to
women with a BMI of less than 22.5 kg=m2 or less than 130 lb
(199,202–204,232,233,235,236,282,294–301). A few studies have observed
an even greater risk among obese premenopausal women with odds ratio
between 17 and 20 (159,184). In postmenopausal women, the increased
conversion of androstenedione to estrogens in adipose tissue and the
decreased levels of sex hormone binding globulins results in an increased
availability of free estrogen (302,303), which could explain these findings.
DeWaard et al. demonstrated a positive correlation between changes in
body weight and the excretion of estrone, estriol, and total estrogen
(304). In premenopausal women, increased BMI has been associated with
anovulatory cycles and diminished production of progesterone suggesting
a different mechanism of action (305,306). Although current weight seems
to be the strongest predictor of risk, an increased risk was also seen in
women with a past history of obesity. The risk appears to persist regard-
less of age (295,296). It is unclear whether rate of change in weight is an
independent risk factor (295). In a large prospective study increasing BMI
was associated with and increased risk of dying from endometrial cancer
(Calle et al., 2003). The increase in risk was 6-fold in women with a
BMI of 40 (Calle et al., 2003).

Physical Activity: Low levels of physical activity have been
associated with a modest increase in the risk of endometrial cancer (odds
ratios of 1.3–2.5) independent of age and after adjusting for BMI and caloric
intake (248,282,294,307–310). A greater risk was observed among women
who reported lower levels of occupational activity compared to those who
reported lower levels of recreational activities (282,309–312). Sturgeon et
al. reported an increased risk only in inactive women who had a BMI
greater than 28 suggesting that decreased physical activity is a surrogate
marker for high BMI (294). Higher levels of physical activity have been
associated with lower estrogen levels (313,314) and a reduction in the length
of the luteal phase and=or frequency of ovulatory cycles (139,315–317).
Based on existing studies, it is unclear whether physical activity is an
independent risk factor for endometrial cancer.

Smoking: In observational studies a risk reduction of up to 40%
has been consistently observed in postmenopausal women who currently
smoke (203,242,243,260,261,298–321). However, in most studies a clear
dose–response has not been observed (243,260,261,321), and studies have
not consistently shown decreasing risk with increasing duration of use
(201,243,299,320). The protective association with smoking may be due to
a decrease in estrogen levels. Women who smoke are known to have an
earlier menopause and decreased urinary estrogen secretion (214,322–324).
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The antiestrogenic effects of smoking may also be mediated by induction of
microsomal mixed function oxidase systems that metabolize sex hormones
(298).

Medications: Tamoxifen: tamoxifen is a nonsteroidal hormone that
has both estrogen antagonist and agonist properties. In some tissues, like
the breast, it exhibits antiestrogenic properties, whereas, in other tissues
such as the endometrium, bone, and liver, it acts as an estrogen agonist.
In 1978, tamoxifen was approved for the treatment of metastatic breast
cancer and then subsequently for the adjuvant treatment of breast cancer
and to reduce risk of the onset of breast cancer.

The risk of endometrial cancer is increased among tamoxifen users.
The initial report of an association between endometrial cancer and tamoxi-
fen appeared in the literature in 1985 (325). Subsequently, at least 14 rando-
mized trials and a number of observational studies have confirmed this
association (326–331). Tamoxifen has been classified as a human carcinogen
by IARC based on these studies (332).

Women on tamoxifen as part of the adjuvant treatment for breast can-
cer were observed to have between 1.5 and 6 times the risk of endometrial
cancer when compared with those who were not taking it (328–331,333).
This risk increased with longer duration of use (328,331), a history of prior
use of hormone replacement therapy (331) and BMI greater than 24.5 kg=m2

(331). A twofold increase in risk of endometrial cancer was also observed
in women participating in the Breast Cancer Prevention Trial (BCPT). The
risk of endometrial cancer occurred primarily in women over 50 years,
RR¼ 4.01 (95% CI¼ 1.70–10.90) (334).

3.4.5. Diseases Associated with Endometrial Cancer

Diabetes: A number of studies have reported a significant associa-
tion between diabetes mellitus and cancer of the endometrium with odds
ratios ranging from 1.2 to 3.3 even after adjusting for body weight suggest-
ing that diabetes may also be an independent risk factor (204,207,335–338).
Consistent with the unopposed estrogen hypothesis, increased levels of
estrogen and decreased levels of luteinizing hormones and follicular stimu-
lating hormone have been reported in postmenopausal diabetic women
(339,340). In most studies, an increased risk has been observed in diabetic
women over the age of 40 suggesting an association between noninsulin
dependent diabetes and endometrial cancer. Abnormalities in glucose toler-
ance have also been associated with an increased risk of endometrial cancer
(341–343).

Polycystic Ovarian Syndrome: It is unclear whether polycystic ovar-
ian syndrome (PCOS) increases a women’s risk of endometrial cancer
because factors such as obesity, infertility, and nulliparity are commonly
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associated with PCOS (69,344). Chamlian et al. also reported a 25% increase
in the incidence of PCOS among women with endometrial hyperplasia (345).

4. CERVICAL CANCER

4.1. Overview

Cervical cancer is the third most common cancer in women in the world
today, accounting for approximately 9.8% of all new cancer cases. In the Uni-
ted States alone, in the year 2005, an estimated 10,370 new cervical cancers
will be diagnosed and 3710 deaths from cervical cancer will occur (1). During
the period 1973–1999 there was a 44% decrease in the incidence and a 47%
decrease in the mortality of cervical cancer in the United States (3). A similar
trend has been observed in other developed countries. The decline inmortality
rates predated the implementation of widespread screening programs there-
fore it is felt that factors other than screening may have been responsible
for the initial decline (346–348). These factors include; increasing affluence,
improvements in standard of living, nutrition, increasing use of barrier con-
traceptives, and decline in sexually transmitted diseases (349).

Unfortunately, racial, ethnic, and socioeconomic disparities exist. The
incidence of cervical cancer is at least three times higher in women living in
developing countries, in areas where there are no screening programs, and
in lower socioeconomic groups (346–348). The incidence and mortality rates
in the United States are higher for Black women, (11.2 per 100,000 and 2.8
per 100,000, respectively), compared to White women (7.9 per 100,000
and 5.9 per 100,000), respectively. White Hispanics, Hispanics, American
Indians, and Asian Pacific Islanders also have higher incidence and mortality
rates compared to White women (3).

The incidence of cervical cancer is two times higher among women 65
and over compared to those under 65 (3). This difference could be due to
poor access to screening as well as to decreased participation in screening
programs (349). The 5-year survival rate for women 65 and over is 52%
compared to 74% for women under 65 years of age (3). With respect to
staging, the 5-year survival rate for localized disease is 91% compared to
13% for distant disease (3).

4.2. Histological Types

Invasive carcinoma of the cervix can be divided into three types; squamous,
adenocarcinoma, and adeno squamous. Squamous carcinoma accounts for
approximately 80% of cervical cancers while adenocarcinoma and adeno-
squamous carcinomas account for 10%. The other 10% are usually classified
as undefined (350). The peak incidence of squamous carcinoma occurs
between the ages of 48 and 55 years, whereas adenocarcinoma of the cervix
is seen more often among younger women (267,351).
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The majority of invasive squamous cell carcinomas are thought to arise
from premalignant intraepithelial or dysplastic lesions (352). Dysplastic
changes in the cervical epithelium were first described in the 1940s by Papani-
colau (353). These lesions were classified into histological grades based on the
degree of dysplasia (CIN I–III) (354). In 1988, the histological and cytological
changes were combined to form a new classification known as the Bethesda
System (355). Using this system, cervical lesions were classified into low-grade
squamous intraepithelial lesions (LSIL) andhigh-grade squamous intraepithe-
lial lesions (HSIL). The CIN and Bethesda system are often interchanged.
LSIL contains CIN I and HSIL includes CIN II and CIN III. In 1998, a sepa-
rate category for atypical squamous cells of uncertain significance (ASCUS)
was added followed by categories for atypical glandular cells of uncertain sig-
nificance (AGUS) and adenocarcinoma in situ (AIS) (356). These squamous
intraepithelial lesions can spontaneously regress, persist or progress to invasive
cancer (357).CINI lesions aremore likely to regress,whereasCINII lesions are
more likely to progress on to CIN III or invasive cancer (358–360). Sponta-
neous regression has been reported in up to 56% of women with CIN I, and
43%withCIN II.Whereas up to 11%ofwomenwithCIN I, and 22%ofwomen
with CIN II progress to CIN III, and 1% of women with CIN I and 5% of
women with CIN III progress to invasive cancer (361,362).

4.3. Etiology

Human papilloma virus (HPV) infection is necessary for the development of
cervical cancer (363). HPV is a member of the papovaviridae family of
double-strand DNA viruses (364). It measures about 50–55 nm in diameter.
The papilloma virus genome is about 7900 base pairs and can be divided into
three regions: the long control region, required for DNA expression and
replication, the early region that codes for proteins involved in the regulation
of viral transcription (E2), DNA replication (E1 and E2) and cell prolifera-
tion (E5, E6, and E7), and the late region that contains two genes which code
for the capsid proteins, (L1 and L2) (332). There are over 100 genotypes that
have been identified, of which 35 are known to infect the anogenital tract
(365). In order to be classified as a specific type of HPV there must be less
than 90% homology between base pairs (366). HPVs have been categorized
into low-risk (6,11,39,41–44,51), intermediate, and high-risk types
(16,18,45,31,33,35,52–59) based on their oncogenic potential (367).

From an international prevalence study of 1035 frozen biopsies, HPV
DNA was detected in 93% of invasive squamous cervical tumors (368).
Twenty different strains were detected. Fiftyone percent of the 881 cases
of invasive squamous carcinoma were positive for HPV 16, and 12% were
positive for HPV 18. Human papilloma virus 16 was the predominant type
seen in all countries, except Indonesia where HPV 18 was found to be more
prevalent. Among the HPV 16 positive specimens, just over half were well
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differentiated as opposed to moderately or poorly differentiated and no
difference in prevalence was found according to clinical stage. HPV 45
was also common in western Africa and HPV 39 and 59 in Central and
South America. In contrast, among 25 specimens of adenocarcinoma,
28% were positive for HPV 16 and 56% were positive for HPV 18 (368).
A similar pattern was also seen in the adenosquamous specimens. HPV type
40, 42, 53, 54, 66 and PAP155 were not detected in any of the specimens.
When the negative cases from this study were reanalyzed in 1999 with a
more sensitive HPV DNA test, the prevalence of HPV in those specimens
increased even further to 99.7% (363). HPV infections, have also been
closely linked to CIN I–III and carcinoma in situ (369).

Genital HPV is acquired primarily through sexual intercourse. Once a
cell is infected it undergoes cellular differentiation, followed by replication
and transcription of the HPV DNA virus (364). In two prospective studies
involving young women in Western countries aged between 15 and 23, the
incidence of HPV infection over 36months ranged from 26% to 43%
(370,371). Whereas in a population-based prospective study of 1425 low
income women between the ages of 18 and 80, the cumulative incidence
was 38% at 18months (372). In all these studies, incident cases were defined
as women who were HPV negative at baseline and became positive on sub-
sequent testing. Thus, the incidence rate may represent recurrent infections
as well as new infections. In all three studies, HPV 16 was one of the most
common types detected (370–372). The medium duration of infection by
type 16 ranged from between 8.1 and 11months (370–372). The average
incubation period for all types of HPV infection was between 3 and
7months (370,372). However, for those women with type 16 the medium
duration varied from 8.1 to 11months (370–372).

A number of prospective and nested case–control studies have exam-
ined the association between positive HPV antibodies and the risk of cervi-
cal cancer reporting odds ratios ranging from 2.0 to 7.5 (373–376). The
association between HPV DNA typing, a more sensitive test, and the risk
of high-grade squamous epithelial lesions have also been examined in a
number of prospective studies (371,372,377,378). Women who were HPV
DNA 16 positive had between 8.5 and 13 times the risk of developing
CIN II &III compared to CIN I (371,372,377,378). Given that only a small
number of women who are infected with the HPV develop cervical cancer,
other inherited and environmental factors must play an important role in
the carcinogenesis pathway.

4.4. Risk and Susceptibility Factors

4.4.1. Risk Factors for Oncogenic HPV Infections

Exposures increasing the incidence of oncogenic HPV infections are also
important risk factors for the development of cervical cancer (379,380).
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These factors include young age, duration of oral contraceptive use, number
of lifetime sexual partners, sexual practices, and HIV infection (379,380).
Rousseau et al. reported a 70% reduction in the incidence of high-risk
HPV infection in women greater than 45 years of age compared to women
24 years or less (379,380). A threefold increase in the incidence of high-risk
HPV infection was observed in women who used the oral contraceptive pill
(OCP) for greater than or equal to 6 years compared to women who used the
OCP for less than 6 years (OR 3.36, 95% CI 1.30, 8.68). Silins et al. observed
that women with a history of greater than six lifetime sexual partners were at
a tenfold increase in the risk of oncogenic HPV infections compared to
women who had one lifetime sexual partner (OR 10.2, 95% CI 3.5, 29.6)
(380). Increased rates of HPV infection have also been reported among
HIV-positive women who took part in high-risk sexual practices compared
to HIV-negative women (381–385). Among HIV positive women, higher
viral load and lower CD4 count was also associated with an increased risk
of HPV infection (381–385).

4.4.2. Persistence of HPV Infection and Viral Load

Persistence of high-risk HPV infection is thought to be related to the devel-
opment of CIN III and invasive cervical cancer (372,386,387). Nobbenhius
found that 95% of women with CIN III had persistent HPV infection (386).
Factors such as viral load may directly affect persistence of infection. In a
nested case–control study, the risk of developing cervical cancer in women
with a high viral load increased steadily up to 23% (95% CI 12.4, 31.8) after
15 years of surveillance (388). Josefsson et al. demonstrated a 60-fold
increase in the risk of cervical cancer in women with a high HPV 16 viral
load compared to women who were HPV 16 negative. Viral load was mea-
sured 7.8 years prior to the diagnosis of cervical cancer (389). Studies suggest
that an individual’s HIV status may also affect viral persistence (385,390). In
a longitudinal study, 20% of HIV positive women were positive for HPV
types 16 and 18 infection on repeated measurements compared to 3% in
HIV negative women (p< 0.001) (385).

4.4.3. Inherited Factors

Genetic Polymorphisms: Human leukocyte antigen polymorphisms:
An individual’s level of immunity is one factor that may be associated with
a woman’s risk of CIN III or invasive cervical cancer. Human leukocyte
antigen (HLA) classes I and II genes, are known to be involved in the
immune response (364). There are 20 class I genes in the HLA region, three
of these, HLA-A, B, and C, are mainly involved in the immune response.
Class I genes are expressed in most somatic cells and class II are expressed
by a subgroup of immune cells including B cells, activated T cells,
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macrophages, dendritic cells and thymic epithelial cells. The function of both
class I and II molecules is to present short peptides to T cells thereby initiate
an immune response (391). A number of studies have shown an association
between particular HLA polymorphisms and cervical neoplasia. Hildeshem
et al. reported a ninefold increased risk of HSIL if a woman was homozygous
for DQB1�302 or a carrier of both B7 and DQB1�(302,392,393). Neuman et
al. reported a positive association, between HLA DQB1�0303 and the risk of
invasive cancer, only among HPV positive patients (p¼ 0.005) (394). Cuzick
et al. reported similar findings of increased risk but with different variants of
HLADQB1 (395).

MTHFR polymorphisms: Given that folate may be protective for
cervical cancer, Piyathilake et al. investigated the association between a
polymorphism of MTHFR and the risk of cervical cancer using cervical tis-
sue from 64 women with CIN lesions and 31 controls (396). MTHFR is a
critical enzyme regulating the metabolism of folate and methionine that
are important in DNA methylation and repair. A common base change
from C to T at the nucleotide position 677 of the MTHFR gene results in
substitution of valine for alanine (397). Both heterozygous (Ala=Val) and
homozygous (Val=Val) variants have been shown to have reduced MTHFR
enzyme activity and significantly higher circulating homocysteine levels
compared to those homozygous for (Ala=Ala) (398,399). Therefore, it is
postulated that women who had at least one valine allele would be at an
increased risk of cervical cancer. Piyathilake et al. found a threefold increase
in the risk of cervical cancer among women who were homozygous or
heterozygous for the valine allele (396). The greatest risk was seen among
parous women who had the mutant polymorphism. This may be explained
by the fact that pregnancy stresses folate status, making the folate deficiency
even greater.

Glutathione S-transferase polymorphisms: The glutathione S-trans-
ferases (GSTs) are enzymes that detoxify a large number of carcinogens
by catalyzing the conjugation of reactive chemical intermediates to soluble
glutathione in the liver. The GSTM1 and GSTT1 polymorphisms result in
a reduction in enzyme activity due to the inheritance of two null alleles.
Both GSTM1 and GSTT1 polymorphisms occur in slightly less than 50%
of Caucasians (400).

Two studies have examined the association between the GSTM1 and
GSTT1 genotypes and the risk of cervical cancer in Caucasians (401,402).
Neither study reported a positive association. However, a study in Japan
where GSTT1 null is more prevalent, a twofold increase in the risk in
women who had the GSTT1 null genotype compared to those with the
GSTT1 was observed present. This risk increased when GSTT1 and GSTM1
were analyzed in combination. No information on other risk factors, such as
smoking, was available (403).
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P53 Arg72Pro polymorphisms: HPV 16 and HPV 18 encode two major
oncoproteins E6 and E7. The E6 protein binds to the tumor suppressor
protein P53 and directs its degradation (404,405). The tumor suppressor
gene P53 inhibits cell growth through the activation of cell-cycle arrest
and apoptosis. Alteration or inactivation of p53 by mutation or the interac-
tion of p53 with DNA tumor viruses can lead to cancer (404). In early cer-
vical tumors, the P53 protein is usually not mutated. Inactivation of p53 by
E6 oncoprotein may be analogous to being inactivated by a mutation
(404,406). In 1987, a polymorphism of wild type p53 was identified from
human cells amino acid residue 72 resulting in the substitution of arginine
for proline (407). There have been at least 37 studies examining this associa-
tion. A meta-analysis of these studies demonstrated a 20% increased risk of
cervical cancer in women who were homozygous for the Arg variant com-
pared to those who were heterozygous for the Arg variant (Jee SH et al.,
2004). When stratified by cancer type, the risk of adenocarcinoma of the cer-
vix was increased but not squamous cell carcinoma.

4.4.4. Hormonal Factors

Oral Contraceptives: Results from studies that have examined the
association between OCP use and the risk of carcinoma of the cervix, taking
into consideration HPV status have been mixed. Ylitalo et al. reported
almost a fourfold increase among current users compared with nonusers
(OR¼ 3.78, 95% CI 2.09, 6.85) and an increasing risk with increasing dura-
tion of use (p trend< 0.001) (417). Kruger-Kjaer et al. reported an increased
risk only among women who had HSIL (OR¼ 1.6, 95% CI 0.8, 3.2) (418).
Five other studies that also tested for HPV DNA did not observe an asso-
ciation between OCP and cervical cancer (420–424). The mixed picture may
reflect the difficulty in fully assessing other factors that might confound the
association between OCP use and the risk of cervical cancer, both positively
and negatively. For example, OCP use is highly correlated with sexual beha-
viors that increase exposure to HPVs. On the other hand, women who use
OCPs also tend to have more regular Pap smears, which is associated with a
decreased risk of cervical cancer (425,426). In a meta-analysis of 28 studies,
the relative risk of cervical cancer increased with increasing duration of use
(Smith JS., 2003). The relative risk of cervical cancer in women who had used
oral contraceptives for 10 years or more was 2.2 (95 % CI 1.9, 2.4)
irrespective of HPV status. In HPV positive women the relative risk was simi-
lar, as would be expected (RR 2.5, 95% CI 1.6, 3.9). A direct association
between OCP use and cervical cancer is biologically plausible, through a
mechanism involving folic acid. Studies have detected megaloblastic changes
in the cervical epithelium of women associated with the OCP that were
reversed by folic acid (427,428). Folate deficiency can lead to impaired
DNAmethylation and repair. These changes were then reversed by folic acid.
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4.4.5. Reproductive Factors

Parity has been consistently found to be a risk factor for cervical cancer even
after taking HPV DNA into account (429,430). The biological mechanism
behind this association is obscure but is thought to be due to either hormo-
nal effects, low folic acid, or trauma to the cervix (429).

4.4.6. Lifestyle Factors

Diet: In a number of case–control studies, high dietary carotene, vita-
mins C and E, folate, and low levels of carotenoids have been associated with
a reduced risk of cervical cancer (277,431–439). Unfortunately, the majority
of studies were completed before sensitive HPV DNA tests were available
and few studies took into consideration the effect of both smoking and oral
contraceptive use on these associations (440). Oral contraceptive use appears
to reduce both plasma levels of vitamin C and red blood cell folate even in
women whose dietary intake is adequate (427,428). Smoking decreases
plasma b-carotene, folate, and Vitamin C levels (441).

A number of dietary and serological studies have shown that the low
intake of carotenoids are associated with an increased risk of cervical
dysplasia and invasive carcinoma (436,439,442–448). The risk of cervical
cancer was increased threefold in women with serum levels of b-carotene
and a-carotene in the lower third compared to the highest tertile in a pro-
spective study (439). Similar results have been reported in case–control stud-
ies (442,449,450). An increased risk in cervical cancer was also been
observed in women with low serum levels of cryptoxanthin and lycopene
(439,441,446,449).

Vitamin C, or ascorbic acid, has been consistently associated with
decreased risk of both dysplasia and invasive cancer (437,444,445,451–454).
Few studies have been able to assess serological levels of ascorbic acid, as it
is necessary to use fresh blood samples for valid assays or samples
specifically preserved (387,446). Two studies found that vitamin C was pro-
tective only among smokers (432,433). A study of in situ disease noted a
protective association of vitamin C supplements (455). A sixfold risk was
observed among women with the lowest intake of dietary vitamin C supple-
ments compared to the highest group (456). In a clinic-based case–control
study, HPV seropositive women with plasma levels of reduced ascorbic acid
greater than 0.803mg=dL were found to have a 60% reduction in the risk of
developing intraepithelial neoplasia compared to women with less than
0.803mg=dL (95% CI 0.19, 0.89) (457).

Low serum levels of retinol have also been associated with an
increased risk of cervical cancer (449). An increased rate of progression
(4.5 times) to carcinoma in situ or invasive cancer was observed among
women with cervical dysplasia who had low serum retinol levels compared
to those with high serum levels (449). In a prospective study, the association
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between HPV 16, 18, and 33 and the risk of cervical cancer was greater in
women with lower serum level of retinol compared to higher levels (relative
risk¼ 2.6, 95% CI 0.7, 8.8) (458).

The association between vitamin E and the risk of cervical cancer is
unclear. Verreault et al. in a case–control study, reported a 60% decreased
risk of cervical cancer among women with highest intake of vitamin E
(� 5.9mg=day) compared to the lowest intake (444). Two case–control
studies reported lower a-tocopherol levels in women with CIN and cervical
cancer (387,442) but these results were not observed in two nested case–con-
trol studies and one case–control study controlling for HPV infection
(439,443,458).

Folate has been postulated to have a protective role in the etiology of
cervical dysplasia and cancer. The majority of studies have been case–con-
trol and demonstrated either a mild protective association with increasing
amounts folate intake or serum concentration (428,432,444,445,452,455,
459,460). A nonstatistically significant trend in the protective direction
was reported in a prospective study for increasing serum concentration of
folate and vitamin B12 (431). Human papilloma virus status was known
for all study participants. In the same study, the serum levels of homocys-
teine, a marker of low vitamin B12 levels was increased twofold in women
with cervical cancer (431). Folate intake may be associated with HPV and
cervical cancer. In case–control studies, low levels of folic acid was asso-
ciated with HPV infection (428). Women with HPV and lower level of folic
acid had a sevenfold risk of CIN (OR 7.5, 95% CI 1.2, 9.7) (461).

Smoking: Like so many other factors, smoking was initially thought
to be a surrogate for HPV infection because women who were heavy
smokers also had many of the other high-risk behaviors that were associated
with cervical cancer (Trimble et.al.). However, subsequent studies suggest
that smoking may be an independent cofactor, where there is a modest
increase in the risk of cervical cancer associated with cigarette smoking
(OR between 1.5 and 2.6) after taking into consideration HPV status
(417,418,422–424,430,457,462,463). A dose response was seen in some stu-
dies (417,457,464,465). An increased risk of cervical cancer was also observed
with longer duration of smoking (417,465). A strong association between
smoking and cervical cancer was observed among women infected with
HPV 16 or 18 high-risk genotypes (418,423,424,457,463,466,467). A positive
association has also been reported between smoking and adenocarcinoma of
the cervix, although the sample sizes were much smaller (422).

Biological plausibility for this positive association stems from a
number of findings among smokers including the detection of mutagenic
cervical fluids (468), high concentrations of nicotine and tobacco-specific
N-nitrosamines in cervical mucus of smokers (469), increased levels of DNA
adducts of benzo(a)pyrene and its metabolites in cervical mucus (470) and
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evidence of decreased cervical epithelial immunity which may increase
persistence of the HPV infection (471). In support of a causal link between
smoking and cervical cancer, Szarewski, et al. demonstrated a significant
correlation between the extent of smoking reduction and the change in
cervical lesion size in a randomized intervention trial (472).

4.4.7. Diseases Associated with Cervical Cancer

Chlamydia Trachomatis: Although there is often a correlation in
sexual behavior between HPV and other sexually transmitted diseases,
studies suggest that Chylamydia trachomatis may be an independent risk
factor for cervical cancer.

In a nested case–control study of 182 cases and matched controls,
serum samples were analyzed for IgG antibodies to C. trachomatis (a test
for past infection) and HPV types 16, 18, and 33 (473). Positive IgG
antibodies were associated with a twofold increase in the risk of cervical can-
cer after adjusting for smoking and HPV status (OR¼ 2.2, 95% CI 1.3, 3.5).
There was no difference according to type of HPV infection. An increased
risk was not seen for adenocarcinoma of the cervix. These results are consis-
tent with prior case–control studies (474,475). A longitudinal study by
Anttilla et al. demonstrated a sixfold increase in the risk of cervical
squamous carcinoma among women who had been exposed to a specific
C. trachomatis serotype, G (OR¼ 6.6, 95% CI 1.6, 27.0) (476).

