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Preface

One of the most difficult problems encountered by an energy risk manager,
who may not be very statistical, is the lack of an instructive text which can
provide an intuitive interface between the concepts and tools necessary for
acquiring competence in the applied statistical modeling side of energy risk
management. This text iswritten primarily for those individuals and also for
those who need a gentle introduction in how to go about modeling energy
price risk. A secondary purpose in writing this text is to bring my approach
to the art of applied statistical modeling to people who are not necessarily
versed in applied statistical thinking – actuaries, managers, traditional risk
analysts and risk managers, product consultants, and sales people. Whilst
these individuals are capable in their fields, they are not necessarily familiar
with the fundamentals or particulars of applied statistical reasoning.

In the years since financial risk management emerged as a separate dis-
cipline from themore general field of Finance and Economics, the modeling
techniques available have undergone steady improvement. However, new-
comers to the field of energy price risk management still lack an elementary
introduction which allows them to make speedy progress in acquiring the
knowledge required to take full advantage of these emerging methods. Key
to success is a thorough understanding of the art and science of statistical
methods. With this in mind, this text has been written to provide a rapid
primer on energy price risk modeling illustrated through elementary and
more advanced statistical methods. In this sense, it is an introduction to
energy price risk modeling embedded in a practical guide for using and
understanding applied statistical methods.

It is quitepossible towrite a reference text on this subject, in termsofmath-
ematical assumptions, lemmas, proofs, andconjectures. However, such texts
are daunting to both the newcomer and practicing energy riskmanagerwho
may simply require an easy-to-follow guide which enhances their under-
standing whilst at the same time encouraging creativity. It is for this reason

xviii



P R E FA C E xix

that I have decided, in this text, not to describe energy risk modeling in
terms of abstract mathematical concepts but rather as an applied living art
embedded in the science of statistical and mathematical methods.

Recognizing that the successful mastering of applied modeling depends
heavily on the working of practical examples and problems I have included
a large number of review questions at the end of each chapter. Working
carefully through each one will reinforce many of the ideas discussed and
enhance the reader’sunderstandingof thenotionsdiscussed.Almost always
modeling is carried out using specialized software on a computer. To aid the
reader I have included a number of examples of code written in R, a numer-
ical and statistical computing package. The samples can be easily ported
to other mathematical packages and spreadsheet programs. I have chosen
to use R in this book because it is free (downloadable from r-project.org),
very easy to use, and can run on all the popular computing operating sys-
tems. Naturally, any such compilation as this must omit some models and
methods. In choosing the material I have been guided by my own personal
interest, comments by users of my research boutique StatMetrics, and by
the views of my colleagues and friends. As always with my books lucidity
of style and simplicity of expression have been my twin objectives.

Nigel Da Costa Lewis
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C H A P T E R 1

The Statistical Nature of
Energy Risk Modeling

In O. Henry’s The Handbook of Hymen, Mr Pratt is wooing the wealthy
Mrs Sampson. Unfortunately for Mr Pratt, he has a rival – a romantic poet.
In order to compensate for his romantic disadvantage, the studiousMr Pratt
selects quotes froma text on statistical facts in anaudacious attempt todazzle
Mrs Sampson into marrying him:

“Let us sit on this log at the roadside,” says I, “and forget the inhumanity and rib-
aldry of the poets. It is in the glorious columns of ascertained facts and legalized
measures that beauty is to be found. In this very log we sit upon, Mrs. Sampson,”
says I, “is statistics more wonderful than any poem. The rings show it was sixty
years old. At the depth of two thousand feet it would become coal in three thou-
sand years. The deepest coalmine in theworld is at Killingworth, nearNewcastle.
Abox four feet long, three feet wide, and two feet eight inched deepwill hold one
ton of coal. If an artery is cut, compress it above the wound. Aman’s leg contains
thirty bones. The Tower of London was burned in 1841. “Go on, Mr Pratt,” says
Mrs Sampson. “Them ideas is so original and soothing. I think statistics are just
lovely as they can be.”

Many traditional risk managers, unlike Mr Pratt and Mrs Sampson have
had a disdain for quantitative methods, and statistical methods in particu-
lar. In fact the importance of statistical science in risk management is only
now beginning to be recognized by the energy riskmanagement profession.
Stories of statistically illiterate risk mangers are legion. Immediately after
completingmyPhDatCambridgeUniversity Iwas interviewedby a head of
global risk for a large financial institutionwhowondered aloud on the value
of employing a statistician to monitor risk. Out of date and out of touch, the

1
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individual clearly had not absorbed the widely accepted wisdom:

Not only can statistical analysis be used to identify relationships, but processes
can be discovered that actually function according to statistical principles...more
and more, researchers are discovering that the principles of statistics are not only
useful for identifying relationships between sets of empirical data – i.e., worldly
observations – but also for the theoretical modeling of the process or processes
that generate the data. In other words, instead of the application of statistical
principles as a means to an end, the principles become an end in themselves, as
they serve to explain aspects of our existence.1

Alas, that particular individual who interviewedme is no longer the head of
global risk for the organization in question, or any other organization.Why?
Because a risk manager who does not understand how risk is calculated or
modeled is like an accountant who lacks knowledge of how the figures
which make up a financial statement were derived. Such individuals may
well be able tooffer a limited interpretationbut areunable to assess ordefend
the assumptions made in arriving at a figure. Fortunately, in accountancy,
professional bodies with legal mandates enforce minimum standards thus
preventing unqualified individuals from practicing. In energy risk man-
agement there are no such requirements. Whilst statistically illiterate risk
managers still exist they are finding it increasingly difficult to maintain
their status as risk professionals without some training in statistical and
quantitative methods.

This book provides a solid foundation for those seeking some insight into
the statistical aspects of modeling energy risk. It departs from other texts in
this field by its unique emphasis on the process that underlies the art and
science inherent in statistical modeling rather than the pedantic details of
theoretical finance or mathematics. Through careful reading it is hoped that
the readerwill gain someunderstanding of how toutilize statistical thinking
in defining and solving problems associated with energy risk management.
Wherever possible words are used as explanation rather than equations and
the focus is always on quantitative reasoning andunderstanding rather than
mathematical conjectures, lemmas, and proofs. Before beginning our jour-
ney, it is instructive to say a little about the history and evolution of energy.

1.1 HISTORICAL EVOLUTION OF ENERGY

The use of energy products by mankind dates back to approximately
500,000 bc when the discovery of fire allowed early humans to exert some
control over the environment. Wood and dried animal dung were primary
sources of fuel; their use ranged from heating and cooking to lighting, fight-
ing and frightening away predatory animals. Human cultivation of wood
as a fuel source and for use in manufacturing dates back over 50,000 years.
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By around 3500 bc simple machines, such as ramps, levers, pulleys, and
the wheel allowed man to begin substituting machinery for human and
animal muscle power. Indeed, the stone circle at Stonehenge in England,
the Pyramids of ancient Egypt, and the GreatWall of China are ancient testi-
mony to the ongoing process of the substitution of machinery for human
and animal labor.

The Egyptians made the earliest known sailboats around 3500 bc. How-
ever, it was not until 700 bc that wind energy found more widespread use,
for example to separate the chaff from grains such as wheat and rice, and
to power huge boats on journeys of discovery across vast oceans and seas.
Within a couple of hundred years, by 500 bc, the water-based technologies
of the ancient Greeks and Romans (used for drivingmachinery such asmill-
stones) had been combined with wind to give mankind access, through the
use of windmills and paddlewheels, to a more reliable source of energy.

By 100 ad the burning of coal for heat, cooking, and the manufacture of
metals provided an increasingly important substitute for wood. Its higher
heat content per unit of weight was an important advantage. During this
period, wood, water, and wind were the major sources of energy. By 640 ad
the Persians had perfected the design of windmills used to grind grain.
Whilst in the 1300s early German engineers designed wood-burning blast
furnaces allowing them to produce vast quantities of iron. However, it was
not until the late 1600s with the deforestation of England that we see the
use of coal beginning to dominate other energy sources with the invention
of steam engines. Indeed, the engineer Thomas Savery invented one of the
earliest steamengines in response to constant flooding of English coalmines.
In 1698 he obtained a patent for his invention named “Miner’s friend” for
“suck up the water with the fire.” Despite the fact that the Miner’s friend
was little used and soon abandoned, steam engines were soon powering
factories, farm implements and mass transportation. For example, in 1783,
improved steam engine design resulted in the French producing the first
working paddle wheel steamboat. Not long after, the people of Cornwall in
southernEngland beganusing gasmade fromcoal to fuel street lamps.More
convenient than wind, water, or wood and less expensive than a stable full
of horses or oxen, by 1799, coal-fired steam engines provided the backbone
for the industrial revolution and the rise of British and European industry. It
was thus during this century that coal and steam replacedwind and animals
in sea and land transportation and wood and water in manufacturing.

Whilst the technological advances in energy production and use between
1700–99 were quite astounding, the 1800s saw the rise of a new form of
energy – electricity. As 1800 dawned Alessandro Volta published a descrip-
tion of a silver/zinc battery. A few years later in 1807 Humphrey Davy
constructed a practical battery. By 1831 Michael Faraday had built the
first electric generator which converted rotary mechanical power into elec-
tric power. A little over 50 years from the first Faraday electric generator
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Thomas Edison in 1882 had installed three generators at Pearl Street Station
inNewYork. It fed power to around 5000 lamps in 225 houses. By l899, mass
transportation using steam trains fired by coal and coal-fired electricity gen-
erating stations were key sources of energy for the leading European and
North American cities. During this period natural gas consumption also
rose dramatically. Although around 200 bc the Chinese had used natural
gas-fired evaporators to produce salt from salt water. It was demand from
growing European andNorthAmerican populations for lightingwhich lead
to a rapid expansion in its consumption.

With thedevelopmentofmotorized transportation in theearly1900s came
the need for liquid sources of energy. Petroleum-based products, first mar-
keted widely in the 1860s for lubrication of machinery and as a substitute to
whale oil, proved ideal for motorized vehicles. Mass production of motor
cars created a huge demand for gasoline. By 1920 there were more than
9 million motor vehicles in the United States alone. Within 30 years by 1950,
petroleum-based products had become themost widely used energy source
in the history of man kind.

Beginning in the 1970s energymarket deregulation spurred a global trend
toward the complete commoditization of energy products. Both Europe and
North America witnessed a rapid growth in financial contracts for various
energy products and a rapid rise in the number of nontraditional energy
companies moving into the energy market place. The rapid commoditiza-
tion of energy markets, especially crude oil, electricity, and natural gas, has
elevated the importance of real time information, reduced the product cycle,
made services fungible, narrowed margins and contributed to increased
price volatility. Alongside this, the consumption of petroleum continued
to rise throughout the remaining years of the twentieth century and into
the twenty-first century. Fears of instability in the supply of oil have pre-
cipitated considerable interest in nuclear, hydroelectric, and solar energy
sources. However, crude oil still dominates the energy sector.

1.2 FINANCIAL RISKS OF ENERGY

Risk is everywhere in the business environment. Managers and business
leaders accept the relationship between risk and reward. The higher the risk
to an organization the larger the potential rewards. But what exactly is risk?
For our purposes we shall assume it is synonymous with uncertainty. For
example, a producer of crude oil may be concerned about the uncertainty
of the price of crude oil three months from now. The concern may be that
a general decline in price will have serious implications for the revenue
stream.Arefiner on theother handmaybe concernedabout futureprice rises
implying higher oil costs, which if they cannot be passed on, will result in
lower revenues. Uncertainty about future energy prices we refer to as energy
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price risk.2 Energy price risk leaves producers and distributors exposed to
unstable revenue streams and consumers exposed to unpredictable prices.

Of course players in energy markets are concerned with more than just
price risk. A particular energy player may have concerns about the level
of its financial exposure to another counterparty: such a concern is known
as credit risk. Credit risk is the risk that the counterparty will default on
its obligation. Energy risk players are also concerned about the liquidity
of the instruments they trade. Liquidity refers to the ease and certainty by
which a financial instrument can be converted into cash. A liquidity crunch
occurs when bid/offer spreads for financial instruments widen out to levels
that make it prohibitively expensive for players to trade. Liquidity risk is
perhapsmore of an issue in over-the-counter than exchange-traded transac-
tions. This is because market-makers for exchange-traded instruments are
required to show prices to their customers at all times. Indeed, in some
markets, the size of the bid/offer spread is capped to prevent the occur-
rence of a liquidity crunch. However, over-the-counter transactions are
more susceptible because there is no guarantee that the market-maker who
sold you a particular product will make a price when the market becomes
unusually volatile.3

Another risk important to energy market players is basis risk. Consider
an energy participant who believes he has a fully hedged position using
futures contracts. Basis risk exists because it is possible that the value of the
hedge may not move exactly in line with the value of the price exposure
that the participant is trying to manage. Such situations occur when there
is a breakdown of the expected or usual differential between two sets (or
more) of prices. Basis risk occurs partly because financial instruments do
not correlate perfectly to the underlying physical markets. There is no guar-
antee that the price of energy futures contracts will converge to the physical
markets. Theoretically they should, but in practice they may not.

Operational risk is another important risk facing energy participants. The
British Bankers Association defined it as

The risks associatedwith human error, inadequate procedures and control, fraud-
ulent and criminal activities; the risk caused by technological shortcomings,
system breakdowns; all risks which are not “banking” and arising from busi-
ness decisions as competitive action, pricing etc; legal risk and risk to business
relationships, failure tomeet regulatory requirements or an adverse impact on the
bank’s reputation; “external factors” include: natural disasters, terrorist attacks
and fraudulent activity etc. British Bankers Association (1997)

Another frequently quoted definition is that provided by the Basel
Committee on Banking Supervision:

The risk of loss resulting from inadequate or failed internal processes, people
systems or from external events. Basel Committee on Banking Supervision (2001)
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The key point to note is that operational risk measures the uncertainty
surrounding events that cause business disruption such as failure of
controls, errors, omissions, and external events such as power failures
or earthquakes.

1.3 THE ROLE OF ECONOMICS – ELEMENTS
OF PRICE THEORY

Traditional economic analysis of energy markets considers the effects of
policy measures such as price controls and regulation. It might include
an examination of a variety of social, political, legal, regulatory, envir-
onmental, and technological issues from regional, national, and even
global perspectives. The objective being to inform current policy makers
of the issues arising from the relationships among energy use, economic
growth, and the environment. Whilst it is arguable that economic ana-
lysis can lead to a better understanding of these topics our interest
in economics lies solely in the fact that economic theory provides a
mechanism for price determination and thus a mechanism for analyzing
price risk.

To gain insight into economic price theorywe shall consider a very simple
exchange economy which is closed, that is without exports and imports.
Furthermore, assume the existence of n ≥ 1 goods and m ≥ 1 customers.
Some of the n goods can be considered energy products, othersmay be food,
telephone services and so on. For parsimony we shall also assume there is
no production and each of the m customers has an initial endowment of
goods given by:

ek = {q1, q2, ..., qn},

where k = 1, 2, ...,m and qi represents the quantity of the good i. For example,
customer 2 may have an initial endowment of:

e2 = {6 units of good 1, 70 units of good 2, ..., 1 unit of good n}

The initial endowment confers some utility on the customer, this useful-
ness is captured in the individuals utility functionu(q1, q2, ..., qn). Total utility
measures the total usefulness gained from a specific endowment of goods
and services. Figure 1.1 shows the total utility of a typical customerwhere all
but one of the quantities of their initial endowment are held constant. From
the diagram we see that total utility increases as the quantity of the good
consumed increases. Notice however that whilst total utility is increasing it
is doing so at a decreasing rate. The rate of change in total utility is known
as marginal utility.
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Figure 1.1 Total utility of a customer, where all but one of the
quantities of their initial endowment are held constant

Marginal utility is the additional utility gained from a small additional
amount of the ith good. For a particular individual it is calculated as:

u′
i(q1, q2, ..., qn) = ∂u(q1, q2, ..., qn)

∂qi

The law of diminishing marginal utility states that the marginal utility a
good confers decreases as the quantity of the good consumed increases,
ceteris paribus. In other words, whilst more of a good is deemed better than
less, total utility increases at a decreasing rate as the quantity of the good
consumed increases. This implies:

u′
i(q1, q2, ..., qn) > 0

Given that we have assumed more is preferred to less we also know that:

u′′
i (q1, q2, ..., qn) = ∂2u(q1, q2, ..., qn)

∂q2i
< 0

Therefore as shown in Figure 1.2, marginal utility is a downward sloping
function.

An allocation is said to be efficient if it satisfies the pareto optimality
criterion. In our example an allocation of endowments is pareto optimal
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Figure 1.2 A marginal utility function of a customer, where all but
one of the quantities of their initial endowment are held constant

among the m consumers if it is not possible to make someone better off
without making someone else worse off. If we assume individuals seek
to maximize their utility and if the initial distribution of endowments is
not pareto optimal, the customers will start trading to increase their utility.
Therefore a market price for each good will emerge. Eventually through
trading, the sum of demands of the customers will equal the sum of the
endowments of the customers and an equilibrium set of prices for all goods
will emerge.

Classical economic theory therefore assumes that the price of a partic-
ular good and the quantity exchanged in a market are determined by the
interaction of demand and supply. The demand and supply in each market
is determined by the individual demand and supply of utility maximizing
customers. Individual demand reflects an individual consumer’s marginal
utility for a particular good and translates into the quantity of a good they
are willing to buy at each price. Rational individuals will adjust their con-
sumption of a good to a level such that the marginal utility equals the cost
(price) of the good. This implies the demand curve for a good is downward
sloping. As shown in Figure 1.3, the demand curve depicts how much of
a good a consumer is willing to buy at various prices. From the diagram
we see that when the price is high a consumer is willing to buy less than
when the price is low. Individual supply reflects the quantity of the good the
individual agent is prepared to offer for sale at each price. It is an upward
sloping curve as shown in Figure 1.4.



T H E S TAT I S T I C A L N AT U R E O F E N E R G Y R I S K M O D E L I N G 9

Quantity

Pr
ic

e

Figure 1.3 Typical demand curve

Quantity

Pr
ic

e

Figure 1.4 Typical supply curve

The market demand and supply for each product is therefore the sum
aggregate of individual customers demands and supplies. The equilibrium
price occurs where supply is equal to demand. This is depicted in Figure 1.5
where the equilibrium price is p0 with resultant quantity of q0. Thus we
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Figure 1.5 Equilibrium price and quantity

arrive at the law of supply and demand, the mechanism bywhich prices are
determined. The law states that the price of any one good increases when
the demand for that good exceeds the supply and decreases in the opposite
case. The law of supply and demand is powerful because it predicts the
price and quantity suppliedwhen amarket is in equilibrium. Fluctuations in
price are an important part of a competitive market because they send price
signals to buyers and sellers about the tightness of the market. Producers
interpret these signals as either an opportunity to increase production (to
meet demand) or decrease production (because there is an overabundance
of supply on the market).

Example 1.1 Economic analysis of the price of crude oil

The price of crude oil is sensitive to the level of inventories. For example,
in mid-December 2003 a weekly US federal report observed that crude oil
inventories had declined from 277.9 million barrels to 272.8 million bar-
rels. This was an unexpected decline, as the economy was showing signs of
strong economic growth. Following the announcement the price of bench-
mark crude for January delivery rose to its highest level for almost a year
closing at $33.35 a barrel. This situation is illustrated diagrammatically in
Figure 1.6. Strong economic growth results in an increase in demand causing
the demand curve to shift from d0 to d1. As the demand was unexpected,
production remains unchanged but inventories begin to decline, resulting
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Figure 1.6 Impact of an increase in demand and reduction in supply on
the crude oil spot price

in a reduction in supply and a shift of the supply curve s0 to s1. The imme-
diate result is a increase in price from p0 to p1. The reasons for the price
swings can thus been seen to be related to issues surroundingover- or under-
production, production driven by factors such as recessions/booms in the
world economy and severe or mild winter weather.

In practice the demand for energy is not derived directly from prefer-
ences for the energy commodity itself, rather it is derived from desires to
use energy to produce a good or provide a service. For example, postal
delivery workers use gasoline in order to transport goods from place a to
place b. The amount of gasoline consumed by a delivery vehicle is pro-
portional to the miles driven and inversely proportionate to the efficiency
by which gasoline is converted to mechanical energy. Demand for gasoline
is thus derived from choices about distances postal delivery vehicles are
driven and their energy conversion efficiencies. In other words it depends
primarily on demand for desired services, availability and properties of
energy conversion technologies, and costs of energy and technologies used
for conversion.

Nevertheless, the economicmechanism forpricedetermination, the inter-
action between demand and supply remains relevant. To see that this is the
case notice, for example, that in the USA the retail price of gasoline can be
broken down into three components: the cost of crude oil, taxes, and a seller
markup. The latter includes both a refiner margin and a retail margin. The
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Figure 1.7 Average price of all grades of gasoline in the USA
(cents per gallon)

refiner margin is the spread between the wholesale price of gasoline, the
price charged by refineries to retailers, and the price of crude oil – in this
case West Texas Intermediate. The retail margin is the difference between
the pump price and the wholesale price of gasoline. On average, crude oil
costs account for about 50% of the overall pump price, while taxes and the
markup account for 30% and 20% of the overall price, respectively.

Figure 1.7 shows the average price of all grades of gasoline in the USA
(cents per gallon) over the period from end of May 1999 to end of May
2004. Given the relative stability of gasoline tax rates, most of the observed
short-term volatility in gasoline prices must be attributed to fluctuations
in the balance between demand and supply. On the supply side the level
of gasoline stocks plays a major role. A tight inventory balance exerts
upward pressure on wholesale prices beyond that which can be attrib-
uted to changes in crude oil prices. This widens the spread between spot
gasoline prices and crude oil prices. On the demand side, during the sum-
mer driving season demand for gasoline increases pushing prices at the
pumps higher.

European markets face the same economic forces as those experienced in
the USA. For example, during May 2004 prices for gasoline in Germany hit
the highest levels in the country’s postwar history when a liter of premium
gasoline reached d1.16, the primary driver being the rising spot price of
Brent Crude, which exceeded $39 per barrel, and uncertainty following
political and social upheaval in the Middle East.
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1.4 ENERGY MARKETS AND PRODUCTS

Energy consumption today is dominated by three products: crude, elec-
tricity, and natural gas. They are traded in a number of forms spot,
futures, options, swaps, over-the-counter, and on a number of standardized
exchanges such as the International Petroleum Exchange in London (IPE),
NewYorkMercantileExchange (NYMEX),TokyoCommodityExchangeand
the Singapore Exchange. Aswith all futures exchanges counterparty default
riskiseliminatedbecausetheexchangeactsasthecounterpartytoeverytrade.

1.4.1 Crude oil

Crudeoilprices, as anyother commodity, aredrivenby the lawof supplyand
demand with wide price swings in times of shortage or over supply. A key
determinant of supply are the actions of themembers of theOrganization for
Petroleum Exporting Countries (OPEC), created at the Baghdad Conference
during September 1960, by Iran, Iraq, Kuwait, SaudiArabia, and Venezuela.
OPEC’s objective was to control the supply of crude oil onto worldmarkets.
Over the years the organization has gradually expanded to include Qatar
(1961), Indonesia (1962), Libya (1962), UnitedArab Emirates (1967), Algeria
(1969), Nigeria (1971), Ecuador (1973–92), and Gabon (1975–94).

Through a process of production quotas on member countries, OPEC
collectively have the power to exert a considerable degree of influence over
the price of crude oil. Perhaps the most important member of the group is
SaudiArabia partly because it accounts for around10%ofworldproduction.
SaudiArabia is also the only producer with enough spare capacity to have a
rapid effect on oil prices by increasing or decreasing production. Indeed, it
is claimed that SaudiAramco, the national oil company, can increase output
by 1.5 million barrels a day within 48 hours.

Whilst in theory OPEC has the potential to control oil prices, the organ-
ization has in fact resided over a steady decline in the real value of crude
oil. This is partly due to the lack of any real incentive for OPECmembers to
remain within their quotas and partly associated with increased efficiency
of oil burning products.

Brent Crude oil is the reference for over 60% of world production: this is
in a large part due to the fact that it is free from government intervention
(unlike OPEC). The major markets for Brent Crude oil futures are NYMEX
and the IPE. On both exchanges the contracts trade in units of 1000 barrels.
The importance of oil and NYMEX for world energy markets should not be
understated.

International oil is the senior energymarket. It has had a colorful history of letting
market forces ebbandflow. ... It is themost globalizedof businesses, andat its very



14 E N E R G Y R I S K M O D E L I N G

epicenter is the mother of all energy markets, the NewYorkMercantile Exchange
(NYMEX) crude oil future market. The rise to prominence of the NYMEX oil
futures market is a signal achievement in the history not only of the oil business
but alsoof theglobal economy.Notwithstanding the continuingprominenceof the
Organization of Petroleum Exporting Countries (OPEC), world oil prices today
are made largely on the floor of the NYMEX exchange. Virtually all oil contracts
are based on NYMEX prices, or the prices of other exchanges that are directly or
indirectly tied to the NYMEX. OPEC member countries no longer try to impose
fixed oil prices. Instead, they tie their prices to differentials to the NYMEX or an
associated benchmark price.4

Energy products such as gasoline, heating oil, and jet fuel are derived
from crude oil. Spot and futures markets also exist for these products. An
interesting feature of products derived from crude oil is that their price is
dependent on the price of crude oil and also on the supply and demand
for the particular product. Indeed the difference between the price of crude
oil and a specific derived product such as heating oil or gasoline is often
referred to as the crack spread. Since the crack spread can have a significant
impactonprofitability especiallyof refiners, amarket in crack spreadoptions
has emerged. For example, on NYMEX it is possible to trade crack spread
options on heating oil and unleaded gasoline.

1.4.2 Natural gas

Natural gas accounts for almost a quarter of world’s energy consumption.
The USA, accounts for around 30% of total consumption, Europe approx-
imately 20% and the Russian Federation 15%. Until the 1970s, European
and North American governments considered natural gas as a strategic
product and thus a natural monopoly with state owned companies running
the industry. However, following the energy shortages and crisis precipit-
ated by OPEC sharply increasing the cost of oil during the 1970s, natural
gas and the energy sector in general underwent structural reform to open
the markets to competition in order to cut costs and improve economic per-
formance and efficiency. Thus the main policy trend in natural gas markets
over the recent decades has been the liberalization of the market. In both
Europe and North American the natural gas sector has now fully evolved
from an almost totally regulated industry to one that today operates largely
as a free market. In the USA the process towards a more competitive market
began with the enactment of the Natural Gas Policy Act of 1978. The Act,
targeted at raising wellhead5 prices, specified gradual price increases for
various categories of gas, based on the expected price of oil.

Natural gas is traded on spot, futures, and options markets. The Henry
Hub is the largest centralized point for natural gas spot and futures trading
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in the USA. NYMEX launched the world’s first natural gas futures con-
tract in the early 1990s, it uses the Henry Hub as the point of delivery.
NYMEX options on natural gas futures soon followed. Today the NYMEX
gas futures contract trades 72months into the future alongsideawidevariety
of other natural gas futures and options contracts traded on both NYMEX
and the IPE. As with crude oil the price for natural gas fluctuates based on
the changes in either supply or demand.

1.4.3 Electricity

Electricity, unlike crude oil and natural gas, cannot be stored and therefore
must be consumed as it is produced. It can only be delivered to customers
via wires, which also imply a limit on capacity. If these wires are at full
capacity, it is possible that additional power is available: however, there is
nomeans to transmit it. As a consequence of the continuing liberalization in
energy markets futures and forward contracts have emerged for electricity.
TheNordic Power Exchange orNordPoolwas theworld’s first international
commodity Exchange for electrical power. Aswith any exchange it provides
standardized contracts for both physical delivery and cash delivery. It is
focused on providing services toNordic nations (Sweden, Finland, Norway,
and Denmark). NYMEX also offers a futures contract on US electricity (PJM
Electricity Futures) along with a number of option contracts.

1.5 THE SCIENCE OF ENERGY RISK MODELING

Statistical methods provide the quantitative technology for empirical sci-
ence by offering the energy risk manager the logic and methodology for the
measurement of risk and for an examination of the consequences of that
risk on the day to day activity of the business. In recent years it has become
increasingly evident that knowledge of statisticalmethods is nowan import-
ant job requirement. A responsible institution will need to assess its level of
risk and monitor its level of price risk. Energy price risk management often
involves a number of stages:

1. Analysis of energy risk via energy price risk modeling

2. Development of projected budgets and potential exposure

3. Identification of risk mitigation options – typically this might include
hedging exposure by purchasing forwards, futures, or options in order
to gain budget stability and predictability.
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In this text we focus primarily on the first stage, energy price risk mod-
eling with the objective of introducing many of the important statistical
concepts and procedures required in order to begin the process of accessing
and controlling energy price risk.

The evolving energy marketplace has become increasingly complex and
dynamic. Unleaded gasoline, electricity, natural gas, heating oil and crude
oil are exchange-traded commodities subject to frequent price swings on
a short- and long-term basis. This volatility creates significant speculat-
ive opportunity and risk. Whilst it may be obvious that extreme levels of
price volatility increase energy price risk, the risk to an institution’s fin-
ancial stability resulting from adverse movements in the level of energy
prices, they also amplify other types of risk. For example, electricity price
spikes in the Mid West of the USA during the summer of 1998 resulted in
a sudden increase in energy price risk. The price spike was so large that
a number of energy players found themselves exposed as a result of their
writing (selling) uncovered options. Therefore the possibility of a default
on outstanding obligations (i.e. credit risk) increased. In this instance we
see clearly how increases in the level of one type of risk, can have knock-on
effects on other types of risk.As a further illustration, operational risk events
such as power plant outages, often simultaneously increase the likelihood
of outages in other power plants (thus increasing operational risk) and lead
to price spikes (thus increasing energy price risk), which in turn can lead
to some energy players being exposed because of their derivative liabilities
(and thus credit risk is increased). Therefore, whilst we focus in this text
primarily on price risk modeling, it is important to remember that energy
risks are often interrelated; when a risk event occurs it can have a knock-on
effect on other types of risk.

1.6 FURTHER READING AND RESOURCES

The Union of Concerned Scientists (www.ucsusa.org) offers a balanced and informative
historical account of the development of energy. They also provide detailed analysis of
the current economic and scientific debate surrounding aspects of energy consumption.
Three useful sites for information on the economics of crude oil are:

� The American Petroleum Institute – www.api-ec.api.org

� OPEC – www.opec.org

� Independent PetroleumAssociation of America – www.ipaa.org

Further information about policy and economics of natural gas market can be found
at www.oecd.org. Also take a look at www.ferc.gov and http://europa.eu.int. Web links
to some of the key energy exchanges are given below:

� IPE – www.theipe.com
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� NYMEX – www.nymex.com

� The Tokyo Commodity Exchange – www.tocom.or.jp

� Nord Pool – www.nordpool.no

� Singapore exchange – www.sgx.com

Additional background on the history and development of energy can be found in
Rudolph and Ridley (1986), Yergin (1992), Bower (1994), and Smil (1994).

Brower, Michael (1994) Cool Energy: Renewable Solutions to Environmental Problems.
Massachusetts, MIT Press.

Smil, Vaclav (1994) Energy in World History. Westview Press, Colorado.
Yergin, Daniel (1992) The Prize: The Epic Quest for Oil, Money, and Power. Touchstone,
New York.

Rudolph, Richard and Ridley, Scott (1986) Power Struggle: The Hundred-Year War over
Electricity. Harper and Rowe, New York.
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P A R T I

Statistical Foundations of
Energy Risk Modeling

Around 100 years ago H.G. Wells noted that “statistical thinking will one
day be as necessary for efficient citizenship as the ability to read andwrite.”
He made no mention of financial risk management because the financial
market place was still in its infancy. Were he to make the comments today
about risk management he would probably say that “statistical thinking is
necessary not only for efficient citizenship, but also for effective financial
risk management.” It is now widely acknowledged that the effectiveness
of energy risk management depends crucially on the soundness of the
modeling used to assess, monitor and control price risk. At the core of
modern energy risk management lie a broad body of tools that are under-
pinned by statistical theory. In Part 1 of this book we introduce some of
these tools, which together form the statistical foundations of energy risk
modeling – appliedprobability (Chapter 2), descriptive statistics (Chapter 3)
and inferential statistics (Chapter 4).
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C H A P T E R 2

Introduction to Applied
Probability for Energy

Risk Management

There are many instances where those involved in energy products must
make decisions under conditions of uncertainty. An oil producer must
decide how much inventory to stock; a risk manger how much economic
capital to set aside, and an electricity speculator when to buy or sell. In each
of these cases the individuals make their decision on the basis of what they
think is likely to occur; their decision is based on the probability that certain
eventswill orwill not happen.Most ofushave some intuitiveunderstanding
of probability. Some people prefer to take the train to their place of work in
the knowledge that a serious accident is less likely than if they drive. Others
participate in high risk sports such as boxing or sailing, knowing that they
are likely to face serious injury or death, but then again the likelihoodof such
extreme outcomes is actually quite small. Millions of individuals purchase
lottery tickets even though the likelihood of wining a very large pay-out is
extremely small. If we say that the probability of snow today is one-half, but
tomorrow it is only one quarter, we know that snow is more likely today
than tomorrow.

2.1 DESCRIBING RANDOM EVENTS

Underling the idea of probability is the notion of a random variable and
random experiment. A random variable is a variable which can take on a
given set of values. The spot price of natural gas, 3-month forward price

21
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of crude oil, and the spread between the price on the nearest heating oil
futures contract and the nearest Henry Hub Natural Gas futures contract
are all examples of random variables. A random experiment, also known as
an experiment of chance, is the process bywhich a specific value of a random
variable arises. A random experiment is often seen as one of a sequence of
such experiments known as a trial. The everyday battle between supply
and demand in financial markets can be seen as a random experiment that
yields outcomes (prices) for specific financial contracts. The application over
a sequence of days, weeks, months, or years can be seen as a trial.

The outcome or collection of outcomes of a random experiment is called
an event, with the simple event being an outcome that cannot be broken
down further. The events of a randomexperiment are part of a larger sample
space, which in turn consists of all possible outcomes for an experiment. In
this sense the sample space consists of all possible simple events. For the
most partwe shall denote a randomvariable by a capital letter usuallyX and
the value it takes by a lower case letter, that is, x. When a random variable
X is observed on N occasions we obtain a succession of values denoted by
{x1, x2, x3, ..., xN}; each ofwhich provides uswith a realization ofX at specific
points in time. The following example illustrates these concepts.

Example 2.1 Price of nearest NYMEX Henry Hub Natural Gas
futures contract as a random variable

During the trading day the price of the nearest NYMEX Henry Hub Nat-
ural Gas futures contract varies from one hour to the next. In the language
of statistics the price at any moment of time is a random variable whose
sample space consists of all possible settlement prices. The trading process
is the experiment, the passage of time from one moment to the next a trial,
the settlement price at the end of the day the outcome. At the start of day
the experiment (trading) begins.At this stage the outcome (settlement price)
of the experiment is unknown. Will the settlement price be higher, lower,
or remain the same by the end of trading? At the end of the trading day
the outcome of the experiment, the observed settlement price, is known.
The simple event in this case is the settlement price on a particular day.
Suppose we observed the settlement price of the nearest contract for five
days between June 10th and 14th as {$5.162, $5.151, $5.150, $5.155, $5.433}.
We may also write this sequence as {x1 = $5.162, x2 = $5.151, x3 = $5.150,
x4 = $5.155, x5 = $5.433}. From this simple event we can construct more
complicated events. For example, the average settlement price over the
past five trading days or the difference between the settlement price on
Mondays and Fridays. We now see that a random variable describes the
value that corresponds to the outcome from a given experiment. A random
variable is actually a function that associates a unique numerical value to



I N T R O D U C T I O N T O A P P L I E D P R O B A B I L I T Y 23

every outcome of a random experiment. The term random is used to remind
us that wewill not knowwhat the value of the random variable is until after
the experiment has been conducted.

There are two basic types of random variable – discrete and continuous.
Adiscrete random variable may take on a countable number of distinct val-
ues. A continuous random variable is one that can take on any real value.
In Example 2.1 the settlement price of the nearest NYMEX Henry Hub
Natural Gas futures contract is a continuous random variable. Suppose
we are interested in whether or not the price was greater than $5.154;
is this also a continuous random variable? No because it can only take
on the states yes or no. To see that this is the case recall the settlement
price of the nearest NYMEX Henry Hub Natural Gas futures contract
between June 10th and 14th is a continuous random variable with values
{x1 = $5.162, x2 = $5.151, x3 = $5.150, x4 = $5.155, x5 = $5.433}. For the
same days, the random variable “greater than $5.154”, would take the states
{yes, no, no, yes, yes}. If we denote “yes” by 1 and “no” by 0, we can rewrite
this as {1,0,0,1,1}. As this random variable can only take on two values it
is discrete.

2.2 WHAT IS PROBABILITY?

The only time we need to make a decision is when we are uncertain about a
situation. Consider the scenario where your boss asks you to assess the risk
in a new financial product and report back to him with a recommendation
by the following day. You begin your research, but find nothing like it in
the current market place or in the academic or professional literature. You
have reached the proverbial “fork in the road.” A decision has to be made.
Do you ask for more time, reject the product, or cross your fingers and
accept it? Either way a decision has to be made because you do not know
something. That is, you are uncertain about something related to the new
product. Probability offers a formal structure for describing uncertainty.

2.2.1 Properties of probabilities

The development of a mathematical theory of probability began during the
seventeenth century with the French nobleman Antoine Gombauld, who
puzzled over the likelihood of obtaining two 6s at least once in 24 throws of
a pair of dice. We have seen that random variables can be used to describe
the possible values of future events. Probability attaches a likelihood to each
of the possible values. For example we may not know for sure whether it is
going to snow today, but after hearing the weather forecast and looking out
of the window, we might conclude the probability of snow is 6/10 or 60%.
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In this case the random variable is “snow today?” which can take the states
“yes” and “no.” To the state “yes” we have attached a probability of 60%.
Intuitively, an estimate of probability should lie between 0 and 1. This
implies a probability of 40% to the state “no.” Thus the probability of snow
today plus the probability of no snow today is equal to 1.

Probability offers a formal mechanism for quantifying and expressing
uncertainty inherent in decisionmaking. To illustrate this further let us sup-
pose that we are interested in whether or not today’s settlement price of the
nearest Henry Hub Natural Gas futures contract is greater than $5.154; we
shall denote this event by H and use Prob(H) as shorthand for the probabil-
ity of observing H. What is the probability of not observing H (i.e. the price
being less than or equal to 5.154)? This is the complementary event and we
write its probability as Prob(∼H). Since the events H and ∼H are mutually
exclusive, that is if H occurs ∼H cannot occur, we can write:

� Prob(H) +Prob(∼H) = 1 – which informs us that the sum of the probab-
ilities of the mutually exclusive events H and ∼H should sum to one. In
other words the probability that the settlement price is less than or equal
to 5.154 or it is greater than 5.154 is 1.

� 0 ≤ Prob(H) ≤ 1 which satisfies our instinct that the probability of an
event always lies between zero and one.

An event that is impossible has a probability of 0, and an event which is
certain to occur will have a probability of 1. In this sense probability indic-
ates the relative likelihood of an event happening. The closer the probability
is to 1 the more likely the event is to occur, and the closer to 0, the less likely
the event is to occur. What is the probability that today’s settlement price
of the nearest NYMEX Henry Hub Natural Gas futures contract will be the
same as yesterday, equal to yesterday, or more than yesterday? Since one of
these outcomes is certain to occur the probability is 1. In summary, prob-
ability provides a well-defined numerical scale for measuring uncertainty
inherent in the outcome of random variables. We will make use of it to help
characterize the risk inherent in energy spot and derivative prices. What is
the probability that the Henry Hub Natural Gas futures contract is greater
than $5.154? To answer this question we will need to address the question
of where we get probabilities from.

2.2.2 Distinction between empirical and subjective probabilities

Values for the probabilities of events of interest can be derived from empir-
ical data or elicited from expert opinion. Probability values derived from
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empirical observations reflect the relative frequency of the occurrence of an
event after a very large number of random trials – it is theproportion of times
an event can be expected to occur. As an example, consider a risk manager
who counts the number of times the price of the nearest IPE Gas Oil futures
prices moved by more than 15% in a week. Suppose the risk manager col-
lects data over a period of 100 weeks, of which 5 weeks contain a move in
price of 15% or more, then the empirical probability of a 15% or more price
change can be calculated as: 5/100 = 0.05 or 5%, empirically derived prob-
abilities give an objective status to the notion of probability by rendering it
a property of real world phenomena. In this case probability is interpreted
as stemming from the observable stability of empirical frequencies. These
empirical frequencies can be approximated using mathematical probability
models; we discuss this issue further in Section 2.3 and Chapter 5.

Probabilities elicited fromexperts are knownas subjectiveprobabilities.A
crude oil speculatormight conclude that the probability of a significant price
increase in the spotprice of oil is 95%, following the announcementof a series
of oil refinery explosions in the Middle East. Another trader with the same
information might conclude it is only 65%. Subjective probability renders
the notion of probability a subjective status by regarding it as “degrees
of belief” on behalf of individuals assessing the uncertainty of a particu-
lar situation. Its value depends heavily on personal viewpoints and prior
experience.

2.2.3 Some rules for the computation of probabilities

Many computations involving probabilities can be achieved using five
basic rules:

� Rule 1 – Addition rule for mutually exclusive events

� Rule 2 – Addition rule for dependent events

� Rule 3 – Multiplication rule for statistically independent events

� Rule 4 – Multiplication rule for dependent events

� Rule 5 – Conditional probability.

