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PREFACE

In the fall of 2000, I was assigned to teach history of mathematics on the
retirement of the person who usually did it. And this with no more reason
than the historical snippets that I had included in my previous book, Fourier
Analysis and Boundary Value Problems. I was clearly fond of history.

Initially, I was unhappy with this assignment because there were two ob-
vious difficulties from the start: (i) how to condense about 6000 years of
mathematical activity into a three-month semester? and (ii) how to quickly
learn all the mathematics created during those 6000 years? These seemed
clearly impossible tasks, until I remembered that Joseph LaSalle (chairman
of the Division of Applied Mathematics at Brown during my last years as a
doctoral student there) once said that the object of a course is not to cover
the material but to uncover part of it. Then the solution to both problems was
clear to me: select a few topics in the history of mathematics and uncover them
sufficiently to make them meaningful and interesting. In the end, I loved this
job and I am sorry it has come to an end.

The selection of the topics was based on three criteria. First, there are
always students in this course who are or are going to be high-school teachers,
so my selection should be useful and interesting to them. Through the years,
my original selection has varied, but eventually I applied a second criterion:
that there should be a connection, a thread running through the various topics
through the semester, one thing leading to another, as it were. This would give
the course a cohesiveness that to me was aesthetically necessary. Finally, there
is such a thing as personal taste, and I have felt free to let my own interests
help in the selection.

This approach solved problem (i) and minimized problem (ii), but I still had
to learn what happened in the past. This brought to the surface another large
set of problems. The first time I taught the course, I started with secondary
sources, either full histories of mathematics or histories of specific topics.
This proved to be largely unsatisfactory. For one thing, coverage was not
extensive enough so that I could really learn the history of my chosen topics.
There is also the fact that, frequently, historian A follows historian B, who
in turn follows historian C, and so on. For example, I have at least four

ix



x Preface

books in my collection that attribute the ratio test for the convergence of
infinite series to Edward Waring, but without a reference. I finally traced this
partial misinformation back to Moritz Cantor’s Vorlesungen über Geschichte
der Mathematik.1 This is history by hearsay, and I could not fully put my
trust in it. There is also the matter of unclear or insufficient references, with
the additional problem that sometimes they are to other secondary sources.
Finally, I had to admit that not all secondary sources offer the truth, the whole
truth, and nothing but the truth (Rafael Bombelli, the discoverer of complex
numbers, has particularly suffered in this respect). The long and the short of
it is this: it’s a jumble out there.

After my first semester teaching the course, it was obvious to me that I
had to learn the essential facts about the work of any major mathematician
included here straight from the horse’s mouth. I had to find original sources, or
translations, or reprints. I enlisted the help of our own library and the Boston
Library Consortium, with special thanks to MIT’s Hayden Library. Beyond
this, I relied on the excellent service of our Interlibrary Loan Department. But
even all this would have been insufficient and this book could not have been
written in its present form. I purchased a large collection of books, mostly out
of print and mostly on line, and scans of old books on CD, all of which were of
invaluable help. Special thanks are also due to the Gottfried Wilhelm Leibniz
Bibliothek, of Hanover, for copies of the relevant manuscripts of Leibniz on
his discovery of the calculus. As for the rest, the very large rest, I went on line
to several digitized book collections from around the world, too many to cite
individually. It is a wonder to me that history of mathematics could be done
before the existence of these valuable resources.

Many of the works I have consulted are already translated into English
(such as those by Ptolemy, Aryabhata, Regiomontanus, some of Viète’s,
Napier, Briggs, Newton, and—to a limited and unreliable extent—Leibniz),
but in most other cases the documents are available only in the language orig-
inally written in or in translations into languages other than English (such as
those by Al Tusi, Saint Vincent, Bombelli, most of Gregory’s, Fermat, Fourier,
da Cunha, and Cauchy). Except by error of omission, the translations in this
book that are not credited to a specific source are my own, but I wish to thank
my colleague Rida Mirie for his kind help withArabic spelling and translation.

1 Vol. 4, B. G. Teubner, Leipzig, 1908, p. 275. Cantor gave the reference, but with no
page number, and then he put his own misleading interpretation of Waring’s statement in
quotation marks! For a more detailed explanation of Waring’s test, stronger than the one
given later by Cauchy, see note 21 in Chapter 6.



Preface xi

As much as I believe that a text on mathematics must include as many
proofs as possible at the selected level, for mathematics without proofs is just
a story, I also believe that history without complete and accurate references
is just a story, a frustrating one for many readers. I have endeavored to give
as complete a set of references as I have been able to. Not only to original
sources but also to facsimiles, translations into several languages, and reprints,
to facilitate the work of the reader who wishes to do additional reading. These
details can be found in the bibliography at the end of the book. For easy and
immediate access, references are also given in footnotes at each appropriate
place, but only by the author’s last name, the work title, volume number if
applicable, year of publication the first time that a work is cited in a chapter,
and relevant page or pages.

I can only hope that readers enjoy this book as much as I have enjoyed
writing it.

Dunstable, Massachusetts Enrique A. González-Velasco
June 15, 2010





1

TRIGONOMETRY

1.1 THE HELLENIC PERIOD

Trigonometry as we know it and as we call it today is a product of the seven-
teenth century, but it has very deep roots. In antiquity, it all started with a stick
sunk in the soil perpendicular to the ground, and with the measurement of its
shadow in the sun. From repeated observations of the shadow, such things as
the length of the day or the length of the year could be determined, as well as
the location in the year of the solstices and equinoxes. Because the Greeks
would obtain knowledge from the length of the stick’s shadow, they called the
stick a gnomon (cm�lxm), a Greek word that has the same root as “to know.”

At present there is a wider interest in plane trigonometry, and it is the
history of this discipline that we shall outline, but it should not come as a
surprise that some of the earliest users were primarily concerned with spher-
ical trigonometry. When humans could find some time for tasks other than
procuring food and shelter, when scientific curiosity was possible and started
to develop, people looked at the heavens and tried to figure out the mystery
of the sun, moon, and stars circling around. Thus, astronomy was one of
the earliest sciences and, together with geography, made the development of
trigonometry, plane and spherical, a necessity.

Four astronomers were the main known contributors to the development
of the first phase of this subject: Aristarchos of Samos, Hipparchos of Nicæa,
Menelaos of Alexandria, and Klaudios Ptolemaios.1

1 Except in quotations from other sources, I write Greek names with Greek rather than
Latinized endings, as in Aristarchos rather than Aristarchus.

,
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2 Trigonometry Chapter 1

Aristarchos (310–230, BCE) was basically a mathematician, and he was
known as such in his own time. Aëtius refers to him as “Aristarchus of Samos,
a mathematician and pupil of Strato . . . ”2 in his Doxographi græci.

Aristarchos’ main contribution to astronomy is the proposal of the helio-
centric system of the universe, but this work has been lost. We know about it

2 Quoted from Thomas, Selections illustrating the history of Greek mathematics, II, 1942,
p. 3. Strato of Lampascus was head of the Alexandrian Lyceum from 288/287 to 270/269
BCE [p. 2]. This was a school modeled after Aristotle’s Peripatetic Lyceum, so called
because Aristotle taught while walking in the garden of the hero Lycos.
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from a reference in The sand-reckoner of Archimedes [pp. 221–222]:3

Now you are aware [“you” being Gelon, tyrant of Syracuse] that ‘universe’ is
the name given by most astronomers to the sphere, the centre of which is the
centre of the earth, while its radius is equal to the straight line between the
centre of the sun and the centre of the earth. This is the common account (sà
cqau�lema), as you have heard from astronomers. But Aristarchus of Samos
brought out a book consisting of some hypotheses, in which the premises
lead to the result that the universe is many times greater than that now so
called. His hypotheses are that the fixed stars and the sun remain unmoved,
that the earth revolves around the sun in the circumference of a circle, the
sun lying in the middle of the orbit, and that the sphere of the fixed stars,
situated about the same centre as the sun, is so great that the circle in which
he supposes the earth to revolve bears such a proportion to the distance of
the fixed stars as the centre of the sphere bears to its surface.

As much as the loss of this book and the fact that his contemporaries did not
accept this theory are to be lamented, the heliocentric hypothesis is not central
to our quest.

Aristarchos’ only extant book, On the sizes and distances of the sun and
moon, is more interesting for our purposes. This is a book on mathematical
astronomy, with little or nothing on the practical side. After stating six basic
hypotheses, starting with4

ᾱ That the moon receives its light from the sun.

and ending with

ς̄ That the moon subtends one fifteenth part of a sign of the zodiac.

Aristarchos then gave a set of 18 propositions with proofs. There being twelve
signs of the zodiac in a full circle of 360◦, one sign of the zodiac is 30◦,
which would make the moon subtend an arc of 2◦. Now, this is incorrect,
and Aristarchos himself knew better (although not, apparently, at the time of
writing the preserved manuscript) because Archimedes said that Aristarchos
“discovered that the sun appeared to be about 1/720th part of the circle of

3 This work can be seen in Heath, The works of Archimedes with The method of
Archimedes, 1912, pp 221–232. Page references given in brackets are to the Dover Publi-
cations edition, 1953.

4 The stated hypotheses are in Heath, Aristarchus of Samos, 1913, p. 302. Page references
given below for additional quotations are to this edition.
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A sixteenth-century manuscript copy of On the sizes and distances of the sun and moon.

The header reads: ’Aqirs�qvot peqì leceh�xm jaì ’aporsgl�s�xm ‘gk�ot jaì rek�mgy.

Reproduced from the virtual exhibition El legado de las matemáticas:

de Euclides a Newton, los genios a través de sus libros, Sevilla, 2000.

the zodiac” [The sand-reckoner, p. 353]; that is, one half of a degree, and
Aristarchos believed that the sun and the moon subtend the same arc (as he
stated in Proposition 8 [p. 383]).

His conclusions are erroneous because his sixth hypothesis is, but the
proofs are mathematically correct. Most are based on what we now call
Euclidean geometry, but Aristarchos also used what we know as trigonometry.
For instance, consider [p. 365]

Proposition 4.

The circle which divides the dark and bright portions in the moon is not
perceptibly different from a great circle in the moon.
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This situation is represented in the next figure (which excludes some of
the lines and letters of the original). The circle represents the moon with its
center at B, the point A is the eye of an observer on earth, and the sun, eclipsed

by the moon, is on the left (not shown). The bright portion of the moon is
represented by the arc ΔZEΓ and the dark side by the arc ΔHΓ . The circles
mentioned in the proposition are shown as the segments ΔΓ and ZE. The
point Θ is chosen so that the arc ΘH is equal to half the arc ΔZ.

The proof consists in showing that this last arc is negligible by estimating
its maximum possible size if the angle ΔAΓ is 2◦, and it is mostly geometric;
but then Aristarchos used the following fact [p. 369]:

And BΘ has to ΘA a ratio greater than that which the angle BAΘ has to the
angle ABΘ.

To interpret this statement, let Π denote the foot of the perpendicular from Θ

to AB (not shown in the figure) and denote the angles BAΘ and ABΘ by α

and β, respectively. Then, in our usual terminology,

sin α = ΘΠ

ΘA
and sin β = ΘΠ

BΘ
.

This allows us to compute the ratio BΘ/ΘA and to restate Aristarchos’ state-
ment in the equivalent form

sin α

sin β
>

α

β
,

which shows its true nature as a trigonometric statement.
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The remarkable thing is that Aristarchos, who was extremely clear and
detailed in the geometric part of the proof, offered no comment or explanation
about the preceding statement.

Another instance of the use of trigonometry occurs in the proof of

Proposition 7.

The distance of the sun from the earth is greater than eighteen times, but less
than twenty times, the distance of the moon from the earth.

Actually, the sun is about four hundred times farther away than the moon.
But this is neither here nor there, for hadAristarchos started with correct values
from accurate measurements, he would have arrived at correct results. The
relevance of his work is in showing that the power of mathematics can lead to
conclusions of the type reached.

In the course of the proof, which is based on a figure some of whose

components are reproduced here, Aristarchos asserted the following [p. 377]:

Now, since HE has to EΘ a ratio greater than that which the angle HBE has
to the angle ΘBE, . . .

It is very easy to translate this statement into our present language: if α and β

are angles between 0 and π/2, and if α > β, then

tan α

tan β
>

α

β
,

and again this is trigonometry. Once more, Aristarchos offered no comment
or proof. He simply assumed this as a fact, which suggests that these trigono-
metric assumptions may have been well-known facts at the time. At any rate,
they were known to him.
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Very little is known about Hipparchos (190–120, BCE). The main known
facts are these: he was born in Nicæa, in Bithynia (now called Iznik in north-
western Turkey, about 100 kilometers by straight line southeast from Istanbul);
he was famous enough to have his likeness stamped on coins issued by several
Roman emperors; and he devoted his scientific life to astronomy, making
observations at Alexandria in 146 BCE and at Rhodes, where he probably
died, about twenty years later. All but one of his works have been lost, and
we have no direct knowledge of his work on trigonometry, even though he
is usually regarded to be its founder. We know about his research indirectly,
from other sources.

One of Hipparchos’ claims to fame is a determination of the solar year that
is closer to the real one than the one in use for more than 1600 years after his
finding. Comparing the length of the gnomon’s shadow at the summer solstice
of 135 BCE with that measured by Aristarchos at the summer solstice of 280
BCE, led him to correct the then accepted figure of 365 1

4 days in a now lost
tract On the length of the year. Ptolemaios provided the following evidence
of this fact in his Mathematike syntaxis:5

And when he more or less sums up his opinions in his list of his own writings,
he [Hipparchos] says: ‘I have also composed a work on the length of the year
in one book, in which I show that the solar year (by which I mean the time
in which the sun goes from a solstice back to the same solstice, or from an
equinox back to the same equinox) contains 365 days, plus a fraction which
is less than 1

4 by about 1
300 th of the sum of one day and one night, and not,

as the mathematicians suppose, exactly 1
4 -day beyond the above-mentioned

number [365] of days.’

This would put the length of the year at 365 days, 5 hours, 55 minutes, and
12 seconds. This length is very close to the true value of 365 days, 5 hours,
48 minutes, and 46 seconds, and represents an opportunity missed by Julius
Cæsar when he reformed the calendar in 46 BCE and ignored Hipparchos’
value (he was counseled by the professional astronomer Sosigenes).

Trigonometry is supposed to have had its start in a table of chords sub-
tended by arcs of a circle compiled by Hipparchos. We have this on the
authority of Theon of Alexandria, who wrote the following in his commentary
on Ptolemaios’ Syntaxis:6 “An investigation of the chords in a circle is made
by Hipparchus in twelve books and again by Menelaus in six.”

5 Quoted from Toomer, Ptolemy’s Almagest, 1984, p. 139.
6 Quoted from Thomas, Selections illustrating the history of Greek mathematics, II,

p. 407.
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While the exaggerated number of twelve books must be in error, the tables
were real.7 They were based on dividing the circle into 360 parts with each
part divided into 60 smaller parts, as the Babylonians had already done. It
appears that Hipparchos evaluated the lengths of chords of angles at 7 1

2 parts
apart and then interpolated values at intermediate points. But how a table
of chords is constructed will be better explained when we cover the work of
Ptolemaios, who incorporated that of Hipparchos and provided all necessary
details.

There is little to say about Menelaos ofAlexandria (c.70–c.130) regarding
plane trigonometry: writing in Rome, he compiled a table of chords in six
books, but it has not survived. He wrote a number of texts, but the only one
that has been preserved to our times is an Arabic translation of his Sphærica in
three books. In it, he made noteworthy contributions to spherical trigonometry,
which we shall not discuss.

But the final synthesis of the trigonometric knowledge of antiquity took
place in Alexandria, the magnificent city founded in Egypt by Alexander III,
son of Philip II of Macedonia, who had set out at the age of 20, in 336 BCE,
to conquer the world. He succeeded, indeed, in becoming ruler of most of the
known world of his time, totally subduing the Persians. The city of Alexandria
was destined to become the center of Hellenic culture for centuries and the
undisputed hub of mathematics in the world. On the death of Alexander in 323
BCE, at the age of 33, Egypt was governed by Ptolemy Soter (Savior), one
of Alexander’s generals, who was also his close friend and perhaps a relative,
and who became king of Egypt in 305 BCE. Ptolemy I and his successors were
enlightened rulers, bringing scholars from all over the world to Alexandria.
Here, at the Museum, or temple of the Muses, they had a magnificent library
at their disposal, botanical and zoological gardens, free room and board in
luxurious conditions, exemption from taxes, additional salaries, and plenty of
free time to engage in their own scholarly pursuits. Their only duty was to give
regular lectures, a situation equivalent to that of a very generously endowed
modern university plus quite a few additional perks.

Ptolemy I founded a city that was called Ptolemais, named after him, as
a center of Hellenic culture in upper Egypt, and it was here that Klaudios
Ptolemaios (c. 87–150) is said to have been born. He is usually known by the
name Claudius Ptolemy, and, since this is almost as much of a household name
as Euclid’s, we shall use it henceforth. The Claudius part of his name suggests

7 These and Hipparchos’methods have been reconstructed by Toomer in “The chord table
of Hipparchus and the early history of Greek trigonometry” (1973/74) 6–28.
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that he was a Roman citizen, but at some time he moved to Alexandria, where
he studied under Theon of Smyrna, and probably remained at the Museum for
the rest of his life.

Ptolemy wrote books on many subjects, such as optics, harmonics, and
geography, but his fame rests on his great work Mathematike syntaxis (Mathe-
matical collection) in thirteen books, probably written during the last decade of
the reign of Titus Ælius Antoninus (138–161), also known as Antoninus Pius,
one of the five good Roman emperors. This work was also called Megale
syntaxis (Large collection) to distinguish it from smaller or less-important
ones. Later, writers in the Arabic language combined their article al with
the superlative form megiste of megale to make al-mjsty. This is why the
renamed � l�cirsg r	msaniy is usually known as the Almagest. This book

The first printed edition of the Almagest, Venice, 1515.

Reproduced from the virtual exhibition El legado de las matemáticas:

de Euclides a Newton, los genios a través de sus libros, Sevilla.

did for astronomy and trigonometry what Euclid’s Elements did for geometry;
for more than a thousand years it remained the source of most knowledge in
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those fields, and there were numerous manuscript copies and translations into
Syriac, Arabic, and Latin.

Ptolemy described his intention in writing this compilation at the outset,
at the end of Article 1:8

For the sake of completeness in our treatment we shall set out everything
useful for the theory of the heavens in the proper order, but to avoid undue
length we shall merely recount what has been adequately established by the
ancients. However, those topics which have not been dealt with [by our
predecessors] at all, or not as usefully as they might have been, will be
discussed at length, to the best of our ability.

Regarding trigonometry and the table of chords, which are in Book I of
the Almagest, Ptolemy compiled all the knowledge on this subject up to his
time, but did not tell us which parts were due to Hipparchos or to Menelaos.
We shall assume that their results are included in Ptolemy’s presentation.

1.2 PTOLEMY’S TABLE OF CHORDS

Tables of chords are important for the same reason that today’s trigonometric
functions are: they allow us to solve triangles, and this is necessary in applica-
tions to astronomy and geography. For this reason and because the Almagest
represented the definitive state of western trigonometry for the next millen-
nium, the construction of this table of chords will be presented in sufficient
detail.

Ptolemy began [Art. 10]9 by dividing the perimeter of a circle into 360
parts, and then the diameter into 120 parts. Although Ptolemy used the same
word here for parts (sl�lasa), these two parts are different. Otherwise, the
ratio of the perimeter to the diameter would be 3, but Ptolemy determined that
this ratio is approximately 3 17

120 . We shall call the 360 parts of the perimeter
“degrees” (from the Latin de gradus = “[one] step away from”), and use the
modern notation 360◦.10 We shall also use “minute” and “second” (derived

8 Quoted from Toomer, Ptolemy’s Almagest, p. 37.
9 The more verbal translation by Thomas in Selections illustrating the history of Greek

mathematics, II, pp. 412–443, is closer than Toomer’s to the Greek original style, and, while
this may be too tiring for the long haul, it may be quite adequate for a shorter presentation.
For this reason I stay closer to this translation here. Quotations are from this edition and
page references are to it.

10 It may not be modern at all. For the origin of the present symbols for degrees, minutes,
and seconds, see Cajori, A history of mathematical notations, II, 1929, pp. 142–147.
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from the Latin pars minuta prima, or first small part, and pars minuta secunda,
or second small part) for the usual concepts and with the usual notation of one
or two strokes. We need a different notation for the 120 parts of the diameter,
and adopt the widely used superscript p for this purpose. Finally, before
embarking on his construction of a table of chords of central angles in a circle,
Ptolemy said that he will [p. 415]

use the sexagesimal system for the numerical calculations owing to the
inconvenience of having fractional parts, especially in multiplications and
divisions.11

With this notational hurdle out of the way, Ptolemy proceeded to state a
few necessary theorems to compute the chords of angles in steps of half a
degree. To interpret his results in current notation, refer to the next figure and

note that if θ is an acute angle and if we denote the length of the chord AB of
the angle 2θ by crd 2θ , then we have the basic relation

sin θ = AP

OA
= 2AP

2OA
= AB

diameter
= crd 2θ

120
.

We start with Ptolemy’s first theorem [p. 415]:

First, let ABΓ be a semicircle on the diameter AΔΓ and with centre Δ, and
from Δ let ΔB be drawn perpendicular to AΓ , and let ΔΓ be bisected at E,

11 Ptolemy was right in this choice: the number 60 is divisible by 2, 3, 4, 5, 6, 10, 12, 15,
20 and 30, and of the fractions with denominators 2 to 9 only 60/7 gives a nonterminating
quotient. By contrast, 10—our likely choice for a system base—is divisible by 2 and 5, and
has nonterminating quotients when divided by 3, 6, 7 and 9.
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and let EB be joined, and let EZ be placed equal to it, and let ZB be joined. I
say that ZΔ is the side of a [regular] decagon, and BZ of a [regular] pentagon.

We omit the proof. Ptolemy’s is somewhat involved, since it depends on
results from Euclid’s Elements that, besides depending on previous proposi-
tions by Euclid, are unlikely to be available in the mind of the average reader.
It is possible to give a short modern proof, which might be jarring and anachro-
nistic at this point, so the best compromise is to give a reference.12

This lack of proof notwithstanding, if the preceding theorem is accepted,
then it can be used to start the evaluation of some chords. Thus, Ptolemy
continued as follows [pp. 417–419]:

Then since, as I said, we made the diameter consist of 120 p, by what has been
stated ΔE, being half of the radius, consists of 30 p and its square of 900 p,
and BΔ, being the radius, consists of 60 p and its square of 3600 p, while the
square on EB, that is, the square on EZ, consists of 4500 p; therefore EZ is
approximately 67 p 4 55, and the remainder ΔZ is 37 p 4 55.

Hold your horses, some reader might be thinking. How did they find, in
antiquity, that

√
4500 = 67 p 4 55, and what does this notation mean? The

easiest thing to explain is the notation: 67 p 4 55 means

67+ 4

60
+ 55

3600

12 Ptolemy’s proof can, of course, be seen in any of the translations of the Almagest already
mentioned. The best recent presentation that I have seen of all the results in Article 10, with
very brief and clear modern proofs, is in Glenn Elert, Ptolemy’s table of chords. Trigonometry
in the second century, www.hypertextbook.com/eworld/chords/shtml, June 1994.
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in the sexagesimal system that Ptolemy said he was going to use. As for the
extraction of the square root, he did not offer any explanation whatever. Is
this is a trivial matter that we should figure out by ourselves? Apparently not,
because Theon of Alexandria, writing his Commentary on Ptolemy’s Syntaxis
more than 200 years after its writing, spent some time and effort showing
how to evaluate this root.13 However, an electronic calculator gives

√
4500 =

67.08203933, from which value we get the 67 p. Now,

0.08203933 = (0.08203933)(60)

60
= 4.9223598

60
,

from which we get the 4 pars minuta prima, so to speak. And then

0.9223598 = (0.9223598)(60)

60
= 55.341588

60
,

which, rounding down, provides the 55 pars minuta secunda.
Having obtained EZ = 67 p 4 55 (we are writing equalities for conve-

nience, but it should be understood that many of these computations provide
only approximate values), Ptolemy then concluded that the side of the regular
decagon is

ΔZ = EZ −ΔE = 67 p 4 55− 30 p = 37 p 4 55

and, since this side subtends an arc of 36◦, then, using our notation,

crd 36◦ = 37 p 4 55.

As for the side BZ of the regular pentagon, which subtends an arc of 72◦,
Ptolemy made the following computation (but only in narrative form) [p. 419]:

BZ =
√

BΔ2 +ΔZ2 =
√

602 + (37 p 4 55)2 =
√

4975 p 4 15,

and then
crd 72◦ = 70 p 4 55.

We have computed only two chords, but a few more are easy. Since the side
of the regular hexagon is equal to the radius, we have

crd 60◦ = 60 p;
13 His evaluation can be seen in Rome, Commentaires de Pappus et de Théon d’Alexandrie

sur l’Almageste, II, 1936, pp. 469–473. Also in Thomas, Selections illustrating the history
of Greek mathematics, I, 1941, pp. 56–61.
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the side of the regular square is the square root of twice the square of the
radius, so that

crd 90◦ =
√

602 + 602 =
√

7200 = 84 p 51 10;

and the side of the regular triangle is
√

3 times the radius (using well-known
Euclidean geometry the reader can deduce this result in a short time), which
gives

crd 120◦ = 60
√

3 =
√

10800 = 103 p 55 23.

Now consider two chords subtending a semicircle in the manner of those
shown in the next figure (not included in the Almagest). Ptolemy observed

that [p. 421] “the sums of the squares on those chords is equal to the square
on the diameter” (since the angle ABΓ = 90◦); that is,

AB2 + BΓ 2 = AΓ 2.14

Then he gave the following example. If
�

BΓ is an arc of 36◦, then

crd 144◦ = AB =
√

AΓ 2 − BΓ 2 =
√

1202 − (37 p 4 55)2 = 114 p 7 37.

Similarly,

crd 108◦ =
√

1202 − crd272◦ = 97 p 4 56.

At this moment we sum up by stating that we have computed the chords of
36◦, 60◦, 72◦, 90◦, 108◦, 120◦, and 144◦. Not a small harvest, but very far
from the promised table.

To continue the computation of chords, Ptolemy set out “by way of preface
this little lemma (kgll�siom) which is exceedingly useful for the business at

14 If we denote the angle BΔA in the previous figure by 2θ , this equation can be rewritten
as crd22θ +crd2(180◦ −2θ) = 1202. Then, if we recall that crd 2θ = 120 sin θ , it becomes
1202 sin2 θ + 1202 sin2(90◦ − θ) = 1202 or sin2 θ + cos2 θ = 1.



Section 1.2 Ptolemy’s Table of Chords 15

hand.” Since there is no record that this lemma was known before Ptolemy, it
is usually known as Ptolemy’s Theorem [p. 423].

Let ABΓΔ be any quadrilateral inscribed in a circle, and let AΓ and BΔ be
joined. It is required to prove that the rectangle contained by AΓ and BΔ is
equal to the sum of the rectangles contained by AB, ΔΓ and AΔ, BΓ .

Of course, we would prefer to write the theorem’s conclusion as follows:

AΓ · BΔ = AB ·ΔΓ + AΔ · BΓ,

but mathematics was expressed verbally in the ancient world and for a long
time after that. The development of our usual mathematical notation was a
very slow process that matured only in the middle of the seventeenth century,
in the work of Descartes and Newton. Be that as it may, starting with the
next equation, we shall frequently use the signs=,+, and−, and replace “the
rectangle contained by . . . ” with a dot to denote a product.

Here is Ptolemy’s own proof of the stated theorem. It is based on well-
known Euclidean geometry.

For let the angle ABE be placed equal to the angle ΔBΓ [that is, choose E

so that this is so]. Then, if we add the angle EBΔ to both, the angle ABΔ

equals the angle EBΓ . But the angle BΔA equals the angle BΓE, for they
subtend the same segment [the chord AB]; therefore the triangle ABΔ is
isogonal (i’roc�miom) with the triangle BΓE. Therefore, the ratio BΓ over
ΓE equals the ratio BΔ over ΔA. Therefore

BΓ · AΔ = BΔ · ΓE.

Again, since the angle ABE is equal to the angle ΔBΓ , while the angle BAE

is equal to the angle BΔΓ , therefore the triangle ABE is isogonal with the
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triangle BΓΔ. Analogously, the ratio BA over AE equals the ratio BΔ over
ΔΓ . Therefore,

BA ·ΔΓ = BΔ · AE.

But it was shown that

BΓ · AΔ = BΔ · ΓE,

and therefore as a whole [meaning BA · ΔΓ + BΓ · AΔ = BΔ · AE +
BΔ · ΓE = (AE + ΓE)BΔ = AΓ · BΔ ]

AΓ · BΔ = AB ·ΔΓ + AΔ · BΓ,

which was to be proved.

No computation of chords was carried out directly using this theorem; this
was done from its corollaries. Although not labeled or numbered by Ptolemy,
we shall do so for easy reference [p. 425].

Corollary 1.

This having �rst been proved, let ABΓΔ be a semicircle having AΔ for its
diameter, and from A let the two [chords] AB, AΓ be drawn, and let each of
them be given in length, in terms of the 120 p in the diameter, and let BΓ be
joined. I say that this also is given [here “given” means “found”].

Ptolemy’s sketch of proof, for it is no more than that, is very short.

For let BΔ, ΓΔ be joined; then clearly these also are given because they are
the chords subtending the remainder of the semicircle. Then since ABΓΔ is
a quadrilateral in a circle,

AB · ΓΔ+ AΔ · BΓ = AΓ · BΔ



Section 1.2 Ptolemy’s Table of Chords 17

[by Ptolemy’s theorem]. And AΓ ·BΔ is given, and also AB ·ΓΔ; therefore
the remaining term AΔ ·BΓ is also given. And AΔ is the diameter; therefore
the straight line BΓ is given.

But this corollary gives no formula to find BΓ . We now fill in the missing
steps. From the equation stated in this sketch of proof we obtain

BΓ = AΓ · BΔ− AB · ΓΔ

AΔ
= AΓ

√
AΔ2 − AB2 − AB

√
AΔ2 − AΓ 2

AΔ
,

and BΓ can be found from the given chords and the diameter.15

Now, returning to the computation of chords, Ptolemy wrote that

by this theorem we can enter [calculate] many other chords subtending the
difference between given chords, and in particular we may obtain the chord
subtending 12◦, since we have that subtending 60◦ and that subtending 72◦.

In fact, using the chord formula just developed and the values already obtained
for crd 72◦ and crd 60◦, we would arrive at

crd 12◦ = crd (72◦ − 60◦) = 12 p 32 36.

It is possible to obtain more than this. By successive application of the formula
we can calculate crd 18◦ = crd (108◦−90◦) and then crd 6◦ = crd (18◦−12◦),
but Ptolemy did not do this, and he had a good reason for it, to be disclosed
later. In any event, our table of chords is beginning to flesh out, but is not yet

15 The previous equation can be expressed in terms of the trigonometric function crd if
we denote the arcs

�
AB and

�
AΓ by 2α and 2θ , respectively. Then it becomes

crd (2θ − 2α) = crd 2θ
√

1202 − crd 22α − crd 2α
√

1202 − crd 22θ

120

= crd 2θ

√
1− crd 22α

1202
− crd 2α

√
1− crd 22θ

1202
.

Dividing both sides by 120, using the identity crd 2θ = 120 sin θ , and noticing that 0◦ < α,
θ < 90◦, this equation can be rewritten as

sin(θ − α) = sin θ
√

1− sin2 α − sin α
√

1− sin2 θ = sin θ cos α − sin α cos θ.

We see that this familiar trigonometric formula was implicitly contained in Ptolemy’s work.
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near the promise of finding the chords of all arcs in half degree intervals. So,
more trigonometry must be developed [p. 429].

Corollary 2.

Again, given any chord in a circle, let it be required to �nd the chord subtending
half the arc subtended by the given chord. Let ABΓ be a semicircle upon the

diameter AΓ and let the chord ΓB be given, and let the arc ΓB be bisected
at Δ, and let AB, AΔ, BΔ, and ΔΓ be joined, and from Δ let ΔZ be drawn
perpendicular to AΓ . I say that ZΓ is half of the difference between AB

and AΓ .

We can abbreviate Ptolemy’s proof as follows. Choose a point E on AΓ so
that AE = AB. In the triangles ABΔ and AEΔ, AE = AB, AΔ is a common
side, and the angle BAΔ is equal to the angle EAΔ (because the arcs BΔ and
ΔΓ are equal by hypothesis); and therefore BΔ = ΔE. Since BΔ = ΔΓ , we
obtain ΔΓ = ΔE, so that ΔEΓ is isosceles, and then

ZΓ = 1
2 EΓ = 1

2 (AΓ − AE) = 1
2 (AΓ − AB).

This finishes the proof of the last statement in the corollary, but we are not
done with the required task, which is to find the chord ΔΓ . To this end, note
that the right triangles AΔΓ and ΔZΓ are isogonal, since they have the angle
at Γ in common, and then

AΓ

ΓΔ
= ΓΔ

ΓZ
,

so that
ΓΔ2 = AΓ · ΓZ.