4.4.8. Biomarkers of Early Detection

Human Papilloma Virus DNA Testing as a Screening Tool:
Despite the advent of HPV DNA testing its exact role in cervical cancer
screening is yet to elucidated. Initial studies suggest that HPV DNA testing
may be more sensitive but less specific compared to conventional cytological
screening and therefore is unlikely to replace pap smears (477–479). How-
ever, a modest improvement in screening efficacy has been observed when
the two tests are used in combination (477).

A greater focus is being placed on the use of HPV DNA testing as a
second screening test in women who have equivocal pap smears (ASCUS).
To avoid missing women with high-risk lesions, many physicians currently
refer all women with atypical smears for colposcopy, which is an expensive
and invasive procedure (480–485). In a group of women diagnosed with aty-
pical smears repeat pap smears had a sensitivity of 60% and a specificity of
77% compared to a sensitivity of 86% and a specificity of 71% for HPV
DNA using hybrid capture which identifies 14 HPV viruses as the second
line test. When the two tests were used concurrently the sensitivity increased
to 90% but the specificity decreased to 58%. Manos et al. reported similar
results (479). There is a multicenter randomized clinical trial study organized
by the National Cancer Institute in progress to evaluate three alternative
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methods of managing low grade and atypical cervical cytologic diagnoses.
Women who have either of these two diagnoses are referred to immediate
referral for colposcopy, follow up with cytology alone, or use of HPVDNA
to triage to colposcopy. All women are being followed every 6months for
2 years (486).

5. FUTURE RESEARCH NEEDS

Significant advances have been made in understanding the etiology of
ovarian, endometrial, and cervical cancers. This chapter highlights the
importance of both inherited and environmental factors as risk and suscepti-
bility factors. With the sequencing of the human genome research there has
been a greater focus on understanding the role of inherited factors in the dif-
ferent cancers and how they interact with particular environmental factors.
With advancements in the laboratory a greater understanding of the biolo-
gical mechanisms underlying these environmental exposures is also ongoing.
These developments should be able to yield new approaches for the preven-
tion of these cancers and biomarkers to assist in early detection.
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1. INTRODUCTION

Esophageal cancer is the sixth most frequent cancer worldwide. It is esti-
mated that in 1996 the number of deaths due to esophageal cancer
amounted to some 286,000 out of a total of 5.2 million cancer deaths (1).
Two distinct types of primitive epithelial neoplasm, squamous cell carci-
noma (SCCE) and adenocarcinoma (ADCE), represent more than 95% of
all esophageal cancers. Since these cancers are usually detected at a late
stage, and current therapy is rather ineffective, the 5-year survival rate is
very poor (�10%), with no significant difference observed between devel-
oped and developing countries.

More than 80% of esophageal cancers occur in developing countries,
where the great majority are SCCE. The incidence varies greatly in different
parts of the world (2), with areas of extremely high rates in north-eastern
Iran (Turkoman plain) and central China (Henan province) (Fig. 1). In
these areas, incidence rates higher than 100 per 100,000 have been reported
in both males and females. Other less clearly defined high-incidence areas
are found in parts of South America and in South and East Africa. In most
parts of Europe and the United States, the age-standardized annual mortal-
ity from SCCE is no more than five in males and one in females (per
100,000). However, there are areas in Europe, particularly in Normandy
and Brittany in France and north-eastern Italy, where the incidence rates
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are much higher in males (up to 30 per 100,000), although still relatively low
in females (Fig. 1).

Adenocarcinoma has a very different geographical distribution to
SCCE. First, in contrast to SCCE, it occurs mainly in industrialized countries.
Recent epidemiological data show that ADCE incidence is steadily increasing
in Europe and the United States at a rate of 5 to 10% per year (3). This type
of cancer now accounts for more than 50% of all esophageal cancers in the
United States and in some European countries (e.g., England) (4).

The cellular and molecular natural history of esophageal cancers is still
poorly understood. In particular, there are no reliable markers for assess-
ment of exposure to specific risk factors, or for early diagnosis and prog-
nosis. In this chapter, we discuss the data currently available on the
molecular pathology of esophageal cancers and their temporal sequence.
We present data suggesting that ADC arising in the cardia and ADC of
the lower part of the esophagus with Barrett’s mucosa may represent two
independent pathological entities. We also show how analysis of mutation
patterns in the TP53 gene may help to unravel the complexity of the epide-
miology of SCCE. Finally, we discuss how these various lines of research
may contribute to better management of the worldwide challenge posed
by esophageal cancers.

Figure 1 Incidence of squamous cell carcinoma of the esophagus in various popula-
tions and geographic areas. Examples of high- and low-incidence areas and=or popu-
lations are shown in Europe, Asia, and the United States. � includes Scandinavian
countries, Iceland, and Finland. Source: Data from Muñoz and Day, 1996.
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2. RISK FACTORS AND PRENEOPLASTIC LESIONS

Epidemiological studies have clearly shown that tobacco smoking and
consumption of alcohol, associated with a low intake of fresh fruit, vege-
tables and meat, is causally associated with SCCE. However, the relative
contributions of these risk factors may vary between geographical areas.
In industrialized countries, it is estimated that 90% of this cancer is attribu-
table to tobacco and alcohol consumption, with a multiplicative effect in
individuals exposed to both factors. In the Japanese population, a poly-
morphism in the gene encoding aldehyde dehydrogenase 2 (ALDH2) has
been shown to be significantly associated with several cancers of the upper
digestive tract, including SCCE (5–7). This suggests that acetaldehyde, one
of the main carcinogenic metabolites of alcohol, may play a role in the
development of esophageal cancer. The consumption of scalding hot bev-
erages is a proposed risk factor, as are betel chewing in South-East Asia
and consumption of pickled vegetables and oral consumption of opium
by-products in the Caspian Sea area. Conflicting reports have proposed a
role for human papilloma viruses in SCCE (8).

Squamous cell carcinoma develops from squamous epithelium accord-
ing to a classical dysplasia–carcinoma sequence. Esophagitis, a benign,
chronic inflammatory disease, seems to represent a risk factor for dysplasia.
Esophagitis occurs frequently in response to various types of physical
and chemical stress that may harm the esophagus. A hereditary basis of
esophageal cancer has been described in the case of an extremely rare
syndrome, tylosis, characterized by acute palmoplantar hypekeratosis. The
gene responsible for this disease has been mapped to a locus (TOC,
Tylosis and Esophageal Cancer) on 17q25, but has not been cloned so far
(9,10). Apart for this very rare disease, there is no clear evidence for
inherited susceptibility to SCCE, although some familial clustering has been
reported in high-risk areas of China. In India, a recent study showed an
association between a particular polymorphism in the CDKN1A gene and
SCCE (11).

Adenocarcinomas of the esophagogastric junction include both adeno-
carcinomas of the esophagus with Barrett’s mucosa (ADCE) and adenocar-
cinomas of the cardia (ADCC). Barrett’s mucosa is a glandular metaplastic
mucosa of the normal squamous epithelium. The origin of this metaplasia is
not clearly understood. It is often associated with chronic gastroesophageal
acid reflux. However, it also occurs in a context of chronic biliary alkaline
reflux, as well as, in some cases, in the absence of a detectable reflux (12).
Recent evidence suggests that polymorphic expression of glutathione S-
transferase P1 may determine a genetic susceptibility for developing Barrett’s
mucosa (13). Barrett’s mucosa is reported to occur in more than 10% of the
general population in Western countries. Its risk of occurrence may be
increased in obese individuals and by the use of muscle-relaxing drugs.

Natural History of Esophageal Cancer 603



The origin of glandular cells of Barrett’s mucosa is not clear. Some
evidence suggests that these cells derive from pluripotent cells in the basal cell
layer of the normal esophageal epithelium, which can differentiate into either
squamous or glandular cells. This hypothesis is consistent with the obser-
vation that epithelial cells of Barrett’s mucosa show a hybrid pattern of
cytokeratin expression, of both squamous and glandular origins (14), as well
as of ultrastructural features in both cell types (15). Some authors believe that
the metaplastic mucosa originates from the ducts of the normal esophageal
glands of the submucosa. Barrett’s mucosa can be further classified into
different morphological subtypes (intestinal, fundic, and cardiac). Only
the intestinal type is thought to be a preneoplastic lesion for ADCE. The
estimated risk of developing an adenocarcinoma among patients with
Barrett’s metaplasia is 30–125 times greater than in the general population (16).

The cardia is the anatomical region at the transition between the eso-
phagus and the stomach. It cannot be identified at the macroscopic level but
at the microscopic level, it is characterized by a thin mucosa with clear
glandular cells and one of the acid-secreting cells that are present in the fun-
dic mucosa. There are no preneoplastic lesions identified as leading to
ADCC. The contributions of gastroesophageal reflux disease andHelicobac-
ter pylori infection as risk factors for ADCC remain uncertain (12,17).

There are no exogenic risk factors identified for tumors of the
esophagogastric junction. Evidence on the role of tobacco smoking is still
controversial (18–21).

3. SEQUENCE OF GENETIC EVENTS IN
ESOPHAGEAL CANCERS

Table 1 provides a list of genetic changes that consistently occur in esopha-
geal cancers. Mutation of the TP53 gene is the most frequent alteration
described to date, occurring in both ADCE and SCCE at a prevalence of
between 35% and 70%, depending on the study and on the geographical ori-
gin of the tumors. However, the two tumor types show widely different
mutation patterns (see below). In both cancers, mutation of TP53 occurs
at relatively early stages (22,23) (Fig. 2A and B). Prospective studies have
shown the presence of a TP53 mutation in Barrett’s mucosa and in the dys-
plasia that precedes the development of ADCE (24). In high-grade dyspla-
sia, a prevalence of TP53 mutation of approximately 60% is found,
similar to that in ADCE (25,26). In squamous lesions, mutations have been
observed in dysplasia, in normal mucosa adjacent to cancer lesions and in
mucosa with esophagitis without any evidence of cancer (27–31).

Recently, two genes encoding p53 homologues, TP73 and P63
(p40,p73L,p51), have been identified (32). The P63 gene plays an essential
role in the development of squamous epithelia, since mice lacking this gene
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Table 1 List of Genes, Loci, or Markers of Interest in Squamous Cell Carcinoma
and=or Adenocarcinoma of the Esophagusa

Gene, locus, or marker Locus Comments

APC 5q LOH in ADC
CCND1 Ilql3 Amplification and overexpression

in SCC and in ADC
CDKN2A,

CDKN2B
9p22 LOH, promoter methylation, mutations

in exon 2 in SCC and ADC
CDKN1A 6p21.2 Overexpression in ADC
CDH1 16q22.1 Loss of expression in intraepithelial

and invasive ADC
COX2 1q25 Overexpression in SCC and in ADC
DLC1 3p21.3 Transcription shutdown in SCC
DEC1 9q32 LOH in SCC
EGFR 17pl3 Amplification and overexpression

in SCC
FAS 10q24 Decrease of expression in SCC

and in ADC
FAS-L 1q23 Expression in preneoplastic and

neoplastic lesions in SCC and ADC
FEZ1 8p22 Transcription shutdown in SCC
FHIT 3pl4.2 Loss of expression in SCC and ADC,

promoter methylation in SCC
GATA-4,Cathepsin B 8p Amplification in ADC
HST1 Ilql3, Amplification in SCC
HST2 12pl3 Amplification in SCC
IRF-1 5q31.1 LOH in SCC
MLHI 3p21.3 LOH in SCC and ADC
MSH2 2p22 LOH in SCC and ADC
MYC 8q24.1 Amplification in SCC
NOS2 17cen-q11 Overexpression
P63 3q27-28 Amplification in SCC
Proteases UPA Prognostic factor in ADC
RAB11

(membrane trafficking)
High expression in low-grade

intraepithehal neoplasia
RB1 13q14 LOH, absence of expression in SCC
TOC 17q25 LOH in SCC
TP53 17pl3 Point mutations, LOH in SCC

and in ADC
Unknown 4q LOH in ADC
Unknown 5pI5 LOH in SCC
Unknown 5q31.1 LOH in SCC
Unknown 8p Amplification in ADC
TSHR? 14q31-32.1 LOH in ADC
Unknown 20q Amplification in ADC

aFor full gene names and synonyms, see Tumor Suppressor and Oncogene Directory at

http:==www.ncbi.nlm.nih.gov=CGAP=hTGI=tso=cgaptso.cgi
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die at birth from multiple defects due to improper skin formation (33). This
gene, as well as TP73 is expressed in multiple splice-variant forms. Recent
results show that the P63 gene and its variants are often amplified in
primary human squamous carcinomas of the lung and the head and neck
(34,35). Hibi et al. (2000) (34) have proposed to term this gene (and its
expression variants) AIS (amplified in human squamous cell carcinomas).
Recent studies in our laboratory have shown that P63 was frequently ampli-
fied in esophageal SCC (36). Moreover, by immunohistochemistry, the P63
protein appears to be strongly expressed in all SCC. In contrast, this expres-
sion is virually absent in ADC as well as in Barrett’s mucosa. These observa-
tions suggest that P63 is a key gene for the differentiation of the esophageal
mucosa and that its deregulation may be an essential event in the pathogene-
sis of esophageal cancers.

Other commonly mutated genes include those involved in the control
of the Gl=S cell-cycle checkpoint. Amplification of CCDN1 (encoding cyclin
Dl on 11ql3) occurs in 20–40% of SCCE and is frequently detected in can-
cers that retain expression of the Rb protein, in agreement with the notion
that these two factors cooperate within the same signalling cascade (37).
Amplification of CCDN1 has also been detected in Barrett’s mucosa and
in ADCE (38,39). Inactivation of the CDKN2A gene (9p22) is likely to have
an important role, since this locus appears to be frequently altered by several
distinct mechanisms in both types of esophageal cancer (40–44). This gene
encodes two totally distinct proteins, pl6mtsl and pl4arf. The former is a
cyclin-kinase inhibitor that suppresses the activities of the cyclin D- and
cylin E-dependent kinase complexes which regulate the phosphorylation
of Rb in G1 (45). The latter binds to mdm2, a protein that regulates p53
protein levels. By this indirect mechanism, pl4arf acts as a tumor suppressor
that utilizes a p53-dependent pathway. Deletion of the short arm of chromo-
some 9 has been observed in esophageal SCCE and ADCE. Homologous
deletions have been reported in both cancer types. However, the most pre-
valent inactivation mechanism may be specific hypermethylation of the pro-
moter of exon 1, resulting in the silencing of p16 protein expression.
Mutations of the gene can also contribute to inactivation of this locus,
although they appear to occur in only 10–20% of the tumors. Most of the
mutations described to date affect exon 2, which contains coding sequences
for both pl6mtsl and pl4arf. In a recent study, we have analyzed the expres-
sion of mRNA specific for pl6mtsl and pl4arf in ADCE, and compared it
with that seen in matched, normal esophageal mucosa. Our results indicate
that tumors frequently show an imbalance in the relative levels of the two
transcripts, suggesting that deregulation of expression may also be a
mechanism of alteration of pathways controlled by CDKN2A (46).

In SCCE, other potentially important genetic alterations include tran-
scriptional inactivation of FHIT (fragile histidine triad, a presumptive
tumor suppressor on 3pl4) by methylation of 50-CpG islands (47,48), and
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deletion of the TOC gene on 17q25 (49,50). Recent evidence suggests that
loss of heterozygosity (LOH) at a new putative tumor-suppressor locus on
5pl5 (51) and 9q32 (52) may occur in a majority of SCCE. Amplification
of several proto-oncogenes has also been reported (HST-1, HST-2, EGFR,
MYC) (53).

In Barrett’s mucosa, alteration of the transcription of FHIT may also
be an early event (48,54). In contrast, a number of other loci are altered rela-
tively late during the development of ADCE, with no obligate sequence of
events. Prevalent changes (>50%) include LOH on 4q (55–57), 5q (several
loci including APC) (56,57), 17q (58) and amplification of ERBB2 (60)
and of 14q (61). Molecules involved in membrane trafficking, such as
rab11, have been reported to be specific for the loss of polarity seen in
low-grade dysplasia (62,63). In invasive ADCE, reduced expression of the
cadherin=catenin complex and increased expression of various proteases
are detectable (64).

In both SCCE and ADCE, loss of alleles at loci such as those contain-
ing the mismatch repair genes MLH1 (3p21) and MSH2 genes (2p22)
has been reported in several studies. It is not known whether these losses
are accompanied by inactivation of the remaining allele. The fact that
microsatellite instability is relatively rare in SCCE and ADCE (65–68)
suggests that inactivation of this DNA repair pathway does not play an
important role.

Several studies have shown that the expression of Fas, a cell surface
receptor for pro-apoptic signals, is downregulated and that Fas-L is upregu-
lated in the tumoral cells in SCCE. This could represent a way to evade the
immune surveillance of the host (68). In Barrett’s mucosa, Fas-L expression
has been shown to be increasingly expressed during the progression to ADC
through dysplasia (70,71).

Recently, frequent overexpression of Cox2 in SCCE (72,73) and in
ADCE (74) has been reported. Since this molecule is a mediator of inflam-
mation and a regulator of cell proliferation through the synthesis of prosta-
glandins, it has been suggested that this overexpression could be directly
involved in the tumorigenesis of both types of esophageal cancers (72).
Whether this overexpression is a cause or a consequence of tumor progres-
sion is not known.

Figure 2 proposes a temporal sequence for genetic events in SCCE and
in ADCE. Although the two tumors progress through distinct genetic path-
ways, they have in common the fact that genes regulating the G=S transition
of cell cycle are often altered before the detection of an overt tumor. The
functions of the products of these genes are complex, with much cross-talk,
redundancy and complementarity between pathways. Therefore, it is not
surprising that none of these genes, taken alone, represents a reliable marker
for risk assessment, early detection or prognosis. The only noticeable excep-
tion to this rule is overexpression of cyclin Dl in Barrett’s mucosa.
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It is very tempting to speculate that alterations in these genes all
converge to upset a critical control point for the maintenance of the integrity
of the esophageal mucosa. Indeed, G=S regulation is essential for the
delicate balance between proliferation and differentiation which controls
the formation and renewal of the esophageal mucosa. Further studies are
necessary to elucidate the concerted action of these genes in the development
of esophageal cancers.

4. ADENOCARCINOMA OF THE CARDIA: A SPECIFIC
GENETIC ENTITY

Until now, it has been difficult to clearly distinguish between adenocarcino-
mas of the gastric cardia (ADCC) and adenocarcinomas of the esophagus
(ADCE) at the histopathological level.

In a recent prospective study (75), we used strict anatomopathological
criteria to distinguish between these two types of lesion. Adenocarcinoma of
the cardia was defined as a tumor developing at the esophagogastric
junction, extending essentially to the stomach for which no Barrett’s mucosa
could be identified even by microscopic analysis of the whole junction.
Adenocarcinoma of the esophagus was defined as a tumor developing at
the lower part of the esophagus or as a tumor developing at the
esophago-gastric junction with a Barrett’s mucosa identified at the macro-
scopic or at the microscopic level.

We found that ADCE and ADCC differ in the prevalence of TP53
mutations, which is lower in ADCC (35%) than in ADCE (50%). We also
found several other molecular differences, in particular in MDM2 amplifica-
tion. Amplification of MDM2 is a common phenomenon in several types of
cancer, in particular in tumors expressing wild-type TP53. The mdm2 pro-
tein binds and down-regulates the p53 protein, and amplification of
MDM2 has been proposed to represent an alternative mechanism to inacti-
vate p53 (39,76). MDM2 gene amplification has been observed in 19 tumor
types, with the highest frequency observed in soft-tissue tumors (20%),
osteosarcomas (16%), and esophageal carcinomas (13%) (76). MDM2
amplification has been reported to be present in SCCE from Europe (39)
and Japan (18%) (77). In our series, amplification of the MDM2 gene was
detected in 22% of ADCC, but in only one of the ADCE tested. Further-
more, the two tumor types showed different patterns of cytokeratin 7
expression. This expression was seen in 100% of our ADCE, but only in
37% of ADCC. These results suggest that ADCC and ADCE are distinct
pathological entities at the molecular level. This hypothesis is supported
by clinical data showing that the two groups of patients differ in sex ratio
(male=female ratio of 0.65 in ADCC vs. 0.97 in ADCE) and in the frequency
of secondary neoplasms in patients with ADCC.
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5. LESSONS FROM TP53 MUTATION ANALYSIS

Mutations in TP53 are distributed throughout the central portion of the
gene (mostly in exons 5–8) and differ in their chemical nature. In several
cancers, specific mutation patterns have been shown to exist. These patterns
can often be interpreted as ‘‘fingerprints’’ of the agents or events involved in
TP53 mutagenesis, either exogenous (such as chemical carcinogens) or
endogenous (such as spontaneous mutations) (78).

The pattern of mutations in ADCE differs greatly from that in SCCE.
Whereas the latter shows a verymixed pattern of mutations, almost half of the
mutations found in ADCE are C to T transitions at dipyrimidine sites (CpG).
This type of mutation represents about 25% of all known TP53 mutations in
human cancers. To date, ADCE is among the pathologies showing the highest
prevalence of CpG mutations. Transitions at CpG sites are known to be
related to endogenous mutation mechanisms. A common pathway involves
methylation of cytosine and spontaneous deamination to thymine. The latter
step is enhanced by exposure to nitric oxide (NO). Several recent studies have
shown overexpression of the nitric oxide synthase gene NOS2 in ADCE, that
could be responsible for a high level of exposure to NO.

In SCCE, the pattern of mutations shows wide variations according to
the geographical origin of the tumor. In SCCE from the high-incidence area
of western Europe, a high prevalence of mutations at A:T base pairs has been
observed. These mutations, which are relatively infrequent in other cancers,
may reflect a contribution of metabolites of alcohol. This hypothesis has
received recent support from studies byNoori et al. (79), who have shown that
the mutation spectrum induced by acetaldehyde in the reporter gene hypo-
xanthine phosphoribosyl transferase (HPRT) resembled that in the TP53 gene
in esophageal cancers. In SCCE from eastern Asia, mutations at A:T base
pairs are less common but transversions at G:C base pairs occur at a higher
rate than in western Europe (80) (Fig. 3). These differences are consistent with
the notion that alcohol may not be a major contributor to esophageal
carcinogenesis in eastern Asia, where specific exogenous factors may cause
a higher rate of G to T transversions. The search for correlations between
epidemiological data and TP53 mutation patterns may reveal further clues
as to the nature of the agents involved in the etiology of esophageal cancers.

6. GENETIC BIOMARKERS OF EARLY TUMORIGENESIS
OR PROGNOSIS

To date, the use of genetic markers and immunohistochemistry has been
of little use for the identification, diagnosis, or prognosis of esophageal
cancers. However, several recent studies have indicated that overexpression
of cyclin D1 in Barrett’s mucosa could be associated with a higher risk of
evolution into a carcinoma (38,81). Since Barrett’s mucosa is common in
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the general population, the availability of a predictive marker would be a
crucial contribution to the identification of patients at high risk of develop-
ing ADCE. Other markers which correlate with the neoplastic transforma-
tion of Barrett’s mucosa are hyperexpression of P21 (82,83) and mutation of
TP53. Although these changes may be useful for the detection of cancer,
their predictive value remains to be ascertained.

Several genetic and expression changes have been identified as possible
markers of poor prognosis. In ADCE, a significantly worse outcome has
been shown to be associated with the presence of TP53mutations (26). Limi-
ted evidence also suggests that downregulation of expression of CD44v4
(83) or amplification of ERBB2 (85) may be predictive of poor survival.
Other useful markers may include microvessel density and expression of
vEGF (86,87). For SCCE, predictors of poor prognosis include expression
of P21 (83,88) as well as of cyclin D1. TP53 mutations and loss of pl6
expression may also be markers of poor prognosis (43). Other possible, inde-
pendent factors may include overexpression of metalloproteinase 7, high
levels of the proliferation antigen Ki67, high microvessel density (89), and
expression of vEGF (90) and Ki67 (90). In contrast, expression of heat-
shock proteins 27 and 70 was found to be reduced in SCCE and to correlate
negatively with depth of tumor invasion and distant metastasis (92,93).
Moreover, the Fas antigen was shown to be expressed in the upper portion

Figure 3 TP53 mutation spectrum in tumors from areas of high incidence of SCCE
in Asia (Lixian country, Henan Province) and in western Europe (Normandy and
Brittany, France, and northern Italy). Source: Data from Ref. 80.
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of the squamous epithelium (69). Its presence in cancer lesions correlates
with good histological differentiation and may represent an independent
marker of favorable outcome (77). It is interesting to note that expression
of the Fas ligand (FasL) is restricted to the basal layer of normal squamous
epithelium (69). However, the prognostic relevance of FasL expression
remains to be evaluated.

7. CONCLUSIONS AND PERSPECTIVES

Despite significant progress in the description of genetic alterations, our
knowledge of the sequence of events leading to esophageal cancer remains
limited. A major challenge for the years to come is to exploit recent
advances in high-throughput genetic analysis to better identify patterns of
gene expression during the progression of these cancers. Such studies may
help in further dissecting the genetic heterogeneity of these cancers and to
identify new genes involved in esophageal carcinogenesis. In the long term,
this knowledge may help in designing and selecting adequate therapeutic
strategies, taking into account the specific nature of the genetic alterations
observed in the tumor.

Over the past 10 years, it has been shown that SCCE and ADCE
develop through different genetic mechanisms. A crucial aspect of the na-
tural history of these two cancers is what cellular and molecular factors
induce esophageal stem cells to switch from a squamous to a glandular dif-
ferentiation pathway in the pathogenesis of Barrett’s mucosa. Adenocarci-
noma of the esophagus is mostly a tumor prevalent in developed,
industrialized countries. One of the main problems raised by these cancers
is the development of adequate screening assays to identify patients with
Barrett’s mucosa or early dysplasias which are at high risk of neoplastic
evolution. These patients may benefit from more intensive intervention,
including local or systemic therapies. It will also be essential to determine
the reasons for the rapid increase observed in the incidence of ADCE
throughout Western countries.