Rule 1, the addition rule for mutually exclusive events, has to do with the
probability that one or the other of the events will occur. Two events are
mutually exclusive if the occurrence of one event precludes the occurrence
of the other event. The rule tells us that if two events A and B are mutually
exclusive, the probability that one or other of the events will occur is the
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sum of their separate probabilities:

Prob(A or B) = Prob(A) + Prob(B)

For three mutually exclusive events, A,B, and C, the rule is written:

Prob(A or B or C) = Prob(A) + Prob(B) + Prob(C)

Example 2.2 Mutually exclusive events and the nearest
NYMEX PJM Electricity Futures contract

Suppose the February NYMEX PJM Electricity Futures contract is currently
trading at $45.55.Aspeculatormight be interested inwhether the settlement
price in two days time is higher, lower, or equal to the current price. Let us
label these events as A, B, and C respectively. Let us suppose further, that
over the past 400 trading days the speculator observes the values shown in
Table 2.1.

What is theprobability that the settlement pricewill be less thanor greater
than the current price? The outcome “less than $45.55” is event A. The
outcome “greater than $45.55” is event C. Applying the addition rule for
mutually exclusive events and using the empirically derived probabilities
we find

Prob(A or C) = Prob(A) + Prob(C)

= 0.025 + 0.075

= 0.10 or 10%.

We would also expect

Prob(A) + Prob(B) + Prob(C) = 1,

Table 2.1 NYMEX PJM Electricity futures price
observations

Price ($) Event Number of days
event observed

Probability of
occurrence

Less than 45.55 A 10 10/400=0.025

Equal to 45.55 B 360 360/400=0.90

Greater than 45.55 C 30 30/400=0.075
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and this is indeed the case because either A, B, or C is certain to occur. Thus
we see

Prob(A) + Prob(B) + Prob(C) = 0.025 + 0.90 + 0.075 = 1.

In addition given Prob(A) and Prob(C) we can find Prob(B) which is equal to

1 − [Prob(A) + Prob(B)]
= 1 − [0.025 + 0.075]
= 1 − 0.1

= 0.9 or 90%.

Rule 2, the addition rule for dependent events, informs us how to calculate
probabilities when two events, A and B, are not mutually exclusive – that is,
when the probability of occurrence of one event is dependent or conditional
on the occurrence or nonoccurrence of the other event. In this case it is
possible for both events to occur. The probability of both A and B occurring
is known as the joint probability and denoted by Prob(A and B). In this
situation the probability that one or other of the events will occur is

Prob(A or B) = Prob(A) + Prob(B) − Prob(A and B)

Notice if A and B were mutually exclusive

Prob(A and B) = 0

and hence we obtain rule 1.
Rule 3 makes use of the notion of statistical independence. Two events

are said to be statistically independent if the occurrence or nonoccurrence
of one event does not affect the probability that the other event will occur.
If two events A and B are statistically independent then the probability that
they will both occur is the product of their separate probabilities

Prob(A and B) = Prob(A) × Prob(B)

This rule for combining probabilities presumes that the outcome of A is
not affected by the outcome of B. To further illustrate what is meant by
independence of outcomes, suppose we consider the spot price of natural
gas and the spot price of the dollar–sterling exchange rate at the close of
business on any particularly day. There is no reason to suppose that the
level of the exchange rate and the spot price of natural gas are in any way
related. Hence, the price (outcome) at the end of the trading day of natural
gas is unaffected by the level (outcome) of the dollar–sterling exchange rate.
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To put it another way, the two events are independent because the outcome
of the first event (spot price of natural gas) does not depend on the outcome
of the second event (level of the exchange rate).

Rule 4, the multiplication rule for dependent events, informs us how to
calculate joint probabilities when events are dependent. If two events A and
B are dependent, the probability they will both occur is

Prob(A and B) = Prob(A|B) × Prob(B)

Notice that we use the notation Prob(A|B) to denote the probability that
A will occur given that B has already occurred. The vertical line means
“given that.”

We can rewrite Rule 4, to give us Rule 5, the law of conditional probability

Prob(A|B) = Prob(A and B)

Prob(B)

The rule tells us that the conditional probability of an eventA given another
event B is the probability that A will occur given that B has occurred.

Example 2.3 Conditional probability of the spot price of electricity given the
Central Appalachian May Coal Futures settlement price

Consider the risk manager of a coal mining company that also operates
electric power plants. Suppose the manager is interested in calculating the
conditional probability of the spot price of electricity being below $48 given
the future price of coal is below $45.35. More specifically denote the event
May Central Appalachian Coal Futures price is less than $45.35 as B and the
event May Central Appalachian Coal Futures price is less than $45.35 and spot
electricity price is below $48 as A. Let the probability that the May futures
coal price falls below $45.35 be 20%, and 5% for the probability that May
futures coal price falls below $45.35 and the spot electricity price falls below
$48. So,

Prob(B) = 20%

and

Prob(A and B) = 5%.
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Thus the probability that the electricity spot price falls below $48 given that
we observe the May futures coal price is below $45.35 is

Prob(A|B) = Prob(A and B)

Prob(B)
= 0.05

0.2
= 0.25.

If we rearrange the above formula we see

Prob(A and B) = Prob(B)P(A|B)

and so,

Prob(A and B) = Prob(B)Prob(A|B) = 0.2 × 0.25 = 0.05,

which is as expected.

2.3 PROBABILITY FUNCTIONS

One of the most common mechanisms for expressing uncertainty is via
a probability function. Formally, probability functions are mathematical
functions used to characterize all the uncertainty surrounding the outcome
of a random variable. But what exactly does this mean? Well, the uncer-
tainty surrounding an unknown event can be summarized in an appropriate
mathematical function. Such functions inform us what outcomes are pos-
sible for a given random variable and their associated probability. This is
important because once we have knowledge of the potential outcomes of
an event (random variable) and their associated likelihood we can begin to
quantify energyprice risk.We shall consider three broad types of probability
function:

1. Probability distributions

2. Cumulative probability functions

3. Inverse probability functions.

The probability of a randomvariable taking a particular value is captured
in a probability distribution. A probability distribution is a mathematical
model that maps all of the outcomes that a random variable can take
to specific probabilities. It thereby gives us a complete listing of all pos-
sible outcomes of an experiment together with their probabilities. In this
sense probability distributions provide a complete representation of the
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uncertainty surrounding every potential outcome of a random variable – it
informs us what outcomes are possible and how likely they are. There
are two broad types of probability distribution, those for discrete random
variables known as probability mass functions and those for continuous
random variables know as probability density functions.

2.3.1 Probability mass function

A probability mass function yields the probability with which a discrete
random variable can take a particular value. For example, we previously
saw that the event whether or not the price of the nearest NYMEX Henry Hub
Natural Gas futures contract is greater than $5.154 is a discrete randomvariable
which can only take on two values yes or no. We denote this event by H,
which takes the value 1 if the event occurs and 0 otherwise. The complete
probability mass function p(x) takes the numerical values

Prob(X = 0) = p(0) = 9
10

and

Prob(X = 1) = p(1) = 1
10

In this case p(X = 0) and p(X = 1) make up the probability distribution
for the random variable. Figure 2.1 illustrates the probability mass func-
tion for this example. The low value of p(X = 1) informs us that the event
occurs with low probability and is in this sense unlikely. Notice we have
assumed that we know the values of p(X = 0) and p(X = 1); in practice
we will need to estimate these values from empirical data or our own per-
sonal beliefs. If the probability function is based on personal beliefs it is
likely to have different values, say for a trader who is hoping for a large
increase in price, and a hedger who is hoping for price stability. It should
also be noted that the total of the probabilities sum to 1. This will be true
for all probability distributions. This is because the distribution is a com-
plete listing of all outcomes of the experiment of chance – the probability
that one or other of these outcomes will occur is a certainty. There are many
probability distributions that are important in understanding and applying
statistical methods. Binomial, Poisson Geometric, Hypergeometric, Pascal,
Polya–Aeplli, Poisson Inverse Gaussian, Hofmann, Neymann Type A, and
Neymann Type A plus Poisson are just some of a very large number of
discrete probability distributions.
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Figure 2.1 Discrete probability distribution for the simple event of
whether or not the price of Henry Hub is greater than $5.154

2.3.2 Probability density function

A probability density function yields the probability with which a con-
tinuous random variable lies within a specified range. Given a random
variable X, we denote its associated probability density function by f (x).
Figure 2.2 illustrates aprobability distribution for a continuous randomvari-
able. It represents the scattering of likely values along the horizontal axis.
That is the horizontal axis represents the range of plausible outcomes for the
randomvariable of interest. The vertical axis provides ameasurement of the
likelihood of each outcome. Continuous probability distributions include
the Normal, Lognormal and Beta distributions.

Since f (x) is a continuous function the area between any two points say x1
and x2 represents the probability that the random variable will lie between
these two values. We write this as

Prob(x1 < X ≤ x2) =
∫ x2

x1
f (x)dx

Probabilities are equal or greater than zero; thus the probability mass
function and probability density function satisfy

p(x) ≥ 0 and f (x) ≥ 0
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Figure 2.2 Probability distribution of a continuous random variable

In addition, we have already seen that the sum over all possible outcomes
is equal to 1 so that

∑
x

p(x) = 1

and

∫ ∞

−∞
f (x)dx = 1.

2.3.3 Cumulative distribution function

For a random variable X the cumulative distribution function measures the
cumulative probability and is calculated by

F(X ≤ x) = Prob(X ≤ x) =
{∑

x≤k p(x) if X is discrete∫ x
−∞ f (u)du if X is continuous

If the randomvariableX is discrete the cumulative distribution functionF(x)

is a step function as illustrated in Figure 2.3. If X is continuous then F(x)
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Figure 2.3 Cumulative distribution of a discrete random variable
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Figure 2.4 Cumulative distribution of a continuous random variable

is a continuous function as illustrated in Figure 2.4 It is also worth noting
that given a probability density function f (x) the cumulative function can
be defined as

F(x) =
∫ x

−∞
f (u)du.
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2.3.4 Inverse probability function

Given a random variable X the αth percentile (0 ≤ α ≤ 1) is that value
of the random variable X say xα , that indicates the percent of observations
that is equal to or below xα . Given the distribution function F(x) the per-
centile function, also known as the inverse probability function, is denoted
by F−1

x (1 − α). To illustrate this concept, suppose X is a random variable
of the daily high spot price for Brent Crude Oil. Over the past 100 days we
will record {x1, ..., x100}, where x1 is the observed high on the first day and
x100 the number observed on the 100th day. If p represents the observations
arranged into ascending order, so that p1 is the smallest and p100 the largest,
the 99th percentile is equal to or greater than 99% of the values recorded in
{p1, ..., p100}. This is p99.

2.4 THE NORMAL DISTRIBUTION

The question that now arises is what is a suitable probability distribution
for the random variable X? When mathematicians of the eighteenth cen-
tury began to address this question the Normal distribution emerged.1 A
continuous random variable, X, is said to follow a normal distribution with
mean, µ, and standard deviation, σ, if it has the probability density function
given by

f (x) = 1√
2πσ 2

exp
(

− 1
2σ 2 (x − µ)2

)
, −∞ < x < ∞.

The formula for the normal distribution actually defines a family of dis-
tributions parameterized by µ and σ . As illustrated in Figure 2.5 the normal
distribution is symmetricwithobservationsmore concentrated in themiddle
of the distribution than the tails. The parameter µ is equal to the arithmetic
mean and is known as a location parameter because changing the mean
shifts the curve along the x-axis. The parameter σ is the standard deviation
and is frequently termed a scale parameter because changing the standard
deviation changes the spread of the curve.

The most flexible probability distributions will have at least one para-
meter for location, scale and shape. The location parameter controls where
on the horizontal axis the distribution is centered, the scale parameter con-
trols the spread of probability around the center of the distribution and
the shape parameter controls the shape of the distribution. The normal dis-
tribution only has parameters for location and scale. Despite this it plays
a central role in statistical theory and practice, particularly in the area of
inferential statistics.
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Figure 2.5 Two normally distributed random variables with the same
mean but different levels of dispersion

2.4.1 Central limit theorem

Given a sequence of independently identically distributed randomvariables
{X1, ..., XN} with mean µ and variance σ 2 the central limit theorem informs
us that the distribution of the arithmetic mean,

X = X1 + · · · + XN

N
,

is approximately normally distributed asN becomes increasingly large. The
central limit theorem therefore informs us what the distribution of X the
sample mean is. Provided N is large it will be approximately normally dis-
tributed almost regardless of distribution of the individual observations
{X1, ...,XN }.
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2.4.2 Transformation to the standard normal distribution

If X is normally distributed with mean µ and variance σ 2 it can be
transformed into a standard normal random variable Z via

Z = X − µ

σ
.

The transformed random variable Z, also known as a standardized variable
or standard normal variable has a mean of zero and a variance equal to 1.
Standardized values are sometimes called Z scores. What is the value of
using a Z score? Z scores reflect the number of standard deviations above
or below the mean that a particular value lies. For instance a Z score of
−0.62 indicates that this particular observation is−0.62 standard deviations
below the mean. Some values of the cumulative probability function for the
standard normal distribution are given below

z-score F(z)

−3.0 0.0013

−2.5 0.0062

−2.0 0.0228

−1.5 0.0668

−1.0 0.1587

−0.5 0.3085

0.0 0.5000

0.5 0.6915

1.0 0.8413

1.5 0.9332

2.0 0.9772

2.5 0.9938

3.0 0.9987

Thus a Z score of −3 implies F(z) = 0.0013, whilst a value of 0 implies
F(z) = 0.5.

2.5 RELEVANCE OF PROBABILITY FOR ENERGY RISK
MANAGEMENT

Managing energy risk involves assessing and controlling price risk. Price
risk arises because the future price of an energy product, such as coal or
crude oil is uncertain. Through the concepts of random variables and prob-
ability discussed so far we see that the price of a energy forward, future, or
spot contract is a randomvariablewhose likely future price can bemeasured
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using probability derived from an appropriate probability model. Probab-
ility distributions provide a compact notation for describing the likelihood
of all of the potential future outcomes. In this sense they provide a complete
characterization of the uncertainty surrounding future changes in energy
prices. Price risk is caused by movements in the prices of energy products.
In discussingprice risk it is oftenmore convenient toworkwith price returns
rather than price levels. We define the simple return as

r̃t+1 = (St+1 − St)/St,

where t represents time and S is the price of the energy product. Hence St
could be regarded as the price today and St+1 the price tomorrow. It is often
more convenient to use the log return defined by

rt+1 = ln(St+1/St),

where ln() is the natural logarithm.
When the difference between t and t + 1 is small, r̃t+1 and rt+1 are fairly

similar because

r̃t+1 = (St+1 − St)/St = St+1/St − 1,

and

ln(St+1/St) ≈ St+1/St − 1 provided St+1/St is close to 1.

The advantage of using the log return is that we can calculate the compoun-
ded return at day M as the sum of the daily returns. Table 2.2 illustrates this
point. It shows the daily 2-month forward Brent Crude Oil price alongside
the simply and log return. Using the simple return, we can see that the price
has risen by:

24.35 − 20.16
20.16

= 20.78%.

However, the sum of the simple arithmetic returns is 0.30%+ 0.49%+ · · · +
(−1.77%) = 19.26%, which is somewhat less than the actual simple return.
Using the log return, we see that over the period the price has risen by

ln(24.35)
ln(20.16)

= 18.88%,

and the sum of the log returns is 0.30%+ 0.49%+ · · · + (−1.79%) = 18.88%
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Table 2.2 Simple and log return of the
2-month forward price of Brent Crude

Date 2-month forward
Brent Crude Price

(FOB U$/BBL)

Simple
return

(%)

Log
return

(%)

02/20/2002 20.16

02/21/2002 20.22 0.30 0.30

02/22/2002 20.32 0.49 0.49

02/25/2002 20.14 −0.89 −0.89

02/26/2002 21.07 4.62 4.51

02/27/2002 20.93 −0.66 −0.67

02/28/2002 21.40 2.25 2.22

03/01/2002 22.02 2.90 2.86

03/04/2002 22.18 0.73 0.72

03/05/2002 23.08 4.06 3.98

03/06/2002 23.23 0.65 0.65

03/07/2002 23.58 1.51 1.50

03/08/2002 23.70 0.51 0.51

03/11/2002 24.28 2.45 2.42

03/12/2002 24.30 0.08 0.08

03/13/2002 23.94 −1.48 −1.49

03/14/2002 24.38 1.84 1.82

03/15/2002 24.18 −0.82 −0.82

03/18/2002 24.78 2.48 2.45

03/19/2002 24.79 0.04 0.04

03/20/2002 24.35 −1.77 −1.79

2.6 A PROBABILISTIC MODEL FOR ENERGY PRICE RISK

Having laid the probabilistic foundations, and given basic definitions of the
log return and simple return we are now in a position to begin our formal
analysis of energy price risk. What we require is a model that will capture
the price risk inherent in an energy contract. As we have seen probability
provides the required tools to develop such a model. We begin with the
notion of a random variable R representing the uncertain future return of an
energy product of interest such as the coal spot price, prompt month crude
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futures price, natural gas forward price etc. The returnmay be calculated on
a daily, weekly, monthly, or other basis. For now we shall assume the ran-
dom variable R is continuous with probability density function, probability
function and inverse probability function given by f (r),F(r) and F−1

R (1− α)

respectively. As we have seen these functions describe in its entirety the
uncertainty surrounding R. Our probabilistic model of R thus takes the
generic form

R ∼ f (r)

where ∼ means “distributed” and indicates that R is from some probability
function. If we assume R is from the normal distribution, with parameters
µ = 0 and σ = 1 we can write

f (r) = N(µ = 0, σ = 1),

or more compactly

R ∼ N(0, 1).

This provides uswith our firstmodel of energy price risk. Our next objective
will be to assess the validity and where necessary improve on this basic
model. As a first step in order to achieve this we turn in Chapter 3 to the
field of descriptive statistics.

2.7 SUMMARY

Random variables and probability provide us with the basic probabilistic
tools required to gain insights into the nature of the uncertainty surround-
ing energy price risk. We have seen that it is possible to capture such
uncertainty via probability. Probabilities may be classified as empirical and
subjective. Empirical probabilities are determined from observation and
experimentation. Subjective probabilities are based on degrees of belief. We
can capture the uncertainty surrounding future possible outcomes with a
probability function. Aprobability function is amathematical description of
the likely outcomes of a random variable. However, probability is not the
only tool required for effective modeling; knowledge of random variables
and descriptive statistics is also important.
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2.8 FURTHER READING

An applied and accesible introduction to probability theory can be found in Hines and
Montgomery (1980). Practical applications relevant to riskmanagement aregiven inLewis
(2003). Lewis (2004) provides hands on examples which can run in Microsoft Excel.

Hines, W. W. and Montgomery, D. C. (1980) Probability and Statistics in Engineering and
Management Science. John Wiley and Sons, New York.

Lewis, Nigel Da Costa (2003) Market Risk Modeling: Applied Statistical Methods for
Practitioners. Risk Books, London.

Lewis, Nigel Da Costa (2004) Operational Risk with Excel and VBA: Applied Statistical
Methods for Risk Management. John Wiley & Sons, Inc., New York.

2.9 REVIEW QUESTIONS

1 Determine which of the following random variables are discrete and which are
continuous:
(a) The number of customers arriving at a check-out counter in an hour
(b) The amount of oil exported from Iraq in a month
(c) The difference between the level of inflation in the United Kingdom and United

States of America
(d) The number of fatal automobile accidents in Stamford, Connecticut in a given

month
(e) The volume of traded contracts on a futures exchange
(f ) The change in the spot price of natural gas in a day
(g) The number of claims on a medical insurance policy in a particular week
(h) The time that elapses between the installation of a new software package and its

first failure.

2 List four examples of Random Experiments alongside their associated random vari-
ables. From your list identify the continuous and discrete random variables.

3 Explain the difference between subjective and empirical probability.

4 Describe each of the following and explain why they may be important tools for
characterizing energy price risk:
(a) Probability mass function
(b) Probability density function
(c) Cumulative distribution function
(d) Percentile function.

5 Let F( ) be the cumulative Normal distribution function. Calculate:
(a) F(1.25)
(b) F(−1.25)
(c) F(2)
(d) F(−2)
(e) F(0)
(f ) Comment on your findings.



C H A P T E R 3

Descriptive Statistics of
Energy Prices and

Returns

Descriptive statistics are those statisticalmethods that areused to summarize
the characteristics of a sample. The main purpose of descriptive statistics is
to reduce the original sample into a handful ofmore understandablemetrics
without distorting or losing too much of the valuable information con-
tained in the individual observations.We begin by collectingN observations
{r1, r2, ..., rN} on theprice return randomvariableR. Thesemeasurements are
then organized and summarized using techniques of descriptive statistics
described in this chapter. In most cases we can compactly describe the char-
acteristics of a sample using three distinctive classes of descriptive statistics.
The first class summarizes the center of the distribution and are known
as measures of central tendency. The second class summarizes the spread
or dispersion of the sample and are commonly known as measures of dis-
persion. The third class known as shape statistics summarizes important
elements of the shape of the underlying probability distribution implied
by the sample. Our objective in using descriptive statistics is to describe as
compactly as possible the key properties of empirical data. This information
will then be used to assist us in selecting an appropriate probability model
for modeling price risk.

3.1 MEASURES OF CENTRAL TENDENCY

Central tendency refers to where the bulk or typical observations in
our sample of price return observations {r1, r2, ..., rN} lie. In everyday

41



42 E N E R G Y R I S K M O D E L I N G

speak central tendency refers to the “average” value in our sample.
The primary measures of central tendency are the arithmetic mean and
median.

3.1.1 Arithmetic mean

Given a sample of observations on the price return of an energy product
{r1, r2, ..., rN} the arithmetic mean, which we denote by r̄, is the sum of the
set of observations in a sample divided by the number of observations

r̄ = r1 + r2 + · · · + rN

N

The formula for calculating r̄ is known as an estimator, the actual value r̄
takes is known as an estimate. Before moving on let us take a moment to
reflect on the previous sentence. We have a sample of observations of price
returns on a particular energy product. We wish to characterize the future
uncertainty surrounding these price returns usingprobability.We also know
that the appropriate probabilities can be obtained using the appropriate
probabilitydistribution. It turns out that aprobabilitydistribution is determ-
ined by a number of parameters. These parameters, often have ameaningful
interpretation. For example, if we choose to model the price returns using
a normal probability distribution, the arithmetic mean is one of the two
parameters that determine the probability values of the distribution. The
important point to take away from this discussion is that we often will use
our sample to derive estimates of the parameters of some underlying prob-
ability model. In this chapter we also use sample estimates (that is estimates
derived using an estimator and sample observations) to tell us some-
thing about the characteristics of the price return of the energy product in
question.

Example 3.1 Arithmetic mean of the daily change spot price of natural gas

To illustrate the notion of an arithmetic mean, consider the monthly change
in the spot price of natural gas over the five months from September to
January {r1 = 1%, r2 = 2%, r3 = 1%, r4 = 1%, r5 = 1%}. Notice that r1 is
the return for the month of September and r5 the return for January. The
arithmetic mean return over the five-month period can be calculated as

r̄ = 0.01 + 0.02 + 0.01 + 0.01 + 0.01
5

= 0.012 or 1.2%.
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3.1.2 Trimmed mean

The key advantage of using the arithmetic mean is that it is a widely used
andunderstoodmeasure. Itsmajorweakness lies in its sensitivity to unusual
observations (alsoknownasoutlier observations).To illustrate the sensitivity
of this measure, suppose that due to a historically cold January r4 = 60%
rather than 1%. the arithmetic mean would then be calculated as

r̄ = 0.01 + 0.02 + 0.01 + 0.60 + 0.01
5

= 0.13.

Therefore the average return is 13%. Is this a good measure of the center of
the sample? Seemingly not , because for most of the months the return was
between 1% and 2%. The observation in January was unusually large – an
outlier. One way to reduce the sensitivity of the arithmetic mean to extreme
observations is to use a trimmed mean. A trimmed mean is calculated by
discarding a given percentage of the lowest and the highest values in a
sample and then computing the arithmeticmean of the remaining values.As
such it is less susceptible to the effects of outliers than is the basic arithmetic
mean. If we use a 20% trim on the above observations we have

r̄Trim = 0.02 + 0.01 + 0.01
3

= 0.0133.

Thus the trimmed mean is 1.33%. This proves to be a more satisfactory
measure of the typical value in the sample.

3.1.3 Median

The key disadvantage of the trimmed mean is that it does not use all of the
information in a sample. This is because it excludes observations from the
calculation. An alternative, which uses all of the observations is the median.
The median is the value that is greater than or equal to half of the values
in the sample. For a continuous random variable with probability density
function f (x) it is the value such that

∫ xmedian

−∞1

f (x) dx =
∫ ∞

xmedian

f (x) dx = 1
2

As the median is the point between the lower and upper halves of a distri-
bution it can be calculated by arranging the N observations of a sample in
increasing order. Themedian is the [(N +1)/2]th observationwhenN is odd
and the average of the Nth and the [(N + 1)]th observation when N is even.
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The median is known as a robust estimator because it is less sensitive to
extreme observations than themean. For this reason it is useful in situations
where the sample includes outliers. Returning to the previous illustration,
where we saw that an extremely cold January resulted in an extreme move-
ment in the spot price of gas, the median is obtained by ranking the sample
from lowest to highest

{1%, 1%, 1%, 2%, 60%}.

Since N, the number of observations in our sample is equal to 5 the median
is equal to the (5+ 1)/2 = 3rd observation. In this case the median return is
equal to 1%which is slightly lower that the trimmedmean of 1.33 andmuch
more representative of the sample values than the arithmetic mean of 13%.

3.2 MEASURES OF DISPERSION

Often observations in a sample of energy price returns will congregate
closely together and in other cases they may be more dispersed, this is
because energy prices vary over time with some time-periods more volat-
ile than others. The degree of dispersion or variability leads to another
important way in which our sample of price returns {r1, r2, ..., rN} can be
characterized.

3.2.1 Simple range

Perhaps the simplest method of dispersion is obtained by calculating the
difference between the minimum and maximum value in a sample, known
as the range. Returning to Example 3.1, we see the range is

Range = 0.6 − 0.01 = 0.59.

The key advantage of the range is that it is easy to compute. However since
it depends only on the largest and smallest observation it does not use all the
information because it ignores observations in the middle of the sample. To
see this suppose we have a sample of the spot price of crude over the same
time-period with the price returns {1%, 60%, 59%, 58%, 60%}. For crude oil
the returns are much higher, clustering around 58%. The range is

Range = 0.6 − 0.01 = 0.59,

which is exactly the same value as for the spot price of natural gas. Yet the
distribution of returns between the two products is very different.
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3.2.2 Interquartile range

There are several ways to measure the variability of a sample. A frequently
used measure is the interquartile range (IQR). It is calculated as the 75th
percentile of the sample minus the 25th percentile of the sample. Hence the
interquartile range ignores the extreme of the observations. Returning to
Example 3.1, we see that the 25th percentile of the sample is equal to 0.01
and the 75th percentile of the sample is equal to 0.02, therefore IQR = 0.01.
Clearly, looking only at the IQR or simple range of a sample can be very
misleading. It can be argued that a respectablemeasure of variability should
take into account for all of the observations in the sample and not for just
those at the extremes. The sample variance is onemeasure that achieves this.

3.2.3 Sample variance and sample standard deviation

The sample variance measures how tightly individual values are clustered
around the arithmetic mean of a sample. The estimator of the sample
variance (S2) is

S2 =
∑N

i=1 (ri − r̄)2

N − 1
.

The sample standard deviation is the square root of the above formula and is
often referred to as volatility. The calculation of variance involves averaging
the distance of each observation from the mean. For an individual price
return ri, thedistance fromthemean ismeasuredby ri−r̄. ForNobservations
in our sample we therefore have N such distances, one for each ri. Now a
property of the arithmetic mean is that

N∑
i=1

(ri − r̄) =
N∑

i=1

ri −
N∑

i=1

r̄ =
N∑

i=1

ri − Nr̄ =
N∑

i=1

ri − N
N∑

i=1

ri

N

=
N∑

i=1

ri −
N∑

i=1

ri = 0.

As a consequence the formula for variance uses the squared distances
because

N∑
i=1

(ri − r̄)2 ≥ 0.
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When there is little variability in the observations, they will tend to cluster
close together around the arithmeticmeanand therefore the sample variance
and sample standard deviationwill be small. Themore spread out the obser-
vations are around the mean, the larger the sample variance and standard
deviation. The higher the variance the more likely we will see large move-
ments away from themean. This is illustrated in Figure 2.5 which shows the
probability distribution of two random variables with expected value equal
to zero and standard deviations equal to 1 and 2 respectively. The shorter
fatter curve corresponds to the randomvariablewith the standard deviation
equal to 2. If all the values in the sample take the same value they each equal
the arithmetic mean. In this setting variance is equal to zero.

3.2.4 Calculating volatility for different timescales

We may wish to calculate from daily data the weekly, monthly, or yearly
volatility. A simple way to achieve this is via the following rule.

Square root of time rule: SN = SD × √
time,

whereSN is volatility of the time-periodyouare considering andSD thedaily
volatility/standard deviation. To illustrate this suppose the daily volatility
was estimated at 2% . Since there are five trading days in aweekwe calculate
a weekly estimate of volatility as

SWeekly = SD × √
time = 2% × √

5 = 4.47%.

Assuming21days ina tradingmonthand252 tradingdays inayear,monthly
and yearly estimates could be calculated as

SMonthly = SD × √
time = 2% × √

21 = 9.17%,

SYearly = SD × √
time = 2% × √

252 = 31.75%.

3.3 A NORMALLY DISTRIBUTED MODEL FOR
ENERGY PRICE RISK

Previously we developed the basic model of price returns as

R ∼ N(0, 1)
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Table 3.1 Measures of central location and variability for
the log price return of Brent Crude (2-month forward),
Gas Oil (spot), and the Dow Jones Swiss Electricity price
index

Brent Crude
forward (%)

Gas Oil spot
(%)

DJS Electricity
index (%)

Median 0.07 0.00 0.00

Average 0.08 0.09 0.10

Standard deviation 1.88 2.24 17.60

NowusingTable 3.1we are in a position to specify amore precise probability
model for each product

RBrent ∼ N(0.0008, 0.0188)

RGas Oil ∼ N(0.0009, 0.0224)

RElectricity ∼ N(0.001, 0.176).

Thesemodels capture the differences inmeans and volatility between the
various products and thus provide a complete characterization of uncer-
tainty surrounding changing prices. Our only concern now is whether the
normal distribution provides an adequate approximation of the distribu-
tion of uncertainty surrounding price changes in these products. Further
descriptive insight into this issue can be obtained by considering the degree
of asymmetry known as skew and “fat tailedness” known as kurtosis.

3.4 MEASURES OF SHAPE

Measures of central tendency and dispersion provide two important tools
for summarizing a sample. They are important because they allow us to
characterize the sample of price returns {r1, r2, ..., rN} by using only two
metrics such as the arithmetic mean and standard deviation. In Table 3.1
we list median, arithmetic mean, and standard deviation for the daily log
price return for 2-month forward Brent Crude, Gas Oil spot, and Dow Jones
Swiss electricity price index over the period February 2000 to February 2004.
Whilst the median and arithmetic mean for each product are close to zero
theydiffer considerably in termsof their standarddeviation, with the electri-
city index being more than nine times more volatile than Brent Crude. This
information can be used to assist us in developing models specific to each
product.
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3.4.1 Coefficient of skew

The skew of a sample is a measure of the degree of asymmetry. Figure 3.1
depicts the empirical distribution for three samples on random variables.
The top diagram depicts the situation where values are positively skewed.
The middle diagram depicts the situation where the values are negatively
skewed and the bottom diagram depicts the situation where the values
are symmetrically distributed about their mean. In this example the main
difference in shape between the three samples is their degree of symmetry.

The degree of skew provides information about the likelihood of extreme
events. Given the sample of price returns {r1, r2, ..., rN}with sample standard
deviation S and sample mean r̄, it can be calculated as

δ =
∑N

i=1(ri − r̄)3/N
S3

.

For a symmetric distribution, large values are about as likely as small
values and therefore skew is equal to zero. A negative value of skew indic-
ates that large negative values are more likely than large positive values. A
positive value of skew indicates that large positive values are more likely
than large negative values. A useful rule of thumb for assessing the degree
of skew is as follows:

1. If the estimated skew is greater than 1 in absolute value the distribution
is highly skewed.

Figure 3.1 Skewed and symmetric distributions



D E S C R I P T I V E S TAT I S T I C S O F E N E R G Y P R I C E S A N D R E T U R N S 49

Table 3.2 Three samples with the same
sample means and standard deviations

Observation Sample 1 Sample 2 Sample 3

1 −1.26 −1.64 1.64

2 −0.63 −0.29 0.29

3 0.00 0.60 −0.60

4 0.63 0.69 −0.69

5 1.26 0.63 −0.63

Average 0.00 0.00 0.00

Standard deviation 1.00 1.00 1.00

2. If the estimated skew lies between 1/2 to 1 the distribution hasmoderately
skew.

3. If the estimated skew is less than 1/2 the distribution is fairly symmetrical.

Example 3.2 Illustrating the relevance of skew

Asan illustrationof the relevanceofusing skew tohelp characterize a sample
of price returns, consider the three samples shown in Table 3.2. Each sample
has an arithmetic mean of approximately zero and a standard deviation of
approximately 1. Is this enough information to adequately characterize the
sample? In general no; we also need to know something about the shape
characteristics. On close careful inspection you will observe that sample 1 is
symmetric around 0, sample 2 negatively skewed and sample 3 positively
skewed. Using the above formula we estimate the skew for sample 1 = 0,
skew for sample 2 = −0.7 and skew for sample 3 = 0.7. Since for a skewed
distribution, the median is not equal to the mean an alternative measure of
skew is

δm = 3(mean − median)

S
.

If (mean−median) > 0 then the sample is positively skewed. If (mean−
median) < 0 then the data is negatively skewed. If (mean = median) the
data is symmetric. Using this measure on Example 3.2, we find the skew for
sample 1 = 0, skewfor sample 2 = −1.8 andskewfor sample 3= 1.8. Despite
the fact that the two measures of skew δ and δm are different estimators and
hence return different numerical values they both convey the same essential
information – that is, sample 1 is symmetric, sample 2 is negatively skewed
and sample 3 is positively skewed.
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3.4.2 Coefficient of kurtosis

Kurtosis is a measure of the size of the tails of a probability distribution. It
provides informationonwhether the sampledataarepeakedorflat. Samples
with high kurtosis, known as leptokurtic, tend to peak around their mean,
decline rapidly, and have heavy tails. Samples with low kurtosis are known
as platykurtic and tend to have a flat top near themean. Different probability
distributions have different values for kurtosis. TheNormal distribution has
a kurtosis of 3. Probability distributionswhich have the same kurtosis as the
Normal distribution are known as mesokurtic. A coefficient of kurtosis can
be calculated as

ψ =
∑N

i=1(ri − r̄)4/N
S4

,

where S is the sample standard deviation. Kurtosis is usually measured
relative to the normal distribution in which case a coefficient of relative
kurtosis can be calculated as:

ψRelative =
∑N

i=1(ri − r̄)4/N
S4

− 3.

Example 3.3 Measuring kurtosis for three small samples

As an illustration we calculate the kurtosis of each of the three samples in
Example 3.2. Since themean for each sample is zero and the variance is equal
to 1, the kurtosis is calculated as:

1. For sample 1 ψ1 = (−1.26)4+(−0.63)4+(0.00)4+(0.63)4+(1.26)4
5 = 1.07

2. For sample 2 ψ2 = (−1.64)4+(−0.29)4+(0.60)4+(0.69)4+(0.63)4
5 = 1.55

3. For sample 2 ψ2 = (1.64)4+(0.29)4+(−0.60)4+(−0.69)4+(−0.63)4
5 = 1.55.

3.5 RELEVANCE OF DESCRIPTIVE STATISTICS

We can now see that descriptive statistics provide useful insight on the
characteristics of a sample. Recall that, in Example 3.2, we were not able
to distinguish between the three samples when we considered only their
mean and standard deviation. However by collectively using the statistical
measures of shape – skew and kurtosis, we were able to characterize the
samples with a higher degree of accuracy. Sample 1 is symmetric with a
lighter tail than samples 2 and 3. Whilst samples 2 and 3 have the same
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Table 3.3 Descriptive statistics for the log price return
of Brent Crude (2-month forward), Gas Oil (spot), and
the Dow Jones Swiss Electricity price index

Brent Crude
forward

Gas Oil spot DJS Electricity
index

Median 0.07% 0.00% 0.00%

Average 0.08% 0.09% 0.10%

Standard deviation 1.88% 2.24% 17.60%

Skew −0.1039 −0.3411 0.7573

Kurtosis 4.3510 4.6212 9.5213

degree of kurtosis they differ in the direction of their skew. Such information
is crucially important when attempting to select an appropriate probability
model for each of the respective samples.

Table 3.3 lists the descriptive statistics for the daily log price return for
two month forward Brent Crude, spot Gas Oil, and Dow Jones Swiss (DJS)
Electricity price index over the period February 2000 to February 2004. Both
Brent Crude and Gas Oil are negatively skewed whilst DJS Electricity is
positively skewed. We also see that DJS Electricity is not only considerably
more volatile than the other two products, it also hasmore probability in the
tail of its probability distribution, with a kurtosis in excess of 9. This is three
times the kurtosis of a normally distributed random variable. The kurtosis
of Brent Crude and Gas Oil at 4.35 and 4.62 are also slightly higher than
what might be expected if they were generated from a normal distribution.
Due to the large value of kurtosis the model: RElectricity ∼ N(0.001, 0.176),
appears to be an inappropriate approximation for DJS Electricity. We can
check this more formally using the tools of statistical inference. Statistical
inference will aid us in assessing whether the sample estimates such as the
coefficient of skew or kurtosis are sufficiently different from those valueswe
expect to see.

3.6 SUMMARY

Descriptive statistics provide summary numbers that carry information
about the characteristics of a sample. The three importantways of describing
a sample are:

(1) Central tendency, which indicates where the mass of observations lie.

(2) Variability which indicates how the observations are dispersed.
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(3) Shapewhichmeasures thedegreeof symmetryandweight ofprobability
in the tails of the empirical distribution.

Keymeasures of central tendency are themean and themedian. Themean is
most useful when the sample is symmetric. The median is preferable when
the sample is asymmetric. Variability is typicallymeasuredusingvariance or
the standard deviation and shape through coefficients of skew and kurtosis.

3.7 FURTHER READING

Gentle introductions to descriptive statistics can be found in Crow et al. (1960), Rowntree
(1981), Lewis (2003, 2004). Extensive discussion of alternative methods of calculating
kurtosis are given in Moors (1998) and Groeneveld (1998).

Crow, E. L., Davis, F. A., andMaxfield, M.W. (1960) Statistics Manual, Dover Publications
Inc., New York.
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51, 325–329.
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Lewis, Nigel Da Costa (2004) Operational Risk with Excel and VBA: Applied Statistical
Methods for Risk Management. John Wiley & Sons, Inc., New York.

Moors, J. J. A. (1998) AQuantile alternative for kurtosis, Statistician, 37, 25–32.
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3.8 REVIEW QUESTIONS

1 Given a sample on a randomwhich can take positive or negative values, which would
you expect to be larger (mean or median) if
(a) the observations are symmetric,
(b) the observations are asymmetricwithmore largepositive values than large negative

values (positively skewed),
(c) the observations are asymmetric with less large positive values than large negative

values (positively skewed)?

2 Explain the difference between “sample” and “population.”

3 Explain why the mean and variance alone are not necessarily adequate descriptors for
a random variable.

4 For the following data:
6.5, 7.6, 1.2, 5.6, 9.0, 8.9, 7.8, 3.4
(a) Calculate the mean and median.
(b) Calculate the degree of skew using all of the methods discussed in the chapter and

comment on your findings.



C H A P T E R 4

Inferential Statistical
Methods for Energy Risk

Managers

Unlike descriptive statistics, inferential statistics are procedures for
determiningwhether it is possible tomake generalizations based on the data
collected from a sample. Such generalizations are about an unobserved pop-
ulation. A population consists of all values (past and future) of the random
variable of interest. In most circumstances the exact value of a population
parameter such as the mean or variance will be unknown, and we will have
to make some conjecture about its true value. In Chapter 3, we used sample
estimators such as the mean, median, skew, and kurtosis, to provide estim-
ates of the respective population parameters. When a sample is drawn from
a population, the evidence contained within it may bolster our conjecture
about population values or it may indicate that the conjecture is untenable.
Hypothesis testing is a formal mechanism by which we can make and test
inferential statements about the characteristics of a population. It uses the
information contained in a sample to assess the validity of a conjecture about
a specific population parameter.

4.1 WHAT IS A HYPOTHESIS?

Ahypothesis is a simple claimor statement about a property of a population.
Not only is it a statement, but it is a statement written in such a way that it
can be supported or not by comparison with known facts. Researchers in all
fields of science, industry, medicine, and technology will have hypotheses
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about particular aspects of the populations that concern them. Ahypothesis
can thus be regarded as a statement about a population parameter. The
following are all examples of hypotheses:

� The average time taken for the spot price of electricity to return to its
long-term mean is 8 hours.

� The average price of heating oil increases during the winter months.

� The returns of the Financial Times 100 index are positively related to the
returns in the nearest Appalachian Coal Futures contract.

Data is collected and analyzed for evidence that will either support or cast
doubt on the hypothesis. The procedure by which empirical evidence from
a sample of data is used tomake an inferential statement about a hypothesis
statement is known as a hypothesis test.