Ptolemy got to this point but did not provide an equation giving ΓΔ. Lacking
any type of notation for equations, this is not surprising, but we can do it easily.
Replacing ΓZ with its value found above,

ΓΔ2 = 1
2 AΓ · (AΓ − AB) = 1

2 AΓ
[
AΓ −√AΓ 2 − BΓ 2

]
.
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Finding the square root of both sides and recalling that AΓ = 120 p yields

ΓΔ =
√

1
2

(
1202 − 120

√
1202 − BΓ 2

)
.16

Ptolemy summed up the usefulness of this result as follows [p. 431]:

And again by this theorem many other chords can be obtained as the halves
of known chords, and in particular from the chord subtending 12◦ can be
obtained the chord subtending 6◦ and that subtending 3◦ and that subtending
1 1

2
◦

and that subtending 1
2
◦+ 1

4
◦(= 3

4
◦)

. We shall find, when we come to make
the calculation, that the chord subtending 1 1

2
◦

is approximately 1 p 34 15 (the
diameter being 120 p) and that subtending 3

4
◦

is 0 p 47 8.

This is probably the reason why Ptolemy did not compute the chord of 6◦ from
Corollary 1, namely that it can be done more simply from Corollary 2. His
next result was [p. 431]:

Corollary 3.

Again, let ABΓΔ be a circle about the diameter AΔ and with center Z, and
from A let there be cut off in succession two given arcs AB, BΓ , and let there
be joined AB, BΓ , which, being the chords subtending them, are also given.
I say that, if we join AΓ , it will also be given.

To prove this, construct the diameter BE and the remaining segments
shown in the picture. By Ptolemy’s theorem, applied to the quadrilateral
BΓΔE,

BΔ · ΓE = BΓ ·ΔE + BE · ΓΔ.

16 If we denote the arc
�

BΓ by 2θ (this makes θ < 90◦), in which case ΓΔ = crd θ and
BΓ = crd 2θ , then

crd θ =

√
1202 − 120

√
1202 − crd 22θ

2
.

Dividing both sides by 120, using the equation crd 2θ = 120 sin θ (but with θ in place of 2θ ),
and in view of the fact that θ < 90◦, the above equation takes the form of the well-known
trigonometric identity

sin 1
2 θ =

√
1−

√
1− sin2 θ

2
=
√

1− cos θ

2
.
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Therefore,

ΓΔ = BΔ · ΓE − BΓ ·ΔE

BE
. 17

Now, BΓ and AB are given, while BΔ and ΓE can be found from AB and BΓ ,
respectively, using the Pythagorean theorem. Thus, since ΔE = AB, ΓΔ can
be determined from the preceding equation, and then

AΓ =
√

AΔ2 − ΓΔ2 .

As for the computation of chords, which was Ptolemy’s task, this is the
way he put it [p. 435]:

It is clear that, by continually putting next to all known chords a chord
subtending 1 1

2
◦

and calculating the chords joining them, we may compute in
a simple manner all chords subtending multiples of 1 1

2
◦
, and there will still

be left only those within the 1 1
2
◦

intervals—two in each case, since we are
making the diagram in half degrees.

17 If we denote the arcs
�

AB and
�

BΓ by 2θ and 2α, respectively, recall that BE = 120 p,
and observe that ΔE = AB, the equation for ΓΔ can be rewritten as

crd (180◦− 2θ − 2α) = crd (180◦− 2θ) crd (180◦− 2α)− crd 2α crd 2θ

120
.

Using the identity crd 2θ = 120 sin θ once more and then dividing by 120, this equation
becomes

sin(90◦− θ − α) = sin(90◦− θ) sin(90◦− α)− sin α sin θ,

or equivalently
cos(θ + α) = cos θ cos α − sin α sin θ,

another modern, well-known trigonometric identity.
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The next difficulty, in order to complete the table in intervals of half a
degree, is precisely the computation of the chord of half a degree. Ptolemy
did this from the following “little lemma” (another kgll�siom) [pp. 435–437].

For let ABΓΔ be a circle, and in it let there be drawn two unequal chords, of

which AB is the lesser and BΓ the greater. I say that

ΓB

BA
<

arc BΓ

arc BA
.

To the attentive reader this should be a case of déjà vu. This is precisely
the trigonometric identity that Aristarchos had used in the proof of his Propo-
sition 4, and it is sometimes known as Aristarchos’ inequality. But while he
had made us think that it is a well-known fact by the absence of proof, Ptolemy
provided a proof. It depends on some propositions from Euclid’s Elements,
which were well known to Ptolemy and that he mentioned without a reference.
Readers who are less familiar with Euclidean geometry may wish to consider
the following just a sketch of proof.

Let BΔ be the bisector of the angle ABΓ , and let new points H , E, Z,
and Θ be as shown, the first three on an arc of circle with center Δ. It should
be clear that

area of triangle ΔEZ

area of triangle ΔEA
<

area of sector ΔEΘ

area of sector ΔEH
.

Since the two triangles in this inequality have the same height ΔZ and since
the two sectors have the same radius, the inequality reduces to

EZ

EA
<

� ZΔE

� EΔA
,
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where we have used the symbol � for angle. Adding 1 to both sides and
simplifying18 gives

ZA

EA
<

� ZΔA

� EΔA
,

and then, multiplying both sides by 2 and noting that Z bisects AΓ because
BΔ bisects the arc AΔΓ ,

ΓA

EA
<

� ΓΔA

� EΔA
.

Subtracting 1 from both sides and simplifying yields

ΓE

EA
<

� ΓΔE

� EΔA
=

� ΓΔB

� BΔA
.

Using now the well-known facts19

Γ E

EA
= Γ B

BA
and

� ΓΔB

� BΔA
= arc Γ B

arc BA

proves the lemma.

Having concluded the theoretical part of his task, Ptolemy had to complete
the computations. First he needed the chord of 1

2
◦
, and to obtain it he used the

next figure [p. 441] showing two chords with a common endpoint.20 Assuming
first that AB subtends an angle of 3

4
◦

and AΓ an angle of 1◦, and using the
inequality in the preceding lemma but with AΓ in place of Γ B,

AΓ < BA
arc AΓ

arc BA
= 4

3
BA.

18 This operation on a fraction was well known at least since Euclidean times, and only
one word was used to describe it. Ptolemy used rtmh�msi (synthenti), meaning “putting
together.” When these works were later translated into Latin the word componendo was
used in its place, and this word was still frequently used well into the seventeenth century.
Similarly, the operation described below, in which 1 is subtracted rather than added, was
called diek�msi (dielonti) by Ptolemy, meaning “having [the fraction] divided,” and was
translated as dirimendo.

19 They were well known to Ptolemy, since these are Propositions 3 and 33 of Book VI
of Euclid’s Elements [pp. 195 and 273 of the Dover Publications edition, 1956]. Readers
with a knowledge of high-school geometry will have no trouble proving these facts using
the following hints. For the first, draw a line through A parallel to EB until it intersects the
line containing the segment BΓ at a point that can be denoted by I , and show first that AB
and BI have the same length. For the second, recall that an angle inscribed in a circle, such
as ΓΔB, is one-half of the central angle subtended by the same chord.

20 This new figure is unnecessary, for the previous one shows such chords, and it is
unfortunate that Ptolemy decided to change the notation on us for the new figure.
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Since BA = crd 3
4
◦

was shown just before Corollary 3 to be 0 p 47 8, it follows
that four-thirds of this value is 1 p 2 50, and then

crd 1◦ = AΓ < 1 p 2 50.

Next, use the same chords but assume now that AB subtends an angle of 1◦
and AΓ an angle of 1 1

2
◦
. As above, we have

BA > AΓ
arc BA

arc AΓ
= 2

3
AΓ .

Since we have already found that AΓ = crd 1 1
2
◦ = 1 p 34 15 and two-thirds

of this value is 1 p 2 50, we have

crd 1◦ = BA > 1 p 2 50.

Since crd 1◦ has been shown to be both smaller and larger than 1 p 2 50, it must
“have approximately this identical value 1 p 2 50.”21 Using now Corollary 2
(or, rather, the formula developed after it for the chord of half an arc), we find
that

crd 1
2
◦ = 0 p 31 25.

Ptolemy concluded as follows [p. 443]:

The remaining intervals may be computed, as we said, by means of the chord
subtending 1 1

2
◦
. In the case of the first interval, for example, by adding 1

2
◦

we
obtain the chord subtending 2◦, and from the difference between this and 3◦

we obtain the chord subtending 2 1
2
◦
, and so on for the remainder.

21 Ptolemy’s values for crd 1 1
2
◦

and crd 3
4
◦

are only approximations. More precise calcu-
lations would show that

1 p 2 49 4
5 < crd 1◦ < 1 p 2 50,

validating Ptolemy’s assertion.
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Then he or his paid calculators evaluated the entries in the table, which made
up Article 11. We show in the next table the first six lines as a sample of this
arrangement.

Arcs Chords Sixtieths

1
2
◦

0 31 25 0 1 2 50
1◦ 1 2 50 0 1 2 50
1 1

2
◦

1 34 15 0 1 2 50

2◦ 2 5 40 0 1 2 50
2 1

2
◦

2 37 4 0 1 2 48
3◦ 3 8 28 0 1 2 48

This is Ptolemy’s partial description of the table [p. 443]:

The first section [one column] will contain the magnitude of the arcs in-
creasing by half degrees, the second will contain the lengths of the chords
subtending the arcs measured in parts of which the diameter contains 120,
and the third will give the thirtieth part of the increase in the chords for each
half degree, in order that for every sixtieth part of a degree we may have a
mean of approximation differing imperceptibly from the true figure and so be
able to readily calculate the lengths corresponding to the fractions between
the half degrees.

While the first part of this statement is clear, the second may benefit from an
example. There are thirty intervals of 1′ from 1

2
◦

to 1◦, and if the difference
1 p 2 50 − 0 p 31 25 = 0 p 31 25 is divided by 30 we obtain 0 p 1 2 50. Thus,
we can take

crd 1
2
◦

1′ ≈ 0 p 31 25+ 0 p 1 2 50 = 0 p 32 27 50.

Within an interval as small as 1
2
◦
, this provides a good approximation.

With this we conclude our description of only Articles 10 and 11 of Book I
of the Almagest. The complete work is much larger and, although much of it is
a compilation of previous knowledge, the last five books on planetary motion
represent Ptolemy’s most original contribution. This part of the Almagest has
been called a masterpiece and remained the standard in astronomy until the
sixteenth century.
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1.3 THE INDIAN CONTRIBUTION

The Gupta empire of northern India was founded by Chandragupta I, who
ruled from Pataliputra, or City of Flowers, the modern Patna on the Ganges

River. Near Pataliputra, but the exact location is unknown, was the town
of Kusumapura that would emerge as one of the two major early centers of
mathematical knowledge in fifth- and sixth-century India (the other one was
at Ujjain). It is not surprising that Kusumapura became a center of learning,
being near the capital of the empire and center of the trade routes. Knowledge
from and to other parts of the world would naturally flow through Pataliputra
in that golden age of classical Sanskrit.

An astronomer called Aryabhata may have worked in Kusumapura in the
time of the emperor Budhagupta. Although the exact place of Aryabhata’s
birth is not known (he is generally thought to be a southerner, possibly from
as far as Kerala, on the southern coast of India), the date is. He himself said
that he was 23 years of age when he finished a work called the Aryabhatiya
(Aryabhata’s work) in 499. Thus, he was born in 476, and he lived until 550.
The Aryabhatiya is the only text of Aryabhata that has survived. It is a brief
volume written in verse as a mnemonic aid, since some of its portions were
meant to be memorized rather than read. It consists of only 123 stanzas (of
which five may have been added later), and is divided into four sections, each
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of them called pada: an introduction, a calculations section or ganitapada of
33 verses—containing the trigonometry we want to examine—and the rest is
on astronomy.

Aryabhata was not the only Indian scholar whose work on trigonometry has
survived. Several other works on astronomy, called Siddhantas or “established
conclusions,” were written in what we may call medieval or pre-medieval
India. Of these, only the anonymous Surya Siddhanta is completely extant.
The versions of both books that have survived to the present are from the
sixteenth century, and, while it is believed that the copy of the Aryabhatiya is
identical or almost identical to the original, it is known that that of the Surya
Siddhanta has undergone many alterations.

Only the facts are presented in these texts, but this knowledge is assumed
to be ancient and of divine origin (Surya means Sun, and this was supposed to
be a book of revelation of the knowledge of the Sun), and no mention is made
of either astronomical observations or mathematical deductions that may have
led to it, nor is credit given to any preceding mathematicians. This makes it
impossible to determine whether the Hindus were original or indebted to the
Greeks or the Babylonians.

If Aryabhata and other Siddhanta authors were aware of the Greek work
on chords, they replaced this concept with that of the half-chord, as shown
in the next figure, and this has remained their most important and lasting

contribution. Actually, Aryabhata talked of the half-chord, ardha-jya, and of
the chord half, using the name jya-ardha as was done in the Surya Siddhanta
once, but later both documents simply used the word jya, also spelled jyva,
for chord.

To construct a table of jyvas—if we are permitted this plural—the Hindus
needed to choose a unit of length. Departing from Hellenic use, they replaced
the two Ptolemaic units—one for arcs and one for parts of the diameter—by a
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single unit. They divided the length of the circumference into 21,600 parts and
then used any one of these parts as their only unit of length. We can call these
parts minutes, since there are 21,600 ′ minutes in a complete circumference of
360◦.

How can the jyva be measured in this way? Very simply, and it is well
to remember that we do something similar routinely today: first we select the
radius as the unit of length, and then we use this length to obtain the radian
measure of an arc. To do this we use our knowledge of the value of π , which
is defined as the ratio of the length of the circumference, C, to the diameter.
For us π = C/2, since the length of the diameter is two radians, and then
C = 2π radians. For the Hindus, C = 21,600 ′, and if R denotes the length of
the radius,

R = 21,600

2π
= 10,800

π
.

In either case, one needs the value of π .
The Surya Siddhanta gave the approximation π ≈ √

10 in stanza 59 of
Chapter I, but this is not the value used later to compute the jyvas. Aryabhata
was a little more careful in the tenth stanza of the ganitapada:22

10. One hundred plus four, multiplied by eight, and added to sixty-two
thousand: this is the nearly approximate measure of the circumference of a
circle whose diameter is twenty thousand.

He did not include an explanation, but the result of Aryabhata’s calculation is

62,000+ 8(100+ 4) = 62,832,

which divided by a diameter of 20,000 gives a quotient of 3.1416 as an ap-
proximation of π , the best approximation to his day. Thus, Aryabhata could
find the length of the radius to be

R = 10,800

3.1416
≈ 3438 ′.

This is, then, the jyva of 90◦.23

22 Shukla and Sarma, Aryabhatiya of Aryabhata, 1976, p. 45. The translations from the
Aryabhatiya included here are from this source, but I have consistently replaced their word
“Rsine” with jyva.

23 If Aryabhata used his value of π , he rounded up to obtain R, so his value is not precise.
An electronic calculator will give the quotient 10,800/π as 3437.746771′ or 57◦ 17 ′ 44.8 ′′,
which is closer to the true radian.
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From this and a few elementary mathematical facts the Hindu mathemati-
cians were able to construct a table of jyvas. They are given in the Surya
Siddhanta in stanzas 15 to 22 of the second chapter, beginning as follows (an
explanation will be given after each quotation):24

15. The eighth part of the minutes of a sign is called the first half-chord
(jyârdha); that, increased by the remainder left after subtracting from it the
quotient arising from dividing it by itself, is the second half-chord.

Once more, since there are 12 signs of the zodiac in a full circle of 360◦, a sign
of the zodiac is equivalent to 30◦, or 1800′, and the eighth part of this is 3 3

4
◦
,

or 225′. This is the value of first half-chord, the jyva of 3 3
4
◦

(the Hindus knew,
as we do, that for small angular values the arc subtended by the angle and the
half-chord are approximately equal). The quotient arising from dividing it by
itself is 1, and then the remainder left after subtracting this quotient from the
first jyva is 224. Increasing the first jyva by this amount, we obtain the second
jyva: 225+ 224 = 449.

Stanza 16 then gives the general rule to obtain an arbitrary jyva from the
preceding ones. It is understood, although not so stated in the rule, that we
are computing the jyvas of equally spaced angles in intervals of 3 3

4
◦
.

16. Thus, dividing the tabular half-chords in succession by the first, and
adding to them, in each case, what is left after subtracting the quotients from
the first, the result is twenty-four tabular half-chords (jyârdhapinda),25 in
order, as follows:

Thus, each jyva is obtained by adding to the preceding jyva what is left after
subtracting from the first jyva the quotients obtained by dividing all preceding
jyvas by the first.

To express the rule for obtaining jyvas in familiar mathematical terms
rather than in narrative form, we shall coin a temporary trigonometric function,
denoted by jya . Then, if we denote the angle 3 3

4
◦

by θ , the first jyva is just
jya θ and the nth, where n is a positive integer between 1 and 24, is jya nθ .

24 Burgess, “Surya-Siddhanta. A text-book of Hindu astronomy,” 1860, p. 196. The trans-
lations from the Surya-Siddhanta included here are from this source, but I have consistently
replaced the word “sine” with “half-chord” (Burgess gave transliterations of the Sanskrit
terms in parentheses).

25 According to Burgess, p. 201, pinda means “the quantity corresponding to.”
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Then the stated rule, to obtain each jyva by adding to the previous one “what
is left after subtracting the quotients from the first,” can be written as

jya nθ = jya (n− 1)θ + jya θ −
n−1∑
k=0

jya kθ

jya θ
,

n = 1, . . . , 24. The inclusion of jya 0◦ = 0 in the sum on the right, which was
not explicitly done by the Hindu author, does not alter the sum. For instance,
for n = 3, the right-hand side becomes

449+ 225− 225

225
− 449

225
≈ 449+ 225− 1− 2 = 671,

which is jya 3θ .
Using the jyva rule, the jyvas of the arcs in the first quadrant in intervals of

3 3
4
◦

can be found to be (approximately) 225, 449, 671, . . . , 3431, and 3438.
These are the values stated in Sanskrit verse in stanzas 17 to 22 of the Surya
Siddhanta, but it is easier for us to read them in table form.26

Arc Jiva Arc Jiva Arc Jiva

3 3
4
◦

225′ 33 3
4
◦

1910′ 63 3
4
◦

3084′

7 1
2
◦

449′ 37 1
2
◦

2093′ 67 1
2
◦

3177′

11 1
4
◦

671′ 41 1
4
◦

2267′ 71 1
4
◦

3256′

15◦ 890′ 45◦ 2431′ 75◦ 3321′

18 3
4
◦

1105′ 48 3
4
◦

2585′ 78 3
4
◦

3372′

22 1
2
◦

1315′ 52 1
2
◦

2728′ 82 1
2
◦

3409′

26 1
4
◦

1520′ 56 1
4
◦

2859′ 86 1
4
◦

3431′

30◦ 1719′ 60◦ 2978′ 90◦ 3438′

Aryabhata did not express the jyvas directly, but rather, in the twelfth stanza

26 A reproduction of the table of half-chords, from a Sanskrit edition of the Surya Siddhanta
published at Meerut, India, in 1867, can be seen in Smith, History of mathematics, II, 1925,
p. 625.
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of his introduction, or gitikapada,27 to the Aryabhatiya he gave a sequence of
differences between the values of the jyvas shown here [p. 29]:

12. 225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143,
131, 119, 106, 93, 79, 65, 51, 37, 22, 7. These are the jyva differences in
terms of minutes of arc.

The reason for giving differences is related to the rule that he used to compute
the stated values, in the twelfth stanza of the ganitapada:28

which translates as follows:29

12. The first jyva divided by itself and then diminished by the quotient
will give the second jyva difference. For computing any other difference,
[the sum of] all the preceding differences is divided by the first jyva and the
quotient is subtracted from the preceding difference. Thus all the remaining
differences [can be calculated].

The interpretation of this statement is straightforward. The quotient of the first
jyva difference, jya θ − jya 0 = 225, by itself is 1, which subtracted from
jya θ gives the second jyva difference: jya 2θ − jya θ = 224. To compute
any other difference, jya (n+ 1)θ − jya nθ , n = 1, 2, . . . , 23, the sum of all
the preceding differences,

n∑
k=1

[ jya kθ − jya (k − 1)θ] = jya nθ,

27 The introduction includes ten aphorisms in the gitika meter, called dasagitika-sutra,
which Aryabhata had previously written as an independent tract. The stanza quoted here
is the tenth stanza in the dasagitika-sutra, and is numbered in this manner in Clark, The
Aryabhatiya of Aryabhata, 1930, p. 19.

28 It shows the use of the word Jyax = Jya ( jya), also spelled jIva ( jiva) in stanza 23 of
the Golapada, the fourth part of the Aryabhatiya. The Sanskrit version reproduced here is
from Shukla and Sarma, Aryabhatiya of Aryabhata, p. 51.

29 From the available translations I have chosen the one given by Bibhutibhushan Datta
and Avadesh Narayan Singh in History of Hindu Mathematics, Part III. This part remains
unpublished, but this translation is reproduced in Shukla and Sarma, Aryabhatiya of Aryab-
hata, p. 52.
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is divided by the first jyva and the quotient is subtracted from the preceding
difference:

jya (n+ 1)θ − jya nθ = jya nθ − jya (n− 1)θ − jya nθ

jya θ
.

That is,

jya (n+ 1)θ = 2 jya nθ − jya (n− 1)θ − jya nθ

jya θ
.

Taking n = 2 as an example to find the jyva of 11 1
4
◦
, we have

jya 3θ = 2 jya 2θ − jya θ − jya 2θ

jya θ
= 898− 225− 449

225
= 673− 2 = 671,

where the quotient on the right has been rounded to the nearest whole number.
Aryabhata’s rule is different from the one in the Surya Siddhanta only in

appearance. Replacing n with n + 1 in the Surya Siddhanta rule on page 29
yields

jya (n+ 1)θ = jya nθ + jya θ −
n∑

k=0

jya kθ

jya θ
,

n = 1, . . . , 23. Subtracting now the first form from this one, we have

jya (n+ 1)θ − jya nθ = jya nθ − jya (n− 1)θ − jya nθ

jya θ
,

which is Aryabhata’s rule.
This rule, or its simplified form, is easier to handle than the one in the

Surya Siddhanta because it does not have a long sum on the right. We assume
that the rule is only approximate, but may reasonably ask whether the last term
on the right can be replaced by another term T (θ), to be determined, such that

jya (n+ 1)θ = 2 jya nθ − jya (n− 1)θ − T (θ)

exactly. This will be a simpler task if we switch from jyvas to sines using the
equation jya α = R sin α, where α is any angle between 0◦ and 90◦ and R is
the length of the radius given in minutes. Then we can rewrite the previous
equation as

sin(n+ 1)θ = 2 sin nθ − sin(n− 1)θ − T (θ)

R
.
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Using the formulas for the sine of a sum and a difference of two angles—
already implicit in Ptolemy’s work for chords, and quite possibly known to
the Hindus for jyvas—and simplifying reduces this equation to

2(cos θ − 1) sin nθ = −T (θ)

R
,

or
T (θ) = 2R(1− cos θ) sin nθ = 2(1− cos θ) jya nθ.

Using a hand-held calculator to find cos θ = cos 3.75◦, we obtain

T (θ) = 0.004282153 jya nθ,

and when this is compared with the term

jya nθ

jya θ
= jya nθ

225
= 0.004444444 jya nθ,

it follows that
jya nθ

jya θ
= 1.037899497 T (θ).

Thus we have found the exact formula for the computation of jyva differences
and have shown to what extent the Hindu formula is an approximation.

The Hindu astronomers of the fifth century could not have given an exact
formula for T (θ) because the cosine was unknown to them. However, there
is another trigonometric length that the author of the Surya Siddhanta could
have used: the versed half-chord. It is defined, with the name utkramajya
(reverse-order jyva), in Chapter II, in the second part of stanza 22, as follows
[p. 196]:

22. . . . Subtracting these [the jyvas], in reverse order from the half-
diameter, gives the tabular versed half-chords (utkramajyârdhapindaka).

To understand this definition, note that if α = nθ for some n between 0 and 24,
then to subtract its jyva from the radius in reverse order means to subtract the
jyva of (24− n)θ = 90◦ − α. For instance, if R is the length of the radius in
minutes, the utkramajya of θ = 3 3

4
◦

is

R − jya
(

90◦ − 3 3
4
◦) = 3438− 3431 = 7.

The values of the utkramajyas are then given in stanzas 23 to 27 of the Surya
Siddhanta from 7 for α = θ to 3438 for α = 90◦.
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In general, if we denote the utkramajya of α by uya α, then

uya α = R − jya (90◦ − α) = R − R sin(90◦ − α) = R(1− cos α),

and, in particular,

T (θ) = 2 jya nθ uya θ

R
.

Thus, the author of the Surya-Siddhanta missed an opportunity to give the
following exact equation for the computation of jyvas:

jya (n+ 1)θ = 2 jya nθ − jya (n− 1)θ − 2 jya nθ uya θ

R
,

n = 1, . . . , 23, instead of an approximation. Of course this formula would
not give correct values using the approximations jya θ ≈ 225 and uya θ ≈ 7
instead of the closer values 224.8393963 and 7.360479721, which present-day
technology can produce in an instant.

The origin of the jyva-producing rule has also been a subject for spec-
ulation. Of course, the answer is not known because the astronomers who
used it did not include a derivation or an explanation of its origin. This is all
Aryabhata had to say about the computation of jyvas in the ganitapada [p. 45]:

11. Divide a quadrant of the circumference of a circle (into as many parts
as desired). Then, from (right) triangles and quadrilaterals, one can find as
many jyvas of equal arcs as one likes, for any given radius.

He did not, however, explain how it is done. Several possible explanations
have been proposed since the nineteenth century, but the truth is unknown.30

More than a century after Aryabhata, Brahmagupta (598–670), working
at Ujjain, incorporated trigonometry in his work Brahmasphuta Siddhanta.31

After changing Aryabhata’s value of the radius from 3438 to 3270, he in-
cluded some interpolation procedures to find the jyvas of arcs that are closer
together than 225′. His work may have had a profound influence on the de-
velopment of trigonometry, since it was later studied by astronomers outside
of India. Another mathematical astronomer, called Bhaskara (c. 600–c. 680),
gave an algebraic formula, in a work called Mahabhaskariya, to compute an
approximation to the jyva of an arbitrary angle that does not rely on the 225′
differences [pp. 207–208 of the included translation]:

30 The explanation proposed by the French astronomer Delambre (1749–1822) in Histoire
de l’astronomie ancienne, I, 1815, pp. 457–458 deserves consideration.

31 The word sphuta means “corrected.” Thus, this is the corrected Brahma Siddhanta, an
earlier work, now lost. See Burgess, “Surya-Siddhanta. A text-book of Hindu astronomy,”
pp. 419 and 421.
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Subtract the degrees of the bhuja [arc] from the degrees of the half-circle.
Then multiply the remainder by the degrees of the bhuja and put down the
result at two places. At one place subtract the result from 40500. By one-
fourth of the remainder [thus obtained] divide the result at the other place
as multiplied by the antyaphala [radius]. Thus is obtained the [jyva to that
radius].

In other words, if the angle in question is denoted by θ , then

jya θ = Rθ(180− θ)

1
4 [40,500− θ(180− θ)]

.

Bhaskara did not bother to tell us how he obtained this formula, but it provides
a good approximation.

1.4 TRIGONOMETRY IN THE ISLAMIC WORLD

The Hellenic civilization of Egypt slowly declined through the centuries, the
Roman Empire itself was gone with the wind of the barbarian invasions, plung-
ing western Europe in the dark ages, and only the Byzantine Empire in the
east managed to hold on, although without much luster. But the void would
be filled soon, after Mohammed ibn Abdallah (c. 570–632) founded in 612
a new religion, Islam (meaning “submission” to Allah). Its adherents, called
Muslims, set out to the conquest of infidel lands shortly after the death of
Mohammed. It was thus that a new empire was born, and by 642 it extended
from northern Africa to Persia.

This success notwithstanding, there was disagreement over the matter of
Mohammed’s successor or caliph (from khalaf, to succeed) from the very first
moment after his death. Mohammed’s cousin and son-in-law, Ali ibn Abu
Talib, thought he was the intended successor, but a group of Muslim leaders
chose Mohammed’s father-in-law to become the first caliph. Eventually, Ali
managed to become the fourth caliph in 656, on the assassination of Uth-
man ibn Affan, the third caliph, by rebel factions. In turn, members of the
Umayyad family, to which Uthman belonged, ousted Ali—who would end up
assassinated by some of his ex-followers—and proclaimed one of their own,
Muawiya ibn Abu Sufyan, as caliph in 661.32

32 The followers of Ali, or Shi’at ul-Ali, became known later as Shi’ites. Those who
believed that the prophet had left the choice of successors entirely to the people were known
as Sunnis.
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The Umayyads, who turned the caliphate into a dynasty and moved their
capital from Medina (more fully, al-Madinah an Nabi, meaning “the City of
the Prophet”) to Damascus, greatly expanded the Islamic empire, building an
efficient government structure in the process, with a large number of Christian
Byzantine administrators. By the time the Muslims were checked at Poitiers,
near Tours, by Charles, natural son of Pepin of Herstal, and his Franks in
732—Charles would be called Martel (the Hammer) after this victory—they
dominated a large portion of the world, from Hispania in the west to the Indus
river in the east. The court structure that they built may have clashed with the
simplicity of early Islam, but it was a source of culture in the arts and sciences.

Arts and sciences notwithstanding, the Umayyads were not popular in some
quarters, definitely not in the mind of those who thought they had betrayed
the spirit of Islam. A revolt led by Abu al-Abbas (722–754), a descendant
of a paternal uncle of Mohammed, ended the Umayyad dynasty in Syria with
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the massacre of most of the Umayyads on June 25, 750. This earned Abu
al-Abbas the name extension al-Saffah (the Blood-shedder).

Abu JafarAbdullah ibn Mohammed al-Mansur (theVictorious) (712–775),
the second caliph of the Abbasid dynasty, as it would be known, founded the
city of Baghdad (or “God-given” in Middle Persian) on July 30, 762, on the
recommendation of the court astrologer, and transferred the capital there. This
was a city built in the shape of a circle, surrounded by a moat, and with the
mosque in the center. Here Al-Mansur established a program of translation
from foreign languages, with a large mathematical and astronomical com-
ponent, that lasted for well over two hundred years and was the foundation
of much scholarly work in the caliphate.33 The historian Abu’l Hasan Ali
ibn Husayn ibn Ali al-Masudi (c. 895–957) stated that al-Mansur sponsored
Arabic translations of Ptolemy’s Almagest, the Arithmetike eisagoge of Nico-
machos of Gerasa, and Euclid’s Elements (not extant).34 There was also a
work referred to as the Sindhind that had been brought from the land of Sind
(modern Pakistan) to Baghdad about 766 by an Indian scholar named Kanka.
It has been suggested that this work may have been the Surya Siddhanta,
but it is considered more likely that it was the Brahmasphuta Siddhanta of
Brahmagupta. It was through a translation of this document, commissioned
by al-Mansur and made by Mohammed ibn Ibrahim al-Fazari, that Indian
astronomy and mathematics became known in the Islamic empire.

Under Harun al-Rashid (the Upright) (764–809), who became the fifth
Abbasid caliph in 786, the court of Baghdad reached a peak of splendor,
and he himself is known as the main character in the The thousand and one
nights. He commissioned a translation of Euclid’s Elements, prepared by al-
Hajjaj ibn Yusuf ibn Matar, a manuscript copy of which still exists. After a
disastrous civil war, it was with Harun’s son Abdullah al-Mamun ibn Harun
abu Jafar (786–833), the seventh of the Abbasid caliphs, who welcomed all
kind of scholars to his court, that intellectual life flourished. In mathematics,

33 Al-Mansur initiated this activity for political reasons. When Alexander the Great con-
quered Persia and killed king Darius III, he had all the documents in the archives of Istahr
(Persepolis) translated into Greek and Coptic, and then destroyed the originals. The neo-
Persian empire of the Sasanians (225–651) then attempted to recover their cultural heritage
through a program of translations from the Greek into Pahlavi (Middle Persian). Al-Mansur’s
decision to continue the translation program was part of his policy to adopt and incorporate
the ideology of the large Persian component of the population in this part of the Islamic
empire. For a complete account of the translation movement see Gutas, Greek thought,
Arabic culture, 1998.

34 In his book Muruj al-zahab wa al-maadin al-jawahir (Meadows of gold and mines of
gems), 947, §3458
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not only were additional translations of the Elements and the Almagest made
during Al-Mamum’s reign, but also significant original work was produced,
such as the treatise Kitab al-jabr wa’l-muqabala (Treatise of restoring and
balancing), dedicated to al-Mamun by Mohammed ibn Musa al-Khwarizmi
(c. 780–850), the greatest mathematician of medieval Islam.35 It was on the
translation of Kanka’s Siddhanta that al-Khwarizmi based the construction of
his astronomical tables.