In contrast to ADCE, SCCE is most prevalent in developing countries.
Major efforts should be primarily aimed at better identification of risk fac-
tors as well as possible genetic susceptibility factors. Molecular epidemiolo-
gical studies should be performed in order to identify the causes of the high
incidences observed in regions such as northern Iran, central China, and
South Africa. This will require careful, prospective tissue collection. Know-
ledge of the specific geographical risk factors causing these cancers will
allow better primary prevention, as well as possible chemopreventive inter-
vention. It is hoped that a combination of these approaches may lead to a
significant decrease in the tumor burden and reduction of mortality in these
populations.
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1. OVERVIEW

Hepatocellular carcinoma (HCC), is the most common primary malignancy
affecting the liver, accounting for 75% of all liver cancers (1,2). Benign types
of liver tumors, which occur very rarely, include hepatocellular adenoma,
hemangioma, and mixed or mesenchymal hamartomas. Primary malignan-
cies of the liver involve a wide variety of cell types, from angiosarcoma to
hepatoblastoma and bile duct carcinoma, but HCC is by far the most com-
mon of these malignant tumors. Hepatocellular carcinoma is characterized
histologically by well, moderately, or poorly differentiated parenchymal
cells, with trabeculae ranging in thickness from two to eight cells and sepa-
rated by sinusoids. Grossly, HCC is more likely to occur in the right lobe
than in the left, and may present as a single mass, multiple diffuse nodules,
or in a slow-growing fibrolamellar pattern.

Despite rapid advances in knowledge of tumor biology, HCC remains
one of the most serious and challenging malignancies in terms of mortality
and survival. Early detection and effective treatments are major problems,
with most patients coming to medical attention in late stages of the disease.
In the United States in the year 2000, for example, the ratio of liver cancer
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deaths to new cases was expected to be 0.90 (3), indicating the poor
prognosis of this disease and highlighting the need for prevention.

Worldwide, HCC is a serious public health problem with wide geo-
graphic variation in its prevalence. It affects many more males than females,
for reasons not yet well understood but probably related in part to differ-
ences in exposure histories and partly to patterns of sex hormone levels at
different life stages (4,5). Several viruses, most importantly hepatitis B
(HBV) and hepatitis C (HCV), are major risk factors for HCC in different
parts of the world (6) and in certain susceptible subgroups within popula-
tions (7). A recent model of future morbidity and mortality, anticipated
from the growing prevalence of HCV in the United States, predicts that
between 2010 and 2019 there will be 27,200 deaths from HCC and $10.7 bil-
lion in direct medical expenditures for HCV-related diseases (8). Fortu-
nately, the wide availability of an existing vaccine for HBV and the
anticipated development of a vaccine for HCV offer hope of the primary
prevention of viral hepatitis-associated HCC, especially as childhood vacci-
nation against these viral diseases becomes routine around the world (9).

Several environmental risk factors forHCCareknown:definitely alcohol
abuse, aflatoxin, and certain herbicides and industrial solvents, and perhaps
tobacco in susceptible individuals. Public health strategies to reduce the
impacts of these risk factors will continue to evolve as new information from
basic research and epidemiological studies clarifies the role of these agents in
HCC causality. Finally, as new molecular tools are being applied to study
human genetic susceptibility to viral and environmental risk factors of HCC,
medical science is poised to understand more fully the biology and natural his-
tory of HCC, and ways to diagnose, treat, and prevent this serious disease.

2. PREVALENCE OF HEPATOCELLULAR CARCINOMA

The prevalence of HCC exhibits striking geographical prevalence, suggest-
ing possible etiologic differences in genetic, environmental, or social risk fac-
tors. Hepatocellular carcinoma ranks eighth among the world’s most
common cancers, and is particularly common in parts of Africa and eastern
Asia (Table 1). The incidence of HCC per 100,000 persons is extremely high
in China and in Eastern, Middle, and Western Africa, and varies consider-
ably by sex (10,11). Rates as high as 113 among males and 31 among females
in Mozambique, and 65 among males and 25 among females in Zimbabwe
have been reported (12). In comparison, HCC rates in Europe and in North
America are generally reported to be below 6 per 100,000 persons, with con-
sistently higher rates among males than among females (Table 1).

Not surprisingly, the highest rates of HCC tend to occur in areas of the
world with high rates of chronic HBV and=or HCV infections (13–15).
These viral risk factors are discussed below.
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3. GENDER DIFFERENCES

The consistent pattern of higher rates in males compared to females suggests
that HCC might be influenced by environmental or hormonal factors. For
example, males might experience higher levels of exposures to carcinogens,
or tend to be exposed earlier in life, compared to females. This hypothesis is
supported by evidence of different rates of alcohol consumption and heavy
cigarette smoking between men and women, particularly in Asian societies
in which fewer women than men drink or smoke cigarettes regularly (4,16).
Male–female variations in liver cancer incidence may also reflect hormonal
influences. Some case–control studies have reported an association between
oral contraceptive use in women and the risk of HCC. For example, Yu et al.
(17) reported an odds ratio (OR) of 3.0 (95% CI 1.0–8.8) for this exposure,
and an even higher risk among those who used oral contraceptives for 5 or
more years (OR¼5.5; 95%CI 1.2–24.8). Lui et al. (5) proposed that the growth
of HCC tumors is significantly delayed among females compared to males,
due to high levels of estradiol metabolized in the livers of women during their
reproductive years. Supporting this hypothesis is the observation that 2-meth-
oxyestradiol, a metabolite of estradiol produced in the liver, inhibits the
growth of various tumors in situ. Also, a prospective study of nearly 10,000
men in Taiwan (18) found that elevated testosterone levels were associated
with increased risk of HCC, even after adjusting for viral markers, age, and
other risk factors, suggesting a role for androgens in the etiology of primary
liver tumors. The clinical implications of these observations is not yet clear.

Table 1 Age-Standardized Rates of Liver Cancer Incidence (Per 100,000 Persons)
by Sex and Area, 1990

Male Female

Eastern Africa 21.8 9.5
Middle Africa 20.7 10.6
Northern Africa 5.9 2.7
Southern Africa 14.7 4.8
Western Africa 22.6 7.7
Central America 2.3 1.4
South America 3.1 3.3
China 3.7 3.2
Southeast Asia 18.7 6.7
Southern Asia 3.1 1.7
Western Asia 5.3 2.9
Melanesia 21.3 9.3
Micronesia and Polynesia 8.5 2.6
United States 3.5 1.5
Europe 5.8 2.0

Liver Cancer 623



The relative contributions of the male and female sex hormones to
HCC risk may also depend on other patient characteristics, such as HBV
status and cirrhosis, as suggested in a recent prospective study of male cir-
rhotic patients at risk for HCC (19). In this study, serially collected serum
samples were analyzed for levels of free testosterone, estradiol, and other
markers in relation to the risk of developing HCC during 5 years of fol-
low-up. The results indicated significant associations of increasing free tes-
tosterone level and elevated testosterone:estradiol ratio with increased risk
of HCC, even after statistical adjustment for age, viral markers, and other
clinical factors. This suggests that male sex hormones may promote the
oncogenesis of HCC in male patients with cirrhosis. It remains to be seen
whether a more general phenomenon of hormone-associated HCC risk
exists among noncirrhotic individuals.

4. INFECTIOUS AGENTS

4.1. Hepatitis B Virus

Hepatitis B virus is a DNA virus with a circular genome of approximately
3.2 kilobases. Four open reading frames code for the different viral antigens.
Hepatitis B virus is the only known human hepadnavirus. Six genotypes, A–
F, have been identified. It is host-specific for humans and has a high affinity
for infecting hepatocytes.

Hepatitis B virus infection occurs worldwide, but the highest popula-
tion prevalence of chronic HBV infection is found in Southeast Asia (East
of India and excluding Japan), sub-Saharan Africa, north-central South
America, and the North American Arctic. Presence of antibodies to the hepa-
titis B core antigen (anti-HBc) reliably identifies any previous HBV infection.
HBV surface antigen (HBsAg), the foremost marker for active HBV infec-
tion, was discovered in 1965 by Blumberg (20). HBsAg in serum becomes
measurable at the end of a 4–12-week incubation period and typically persists
in chronic HBV infection. However, the occurrence of occult HBV infection,
defined as the presence of HBVDNA in liver tissue or serum in the absence of
measurable HBsAg, has been described as well (21,22). This situation is par-
ticularly common in cases of dual HBV and HCV infection, hinting at viral
interference and at least partial suppression of HBV replication by HCV (23).

Hepatitis B virus can be isolated from most body fluids of infected
individuals. It is quite stable in the environment (24), and is effectively trans-
mitted parenterally, sexually, and vertically. In industrialized countries, sex-
ual transmission and transmission through needle sharing among drug users
predominate. In hyperendemic areas of the developing world, perinatal
transmission is very common. Healthcare workers are at risk of HBV infec-
tion through needle stick injuries, and healthcare clients through the reuse of
nonsterile medical equipment.
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Based on the considerable time lag between initial HBV viremia and
the manifestation of acute symptoms, HBV itself is considered a noncyto-
pathic virus. Its associated hepatocellular destruction is mainly a function
of the HBV-directed immune response (25). HBV usually causes only mild
clinical disease upon infection (26). The rate of symptomatic infections
increases with age, and approximately 25% of adults with HBV show signs
of hepatic dysfunction, including fatigue and jaundice. Cases of fulminant
hepatitis with an associated high mortality are rare and also most common
in older individuals.

Almost all (90–95%) infected adults clear the virus within a few
months. Only a minority of cases develops chronic HBV infection. The rate
of chronicity is inversely associated with age—younger age at the time of
infection confers higher risk of chronic infection. For vertical transmission
from mother to child (either at birth or in early childhood), the rate of
chronic infections is as high as 80%. In those subjects who are chronically
infected, the annual rate of HBsAg clearance is approximately 1% (27). Over
time, approximately 10–30% of those chronically infected show some clini-
cal signs of active hepatitis. The symptoms reflect inflammatory and necrotic
histology in the liver, which can progress to cirrhosis and HCC. Hepatitis B
virus infection acquired early in life carries the highest risk of HCC (15,28).
There is some evidence that the HBV associated risk of HCC may also
depend on the viral genotype (29).

The risk of HCC in Taiwan is almost 200 times higher in HBV-
infected persons than in those not infected. It has been estimated that
approximately 40% of chronic HBV-infected Chinese males die of cirrhosis
or HCC (15). In Western countries, this risk ratio is significantly lower,
probably due to a higher average age at infection and competing risk factors
for mortality: In Italy, for example, Donato et al. (30) found an odds ratio
of 11.4 for HBsAg-positivity (95% CI 5.7–22.8) in 172 HCC cases compared
to 332 matched hospital controls.

Multiple studies have measured disease progression. In 66 Italian
HBsAg-positive (anti-HCV negative) patients with cirrhosis followed for
an average of 64.5 months, Chiramonte et al. (31) observed an annual rate
of progression to HCC of 2% (95% CI 0.4–3.6). Male gender and age over
50 years were independent predictors of HCC development. In Japan, Ikeda
et al. (32) measured 2.1%, 4.8%, and 18.8% of HCC development in a cohort
of 645 cirrhotic patients with HBsAg (and no HCV markers) at 5, 10, and 15
years of follow-up, respectively.

Hepatitis B virus-associated hepatocarcinogenesis is thought to occur
through both direct and indirect pathways: indirectly, malignant cell trans-
formations can be a result of decades of immune-mediated hepatocellular
injury and mitogenic regeneration in response to HBV infection. This pro-
cess allows for the accumulation of mutations and can give rise to the for-
mation of hyperplastic nodules and subsequent HCC. A high hepatocyte
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proliferation rate, as well as signs of irregular regeneration in liver biopsy
samples, have been found to be predictive for the development of HCC
(33,34).

In addition to this indirect oncogenic action of HBV, HBV DNA frag-
ments coding for trans-activating proteins can integrate into the host genome
and directly interfere with host gene expression (35,36). Chimeric HBV
sequences are found in about 80% of HBV-associated HCC (37) and have
been shown to transform cell lines in vitro (38). Sequences coding for the
hepatitis X antigen (HBxAg) are especially implicated in HCC development,
particularly if integrated in proximity to oncogenes or tumor-suppressor pro-
tein-encoding genes (39–41). Studies have demonstrated that inserted HBV
DNA can indirectly inactivate the p53 tumor-suppressor gene (42,43) and
inhibit negative growth regulatory pathways that normally prevent
unchecked cell proliferation (44). Any impairment of the cellular DNA repair
and growth regulatory systems also opens the door to potential co-carcino-
gens (45,46). Recent research has identified highly complex viral–host–envi-
ronment interactions involved in HBV-related carcinogenesis (47,48).

A safe and effective recombinant vaccine for HBV is available (49). A
high cost still precludes its general use in some of the most affected popula-
tions in industrialized and developing countries alike. However, studies in
Taiwan have demonstrated the spectacular preventive effect that general
HBV vaccination can have in a high prevalence population with high rates
of perinatal transmission: the incidence of HCC in children aged 6–9 was
reduced by three quarters, in those born after the implementation of nation-
wide HBV childhood vaccination in 1984, compared to children born
before universal HBV vaccination (50). The World Health Organization’s
‘‘Expanded Programme of Immunizations’’ (EPI) has recommended inclu-
sion of the HBV vaccine into national vaccination programs (51).

Regrettably, the vaccine is of no help to those estimated 350 million
people worldwide (52) already chronically infected and ultimately at risk
for HCC. Treatment with interferon-alpha (IFN-alpha) until recently was
the only option for therapy of chronic HBV infection (53). However, this
form of therapy is expensive, has considerable side effects and is only suc-
cessful in certain populations of patients. More recently, the better tolerated
nucleoside-analogue lamivudine has been approved for therapy of chronic
HBV infections. The drug has shown reduction of hepatic inflammation
in 38–52% of treated patients, as well as sustained clearance of HBV
DNA from serum in 65% (54,55). The successful combination of therapy
with IFN-alpha and lamivudine has been described by Schalm et al. (56).

Aside from vaccination, prevention of HBV infection relies on educa-
tion about the risks and prevention of sexually transmitted diseases, addic-
tion treatment, and needle exchange programs for intravenous (IV) drug
users, and the introduction and upkeep of good hygiene practices in medi-
cine and alternative medicine.
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4.2. Hepatitis C Virus

Hepatitis C virus is an RNA virus, taxonomically grouped into the family
Flaviviridae. Its positive-stranded RNA is 9.4 kilobases long and constitutes
a single open reading frame. Hepatitis C virus was first cloned by Choo et al.
in 1989 (57) and subsequently shown to be the most common etiologic agent
for what had been previously labeled ‘‘non-A, non-B hepatitis.’’ Serological
testing methods for HCV antibodies were published in 1989 (58); polymer-
ase chain reaction (PCR) protocols for the detection of viral RNA in serum
became available shortly thereafter (59,60).

Humans are the only natural host of HCV, though chimpanzees can
be experimentally infected. The virus displays a marked hepatotropism
and replicates primarily in hepatocytes (61–63). There are currently six
genotypic groups of virus isolates, encompassing multiple subtypes. Immu-
nity against one strain may not confer immunity against another (64,65),
and infections of mixed genotypes are possible. Moreover, the virus has a
tendency to produce quasispecies within the infected host, probably as a
response to immune pressure (66).

Transmission of HCV occurs mainly through blood contact, resulting
in a high potential for iatrogenic transmission of the virus. In developed
countries, population subgroups at risk of HCV infection are those who
received blood or blood products that were either not screened for HCV
or did not undergo viral inactivation (67,68), injection drug users who share
injection equipment (69,70), patients with renal failure undergoing dialysis
(71), and healthcare workers at risk for needle stick injuries (72,73). House-
hold, sexual, and perinatal transmission of HCV are known to occur (74), but
the risk of transmission via these routes of exposure is considered low. A
small percentage of persons with antibody to HCV have no known risk fac-
tor for HCV infection (75). However, it has been found that stigmatized risk
factors like IV drug use are likely to be denied by study participants in risk
factor studies, even if present (76).

In developing countries, the major routes of HCV transmission are apt
to be medical and dental procedures carried out with nonsterile equipment,
skin-breaking practices in traditional medicine, and injection drug use (77,78).

Hepatitis C virus is found worldwide, but published antibody preva-
lence in the general population varies widely between less than 1% and more
than 20%. Prevalence in developing countries is typically higher than in indus-
trialized countries.Within populations, prevalence typically rises with age and
is inversely related with socioeconomic status (75,79). Genoytpes 1a, 1b, 2a,
and 2b are most common in Europe and the Americas; types 1a, 2a, and 2b
in East Asia; type 3 in Southeast Asia; type 4 in the Middle East and type 5
in Southern Africa (80). In some areas, genotypes show distinctive age pro-
files, suggesting cohort-specific waves of epidemics (81). Chronic infection
with HCV is considered carcinogenic to humans by the IARC (82).
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Little acute hepatitis, and very little fulminant hepatitis (<1%) is
associated with HCV infection. Instead, approximately 70% of incident
infections are asymptomatic during the early phase of infection. Within
months, 15–30% of newly infected persons clear the virus permanently.
The other 70–85% remain HCV infected. Approximately 50% will progress
to some level of chronic hepatitis 10–15 years after infection, often with pro-
gressive fibrotic changes in the liver. The most serious long-term sequelae of
HCV infection, cirrhosis and HCC, develop in only a minority of chronic
carriers decades after infection. Approximately 15% of those initially
infected will become cirrhotic. Only 1–4% will develop HCC—typically
through the intermediary step of cirrhosis.

The association between HCV infection and HCC was established by a
series of epidemiological studies: Kiyosawa et al. (83) retrospectively evalu-
ated a group of transfusion HCV-infected patients with chronic non-A, non-
B hepatitis. Serial liver biopsies in some patients described a progression
from inflammation of varying severity, via fibrosis and cirrhosis, to HCC.
The time between presumed infection and development of HCC was 17–
60 years, most commonly more than 30 years. To investigate the effect of
HCV on HCC aside from HBV infections in the United States, Hasan et
al. (84) studied the prevalence of anti-HCV in a group of 59 HBsAg negative
cases of HCC. The study found 66% of the HCC cases to have evidence of
HCV infection, compared to 0.5% in blood donors. In Japan, a study of 105
HBsAg-negative HCC cases and blood donor controls found 76% anti-HCV
prevalence in the cases compared to 1% in the controls (85). A meta-analysis
by Resnick and Koff (86) calculated an OR of 25 for anti-HCV positivity in
HCC cases compared to controls.

Progression of chronic HCV to HCC was studied in multiple cohorts
of patients with cirrhosis. Fattovich et al. (87) observed 384 European
patients with compensated HCV-related cirrhosis. In over 11 years of fol-
low-up, 29 patients developed HCC, with an average yearly incidence of
1.4%. In Japan, Ikeda et al.(32) found HCC progression rates of 4.8%,
13.6%, and 26% among 1500 anti-HCV positive (HBsAg-negative) cirrhotics
after 5, 10, and 15 years of follow-up, respectively. Degos et al. (88) followed
416 patients with HCV-related uncomplicated Child–Pugh A cirrhosis and
found an even higher rate of HCC, with 13.4% of patients developing liver
cancer within 5 years. Tong et al. (89) followed a cohort of patients presum-
ably infected through unscreened blood transfusions for a specified time
before being referred to their hospital for chronic hepatitis. In this cohort,
the average time from infection to development of symptomatic chronic
hepatitis was 13.7 years, to cirrhosis 20.6 years, and to HCC 28.3 years.
Moreover, HCV-associated disease apparently progressed faster in those
infected over the age of 50 compared to those infected earlier in life (mean
time to HCC: 14.7 and 31.5 years, respectively).
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The epidemiological evidence for a causal relationship between
chronic HCV infection, cirrhosis and HCC is compelling. In contrast to
HBV, the mechanism of HCV carcinogenesis seems to indirect, through
the intermediate step of cirrhosis: the accelerated cell cycle of constant com-
pensatory regeneration as a response to chronic viral and immune-mediated
hepatocellular injury carries an increased risk of malignant transformations.
The exact molecular oncogenic mechanism associated with HCV is still
unclear (90).

The etiology of HCC cases without underlying cirrhosis (approxi-
mately 10%) and their relation to HCV infection also remains obscure
(91). Possibly their etiology is fundamentally different despite the occasional
presence of HCV markers. Kubo et al. (92) showed that HCC without cir-
rhosis was more common in HCV-positive patients also having anti-HBc
evidence of a previous HBV infection, than in those with markers for
HCV only.

There are few data on chronicity rates and clinical course of chronic
HCV infection in children. Two studies of transfusion-infected children in
Germany and Japan found low rates of clinical and morphological liver dis-
ease, and no cases of HCC after up to 27 years of follow-up (93,94). Results
from other studies concur that children seem to experience a comparatively
mild course of chronic HCV infection compared to adults (95,96). For per-
sons infected early in their lifetime, a slow and mild course of chronic HCV
infection may confer a lower risk of HCC development per year or decade
compared to those infected as adults. However, their cumulative risk of
HCC development may be higher, reflecting longer durations of lifelong
chronic infections.

Currently there is no vaccination available for HCV. The main impedi-
ment for the development of a vaccine is the highly variable nature of the
virus. Due to the existence of multiple genotypes, a multivalent vaccine
approach will likely be needed. The isolation of stable viral epitopes that eli-
cit a protective immune response is complicated by the existence of quasi-
species within individual hosts. Additional obstacles are the lack of an in
vitro culture system for HCV and an animal model aside from chimpanzees.

The main focus of primary prevention of HCV infection thus lies in
the interruption of transmission via iatrogenic and accidental exposure to
infected blood. In the developed world, HCV transmission through con-
taminated blood and blood products has been all but eliminated since the
advent of anti-HCV screening in the early 1990s. An area of great concern
is the continued spread of HCV in populations of illicit drug users.
Programs aimed at fighting addiction as well as needle exchange projects
are the most promising avenues to curb further spread of HCV and other
blood borne viruses in these populations.

In the developing world, low levels of infection control in the
medical and traditional medicine establishments continue to provide ample
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opportunity for the spread of blood borne viruses like HCV. Lack of
awareness often goes hand in hand with a chronic shortage of funds for
the most basic supplies needed for standard precautions. While large-scale
vaccination campaigns are generally conducted in a safe manner due to inter-
national involvement and monitoring, other medical procedures may carry a
substantial risk of HCV transmission—especially where HCV prevalence in
the population is already high. Programs need to be instituted guaranteeing
the safety of the blood supply, the single-use of nonsterilizable syringes, the
sterilization of medical instruments and the safe disposal of medical wastes.

Chronic HCV infection can be treated with a combination therapy of
IFN-alpha and ribavirin (97,98). Sustained biochemical and virological
response to this drug combination is achieved in around 40–50% of the cases
and depends, among other factors, on viral genotype (99,100). High cost
and considerable side effects preclude widespread use of this form of therapy
in the most severely HCV-affected countries in the developing world.

Multiple studies of cohorts of interferon-treated patients with chronic
HCV infection have reported reduced incidence of HCC in patients with
sustained virological or even just transient biochemical response to treat-
ment (101–106). Possibly the treatment is able to slow or halt the cirrhotic
process and thus interrupt HCV’s carcinogenic mechanism. However, it
has also been suggested that those who respond to therapy may also be
the cirrhotic patients at lower risk from HCC in the first place (107).

4.3. Viral Interactions

Multiple studies have shown at least additive and potentially multiplicative
effects of dual, or even triple, infections with hepatitis viruses on the risk of
HCC (30,108–112). Chiramonte et al. (31) described an annual rate of pro-
gression from cirrhosis of 2% in HBsAg-positive patients, 3.7% in anti-HCV
positive patients, and 6.4% in patients with both markers present. The risk
of HCC in dually infected patients was 2.3 times (95% CI 1.1–4.6) as high as
that in patients infected with only HBV. The mechanism behind this phe-
nomenon may be an increased level (or duration) of fibrotic and cirrhotic
activity associated with such at least partially concomitant infections. As
in simple HCV infection, the resultant accelerated process of tissue regenera-
tion may bear an increased risk of cell transformation and malignancy.

Hepatitis D virus (HDV) is an RNA virus dependent on HBV as a
helper virus, co-infecting or super-infecting varying proportions of HBV
carriers worldwide. Dual infection with HBV and HDV has been implicated
in more rapid progression of chronic liver disease to HCC (113,114).

Some reports from high prevalence areas in Japan indicate at a poten-
tial interaction between HCV and the human T-lymphotropic virus type I
(HTLV-1) with regard to the development of HCC (115–118). In dual infec-
tions with HCV and the human immunodeficiency virus (HIV) higher levels
of HCV viremia (119) and more rapidly progressing clinical liver disease
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(120,121) have been described. The effect of these possible viral interactions
on HCC development remains unclear.

5. ENVIRONMENTAL AND GENETIC FACTORS

5.1. Alcohol

Chronic alcohol abuse is associated with an increased risk for both cirrhosis
and HCC (122,123). Cirrhosis of the liver is the primary mechanism by
which alcohol exposure predisposes to HCC, although some researchers
believe that alcohol itself may be carcinogenic either by affecting the meta-
bolism and distribution of other carcinogens (124) or through nutritional
imbalances often associated with alcoholism (125).

Most HCC tumors are found in cirrhotic livers, and the epidemiology
of HCC supports the view that alcohol is an independent risk factor for
HCC as well as an exacerbating influence on other risk factors such as
chronic HBV infection, depending on the prevalence of these factors in
the population under study. In areas of low HCC incidence, for example,
where HBV and HCV are rare, alcohol-induced cirrhosis may be the major
risk factor associated with HCC, with a much higher attributable risk in the
population relative to other factors (126,127). In high-incidence areas, it has
been observed that alcohol consumption alters the natural history of HCV
infection, leading to a more rapid histological and clinical progression to
HCC compared to nonalcoholic HCV carriers (2,128). Thus, it has been
often recommended that HCV-infected persons avoid excessive alcohol con-
sumption in order to reduce the risks of progressive liver disease and cancer.