4.2 WHAT IS THE POINT OF HYPOTHESIS TESTING?

The goal of a hypothesis test is to decidewhether a sample is consistent with
a particular hypothesis about an unknown characteristic of the population
from which the sample came. If we had full knowledge of a population, we
would know what its characteristics are, and therefore whether our hypo-
thesis was true or false. However in practice we have to make decisions
based on a sample, sometimes small. Furthermore, we know that a sample
estimate of a population characteristic will vary from sample to sample. To
see that this is the case, we estimate the mean for six random samples gen-
erated via the statistical package R1 each containing ten observations from
a standard normal distribution:

>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
[1] 0.2858258
>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
[1] 0.2904667
>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
[1] 0.3330377
>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
[1] -0.1479695
>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
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[1] -0.6827243
>for (i in 1:5) Sample= rnorm(10,0,1)
>mean(Sample)
[1] -0.5393777

In the first sample the mean is 0.2858258, in the second it is 0.2904667, and
in the tenth sample it is −0.5393777. Even though the samples are from
exactly the same probability distribution we see that only by chance will
we obtain the exact sample estimate for differing samples. Indeed, only by
chance will a sample estimate equal exactly the population characteristic.
The example illustrates the important point that a sample only provides
approximate knowledge of the population, which may or may not be close
enough to the true characteristics to lead us to make the correct inference.
Intuitively, the larger the sample the more confidence we may have in
the sample estimates. We can see that our intuition is indeed correct by
re-running the above six samples but this time with a much larger sample
size of 10,000 observations:

>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] -0.009000733
>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] -0.006842981
>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] -0.01050050
>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] -0.006001264
>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] -0.0006383873
>for (i in 1:5) Sample= rnorm(10000,0,1)
>mean(Sample)
[1] 0.001146425

In this case, the sample estimates of themean aremuch closer to the popula-
tion value of 0. The general rule of thumb is the larger the sample size the
better.

4.3 REFUTING CHANCE AND CONTROLLING ERRORS

How can we have confidence that our sample estimate reflects the actual
value of the population characteristic rather than some rogue value,
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especially when we have a small sample? The answer will need to provide
us with evidence on whether our estimate is in some sense significantly
different from a hypothesized value. The way this problem is approached
through statistical hypothesis testing is first to form two mutually
exclusive hypothesis statements known as the null hypothesis (H0) and the
alternative hypothesis (HA); and second to calculate how often we would
get a sample estimate as large or larger than the observed sample estimate if
the population parameter of interest really was equal to the null hypothesis
and therefore the sample estimate was due to chance. If a value as large or
larger than the estimate occurs by chance frequently, then chance is a feasible
explanation of the observed value. However, if such a value would occur by
chance very rarely, then chance is deemed not to be a feasible explanation.
In this approach the assumption is that the null hypothesis is correct and
our goal is to reject the null hypothesis in favor of the alternative hypothesis.
The null hypothesis is always chosen to be the hypothesis in which there is
no change.

As we are dealing with sample estimates there is always a possibility that
our hypothesis test leads us to incorrectly reject the null hypothesis when it
is in fact true. An error of this kind is known as a type I error. The probability
of committing a type I error is known as the significance level of a hypothesis
test and denoted by α. The level of significance is set by the researcher and
reflects the acceptable error threshold for rejecting the null hypothesis when
the null hypothesis is in actual fact true. In general it is chosen to be small
typically with values of 0.01, 0.05, or 0.1 often reported as the 1%, 5%, or
10% significance level. The use of a 10% significance level, implies that we
make a type I error 10% of the time. Acceptance of the null hypothesis when
it is in fact false is known as a type II error denoted by β. Of course wewould
like to make the probability of making a type II error as small as possible.
The power of a statistical hypothesis test measures the test’s ability to reject
the null hypothesis when it is actually false. It is calculated as 1 − β. The
maximum power a test can have is 1, the minimum is 0.

4.4 A STEP BY STEP GUIDE TO CONDUCTING
A HYPOTHESIS TEST

The easiest way to become familiar with hypothesis testing is to work
throughan example.We shall illustrate the steps involvedusing the 2-month
Brent Crude forward price return of Table 3.3. Recall the kurtosiswas 4.3510.
This value is somewhat larger than we might expect if the random variable
was from a normal distribution. The relative kurtosis is measured with the
variable RelKurt where

RelKurt = 4.3510 − 3 = 1.3510.
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4.4.1 Step 1: Determine the null hypothesis

If the 2-month Brent Crude contract were normally distributed we might
expect RelKurt to be equal to zero. We therefore investigate the null hypo-
thesis that the population relative kurtosis is equal to zero against the
alternative that it is greater than zero. You may be wondering why we use
“kurtosis equal to zero” as the null hypothesis rather than “kurtosis greater
than zero.” This is because the null hypothesis is always the hypothesis that
includes anyof the equalities=,≥, or≤. Differentiatingbetween thenull and
alternative hypothesis can be easily achieved if you remember this point.

4.4.2 Step 2: Determine whether a one-sided or
two-sided test is required

Denote the sample estimate of relative kurtosis RelKurt by κ̂ and the popu-
lation relative kurtosis by κ . Let c be the value we are interested in testing.
There are three possibilities for specifying our hypothesis test:

(a) Test H0: κ = c against HA: κ > c

(b) Test H0: κ = c against HA: κ < c

(c) Test H0: κ = c against HA: κ �= c

Tests (a) and (b) are known as one-sided tests because we are only interested
in values greater than or less than the null hypothesis. Test (c) is a two-
sided test because we are interested in values greater or less than the null
hypothesis. In this case we are interested in values greater than zero, so we
set c = 0. The hypothesis is one sided:

Test H0: κ = 0 against HA: κ > 0

4.4.3 Step 3: Set the level of significance

The probability of committing a type I error is known as the level of signific-
ance. This is the criterion for rejection or acceptance of the null hypothesis.
We know the probability of a large difference between the sample relative
kurtosis and population relative kurtosis will diminish as the sample size
increases. For very large samples sizable differences between the population
kurtosis and sample kurtosis are possible but unlikely. In setting the level of
significance we are explicitly setting the probability of erroneously rejecting
the null hypothesis when it is true. We choose α = 5%, because this is the
level commonly chosen in science, academia, and industry.
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4.4.4 Step 4: Calculate the test statistic

A test statistic, which we denote by T̂, is a function of the sample data.
The value estimated from the data is used to decide whether or not to
reject the null hypothesis. There are numerous test statistics. For relative
kurtosis, the test statistic is:

T̂ = κ̂√
24/N

= 1.3510√
24/522

= 6.30

where N is the number of observations in the sample, in this case 522.
A test statistic T̂ is a random variable because the value it takes will

vary from sample to sample. Since it is a random variable it must also have
an associated probability distribution. What is the probability distribution
of T̂? In this case T̂ is a standard normally distributed random variable.
Therefore, the mean of the distribution of this test statistic is zero and the
standard deviation is one. The probability distribution of a test statistic is
usually referred to as the samplingdistribution. Themost commonsampling
distribution for a test statistic is the standard normal distribution. Other
samplingdistributions include theStudent t-distribution, F-distributionand
Chi-squared distribution. Probability tables for these distributions are given
in Appendix 1.

4.4.5 Step 5: Obtain critical value of the test statistic
and/or the p-value

Given a test statistic and knowledge of its sampling distribution we can
calculate the critical value of the test statistic denoted Tα . This is that value
beyond which the null hypothesis becomes untenable. The value of Tα is
obtained from the percentile function of the test statistic F−1

T̂
(1 − α). As in

this case we have set α = 5% and we know the test statistic is a standard
normal random variable we find using Table A.1:

F−1
T̂

(1 − α) = 1.64.

4.4.6 Step 6 (a): Compare value of test statistic to critical value

Finally, we compare the value of the test statistic to the critical value and use
this comparison to decide whether or not to reject the null hypothesis. As
we are carrying out a one-sided test we reject the null hypothesis in favor
of the alternative hypothesis if T̂ > Tα . Since T̂ (which is equal to 6.30) is
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greater than T0.05 (which is equal to 1.64 ) we reject the null hypothesis of
no excess kurtosis.

If the null hypothesis is true then values of the test statistic T̂ near zero
are much more likely than values far away from zero. The null hypothesis
is rejected if and only if the evidence against it is strong in the sense that
the estimate of T̂ could not easily have been produced by chance. Since,
in the above illustration, the probability of observing a value of 6.30 from
a standard normal distribution is close to zero we have little choice but to
reject the null hypothesis. When the null hypothesis is rejected in favor of
the alternative hypothesis the result is referred to as statistically significant.

The p-value of a test statistic is:

p-value = 1 − F(T̂),

where F(.) is the cumulative distribution function of the sampling distri-
bution of the test statistic. This provides an equivalent approach to testing
the null hypothesis – reject the null hypothesis if the p-value is less than the
significance level. In otherwords if T̂ > Tα then the p-valueof T̂ is less thanα.

4.4.7 Step 6 (b): Two-sided test

If we specified our hypothesis as

Test H0: κ = 0 against HA: κ �= 0,

this would be a two-sided test. In this case we reject the null hypothesis if
|T̂| > Tα . The only adjustment to the calculations is that we calculate the
critical value using α/2. For example, if we set the level of significance at
α = 5% and our test statistic is standard normally distributed, the critical
value of the test statistic in a two-sided hypothesis test is T0.025 = 1.96
(see Table A.1).

4.4.8 A test statistic for the mean

We have already seen that the sample mean is one useful way of summar-
izing information contained in a sample. Often we will be interested in
knowing whether the sample estimate is significantly different from some
predetermined level. Given a small sample of thirty or less observations on
a random variable we may be asked to comment on whether the average of
the observations is significantly different from some value µ0. If we denote
the sample mean by x̄ and sample standard deviation of S the test statistic
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is given by:

T̂ = (x̄ − µ0)

S/
√

N
.

Example 4.1 Testing a hypothesis about a sample mean

Suppose a risk manager has collected the following observations on the
year-end value of the oil gas spot price and is interested in testing whether
the price mean is greater than 230

Year 1998 1999 2000 2001 2002 2003 2004
Reported $270 $273 $258 $204 $228 $282 $254

The samplemean is equal to $252.7143, which appears to be somewhat larger
than $230. The sample standard deviation is equal to $27.6328.

As we only have a handful of observations we can use the previously
mentioned test statistic. We are interested in values above $230; the null and
alternative hypothesis are

Test H0: population mean ≤ $230

against

HA: population mean > $230.

This is a one-sided test. We set α = 5%. The value of the test statistic T̂ is

T̂ = (252.7143 − 230)

(27.63280/
√
7)

= 2.1748.

The test statistic has a t-distribution with 7 degrees of freedom and is equal
to 1.895 (see Table A.3).

Hence, the critical value of the test statistic is T0.05 = 1.895. Since the
test statistic T̂ (equal to 2.1748) is greater than the critical value T0.05 we
reject the null hypothesis. The p-value (probability that the test statistic is
greater than or equal to T̂) is given by F−1

T̂
(1 − α) (where F−1

T̂
( ) is now the

percentile function of the t-distributionwith 7degrees of freedom) and equal
to 0.03629. If the p-value is less than the level of significance (0.05) we reject
the null hypothesis. This is indeed the case in this example andwe therefore
conclude that there is sufficient evidence to support the assertion that the
average price of Gas oil is statistically significantly higher than $230.
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4.5 CONFIDENCE INTERVALS

A confidence interval is an interval constructed from a sample, which
includes the parameter being estimated with a specified probability known
as the level of confidence. The level of confidence is simply one minus the
level of significance. Therefore, a significance level of 5% implies a 95% con-
fidence level. A confidence interval provides information on the range of
plausible values in which the population parameter is likely to lie. Most
statistical packages include an option for calculating confidence intervals.
For example, the statistical package R provides the function:

norm.ci(t0=parameter, conf=confidence level,
var=sample variance)

An alternative, which can be easily entered into a spreadsheet package is to
use the formula

Confidence interval = sample mean ± F−1
T̂

(1 − α)

× sample standard deviation,

where F−1
T̂

(1 − α) is the percentile function of the standard normal
distribution.

For example, if we use the above formula to construct a 95% confid-
ence around the mean (0.08%) of the daily return of Brent Crude we obtain
a confidence interval which covers the range from −3.60% to 3.76%.What
does this tell us? First, it specifies a plausible range of values within which
the unknown population mean may lie – the actual (population) value is
likely to lie somewhere close to this value say between −3.60% to +3.76%.
Second, since a confidence interval is a function of a sample it is itself a
random variable and will therefore vary from sample to sample. Third, if
wewere to calculate the samplemean frommany different samples, and the
confidence interval is calculated for each sample then, 95% (since we used
95% confidence level in our calculation) of such intervals would cover the
true population mean. The width of the confidence interval measures how
uncertain we are about the unknown population parameter. Anarrow inter-
val indicates less uncertainty about the value of the population parameter
than a wide interval.

4.6 SUMMARY

Statistical inference offers a formal framework by which we can assess the
significance of a hypothesis or parameter from a sample. Its importance
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in risk management lies in its ability to provide confirmatory or otherwise
proof about quantitative issues of importance. It can thus be utilized by the
riskmanager to provide additional empirical evidence in support or against
a particular argument or idea.

4.7 FURTHER READING

A through introduction to statistical inference can be found in Crow et al. (1960). An
alternative aimed specifically at riskmanagers is Lewis (2003). For amoregentle overview,
see Rowntree (1981). Lewis (2004) offers a number of applied examples relevant for risk
management.

Crow, E. L., Davis, F. A. and Maxfield, M. W. (1960) Statistics Manual, Dover Publications
Inc., New York.

Lewis, Nigel Da Costa (2003) Market Risk Modeling: Applied Statistical Methods for
Practitioners, Risk Books, London.

Lewis, Nigel Da Costa (2004) Operational Risk with Excel and VBA: Applied Statistical
Methods for Risk Management, John Wiley & Sons, Inc., New York.

Rowntree, D. (1981) Statistics Without Tears, Penguin Books, Middlesex, England.

4.8 REVIEW QUESTIONS

1 If a hypothesis test fails to reject the null hypothesis we accept it – Discuss.

2 What is the difference between a type I error and a type II error?

3 Which do you feel is more useful – a hypothesis test or a confidence interval and why?



P A R T II

Applied Modeling:
Techniques and

Applications

I was once taught by a truly great mathematics professor, who in a private
moment, scolded me for using plain(ish) English to describe my new solu-
tion to an old mathematical/statistical problem. He suggested I wrap my
discovery up in an abstract and obscure fashion, so as to keep the technique
from falling into the hands of those who might find a use for it. In a slow
and disapproving voice he lamented:

God forbid anything produced by one of MY students should prove to be of any
practical value! Solving applied problems and providing useful insight into the
actual workings of the world should be left to ... to Social Scientists or failing that
applied Mathematicians, Econometricians, Engineers and Physicists. It should
never ever be attempted by one of my students.

I was politely but firmly informed that I should spend more of my days
extolling the beauty of ultra complex equations whilst bombarding my
fellow students, friends, family, and anybody else who happened by, with
barely intelligible mathematical mutterings, abstract theories and thought-
provoking conjectures. If I was to become “one of the lads” I would have to
put more effort into proliferating the erudite haze that shrouds mathemat-
ics. For a while I played along. I even purchased a secondhand tweed jacket
withmatching corduroy trousers. However, the thought of mymetamorph-
osis from poorly paid lecturer in moth-eaten clothes into a wide-eyed wild
haired “mad” professor proved not very appealing and I became “rocket
scientist” for a large financial firm.

63
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The attitude of “don’t touch me with the dirty facts of reality – they get
in the way of my beautiful equation” still persists in much of the academic
quantitative community; It canevenbe foundbysome (generally academics)
inside the discipline of risk management. However, The plain fact of the
matter is that financial risk management is a practical discipline; Risk man-
agers have to deal with real people, inconvenient facts, messy data, make
unsatisfactory assumptions, and often simply guess. In other words they,
unlike my former professor, have to get their hands dirty. We too will have
to get our hands dirty. For this section of the book outlines the tools neces-
sary for thinking about and exploring energy price risk from a statistical
perspective. The techniques are not always completely satisfactory from
a theoretical perspective, but those discussed in this section are intuitive
and work reasonably well in practice. We begin, in Chapter 5, by describ-
ing an approach for fitting probability distributions to energy price returns.
Chapter 6 discusses nonparametric density estimation as an alternative to
parametric specifications. Chapter 7 introduces correlation analysis, fol-
lowed in Chapters 8–11 with topics surrounding the theory and use of
regression models. Chapter 12 discusses various standard approaches to
modeling volatility. Finally Chapter 13 introduces and discusses a num-
ber of stochastic differential equations, the building blocks used in pricing
energy derivatives.



C H A P T E R 5

Modeling and Fitting
Price Distributions

Throughout the energy sector, riskmanagers, andanalysts face the challenge
of uncovering the price and return distributions of various products. Know-
ledge about the underlying probability distributions generating returns is
used both in pricing models and risk management. The selected probabil-
ity distribution(s) can have a significant impact on the calculated Value at
Risk measure of a company’s exposure from trading floor transactions and
in the use of derivative pricing tools. It is imperative that risk management
metrics such as Value at Risk are calculated using a statistical distribution
tailored to the specific characteristics of the energy product of interest. Fit-
ting probability distributions by carefully analyzing energy price returns is
an important, although often neglected, activity. Thismay be partly because
the number and variety of distributions to choose from is very large. For a
specific product such as the forward price of Brent Crude, or price return of
anElectricity index,whichof thedozensofdistributions shouldweuse? This
chapter outlines the process by which the practicing risk manager can begin
to answer this question. It starts by assessing the validity of a simple model
based on the normal distribution. When normality fails we can adjust the
percentiles of the normal probability distribution. If this does not appear to
help we might select an alternative probability distribution or else consider
a mixture of normal distributions.

5.1 DEVELOPING A SIMPLE MODEL FOR ENERGY RETURNS

Ideally, when it comes to statistical modeling, we want a things to be
as simple as possible. Simplicity means, provided we are satisfied with

65
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the explanatory power, we should make our models as parsimonious as
possible. Simplicity also aids us in our duty to explain assumptions, mod-
els, and implications to co-workers and senior management. The easiest
assumption to make about price returns is to assume they are normally
distributed

R ∼ N(µ, σ).

If this is so, our analysis can be greatly simplified, because estimates of the
unknown parameters µ and σ can be obtained as

µ̂ = r1 + r2 + · · · + rN

N
,

and

σ̂ =
√∑N

i=1(ri − µ̂)2

N − 1
.

These two equations should feel familiar, they are the same as those used
to calculate the sample mean and sample standard deviation respectively.
Provided this model satisfactorily describes the price return of the energy
contract of interest we should not shy away from using it. To aid our
discussion we rewrite the above model slightly modified as

rt = µ + σ × εt, where εt ∼ N(0, 1).

The model tells us that on average we can expect a return of µ with stand-
ard deviation equal to σ . The observed return rt will differ from this value
primarily due to the random variable εt which has a standard normal
distribution. In the case of daily returns of equity markets such as those
listed on the London Stock Exchange or the New York Stock Exchange it is
often reasonable to assume µ = 0 with σ somewhere in the range of 0.10 to
0.4. Indeed over the period April 1994 to end of March 2004, σ for various
world equity indices variedwidely at 0.145, 0.152, 0.173, 0.215, and 0.286 for
the FTSE 100, S&P 500, Nikkei 300, French CAC 40, and Hong Kong Hang
Seng index respectively.

In Chapter 3 the daily price returns of the 2 month forward Brent Crude,
Gas Oil spot and Dow Jones Swiss electricity price index were modeled as

RBrent ∼ N(0.0008, 0.0188)

RGas Oil ∼ N(0.0009, 0.0224)

EElectricity ∼ N(0.001, 0.176)
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Therefore, for Brent Crude we can write

rt = 0.0008 + 0.0188 × εt,

whilst for Gas Oil over the same period we might specify

rt = 0.0009 + 0.0224 × εt,

and for the Dow Jones Swiss Electricity returns

rt = 0.001 + 0.176 × εt.

In all three cases we assume εt ∼ N(0, 1).
Having specified a model for price returns, we will need to assess its

adequacy. How shouldwe do this? Well, it requires first that wemake expli-
cit the assumptions underlying our postulated model. The most obvious
assumption is about the distribution of εt and we investigate this further in
the remaining pages of the chapter. The other assumptions, which may not
be so obvious concern the nature of µ and σ , we shall explore these further
later in this chapter and through much of the rest of this text.

5.2 USING DESCRIPTIVE STATISTICS TO ASSESS THE MODEL

We have discussed descriptive statistics in detail in Chapter 3. We already
know that a normally distributed random variable is symmetric, with the
mean equal to the median, a coefficient of skew equal to zero and kurtosis
equal to 3. Sample values much different from these, indicate the possib-
ility that the sample is not from a Normal distribution. Table 5.1 shows
some descriptive statistics for the standardized daily log price return of the

Table 5.1 Descriptive statistics for the standardized
log price return of Brent Crude (2-month forward),
Gas Oil (spot), and the Dow Jones Swiss Electricity
price index

Brent Crude Gas Oil DJS Electricity

Median −0.005 −0.039 −0.006

Average 0.000 0.000 0.000

Standard deviation 1.000 1.000 1.000

Skew −0.1039 −0.3411 0.7573

Kurtosis 4.3510 4.6212 9.5213
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2-month forward Brent Crude, Gas Oil (spot), and Dow Jones Swiss Elec-
tricity price index over the period February 2000 to February 2004. Notice
that for all three products there is only a small degree of skew, which is
also reflected in the smallish difference between the sample median and the
sample mean. Since the degree of skew is rather mild,1 we might not be too
phased in using a symmetric probability distribution such as the Normal
distribution. However, the high degree of kurtosis is of some concern, par-
ticularly in the Electricity index, which at 9.52, is considerably in excess of
what we might expect if εt were from a Normal distribution.

It is always useful to plot data. Figure 5.1 shows the histogram of the
standardized returns for each of the products. All three of the histograms
confirm our previous finding of approximate symmetry in the daily returns.
Theyalso indicate fatter tails thanwemight expect for anormallydistributed
random variable. The tails of the empirical distributions can be seen more
clearly in the dot plots of Figures 5.2, 5.3, and 5.4.

A useful complement to a histogram and dot plot is a QQ plot – a plot
of the quartiles (or %) of points below a given value of the sample data
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Figure 5.1 Histogram of the daily standardized log price return of Brent
Crude (2-month forward), Gas Oil (spot), and the Dow Jones Swiss

Electricity price index
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3210– 1– 2– 3– 4
Brent Crude

Figure 5.2 Dot plot of the daily standardized log price return of Brent
Crude (2-month forward)
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Figure 5.3 Dot plot of the daily standardized log price return of
Gas Oil (spot)

set against the quartiles of the postulated probability distribution – in this
case the normal distribution. A straight line (known as the reference line)
is also plotted. If the sample comes from the postulated probability dis-
tribution, the plotted points will fall along this reference line. Departures
from the reference line indicate departures from the specified distribution.
Figure 5.5 shows a QQ plot for data which come from a standardized nor-
mal distribution. Notice how most of the points lie along the reference line.
In contrast Figure 5.6 shows the situation where the data points come from
an alternate (not normal) distribution. Notice how the points deviate away
from the reference line, especially in the tails (high and low percentiles).
Figures 5.7, 5.8, and 5.9 show the QQ plots for each of the above products.
Neither of the graphs is particularly favorable to our assumption of nor-
mality. All three products exhibit significant deviations from the reference
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Figure 5.4 Dot plot of the daily standardized log price return of the
Dow Jones Swiss Electricity price index
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Figure 5.5 Normal distribution QQ plot for a normally distributed
random sample
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Figure 5.6 Normal distribution QQ plot for a non-normally
distributed random sample
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Figure 5.7 Normal distribution QQ plot of daily standardized log price
return of Brent Crude (2-month forward)
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Figure 5.8 Normal distribution QQ plot of daily standardized log price
return of Gas Oil (spot)
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Figure 5.9 Normal distribution QQ plot of daily standardized log price
return of the Dow Jones Swiss Electricity price index
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lines especially in their lower tails; indeed Electricity deviates considerably
in almost every respect including both upper and lower tails. The evidence
against the assumption of Normality of εt is mounting. Nevertheless it is
still worthwhile assessing the situation using a formal statistical test.

5.3 USING INFERENTIAL STATISTICS TO AID
MODEL CONSTRUCTION

One approach to testing the assumption of normality would be to specify
individual test statistics to assess whether the sample skew or sample kur-
tosis are statistically significantly different from the normal distribution.
Indeed in Chapter 3 we gave a test statistic for kurtosis. An altern-
ative is to use test statistics aimed specifically at assessing the overall
degree of normality of a sample. It turns out that there are numer-
ous test statistics for investigating this hypothesis. Two of the most
widely used (and available in almost every major statistical package) are
the Kolmogorov–Smirnov Test and the Anderson–Darling Goodness of
Fit test.

5.3.1 The Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test statistic is calculated as the largest absolute
deviation between the sample cumulative distribution function (denoted by
SN(r)) andpostulated cumulativeprobabilitydistribution function (denoted
by F(r) and in this case the cumulative normal distribution) over the entire
range of the price return random variable R:

T̂ = max |SN(r) − F(r)| over all r.

It can be interpreted as the maximal difference between the empirical and
theoretical cumulative probability distributions. A very small difference
indicates that the empirical and theoretical distributions are similar. The
test relies on the observation that the sample cumulative density function
is approximately normally distributed for large samples. Hence the test is
distribution free in the sense that the critical values do not depend on the
specific probability distribution being tested. For a 10% significance level
the critical value for the test statistic is approximately 1.224/

√
N. For 5%

significance level it is approximately 1.358/
√

N, and for a 1% significance
level it is approximately 1.628/

√
N.
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5.3.2 The Anderson–Darling test

The Anderson–Darling test statistic is given by:

T̂ = −N − 1
N

N∑
i=1

(2 × i − 1)[ln F(r̆i) + ln(1 − F(r̆N+1−i))],

where r̆i are the observations ordered by size.
This test statistic is a modification of the Kolmogorov–Smirnov test and

is more sensitive to deviations in the tails of the postulated probability
distribution. It achieves this added sensitivity by making use of the spe-
cific postulated distribution in calculating critical values. Unfortunately this
extra sensitivity comes at theminor cost of having to calculate critical values
for each postulated distribution. If we postulate a normal distribution for
our data then for a 10% significance level the critical value is approximately
0.631, for 5% significance level it is 0.752, and for a 1% significance level it
is 1.035. However, if we postulate another distribution, say a Weibull dis-
tribution then the critical value for a 10% significance level is 0.637, for 5%
significance level it is 0.757, and for a 1% significance level it is 1.038.

Table 5.2 give the Anderson–Darling test for each of the energy products
in question. The p-values are all less than 0.001, and thus we conclude that
eachof theproducts exhibits significantdeparture fromnormality.Weobtain
similar results when using the Kolmogorov–Smirnov test. Surprised? You
should not be as we were already aware of the high kurtosis of each of these
products relative to that of the normal distribution. Indeed the source of the
non-normality of the products appears to lie in their high relative kurtosis.

5.3.3 Jarque–Bera test

Another frequently used test of normality known as the Jarque–Bera (JB) test
uses both the coefficient of skew and coefficient of kurtosis to jointly assess

Table 5.2 Anderson–Darling test statistic for
the standardized log price return of Brent
Crude (2-month forward), Gas Oil (spot), and
the Dow Jones Swiss Electricity price index

Brent Crude Gas Oil DJS Electricity

Test statistic 1.932 2.471 14.416

p-value Less than Less than Less than
0.001 0.001 0.001
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Table 5.3 Jarque–Bera test statistic for the
standardized log price return of Brent
Crude (2-month forward), Gas Oil (spot),
and the Dow Jones Swiss Electricity price
index. Critical value at 5% is 5.99

Brent Crude Gas Oil DJS Electricity

40.64 67.29 974.86

the assumption of normality. The JB test statistic is given by:

T̂ = N

[
δ2

6
+ (κ − 3)2

24

]
,

where δ is the sample coefficinet of skew and κ is the sample coefficient of
kurtosis. This test statistic has a chi-squared distribution on 2 degrees of
freedom.2 It is an inherently pleasing test statistic because it is a joint test
of the null hypothesis (of normality) that sample skewness equals 0 and
sample kurtosis equals 3. For a 5% significane level the critical value is 5.99
(see Table A.2). Table 5.3 lists the value of the JB test statistic for each of the
products. Notice that for all of the products considered, the value of the test
statistic is greater than the critical value, and hence we continue to reject the
null hypothesis.

5.4 WHAT TO DO WHEN NORMALITY FAILS?

Given the available evidencewe can reject the normal distribution as a prob-
abilistic mechanism for generating price returns (at least for those specific
products considered so far), right? Not exactly ... but providedwe are happy
to stick with the simple model rt = µ+σ × εt, we would feel uncomfortable
with the assumption that εt is normally distributed. The question is what
to do next. We shall consider three solutions: in the first, we stick with the
normal distribution but modify its percentile function; the second involves
selecting an alternative probability distribution; and in the third approach
we use a mixture of normal distributions.

5.4.1 Adapting the simple model via a
Cornish–Fisher approximation

In the circumstances where the departure from normality appears to be
relatively mild we can adjust the percentiles of the normal probability
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distribution to take into account any skew and or kurtosis. Such
an adjustment is known as the Cornish–Fisher approximation. The
Cornish–Fisher approximation calculates the inverse probability function
F−1(1− α) as

F−1(1 − α) = F−1
Normal(1 − α) + 1

6

([
F−1
Normal(1 − α)

]2 − 1
)

× δ + 1
24

([
F−1
Normal(1 − α)

]3 − 3 × F−1
Normal(1 − α)

)
× κ

− 1
36

(
2 ×

[
F−1
Normal(1 − α)

]3 − 5 × F−1
Normal(1 − α)

)
× δ2,

where F−1
Normal(1−α) is the percentile function of the standard normal distri-

bution, δ is the sample skew and κ is the sample relative kurtosis. In terms
of our simple model, a Cornish–Fisher adjustment implies that

ε̃t ∼ NCFA(0, 1),

where NCFA(0, 1) is the Cornish–Fisher adjustment to the standard
normal distribution.

If the distribution is symmetricwith zero relative kurtosis thenNCFA(0, 1)
is identical to N(0, 1) and hence ε̃t = εt.

Figures 5.10, 5.11, and 5.12 plot the Cornish–Fisher adjusted (continu-
ous line) alongside the histogram of standardized returns for Brent Crude,
Gas Oil, and DJS Electricity respectively. Visual inspection of these fig-
ures reveals that the Cornish–Fisher adjusted probability distribution fits
all three products much better than the standard normal distribution. Since
the approximation appears reasonable we can adjust our simple model. For
Brent Crude we have

rt = 0.0008 + 0.0188 × ε̃t,

whilst for Gas Oil we would specify

rt = 0.0009 + 0.0244 × ε̃t,

and for the DJS Electricity

rt = 0.001 + 0.176 × ε̃t.

In all three cases we assume ε̃t ∼ NCFA(0, 1).
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Figure 5.10 Cornish–Fisher adjusted and histogram of daily standardized
log price return of Brent Crude (2-month forward)
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Figure 5.11 Cornish–Fisher adjusted and histogram of daily standardized
log price return of Gas Oil (spot)
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Figure 5.12 Cornish–Fisher adjusted and histogram of daily standardized
log price return of the Dow Jones Swiss Electricity price index

5.4.2 Selecting an alternative distribution

Another approach is to select an alternative probability distribution for εt.
The only question is which distribution should we choose? The best way
to address this issue is via the sample descriptive statistics. If we feel O.K
of allowing the selected probability distribution to be symmetric, our only
concern is choosing a distribution which can exhibit fatter tails than the
Normal distribution. Furthermore, since the 2-month Brent forward and
Gas Oil are quite similar in terms of their degree of kurtosis and skew we
should be able to get away with using the same probability distribution for
both of these products. DJS Electricity is a little more challenging; however,
to emphasize the limitations we shall continue to include it in our analysis.

5.4.2.1 Logistic distribution

Apotential probability distribution for these products is the Logistic distri-
bution. The Logistic distribution is a symmetrical bell-shaped distribution.
One of its common applications is as an alternative to the normal distri-
bution when a higher proportion of the observations being modeled are
distributed in the tails. This is exactly the situation we face with the energy
products discussed so far. Figure 5.13 illustrates the difference between the
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Figure 5.13 Logistic (flatter curve) and normal distributions

Table 5.4 Comparision of the standard normal
and standard logistic distributions

Distribution Kurtosis 5% Percentile 95% Percentile

Logistic 4.2 −1.6234 1.6234

Normal 3.0 −1.6448 1.6448

standard normal and logistic distribution with scale parameter equal to one
and location parameter equal to zero. It is immediately obvious that the
Logistic distribution contains considerably more probability in the tails –
that is it has heavier tails than the normal distribution. Table 5.4 gives a
comparison of the standard normal and logistic distribution with a location
parameter equal to zero and scale parameter equal to one. The higher value
of kurtosis for the Logistic distribution indicates that a higher proportion of
the observations are located further away from the mean than in the nor-
mal distribution. This is also reflected in the lower values for the 5th and
95th percentiles.

The probability density function of the logistic distribution, with location
parameter α and scale parameter β, is given by

f (r) = exp((r − α)/c)
c[1 + exp((r − α)/c)]2 ,
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where c is calculated as

c = √
3
β

π
.

Provided we assume c > 0 we can estimate α using the sample mean and β

using

β =
√(

3
π2 S2

)

where S is the sample standard deviation.
The logistic distribution has a kurtosis equal to 4.2, which is close to the

sample estimates of both the 2-month forward Brent Crude and Gas Oil
spot. However, it is considerably less than the sample estimate of kurtosis
for Electricity. Figure 5.14 shows the fitted logistic distributions and histo-
grams of the standardized returns. It is immediately apparent that the fitted
logistic distribution provides a much better fit than the standard normal
distribution. Therefore, for Brent Crudewemight wish to specify themodel

rt = 0.008 + 0.010365 × ...
εt,

whilst for Gas Oil over the same period we might specify

rt = 0.009 + 0.013452 × ...
εt,

where we assume
...
εt is from the standard logistic distribution. Notice that

in this case, given an estimate β̂, the random error
...
εt is multiplied by√

(π2/3)β̂2. This is because this quantity is equal to the sample standard
deviation. As the sample kurtosis of Electricity is considerably larger than
that of the logistic distribution, we would probably elect not to use this
distribution to approximate the empirical data.

Selecting an appropriate distribution for empirical data requires a con-
siderable degree of art embedded in the science. Once we have calculated
sample estimates of means, standard deviations, skew, and kurtosis, we
are in a position to begin to narrow down the choice to a handful of suit-
able probability distributions. In practice the parameter estimates of many
of the potential distributions may not be readily available in a spreadsheet
or statistical package and one must then resort to numerical programming.
When time is short and the pressure is on I have found the probability dis-
tributions listed in the following section to be particularly useful. Alongside
the distributions I also give expressions for the parameter estimators. A key
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Figure 5.14 Fitted logistic distribution (continuous line) and histogram of
daily standardized log price returns

element of my criteria for listing these distributions is that their estimators
can be quickly entered into a spreadsheet package, no specialized statistical
software is required.

5.4.2.2 Extreme value (type I) distribution

Extreme value probability distributions, of which there are three types, are
useful for modeling the risk inherent in the tails of a sample. Here we focus
on the type I distribution for the smallest extreme value. The probability
density function of the extreme value (type I) distribution is given by

f (r) = 1
β
exp

(
(r − α)

β

)
× exp

[
− exp

(
(r − α)

β

)]
,
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Figure 5.15 Simulated values (10,000) of a type I Extreme Value
distribution with location parameter α = 0 and scale parameter β = 2

where α is a location parameter and β > 0 is a scale parameter. Figure 5.15
shows the results of a simulation of 10,000 observations from this distribu-
tion with location parameter equal to 0 and scale parameter equal to 2. The
distribution has a skew of around 1.14 and a kurtosis of 5.4. We can calculate
the arithmetic mean of the distribution as

Mean = α − 0.57721 × β.

The median is

Median = α + β log log 2.

Notice that for this distribution, as opposed to the normal and logistic,
the location parameter is not identical to the arithmetic mean. The same is
true for the scale parameter. Indeed the variance is calculated as

variance = β2π2

6
.

Aquick and approximate estimator of the location and scale parameters are
given by

1. α̂ = R̄ − (0.57221β̂), where R̄ is the sample mean.

2. β̂ =
(√

6
π

)
S, where S is the sample standard deviation.
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Figure 5.16 Laplace distribution with location parameter α = 0 and
scale parameter β = 2

5.4.2.3 Laplace distribution

The probability density function of the Laplace distribution is given by

f (r) = 1
2β

exp
(

−|r − α|
β

)
,

where −∞ ≤ α ≤ ∞ is the location parameter and β > 0 is the scale para-
meter. The distribution is symmetric with both the mean and median equal
to α. Figure 5.16 illustrates a Laplace distribution with location parameter
equal to 0 and scale parameter equal to 2. The distribution is fat tailed with
a kurtosis of 6. The location parameter can be estimated using the sample
median whilst the scale parameter can be estimated as

β̂ =
N∑

i=1

|ri − α|
N

.

5.4.2.4 Student t-distribution

The Student t-distribution is popular for modeling fat tails of price returns.
The general expression for its probability distribution function is quite
complex. Estimation of the parameters requires optimization via themethod
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Figure 5.17 Student t distribution with 2 degrees of freedom alongside
standard normal distribution

of maximum likelihood (see Section 5.6.1). The exact characteristics of the
distribution are determined bywhat are knownas degrees of freedom. It just
happens to turn out that a Student t-distribution with more than around 30
degrees of freedom is approximately normally distributed. The larger the
degrees of freedom, the better the approximation to the normal distribu-
tion. We have already seen that the normal distribution is not necessarily a
goodmathematical proxy for energy price returns, hence if we use a Student
t-distribution we are likely to choose one with low degrees of freedom. It
turns out that if we choose 2 degrees of freedom, the Student t-distribution
has a very simple form given by

f (x) = 1
(2 + r2)3/2

.

In Figure 5.17 the results of simulating 100,000 observations from this dis-
tribution are given alongside the standard normal distribution; we see that
it is symmetric around zero but has much fatter tails relative to a standard
normal distribution.

5.5 BUILDING MODELS USING MIXTURE DISTRIBUTIONS

So far we have developed three models for energy price returns. In

Model 1: rt = µ + σ × εt, where εt ∼ N(0, 1).
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This model did not appear adequate for the energy products we discussed.
This was primarily due to the apparent failure of the normality assumption
surrounding ε.t. The second model used the Cornish–Fisher expansion:

Model 2: rt = µ+σ×ε̃t, where ε̃t ∼ NCFA(0, 1) andNCFA(0, 1) is theCornish –
Fisher adjustment to the standard normal inverse probability function. In
the third model we have

Model 3: rt = µ + σ̃ × ...
εt, where we assume

...
εt is from some non-normal

probability distribution.

In choosing to select a model for energy price returns we might begin with
model 1, if we reject it we can try model 2 and if we reject this model, we
might then select model 3.

Statistical modeling is often complicated and messy. Outside of the the-
oretical papers in academic journals, the practicing risk manager demands
simplicity and above all interpretability. Since model 1 is as simple as
things get it is worth spending a little more time on trying to under-
stand how its basic structure can be altered in order that we might be
able to keep the assumption of normality. Keeping things “normal,” and
the inherent requirement for simplicity, is a sentiment echoed in the wider
financial community:

The biggest problem we now have with the whole evolution of the risk is the fat-
tailed problem, which is really creating very large conceptual difficulties. Because
as we all know, the assumption of normality enables us to drop off the huge
amount of complexity in our equations. Because once you start putting in non-
normality assumptions, which is unfortunatelywhat characterises the realworld,
then these issues become extremely difficult. Dr Alan Greenspan (Chairman of
the Board of Governors of the Federal Reserve System of the United States of
America, 1997)

To get a feel for a potential source of non-normality consider Figure 5.18
which shows the histogram of price returns for a fictional energy product.
Notice the distribution of price returns is skewed and fat tailed. Indeed the
coefficient of kurtosis is around 8 and the coefficient of skew is approxim-
ately equal to −2. Clearly these price returns cannot be generated from a
Normal distribution, or can they? In actual fact they were generated from
a mixture of two Normal distributions, the first with a mean of −5.5, the
second with a mean of 2. Both distributions have a standard deviation of 1.
If we denote the mean of the sample by µ, the mixture equation used to
generate the returns was

µ ∼
{

N(−5, 1) with probability 0.95
N(2, 1) with probability 0.05.
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Figure 5.18 Histogram of the simulated price returns of an imaginary
energy product

The important point to recognize is that although the price returns were
generated by two separate normal distributions, the mixture distribution
appears non-normal. It exhibits characteristics which are often evident in
energy price returns – skew and kurtosis.

The possibility that energy price returns are generated by a mixture of
normal distributions puts the assumption of normality back on the table.
Large values for the coefficient of skew and kurtosis in empirical data may
simply reflect that returns have been generated by a mixture of normal dis-
tributions. Given this possibility, it seems reasonable to adapt model 1 to
take this into account

rt =
{
µ1 + σ × εt with probabilty θ ,
µ2 + σ × εt with probabilty 1 − θ ,

where εt ∼ N(0, 1).

5.5.1 A simple procedure for estimating mixture distributions

The procedure by which we can estimate the parameters of the above
mixture of normals model is as follows.3

Step 1: Simulate two large samples, the first from a normal distributionwith
mean equal to µ1 and the second with mean equal to µ2. Both distributions
should have a standard deviation equal to 1.
Step 2: Choose a value for the mixing probability θ .



M O D E L I N G A N D F I T T I N G P R I C E D I S T R I B U T I O N S 87

Step 3: Construct the aggregate return series using the mixing probability
and both samples.
Step 4: Standardize the aggregate return series so that it has a mean of zero
and standard deviation equal to 1.
Step 5: Compare the descriptive shape statistics (skew and kurtosis) of the
simulatedaggregatedistribution to theempirical characteristics of the stand-
ardized sample. If they are reasonably close you are done, if not go back to
step 1.

The process is iterative and easily implemented in a spreadsheet package
or statistical tool such as R. We illustrate the ease with which this can be
accomplished in Example 5.1.