As for trigonometry, it was still subservient to astronomy in the Islamic
world, mainly through the elaboration of tables of half-chords and other
lengths. For this is one of the main contributions in Arabic to the development
of trigonometry: the introduction of all six trigonometric lengths (they were
still lengths and not functions as they are today). The Hindu jyva was adopted
over the Greek chord, but since there is no v sound in Arabic it became jyba
or simply jyb (NêX). The cosine of an arc smaller than 90◦ was known and
used as the jyba of the complement of the arc. In this way it was used by
the famous astronomer Mohammed ibn Jabir al-Battani al-Harrani (c. 858–
929)—working in Samarra, now in modern Iraq—in determining the altitude
of the sun. It appears, together with a table of its values, in his book On the
motion of the stars, written about 920. What we now know as the tangent
and cotangent appeared first as shadows of the gnomon, or miqyas (tê¿Õ) in
Arabic, as shown in the next figure.

A table of sines and tangents—to use the modern terms—was compiled by
Ahmad ibn Abdallah al-Marwazi al-Baghdadi (c. 770–870), a native of Marw,
in present-day Turkmenistan. Known as Habash al-Hasib (the Calculator),

35 It should be mentioned, in passing, that the title of this book was the origin of the word
algebra through its Latin “translation” Liber algebræ et almucabola. A work on arithmetic
was translated as Liber Algoritmi de numero Indorum (Al-Khwarizmi’s book on Hindu
numbering), and it was thus that the name of the region Khwarazm, around the present-day
town of Biruni, in Uzbekistan, originated the word algorithm.
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working in the court of al-Mamun and that of the next caliph Abu Ishaq al-
Mu’tasim ibn Harun, he may have computed the first table of tangents ever. His
tables were done in intervals of 1◦ and are accurate to three sexagesimal places
(parts, minutes, and seconds) as opposed to Ptolemy’s, which are accurate only
to the minutes. Be all this as it may, al-Hasib did not contribute to trigonometry
in the usual sense.

The work of Mohammed ibn Mohammed abu’l-Wafa al-Buzjani (940–
998) 36 had a greater impact on trigonometry. In 945 Baghdad was captured by
Ahmad Buyeh, of north Persian descent, and the caliph remained a figurehead.
Four years later his son Adud al-Dawlah became caliph and founded the Buyid
dynasty. He was a great supporter of mathematics, science, and the arts, and
attractedAbu’l-Wafa to Baghdad, where he wrote several texts in mathematics,
in 959. In 983 Adud al-Dawlah was succeeded by his son Sharaf al-Dawlah,
who continued to support the sciences, and Abu’l-Wafa remained in Baghdad.

In addition to elaborating trigonometric tables in smaller steps and with
greater accuracy than his predecessors, he started a systematic presentation
of the theorems and proofs of trigonometry as a separate discipline in math-
ematics. In Chapter 5 of his Almjsty

(ë©sYÖÇC), which is not a translation
of Ptolemy’s Almagest but a separate work probably written after 987,37 he
considered only the chord, the jyba, and the jyba of the complement, giving
at once formulas for the jyba of a double arc and half an arc. In Chapter 6 he
defined the tangent or shadow in this manner:38

The shadow of an arc is the line [segment] drawn from the end of this arc
parallel to the jyba, in the interval included between this end of the arc and
a line drawn from the center of the circle through the other end of the same
arc.

36 This may be a good place to explain Arabic names. They usually start with a given
name, such as Mohammed, followed by ibn (son of) and the name of the father. The i in
ibn is silent, so that this word sounds more like bin, which is another frequent spelling.
Further names of the grandfather and great-grandfather may be added next. Usually, the
name ends with the town or region of origin, such as al-Buzjani, which means “the one
from Buzjan,” located in present-day Iran. Sometimes there is a nickname at the end, such
as al-Rashid (pronounced ar-Rashid because the l in al tends to acquire the sound of the
next consonant). In some cases, the person being named had a famous son, whose name is
added following the word abu (father of). Fate determines how a particular person should
be known to posterity, and Mohammed ibn Mohammed ibn Yahya ibn Ismail ibn al-Abbas
abu’l-Wafa al-Buzjani is usually known as Abu’l-Wafa.

37 For this date see Woepcke, “Recherches sur l’histoire des sciences mathématiques chez
les orientaux, d’après des traités inédits arabes et persans. Deuxième article,” 1855, p. 256.

38 The definitions quoted here are from Delambre, Histoire de l’astronomie du moyen age,
1919, p. 157.
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Abu’l-Wafa’s statement is represented in the figure. He called this trigono-

metric line the first shadow or turned shadow. Then the secant, or

diameter of the shadow, is the line drawn from the center to the end of the
shadow. The straight shadow [cotangent] is the shadow of the complement
of the arc.

Next Abu’l-Wafa stated, in verbal form, four equations relating these and the
former trigonometric lines, the first of which, if R denotes the radius, can be
written as

shadow

R
= jyb

�
AB

jyb (90◦ − �
AB)

.

This is clear from the similarity of the triangles shown in the previous figure.
Then Abu’l-Wafa chose R = 1 for the following reason [p. 420]:39

Thus it is evident that, if we take unity for the radius, the ratio of the jyba of
an arc to the jyba of its complement is the shadow, and the ratio of the jyba
of the complement to the jyba of the arc is the level shadow.

This choice for the radius was a stroke of modernity, which he applied in the
construction of his sine and tangent tables, but later writers did not adopt it.

As an example of Abu’l-Wafa’s style in trigonometry, we return to Chap-
ter 5 of the Almjsty and present his proof of the formulas now written as

sin(α ± θ) = sin α cos θ ± cos α sin θ.

He provided two calculations to obtain the sine of a sum or difference, and
the first one is as follows [pp. 416–417]:

39 The remaining quotations from Abu’l-Wafa included here are English translations from
a French translation of the relevant passages on trigonometry in Carra deVaux, “L’Almageste
d’Abû’lwéfaAlbûzdjâni,” 1892, pp. 416–420. I have changed the words “sine” and “cosine”
to jyba and jyba of the complement, and have mostly used “segment” as a translation of
ligne.
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Consider the two arcs AB, BC of a circle ABCD (fig. 1) [these arcs are
represented below in two possible arrangements]. The jybas of each of them

are known. I say that the jyba of their sum and that of their difference are
also known [can be found]. Join the three points A, B, C to the center O;
from the point B drop to the radii OA, OC the perpendiculars BT , BH , and
join HT . I say that [in the left figure] HT is equal to the jyba of AC. In
fact, prolong BH , BT down to D and Z and join DZ; HT will be equal to
half of DZ, because the two segments BD, BZ are respectively divided into
two equal parts at the points H and T . Therefore the arc DBZ is double the
arc ABC, and the segment HT is equal to the jyba of the arc CA.

To restate this in current notation we use the central angles α = � AOB and
θ = � BOC rather than the arcs AB and BC that Abu’l-Wafa used. Then, by
the bisecting nature of OA and OC,

� ZOD = � ZOB + � BOD = 2α + 2θ

in the left figure, and

HT = 1
2 DZ = 1

2 crd ZOD = jyb (α + θ) = sin(α + θ).

The last equation is a consequence of the choice R = 1. Then, in order to deal
with the sine of a difference, Abu’l-Wafa continued as follows [pp. 417–418]:

In a second figure (fig. 2) [the one on the right], the arc BDZ is double
the arc BCA, and the arc BCD, double the arc BC; as a difference the arc
DZ is double the arc AC. From the point B drop a perpendicular BN on
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the line HT . The two angles BHO, BTO being right angles and built on
the segment BO, the quadrilateral BOTH can be inscribed in a circle [see
Proposition 31 of Book III of Euclid’s Elements]. The two triangles BOH ,
BTN , are similar since the angles at H and N are right angles, and the angles
at O and T are equal, because these two angles are built on the segment BH

[a chord in the circle BOTH ]. Therefore the other two angles are equal to
each other, and we have:

NB

BT
= HB

BO
;

but the lengths BT , BO, BH are known; thus we can infer BN , and the
angle at N being right, we can obtain the segments NH , NT , and finally
HT , which we wanted to prove.

This proves, indeed, that HT can be obtained from the given jybas: BT =
jyb α and BH = jyb θ , and the proof stated here is just as valid for the left
figure. But in this case,

� ZOD = � ZOB − � BOD = 2α − 2θ,

and therefore

HT = 1
2 DZ = 1

2 crd ZOD = jyb (α − θ) = sin(α − θ).

This concludes the calculation of HT , that is, the calculation of the sine of
a sum or difference, but it does not give the promised and expected familiar
formulas. However, Abu’l-Wafa would return to this topic, expressing himself
in the following manner [p. 418]:

Let us return to the two figures that we have drawn. The two triangles HNB,
BOT are similar, because the angles BNH , BTO are right and the angles at
H and O are built on the segment BT [in the right figure it is the angles BHT ,
BOT that are built on BT , and since they are inscribed in the circle BOTH

on opposite sides of the same chord they are supplementary]. Therefore we
have:

BH

HN
= BO

OT
;

but the lengths BH , BO, OT are known; thus HN will be known. Further-
more, the two triangles BNT , OBH are also similar, because the two angles
at H and N are right and the two angles at O and T are built on the segment
BH . Then we have:

BT

TN
= BO

OH
;

but the lengths BT , BO and OH are known; thus T N will be known. Hence
the segment HT will be known which is, as we have already seen, the jyba
of the arc AC.
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From these equations, and recalling that BO = 1, we immediately obtain

HN = OT · BH = cos α sin θ,

TN = BT ·OH = sin α cos θ.

Then, in the left figure,

sin(α + θ) = TH = TN + NH = sin α cos θ + cos α sin θ,

and in the right figure

sin(α − θ) = TH = TN − NH = sin α cos θ − cos α sin θ.

These are the well-known formulas in today’s notation. Abu’l-Wafa stated
them in narrative form as follows:40

which translates as

Calculation of the jyba of the sum of two arcs and the jyba of their difference,
when each of them is known. We multiply the jyba of each of these arcs by
the jyba of the complement of the other, expressed in sexagesimal minutes,
and we add the two products if we want to know the jyba of the sum; we
subtract them if we seek the jyba of the difference.

We saw before that the first of the last two identities can be obtained from
an interpretation of Corollary 1 of Ptolemy’s theorem. Abu’l-Wafa’s proof,
by contrast, gives the two formulas in one single move, and, because of his

40 Reproduced from Carra de Vaux, “L’Almageste d’Abû’lwéfa Albûzdjâni,” p. 419.
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choice of the radius, they are given in modern terms at once.41

The historian and general scholar Muhammad ibnAhmad abu’l-Rayhan al-
Biruni (973–1048), from Khwarazm, in today’s Uzbekistan, wrote an Exhaus-
tive treatise on shadows about 1021, in which he gave several relationships
among the various trigonometric lengths. But a comprehensive treatment of
trigonometry in the Islamic world would appear only in the thirteenth century.
While, if we were to talk in cinematographic terms, mathematics developed in
slow motion—very slow motion in the tenth century—empires and dynasties
evolve, in comparison, like the life of a flower in those films in which its birth,
bloom, and death are viewed in the span of one minute, as if speed had been
invented for the sole purpose of making mincemeat of history.

Mincemeat is what Baghdad became in 1258 after being conquered by the
Mongol leader Hulagu (or Hulegu), for he did not believe in mercy toward the
defeated. He was the grandson of Temujin, also called Genghis Khan (possibly
from the Chinese cheng-ji, “successful-lucky,” and the Turkish khan, “lord”),
who had managed to unite various Mongol tribes and began a large campaign
of conquests in 1206. Hulagu expanded the Mongol empire to the west, and
on his way to Ain Julat, near Nazareth, where he was defeated for the first
time, he accepted the surrender of the Hashashin of Alamut in 1256. This was
a fortress in the mountains of central Iran (aluh amut means “eagle’s nest”)
where this order of Nizari Ismailis had its center of operations, sending killers
wherever they were deemed necessary to eliminte enemies and creating terror
and unrest in the Islamic world.42

That this event was important in the development of trigonometry is due to
the fact that Mohammed ibn Mohammed ibn al-Hasan al-Tusi (1201–1274),
a gifted astronomer and mathematician and a native of Tus—a town right next
to the location of modern Meshed in Iran—was at the Alamut fortress at that
time. Upon its destruction by Hulagu, he joined his forces and was with them
when they sacked Baghdad.

Hulagu was interested in science and made al-Tusi his advisor in such

41 However, Abu’l-Wafa’s proof could have been shortened by using Ptolemy’s theorem:
Applying it to the quadrilateral BOTH in the left figure gives

TH · BO = TO · BH + BT ·HO,
and in the right figure

BT ·HO = TO · BH + BO · TH.

With BO = 1 and the appropriate values of TH this gives the well-known formulas.
42 Hashashin is a word of uncertain origin, about which much has been written without

proof, from which the modern word “assassin” derives. For a history of this sect see
Hodgson, The secret order of assassins, 1955. For the word assassin, pp. 133–137.
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Mohammed al-Tusi

matters and also put him in charge of religious affairs.43 In 1262 he completed
the construction of an observatory in his new capital, Maraga, nearAzerbaijan,
for which Mohammed al-Tusi designed several instruments and where he
wrote tables and other works. One of these was the Kitab shakl al-qatta
(Treatise on the transversal figure), in five books,44 in which he gave the first
systematic presentation of trigonometry as independent of astronomy. In this
treatise he stated and proved the law of sines for plane triangles and used it to
solve triangles (this is the name for the process of determining the unknown
angles and sides of a triangle when some are given). The law of sines was
not entirely new, but not until the sixteenth century was originality one-tenth
as valued as it is today. Compilation was more the name of the game, so that
others could have a handy reference when applying a science to the practical
world. The law of sines, in particular, was already implied in Ptolemy’s work,
was proved by Abu’l-Wafa for spherical triangles, and was also stated and
proved by al-Biruni. In fact, al-Tusi used and borrowed from al-Biruni’s

43 It is possible that Mohammed al-Tusi’s connection with religious affairs is the reason
for the name Nasir al-Din (frequently spelled Nasir Eddin), by which he is very often known.
It means “Defender of the Faith.”

44 °D©¿ÆC ÈÃv KDQÂ, an Arabic translation of a book that al-Tusi had originally written
in Persian a few years before. Page references below are to the French translation by
Carathéodory, Traité du quadrilatère attribué a Nassiruddin-el Toussy, 1891.
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treatise The key to the knowledge of spherical �gures and other �gures while
writing his own treatise.

Mohammed al-Tusi ignored Abu’l-Wafa’s choice of a unit radius 45 and
returned to R = 60. Then in Chapter 2 of Book III, entitled On the way to
calculate the sides and the angles of a triangle the ones from the others [p. 66],
he proposed two ways to do just that, the method of “arcs and chords” and the
method of “arcs and jybas.” He explained first the method of arcs and chords,
starting with a right triangle and considering three subcases. Then he turned
his attention to arbitrary triangles, dividing his study into four subcases, of
which we shall need the last two [p. 69]:46

III.– Two sides and one angle are given. . . . That if the given angle
is between the two given sides, as the angle A is between the two sides

AB AC, lower from B to AC the perpendicular BE. You will thus have the
right triangle AEB 47 of which we know the side AB and the angle A; we
get BE, EA, and thus we fall back into one of the preceding cases; that is in
the case in which BE, CE are known; then from these we shall know BC

and the angle C, as we have explained.

In other words, crd 2A is obtained from a table of chords, BE from the
equation

BE

BA
=

1
2 crd 2A

60
,

45 Al-Tusi stated that Al-Biruni was the first to choose unity as the radius [p. 212].
46 Since I am translating from a translation, I will do it as literally as possible to mini-

mize the divergence from the original text. However, I have not been able to avoid some
punctuation changes.

47 The French translation says BEC, but theArabic version has the correct triangle
( )

on page 53 (53). However, the figure for the second triangle is mislabeled in Arabic.
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EA from the Pythagorean theorem, CE = CA ∓ EA, BC is also obtained
from the Pythagorean theorem, and crd 2C is found from the equation

BE

BC
=

1
2 crd 2C

60
.

Then 2C is found from a table of chords, and C is one-half of this value.

IV.– The three sides of the triangle ABC are given.48 We would calculate

the perpendicular according to the common rule; taking the excess of the
two squares of BA, BC over the square of AC, which we shall divide by the
double of BC; the quotient will be BE,49 and then the root of the excess of
the square of AB over the square of BE will give the perpendicular. Thus
we shall have two right triangles whose angles can be determined, by means
of which those of the triangle ABC can then be determined.

This concludes al-Tusi’s presentation of the method of arcs and chords,
and then, switching to the method of arcs and jybas, he stated the following
[p. 70]:

48 Note that the labeling of the vertices in the new figure for this case is different from the
labeling in Case III.

49 No proof of this fact is provided because this is “common” knowledge. However, for
those without that knowledge it can be very simply proved if we denote the sides opposite
the angles A, B, and C by a, b, and c, respectively. Then, if the perpendicular AE is
denoted by h and if we put x = BE, we have c2 = x2 + h2 and

b2 = (a − x)2 + h2 = a2 − 2ax + x2 + h2 = a2 − 2ax + c2.

Solving for x gives

x = a2 + c2 − b2

2a
,

which is al-Tusi’s statement.
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As for that of the arcs and the jybas, the fundamental notion is that the ratio
of the sides is equal to the ratio of the jybas of the angles opposite those sides.

Next he restated it in a more formal manner, which we now call the law of
sines.

Let there be a triangle ABC, I say that the segment AB over the segment AC

equals [the jyba of] the angle ACB over [the jyba of] the angle ABC.50

Al-Tusi’s law of sines and his first proof.
From page 54 (54) of the Arabic translation of the Persian original,
bound back to back with the French translation by Carathéodory:

Traité du quadrilatère attribué a Nassiruddin-el Toussy.

To prove it he considered three cases [p. 70], in which the angle at B ( ) is
obtuse, right, or acute. The first and the third cases are illustrated in the next
figure, and, following al-Tusi’s lead, we shall leave the case of the right angle
at B to the reader.

50 Strangely enough, al-Tusi did not use the word jyba (NêX) in this statement, although
it appears prominently in the preliminary statement and in the proof.
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Demonstration.51 Prolong CB to CE = 60 [this may involve a contrac-
tion rather than a prolongation, but the argument is the same]. From C with
a radius equal to CE describe ED and prolong CA until it meets this arc
in D. From D lower the perpendicular DF over CE, that will be the jyba
of the angle ACB. Prolong BC equally to BH = 60. From B with a radius
= BH describe HT which will be cut at point T , by the prolongation of
AB. Lower the perpendicular TK , this will be the jyba of the angle ABC.
From A lower AL perpendicular over BC, and because of the similarity of
the triangles ABL, TBK you will have:

AB

AL
= TB (radius)

TK
;

in the same manner because of the similarity of the triangles ALC, DF C,

AL

AC
= DF

DC (radius)
;

from which by the established proportion [multiplying the two preceding
equations]:

AB

AC
= DF ( jyb ACB)

TK( jyb ABC)
,

Q.E.D.52

Next al-Tusi gave a second proof, presumably his own, that is shorter than
the first. It is based on the next two figures, which represent the two cases
in which the angle at B of the basic triangle ABC is either obtuse or acute
[p. 71].

51 This is al-Biruni’s original proof, which can be seen translated into English and in current
notation in Zeller, The development of trigonometry from Regiomontanus to Pitiscus, 1946,
p. 9. A different translation of this proof and the preceding statements of the law of sines
can be found in Berggren, “Mathematics in medieval Islam,” in The mathematics of Egypt,
Mesopotamia, China, India, and Islam, 2007, p. 642.

52 I have used, and will continue using, modern fractions rather than the symbol : which
the French translation uses for division. The stated equations are just part of the narrative
in both the French and the Arabic versions.
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Lower AE perpendicular to BC; prolong AB, AC just so that AF = AD =
60 = R. Describe the arc DH . Bring DT , F K perpendicular onto AH . In
the triangle ABE the angle E being a right angle, B will be the complement
of A; DT is the jyba of the angle A; TA is the jyba of the angle B. Similarly
in the triangle AEC, the angle C being the complement of the angle A,53

KF is the jyba of the angle A; KA is the jyba of the angle C. And because
of the similarity of the two triangles ABE, ADT ;

AB

AE
= AD (radius)

AT ( jyb B)
;

in the same manner, due to the similarity of the two triangles AEC, AKF ,

AE

AC
= AK ( jyb C)

AF (radius)
,

which gives us [multiplying the last two equations]

AB

AC
= KA( jyb C)

AT ( jyb B)
,

Q.E.D.

Then al-Tusi used this theorem to solve triangles, starting with the case of
right triangles [pp. 71–72].

Thus if we are dealing with a right triangle, if we know its sides, by the
method of the jybas [the law of sines], the hypotenuse will be to one of the
sides in the ratio of the radius [= jyb 90◦] to the jyba of the angle opposite
that side, and through the jyba one finds the angle. And if that which is given
is one angle and one side we shall know from those the angles of the right

53 The French translation reads A+ C = arc de demi-circonférence.
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Al-Tusi’s second proof of the law of sines.
From page 55 (55) of the Arabic translation of the Persian original,
bound back to back with the French translation by Carathéodory:

Traité du quadrilatère attribué a Nassiruddin-el Toussy.

triangle, and the ratio of the jyba of the angle opposite the known side to the
jyba of the other angle will be equal to the ratio of the given side to the other
side. Through that the sides will be known.

While al-Tusi dealt with arbitrary triangles in one single condensed para-
graph [p. 72], we shall interrupt it three times to insert explanations using
today’s mathematical writing. To this end, consider an arbitrary triangle ABC

and denote the sides opposite the angles A, B, and C by a, b, and c, respectively.

As for the other triangles, if one knows two angles and one side, the other two
sides will be found according to what we have said about the right triangle.
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That is, if A and B are the given angles, then C = 180◦ − (A+ B) is found.
Now assume that the known side is a. According to the law of sines,

b

a
= jyb B

jyb A
and

c

a
= jyb C

jyb A
.

In each equation three of the four quantities are known, and then b and c can
be found.

If what is given is two sides and one angle (not between the sides) the ratio of
the side opposite the known angle to the other side will be equal to the ratio
of the jyba of the known angle to the jyba of the angle opposite the other side.
And when you have known the angles you would also know the remaining
side.

That is, assume that A, a, and b are the given items. Then B is determined
from

b

a
= jyb B

jyb A
.

Now two angles and one side are given, and the triangle is solved as in the
previous case.

If the angle is between the two given sides one would proceed as it has been
said.

Now, this is really a short explanation, but al-Tusi is right. This is just Case III
of his method of arcs and chords, shown on page 45. Then he concludes with
the last of the present cases:

If the given consists of the three sides, find first the perpendicular as it has
been said, after which you will be able to know the angles as you would find
them in the case of a right triangle.

We need to add to this explanation by saying that in Case IV of his solution
of triangles by the method of arcs and chords (page 46), and with reference to
the figure reproduced there, al-Tusi had already evaluated BE and AE. Then
EC is easily obtained from BC and BE, so that in each of the right triangles
ABE and AEC two sides and the right angle between them are known, a case
that has already been covered.

Then al-Tusi concluded Chapter 2 with the following words: “Here ends
what we were going to say about triangles.” But this is not the end of his
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application of the law of sines, for in Chapter 3 of Book III, entitled Rules
whose knowledge is very useful in the theory of the plane quadrilateral, he
also used it to prove several of these rules or lemmas. Of these we present
only the first as a sample [p. 73].

Let there be in a circle ABC, two arcs AB, AC whose ends touch at the point A:
their sum BAC < 1

2 the circumference is given, as well as the ratio of jyb AB

over jyb AC. I say that AB, AC can be determined.

Demonstration.54 Draw the chord BC and the diameter AE which intersect
in D. Drop from the center, FH perpendicular over CB, join BF . The arc
BAC being known the chord BC is known too [from a table of chords];

jyb AB

jyb AC

being known [the ratio] DB/DC . . . is also known.55

It might be appropriate to interrupt the proof to show why this is true. Visualize
two perpendiculars from B and from C to AE and denote their intersections
with AE by Bp and Cp, respectively. Note that BBp = jyb � AFB = jyb AB

and that CCp = jyb � AF C = jyb AC. This and the similarity of the triangles

54 A different translation of this lemma and its proof can be found in Berggren, “Mathe-
matics in medieval Islam,” in The mathematics of Egypt, Mesopotamia, China, India, and
Islam, p. 643.

55 The omitted short passages in this quotation and the next one refer to some segments,
external to the circle in question, that may be relevant in the rest of al-Tusi’s Chapter 3 but
are not relevant to this proof.
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BDBp and CDCp gives

DC

DB
= BBp

CCp

= jyb AB

jyb AC
,

which shows that the ratio on the left is also known. Then al-Tusi continued
as follows:

We deduce:
DB +DC = BC

DB

. . . [is known too]. DB, BC, BH (BC/2) and consequently DH and FH

(jyba of the complement of half the arc BAC)56 are thus known segments
[DH = BH − DB and FH = √

602 − BH 2]. Now in the right triangle
DHF the two sides of the right angle are known and consequently the angle
DFH . Moreover BFH (which corresponds to half of the arc BC) is known.
Thus we come to determine the angle BFA, which corresponds to the arc
BA, and hence the arc AB itself, Q.E.D.

Thus we see that al-Tusi’s treatise prominently displays trigonometry and
its applications, although the only trigonometric length that he used in the
work described to this point is the jyba. However, in Chapter 6 of Book V,
entitled Of the �gure called shadow, of its consequences and of its accessories,
al-Tusi defined all six trigonometric lengths and gave some of their properties.
Before going on to prove some results in spherical trigonometry, he stated the
following [p. 164]:

Let there be the circle ABCE with center at D and the arc AB. Draw the
diameters passing through the points A and B, and from the point A raise the
perpendicular AF to AC, which will meet the diameter BE at F ;57 AF is
the shadow of the arc AB, parallel to BH which is the jyba. Similarly, raise
on AC the perpendicular DT through the center. The perpendicular TK will
be the shadow of the arc TB, while BL is the jyba; in other words, TK and
BL will be the shadow and the jyba of the complement of the arc AB. What
we have called shadow, astronomers call the �rst shadow or turned shadow
of the arc AB. . . . they call TK , the second shadow of the arc AB, or the
straight shadow; FD is for them the diameter of the 1st shadow, and KD

the diameter of the second shadow . . .

56 Half the arc BAC is equivalent to the angle BFH , and its complement is the angle
FBH .

57 For some reason, this point is not labeled in the Arabic manuscript.



54 Trigonometry Chapter 1

That makes six trigonometric lengths, that last two of which we now call the
secant and the cosecant.

Then al-Tusi stated the following relationships for the new trigonometric
lengths [pp. 164–165]:

The first shadow of every arc is the second shadow of its complement and vice
versa; the ratio of the shadow to the radius is equal to ratio of the jyba of the
arc to the jyba of its complement; the ratio of the shadow to the diameter of
the shadow is equal to ratio of the jyba to the radius, because of the similarity
of the triangles FAD, BHD; but the triangles AFD, KTD being also similar
one has

FA

AD
= DT = AD

TK
; 58

hence the radius is the mean proportional between the shadow of an arc
and the shadow of its complement, and the shadows of two arcs are as the
reciprocals of the shadows of their complements.

In other words, we have some familiar trigonometric identities, starting with

R tan α = R cot(90◦ − α)

and ending with
tan α

tan θ
= cot θ

cot α
.

While some of these identities may be considered unexciting today, the fact
is that the introduction of the six trigonometric functions and the relationships
between them gave an agility to the applications of trigonometry that it did
not have in the times of just arcs and chords or arcs and jybas.

58 In the French translation the last denominator appears as KD, which contradicts the
text following this equation, but it is correct in the Arabic version on page 127 (127).
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After this, little progress was made in trigonometry in the Islamic world
except in the elaboration of finer tables. Worthy of mention are those com-
pleted by Ghiyath al-Din Jamshid al-Kashi (of Kashan) in 1414 as a revision
of earlier ones by Mohammed al-Tusi. They were dedicated to the Great Khan
Ulug Beg, a generous patron of the arts and sciences, whose capital was at
Samarkand. Of great merit is al-Kashi’s interpolation algorithm based on the
approximate solution of a cubic equation.59

1.5 TRIGONOMETRY IN EUROPE

Abd al-Rahman, one of the Umayyads to escape the massacre by Abu al-
Abbas al-Saffah in 750, managed to reach the Iberian peninsula. In 756 he
proclaimed himself emir in Córdoba and in 773 he became independent of
Baghdad. Abd al-Rahman III, also of the Umayyad dynasty in Córdoba, who
ascended to the throne in 912, turned the emirate into an independent caliphate
in 929. Islamic culture had already started to flourish under the emir Abd al-
Rahman II. When in the ninth century the largest library in Christian Europe,
at the Swiss monastery of Saint Gallen, had a grand total of 36 volumes, that
of Córdoba housed 500,000, one per inhabitant.

Abd al-Rahman III was determined in his resolution that the splendor of
his court at Córdoba would outshine that of the eastern Abbasid caliphate.
He brought artists and scientists to Córdoba, and it was in this way that a
large part of Islamic knowledge reached Europe, to be augmented by some
of the local scientists. Contributions to trigonometry were only minor, and
they took place after the decomposition of the Córdoba caliphate into smaller
independent kingdoms. But because of their later influence we should cite the
Zij tulaytulah (Toledan tables) of Abu Ishaq Ibrahim ibnYahya al-Naqqas (the
Chiseler) al-Zarqel (the Blue-eyed, referring to his father) (1029–1100),60 a
practical astronomer who made observations in Toledo and devoted several
pages to the use of the cotangent. Abu Mohammed Jabir ibn Aflah al-Ishbili
(from Seville) (c. 1100–c. 1160), frequently known as Geber, the Latinized
form of his name, wrote the Islah al-mjsty or Correction of the Almagest,
which would be influential some centuries later.

But the accumulation of knowledge in Muslim Spain would have been

59 For details see Berggren, Episodes in the mathematics of medieval Islam, 1986, pp. 151–
154.

60 Many historians use the form al-Zarqali, but this cannot be considered correct for the
reasons given by Millás Vallicrosa in Estudios sobre Azarquiel, 1943, pp. 13 and 21–22.
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useless if such a wealth of books had remained unread by future generations.
However, in 1085 Alfonso VI of Castile, the Valiant, conquered Toledo by the
civilized method of convincing King Ismail ibnYahya al-Qadir that resistance
was futile, and entering into an agreement for a peaceful take-over. Less than
a century later, the archbishop Raimundo de Sauvetat was pondering what to
do with so many old volumes at the Cathedral of Toledo, and decided to make
them available to scholars. This was the origin of the Escuela de Traductores
de Toledo (Toledo School of Translators), which became one of the main
avenues for the dissemination of old knowledge to Europe.

Many scholars flocked to Toledo to translate those works, among them
Adelard of Bath (1075–1160), who translated the astronomical tables of al-
Khwarizmi—revised by Maslama ibn Ahmed al-Madjriti (of Madrid) in the
tenth century—in 1126 and Euclid’s Elements in 1142. In 1145 Robert of
Chester (1110–1160) translated al-Khwarizmi’s Kitab al-muqhtasar � hisab
al-jabr wa’l-muqabala (The compendious treatise on calculation by restora-
tion and reduction) with the title Liber algebræ et almucabala, which gave us
the word algebra. Gherardo de Cremona (1114–1187) translated more than 80
texts from Arabic to Latin, including Ptolemy’s Almagest—for which purpose
he went to Toledo in 1167 and remained there for life—Euclid’s Elements,
and al-Zarqel’s Toledan tables. Iohannes Hispalensis, or Juan de Sevilla (died
1180), translated al-Khwarizmi’s book on Hindu numbering.

Many other translators, local and foreign, contributed to this endeavor:
Petrus Alphonsi (Moshé Sefardí), Rudolf of Bruges, Dominicus Gundisalvi,
Michael Scot, Marcos de Toledo, Alfred of Sareshel, Plato Tiburtinus also
known as Plato of Tivoli, Abraham Bar Hiyya, Hugo de Santalla, Hermann
of Carinthia (Hernán Alemán), Abraham ben Ezra . . . the list is endless. This
translation activity was an essential component of what has been called the
twelfth-century Renaissance, and it certainly paved the way for the full-fledged
Renaissance of the fifteenth century.61

Some of these translations are particularly noteworthy for linguistic rea-
sons. The translators, unable to make any sense of the word jyb and taking it
to be jayb, one of whose meanings is bosom or any object similarly shaped,
translated it as sinus, which has the same meaning in Latin. We know that
the word appears in Gherardo de Cremona’s translation of al-Zarqel’s Toledan

61 Although Toledo was the main translation center, other translations were made in
Barcelona, León, Pamplona, Segovia, and Tarazona in Spain; Béziers, Marseilles, Nar-
bonne, and Toulouse in France; and in the Norman court of Roger II of Sicily. For full
details see Chapter IX in Haskins, The Renaissance of the twelfth century, 1927.
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tables, Canones sive regulæ super tabulas toletanas, as follows: “Sinus cuius
libet portionis circuli est dimidium corde duplicis portionis illius” (The sine
of any portion of a circle is one half the chord of double the portion).62 It is,
however, possible that the same rendering of jayb into sinus was made earlier
by other translators. The names of Plato Tiburtinus and Robert of Chester
have been mentioned in this connection.63

With this preparatory work, Europe was ready to embrace and improve on
trigonometry. The translators had rendered the turned shadow and the straight
shadow into umbra versa and umbra recta, and these trigonometric lengths
were used in Europe. At Oxford University, John Manduith (c. 1310) used
them in his Small tract, and Richard of Wallingford (c. 1292–1335) in his
Quadripartitum de sinibis demonstratis. In Paris, Jean de Linières (1300–
1350), a follower of al-Zarqel, clearly defined the umbra recta and umbra
versa in his Canones super tabulas primi mobilis, astronomical tables for the
Paris meridian.