Genetic variations among individuals in their capacity to detoxify
ethanol may play an additional role in susceptibility to HCC. Ethanol meta-
bolism is mediated by several enzymes, including alcohol dehydrogenase
and cytochrome p450 2E1, both of which are encoded by genes known to
be polymorphic in populations. Individuals with mutations in one or both
of these genes may be at greater or lesser risk from ethanol toxicity depend-
ing on the phenotypic consequences of the mutations. A meta-analysis of the
RsaI polymorphism in the CYP2E1 gene revealed no association with alco-
holic liver disease nor with HCC, while the TaqI allele was significantly less
prevalent in persons with alcoholic liver disease compared to healthy sub-
jects (129), suggesting a protective effect. However, there is no direct evidence
that the TaqI allele alters the metabolism of ethanol, and the apparent protec-
tive effect might be due to linkage disequilibrium with other, unidentified
protective genes or factors. More research is clearly needed on this topic.

5.2. Aflatoxin and p53

Aflatoxins are substances produced by the ubiquitous fungi Aspergillis flavis
and A. parasiticus which can infect improperly stored grains, such as
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peanuts and corn. Aflatoxin B1 (AFB1) is metabolized in the human body
to form potent epoxide compounds capable of damaging the DNA; measur-
able macromolecule adducts are detectable in biological samples, such as
AFB1–albumin adducts in serum and AFB1–N7-guanine adducts in urine
(130). Considerable research has documented the unique molecular dosime-
try of aflatoxin exposure markers, with the development and validation of
these biomarkers representing a tremendous advance over the use of dietary
questionnaires to estimate the dose.

The metabolism of AFB1 is complex and involves several different
enzymatic pathways, with recent discovery of new mechanisms by which
the compound is bioactivated and subsequently detoxified (131). Genetic
variations in the enzymes responsible for detoxifying AFB1 appear to me-
diate the risk of HCC, as suggested by a study of epoxide hydrolase geno-
types (132). Aflatoxin–albumin adduct levels have been shown to vary
according to environmental factors (rural vs. urban, season) and host factors
(HBV status, GSTM1 genotype), notably in a study conducted in Gambia,
West Africa (133). Aflatoxin B1 is also associated with a mutation at codon
249 of the tumor suppressor gene, p53, indicating that the effects of AFB1 on
liver cells may include both direct toxicity of the epoxide metabolites and
DNA mutations. Other aflatoxins, such as AFM1, are also cytotoxic and
undergo complex metabolic reactions in the liver (134), and are probably
associated with increased liver cancer risk.

In some populations, dietary exposure to AFB1 is a major risk factor
for HCC (135–137); however, analysis of cancer risk is complicated by the
dependence of alfatoxin biomarkers on factors such as cigarette smoking,
alcohol consumption, age, HBV status, and plasma levels of antioxidant vita-
mins (138,139). Studies of HBV and AFB1 interactions in populations where
both risk factors are prevalent reveal a supra-multiplicative effect on HCC
risk. Qian et al. (140) reported from their prospective study of over 18,000
men in Shanghai the following risk estimates for HCC: relative to subjects
with neither risk factor, those with HBV only had an OR of 7.3, those with
AFB1 only had an OR of 3.4, and those with both factors had an OR of 59.4.

There may be hope for chemoprevention of aflatoxin toxicity due to
expanding knowledge of its biotransformation pathways. A randomized,
placebo-controlled, double-blind clinical trial is underway in Qidong,
China, to test whether oltipraz, an antischistosomal drug with significant
effects in reducing hepatocarcinogenesis in animal models, can prevent
human hepatocarcinogenesis by inhibiting the bioactivation of aflatoxins
(141). Early results indicate that 1month of weekly dosing of 500 g of this
drug resulted in a 51% decrease in urinary levels of a phase I metabolite
of AFM1, relative to placebo, while sustained low-dose administration led
to a 2.6-fold increase in the urinary excretion of a phase II metabolite
(142). The authors of that report concluded that it ‘‘highlights the feasibility
of inducing phase 2 enzymes as a chemopreventive strategy in humans.’’
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5.3. Solvents and Pesticides

A wide variety of industrial chemicals and commonly used pesticides has
been shown to cause liver cancer in laboratory animals. Among hepatocar-
cinogenic chemicals that have a high potential for human exposures are:
organic solvents (such as vinyl chloride), fumigants (such as ethylene oxide),
and pesticides (including arsenic-containing sprays, organochlorine com-
pounds, and chlorophenoxy herbicides). Highly elevated risks of HCC have
been associated with occupational exposures to the solvents vinyl chloride
and carbon tetrachloride (143,144), which are still used in a wide variety
of industrial processes and in certain household products. Vinyl chloride
contamination of ground water and landfill sites, partly due to its origin
as a breakdown product of other chlorinated hydrocarbon compounds, is
a continuing public health problem in some areas (145). Organochlorine
pesticides such as chlordecone (Kepone) are known liver carcinogens
(146). Selected solvents and pesticides that appear to increase the risks for
human HCC, listed by the IARC as Group I or Group II carcinogens
(12), are listed in Table 2.

Epidemiological studies of human pesticide exposures and HCC sug-
gest a positive association. Hayashi and Zeldis (147) reported that exposure
to organochlorine compounds by Chinese rice workers increased their risk
for HCC. Sterling and Arundel (148) reviewed studies of cancer and birth
defects among Vietnamese populations exposed to herbicides, and reported
an OR of 5.2 for liver cancer. Another epidemiological study in Vietnam
(149) reported that agricultural workers exposed to organophosphorus pes-
ticides were at increased risk for HCC. In addition to pesticide exposures
and agricultural occupations, elevated risks for HCC were also associated
with highway construction occupations using asphalt in the United States
(150). Finally, concern over potential associations of chemical exposures
and HCC may be especially urgent in less-developed parts of the world
where occupational levels are still too high: a pilot study recently conducted
in rural areas of Egypt (151) reported that serum measurements of organo-
chlorine pesticides, including DDE and DDT, in cancer patients were
50–300 times higher than levels measured in U.S. rural populations.

Table 2 Selected Solvents and Pesticides Implicated as Human Liver Carcinogens

Group I
(carcinogenic)

Group II-A
(probably carcinogenic)

Group II-B
(possibly carcinogenic)

Arsenical compounds Ethylene dibromide Chlorophenoxy herbicides
Vinyl chloride Ethylene oxide Kepone, Mirex, TCDD
DDT
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5.4. Smoking

Cigarette smoking may also increase the risk for HCC but the evidence is
not consistent, and the risk may be confined to certain subgroups such as
heavy drinkers and HBV carriers. Probably in some of the earlier epidemio-
logical studies the role of smoking was obscured due to the comparison of
HCC cases to hospital controls, who might be similar on smoking history
compared to persons in the general population, and therefore more likely
to be hospitalized than members of the general population. Several such
case–control studies using hospital controls as the comparison group, but
not all, for example, (152) have reported no association between levels of
cigarette smoking and HCC (126,153–155), in contrast to studies using
population-based controls which have tended to report positive associations
between cigarette smoking and HCC risk (17,156). In the case–control study
of Yu et al. in California, the OR was 2.1 (95% CI 1.1–4.0) for any positive
cigarette smoking history, while in a larger study in Taiwan there was a
dose-dependent association with odds ratios of 1.1, 1.5, and 2.6 for men
who smoked 1–10, 11–20, and > 20 cigarettes per day, respectively (156).
Prospective studies of the smoking–HCC association are often limited by
small numbers of incident cancers, possibly accounting for the lack of signi-
ficant associations with smoking in many such studies (157,158).

Some studies have found that cigarette smoking can enhance the risk
of HCC, when assessed by careful dosimetry or in susceptible subgroups. A
case–control study that measured smoking-related DNA adducts in surgical
liver samples (159) detected a significant dose-related increase in the risk of
HCC among cigarette smokers. Yu et al. (47) examined the risk of HCC in
relation to several risk factors, including interactions between HBV, cigar-
ette smoking, and the N-acetyltransferase 2 gene (NAT2) which mediates
the toxicity of certain carcinogenic compounds in cigarette smoke. In that
study, the risk of HCC among HBV carriers who smoked was elevated
(OR 2.67, 95% CI 1.15–6.22) among subjects who were heterozygous for
the NAT2�4 functional allele, relative to those who lacked this allele, and
no association with NAT2 was found among HBV carriers who were
nonsmokers. The use of sensitive biomarkers of exposure and of genetic
susceptibility in these two studies may explain their strongly positive results,
which are in contrast to weaker associations with cigarettes reported in
previous studies.

Finally, the question arises of whether smoking and alcohol both con-
tribute to the risk of HCC, and in what manner: independently, additively,
synergistically, or otherwise. A recent case–control study by Kuper et al.
(160) examined this question in a comparison of 333 HCC cases (including
both men and women) to a group of 360 cancer-free hospital controls in
Athens, Greece. In age-adjusted descriptive analyses, both smoking and
alcohol showed dose-dependent associations with increased risk of HCC,
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with similar trends in men and women. Adjusted for both gender and age, as
well as educational level and HBV and HCV markers, the OR for smoking
�2 packs per day was 2.5 (95% CI 1.1–5.5) and the OR for heavy drinking
(�40 glasses per week) was 1.9 (95% CI 0.9–3.9). The synergistic (i.e., supra-
multiplicative) effects of these two exposures are shown in Table 3, in which
the OR for heavy drinking and heavy smoking combined is 9.6. When the
analysis was restricted to subjects without HbsAg or anti-HCV, similar
results were observed for the combination of heavy smoking and drinking
(OR¼10.9, 95% CI 3.5–33.8). At least one other case–control study (161)
has reported a similar interaction between heavy smoking and heavy drink-
ing, suggesting that both factors may be important in the etiology of HCC.

6. SUMMARY AND CONCLUSIONS

The major risk factors for HCC today are HBV, HCV, aflatoxin, alcohol,
and smoking, with additional risks from certain occupational exposures to
pesticides and vinyl chloride. The combinations and attributable risks of
these risk factors varies globally, with profound implications for risk assess-
ment and risk reduction strategies. It has been suggested, for example, that
in the developed nations of North America and western Europe, the popula-
tion impacts of HBV and HCV on liver cancer rates are relatively low due to
the rarity of those infections (even though the relative risks from HBV and
HCV are quite high), whereas more HCC cases in those regions may be
attributable to heavy smoking and chronic alcohol abuse even though these
factors are nonspecific and have low relative risks (152). The situation in
other areas may be quite different. Egypt, with a large proportion of non-
drinkers and high rates of HCV, may be illustrative of a population with
a high attributable risk from chronic HCV infection, with additional risk
inputs from HBV and cigarette smoking. In parts of the world where dietary
aflatoxin exposure is prevalent, constellations of risk factors may be present,
encompassing not only aflatoxin but HBV, HCV, alcohol, and smoking as

Table 3 Interaction of Smoking and Drinking in Association with the
Risk of HCC

Alcohol consumption Never smoked
<2 packs
per day

�2 packs
per day

<40 glasses per week 1.0 (reference) 1.7 (0.9–3.2) 1.5 (0.6–3.9)
�40 glasses per week 2.0 (0.4–11.0) 2.5 (1.0–5.9) 9.6 (3.4–27.5)

Odds ratios and 95% confidence intervals shown here are adjusted for age, gender, education,

coffee drinking, HbsAg, and anti-HCV. Source: Ref. 160.
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well. This is why studies designed to examine different combinations of risk
factors are urgently needed to help clarify their impacts on HCC, and to
ultimately aid in designing effective prevention strategies at the local level.
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1. INTRODUCTION

Brain cancer accounts for approximately 1.4% of all cancers and 2.3% of all
cancer-related deaths. The dangerous aspect of these tumors is that they can
interfere with normal brain function that is essential for life (1). The Ameri-
can Cancer Society estimates that 18,500 individuals will be diagnosed with
malignant brain tumors in 2005, and 12,760 of them will die (1). Despite
the high lethality and inescapable traumatic impact, brain tumors rarely
metastasize outside the central nervous system.

Despite the recent increase in the number of epidemiological studies
on brain cancer, there is little consensus on the nature and magnitude of
the risk factors for it. Contributing to the confusion, in addition to the
methodological differences in eligibility and the representativeness of the
patients studied, are the variable use of proxies to report information about
the case subjects; the choices of control groups; the substantial heterogene-
ity of primary brain tumors; the inconsistencies in histological diagnoses;
definitions and groupings; and the difficulties of measuring exposure
retrospectively.
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2. HISTOLOGY AND MOLECULAR GENETICS OF
BRAIN TUMORS

Any central nervous system cell can become cancerous. Primary brain
tumors are currently classified in a manner that reflects their histological
appearance and location. Some brain tumors contain a mixture of cell types.
Gliomas are the most common primary brain tumors and account for more
than 40% of all central nervous system neoplasms (2). Glioma is a general
category that includes astrocytomas, oligodendrogliomas, and ependymo-
mas. According to the World Health Organization (WHO) (3), there are
four major grades of astrocytoma.

2.1. Astrocytomas

Astrocytomas, the most frequent and most invasive brain tumors in children
and adults, arise and take their name from the astrocyte cells.

1. WHO Grade I or pilocytic astrocytomas are the most frequent
brain tumors in children. These tumors rarely undergo neoplastic
transformation.

2. WHO Grade II or low-grade astrocytomas account for 25% of all
gliomas and are infiltrative in nature.

3. WHO Grade III or anaplastic malignant astrocytomas are highly
malignant gliomas and have an increased tendency to progress to
glioblastoma.

4. WHO Grade IV or glioblastoma multiforme is a highly malignant
brain tumor and typically affects adults. This type of glioma has
poor prognosis, largely because the tumor rapidly spreads to
other regions of the brain.

The identification of the genetical alterations found in astrocytomas
led to the recognition that the nonrandom series of genetical changes that
take place reflects increase of malignancy and clinical grade (4). Several
common chromosomal alterations are observed and lead to changes in the
expression of several genes. For example, mutations in the p53 gene (located
on chromosome 17p) have been reported in 40% of astrocytic tumors of all
grades. These mutations are primarily found in gliomas in young adults and
not in supratentorial astrocytic tumors in children (5). Another tumor sup-
pressor gene frequently inactivated in astrocytic neoplasms is cyclin-depen-
dent kinase N2 (CDKN2) or p16. The CDKN2 gene is located on
chromosome 9p and is inactivated by deletion of both copies of the gene.
Loss of CDKN2 occurs rarely in low-grade astrocytomas but frequently
in high-grade astrocytomas (6). Deletions of chromosome 10 commonly
occur in astrocytic tumors, and there is considerable evidence for the
presence of several tumor suppressor genes on chromosome 10 (7). Loss
of heterozygosity at 10q23 has been reported to occur in approximately
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70% of glioblastomas. Mutated in multiple advanced cancers (MMAC1) or
phosphatase tensin homolog, also know as PTEN, is a tumor suppressor
gene located on 10q and mutated in 40% of glioblastomas. Because
MMAC1 mutations are rarely found in low-grade gliomas, MMAC1 is
assumed to play an important role in progression from low-grade to high-
grade tumors (8).

In contrast to loss of tumor suppressor genes, activation of oncogenes
increases cell proliferation. The epidermal growth factor receptor (EGFR)
gene is the gene most frequently amplified in malignant astrocytomas. The
EGFR protein is a receptor for epidermal growth factor, an important sti-
mulant for astrocytes. Amplification of a mutated EGFR allele has been
found in approximately one-third of glioblastomas but not in low-grade
astrocytomas (9).

2.2. Oligodendrogliomas

Accounting for less than 10% of intracranial tumors, oligodendrogliomas
take their name and arise from the oligodendrocytes in the brain. Oligoden-
drogliomas are less aggressive than astrocytomas but are invasive and can
traverse the cerebral spinal fluid (CSF). The ability of oligodendrogliomas
to metastasize complicates their surgical removal, but because they are limi-
ted to the brain and CSF, some patients have a better prognosis and longer
survival. Oligodendrogliomas characteristically exhibit loss of chromosomal
regions on 1p and 19q13, and less frequently 9q and 22 (10).

2.3. Ependymomas

Ependymomas are tumors arising from the cell lining of the brain ventricles
or ependymal cells. Their growth may block the flow of CSF, causing no-
table swelling of the ventricle or hydrocephalus. Although ependymomas
may move along the CSF, they characteristically do not infiltrate normal
brain tissue and are sometimes amenable to surgical treatment, especially
surgery of the spinal cord. The most commonly described genetical altera-
tions in ependymomas are deletions of 17p and monosomy 22 (4). Although
believed to be derived from astrocytomas, oligodendrocytes, or ependymal
cells, gliomas display a broad spectrum of histological features. The varia-
tion in the behavior of the gliomas probably reflects the genes involved in
their transformation (2).

2.4. Meningiomas

Meningiomas arise from the sheaths surrounding the brain. The growth of
meningiomas and the pressure they produce lead to the symptoms of brain
tumors. Meningiomas are quite common, accounting for about 50% of
primary central nervous system tumors. Because meningiomas are usually
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near the surface of the brain, they are often operable and are usually benign.
Malignant meningiomas are associated with deletions of loci on chromosome
1 and, to a lesser extent, deletions on 6p, 9q, and 17p (4). Mutations in the p53
gene have also been reported in malignant meningioma.

2.5. Medulloblastomas

Medulloblastomas are primitive neuroectodermal tumors that arise in the
cerebellum. Medulloblastomas replicate quickly but can be treated with
radiation because of their site specificity and early age of onset. They occur
most commonly in children and frequently spread throughout the CSF.
Chromosome 17p is a frequent site of deletions in medulloblastomas. Other,
less frequent, sites of deletions are 2p, 6q 10q, 11p, 11q, and 16q (4).

2.6. Ganglioglioma

Gangliogliomas are tumors containing both neurons and glial cells. They
have a high rate of cure by surgery alone or surgery combined with radiation
therapy.

2.7. Schwannomas (Neurilemomas)

Schwannomas arise from Schwann cells, which surround cranial and other
nerves. Schwannomas are usually benign tumors and often form near the
cerebellum and in the cranial nerves responsible for hearing and balance (5).

2.8. Chordomas

These spinal tumors preferentially arise at the extremities of the spinal col-
umn and usually do not invade brain tissues and other organs. They are
amenable to treatment but stubbornly recur over a span of 10–20 years.

3. ETIOLOGY AND RISK FACTORS OF BRAIN TUMORS

3.1. Ionizing Radiation

There is reasonable consensus of research that therapeutic ionizing radiation
is a strong risk factor for intracranial tumors (11–13). Even the relatively
low doses (averaging 1.5Gy) used to treat ringworm of the scalp (tinea capi-
tis) have been associated with relative risks of 18, 10, and 3 for nerve sheath
tumors, meningiomas, and gliomas respectively (11,12,14). Other studies
showed a high (17%) prevalence of prior therapeutic radiation among
patients with glioblastoma or glioma and increased risk of brain tumors
in children after radiation for acute lymphoblastic leukemia.

On the other hand, diagnostic radiation does not seem to play a role
in glioma; three case–control studies of history of dental x-rays reported
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relative risks of 0.4, 1.2, and 3.0 for exposure to dental x-rays. The evidence
is slightly stronger for meningioma, for which three of four studies have
shown relative risks exceeding 2 for exposure to dental x-rays. All of the
positive studies were conducted in Los Angeles (12,15) and so these findings
should be replicated in other geographical areas.

The role of prenatal exposure to radiation in the etiology of childhood
brain tumors is unclear. Japanese studies of individuals exposed in utero to
atomic bomb radiation revealed no increase in brain tumor incidence (12).
Other studies that reported increased relative risks of 1.2–1.6 for those
exposed prenatally were statistically insignificant because of the small
sample size. Furthermore, relative risks of this low magnitude associated
with a comparatively uncommon exposure cannot account for many child-
hood brain tumors. Parental exposure to ionizing radiation before concep-
tion of the affected child has not been shown to be a risk factor for
childhood brain tumors (12).

Occupational findings from atomic energy and airline employees are
equivocal. A small but statistically significant elevated risk of 1.2 for brain
tumors in nuclear facility employees and nuclear materials production work-
ers has been reported (16). However, confounding or effect modification by
chemical exposures complicates the interpretation of causality. A large cohort
of U.S. nuclear workers was recently re-examined and again shown to have
about 15% increased risk of brain tumors (17). There is no consensus about
the risk of malignant brain tumor among pilots, although some believe that
exposure to cosmic radiation at high altitudesmay contribute to a brain tumor
risk (18,19). However, a recent study of British Airway flight deck workers did
not show statistically significant mortality from brain tumors (20).

3.2. Electromagnetic Fields

The debate on the impact of electromagnetic fields (EMFs) on brain cancer
continues, despite largely negative findings. The debate has been prolonged
by methodological difficulties with some studies. In 1979, Wertheimer and
Leeper reported increased risks of brain tumors and leukemia in children liv-
ing in homes in Denver near high-current vs. low-current wiring. This trig-
gered widespread public and scientific interest in the potential health effects
of electromagnetic fields. One meta-analysis revealed a nonsignificant 50%
increased risk of childhood brain tumors with residence in high vs. low
wire-coded homes (21). In a meta-analysis of 29 studies of adult brain
tumors in relation to occupational exposures to electrical and magnetic
fields, Kheifets et al. (22) found a significant 10–20% increased risk for brain
cancer among electrical workers. However, they found no evidence for a
consistent dose–response relationship with jobs considered to have higher
vs. lower exposure. Three recent occupational studies reported an associa-
tion among EMF exposed workers (23–25) and others did not (26,27).
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Studies have not found an association between maternal EMF exposures
and brain tumors in children (28,29). Although one meta-analysis has shown
a nonstatistically significant 50% increased risk of brain tumors for children
living in high as opposed to low wire-coded homes (21), a comprehensive
assessment of childhood brain tumors in relation to residential EMF con-
cluded that the evidence did not support an association (30). Another epide-
miological study of adult brain tumors [reviewed in Ref. (31)] and a recent
large population-based study of adult glioma in the San Francisco Bay area
did not provide strong support for the hypothesis that electromagnetic fields
in homes may increase the risk of brain tumors (32). In the San Francisco
study, 492 adults with glioma and 463 controls were equally likely to have
lived in homes with high wire codes during the 7 years before diagnosis. Spot
measurements taken in homes also showed no pattern of higher residential
electromagnetic field exposures for cases compared to controls (32).

However, measurements of electromagnetic fields are not precise. Wire
codes of electrical distribution to homes and spot measurements of electro-
magnetic fields in and around homes can lead to incorrect exposure esti-
mates (33). Wire codes also do not reflect exposures from internal wiring
or sources such as appliances. Spot measurements change over time and
do not always reflect the overall measurement in homes. The spot measure-
ments can also be made at places where the subjects spend little or no time.
Such assessments also neglect exposures outside the home, which may
exceed those inside the home. A positive Swedish study of adult leukemia
and central nervous system tumors found increased risks in those exposed
both residentially and occupationally but not in those with neither exposure
or with only residential or only occupational exposure (33). The Swedish
study also was able to calculate residential magnetic field exposures over
time because of detailed information available from Swedish power suppli-
ers, which is not available in the United States (34).

Although there is no proof that EMF does not influence the risk of
brain tumors, no causal connection has been established either. Methodolo-
gical and conceptual issues of equivalency make it especially difficult (and
perhaps impossible) to prove the existence of no association between
power-frequency EMF and brain tumors. Apart from the lack of informa-
tion about total electromagnetic field exposure and its duration, a more
basic limitation in assessing the relative risk is the failure, thus far, to show
that electromagnetic fields induce mutations that in turn might promote
tumorigenesis and brain tumors (35).

3.3. Diet

3.3.1. N-Nitroso Compounds, Vitamins, Alcohol, Tobacco

Several observations have led to studies of diet and brain tumors. First,
in experimental animal studies, N-nitroso compounds have been clearly

652 El-Zein et al.



identified as neurocarcinogens (36). Other investigators have suggested
several mechanisms involving DNA damage through which N-nitroso com-
pounds might cause brain tumors (37,38). These compounds can initiate
neurocarcinogenesis through both prenatal and postnatal exposure,
although in animals more tumors result from fetal than from postnatal
exposures (36). Because there can be a substantial lag between exposure
and tumor formation it is conceivable that early exposure could produce
adult tumors. Animal studies showed that a wide variety of primates and
other mammals are susceptible to chemically induced brain tumors.

In humans, the ubiquity of N-nitroso compounds has complicated
their epidemiological evaluation as carcinogens. About half of all human
exposures in the digestive system occur when common amino compounds
produced from fish, other foods, or drugs contact a nitrosating agent (such
as nitrites from cured meats) in the right enzymatic milieu (37). Equally
common external exposures include agents such as tobacco smoke, cos-
metics, auto interiors, and cured meats. To complicate matters further, some
vegetables have nitrates convertible to nitrites but also contain a high level
of vitamins that block formation of N-nitroso compounds.

A comprehensive assessment of exposure to dietary and environmental
compounds is thus difficult. Despite this, many studies have tried to examine
major dietary sources of these chemicals and to assess the safeguards against
formation of nitrosoureas presented by vitamins such as C and E, which are
thought to inhibit N-nitroso formation.

No consensus has been achieved in human studies. Diet and vitamin
supplementation investigations have provided only partial support for the
hypothesis that dietary N-nitroso compounds increase the risk of both child-
hood and adult brain tumors (37–41). However, increased consumption of
foods cured with nitrosamines has been observed among brain tumor cases
(or their mothers) compared with controls (42). Also, lower rates after
increased consumption of fruits and vegetables or vitamins that might block
nitrosation or the harmful effects of nitrosamines have been observed in
some, but not all, studies.

Lee et al. (43) found that adults with glioma were more likely than
controls to consume diets high in cured foods or nitrites and low in fruits
and vegetables rich in vitamin C. The effect was more pronounced and only
achieved statistical significance in men. Although the finding is compatible
with the hypothesis that N-nitroso compounds might play a role in human
neuro-oncogenesis, the observed patterns also support the hypothesis of oxi-
dative burden and antioxidant protection.