Example 5.1 Fitting a mixture of normal distributions to the
WEFA Steam Coal index returns

Figure 5.19 shows the histogram of standardized quarterly returns of the
WEFASteamCoalARAprice index over the periodMarch 1996 toDecember
2003. This index of steam coal prices is commonly used as a benchmark
index for derivative trades and also for physical coal transactions. The his-
togram indicates a moderate degree of asymmetry with a relative large
amount of observations in both tails. The coefficient of kurtosis is 5.7
with the coefficient of skew around 0.9. We shall attempt to describe these
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Figure 5.19 Histogram of standardized WEFA Steam Coal ARA quarterly
price returns
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empirical characteristics using a mixture of two Normal distributions each
with standard deviation equal to 1, but with differing means. We begin by
simulating two samples of 10,000 observations as follows

Sample 1 ∼ N(6, 1),

Sample 2 ∼ N(3, 1).

We choose as the mixing probability θ = 0.9. The resulting aggregate stand-
ardized return series has a skew of 1.4 and kurtosis of 5. Since the skew
appears a little high we re-simulated sample 1 with a mean of zero and
sample 2 with a mean of −2.5 along with a mixing probability of 0.995. In
this case the skew for the aggregate distribution is around 0.6with a kurtosis
of 5.8. Since this is close to the values observed in the empirical data, our
final model for the standardized returns takes the form

rt =
{
εt with probability 0.995,
−2.5 + εt with probability 0.005,

where εt ∼ N(0, 1).

The fitted mixture probability distribution alongside the standardized
returns are shown in Figure 5.20. Visual inspection reveals the distribution
fits the data fairly well. However, the fit, especially the right tail, can be
considerably improved by further experimentation.
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Figure 5.20 Fitted normal–normal mixture distribution and histogram of
WEFA Steam Coal ARA quarterly price returns
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5.5.2 A generic model for mixture distributions

We can obtain more flexibility in our fitting if we generalize the mixture
model to the situation where energy price returns have been generated by k
different normal distributions. In this case our model would take the form

rt =




µ1 + σ × ε1t with probability θ1,
µ2 + σ × ε2t with probability θ2,

.

.

.
µk−1 + σ × εk−1

t with probability θk−1,
µk + σ × εk

t with probability θk ,

where εt ∼ N(0, 1)

Of coursewe could go even further and remove the assumption of normality
of the εs. If we denote an arbitrary probability distribution �(φ1, ...,φn),
where {φ1, ...,φn} are its parameters we could specify an even more general
model of the form:

rt =




µ1 + σ × ε1t with probability θ1,
µ2 + σ × ε2t with probability θ2,

.

.

.
µk−1 + σ × εk−1

t with probability θk−1,
µk + σ × εk

t with probability θk ,

where εi
t ∼ �i(φ1, ...,φn).

In this model �i(.) and �j(.)(i �= j) may be completely different probability
distributions. In practice fitting the above model will prove complicated,
especially as k increases. It can be done as shown in Example 5.2, but
involves estimating both the θs and the parameters of k possibility different
probability distributions.

Example 5.2 Fitting a normal–logistic mixture distribution to the
WEFA Steam Coal index returns

Figure 5.21 shows the fittedmixture distribution derived from amixture of a
standard Logistic distribution (with scale parameter equal to 1 and location
parameter equal to 0) and a normal distribution (with mean equal to −0.06
and standard deviation equal to 1). Themixing parameter θ was set equal to
0.5. These values were obtained by following the procedure described pre-
viously. In this case the first sample was simulated from a standard logistic
distribution and the second sample from a normal distribution. The fitted
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Figure 5.21 Fitted logistic–normal mixture distribution and histogram of
WEFA Steam Coal ARA quarterly price returns

distribution is marginally more peaked than the fitted Normal–Normal
mixture distribution of Figure 5.20.

Ideally in fitting mixture distributions we would like to keep k small say
equal to 2 or 3. A useful starting point is to try to capture the characteristics
of the empirical data with two normal distributions, failing that try three
normal distributions and so on. If this fails then it might be feasible to try
a normal and say logistic or student t-distribution. This is very much an
adhoc approach and it should be noted that as k increases we rapidly depart
from our core objective of parsimony.

5.6 GENERAL APPROACHES FOR ESTIMATING PARAMETERS

All probability distributions, including the now familiar Normal and
Logistic, are totally determined by their parameters. In order to obtain
a suitable probability model for our energy price return data we need to
obtain an estimate of the parameters of the postulated probability model.
By now you should be relatively comfortable in specifying and assessing
the validity of a probability model. The question is how can we obtain para-
meter estimates for those probability distributions not discussed so far in
this chapter? For the Normal distribution we were fortunate in being able
to use the sample estimator of themean and variance as these corresponded
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to the parameters of the probability distribution. For other distributions
this will not be the case and we will need to obtain a suitable estimator.
In practice there are three general approaches we can use to obtain a suit-
able estimator. The first approach involves plotting the sample data against
the cumulative probability function of the postulated probability distribu-
tion on special graphical paper. The value of the estimated parameters is
then read off the graphical plot. This approach is useful for quick approxim-
ations. In the second approach a system of equations equal to the number of
parameters to be estimated is solved to yield the estimators. Common tech-
niques in this category are the Method of Moments, Probability Weighted
Methods, Order Statistics and Percentile Matching. The third approach
includes optimization methods which yield estimators by maximizing or
minimizing some function of the data. Typical techniques in this category
are the methods of maximum likelihood and ordinary least squares. In the-
ory any of the above methods could be used to obtain parameter estimates.
However, two techniques namely, the method of maximum likelihood and
ordinary least squares, have dominated because they produce estimators
that have good statistical properties and can be easily programmed into
statistical packages.4

5.6.1 The method of maximum likelihood

The method of maximum likelihood is one way by which we can obtain
an estimator. We already know that an estimator is essentially a func-
tion of the data. For example the sample mean is an estimator of the
population mean – it is a simple function of the sample data. The same
can be said for the sample variance, skew and so on. Sample estimat-
ors of the parameters of probability distributions are also some functions
of the sample data and hence their specific values will be dependent on
the observed values in the sample. The method of maximum likelihood
makes good use of this property. It chooses the most likely values for
the parameters given the observed data. This is achieved by maximiz-
ing what is known as the likelihood equation of the postulated prob-
ability model. The likelihood function of a sample is the probability of
observing the actual sample given the postulated probability model under
the assumption that the observations are all from the same underlying
probability distribution with given (unknown) parameters and statistically
independent of each other. This assumption is often shorted to independent
identically distributed.

Givenasampleofobservationson theprice returnof someenergyproduct
{r1, ..., rN}, and a postulated probability density, f (r), which depends on
k parameters {�1, ...,�k} whose values we wish to estimate; The likelihood
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equation is given by

L(�1, ...,�k|r1, ..., rN) =
N∏

i=1

f (ri)

The likelihood equation is interpreted as a function of the parameters for
a given sample {r1, ..., rN}. The objective is to find the values of the para-
meters {�1, ...,�k} that make the observed values of {r1, ..., rN} most likely.
The most likely values of the parameters are those that maximize the like-
lihood function. In practice it is often more convenient to work with the
log likelihood

log L(�1, ...,�k|r1, ..., rN) =
N∑

i=1

f (ri).

5.6.1.1 Analytically solving the likelihood function

Oncewe have specified a likelihood function, we seek to find those values of
the parameters that maximize it. One approach, illustrated in Example 5.3,
is to take partial derivatives with respect to each of the parameters, set these
derivatives equal to zero and solve the resulting set of equations for the
unknown parameters.

Example 5.3 Likelihood and log likelihood function of an
exponentially distributed sample

Suppose a energy risk manager is only interested in the absolute value of
negative returns of a particular product. She collects a sample {r1, ..., rN}
which she assumes is independent identically distributed with probability
density function:

f (ri) = λ exp(−λri)

This is the probability density of the exponential distribution. The likelihood
function for the sample is

L(λ|r1, ..., rN) =
N∏

i=1

f (ri) =
N∏

i=1

λ exp(−λri).
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Taking the natural logarithm yields the log likelihood

log L(λ|r1, ..., rN) = N log(λ) − λ

N∑
i=1

ri.

The partial derivatives of the log likelihood function are given by

∂ log L(λ|r1, ..., rN)

∂λ
= N

λ
−

N∑
i=1

ri = 0

Solving for λ, the maximum likelihood estimator is therefore

λ̂ = 1

(1/N)
∑N

i=1 ri
.

Recall the previous comment that an estimator is a function of the sample
data. Takea close lookat the above equation–does it seemfamiliar? It should
be, for it is simply 1/sample mean. Of course not all estimators are this easy
to interpret. But it does serve to reinforce thepoint that an estimator is a func-
tion of the sample data. We can use the same analytical technique to obtain
the maximum likelihood parameters for many probability distributions;
Example 5.4 illustrates this for the normal distribution.

Example 5.4 Analytical solution to the log likelihood function of an
normally distributed sample

The normal likelihood function is given by

L(µσ 2|r1, ..., rN) =
N∏

i=1

f (ri) =
N∏

i=1

{
1√
2πσ 2

exp
(

− 1
2σ 2 (ri − µ)2

)}

= (2πσ 2)−(1/2N) exp

{
−1
2

N∑
i=1

(ri − µ)2

σ 2

}
.

The log likelihood function can be written as

L(µσ 2|r1, ..., rN) = −1
2

N log 2πσ 2 − 1/2
∑N

i=1(ri − µ)2

σ 2 .

The analytical solution involves obtaining estimates that maximize the
likelihood function. As we have already seen this involves taking partial
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derivatives with respect to each of the parameters. These derivatives are
then set equal to zero and the estimators arise from solving the resulting set
of equations. The first derivative of the log likelihood function with respect
to µ is

∂ log L(µ, σ 2|r1, ..., rN)

∂µ
=

N∑
i=1

(ri − µ)

σ 2 .

Setting equal to zero and solving

µ̂ = 1
N

N∑
i=1

ri

Thefirst derivative of the log likelihood functionwith respect to σ is givenby

∂ log L(µ, σ 2|r1, ..., rN)

∂σ 2 = − N
2σ 2 +

N∑
i=1

(ri − µ)2

2σ 4 .

Setting equal to zero and solving

σ̂ 2 = 1
N

N∑
i=1

(ri − µ̂)2.

Therefore the maximum likelihood estimators of µ and σ are

µ̂ = 1
N

N∑
i=1

ri and σ̂ 2 = 1
N

N∑
i=1

(ri − µ̂)2.

In the above example the estimator µ̂ is simply the arithmeticmean. This is to
be expected, aswepreviously saw theparameters of theNormaldistribution
can be estimated by the sample mean and sample standard deviation. The
estimator for the variance feels familiar yet somehow different. In fact it is
very similar to the sample estimator of the variance

S2 = 1
N − 1

N∑
i=1

(ri − µ̂)2.

The only difference is that the maximum likelihood estimator divides by N
rather thanN −1. Themaximum likelihood estimator is thus a biased estim-
ator of variance. It should actually divide by N − 1 and not N. Whilst this
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is not particularly important in large samples it can be a potential problem
in small samples. To see this consider the standardized quarterly returns
of the WEFA Steam Coal ARA price index over the period March 1996 to
December 2003. Since the returns are standardized they will have a mean
of 0 and a variance of 1. The maximum likelihood estimator of the mean
corresponds to the sample estimate, in this case 0. However, the maximum
likelihood estimate of the variance is 0.969, slightly less than the sample
variance of 1. Therefore in practice, when estimating the parameters of the
normal distribution, we shoulduse the samplemean and sample variance as
estimators for theparameters of the normal distribution rather than themax-
imum likelihood estimators. A key point to recognize is that maximum
likelihood estimators are not necessarily the optimum estimators.

5.6.1.2 Numerically solving the likelihood function

Analytically solving the log likelihood function for theparameters of interest
is very tedious and frequently impossible. Fortunately, most statistical
software have an optimisation function. For example the freely available
statistical package R has a function optimise().5 This function takes as
arguments:

1. the log likelihood (or other function you wish to maximise),

2. a range over which to numerically optimize the function,

3. a tolerance threshold for optimizing the function,

4. the sample data and an argument TRUE or FALSE for maximization and
minimization respectively.

Spreadsheet packages such as Microsoft Excel also offer optimization tools.
Excel has the solver tool which can be used to maximize or minimize a
function. To illustrate the use of an optimization function we return to
the statistical package R. We begin by simulating 100 observations from
an exponential distribution with parameter λ = 10

> sample =rexp(100,10)

Wealready know that the an estimator of the parameter λ is 1/samplemean.
The sample mean can be calculated using

> mean(sample)
[1] 0.10212
> 1/mean(sample)
[1] 9.792.
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Hencewe estimate λ̂ = 9.792, which althoughnot exactly equal to 10, is close
enough given the sample size. Let us attempt to estimate the parameter λ

using the method of maximum likelihood. We begin by specifying the log
likelihood function

log L(λ|r1, ..., rN) = N log(λ) − λ

N∑
i=1

ri.

In the statistical package R we can do this using the following command to
define the log likelihood function

> log.likelihood<-function(a,r) length(r)*log(a)-a *sum(r).

Now we can use the function optimize() to maximize the function
log.likelihood:

>estimate=optimise(log.likelihood,c(0,20),tol=.0000001,
r=sample,maximum=TRUE)
> estimate
$maximum
[1] 9.792
$objective
[1] 128.16

The output informs us that the log likelihood is maximized at a value of
128.16 with the estimate λ̂ equal to 9.792.

5.6.1.3 Maximum likelihood in a nutshell

Behind the equations and numerical procedures required to obtain max-
imum likelihood estimates is a very simple notion. We choose as our
estimates those values of the parameters of a probability distribution
which maximise the joint probability of them coming from the specific
sample. Thus the estimate of λ̂ = 9.792 given above, implies, given
the sample, that 9.792 is the most likely value for the parameter of
the underlying probability distribution. It is more likely than a value
of 8.98 and more likely than a value of 10.79. It is that value which
has the maximum probability of coming from the given sample. Of
course, since we are dealing with samples, we would expect the value
of the estimate to be close to, but not exactly match, the true pop-
ulation parameter value of 10. We could if we wished to construct a
confidence interval around the estimate in an attempt to measure this
uncertainty.
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5.6.2 The method of Ordinary Least Squares

For much of the time we will be content to use the method of maximum
likelihood. However on occasions, as we will see in Chapter 8, we will
choose to use the method of ordinary least squares (OLS) to arrive at an
estimate. To illustrate this method consider the function

Yt = β1 + β2X1t + β3X3t + · · · + βkXkt,

where {β1, ...,βk} are unknown model parameters for the distinct variables
{X1, ...,Xk}. If we define the observed model error as

εt = Yt − (β1 + β2X1t + β3X3t + · · · + βkXkt).

The method of ordinary least squares chooses the parameter values in such
a way as to minimize the square of the observed model errors

N∑
t=1

ε2t .

The underlying idea can be more easily appreciated in matrix notation.
Let Y be the vector whose elements are {y1, ..., yn}, X be a matrix whose
columns contain the K variables {X1, ...,Xk} and β a vector containing the
unknown coefficients {β1,β2, ...,βk}. Themethod ofOLS calculates estimates
of the coefficient vector denoted by β̂ so that the vector Xβ̂ minimizes the
sum of squared elements from the deviation

ε = Y − Xβ̂.

The solution is given by

β̂ = (XTX)−1XTY

5.6.2.1 Application of OLS in the R statistical package

Aswith themethodofmaximumlikelihood, OLS is contained inmost statist-
ical and spreadsheet packages. We shall illustrate its basic calculation using
the matrix manipulation capabilities of the R statistical package. Consider
the data on two variables Y and X where

Y = {12.66,19.87,1.19,2.97,13.48,2.29,6.77},



98 E N E R G Y R I S K M O D E L I N G

and

X = {7.97,11.25,3.26,3.12,8.33,2.81,4.24}.

This information can be entered directly into R as

> Y=as.matrix(c(12.66,19.87,1.19,2.97,13.48,2.29,6.77)),
> X=as.matrix(cbind(1,c(7.97,11.25,3.26,3.12,8.33,2.81,

4.24))).

Checking to ensure we have entered the data correctly we see

> Y
[,1]

[1,] 12.66
[2,] 19.87
[3,] 1.19
[4,] 2.97
[5,] 13.48
[6,] 2.29
[7,] 6.77
> X

[,1] [,2]
[1,] 1 7.97
[2,] 1 11.25
[3,] 1 3.26
[4,] 1 3.12
[5,] 1 8.33
[6,] 1 2.81
[7,] 1 4.24

Nowwe can use the function t() to obtain the transpose of X, and we store
it in the variable XT

> XT < −t(X)

> XT
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[2,] 7.97 11.25 3.26 3.12 8.33 2.81 4.24
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We also need a variable to represent XTX, we call this variable XTX.
Multiplication of the vectors is carried out using the operator “%*%”

> XTX<-t(X)%*% X
> XTX

[,1] [,2]
[1,] 7.00 40.980
[2,] 40.98 305.708.

Next we use solve() to obtain the inverse (XTX)−1 and the result is stored
in the variable XTXINV

> XTXINV<-solve(XTX)
> XTXINV

[,1] [,2]
[1,] 0.66372323 -0.08897176
[2,] -0.08897176 0.01519771

To obtain XTY we again use the matrix multiplication operator “%*%” and
store the result in the variable XTY

> XTY <-XT %*% Y
> XTY

[,1]
[1,] 59.2300
[2,] 485.0116.

Finally we can calculate the expression β̂ = (XTX)−1XTY

> Beta.Est = XTXINV %*% XTY
> round(Beta.Est,3)

[,1]
[1,] -3.840
[2,] 2.101.

We see that β1, the intercept term, is equal to −3.84 and the coefficient β2 is
equal to 2.101. Fortunately most statistical and spreadsheet packages hide
the details on these calculations, we need not dwell on them any further,
although if asked, you now know how they work.
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5.6.2.2 Estimating the parameters of a probability distribution using OLS

Recently, autoregressive conditional duration models have found popular-
ity as a statistical model for the analysis of data that does not arrive in equal
time intervals such as energy price data and sales data on products that are
tracked electronically. In contrast to more traditional fixed interval analysis,
the model treats the time between observation arrivals as a stochastic time
varying process. In other words, the times the observations occur, termed
“arrival times,” are treated as random so that the time duration between
observations is a random variable. In practice, when looking at the tick by
tick data of energy prices, one observes duration clustering – that is, a short
duration tends to follow another short duration while a long duration tends
to follow another long duration. A simple model of duration is given by:

Duration = expected duration × random error.

Autoregressive conditional duration models assume a specific form for
the “expected duration” term.As our interest in this chapter lies in using the
method of OLS to estimate the parameters of a probability distribution, for
brevity’s sake we shall assume that the expected duration is a constant. This
leaves us with the random error term, which can be fitted by log normal,
log logistic andWeibull distributions. As an illustration, we consider fitting
a Weibull distribution for the term “random error.” The probability density
function of a Weibull distributed random variable X is given by

f (x) =
(

βxβ−1

αβ

)
exp(−(x/α))β .

β is a shape parameter and α a scale parameter. An estimate of α can be
obtained as follows

α̂ = exp

(
Ỹ −

(
X̃

β̂

))
,

where

X̃ = 1
N

N∑
i=1

ln
{
ln
[

1
(1 − i/(N + 1))

]}
and Ỹ = 1

N

N∑
i=1

ln xi.

An estimate of β is obtained byfirst calculating themean rank, denoted byPi

Pi = (Rank(xi) − 0.3)
(N − 0.4)

and Pn = N
(N + δ)
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where δ is a small positive number, that is, 1E-20. Second, calculate the
transformed rank, denoted by Ti

Ti =
{
ln
(

1
1 − Pi

)}
.

Third, take the natural log the xs

yi = ln(xi)

Finally, calculate as the OLS coefficient between the Tis and the yis to arrive
at an estimate of β.

Example 5.5 OLS estimation of the parameters of the Weibull distribution
for duration data

To illustrate this procedure consider the duration data shown in Table 5.5.
The first column shows the original duration data, sorted by rank. The
second column gives the rank of each observation. For convenience the
observations are presented in size order and the rank increases from 1 (first
observation) to 100 (last observation). The third column gives the values
for Pi. The forth column presents the values of the natural logarithm of
the original data given in the first column. Calculating the OLS coefficient
between Ti and yi yields an estimate of β as β̂ = 2.531. Since X̃ = −0.5600
and Ỹ = 1.6169, the estimate of α is given by

α̂ = exp
(
1.6169 −

(−0.56
2.531

))
= 6.285.

The fitted values alongside the histogram of the original data are given in
Figure 5.22. The Weibull distribution appears to be reasonably adequate for
this data.

5.7 SUMMARY

Working with probability distributions in applied modeling will involve
estimation of the distributions parameters alongside assessing model
adequacy. We focused initially in this chapter on the more common probab-
ility distributions and provided estimation techniques which can be quickly
implementedandhavebeenusedsuccessfullyacrossmanyfields. If theprice
return is normally distributed the parameters σ and µ summarize the entire
distribution. These parameters can be estimated from the sample standard
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Table 5.5 Duration data and OLS calculation
of Weibull parameters

Original data Rank Pi Ti yi

0.9494 1 0.00703 −4.95431 −0.05193

0.9593 2 0.01707 −4.06194 −0.04155

1.1419 3 0.02711 −3.59420 0.13269

1.1998 4 0.03715 −3.27396 0.18215

1.9392 5 0.04719 −3.02953 0.66228

2.1377 6 0.05723 −2.83137 0.75973

2.204 7 0.06727 −2.66444 0.79027

2.7705 8 0.07731 −2.51998 1.01903

2.7739 9 0.08735 −2.39249 1.02025

2.8296 10 0.09739 −2.27824 1.04014

2.8667 11 0.10743 −2.17463 1.05316

2.8942 12 0.11747 −2.07974 1.06271

3.0622 13 0.12751 −1.99213 1.11913

3.0754 14 0.13755 −1.91069 1.12343

3.3185 15 0.15000 −1.81696 1.19951

3.3996 16 0.16000 −1.74667 1.22366

3.4619 17 0.17000 −1.68024 1.24182

3.6036 18 0.18000 −1.61721 1.28193

3.6414 19 0.19000 −1.55722 1.29237

3.7149 20 0.20000 −1.49994 1.31235

3.871 21 0.21000 −1.44510 1.35351

4.0675 22 0.22000 −1.39247 1.40303

4.0751 23 0.23000 −1.34184 1.40490

4.2768 24 0.24000 −1.29303 1.45321

4.3357 25 0.25000 −1.24590 1.46688

4.3932 26 0.26000 −1.20030 1.48006

4.3993 27 0.27000 −1.15610 1.48145

4.4104 28 0.28000 −1.11321 1.48397

4.4461 29 0.29000 −1.07151 1.49203

4.4568 30 0.30000 −1.03093 1.49443

4.4748 31 0.31000 −0.99138 1.49846

4.4759 32 0.32000 −0.95279 1.49871

4.5902 33 0.33000 −0.91510 1.52392

Continued
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Table 5.5 Continued

Original data Rank Pi Ti yi

4.5926 34 0.34000 −0.87824 1.52445

4.6815 35 0.35000 −0.84215 1.54362

4.7687 36 0.36000 −0.80679 1.56207

4.8997 37 0.37000 −0.77211 1.58917

4.9034 38 0.38000 −0.73807 1.58993

4.9088 39 0.39000 −0.70462 1.59103

4.9823 40 0.40000 −0.67173 1.60589

4.991 41 0.41000 −0.63935 1.60764

4.9999 42 0.42000 −0.60747 1.60942

5.0009 43 0.43000 −0.57604 1.60962

5.047 44 0.44000 −0.54504 1.61879

5.0808 45 0.45000 −0.51444 1.62547

5.1339 46 0.46000 −0.48421 1.63587

5.1607 47 0.47000 −0.45432 1.64107

5.2612 48 0.48000 −0.42476 1.66036

5.2819 49 0.49000 −0.39550 1.66429

5.2973 50 0.50000 −0.36651 1.66720

5.305 51 0.51000 −0.33778 1.66865

5.3092 52 0.52000 −0.30929 1.66944

5.337 53 0.53000 −0.28101 1.67466

5.3528 54 0.54000 −0.25292 1.67762

5.4369 55 0.55000 −0.22501 1.69321

5.6229 56 0.56000 −0.19726 1.72685

5.6406 57 0.57000 −0.16964 1.72999

5.6438 58 0.58000 −0.14214 1.73056

5.7621 59 0.59000 −0.11474 1.75130

5.8007 60 0.60000 −0.08742 1.75798

5.8046 61 0.61000 −0.06017 1.75865

5.8232 62 0.62000 −0.03295 1.76185

5.9148 63 0.63000 −0.00576 1.77746

5.9264 64 0.64000 0.02142 1.77942

6.022 65 0.65000 0.04862 1.79542

6.0345 66 0.66000 0.07586 1.79749

6.126 67 0.67000 0.10315 1.81254

Continued
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Table 5.5 Continued

Original data Rank Pi Ti yi

6.3373 68 0.68000 0.13053 1.84645

6.3614 69 0.69000 0.15801 1.85025

6.4845 70 0.70000 0.18563 1.86941

6.6287 71 0.71000 0.21340 1.89141

6.6699 72 0.72000 0.24135 1.89760

6.7237 73 0.73000 0.26952 1.90564

6.7501 74 0.74000 0.29793 1.90956

6.8693 75 0.75000 0.32663 1.92706

7.0485 76 0.76000 0.35566 1.95281

7.0593 77 0.77000 0.38504 1.95435

7.1493 78 0.78000 0.41484 1.96701

7.2452 79 0.79000 0.44510 1.98034

7.324 80 0.80000 0.47588 1.99116

7.3418 81 0.81000 0.50726 1.99358

7.4368 82 0.82000 0.53930 2.00644

7.8928 83 0.83000 0.57208 2.06595

7.9234 84 0.84000 0.60573 2.06982

8.0839 85 0.85000 0.64034 2.08987

8.1803 86 0.86000 0.67606 2.10173

8.2239 87 0.87000 0.71306 2.10704

8.4221 88 0.88000 0.75154 2.13086

8.5585 89 0.89000 0.79176 2.14692

8.5817 90 0.90000 0.83403 2.14963

8.6007 91 0.91000 0.87877 2.15184

8.6661 92 0.92000 0.92653 2.15942

9.0781 93 0.93000 0.97805 2.20586

9.4551 94 0.94000 1.03440 2.24655

9.6145 95 0.95000 1.09719 2.26327

9.8316 96 0.96000 1.16903 2.28560

9.8631 97 0.97000 1.25463 2.28880

9.9554 98 0.98000 1.36405 2.29812

10.073 99 0.99000 1.52718 2.30986

10.0924 100 1.00000 1.00000 2.31178
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Figure 5.22 Fitted Weibull distributions and histogram of duration data

deviation and sample mean respectively. In fitting other probability models
to sample data, the general approach is first to select a specific class of
probability distributions which match the sample descriptive statistics such
as skew and kurtosis; and then find the values for the parameters of the
proposed probability distribution(s) that best match the observed data.

Parameters of probability distributions can also be estimated viamethods
such as OLS or the method of maximum likelihood. The method of max-
imum likelihood is one of the most widely used estimation procedures. In
this approach the estimates are those values of the postulated probability
distribution parameters that make the observed sample datamost probable.
The procedure can be summarized as follows:

Step 1: Collect sample data.
Step 2: Postulate a probability model for the data.
Step 3: Assume observations are independently distributed from our
postulated probabilitymodel and thenwrite out the log likelihood function.
Step 4: Maximize the log likelihood function. The maximised values
will yield an estimate of the parameters of the postulated probability
distribution.

5.8 FURTHER READING

Details of the distributions given in this chapter and many others can be found in
Gumbel (1954), Aitchison and Brown (1957), Ascher (1981), Hahn and Shapiro (1967),
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Johnson, et al. (1994), and Johnson, et al. (1995). Lewis (2003) gives a comprehensive list
of useful probability distributions alongside easy to implement formulas for parameter
estimation. In addition Lewis (2004) provides a CD containing spreadsheets and Excel
macros (Visual Basic) that estimate some of the more popular probability models. The
formulas can be easily transcribed to other computing packages. In the final analysis
which specific approach one eventually adopts when fitting a probability distribution to
energy price returns is part of the art of appliedmodeling andwill depend heavily on the
particular context.
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5.9 REVIEW QUESTIONS

1 What are the strengths andweaknesses of the simplemodel for energy returns outlined
in this chapter?

2 How might you adapt the simple model to make it a better proxy of actual energy
returns?

3 Explain the difference between an estimator and an estimate.

4 Describe the simple procedure for fitting a mixture of distributions to price returns.
What are the advantages and pitfalls of this approach?

5 What is a likelihood function? What assumptions do you need to make before
specifying it?

6 Write out the likelihood function for the Normal distribution and hence derive the
estimates of the mean and variance.

7 What is the difference between the method of maximum likelihood and OLS?



C H A P T E R 6

Nonparametric Density
Estimation for Energy

Price Returns

Sitting on the very tip of my chair, feigning interest in the mumbled string
of motivational buzz words spouting out of the mouth of an unusually
dull director of global risk, it occurred to me that if I looked hard enough,
through the gray mist of the incoherent mutterings, there would emerge
some shape, some form to their ideas, which as yetmycolleagues and I could
not perceive. I mused on this thought, toyed with the idea of developing a
statistical algorithm thatwould filter out the noise, revealing the underlying
structure. My jocose thoughts were shattered by what was supposed to be
the motivational crescendo – we all rose to our feet and clapped our hands
somewhat like well-fed seals at feeding time at the local zoo – that is, with
not much enthusiasm. Unfortunately, for that individual, there was no form
to his ideas, no shape to his plan. Needless to say the listless, MBA-clad,
mumbo-jumbo speaking “hot shot”wasnot headof global risk for very long.
However, the experience stuck in my mind and re-stimulated my interest
in nonparametric statistical methods, a subset of which, non parametric
density estimation, is the subject of this chapter. It introduces nonparametric
density estimation as a complementary statistical mechanism for describing
energy price returns. It begins by discussing, the simplest nonparametric
density estimator – the histogram, how to construct it, and its properties
and limitations. This is followed by its generalization into kernel density
estimators. Such estimators are often perceived as an improvement over
histograms. The chapter discusses why this is so and outlines rules on how
to construct them so as to extract all the significant features of price return

107
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data. The chapter ends by giving some tips on how to explain and describe
empirical distributions to those not steeped in the language of statistics.

6.1 DESCRIBING ENERGY PRICE DATA WITH HISTOGRAMS

In the previous chapter we discussed fitting parametric probability dis-
tributions to energy price return data. This approach assumed we knew
something about the underlying (true) probability distribution, and then
attempted to fit a good proxy (such as the logistic, normal etc) to it. In one
sense by adopting such an approachwe are imposing a predetermined form,
a shape, onto the data. An alternative approach, which I have found par-
ticularly useful, is to encourage the data to tell its story – this can partly
be achieved by the use of descriptive statistics; it can also be assisted by
nonparametric density estimation discussed in this chapter. The objective of
density estimation is to approximate the true probability density of a ran-
dom variable such as the spot price return of Brent Crude. There are two
main types of density estimation: parametric and nonparametric. The dis-
tinction between the two is that parametricmethods, discussed inChapter 5,
assume prior knowledge about the distribution of the data, while nonpara-
metric methods do not. A histogram is the simplest nonparametric density
estimator. It provides information on the nature of the population distribu-
tion that generated the sample, the central tendency of the data (median,
modes, and so on), the degree of dispersion, and whether or not there are
any extreme events or outliers.

6.1.1 Histograms as a probability density estimator

The core idea of a histogram is to locally represent the density implied by
sample data by counting the number of observations in a sequence of con-
secutive sub-intervals, known as bins. Construction of a histogramproceeds
by dividing the interval covered by the sample data into equal width bins.
For every individual observation that falls into a particular bin a block of
size 1 equal to the bin width is placed on top of it. Figure 6.1 shows a typical
histogram, in this case the quarterly returns of the WEFA Steam Coal ARA
price index over the period March 1996 to December 2003. For explanat-
ory purposes the number of observations in each bin are given at the top
of each bar; for example, in the first (far left) bin of Figure 6.1 there is one
observation, this value is reported at the top of the corresponding bar.

The histogram is drawn using the actual frequencies rather than relative
frequencies. The histogram appears to indicate that the underlying density
is unimodal with a moderate degree of kurtosis implied by the relatively
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Figure 6.1 Histogram of WEFA Steam Coal ARA quarterly price returns

large number of observations in both tails. In fact the coefficient of kurtosis
is 5.7 and the coefficient of skew is around +0.9. In practice if we wish to
compare a histogram to a theoretical density we should construct it using
relative frequencies. In this case, we would choose a starting point for the
first bin say x0 and a binwidth h. Given a sample on {x1, ..., xN} the histogram
estimate, which we denote by f̂H(x), of some theoretical probability density
f (x), is given by

f̂H(x) = 1
Nh

(number of xi in the same bin as x).

Therefore in constructing a histogram we need to consider the bin width h
and the starting point x0.

6.1.2 Choosing the “optimal” bin width

The choice of the bin width has a particularly marked effect on the shape of
a histogram. For example, a bin width equal to 0.15 results in the histogram
shown in Figure 6.2. This is a completely different estimate of the under-
lying density than that observed in Figure 6.1. A different picture emerges
if we select a bin width of 0.005 as illustrated in Figure 6.3. In this case the
histogram appears bimodal and is overly spiky.

The sharp difference between the two histograms raises the question as to
what binwidth is optimal for providing the best descriptor of theunderlying
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Figure 6.2 Histogram of Steam Coal quarterly price returns
with bin width = 0.15
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Figure 6.3 Histogram of Steam Coal quarterly price returns
with bin width = 0.005

density? Anumber of rules of thumb have been proposed to assist with this
issue. Two of the most popular are:

Rule 1 : h = 3.49 × σ × N−(1/3),
Rule 2 : h = 2 × IQR × N−(1/3),

where h is the binwidth,N the sample size, σ the sample standard deviation
and IQR the inter-quartile range. Figure 6.4 shows two histograms of the
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Figure 6.4 Histogram of Steam Coal quarterly price returns
with bin width determined by rule 1 (bottom) and rule 2 (top)

quarterly returns of the WEFA Steam Coal ARA price index. The bottom
histogram calculates the bin width using rule 1. In this case the bin width
is h = 0.061. The top histogram uses rule 2 with the bin width value of
h = 0.021. Whilst there are some clear differences between the two histo-
grams, the contrast is not nearly as great as that between Figure 6.2 and
Figure 6.3.

Since the size of h determines the number of bins, we could also pre-
specify the number of bins and then work out the required bin width. A
popular way to achieve this is to use the following rule:

Rule 3: Number of bins = 1 + 3.3 × log10(N)

This ruleworks reasonablywell providedN > 15.Another frequently used
alternative is:
Rule 4: Number of bins = (2 × N)1/3

The bottom histogram, in Figure 6.5, calculates the binwidth using rule 3. In
this case there are 6 bins. The top histogram uses rule 4 and contains 4 bins.
Again there are some clear differences between the two histograms.

Fromtheabovediscussionwesee thatwe shouldnotpassively construct a
histogram, without some experimentationwith the binwidth. This is partic-
ularly important for riskmanagement, as price returns can be highly skewed
and fat tailed – important characteristics that may bemissed or exaggerated
by choice of an inappropriate bin width. Too large leads to very big blocks
and thus to a very unstructured histogram. Too small gives a very variable
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Figure 6.5 Histogram of Steam Coal quarterly price returns
with bin width determined by rule 3 (bottom) and rule 4 (top)

estimate of the underlying density with many unimportant spikes. Unfor-
tunately there is no one best solution for determining bin width. It is always
worth trying all four of the rules given here to see whether they are “telling
the same story,” one which is consistent with the descriptive statistics.

6.1.3 The effect of differing starting points

The choice of the starting point x0 also has a marked effect on the shape of a
histogram. For example, Figure 6.6 shows three histograms for the quarterly
returns of theWEFASteam CoalARAprice index using rule 1. The only dif-
ference between the histograms is the value used for x0. In the top histogram
it is set to−0.10,−0.12 in themiddle histogram and−0.14 in the bottom his-
togram. Even thoughwe have used exactly the same data with the same bin
width, the histograms give quite different stories of some of the key features
of the data: whereas all histograms indicate that the underlying density is
unimodal, only the bottom histogram suggests a symmetrical density. Once
again, and as was the case with differing values of h, we find ourselves with
three completely different estimates of the underlying density.

The property of histograms for representing the same data quite differ-
ently strongly contradicts with the goal of presenting pertinent features of
the data. It also conflicts with the goal of nonparametric statistics to “let the
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Figure 6.6 Histogram of Steam Coal quarterly price returns
with three different starting points

data speak for themselves.” We have seen that histograms of the same data
with the same bin width need not be identical and that the shape depends
heavily on both the starting point and the bin width. Too large a bin width
results in a unstructured histogram, too small a bin width results in an
unstable noisy histogram. Obviously, the same data speak quite differently
out of the different histograms. Despite these limitations it is clear that his-
tograms should be viewed by the risk manager as more than a simple and
convenient tool for the graphical representation of empirical data. They are a
reliable tool for estimating the underlying probability distribution for price
returns.

6.1.4 The average shifted histogram

To overcome some of the problems with basic histograms, the concept of an
average shifted histogram (ASH) has been developed. This approach com-
putes anumber of histogramsusing the samebinwidthbutdifferent starting
points and then takes the average over the histograms to characterize the
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Figure 6.7 Average shifted histograms for 100 observations from a
normally distributed random variable

data. This removes the dependence of the histograms’ shape on the start-
ing points. Figure 6.7 (top) shows the histogram for 100 observations from a
standard normal randomvariable. Whilst in this case the histogram appears
fairly symmetric, as a density estimate, it is not very smooth. Underneath
(second from top) is an ASH constructed using two histograms, followed
by anASH using 3, and then 4 histograms. Notice how theASH histograms
appear increasingly smoother as the number of histograms used increases.
All three ASH diagrams capture the characteristics of the underlying prob-
ability distribution including symmetry very well. Figure 6.8 shows ASH
diagrams for the quarterly returns of the WEFA Steam Coal ARA price
index. The resulting diagram is freed from the problems associated with
dependence on differing starting points illustrated in Figure 6.6. All three
diagrams in Figure 6.8 indicate a fairly symmetrical distribution with an
average return slightly greater than zero.

Whilst the ASH is often viewed as a histogram with a smaller bin width,
you should note that this is not quite the case because, as we have seen, the
shape of ordinary histograms is dependent on the starting points, ASHs are
not. In addition, the discontinuities of a histogram estimate are not due to
the underlying density, they are only an artifact of the chosen bin widths.
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Figure 6.8 ASH histograms for Steam Coal quarterly price returns

These discontinuities canmake it difficult, without experience, to grasp any
underlying structure.

The concept of smoothing using averages is a central idea in statistics. By
using varying starting points ASH may better be able to extract structural
elements of complexity from the patterns of random variation apparently
inherent in energy price returns. ASHs are thus designed to simultaneously
estimate and model the underlying structure. They are actually kernel
density estimators, a subject we turn to in the next section.

6.2 KERNEL DENSITY ESTIMATION

Akernel density estimator is defined as

f̂Kh (x) = 1
Nh

N∑
i=1

K
(

x − xi

h

)
,
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whereN are the number of observations in the sample and h is known as the
bandwidth (similar to the binwidth in ahistogram). The estimator calculates
the density at the center of the weighted xs found within a rolling interval
or “window.” In other words a kernel function is generated around each
data point xi in the sample. An estimate of the underlying density function
is obtained by adding these kernel functions together and scaling the sum to
equal 1. Kernel density estimators differ from histograms both in allowing
the windows to overlap and by the possibility of using different weighting
schemes on the xs. The function K(.), which determines the weights, is
termed the “kernel” and isusually chosenas a symmetric probabilitydensity
satisfying the condition

∫ ∞

−∞
K(u) du = 1.

6.2.1 Choosing the appropriate bandwidth

In order to illustrate the calculation of a kernel density consider the uniform
kernel for which

f̂ K
h (x) = 1

2Nh
(number of sample observations xi that fall in [x − h, x + h]).

Figure 6.9 shows a density plot of coal steam using this uniform density
and with h = 0.025. The kernel density estimate appears smoother than
the histogram estimates discussed in the previous section. However it does
suggest, at first glance, that the data is at least bimodal. This may be an
artifice of the data. We can attempt to eliminate these by increasing h.

Figure 6.10 shows the result of setting h equal to 0.5 (top), 0.2 (middle),
and 0.01(bottom). It is evident that the larger h the smoother the resulting
density plot. Conversely, the smaller h, the coarser and more jagged the
density plot. It is therefore critically important to choose an appropriate
value for h. Too large a value results in an over-smooth estimate and too
small results in an estimate that contains too much noise.

The amount of structure observed is therefore critically dependent on the
bandwidth. A number of rules of thumb have been proposed to assist with
this issue. Three of the most popular are:

Kernel Rule 1: h = σ × N−1/5

Kernel Rule 2: h = 0.79 × IQR × N−1/5

Kernel Rule 3: h = 1.06 × min
{
σ ,

IQR
1.34

}
× N−1/5
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Figure 6.11 Rectangular density plot of Steam Coal for using
kernel rules 1, 2, and 3

Kernel rule 1andkernel rule 3workbestwhen theunderlyingdistribution
is close to the normal distribution. Figure 6.11 shows three kernel density
plots of the quarterly returns of the WEFA Steam Coal ARA price return
using the above rules with a uniform kernel. The top diagram uses rule 1
with h = 0.0296, the middle diagram rule 2 with h = 0.0134, and the bottom
diagram rule 3 with h = 0.007.

Unfortunately, as with histogram bin width, there is no one best solution
for determining h. It is always worth trying all three of the above rules
alongside experimentation and then make an assessment as to which is
most consistent with the descriptive statistics and any prior knowledge.