The stage was set for the first systematic treatment of trigonometry in
Europe. It was written by Johannes Müller (1436–1476), also known as Re-
giomontanus. A true man of the Renaissance, he adopted the Latin version,
Regius Mons, of the name of his hometown of Königsberg (King’s Mountain),
becoming Joannes de Regio Monte. Actually, he was born at Unfinden, near
Königsberg. He went to the Academy of Vienna as a student, where he met
Georg Peurbach in 1451 or 1452, and they became like father and son. In
1461 he was appointed professor of astronomy at the University of Vienna,
but he did not enjoy this position for long. At some time, Peurbach had in-
troduced Regiomontanus to Cardinal Basilios Bessarion, who, like Peurbach,
was interested in a definitive translation of Ptolemy’s Almagest (previous Latin
translations of bad Arabic translations were shunned). When Peurbach died
at 37, in 1461, it was up to Regiomontanus to finish the task.

He and Bessarion left for Italy in search of reliable documents in 1462.
There Regiomontanus learned Greek and Arabic, finished Peurbach’s work as
Epytoma Joannis de Monte Regio in almagestum Ptolemei in 1463, and wrote
his own compilation of trigonometry, which he finished in June 1464. The
title of this work, a systematic treatise on trigonometry, as independent from
astronomy and even more inclusive than al-Tusi’s, is De triangvlis omnimodis
(On triangles of all kinds). It consists of five books, the first two of which

62 From Smith, History of mathematics, II, p. 616.
63 The first by Cajori, A history of mathematics, 1919, p. 105. The second by Boyer, A

history of mathematics, 1968, p. 278.
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Johannes Müller
From Ludwig Bechstein, ed., Zweihundert deutsche Männer in Bildnissen

und Lebensbeschreibungen, Georg Wigands Verlag, Leipzig, 1854.

are devoted to plane trigonometry and the rest to spherical trigonometry (in
the fourth book he borrowed heavily from Jabir ibn Aflah without giving him
credit, for which he was to be chastised later by Cardano). It was eventually
printed in 1533 and reprinted in 1561 and 1967.64

Book I of De triangvlis contains fifty-seven propositions, of which numbers
20 to 57 deal with the solution of triangles. The only trigonometric function
used in this book is the sine, which appears in Propositions 20, 27, and 28.
Here are the statement and proof of this last proposition [pp. 66–67]:

XXVIII.

When the ratio of two sides of a right triangle is given, its angles can be
ascertained.

64 Hughes, Regiomontanus on triangles, 1967. Page references are to this edition, and,
except for very minor changes, the translations included here are by Hughes.
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One of the two sides is opposite the right angle or else none is. First, if
side ab, whose ratio to side ac is known, is opposite the right angle acb, I say
that the angles of this triangle become known. In fact, ac is the sine of the arc
of angle abc by the above,65 provided that ab is the semidiameter; that is, the
whole sine [sinus totus] of the circle. Therefore, the ratio of the whole sine to
the sine of angle abc is known. Hence the latter sine can be found, and finally
the angle abc will be known. However, if the ratio of the two sides bc and ac

is given, then the ratio of their squares will be known. And by addition [of
unity to the last ratio and simplification] the ratio of the sum of the square
of bc plus the square of ac—that sum being the square of ab because of the
right angle c—to the square of ac will be known, whence the ratio of the lines
is known. And what remains is as before.

To rephrase this using current notation, we consider two cases:

1. If the ratio ab/ac is given and if ab is the semidiameter, the equation

ab

ac
= sinus totus

sinus abc

(where we have written sinus instead of sin as a reminder of the fact that the
sinus is the length of a segment and not our usual trigonometric function),
allows us to determine sinus abc and then the angle abc from a table of sines.

2. If the ratio bc/ac is given, then

ab
2

ac
2 =

bc
2 + ac

2

ac
2 =

(
bc

ac

)2

+ 1,

65 As Hughes explains, Regiomontanus was referring to his previous Proposition 20, which
just stated the definition of the sine of an angle between 0◦ and 90◦ as the sine of its arc.
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from which the ratio ab/ac becomes known, and then we finish as in case 1.

After the proof, Regiomontanus included a guide to the “operation” of the
theorem; that is, computational instructions, starting with: “If one of the two
sides is opposite the right angle, multiply the smaller term . . . ” He concluded
with an example in which the ratio of ab to ac is 9 to 7. This was a typical
arrangement that he employed throughout the book.

Book II, which contains an organized treatment of trigonometry in 33
propositions, starts with the law of sines [pp. 108–109]:

I.

In every rectilinear [as opposed to spherical] triangle, the ratio of one side to
another is as that of the right sine of the angle opposite the one to the right
sine of the angle opposite the other.

Regiomontanus explained, with reference to the enclosed figure, what the

proposition says. Using our terminology, this is

ab

ag
= sinus agb

sinus abg
and

ab

bg
= sinus agb

sinus bag
.

Then the proof proper begins with the statement that if abg is a right triangle,
this is [Proposition] 28 above. If not, but if ab and ag are equal, then the angles
opposite these sides are equal and hence their sines are equal. But if one of
the sides is longer than the other, say ag is longer than ab, then prolong ba to
bd so that the length of bd equals that of ag. The he drew the arcs in the figure,
probably because he was following al-Tusi’s first proof, which has the arcs.
Drawing perpendiculars ak and dh to the base bg, it is evident that ak is to dh

as the sinus of angle agb is to the sinus of angle abg. Moreover, in view of the
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similarity of the triangles abk and dbh,

ab

ag
= ab

bd
= ak

dh
= sinus agb

sinus abg
,

“which is certain, and that is what the proposition asserted.”
As a sample of his use of this theorem in the solution of triangles we present

his seventh proposition [pp. 112–115].

VII.

If the perimeter of a triangle is given with two of its angles, any one of its sides
will be known.

Clearly, if two angles are known then all three are known, and (a shorter
proof will be given after the quotation)

therefore, by the reasoning often cited [the law of sines], the ratio of ab to ag

will be known, and then by addition [of 1] the sum of ba plus ag will have
a known ratio to line ag. Similarly, the ratio of ag to gb will be known, and
the ratio of ba plus ag to gb will be found [as the product of the two previous
ratios]. Thus, by addition [of 1] the total perimeter of triangle abg has a
known ratio to line bg. And since the hypothesis gave the perimeter itself,
line bg will be known. Hence the other two sides will also be declared known.

Or, more simply, since the ratio of any two sides is known by the law of sines,
then

ab+ bg+ ga

gb

is known, so that line bg will be known. Similarly for the other two sides.
Two features of this second book are remarkable. The first is the use of al-

gebra, specifically quadratic equations, in the proofs of Propositions 12 and 25.
The second is the fact that Regiomontanus implicitly used the trigonometric
formula for the area of a triangle in the proof of Proposition 26, reproduced
next. This book was extremely influential in Europe and highly praised by
Tÿge Brage (a name that he Latinized as Tycho Brahe),66 a Danish astronomer

66 This spelling of this name is from what appears to be his signature (but the fourth letter
of his last name is less than clear). It is reproduced below his portrait by Hans Peter Hansen
in Frederik Reinhold Friis, Tyge Brahe: en historisk fremstilling. Efter trykte og utrykte
kilder, Gyldendalske Boghandel, Copenhagen, 1871.



62 Trigonometry Chapter 1

Reproduced from Regiomontanus, De triangvlis omnimodis, p. 58.

who studied a supernova that became visible in the sixteenth century. He stated
that he “found the longitude and latitude of this new star with the help of the
infallible method of the doctrine of triangles,” and that a good part of the
propositions that he used were from the fourth book of Regiomontanus.67

The second edition of De triangvlis contains some additions. There are
two tables of sines, one based on a sinus totus of 6,000,000 parts and another
in which it is subdivided into 10,000,000 parts. Those were times in which
decimal numbers had not been introduced and it was convenient to compute
the sines as whole numbers. To obtain precision, the radius or sinus totus must
then be a huge number. A shorter table of only 95 sines was also included
based on a radius of 600,000,000 parts. In spite of the amount of effort needed
to compute them, they would soon become obsolete.

However, both editions of this book represented a setback in one direction:
that Regiomontanus used only the sine function, thereby limiting the agility
with which trigonometry could be applied. But he used the umbra versa from
1465, the year after he finished De triangvlis.

67 Tychonis Brahe, Dani De nova et nvllivs ævi memoria privs visa stella, iam pridem
anno à nato Christo 1572. mense Nouembrj primùm conspecta, contemplatio mathematica,
1573, f. B4v = Opera omnia, 1648, p. 357.
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About 1467 Regiomontanus left Italy and found employment managing the
manuscript collection of King Matthias I Corvinus of Hungary. In 1467 he
finished the Tabule directionum profectionumque, possibly printed privately
in 1475, which includes 31 astronomical problems but is mostly devoted to
tables. One of these, which he called tabula fecunda, is a table of tangents.
It was used in solving his tenth problem, after which he stated that he chose
the name fecunda because “like a fertile tree it produces many marvelous and
useful [results].” 68

Notable among those who worked in trigonometry after Regiomontanus
was the astronomer Mikołaj Kopernik (Latinized as Nicolaus Copernicus)
(1473–1543). Some trigonometry appeared in his great work De revolvtion-
ibvs orbium cœlestium of 1543, but it had been published separately the year
before under the title De lateribvs et angvlis triangulorum.69

Georg Joachim von Lauchen (1514–1576),70 usually known as Rheticus
because he was born in the former Roman province of Rhætia, was a young
professor of mathematics at Wittenberg in 1539 when he resigned his ap-
pointment to become a student of Copernicus in Poland. He learned that
Copernicus had trouble completing the demonstrations of his trigonometry,
and that he even thought of discontinuing his work, but Rheticus encouraged
him to persevere until he eventually found the necessary demonstrations.

Rheticus returned to Wittenberg in 1541 to supervise the printing of De
revolutionibvs, which may never have happened otherwise. He added a table
of cosines of his own to the De lateribvs, the first table of cosines ever. From
Wittenberg he moved to Nuremberg, then to the University of Leipzig, and
then to Kraków, where he became a practicing doctor of medicine for the next
twenty years. He still found time for mathematics, and even received funding
from Emperor Maximilian II, which enabled him to employ six research assis-
tants at some time. With their help, he elaborated a table of all trigonometric
lines based on a radius of 10,000,000 in intervals of ten seconds. Then he
began a table of what we now call tangents and secants based, for extra preci-
sion, on a radius of 1,00000,00000,00000, but he died in 1576 before he was
able to finish. The tables were completed by his pupil Lucivs Valentinvs Otho

68 Translated from page 13 of the 1490 edition, which has unnumbered pages.
69 The plane trigonometry appears in De revolvtionibvs in Chapter 13, pp. 19b–21, with

minor differences from that in De lateribvs. The tables are in Chapter 12, pp. 12–19, and
have one fewer place of accuracy than those in De lateribvs.

70 When his father was executed as a convicted sorcerer, the law forbade his family the use
of his last name: Iserin. Then Georg Joachim used his Italian mother’s last name de Porris,
which means “of the leeks.” Subsequently, he translated it into German as “von Lauchen.”
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Reproduced from page 57 (unnumbered) of Tabule directionu profectionuq[ue]
famosissimi viri Magistri Joannis Germani de Regiomonte in natiuitatibus

multum vtiles, 1490.

(c. 1550–1605) and published in the second volume of the Opvs palatinvm de
triangvlis in 1596. The first volume contains four trigonometric treatises, of
which one is due to Otho. Rheticus is chiefly remembered for his magnificent
trigonometric tables. In addition to those in the Opvs palatinvm, he began
a table of sines based on a radius of 1,00000,00000,00000, which was also
completed by Otho in 1598 and published as the Thesaurus mathematicus.



Section 1.6 From Viète to Pitiscus 65

1.6 FROM VIÈTE TO PITISCUS

Most notable among the many people who worked on trigonometry in the
sixteenth century was François Viète (1540–1603), also known as Vieta after
the Latin form of his name. He was a significant contributor and left us quite a

François Viète
From Smith, Portraits of Eminent Mathematicians, II

number of well known and not so well known trigonometric identities. Viète
was a lawyer in the Parlement de Paris and then a personal advisor to kings
Henri III and Henri IV of France, which did not prevent him from becoming, in
his spare time, the best mathematician of the sixteenth century. Viète was the
first to understand the generalities underlying the particulars and, in that sense,
the first man in the new Europe to really deserve the name mathematician.
He wrote extensively on trigonometry, starting with his first published work:
Canon mathematicvs sev ad triangvla cum adpendicibus (Mathematical table,
or about triangles, with appendices), written in four books, of which only the
first two were ever published. In the first of these he gave tables of minute-
by-minute values of all six trigonometric lengths.
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The next illustration shows the second page of the first table. In the top

Second page of the table in Viète’s Canon mathematicvs.

Reproduced from the virtual exhibition El legado de las matemáticas:
de Euclides a Newton, los genios a través de sus libros, Sevilla.

part we read the words Hypotenusa, Basis, and Perpendiculum. These refer to
a right triangle one of whose legs is horizontal, which he called the base, and
the other vertical, which he called the perpendicular. These names already
appear in the works of Rheticus, who used perpendiculum for what we now
call the sine and the tangent, basis for the cosine, and hypotenusa for the
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secant. Below we read canone sinuum and canone fæcundo. They mean sine
table and tangent table. He may have taken this name for the tangent from the
tabula fecunda of Regiomontanus.

But we have stated that he used all six trigonometric lengths. He referred
to the cosine, the cotangent, and the cosecant as the sine, the tangent, and the
secant of the rest (the “rest” meaning the complement, or 90◦ minus the origi-
nal acute angle). In Latin, “of the rest” is residuæ, and thus fæcundus residuæ
means cotangent and hypotenvsam residuæ means cosecant. The second book
of the Canon mathematicvs, individually titled Vniversalivm inspectionvm ad
canonem mathematicvm, liber singularis (General examination of the math-
ematical tables, single book), is devoted to the solution of triangles from a
number of trigonometric formulas, such as the following [p. 11]:

Differentia inter Fæcundum & Hypotenvsam Residuæ, est Fæcundus Dimidiæ
peripheriæ.

If we accept that the qualifier Residuæ applies to both Fæcundum & Hy-
potenvsam, and if peripheriæ, meaning arc, is denoted by θ , this statement is
equivalent to the trigonometric identity

cot θ − csc θ = tan 1
2 θ.

The next work of Viète’s containing a result that can be considered trigono-
metric is Ad logisticem speciosam, notæ priores.71 In the last section of this
paper, On the genesis of triangles, we find the following result [p. 72]:

Proposition XLVIII.

From two equal and equiangular right triangles, to construct a third right
triangle.

First the notation is established as follows [p. 72]:

Let there be two right triangles with these common sides: A the hypotenuse,
B the perpendicular, and D the base.

71 English translation by Witmer as “Preliminary notes on symbolic logistic,” in The
analytic art by François Viète, 1983, pp. 33–82. Page references are to and quotations from
this translation.
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Neither the statement of the proposition nor the notation clarifies what the task
really is, but from explanations previously provided by Viète and a look at the
figure that he provided, shown above, the third rectangle is to be constructed
such that its hypotenuse is A2 (Aq. in Viète’s notation, as an abbreviation of
A quadrato, or A square) and the acute angle on the right is twice that of the
original angle (anguli dupli).

The proof, based on a previous Proposition 46, is not sufficiently interesting
for inclusion here, but the result is, and it is contained in the already mentioned
figure: the new base and perpendicular are Dq == Bq and D in B2, meaning
D2−B2 and 2BD, respectively. That this is a trigonometric result follows from
the following interpretation in current notation and terminology. If the angle
formed by A and D in the original triangle is denoted by θ , then D = A cos θ

and B = A sin θ . Then, in the new triangle we have

A2 cos 2θ = D2 − B2 = A2(cos2 θ − sin2 θ)

and
A2 sin 2θ = 2BD = 2A2 sin θ cos θ.

This is the way in which Viète discovered the double angle formulas, previ-
ously found by Abu’l-Wafa.
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In the next three propositions he considered the cases of the triple, quadru-
ple, and quintuple angles, and from these particular cases, Viète noticed a
pattern for the expressions giving the base and the perpendicular (what we
would now call cos nθ and sin nθ for n = 3, 4, 5, if θ is as defined above). He
stated what the pattern was and realized that it could be continued “in infinite
progression” [p. 74].

Viète also made this discovery in another paper, Ad angvlarivm sectionvm
analyticen. Theoremata. jahokij�seqa, possibly written about 1590 but also
published posthumously, in 1615, by Alexander Anderson.72 Since Viète was
more explicit in this second paper, we shall present his general result in this
context. This work contains ten theorems, and we are interested in the first
three. The first states the following (an explanation in today’s terminology
follows) [p. 418]:

Theorem I.

If there are three right triangles the acute angle of the �rst of which differs
from the acute angle of the second by the acute angle of the third, the �rst
being the largest of these, the sides of the third will have these likenesses:

The hypotenuse will be analogous to the product of the hypotenuses of the
�rst and second.

The perpendicular will be analogous to the product of the perpendicular
of the �rst and the base of the second minus the product of the perpendicular
of the second and the base of the �rst.

The base [will be analogous] to the product of the bases of the �rst and
second plus the product of their perpendiculars.

To interpret this theorem refer to the next figure, of a half-circle resting
on a diameter AB, which was used for the demonstration (actually, we have
omitted two segments and three letters that are not useful for our purposes).
The first, second, and third triangles are ABE, ABD, and ABC, respectively,
and the corresponding acute angles mentioned in the hypothesis above are
� EAB, � DAB, and � CAB. The hypothesis itself—in spite of the possible
confusion created by the word “differs” (differat)—is that

� EAB = � DAB + � CAB.

72 English translation of Ad angvlarium by Witmer as “Universal theorems on the analysis
of angular sections with demonstrations by Alexander Anderson,” in The analytic art by
François Viète, pp. 418–450. Page references are to and quotations from this translation.
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It is clear from the first conclusion that the word “analogous” (simile) cannot
be taken to mean “equal” for these triangles except in the particular case in
which AB = 1. If we do this, the equations that were actually proved in the
demonstration—in narrative form, of course—become

CB = EB × AD −DB × AE
and

CA = AE × AD + EB ×DB

(otherwise, each of these lengths must be divided by AB). Then, if we interpret
that the sides AE, AD, and AC are the “bases” of the stated triangles and that
the sides EB, DB, and CB are the “perpendiculars,” these equations represent
the last two conclusions of the theorem, and the word “analogous” (simile)
can be taken to mean “equal.” If we now define α = � EAB and θ = � DAB

and if we note that � CAB = � EAB − � DAB = α − θ , we see that the first
equation is just Abu’l-Wafa’s formula for the sine of α − θ and the second is
the companion formula for the cosine of α− θ . So this is not new (although it
probably was toViète), and neither is the second theorem, containing equations
that can be turned into similar formulas for α + θ .

To present Viète’s third theorem, which is our goal, we shall consider first
a different particular case, that in which D = C, so that � EAB = 2 � CAB.
But at this point in the original paper there is a change in notation and the
letters D and B are used to represent the lengths AC and CB, respectively.
Any subsequent explanations using the letters D and B with two different
meanings would be confusing. Some sort of compromise is in order, and in
this we shall follow the lead of a master. When Newton was studying Viète’s
paper as a young man of 21 and writing his own understanding of it,73 he used
lowercase letters for all items previously written in uppercase. Thus, we now
write D = ad = ac and B = db = cb. Then the two equations of the first
theorem’s demonstration can be rewritten as

B = eb ×D − B × ae and D = ae ×D + eb × B

73 Whiteside, ed., The mathematical papers of Isaac Newton, I, 1967, p. 78.
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(for convenience, we continue taking ab = 1, which Newton did not). Then
solving them for ae and eb and using the fact that D2 + B2 = 1 gives

ae = D2 − B2 and eb = 2DB.

These are then the base and the perpendicular of the triangle abe, whose acute
angle � eab is double the acute angle � cab. If this angle is denoted by θ , then,
writing things in present-day notation, D = cos θ , B = sin θ , ae = cos 2θ ,
and eb = sin 2θ , so that the preceding equations can be rewritten as

cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

Next we start a similar procedure, but this time with � cab = θ , � dab = 2θ ,
and � eab = 3θ . Replacing e with d in the equations ae = D2 − B2 and
eb = 2DB, we obtain

ad = D2 − B2 and db = 2DB,

in which we still have D = ac and B = cb. Taking these values to the
equations of Theorem I, they become

B = eb × (D2 − B2)− 2DB × ae

and

D = ae × (D2 − B2)+ eb × 2DB.

Solving these equations for ae and eb gives

ae = D3 − 3DB2 and eb = 3D2B − B3,

which are the base and the perpendicular of the triangle abe, whose acute
angle � eab is triple the acute angle � cab = θ . In present-day trigonometric
notation, these equations are equivalent to

cos 3θ = cos3 θ − 3 cos θ sin2 θ

and

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

Viète did not include the preceding calculations in his paper, just the results,
including also the cases of the quadruple and quintuple angles. That is, he gave



72 Trigonometry Chapter 1

the base and the perpendicular of the triangle abe in the cases � eab = n � cab

for n = 2, 3, 4, and 5, as summed up in the table below.

Angle Base Perpendicular

Simple D B

Double D2 − B2 2DB

Triple D3 − 3DB2 3D2B − B3

Quadruple D4 − 6D2B2 + B4 4D3B − 4DB3

Quintuple D5 − 10D3B2 + 5DB4 5D4B − 10D2B3 + B5

It is reproduced in the next page from Viète’s original publication, on the right
of the central vertical double line. In this table, q. represents a square, cub. or
c. a cube, qq. a fourth power, qc. a fifth power, and in indicates multiplication.

The fact is that the computations involved in solving the equations of
Theorem I for ae and eb are sufficiently tedious even for these few values
of n (they were omitted above for n = 4, 5), so this procedure cannot be
comfortably continued indefinitely. But Viète noticed a pattern in what he
already had. The terms in each line of the table are those obtained on raising
the binomial D + B to the nth power:

(D + B)2 = D2 + 2DB + B2,

(D + B)3 = D3 + 3D2B + 3DB2 + B3,

(D + B)4 = D4 + 4D3B + 6D2B2 + 4DB3 + B4,

(D + B)5 = D5 + 5D4B + 10D3B2 + 10D2B3 + 5DB4 + B5,

but different terms are allotted to the base and the perpendicular in a certain
pattern, with alternating plus and minus signs.

Generalizing from these five cases, Viète proposed the following conjec-
ture: if the resulting terms are separated into two groups (the odd terms and
the even terms), and if the terms in each group are alternately positive and
negative, the base ae will be the first group of terms and the perpendicular eb

the second. For instance, for n = 4, taking first the odd and then the even
terms of the expansion of (D+B)4 and making them alternately positive and
negative, we have

ae = D4 − 6D2B2 + B4 and eb = 4D3B − 4DB3,
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Reproduced from Viète, Ad angvlarivm sectionvm analyticen, p. 14

There are some errors in this table, which were corrected in his Opera mathematica.

as given in the table. Since the expansion of (D + B)n was well known in
Viète’s time for any positive integer n, it provided a general way to evaluate
ae = cos nθ and eb = sin nθ from B = cos θ and D = sin θ . Here is an
extract of his very long statement [pp. 422–423]:

Theorem III.

If there are two right triangles the acute angle of the �rst of which is a fraction
of the acute angle of the second, the sides of the second are like this:

. . .
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[To �nd ] the analogues of the sides around the right angle correspond-
ing to the hypotenuse, construct an equally higher power of a binomial root
composed of the base and perpendicular of the �rst [triangle] and distribute
the individual homogeneous products successively into two parts, the �rst of
each being positive, the next negative, [and so on]. The base of the second
triangle becomes the analogue of the �rst of these parts, the perpendicular
the analogue of the second.

. . .

There is more of Viète’s trigonometry starting in Chapter XIX of his Va-
riorvm de rebvs mathematicis responsorvm, liber VIII (Answers to various
mathematical things, book VIII).74 There are quite a few plane trigonometric
identities in this treatise [pp. 401–403], including of course the law of sines in
the form Latera sunt similia sinibus, quibus ea subtendentur (The sides are like
the sines that they subtend) [p. 402]. By this time Viète had changed some of
his terminology, referring to the tangent as prosinus rather than fæcundus and
to the cotangent as prosinus complementi (while the hypotenusa had become
transsinuosa). For example, imagine a triangle with a horizontal side, called
the base, and refer to the other two sides as the legs. Using his new terminology,
Viète made a statement that can be translated as follows [p. 402]:75

As the sum of the legs is to their difference, so is the tangent of half the sum
of the base angles to the tangent of half their difference.

If the legs are denoted by a and b, if A and B are the angles opposite a and b

(thus, they are the base angles), and if A is assumed to be larger than B, this
statement can be rendered in current terminology as

a + b

a − b
= tan 1

2 (A+ B)

tan 1
2 (A− B)

,

and is known as the law of tangents.
Viète’s success in trigonometry was based on his superior command of

algebra, the crucial step being his consistent use of consonants for known
quantities and vowels for the unknowns. His literal expressions, which he
introduced in the Canon mathematicvs of 1579, were instrumental in freeing

74 Page references are to Schooten, Francisci Vietæ opera mathematica, 1646.
75 The original reads: Vt adgregatum crurum ad differentiam eorundem, ita prosinus

dimidiæ summæ angulorum ad basin ad prosinum dimidiæ differentiæ.



Section 1.6 From Viète to Pitiscus 75

algebra from the necessity of considering just specific examples, of which we
shall see plenty from earlier times in Chapter 3.

But the recently mentioned law of tangents was not discovered first by
Viète. It appeared ten years earlier in a book intended as a text: Thomæ Finkii
�enspurgensis geometriæ rotundi [circular geometry] libri XIIII by Thomas
Fincke (1561–1656), a physician and mathematician from the town of Flens-
burg, Denmark (now Germany). He stated it in a rather complicated verbal
form that with the help of a figure,76 if the notation is the same as for Viète’s
statement, and if A is assumed to be larger than B, can be rendered into modern
terminology as follows:

1
2 (a + b)

1
2 (a + b)− b

= tan 1
2 (A+ B)

tan
[ 1

2 (A+ B)− B
] .

Of course, this simplifies to Viète’s equation.
But Fincke’s fame does not rest on the law of tangents, which is not even

included in today’s trigonometry books, since it is easily derived from the law
of sines, but rather on his having coined the present names for the tangent and
the secant. He did use the tangent to describe the right-hand side above as sic
tangens semissis anguli crurum exteriores, ad tangemtem . . . (as the tangent
of the semi[sum] of the angles opposite the legs is to the tangent of . . . ), but
he had already introduced them by the statement: Recta sinibus connexa est
tangens peripheriæ, aut eam secans (A straight line associated with the sine is
the tangent of the arc, or also the secant), on page 73 of his book, expressing
also the hope that these terms be used in this connection. Viète was opposed to
them because they could be confused with the same terms used in geometry,
but history made Fincke the winner.

The major contributions to trigonometry up to the end of the sixteenth
century have already been presented, but there is the embarrassing matter of
terminology. It is clear that, with the exception of the word sinus used by
Gherardo de Cremona and Regiomontanus, neither the name for the subject
nor the familiar notation and terminology existed for most of this time. Viète
himself did not adopt the use of sinus until 1593, and it was not until the 1590s
that the words tangens and secans started gaining adherents.

The reader has had no choice but to have the subject described in this
chapter referred to as trigonometry, its modern name. This is because this

76 Both of them can be seen in Zeller, The development of trigonometry from Regiomon-
tanus to Pitiscus, p. 89.
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subject remained unnamed almost to the end of the sixteenth century. Finally,
Bartholomäus Pitiscus (1561–1613) provided a name for it with the publication
of his book Trigonometria: sive de solvtione triangvlorvm tractatus breuis et
perspicuus (Trigonometry: or a brief and clear treatise on the solution of

Title page and first page of Pitiscus, Trigonometria, 1595.

From Eidgenössische Technische Hochschule Bibliothek, Zürich.

triangles) in 1595. It was that brevity and clarity that made the Trigonometria
a very popular book, to the extent that it was reissued three times in Latin and
was soon translated into English.77

As for the usual abbreviations that are so familiar today, it was Fincke who
introduced “sin.”, “tan.”, and “sec.” in Book 14 of his Geometriæ rotundi, in
connection with spherical trigonometry. While these were adopted by Tycho
Brahe in a manuscript of 1591 and by Pitiscus in the second edition of his
Trigonometriæ of 1600, they were not universally accepted at that time. It

77 The word “trigonometry” first appeared in English in 1614 in the translation of the same
work as Trigonometry, or, the doctrine of triangles by Raph Handson.
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was not until 1633 that William Oughtred (1574–1660) used “sin” (without
the period) for sine, in An addition vnto the vse of the instrument called the
circles of proportion for the working of nauticall questions (an addition to The
circles of proportion).

The word cosine was a late arrival in comparison with tangent and secant.
After all, it was not needed, since it was very easy to avoid inventing cos A by
referring to sin(90◦ −A). In this manner, it was called the complement of the
sine or, as Regiomontanus and Viète later wrote, sinus complementi. But then,
from this description, the Englishman Edmund Gunter (1581–1626) coined
the term co.sinus in his Canon triangulorum of 1620, as well as the term
co.tangens. They did not gain general acceptance, but John Newton (1622–
1678), a teacher of mathematics and textbook author, did adopt them, while
changing co.sinus into cosinus, in his Trigonometria Britanica of 1658. This
term fared better, and Sir Jonas Moore (1627–1679) in his A mathematical
compendium of 1674, abbreviated it to “Cos.” and co.tangens to “Cot.”.

However, there was a reversal of usage during the eighteenth century,
when three-letter abbreviations ending with a dot became commonplace on
the Continent. In the main, the English reverted to two-letter abbreviations
without a dot. It was probably Euler’s use of “sin.”, “tan.”, “sec.”, and “cot.”
in Articles 242 to 249 of his Introductio in analysin in�nitorum of 1748 that
sealed the use of this notation. But Euler used “tang.” and “cosec.”, and on
the use of abbreviations for these functions there are variations to this day.
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2.1 NAPIER’S FIRST THREE TABLES

The mists of sixteenth-century Scotland frequently engulfed MerchistonTower,
near Edinburgh. But today Merchiston Tower is in downtown Edinburgh, right
at the heart of the Merchiston Campus of Napier University. In the sixteenth

Merchiston Tower in the eighteenth century
The lower building with slanted roof and the chimney are eighteenth-century additions.

From Knott, Napier tercentenary memorial volume, 1915, p. 54.
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century its seventh laird was Archibald Napier (Neper, Nepier, Nepair, Napeir,
Nappier, Napper?). John Napier (Nepero in Latin, as we shall see later) was
born in 1550 to Sir Archibald and his first wife, Janet Bothwell. At that time,
Mary Tudor (later Stuart) was queen of the Scots and Edward VI king of the
English. Three years earlier—to put things in perspective—Henry VIII had
died, Cervantes was born, and Ivan IV (the Terrible) crowned himself tsar of
Russia, the first with that title.

John Napier, an amateur Calvinist theologian who had studied religion
at Saint Andrews, predicted that the end of the world would occur in the
years between 1688 and 1700, in his book A plaine discouery of the whole
Reuelation of Saint Iohn of 1593. Not a huge success at prediction, it must be
pointed out. Napier’s reputation may not have reached the present time either
based on his theological studies or on his activities as a designer of weapons
of mass destruction, intended for use against the enemies of the true religion.
His lasting reputation is due to his third hobby: mathematical computation.
As a landowner, he never held a job, and his time and energy could be entirely

Possibly John Napier, computing
Portrait by Francesco Delarame, engraving by Robert Cooper (c. 1810).
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devoted to intellectual pursuits.
He developed an interest in reducing the labor required by the many tedious

computations that were necessary in astronomical work, involving operations
with the very large values of the trigonometric lengths given in the tables of
his times. His interest in these matters might have been rekindled in 1590 on
the occasion of a visit by Dr. John Craig, the king’s physician. James VI of
Scotland had set out to fulfill an important royal duty, to find a wife, and had
selected Princess Anne of Denmark. In 1590, on the consent of her brother
Christian IV, James set sail to Copenhagen to pick her up. Bad weather,
however, caused his ship to land first on the island of Hveen near Copenhagen,
which was the location of Uraniborg, the astronomical observatory of Tycho
Brahe.

On his return from Denmark, Dr. John Craig paid the aforementioned visit
to Napier to inform him of his findings while visiting Tycho Brahe. There were
new, ingenious ways to perform some of those tedious computations required
by astronomical calculations, and foremost was the use of prosthaphæresis.
This imposing name, coined from the Greek words for addition (pqorh�riy)
and subtraction (�ua�qeriy), refers to the use of the trigonometric identity

sin A · sin B = 1
2 [cos(A− B)− cos(A+ B)],

brought to Hveen by Paul Wittich (c. 1546–1586), an itinerant mathematician
who visited Uraniborg for four months in 1580.1 So, why should this be all
the rage in computation? Let us say that we want to evaluate the product of
two 10-digit numbers a and b. We know that tables of sine and cosine values
were available at that time, and it was not a difficult matter to find numbers A

and B, at least approximately, such that a = sin A and b = sin B (it may be
necessary to divide or multiply a and b by a power of 10, but this can easily
be managed). Then perform the simple operations A − B and A + B, find
their cosines in the table, subtract them as indicated in the previous formula,
and divide by 2, and that is the product ab (except for an easy adjustment by a
power of 10). The big problem of multiplying many-digit numbers was thus
reduced to the simpler one of addition and subtraction.