After a comprehensive survey of nitrosamines in food and beverages,
beer contamination with the nitrosamine derivative (NDMA) was consi-
dered a serious matter, especially in Germany. The source of the contamina-
tion was traced to oxidation of malt (44). Beer in several countries was a
major source of exposure to carcinogenic nitrosamines, because of the very
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large quantities consumed. Nitrosamine derivative was also present in
whiskies of various kinds but at lower concentrations than in beer and there-
fore posing a lower cancer risk probably because of the smaller amounts
consumed. In spite of much research, particularly in connection with pedia-
tric brain tumors, alcoholic products have not been implicated in brain
tumors (39).

Since tobacco smoke contains polycyclic aromatic hydrocarbons and
nitroso compounds, many studies have sought connections between brain
tumors and cigarette smoke. No significant effect has been established from
smoke, although two studies report increased risk of adult glioma with
smoking unfiltered but not filtered cigarettes [reviewed in Refs. (39,43)].
Both a meta-analysis and a review (45,46) found no clear association
between a mother’s smoking tobacco during pregnancy and risk of brain
tumor in the child. The suspected role of secondary or passive smoking
has more support. Several studies found slightly increased relative risks,
generally lower than 1.5, i.e., the order of magnitude associated with some
recognized hazards of exposure to passive smoking (1.2–1.3 for adult lung
cancer and cardiovascular diseases) (47,48). Tumors most often found asso-
ciated with maternal smoking in pregnancy or passive smoke exposures are
childhood brain tumors and leukemia-lymphoma, with risks of up to 2 or
greater in selected studies (49,50). A few studies have found elevated risk
more closely associated with paternal smoking rather than the maternal
smoking (51). Even in the absence of the definitive findings on the impact
of the secondary smoke, the evidence from human studies coupled with
demonstration of genotoxic effects on the fetus exposed to metabolites of
tobacco smoke, and the demonstrable presence of adducts, should lead to
strong recommendations aiming at fully protecting fetuses, newborns, and
infants from exposure to tobacco smoke (52).

3.4. Industry and Occupation

Attempts to link specific chemicals to human brain tumors in occupationally
or industrially exposed groups have proved inconclusive. In 1986, Thomas
and Waxweiler (53) published a comprehensive review of occupational risk
factors for brain tumors and established a group of suspect chemicals and
occupations. Additional studies in the intervening 13 years have not estab-
lished a conclusive link between any of these factors and brain tumor risk.
Many occupational and industrial studies focused on individuals exposed to
carcinogenic and=or neurotoxic substances such as organic solvents, lubri-
cating oils, acrylonitrile, formaldehyde, polycyclic aromatic hydrocarbons,
and phenols and phenolic compounds, which are part of workplace expo-
sures and induce brain tumors in experimental animals. Animal neurocarci-
nogenicity studies, mainly in rats, have shown that susceptibility is
significantly influenced by strain, gestational age, and fetal vs. adult status,
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factors that cannot be accounted for in or generalized to human occupa-
tional cohort exposure studies.

Animal studies can also test exposures that cannot be tested in human
studies. For instance, some compounds such as polycyclic aromatic hydro-
carbons generally induce brain tumors only through direct placental implan-
tation, not through inhalation or dermal exposure as in worker populations.
Workers also are rarely exposed to a single chemical but rather are exposed
to many chemicals that probably interact to affect risk. Follow-up studies
of occupationally induced brain cancer usually consist of too few affected
subjects to permit pinpointing the causal chemicals, physical agents, work
processes, or interactions.

Thus, no definitive link has been established between brain tumors and
specific chemicals or strongly suspected carcinogens. For example, orga-
nochlorides, alkyl ureas, and copper sulfate compounds reliably induce can-
cer in laboratory animals. Yet studies of agricultural workers using these
chemicals have about equally often produced negative and positive findings
with regard to brain tumor risk. Nor have studies shown excess risk for
workers involved in manufacturing these pesticides or fertilizers. In the
meta-analysis of brain malignancies and farming by Khuder et al. (54),
the 33 studies yielded a relative risk of 1.3 (95% CI 1.1–1.6). Although stud-
ies of workers in pesticide or fertilizer manufacturing have not shown an
unusual risk of brain tumors, four of five studies of pesticide applicators
have shown an increased risk of brain tumors with a nearly threefold median
relative risk (55). In an occupational study of women in the United States,
insecticide and fungicide exposure was associated with a small but statisti-
cally significant increased risk of brain tumors [odds ratio (OR) 1.3; 95%
Cl 1.1–1.5] (56). A recent study reported a positive association between
wheat producing acreage and brain tumor mortality in Minnesota, Mon-
tana, and the Dakotas, suggesting a possible role of chlorophynoxy herbi-
cides employed in wheat agriculture (57).

Because they involve production of many suspect carcinogens, syn-
thetic rubber production and processing have received careful scrutiny by
investigators who generally found a median increase in brain tumors of as
much as 90% (36,38). A recent study also showed increased risks (58).
The by-products of synthetic rubber processing, such as coal tars, carbon
tetrachloride, N-nitroso compounds, and carbon disulfide, might appear
to account for this increased risk of brain tumors. However, several studies
showed no increased risk or a decreased risk of brain tumors in this indus-
try, and studies have usually failed to show a link with a single chemical.

The picture seems clearer with vinyl chloride. Vinyl chloride induces
brain tumors in rats, and nine of 11 studies of polyvinyl chloride production
workers have shown a median twofold increased relative risk of dying from
brain tumors. Some argue, however, that the small number of brain tumor
cases and statistical insignificance cast doubt on causality. A recent review

Brain Cancer 655



of the association between vinyl chloride and cancers indicated that the role
of vinyl chloride in the development of brain tumors is still inconclusive
(59). A large cohort study supports this notion, stating that mortality from
brain cancer has attenuated, but the role of vinyl chloride is still unclear
(60). Another study also did not demonstrate a relationship of brain tumors
to the extent of vinyl chloride exposure (61). However, in reviews of animal
studies that indicated neurocarcinogenicity of vinyl chloride, there have
been difficulties in determining whether the tumors were primary or meta-
static (62). Future plans for trying to understand the role, if any, of vinyl
chloride in causing human brain tumors need to reconsider the biological
plausibility of the association.

With formaldehyde, another long-suspected compound, conclusions
for carcinogenesis are elusive. Formaldehyde produces cancer in laboratory
animals, and nearly two million workers in the United States are occupa-
tionally exposed to it. Thirty epidemiological studies of segments of this
large group were evaluated by Blair et al. (63). The unclear result was that
the risk was elevated about 50% for those exposed in professional roles such
as embalmers, pathologists, and anatomists (63). However, Blair et al., did
not find a similar risk for industrial workers with formaldehyde exposure,
and therefore rejected a causal role for formaldehyde in human brain tumori-
genesis. Other unknown cofactors may obscure the true risk in industrially
exposed workers and create a skewed estimate of risk in occupational
groups.

3.5. Viruses

Certain viruses, like the suspect chemicals, have been found to induce brain
tumors in animal studies. As in the chemical studies, small numbers and
negative findings hinder epidemiological evaluation. Repeatedly, calls have
been made for aggressive studies of the role of viruses (and other infectious
agents), in causing human brain tumors (39,41). The putative cancer–virus
connection has been supported by several studies of animal tumor induction
by viral exposure. Unfortunately, very few epidemiological studies have
addressed the virus–tumor relationship, probably because of the difficulties
in designing meaningful studies.

Between 1955 and 1963, 92 million U.S. residents received Salk polio
vaccine that may have been contaminated with simian virus 40 (SV40)
(64,65). The levels of the SV40 varied among lots and manufacturers. The
vaccine was treated with formalin, but because SV40 is less susceptible to
formalin inactivation than poliovirus is, the IPV contained infectious
SV40. Early cohort studies of cancer in SV40-contaminated poliovirus vac-
cine recipients generally demonstrated no association between SV40 expo-
sure and cancer mortality among children in the United States (66–68)
and in Germany (69). A recently published cohort study specifically
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examined the risk of ependymoma, osteosarcoma, and mesothelioma among
Americans who as children received SV40-contaminated poliovirus vaccine.
The study indicated that exposure was not associated with significantly
increased rates of brain cancers, osteosarcomas , mesotheliomas, or medul-
loblastomas (70,71). Another study also showed no association between
poliovirus immunization and childhood cancer among children in England,
while yet another study showed a small association between poliovirus
immunization and cancer among Australian children (72). Studies of mater-
nal vaccination with the SV40-contaminated vaccines have shown a possible
risk between vaccine-related exposure and childhood cancer [and brain can-
cers in particular (73,67)], but interpreting these reports is difficult because
of the small number of cases and methodological limitations. As with other
brain tumor investigations, studies of SV40 often resemble case reports and
follow-ups, offering hints, clues, or perhaps merely coincidences that must
be further tested.

Another virus investigated in a small number of studies is the JC virus,
which is commonly excreted in urine, particularly by immunosuppressed,
immunodeficient, and pregnant women. JC virus—a polyoma virus similar
to SV40—induces brain tumors in experimental animals (74) and infects
more than 70% of the human population worldwide (75). Khalili et al.
(76) recently detected JC virus in paraffin-embedded tissues from children
with medulloblastoma. JC virus was also found in a rare case of pleo-
morphic xanthoastrocytoma (77) and in oligodendrogliomas (78). However,
JC virus exists in cancer-free subjects and its connection, if any, to tumori-
genesis is only speculation at this time.

Contradicting studies have found that more mothers of children with
medulloblastoma than mothers of children without it were exposed to
chicken pox during pregnancy. Wrensch et al. (79) found that adults in
the San Francisco Bay area with glioma were significantly less likely to
report having had either chicken pox or shingles than controls were. This
observation was supported by serological evidence that cases were less likely
than controls to have antibody to varicella zoster virus, the agent for
chicken pox and shingles (80). There is some plausibility that viruses and
infectious agents could be an explanation for a proportion of brain tumors,
and therefore intriguing results addressing this issue are preliminary.

3.6. Drugs and Medications

The need for research on drugs and medications is also evident, as very few
studies have examined the effects of medications and drugs on the risk of
adult brain tumors. A nonsignificant protective association was observed
for headache, sleep, and pain medications [reviewed in Ref. (40)]. Ryan
et al. (81) found that diuretics have a nonsignificant protective association
against meningioma but the opposite for adult glioma. They also found
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essentially no association between antihistamine use and adult glioma but a
60% increased relative risk for meningioma. Three studies have assessed
childhood brain tumors and prenatal exposures to some or all of the follow-
ing drugs: fertility drugs, oral contraceptives, sleeping pills or tranquilizers,
pain medications, antihistamines, and diuretics. These studies showed few
significant findings. Prenatal exposure to diuretics was half as common
among children with brain tumors as among controls in two studies, but
twice as common in one study. Prenatal exposure to barbiturates has not
been consistently or convincingly linked to childhood brain tumors. As non-
steroidal anti-inflammatory drugs may be protective against certain cancers,
the role of these drugs in brain tumors should be investigated.

4. SUSCEPTIBILITY TO BRAIN TUMORS

The most generally accepted current model of carcinogenesis holds that can-
cers develop through accumulation of genetical alterations which allow the
cells to grow out of control of normal regulatory mechanisms and=or escape
destruction by the immune system. Some inherited alterations in crucial cell-
cycle control genes, such as p53, as well as chemical, physical, and biological
agents that damage DNA, are therefore considered candidate carcinogens.
Although rapid advances in molecular biology, genetics, and virology pro-
mise to help elucidate the molecular causes of brain tumors, continued epi-
demiological work will be necessary to clarify the relative roles of different
mechanisms in the full scope of human brain tumors. Genetical and familial
factors implicated in brain tumors have been the subject of many studies and
were previously reviewed by us (82).

4.1. Familial Aggregation

Because only a small proportion of brain tumors are due solely to heredity,
most are probably due to gene–environment interactions. Although findings
of familial cancer aggregation may suggest a genetical etiology, such aggre-
gations can be the result of common familial exposure to environmental
agents. Some epidemiological studies that compare family medical histories
of brain tumor cases with those of controls find significantly increased
family histories both of brain tumors and of other cancers. Other studies
find no increase for any cancer, with a relative risk ranging from 1 to 1.8
and from 1 to 9 for brain tumors (82–85). These contradictions might be
explained by differences in study methodologies, sample size, types of rela-
tives included in the study, how cancers were ascertained and validated, and
the country where the study was conducted.

Also supporting a genetical role in etiology are studies of cases report-
ing a high frequency of siblings with brain tumors, although twin studies
have not. In a family study of 250 childhood brain tumor patients, we

658 El-Zein et al.



(82) showed by segregation analysis that familial aggregation, although
small, supported multifactorial inheritance, not chance alone. Segregation
analyses of the families of more than 600 adult glioma patients revealed that
a polygenic environment-interactive model best explained the pattern of
occurrence of brain tumors (86). Segregation analyses of 2,141 first-degree
relatives of 297 glioma families did not reject a multifactorial model, but
an autosomal recessive model provided the best fit (87). The study estimated
that 5% of all glioma cases were familial. Grossman et al. (88) showed that
brain tumors can occur in families without a known predisposing hereditary
disease and that the pattern of occurrence in many families suggests envir-
onmental causes. Given the previously described complexities of environ-
mental impact and the multiplicity of possible heritable factors, more
work will be required to delineate how genetical susceptibility affects brain
cancer risk.

4.2. Hereditary Syndromes

A few rare genes and chromosomal abnormalities can greatly increase the
chances of developing brain tumors. Numerous case reports have associated
central nervous system tumors with gross malformations, including medul-
loblastoma with gastrointestinal and genitourinary system abnormalities,
ependymoma with multisystem abnormalities, astrocytoma with arteriove-
nus malformation of the overlying meninges, and glioblastoma multiforme
with adjacent arteriovenous angiomatous malformation and pulmonary
arteriovenous fistula. Central nervous system tumors may also be associated
with Down’s syndrome, a disorder involving chromosome 21. Three epide-
miological studies have found that brain tumor cases are two to five times
more likely than controls to have a mentally retarded relative although
the result was statistically significant in only one study [reviewed in Ref.
(82)]. The heritability of brain tumors is also suggested by many reports
of these tumors in individuals with hereditary syndromes such as tuberous
sclerosis, neurofibromatosis types 1and 2, nevoid basal cell carcinoma syn-
drome, and syndromes involving adenomatous polyps [reviewed in Ref.
(82)].

Although there is convincing evidence that genetics plays a role in
most cancers, including brain tumors, inherited predisposition through high
penetrant genetical traits to brain tumors probably accounts for only a very
small percentage (5–10%) of these tumors (89). In a review of 16,564 cases of
childhood cancers diagnosed from 1971 to 1983, and reported to the
National Registry of Childhood Tumors in Great Britain, Narod et al.
(89) estimated that the heritable fraction of childhood brain tumors was
about 2%. In a population-based study of nearly 500 adults with glioma,
only four individuals (less than 1%), all of whom were diagnosed in their
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thirties, reported having a known heritable syndrome (three had neurofibro-
matosis and one had tuberous sclerosis) (83).

Another class of heritable conditions are the cancer family syndromes
[such as the Li–Fraumeni syndrome (LFS)], so called because individuals in
affected families have an increased risk of developing certain types of can-
cers. In LFS, the cancers include brain tumors, sarcomas, breast cancer,
and cancer of the adrenal gland. Individuals with LFS have inherited at least
one copy of a defective gene—which can be passed from parent to child.

In some families, LFS has been linked to a gene mutation in p53 on
chromosome 17p (82). In addition, germline p53 mutations were found to
be more frequent in patients with multifocal glioma, glioma and another pri-
mary malignancy, and a family history of cancer. In a population-based
study of malignant glioma, Li et al. (90) reported that p53 mutation-positive
patients were more likely to have a first-degree relative affected with cancer
(58% vs. 42%) or a personal history of a previous cancer (17% vs. 8%).
Further research needs to be done to determine the role of heredity, the fre-
quency of p53 mutations, and whether specific p53 mutations correlate with
specific exposures.

4.3. Metabolic Susceptibility

Genetic traits involved in susceptibility refer to more common genetic
alterations that influence oxidative metabolism, carcinogen detoxification,
and DNA stability and repair. The role of genetic polymorphisms (alterna-
tive states of genes established in the population) in modulating susceptibil-
ity to carcinogenic exposures has been explored in some detail for tobacco-
related neoplasms but much less so for other neoplasms including gliomas.
Due to rapid developments in genetic technology, an increasing number of
potentially relevant polymorphisms are available for epidemiological eval-
uation, including genes involved in carcinogen detoxification, oxidative
metabolism, and DNA repair. The first study to report the role of metabolic
polymorphisms in brain tumor risk found that the variants of cytochrome
P450 2D6 (CYP2D6) and glutathione transferase (GSTT1) were signifi-
cantly associated with increased risk of brain tumors (91). Kelsey et al.
(92) were unable to find an association of adult onset glioma with either
the GSTT1 null genotype or homozygosity for the CYP2D6 variant poor-
metabolizer genotype. However, when they stratified the data by histologi-
cal subtype, there was a significant threefold increased risk for oligodendro-
glioma associated with the GSTT1 null genotype. Trizna et al. (93) found no
statistically significant associations between the null genotypes of glu-
tathione transferase m, GSTT1, and CYP1A1 and the risk of adult gliomas.
However, they observed an intriguing pattern with N-acetyltransferase acet-
ylation status, with a nearly twofold increased risk for rapid acetylation and
a 30% increased risk for intermediate acetylation.
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It is unlikely that any single polymorphism will be sufficiently
predictive of brain tumor risk. Therefore, a panel of relevant markers inte-
grated with epidemiological data should be assessed in a large number of
study participants to clarify the role of genetic polymorphisms and brain
tumor risk.

4.4. Mutagen Sensitivity

Cytogenetical assays of peripheral blood lymphocytes have been extensively
used to determine response to genotoxic agents. The basis for these cyto-
genetical assays is that genetical damage reflects critical events in carcino-
genesis in the affected tissue. To test this hypothesis, Hsu et al. (94)
developed a mutagen sensitivity assay in which the frequency of in vitro
bleomycin-induced breaks in short-term lymphocyte cultures is used to mea-
sure genetical susceptibility. We (95) have modified the assay by using
gamma radiation to induce chromosome breaks because radiation is a risk
factor for brain tumors and can produce double-stranded DNA breaks and
mutations. It is believed that mutagen sensitivity indirectly assesses the
effectiveness of one or more DNA repair mechanisms. The following obser-
vations support this hypothesis. First, the relationship between chromosome
instability syndromes and cancer susceptibility is well established (96).
Patients with these syndromes also have defective DNA repair systems
(97). Furthermore, patients with ataxia telangiectasia, who are extremely
sensitive to the clastogenic effects of x-irradiation and bleomycin, differ
from normal people in the speed with which aberrations induced by these
agents are repaired but not in the number of aberrations produced (98).

Gamma-radiation-induced mutagen sensitivity is one of the few signifi-
cant independent risk factors for brain tumors (95). DNA repair capability
and predisposition to cancer are hallmarks of rare chromosome instability
syndromes, and are related to differences in radiosensitivity. An in vitro
study showed that individuals vary in lymphocyte radiosensitivity, which
correlates with DNA repair capacity (95). Therefore, it is biologically plau-
sible that increased sensitivity to gamma radiation results in increased risk
of developing brain tumors because of individuals’ inability to repair radia-
tion damage. However, this finding needs to be tested in a larger study to
determine the roles of mutagen sensitivity and radiation exposure in the risk
of developing gliomas. The mutagen sensitivity assay has been shown to be
an independent risk factor for other cancers including head and neck and
lung, suggesting that the phenotype is constitutional (99). The breaks are
not affected by smoking status or dietary factors (micronutrients) (100).

4.5. Chromosome Instability

A number of chromosomal loci have been reported to play a role in brain
tumorigenesis because of the numerous gains and losses in those loci. For
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example, Bigner et al., (101) reported gain of chromosome 7 and loss of
chromosome 10 in malignant gliomas and structural abnormalities involving
chromosomes 1, 6p, 9p, and 19q; Bello et al. (102) reported involvement of
chromosome 1 in oligodendrogliomas and meningiomas; and Magnani et al.
(103) demonstrated involvement of chromosomes 1, 7, 10, and 19 in ana-
plastic gliomas and glioblastomas. Loss of heterozygosity for loci on chro-
mosome 17p (104) and 11p15 (105) has also been reported.

There are few data on chromosomal alterations in the peripheral blood
lymphocytes of brain tumor patients. Information on such changes might
shed light on premalignant changes that lead to tumor development. We
(95) demonstrated that compared with controls, glioma cases have less effi-
cient DNA repair, measured by increased chromosome sensitivity to gamma
radiation in stimulated peripheral blood lymphocytes. This inefficiency was
shown to be an independent risk factor for glioma (95). Recently, we inves-
tigated whether glioma patients have increased chromosomal instability that
could account for their increased susceptibility to cancer (106). Using fluo-
rescent in situ hybridization methods, background instability in these
patients was measured at hyper-breakable regions in the genome. Reports
indicate that the human heterochromatin regions are frequently involved
in stable chromosome rearrangements (107,108). Smith and Grosovsky
(109) and Grosovsky et al. (110) reported that breakage affecting the centro-
meric and pericentromeric heterochromatin regions of human chromosomes
can lead to mutations and chromosomal rearrangements and increase geno-
mic instability. Our (106) study demonstrated that individuals with a signifi-
cantly higher level of background chromosomal instability have a 15-fold
increased risk of development of gliomas. A significantly higher level of
hyperdiploidy was also detected. Chromosome instability leading to aneu-
ploidy has been observed in many cancer types (111). Although previous
studies have demonstrated the presence of chromosomal instability in brain
tumor tissues (112–115), our (105) study was the first study to investigate the
role of background chromosomal instability in the peripheral blood lym-
phocytes of patients with gliomas. This suggests that accumulated chromo-
somal damage in peripheral blood lymphocytes may be an important
biomarker for identifying individuals at risk of developing gliomas.

5. SUMMARY

In summary, the etiology of brain tumors remains largely unknown. Biolo-
gically intensive studies incorporating new molecular genetical techniques
have the potential to increase our understanding of the etiology of gliomas.
Use of more consistent applied histopathological classification systems, and
greater understanding and use of molecular and genetical markers to classify
tumors, should help to create a more complete picture of the natural history
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and pathogenesis of brain tumors. We now know that primary brain tumors
have many causes. Because not one cause thus far identified accounts for a
very large proportion of cases, many possibilities remain that will enable us
to discover important risk factors. Moreover, in the continuing search for
explanations for this devastating disease, new concepts about neuro-onco-
genesis might emerge, making the study of brain tumor epidemiology parti-
cularly exciting.
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1. INTRODUCTION

Hematological malignancies originate in the bone marrow, lymph nodes,
and=or other lymphoid tissue with immune function. For decades, hemato-
logical malignancies were classified morphologically, culminating in an
international effort that systematized the approach (1–5). Recently, a classi-
fication was adopted, under the auspices of the World Health Organization
(WHO) (6), that incorporated information about normal development and
function of cells according to lineage, pathogenesis, prognostic indicators,
cytogenetic, and immunophenotypic characteristics (7–10). The epidemiol-
ogy of hematological disorders is presented within two major sections in this
chapter that correspond to the myeloid and lymphoid lineage origins of the
entities.
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2. MYELOID MALIGNANCIES AND MYELODYSPLASIA

Myeloid malignancies originate in pluripotential precursor cells that
normally give rise to red blood cells, polymorphonuclear neutrophils, mono-
cytes, and platelets. Acute myeloid leukemia (AML) may arise de novo or
following a myelodysplastic or myeloproliferative state. Myelodysplastic
syndromes (MDS) and myeloproliferative disorders (MPD), in contrast,
are the clinical consequences of disordered, but relatively complete, matura-
tion (11).

Acute myeloid leukemia comprises four categories in the WHO classi-
fication, including: (1) AML with recurrent cytogenetic abnormalities, (2)
AML with multilineage dysplasia, (3) AML not otherwise categorized,
and (4) AML=MDS that is therapy or occupation related (10). Nonran-
domly occurring cytogenetic abnormalities characterizing the myeloid disor-
ders include the Philadelphia (Ph) chromosome, which results from a
reciprocal translocation in which the ABL oncogene from chromosome 9
is transposed to chromosome 22 within the breakpoint cluster region
(BCR) of a gene, balanced translocations [such as t(8; 21)], partial deletions
or loss of whole chromosomes (such as 5q or 7q), and numerical forms (such
as trisomy 21). Acute myeloid leukemia is usually preceded by MDS among
elderly and Fanconi’s anemia patients, but not in 85–90% of younger
patients. Myelodysplastic syndromes are characterized by bone marrow
hyperplasia, peripheral cytopenias, and morphologically recognizable
abnormal differentiation.

Myeloproliferative disorders, which are associated with bone marrow
hyperplasia and an excess of differentiated progeny, include polycythemia
vera (comprising progenitors of red blood cells), primary (essential) throm-
bocythemia (comprising the progeny of platelets), chronic myeloid leukemia
(CML, comprising the progeny of myeloid cells), and chronic myelomono-
cytic leukemia (comprising the progeny of monocytes,) (12,13). Chronic
myeloid leukemia results from transformation of a hemopoietic stem cell,
is initially manifest by an excess of committed precursors and their differen-
tiated progeny, and, after a typical interval of 4 years, transforms, following
a ‘‘blast crisis,’’ into acute leukemia.