6.2.2 Choosing an appropriate kernel

Construction of a kernel density requires the selection of a suitable band-
width and a choice of kernel. Which of the numerous probability distribu-
tions or other functions should we choose? Fortunately, the choice of kernel
is not nearly as important as the choice of bandwidth, this is illustrated in
Figures 6.12 and 6.13, which show density plots of WEFA Steam Coal ARA
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Figure 6.12 Density plot of Steam Coal using rules 1 and Rectangular,
Normal, and Epanechnikov kernels
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price return for different kernels using rule 1. With the exception of the
uniform/rectangular kernel (top diagram in Figure 6.12), there is little to
differentiate between the others.

Whilst the choice of kernel is not nearly as important as the choice of
bandwidth we should not passively construct a kernel density estimate
without some experimentation. It is always worth trying various kernels to
see whether they are “telling the same story,” one which you feel is consist-
ent with the given data. Alas, there is no automatic method for determining
the optimal kernel.

6.3 EXPLAINING EMPIRICAL DISTRIBUTIONS TO
NONSTATISTICAL PEOPLE

There is something about the language of statistics that is somehow repel-
lent to nonstatisticians. Maybe it has to do with distasteful experiences in
Statistics 101, maybe not. Either way, the quickest way to lose the attention
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Figure 6.14 Useful diagrams for discussing symmetry with
nonstatistical individuals
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Figure 6.15 Useful diagrams for discussing peaks in distributions with
nonstatistical individuals

ofmost senior executives is to talk in the language of statistics. It is one of our
responsibilities as risk managers, risk analysts, and quantitative analysts to
pass on essential quantitative information, free from the erudite haze than
has traditionally surrounded mathematical disciplines. Whilst distribution
names, such as Normal, Logistic, and Laplace are useful to ensure compact
communication between ourselves, they are useless for conveying inform-
ation to those not steeped in the discipline. This is because their names do
not carry with them any inherent information about the characteristics they
attempt to capture. The distribution name tells the nonstatistical person
nothing about the shape.

A long time ago, in a causal conversationwith a Chief Investment Officer,
I happened to mention that the returns for a particular product were highly
non-normal. The individual tooknon-normal tomeanabnormal andbecame
extremely agitated at the possibility of such returns occurring “on their
shift.” It would have been far better for me to have mentioned that the
returns were positively skewedwith a large probability of a positive payoff!
A simple diagram of the situation may have been sufficient. Effective risk
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Figure 6.16 Useful diagrams for discussing uniform, thin- and fat-tailed
distributions with nonstatistical individuals

management is not simply about quantitative methods. Success requires
communication to senior managers and co-workers in ways which insulate
and isolate them from the rigors and details of statistical and mathematical
methods and language. In talking to nonstatisticians I always remember the
astute words of the mythical statistician Cory Lation:1

Whoever invented statistical terms
Had a head that was stuffed with worms.
All these new words are so much junk,
And if I don’t learn them, I’m really sunk.

In describingprobability distributions to seniormanagement andother non-
statistical people, I usually refer to shape characteristics (skew, fat tails,
symmetric) rather than names of distributions or worse parameters of the
distributions. For example when describing a symmetric distribution (say,
the Normal distribution) it is preferable to refer to the mean and standard
deviation than the parameter names of mu (µ) and sigma (σ ); but it is even
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better to refer to shape characteristics. In fact, the old saying that a picture
is worth a thousand words is particularly relevant in risk management. In
terms of symmetry the simple diagrams of Figure 6.14, are usually suffi-
cient to convey to nonstatistical people what this concept implies in terms
of price returns or other risk factors. Figure 6.15 is another diagram that I
find useful when discussing modes or spikes. Finally, Figure 6.16 is useful
when discussing uniform (rectangular) distributions which I often term flat
distributions, and concepts such as fat and thin tailed. Always remember
that many professional people are not versed in the language of statistics,
nor do they particularly wish to be.

6.4 FURTHER READING

Silverman (1986),MarronandNolan (1988), andScott (1992) providevery accessible intro-
ductions tononparametric density estimation. Detaileddiscussionof bandwidth selection
are given in Marron (1989), Park and Turlach (1992), and Turlach (1993). Smoothing tech-
niques particularly relevant to energy risk modeling are given in Härdle and Scott (1992),
and Wand and Jones (1995). In addition Härdle (1991) discusses implementations in the
statistical language S, which can with minimal changes be ported into R or a spreadsheet
package.

Härdle, W. (1991) Smoothing Techniques, With Implementations in S, Springer, New York.
Härdle, W. and Scott, D. (1992) Smoothing in by weighted averaging using rounded
points, Computational Statistics, 7, 97–128.

Marron, J. (1989) “Comments onadatabasedbandwidth selector,”Computational Statistics
& Data Analysis, 8, 155–70.
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Monographs on Statistics and Applied Probability, Chapman and Hall, London.
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6.5 REVIEW QUESTIONS

1 What are the strengths and weakness of histograms as density estimators?

2 Explain the impact of bin width on the density estimate of a histogram.

3 Why can changing the starting point of a histogram have a drastic impact on its shape?

4 What are the advantages of ASH over ordinary histograms?
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5 Explain why ASH is a kernel estimator.

6 Describe the procedure for fitting a kernel density to price returns. What are the
advantages and pitfalls of this approach?

7 Discuss the pitfalls of using statistical language when discussing distributional shapes
with nonstatistical individuals. What can you do to improve the situation?



C H A P T E R 7

Correlation Analysis

To this point, we have dealt almost exclusively with problems of estimation
and statistical inference about a parameter of a probability distribution or
characteristic of a sample. Another important element of applied statistical
modeling of energy risks concerns the relationship between two or more
price or other variables. Generally, a risk manager will be interested in
whether above (below) average values of one variable tend to be associated
with above (below) average values of the other variable. Take for example,
a risk manger working for a petroleum refinery, who for hedging purposes,
is interested in knowing the relationship between the spot price of Brent
Crude and the future price of diesel fuel. If the riskmanager simply assumes
crude oil and diesel fuel prices always move in tandem, the company will
be exposed to the price risk if this relationship breaks down. If on the other
hand, the closeness of the two indices is defined in terms of a correlation
coefficient, then themanager at least has some rudimentarywayof assessing
whether or not the relationship exists and its strength.

This chapter is devoted to the elementary techniques of correlation
analysis – the study of relationships among a number of random variables
such as price and returns. It begins with definitions and properties of cor-
relation, continues with various ways to calculate correlation and ends with
a discussion of correlation and causation.

7.1 UNDERSTANDING CORRELATION

A correlation coefficient measures the extent to which two variables are
related to each other. Of course in principle, there are any number of ways
in which two variables might be related, therefore it is useful to postulate
some functional form.Acorrelation coefficient assumes a linear relationship
between the two variables. It takes values between −1 and +1. When the

125
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Figure 7.1 Scatter plot of two variables with perfect positive
(top) and negative (bottom) correlation

correlation coefficient is equal to+1 (−1) there is perfect positive (negative)
correlation, and when it is equal to zero there is no correlation. Figure 7.1
shows a scatter plot for the situation of perfect positive (top) and negative
correlation (bottom). Notice how in this case the points lie along a straight
line, which is upward sloping in the case of positive correlation and down-
ward sloping in the case of negative correlation. Figure 7.2, shows the case
where the correlation is equal to +0.70 (top diagram) and −0.70 (bottom
diagram). Whilst the correlation is not perfect we can clearly see that for
a positive correlation (top diagram) high values of one variable are associ-
ated with high values of the other variable, and low values of each variable
are associated with one another. For a negative correlation (bottom dia-
gram) high values of one variable are associated with low values of the
other variable. Acorrelation of zero indicates no linear relationship between
the variables. As shown in Figure 7.3, zero correlation leads to a random
looking series of points with no discernable pattern.

Correlation coefficients provide a useful scale againstwhich the closeness
of the relationship between two variables can be measured. Therefore, the
closer is the coefficient to its limit of ±1, the stronger the linear relation-
ship between the two variables. Given two random variables X and Y with
standard deviation σX and σY respectively; The correlation coefficient can
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be calculated as

ρ = Covariance (X,Y)

σXσY

7.2 CORRELATION AND HEDGING

Frequently one hears the claim that to hedge a unit of a spot price position
in an energy product one should take on an opposite position of 1 unit in the
corresponding futures contract. This strategy assumes the spot and future
markets move in tandem. If this is not the case the hedging strategy will be
subject to basis risk. An alternative approach to determining the hedge is to
note that given the spot price S and futures price F the variance of a portfolio
of h units of F and one unit of S can be calculated as

σ 2 = σ 2
S + h2σ 2

F − 2 × h × Covariance(F,S).

The question now is what value should h take? If we assume S and F always
move in tandem then it is arguable that it should have a value of 1. However,
since we know this is unlikely to be the case and because variation in this
portfolio is associated with price risk we could choose h to minimize σ 2. If
we choose this route then we see that

∂σ 2

∂h
= 2hσ 2

F − 2 × Covariance(F,S) ⇒ h = Covariance(F,S)

σ 2
F

.

Notice that if

σ 2
F = σ 2

S then h = Covariance(F,S)

σSσF
= ρ,

which is of course the correlation between S and F.

Example 7.1 Optimal hedge ratio for Jet fuel

The basic principles of hedging can beused formany commodities forwhich
no futures contract exists, because often these are similar to commodities
that are traded. Jet fuel prices exhibit substantial volatility with periods
of sustained rising (falling) prices. Rising prices place pressure on airline
costs hindering their ability to maintain positive cash flows. Whilst Jet fuel
is hedgable, there is not a perfect hedge available and alternatives such as
crude oil or heating oil futures/forwardsmust be used. Figure 7.4 presents a
time series plot of the daily Jet fuel spot price and 3-month Brent Crude
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Figure 7.4 Time series plot of Jet fuel spot and 3-month Brent
Crude future prices

future. As we might expect the two prices appear to be closely related,
with a correlation of 0.9; The correlation between log returns is slightly
lower at 0.712. Thus h, the number of contracts required for hedging, can be
calculated as

h = Covariance(Brent 3-month, Jet fuel spot)
Variance(Jet fuel spot)

= 1.042.

Clearly interrelationships between futures, forwards, and spot prices can
have a significant impact on business performance and the overall risk pro-
file; Therefore recognition of the correlation between prices is necessary for
energy players to manage risk better. In practice there are several ways to
calculate a correlation coefficient. We discuss some of these in the following
sections.

7.3 PEARSON PRODUCT MOMENT CORRELATION
COEFFICIENT

Given a sample of N paired observations each on two continuous random
variables X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN}, the product moment
correlation coefficient can be calculated as

ρ = 1/(N − 1)
∑N

i=1(xi − X̄)(yi − Ȳ)

SXSY
,
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where SX and SY are the sample standard deviations and X̄ and Ȳ are the
sample means. If we let x̃i = (

xi − X̄
)
and ỹi = (

yi − Ȳ
)
we can rewrite the

formula slightly modified as

ρ = 1/(N − 1)
∑N

i=1 x̃iỹi

SXSY
.

Since the x̃’s and ỹ’s are the deviations from the mean of X and mean of Y
respectively it is immediately apparent that if large positive values of X are
associated with negative values of Y then the product moment correlation
coefficient must be negative. On the other hand if positive values of X are
associated with positive of Y the coefficient is positive. A simple function
written in R to calculate the Pearson correlation coefficient is given below

pm.corr<-function(x,y)
{
xx=x-mean(x)
yy=y-mean(y)
sdx=sd(x)
sdy=sd(y)
N=length(x)
(1/(N-1)*sum(xx*yy))/(sdx*sdy)
}

In fact this correlation coefficient is available in most spreadsheet and stat-
istical packages. For example, it can be accessed in Excel using the function
Correl(data_range_1, data_range_2).

Example 7.2 Product moment correlation between unemployment and
Gross National Product (GNP)

From Chapter 1 we know that the general economic environment can have
an impact on the risks facing energy companies. Consider the situation
where higher than expected energy prices lead to a slowing of GNP growth
and productivity, which in turn lead to slower wage growth and an increase
in the unemployment rate. As part of the ongoing background analysis
of potential risks to the energy business a risk manger may be interested
in the relationship between GNP and unemployment. Let us pursue this
idea briefly using the R statistical package. The R data frame longley con-
tains seven macroeconomic variables observed yearly from 1947 to 1962.
A scatter plot of the two variables GNP and unemployment is shown in
Figure 7.5. A casual glance at the scatter diagram appears to indicate a pos-
itive relationship between these two variables. High values of one variable



C O R R E L AT I O N A N A LY S I S 131

250 300 350 400 450 500 550

20
0

25
0

30
0

35
0

40
0

45
0

GNP

U
em

p
lo

ye
d

Figure 7.5 Scatter plot of Gross National Product (GNP) and
unemployment from data frame Longley

are associated with high values of the other variable. What is the product
moment correlation between the level of GNP and unemployment? We can
use the previously defined function pm.corr() to find out.

> pm.corr(longley[,"GNP"],longley[,"Unemployed"])
[1] 0.604261

The correlation coefficient is approximately 0.60.1 How should we interpret
this value? First it is positive, and hence, appears to indicate a positive
association between the two variables. Second as a general rule of thumb an
absolute correlation in the range of 1.0 to 0.7 indicates that the two variables
are strongly correlated, 0.7 to 0.3 as moderately correlated and less than
0.3 as indicative of very little correlation. So at first glance with a product
moment correlation coefficient of 0.60 it appears that the two variables are
moderately and positively associated.

One of the key assumptions underlying the product moment correlation
coefficient is that the two variables used in its calculation are jointly nor-
mally distributed. For this reason it is known as a parametric correlation
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coefficient. Parametric correlation coefficients make an assumption about
the joint distribution of the correlated variables. If we do not wish to make
this assumption an alternative measure of correlation such as the Spearman
rank correlation coefficient can be used.

7.4 SPEARMAN RANK CORRELATION COEFFICIENT

The product moment correlation coefficient is sensitive to extreme observa-
tions. Moreover, tests based on it rely for their validity on the assump-
tion that the variables are from the bivariate normal distribution. The
Spearman rank correlation coefficient is more robust to extreme values and
is also nonparametric because it does not make any assumption about the
joint distribution of the variables. It calculates the correlation between two
variables using the ranks of the original data. Given a sample of N paired
observations each on two continuous random variables X = {x1, x2, ..., xN}
and Y = {y1, y2, ..., yN}, provided there are no tied ranks, the Spearman rank
correlation coefficient can be calculated as: ρ = 1 − [6∑N

i=1 d2i /(N
2 − 1)N],

where di are the differences of the ranked pairs of X and Y. The following
function written in R can be used to calculate the rank correlation between
two variables

rank.corr<-function(x,y)
{
rank.x=length(x)+1-rank(x)
rank.y=length(y)+1-rank(y)
d=sum((rank.x-rank.y)ˆ2)
N=length(rank.x)
1-((6*d)/((Nˆ2-1)*N))
}

Example 7.3 Rank correlation between unemployment and GNP

Returning to Example 7.2 we see that

> rank.corr(longley[,"GNP"],longley[,"Unemployed"])
[1] 0.6382353

This value of 0.64 is reassuringly close to the estimate of 0.60 given by the
product moment correlation coefficient.
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7.5 SPURIOUS CORRELATION

Up to this point we have been content to take the estimate of correlation
between two variables as indicative of an actual relationship. However,
in interpreting the correlation coefficient in this way we need to exercise
extreme caution so as to avoid coming to the wrong conclusion based on
spurious correlation. As an example of a spurious correlation consider
European storks which breed over parts of central Europe. In such areas
there is an increase in the number of new babies born in spring, precisely
when the storks appear and begin nesting. If we were to calculate the cor-
relation between babies born and the appearance of the storks it would be
high but spurious.

Example 7.4 Spurious correlation between the level
unemployment and level of GNP

In Example 7.2 we found a correlation of around 0.6 between the level of
GNP and unemployment. Thus, at a first look it appears as if there is a weak
positive correlation between the level of GNPandunemployment. Does this
make sense? The implication is that as the level ofGNPrises so does the level
of unemployment. Surely economic growth should have the opposite effect?
As the economy grows richer the unemployment level should in some sense
fall. The problem here is two fold. First we should really look at real GNP
(that is GNP adjusted for inflation – GNP.deflator) and second, because
both variables grow over time, we should use their rates of change rather
than their levels. Using the log rates of change instead of the actual levels
we have

> logChange.GNPdeflator=c(0.064161944,-

0.003395589,0.014631662,0.072190732,0.019558009,0.009132484,

0.010050336,0.011928571,0.033044795,0.035684537,0.021898685,

0.016114941,0.014109582,0.013049337,0.010318234)

> logChange.Unemp=c(-0.013245227,0.459736044,-0.094197274,-

0.467797768,-0.082905305,-0.032617305,0.648865554,-0.208714888,-

0.028643244,0.039602257,0.466463652,-

0.205095481,0.030477566,0.200971291,-0.181822306)

Figure 7.6 shows time series plots and a scatter plot of the variables. The scat-
ter plot (bottom) has a very slight downward slope, indicative of negative
correlation. The product moment correlation is

> pm.corr(logChange.GNPdeflator,logChange.Unemp)
[1] -0.4534178
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Figure 7.6 Time series plots and a scatter plot of the rate of change in
real GNP and the rate of change in unemployment

and the rank correlation is

> rank.corr(logChange.GNPdeflator,logChange.Unemp)
[1] -0.2107143.

Both values are negative, with the rank correlation coefficient almost half
that of the product moment coefficient. What can we conclude? If anything,
the relationship between the rate of change in GNP and the rate of change in
unemployment is negative –Growth in real GNP is associatedwith negative
rates of change in unemployment.

The key idea derived from this discussion is that measuring and using
correlation can be fraught with difficulty. One has to be careful that the
data are in the correct format at the start of the analysis. Table 7.1 shows
the correlation between the log returns for different types of New York
gasoline, Unleaded premium (Non-Oxy) denoted by GUPNO, Unleaded
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Table 7.1 Correlation table of log
returns of four types of gasoline

GUPNO GURNO GPO GRO

GUPNO 1.0000

GURNO 0.9483 1.0000

GPO 0.9579 0.9114 1.0000

GRO 0.9537 0.9537 0.8810 1.0000

regular (Non-Oxy) denoted byGURNO, Unleaded premium (Oxy) denoted
byGPO andUnleaded regular (Oxy) denoted byGRO.As onemight expect,
the correlations are all very high and close to 1.

7.6 THE KENDALL TAU COEFFICIENT

The Kendall Tau coefficient is a measure of the strength of the relationship
between two variables. It is in this sense similar to a correlation coefficient.
Given paired observations on X and Y, each variable is placed in rank order
with a value of 1 for the lowest, 2 for the next observation and so on. Like
other correlation coefficients it takes values between −1 and +1. Tau can be
estimated in R using cor.test(). However in practice there is little differ-
ence between the value obtained using Tau and the estimate of a Spearman
rank correlation coefficient. For this reason, it is little used in risk manage-
ment. Nevertheless, it is always worth calculating, not least for comparison
with the value obtained for the Spearman rank and Pearson coefficients.

7.7 CONFIDENCE INTERVALS FOR THE CORRELATION
COEFFICIENT

The computation of a confidence interval for a correlation estimate is com-
plicated by the fact that its samplingdistribution is not normally distributed.
Oneeasy-to-implement solution is touse theFisher z transformationprocess.
This process involves the following steps:

1. Transform the correlation estimate (ρ̂) into a Fisher z score (ẑ) using the
formula

ẑ = 0.5 ln
(
1 + ρ̂

1 − ρ̂

)

2. Compute a confidence interval for ẑ

3. Convert the confidence interval for ẑ into a confidence interval for ρ̂
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Let’s useExample 7.1 to illustrate the idea.Aswe expected, there is a positive
relationship between these twovariables, the larger the daily return onBrent
Crude the higher the return on Jet crude. The correlation based on N = 443
observations is 0.712. The problem is to compute a 95% confidence interval
given that ρ̂ = 0.712. As a first step we calculate the Fisher z score as

ẑ = 0.5 ln
(
1 + ρ̂

1 − ρ̂

)
= 0.5 ln

(
1 + 0.712
1 − 0.712

)
= 0.891.

This coefficient is approximately normally distributed, with a standard
error of

s = 1√
N − 3

= 1√
443 − 3

= 0.0477.

Using this knowledge we can calculate a 95% confidence interval, with the
lower bound computed as

ẑL = ẑ − 1.96 × s = 0.891 − 1.96 × 0.0477 = 0.798,

and the upper value computed as

ẑU = ẑ + 1.96 × s = 0.891 + 1.96 × 0.0477 = 0.984.

The conversion of these bounds to a confidence interval around ρ̂ can be
achieved using Table 7.2. The table contains only positive value of ρ̂ and ẑ.
Negative values of ẑ can be obtained by reversing the sign. The ρ̂ associated
with ẑL = 0.798 is 0.66 and the ρ̂ associatedwith ẑU = 0.984 is 0.75. Therefore,
the 95% confidence interval is

0.66 ≤ ρ̂ ≤ 0.75.2

Figure 7.7 shows the relationship between the width of the 95% confidence
interval and the number of observations used to calculate the estimate of
correlation (which we hold constant at 0.712). The picture that emerges is
quite clear, the larger the number of observations used to calculate the estim-
ate of correlation, the smaller the confidence interval. Tighter confidence
intervals can be obtained by using a larger number of observations.

7.8 HYPOTHESIS TESTS OF THE CORRELATION
COEFFICIENT

Correlation coefficients are useful descriptive measures of the strength of
linear association between two variables, they can also be used as the basis
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Table 7.2 Lookup table for Fisher z scores and
correlation estimate

Fisher z score Correlation estimate

0 0

0.01 0.01

0.02 0.02

0.03 0.03

0.04 0.04

0.05 0.05

0.0601 0.06

0.0701 0.07

0.0802 0.08

0.0902 0.09

0.1003 0.1

0.1104 0.11

0.1206 0.12

0.1307 0.13

0.1409 0.14

0.1511 0.15

0.1614 0.16

0.1717 0.17

0.182 0.18

0.1923 0.19

0.2027 0.2

0.2132 0.21

0.2237 0.22

0.2342 0.23

0.2448 0.24

0.2554 0.25

0.2661 0.26

0.2769 0.27

0.2877 0.28

0.2986 0.29

0.3095 0.3

0.3205 0.31

0.3316 0.32

Continued
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Table 7.2 Continued

Fisher z score Correlation estimate

0.3428 0.33

0.3541 0.34

0.3654 0.35

0.3769 0.36

0.3884 0.37

0.4001 0.38

0.4118 0.39

0.4236 0.4

0.4356 0.41

0.4477 0.42

0.4599 0.43

0.4722 0.44

0.4847 0.45

0.4973 0.46

0.5101 0.47

0.523 0.48

0.5361 0.49

0.5493 0.5

0.5627 0.51

0.5763 0.52

0.5901 0.53

0.6042 0.54

0.6184 0.55

0.6328 0.56

0.6475 0.57

0.6625 0.58

0.6777 0.59

0.6931 0.6

0.7089 0.61

0.725 0.62

0.7414 0.63

0.7582 0.64

0.7753 0.65

Continued
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Table 7.2 Continued

Fisher z score Correlation estimate

0.7928 0.66

0.8107 0.67

0.8291 0.68

0.848 0.69

0.8673 0.7

0.8872 0.71

0.9076 0.72

0.9287 0.73

0.9505 0.74

0.973 0.75

0.9962 0.76

1.0203 0.77

1.0454 0.78

1.0714 0.79

1.0986 0.8

1.127 0.81

1.1568 0.82

1.1881 0.83

1.2212 0.84

1.2562 0.85

1.2933 0.86

1.3331 0.87

1.3758 0.88

1.4219 0.89

1.4722 0.9

1.5275 0.91

1.589 0.92

1.6584 0.93

1.738 0.94

1.8318 0.95

1.9459 0.96

2.0923 0.97

2.2976 0.98

2.6467 0.99
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Figure 7.7 Confidence intervals by sample size for a correlation
estimate of 0.712

of a test of the hypothesis of no linear association. To investigate this we
use the function cor.test(x, y, alternative = c("two.sided",
"less", "greater"), method = "Pearson" or "spearman"),
conf.level = confidence level).

Example 7.5 Hypothesis tests of the correlation between
unemployment and real GNP

We return to Example 7.2, and investigate whether the previously discussed
measures of correlation are significantly different from zero. We begin with
the product moment coefficient

>cor.test(logChange.GNP,logChange.Unemp,method="pearson", conf.le

vel =0.95,alternative="less")

Pearson’s product-moment correlation

data: logChange.GNP and logChange.Unemp

t = -1.8342, df = 13, p-value = 0.0448

95 percent confidence interval:

-1.00000000 -0.01416498

sample estimates:

cor

-0.4534178

The function gives the test statistics, an approximate confidence interval,
and the estimate of the productmoment coefficient. Since the p value ismar-
ginally less than the level of significance (0.05) we reject the null hypothesis
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of zero correlation. The Kendal Tau coefficient is more conclusive

>cor.test(logChange.GNP,logChange.Unemp,method="kendal",
conf.level =0.95,alternative="less")

Kendall’s rank correlation tau
data: logChange.GNP and logChange.Unemp
T = 45, p-value = 0.2475
tau
-0.1428571

The Spearman rank provides similar evidence

>cor.test(logChange.GNP,logChange.Unemp,method=
"spearman",conf.level =0.95,alternative="less")

Spearman’s rank correlation rho
data: logChange.GNP and logChange.Unemp
S = 678, p-value = 0.2249
sample estimates:

rho
-0.2107143

The weight of the graphical and correlation evidence indicates no (or a very
weak) association between the rate of change in GNP and the rate of change
in unemployment.3

7.9 COEFFICIENT OF DETERMINATION

The coefficient of determination is the square of the correlation coefficient.
Its value, given various values of the correlation coefficient, is calculated
below using R

> correlation =seq(from =-1, to =+1, by= 0.1)
> coef.det=correlationˆ2
> table=data.frame(correlation,coef.det)
> table

correlation coef.det
1 -1.0 1.00
2 -0.9 0.81
3 -0.8 0.64
4 -0.7 0.49
5 -0.6 0.36
6 -0.5 0.25
7 -0.4 0.16
8 -0.3 0.09
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9 -0.2 0.04
10 -0.1 0.01
11 0.0 0.00
12 0.1 0.01
13 0.2 0.04
14 0.3 0.09
15 0.4 0.16
16 0.5 0.25
17 0.6 0.36
18 0.7 0.49
19 0.8 0.64
20 0.9 0.81
21 1.0 1.00

From this output we see the coefficient of determination takes values
between 0 and 1. The interpretation of the coefficient of determination is the
proportion of variance in one variable, explained by the second variable; For
example a correlation between X and Y of ±0.3 implies that around 9 per-
cent of the variance of X can be explained by Y (or vice versa). A correlation
of 0.70 implies a coefficient of determination of 0.49, so that approximately
half of the variation in one variable is explained by the other.

7.10 TIME EVOLUTION OF CORRELATION COEFFICIENTS

Estimates of correlations between financial instruments tend to vary over
time, as Eydeland and Wolyniec4 state:

It is well know [n] that correlations in financial markets tend to be quite unstable.
However, the situation in energy markets is much more extreme. Correla-
tions between spot power prices and the corresponding spot fuel prices exhibit
instabilities not seen in any other markets.

We see this clearly in Figure 7.8 which shows the rolling 30- and 90-day
correlation between Jet fuel spot and 3-month Brent Crude future prices.
Correlations can spike at high levels and fall off dramatacally. This volatil-
ity is particularilymarked in the 30-day rolling estimate. This raises the issue
of what is the appropriate window to use? The answer depends on what
is causing the variation in correlation. If correlation is deemed to be con-
stant, the variation in Figure 7.8 will be the result of estimation noise. This
implies the shorter the window the more volitile will be the estimate of the
correlation coefficient, driven by a larger standard error inherent in smaller
samples. The solution is to increase the window. However, if the variation is
due to changes in the conditional correlation between the insturments, too
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Figure 7.8 Rolling 30- and 90-day correlation between Jet fuel
spot and 3-month Brent Crude future prices

large a window may hide important changes in the correlation sturcture.
One possible solution is to exponential weight the observations so that the
more recent observations have more weight that distant observations.5 We
discuss this idea further in Chapter 12.

Another feature of the time evolution of energy prices is autocorrelation.
Autocorrelation (often called serial correlation) is the correlation between
a random variable and past values of itself. High levels of autocorrelation
indicate that values in the past are associatedwith present values. Figure 7.9
shows the autocorrelation function (ACF) for the end of month price of
Unleaded premiumNewYork gasoline (Non-Oxy). Notice how the correla-
tion between today’s price and previous prices declines steadily, eventually
becoming negative beyond ten months.

7.11 OTHER MEASURES OF CORRELATION

Whilst Spearman’s rank and Pearson coefficients are the most commonly
used, thereareothermeasureswhichcanbeusedwhen the randomvariables
are not continuous. In this Section we describe three other less frequently
seen, but useful measures. They are the point biserial correlation coefficient,
Tetrachoric correlation coefficient and Phi coefficient.

7.11.1 Point biserial correlation coefficient

So far we have considered the situation where both variables are continu-
ous. When one of the variables is binary and the other continuous the point
biserial correlation coefficient can be used to assess the degree of associ-
ation. SupposeX is a continuous variable and Y a binary variable taking the
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Figure 7.9 Autocorrelation function of the price in Unleaded
premium New York gasoline (Non-Oxy)

values 0 and 1, the point biserial correlation is calculated as

ρ = (X̄1 − X̄0)
√

p(1 − p)

SX
,

where

X̄1 is the mean of X when Y = 1
X̄0 is the mean of X when Y = 0
SX is the sample standard deviation of X
p is the proportion of values where X = 1.

AR-function to estimate the biserial correlation coefficient is given below.
For the function to work correctly the first column passed to the func-
tion should be the continuous variable and the second column the binary
variable. Both variables should have the same number of observations

bis.corr<-function(contin.var,binary.var)
{
p=sum(binary.var)/length(contin.var)
sdx=sd(contin.var)
1:length(contin.var)
x1.number= sum(binary.var)
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x0.number= length(contin.var)-x1.number
x1=0
x0=0
for(k in 1:length(contin.var))
{
{

if(binary.var[k]== 1)
{
x1= x1+contin.var[k]

}
else

{
x0= x0+contin.var[k]

}
}
}# next for
x1=x1/x1.number
x0=x0/x0.number
((x1-x0)*(p*(1-p))ˆ0.5)/sdx
}

Example 7.6 Natural gas storage swaps based on Energy
Information Administration data

Consider an over-the-counter swap based on the reported value of US
natural gas inventory data supplied by the US Department of Energy’s stat-
istical arm (Energy Information Administration). If the swap is a day of
release, no revisions, based on the first figure released by the Energy Inform-
ation Administration, then the risk manager and traders will be interested
in the correlation between the gas price returns and the levels of gas storage.
Assume

(1) the “seller” of the swap will pay $x to the energy firm if the figure
released by the Energy informationAdministration is greater than some
value θ ; and

(2) the energy firm will pay $x to the “seller” of the swap if the figure
released by the Energy Information Administration is less than θ .

Suppose further thatwe have observed the following returns to the gas price
in recent weeks

{11.778, 16.184, 11.711, 16.191, 16.211, 8.045, 5.057, 17.288}
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Furthermore, suppose we have also observed over the same period the
following sequence when the figure released is greater than θ

{0, 1, 0, 1, 1, 1, 0, 1}

The point biserial correlation coefficient can be easily calculated in R. First
we enter the data

>PriceReturns=c(11.778,16.184,11.711,16.191,16.211,
8.045,5.057,17.288)
> greaterthan=c(0,1,0,1,1,1,0,1)

The variable greaterthan is binary taking the value 1 when the figure
releasedby theEnergy InformationAdministrationwasgreater than θ . Since
greaterthan is dichotomouswe calculate the correlation between the two
variables using the function bis.corr():

> bis.corr(PriceReturns, greaterthan)
[1] 0.5713

Thuswehave anarrivedat a quantitative estimate of the correlationbetween
the two variables.

7.11.2 Tetrachoric correlation coefficient

Tetrachoric correlation measures the degree of association between two
binary variables. We shall discuss its calculation with the following illustra-
tion. A risk manager of a large financial firm is writing a report about minor
breaches in risk limits in all areas of trading across his company. At present
some (but not all) of the trading desks have been subjected to an audit, and
others have not. The risk manager is interested in measuring the correlation
between breaches in trading limits and whether or not a particular trading
desk had been audited. The data is presented below in R format

>breach=c("yes","no","yes","no","no","yes","no","no",
"yes","yes","no","no")
>audit=c("no","no","yes","no","no","yes","no","no",
"yes","yes","yes","yes")
> table(breach,audit)

Audit
breach no yes

no 5 2
yes 1 4
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Since bothbreach andaudit are binary the riskmanger could calculate the
Tetrachoric correlation between them. Unfortunately, the actual formula for
the Tetrachoric correlation is complex containing an infinite series of terms.
However, the following approximation often works well

ρ̂T = cos


 180◦(

1 + √
bc/ad

)

,

where a, b, c, d refer to the frequencies in a fourfold table in cell 11, 12, 21,
and 22 respectively. In terms of the above data a = 5, b = 2, c = 1, and d = 4,
so that we have

ρ̂T = cos

[
180◦(

1 + √
2 × 1/5 × 4

)
]

= −0.7284.

So it appears the correlation is fairly strongly negative. However, the estim-
ate should be viewed with a touch of skepticism because the Tetrachoric
correlation coefficient is a only a good estimator of the population correla-
tion when the sample size is reasonably large. In this case, we only have 12
observations.

7.11.3 Phi correlation coefficient

The Phi coefficient is an alternative to the Tetrachoric correlation coefficient
for dichotomous data. To estimate Phi we use the formula

ρ̂Phi = (a × b) − (b × c)[
(a + b) × (c + d) × (b + d)

]0.5
where a, b, c, d refer to the frequencies in a fourfold table in cell 11, 12, 21, and
22 respectively. It turns out that this is the value calculated by the product
moment correlation coefficient when both variables are binary variables.
Returning to the data in the illustration, suppose we code yes as a 1 and no
as a zero then we would have the two variables

breach.binary=c(1,0,1,0,0,1,0,0,1,1,0,0)

and

audit.binary=c(0,0,1,0,0,1,0,0,1,1,1,1).
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The correlation between these two variables is therefore

> cor(breach.binary,audit.binary)
[1] 0.5070926.

Compare this to the value of the Tetrachoric correlation coefficient. Why
the big difference between the Tetrachoric estimate and Phi estimate? In
estimating Phi the values for the dichotomous observations are arbitrarily
assigned to the categories so the sign of Phi is of very little use. It only
indicates which diagonal had the greater concentration of scores. However
we could, if wewished, contrast the implications of the Tetrachoric estimate
and Phi estimate using the coefficient of determination.

7.12 CAUSATION, DEPENDENCE, AND CORRELATION

Correlation may exit between two variables when one of them is related to
the other. However, we must always remember that correlation measures
the degree of linear strength between two variables. Suppose that a variable
y = cos(x). Let us calculate the correlation between these two variables in R

> x=seq(1,10,.001)
> y=cos(x)
> cor(x,y)
[1] -0.002722781.

So although we know the exact functional form of the two variables the
estimate of correlation is close to zero. If we were only to look at the correla-
tion coefficient, we would draw the incorrect conclusion of little association
between the two variables. However a scatter plot, shown in Figure 7.10,
reveals the extent of thenon-linearitybetween the twovariables. The import-
ant point to note is that any conclusion of no or little linear correlationmaybe
a consequence of the two variables being related in some non-linear fashion.
Such non-linearity can often be revealed by inspecting a scatter plot.

If X causes Y then we know that X is a causal factor of Y. In many cases
we are interested in identifying causal factors. For example a natural gas
trader would like to identify the casual factors of gas price changes. The
trader may observe a high correlation between the change in price of a stock
market index or government bonds and the change in price of natural gas.
However, a high correlation does not necessarily imply causation. It only
suggests that the two variables move together. Just because two variables
are highly correlated does not mean that one causes the other. In statistical
terms, we say that correlation does not imply causation. Why? First the high
correlation may be through chance alone, as appears to be the case between
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Figure 7.10 Scatter plot of two non-linearity related random variables

the level of GNP and Unemployment. Second, it may be the result of a third
variable. As an illustration of this, consider the correlation between height
andweight in a randomsample of children in the Londonboroughof Ealing.
What is the correlation likely to be? It will be high and positive. This does
not imply height causes weight or vice versa. In fact the positive correlation
between height and weight is a consequence of a third variable, age; older
children tend to be taller and heavier than younger children. It is important
to remember not to deduce causation from correlation alone. Correlation
does not imply causation.

7.13 SUMMARY

Aprimary source of risk is price fluctuation in energy contracts. Correlation
coefficients provide a scale against which the closeness of the relationship
between price returns can be measured. For obvious reasons, energy com-
modity prices are highly correlated. Gasoline prices in various markets will
be highly correlated with each other, as will prices of very similar commod-
ities such as heating oil and diesel. There aremany estimators of correlation,
they usually provide information about two aspects of the relationship
between variables – its strength, and its direction. In using a measure of
correlation it is always advisable to plot the data to ensure that the inherent
assumption of linearity is valid.
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7.14 FURTHER READING

Details of a number of correlation measures alongside easy-to-use implementations in
the Excel spreadsheet package are given Lewis (2004). Further analysis of the role of cor-
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“Correlation and dependence in risk management :properties and pitfalls.” It is freely
available for download from at: www.risklab.ch/ftp/papers/CorrelationPitfalls.pdf
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7.15 REVIEW QUESTIONS

1 What are the restrictions on the use of the product moment correlation coefficient?

2 Consider the correlation between the price of petrol/gasoline and the number of
divorces in the USA.
(a) What would you expect the correlation to be (high/low/negative/positive)

and why?
(b) What transformation/changes to the data, if any, would you make prior to estim-

ating the correlation coefficient between the price of petrol and the number of
divorces.



C H A P T E R 8

A Primer in Applied
Regression Analysis

Regression modeling lies at the heart of modern statistical analysis. It also
occupies akey role inmuchof theanalysis carriedout inquantitativefinance.
Given its importance and frequency of use, this chapter provides a hands-on
introduction to applied regression modeling. The emphasis is on using R to
analyze some simple data sets contained in the R package. The objective
is to give you a feel for regression techniques using simple (nonenergy)
examples before we move onto discuss more energy-specific applications
of regression in the remaining chapters of this book. The emphasis of this
chapter is therefore on you the reader becoming comfortable with the ideas
surrounding regression and replicating for yourself the examples given inR.

8.1 THE SIMPLE LINEAR REGRESSION MODEL

It is often the case that wewish to describe the relation between a set of vari-
ables and use this relationship to predict the value of one variable, known
as the dependent variable, when we only know the values of the other
variables, known as the independent variables. For example , we might
be interested in the relationship between the natural gas city-gate price in
New York City and the Henry Hub price. Correlation is of little use in this
situation as it only describes the degree of association between the vari-
ables. How should we characterize the relationship? Regression modeling
is one way we can specify and test a particular postulated relationship.
We begin by postulating a regression function and then make estimates
of model parameters given values of the dependent and independent
variables.

151
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The simplest functional form for relating a dependent variable to one or
more independent variable(s) is a straight line.Wemight therefore speculate
that the functional form of the relationship between the variable we wish
to predict and the other variable(s) is linear. This is the basis of linear
regression.1 Althoughwe cannot expect the postulated linear relationship to
be perfect, wemight seek to establish its approximate validity. Once a linear
relationship is established, knowledge of the independent variable(s) can be
used to informus about plausible values of the dependent variable. Suppose
we observe a sample ofN pairs of observations {(y1, x1), (y2, x2), ..., (yN , xN)}
on two continuous variables X and Y. We wish to describe the relationship
between them, and thus be able to predict the value of Y given knowledge
of X. Clearly the correlation between the two variables is of little use as
it only indicates the strength of the linear association. Our interest lies in
using X to help explain Y. Since X is being used to explain Y it is known
as the independent or explanatory variable, and Y is known as the depend-
ent variable. One way of describing the relationship between the realized
observations on X{x1, ..., xN} and Y{y1, ..., yN} is to assume that it takes a
linear form yi = α + βxi.

This is a straight linewith interceptα and slope equal toβ.Whenβ > 0 the
line has positive slope and a negative slopewhen for β < 0. Since we cannot
expect this relationship to hold exactly for all N of our paired observations,
we include the error term εi and write the simple regression equation as

yi = α + βxi + εi.

The character εi is known as the residual and measures the error between
the observed yi and the value that the linear function implies yi should be.
For example, if the linear approximation is

yi = 1 + 2xi,

and we observe y1 = 3 and xi = 1 then ε1 = y1 − (α + βx1) = 0. However, if
y2 = 2 and x2 = 3 then ε2 = 2−(1+(2×3)) = −5.Wewill therefore obtainN
measurements on εi. Since ε is a random variable it will have an underlying
probability distribution. We shall assume εi to be an independent identic-
ally normally distributed random variable with mean zero and variance
equal to σ 2.

8.2 EXPECTATION AND REGRESSION

The expectedvalue of a randomvariable is ameasure of its averageor typical
value. The expected value, denoted by E[X], of a discrete random variable
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X is calculated as

E[X] =
∑

x

x × probability (x)

Suppose after a few drinks, despite being a risk averse risk manager, you
feel lady luck is on your side. As a one-off event you decide to buy a lottery
ticket. The twopossible outcomes of the randomvariableX = lottery outcome
are win and lose. If you win the random variable X = 1, and for failure
X = 0. This random variable is known as a Bernoulli random variable. Let
the probability of winning the lottery be Prob(X = 1) = p. What is the
expectation of this random variable?

E[X] =
∑

x

xp(x) = 0(1 × −p) + (1 × p) = p.