But what about quotients, exponentiations, and roots? Napier sought a
general method to deal with these computations, eventually found it, and

1 Its European origin goes back to Johannes Werner, who probably discovered it about
1510, but a similar formula for the product of cosines is usually credited to the Egyptian
Abu’l-Hasan Ali ibn Abd al-Rahman ibn Ahmad ibnYunus al-Sadafi al-Misri (c. 950–1009).
Wittich’s contribution was his realization that it can be used for multiplication of any two
numbers. See Thoren, The Lord of Uraniborg, 1990, p. 237.
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gave it to the world in his book Miri�ci logarithmorum canonis descriptio
(Description of the admirable table of logarithms) of 1614 (he had become
eighth laird of Merchiston in 1608). The English translation’s author’s preface
starts with a statement of his purpose [p. A2

5]:

Seeing there is nothing (right well beloued Students in the Mathematickes)
that is so troublesome to Mathematicall practise, nor that doth more molest
and hinder Calculators, then the Multiplications, Diuisions, square and cubi-
cal Extractions of great numbers, which besides the tedious expence of time,
are for the most part subject to many slippery errors. I began therefore to
consider in my minde, by what certaine and ready Art I might remoue those
hindrances.2

This is a small volume of 147 pages, 90 of which are devoted to mathe-
matical tables containing a list of numbers, mysteriously called logarithms,
whose use would facilitate all kinds of computations. Before the tables, some
geometrical theorems are given in the Descriptio about their properties, and
examples are provided of their usefulness. About the use of logarithms we
shall talk presently, but first we should say that no explanation was given
in this book about how they were computed. Instead, there is the following
disclaimer in an Admonition in Chapter 2 of The �rst Booke [pp. 9–10]:

Now by what kinde of account or method of calculating they may be had, it
should here bee shewed. But because we do here set down the whole Tables,
. . . , we make haste to the vse of them: that the vse and profit of the thing
being first conceiued, the rest may please the more, being set forth hereafter,
or else displease the lesse, being buried in silence.

In short, if his Tables were well received Napier would be happy to explain
how the logarithms were constructed; otherwise, let them go into oblivion. It
happened that the Descriptio was a huge editorial success; a book well received
and frequently used by scientists all over the world. Then an explanatory book
became necessary but, although it was probably written before the Descriptio,
it was published only posthumously (Napier died in 1617, one year after
Shakespeare and Cervantes) under the title Miri�ci logarithmorvm canonis
constrvctio, when his son Robert included it with the 1619 edition of the
Descriptio.3

2 From Wright’s translation as A description of the admirable table of logarithmes (“all
perused and approued by the Author”), 1616. Page references are to this edition.

3 Page references are given by article number so that any of the available sources (see
the bibliography) can be used to locate them. Quotations are from Macdonald’s translation.
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From Knott, Napier tercentenary memorial volume, Plate IX facing page 181.

The Constrvctio gives a glimpse into Napier’s mind and his possible
sources of inspiration. It starts as follows:

1. A logarithmic table [tabula arti�cialis] is a small table by the use of
which we can obtain a knowledge of all geometrical dimensions and motions
in space, by a very easy calculation.

. . . very easy, because by it all multiplications, divisions and the
more difficult extractions of roots are avoided . . .

It is picked out from numbers progressing in continuous proportion.
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2. Of continuous progressions, an arithmetical is one which proceeds by
equal intervals; a geometrical, one which advances by unequal and propor-
tionately increasing or decreasing intervals.

It will be easier to interpret what Napier may have had in mind using modern
notation. To us, a geometric progression is one of the form a, ar, ar2, ar3, . . . ,

where a and r are numbers, and it is clear that the exponents of r form an
arithmetic progression with step 1. It was common knowledge in Napier’s
time that the product or quotient of two terms of a geometric progression
contains a power of r whose exponent is the sum or difference of the original
exponents.4

To take a specific instance, Michael Stifel (1487–1567) had published a
list of powers of 2 and their exponents in his Arithmetica integra of 1544,
with the exponents in the top row (in superiore ordine) and the powers in the

bottom row (in inferiore ordine), and right below he taught his readers how to
use the table to multiply and divide (translated from Liber III, p. 237):

As the addition (in the top row) of 3 and 5 makes 8, thus (in the bottom
row) the multiplication of 8 and 32 makes 256. Also 3 is the exponent of
eight itself, & 5 is the exponent of the number 32. & 8 is the exponent of
the number 256. Similarly just in the top row, from of the subtraction of 3
from 7, remains 4, thus in the bottom row the division of 128 by 8, makes 16.

That is, to multiply 8 = 23 and 32 = 25 just add the exponents to obtain
28 = 256, and to divide 128 = 27 by 8 = 23 just subtract the exponents
to obtain 24 = 16. Thus multiplication and division are easily reduced to
additions and subtractions of exponents.

4 When writing rn I am using current notation, which did not exist in Napier’s time, for
it was introduced by Descartes in La Géométrie, 1637. On page 299 of the original edition
(as an appendix to the Discours de la méthode, La Géométrie starts on page 297) Descartes
stated: Et aa, ou a2, pour multiplier a par soy mesme; Et a3, pour le multiplier encore vne
fois par a, & ainsi a l’in�ni (And aa, or a2, to multiply a by itself; And a3, to multiply
it once more by a, and so on to infinity). Quoted from Smith and Latham, The geometry
of René Descartes, 1954, p. 7. This statement can also be seen, in the English translation
by Smith and Latham only, in Hawking, ed., God created the integers, The mathematical
breakthroughs that changed history, 2005, p. 293.
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But what about 183/11? There are no such table entries, not even approx-
imately. The trouble is that the values of 2n are very far apart. For values
of rn to be close to each other, r must be close to 1. Napier realized at this
point that the computations of powers of such an r may not be easy (think of,
say, r = 1.00193786), expressing himself as follows in the Constrvctio:

13. The construction of every arithmetical progression is easy; not so,
however, of every geometrical progression. . . . Those geometrical progres-
sions alone are carried on easily which arise by subtraction of an easy part
of the number from the whole number.

What Napier meant is that if r is cleverly chosen, multiplication by r can be
reduced to subtraction. In fact, he proposed—in his own words inArticle 14—
to choose r of the form r = 1 − 10−k. Then multiplication of a term of the
progression by r to obtain the next one is equivalent to a simple subtraction:

arn+1 = arn(1− 10−k) = arn − arn10−k,

and the last term on the right is easily obtained by a shifting of the decimal
point. With such an r , it is not necessary to evaluate its successive powers by
multiplication to obtain the terms of the progression.

On this basis Napier made his choice of a and r . First he chose a =
10,000,000 because at this point in his life he was mainly interested in com-
puting with sines, and the best tables at that time (c. 1590), those of Regiomon-
tanus and Rhaeticus, took the whole sine (sinus totus) to be 10,000,000. Then,
in order for the terms of his geometric progression to be sines (that is, parts
of the whole sine), he had to choose r < 1; and for ease of computation he
selected

r = 1− 0.0000001.

We have talked about shifting the decimal point as a simple operation.
Was such a procedure, or even the decimal point, available in Napier’s time?
The use of decimal fractions can be found in China, the Islamic world, and
Renaissance Europe. It eventually replaced the use of sexagesimal fractions,
then in vogue, after Simon Stevin (1548–1620), of Bruges, explained the
system clearly in his book in Flemish De thiende (“The tenth”) of 1585. Their
use had already been urged in the strongest terms by François Viète in his
Vniversalivm inspectionvm of 1579 [p. 17]:

Finally, sexagesimals & sixties are to be used sparingly or not at all in Mathe-
matics, but thousandths & thousands, hundredths & hundreds, tenths & tens,
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and their true families in Arithmetic, increasing & decreasing, are to be used
frequently or always.5

Not only was Napier aware of decimal fractions and points, but, through
his continued use of decimal notation in the Constrvctio, he may have been
instrumental in making this notation popular in the world of mathematics. He
explained it clearly at the beginning of the Constrvctio:

5. In numbers distinguished thus by a period in their midst, whatever is
written after the period is a fraction, the denominator of which is unity with
as many ciphers [zeros] after it as there are figures after the period.

Thus 10000000·04 is the same as 10000000 4
100 ; also 25·803 is the

same as 25 803
1000 ; also 9999998·0005021 is the same as 9999998 5021

10000000
and so of others.

With his use of decimal notation thus clearly settled and his choice of a

and r , Napier then continued his construction in Article 16 as follows:

Thus from the radius, with seven ciphers added for greater accuracy [that
is, with seven zeros after the decimal point], namely, 10000000.0000000,
subtract 1.0000000, you get 9999999.0000000; from this subtract .9999999,
you get 9999998.0000001; and proceed in this way until you create a hun-
dred proportionals, the last of which, if you have computed rightly, will be
9999900.0004950.

To sum up in present-day notation, Napier had applied the formula

107rn+1 = 107rn(1− 10−7) = 107rn − rn

5 But Viète did not use the decimal point. Instead, he wrote the decimal part of a number
as a fraction with an empty denominator, giving the semicircumference of a circle whose
sinus totus is 100,000 as 314,159, 265,36 [p. 15]. Viète used this notation through most of
the book, but later he modified it, using first a vertical bar to separate the decimal part,
which was also written in smaller or lighter type. For instance, he gave the sinus of 60◦ as
86,602|540,37 [p. 64]. Later, he replaced the vertical bar with another comma, writing now
the semicircumference of the given circle as 314,159,265,36 [p. 69].



86 Logarithms Chapter 2

with n = 0, . . . , 100 to perform the following computations:6

10000000× 0.99999990 = 10000000
10000000× 0.99999991 = 9999999
10000000× 0.99999992 = 9999998.0000001
10000000× 0.99999993 = 9999997.0000003

· · · · · · · · · · ·
10000000× 0.9999999100 = 9999900.0004950.

This completes his First table, which, writing in Latin, he called “canon.” Of
course, the entries on the right-hand sides of the fourth line and those below
are only approximations, as shown by the fact that we have only subtracted
0.9999998 from the third entry to obtain the fourth, but Napier had already
remarked in Article 6: When the tables are computed, the fractions following
the period may then be rejected without any sensible error.

This first table is just the start of Napier’s work, and these entries do not
even appear in the Descriptio. The use of this table in computation is limited in
at least two ways (we will mention a third later on). The first is that it contains
very few entries, and the second is that all the numbers on the right-hand sides
are very close to 10,000,000 due to the choice of r . But these problems are
easy to deal with by computing more entries and choosing a different value
of r .

Thus Napier started another table, but this time, to move a little further
from 10,000,000, he chose r to be the last number in the first canon (omitting
the decimals, for dealing with such large numbers one need not trouble with
them) over the first one,

r = 9999900

10000000
= 0.99999 = 1− 1

100000
,

6 At the risk of delving into tedium by harping on mathematical notation, the × sign
for multiplication did not exist in Napier’s time. It was introduced for the first time in an
anonymous appendix to the 1618 edition of Wright’s translation of the Descriptio entitled
“An appendix to the logarithmes,” pp. 1–16, probably written by William Oughtred. It is
reprinted in Glaisher, “The earliest use of the radix method for calculating logarithms, with
historical notices relating to the contributions of Oughtred and others to mathematical no-
tation,” 1915. It also appears in Oughtred, Clavis mathematicæ (The key to mathematics),
1631. However, the = sign that we use below did exist; it had been introduced by Robert
Recorde (1510–1558) in his algebra book The whetstone of witte of 1557. The original sym-
bol was longer than the present one, representing two parallel lines “bicause noe. 2. thynges,
can be moare equalle.” This book has unnumbered pages, but is divided into named parts.
This quotation is from the third page of “The rule of equation, commonly called Algebers
Rule.” This is page 222 of the text proper, not counting the front matter.



Section 2.1 Napier’s First Three Tables 87

and computed 51 entries by the same method as before, but now using the
equation 107rn+1 = 107rn − 100rn to obtain

10000000× 0.999990 = 10000000
10000000× 0.999991 = 9999900

· · · · · · · ·
10000000× 0.9999950 = 9995001.222927

(he erred: the last entry should be 9995001.224804). This is his second table.
Then he started again with the ratio

r = 9995000

10000000
= 0.9995 = 1− 1

2000

and computed 21 entries:

10000000× 0.99950 = 10000000

· · · · · · · ·
10000000× 0.999520 = 9900473.57808.

He placed the numbers so obtained in the first column of his third canon.
Finally, from each of these values he computed 68 additional entries using the
ratio

0.99 ≈ 9900473

10000000
,

and these he located horizontally from each first value. Thus, his third table had
69 columns, and the entries in each column are 0.99 of those in the preceding
column. The last entry of the last column is

9900473.57808× 0.9968 ≈ 4998609.4034,

“roughly half the original number” (again, the last two decimal digits are in
error).

From Napier’s point of view, interested as he was at the time in computa-
tions with sines and applications to astronomy, this was enough, since—other
than the magnification by 10,000,000—the right-hand sides above are the
sines of angles from 90◦ to 30◦. He would easily deal with smaller angles in
Articles 51 and 52 of the Constrvctio.
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First Column. Second Column. 69th Column.

10000000.0000 9900000.0000 5048858.8900
9995000.0000 9895050.0000 5046334.4605
9990002.5000 9890102.4750 5043811.2932
9985007.4987 9885157.4237 5041289.3879
9980014.9950 9880214.8451 · · · 5038768.7435

· · ·
· · ·
· · ·

9900473.5780 9801468.8423 4998609.4034

Now let us take stock of what Napier had and had not achieved to this
point. He had elaborated several tables and subtables based on the idea of
using the arithmetic progressions of what we now call exponents to perform
computations with the table numbers. These contain about 1600 entries, not
quite a sufficient number; and, what is more, the various tables are based on
different choices of r , so that the product or quotient of numbers from different
tables is impossible. Furthermore, there is a third problem in that his table
entries are laden with decimals, while the sines in the tables of his time were
all whole numbers (for simplicity, we shall refer to a sinus as a sine from now
on). Something else had to be done.

2.2 NAPIER’S LOGARITHMS

What Napier needed is the reverse of what he had. In his first three tables the
exponents are integers but the sines are laden with decimals. What he needed
was to start with sines that are whole numbers, available in published tables,
and then compute the corresponding exponents whatever they may be.

His next idea was based on a graphical representation, and once polished
he gave it to us as follows in the Constrvctio. First he chose a segment ST , of
length 10000000, to represent the Sinus Totus [Art. 24], and let 1, 2, 3, and 4
be points located in the segment T S as shown. Assume that T S, 1S, 2S, 3S,
4S, . . . are sines in continued proportion

1S

T S
= 2S

1S
= 3S

2S
= 4S

3S
= · · · ,
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such as those of the First table, in which case the stated ratio is 0.9999999,
1S = 9999999, and so on. Then he envisioned a point g that, starting at T

with a given initial velocity, proceeds toward S with decreasing velocity, in
such a manner that the moving point [Descriptio, p. 2]

in equall times, cutteth off parts continually of the same proportion to the
lines [segments] from which they are cut off.

This means, referring to the figure above and noting that subtracting each of
the preceding fractions from 1 and simplifying gives

T 1

T S
= 12

1S
= 23

2S
= 34

3S
= · · · ,

that g traverses each of the segments T 1, 12, 23, 34, . . . in equal times.
Napier referred to the described motion of g as geometrical (hence his use of
the letter g). Differential equations were not known in Napier’s time, and he
could not explain this motion as clearly as we might wish.

Assume next that 1S, 2S, 3S, 4S, . . . are the sines in the First table, and
imagine an infinite half-line bi (drawn in the next figure), on which we choose
coordinates 0, 1, 2, 3, 4, . . . as follows. First, the origin is at b, and then
let a new point a move on this line from b to the right with constant velocity,
that of g when at T . We choose the coordinates 1, 2, 3, 4, . . . (not shown in
Napier’s figure) to be the points on bi at which a arrives when g arrives at the
points with labels 1, 2, 3, 4, . . . . Thus, as g passes through the points marking
the sines of the First table in equal amounts of time, a reaches the exponents
1, 2, 3, 4, . . . that generate these sines.

Napier chose to introduce this second line in a general situation, consid-
ering the case of an arbitrary sine as follows [Art. 26]:

Let the line TS be radius, and dS a given sine in the same line: let g move
geometrically from T to d in certain determinate moments of time. Again,
let bi be another line, infinite towards i, along which, from b, let a move
arithmetically [constant velocity] with the same velocity as g had at first
when at T : and from the fixed point b in the direction of i let a advance in
just the same moments of time [as it took g to advance to d] to the point c.
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Then, in general, if the coordinates on the line bi are as we have just
described, if dS is an arbitrary sine, if g and a start with the same initial
velocity, and if a arrives at a point c in the same amount of time as g arrives
at d, the distance bc represents the exponent—not necessarily an integer—
corresponding to the sine dS.

In the Constrvctio [Article 26], Napier called the distance bc the “artificial
number” of the “natural number” dS, but he later changed his terminology.
Since the sines in Napier’s basic tables are in continued proportion or ratio, he
later coined the word logarithm, from the Greek words k�cxm (logon)= ratio
and �qihl�y (arithmos) = number, to refer to each of these exponents. In the
Descriptio, written a few years after the Constrvctio, he gave the definition as
follows [pp. 4–5]:

The Logarithme therefore of any sine is a number very neerely expressing the
line, which increased equally in the meane time, while the line of the whole
sine decreased proportionally into that sine, both motions being equal-timed,
and the beginning equally swift.

By the time the translation of the Constrvctio was prepared, the word logarithm
was already in common use, and that motivated the translator to use it there.
We shall do so from now on.

At this point, Napier faced the task of computing the logarithms of sines
given by whole numbers. The start is easy:

27. Whence nothing [zero] is the logarithm of radius.

Quite clearly: if g and a do not move they remain at T and b, respectively.
But the rest, the exact computation of logarithms of whole numbers, was far
from trivial with the tools available to Napier (the already mentioned lack
of differential equations was responsible). On the face of that impossibility,
he made a giant leap by realizing that it may be good enough to find lower
and upper bounds for such logarithms. With a certain amount of ingenuity he
found such bounds.
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28. Whence also it follows that the logarithm of any given sine is greater
than the difference between radius and the given sine, and less than the
difference between radius and the quantity which exceeds it in the ratio of
radius to the given sine. And these differences are therefore called the limits
of the logarithm.

This can be explained, and then his proof abbreviated, as follows. Let dS be
the given sine and let oS be the quantity that exceeds the radius in the ratio

oS

TS
= TS

dS
.

According to the geometric motion of g and the arithmetical motion of a, “oT ,
T d, and bc are distances traversed in equal times.” Then, since the velocities

of g and a are equal when g is at T and a at b, and since the velocity of g is
decreasing but that of a is constant,

oS − T S = oT > bc (= log dS) > T d = T S − dS,

which was to be proved.
It goes without saying that a present-day reader would like a restatement

of Napier’s result in current notation.7 That is not difficult if we denote the
given sine dS by x. Then oS = T S2/x, and we can write the inequalities of
Article 28 in the form

TS − x < log x <
TS2

x
− TS = TS(TS − x)

x
,

to which we have appended an equality from Article 29. It was this result that
enabled Napier to find the logarithms of many sines, starting with those in the

7 Napier stated all of his results in narrative form. The Constrvctio does not contain a
single modern-looking formula, nor is any notation used for “artificial number” or logarithm.
I have, however, adopted log as a natural choice, since there is no possibility of confusing
this with any current mathematical function at this point.
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First table (they are not all whole numbers, but their logarithms will be useful
nevertheless). Starting with x = 9999999 we have TS − x = 1.0000000 and

T S(T S − x)

x
= 10000000

9999999
= 1.00000010000001.8

Then, since these limits differ insensibly, Napier took [Art. 31]

log 9999999 = 1.00000005.

Now, if we denote once more the sines in the First table—that is, the
numbers on the right of the equal signs—by TS, 1S, 2S, 3S, . . . , we have
already seen that as g goes through them in equal times, their logarithms
follow the motion of a and we have [Art. 33]

log 2S = 2 log 1S, log 3S = 3 log 1S,

and so on. In particular, for the last sine in the First table we have

log 9999900.0004950 = 100 log 1S = 100 log 9999999,

and then, from the bounds on log 9999999,

100 < log 9999900.0004950 < 100.00001000.

We can pick log 9999900.0004950 = 100.000005.
This method works well because the sines in the First table are very close

to 10000000. But the theorem in Article 28 is not sufficiently accurate further
down the line. For instance, if x = 9000000, which is still a lot closer to
10000000 than to zero, it would give

10000000− 9000000 < log 9000000 <
10000000(10000000− 9000000)

9000000
.

That is, 1000000 < log 9000000 < 1111111, which is too wide a range to
select log 9000000 with any accuracy.

Thus Napier needed a better theorem, and actually found two. The first is:

36. The logarithms of similarly proportioned sines are equidifferent.

8 A reader who is concerned that the application of this formula requires long division is
invited to count the number of such divisions that will be necessary to elaborate Napier’s
complete table of logarithms. The total count will turn out to be extremely small.
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This means that if v, x, y, and z are sines such that

x

v
= z

y
,

then
log x − log v = log z− log y.

Napier stated [Art. 32]: “This necessarily follows from the definitions of a
logarithm and of the two motions.” This is because g traverses the distance
x − v in the same amount of time as z − y, and then a moves from log x to
log v in the same amount of time as from log z to log y.

His second theorem is a little more involved:

39. The difference of the logarithms of two sines lies between two limits;
the greater limit being to radius as the difference of the sines to the less sine,
and the less limit being to radius as the difference of the sines to the greater
sine.

After providing a geometric proof similar to that inArticle 28 but a little longer
and requiring Article 36, he rephrased this result in a verbal form [Art. 40]
that can be rewritten in today’s terminology as follows. If x and y are the two
sines and y is the larger, then

TS(y − x)

y
< log x − log y <

TS(y − x)

x
.

Then he immediately put this result to good use by showing how to compute
the logarithm of any number that is not a sine in the First table, but near one
of them [Art. 41].

For example, let x = 9999900. In the First table the nearest sine is y =
9999900.0004950 = 10000000 × 0.9999999100 and, as shown in Article 33
(page 92),

100 < log y < 100.0000100.

Then, with x and y as above, we have TS(y − x) = 4950, and the inequali-
ties in Article 40 (stated here after quoting Article 39) give the approximate
inequalities

0.00049500495002 < log x − log y < 0.00049500495005.

Napier did not state these inequalities, but only concluded that we can take
log x − log y = 0.0004950, and then

log x = log y + 0.0004950.
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Hence, from the bounds for log y,

100.0004950 < log x < 100.0005050.

But x = 9999900 appears in the Second table as 10000000 × 0.999991,
and the sines in this table are in continued proportion, just as TS, 1S, 2S,
3S, . . . are in Napier’s general formulation. As g goes through them in equal
times their logarithms are found from the motion of a in the same equal times.
They are double, triple, etc., the logarithm of x. Thus, from the limits found
above for log x, the limits for the logarithms of the sines of the Second table are
200.0009900 and 200.0010100 for the second, 300.0014850 and 300.0015150
for the third, and so on until the limits for the logarithm of the last sine (the
50th after the first) are found to be

5000.0247500 < log 9995001.222927 < 5000.0252500.

The actual logarithms of these sines can be chosen between the limits stated
here [Art. 42]. Thus, the logarithms of the sines of the Second table have been
quickly obtained by a cascading procedure identical to that giving those of the
sines in the First table.

Next, in [Art. 43], “to find the logarithms of . . . natural numbers . . . not
in the Second table, but near or between” the sines in this table, Napier used
a new method. As above, start by naming a given sine and the one nearest to
it in the Second table by x and y, with y > x. But now choose what Napier
called a fourth proportional, that is, a number z such that (in our terminology)

z

TS
= x

y
,

which is possible because the other three numbers are known. This places z

within the bounds of the First table because x ≈ y implies that z ≈ T S, and
then the logarithm of z can be computed by the previous method. Then, the
theorem in Article 36 and the fact that log TS = 0 give

log z = log x − log y.

In this equation, two of the logarithms are known and the third can then be
found. Or, more cautiously, the limits for two of these logarithms can be
determined, whence the limits for the third can be ascertained.

Napier applied this procedure to obtain the logarithm of x = 9995000,
which is near the last entry, y = 9995001.222927, of the Second table. We
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have already found that

5000.0247500 < log y < 5000.0252500,

and the fourth proportional is

z = TS
9995000

9995001.222927
= 9999998.7764614.

Then, replacing x with z and y with 9999999 in the limits of Articles 39 and
40, yields

T S(9999999− z)

9999999
= 0.2235386

and
T S(9999999− z)

z
= 0.2235386.

It follows that
log z− log 9999999 = 0.2235386.

Since we know that 1 < log 9999999 < 1.0000001, we obtain

1.2235386 < log z < 1.2235387.

The equation log x = log y+ log z and the limits found for the two logarithms
on the right-hand side give (these are Napier’s figures)

5001.2482886 < log x < 5001.2487888.

From these limits Napier concluded as follows:

Whence the number 5001.2485387, midway between them, is (by 31) taken
most suitably, and with no sensible error, for the actual logarithm of the given
sine 9995000.

Unfortunately, his result is a little off because the last entry of the Second
table is in error, as mentioned above. On the good side of things, this got
him into the Third table, whose second entry is precisely 9995000. Then the
logarithms of the first two entries in the first column of the Third table are
known, and the result in Article 36 allowed him to cascade down, computing
the logarithms of all the entries in this column [Art. 44]. Then the logarithms
of numbers that are near or between the entries of this column can be computed
by the method of the fourth proportional illustrated above. Using this method,
he computed the logarithm of 9900000, which is near the last entry of the first



96 Logarithms Chapter 2

column of the Third table [Art. 45]. But this is the first entry in the second
column. Now denote the first two sines in the first column by x and y and the
first two sines in the second column by u and v. We know that

u

x
= v

y
,

and from this that
v

u
= y

x
.

By Article 36, log v − log u = log y − log x, and, since the last difference
is known, log v can be computed. Cascading down, the logarithms of all the
sines in this second column can be found. Finally, once the logarithms of
the numbers in the first two columns were obtained, the fact that the entries
in each row of the Third table are in continued proportion means that their
logarithms are equidifferent. This allowed Napier to compute the logarithms
of all the entries in the Third table [Art. 46].

Having completed this second stage of his work, Napier now discarded
the First and Second tables, keeping only the Third table with the logarithms
of all its entries. This—the framework for the construction of the complete
logarithmic table—he called The Radical Table [Art. 47]. A portion of it is
shown on the next page. He considered it sufficient to leave just one decimal
digit in the logarithms (Arti�ciales), while he had used seven in all preliminary
computations to avoid error accumulation. It is not important to us that these
logarithms are slightly erroneous due to the faulty last entry in the Second
table (the last one of the 69th column should be 6934253.4), because we are
interested in Napier’s invention and how he constructed the table, but not in
using it.

Then Napier embarked on the third stage of his work: the elaboration of
a table of logarithms, which he called the principal table, for the sines of
angles from 45◦ to 90◦ in steps of 1 minute. These can be obtained from
any table of common sines. For each sine he found first the entry in the
Radical table that is closest to it. But now that seven-decimal-digit accuracy
was not needed, the method of the fourth proportional becomes irrelevant,
and even the use of the inequalities in Article 38. What counted at this stage
was speed, so that the principal table can actually be constructed. So, given
a sine and its closest entry in the Radical table, x and y with y > x, compute
TS(y − x), and then, instead of dividing this product first by y and then by x

to find the limits of log x − log y, just divide it by the easiest possible number
between x and y. Then the result is an approximation of the true value of
log x− log y, and the unknown logarithm can be approximately found from it.
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Reproduced from page 25 of the 1620 edition of the Constrvctio.

For example [Art. 50], if y = 7071068, the nearest sine in the Radical table is
x = 7070084.4434 , and then TS(y − x) = 9835566000. Dividing this result
by the easiest number between x and y, which Napier took to be 7071000,
“there comes out” 1390.9. Thus, taking log x from the Radical table, gives us

log y ≈ log x − 1390.9 = 3467125.4− 1390.9 = 3465734.5.

“Wherefore 3465735 is assigned for the required logarithm of the given sine
7071068.”

All it took from this point on was time and effort, and Napier was eventually
able to compute the logarithms of the sines of all angles between 45◦ and 90◦
in steps of 1 minute. All of this by dipping his quill in ink and partly by
candlelight, long division after long division.
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The final stage would be to deal with the angles between 0◦ and 45◦, since
we know that what really matters is what happens in the first quadrant. To do
this, Napier proposed two methods, both of which are based on the theorem
in Article 36.

First, if we use the equations after the quotation of this theorem with
x = 2v, y = 5000000, and z = TS, we have

log 2v − log v = log 10000000− log 5000000,

and taking the last logarithm from the previously computed part of the principal
table, but before rounding it as an integer, yields

log v = log 2v + log 5000000 = log 2v + 6931469.22.

Or as Napier put it [Art. 51],

Therefore, also, 6931469.22 will be the difference of all logarithms whose
sines are in the proportion of two to one. Consequently the double of it,
namely 13862938.44, will be the difference of all logarithms whose sines are
in the ratio of four to one; and the triple of it, namely 20794407.66, will be
the difference of all logarithms whose sines are in the ratio of eight to one.

Not content with this, he showed, in a similar manner, that

52. All sines in the proportion of ten to one have 23025842.34 for the
difference of their logarithms.

That this figure should have been 23025850.93 is neither here nor there. What
matters is that he could now find the logarithms of the sines of angles below
45◦. To quote his own statement [Art. 54]:

This is easily done by multiplying the given sine by 2, 4, 8, 10, 20, 40, 80,
100, 200, or any other proportional number you please . . . until you obtain
a number within the limits of the Radical table.

The second method is based on a trigonometric identity that he expressed
as follows:

55. As half radius is to the sine of half a given arc, so is the sine of the
complement of the half arc to the sine of the whole arc.

He provided an ingenious geometric proof of this result, which, if we keep in



Section 2.2 Napier’s Logarithms 99

mind that his sine is the product of the radius R and our sine, can be rewritten
as follows:

R/2

R sin 1
2 α
=

R sin
(

90◦ − 1
2 α
)

R sin α
.

Today we would write this result in the familiar form sin α = 2 sin 1
2 α cos 1

2 α.
Then he used the theorem in Article 36 again to obtain in verbal form a result
that can be rewritten as

log
R

2
− log

(
R sin 1

2 α
)
= log

[
R sin

(
90◦ − 1

2 α
)]
− log

(
R sin α

)
.

Then, if 22.5◦ < 1
2 α ≤ 45◦, the two logarithms on the right-hand side as well

as that of R/2 are in the principal table, and the remaining logarithm can be
determined. Napier concluded [Art. 58]:

From these, again, may be had in like manner the logarithms of arcs down
to 11 degrees 15 minutes. And from these the logarithms of arcs down to 5
degrees 38 minutes. And so on, successively, down to 1 minute.

And now there is nothing left but the actual construction of the logarithmic
table. Napier gave precise instructions about how to do it step by step, starting
with the following advice [Art. 59]:

Prepare forty-five pages, somewhat long in shape, so that besides margins at
the top and bottom, they may hold sixty lines of figures.

A page of the resulting table is reproduced on the next page. The publisher
did not seem to have pages that could accommodate 60 lines of figures, so he
put two columns of 30 lines on each page. The first column of this sample
page contains the angles from 28◦ 0′ to 28◦ 30′, the second column lists their
sines (probably taken from Erasmus Rheinhold’s table of sines, which Napier
mentioned in particular), and the third their logarithms, computed as explained
in the preceding articles. The rest of the angles corresponding to 28◦ would be
on the next page, not shown. On arrival at the page containing the sines and
logarithms for angles from 44◦ 30′ to 44◦ 60′ no new pages were used. Instead,
the table continued on the right of that last page with angles increasing from
45◦ 0′ at the bottom of the seventh column to 45◦ 30′ at the top. The angles
located on both ends of each horizontal line are complementary. Their sines
and logarithms are listed in the sixth and fifth columns, respectively. Then the
table continued in the same manner on the preceding page and then on those
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Reproduced from Wright’s translation of the Descriptio.

previously used, as shown on the sample page. The central column contains
the differences between the logarithm on its left and that on its right. These
are the logarithms of the sine of a given angle and of its cosine (which is equal
to the sine of the complement), and it is useful in evaluating the logarithms of
tangents when viewed as quotients of sine and cosine.

It must be said for the sake of fairness that the earliest discoverer of log-
arithms was Joost, or Jobst, Bürgi (1552–1632), a Swiss clockmaker, about
1588. He seems to have been inspired by Stifel’s table, but he chose 1.0001
as his starting number close to 1. Then, if N = 100000000× 1.0001L, Bürgi
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called 10L, not L, the “red number” (Rote Zahl) corresponding to the “black
number” (Schwarze Zahl) N . These are the colors in which these numbers
were printed in his 1620 tables Aritmetische vnd geometrische Progress Tab-
ulen. Thus, he lost publication priority to Napier.