Figure 1 depicts the international variation in age-adjusted incidence
rates for AML and CML by gender. In general, for both AML and
CML, age-adjusted incidence rates are lower for females than for males,
although the geographic patterns are similar for both sexes. The highest
AML rates occur in Caucasians in northern and western Europe, North
America, and Oceania; midlevel rates in African-Americans, U.S. Hispanics,
southern Europeans, and Israeli Jews; and the lowest rates in Asians (14).
Chronic myeloid leukemia incidence varies less than the incidence for all
other myeloid and lymphopoietic disorders, with only a fourfold gradient
between the highest and the lowest age-standardized incidence rates.
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As shown in Figure 2, AML incidence in the nine U.S. Surveillance,
Epidemiology, and End Results (SEER) program registries peaks slightly in
infancy, then declines until age 10 when incidence begins to rise slowly; after
age 40, incidence rates rise more rapidly, with a slower rate of increase after
age 70 (15). In late middle age, AML rates begin rising more rapidly in
males than in females of both races, and in U.S. Caucasians than in Afri-
can-Americans for persons of both sexes (Fig. 2). Chronic myeloid leukemia
rates are consistently higher in males than in females, and higher in African-
Americans than in U.S. Caucasians of both sexes until age 70; among the
elderly, rates for African-Americans begin to flatten with increasing age,
whereas rates for elderly Caucasians continue to increase linearly (Fig. 2).

2.1. Causes of Myeloid Malignancies and Myelodysplasia

Since few epidemiological studies focus solely on MDS, the literature is sum-
marized for both AML and MDS in this section. Known risk factors explain
a very small proportion of the leukemias, but more is known about the
causes of AML than of other leukemia subtypes.

Ionizing radiation, consistently linked with increased risk of AML and
other leukemias except CLL, induces DNA strand breaks (16). The most

Figure 1 International incidence rates for myeloid disorders (acute myeloid leuke-
mia and chronic myeloid leukemia) per 100,000 (age-adjusted, World Standard) by
continent and sex, 1988–1992. Source: From Parkin DM, et al. Cancer Incidence
in Five Continents. Vol. 7. Lyon, France: IARC Scientific Publication Number
143, 1997.
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important epidemiological investigation quantifying cancer risks associated
with radiation exposures is the long-term follow-up of the Japanese atomic
bomb survivors. While the bombings of Hiroshima and Nagasaki occurred
in 1945, follow-up studies of the survivors did not begin until 1950, so can-
cer incidence and mortality are unknown during 1945–1950 (17,18). A sig-
nificant dose–response pattern was observed for AML incidence during
1950–1987. Males had twofold higher absolute excess risks than females,
and those exposed before age 10 had substantially higher average absolute
excess risks than persons who were older at exposure (19,20). Patients treat-
ed with radiotherapy for non-Hodgkin lymphoma, Ewing’s sarcoma, and
breast, uterine cervix, or uterine corpus cancers consistently experience
two- to threefold excess risks of secondary AML 5–15 years after exposure
(21–29). Increased AML risk has been observed following radiation treat-
ment for anklylosing spondylitis (30), benign gynecological disorders (31),
menorrhagia not associated with malignancy (32,33), peptic ulcers (34),

Figure 2 Age-specific incidence rates for myeloid disorders (acute myeloid leuke-
mia and chronic myeloid leukemia) per 100,000 in the nine SEER areas by race
and sex, 1973–1997. &, white male; &, black male; �, white female; �, black female.
Source: From Ries LAG, et al. SEER Cancer Statistics Review, 1973–1997. NIH
Pub. No. 00–2789. Bethesda, MD: National Cancer Institute, 2000.
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and tinea capitis (35). In the occupational setting, relative risks of leukemia
mortality were 6- to 8.8-fold increased among British (36) and U.S. (37,38)
radiologists joining specialty societies during 1897–1921 and 1920–1929, but
not in those joining later. Leukemia mortality was modestly increased in
U.S. (39) and Japanese (40) radiological technologists who first worked
before 1950 or 1960, respectively, and incidence was significantly elevated
among Chinese technologists during 1950–80 (41). There is debate on
whether diagnostic x-rays are etiologically associated with adult AML
(42,43), or merely statistically linked because x-rays are used to evaluate
early symptoms of AML (44). In contrast to ionizing radiation, there is
insufficient evidence to link AML with nonionizing radiation, such as ex-
tremely low-frequency (ELF) residential magnetic field levels (45,46). Also,
the data are inconsistent for AML and ELF magnetic fields in the occupa-
tional setting (47–56).

Chronic myelogenous leukemia also has been extensively studied in
the context of radiation. Japanese atomic bomb survivors experienced a sig-
nificantly elevated risk of CML (17,19). Radiotherapy for selected malig-
nant and benign conditions, including histiocytosis X (58), uterine
bleeding treated with intrauterine radiation (33), and metastatic papillary
and follicular thyroid cancer treated with low-dose 131I (59), has been asso-
ciated with increased risk of CML in some clinical reports (60,61) and a few
epidemiological studies (19,33). Thorotrast, has been linked with increased
risk of CML (62).

Benzene-exposed painters, printers, and workers employed in chemi-
cal, rubber, Pliofilm, and shoe manufacturing and in petroleum refining
(63–68) industries have consistently shown 1.9- to 10-fold increased risks
of AML and aplastic anemia. Chronic myeloid leukemia has been reported
among benzene-exposed workers in China (69,70) and the United States
(64), but the small numbers of cases preclude precise quantification of risk.
Excesses of myelomonocytic leukemia (71) and myelofibrosis (72) have been
identified among pressmen and printers. Risks were also elevated for MDS,
CML, ALL, CLL, or non-Hodgkin lymphoma (NHL) in a few studies
(64,66,67,73–79). Much debated aspects of the findings of U.S. (64) and
Chinese (67) studies of benzene workers are risk estimates, dose–response,
and latency at low benzene exposure levels (80–85).

Treatment of Hodgkin lymphoma, non-Hodgkin lymphoma, multiple
myeloma (MM), polycythemia vera, and breast, ovarian, or testicular can-
cers with alkylating agents is associated with increased risk of therapy-
related MDS (t-MDS) and AML. The risk is related to cumulative dose
and is characterized by a typical latency of 5–7 years, a preleukemic phase
in 70% of patients developing t-MDS=AML, trilineage dysplasia, and par-
tial deletions of chromosomes 5 and 7 (86). Some alkylating agents (e.g.,
melphalan), pose higher risks than others (e.g., cyclophosphamide)
(24,26,87–92). Treatment with topoisomerase II inhibitors (specifically
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epipodophyllotoxins) has also been linked with elevated risk of t-AML,
which is generally not related to cumulative dose and typically develops
after a 2 year latency, not preceded by a preleukemic phase, characterized
by the t(11q23) translocation (93–95). Platinum-based chemotherapy used
to treat ovarian (92) and testicular cancers (96) has been associated with ele-
vated risks of t-MDS=AML, as have treatments with mitoxantrone and
methotrexate or methotrexate and mitomycin C for breast cancer (97),
and pretransplantation chemotherapy (e.g., mechlorethamine) (98) and=or
conditioning treatments (e.g., total body irradiation) (99), particularly at
doses >12Gy, or VP-16 (91) in preparation for autologous stem cell trans-
plantation for lymphoma or other malignant diseases (98). Predisposing
genetic factors are currently under study (100,101).

Several large studies (102–104), but not all (105,106), have linked
cigarette smoking with small 1.2- to 1.5-fold excesses of AML (107). Thus,
the evidence linking smoking and AML is less convincing than data linking
smoking with many other cancers. Limited data link smoking with MDS
(108).

Many other exposures have been tested for an increased AML or
MDS risk, but there are limited data to support them, inconsistencies, or
no measurable association. These include painters (109,110); machine opera-
tors and assemblers (111); embalmers (112,113); garage and transport work-
ers (114,115); shoe workers (116); hairdressers and cosmetologists (117,118);
seamen on tankers (119); and laboratory and science technicians (120).
There are inconsistent findings for AML=MDS risk in farmers (121–124),
which may reflect the variation in agricultural workers’ exposure to pesti-
cides, fertilizers, diesel fuel and exhaust, or infectious agents (125–130).
But increased risk of myeloid leukemia occurred within 10 years in 20,000
persons under age 19 who resided in Seveso, Italy, after an industrial acci-
dent contaminated the region with 2,3,7,8-tetrachlorobibenzo-p-dioxin
(TCDD) (131).

2.2. Familial Aggregation

Families with multiple members in different generations who develop AML,
MDS, or both are rare, but data support the contribution of highly penetrant
mutations in leukemia susceptibility genes (132). Some familial AML cases
are characterized by monosomy 7 (133,134), others demonstrate loss of the
long arm of chromosome 5 (135,136), while yet a third group have other or
no karyotypic abnormalities (137). Approximately 5% of AML=MDS may
be associated with inherited genetical syndromes (138), such as Down syn-
drome (139), the bone marrow failure syndromes of Fanconi’s anemia
(140), Bloom’s (141,142) and Schwachman–Diamond syndromes (143), ame-
gakaryocytic thrombocytopenia, dyskeratosis congenita, and Kostmann’s
syndrome (144).
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2.3. Genetic Polymorphisms

Because the etiology of most hematological malignancies is believed to be
multifactorial, common genetical variants, including single-nucleotide poly-
morphisms, may influence susceptibility.

The metabolizer enzymes GST T1, GST M1, and GST P1 detoxify
environmental carcinogens associated with AML=MDS, such as chemicals
in cigarette smoke, ethylene oxide, and certain cytotoxic drugs (145–148).
It was postulated that homozygosity for null alleles for one or more GSTs
might predispose to increased risk of AML=MDS, due to the inability to
detoxify specific leukemogens (149,150). Persons with null alleles for GST
T1 were at modestly increased risk of developing de novo MDS=AML in
some (145,149,151,152), but not all (153,154), case–control studies. How-
ever, three studies showed that null alleles for GST T1 were not related to
risk of t-AML (153–155). Individuals with null alleles for GST M1 were
at elevated risk of developing de novo AML (151,152) or MDS (156), but
not t-AML (154,155), whereas persons with null alleles for both GST T1
and GST M1 experienced an excess risk of developing t-AML (157). Risks
of t-AML were increased among patients previously treated with che-
motherapy agents that are known substrates of GST P1; the GST P1 codon
105 Val allele occurred more often in the t-AML cases than in those with de
novo AML (155). The null genotype of GST T1 was not associated with
increased risk of developing t-AML among children treated with epipodo-
phyllotoxins for ALL (100).

The potential predisposing nature of the slow acetylator N-acetyl
transferase (NAT) status to leukemogenesis was suggested by increased
DNA adduct levels in peripheral blood lymphocytes (158), but adult
AML was not linked with NAT2 metabolizer status in the large U.K.
case–control study (159).

Roddam et al. (2000) (159a) found that the CYP2C19 PM phenotype,
but not the CYP1A1�3 allele, was associated with an increased risk of both
AML and sAML; there were no interactions with age, gender, or smoking
status for either of these alleles. Among 447 patients with an abnormal kary-
otype treated in the U.K. Medical Research Council AML clinical trials, the
CYP1A1�2B (Val) variant allele was overrepresented in patients with
NRAS mutation compared with no mutation in both the entire population
and the poor-risk karyotype group of patients with partial or complete dele-
tion of chromosomes 5 or 7 or abnormalities of chromosome 3 (160). There
were no differences in the frequencies for the CYP3A5�3 or the CYP3A4�1B
alleles between childhood ALL patients who developed t-AML and those
who did not develop t-AML (161).

NQO1, an enzyme induced by synthetic antioxidants and cruciferous
vegetables, detoxifies quinones, derivatives, and other natural and synthetic
compounds, and protects cells against oxidative stress (162,163). Individuals
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who are homozygous for the variant allele completely lack NQO1 activity,
while heterozygotes have low-to-intermediate activity compared to indivi-
duals with the wild-type alleles. Disruption of the NQO1 gene in mice
has been shown to cause myeloid hyperplasia of bone marrow (164).
Occupational benzene poisoning (e.g., hematotoxicity, particularly leukope-
nia), which was strongly linked with development of hematopoietic
neoplasms in Chinese benzene-exposed workers, was associated with poly-
morphisms in genotypes of enzymes that activate (i.e., CYP2E1) and detox-
ify (i.e., NQO1) benzene and its metabolites (165). The NQO1 variant allele
also appears to be significantly over-represented in therapy-related myeloid
leukemias in adults (154,166). In addition, null alleles for NQO1 predis-
posed to increased risk of de novo AML in adults (167). Infants with leuke-
mia characterized by MLL gene rearrangements were eightfold more likely
to have low NQO1 function than healthy children or childhood leukemia
patients with TEL-AML1 gene fusions or with hyperdiploidy (168). Low
NQO1 function was not more common in childhood ALL patients treated
with chemotherapy who developed tAML than in those who did not develop
tAML (161).

Limited data suggest that variant alleles and=or mutations in genes
involved in DNA repair may be important in the etiology of t-AML and
genetic syndromes that predispose to increased risk of myeloid leukemias
(169). At least one copy of the variant allele XRCC1 399Glu conferred a
protective effect against t-AML in a small case–control study (170). Families
with individuals homozygous for mutations in mismatch repair genes are at
increased risk for developing hematological malignancies and=or neurofi-
bromatous, type 1, at an early age (171,172). Patients with Fanconi’s
anemia, a condition characterized by cells that are sensitive to DNA
cross-linking, are at increased risk of developing AML (173,174).

3. DISEASES OF LYMPHOID LINEAGE

The WHO classification (6) recognizes: (1) precursor disease lymphoid dis-
orders comprising stem or immature precursor cells, including pediatric and
adult forms of acute lymphocytic leukemia (ALL), and (2) peripheral dis-
ease lymphoid disorders comprising functional peripheral B-cells and T-
cells, which include non-Hodgkin lymphoma (NHL), Hodgkin lymphoma
(HL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM)
(6,8). Peripheral diseases are further classified according to B-cell (further
categorized by stage of differentiation of the cells compared to the germinal
center) or T-cell lineage. Understanding of etiology requires recognition of
the characteristic genetic instability and highly variable history of the nor-
mal life cycle of lymphocytes, which undergo genetic recombination and
mutation to generate high-affinity antibodies (175,176).
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3.1. Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) includes three subtypes: (1) precursor
B-cell ALL, (2) precursor T-cell ALL, and (3) Burkitt-cell leukemia (6).
Acute lymphoblastic leukemia is the most common cancer in children,
comprising about 30% of all pediatric cancers in most populations
internationally except in Africa and the Middle East (177). Patterns for
childhood ALL, similar to those for adults, demonstrate highest incidence
in Hispanics (pediatric ALL is highest in Costa Rica and in Latinos in
Los Angeles), and lowest rates in African-Americans, the Middle East,
and India (Fig. 3). Pediatric ALL is notably higher in U.S. Caucasians than
in African-Americans of both sexes. The age-specific incidence pattern for
ALL is quite distinctive, with a peak at ages 2–4, followed by a declining
incidence rate throughout the remainder of childhood, adolescence, and
early adulthood to a nadir at age 40; subsequently, incidence of ALL rises
with increasing age to a second, albeit lower, peak among the elderly
(Fig. 4). Incidence rates of ALL are consistently highest in males than in
females at all ages.

Ionizing radiation is among the best documented causes of ALL.
Exposed Japanese atomic bomb survivors who were less than 10 years old
at exposure experienced the highest excess absolute risks for ALL. Risks
decreased by 5% for each 1-year increase in-age, and peaked at less than
10 years after exposure (178). The pattern of risk following adult exposure
was similar, but with a substantially lower peak also occurring less than
10 years after exposure, the excess absolute risk declining rapidly at 14%
per year. Females had a risk less than half of that for males.

While it has been hypothesized that children of radiation workers are
at an increased risk of ALL (179), risks are probably very small or not
increased. A large record linkage U.K. study revealed a small increase in
childhood leukemia and NHL of children of nuclear workers, but no
dose–response trend (180). There was no association in a case–control
record linkage study in Ontario, Canada (181). Small clusters of childhood
leukemia cases in geographical proximity to nuclear plants in the United
Kingdom in the mid-1980s prompted large surveys, which revealed excess
leukemia and lymphoma in persons under age 25 living near nuclear fuel
reprocessing or weapons production plants (particularly the Sellafield and
Dounreay plants) (182), but no excess among populations residing close
to nuclear plants generating electricity (183–185). Environmental radiation
levels measured in proximity to Sellafield and other nuclear facilities were
too low to be etiologically related.

Exposure to pesticides also has been extensively studied for ALL risk,
where the overall evidence is consistent with an association. In California,
excess risks of childhood leukemia were linked with mothers’ and fathers’
use of pesticides and herbicides in gardens and residences during pregnancy
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(186,187), with the use of indoor insecticides from the beginning of preg-
nancy until diagnosis (188), and with the use of a professional pest control
service (187). Childhood leukemia in Denver was associated with the use of
pest strips in the home during the last 3 months of pregnancy and postna-
tally (189). Pesticide application on farms was linked with a modest increase
in childhood leukemia in Germany (190), as was preconception paternal
exposure to pesticides in Quebec (191). Frequent use of pesticides in the gar-
den or on interior plants during pregnancy was associated with elevated risk
of childhood ALL in offspring who were carriers of the CYP1A1m1 and
CYP1A1m2 polymorphisms in Quebec (192). In contrast, childhood ALL
was not associated with pesticide use density at the residence at diagnosis
in California (193), nor in relation to parental occupational exposure to pes-
ticides in the Netherlands (194) or Sweden (195), or paternal exposure to
chlorophenate fungicides in British Columbia sawmills (196).

Lifestyle exposures also are implicated in ALL risk. Paternal smoking
during the preconception period was associated with significantly elevated
risks of childhood ALL in Shanghai, China (197), and in the United King-
dom, the latter based on two investigations (198,199), but not in Italy (200).
Paternal preconception smoking was linked with an excess of leukemia
among children less than 18 months old in the United States and Canada
(201). Most investigations have shown 20–30% reduced risks of ALL among
children who were breastfed during infancy (202–205), with a declining risk
observed for prolonged breastfeeding in two investigations (205,206). Other
studies have shown a smaller reduction in risk (207) or no clear relation-
ship (208).

A large literature on childhood leukemia clusters (209–211) suggests
an infectious etiology for childhood ALL. Some of the supportive studies
utilize such measures as maternal infection during pregnancy (212,213);
the type (214–217) and timing (217–220) of childhood vaccinations; daycare
attendance (204,205,221,222), household crowding (223); household pets
(221,224); and seasonal variation in diagnosis (225–227), temporal trends
in incidence among the youngest children (228,229), and ecological investi-
gations assessing correlations of childhood ALL birth and diagnosis data
with mycoplasma pneumonia surveillance data (210). The specific infectious
agents, however, have not been identified. Screening studies have shown no
novel herpesvirus genomes (230,231), or evidence of genomes of the JC and
BK polyoma viruses (232) in childhood ALL cases.

Two- to threefold excesses of childhood leukemia were observed in chil-
dren residing in homes with high levels of extremely low-frequency 60Hz
magnetic field (EMF) exposures induced by nearby power lines based on
proxy (233,234) or measured levels in the United States (188) and Sweden
(235). Larger studies, however, characterized by more extensive and direct
measures of children’s exposures (236–239), and pooled analyses (240,241)
revealed no increase in risks for children residing in homes with magnetic field

680 Linet et al.



Fi
gu

re
3

In
te
rn
at
io
n
al

in
ci
d
en
ce

ra
te
s
fo
r
ly
m
p
h
o
id

d
is
o
rd
er
s
(a
cu
te

ly
m
p
h
o
b
la
st
ic

le
u
k
em

ia
,
n
o
n
-H

o
d
gk

in
ly
m
p
h
o
m
a
,
H
o
d
gk

in
ly
m
p
h
o
m
a,

ch
ro
n
ic

ly
m
p
h
o
cy
ti
c
le
u
k
em

ia
,
an

d
m
u
lt
ip
le

m
ye
lo
m
a)

p
er

10
0,
00
0
(a
ge
-a
d
ju
st
ed
,
W
o
rl
d
S
ta
n
d
ar
d
)
b
y
co
n
ti
n
en
t
an

d
se
x
,

19
88
–
19
92
.
S
o
ur
ce
:
F
ro
m

P
ar
k
in

D
M
,
et
a
l.
C
a
n
ce
r
In
ci
d
en
ce

in
F
iv
e
C
o
n
ti
n
en
ts
.
V
o
l.
7.
L
yo

n
,
F
ra
n
ce
:
IA

R
C
S
ci
en
ti
fi
c
P
u
b
li
ca
ti
o
n
N
u
m
-

b
er

14
3
,
19
97
.

Epidemiology of Hematological Malignancies 681



Fi
gu

re
4

A
g
e-
sp
ec
ifi
c
in
ci
d
en
ce

ra
te
s
fo
r
ly
m
p
h
o
id

d
is
o
rd
er
s
(a
cu
te

ly
m
p
h
o
b
la
st
ic

le
u
k
em

ia
,
n
o
n
-H

o
d
g
k
in

ly
m
p
h
o
m
a
,
H
o
d
g
k
in

ly
m
p
h
o
m
a
,
ch
ro
n
ic

ly
m
p
h
o
cy
ti
c
le
u
k
em

ia
,
a
n
d
m
u
lt
ip
le

m
y
el
o
m
a
)
p
er

1
0
0
,0
0
0
in

th
e
n
in
e
S
E
E
R

a
re
a
s
b
y
ra
ce

a
n
d
se
x
,
1
9
7
3
–
1
9
9
7
.

&
,
w
h
it
e
m
a
le
;
&
,
b
la
ck

m
a
le
;
�,

w
h
it
e
fe
m
a
le
;
�,

b
la
ck

fe
m
a
le
.
S
o
u
rc
e:

F
ro
m

R
ie
s
L
A
G
,
et

a
l.
S
E
E
R

C
a
n
ce
r
S
ta
ti
st
ic
s
R
ev
ie
w
,
1
9
7
3
–

1
9
9
7
.
N
IH

P
u
b
.
N
o
.
0
0
–
2
7
8
9
.
B
et
h
es
d
a
,
M
D
:
N
a
ti
o
n
a
l
C
a
n
ce
r
In
st
it
u
te
,
2
0
0
0
.

682 Linet et al.



exposures less than 0.3 or 0.4mT, but a twofold excess among the very small
percentage exposed to 0.3 or 0.4mT or greater.

Individuals with specific polymorphisms in the methylenetetrahydrofo-
late reductase gene (MTHFR) have been found to be at reduced risk of adult
ALL (242). Folic acid is essential in the transfer of methyl groups to various
biochemical targets in mammalian tissues involved in amino acid metabo-
lism and in the synthesis of the purine and pyrimidine components of
DNA and RNA (243). The MTHFR and ALL relationship was found for
a common polymorphism (677 C!T) that results in reduced specific activity
of the enzyme, thus affecting folate metabolism (244,245). Up to 15% of
individuals are homozygous (677TT) for this allelic variant (244–246);
homozygotes have significantly reduced levels of enzyme activity (245).

3.2. Hodgkin Lymphoma

The two major forms are classical Hodgkin lymphoma (including nodular
sclerosis, mixed cellularity, and lymphocyte depleted) and lymphocyte-pre-
dominant nodular HL (8). At least 95% of the pathognomonic Reed–
Sternberg (RS) cells of classic HL are clonally derived malignant cells of
germinal center B-cell origin, characterized by crippling mutations due to
functional defects in the immunoglobulin gene regulatory elements (247–
251). Approximately 2% of RS cells appear to be derived from T-cells (250).

Hodgkin lymphoma is characterized by a bimodal age-specific
incidence pattern in most western populations, with rates low in early child-
hood, rising to a peak early in the third decade, then declining to a nadir at
age 40, and subsequently rising until age 70. In developing countries there is
a small peak in childhood among boys, low rates among young adults, and a
second peak among the elderly (14). Incidence rates for HL are higher in
U.S. Caucasians than in African-Americans in early adulthood. From ages
25 to age 60, rates are higher in males of both races than in females; subse-
quent to age 70, rates are highest in U.S. Caucasian males, somewhat lower
although overlapping in U.S. Caucasian females and African-American
males, but decline precipitously in African-American females (Fig. 4).

The differing incidence patterns of HL in economically advantaged vs.
disadvantaged populations and the relationship of HL subtypes with social
class suggest that HL may develop as a rare consequence of a common
infection. Risk is believed to increase if occurrence of infections typically
encountered in early childhood is delayed until adolescence or young adult-
hood (252). Growing evidence, including the presence of Epstein–Barr virus
(EBV) genomes in RS cells and the expression of viral proteins and other
evidence of EBV latent infections in up to 50% of HL tumors, suggests that
EBV is etiologically related to HL (253–255). Infectious mononucleosis, a
common viral disorder caused by EBV, has been linked with HL in numer-
ous case–control and cohort studies [reviewed in Mueller (252)]. In large
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cohorts of infectious mononucleosis patients in Denmark and Sweden
followed for cancer occurrence, significantly elevated risks were seen only
for Hodgkin lymphoma and skin cancer. The excess risk for HL persisted
for up to two decades, but declined with time since diagnosis (256). Glaser
et al. (253) examined data from 14 studies that had applied EBV assays to
HL tumors, and found that EBV-associated HL was notably higher in
Hispanics than in whites, in those with mixed cellularity than in those with
nodular sclerosis histology, in children from economically less developed
than in those from more developed geographical regions, and in young adult
males than in females. Recently, investigators found a stronger association
of a reported history of infectious mononucleosis with DNA evidence for
EBV in the RS cells of young adults with HL who typed positive for
HLA-DPB1�0301 than in cases who did not type positive for this HLA
subtype, which may implicate an inherited component to susceptibility to
EBV in the etiology of Epstein–Barr DNA-positive HL (257).

Some occupational studies have implicated exposures to HL. These
include employment in agriculture, particularly among those exposed
to livestock and meat processing, farming (258,259), and woodworking
(260,261).

Familial HL has been estimated to occur in approximately 4–5% of all
HL cases, with a male-to-female ratio of 1.5 in the familial HL population
similar to that of sporadic HL (263). In a linked registry study in Israel, the
interval between lymphoma occurring among siblings was 1–4 years for
siblings with concordant types of HL or NHL, whereas the interval ranged
from 16 to 21 years for HL=NHL among sibling pairs (264). Elevated risks
of NHL and HL have been observed among subjects who had a sibling with
lymphoma (265,264) and among first-degree relatives of children with NHL
(266). Lymphoma was 2.5-fold increased among siblings of lymphoma pro-
bands and the risk of HL in siblings was even higher for identical twins
(267), whereas the risk was lower for HL among family members other than
siblings. The difference may reflect the greater likelihood of familial HL con-
cordance generally occurring among siblings in the 15- to 34-year age group
(263), whereas familial concordant NHL may be more common in parent=
childpairs (268).