Of course p tends to be rather small, for theUnitedKingdomnational lottery
p is approximately equal to 1/14,000,000.

If the random variable X is continuous E[X] is calculated by

E[X] =
∫ ∞

−∞
x f (x) dx.

Letus consider the calculationof theexpectedvalue for a continuous random
variableX, which takesvaluesbetween0and1withequalprobability. Sucha
random variable is said to be uniformly distributed. The probability density
function of this random variable is

f (x) = 1 if X lies between 0 and 1 otherwise f (x) = 0.
What is the expected value of X?

E[X] =
∫ ∞

−∞
xf(x) dx =

∫ 1

0
x dx = 1/2.

Finally we note, if Y is some function of X, denoted by Y = G(X), then

1. if X is discrete: E[Y] = ∑
x G(x)p(x)

2. if X is continuous: E[Y] = ∫∞
−∞ G(x)f (x)dx

8.2.1 Calculating expected values in R

To illustrate the calculation of an expected value,2 consider the number
of risk analysts available to monitor trading activity on a particular day.
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The head of risk management has been asked to report on the expected
level of staffing. He knows that on any day there is always at least one risk
analyst available for duty and at most nine. Therefore the discrete random
variable X can take on values between 1 to 9. Suppose he calculates the
probability of each specific value as

>Probability=c("1"=0.301,"2"=0.176,"3"=0.125,"4"=0.097,"5"=0.079

,"6"=0.067,"7"=0.058,"8"=0.051,"9"=0.046)

> Probability

1 2 3 4 5 6 7 8 9

0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

We see that the probability that X = 1 is 0.301 and the probability X = 9
is 0.046. In other words there is only a 4.6% likelihood of all nine staff being
available on any one day. To calculate the expected value we create a vec-
tor Staff and multiply it by Probability storing the result in a vector
Result. The sum of Result gives the expected value

> Staff =1:9
> Result =Staff*Probability
> Result

1 2 3 4 5 6 7 8 9
0.301 0.352 0.375 0.388 0.395 0.402 0.406 0.408 0.414

> ExpectedStaff=sum(Result)
> ExpectedStaff
[1] 3.441

Thus E[X] = 3.44. This informs the head of risk that the average or center
of mass of the distribution lies between 3 and 4. However, as the actual
number of staff on duty can only take integer values the expected value will
never be observed. In reporting his findings the head of risk is likely to say
that he expects the number of personnel available on a particular day to be
around 3 or 4.

8.2.2 Law of large numbers and expected values

The law of large numbers states if we perform N independent and identical
random experiments on a random variable X, as N goes to infinity the aver-
age of the N outcomes approaches the expected value E(X). Let us use R to
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investigate the law of large numbers. The function runif(N) generates
N random variables from a uniform distribution. We already know the
expected value of this distribution is equal to 0.5. We use the law of large
numbers to estimate it by generating random samples of various sizes

> x1=runif(1)
> x2=mean(runif(10))
> x3=mean(runif(100))
> x4=mean(runif(1000))
> x5=mean(runif(10000))

> X=cbind(x1,x2,x3,x4,x5)
round(X,5)

x1 x2 x3 x4 x5
[1,] 0.41596 0.53344 0.50503 0.49965 0.50045

As the sample gets larger the average calculated using mean(), approaches
0.5. Nowwe can see the expectedvalue is essentially the long runprobability
weighted average over a large number of trials. That is to say if we perform
a random experiment onmany occasions and take the probability weighted
average, this will be the expected value. Since it is an average, its value may
never actually be observed as we saw in Section 8.2.1.

8.2.3 Rules of expected values

There are a number of rules of expectation which are useful in prac-
tical applications:

Rule 1: The expectation of a constant, C, is the constant,

E[C] = C.

Rule 2: If X is a random variable and C a constant then,

E[XC] = CE[X]

Rule 3: The expected value of the sum of two random variables X and Y is
the sum of their expected values

E[X + Y] = E[X] + E[Y].
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Rule 4: Given two random variables X and Y, the conditional expectation of
X given Y is denoted by E[X|Y]. If X is continuous it is defined by

E[X|Y] =
∫ ∞

−∞
xf (x|y)dx.

If X is discrete it is defined by

E[X|Y] =
∑

x

xp(x|y).

We can interpret linear regression as a conditional expectation where
E(Y|X) = α + βX and α the intercept tells us the value of Y that is expec-
ted when X = 0. The slope parameter β measures the relationship between
X and Y. It is interpreted as the expected or average change in Y for a
1-unit change in X. For example, if we estimate a regression and find
E(Y|X) = 1 + 2X a 1-unit change in X is expected to lead to a 2-unit
change in Y.

8.3 PARAMETER ESTIMATION

What value shouldwe choose for the regressionmodel parameters α and β?
We have already discussed methods of estimation such as ordinary least
squares (OLS) andmaximum likelihood, canweuse these techniques here to
obtain an estimator? The answer is yes. We can use themethod ofmaximum
likelihood or the method of OLS to obtain estimators of the parameters.
Given the sample mean of Y and X, denoted by X̄ and Ȳ respectively, OLS
estimators of the parameters are given by α̂ = Ȳ − βX̄ for the intercept
parameter, and for the slope parameter

β̂ =
∑N

i=1(xi − X)(yi − Y)∑N
i=1(xi − X)2

We can also estimate the intercept and slope parameters using maximum
likelihood. The individual yis are assumed to be independent, identic-
ally normally distributed with mean population mean µ and population
variance σ 2. The log likelihood equation is given by

log L
(
α,β, σ,µ| {(y1, xi), ..., (yn, xn)

})
= −1

2
N log 2π − 1

2
N log σ 2 − 1

2

N∑
i=1

(yi − α − βxi)
2

σ 2
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which on solving yields

α̂ = Y − βX, β̂ =
∑N

i=1(xi − X)(yi − Y)∑N
i=1(xi − X)2

.

8.3.1 Parameter estimation using the R statistical package

Estimation of linear regression parameters is carried out using the func-
tion lm(regression model, data). The model is specified symbolic-
ally using the notational form dependent variable ∼ independent
variable. In general we will estimate the parameters of our postulated
model using this function, assigning the values to an object of our choice.

The prepackaged R data frame2 cars gives the speed of cars (speed)
recorded inmiles per hour and the distances (dist) taken to stop, in feet, of
motorized vehicles recorded in the 1920s. The product moment correlation
between the two variables is 0.81 and the rank correlation coefficient is 0.83.
The data are shown in the scatter plot of Figure 8.1. As the data appear
reasonably linear we postulate the following linear relationship between
the distance it takes to stop (dependent variable) and the speed of the car
(independent variable): Distance= β× Speed+Error. Notice in this model
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Figure 8.1 Scatter plot of the speed of cars (miles per hour) and the
distances taken to stop (feet)
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we have set the intercept term α to equal zero, but given the upward slope
shown by the scatterplot we would expect β > 0.

We can estimate the model in R as follows

> data(cars)
> names(cars)
[1] "speed" "dist"
> car.reg=lm(dist∼speed-1,data=cars)
> car.reg
Call:
lm(formula = dist ∼ speed - 1, data = cars)
Coefficients:
speed
2.91

Observe the output gives both the model lm(dist∼speed-1,data=
cars) and the coefficient estimate (β) on the independent variable speed
which is equal to 2.91.3 We can see the elements of car.reg by using the
function names()

names(car.reg)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr"
"df.residual"
[9] "xlevels" "call" "terms" "model"

This informs us that we could also use the coefficients() (which we
shorten to coef()) to give us the estimated parameter values

> options(digits=3)
> coef(car.reg)
speed
2.91

However, notice that coef() does not return details of the model. In the
above lm() function we used “−1” to indicate that the model should be
estimated without an intercept term. If we wished to include an intercept
term we could use

> car.reg=lm(dist∼speed+1,data=cars)
> car.reg
Call:
lm(formula = dist ∼ speed + 1, data=cars)



A P R I M E R I N A P P L I E D R E G R E S S I O N A N A LY S I S 159

Coefficients:
(Intercept) speed

-17.58 3.93

In this case the coefficient on speed increases to 3.93 andwe see the intercept
takes a value of –17.58. The default of lm() includes the intercept, so we do
not really need to specify “+1”

> car.reg=lm(dist∼speed,data=cars)
> car.reg
Call:
lm(formula = dist ∼ speed, data = cars)
Coefficients:
(Intercept) speed

-17.58 3.93

8.3.2 Hedging energy price risk using simple linear regression

In Chapter 7 we saw, given the futures F and spot S, that the minimum
variance hedge ratio was given by

h = Covariance(F,S)

σ 2
F

Since we can interpret linear regression as a conditional expectation where
the slope parameter β measures the relationship between the two variables
we can use the simple linear regression model to obtain an estimate of h. To
do this we would specify the regression model

�St = α + β�Ft + εt

where�St and�Ft are the spot and futures returns for period t. The OLS or
maximum likelihood estimator for β provides an estimate for the minimum
variance hedge ratio h.

Example 8.1 Hedging the Jet kerosene spot using the Brent Crude forwards

The basic principles of hedging can be used for energy commodities for
which no futures or forward contracts exists, provided similar commodities
are traded. As an example we consider hedging Jet kerosene with Brent
Crude oil forward contracts. The correlations between the log return of the
spot price of Jet kerosene and forward returns for the various contracts on
Brent Crude oil are presented in Table 8.1. The liner regression estimates of
the hedge ratio are given in Table 8.2, in all cases the intercept is estimated
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Table 8.1 Correlation between the log returns of
Jet kerosene and Brent Crude forwards contracts
(October 2002 to June 2004)

Brent Crude Jet kerosene

1-month 0.728

2-month 0.729

3-month 0.712

Table 8.2 Simple linear regression estimates of
minimum variance hedge ratio

Regression
parameter

Forwards contract

1-month 2-month 3-month

β 0.970 1.030 1.044

α 0.000 0.000 0.000

at zero, with the slope parameter close to 1. Since we can interpret linear
regressionasa conditional expectationwhereE(�St|�Ft) = α+β�Ft.Wesee
immediately that the slope parameter β provides a natural estimate for h
because it measures the relationship between�St and�Ft. For example, for
the 1-month forward contract we find

E(�St|�Ft) = 0.970 �Ft.

Therefore, a 1-unit change in �Ft is expected to lead to a 0.970 unit
change in �St.

8.4 ASSESSING THE SIMPLE LINEAR REGRESSION MODEL

Given the estimates of the model parameters, we will be interested in
assessing how well the model describes the sample data. Related ques-
tions include:

� How well does the model explain the data?

� Are the values of the estimated slope and intercept significantly different
from zero?

� Are the estimates equal to some postulated values?
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Figure 8.2 Scatter plot of the log returns of Jet kerosene on 1-month Brent
Crude future with regression line superimposed

We can investigate these issues with a combination of hypothesis tests,
regression plots, and the coefficient of determination.

8.4.1 Regression plots

A scatter plot with the estimated regression line superimposed (know as a
regression plot) Provides the simplest way to assess the fit of the estimated
regression. Figure 8.2 shows a scatter plot of the log returns of Jet kerosene
and the1-monthBrentCrude futurewith theestimated regression line super-
imposed. Since the plotted points do not line exactly along this line, the
estimated regressioneducationdoesnot fully explain thedata. Nevertheless,
as a first approximation for hedging, the model looks adequate.

8.4.2 t-test of a regression coefficient

In Section 8.3.1 we estimated two simple regression models, with and
without the intercept term. Which should we choose? One way we can
make a decision is to investigate the statistical significance of the intercept
termvia the null hypothesis test that it is zero. Ifwe reject the null hypothesis
we include the intercept term in the model. The test statistic in this case is

tα/2 = α̂

s.e.(α̂)
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where s.e.(α̂) is the standard error of the estimate of the intercept. What
precisely is the standard error of the estimate? As the sample from which
we derive the parameter estimates is a random sample, the estimates
themselves, which are a function of the data, are also random variables.
Their value will change from sample to sample. We estimate the variation
in the parameter estimates using the standard deviation of the estimate,
more frequently called the standard error of the estimate. Furthermore, the
sampling distribution of the above test statistic is the Student t distribution
with N-2 degrees of freedom. We can also use the above test statistic on the
slope parameter, in which case we would specify

tα/2 = β̂

s.e.(β̂)
.

We can even, if we wish, specify a null hypothesis other than zero, say
equal to β0

tα/2 = β̂ − β0

s.e.(β̂)
.

Furthermore, given the level of significance equal to α, we can construct a
(1−α)% confidence interval around the estimates via

β̂ ± s.e.(β̂) × tα/2,

and for the intercept

α̂ ± s.e.(α̂) × tα/2.

8.4.3 Regression plots and the t-test of a regression coefficient
using R

Returning to the cars data frame2 we can use R to impose a regression line
on a simple scatter plot as follows

>plot(cars$speed,cars$dist,xlab="speed",
ylab="distance")

>abline(car.reg)

The resultant plot is shown in Figure 8.3. The function abline() adds the
estimated regression line to the plot.
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Figure 8.3 Estimated regression line and scatter plot of the speed of
cars and distance taken to stop

Continuing with the cars data frame, we can obtain estimates of the
standard error of the parameters and p-values using the coef() function:

> options(digits=4)
> car.reg1 <- summary(car.reg <- lm(dist ∼ speed,

data=cars))
> coef(car.reg1)

Estimate Std. Error t value Pr(> |t|)
(Intercept) -17.579 6.7584 -2.601 1.232e-02
speed 3.932 0.4155 9.464 1.490e-12

We see the standard error of the estimate of the slope coefficient is 0.4155.
The p-values is also reported, at the 5% significance level its value is less
than 0.05, and we reject the null hypothesis that the coefficient on speed is
equal to zero. We draw the same conclusion about the intercept term. A95%
confidence interval around the estimates can be obtained using the function
confint(regression object,confidencelevel):

> confint(car.reg,level=0.95)
2.5 % 97.5 %

(Intercept) -31.168 -3.990
speed 3.097 4.768
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8.4.4 Coefficient of determination

The coefficient of determination, also known as R squared, is frequently
used to assess how well the simple linear regression model fits the data.
We saw in Chapter 5 that the coefficient of determination is the square of
the correlation coefficient between two variables X and Y. If there is no
linear relationship between X and Y the correlation coefficient is equal to
zero and so therefore is the coefficient of determination. Moreover, since the
coefficient of determination is the square of the correlation coefficient it lies
between zero (no linear relationship) and one (a perfect linear relationship).

We can interpret the coefficient of determination as the proportion of the
variation in the dependent variable Y explained by the linear regression. To
see this, recall our parameter estimates were α̂ and β̂, and our estimated
linear regression equation was

yi = α̂ + β̂xi + εi.

The estimated value of yi can also be written as

yi = ŷi + εi,

where ŷi = α̂ + β̂xi and is the expected value for yi. Squaring both sides and
taking the sum we see that

N∑
i=1

y2i =
N∑

i=1

(ŷi + εi)
2 =

N∑
i=1

(ŷ2i + 2εiŷi + ε2i )

=
N∑

i=1

ŷ2i +
N∑

i=1

ε2i , as
N∑

i=1

2εiŷi = 0

since

N∑
i=1

2εiŷi = 2
N∑

i=1

εiŷi = 0.

We have assumed previously that the mean of the residual is zero. Using
this assumption and expressing the previous equation in deviation form
we obtain

N∑
i=1

(yi − Y)2 =
N∑

i=1

(ŷi − Y)2 +
N∑

i=1

(yi − ŷ)2.
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This is very similar to the formula for sample variance

Var(Y) =
N∑

i=1

(Yi − Y)2

N − 1
.

Now we note the following:

�
∑N

i=1(yi − y)2 is known as the Total Sum of Squares (TSS)

�
∑N

i=1(ŷi − y)2 is known as the Explained Sum of Squares (ESS)

�
∑N

i=1(yi − ŷ)2 is known as the Residual Sum of Squares (RSS).

The difference between TSS and RSS represents the improvement obtained
by using the independent variable X to explain Y. This difference is ESS.
We see that TSS=ESS+RSS, which is a measure of the total variation in Y
explained by both the model and residual.

Thecoefficientofdetermination,whichwedenotebyR2, canbecalculated
by taking the ratio of the explained variance to the total variance

R2 = ESS
TSS

= 1 − RSS
TSS

.

Provided an intercept term is included in the regression, R2 is simply the
proportion of total variation in Y explained by regression model. For an
ill-fitting model we see that RSS is large and ESS is small and consequently
R2 will be small. For a well-fitting model ESS is large and RSS small and
therefore R2 will be large. Now we can see:

� If there is no correlation between X and Y then ESS= 0 and therefore
R2 = 0.

� If the correlation between X and Y equals ±1 then RSS= 0 and therefore
ESS=TSS and R2 = 1.

Example 8.2 R2 and the minimum variance hedge ratio

In Example 8.1 we estimated the minimum variance hedge ratio using
simple linear regression. Now we can see that the higher the coefficient
of determination, the greater the effectiveness of the minimum variance
hedge. TheR2 statistics for each of themodels are given in Table 8.3. We saw
in Chapter 5 that the coefficient of determination can also be seen as the
square of the correlation coefficient. Table 8.4 presents the values using
the Pearson and Spearman rank coefficients. From this table we see first
that both coefficients yield similar estimates. Furthermore, the value based
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Table 8.3 R-squared statistics for linear
regression estimates of minimum vari-
ance hedge ratio of the log returns of Jet
kerosene on various Brent Crude forwards
contracts

Forwards contract

1-month 2-month 3-month

R2 52.9% 53.2% 50.7%

Table 8.4 Coefficient of determination
between the log returns of Jet kerosene
and various Brent Crude forwards con-
tracts calculated using the square of
the Pearson and Spearman correlation
coefficients

Brent
Crude Pearson (%) Spearman (%)

1-month 52.9 56.4

2-month 53.2 56.5

3-month 50.7 54.3

on the Pearson coefficient is exactly the same as the value derived from
the regression equation. The coefficient of determination in simple linear
regression is essentially the square of the Pearson correlation coefficient.

8.4.5 Correlation and coefficient of determination using R

Returning to the cars data frame2 we observe

> cor(cars["speed"],cars["dist"])
dist

speed 0.807
> (cor(cars["speed"],cars["dist"]))ˆ2

dist
speed 0.651

The correlation between the variables is high at approximately 81% and the
proportion of variation explained by the regression model is around 65%.
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We can also use the relationship between TSS, RSS and ESS to directly
estimate R2

> y = cars[‘‘dist’’]
> y.hat=fitted.values(car.reg)
> y.bar=mean(cars[‘‘dist’’])
> ESS=sum((y.hat-y.bar)ˆ2)
> ESS
[1] 21185
> RSS =sum(( y-y.hat)ˆ2)
> RSS
[1] 11354
> TSS=ESS+RSS
> TSS
[1] 32539

We saw previously that the coefficient of determination can be calculated as
R2 = ESS/TSS or R2 = 1 − (RSS/TSS)

> R.square = ESS/TSS
> R.square
[1] 0.651
> R.square =1-(RSS/TSS)
> R.square
[1] 0.651

Both formulas give identical results and match the value calculated using
the square of the sample correlation coefficient. Another direct approach for
calculating ESS and RSS in R is to use the function anova(regression
object)

> anova(car.reg)

Analysis of Variance Table

Response: dist

Df Sum Sq Mean Sq F value Pr(>F)

speed 1 21185 21185 89.6 1.5e-12

***

Residuals 48 11354 237

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05‘.’ 0.1 ‘ ’1

Looking at the values under the “Sum Sq” column we see the func-
tion ESS= 21185 and RSS= 11354, exactly the same values as calculated
previously.



168 E N E R G Y R I S K M O D E L I N G

8.5 SUMMARY

Statistical analysis is often focused on questions involving the relationship
between one ormore variables that are thought as being dependent on some
other independent variables. These questions canbe addressedusing regres-
sion modeling. Regression techniques allow us to infer more than possible
by measuring the correlation between the dependent variable and inde-
pendent variables. In this sense it is more flexible and can answer a much
wider range of questions. Linear regression can be estimated using lm()
whilst a broad range of models from the class of generalized linear models
(including linear regression) can be estimated via the glm() function.

8.6 FURTHER READING

There is a wide array of texts covering regression modeling. For a solid introduction
and discussion of the key issues see Doran (1989), Weisberg (1985), or Neter et al. (1996).
Applications in risk management alongside Excel spreadsheets and Visual Basic source
code can be found in Lewis (2004).

Doran, H. E. (1989) Applied Regression Analysis in Econometrics, Marcel Dekker, Inc.,
New York.

Lewis, Nigel Da Costa (2004) Operational Risk with Excel and VBA: Applied Statistical
Methods for Risk Management, John Wiley & Sons, Inc., New York.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996) Applied Linear
Regression Models (3rd edn), Richard D. Irwin, Inc., Chicago, IL.

Weisberg, S. (1985) Applied Linear Regression, John Wiley and Sons, New York.

8.7 REVIEW QUESTIONS

1 Explain the difference between a dependent and an independent variable.

2 What assumptions do we make about the error term in simple linear regression?

3 Re-estimate Example 8.1 using log(dist) as the dependent variable and
log(speed)as the independent variable.
(a) Report the summary statistics of this regression.
(b) Comment on the statistical significance of the coefficients (assume the level of

significance is 10%)
(c) How well does the model fit the data relative to Example 8.1?
(d) Calculate thePearsoncorrelationcoefficientbetweenlog(dist)andlog(speed).
(e) Now standardize both log(dist) and log(speed) and re-run the regression –

Comment on your findings.

4 What is the relationship between the product moment correlation coefficient and
R-squared?



C H A P T E R 9

Multiple Regression
and Prediction

In this chapterweextend the simple linear regressionmodel into themultiple
linear regression model. Multiple regression is useful when we can expect
more than one independent variable to influence the dependent variable.
It allows us to explore the relationship between several independent and a
single dependent variable. We also discuss multivariate regression which
arises when we have several dependent variables dependent on the same
(or some subset) independent variables.

9.1 THE MULTIPLE REGRESSION MODEL

The multiple linear regression model takes the form

yt = α + β1x1t + β2x2t + · · · + βkxk
t + εt,

where Y is the dependent variable, {X1,X2, ...,Xk} are k independent vari-
ables and ε is the residual. As a simple illustration, consider the situation
where we are interested in describing important factors that determine the
monthly change in price in the natural gas city-gate price in New York City.
Clearly the weather will have an impact, we can measure this using the
notion of heating degree days. We might also expect the Henry Hub price,
being the largest centralized point for natural gas spot and futures trading in
the USA, will also play a role. Our multiple regression would take the form

�yt = α + β1�x1t + β2�x2t + εt,

169



170 E N E R G Y R I S K M O D E L I N G

where �yt, �x1t and �x2t , denote the monthly log return of the New York
city-gate price, Henry Hub price and change in the heating degrees
respectively.

9.2 ASSESSING THE MULTIPLE REGRESSION MODEL

As with linear regression, we will need to be able to assess how well the
proposedmodel fits the data. One approach is to carry out a t test on each of
the coefficients on the independent variables and the intercept coefficient.
Astatistically significant resultwould indicate that the independent variable
(or intercept) has an important role to play in explaining the variation in the
dependent variable. Two additional approaches we could use are the F-test
of joint significance and the adjusted R-squared statistic. We discuss both of
these options below.

9.2.1 The F-test

The F-test of regression coefficients is a joint test of the null hypothesis
that none of the explanatory variables have any effect on the dependent
variable. Provided the regression model has an intercept, the test statistic is
calculated using

Fk, N−k−1 = [(TSS − RSS)/k]
[RSS/(N − k − 1)]

This test statistic has a F distributionwith k and n−k−1 degrees of freedom.
Rejection of the null hypothesis implies at least one of the coefficients on the
explanatory variables is not equal to zero.

9.2.2 Adjusted R2

The adequacy of the fit of the multiple regression model cannot necessarily
be assessed usingR2. This is because it can be inflated towards itsmaximum
value of 1 simply by adding more independent variables to the regression
equation. Instead, the adjusted coefficient of determination is often reported.
It takes into account the number of explanatory variables in the model

Adjusted R2 = 1 −
[
RSS/(N − k)
TSS/(N − 1)

]
.
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If we only have one independent variable in our model (so that we have a
simple linear regression) then k = 1 and we see that

Adjusted R2 = 1 −
[
RSS/(N − k)
TSS/(N − 1)

]
= 1 − RSS

TSS
= R2.

9.3 PREDICTION

Regression is used both for descriptive and predictive purposes. When used
for prediction our interest lies in possible future values of the dependent
variable given the independent variables. In simple regression to obtain a
predicted value ŷi+1 we use

ŷi+1 = α̂ + β̂xi+1

To illustrate this idea, suppose we estimate α̂ = 1 and β̂ = 3. We then
observe xi+1 = 2, the predicted value of Y is therefore ŷi + 1 = 1+ (2× 3) = 7.
Will the actual observed value of yi+1 be exactly equal to 7? Probably not,
this is because a prediction is a random variable and therefore will have an
underlying probability distribution. We can however construct a (1− α)%
confidence interval around the predicted value. Such an interval is known
as a prediction interval. It can be interpreted along similar lines to a con-
fidence interval, but will generally be much wider because of the inherent
uncertainty of predicting the future. In the case of multiple regression the
prediction is obtained by

ŷi+1 = α̂ + β̂1x1i+1 + β̂2x2i+1 + · · · + β̂kxk
i+1 + εi+1.

9.4 BUILDING AND ESTIMATING MULTIPLE LINEAR
REGRESSION MODELS IN R

The package MASS has a data frame Rubberwhich contains data from accel-
erated testing of tire rubber. The variables are loss (observations on the
abrasion loss in gm/hr), hard (measured in ‘Shore’ units) and tens (which
measures the tensile strength in kg/sqm). We are interested in abrasion
loss given hardness and tensile strength. We examine the scatter plot matrix
via the function plot(Rubber), illustrated in Figure 9.1. The scatter plot
informs us that loss has a negative relationship with both hard and tens.
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Figure 9.1 Scatter plot matrix of the variables in the data frame rubber

This is confirmed via the sample correlation coefficient

> cor(Rubber)
loss hard tens

loss 1.000 -0.738 -0.298
hard -0.738 1.000 -0.299
tens -0.298 -0.299 1.000

We postulate the multiple regression model

loss= intercept − β1 hard − β2 tens + error

The model parameters can be estimated using lm()

> Rubber.reg1 <- summary(Rubber..reg <- lm(loss
∼ hard+tens,data=Rubber))
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> coef(Rubber.reg1)
Estimate Std.Error t value Pr(>|t|)

(Intercept) 885.16 61.752 14.33 3.84e-14
hard -6.57 0.583 -11.27 1.03e-11
tens -1.37 0.194 -7.07 1.32e-07

The coefficients have the expected sign, moreover the t-test for the intercept
and both coefficients each reject the null hypothesis of equality to zero.

The previously mentioned statistics, alongside the parameter estimates,
can be viewed using summary()

> summary(Rubber.reg)
Call:
lm(formula = loss ∼ hard + tens, data = Rubber)
Residuals:

Min 1Q Median 3Q Max
-79.38 -14.61 3.82 19.75 65.98
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 885.161 61.752 14.33 3.8e-14 ***
hard -6.571 0.583 -11.27 1.0e-11 ***
tens -1.374 0.194 -7.07 1.3e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1

Residual standard error: 36.5 on 27 degrees of freedom
Multiple R-Squared: 0.84, Adjusted R-squared: 0.828
F-statistic: 71 on 2 and 27 DF, p-value: 1.77e-11

In this example the adjusted coefficient of determination is slightly lower
than the standard coefficient of determination. Moreover, the F-test rejects
the null hypothesis that all of the coefficients are zero and the coefficient
t-tests are all significantly different from zero.

We can use the predict() function to forecast future values. For
example using Rubber.reg as the argument we see that

> options(digits=4)
> Rubber.pred
<-predict(Rubber.reg,se.fit=TRUE,interval="prediction")
> Rubber.conf
<-predict(Rubber.reg,se.fit=TRUE,interval="confidence")
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> Rubber.pred$fit[1,]
fit lwr upr
366.8 283.8 449.9

> Rubber.conf$fit[1,]
fit lwr upr
366.8 330.9 402.7

We print out the first prediction, alongside the upper and lower bounds,
a prediction interval and confidence interval. The two returned intervals
illustrate how if you use the argument interval = ‘‘prediction" the
function prediction() generates a prediction interval for the predicted
value, while if you use the argument interval = ‘‘confidence" a
confidence interval around the prediction is returned.

Inmost caseswewouldnotuse all of thedata to estimate themodel, rather
wemight estimate the regressionparameters using 70%of the availabledata,
and investigate the model’s predictive ability using the remaining 30% of
data. It is possible to specify both an estimation and evaluation data set
by including the arguments data = estimation_data and newdata =
testdata in predict()

9.5 MULTIVARIATE REGRESSION

On occasion we may have q dependent variables {Y1,Y2, ...,Yq} which
depend on a common set of independent variables {X1,X2, ...,Xk). In this
circumstance we wish to estimate the following regression equations




y1i = α1 + β11x1i + β12x2i + · · · + β1kxk
i + ε1i

y2i = α2 + β21x1i + β22x2i + · · · + β2kxk
i + ε2i

...
yq

i = αq + βq1x1i + βq2x2i + · · · + βqkxk
i + εqi


 .

If we assume the above regression equations are independent of each other,
we can simply estimate a series of q regressions using lm() combined with
cbind().

The data frame unemployment1 in the package lmtest contains data
on the economic variables unemployment rate (UN), broad money supply
(m), implicit deflator of Gross National Product (p), real purchases of goods
and services (G) and real exports (x). We wish to estimate three separate
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Figure 9.2 Time series plots of the log difference in macroeconomic
variables from the data frame unemployment

linear regression models using the same independent variables


�UN = α1 + β11�p + �m + ε1i

�G = α2 + β21�p + �m + ε2i
�x = α2 + β31�p + �m + ε3i


.

The symbol � indicates the log difference of the variable. The time series
plot of each of the variable can be observed in Figure 9.2. We estimate the
parameters for the regression equation as follows

>unemployment.change.reg=lm(cbind(UN,G,x)∼p+m,data
=unemployment.change)
> coef(unemployment.change.reg)

UN G x
(Intercept 0.2060 0.01341 -0.006041
p 0.8596 -0.85520 0.891759
m -3.6518 0.65930 0.346579
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We can also look in more detail at each individual regression

> summary(unemployment.change.reg)
Response UN:
Call:
lm(formula = UN ∼ p + m, data = unemployment.change)
Residuals:

Min 1Q Median 3Q Max
-1.15923 -0.23082 -0.00103 0.16956 1.40978
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.206 0.065 3.17 0.00213 **
p 0.860 0.999 0.86 0.39193
m -3.652 0.945 -3.86 0.00022 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.423 on 86 degrees of
freedom
Multiple R-Squared: 0.176, Adjusted R-squared: 0.157
F-statistic: 9.17 on 2 and 86 DF, p-value: 0.000246
Response G:
Call:
lm(formula = G ∼ p + m, data = unemployment.change)
Residuals:

Min 1Q Median 3Q Max
-0.99546 -0.04235 -0.00654 0.03451 0.68991
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0134 0.0282 0.48 0.636
p -0.8552 0.4336 -1.97 0.052 .
m 0.6593 0.4103 1.61 0.112
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.184 on 86 degrees of
freedom
Multiple R-Squared: 0.0462, Adjusted R-squared: 0.024
F-statistic: 2.08 on 2 and 86 DF, p-value: 0.131
Response x:
Call:
lm(formula = x ∼ p + m, data = unemployment.change)
Residuals:

Min 1Q Median 3Q Max
-0.4153 -0.0514 0.0135 0.0569 0.4105



M U LT I P L E R E G R E S S I O N A N D P R E D I C T I O N 177

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.00604 0.02019 -0.30 0.7655
p 0.89176 0.31005 2.88 0.0051 **
m 0.34658 0.29338 1.18 0.2407
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.131 on 86 degrees of
freedom
Multiple R-Squared: 0.201, Adjusted R-squared: 0.183
F-statistic: 10.8 on 2 and 86 DF, p-value: 6.37e-05

We now see that cbind() forces lm() to estimate separate regression
equations using the same independent variables. If the regression equations
are not independent then in theory the model parameters should be estim-
ated simultaneously because, provided the model is correctly specified,
the estimators will have smaller standard errors than those obtained by
estimating each regression equation separately. Estimation requires use of
multivariate estimation techniques such as univariate least absolute devi-
ation or coordinate rank regression. Fortunately estimation methods for
multivariate regression can be found in the R package pls.pcr which can
be freely downloaded from http://www.r-project.org/

9.6 SUMMARY

Multiple regression is an extension of simple regression where there are
more than one independent variable. It is used in circumstances where it
is believed that a dependent variable is influenced by more than one inde-
pendent factor. The model can be assessed using t-tests on the individual
coefficients, an F-test that all coefficients are significant and/or via the adjus-
tedR2 statistic. Estimation of themodel parameters can be easily carried out
in most statistical programs and spreadsheet packages.

9.7 FURTHER READING

Multiple regression is discussed in Doran (1989), Weisberg (1985), and Neter et al. (1996).
Applications in risk management alongside Excel spreadsheets and Visual Basic source
code are discussed in Lewis (2004).

Doran, H. E. (1989) Applied Regression Analysis in Econometrics, Marcel Dekker, Inc.,
New York.
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Lewis, Nigel Da Costa (2004) Operational Risk with Excel and VBA: Applied Statistical
Methods for Risk Management, John Wiley & Sons, Inc., New York.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996) Applied Linear
Regression Models (3rd edn), Richard D. Irwin, Inc., Chicago, IL.

Weisberg, S. (1985) Applied Linear Regression, John Wiley and Sons, New York.

9.8 REVIEW QUESTIONS

1 Explain the difference between simple linear regression andmultiple linear regression.

2 How might you assess the validity of a multiple regression model?

3 What is the relationship between the product moment correlation coefficient and
R-squared?

4 Give the form of the following regression models:
(a) Exponential regression
(b) Logarithmic regression
(c) Logistic regression
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Misspecification Testing

Arguably, one of the most important issues in regression modeling applied
to risk management is the correct specification of the regression equation.
How canwe assess the validity of the pre-specified regressionmodel, which
will provide the basis of statistical inference and practical decisions? It turns
out that statistical inference concerning the linear regressionmodel depends
crucially on the “validity” of the underlying statistical assumptions of the
model. If the assumed underlying statistical assumptions are invalid the
inference based on itwill be unreliable. The primary objective of this chapter
is to outline the key assumptions of the linear regressionmodel and provide
some elementary techniques for validating or refuting these assumptions
given a specific data set.

10.1 ASSUMPTIONS OF LINEAR REGRESSION

The statistical validity of linear regression analysis rests on the follow-
ing assumptions:

� Linearity: A linear relationship exits between the dependent and inde-
pendent variable. If this assumption is not met the model will not be
adequate and the OLS estimator will be biased.

� Homoscedasticity: The variance of the sample is constant and does not
change as the independent variable increases or decreases. This implies
the variance of the residual term σ 2 is constant across all values ofX. This
is known as homoscedasticity in variance. Aviolation of this assumption
is called heteroscedasticity.

� Normality: The residual is normally distributed.

179
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� Independent variables uncorrelated: The independent variables should
ideally be uncorrelated. A violation of this assumption causes the least
squares estimator to be inefficient. Inefficiency implies estimates with
highly correlated independent variables will have a larger standard
error than what they will have if the variables were uncorrelated. High
correlation between the independent variables is sometimes termed
as multicollinearity.

� No autocorrelation: The dependent variable and error terms are
independent, identically distributed. This ensures that errors asso-
ciated with different observations are independent of one another.
It also implies the residuals are not correlated with the dependent
variable. A violation of this assumption is called auto or serial
correlation.

If all of the above assumptions are valid, then the OLS estimators are
known as the Best Linear Unbiased Estimators (BLUE). A BLUE estim-
ator has the smallest variance in the class estimators that are linear in
the dependent variable. Why is this useful? Because apart from want-
ing an estimator to be unbiased, we would also like an estimator that is
always close to the population parameter we are trying to estimate. One
way to measure this closeness is through the standard error of the estim-
ator. If we have two unbiased estimators one with a large standard error
and the other with a smaller standard error we would always select the
latter.

Once the regressionmodel has been constructedwewill need to investig-
ate howwell it satisfies the above assumptions. Significant violations imply
the regression model is misspecified. In the following sections we discuss
some simple methods for assessing whether or not the regression assump-
tions are satisfied. We also outline what to do if we find serious violation of
the assumptions.

10.2 LINEARITY

The easiest way to check for linearity is via a scatter plot of the dependent
against the independent variables. A linear relationship should be evident.
Any observable non-linear pattern is indicative of a violation of the linearity
assumption. We have two choices when linearity fails. The first is to use
a non-linear regression model, the second is to transform the data in an
attempt to make it linear. The most popular linearizing transformation is
to take the natural logarithm or square root of the dependent and/or inde-
pendent variables. Both of these transformations are part of the family of
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power transformation

Y(λ) =



Yλ − 1
λ

, if λ �= 0,

log(Y), if λ = 0.
.

The above transformations are often known as Box Cox transformations.

10.3 HOMOSCEDASTICITY

Plotting the standardized residuals is a quick and simple way to check for
a violation of the homoscedasticity assumption. If the variance is homos-
cedastic we would expect the scatter of points to be distributed randomly
around zero, with no discernable trend. If this is not the case, it is indicative
of a violation of this assumption. An alternative is to use a test statistic such
as the Breusch Pagan test.

10.4 NORMALITY

Linear regression and many other statistical tests are based on the assump-
tion of normality. The assumption of normality often leads to procedures
that are simple and mathematically tractable compared to procedures that
do notmake the normality assumption. Aplot of the histogram of the stand-
ardized residuals should be approximately symmetric and bell-shaped. We
could also calculate the mean and median, which should be equal, and the
skew (which should be zero) and kurtosis (which should be equal to 3). In
addition to these simple tests, we could also use a QQ plot or even conduct
a formal hypothesis test. If we find that the residuals violate the normality
assumption, an appropriate transformation of the dependent variable can
often yield residuals which are more approximately normally distributed.
The Box Cox power transformation are frequently used to induce normality.

10.5 INDEPENDENT VARIABLES UNCORRELATED

This can be accomplished by calculating the correlation between the k
independent variables. High correlation is indicative of a violation of this
assumption. High correlation, say, between X1 and X2, implies that both
variables aremeasuring similar aspects of the dependent variable and imply
one can be substituted for the other. In other wordswe should re-specify the
regression model with only X1 (or X2) but not both.
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10.6 AUTOCORRELATION

The regression residuals are assumed to be uncorrelated with one another.
We can investigate this by plotting the standardized residuals and observing
whether or not a systematic pattern, indicative of autocorrelation, is evident.
The consequences of proceedingwith theOLS estimatormaybe very serious
indeed. First, theOLSestimates are likely tobeestimatedwithwide standard
errors, which in turn imply that anyhypothesis tests or inferential statements
based on confidence intervals may be very misleading. Second, forecasts
of future values of the dependent variable will have unnecessarily wide
prediction intervals. Given the serious consequences of autocorrelation it is
also advisable to employ formal statistical testing. The test most often used
is the Durbin Watson test statistic

DW =
∑N

i=2 (εi − εi−1)
2∑N

i=1 εi
.

The sampling distribution of this test statistic is somewhat complicated,
depending on the particular values of the independent variables. Fortu-
nately, it is known that values of dw lie between 0 and 4, and in general the
closer the test statistic is to 2 the less likely a violation of the autocorrelation
assumption. As a general rule of thumb, for samples of 100 observations or
more, we can take high (or low) values of this test statistic as an indication
that there is something wrong with the regression model. If we reject the
null hypothesis of no autocorrelation the issue becomes what we should
do. There are two possible approaches to resolve this issue. The first is to
maintain that the regression model is correct and the observed autocorrela-
tion happens to be a real property of the residuals. If this is indeed the case,
an alternative method for estimation that allows for the observed pattern
of autocorrelation has to be sought. The second approach is to acknow-
ledge that the failure to reject the null hypothesis of no autocorrelation is a
consequence of a misspecified model. If this is deemed to be the case, the
solution is to re-specify the regression model. This will involve the addi-
tion of more independent variables and/or further transformations of the
dependent and independent variables.

10.7 MISSPECIFICATION TESTING USING R

To illustrate some of the issues involved in misspecification testing we
return to the simple regression model using data frame cars discussed
in Chapter 8. We have already seen that the relationship between the
dependent variable, dist, and the independent variable, speed, appear
approximately linear. Next we investigate the issue of homoscedasticity.
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Figure 10.1 Standardized residuals from the regression of distances
taken to stop on the speed of cars

We begin by plotting the standardized residuals, shown in Figure 10.1. It
is not immediately obvious that a serious violation has occurred. However,
close inspection reveals a cause for concern that as you move from observa-
tion 1 to 50 the variability in the observations seems to be increasing. Since
the figure in itself is inconclusive we conduct the Breusch Pagan test for
heteroscedasticity1

> lines(resid(car.reg))
> library(lmtest)
> bptest(dist∼speed,data=cars)

studentized Breusch-Pagan test
data: dist ∼ speed
BP = 3.2149, df = 1, p-value = 0.07297

Given the result of the test and the evidence presented in Figure 13.4 we do
not reject the assumption of homoscedasticity.2

Next we address the issue of normality. We begin by plotting the stand-
ardized residuals via qqnorm(), illustrated in Figure 10.2. The spread at the
extreme percentiles is indicative of a fat tailed distribution. Our concern is
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Figure 10.2 QQ normal plot of the standardized residuals from
the regression of distances taken to stop on the speed of cars

further raised when we look at the descriptive statistics via the user defined
function Descriptive()

> Descriptive(standard.resid)
mean med range IQR sd skew kurt max

0.000 -0.149 4.748 1.231 1.000 0.859 3.739 2.838
min

-1.910

In this case themean lies away from themedian, indicating a degree of mild
skew. More important is the degree of kurtosis which at 3.739 is indicative
of non-normality. Given these indications of non-normality, we conduct a
formal hypothesis test using shapiro.test()

> shapiro.test(standard.resid)
Shapiro-Wilk normality test

data: standard.resid
W = 0.9451, p-value = 0.02153

The p-value confirms our suspicions, and we reject the null hypothesis of
normality at the 5% significance level. In order to correct this problem3 we
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take the natural logarithm of both the dependent and independent variable

> car.reg1< −lm(log(dist)∼log(speed),data=cars)
>standard.resid1=(resid(car.reg1)-
mean(resid(car.reg1)))/sd(resid(car.reg1))

We then take a look at the descriptive statistics

> Descriptive(standard.resid1)
mean med range IQR sd skew kurt max min

0.000 -0.072 4.700 1.129 1.000 -0.032 2.867 2.201 -2.498

The results appear positive, very little skew, and a kurtosis close to 3.
We now carry out the Shapiro–Wilk test

> shapiro.test(resid(car.reg1))
Shapiro-Wilk normality test

data: resid(car.reg1)
W = 0.9911, p-value = 0.9684

This time we do not reject the null hypothesis. The correct specification,
requires that we estimate the regression using the natural logarithm of
both variables.