Bürgi was in Prague as an assistant to the astronomer Johannes Kepler
(1571–1630). Kepler had become an assistant to Tycho Brahe in 1598, and in
1599 Brahe moved to Prague, attracted by an offer from the emperor Rudolf II
(who reigned over the Sacrum Romanum Imperium in the period 1576–1612)
and Kepler followed the year after. On Brahe’s death in 1601, Kepler became
the official astronomer and went on to discover the three laws of planetary
motion. His work, based on Brahe’s astronomical observations, was assisted
by the use of logarithms, and this helped spread their use in Europe. Bürgi
remained an unknown not just because of questions of priority, but because
most copies of his tables were lost during the Thirty Years’ War. The crucial
Battle of the White Mountain, in which 7,000 men lost their lives, was fought
just outside Prague, in November 1620.

2.3 BRIGGS’ LOGARITHMS

The first mathematics professorship in England, a chair in geometry, was
endowed by Sir Thomas Gresham in 1596 at Gresham College in London, and
Henry Briggs (1561–1631) was its first occupant. He was quite impressed by
the invention of logarithms, and on March 10, 1615, he wrote to his friend
James Usher:

Napper, Lord of Markinston, hath set my Head and Hands a Work, with
his new and admirable Logarithms. I hope to see him this Summer if it
please God, for I never saw Book that pleased me better, and made me more
wonder.9

The astrologer William Lilly (1602–1681) wrote his autobiography in 1667–
1668 in the form of a letter to a friend. It contains an interesting—but rather
fantastic—account of Briggs’ arrival at Merchiston, stating that on meeting
Napier, “almost one quarter of an hour was spent, each beholding the other
almost with admiration, before one word was spoke.”10

9 Quoted from Parr, The life of the Most Reverend Father in God, James Usher, 1686,
p. 36 of the collection of three hundred letters appended at the end of the volume.

10 Lilly finished his book with an account of the first encounter between Napier and Briggs,
pp. 235–238. This quotation is from p. 236. The entire account of Briggs’arrival is reprinted
(almost faithfully) in Bell, Men of mathematics, 1937, p. 526.
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Having overcome this mutual admiration hiatus, they set down to work.
For this there was ample time, since Briggs remained at Merchiston for about
a month. Both men had become aware of some serious shortcomings in the
logarithm scheme published by Napier. For instance, if x = yz, then

x

y
= z

1
,

and, according to Article 36, log x − log y = log z− log 1, or

log yz = log y + log z− log 1.

This is as true today as it was then, but today log 1 = 0. In Napier’s scheme, it
was the logarithm of the sinus totus that was zero. The logarithm of 1, a number
very close to S in the top segment TS on page 90, is an enormous number on
the bottom line. It was computed by Napier to be 161180896.38 (while this is
not entirely correct, because of the errors already mentioned, the true value in
his own system is very close to it). Thus, the Neperian logarithm of a product
is not the sum of the logarithms of the factors, and the Neperian logarithm of 1
must be remembered every time the logarithm of a product is to be computed.
Similarly for a quotient: if x = y/z, then log x − log 1 = log y − log z and

log
y

z
= log y − log z+ log 1.

The second difficulty in using Napier’s logarithms is in finding the logarithm
of ten times a number whose logarithm is known. If that number is called x,
the obvious equation

10x

x
= 107

106

leads to
log 10x − log x = log 107 − log 106,

and, since the logarithm of the sinus totus is zero, we obtain

log 10x = log x − log 106.

What makes the computation of log 10x in this manner inconvenient is the fact
that log 106 = 23025842.

Both Napier and Briggs had been separately thinking of ways to solve
these deficiencies, and each of them made some proposals to accomplish that.
These involved, in either case, the construction of a new set of logarithms
from scratch. But they differed about the key properties on which the new
logarithms should be based. Here is Briggs’proposal (see below for reference):
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When I explained their [the logarithms’] doctrine publicly in London to my
auditors at Gresham College; I noticed that it would be very convenient in the
future, if 0 were kept for the Logarithm of the whole Sine (as in the Canone
Miri�co) while the Logarithm of the tenth part of the same whole Sine . . .

were 1,00000,00000 . . .

In short, Briggs proposed and started the construction of a new set of logarithms
based on the values log 107 = 0 and log 106 = 1010. This certainly simplifies
the computation of log 10x from log x.

Briggs wrote to Napier with this proposal, and later he journeyed to Edin-
burgh, where they met for the first time. It turns out that Napier had also been
thinking about the change in the logarithms, and Briggs described Napier’s
counterproposal as follows:

But [he] recommended to therefore make this change, that 0 should be the
Logarithm of Unity, & 1,00000,00000 [that of] the whole Sine: which I could
not but acknowledge was most convenient by far.

Indeed, with log 1 = 0, it follows from the preceding discussion that the
logarithm of a product or quotient becomes the sum or difference of the loga-
rithms. So Briggs put aside the logarithms that he had already computed, and
in the following summer he again journeyed to Edinburgh and showed Napier
the new recomputed logarithms. They appeared first in a small pamphlet
of 16 pages, Logarithmorum chilias prima (The first thousand logarithms),
whose preface is dated 1617, the year of Napier’s death. In 1624 he published
Arithmetica logarithmica sive logarithmorvm chiliades triginta (Logarithmic
arithmetic or thirty thousands of logarithms), containing the new logarithms
of the integers 1 to 20,000 and 90,000 to 100,000 (the reason for the large gap
in the table will be given later). The quotations translated above are from the
Preface to the Reader in this book.

However, we should not create the impression that he elaborated the new
logarithms on the basis of Napier’s proposal of the summer of 1615: that
log 1 = 0 and log 107 = 1010. The first of these equations he fully accepted
[p. 2; 2–1],11 for it makes the logarithm of a product or quotient the sum or
difference of their logarithms [pp. 2,3; 2–2, 2–3].12 Then it is easy to see

11 References in square brackets are to the Arithmetica logarithmica. The first page
reference is to the original in Latin; the second, after the semicolon, to Bruce’s translation
(see the bibliography) by chapter page (he does not have global page numbering).

12 Briggs referred to these lemmas as axioms. These same properties, as well as the next
one about the logarithm of a rational power, had been more clearly stated by Napier in the
Appendix to the Constrvctio, pp. 50–51 of Macdonald’s translation.



104 Logarithms Chapter 2

by repeated application of the product rule that if n is a positive integer, then
log xn = n log x. Also, if m is a positive integer and y = xm/n, then xm = yn

and m log x = n log y, so that

log x
m
n = m

n
log x,

which means that for a rational exponent log xr = r log x. Thus, accepting
the equation log 1 = 0, we get these very convenient properties that Napier’s
own logarithms lack. However, Briggs rejected the second equation in favor
of a new proposal made in the Appendix to the Constrvctio. This Appendix
starts with the words [Macdonald translation, p. 48]:

Among the various improvements of Logarithms, the more important is that
which adopts a cypher as the Logarithm of unity, and 10,000,000,000 as the
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Logarithm of either one tenth of unity or ten times unity.

This is the suggestion that Briggs actually quasi-accepted, in the form
log 10 = 1014 [p. 3; 3–1]. The large number of zeros was intended to provide
sufficient accuracy without resorting to numbers containing the still too new
decimal point and digits. Soon thereafter, when decimal fractions were fully
accepted, the best choice was log 10 = 1. This results in the same logarithms
that Briggs computed but with a decimal point in their midst.

But how are all these logarithms computed? At the time that Briggs was
about to embark on the elaboration of his tables (Napier’s health was failing
in his 65th year, so it was up to Briggs to start a new series of computations)

John Napier in 1616
Engraving by Samuel Freeman from the portrait
in the possession of the University of Edinburgh.

From Smith, Portraits of Eminent Mathematicians, II.

there were two main methods to calculate logarithms, and both of them had
been published in the Appendix to Napier’s Constrvctio, as Briggs himself
stated [p. 5; 5–2]. We do not know whether these are due to Napier or are a
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product of his collaboration with Briggs at Merchiston. The first method was
based on the extraction of fifth roots and the second on the extraction of square
roots. Napier felt that “though this method [of the fifth root] is considerably
more difficult, it is correspondingly more exact” [Appendix, p. 50]. Briggs
chose the method of the square root, and started evaluating (by hand, of course,
which may take several hours) the square root of 10 [p 10; 6–2]:13

101/2 =
√

10 = 3.16227766016837933199889354,

so that log 3.16227766016837933199889354 = 0.5. Then, by successive
extraction of square roots, he evaluated 101/4, 101/8, and so on, down to

101/253 = 1.000000000000000255638298640064707
and [p. 10; 6–3]

101/254 = 1.000000000000000127819149320032345.

Briggs’ values can be seen on the next page, reproduced from Chapter 6,
page 10, of the second edition of Arithmetica logarithmica. Note that he did
not use the decimal point, but inserted commas to help with counting spaces.
On the logarithm side he omitted many zeros, which can be confusing. We
know he chose the logarithm of 10 to be what we express as 1014, but in this
table it appears as 1,000. Down at the bottom, these logarithms are given with
forty-one digits, making it difficult to know what an actual logarithm in this
range is. To avoid possible misinterpretations, we follow the modern practice
of using a decimal point for the numbers, but shall retain instead the first
of Briggs’ commas for their logarithms. If this comma is read as a decimal
point, these are today’s decimal logarithms, while the Briggsian logarithms
are 1014 times larger. It must be pointed out that Briggs made a mistake in
his computation of 101/4. His digits are wrong from the twentieth on. This
mistake trickles down through his entire table, but because the wrong digits
are so far on the right, the error becomes smaller as it propagates, and his
last two entries are almost in complete agreement with values obtained today
using a computer.

The end result of this stage of Briggs’ work is a table of logarithms, the
table shown on page 107, displaying in the second column the logarithms of

13 Briggs denoted the square root of 10 by l.10, meaning the latus (side) of 10; that is, the
side of a square of area 10. The square root of the square root of 10 would then be ll.10,
the eighth root l.(8)10, and so on. I have adopted our usual exponential notation, unknown
at that time, as most convenient for our purposes.
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the 54 weird numbers in the first column. But we would prefer to have a
table of the logarithms of more ordinary numbers such as 2, 5, 17, or—to
be systematic—what about the logarithms of the first 1000 positive integers?
This was, precisely, Briggs’ original goal, and the logarithms of such numbers
can also be obtained by the successive extraction of square roots.

To see how this is done we can examine the last four rows of the reproduced
table, those containing the entries labeled L to P . If we write P in the form
1+ p with p = 0.00000000000000012781914932003235, a short calculation
shows that N = 1+2p, M ≈ 1+4p, and L ≈ 1+8p. The approximation loses
accuracy as we progress through these numbers, in reverse alphabetical order,
so we shall not go any further. Now, log P is the last number in the right column
of the table, namely 0,0000000000000000555111512312578270211815, and
using the fact that p 
 1 it is easy to see that

log N = log(1+ 2p) ≈ log(1+ p)2 = 2 log P,

log M ≈ log(1+ 4p) ≈ log(1+ p)4 = 4 log P,

and
log L ≈ log(1+ 8p) ≈ log(1+ p)8 = 8 log P.

This may be generously interpreted to mean that if a number of the form 1+ r

is “near the numbers L M N & P ” then

log(1+ r) = log
(

1+ r

p
p

)
≈ r

p
log P.

Briggs did not state any formulas and simply asserted that “the Logarithm of
this number [a number in the stated range] is easily found, from the rule of
proportion” [p. 11; 6–4], which he called the “golden rule” (auream regulam).
He illustrated it with the number 1.0000000000000001, in which case

r

p
= 10000000000000000

12781914932003235
,

and asserted that its logarithm is 0,0000000000000000434294481903251804
(the last three digits are in error).

It may be more interesting to find log 2, although Briggs did not do it at
this point in his book for reasons that will become apparent only too soon. We
would start by computing 53 consecutive square roots of 2, ending with

21/253 = 1.00000000000000007695479593116620.
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This number is in the L to P range in the first column of Briggs’ table, and
then the golden rule (in which we have replaced ≈ with = for convenience)
and the stated value of log P give

log 21/253 = 07695479593116620

12781914932003235
log P

= 0,0000000000000000334210432288962932791931.

Therefore,

log 2 = (253)(0,0000000000000000334210432288962932791931)

= 0,30102999566398116973197.

This method has two drawbacks. First, the accuracy is somewhat limited (the
last six decimal digits are incorrect), although it may be considered acceptable
for a table of logarithms. But the method is too labor-intensive.14

In Chapter VII, Briggs started exploring how to shorten his methods, and
actually computed log 2 as follows. First he noticed that it is sufficient to
compute the logarithm of 1 024

1000 (since he did not use a decimal point, this is
how he wrote 1.024) by the square root method, because, since 1024 is the
tenth power of 2,

log 2 = log 1024

10
and

log 1024 = log 1000+ log 1 024
1000 = 3 log 10+ log 1 024

1000
.

Since 1.024 is closer to unity than 2, then 47 (as opposed to 53) square root ex-
tractions of 1.024 give the number 1.00000000000000016851605705394977,
which is in the proportionality region L to P , and “the Logarithm of that num-
ber is found by the golden rule 0,0000000000000000731855936906239336”
[p. 13; 7–3]. Thus,

log 1.024 = (247)(0,0000000000000000731855936906239336)

= 0,01029995663981195.

Adding 3 log 10 and dividing by 10 yields log 2 = 0,301029995663981195,
as given in the Arithmetica logarithmica [p. 14; 7–4].

14 Bruce has estimated that the computation of about fifty successive square roots is
a process that may require between 100 and 200 hours of hard work [p. 7–6]. This is
equivalent to several weeks if you have other commitments.
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Then Briggs used the equation 5/10 = 1/2 and the properties of logarithms
to obtain log 5− log 10 = log 1− log 2, from which [p. 14; 7–5]

log 5 = log 10− log 2

= 1,000000000000000000− 0,301029995663981195

= 0,698970004336018805.

Next, he gave a list of numbers whose logarithms can be easily computed from
those previously computed using the properties of logarithms:

From the multiplication of Two alone, by itself & into its factors, 4. 8. 16. 32.
64. &c. Likewise of Five by itself & into its factors, 25. 125. 625. 3125. &c,
Two in factors of Five, 250. 1250. 6250. &c. Two into Ten 20. 200. 2000.
40. 400. 80. 800. &c.

The next prime after two is three, “whose Logarithm is most conveniently
found from the Logarithm of Six,” since log 3 = log 6− log 2. But six is very
far from one, and it would take too many roots to bring it down to the L – P

proportionality region. Thus, Briggs decided to find the logarithm of

69

107
= 1.0077696

instead, which he did again by the golden rule, and then obtained

log 6 = 7+ log 1.0077696

9
.

It should be evident that the elaboration of a complete table of logarithms
by the square root method would be impossibly time-consuming. However,
the logarithm of 6 was the last one that Briggs computed in this manner, for
he made an additional discovery. He announced it at the start of Chapter 8 in
the following terms [p. 15; 8–1]:

We can find the Logarithm of any proposed number according to this method,
by continued Means, which supplies our need by finding the square root
laboriously enough, but the vexation of this enormous labor is considerably
lessened through differences.

To illustrate this idea he chose the example of finding consecutive square
roots of 1.0077696, the number involved in finding the logarithm of six. After
computing some roots, as shown in the table reproduced on page 112 [p. 16;



Section 2.3 Briggs’ Logarithms 111

8–2], he noticed that if each of them is written in the form 1 + A, then each
value of A is approximately twice the next value. For instance, the A part of
the root in line 43 of this table (0.00048384026884662985492535) is about
twice the A part in the top line of box 42 (0.00024189087882468563808727).
Then Briggs decided to investigate the difference between half of each A and
the next A, which he called B. The first of his B differences is seen in the
third line of box 42, and it is a very small number in comparison with the A

values under consideration. Using the next two A values, Briggs computed a
second B, which is in the third line of box 41, and observed that it is about
one quarter of the previous B. So he denoted by C the difference between this
quarter and the second B, and noticed that C is very small in comparison to
the B values.

The fact that Briggs—or any of his contemporaries for that matter—did
not use subscripts, added to the fact that his table contains only one column,
may make things difficult for the present-day reader, so another table has been
included on page 113 to show things in current notation. In its first column, n

indicates the order of the root; in the second these roots are given in the
form 1+ An, using the decimal point that Briggs omitted; and the remaining
columns give the differences of several orders as computed by Briggs (some of
his digits are incorrect, if we redo his work using a computer) and labeled by
the headers. Leading zeros have been omitted, as originally done by Briggs,
but without his vertical arrangement this may be confusing if not noted.

What is clear is that these successive differences become smaller and
smaller, to the point that

F9 = 1

32
E8 − E9 ≈ 0

with the 26-decimal-digit accuracy used in these computations. At this point
Briggs got the idea of working backward through the differences. If we take
F10 = 0, since F10 is even smaller than F9, then

0 = F10 = 1

32
E9 − E10

implies that E10 = 1
32 E9 = 0.0000,00000,00000,00000,00000,065. In the

same manner, D10 = 1
16 D9 − E10 = 0.0000,00000,00000,00000,02855,524,

and so on, as shown in the lower table on page 113, until we obtain A10 =
0000,07558,20443,63012,14290,760, and then 1 + A10 =

√
1+ A9. It is

evident that this method of evaluation of differences is much faster than directly
finding the square root. Briggs illustrated this procedure again to compute A11
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(his own table of backward differences, which was printed right below that
of forward differences, shows a similar vertical arrangement of the A to D

differences).15

15 Briggs gave a second method for computing the differences, which is based on evalu-
ating successive powers. Fix a value of n and note that if 1+An =

√
1+An−1, then

An−1 = (1+An)2 − 1, An−2 = (1+An−1)2 − 1 = (1+An)4 − 1,

and so on. Therefore,

Bn = 1

2
An−1 −An = 1

2

[
(1+An)2 − 1

]−An = 1

2
A2

n

and

Cn = 1

4
Bn−1 − Bn = 1

4

[1

2
An−2 −An−1

]− 1

2
A2

n

= 1

8

[
(1+An)4 − 1

]− 1

4

[
(1+An)2 − 1

]− 1

2
A2

n

= 1

2
A3

n +
1

8
A4

n.

Similarly, we would obtain

Dn = 7

8
A4

n +
7

8
A5

n +
7

16
A6

n +
1

8
A7

n +
1

64
A8

n,

En = 21

8
A5

n + 7A6
n +

175

16
A7

n +
1605

128
A8

n +
715

64
A9

n +
301

28
A10

n + · · · ,

and higher-order differences. We know that Briggs did not use subscripts, but in writing
these equations he did not even use the letter A. The stated equations were printed in the
Arithmetica logarithmica as

He went down to “Decima” but he never wrote beyond the tenth power of An.
This method is not faster than the previous one, but it is of some theoretical interest, if

only because of what Briggs could have done with it but didn’t. Using the equations in the
header of the lower table on page 113, we see that

(1+An)1/2 = 1+An+1 = 1+ 1
2 An − Bn+1 = 1+ 1

2 An −
(

1
4 Bn − Cn+1

)
= 1+ 1

2 An − 1
4 Bn +

(
1
8 Cn −Dn+1

)
= 1+ 1

2 An − 1
4 Bn + 1

8 Cn −
(

1
16 Dn −En+1

)
= 1+ 1

2 An − 1
4 Bn + 1

8 Cn − 1
16 Dn + 1

32 En − · · · .
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Giving a full account of the rest of Briggs’ methods to save time in the
computation of logarithms would be a very long story. In Chapter 9 he used the
methods already explained and some clever ways of writing certain numbers
as sums and products to evaluate the logarithms of all the primes from 2 to 97.
Then the rules of logarithms provide those of whole composite numbers, and
in Chapter 10 he dealt with fractions. In the next three chapters, Briggs
presented several methods of interpolation, starting with simple proportion in
Chapter 11. In Chapter 12 he considered a region of the table in which second-
order differences for successive numbers whose logarithms are known remain
nearly constant, and developed a method to find nine logarithms of equally
spaced numbers between every two of those successive numbers. This is
known today as Newton’s forward difference method because it was later
rediscovered by Newton (it is briefly described in Section 4.3).

With the aid of the method of finite differences of Chapter 8, Briggs com-
puted a first table of the new logarithms of the numbers 1 to 1000 in Loga-
rithmorum chilias prima. In 1620, between this publication and that of the
Arithmetica logarithmica, he had become the first Savilian professor of ge-
ometry at Oxford—a chair endowed by Sir Henry Savile. As we have already
mentioned, the 1624 edition of the Arithmetica logarithmica contains no log-
arithms of the numbers between 20,000 and 90,000. The reason for this is that
the methods of Chapter 12, used to compute the printed logarithms, are not ap-
plicable to this range. Briggs proposed a new method in a longer Chapter 13,
bearing the following very long title:

Bringing now to the right-hand side the values obtained for Bn to En by Briggs’ second
method, we obtain

(1+An)1/2 = 1+ 1
2 An − 1

8 A2
n + 1

8

(
1
2 A3

n + 1
8 A4

n

)
− 1

16

(
7
8 A4

n + 7
8 A5

n + 7
16 A6

n + 1
8 A7

n + 1
64 A8

n

)
+ 1

32

(
21
8 A5

n + 7A6
n + 175

16 A7
n + 1605

128 A8
n + · · ·

)
= 1+ 1

2 An − 1
8 A2

n + 1
16 A3

n − 5
128 A4

n + 7
256 A5

n − · · ·

= 1+ 1
2 An +

1
2

(
1
2 − 1

)
1·2 A2

n +
1
2

(
1
2 − 1

)(
1
2 − 2

)
1·2·3 A3

n + · · · .

Today we recognize this as the binomial series expansion of (1 + An)1/2. Although we
may like to think that this particular case of the binomial theorem was implicitly contained
in Briggs’ work (this was first pointed out by Whiteside in “Henry Briggs: the binomial
theorem anticipated,” 1961), the fact is that Briggs, who had bigger fish to fry at that point,
was not aware of it.
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It is desired to find the Logarithms of any Chiliad [that is, one thousand
consecutive numbers]. Or given any set of equidistant numbers, together with
the Logarithms of these four numbers, to find the Logarithms of intermediate
numbers for each interval [between the given numbers].

The second paragraph begins as follows:16

Take the first, second, third, fourth, &c. differences of the given Logarithms;
& divide the first by 5, the second by 25, the third by 125, &c; . . . the
quotients are called the first, second, third, &c. mean differences, . . .

He hoped to use it to compute the logarithms of the missing chiliads. He
expressed this wish, four years later, in a letter to John Pell of 25 October
1628:17

My desire was to have these Chiliades that are wanting betwixt 20 and 90
calculated and printed, and I had done them all almost by myselfe, and by
some frends whom my rules had sufficiently informed, and by agreement the
business was conveniently parted amongst us : but I am eased of that charge
and care by one Adrian Vlacque . . . But he hathe cut off 4 of my figures
throughout : and hathe left out my dedication, and to the reader, and two
chapters the 12 and 13, in the rest he hath not varied fromme at all.

What happened is that the large gap in Briggs’ Arithmetica logarithmica of
1624 was filled by the Dutch publisher Adriaan Vlacq (c. 1600–1667) (or
Ezechiel de Decker, a Dutch surveyor, assisted by Vlacq), but reducing the
accuracy of the logarithms from 14 to 10 digits and eliminating Chapters 12
and 13, the summit of Briggs’ work on finite and mean differences. Their
work was published, without any notice to Briggs, in a second edition of the
Arithmetica logarithmica.

Briggs turned his attention to a new project, the Trigonometria britannica.
After expressing his displeasure about the omission of Chapter 13 in the Dutch
edition of the Arithmetica logarithmica, he included his method of mean dif-
ferences in Chapter 12 of this project. Briggs would work on it for the rest
of his life but could not finish it. He left it in the hands of his friend Henry
Gellibrand (1597–1636), professor of astronomy at Gresham College, who
was able to complete it before his premature death and published it in 1633.

16 This and the preceding interpolation methods of Chapters 11 and 12 can be seen in
modern notation in Goldstine, A history of numerical analysis from the 16th through the
19th century, 1977, pp. 23–32. See also Bruce’s translation and his notes to these chapters.

17 From Bruce, “Biographical Notes on Henry Briggs,” p. 7.
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2.4 HYPERBOLIC LOGARITHMS

The loss of Bürgi’s tables was not the only effect of the Thirty Years’ War on
the development of logarithms. A Belgian Jesuit residing in Prague, Grégoire
de Saint-Vincent (1584–1667), had previously made a discovery while inves-

Grégoire de Saint-Vincent in 1653
Engraving by Richard Collin.

From Opus geometricum posthumum ad mesolabium, Ghent, 1688.

tigating the area under the hyperbola that would eventually greatly facilitate
the computation of logarithms. But its publication was delayed because Saint-
Vincent fled from Prague (the Swedes are coming!) in 1631, at the start of the
third phase of the Thirty Years’ War.

King Gustavus Adolphus II had landed with his troops on the coast of
Pomerania in 1630 and set about to the invasion of central Europe. He won a
brilliant victory at the Battle of Leipzig on September 17, 1631, but later died
at the battle of Lützen on November 16, 1632. The Swedes were victorious,
but Gustavus Adolphus was mortally wounded. In his haste to depart, Saint-
Vincent left all his papers behind, but they were returned to him about ten
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years later, and his research on the squaring of the circle and the hyperbola
was published in 1647 in a book of over 1250 pages: Opvs geometricvm
quadratvræ circvli et sectionvm coni.

The result on the hyperbola mentioned above is contained in several propo-
sitions in Book VI, in particular in Proposition 109, on page 586, which is
reproduced here. The text of the proposition can be translated as follows:

Let AB, AC be the asymptotes of the hyperbola DEF : break up AC, as AG,
AH , AI , AK , AC [so that they] are in continued proportion, place GD, EH ,
LI , MK , F C, equidistant from [meaning parallel to] AB.

I say that HD, IE, KL, CM are equal [area] patches.

In our terms, this means that if

AH

AG
= AI

AH
= AK

AI
= AC

AK
= · · · ,

then the hyperbolic areas DGHE, EHIL, LIKM, MKCF, . . . are equal.
In other words, if we denote the ratio AH/AG by r , the abscissas AG,

AH = AGr ,

AI = AHr = AGr2, AK = AIr = AGr3, AC = AKr = AGr4,

and so on, form a geometric progression, and then the hyperbolic areas DGHE,
DGIL, DGKM, DGCF, . . . form an arithmetic progression. If AG = 1, this
is the same type of relationship that Michael Stifel had pointed out between
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successive powers of 2 and the corresponding exponents (page 83). We can
conclude, in current terminology, that the relationship between the area under
the hyperbola from x = 1 to an arbitrary abscissa x > 1 and the value of x is
logarithmic. Saint-Vincent did not explicitly note this, but one of his students,
Alfonso Antonio de Sarasa (1618–1667), did in his solution to a problem
proposed by Marin Mersenne, a Minimite friar, in 1648. The next year, in
his Solvtio problematis a R P Marino Mersenno Minimo propositi, de Sarasa
stated the problem in this way:18

Given three arbitrary magnitudes, rational or irrational, and given the loga-
rithms of two, to find the logarithm of the third geometrically.

De Sarasa solved Mersenne’s problem in developing his Proposition 10,
which simply restates a particular case of the problem as follows:

Given three magnitudes, A, B, and C, which can be shown in one and the same
geometric progression, and given the logarithms of two of these magnitudes,
say those of A and B, to determine the logarithm of the third, C, geometrically.

That is, de Sarasa assumed that A, B, and C are terms of a geometric progres-
sion, because this is the only case he thought he could solve. They are shown
in the next figure as ordinates GH = A, IK = B, and LF = C of a hyper-

bola, and we can think of the remaining shown ordinates as equally spaced

18 This and the next two quotations are from Burn, “Alphonse Antonio de Sarasa and
logarithms,” 2001. This paper contains a detailed analysis of de Sarasa’s Solutio. I follow
a small part of Burn’s presentation here since I have been unable to see the original work.
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terms of the same geometric progression. If some ordinates of the hyperbola
y = 1/x (de Sarasa did not give an equation) are in geometric progression,
then the corresponding abscissas are also in geometric progression. Then, by
Saint-Vincent’s Proposition 109, the area KL is four times the area NL, and
the area GK is twice the area NL, at which point de Sarasa observed:

Whence these areas can fill the place of the given logarithms (Unde hae
super�cies supplere possunt locum logarithmorum datorum).

This observation allowed de Sarasa to solve the modified Mersenne prob-
lem, which can be done quickly in current notation. Assume that there are
real numbers a > 0 and 0 < r < 1, and positive integers m and n such that

GH = arm, XY = arm+n, IK = arm+2n, and LF = arm+6n.

Let S denote the area under the hyperbola between any two of these consecutive
ordinates. For example, NL = S. If we refer to the exponents m, m+ 2n, and
m + 6n as the logarithms of A = GH , B = IK , and C = LK , respectively,
then it is clear that the differences of these logarithms, 2n and 4n, are equal
to n times the area ratios GK/S and KL/S. We can write this as follows:

log B − log A = n
GK

S
and

log C − log B = n
KL

S
.

As an example, de Sarasa considered the case in which the numbers 6 to 18
shown in his figure are the logarithms of the ordinates GH to LF . Then n = 2,
and the shown ordinates represent every other term of their progression. We
have log A = 6, log B = 10, and KL/S = 4. It follows that log C − 10 = 8
and log C = 18.

What is important to us is de Sarasa’s realization that areas between the
hyperbola and the horizontal axis are like logarithms. While he kept things
general, we need to specify. Thus, consider the hyperbola y = 1/x and let
A(x) denote the area under it from 1 to some x ≥ 1. It can be called, at
least for now, the hyperbolic logarithm of x. If we denote this logarithm by
Hlog, we have A(x) = Hlog x. Since we have A(1) = Hlog 1 = 0, then the
hyperbolic logarithm shares this property with the Briggsian logarithm. Is it
the Briggsian logarithm? We shall have the answer shortly.

The Scottish mathematician James Gregory (1638–1675) elaborated on
the work of Saint-Vincent and de Sarasa and computed a number of hyper-
bolic logarithms in a 1667 short book published in Padua, where he resided
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at the time: Vera circvli et hyperbolæ qvadratvra, in propria sua proportio-
nis specie, inuenta, & demonstrata (page references are to this original). In
Proposition XXXII [p. 46], Gregory posed the problem of finding areas un-
der the hyperbola DIL with asymptotes AO and AK . To do that he chose

the lengths IK = 1000000000000, LM = 10000000000000 = 10IK , and
AM = 1000000000000 = IK (Gregory’s figure is clearly not to scale). Then
he employed a series of polygons with an increasing number of sides, inscribed
and circumscribed to the hyperbolic space LIKM [pp. 47–48], and was able
to approximate its area to be 23025850929940456240178700 [p. 49].

Gregory was, at the time, using very large numbers to avoid the still unfa-
miliar decimal point. If we choose a positive x-axis in the direction AO and
a positive y-axis in the direction AK (a choice that is as good as the opposite,
given that both are asymptotes of the hyperbola), we would write the equation
of Gregory’s hyperbola as y = 1025/x. If instead we divide all the y-values by
1012 and all the x-values by 1013 (which is equivalent to the choice IK = 1,
LM = 10, and AM = 0.1), then the equation of the hyperbola becomes the
familiar y = 1/x, and the area stated above must be divided by 1025.19 Thus,

19 Gregory himself made the choice IK = 1 and LM = 10 in Proposition XXXIII,
entitled: It is proposed to �nd the logarithm of any number whatever [p. 49].
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LIKM= 2.3025850929940456240178700. Notice that for y = 1/x we have
AK = AP = 1, and therefore each of the rectangles IQMK and LQPO has
area 0.9. Then the hyperbolic areas LIKM and ILOP are equal. The fig-
ure clearly shows that ILOP = Hlog AO, that is, that LIKM = Hlog LM .
Therefore, since LM = 10,

Hlog 10 = 2.3025850929940456240178700.

It is clear from a comparison of this value with the Briggsian logarithm of 10
that Hlog is a new logarithm. One, we must say in a spoiler mood, that would
go on to a position of prominence in the future.

In the few remaining pages of this book Gregory showed how to evaluate
additional hyperbolic logarithms [pp. 53–55] and considered the problem of
finding a number from its logarithm [p. 56].

At the end of his stay in Italy, in 1668, Gregory published a second book:
Geometriæ pars vniversalis (The universal part of geometry). In the preface,
on pages six to eight, he gave the first graph ever of the hyperbolic logarithm
(shown below, with the positive x-axis in the direction OL and OC = 1) and
stated for the first time in print the properties of this curve.

2.5 NEWTON’S BINOMIAL SERIES

Sometime between the publication of de Sarasa’s and Gregory’s works, a
young Isaac Newton (1642–1727) was fooling around with Pascal’s triangle
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Isaac Newton in 1689
Portrait by Sir Godfrey Kneller.

Farleigh House, Farleigh Wallop, Hampshire.