3.3. Non-Hodgkin Lymphoma

The classification of NHL is complex. Follicular lymphoma is characterized
by the translocation t(14;18). Occurrence of this translocation in the peri-
pheral blood of normal individuals (269–271) suggests that additional
genetic abnormalities are required in the pathogenesis of follicular lym-
phoma. Large-cell lymphoma in the new WHO classification is clinically
distinct (272), combining the previously differentiated immunoblastic and
centroblastic NHL and nonendemic Burkitt’s lymphoma (e.g., those
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occurring outside Africa) (273). Marginal-zone lymphoma, characterized by
an indolent natural history, often presents at extranodal sites (including
thyroid, salivary glands, and stomach) that were closely associated with
chronic inflammatory conditions.

Internationally, NHL is highest among non-Hispanic whites in the
U.S., followed in declining order by rates in Italians, Canadians, Israeli
Jews, Australians and Africans-Americans; lowest rates occur in China,
India, and other parts of Asia and in Spain (Fig. 3). Incidence of NHL,
all types combined, rises dramatically with increasing age, beginning in early
childhood among U.S. boys and in early adolescence among girls, to age 70,
when the rate of the increase slows down (Fig. 4). While incidence rates are
higher in males than in females at all ages in the United States (Fig. 4), inter-
nationally the male excess is most marked among children [274]. Before age
70 there is little racial difference in U.S. incidence rates, whereas after age
70, rates are higher in whites than in African-Americans of either gender
(Fig. 4).

There are several known associations for exposures and NHL. Severe
immunosuppression from medication, with or without organ transplanta-
tion, may dramatically increase the risk of developing NHL (275,276). Post-
transplantation lymphoproliferative disorders (PTLD) occur following renal
(associated with 20- to- 59-fold increases) (275,277–279), heart, or bone
marrow transplants (associated with 48- to 336-fold increases) (278,280).
Risks of PTLD appear to be lower in recent years (281), but some persons
transplanted recently experienced higher PTLD risks, including patients
with graft- vs. -host disease and recipients of HLA-mismatched or T-cell
depleted bone marrow transplants (282,283).

Autoimmune or connective tissue disorders that have been linked with
2- to 44-fold increased risks of NHL include systemic lupus erythematosus
(284–287), rheumatoid arthritis (288–290), Felty syndrome (291), Sjogren’s
disease (276,292), and celiac disease and=or dermatitis herpetiformis
(293–296). The highest relative risks often derive from hospital-based epide-
miological investigations, while lower relative risks generally characterize
population-based studies. Subtype information is limited. In patients with
an autoimmune disorders treated with an immunosuppressive drug, it is
not clear whether an excess of NHL occurring among these patients is
due to the autoimmune disorders per se or to one or more immunosuppres-
sive drugs sometimes used to treat the disorder (284).

There are several viral etiologies to NHL. Epidemiological, serologi-
cal, and molecular data have consistently linked early EBV infection with
African Burkitt’s lymphoma, in conjunction with malaria as a cofactor,
the latter implicated because of the overlapping geographical distribution
of malaria and Burkitt’s lymphoma, high rates of both in the same popula-
tion, and reduction in the occurrence of both conditions following malarial
prophylaxis (297).

Epidemiology of Hematological Malignancies 685



Non-Hodgkin lymphoma may be one of the presenting manifestations
of the acquired immunodeficiency disorder (AIDS) and is the most frequent
malignancy associated with the human immunodeficiency virus (HIV) (the
relative risks range from 60 to 100, and the cumulative incidence is as high
as 29%) (298–300). AIDS patients with the CCR5-delta 32 allele experience
a threefold lower risk of developing NHL (301).

Gastric mucosal-associated lymphoid tissue (MALT) lymphomas,
low-grade B-cell lymphomas, are usually preceded by infection with Helico-
bacter pylori, which is often not clinically recognized (302,303). Eradication
of H. pylori following treatment with antibiotics often results in complete
remission of the gastric B-cell MALT lymphoma, which appears to be
stable, although PCR sometimes reveals residual evidence of monoclonal
B cells (304).

Numerous studies have reported small increases in the risk of NHL
among farmers in the United States and elsewhere (121,305), pesticide appli-
cators (306,307), and grain workers (308,309). Higher risks were observed
among farmers who reported using any pesticides, 2,4-dichlorophenoxy-
acetic acid (2,4-D) pesticides, or organophosphate insecticides more than
20 days per year (310,311); using dichloro-diphenyl-trichloroethane (DDT)
at least 5 days per year (312); or mixing and applying herbicides themselves
(310). Herbicides increased risk of follicular large-cell NHL, and farmers
using dieldrin, toxaphene, lindane, atrazine, and fungicides had significantly
elevated risks of t(14;18)-positive, but not 5(14;18)-negative, NHL (313).
Small excesses of NHL, particularly follicular NHL, have been observed
in meat packaging and processing workers (313a). Not all studies of farmers
(124) pesticide applicators (125), or persons agriculturally exposed to 2,4-D,
phenoxy acids, and the associated contaminant TCDD, have found elevated
risks. Risks of NHL were also not associated with measured levels of DDT
(313b), individual organochlorine compounds, or summed chlordane related
compounds in serum obtained years prior to diagnosis of NHL, although
there was a strong dose–response relation between measured serum PCB
concentrations and NHL (313b).

Studies of chemical manufacturing workers exposed to TCDD have
been inconsistent for NHL (314–316). A pooled analysis of 21,863 workers
exposed to phenoxy herbicides, chlorophenols, and dioxins from 36 cohorts
in 12 countries showed a nonsignificant modest excess risk of NHL [standard-
ized mortality ratio (SMR)¼ 1.39, 95% CI¼ 0.89–2.06, based on 24
deaths] (317). In 1997, the International Agency for Research on Cancer
classified TCDD as a Group 1 human carcinogen, based on excesses for
all cancers combined observed in four cohort studies (317a). Significant
excess risks of NHL (and=or CLL) have been reported among rubber man-
ufacturing and processing workers in one U.S. cohort (318–320). Non-
Hodgkin lymphoma (321) and sometimes CLL were significantly increased
among some, but not most, workers manufacturing styrene or butadiene
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(322,323) (see section on CLL below). Similarly, occupational exposure to
ethylene oxide has also not been conclusively linked with NHL (324,324a).
Other occupational solvent exposures sometimes linked with elevated risk of
NHL include benzene (67), carbon tetrachloride, xylene, carbon disulfide,
and hexane (325). These results require further investigation.

A few case–control (326,327) and cohort investigations (328,329) have
reported increased risks for high-grade and follicular NHL, respectively,
associated with cigarette smoking, but the majority of large studies found
no relationship (105,106,329a). The small epidemiological literature evaluat-
ing diet includes studies linking red meat (330,331) particularly if broiled or
barbecued (332), beef, pork, lamb (332), and butter, liver, ham, milk, and
dietary products containing transunsaturated fat (332) with elevated risks,
while fruit (330), carrots, and whole-grain products (332a) reduced risks
of NHL. Alcohol consumption by women was associated with reduced
NHL in two studies (330,331). Small increases in risk were associated with
the use of black or brown hair dyes for 10 or more years in two studies
(333,334), but not in others (335).

3.4. Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia can be classified into two major subtypes
based on the pattern of immunoglobulin gene mutations of pre- and
postgerminal center CLL (336). Molecular pathogenesis remains largely
unknown, but common cytogenetic abnormalities include interstitial dele-
tions of 13q, trisomy 12, deletions of 11q at the AT gene locus, and 6p
and 6q rearrangements.

CLL shows greater international variation (ranging from 26- to 38-fold
differences) in age-adjusted incidence than other lymphoid neoplasms. Rates
are consistently higher in males than in females, although the male:female
ratio varies from 1.4 in Zurich, Switzerland to 3.2 in Shanghai, China. Rates
are highest among Caucasians in North America, Denmark, and Oceania,
whereas rates are lowest in China, India, Japan, and Israeli Jews (Fig. 3).
Chronic lymphocytic leukemia is uncommon before age 30, then increases
exponentially until age 60, when the rate of the increase becomes slower.
At all ages, rates are higher in males than in females in the United States;
in the United Kingdom, the greatest male excess is observed among persons
in their 40s and 60s (337). Incidence rates of CLL are similar in U.S.
Caucasians and African-Americans until age 50, when the Caucasian:
African-American ratio increases (Fig. 4).

There are studies to suggest a relationship between CLL risk and occu-
pation, but the data allow for only limited conclusions. Several studies have
implicated farming and related exposures in risk of CLL (338–340), includ-
ing DDT (341), animal breeding (127), and working in flourmills (308).
While some case–control studies have suggested a link between benzene

Epidemiology of Hematological Malignancies 687



exposure and CLL (325,342), cohort studies of benzene-exposed workers
show little evidence of increased risk of CLL (64,67,80). A few studies have
described excesses of lymphocytic leukemia or CLL (343,344) among petro-
leum industry workers, but no excess risk was found for CLL in other stud-
ies (74,345–348) or in a leukemia type-specific meta-analysis of 208,000
workers (349). A retrospective cohort study of 40,683 workers in the rein-
forced plastics industry from Denmark, Finland, Italy, Norway, Sweden,
and the United Kingdom (350) revealed no excesses of neoplasms of the
lymphatic and hematopoietic system overall or increasing risk with longer
duration of exposure, but mortality from leukemia and lymphoma rose two-
fold 20 years after first exposure. Elevated risks were observed in workers
employed in the 1960s in companies producing reinforced plastics in
Denmark. Interpretation of much of the literature on occupation and risk
of CLL is complicated by lack of homogeneity of the lymphopoietic dis-
orders studied and lack of validation of diagnosis in most studies. An Inter-
national Agency for Research on Cancer (IARC) committee concluded that
there was a small excess of CLL after a detailed review of 12 cohort studies
of the rubber industry (351). Chronic lymphocytic leukemia has not been
associated with exposure to ionizing radiation (43,352).

Smoking was linked with elevated risk of lymphocytic leukemia in
three cohort investigations (102,353,354) and one case–control study (355),
but not in other large cohort studies (106,356). There is little information on
diet or alcohol consumption and CLL.

Familial clustering of CLL, recognized for more than 50 years (357), is
one of the strongest risk factors for development of CLL (358). First-degree
relatives with leukemia were more frequent in families of CLL cases than in
CML cases (359), but only a small percentage of CLL cases have affected
close family members (132,360). The proportion may be higher among
families of CLL cases among Ashkenazi Jews of Eastern European or
Russian descent (361). Within a family with two or more cases of leukemia
among close family members, the subtypes of leukemia are generally concor-
dant, particularly for CLL (265,329). Postulated genetical mechanisms for
familial leukemia include inherited germline mutations, primary immunolo-
gical alterations, sharing of common haplotypes, and=or consanguinity.

3.5. Multiple Myeloma

Multiple myeloma, comprising 10% of all hematological malignancies, is
characterized by an accumulation of malignant plasma cells in the bone
marrow (13). Genetic changes include a rearrangement involving the IgH
gene at 14q32, with reciprocal translocations involving 11q13 or 4p16 (seen
in 60–75% of patients), aneuploidy (seen in almost all cases), and interstitial
deletion of chromosome 13q (which appears to be a poor prognostic
feature).
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Internationally, incidence of MM is highest among African-
Americans, while mid-level rates occur among Caucasians in North Amer-
ica, Europe, and Oceania, and lowest rates are apparent in China, India,
Japan, and Israeli Jews (Fig.3). Multiple myeloma like CLL, is rare before
age 30, then increases exponentially with age, until age 70 when the rate
of increase steadies in all groups. Incidence rates are higher at all ages
among African-Americans than among U.S. Caucasians. Rates are similar
for both men and women of each race in young and middle-aged adults,
but at age 60 rates diverge, with higher rates apparent for males than for
females of each race (Fig. 4).

Radiation treatment was linked with small but significantly elevated
risk, which remained elevated 35 years since the first treatment and a
dose–response trend for MM among patients with ankylosing spondylitis
(estimated mean total body dose was 2.64Gy, with the heaviest dose to
the vertebrae) (362). A trend analysis revealed significantly increased risks
of MM 10 years following the first radiation treatment in a large cohort
of women treated for cervical cancer, but no overall excess risk for all time
periods combined (363). Women in Scotland treated with radiotherapy for
metropathia hemorrhagica developed significantly elevated risk of MM 5
or more years after receiving a mean bone marrow dose of 1.3Gy (364).
Thorotrast was associated with a significantly increased risk of MM among
Danish women (365).

Several epidemiological studies have reported positive associations
between employment in agriculture and risk of MM (121,366–369). Multiple
myeloma was significantly elevated among 140,208 Swedish farmers, even in
those parts of Sweden where the use of pesticides has been less frequent (370);
246,104 Norwegian farmers, particularly those cultivating potatoes (371);
and 205,000 Finnish farmers, particularly those on pig or poultry farms
(259). A meta-analysis of 32 studies published between 1981 and 1996
revealed a modest increase in MM (369). Specific agricultural exposures
implicated include triazine herbicides (123,347), (DDT, used in application
or inspection jobs (372), grain dusts (308,373), and farm animals (374).

Mortality studies of atomic bomb survivors have reported a radiation
effect (17,57), with an estimated excess risk of 0.17 per 104 person-years per
sievert (PY Sv) PY Sv (95% CI¼ 0.02–0.40) for both sexes combined, that
was slightly higher for females (0.19 per 104 PY Sv, based on 35 cases) than
for males (0.15 per per 104 PY Sv, based on 16 cases). However, incidence
analyses for 1950–1987 show no evidence of a significant dose–response
relationship (178). The estimated absolute risk was 0.08 cases per 104 PY
Sv (95% CI < 0–0.3), with no variation by gender, age at exposure, or time
since exposure (178). Reasons for the apparent differences between mortal-
ity and incidence risks included poorer agreement (only 59%) between
tumor registry and death certificate diagnoses for MM than for other
hematological malignancies, and exclusion of a relatively large proportion
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(8.4% of MM cases which were second primaries) from the incidence anal-
yses. Because of the small numbers of exposed persons who developed
MM, more years of follow-up and continued monitoring of the atomic
bomb survivors will be required to clarify the nature of the relationship.
An excess of deaths from MM among American radiologists was first
reported 40 years ago (375). Subsequently, risk of MM was found to be
two times higher among U.S. radiologists than among physicians in other
specialties (38), but risk was not increased in British radiologists (376), or
among Chinese (41), Japanese (40), or U.S. (39) radiological technologists.
In a combined analysis of cancer mortality data for 95,673 nuclear industry
workers in the United States, the United Kingdom, and Canada, the relative
risk of MM was almost twofold increased and the excess relative risk was
4.2 per sievert for MM (377). The authors concluded that the excess most
likely reflected the increase in MM previously reported for two of the
nuclear plants (e.g., Hanford and Sellafield). Among 124,743 workers
included in the National Registry for Radiation Workers in the United
Kingdom, there was some evidence of an increasing trend in the risk of mul-
tiple myeloma with increasing estimated external radiation dose, although
the rising trend disappeared after the investigators excluded workers moni-
tored for exposure to internal radiation emitters (377a). Increases in MM
mortality and incidence were observed among British military participants
in above-ground nuclear weapons tests (378), but not in New Zealand
(379) or U.S. soldiers participating in nuclear tests (380,381). In contrast,
no association has been found between risk of myeloma and diagnostic
x-rays in most case–control (382,383) or cohort (384,385) studies, although
a positive dose–response and a significant excess risk was observed among
members of a prepaid health plan who had had a mean of 35 or more
x-ray procedures (386).

One of the most contentious topics is whether or not benzene exposure
is linked with elevated risk of multiple myeloma (387–389). A U.S. study
initially described four workers with MM and nine with myeloid leukemia
in a population of approximately 1100 workers manufacturing Pliofilm
(64), but an updated follow-up revealed no association of benzene with
MM (68). In a study reported in 1996, shoe workers in Florence with the
highest exposure to solvents developed an elevated risk of MM (390). Non-
significant modest excesses of MM occurred among chemical manufacturing
workers 20 or more years after their first exposure to low levels of benzene
(77), workers in the crude and fluid catalytic cracking units within the
research and petrochemical units of Texaco (348), and workers at Texas
oil refineries (391,392), but were not supported in studies of Canadian
petroleum distribution workers (74) or in a meta-analysis of 22 cohort
mortality studies of petroleum workers (393).

Cigarette smoking has not been found to be a risk factor for multiple
myeloma (106,107,327,328,356,373,384,394–397), except in a single study of
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Seventh Day Adventists (397a). There is little evidence about the possible
role of diet in the etiology of MM, although increased risks were found
for liver and butter intake, and animal fat (332a); reduced risks for fish con-
sumption (398), whole-grain intake (399), and diets rich in green vegetables
(332a); and elevated risks in overweight and obese persons (400). Alcohol
consumption has not been linked with MM (373,384,397). Women who used
permanent darkening hair dyes had increased risk of MM in one case–
control (397b) and one cohort study (334,401), but these findings were not
confirmed in other case–control (402), or large cohort (335) studies.

Multiple myeloma is three- to sixfold elevated among persons with a
history of a first-degree relative with multiple myeloma (262,403,404). Risks
of familial occurrence of lymphoproliferative malignancies in families of
probands with MM were higher for African-Americans than for Cauca-
sians, although the difference was not statistically significant (404).
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1. INTRODUCTION

In this chapter we review the most relevant data that permit the risk assess-
ment of bladder cancer, based on the measurement of biomarkers. We con-
sider separately biomarkers relevant to the etiology, and biomarkers
relevant to the clinical assessment of such cancers. Many biomarkers have
been suggested for use, particularly for clinical purposes, and our review
cannot be exhaustive. Therefore, we have selected p53 as a particularly
representative clinical marker.

2. POPULATION RISK ASSESSMENT

2.1. Molecular Epidemiology of Bladder Cancer

2.1.1. Tobacco and Occupational Exposures

Bladder cancer is a relatively prevalent cancer, with age-adjusted incidence
rates in Western population of about 30=100,000 men per year and 7–
10=100,000 women (1).

The most important, single class of bladder carcinogens consists of aro-
matic amines. Aromatic amines are present in tobacco smoke and contami-
nate the ambient air where smokers are present (2). Exposure to aromatic
amines occurs in different industrial and agricultural activities. Aromatic
amines have been used as antioxidants in the production of rubber and in
cutting oils, as intermediates in azo dye manufacturing, and as pesticides.
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They are a common contaminant in several working environments, including
the chemical and mechanical industries and aluminum transformation. Aro-
matic amine-based dyes are widely used, particularly in the textile industry.

The strongest evidence on the carcinogenicity of arylamines (benzidine, 2-
naphthylamine) comes from large cohort investigations conducted in the 1950s
in the British chemical industry. Carcinogenic arylamines such as 2-naphthyla-
minehavebeenbanned in theU.K. since1967 (CarcinogenicSubstancesRegula-
tion) (3) and in other Western countries subsequently (4). The International
Labour Office had already concluded in 1921, based on early observations in
humans, that 2-naphthylamine and benzidine were carcinogenic (5).

Occupational exposures to aromatic amines account for 5%–25% of
bladder cancers occurring in some areas of Western countries. Estimates
of the attributable fraction are strictly space- and time-specific, and might
be higher in limited areas of developing countries.

According to the Working Groups of the International Agency for
Research on Cancer Monographs Programme, seven arylamines have been
classified as carcinogenic to humans (Group 1) or ‘‘probably’’ carcinogenic
to humans (Group 2A). Categorized as such are three specific occupational
chemicals (2-naphthylamine, benzidine, and MOCA), one medication
(Chlornaphazine), one group of industrial compounds (benzidine-based
dyes, i.e., Direct Black 38, Direct Blue 6, and Direct Brown 95), and two
manufacturing processes (manufacture of auramine and magenta). Whereas
for the other chemicals or industrial processes, the evidence of carcinogeni-
city in humans was sufficient, benzidine-based dyes and MOCA were con-
sidered ‘‘probably’’ carcinogenic because of a high level of evidence in
experimental animals.

Tobacco smoking is a well-known cause of bladder cancer—account-
ing for more than 50% bladder cancers in men and 20% in women, in West-
ern societies—and is a source of arylamines (6). Air-cured (black) tobacco, is
particularly rich in arylamines such as 4-aminobiphenyl; smokers of black
tobacco have a risk of bladder cancer that is about 2.5-fold in comparison
with smokers of flue-cured blond tobacco (7). Studies of ‘‘molecular epide-
miology’’ have suggested that smokers of air-cured black tobacco have
higher levels of 4-aminobiphenyl–hemoglobin adducts (a marker of internal
dose) in their blood, compared to smokers of flue-cured tobacco (8). Biop-
sies of bladder cancer from smokers contain a DNA adduct identified as a
derivative of 4-aminobiphenyl (9). This same DNA adduct was present in
exfoliated bladder cells of smokers (10); the presence and concentration
of the DNA adducts was strongly correlated with 4-amino biphenyl–
hemoglobin adducts but not with urinary 1-hydroxypyrene-glucuronide, a
metabolite of benzopyrene (11) (Table 1; the derivative of 4-aminobiphenyl
is adduct 4). The latter observation suggests that arylamines and not
polycyclic aromatic hydrocarbons in tobacco smoke may be responsible
of bladder cancer in smokers.
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The concentration of 4-aminobiphenyl–hemoglobin adducts in both
smokers and non-smokers is modulated by the N-acetylation phenotype;
irrespective of the smoking status of the subjects, the genetically based slow
acetylator phenotype was associated with higher concentrations of the
adduct (12). N-Acetyltransferase deactivates carcinogenic arylamines and
has a genetically based polymorphic distribution in the population, with
about 50% of Caucasians being slow acetylators. Slow acetylators have been
shown to be at high risk of bladder cancer in epidemiological investigations
(13). The consistency among the results obtained in different Caucasian

Table 1 Correlation Coefficients (Pearson) and p-Values (in Parentheses): Urinary
Cotinine–Nicotine, Urinary 1-Hydroxyprene, Levels of 4-Aminobiphenyl-
Hemoglobin Adducts (4-ABP), and Log DNA Adducts in Exfoliated Ladder Cells
(39 Healthy Men)

All subjects Smokers (N¼ 18)

Adduct no. 1-Hydroxypyrene 4-ABP 1-Hydroxypyrene 4-ABP

1 �0.01 0.06 0.02 0.09
(0.95) (0.70) (0.92) (0.72)

2 0.44 0.42 0.37 0.52
(0.005) (0.007) (0.12) (0.03)

3 �0.22 �0.03 �0.19 0.37
(0.17) (0.84) (0.44) (0.13)

4 0.02 0.33 0.01 0.54
(0.90) (0.04) (0.97) (0.02)

5 0.08 0.07 0.16 0.28
(0.62) (0.67) (0.53) (0.26)

6 �0.01 0.01 �0.08 0.09
(0.93) (0.96) (0.74) (0.09)

7 �0.10 �0.02 �0.17 �0.28
(0.52) (0.88) (0.49) (0.27)

8 �0.04 �0.10 – –
(0.77) (0.53)

9 �0.14 0.05 �0.22 �0.35
(0.39) (0.75) (0.36) (0.14)

10 �0.09 0.37 �0.15 0.34
(0.58) (0.02) (0.55) (0.16)

11 �0.03 �0.14 0.09 0.06
(0.87) (0.40) (0.71) (0.82)

12 0.14 �0.13 0.05 –0.17
(0.38) (0.42) (0.84) (0.48)

Total diagonal zone 0.09 0.17 0.13 0.45
(0.57) (0.29) (0.61) (0.06)

Source: From Ref. 11.
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populations and with different study designs seems to suggest that N-acetyl-
transferase exerts a causal role in modulating the risk of bladder cancer in
arylamine-exposed subjects (13). An exception is represented by studies in
Asians, which show low relative risks in slow acetylators. In a meta-analysis
of bladder cancer and the NAT-2 phenotype, the overall odds ratio (OR)
was 1.37, while for GSTM1 the estimate was 1.57. However, such estimates
tend to be higher in subjects exposed to specific carcinogens (13).

In conclusion, the risk of bladder cancer in Western countries is
mainly explained by exposure to tobacco smoke and some occupational
agents, and it is modulated by polymorphic genetic traits. Our knowledge,
however, is insufficient as to allow individual risk assessment.

2.1.2. Dietary Factors

Several studies have suggested that ‘‘Mediterranean diet,’’ and, more gener-
ally, a high consumption of cereals, fruits and vegetables decrease the risk of
cancers at different sites, including colon, breast, bladder, and prostate can-
cers (14,15). In the case of bladder cancer, Table 2 shows the results of some
epidemiological investigations suggesting a protective effect for this site.
Different components of Mediterranean diet have attracted attention, parti-
cularly olive oil and tomatoes. A recent cohort study on American health
professionals (15) has found a consistently decreased risk of prostatic cancer
among heavy consumers of tomatoes and tomato sauce. It is not known
which specific micronutrients are responsible for the protective effect of
tomatoes, olive oil and other components of Mediterranean diet, although
it is likely that different antioxidants including vitamins play a role (16).
In vitro studies have shown that polyphenolic components of mediterranean
diet, in particular oleuropein (responsible for the bitter taste of olives), inter-
fere with biochemical events which are involved in atherogenic disease (17).
In addition, in vivo studies have suggested that phenolics in red wine
increase plasmatic antioxidant capacity and reduce the propensity of low
density lipoprotein (LDL) to undergo peroxidation (18).

The consumption of phenolics has been shown to decrease the level
of DNA adducts in experimental studies in humans and animals. Moderate
wine consumption (a source of phenolics) inhibited peroxide-induced
micronucleated cells (19), while the consumption of flavonoids inhibited
DNA damage related to lipid peroxidation (20).The relationship of fruit
and vegetable consumption to DNA adduct formation has been examined
in a case–control study on bladder cancer (21). The level of aromatic DNA
adducts in white blood cells (measured by 32P-postlabeling) decreased with
increasing levels of fruit and vegetable consumption; in addition, the asso-
ciation between the case=control status and the level of adducts (below or
above the median value) was stronger in the subjects who consumed less
than two portions of vegetables per day ( OR 7.80; 95% confidence interval
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CI 3.0–20.3) than in heavy consumers (OR¼ 4.98 for consumers of two
portions per day; OR¼ 2.0 for consumers of three or more portions)
(Table 3).