Finally we use dw.test() to investigate autocorrelation in the new
specification

> dwtest(log(dist)∼log(speed),data=cars)
Durbin-Watson test

data: log(dist) ∼ log(speed)
DW = 2.4115, p-value = 0.9088

Fortunately the specification appears not to reject the null hypothesis.

10.8 SUMMARY

Given the widespread popularity and use of regression models, it is of
paramount importance to have a good insight into the tools available for
testing the underlying statistical assumptions. The field of misspecification
testing concentrates on appropriate diagnostic checking of the regression
models. This chapter has offered an elementary review of the most import-
ant assumptions and outlined simple techniques that can be used to assess
them. The key areas to test are linearity, homoscedasticity, and normality.
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It is also necessary to see that the independent variables are uncorrelated
and that the model does not exhibit autocorrelation.

10.9 FURTHER READING

Further discussion about the assumptions of the linear regression model alongside an
extensive battery of statistical tests can be found in Doran (1989), Weisberg (1985), and
Neter et al. (1996).

Doran, H. E. (1989) Applied Regression Analysis in Econometrics, Marcel Dekker, Inc.,
New York.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996) Applied Linear
Regression Models (3rd edn), Richard D. Irwin, Inc., Chicago, IL.

Weisberg, S. (1985) Applied Linear Regression, John Wiley and Sons., New York.

10.10 REVIEW QUESTIONS

1 Explain the difference between simple linear regression and multiple linear regression
in terms of the underlying statistical assumptions.

2 Suppose you estimate a multiple regression model and find the R2 = 99.99%, but
the model violates the homoscedasticity and normality assumption. Explain what (if
anything) you should do next.

3 Using the data frame carsestimate via OLS themodel parameters and then report and
interpret an appropriate test statistic for each of the following:
(1) Homoscedasticity
(2) Homogeneity
(3) Linearity
(4) Normality
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Non-linear and Limited
Dependent Regression

There is no guarantee that the relationship between the dependent and
independent variables will be linear. On many occasions we may find
the relationship to have considerable non-linearity. In such circumstances,
we might attempt to use polynomial regression, logarithmic regression,
exponential regression, or a more general non-linear model. This chapter
introduces these models. It also discusses the use of limited dependent
regression models.

11.1 POLYNOMIAL REGRESSION

In the polynomial regression model we begin by postulating that the rela-
tionship between the dependent and independent variables can bemodeled
using a quadratic regression model of the form

yi = α + β1xi + β2(xi)
2 + εi.

If after suitable diagnostic checks the quadratic regression model proved
unsatisfactory we would then consider a model which includes the inde-
pendent variable X cubed

yi = α + β1xi + β2(xi)
2 + β3(xi)

3 + εi.

If this model proved inadequate we would try

yi = α + β1xi + β2(xi)
2 + β3(xi)

3 + β4(xi)
4 + εi,

187
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and so on. Polynomial regression analysis is sequential. We first evaluate a
quadratic model, if this is inadequate we add a cubic term, and then decide
whether or not the addition of such a term is justified.

11.2 LOGARITHMIC, EXPONENTIAL, AND MORE GENERAL
FORMS OF NON-LINEAR REGRESSION

Logarithmic regression takes the dependent variable to be a function of the
natural logarithm of the independent variables

yi = α + β1 ln(xi) + εi.

Exponential regression takes the dependent variable to be a function of the
exponential of the

yi = α exp(β1xi) + εi.

Amore general form of non-linear regression takes the form

yi = f (β1xi) + εi,

where f (.) is some postulated function specified by the risk analyst.

11.3 NON-LINEAR REGRESSION MODELING USING R

Non-linear least squares, implemented in the function nls(), can often be
used to successfully estimate non-linearmodels.We illustrate this by return-
ing the R data frame cars discussed in Chapter 8. A quadratic regression
model for this data would be given by

> car.reg.cubic<-lm(dist∼speed+I(speedˆ2),data=cars)
> summary(car.reg.cubic)
Call:
lm(formula = dist ∼ speed + I(speedˆ2), data = cars)
Residuals:

Min 1Q Median 3Q Max
-28.72 -9.18 -3.19 4.63 45.15
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.470 14.817 0.17 0.87
speed 0.913 2.034 0.45 0.66
I(speedˆ2) 0.100 0.066 1.52 0.14
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Residual standard error: 15.2 on 47 degrees of
freedom
Multiple R-Squared: 0.667, Adjusted R-squared: 0.653
F-statistic: 47.1 on 2 and 47 DF, p-value: 5.85e-12

The model does not appear to be adequate; perhaps a more general non-
linear specification may improve things

> car.reg.nls<-nls(dist∼a+speedˆb,start=list(a=5,b=5),data=cars)
> summary(car.reg.nls)

Formula: dist ∼ a + speedˆb

Parameters:

Estimate Std. Error t value Pr(>|t|)

a -3.3568 4.4496 -0.75 0.45

b 1.3911 0.0297 46.83 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.1 on 48 degrees of freedom

Correlation of Parameter Estimates:

a

b -0.877

The function nls() provides estimates of the parameters alongside their
correlation. Note that there is no guarantee that the iterative procedure of
this functionwill converge. It is therefore alwaysuseful to re-run the function
with different starting values

> car.reg.nls<-
nls(dist∼a+speedˆb,start=list(a=50,b=15),data=cars)
> summary(car.reg.nls)
Formula: dist ∼ a + speedˆb
Parameters:

Estimate Std. Error t value Pr(>|t|)
a -3.3570 4.4496 -0.75 0.45
b 1.3911 0.0297 46.83 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1
Residual standard error: 15.1 on 48 degrees of
freedom
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Correlation of Parameter Estimates
a

b -0.877

Fortunately, in this case the estimates converge.

11.4 LOGISTIC AND OTHER LIMITED DEPENDENT
REGRESSION MODELS

Logistic regression is often used for analyzing data where the dependent
variable is a binary response such as presence or absence of a disease or the
success or failure of students in a university examination. Given a binary
dependent variableY, whereY = 1, with probability p, if an event of interest
occurs, 0 otherwise, the observed number of successes are converted into
proportions which are then fitted by a logistic model of the form

log
[

p
(1 − p)

]
= α + β1x1i + β2x2i + · · · + βkxk

i + εi.

This equation is very similar to the linear regression as {X1,X2, ...,Xk} are
the k independent variables and ε is the residual. However, unlike linear
regression we do not require assumptions about normality of the residual
term. In addition, using the logistic model, we are able to determine the
probability success from the ratio, known as the odds ratio

[
p

(1 − p)

]
.

The natural logarithm of the odds ratio is called the log odds ratio or
logit. To see the value of this ratio notice the consequence of an odds ratio
equal to 1

[
p

(1 − p)

]
= 1 ⇒ p = (1 − p) ⇒ p + p = 1 ⇒ p = 0.5.

Thus an odds ratio equal to 1 implies the probability that Y = 1 is 0.5. We
interpret exp(βi) as the effect of the independent variable on the odds ratio.
For example, if we postulate the logistic regression

log
[

p
(1 − p)

]
= α + β1xi + εi,
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and on estimation find that β̂1 = 0.963 then exp(β̂1) = 1.999 then a 1 unit
change in X would make the event Y about twice as likely.

The followingR code illustrates the relationship between p, the odds ratio
and the log odds ratio

> p=seq(from =0,to=1, by=.1)
> odd.ratio= p/(1-p)
> odds.ratio=p/(1-p)
> log.odds=log(odds.ratio)
> table=cbind(p,odds.ratio,log.odds)
> table

p odds.ratio log.odds
[1,] 0.0 0.0000 -Inf
[2,] 0.1 0.1111 -2.1972
[3,] 0.2 0.2500 -1.3863
[4,] 0.3 0.4286 -0.8473
[5,] 0.4 0.6667 -0.4055
[6,] 0.5 1.0000 0.0000
[7,] 0.6 1.5000 0.4055
[8,] 0.7 2.3333 0.8473
[9,] 0.8 4.0000 1.3863
[10,] 0.9 9.0000 2.1972
[11,] 1.0 Inf Inf

We see that if p > 0.5 the odds ratio is greater than 1 and the log odds ratio
is greater than zero. For p < 0.5 the odds ratio is less than 1 and the log
odds ratio is negative. Since p is a probability the logistic regression model
is constructed so that 0 ≤ p ≤ 1. To see that this is so note that as

α + β1x1i + β2x2i + · · · + βkxk
i

becomes very large, p approaches 1 and as

α + β1x1i + β2x2i + · · · + βkxk
i

becomes very small, p approaches 0. Furthermore if

α + β1x1i + β2x2i + · · · + βkxk
i = 0

then p = 0.5.
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11.4.1 Logistic regression model using R

Logistic regression coefficients can be estimated via the glm() function. We
illustrate this using simulated data

> X <-rnorm(100)
> Y<-X+rnorm(100)+1
> Y <- as.integer(Y<0)

The above code, simulates 100 observations from a standard normal distri-
bution and stores the results in X. The variable Y is generated in a similar
fashion but is also linked to X. It is then converted into a binary vari-
able using as.integer(). We can now estimate the logistic regression
parameters

> Logistic.reg<-glm(Y∼X,family=binomial(link=logit))
> summary(Logistic.reg)

Call:

glm(formula = Y ∼ X, family = binomial(link = logit))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.411 -0.702 -0.426 -0.188 2.303

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.586 0.313 -5.07 4.1e-07 ***

X -1.431 0.391 -3.66 0.00025 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.38 on 99 degrees of freedom

Residual deviance: 86.48 on 98 degrees of freedom

AIC: 90.48

Number of Fisher Scoring iterations: 4

In actual fact the glm() function can be used to estimate a
number of regression models, the key argument to be aware of is
family\(=\)binomial(link\(=\)logit). For example, to estimate
linear regression model we would type something like

> Linear.reg<-glm(Y∼X,family=gaussian(link=identity))
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11.4.2 Probit regression

An often used alternative to Logistic regression is probit regression

�(p)−1 = α + β1x1i + β2x2i + · · · + βkxk
i + εi,

where �(p)−1 is the inverse cumulative normal probability function. In
actual fact the shapes of the probit and logistic functions are very similar,
except in the tails. We can estimate the probit model by using the argument
family=binomial(link=probit) in glm(). For the data discussed
previously, the parameters are estimated as

> Probit.reg<-glm(Y∼X,family=binomial(link=probit))
> summary(Probit.reg)

Call:

glm(formula = Y ∼ X, family = binomial(link = probit))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.389 -0.718 -0.421 -0.138 2.329

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.928 0.168 -5.52 3.5e-08 ***

X -0.830 0.214 -3.88 0.00010 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.382 on 99 degrees of freedom

Residual deviance: 86.279 on 98 degrees of freedom

AIC: 90.28

Number of Fisher Scoring iterations: 4

11.4.3 Complementary log log regression

Complementary log log regression is occasionally used in place of logistic
or probit regression. The model takes the form

log(− log(1 − p)) = α + β1x1i + β2x2i + · · · + βkxk
i + εi.

In actual fact the model is similar to the logistic and probit models
for values of p near 0.5, but differs substantially from them for val-
ues near 0 or 1. We can estimate the parameters using the argument
family=binomial(link=probit) in glm(). For the data discussed
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previously, the parameters are estimated as

> Cloglog.reg <- glm(Y ∼ X,family=binomial(link= cloglog))

> summary(Cloglog.reg)

Call:

glm(formula = Y ∼ X, family = binomial(link = cloglog))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.477 -0.685 -0.434 -0.213 2.277

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.712 0.280 -6.11 9.8e-10 ***

X -1.214 0.298 -4.07 4.6e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.38 on 99 degrees of freedom

Residual deviance: 86.23 on 98 degrees of freedom

AIC: 90.23

Number of Fisher Scoring iterations: 4

11.4.4 Other regression models in R

The function glm() can be used to estimate a large number of generalized
linear models. The full list is given below

� gaussian(link = "xxx") accepts the links
"identity", "log" and "inverse";

� binomial(link = "xxx") accepts the links
"logit", "probit", "log" and "cloglog"

� Gamma(link = "xxx") accepts the links "inverse",
"identity" and "log"

� inverse.gaussian(link = "xxx") accepts the links
"log", "identity", and "sqrt"

� inverse.gaussian(link = "1/muˆ2") accepts the links
"1/muˆ2", "inverse", "inverse" and "log".

The common theme in all of these models is the analysis of relationships
betweenmultiplemeasurementsmadeongroupsof subjects orotherobjects.
The relationship is analyzed by specifying a dependent variable and a
number of independent variables.
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11.5 SUMMARY

Statistical analysis is often focused on questions involving the relationship
between one ormore variables that are thought as being dependent on some
other independent variables. There is not particular reason to suppose that
the relationships will be linear. Non-linear regressionmodels therefore offer
an additional degree of flexibility. The statistical package R contains power-
ful algorithms, which make non-linear modeling as easy to use as linear
regression modeling. Where the dependent variable is binary or only takes
on a limited number of values, limited dependent regression models can be
used. Again, these models can be easily estimated in R.

11.6 FURTHER READING

Further discussion of non-linear models can be found in Berndt et al. (1974), White (1981),
Gallant (1987), Bates andWatts (1988), Cook andWeisberg (1990), Wolak (1991). Detailed
discussion of Limited-dependent and regression modeling is given in Maddala (1983).

Bates, Douglas M. and Watts, Donald G. (1988) Nonlinear Regression Analysis and Its
Applications, John Wiley & Sons, New York.

Berndt, E., Hall, B., Hall, R., and Hausman, J. (1974) “Estimation and inference in
nonlinear structural models,” Annals of Economic and Social Measurement, 3: 653–65.

Cook, R. D. and Weisberg, S. (1990) “Confidence curves in nonlinear regression,” Journal
of the American Statistical Association, 85: 544–51.

Gallant, A. R. (1987) Nonlinear Statistical Models, Wiley, New York.
Maddala, G. S. (1983) Limited-dependent and qualitative variables in economics, Cambridge
University Press, Cambridge.

White, H. (1981) “Consequences and detection of misspecified nonlinear regression
models.” Journal of the American Statistical Association, 76: 419–33.

Wolak, Frank. (1991) “The local nature of hypothesis tests involving inequality constraints
in nonlinear models,” Econometrica, 59: 981–95.

11.7 REVIEW QUESTIONS

1 Give the form of the following regression models:
(a) Exponential regression
(b) Logarithmic regression
(c) Logistic regression

2 Estimate a cubic regression model using the data frame cars. How does the model
compare to the quadratic model estimated in this chapter?

3 Contrast logistic regression against probit regression. What are their similarities
and differences?



C H A P T E R 12

Modeling Energy Price
Volatility

Say the words “Energy price volatility” and many people will think of the
OPEC oil price hikes of the 1970s or perhaps the more recent 2004 sharp
upswing in the price of crude oil. Yet price volatility is a characteristic of
capitalism and freely operating energy markets are no exception. Accurate
estimates of the variation in energy asset values over time are important for
the valuation of financial contracts, retail obligations, physical assets, and
in solving portfolio allocation problems. As a consequence, modeling and
forecasting of price volatility has acquired an unprecedented significance in
the industry. In response, various attempts have been made to develop stat-
istical tools to help characterize and predict price volatility. In general these
models fall into three categories, Exponentially Weighted Moving Average
models, GeneralizedAutoregressive Conditional Hetroscedasticity models,
and Stochastic Volatility Differential Equations. In this chapterwe introduce
the first two of these modeling approaches.

12.1 THE CONSTANT VOLATILITY MODEL

Figure 12.1 shows time series plots of theprice of theprompt (nearest)month
WestTexas Intermediate crudeoil futures contract (top), 1-monthnatural gas
forward (middle) and the spot price of unleaded gasoline (bottom) over the
period February 1997 to March 2004. For all of the charts there are periods
when the price rises or falls extremely quickly, and periods of relative sta-
bility. This is emphasized in Figure 12.2, which show the time series plots
of the log returns for each of these products.
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Figure 12.1 Time series plot of the prompt (nearest) month West
Texas Intermediate crude oil contract (top), 1-month natural gas forward

(middle), and the spot price of unleaded gasoline (bottom)
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Figure 12.2 Time series plot of the log return of the prompt (nearest)
month West Texas Intermediate crude oil contract (top), 1-month

natural gas forward (middle), and the spot price of unleaded
gasoline (bottom)
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Figure 12.3 Annualized 20-day volatility time series plot of the prompt
(nearest) month West Texas Intermediate crude oil contract (top),

1-month natural gas forward (middle), and the spot price
of unleaded gasoline (bottom)

So far we have considered models for which the standard deviation
(volatility) is constant. Casual inspection of Figures 12.1 and 12.2 does not
appear to support this assertion. Indeed from our discussion of the econom-
ics of energy in Chapter 1 we know that the intensity of price movements
in energy products is intimately linked to the ebb and flow of supply and
demand. As such, a constant volatility model will be unduly simplistic for
the vast majority of energy products. Figures 12.3 shows the annualized
20-day standard deviation for the three products. Again it appears to con-
firm our suspicion of periods of varying volatility. Figures 12.4, 12.5, and
12.6 show the annualized volatility of the prompt month West Texas Inter-
mediate crude oil contract, 1-month natural gas forward and spot price of
unleadedgasoline respectively. Imposedon eachgraph is the volatility trend
line calculated using a locally weighted scatter-plot smoother. We can now
see quite clearly that the trend in volatility is rising and falling over timewith
periods of high volatility clustering together and periods of low volatility
clustering together.
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Figure 12.4 Annualized 20-day volatility time series plot of the
prompt (nearest) month West Texas Intermediate crude oil contract with

volatility trend line
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Figure 12.5 Annualized 20-day volatility time series plot of the 1-month
natural gas forward with volatility trend line

Wemightwish to test the idea of constant volatility between twodifferent
time periods formally using statistical inference. A simple test statistic is
computed as

T̂ = S21
S22

∼ FN1, N2 ,
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Figure 12.6 Annualized 20-day volatility time series plot of the
spot price of unleaded gasoline with volatility trend line

where S21 is the sample variance of the first time period and N1 its
corresponding sample size, S22 the sample variance of the second period
and N2 its corresponding sample size and FN1, N2 the F distribution with N1
and N2 degrees of freedom. Critical values for the F distribution are given
in Tables A.4–A.6.

Whilst a formal inferential statistical test has the reassuring aura of
exactitude about it, we always need to beware that any such test may be
powerless to detect problems of an unsuspected nature and may be heav-
ily dependent upon assumptions about the actual distribution of volatility.
Graphical techniques alongside formal statistical inference offer the best
defense against unexpected structure.

12.2 EXPONENTIALLY WEIGHTED MOVING AVERAGE
MODELS

Empirical data strongly indicates that the constant volatility model does
not apply to energy products in particular, or financial asset prices in gen-
eral. Indeed, there is considerable clustering of volatility at high and low
levels as well as volatility persistence. Volatility persistence refers to the
situation where high (low) volatility today tends to be followed by high
(low) volatility tomorrow. Volatility clustering implies that volatility shocks
today influence the expectation of volatility many periods into the future.
Since accuratemodelingvolatility is critical for the implementationandeval-
uation of effective energy risk management, asset, and derivative pricing as
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well as trading and hedging strategies, having access to the appropriate
statistical tools is essential.

We saw in Chapter 3 that onemeasure of dispersion, the sample variance,
is calculated by

S2 =
∑N

i=1(ri − r)2

N − 1
, where r is the sample mean.

We also observed for daily data that r ≈ 0. Therefore, for daily data, we
could approximate sample volatility by

S2 ≈
∑N

i=1 r2i
N − 1

Furthermore, since providing N is large, there is little difference between
dividing by N or N − 1, we can write the approximation as

S2 ≈
∑N

i=1 r2i
N

This formula provides the basis for a simplemodel of the volatility of energy
price returns given by

σ̃ 2
t+1 ≈

∑M
τ=1 r2t+1−τ

M

Thus the volatility forecast for day t+1 is calculated using themost recentM
observations. Figure 12.7 shows this simple volatility estimator for 1-month
natural gas forward with values of M ranging from 50 to 300. The general
pattern of volatility observed is somewhat similar in all graphs, however
there are significant differences in the forecast levels. This is particularly
apparent if you compare the top graph (M = 300) with the bottom graph
(M = 50). These differences raise the question of how we should determine
M. The short answer is that there is no optimal value forM. Experimentation
with different values is required. However, you should bear in mind that
too large a value for M will make σ̃ 2 unresponsive to current/recent price
swings. Too small a value will make the volatility forecast too sensitive to
current/recent price swings.

12.2.1 The standard EWMA estimator

An equally weighted estimator implies returns generatedMperiods ago are
as important as a return generated 1 period ago. It can be argued that it is
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Figure 12.7 Simple volatility forecasts using various values for M

more reasonable to give a larger weight to recent observations than distant
observations. This would better fit with our intuition that today’s news
is more important for energy prices than yesterday’s news. Exponentially
weightedmoving average (EWMA)models capture volatility persistence in
simple and flexible ways by giving more weight to recent observations than
distant observations. EWMA estimates the conditional variance of a price
return series {r1, ...., rN} as

σ̃ 2
t+1 = λσ̃ 2

t + (1 − λ)r2t .

The EWMAestimator defines next period’s volatility as a weighted average
of this period’s volatility (σ̃ 2

t ) and this period’s squared return (r2t ). In other
words the volatility at t + 1 is a weighted average of the volatility at time t
and the magnitude of the return at time t. The parameter λ is known as the
decay factor. The smaller λ, the greater the weight given to recent returns.
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Figure 12.8 Squared returns of 1-month natural gas forward (top) and
EWMA forecasts (bottom) with λ = 0.96

This can more easily be seen by writing the EWMA in an alternative form

σ̃ 2
t+1 = (1 − λ)

∞∑
i=1

λi−1r2t+1−i.

The decay factor can be estimated using themethod ofmaximum likelihood
or an alternative chosen on the basis of out of sample performance of the
EWMAmodel against some predetermined criteria. Figure 12.8 shows the
squared returns of the 1-month natural gas forward (top) alongside EWMA
forecasts (bottom) with λ = 0.96.1

12.2.2 The robust–Laplace EWMA

An alternative exponentially weighted specification, known as a robust–
Laplace exponentially weightedmoving average (REWMA) uses an infinite
exponentially weighted average of past absolute returns rather than the
weighted average

σ̃ 2
t+1 =

{
λσt + (1 − λ)

√
2 |rt|

}2
.
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This specification for volatility is derived using the maximum likelihood
estimator for the variance of a Laplace distribution which has fatter tails
and is considerably more peaked than the normal distribution. In fact the
maximum likelihood estimator of the variance of the Laplace distribution is
given by

σ̃ 2 =
{√

2
N

N∑
i=1

|ri|
}2

.

It is therefore a function of the squared absolute return rather than the
average square return.

Figure 12.9 gives the REWMA forecasts (top) and the EWMA forecasts
(bottom) for the 1-month natural gas forward contract. Whilst there is some
difference between the actual levels forecast, the general pattern is quite
similar. In fact the correlation between the REWMAand EWMAforecasts is
0.78. One advantage of REWMAover EWMA is that it offers a more robust
estimator. REWMAplaces lessweight on observationswhich are either very
large or very small than EWMA, with relatively more weight going to those
observations with moderate values.

Both EWMAand REWMAestimators incorporate all of the past volatility
shocks via the squared returns but with declining weights. For example, the
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Figure 12.9 Comparison of REWMA (top) and EWMA (bottom) volatility
forecasts of the 1-month natural gas forward contract with λ = 0.96
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EWMA estimator can be written as

σ̃ 2
t+1 = (1 − λ)

∞∑
i=0

λir2t−i,

and the REWMAestimator can be written as

σ̃ 2
t+1 =

{
(1 − λ)

√
2

∞∑
i=0

λi |rt−i|
}2

.

Therefore, EWMA and REWMA estimators are based on an infinite series
of weighted past squared returns. For most energy products this may seem
an untenable assumption because it implies that events that occurred in
the distant past are still relevant today. In actual fact this is not much of a
disadvantage, providedweonlyuseEWMAmodels for relatively short term
forecasting. In practice EWMA/REWMAwork particularly well especially
when used to forecast volatility in the near future.At short distances into the
future they track volatility changes in a way that is broadly consistent with
the observed returns. For near future forecasts they frequently outperform
the more complicated models to be discussed in Section 12.3. Furthermore,
since there is only one parameter to estimate EWMA/REMA models are
very attractive when measured against our core objective of parsimony.

12.3 GENERALIZED AUTOREGRESSIVE CONDITIONAL
HETROSCEDASTICITY MODELS

One of the prominent tools for modeling volatility is the generalized autore-
gressive conditional hetroscedasticity (GARCH)model. TheGARCHmodel
captures volatility persistence in simple and flexible ways by assuming that
future volatility is dependent on past levels of volatility. The GARCH(p, q)
model takes the form

σ̃ 2
t+1 = α0 +

q∑
i=1

αir2t+1−i +
p∑

j=1

λjσ̃
2
t+1−j

where p is the degree of generalized autoregressive conditional hetrosce-
dasticity and q the degree of autoregressive conditional hetroscedasticity.2

In theory the value of p and q can be determined by looking at the autocorrel-
ation function and partial autocorrelation function of the square of residues.
In practice GARCH(p, q) models are difficult to estimate and often provide
little additional explanatory power when compared to the GARCH(1,1).
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12.3.1 The GARCH(1,1) model

The GARCH(1,1) is widely used because it provides a good description of
volatility for a large number of financial price series. It is defined as

σ̃ 2
t+1 = α0 + αr2t + λσ̃ 2

t .

From the above equation we see that it dissects future volatility into three
components. Thefirst component is a constant representedbyα0. The second
component is composed of the squared returns αr2t , and the third compon-
ent the current level of volatility λσ̃ 2

t . Since volatility is positive we expect
the parameters α0,α, λ to be greater than zero. The parameter λ is called the
volatility persistence parameter; a high value today implies a high carryover
effect of past to future volatility, while a low value implies a weak depend-
ence on past volatility. At the extreme if λ = 0 then tomorrow’s volatility is
simply a function of the constant and today’s squared return. If λ < 1 volat-
ility depends on all past volatilities with geometrically declining weights.
The sum of α + λ represents the influence on the forecast volatility of the
squared return and current level of volatility. In practice α + λ is often close
to 1. Values close to 1 are a sign of inertia in the effect of shocks on the
volatility of returns.

We see therefore, that the parameters α and λ provide the mechanism by
which GARCH(1,1) captures the empirically observed feature of volatility
clustering. Provided α + λ < 1 the unconditional variance or long term
volatility of the model can be calculated as

σ̃ 2 = α0

1 − α − λ
.

This provides a useful alternative representation of

σ̃ 2
t+1 = σ̃ + α(r2t − σ̃ 2) + λ(σ̃ 2

t − σ̃ 2).

This equation informs us that the GARCH(1,1) forecast volatility is a
weighted average of the long term volatility, today’s squared return, and
today’s volatility. It demonstrates quite clearly the way in which GARCH
models capture the feature of volatility clustering. If the market is volatile
today in the sense that volatility is above the long term trend, next period’s
forecast will be high. The actual level of volatility is intensified or offset in
accordance with the magnitude of today’s squared return. If, on the other
hand, today’s volatility is below the long term trend, forecast volatility will
be low as well, unless today’s squared return is particularly large. The
above equation also demonstrates the notion of mean reversion in volat-
ility; Provided α +λ < 1, after a shock volatility will eventually return to its
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long term mean. If α + λ = 1 volatility does not exhibit mean reversion but
volatility persistence.

If we impose the conditions that α0 = 0 and α + λ = 1, where α is equal
to 1 minus the value of the EWMAλ, then the GARCH(1,1) model is known
as an integrated generalized conditional hetroscedasticity (IGARCH)model
and is in effect the EWMA estimator of Section 12.2. We can see now that
under EWMA the long term volatility is ill-defined. This underscores our
previous discussion that EWMA should be used for short term forecasting
only. Furthermore, in IGARCH/EWMA a shock in the current period per-
sists indefinitely. This is not the case with the GARCH(1,1) or GARCH(p, q)
where a shock in the current period has a transient effect on volatility and
dies out rapidly at an exponential rate of decay.

12.3.2 Parameter estimation

The parameters of a GARCH(1,1) can be estimated by maximizing the
log likelihood

log L(α0,α, λ|r1, ..., rN) = −N
2
ln(2π) − 1

2

N∑
t=1

(
ln σ 2

t + r2t
σ 2

t

)

Many statistical packages now have an option for estimating GARCHmod-
els, for example in thepackageR,3 one canuse the functiongarch(sample,
order = c(p,q)). For examplegarch(sample, order = c(1, 1))
fits a GARCH(1,1) to the sample. The GARCH(1,1) can also be easily fitted
in a spreadsheet package such as Excel. In this case the above likelihood
function can be maximized using the Excel solver.

Example 12.1 GARCH(1,1) estimates of 1-month forward
natural gas contract

The GARCH(1,1) estimates for the 1-month natural gas forward shown in
Figure 12.5 are

σ̃ 2
t+1 = 0.000028 + 0.0084r2t−1 + 0.9653σ̃ 2

t−1.

Volatility persistence is equal to 0.9653 with the long term volatility
estimated as

σ̃ 2 = 0.000028
1 − (0.9653 − 0.0084)

= 0.001065.
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The estimate of λ+α = 0.9737 and is close to 1. Given the sampling error, it is
possible that the long run variance may not be well defined. Given this and
as with EWMA estimators, the model is probably best suited to forecasting
near term volatility.

Apossible problemwith the GARCH(1,1) is that the impact of the current
return on the forecast of volatility is quadratic. A day with an exceptionally
large absolute return, such as might be expected following news of a major
development in an alternative source of energy, or political instability in
a major player in the supply of natural gas, can cause instability in para-
meter estimation. In general the volatility persistence parameter for energy
assets is high; given this, a high volatility event will result in a (possibly)
inappropriate and sustained impact on forecast volatility.

12.3.3 Leverage effect GARCH models

In empirical data of price returns there appears to be an asymmetric effect
in terms of the response of volatility to good and bad news. Bad news,
resulting in a negative return, increases volatility by more than good news,
resulting in a positive return, of the same magnitude. This is known as
the leverage effect and occurs when a fall in returns is accompanied by an
increase in volatility greater than the volatility induced by an increase in
returns. The idea is illustrated Figure 12.10. This asymmetry is incorporated
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Figure 12.10 The leverage effect – how volatility reacts to bad
and good news
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into GARCH type models by the inclusion of a leverage effect parameter.
Four popular models for capturing leverage are the Exponential GARCH
model (EGARCH), Quadratic GARCH (QGARCH), Glosten-Jagannathan-
Runkle and GARCH(GJR–GARCH).

The EGARCH(1,1) model takes the form

ln(σ̃ 2
t+1) = α0 + α1 ln(σ̃ 2

t ) + α2
rt

σ̃t
+ α3

|rt|
σ̃t

Therefore EGARCH models the log of the conditional variance as an
autoregressive moving average structure with asymmetric innovations.
Since the equation uses the “log” of the process volatility it is guaran-
teed to be positive. The forecast of volatility is a exponential function
of current volatility and product return. The parameter α2 captures the
leverage effect . A non-zero values indicates an asymmetric effect in
volatility, with a negative value indicating that bad news has a larger
impact on volatility than good news. A drawback of this specification
is that the future volatility beyond one period ahead cannot be forecast
analytically.

The QGARCH(1,1) model is given by

ln(σ̃ 2
t+1) = α0 + α1r2t + α2σ̃

2
t + α3rt.

The parameter α3 captures the degree of leverage. An alternative spe-
cification uses an indicator or threshold parameter to capture leverage.
Typical of this class of models is the GJR–GARCH volatility model. The
GJR–GARCH(p, q) model takes the form

σ̃ 2
t+1 = α0 +

q∑
i=1

(αi + θ It−i+1)r2t +
p∑

i=1

βiσ̃
2
t−i+1,

where It is the indicator variable which equals 1 if the current period return
is negative and zero if the current period return is positive. Leverage is
captured in the parameter α3 > 0.

12.3.4 Explanatory variable GARCH models

As with the regression models discussed in Chapter 8, GARCHmodels can
include explanatory variables. For example, in modeling the volatility on a
natural gas forward we might wish to include the implied volatility from
an option contract on the same commodity or the volume of trade. Given k
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explanatory variable {X1, ...,Xk} we could write the GARCH(p, q) model as

σ̃ 2
t+1 = α0 +

q∑
i=1

αir2t+1−i +
p∑

j=1

λjσ̃
2
t+1−j +

k∑
i=1

θiXi.

As anexample consider theGARCH(1,1)with the impliedoptionpricevolat-
ility of the underlying derivatives contract (denoted by VIX) used as an
explanatory variable

σ̃ 2
t+1 = α0 + αr2t + λσ̃ 2

t + θ1VIX

Given the possibility of a leverage effect we might also consider
an EGARCH(1,1)

ln(σ̃ 2
t+1) = α0 + α1 ln(σ̃ 2

t ) + α2
rt

σ̃t
+ α3

|rt|
σ̃t

+ θ1VIX,

or an QGARCH(1,1)

ln(σ̃ 2
t+1) = α0 + α1r2t + α2σ̃

2
t + α3rt + θ1VIX.

Of course there are many other GARCH models. Details of some of these
are given in the section on further reading at the end of this chapter.

12.4 SUMMARY

The volatility of energy product price returns is time-varying and predict-
able. However, forecasting the future level of volatility is difficult because
volatility forecasts are sensitive to the type and particular specification of
the volatility model used. In this chapter we have given two practical
approaches to building such models, one based on EWMA and the other
on GARCH. In choosing which approach to adopt it is important to strike
the right balance between capturing the salient feature of the data and
model parsimony.

12.5 FURTHER READING

Further discussion of EWMAand REWMA type models, with particular emphasis on its
role in value at risk calculations can be found in:

Guermat, C. and Harris, R. D. F. (2001) “Robust conditional variance estimation and
value-at-risk,” Discussion Papers in Accounting and Finance, 01/06, University of
Exeter.
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More general reading on the theoretical development and various applications of
GARCH models is given in:

Akgiray, V. (1989) “Conditional heteroskedasticity in time series of stock returns: evidence
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12.6 REVIEW QUESTIONS

1 Discuss the relative merits of EWMA estimators.

2 Contrast the EWMAwith the GARCH(1,1) model – what do they have in common?

3 Why do you feel GARCH models are popular?

4 Explain how to estimate the parameters of a GARCH(1,1). How would you obtain the
estimates for a GARCH(p, q)?

5 Why might it be preferable to use a GARCH(p, q) instead of a GARCH(1,1)?

6 Explain the notion of a leverage effect. Is this relevant for energy products?



C H A P T E R 13

Stochastic Differential
Equations for Derivative
Pricing and Energy Risk

Management

The main objective of this chapter is twofold. First we introduce a number
common stochastic processes used in the valuation of derivative contracts
and financial simulations. Second, we consider their relevance to energy
risk modeling.

13.1 WHAT ARE STOCHASTIC DIFFERENTIAL EQUATIONS?

Stochastic differential equations are simply probabilitymodels that allowus
to model price evolution through time, and assign probabilities to possible
prices as a function of the current spot and forward prices. In valuing deriv-
ative contracts, capturing the salient features of the underlying spot asset
is often more important than the forecasting ability of the stochastic model.
In other words a precursor for reliable valuation of derivative contracts is
that the proposed stochastic process offers an accurate description of the
underlying price process.

13.1.1 The key process – Geometric Brownian Motion (GBM)

Acommonbasic assumption in thewiderfinance community is thatfinancial
prices change smoothly based on the premise thatmarkets tend to anticipate
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the arrival of information and process it continuously. The key stochastic
differential equation used to capture this idea is the GBM

dSt = µStdt + σStdzt, where dz = εt
√

dt and εt ∼ N(0, 1).

St is the price at time t and εt is the source of the uncertainty. The above
equation is short hand notation for the actual stochastic differential equation
to describe the evolution of St given by

St = S0 +
∫ t

u=0
µSudu +

∫ t

u=0
σSudzu.

The first integral on the right hand side is a regular Riemann integral, the
second integral is a stochastic integral requiring the tools of stochastic calcu-
lus to evaluate. We need not concern ourselves with the details of stochastic
calculus at this stage, we simply need to note that it is the stochastic integral
which drives the uncertainty in the model.

We can rewrite the short hand version of the model as

dSt

St
= µ dt + σ dzt.

The parameterµ is known as the instantaneousmean of the process. We can
think of it as the percentage drift in the process. For example , ifµ = 0.1 then,
if the stochastic element σdzt was not present, the energy product would
rise by 10% in a year. The second term σdzt is the stochastic or uncertain
component where the parameter σ is the process volatility. If σ = 0.3 then
approximately one standard deviation over a year would be 30% of the
present price of the asset.

Geometric Brownian Motion implies that prices have a lognormal dis-
tribution which in turn implies that the continuously compounded returns
ln[St+k/St](k > 0) follows the normal distribution with mean µt and vari-
ance σ 2t. This idea is illustrated in Figure 13.1, where the upper diagram
shows a sample path of GBM, the middle diagram is a histogram of the St
and the bottomdiagram shows the distribution of ln(St)which, as expected,
is normally distributed.

13.1.2 GBM for energy prices – is it relevant?

The popularity of GBM lies in its compatibility with the efficient market
hypothesis of financial economics and in the fact that it often leads to ana-
lytically tractable solutions to derivative pricing problems. For example, the
assumption of GBM is essential to derive the Black–Scholes option pricing
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Figure 13.1 Sample path of simulated GBM price (top), histogram of the
price distribution (middle), and the distribution of the log values (bottom)

formula. The question is whether such a process is appropriate for these and
other energy products. One way to asses this is to investigate whether the
distribution of energy prices is log normal or alternatively whether the log
of prices is normally distributed. Figure 13.2 shows theNord pool Electricity
average spot price, Brent Crude price, andNatural Gas price over the period
December 1999 to December 2004. The price evolution is characterized by
periods of relative claim interspersed with sudden upward bursts in price
and just as rapid declines.

Figures 13.3, 13.4, and 13.5 give the probability plots for the Natural
Gas, Brent Crude, and Nord pool Electricity price respectively.1 In all
cases the data depart from the fitted line most evidently in the extremes,
or distribution tails. This departure is particularly marked in the case of
electricitywhere there is a clear tendency for the returns to be heaver in both
tails than a lognormal distribution because the smallest points are above the
line and the largest points are just below the line. We test this assumption of
lognormality formally andfind that theAnderson–Darling test statistic of all
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three commodities indicates significant departure from the null hypothesis
of lognormalilty.

The usefulness of the GBM as a theoretical tool in general finance is well
established. Its adequacy for energy price modeling may be questionable
on empirical grounds. It may also be questionable on theoretical grounds
because assuming that a variable changes continuously, as for theGBM, pre-
cludes large changes, or jumps, which may result from the sudden arrival
of “lumpy” information.2 This assumption may be unreasonably restrict-
ive for many energy products, especially non-storable products such as
electricity.

13.2 DEALING WITH JUMPS IN ENERGY PRICES

Energy prices often exhibit sudden, unexpected, and discontinuous chan-
ges. The presence of jumps is a significant component of the behavior of
the United Kingdom electricity (PX) spot price illustrated in Figure 13.6. In
fact the empirical characteristic of sudden jumps in many energy products
has been invoked to explain the discrepancies observed between actual pri-
cing of energy exotic options and theoretical predictions. More generally,
ignoring heavy tails results in extreme price changes being underestim-
ated and could lead to ineffective hedging strategies and/or to mis-pricing
assets.3 A sensible stochastic process for energy products should capture
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the consequence of temporary supply shocks4 which result in price jumps.
Merton (1976) introduced a model which captures this idea. It describes
the evolution of the asset price by a continuous diffusion part and a
discontinuous jump part.

13.2.1 Merton’s Jump Model (MJM)

The MJM takes the form

dSt

St
= µ dt + σdzt + Jtdqt

where dqt is a Poisson random5 variable that takes the value zero (no jump)
with probability 1− λdt and the value one (if jump occurs) with probability
λdt. The parameter q counts the number of jumps that have occurred and
Jt represents the magnitude of the jump it is assumed to be independently
identically log-normallydistributedwithparameters (α,β2). Since the jumps
are driven by an independently identically distributed Poisson process they
are entirely independent of one another. The jump process dq is a discrete
timeprocess in the sense that jumpsdonot occur continuously but at specific
instants of time.