(which was known way before Pascal), giving the coefficients of the expansion
of (a + b)n for n = 0, 1, 2, . . . This triangle can be rewritten in a rectangular
arrangement, with all its entries moved to the left and zero-filled on the right,
as shown in the next table:

n = 0 1 0 0 0 0 0
n = 1 1 1 0 0 0 0
n = 2 1 2 1 0 0 0
n = 3 1 3 3 1 0 0
n = 4 1 4 6 4 1 0

This had already been done by Stifel in his Arithmetica integra, and Newton
wrote it also as a rectangular array, but turning the rows into columns, in some
manuscripts now preserved at the University Library, Cambridge, but never
published in his lifetime. The second of these manuscripts, which started as
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a redraft of the first and was possibly written in the autumn of 1665,20 is
reproduced on page 126, and we shall present first the result obtained on the
top third of the page: the computation of the area under the hyperbola

be = 1

1+ x

from the origin at d (it looks like ∂ in Newton’s hand) to an arbitrary point e

at some x > 0. Newton made the following observation about his vertical
arrangement of Pascal’s triangle:

The composition of wch table may be deduced from hence, viz: The sume of
any figure & ye figure above it is equall to ye figure following it.

Referring instead to the horizontal arrangement by Stifel, which is more famil-
iar to us, this can be translated as follows: any entry m, other than the first, in
a given row is the sum of two entries in the previous row: the one above m and
the one to its left. Viewing things in this way is important because it allowed
Newton to construct a new column to the left of the one for n = 0 with the
same property. If we insist on a horizontal arrangement, this gives us a new
row above the one for n = 0, as follows:

n = −1 1 −1 1 −1 1 −1
n = 0 1 0 0 0 0 0
n = 1 1 1 0 0 0 0
n = 2 1 2 1 0 0 0
n = 3 1 3 3 1 0 0
n = 4 1 4 6 4 1 0

Notice that now there is no zero-fill on the right in the new first row. It
continues indefinitely as an unending string of alternating 1’s and−1’s. If the
new row is valid, it gives the following expansion:

(a + b)−1 = a−1 − a−2b + a−3b2 − a−4b3 + a−5b4 − a−6b5 + · · ·
and, in the particular case a = 1 and b = x, we obtain the infinite series

(1+ x)−1 = 1− x + x2 − x3 + x4 − x5 + · · · .

20 It appears under the modern title “Further development of the binomial expansion” in
Whiteside, The mathematical papers of Isaac Newton, I, 1967, pp. 122–134. The table in
question is on p. 122.
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This is the first instance of what we call today Newton’s binomial series, and
it is known to be a valid expansion for small values of x. Newton did not write
this expansion explicitly in the manuscript under discussion, but it is clear that
this is what he had in mind when he computed the area under the hyperbola
be = (1+ x)−1.

To do that, he considered first the graphs of the polynomials

1, 1+ x, 1+ 2x + x2, 1+ 3x + 3xx + x3, &c.

(in the style of his time, Newton frequently wrote xx instead of x2), whose
coefficients are given by the other rows of the table above, and stated that the
areas under these graphs from 0 to x > 0 are given by

x, x + xx

2
, x + 2xx

2
+ x3

3
, x + 3xx

2
+ 3x3

3
+ x4

4
, &c.21

And then, making a leap of faith, he assumed that the same procedure would
apply to finding the area under (1 + x)−1, represented by the infinite series
whose coefficients are given by the entries in the top row of the extended table.
Newton concluded with the following statement:

By wch table [this is where he implicitly assumes the series expansion for
the hyperbola] it may appeare yt ye area of the hyperbola abed [meaning the
area under y = (1+ x)−1 from 0 to x > 0] is

x − xx

2
+ x3

3
− x4

4
+ x5

5
− x6

6
+ x7

7
− x8

8
+ x9

9
− x10

10
&c.

If we note that Newton’s hyperbola, y = 1/(1+x), is a translation of y = 1/x

to the left by one unit, then the area that Newton obtained is, in the notation
introduced in Section 2.4, the same as the area A(1+ x) under y = 1/x from
x = 1 to 1+ x > 1. Thus, we can rewrite Newton’s discovery as

H log (1+ x) = A(1+ x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− x6

6
+ &c.

Newton obtained this unpublished result

between the years 1664 & 1665. At wch time I found the method of Infinite

21 Newton had already figured out (although he was not the first to do so) that for n =
0, 1, 2, . . . the area under y = xn between 0 and x > 0 is xn+1/(n+ 1).
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From Whiteside, The mathematical papers of Isaac Newton, I.
Facing the title page.
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series. And in summer 1665 being forced from Cambridge by the Plague 22

I computed ye area of ye Hyperbola at Boothby in Lincolnshire to two & fifty
figures by the same method.23

Then, in a manuscript probably written in 1667,24 Newton considered
again the area under the hyperbola y = (1 + x)−1, represented in the next
figure with the origin at b and in which ab = bc = 1. After restating the area

under this hyperbola as an infinite series and making some calculations, he
made the following statement [p. 186]:

Now since the lines ad, ae, &c: beare such respect to ye superficies [areas]
bcf d, bche, &c: as numbers to their logarithmes; (viz: as ye lines ad, ae,
&c: increase in Geometricall Progression, so ye superficies bcf d, bche, &c:
increase in Arithmeticall Progression ): Therefore if any two or more of those
lines multiplying or dividing one another doe produce some other like ak,
their correspondent superficies, added or subtracted one to or from another
shall produce ye superficies bcgk correspondent to yt line ak.

To interpret this statement in today’s notation let x and y be the abscissas of the
points d and e, respectively, so that the lengths ad and ae are 1+ x and 1+ y.

22 This was the great plague that took nearly 70,000 lives in London alone, and Cambridge
University was closed.

23 Newton made this statement on July 4, 1699, in one of his notebooks containing old
annotations on John Wallis’ work. It is quoted from Whiteside, The mathematical papers
of Isaac Newton, I, p. 8.

24 Reproduced in Whiteside, The mathematical papers of Isaac Newton, II, 1968, pp. 184–
189. Page references are to this printing.
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In view of the previous interpretation of areas under this hyperbola as values of
H log, the areas bcf d and bche are H log (1+x) and H log (1+y). Then, if ak

is the product of the lengths ad and ae, the area bcgk is H log (1+ x)(1+ y),
and Newton’s statement is that

H log (1+ x)(1+ y) = H log (1+ x)+ H log (1+ y).

Similarly,

H log
1+ x

1+ y
= H log (1+ x)− H log (1+ y).

Thus, what Newton gave us in this manuscript is a statement (possibly the first
ever) of the properties of hyperbolic logarithms. He illustrated these rules by
the computation of a number of hyperbolic logarithms to 57 decimal figures
[pp. 187–188]. Finally, to show that he could trust these rules, he computed
the hyperbolic logarithm of 0.9984 in two ways: first by repeatedly using the
stated rules with

0.9984 = 2× 2× 2× 2× 2× 2× 2× 2× 3× 13

10000
,

and then writing it as 0.9984 = 1 + (−0.0016) and using the infinite series.
These two results (the first contains a minor error) agreed “in more yn 50
figures” [p. 189].

Newton, who did not publish the preceding work, may have been dis-
appointed in 1668, when other mathematicians published their work on the
quadrature of the hyperbola using infinite series. The first, in April, was
William, Viscount Brouncker (1620–1684), at the time the first president of
the Royal Society.25 The hyperbola y = 1/x is represented by the curve EC

in the next figure, in which AB is a segment of the x-axis from x = 1 to x = 2,
and the positive y-axis, not shown, is directed down. The area ABCdEA is
bounded between the sum of the areas of the parallelograms with diagonals
CA, dF , bn, f k, ap, cm, el, gh, &c. and the area of the parallelogram ABDE

minus the sum of the areas of the triangles (not explicitly drawn) EDC, EdC,
Ebd, df C, Eab, bcd, def , fgC, &c. In this manner Brouncker was able to
conclude that

ABCdEA = 1

1× 2
+ 1

1× 2
+ 1

3× 4
+ 1

5× 6
+ 1

7× 8
+ 1

9× 10
&c.

25 “The squaring of the hyperbola, by an infinite series of rational numbers, together with
its demonstration, by that eminent mathematician, the Right Honourable the Lord Viscount
Brouncker,” 1668.
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in in�nitum [p. 646]. This is what we now call the logarithm of two. Brouncker’s
method can be generalized, but it is sufficiently unappealing to discourage such
a course of action.

Next, Nicolaus Mercator (1620–1687)—born in the province of Holstein,
Denmark (now Germany), with the last name Kaufmann but working in
England—published the quadrature of the hyperbola in his 1668 book Log-
arithmotechnia: sive methodus construendi logarithmos nova, accurata, &
facilis. Like Newton, but independently, Mercator based his quadrature on
the infinite series for the quotient 1/(1+ a), which he gave on page 30 using
a as the variable. Using this series and referring to the next figure, in which

AI = 1 and IE is“divisa in partes æquales innumeras” of length a, he found
the start of a series for the sum of the altitudes ps + qt + ru + · · · , which
multiplied by a gives the area BIru [Proposition XVII, pp. 31–32]. Mercator
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did not explicitly give the logarithmic series, but it can be readily obtained
from this, and two men showed how to do it. The first was John Wallis,26 who
showed that, defining A = Ir , the hyperbolic space BIru is equal to the sum
of the series

A− 1
2 A2 + 1

3 A3 − 1
4 A6 + 1

4 A5, &c.

[p. 754].27 The second commentary on Mercator’s work was published later in
the same year by James Gregory in his Exercitationes geometricæ, 1668. He
devoted the second Exercitatio, entitled N. Mercatoris quadratura hyperbolæ
geometricè demonstrata, to prove Mercator’s quadrature of the hyperbola us-
ing term-by-term integration. Here, in Consectario 2 (what we call corollaries
he called consectaria, meaning conclusions or inferences) to Proposition IIII
[p. 11] he gave the logarithmic series as follows. Referring to x as the “primus
terminus” of his expansion, he stated it as: “primus terminus− 1

2 secundi [the
second power of x] + 1

3 tertii − 1
4 quartii + &c. in infinitum.”

The next advance in the computation of logarithms and in determining the
exact nature of this elusive “Hlog” was also based on work of Newton: his
generalization of the binomial series to fractional exponents. He stated his
discovery in a letter of June 13, 1676, to Henry Oldenburg, secretary of the
Royal Society, in response to an indirect request from Leibniz, who wished
to have information on Newton’s work on infinite series. It was in this letter
that Newton introduced the notation a

m
n for a number raised to a fractional

power. In a subsequent letter of October 24,28 he endeavored to explain how
he arrived at the statement of his theorem, for which he never provided a proof,
recalling his original work with the aid of some old manuscript.

He explained [p. 130] how at the beginning of his study of mathematics,
he “happened on the works of our most Celebrated Wallis,” in particular, on
his Arithmetica in�nitorvm of 1655.29 In this work Wallis had managed to

26 “Logarithmotechnia Nicolai Mercatoris,” 1668.
27 An abbreviated explanation in English was given by Edwards in The historical devel-

opment of the calculus, 1979, pp. 162–163.
28 Page references given below for this letter refer to the English translation in Turnbull,

The correspondence of Isaac Newton, II. See the bibliography for additional sources.
29 Wallis was the first to use of the symbol ∞ for infinity. It is in Proposition 1 of the

First Part of De sectionibus conicis of 1655, p. 4, where he stated esto enim∞ nota numeri
in�niti (let∞ be the symbol for an infinite number); reproduced in Opera mathematica, 1,
1695, p. 29. It also appeared in Proposition XCI of Arithmetica in�nitorvm of 1655, p. 70,
in which he stated . . . erit∞ vel in�nitus ( . . . will be∞ or infinity); reproduced in Opera
mathematica, 1, p. 405. Also in Stedall, The arithmetic of in�nitesimals. John Wallis 1656,
2004, p. 71.
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John Wallis in 1658
Savilian Professor of Geometry at Oxford.

Portrait by Ferdinand Bol.
Photograph by the author from the original

at the Musée de Louvre, Paris.

find the areas under the curves that we now express by the equations

y = (1− x2)0, y = (1− x2)1, y = (1− x2)2, y = (1− x2)3,

and so on, from the origin to x > 0, which are, in current notation,

x, x − 1
3 x3, x − 2

3 x3 + 1
5 x5, x − 3

3 x3 + 3
5 x5 − 1

7 x7,

and so on.30 To find the area under the circle y = (1−x2)
1
2 , he noticed that the

exponent is the mean between 0 and 1, and attempted to use his new method

30 In Wallis’ notation, these can be seen in Proposition CXVIII of the Arithmetica in�ni-
torvm. In Opera mathematica, 1, p. 415. In Stedall, The arithmetic of in�nitesimals. John
Wallis 1656, p. 88.
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of intercalation to find it between the first two areas stated above. This led
him to a most interesting formula for π ,31 but in the end he was unable to do
the intercalation.

Newton’s power of observation, when he happened on Wallis’ work, made
him notice that in all the expressions for the areas given above [p. 130],32

the first term was x, and that the second terms 0
3 x3. 1

3 x3. 2
3 x3. 3

3 x3 &c were
in Arithmetic progression, and hence

the first two terms of the areas to be intercalated, those under the graphs of
y = (1− x2)

1
2 , y = (1− x2)

3
2 , y = (1− x2)

5
2 , and so on (why stop with the

circle), “should be

x −
1
2 x3

3
. x −

3
2 x3

3
. x −

5
2 x3

3
. &c.”

From his study of the area under the hyperbola, Newton was already sure that
these areas would be given by infinite series, so he had to find the rest of the
terms. Wallis’ denominators from the third on are 5, 7, etc., which Newton
kept for his intercalated series. Next he looked at the numerators of Wallis’
coefficients, including that of the x term, and discovered that

these were the figures of the powers of the number 11, namely of these 110.
111. 112. 113. 114. that is first 1. then 1,1. third 1,2,1. fourth 1,3,3,1. fifth
1,4,6,4,1, &c.33

The first figure, to use Newton’s own word, in a power of 11 is always 1, and
what he sought was a method to determine all the remaining figures if given
the first two. Here is his own description of the discovery that he made:

31 Proposition CXCI of the Arithmetica in�nitorvm. In Opera mathematica, 1, p. 469.
32 I shall closely follow Newton’s own recollections in his October 24 letter but will

replace his expression 1− xx | with (1− xx). In his original work of 1665, already quoted
at the start of this section, Newton expressed himself less clearly than in his recollections.

33 Newton used the notation 11|0, rather than 110, and so on for the other powers. Note
that the word “figure” cannot be interpreted to mean “digit” starting with 115 = 161051;
but it means each of the coefficients of the powers of 10 in the expansion 115 = 1× 105 +
5× 104+ 10× 103+ 10× 102+ 5× 101+ 1× 100, that is, the Pascal triangle coefficients
in the expansion of (10+ 1)5.
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. . . and I found that on putting m for the second figure [in a power of 11],
the rest would be produced by continual multiplication of the terms of this
series.

m− 0

1
× m− 1

2
× m− 2

3
× m− 3

4
× m− 4

5
&c.

E. g. let m = 4, and 4 × m− 1

2
that is 6 will be the third term [fig-

ure], & 6 × m− 2

3
that is 4 the fourth, and 4 × m− 3

4
that is 1 the fifth,

& 1× m− 4

5
that is 0 the sixth, at which place in this case the series ends.

This procedure gives the figures of 114.
Assuming that the same rule applies to fractional exponents, which is a

stretch to say the least, Newton considered the case m = 1
2 , and stated [p. 131]:

. . . since for a circle the second term was
1
2 x3

3
, I put m = 1

2 , and the

terms appearing were

1

2
×

1
2 − 1

2
or − 1

8
, − 1

8
×

1
2 − 2

3
or + 1

16
, + 1

16
×

1
2 − 3

4
or − 5

128
,

& so to infinity. From which I learned that the desired area of a segment of
a circle is

x −
1
2 x3

3
−

1
8 x5

5
−

1
16 x7

7
−

5
128 x9

9
&c.

And by the same reasoning the areas of the remaining curves to be inserted
came forth . . .

The area under the hyperbola was relevant to our discussion of logarithms,
but would the remaining areas be equally relevant? Not really; it is Newton’s
next insight that matters:

But when I had learnt this I soon considered that the terms

(1− xx)
0
2 . (1− xx)

2
2 . (1− xx)

4
2 . (1− xx)

6
2 . &c

that is 1. 1 − xx. 1 − 2xx + x4. 1 − 3xx + 3x4 − x6 &c could be
interpolated in the same way as the areas generated by them [the ones found
by Wallis] : and that nothing else was required [for this purpose] but to omit
the denominators 1, 3, 5, 7, &c . . .

He forgot to say that we must also divide by x. This is what we now call term-
by-term differentiation. Newton applied this procedure to his newly found
areas to obtain the curves themselves.



134 Logarithms Chapter 2

A portion of the first page of Newton’s October 1676 letter to Oldenburg.
From Turnbull, The correspondence of Isaac Newton, II.

Thus as e.g. (1− xx)
1
2 would have the value

1− 1
2 x2 − 1

8 x4 − 1
16 x6 &c

and (1− xx)
3
2 would have the value

1− 3
2 xx + 3

8 x4 + 1
16 x6 &c
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and (1− xx)
1
3 would have the value

1− 1
3 xx − 1

9 x4 − 5
81 x6 &c.

But are these valid expansions or is it all pie in the sky? By way of demon-
stration, Newton just offered the following:

To prove these operations I multiplied

1− 1
2 x2 − 1

8 x4 − 1
16 x6 &c

into itself, & it became 1 − xx, the remaining terms vanishing into infinity
by the continuation of the series. On the other hand,

1− 1
3 xx − 1

9 x4 − 5
81 x6 &c

twice multiplied into itself also produced 1− xx.

From these examples Newton was able to infer and state (in the June 13, 1676,
letter) a general theorem. If m/n “is integral, or (so to speak) fractional” (what
we now call a rational number), Newton’s theorem stated that 34

(1+ x)m/n = 1+ m

n
x +

m

n

(
m

n
− 1

)
1 · 2 x2 +

m

n

(
m

n
− 1

)(
m

n
− 2

)
1 · 2 · 3 x3 + &c.

This is now called the binomial theorem. Newton used it, as well as other series
expansions, in the development of what has become known as the calculus.
The matter of which logarithm is the one previously referred to as “Hlog” will
be taken up in the next section.

34 It is stated here in modern notation. Newton wrote his equation as

P + P Q |
m
n = P

m
n + m

n
AQ+ m− n

2n
BQ+ m− 2n

3n
CQ+ m− 3n

4n
DQ+ &c,

in which “I employ . . . A for the first term, P
m
n ; B for the second, m

n
AQ, & so on.” Putting

P = 1, Q = x, and rearranging yields the stated result.
Newton did not state the complete theorem until he wrote this letter of 1676, but he had

already given the form of the general coefficient (which amounts to the same thing) at the
end of the 1665 manuscript already quoted at the beginning of this section. Using x/y
instead of m/n, he wrote this coefficient as

1× x × x − y × x − 2y × x − 3y × x − 4y × x − 5y × x − 6y

1× y × 2y × 3y × 4y × 5y × 6y × 7y
&c.
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2.6 THE LOGARITHM ACCORDING TO EULER

The identification of the logarithm temporarily labeled “Hlog” in the preced-
ing discussion was made by Leonhard Euler (1707–1783) of Basel. The son

Leonhard Euler in 1756
Portrait by Jakob Emanuel Handmann.

of a preacher and destined to enter the ministry, his ability in mathematics
soon convinced his father to let him switch careers, and he went on to be-
came the most prolific mathematics writer of all time. In 1727, the year of
Newton’s death, he was invited to join the newly founded Academy of Saint
Petersburg, in Russia, and soon began producing first-rate research. It was the
next year, in a manuscript on the firing of cannon, that he introduced a soon to
become famous number as follows: “Write for the number whose logarithm is
unity, e,” but he did not give a reason for this choice of letter.35 By that time, he

35 In “Meditatio in Experimenta explosione tormentorum nuper instituta,” published
posthumously in 1862, p. 800. The earliest printed appearance of the number e is in Euler’s
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had already defined the exponential and logarithmic functions, but the math-
ematical community at large had to wait until Euler was ready to publish. In
1741 he accepted a position at the Academy of Berlin, where he would remain
for twenty-five years, and in 1744 he wrote his enormously influential treatise
Introductio in analysin in�nitorum. Published in Lausanne in 1748, it became

the standard work on analysis during the second half of the eighteenth century.
In the first volume of this treatise Euler considered the definition of az (at

this point he chose z as the symbol for a real variable) a trivial matter “easy

Mechanica sive motvs scientia analytice exposita, I, 1736 = Opera omnia, Ser. 2, 1, p. 68.
For English translations of the relevant passages of these works, see Smith, A source book
in mathematics, pp. 95–96.
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to understand from the nature of Exponents” [Art. 101].36 It is not; while the
meaning of a

m
n was clear after Newton, what does a

√
7 mean? Euler simply

said “a certain value comprised between the limits a2 and a3” [Art. 97]. In
short, he was not too clear about it but seemed to have in mind the existence
of what we now call a continuous extension y = az of y = a

m
n . Accepting

this as a fact, then he defined its inverse function [Art. 102]:

In the same manner as, given the number a, it is possible to find the value of y

from any value of z, conversely, given any affirmative [positive] value of y,
there is a convenient value of z, such that az = y; this value of z, regarded
as a Function of y, is usually called Logarithm of y.

There is, of course, no such thing as the logarithm of y. What there is, instead,
is one logarithm of y for each choice of the number a, “which, for this reason
is called base of the logarithms” [Art. 102]. Then, in our present notation,
az = y if and only if loga y = z. However, logarithms as exponents were
not new when the Introductio was published. They had been introduced by
Euler in the unpublished manuscript cited at the beginning of this section, but
the first systematic exposition of logarithms as exponents had already been
printed—without knowledge of Euler’s work—in the introduction to William
Gardiner’s Tables of Logarithms of 1742, “collected wholly from the papers”
of William Jones.

The success of the Introductio rests on the amount and importance of
the mathematical discoveries that Euler included in it, making it one of the
most significant mathematics books of all times. Its readers might have been
bewildered about the fact that there is one logarithm for each base a [Art. 107],
but Euler easily showed that all logarithms of y are multiples of each other
[Art. 108]. Indeed, if z = loga y then y = az and

logb y = logb az = z logb a = loga y logb a, 37

so that any two logarithmic functions, as we would say today, are constant
multiples of each other. Thus it appears that we need retain only one logarithm,
and the question is: what should be its base?

36 References to the Introductio are by Article number rather than by page. In this way
the reader can refer to any of the available editions cited in the bibliography.

37 This is a modernized version. What Euler actually did is to show that if M and N are
two numbers whose logarithms in base a are m and n, and whose logarithms in base b are
μ and ν, then m/n = μ/ν. Taking M = a, so that m = 1, gives ν = nμ, and with N = y
this is the equation stated above.
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The answer came from Euler’s work in expanding both the exponential
function y = az, a > 1, and the corresponding logarithm in infinite series. To
do that, “let ω be an infinitely small number” [Art. 114]. Then, a0 = 1 means
that aω = 1 + ψ , where ψ is also infinitely small. Write ψ = kω, where, as
Euler remarked, “k is a finite number that depends on the value of the base a,”
and then for any number i [Art. 115],

aiω = (1+ kω)i = 1+ i

1
kω + i(i − 1)

1 · 2 k2ω2 + i(i − 1)(i − 2)

1 · 2 · 3 k3ω3 + &c.

Euler did not give a reason, but we know this to be true by Newton’s binomial
theorem if i is an integer or a quotient of integers. Now, for any number z let
i = z/ω. For Euler i was “infinitely large,” but we may prefer to think of ω

as a very small number chosen so that i is a very large quotient of integers.
Putting ω = z/i, the previous equations become

az =
(

1+ kz

i

)i

= 1+ 1

1
kz+ 1(i − 1)

1 · 2i
k2z2 + 1(i − 1)(i − 2)

1 · 2i · 3i
k3z3 +&c.

Insisting on the fact that i is infinitely large, Euler stated that [Art. 116]

i − 1

i
= 1,

i − 2

i
= 1,

and so on, which is approximately true if i is very large. Therefore,

az = 1+ kz

1
+ k2z2

1 · 2 +
k3z3

1 · 2 · 3 +
k4z4

1 · 2 · 3 · 4 + &c.

For z = 1, he obtained the following relationship between a and k:

a = 1+ k

1
+ k2

1 · 2 +
k3

1 · 2 · 3 +
k4

1 · 2 · 3 · 4 + &c.,

and then we can ask the question: for which particular base a is k = 1? Clearly,
this is true for [Art. 122]

a = 1+ 1

1
+ 1

1 · 2 +
1

1 · 2 · 3 +
1

1 · 2 · 3 · 4 + &c.

Euler found the sum of this series to be 2.71828182845904523536028 &c.
Later [Art. 123] he denoted this number by e—the first letter of the word
exponential—and gave the series

ez = 1+ z

1
+ z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + &c.
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Having expanded the general exponential function in an infinite series,
Euler turned to the logarithmic function, which he denoted by l regardless of
its base. To obtain its series expansion, he noted [Art. 118] that the equation
aω = 1+ kω yields ω = l(1+ kω) and, consequently,

iω = il(1+ kω) = l(1+ kω)i .

“It is clear, that the larger the number chosen for i, the more the Power
(1 + kω)i will exceed unity;” that is, for any x > 0 (Euler switched from z

to x at this point) we can choose i so that x = (1+ kω)i − 1. Thus,

1+ x = (1+ kω)i

and
l(1+ x) = l(1+ kω)i = iω,

and i must be infinitely large because ω is infinitely small. From the definition
of x it follows that [Art. 119]

iω = i

k
(1+ x)1/i − i

k
,

and then we can use Newton’s binomial theorem to obtain

(1+ x)1/i = 1+ 1

i
x +

1

i

(
1

i
− 1

)
1 · 2 x2 +

1

i

(
1

i
− 1

)(
1

i
− 2

)
1 · 2 · 3 x3

+
1

i

(
1

i
− 1

)(
1

i
− 2

)(
1

i
− 3

)
1 · 2 · 3 · 4 x4 + &c.

= 1+ 1

i
x − 1(i − 1)

i · 2i
x2 + 1(i − 1)(2i − 1)

i · 2i · 3i
x3

− 1(i − 1)(2i − 1)(3i − 1)

i · 2i · 3i · 4i
x4 + &c.

(Euler did not write the first of these two series, but gave only the simplified
form.) Since i is infinitely large,

i − 1

2i
= 1

2
; 2i − 1

3i
= 2

3
; 3i − 1

4i
= 3

4
, &c.;
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from which

i(1+ x)1/i = i + x

1
− xx

2
+ x3

3
− x4

4
+ &c.

According to the last equation in Article 19, iω is obtained by dividing this
result by k and subtracting i/k. Then the equation l(1+ x) = iω, established
at the end of Article 18, shows that

l(1+ x) = 1

k

(
x

1
− xx

2
+ x3

3
− x4

4
+ &c.

)
.

In the particular case in which a = e and k = 1 this becomes [Art. 123]

l(1+ x) = x

1
− xx

2
+ x3

3
− x4

4
+ &c.

This is the same series obtained by Newton and Gregory, which shows that
the elusive “Hlog” is actually l with base e. Euler called the values of this l

“Logarithmi naturales seu hyperbolici ” (natural or hyperbolic logarithms)
[Art. 122]. From now on we shall reserve the letter l for natural logarithms.

Since every logarithm is a constant times l, the values of any logarithm can
be computed from this series. So, what about log10 2 and log10 5? Is the use
of this series faster than evaluating 54 square roots of 10 and then 52 square
roots of 2, as we did when discussing the work of Briggs? In Chapter VI
of the Introductio [Art. 106], Euler had used a variant of the square root
method to find log10 5, obtaining the value 0.6989700, but then, at the very
end of Article 106, he mentioned the discovery of “extraordinary inventions,
from which logarithms can be computed more expeditiously.” This refers to
the use of the series derived above, which he would obtain in Chapter VII.
However, it is not possible just to plug in, for instance, x = 4, because then,
as Euler observed, the terms of this series “continually get larger” [Art. 120].
Mathematicians knew at that time—or they felt in their bones, in the absence
of a theory of convergence—that if an infinite series is to have a finite sum,
then its terms must decrease to zero, so that x cannot exceed 1 in this case.
Euler found his way around this obstacle as follows. Replacing x with −x

in the equation giving l(1 + x) and subtracting the result from that equation
[Art. 121] yields
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l(1+ x)− l(1− x) = x

1
− x2

2
+ x3

3
− x4

4
+ &c.

−
(
− x

1
− x2

2
− x3

3
− x4

4
− &c.

)

= 2
(

x

1
+ x3

3
+ x5

5
+ &c.

)
Using the properties of logarithms, this is equivalent to [Art. 123]

l
1+ x

1− x
= 2x

1
+ 2x3

3
+ 2x5

5
+ 2x7

7
+ 2x9

9
+ &c., 38

“which Series converges strongly, if x is replaced by an extremely small frac-
tion.” This device allows us to compute the logarithms of numbers larger
than 1 from values of x smaller than one. Thus, for x = 1/5, one has
(1+ x)/(1− x) = 3/2, and Euler obtained (except for the numbers in paren-
theses)

l
3

2
= 2

1 · 5 +
2

3 · 53
+ 2

5 · 55
+ 2

7 · 57
+ 2

9 · 59
+ &c.

(= 0.40546510810816438197801310).

Next, substituting first x = 1/7 and then x = 1/9,

l
4

3
= 2

1 · 7 +
2

3 · 73
+ 2

5 · 75
+ 2

7 · 77
+ 2

9 · 79
+ &c.

(= 0.28768207245178092743921901),
and

l
5

4
= 2

1 · 9 +
2

3 · 93
+ 2

5 · 95
+ 2

7 · 97
+ 2

9 · 99
+ &c.

(= 0.22314355131420975576629509).

38 This formula was found first by James Gregory in his Exercitationes geometricæ,
as Consectario 4 to Proposition IIII [p. 12], in which Gregory denoted by H and 4 the
abscissas that we denote by 1 − x and 1 + x and by S and 3 the corresponding ordinates.
Once again referring to x (which he viewed as the area of a certain parallelogram) as “primus
terminus,” he stated his result as follows: “spatium Hyperbolicum SH 43= duplo primi ter-
mini + 2

3 tertii + 2
5 quintii + 2

7 septimi + 2
9 nonii + &c. in infinitum.” Variants of the

same formula were also used in logarithmic computation by Newton in his work on fluxions
and infinite series of 1670–1671 (see Whiteside, The mathematical papers of Isaac Newton,
III, 1969, p. 227) and by Edmund Halley in “A most compendious and facile Method for
Constructing the Logarithms,” 1695, pub. 1697.
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Then, by the properties of logarithms,

l 2 = l
3

2
+ l

4

3
= 0.6931471805599453094172321,

l 5 = l
5

4
+ 2 l 2 = l

5

4
+ 2

(
l
3

2
+ l

4

3

)
= 1.6094379124341003746007593,

and
l 10 = l 5+ l 2 = 2.3025850929940456840179914.

This value, which Euler gave as stated here, may be compared to that obtained
by Gregory at the end of Section 2.4. Finally [Art. 124], Euler returned to the
computation of common logarithms and showed that if the hyperbolic loga-
rithms are divided by the hyperbolic logarithm of 10, the common logarithms
will be obtained. He did not give an example, but we shall show one, while
simplifying his explanation (and reducing his accuracy) in the process. Using
the already established equation logb y = loga y logb a with b = e, y = 2,
and a = 10, we obtain

log10 2 = l(2)

l(10)
= 0.693147180559945309

2.302585092994045684
= 0.301029995663981195.

This is approximately the same value provided by the square root method, and
it was in this manner that the natural logarithm became indispensable.

Now that the logarithm is a function, we can ask whether it has a derivative
and how to find it. The series found above allowed Euler to find it as follows
in his book on differential calculus [Article 180]:39

We put x + dx in place of x, so that y is transformed into y + dy; whereby
we have

y + dy = l(x + dx) & dy = l(x + dx)− l(x) = l

(
1+ dx

x

)
.

As above the hyperbolic logarithm of this kind of expression 1 + z can be
expressed by an infinite series, as

l(1+ z) = z

1
− z2

2
+ z3

3
− z4

4
+ &c.

39 Institutiones calculi differentialis, 1755. This quotation is from Blanton’s translation.
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Therefore if we substitute
dx

x
for z, we obtain:

dy = dx

x
− dx2

2x2
+ dx3

3x3
− &c.

Since all the terms of the series vanish in front of [meaning: compared to]
the first term, it will be

d. lx = dy = dx

x
.

In short, the derivative of lx is 1/x. Of all the logarithms this is the only one
with such a neat derivative. For if

logb x = loge x logb e = lx logb e,

then it is clear that

log ′b x = 1

x
logb e

is not quite as good-looking as the derivative of lx. We conclude that the
logarithm to keep is the natural logarithm, which is a very appropriate name
for it.

So, what about the logarithms of negative numbers? In 1712 and 1713
a dispute over this had flared up in the correspondence between Gottfried
Wilhelm Leibniz (1646–1716) and Johann Bernoulli (1667–1748). Leibniz
had published an article 40 expressing his opinion on the logarithm of −1
[p. 167]:

Indeed it is not positive, for such numbers are the Logarithms of positive
numbers larger than unity. And yet it is not negative; because such numbers
are the Logarithms of positive numbers smaller than unity. Therefore the
Logarithm of −1 itself, which is not positive, nor negative, is left out as not
true but imaginary.