3. CLINICAL RISK ASSESSMENT

3.1. Oncogenes

Several genetic alterations have been detected in bladder cancer, and these
have been proposed as biomarkers for the clinical follow-up of the patients.
Recent reviews are available (see, e.g., 22–25). They suggest that currently
no single marker is able to accurately predict the clinical course of bladder
tumors and would serve as a reliable prognosticator. A combination of
prognostic markers could predict which tumors need an aggressive form
of therapy and=or adjuvant therapy.

Table 2 Results of Selected Epidemiological Studies on the Intake of Fruit and
Vegetables and the Risk of Bladder Cancer (Odds Ratio for Highest vs. Lowest Intake)

Authors
and year Country Design

No. of
cases Food

Odds
ratio (a)

Mettlin and
Graham,
1979

U.S.A. Case–control 569 Carrots
cruciferous

0.6
0.7

Claude
et al., 1986

Germany Case–control 431 Fresh fruit
and
vegetables

0.7

La Vecchia
et al., 1989

Italy Case–control 163 Carrots 0.6
Green-leaf
vegetables

0.5

Riboli
et al., 1991

Spain Case–control 432 Vegetables 1.0

Mills
et al., 1991

USA Cohort 52 Fruit juice 0.3
Cooked
green-leaf,
vegetables

0.5

Nomura
et al., 1991

USA Case–control 261 Green-leaf
vegetables

0.7

Chyou
et al., 1993

USA Cohort 96 Fruit 0.6

Momas
et al., 1994

France Case–control 219 Carrots,
spinach,
pumpkins

0.6

Source: Modified from Ref. 39.
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The ras family was first discovered by studies of bladder cancer.
Specifically a point mutation of codon 12 of the H-ras gene, in the bladder
cancer cell line T24 (26). polymerase chain reation (PCR)-based methods
suggest that the prevalence of ras mutations is around 40% in bladder
tumors. Other oncogenes have been studied. p21 expression (waf1=cip1)
was predictive of the outcome, but no relationship was found with survival
(27).

Overexpression of the epidermal growth factor receptor (EGFR) has
been reported in bladder cancer. Neal et al. observed increased expression
in invasive vs. superficial bladder tumours, and suggested that overexpres-
sion was associated with high-grade, high-stage cancer and was an indepen-
dent prognostic factor (28). However, in another study Nguyen et al. (29)
reported that overexpression of EGFR was not an independent prognostic
marker in advanced bladder cancer.

Promising data on oncogenes concern overexpression of ErbB2.
Underwood et al.(30) studied 236 bladder patients and found that 16 out
of 89 patients with recurrent disease had ErbB2 amplification, while ampli-
fication was not observed in nonrecurrent tumors. Although ErbB2 ampli-
fication was predictive of survival in multivariate analysis, stage and grade
remained the most significant independent prognostic parameters. In
another study (31) ErbB2 was a prognostic indicator in association with
the combined EGRF and ErbB3 expression profile (31). Other markers have
been reviewed elsewhere, including cell cycle markers like p27, and potential
targets for novel therapies, such as cyclooxygenase 2 (COX 2) and factors of
angiogenesis (32).

Table 3 Case–Control Study on Bladder Cancer (162 Cases, 104 Controls):
Distribution by WBC–DNA Adducts (32P-postlabeling) a

Quartiles of DNA adducts Cases Controls OR 95% CI

0.1 (detection limit) 32 50 1.0 –
>0.1 130 54 3.7 (2.2–6.3)
Below median [0.23] 64 72 1.0 –
Above median 98 32 3.6 (2.1–6.1)
0.1 (detection limit) 32 50 1.0 –
Tertiles above 0.1:
0.11–0.23 33 24 2.1 (1.1–4.2)
0.23–0.51 44 19 3.5 (1.7–7.1)
>0.51 54 11 7.6 (3.6–16.1)

ORs are adjusted by age. Adducts are expressed as RAL� 10�8 (21).
aMissing data for seven cases and one control.

OR, odds ratio; CI, confidence interval.
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3.2. Tumor Suppressor Genes

Deletions of 3p and 17p have been correlated with tumor grade and stage. It
has been suggested that different patterns of deletions or loss of heterozy-
gosity (LOH), including 5q, 9q, 13q, and 19q, can be associated with differ-
ent clinical behaviors (33,34). Loss of heterozygosity of 19q was particularly
informative, since this chromosome includes the retinoblastoma (RB) locus,
while 17p includes the p53 gene. Both tumor suppressor genes exert a key
role in carcinogenesis, and have collaborative roles. In two studies, survival
was significantly decreased in patients with altered RB expression (35,36).
Altered expression was more frequent in muscle invasive tumors.

Mutations of the p53 gene were identified as common events in blad-
der cancer. p53 nuclear overexpression correlated with both 17p LOH and
gene mutations as identified by SSCP and sequencing (37). A series of stud-
ies have shown that p53 overexpression is associated with tumour invasive-
ness and survival. However, it is not clear whether overexpression is a really
independent predictive factor.

The relationship between p53 mutations=overexpression, lymphnode
invasion, covariates, and prognosis for bladder cancer has been considered
in several investigations (Table 4). The most striking observation is the
inconsistency of the findings: some studies show an association with prog-
nostic factors or survival, while others do not. Overall, there seems to be
an agreement on the fact that p53 mutations are associated wih higher
stage=grade and poorer prognosis. However, it is premature to develop
guidelines for clinical practice on this basis. Issues that are still open, in par-
ticular, are (a) whether p53 is predictive of the outcome as such, or its effect
is mediated or confounded by lymphnode invasion; and (b) the degree of
correspondence between immunohistochemistry and gene mutations. Addi-
tional methodological problems are related to the different antibodies and
different thresholds (0, 5 or 20%) used in the investigations based on immu-
nohistochemistry. In conclusion, it is not clear (a) whether the measurement
of p53 is worthwhile, in addition to the more traditional clinical markers in
order to modify therapeutic choices; (b) whether immunohistochemistry can
be reliably used as a surrogate of the search for mutations. This picture is
confirmed by recent reviews. Schmitz-Drager et al. (38) have reviewed 43
trials on urothelial cancer and p53 immunohistochemistry, including 3764
patients. They have concluded that the comparison between the trials
yielded considerable differences due to technical aspects (selection of the
antibody and the use of different cut-off values, study design and patient
selection), and that there is an obvious need for standardization of the
assay.

In conclusion, like for other cancer sites, it is premature to develop
guidelines for the routinary use of p53 mutation search or immunohisto-
chemistry to make therapeutic decisions in bladder cancer patients (38).
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Molecular and Biochemical Approaches
to the Etiology of Prostate Cancer

Richard B. Hayes

Division of Cancer Epidemiology and Genetics, National Cancer Institute,
DHHS, Bethesda, Maryland, U.S.A.

1. INTRODUCTION

Prostate cancer is the most commonly diagnosed form of cancer in men in
the United States and, following lung cancer, is the second most common
cause of cancer-related death, with 189,000 cases and 30,200 deaths in
2002. There is marked ethnic variation in prostate cancer incidence and
mortality; the disease is most common among African-Americans. Interna-
tionally, prostate cancer rates also vary widely, with greater than a 25-fold
difference in cancer incidence between low-risk countries, such as China,
and high-risk countries, such as the United States.

Incidence of prostate cancer increases dramatically with age; about
80% of new cases occur among men 65 years of age or older. With advances
in human longevity, the burden of prostate cancer will only increase. Reduc-
tion of the prostate cancer burden requires an understanding of the factors
that cause the disease. Here, the current state of knowledge regarding
risk factors for prostate cancer is reviewed, with particular attention to
molecular and biochemical approaches to understanding the causes of this
disease.

735



2. FAMILIAL RISK AND MAJOR CANCER GENES

Risks for prostate cancer are approximately doubled among men who have
a family history of this disease (1–9) (Table 1). Risks tend to be greater for
men who report prostate cancer in their brothers than in their fathers, con-
sistent with recessive or X-linked transmission (4), however, segregation
analyses tend to show an autosomal dominant pattern (8,10).

Three loci on chromosome 1 (HPC1, PCAP, CAPB) (11–13), a locus
on chromosome X (HPCX) (14), a locus on chromosome 20 (HPC20)
(15), and a locus on chromosome 17 (HPC2=ELAC)(16) have been identi-
fied by linkage analysis in high-risk families as potential sites for high-pene-
trance prostate cancer genes, however, confirmation in other familiy series
has failed, suggesting that familial prostate cancer is hetreogeneous. Several
loci have also been suggested for prostate tumor aggressiveness (17), but the
search to determine specific prostate cancer genes at these and other loci is
still underway.

3. STEROIDAL HORMONES

Testosterone is required at puberty for prostate gland maturation and is
essential in adulthood for normal prostate function. Testosterone (T) is con-
verted in the prostate to the more strongly androgenic dihydrotestosterone
(DHT) by 5-a-reductase. Dihydrotestosterone and, to a lesser extent, T bind
to cytosolic androgen receptors (ARs). These complexes translocate to the
nucleus to bind with DNA at androgen response elements, activating target
genes, including genes involved in the control of cell division.

Table 1 Family History and Risk for Prostate Cancer

Brother Father

n Risk n Risk

Woolf, 1960 (1) 3 1.5 12 4.0
Whittemore et al., 1995 (2) n.r. 2.0 n.r. 2.9a

Hayes et al., 1995 (3) 42 2.5 28 5.3
Monroe et al., 1995 (4) 138 1.0b 173 2.1
Keetch et al., 1995 (5) 136 3.5 133 4.7
Narod et al., 1995 (6) 18 1.2 19 2.6
Lesko et al., 1996 (7) 47 1.9 45 3.0
Schaid et al., 1998 (8) n.r. 1.0b n.r. 1.5
Bratt et al., 1999 (9) 24 2.2 23 3.6

aFather or son.
bFather’s risk as referent.

n.r., not reported.
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Interethnic comparisons provide evidence that serum androgen
profiles may parallel population risks for prostate cancer. In one series of
studies, T and T unbound to serum-binding proteins were higher in young
African-American than white men (18), T was increased in pregnant
African-American women, compared to whites (19), and androstanediol
glucuronide (A-diol-g), a possible marker for DHT, was reduced in Japa-
nese men (20). Another investigation did not find ethnic associations for
T or unbound T, yet showed that the DHT:T ratio, a measure of 5-a-reduc-
tase enzyme activity, was highest in African-Americans, intermediate in
whites, and lowest in Asian-Americans, corresponding to the respective
incidence rates in these groups (21).

Although many epidemiologic investigations have been carried out,
prostate cancer does not systematically show differences in serum levels of
T and related compounds (22). Large studies that take into account more
complex hormone interrelationships may be needed, as shown in a report
that T is related to prostate cancer risk, after adjustment for SHBG, its
major binding protein in blood (23).

The blood-based observational studies of androgenic hormones and
prostate cancer risk may be limited for several reasons. Serum levels are only
an indirect indicator of intraprostatic levels. All studies of prostate cancer
cases have evaluated hormone levels at only one point in time; multiple mea-
sures may be needed to account for intraindividual variation. These studies
have considered hormone levels in later adult life, while exposures at a
younger age may also be important. An ongoing randomized trial of the
5-a-reductase inhibitor, finasteride, which blocks the intraprostatic conver-
sion of T to DHT should provide insight about the role in prostate carcino-
genesis of this key enzyme in androgen metabolism (24).

With increased understanding of the human genome, investigations
have begun to explore the relationship to prostate cancer risk of genetic
polymorphisms in the human prostatic (type II) steroid 5-a-reductase gene
(SRD5A2, located at chromosome 2p23 and associated with prostatic meta-
bolism of T to DHT), with polymorphisms in the androgen receptor gene
(AR, located at chromosome Xq11–q12), and with CYP17 (located on chro-
mosome 10 and involved in testosterone biosynthesis in the gonads and
adrenals).

Boys with selected germline mutations in SRD5A2 are phenotypically
female (25). A common polymorphic missense substitution (A49T)
in SRD5A2 was associated with increased risk for prostate cancer in
African-American and Hispanic men (26). Longer TA dinucleotide repeats
in the 30 untranslated region of SRD5A2 are more common in African-
Americans, however, in one study longer TA repeats tended to be underre-
presented among prostate cancer cases (27). Another missense substitution
(V89L) in SRD5A2, resulting in decreased 5-a-reductase activity tended to
be associated with increased risk for prostate cancer (28).

Etiology of Prostate Cancer 737



The N-terminal transactivation domain of AR is encoded by one large
exon that contains two highly polymorphic trinucleotide repeats, coding,
respectively, for glutamine (CAG) and glycine (GGN, where N is any one
of the four nucleotides). Amore than twofold expansion in the number of glu-
tamine repeats causes Kennedy’s disease, an androgen insensitivity syndrome
(29), possibly through defective binding to an AR coactivator (30). Relatively
long CAG repeats are also associated with infertility in otherwise healthy men
(31) and have been related to decreased levels of T, free T, and albumin-bound
T (32) and to decreased transcriptional activation by AR (33).

The length of CAG repeat sequences tend to be shorter in African-
American than white and Asian men [34]. Several, but not all, studies show
shorter CAG repeat sequences among prostate cancer cases, particulary for
advanced disease (9,35–40) (Table 2). Evidence of gene–gene interrelation-
ships has been found in two studies. In one, subjects with short CAG and
short CGN repeats had the greatest risk (38), while in another investigation
an interrelationship of risk was noted with short CAG repeat sequences and
a polymorphism in the prostate-specific antigen (PSA) gene (41).

The CYP17 A2 allele contains a T!C transition in the 50 promoter
region that creates an additional (CCACC box) promoter site, which may
increase the rate of transcription. The A2 allele has been associated with
male pattern baldness in men and polycystic ovarian cancer in women, both
of which are related to androgen metabolism and this allele has been
associated with increased risk for prostate cancer in some studies (28,42).

4. GROWTH FACTORS

Greater serum levels of insulin-like growth factor 1 (IGF-1) and its major
binding protein (IGFBP-3) have been related to prostate cancer in several

Table 2 CAG Repeat Polymorphisms in the Androgen Receptor (AR) and Risk
for Prostate Cancer

All cancer Advanced cancer

n Risk n Risk

Ingles et al., 1997 (35) 57 1.9 26 2.4a

Giovannucci et al., 1997 (36) 587 1.5a 269 2.1a

Hakimi et al., 1997 (37) 59 3.7a 25 8.2a

Stanford et al., 1997 (38) 281 1.2 129 1.2
Correa-Cerro et al., 1999 (39) 132 1.0 35 1.9
Bratt et al., 1999 (9) 160 n.s. n.s
Hsing et al., 2000 (40) 190 1.6�

ap< 0.05

n.s., not significant, risk estimates not specified.
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studies (43) In a multivariate analysis, decreased levels of the serum IGF-1
binding protein, IGFBP-3, were also associated with increased risk, suggest-
ing that the interrelationship of IGF-1 and its major binding protein are the
important determinants of risk (44). Increased serum levels of IGFBP-1,
which is involved in transvascular transport of IGF-1, has also been asso-
ciated with increased risk for prostate cancer (45).

Other data support a role for insulin-like growth factors and related
binding proteins in prostate cancer development. In some studies, risks
for prostate cancer were greater for taller men (46–48), which may indirectly
indicate the influence of the IGF axis on prostate cancer. IGFBP-3 is also
lower in African-American men (49,50), consistent with their excess risk
for this disease. Dietary factors (51,52) and tobacco use (53) influence the
IGF axis and physiological control is exerted by vitamin D (54), androgens
(55,56), and PSA (57). IGF-1 is a potent mitogen and antiapoptotic agent.
IGFBP-3 inhibits cell growth by inhibiting access of IGF-1 to the IGF
receptor. IGFBP-3 also stimulates apoptosis, independent of IGF-1 (58).

5. DIETARY FACTORS

Diet likely has a great impact on prostate cancer risk, however, the precise
interrelationships of energy intake, dietary macronutrients, micronutrients,
and other constituents are still not well understood. Dietary fat, particularly
from animal sources, has been implicated as a risk factor for prostate cancer
in many epidemiological studies; however, other studies have not shown an
effect (59). Evidence that vegetarians have a lower risk of prostate cancer is
also mixed (60,61). Total caloric intake (62) and energy imbalance (63),
mutagens produced in cooking meats at high temperatures (64), and
increased calcium intake (65,66) may increase risk for this disease, while
intake of fish oils (67), micronutrients in fruits and vegetables (68,69), phy-
toestrogens (70), selenium (71), and vitamin E (72) may reduce risk.

5.1. Dietary Supplementation

A 32% decrease in the incidence of prostate cancer was found in the a-toco-
pherol (a form of vitamin E) treatment arm of a randomized control trial of
a-tocopherol and b-carotene supplementation among 29,000 smokers in
Finland (72). Vitamin E supplement users also had reduced risks for pros-
tate cancer in some (73,74) but not all observational studies (75). Supple-
mental dietary selenium (Se) was associated with a 63% reduction in
prostate cancer incidence among 974 men with a history of nonmelanoma
skin cancer who were randomized to a daily supplement of Se (71). Observa-
tional studies tend also to support this finding (76,77).

Other dietary supplements, including b-carotene (78,79) and vitamins
A and C have shown little association with prostate cancer (75), but interest
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in lycopene as a preventive is strong, based primarily on results from a
number of observational epidemiological studies (80). The reductions in risk
for prostate cancer identified in randomized control trials of a-tocopherol
and Se are important because this study design eliminates many sources
of bias found in observational studies. Prostate cancer was, however, not
an a priori endpoint for the trials. Because of the earlier results, new random-
ized trials are beginning, to evaluate the effects on prostate cancer of sup-
plementation, in one trial, with a-tocopherol and Se (SELECT Trial, D.
Albanes, personal communication) and, in another trial, with a-tocopherol
and b-carotene (81).

5.2. Calcium and Vitamin D

The interplay with prostate cancer of dietary calcium, dietary vitamin D and
its metabolites, and polymorphisms in the vitamin D receptor are areas of
current research. Vitamin D, derived from dietary sources and endogenous
conversion in the skin via ultraviolet light, is metabolized by sequential
hydroxylations, first in the liver to 25(OH)D, and subsequently in the kid-
ney, mediated by 1-a-OH-ase, to 1,25(OH)2D. Renal 1-a-OH-ase activity
is enhanced by hypocalcemia, probably through stimulation of parathyroid
hormone. The biologically active 1,25(OH)2D binds to and activates the
nuclear vitamin D receptor (VDR), promoting cellular differentiation and
inhibiting cellular proliferation. The mechanism for this is unknown,
although inter-relationships with IGF binding proteins (54) and the andro-
gen receptor (82) may be involved.

Vitamin D levels decrease with age and can be reduced in the winter
months in northern lattitudes, even when dietary supplementation is in
effect. High prostate cancer death rates are found among whites in northern
lattitudes of the United States, giving rise to the hypothesis that low UV
exposure may be a risk factor for prostate cancer (83). Animal studies also
show that 1,25(OH)2D inhibits prostate tumors in experimental animals
(84). However, serum 1,25(OH)2D levels in humans have been inconsistently
associated with prostate cancer, with one positive (85) and two negative stu-
dies (86,87). High calcium intake, which supresses conversion of 25(OH)D
to 1,25(OH)2D (88), has also been linked to increased risk for prostate can-
cer in some (65,66) but not all studies (66,89).

Genetic approaches have also been used to study interrelationships of
the vitamin D axis with prostate cancer. Three polymorphisms in the vita-
min D receptor (VDR), BsmI, and TaqI restriction site polymorphisms
and a poly(A) length polymorphism, are in strong linkage disequilibrium
in whites, such that only two BsmI=TaqI=poly(A) haplotypes, BtS and
bTL, are commonly observed (90,91). These variants are not thought to
be functional, but to possibly serve, through linkage disequilibrium, as mar-
kers for another as yet unidentified functional polymorphism, related to

740 Hayes



bone density, osteoporosis, and serum vitamin D levels (92,93). In whites,
the (BsmI) B, (TaqI) t, and [poly(A)] short allelic variants have been asso-
ciated with reduced risk for prostate cancer in some studies (35,94). Others
have not confirmed these findings, although effects have been noted in some
subgroups (93,95–97) (Table 3).

In Asians and African-Americans, the linkage between the identified
variants is weaker (90) and, consequently, the strength or direction of asso-
ciations observed for these markers with prostate cancer risk may be differ-
ent than those observed in whites. A Japanese study found no association
with TaqI variants (98) and a Chinese study found no association with
the BsmI polymorphism or with variants in an unrelated 50 FokI poly-
morphic site (99), except for a subgroup of subjects in the highest tertile
of IGFBP-3. In a study of African-Americans (91), risk for advanced cancer
(but not localized cancer) was associated with the BsmI=poly(A) BL haplo-
type. It remains unclear whether VDR variants play a substantial role in
prostate carcinogenesis.

6. METABOLIC POLYMORPHISMS

Meat cooked at high temperatures produces heterocyclic amines inclu-
ding PhIP (2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine). PhIp causes

Table 3 Vitamin D Receptor Polymorphic Variants and Prostate Cancer Risk
Among Whites

Relative risk

TaqI

TT Tt tt

Taylor et al., 1996 (94) – 1.0 0.3a

Kibel et al., 1998 (95) – 1.0 1.4
Correa-Cerro et al., 1999 (96) 1.0 0.5 1.2
Blazer et al., 2000b (97) 1.0 0.8 1.1
Ma et al., 1998 (93) 1.0 1.0 0.9

Poly-A

LL Ls ss

Ingles et al., 1997c (90) 1.0 0.2a 0.2a

ap < 0.05.
bRelative risks recalculated for TT as the referent.
cRelative risks recalculated for LL as the referent.
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prostate cancer in rats; the cancers showing invasive characteristics in the
presence of testosterone proprionate (64).

Polymorphisms in the N-acetyltransferases (NAT1 and NAT2) result
in differential metabolism of PhIP to carcinogenic metabolites and the
homozygous �10 polymorphism in NAT1, which is related to rapid metabo-
lism, tends to be associated with prostate cancer (100,101).

Prostate cancer was associated with the CYP2D6 B allele in one study
(p¼ 0.07) (102) and, in another study, with the nondeleted (functional) geno-
type of GSTT1 (odds ratio, 1.83; 95% confidence interval, 1.19–2.80) but
not GSTM1 (odds ratio, 1.07; 95% confidence interval, 0.73–1.55) (103).
No differences were found in a small case–control study of prostate cancer
assessing the 609 C!T polymorphism in NQO1 (the NAD(P)H: quinone
oxidoreductase gene) (104). These results need to be evaluated in larger
studies examining the inter-relationship of series of metabolic enzymes
and prostate cancer risk.

7. SEXUALLY TRANSMITTED DISEASES

A history of syphilis and gonorrhea has been associated with risk for pros-
tate cancer in a series of epidemiological studies (Table 4) (105–114). In the
largest study, risks were shown to increase with increasing occurrences of
gonorrhea and to be related to characteristics of sexual behavior. Also, ser-
ological investigations showed that risks were significantly greater for men
exposed to Treponema pallidum (the causative agent of syphilis) (114).

Table 4 Sexually Transmitted Disease and Risk for Prostate Cancer

Exposed cases Risk

Wynder et al., 1971 (106)
Whites 25 1.2
Blacks 12 0.7

Krain, 1974 (107) 28 5.6a

Heshmat et al., 1975 (108) 42 2.1a

Lees et al., 1985 (109) 29 1.5
Mishina et al., 1985 (110) 34 1.5
Mandel and Schuman, 1987, (111) 23 2.1a

Ross et al., 1987 (112)
Whites 16 2.3
Blacks 70 1.7a

Honda et al., 1988 (113) 32 1.5
Hayes et al., 2000 (114) 142 1.6a

Rosenblatt et al., 2000 (105) 85 1.5a

ap < 0.05.
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Since gonorrhea and syphilis could be sentinels for another sexually
transmitted infectious agent, the risks observed may only partially reflect
the true risks associated with the putative agent. For example, only after
sensitive and specific assays were developed for human papilloma virus
(HPV) did the relatively modest risks for cervical intraepithelial neoplasia
associated with sexual activity (two- to four fold) translate to the substantial
(50-fold) risks now established for cervical disease due to specific HPV
subtypes (115).

Human papilloma virus, which occurs in human prostate cancer and
benign prostatic tissue (116), transforms human prostate cells in vitro. Ser-
opositivity for HPV-18 and HPV-16 has been associated with subsequent
prostate cancer in a Finnish cohort study (117). Other studies (114,118),
but not all (119) tend to support this. While an excess of prostate cancer
has been observed in men with anal cancer, which is linked to HPV infec-
tion, the epidemiological patterns of HPV-related cervical cancer are not
closely correlated with prostate cancer, although one study reported
increased occurrence of cervical cancer in spouses of prostate cancer patients
(120). No case–control differences have been found for prostate cancer with
serologic responses to herpes simplex, cytomegalovirus, and Epstein–Barr
virus (111,121,122). HHV8 RNA transcripts were reported in prostate
cancers (123) but serologic studies for antibody have been negative (124).

8. SUMMARY

Age, race, and family history of prostate cancer are the three established risk
factors for prostate cancer. Steroidal hormones are likely important in the
pathogenesis of this disease, although the precise hormonal interrelation-
ships and associated metabolic pathways are not yet defined.

Expanded molecular studies and an intervention trial with finasteride
will provide insight about the role of hormones in prostate cancer. There is
substantial evidence that some dietary factors, such as animal fat, increase
risk for this disease and that other dietary factors, including selected micro-
nutrients, are protective. Randomized trials have been initiated to assess the
preventive impact on prostate cancer of selenium, a-tocopherol, and b-car-
otene. The association in epidemiologic studies of prostate cancer with sexu-
ally transmitted diseases suggests that sexually transmitted agents may also
contribute to the occurrence of these tumors.
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