How does the use of this type of model compare with GBM?We see that
in MJM, the returns process consists of three components, a linear drift µdt,
a Brownian motion σdz representing “normal” price fluctuations that are
due to normal clearing imbalances in demand and supply, and a compound
Poisson process dq that accounts for jumps in prices due to the arrival of
“news.” Thus the continuous part of the stochastic differential equation
µdt + σdz accounts for the usual fluctuations in St, and the jump part dq,
driven by a Poisson process, accounts for the extreme events.6 In actual
fact in any small time interval, say �t the probability that a single jump
occurs is λ�t whilst the overall probability that exactly q jumps occur is
(λt)qexp(−λt)/q! and the average waiting time for a jump is equal to 1/λ.
Typically, for most of the time dq = 0 and the process behaves as GBM.

On one level and intuitively, wemay feel more comfortable with anMJM
type model because by introducing jumps, we can better capture the abrupt
market price changes driven by unpredictable events such as abnormal
weather or forced capacity outages. More formally it can be shown that
the k period returns under GBM have both skew and relative kurtosis of
zero. However, under the MJM the skew is given by

λα3

(σ 2 + λ(β2 + α2))1.5
√

k
,
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and the relative kurtosis by

λ(α4 + 3β4)

(σ 2 + λ(β2 + α2))2k
.

The MJM model has gained considerable popularity in the wider finance
community because it can lead to analytical solutions for call andput options
and interest rate derivatives such as caps, floors, and swaptions. However,
it does not have very desirable properties in terms of analytical tractability
in the case of path dependent (exotic) options or econometric estimation.
In addition since there is only one jump component “good news” and “bad
news” are not distinguished by their intensity or distributional characterist-
ics. We saw in Chapter 12 that in empirical data of energy price returns there
appears to be an asymmetric effect in terms of the response to good and bad
news. Bad news, resulting in a negative return, increasing volatility bymore
than good news, resulting in a positive return, of the same magnitude. One
way to incorporate this would be to have Jt drawn from a normal distribu-
tion but with different jump volatilities for “good” and “bad” news. Such
an extension, although relatively easy to implement leads to a loss of ana-
lytical tractability of MJM. Two alternatives models which improve on this
situation and are gaining widespread popularity in the wider finance com-
munity are the Pareto–Beta jump diffusion model of Ramezani and Zeng
(1998) and the double exponential jump diffusion model of Kou (2002).

13.2.2 The Ramezani and Zeng Pareto–Beta
jump diffusion model

The Ramezani and Zeng model (RZM) decomposes the evolution of
asset prices into four components, a deterministic linear trend plus three
independent stochastic components

dSt

St
= µdt + σdzt +

∑
i=u, d

(Ji
t − 1) dqi

t,

where

qi
t ∼

{
Poisson(λu), if i = u,
Poisson(λd), if i = d,
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and the jumpmagnitude Ju
t is from the Pareto distribution and Jd

t is from the
standard Beta distribution so that

Ji
t ∼

{
Pareto(αu), if i = u,
Beta(αd, 1), if i = d.

The first stochastic component σdz represents “normal” price fluctuations.
the second source of randomness is due to the arrival of good news and is
driven by a Poisson processwhich leads to “abnormal” upwardmovements
in price. The third source of randomness is due the arrival of bad news and
is driven by a standard Beta process which leads to “abnormal” downward
movements in price.

13.2.3 Kou’s double exponential jump diffusion model

The double exponential jump diffusion model of Kou differs from RZM in
that (Ji

t) is assumed to be a sequence of independently identically distributed
nonnegative random variables such that the natural logarithm given by
ln(Ji

t) has an asymmetric double exponential distribution thus

ln(Ji
t) ∼

{
ξu ∼ exponential(η1) = η1 exp{−η1 ln(Ju

t )}with probability p

ξd ∼ exponential(η2) = η2 exp{−η2 ln(Jd
t )}with probability q

where q = 1 − p

In this case ξu and ξd are exponential random variables with means 1/η1
and 1/η2, respectively.

Ramezani and Zeng/Kou type models are beginning to gain popularity
partly because their distribution of price returns is asymmetric and fat tailed
and partly because these models lead to nearly analytical solutions to many
option pricing problems. They therefore offer some advantages over MJM
which is largely confined to pricing plain vanilla European options.

13.3 MODELING MEAN REVERSION

Wehave already seen thatGBMassumes that the variance of the distribution
of the price return grows linearly with time. In other words, the further out
in timewe gaze, the greater is our uncertainty about the value the factor will
take. However, for commodities, suchas crudeoil andcoal, wewouldexpect
supply shocks to be reasonably short livedwith prices in general fluctuating
aroundvaluesdeterminedby the cost of production and changes indemand.
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We might therefore reasonably expect energy prices to revert back to their
long term mean. Such behavior is known as mean reversion.

A simple way to model mean reversion is via an Ornstein–Uhlenbeck
Process (OUP)

dSt = α(S∗ − ln(St)) dt + σ dzt.

In thismodel, the asset pricemean reverts to the long term level S∗ at a speed
given by the strictly positive parameter α – known as the mean reversion
rate.An illustrationwill help illuminate this point. Suppose ln(St) represents
the spread between the price at Henry Hub and the price at Houston Ship
Channel. If the price at Henry Hub is greater than the price at Houston
Ship Channel plus transportation costs between the two locations then the
spread ln(St) will be above the long term level S∗ and the linear drift term
α(S∗ − ln(St))dt will be negative. In this situation market players will buy at
Houston Ship Channel and sell at Henry Hub. This will reduce demand at
HenryHub and simultaneously drive up demand atHouston ShipChannel.
Thereby placing downward pressure on the price at Henry Hub and the
spread will move back towards the long term level. Similarly, if the spread
is below the long term level S∗ the linear drift term α(S∗ − ln(St))dt will be
positive and the spread will gradually move back towards the long term
level. The rate of adjustment back toward the long term level is determined
by the mean reversion parameter α. The larger α, the quicker the price
mean reverts.

Parameters can be estimated using the linear regression model discussed
in Chapter 8. To see that this is so we rewrite themodel in a discretized form

�St = α(S∗ − ln(St)) �t + σ�zt = αS∗�t − α�t ln(St) + σ�zt,

which after a little manipulation can be written as

�St = A + B ln(St) + ε̆t,

where

B = −α�t, A = αS∗�t, and ε̆ = σ�zt.

The parametersA and B can then be estimated as the coefficients in a simple
linear regression of ln(St − St−1) on lnSt.

The mean reversion model has experienced considerable empirical
success particularly in natural gas and crude oil products. Table 13.1 give
the mean reversion and regression parameter estimates for the spot price
of Henry Hub, Brent Crude, and Nord pool Electricity over the period
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Table 13.1 Mean reversion and regression parameter estimates
for the spot price of Henry Hub, Brent Crude, and Nord pool
Electricity over the period December 1999 to December 2004

Parameter Natural Gas
(Henry Hub)

Brent
Crude

Electricity
(Nord pool)

A −0.0128 −0.0261 −0.07206

B 0.0094 0.0079 0.013814

α 8.88 7.50 13.1094

S* 3.94 27.25 184.3106

December 1999–December 2004. The large value of mean reversion asso-
ciated with the Nordpool electricity spot is particularly striking. This value
reflects the excessively “spiky” behavior of electricity prices.

13.3.1 Mean reversion with jumps

Electricity exhibits price spikes, rather than pure price jumps . That is the
price does not jump to a new level and stay there instead the price reaches a
high point and then declines rapidly back to its previous trading range. This
characteristic can be captured by combiningmean reversion and jumps into
the same model. For example using MJM as the jump model and OUP for
mean reversion we could specify

dSt = α(S∗ − ln(St)) dt + σdzt + Jtdqt.

13.4 INTRODUCING STOCHASTIC VOLATILITY INTO
ENERGY PRICES

We have already seen in Chapter 13 that the assumption of a constant volat-
ility parameter is unrealistically restrictive. Indeed, the GBM assumption
of a lognormal distribution fails to explain the existence of fat tails, the
asymmetry observed in the energy price-return distribution or the obser-
vation of relatively volatile periods followed by periods of low volatility.
Many different theories have been suggested to deal with the idea of non-
constant volatility; for example, we discussed the application of GARCH
typemodels in Chapter 13, and the use of mixing distributions in Chapter 5.
Another alternative is to directly specify a stochastic differential equation
with a time varying volatility parameter. In this approach the asset price S
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satisfies the following stochastic differential equation

dSt

St
= α dt + σt dzt,

where σt = f (Yt) and dYt = (a+b Yt)dt+cYt dvt, and dvt = ρ dzt+
√
1 − ρ2dwt,

where dwt = ε̃t
√

dt and ε̃t ∼ N(0, 1); dzt = εt
√

dt and εt ∼ N(0, 1).
In this set-up the model constants are given by the parameters α, a, b,

and c. The random variables εt and ε̃t are independent standard normal
random variables. This implies that Z and W are uncorrelated. The para-
meter ρ is the correlation betweenZ andV. In otherwords random shocks to
the process variance are correlated to the random shocks to the asset price.
In this model there are two sources of risk, namely the future path of the
asset price and the future path of volatility.

13.4.1 Models for stochastic volatility

Awide variety of models can be expressed in this general frame work. One
of the most popular is that proposed by Hull and White (1987) in which
σt = √

Yt. In The Hull and White model high volatility of the volatility
parameter drives the fat tails of the price distribution. Thus extreme returns
of positive and negative sign are more likely than in GBM where the asset
price follows a lognormal distribution. If ρ = 0 so that shocks to returns
and shocks to volatility are uncorrelated the price distribution is symmetric
and leptokurtic. In fact the sign of the correlation determines the symmetry
of the distribution; negative correlation results in the left tail of the price
distribution containing more probability mass than the right tail.

Scott (1987) considered the case where the logarithm of the volatility is
an OUP and σt = √

Yt so that dYt = (a − bYt)Ytdt + cYt dvt. Scott also
introduced another variation, which has gained some popularity where
dYt = b(a − Yt)dt + c dvt. Although this model can result in the volatility
process becoming negative this need not be a major problem since we could
in principle define volatility as the positive square root of the process Yt.

13.4.2 Stochastic volatility or GARCH?

The question that naturally arises is whether to use stochastic volatility
models or GARCH to capture the time variation in volatility of energy
products. GARCH models have thus far been the most frequently applied
class of time-varying volatility models in empirical research. This is mainly
due to the problems which arise as a consequence of the intractability of
the likelihood function of the stochastic volatility model which prohibits
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its direct evaluation. However, in recent years considerable progress has
been made in this area and techniques for estimation model parameters are
becoming more widely available. In practice it is highly likely that the per-
formance of the GARCH and stochastic volatility models depends on the
specific product in question.7

13.5 SUMMARY

Almost every aspect of modern financial risk management, from value-at-
risk calculations to option pricing, critically depend upon the form of the
probability distribution describing the dynamics of energy prices or returns.
Stochastic differential equations play a central role in describing the dynam-
ics of the price and return processes because they allow us to model the
evolution of prices through time and assign probabilities to possible future
prices. These futureprices canbeused inderivativepricingand riskmanage-
ment models. In order to accurately represent the empirical characteristics
of energy products the basic GBMmodel needs to be augmented to cater for
stochastically driven jumps, mean reversion, and time varying volatility.

13.6 FURTHER READING

Merton (1976, 1982) first suggested that the returns process of financial assets consisted
of the three components of linear drift, Geometric BrownianMotion representing normal
price variations, and a compound Poisson process that accounts for “abnormal” changes
(i.e. jumps). Further details can be found in his references listed below.

An interesting studyof the effectiveness ofdifferent stochasticmodelsused fordescrib-
ing the evolution of electricity spot prices (California, Scandinavia, England, and Wales)
was carriedoutby JohnsonandBarz (1999). Theyevaluated theeffectivenessof fourdiffer-
ent stochastic models (Brownian motion, Mean Reversion, Geometric Brownian Motion,
and Geometric Mean Reversion). The models were tested with and without jumps. The
objectivewas to reproduce electricity price behavior for three distinct periods (April–May,
August–September, andNovember–December). The authors concluded that the Geomet-
ric Mean Reverting model gave the overall best performance and the addition of jumps
to any of the of the models also improved that model’s performance.

The literature on Ramezani et al. and Kou type jump diffusion processes is large and
expanding. Ramezani (2004) conducts estimation and empirical assessment of this class of
models against a standard Merton type jump diffusion model and various GARCH type
specifications. Alternative variations on the jump specification, including different dis-
tributional assumptions for the jumpmagnitude, time varying jump intensity, correlated
jumpmagnitudes, deterministic volatility structure combined with log-normally distrib-
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number of publications, themost representative areNaik (1993), Anderson andAnderson
(2002), and Eraker et al. (2003).
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13.7 REVIEW QUESTIONS

1 Underwhat circumstanceswould you recommend theuse ofGBMfor pricing an option
on an energy product?

2 How would you assess the performance of MJM relative to RZM or Kou’s model?

3 In which type of energy products would you expect to successfully use OUP?

4 What are the relative advantages of stochastic volatility models over GARCH?

5 Contrast the Hull and White (1987) model against the two Scott (1987) models. Which
do you feel would be more suitable for the Nord pool spot price and why?



Appendix: Statistical
Tables

This appendix contains statistical tables of the common sampling distributions used in
statistical inference. See Chapter 4 for examples of their use.

CUMULATIVE DISTRIBUTION FUNCTION OF THE
STANDARD NORMAL DISTRIBUTION

Table A.1 shows the probability, F(z) that a standard normal random variable is less than
the value z. For example, the probability is 0.9986 that a standard normal randomvariable
is less than 3.

CHI-SQUARE DISTRIBUTION

For a given probabilities α, Table A.2 shows the values of the chi-square distribution.
For example, the probability is 0.05 that a chi-square random variable with 10 degrees of
freedom is greater than 18.31.

STUDENT T -DISTRIBUTION

For a given probability α, Table A.3 shows the values of the student t-distribution. For
example, the probability is 0.05 that a student t random variable with 10 degrees of
freedom is greater than 1.812.
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Table A.1 Cumulative distribution function of the
standard normal distribution

z F(z) z F(z) Z F(z) z F(z)

0 0.5 0.32 0.625516 0.64 0.738914 0.96 0.831472

0.01 0.503989 0.33 0.6293 0.65 0.742154 0.97 0.833977

0.02 0.507978 0.34 0.633072 0.66 0.745373 0.98 0.836457

0.03 0.511967 0.35 0.636831 0.67 0.748571 0.99 0.838913

0.04 0.515953 0.36 0.640576 0.68 0.751748 1 0.841345

0.05 0.519939 0.37 0.644309 0.69 0.754903 1.01 0.843752

0.06 0.523922 0.38 0.648027 0.7 0.758036 1.02 0.846136

0.07 0.527903 0.39 0.651732 0.71 0.761148 1.03 0.848495

0.08 0.531881 0.4 0.655422 0.72 0.764238 1.04 0.85083

0.09 0.535856 0.41 0.659097 0.73 0.767305 1.05 0.85314

0.1 0.539828 0.42 0.662757 0.74 0.77035 1.06 0.85542

0.11 0.543795 0.43 0.666402 0.75 0.773373 1.07 0.85769

0.12 0.547758 0.44 0.670031 0.76 0.776373 1.08 0.85992

0.13 0.551717 0.45 0.673645 0.77 0.77935 1.09 0.86214

0.14 0.55567 0.46 0.677242 0.78 0.782305 1.1 0.86433

0.15 0.559618 0.47 0.680822 0.79 0.785236 1.11 0.8665

0.16 0.563559 0.48 0.684386 0.8 0.788145 1.12 0.86864

0.17 0.567495 0.49 0.687933 0.81 0.79103 1.13 0.87076

0.18 0.571424 0.5 0.691462 0.82 0.793892 1.14 0.87285

0.19 0.575345 0.51 0.694974 0.83 0.796731 1.15 0.87492

0.2 0.57926 0.52 0.698468 0.84 0.799546 1.16 0.87697

0.21 0.583166 0.53 0.701944 0.85 0.802338 1.17 0.87899

0.22 0.587064 0.54 0.705402 0.86 0.805106 1.18 0.881

0.23 0.590954 0.55 0.70884 0.87 0.80785 1.19 0.88297

0.24 0.594835 0.56 0.71226 0.88 0.81057 1.2 0.88493

0.25 0.598706 0.57 0.715661 0.89 0.813267 1.21 0.88686

0.26 0.602568 0.58 0.719043 0.9 0.81594 1.22 0.88876

0.27 0.60642 0.59 0.722405 0.91 0.818589 1.23 0.89065

0.28 0.610261 0.6 0.725747 0.92 0.821214 1.24 0.89251

0.29 0.614092 0.61 0.729069 0.93 0.823814 1.25 0.89435

0.3 0.617911 0.62 0.732371 0.94 0.826391 1.26 0.89616

0.31 0.621719 0.63 0.735653 0.95 0.828944 1.27 0.89795

Continued
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Table A.1 Continued

z F(z) z F(z) Z F(z) z F(z)

1.28 0.89972 1.63 0.9484493 1.98 0.976148 2.33 0.990097

1.29 0.90147 1.64 0.9494972 1.99 0.976705 2.34 0.990358

1.3 0.90319 1.65 0.9505297 2 0.97725 2.35 0.990613

1.31 0.90490 1.66 0.9515438 2.01 0.977784 2.36 0.990863

1.32 0.90658 1.67 0.952546 2.02 0.978308 2.37 0.991106

1.33 0.90824 1.68 0.9535219 2.03 0.978822 2.38 0.991344

1.34 0.90987 1.69 0.954486 2.04 0.979325 2.39 0.991576

1.35 0.911492 1.7 0.9554357 2.05 0.979818 2.4 0.991802

1.36 0.913085 1.71 0.956367 2.06 0.980301 2.41 0.992024

1.37 0.914656 1.72 0.957284 2.07 0.980774 2.42 0.99224

1.38 0.916207 1.73 0.9581857 2.08 0.981237 2.43 0.992451

1.39 0.917736 1.74 0.9590711 2.09 0.981691 2.44 0.992656

1.4 0.919243 1.75 0.9599412 2.1 0.982136 2.45 0.992857

1.41 0.92073 1.76 0.960796 2.11 0.982571 2.46 0.993053

1.42 0.922196 1.77 0.9616365 2.12 0.982997 2.47 0.993244

1.43 0.923641 1.78 0.9624628 2.13 0.983414 2.48 0.993431

1.44 0.925066 1.79 0.9632737 2.14 0.983823 2.49 0.993613

1.45 0.926471 1.8 0.96407s5 2.15 0.984222 2.5 0.99379

1.46 0.927855 1.81 0.9648529 2.16 0.984614 2.51 0.993963

1.47 0.929219 1.82 0.9656212 2.17 0.984997 2.52 0.994132

1.48 0.930563 1.83 0.9663752 2.18 0.985371 2.53 0.994297

1.49 0.931888 1.84 0.9671161 2.19 0.985738 2.54 0.994457

1.5 0.933193 1.85 0.9678437 2.2 0.986097 2.55 0.994614

1.51 0.934478 1.86 0.968557 2.21 0.986447 2.56 0.994766

1.52 0.935744 1.87 0.969258 2.22 0.986791 2.57 0.994915

1.53 0.936992 1.88 0.969946 2.23 0.987126 2.58 0.99506

1.54 0.93822 1.89 0.970621 2.24 0.987455 2.59 0.995201

1.55 0.939429 1.9 0.971284 2.25 0.987776 2.6 0.995339

1.56 0.940621 1.91 0.971933 2.26 0.988089 2.61 0.995473

1.57 0.9417928 1.92 0.972571 2.27 0.988396 2.62 0.995603

1.58 0.942947 1.93 0.973197 2.28 0.988696 2.63 0.995731

1.59 0.9440839 1.94 0.97381 2.29 0.988989 2.64 0.995855

1.6 0.9452013 1.95 0.974412 2.3 0.989276 2.65 0.995975

1.61 0.9463014 1.96 0.975002 2.31 0.989556 2.66 0.996093

1.62 0.947384 1.97 0.975581 2.32 0.98983 2.67 0.996207

Continued
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Table A.1 Continued

z F(z) z F(z) Z F(z) z F(z)

2.68 0.996319 3.03 0.998777 3.38 0.999638 3.73 0.999904

2.69 0.996427 3.04 0.998817 3.39 0.99965 3.74 0.999908

2.7 0.996533 3.05 0.998856 3.4 0.999663 3.75 0.999912

2.71 0.996636 3.06 0.998893 3.41 0.999675 3.76 0.999915

2.72 0.996736 3.07 0.99893 3.42 0.999687 3.77 0.999918

2.73 0.996833 3.08 0.998965 3.43 0.999698 3.78 0.999922

2.74 0.996928 3.09 0.998999 3.44 0.999709 3.79 0.999925

2.75 0.99702 3.1 0.999032 3.45 0.99972 3.8 0.999928

2.76 0.99711 3.11 0.999064 3.46 0.99973 3.81 0.99993

2.77 0.997197 3.12 0.999096 3.47 0.99974 3.82 0.999933

2.78 0.997282 3.13 0.999126 3.48 0.999749 3.83 0.999936

2.79 0.997365 3.14 0.999155 3.49 0.999758 3.84 0.999938

2.8 0.997445 3.15 0.999184 3.5 0.999767 3.85 0.999941

2.81 0.997523 3.16 0.999211 3.51 0.999776 3.86 0.999943

2.82 0.997599 3.17 0.999238 3.52 0.999784 3.87 0.999946

2.83 0.997673 3.18 0.999264 3.53 0.999792 3.88 0.999948

2.84 0.997744 3.19 0.999289 3.54 0.9998 3.89 0.99995

2.85 0.997814 3.2 0.999313 3.55 0.999807 3.9 0.999952

2.86 0.997882 3.21 0.999336 3.56 0.999815 3.91 0.999954

2.87 0.997948 3.22 0.999359 3.57 0.999821 3.92 0.999956

2.88 0.998012 3.23 0.999381 3.58 0.999828 3.93 0.999958

2.89 0.998074 3.24 0.999402 3.59 0.999835 3.94 0.999959

2.9 0.998134 3.25 0.999423 3.6 0.999841 3.95 0.999961

2.91 0.998193 3.26 0.999443 3.61 0.999847 3.96 0.999963

2.92 0.99825 3.27 0.999462 3.62 0.999853 3.97 0.999964

2.93 0.998305 3.28 0.999481 3.63 0.999858 3.98 0.999966

2.94 0.998359 3.29 0.999499 3.64 0.999864 3.99 0.999967

2.95 0.998411 3.3 0.999517 3.65 0.999869 4 0.999968

2.96 0.998462 3.31 0.999533 3.66 0.999874

2.97 0.998511 3.32 0.99955 3.67 0.999879

2.98 0.998559 3.33 0.999566 3.68 0.999883

2.99 0.998605 3.34 0.999581 3.69 0.999888

3 0.99865 3.35 0.999596 3.7 0.999892

3.01 0.998694 3.36 0.99961 3.71 0.999896

3.02 0.998736 3.37 0.999624 3.72 0.9999
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Table A.2 Cut off points for the chi-square distribution

αDegrees of
freedom

0.005 0.01 0.025 0.05 0.1

1 7.88 6.63 5.02 3.84 2.71

2 10.60 9.21 7.38 5.99 4.61

3 12.84 11.34 9.35 7.81 6.25

4 14.86 13.28 11.14 9.49 7.78

5 16.75 15.09 12.83 11.07 9.24

6 18.55 16.81 14.45 12.59 10.64

7 20.28 18.48 16.01 14.07 12.02

8 21.95 20.09 17.53 15.51 13.36

9 23.59 21.67 19.02 16.92 14.68

10 25.19 23.21 20.48 18.31 15.99

11 26.76 24.73 21.92 19.68 17.28

12 28.30 26.22 23.34 21.03 18.55

13 29.82 27.69 24.74 22.36 19.81

14 31.32 29.14 26.12 23.68 21.06

15 32.80 30.58 27.49 25.00 22.31

16 34.27 32.00 28.85 26.30 23.54

17 35.72 33.41 30.19 27.59 24.77

18 37.16 34.81 31.53 28.87 25.99

19 38.58 36.19 32.85 30.14 27.20

20 40.00 37.57 34.17 31.41 28.41

21 41.40 38.93 35.48 32.67 29.62

22 42.80 40.29 36.78 33.92 30.81

23 44.18 41.64 38.08 35.17 32.01

24 45.56 42.98 39.36 36.42 33.20

25 46.93 44.31 40.65 37.65 34.38

26 48.29 45.64 41.92 38.89 35.56

27 49.65 46.96 43.19 40.11 36.74

28 50.99 48.28 44.46 41.34 37.92

29 52.34 49.59 45.72 42.56 39.09

30 53.67 50.89 46.98 43.77 40.26

31 55.00 52.19 48.23 44.99 41.42

32 56.33 53.49 49.48 46.19 42.58

33 57.65 54.78 50.73 47.40 43.75

34 58.96 56.06 51.97 48.60 44.90

Continued
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Table A.2 Continued

αDegrees of
freedom

0.005 0.01 0.025 0.05 0.1

35 60.27 57.34 53.20 49.80 46.06

36 61.58 58.62 54.44 51.00 47.21

37 62.88 59.89 55.67 52.19 48.36

38 64.18 61.16 56.90 53.38 49.51

39 65.48 62.43 58.12 54.57 50.66

40 66.77 63.69 59.34 55.76 51.81

41 68.05 64.95 60.56 56.94 52.95

42 69.34 66.21 61.78 58.12 54.09

43 70.62 67.46 62.99 59.30 55.23

44 71.89 68.71 64.20 60.48 56.37

45 73.17 69.96 65.41 61.66 57.51

46 74.44 71.20 66.62 62.83 58.64

47 75.70 72.44 67.82 64.00 59.77

48 76.97 73.68 69.02 65.17 60.91

49 78.23 74.92 70.22 66.34 62.04

50 79.49 76.15 71.42 67.50 63.17

51 80.75 77.39 72.62 68.67 64.30

52 82.00 78.62 73.81 69.83 65.42

53 83.25 79.84 75.00 70.99 66.55

54 84.50 81.07 76.19 72.15 67.67

55 85.75 82.29 77.38 73.31 68.80

56 86.99 83.51 78.57 74.47 69.92

57 88.24 84.73 79.75 75.62 71.04

58 89.48 85.95 80.94 76.78 72.16

59 90.72 87.17 82.12 77.93 73.28

60 91.95 88.38 83.30 79.08 74.40

61 93.19 89.59 84.48 80.23 75.51

62 94.42 90.80 85.65 81.38 76.63

63 95.65 92.01 86.83 82.53 77.75

64 96.88 93.22 88.00 83.68 78.86

65 98.10 94.42 89.18 84.82 79.97

66 99.33 95.63 90.35 85.96 81.09

67 100.55 96.83 91.52 87.11 82.20

68 101.78 98.03 92.69 88.25 83.31

Continued
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Table A.2 Continued

αDegrees of
freedom

0.005 0.01 0.025 0.05 0.1

69 103.00 99.23 93.86 89.39 84.42

70 104.21 100.43 95.02 90.53 85.53

71 105.43 101.62 96.19 91.67 86.64

72 106.65 102.82 97.35 92.81 87.74

73 107.86 104.01 98.52 93.95 88.85

74 109.07 105.20 99.68 95.08 89.96

75 110.29 106.39 100.84 96.22 91.06

76 111.50 107.58 102.00 97.35 92.17

77 112.70 108.77 103.16 98.48 93.27

78 113.91 109.96 104.32 99.62 94.37

79 115.12 111.14 105.47 100.75 95.48

80 116.32 112.33 106.63 101.88 96.58

81 117.52 113.51 107.78 103.01 97.68

82 118.73 114.69 108.94 104.14 98.78

83 119.93 115.88 110.09 105.27 99.88

84 121.13 117.06 111.24 106.39 100.98

85 122.32 118.24 112.39 107.52 102.08

86 123.52 119.41 113.54 108.65 103.18

87 124.72 120.59 114.69 109.77 104.28

88 125.91 121.77 115.84 110.90 105.37

89 127.11 122.94 116.99 112.02 106.47

90 128.30 124.12 118.14 113.15 107.57

91 129.49 125.29 119.28 114.27 108.66

92 130.68 126.46 120.43 115.39 109.76

93 131.87 127.63 121.57 116.51 110.85

94 133.06 128.80 122.72 117.63 111.94

95 134.25 129.97 123.86 118.75 113.04

96 135.43 131.14 125.00 119.87 114.13

97 136.62 132.31 126.14 120.99 115.22

98 137.80 133.48 127.28 122.11 116.32

99 138.99 134.64 128.42 123.23 117.41

100 140.17 135.81 129.56 124.34 118.50
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Table A.3 Cut off points for the student t-distribution

Degrees of
freedom

α

0.005 0.01 0.025 0.05 0.1

1 63.656 31.821 12.706 6.314 3.078

2 9.925 6.965 4.303 2.920 1.886

3 5.841 4.541 3.182 2.353 1.638

4 4.604 3.747 2.776 2.132 1.533

5 4.032 3.365 2.571 2.015 1.476

6 3.707 3.143 2.447 1.943 1.440

7 3.499 2.998 2.365 1.895 1.415

8 3.355 2.896 2.306 1.860 1.397

9 3.250 2.821 2.262 1.833 1.383

10 3.169 2.764 2.228 1.812 1.372

11 3.106 2.718 2.201 1.796 1.363

12 3.055 2.681 2.179 1.782 1.356

13 3.012 2.650 2.160 1.771 1.350

14 2.977 2.624 2.145 1.761 1.345

15 2.947 2.602 2.131 1.753 1.341

16 2.921 2.583 2.120 1.746 1.337

17 2.898 2.567 2.110 1.740 1.333

18 2.878 2.552 2.101 1.734 1.330

19 2.861 2.539 2.093 1.729 1.328

20 2.845 2.528 2.086 1.725 1.325

21 2.831 2.518 2.080 1.721 1.323

22 2.819 2.508 2.074 1.717 1.321

23 2.807 2.500 2.069 1.714 1.319

24 2.797 2.492 2.064 1.711 1.318

25 2.787 2.485 2.060 1.708 1.316

Continued
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Table A.3 Continued

Degrees of
freedom

α

0.005 0.01 0.025 0.05 0.1

26 2.779 2.479 2.056 1.706 1.315

27 2.771 2.473 2.052 1.703 1.314

28 2.763 2.467 2.048 1.701 1.313

29 2.756 2.462 2.045 1.699 1.311

30 2.750 2.457 2.042 1.697 1.310

40 2.704 2.423 2.021 1.684 1.303

60 2.660 2.390 2.000 1.671 1.296

100 2.626 2.364 1.984 1.660 1.290

500 2.586 2.334 1.965 1.648 1.283

1000 2.581 2.330 1.962 1.646 1.282

∞ 2.576 2.327 1.960 1.645 1.282

F-DISTRIBUTION

Tables A.4, A.5 and A.6 show, for a given probability α, the values of the F-distribution.
For example, the probability is 0.05 that a Fv,k distributed random variable, with v = 8
and k = 10, is greater than 6.0.
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Table A.4 Cut off points for the F -distribution where α = 0.01

Denominator
degrees of
freedom = k

Numerator degrees of freedom = v

1 4 8 10 20 50 100 500 1000 ∞

1 4052.2 5624.3 5981.0 6055.9 6208.7 6302.3 6333.9 6359.5 6362.8 6365.6

4 21.2 16.0 14.8 14.5 14.0 13.7 13.6 13.5 13.5 13.5

8 11.3 7.0 6.0 5.8 5.4 5.1 5.0 4.9 4.9 4.9

10 10.0 6.0 5.1 4.8 4.4 4.1 4.0 3.9 3.9 3.9

20 8.1 4.4 3.6 3.4 2.9 2.6 2.5 2.4 2.4 2.4

50 7.2 3.7 2.9 2.7 2.3 1.9 1.8 1.7 1.7 1.7

100 6.9 3.5 2.7 2.5 2.1 1.7 1.6 1.5 1.4 1.4

500 6.7 3.4 2.5 2.4 1.9 1.6 1.4 1.2 1.2 1.2

1000 6.7 3.3 2.5 2.3 1.9 1.5 1.4 1.2 1.2 1.1

∞ 6.6 3.3 2.5 2.3 1.9 1.5 1.4 1.2 1.1 1.0
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Table A.5 Cut off points for the F -distribution where α = 0.05

Denominator
degrees of
freedom

Numerator degrees of freedom

1 4 8 10 20 50 100 500 1000 ∞
1 161.4 224.6 238.9 241.9 248.0 251.8 253.0 254.1 254.2 254.3

4 7.7 6.4 6.0 6.0 5.8 5.7 5.7 5.6 5.6 5.6

8 5.3 3.8 3.4 3.3 3.2 3.0 3.0 2.9 2.9 2.9

10 5.0 3.5 3.1 3.0 2.8 2.6 2.6 2.5 2.5 2.5

20 4.4 2.9 2.4 2.3 2.1 2.0 1.9 1.9 1.8 1.8

50 4.0 2.6 2.1 2.0 1.8 1.6 1.5 1.5 1.4 1.4

100 3.9 2.5 2.0 1.9 1.7 1.5 1.4 1.3 1.3 1.3

500 3.9 2.4 2.0 1.8 1.6 1.4 1.3 1.2 1.1 1.1

1000 3.9 2.4 1.9 1.8 1.6 1.4 1.3 1.1 1.1 1.1

∞ 3.8 2.4 1.9 1.8 1.6 1.4 1.2 1.1 1.1 1.0

Table A.6 Cut off points for the F -distribution where α = 0.1

Denominator
degrees of
freedom

Numerator degrees of freedom

1 4 8 10 20 50 100 500 1000 ∞
1 39.9 55.8 59.4 60.2 61.7 62.7 63.0 63.3 63.3 63.3

4 4.5 4.1 4.0 3.9 3.8 3.8 3.8 3.8 3.8 3.8

8 3.5 2.8 2.6 2.5 2.4 2.3 2.3 2.3 2.3 2.3

10 3.3 2.6 2.4 2.3 2.2 2.1 2.1 2.1 2.1 2.1

20 3.0 2.2 2.0 1.9 1.8 1.7 1.7 1.6 1.6 1.6

50 2.8 2.1 1.8 1.7 1.6 1.4 1.4 1.3 1.3 1.3

100 2.8 2.0 1.7 1.7 1.5 1.4 1.3 1.2 1.2 1.2

500 2.7 2.0 1.7 1.6 1.4 1.3 1.2 1.1 1.1 1.1

1000 2.7 2.0 1.7 1.6 1.4 1.3 1.2 1.1 1.1 1.1

∞ 2.7 1.9 1.7 1.6 1.4 1.3 1.2 1.1 1.1 1.0



Notes

1 THE STATISTICAL NATURE OF ENERGY RISK MODELING

1 Taken from page 5 of the book entitled Multivariate Statistical Analysis by Sam Kash
Kachiga (1991) published by Radius Press (New York).

2 Also known as price risk or market price risk.
3 For example, during volatile periods such as wars like the 1990s gulf war, over-
the-counter dealers can simply refuse to pick up the phone to make a price.

4 The quote is from a paper entitled “The Past, Present and Future of Energy Trading”
by Ed Krapels and presented at the Oil and Gas law conference, February 19, 2004. It
can be downloaded from the Energy Security Analysis, Inc. (ESAI) reading room at
www.esai.com/rea_readingroom.htm

5 The wellhead price is the price of gas at the site of production. It is also known as the
commodity price.

2 INTRODUCTION TO APPLIED PROBABILITY FOR
ENERGY RISK MANAGEMENT

1 As a historical footnote, the normal distribution was discovered by the Huguenot
refugee Abraham De Moivre as the limiting form of the discrete binomial distribution
in 1733 and later formally derived by Gauss in 1809 in his “Theoria motus corporum.”
The wide spread applicability and importance of this probability distribution was
summed up succinctly by Galton who called it the “law of frequency of error.” In 1899
he wrote:

I know scarcely anything so apt to impress the imagination as the wonderful
form of the cosmic order expressed by the “Law of Frequency of Error.” The
lawwould have been personified by the Greeks and deified if they had known
of it. It reigns with serenity and in complete self-effacement amidst the wildest
confusion. The huger the mob and the greater the apparent anarchy, the more
perfect is its sway. It is the supreme law of Unreason.

238
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4 INFERENTIAL STATISTICS METHODS FOR
ENERGY RISK MANAGERS

1 R is a widely used statistical and numerical computational tool. It runs on all of the
major operating systems, is fast, easy to use, and simple to extend. It is available for
free from http://www.r-project.org/

5 MODELING AND FITTING PRICE DISTRIBUTIONS

1 Notice the coefficient of skew for electricity is 0.75 and therefore of some concern.
However since the difference between themedian andmean is close to zero we choose
to assume that the returns are symmetric, for illustrative purposes.

2 This is the asymptotic distribution. It needs to be noted that the small-sample tail
quantiles of this statistic are quite different from their asymptotic counterparts (see
Deb and Sefton (1996, table 1), Urzúa (1996, table 1)). Therefore, the use of asymptotic
critical values in small samples will distort the actual size of the test, and may lead
to incorrect decisions in applied work. For accurate small-sample critical values see
Deb and Sefton (1996) who compute 14 empirical 10% and 5% significance values for
sample sizes ranging from 20 to 800 observations.

3 An alternative to the approach adopted in this section is to specify the probability
distributions of the mixing distributions and then estimate the parameters using the
method of maximum likelihood. The advantage of using the simple method described
in this section is that it forces the user to experiment and investigate the impact of chan-
ging the values of the parameters on each of the mixing distributions. The approach is
useful as a conceptual tool to aid understanding and insight. Themethod ofmaximum
likelihood is described in Section 5.6.1.

4 We previously estimated the parameters of the Logistic distribution using estimators
derived from a technique known as themethod of moments. In actual fact a maximum
likelihood or least squares estimators can also be used.

5 You can also use the spelling optimize() – it is exactly the same function.

6 NONPARAMETRIC DENSITY ESTIMATION FOR
ENERGY PRICE RETURNS

This is part of a much longer poem found on the website http://www.readingstats.
com/fourth/poetry10.htm. It is claimed that the words were written by a stu-
dent called Cory Lation who was taking or had just finished a course in statistics.
This is probably not the case and "Cory Lation" is likely to be the fictional name
of a professor of statistics. If you wish to investigate further see: http://www-
personal.buseco.monash.edu.au/∼hyndman/

7 CORRELATION ANALYSIS

1 We can also calculate the product moment correlation coefficient using the in-built R
function cor(x,y):

> cor(longley$GNP, longley$Unemployed)

[1] 0.604261
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2 This is an approximate confidence interval, but is good enough for most practical
purposes.

3 Economists and Econometricians have written much about the relationship between
unemployment and economic growth. Our results are only tentative – they are after
all based solely on the use of correlation.

4 Eydeland, A. and Wolyniec, K. (2003) Energy and Power Risk Management, John Wiley
and Sons, New York.

5 It is also possible that the correlation does not exist, and the valuewe estimate is simply
noise. This could be the case if the price returns are nonstationary or if correlation is
the inappropriate estimator of dependence.

8 A PRIMER IN APPLIED REGRESSION ANALYSIS

1 Of course, the assumption of linearity may not always be appropriate. In such circum-
stances a non-linear functional form can be specified, this is the basis of non-linear
regression. We discuss this issue further in later sections of this chapter.

2 This section can be skipped by those readers who do not intend to use the R statistical
package. The objective is to get readers familiar with the R statistical package. R is
freely available at www.r-project.org/

3 We will often write an estimate using the notation that is, the estimate of β would be
written as β̂.

9 MULTIPLE REGRESSION AND PREDICTION

1 To follow this example given in this section you will need to install the contributed
package lmtestand load this using the command library(lmtest).

10 MISSPECIFICATION TESTING

1 To perform this test you will need to install the contributed package lmtest and load
it using the command: library(lmtest).

2 This is true at the 1%and 5% level typically used in academic research. Notice however,
that we do reject the null hypothesis at the 10% level.

3 We have previously emphasized that statistical modeling is art embedded in science.
Thus, there are often slightly different interpretations. For example on the QQ plot the
points lie along the reference line except in the extreme tails. Thus if we were to take a
“relaxed” view, we might not reject the assumption of normality. Evidence in favor or
such a decision might be gleaned from the Shapiro Wilk normality test, which is not
rejected at the 1% level.

12 MODELING ENERGY PRICE VOLATILITY

1 In this case λwas chosen to maximize the correlation between the EWMAforecast and
the actual squared returns. In practice values of λ between 0.95 and 0.99 are typical for
energy products.
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2 Because the equation expresses the dependence of the variability of returns in future
periods from previous periods, we denote this variability as conditional.

3 Requires the t-series package. This can be downloaded for free from http://
www.r-project.org/

13 STOCHASTIC DIFFERENTIAL EQUATIONS FOR DERIVATIVE
PRICING AND ENERGY RISK MANAGEMENT

1 Notice in this casewe plot the probabilities associatedwith the Lognormal distribution
versus the price data.

2 See as Merton (1982) for further discussion of this issue.
3 We have already seen a number of approaches to model “fat tails,” Using a probability
distribution with tails fatter than the normal (see Chapter 5), utilizing distribution
with time-varying parameters via the GARCH class of models (see Chapter 12) the
applicationof simplemixturedistributions (seeChapter 5) andnonparametricmethods
(see Chapter 6).

4 Such as a reduction in crude oil output due to political upheaval in the Middle East or
generating/transmission constraints in the case of electricity.

5 The probability density function of the Poisson distribution is given by:

f (q) = λq exp(−λ)

q! where q ≥ 0

where 1/λ can be interpreted as the arithmetic mean.
6 It is interesting to note that the density of returns generated from this process at any
fixed point in time are in fact mixtures of the exponential family of distributions. Fur-
thermore, since thedynamics of the asset price aredrivenby two sources of uncertainty,
from a mathematical standpoint the model is incomplete.

7 Kat and Heynen (1994) find that the best volatility predictions for equity indices are
generated by the stochastic volatility model. For currencies on the other hand, they
find that the best forecasts come from the GARCH(1,1) model.
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