An unfortunate choice of word (imaginarius), because it has a clear meaning
in today’s mathematics. What Leibniz meant is that l(−1) does not exist.
Bernoulli disagreed, stating his opinion that

lx = l(−x)41

40 “Observatio, quod rationes sive proportiones non habeant locum circa quantitates nihilo
minores, & de vero sensu methodi infinitesimalis,” 1712.

41 I have inserted parentheses where he had none, and will continue this practice to the
end of this chapter for the benefit of the modern reader. However, the original notation of
Euler, who did not use parentheses around expressions such as −x and +x, is kept in the
quotations.
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in a letter to Leibniz of May 25, 1712. He gave four reasons for it, the first
being that for x > 0 the differentials of both lx and l(−x) are identical, and then
the stated equation follows [pp. 886–887]. This was not accepted by Leibniz
in his reply of June 30 because he believed that differentiating lx is legitimate
for x > 0 only [p. 888]. Euler had also exchanged some correspondence
with Bernoulli on this subject from 1727 to 1731, but, although he remained
unconvinced by Bernoulli’s arguments, he had no alternative theory of his own
to propose at that time.

The controversy between Leibniz and Bernoulli resurfaced in 1745 when
their correspondence was first published. By this time Euler had found the
solution: l(−a) = la + π(1 ± 2n)

√−1, where n is any positive integer, and
presented it in a letter of December 29, 1746, to the French mathematician
Jean le Rond d’Alembert (1717–1783).42 But d’Alembert responded:

However, although your reasons are very formidable and very learned, I
admit, Sir, that I am not yet completely convinced, because . . .

at which point he stated three of his own reasons for this lack of conviction, but
we know now that they are invalid.43 In fact, d’Alembert sided with Bernoulli,
convinced by Bernoulli’s fourth stated reason: that (−x)2 = x2 implies that
2l(−x) = 2lx and, once more,

l(−x) = l(+x).

Euler replied on April 15, 1747, but d’Alembert remained unconvinced and
Euler eventually gave up the argument. Instead, on August of that year he
sent an article, Sur les logarithmes des nombres négatifs et imaginaires (On
the logarithms of negative and imaginary numbers), to the Academy of Berlin
to give his solution; but he may have withdrawn it later because it was not
published until 1862!

However, he presented another complete solution in 1749.44 With both
correspondents now dead, Euler felt free to express his own opinion. First, he
explained how Bernoulli’s first reason was wrong because it was [p. 144; 200]

42 In a previous letter of September 24, Euler had communicated the value of l(−1) to
Gabriel Cramer as (π ± 2mπ) · √−1. See Euler, Opera omnia, Ser. 4a, 1, Birkhäuser
Verlag, Basel, 1975, R. 469, pp. 93–94.

43 Euler’s solution and d’Alembert’s reply can be seen in Euler, Opera omnia, Ser. 4a, 5,
Birkhäuser Verlag, Basel, 1980, pp. 251–253 and 256–259.

44 “De la controverse entre Messrs. Leibnitz et Bernoulli sur les logarithmes négatifs et
imaginaires,” 1749, pub. 1751. Page references are to the original paper first and, after a
semicolon, to the Opera omnia. Quotations are from the original paper.
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clear, that since the differential of l−x & of l+x is the same dx
x

, the quantities
l−x and l+x differ from one another by a constant quantity, which is equally
evident, in view [of the fact] that l−x = l−1+ l+x.

Then he pronounced himself against Leibniz’ belief that the logarithm of −1
does not exist [p. 154; 208]:

Because, if l−1 were imaginary, its double, i.e. the logarithm of (−1)2 = +1,
would be too, which does not agree with the first principle of the doctrine of
logarithms, according to which it is assumed that l+1 = 0.

However, Euler had a greater difficulty disposing of Bernoulli’s fourth
reason, because it rests on the belief that for any power pn it is true that
l(pn) = nlp. But accepting this leads to contradiction [p. 147; 202]:45

Because it is certain that (a
√−1)4 = a4, thus we’ll also have l(a

√−1)4 =
la4, & furthermore 4 l(a

√− 1) = 4 la, consequently l(a
√− 1) = la.

Putting a = 1 leads to l
√−1 = 0, and this is impossible because Euler was

already aware of the fact that (this will be explained in Section 3.5)

1

2
π = l

√−1√−1
.

But rejecting Bernoulli’s belief that l(−1) = l(+1) = 0 also leads to contra-
diction [p. 148; 203]:

To make this more evident, let l−1 = ω, & if isn’t ω = 0, its double 2ω will
not be= 0 either, but 2ω is the logarithm of the square of−1, and this being
+1, the logarithm of+1 will no longer be= 0, which is a new contradiction.

These contradictions cannot be allowed to stand or the “enemies of Mathe-
matics,” as Euler called them [p. 154; 209], would have a field day. Not to fear.
He found the source of these contradictions in a very insidious assumption that
mathematicians, including himself, implicitly made [pp. 155–156; 210]:

it is that one ordinarily assumes, almost without noticing, that each number
has a unique logarithm . . . Therefore I say, to make all these difficulties
& contradictions disappear, that just as a consequence of the given defini-
tion each number has an infinitude of logarithms; which I will prove in the
following theorem.

45 The square root of −1 is shown here in Euler’s original notation.
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The theorem just restated that each number has an infinitude of logarithms.
And how would he find the additional logarithms? By widening the search.
Now that

√−1 has become involved, it is not just the logarithms of negative
numbers that we must seek, but those of complex numbers as well.



3

COMPLEX NUMBERS

3.1 THE DEPRESSED CUBIC

In his Artis magnæ, sive de regvlis algebraicis (a title usually shortened to Ars
magna) of 1545, Girolamo Cardano (1501–1576) set out to split the number
10 into the sum of two numbers whose product is 40. Thus, x(10− x) = 40,
which has the solutions 5 + √−15 and 5 − √−15. And indeed, Cardano
invited his readers to consider that the product

5 +√−15 times 5 −√−15 , disregarding the cross products, makes 25 −
(−15), which is + 15, therefore this product is 40.1

This was the first time that the square root of a negative number was used
in computation. However, this was not a motivation for the introduction of
complex numbers. The given equation is a quadratic, and the fact that it has
no real solutions is, and was then, a commonplace. Mathematicians of the

1 The original passage in Cardano’s own notation reads: “5 p: R�� m: 15 in 5 m: R�� m: 15,
dismissis incruciationibus, fit 25 m:m: 15, quod est p: 15, igitur hoc productum est 40,”
and the Latin words translated above as “disregarding the cross products” are “dismissis
incruciationibus.” The translation by Witmer has a different interpretation of these words.
Since the Latin cruciare means to torture, this passage is rendered as: “Putting aside the
mental tortures involved, multiply 5+√−15 by 5−√−15 making 25− (−15) which is
+15. Hence this product is 40.” See p. 219 of the Dover Publications edition. Witmer’s
translation of this problem and solution is reproduced in Calinger, Classics of Mathematics,
1995, p. 265. For another English translation plus a photographic reproduction of the Latin
original, see Struik, A source book in mathematics, 1200–1800, 1969, pp. 67–69.

,
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Title page of the Nuremberg edition of Cardano’s Ars magna
From Smith, Portraits of Eminent Mathematicians, II, 1938.

sixteenth century would have been content with branding the new equation
“impossible” or with simply saying that it has no solution.

In the sixteenth century quadratic equations were old hat. Abraham bar
Hiyya Ha-Nasi (1070–1136), of Barcelona, one of the twelfth-century trans-
lators, better known as Savasorda, made the complete solution known in his
book Hibbur ha-Meshihah ve-ha-Tishboret (Treatise on Measurement and
Calculation), the earliest algebra written in Europe, later translated into Latin
by Plato of Tivoli as Liber enbadorum in 1145. But the cubic equation was
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a hot topic and everybody was trying to find a method of solution. Umar
ibn Ibrahim al-Khayyami (1048–1131) had already been able to solve cubics
geometrically by the method of intersecting conics, but the Europeans were
interested now in a purely algebraic solution.

By the end of the fifteenth century no one had succeeded, but sometime in
the second decade of the new century, a professor of arithmetic and geometry
at the University of Bologna, Scipione di Floriano di Geri Dal Ferro (1465–
1526), learned how to solve the particular case x3 + px = q, where p and q

are positive numbers. This equation is called the “depressed cubic” because
it lacks the term in x2.

Dal Ferro never published his solution and kept his knowledge to himself.
Mathematics was then as magic is today: you kept your secrets to yourself
and impressed others with the results, in this case with your ability to solve
equations. Furthermore, mathematicians could make some extra money—
and enhance their necessary prestige to keep their nontenured positions—by
challenging competitors to public contests in which they posed each other
problems. However, shortly before his death Dal Ferro confided his secret to
one of his students, Antonio Maria Fior of Venice. Much later, Fior—a poor
mathematician himself—had the audacity to challenge none other than Nicolò
Fontana (c. 1499–1577) of Brescia to a cubic-solving contest, to take place on
the 22nd of February, 1535. But Fior was not as good at keeping his secret
as Dal Ferro had been, and there was a circulating rumor that he knew how to
solve x3 + px = q.

Fontana, usually known as Tartaglia, “the stammerer”—as a consequence
of an injury inflicted by a French soldier when he was a child—was one
of the great intellects of his time. Born in poverty, he was self-educated in
mathematics, and in this very same year, 1535, he had discovered how to solve
another type of cubic, x3 + px2 = q. Now he applied himself to the task of
rediscovering the solution of the depressed cubic, and succeeded eight days
before the contest. Each contestant then submitted thirty cubics to the other,
to be solved within the next fifty days. Actually, it was no contest. Tartaglia
solved all of Fior’s depressed cubics in just two hours, but Fior could never
solve any of Tartaglia’s, who had chosen the type x3 + px2 = q.

3.2 CARDANO’S CONTRIBUTION

As a youngster Cardano persuaded his father to let him enter the University
of Pavia—his hometown—to study medicine, earning his doctorate in this
discipline in 1525 at the University of Padua, but when denied membership in
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Niccolò Fontana
Frontispiece of the princeps edition of the Qvesiti, Venice, 1546.

Reproduced from the virtual exhibition El legado de las matemáticas:
de Euclides a Newton, los genios a través de sus libros, Sevilla, 2000.

the College of Physicians in Milan—due to the fact that he was an illegitimate
son—he had difficulty making ends meet, and by 1533 things had gotten so
bad that he had to pawn his wife’s jewelry. Happily enough, he was also
proficient in mathematics, astrology, and gambling. In this last discipline he
wrote the book Liber de lvdo aleae (Book on games of chance), probably
about 1563, and with this expertise plus no aversion to cheating he won more
than he lost. He also came out ahead in astrology, for, although imprisoned
in 1570 for casting the horoscope of Jesus, he was later hired as astrologer
to the Pope. Eventually, he became a successful physician all over Europe,
with a reputation for achieving miraculous cures. Earlier in his life he had
become lecturer in mathematics at the Piatti Foundation in Milan, a post that
he resigned in 1540.
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Girolamo Cardano
From Smith, Portraits of Eminent Mathematicians, II.

It was during his tenure at the Piatti that Cardano heard of the cubic-solving
contest, and he wasted no time in trying to convince Tartaglia to reveal his
secret. He succeeded in 1539, but only under the promise of secrecy, and
he received the solution without proof. But Cardano was able to supply his
own, and later realized that Tartaglia’s solution was the same as the one he
eventually found in Dal Ferro’s surviving papers. Somehow this finding made
Cardano feel free to publish it in the Ars magna, while giving proper credit to
both Tartaglia and Dal Ferro. He started Chapter XI with these words:2

Scipio dal Ferro of Bologna about thirty years ago invented the rule in this
chapter, and passed it on to Antonio Maria Florido of Venice, who when
engaged in a contest with Niccolò Tartaglia of Brescia, gave Niccolò occasion

2 Alternative translations can be found in Cardano, Ars magna; Witmer, Ars magna or
the rules of algebra, 1993, p. 96; reproduced in Calinger, Classics of Mathematics, p. 263;
Smith, A source book in mathematics, 1929; reprinted by Dover Publications, 1959, p. 204;
and Struik, A source book in mathematics, 1200–1800, p. 63.
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to discover it; and he gave it to us because of our requests, but suppressed the
demonstration. Armed with this help, we sought its demonstration in various
forms, which was very difficult, and write out as follows.

Of course that stole the thunder from Tartaglia, who wanted to be the first to
eventually publish it. He claimed later, in his Qvesiti et inventioni diverse of
1546, that he had given his proof to Cardano. In any event, let us proceed to
Cardano’s demonstration, shown as first published in the next two pages.

But before we embark on the details of the proof it is necessary to explain
the difference between Cardano’s writing, which would be very difficult to
follow today, and our current style. We have written the depressed cubic as
x3 + px = q instead of Cardano’s De cubo & rebus æqualibus numero (on
the cube and the thing equal to the number). In his time there was no habit
of denoting either the unknown or the coefficients by letters or of obtaining
general formulas. Instead, they taught and learned by example and their
descriptions were mostly verbal.

Cardano started his proof by example under the heading Demonstratio.
Referring to his own figure, shown on the next page, he stated the equation
to be solved as follows: “Then let for example the cube of GH & six times
the side GH equal 20,” which can be written as x3 + 6x = 20 if we use the
letter x instead of GH .3 Then, without interruption, he stated a proposition
that is the most important step in solving the equation. It can be translated as
follows and will be explained immediately following the translation:

& set two cubes AE & CL [meaning cubes built on square bases with diago-
nals AE and CL], whose difference be 20, such that the product of side AC,
and side CK , be 2, the third part of the number of things [“thing” meaning
the unknown GH ], & cutting off CB, equal to CK , I say that, if this were
to be, the remaining line AB, is equal to GH , & is therefore the value of the
thing, for GH has already been assumed, that it was [the thing].

Since the second term in the equation is 6x, there are six “things” and then
“the number of things” is 6. The rest of the proposition simply states that
if two segments AC and CK are chosen such that AC3 − CK3 = 20 and

3 Semiverbal ways of writing equations were already in use, although there were no
universally accepted norms. For instance, in folio 30 r. (see the reproduction on page 155),
Cardano wrote this equation as “cub9 p: 6 reb9 æq̄lis 20,” which reads “cubus plus six rebus
equals 20.” The Latin word res, meaning “thing,” or a variation of it was frequently used
for the unknown. It was then translated into Italian as la cosa, and later algebraists became
known as “cossists.”
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Cardano’s solution of the cubic
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From Smith, History of Mathematics, II, 1925, pp. 462–463.
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AC×CK = 2, then GH = AB. Thus x = AB, which will later make solving
the equation a simpler matter.

For the sake of generality and simplicity, we shall make some changes
in Cardano’s presentation from this point on. First, we shall keep p and q

instead of 6 and 20. Then if, as shown in the next figure, we write u = AC

and v = BC = CK , it is clear that AB = u − v, and the proposition can be
restated as follows: if u and v are positive numbers such that

u3 − v3 = q and uv = p

3
,

then u−v = x. Thus we see that if the two preceding equations can be solved
for u and v in terms of p and q, then x can found as the difference of u and v.

Returning for a moment to Cardano’s original statement, note its geomet-
ric flavor. The unknown GH is the side of a square, and the demonstration
will be purely geometric. Algebra as we know it was in its infancy, but the
accomplishments of Greek geometry were fresh in the minds of mathemati-
cians of the Renaissance, and it is to geometric methods that they turned for
inspiration and geometric results that they tried to emulate.

However, while keeping the geometric character of the demonstration,
we shall rearrange Cardano’s own argument to shorten it and to avoid using a
proposition from his earlier Chapter VI. Then, using a bit of three-dimensional
imagination, think of a cube of height u erected on the square with diagonal AE

shown in the previous figure (we can think of the cube’s height in a direction
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perpendicular to the page). Its volume, u3, is equal to the sum of the volumes
of the eight solid bodies listed in the next table.

Solid Base diagonal Height Volume

Cube FD u− v (u− v)3

Cube DC v v3

Parallelepiped AD u− v (u− v)2v

Parallelepiped DE u− v (u− v)2v

Parallelepiped FD v (u− v)2v

Parallelepiped AD v (u− v)v2

Parallelepiped DE v (u− v)v2

Parallelepiped DC u− v v2(u− v)

Then
u3 = (u− v)3 + v3 + 3(u− v)2v + 3(u− v)v2

= v3 + (u− v)3 + (u− v)[3(u− v)v + 3v2]

= v3 + (u− v)3 + 3uv(u− v).

Therefore, (u − v)3 + 3uv(u − v) = u3 − v3 or, recalling the definition of u

and v,
(u− v)3 + p(u− v) = q.

Comparing this with the given cubic x3+px = q shows that u−v is a solution.
This is the end of the demonstration proper, which Cardano expressed with
the words: “therefore GH is the difference of AC and CB” (igitur GH est
differentia AC & CB).4

What remains now is to solve the equations

u3 − v3 = q and uv = p

3

for u and v. But Cardano skipped this step, simply saying “whence we have
the rule” (quare habebimus regulam) and proceeding to give the solution in

4 Algebra may have been in its infancy in Cardano’s time, but it has been grown up for
some time now. A nongeometric demonstration is very simple: expanding (u − v)3 as
u3− 3u2v+ 3uv2− v3 and rewriting the right-hand side as u3− 3uv(u− v)− v3 provides
at once the equation that took a number of solid bodies to assemble in the sixteenth century.
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the general case. Today we can see that adding the square of the first equation
above to four times the cube of the second and simplifying gives

(u3 + v3)2 = q2 + 4p3

27
.

Finding now the square root of both sides and solving the resulting equation
simultaneously with u3 − v3 = q yields

u3 =
√

q2

4
+ p3

27
+ q

2
and v3 =

√
q2

4
+ p3

27
− q

2
.

Finally, extracting cube roots and putting x = u−v gives Dal Ferro’s formula:

x = 3

√√√√√
q2

4
+ p3

27
+ q

2
− 3

√√√√√
q2

4
+ p3

27
− q

2
,

usually known today as Cardano’s formula.5 Clearly, this formula gives a
real solution of the equation, in fact the only real solution, because, under
Cardano’s assumption that p is positive, the derivative of x3+px−q is positive
everywhere. Application of this formula to Cardano’s example x3 + 6x = 20
yields the solution

x = 3

√√
108+ 10− 3

√√
108− 10 ,

although in an inconvenient form, since it would take a little time to figure out
that this simplifies to x = 2.6

5 Cardano’s actual rule, stated under the word Regula. on page 155, is: “Cube the third
part of the number of things, to which you add the square of half the number of the equation,
& take the root of the whole, of course the square [root], which you will duplicate, to one
of them add half of the number which you just squared, from the other subtract the same
half, you will have a Binomium and its Apotome [these terms are from Book X of Euclid’s
Elements], then subtract the cube root of the Apotome from the cube root of its Binomium,
the remainder that is left from this, is the value of the thing.”

6 This formula can be seen in Cardano’s notation in the last two lines inside the box on
page 155. Cardano used the letter R with its tail crossed for root (radix), and the V: (the
initial of vniversalis) next to it means that it is to be applied to the entire expression that
follows, while “cu.” indicates that it is a cube root. This cube root applies to the sum of
the square root of 108 (only of 108, since there is no V:) plus 10, using the symbol p: for
plus. This explains the first of these two lines, and the second has a similar explanation
but replacing p: with m: for minus. In this explanation we have followed Smith, History of
Mathematics, II, p. 416. Actually, the location of the V: in Cardano’s writing is confusing,
at least for English-language speakers, since it is easy to interpret the two symbols before
the number 108 as “cube root,” while in Latin the proper order is radix vniversalis cubica.
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Cardano’s work goes beyond that of his predecessors in that he was able
to solve the general cubic, not just the depressed case. But Cardano is rather
long-winded on this subject. The fact that negative numbers were not accept-
able motivated him to divide this case into many subcases, all with positive
coefficients, which he studied in Chapters XVII to XXIII, stating a number of
rules to follow in each subcase and providing individual geometric demonstra-
tions [Ars magna or the rules of algebra, pp. 121–154]. However, from our
point of view all this work boils down to making the substitution x = y− b/3
in the general cubic x3+ bx2+ cx+ d = 0, which reduces it to the depressed
cubic y3 + py = q with

p = c − b2

3
and q = bc

3
− 2b3

27
− d.

This provides the complete solution of the cubic.
Cardano must also be credited with having noticed that cubics have three

solutions and that their sum is −b, the opposite of the coefficient of x2. Af-
ter giving three examples numbered 5 to 7 in Chapter XVIII, he made the
following statement:7

From this it is evident that the number of x2’s,8 in the three examples in which
there are three solutions for x, is always the sum of the three solutions: as in
the fifth example, where 2 +√2, 2, and 2 −√2 make up 6, the number of
x2’s 9 . . . Hence, knowing two such solutions, the third always emerges.

But before we can pronounce the cubic solved let us admit that there is a
hole in the bucket. We have not considered the case in which p < 0, and we
do not know whether the stated formula is valid in that case. In Chapter XII
Cardano studied the cubic x3 = px+ q with p, q > 0, and found the solution
to be much like that for x3 + px = q except for replacing the + sign under
each square root with a − sign. This is equivalent to saying that the solution
stated above is also valid for p < 0. But then, what happens if

q2

4
+ p3

27
< 0?

7 With minor modifications, this is Witmer’s translation in Ars magna or the rules of
algebra, p. 134.

8 In Cardano’s arrangement the x2 term is on the right-hand side of the equal sign, so
there is no need for a negative sign. He would have been horrified by such a need.

9 In Cardano’s own words and notation, “ . . . uelut in quinto exemplo, 2 p : R�� 2, & 2, &
2 m : R�� 2, componunt 6, numerum quadratorum,” f. 39v.
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In such a case, Cardano’s formula was meaningless in his time, and there
was no way to proceed. Tartaglia limited himself to calling such cubics “irre-
ducible,” but it is too bad to think of them in these terms because it is easily
shown that all depressed cubics with p < 0 that have three real solutions are
irreducible. Indeed, a straightforward application of calculus shows that if
p < 0, then the expression x3 + px − q has the maximum value

M = 2
(
− p

3

)3/2

− q for x = −
√
−p

3
.

But it should be clear from the figure below that if x3 + px − q has three real

roots, then M > 0. Thus,

q < 2
(
− p

3

)3/2

or
q2

4
+ p3

27
< 0.

Is Cardano’s formula powerless to compute one real solution of a cubic that
has three?

3.3 THE BIRTH OF COMPLEX NUMBERS

Rafael Bombelli (c. 1526–1572), a hydrologist from Bologna who made his
fame in mathematics, pursued this matter further, demonstrating that the for-
mula of Scipione Dal Ferro is valid in every case. He did this in his Opera su
l’algebra, written about 1550 in two parts. Only the purely algebraic part (the
second part is based on geometric constructions), in three books, was printed
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First page of Book II of the 1579 edition of Bombelli’s L’Algebra.
Except for the title page and the dedication, it is identical to the 1572 edition.

Reproduced from the virtual exhibition El legado de las matemáticas:
de Euclides a Newton, los genios a través de sus libros, Sevilla.

for the first time in 1572, and then again in 1579, under the title L’Algebra.
Opera di Rafael Bombelli da Bologna, divisa in tre libri.

As an example of the casus irreducibilis, Bombelli considered the cubic
x3 = 15x + 4, which has the positive solution x = 4, found by inspection.
Bombelli used Cardano’s rule to solve this cubic in the 1550 manuscript, as
shown here. The equation itself is written in the center of the second line as

1
�3

a 15
�1

p. 4
�0

.

Here the symbol � represents the variable, the superscript on it is the power
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Reproduced from the preface to the 1966 edition of L’Algebra.

to which it must be raised, and the number under � is the coefficient of that
power (this is the origin of the exponent notation that we presently use). The
letter a stands for the equal sign (either as the initial of the Latin æqualis or
as a contraction of the Italian eguale a) and p. is for plus. He gave Cardano’s
solution of the cubic on the eighth line, to the right of the fancy summary
box and the word farà. He followed Cardano in using the letter R with its tail
crossed to indicate a root, and there are four of these in the formula. Those with
a 3 on top are cube roots and the other two are square roots. The underboxing
indicates the range of each root. With p meaning plus and m meaning minus,
this solution can be rewritten using current symbols as

3
√

2+√0− 121+ 3
√

2−√0− 121 .

This is, indeed, the solution provided by Cardano’s rule, because rewriting
the cubic as x3 − 15x = 4, we have p = −15 (adopting modern usage of
negative numbers, inconceivable to Cardano) and q = 4. Then, q2/4 = 4 and



Section 3.3 The Birth of Complex Numbers 163

p3/27 = −125, and the solution provided by Cardano’s rule is

x = 3
√√

4− 125+ 2− 3
√√

4− 125− 2 ,

which is equivalent to that stated by Bombelli.
Cardano might have stopped right at this point, but Bombelli stated that

the sum of his two cube roots is 4 and “that is the value of the Thing,”10 the
value found by inspection. This may be a surprising statement in view of
those square roots of negative numbers, so it would be of interest to reproduce
Bombelli’s reasoning in arriving at such a conclusion. But before we do that
it is convenient to prepare the ground, as he did well before this point. On
page 169 of the 1572 edition he explained how to deal with square roots of
negative numbers, such as those that arise in the irreducible case. To avoid
using negative coefficients, such a cubic and Cardano’s formula for its solution
(the one from his Chapter XII) can be rewritten as x3 = px + q with p > 0
and

x = 3

√√√√q

2
+
√

q2

4
− p3

27
+ 3

√√√√q

2
−
√

q2

4
− p3

27
.

Of course, Bombelli wrote this solution in narrative form at the start of the
Capitolo di Cubo eguale a Tanti e numero (Chapter of the Cube equal to the
Unknowns and number) [p. 222]:11

Wanting to equate the cube to the Unknowns and number [that is, considering
the equation x3 = px + q] take one-third of the Unknowns and cube it and
the result is subtracted from the square of half the number, and of what
remains the square root is taken which is added to and subtracted from half
the number, and of the sum and difference the cube root of each of these is
taken, and these two roots together are the value of the Unknown (as will be
seen in the examples below).

The following is a translation of Bombelli’s groundbreaking proposal
[p. 133], but some words remain in Italian because they need additional ex-
planation. It is provided below.

10 At the bottom of the summary box we read Somma 4 : et tanto uale la Cosa. In 1550
Bombelli still used the word cosa for the unknown, but in preparing the manuscript for
publication he introduced a number of changes, and one of them was to discard this term.
In print he used Tanto (so much) instead of Cosa for the unknown, giving the reason for it
at the start of Book II, as shown on page 161: “Tanto is a word appropriate to the quantity
of numbers,” while Cosa “is common to every substance whether known or unknown.”

11 Page references are to the 1966 edition.
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I have found some other kind of extended cube root [cube root of a sum] that
is very different from all the others, which has its origin in the chapter of the
cube equal to the unknowns and number, when the cube of one-third of the
unknowns [the cube of p/3] is greater than the square of half the number
[when p3/27 > q2/4], . . . the excess cannot be called either plus or minus,
but I shall call it più di meno when it must be added, and when it must be
subtracted I shall call it men di meno . . .

Actually, he did not mean the excess. He meant the square root of the excess,
that is, any of the two square roots in the previous equation. In fact, the terms
più di meno and men di meno are contractions of più radice di meno 1 and
men radice di meno 1; that is, “plus the root of minus 1” and “minus the root
of minus 1.” In our symbols, più di meno means + √−1 and men di meno
means − √−1. Later, he further abbreviated più di meno to p. di m. and
men di meno to m. di m. Thus, Bombelli accepted and introduced imaginary
numbers in this passage and created a notation for them. Translating his into
ours, if a is a real number, p. di m. a means + ai and m. di m. a means − ai.

He devoted the rest of Book I to developing the arithmetic of complex
numbers, starting with the most elementary rules of multiplication for “real”
and “imaginary” numbers, which he called la regola del più et meno. If we
agree that via means “times” and fa means “makes” or “equals,” it is simpler
to quote them in Italian with a symbolic representation on the right [pp. 133–
134].

Più via più di meno, fa più di meno +(+i) = +i

Meno via più di meno, fa meno di meno −(+i) = −i

Più via meno di meno, fa meno di meno +(−i) = −i

Meno via meno di meno, fa più di meno −(−i) = +i

Più di meno via più di meno, fa meno (+i)(+i) = −1
Più di meno via men di meno, fa più (+i)(−i) = +1
Meno di meno via più di meno, fa più (−i)(+i) = +1
Meno di meno via men di meno, fa meno (−i)(−i) = −1

Next he gave a definition that includes that of what we now call the con-
jugate of a complex number [p. 134]:

Notice that when we say the Residue of a Binomial [what Cardano called
Apotome], what is called più di meno in the Binomial, will be called meno di
meno in the Residue.

Thus, if the Binomial is a complex number, then its Residue is what we now
call its conjugate.
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Bombelli then went on to explain, by a wealth of examples rather than by
stating a rule, how to multiply complex numbers. Omitting, as trivial, how
to multiply a complex number by a real number, we give one of his many
examples of complex multiplication. We have changed the original notation
as follows: we write 3

√
instead of R.c. and +√− instead of più di meno R.q.

Except for these changes in notation, his example is as follows [p. 135]:

Multiply 3
√

3+√−5 by 3
√

6+√−20 , to do it start similarly [referring to
the previous, simpler example] by multiplying +√−5 by +√−20, which
will be − 10, then we multiply 3 times 6 which makes 18, which together
with − 10 makes + 8, and then we multiply 3 times + √−20, makes
+√−180, and then we multiply 6 times +√−5, makes +√−180, which
together with +√−180 makes +√−720, and this together with + 8 and

with the removed cube root makes 3
√

8+√−720 which is the result of the
multiplication.12

It is clear that the cube roots are spurious here. Other than this cube root
fixation of Bombelli’s, this is a pure example of complex multiplication. After
many more examples [pp. 135–140], only the dimmest of Bombelli’s readers
could fail to get the hang of complex multiplication. Addition is, of course,
also used in the preceding computations in the obvious way: add the “real”
and “imaginary” parts separately.

Perhaps surprisingly, the next operation that Bombelli considered is the
extraction of cube roots. In a chapter entitled Modo di trovare il lato Cubico di
simil qualità di Radici (A way to find the Cube side of a similar kind of Root),
he gave a general rule (to be illustrated by examples, surely, but a general rule)
to extract the cube root of a composite number that has a più di meno part. To
be precise, he gave a general procedure to find the cube root of an expression
of the form a+√−b. Referring to a as “the number” and to

√
b as “the square

root,” his method, entirely in narrative form, is as follows [pp. 140–141]:

Add the square of the number to the square of the root and of this sum extract
the Cube root, then search by trial-and-error to find a number and a square
root such that when their squares are added together they amount to as much
as the cube root mentioned above and such that when we subtract from the
cube of the number three times the product of the number times the square
of the square root, what remains is the number of the cube root that we seek,

12 As an example of Bombelli’s equation writing, the last equation in this quotation appears
in the original as R.c.8 p. di m. R.q. 720�.
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and then proceeded to give his first example without even writing a period. But
before we present it we shall interpret this statement in current terminology.
Basically, we set

3

√
a +√−b = x +√−y

and then find the unknown x and y by trial and error but subject to the following
constraints:

x2 + y = 3
√

a2 + b and x3 − 3xy = a.

Bombelli did not give any reasons for doing this. His readers would have been
more interested in the fact that the rule works in example after example than
in how he found it. But we know today that the first constraint results from
equating the absolute values of both sides of the previous equation, and the
second constraint from equating the real parts of the cubes of both sides.

Bombelli’s first example was to find

3
√

2+√−121,

in which case the constraints become

x2 + y = 3
√

22 + 121 = 5 and x3 − 3xy = 2.

Then he started his trial-and-error method as follows [p 141]:

Now it is necessary to find a number [x] whose square is smaller than 5 and
whose cube is larger than 2, which if we assume that it is 1 the square root
[
√

y ] will by necessity be the square root of 4, which squares added together
make 5 and the cube of the number is 1 and the product of this number with
the square [y] of the square root [

√
y ] makes 4 which tripled makes 12,

which cannot be subtracted from the cube of the number that is only 1,
therefore 1 is no good [as the value of x], nor can 3 be good because its square
surpasses 5, . . .

The next logical choice was x = 2, and then both constraints are satisfied by
choosing y = 1. Therefore, the desired cube root is 2+√−1.

Bombelli was working only with integers in his first and second examples,
but his third was a little more adventurous. He proposed to find the cube root
of [p. 142]

8+
√
−232 8

27
,
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in which case the stated constraints become

x2 + y = 3
√

82 + 232 8
27 = 6 2

3 and x3 − 3xy = 8.

The trial-and-error method must yield a number x whose square is smaller
than 6 2

3 and whose cube is larger than 8. Then he said that x = 2 “is no
good” because its cube is not larger than 8 and that x = 3 “is equally no good”
because its square is not smaller than 6 2

3 . Bombelli continued:

therefore it is necessary to find a quantity that is larger than 2 and smaller
than 3, that

√
2 + 1 has this property, that its square, which is 3 + √8 is

smaller than 6 2
3 , and its cube is

√
50+ 7, which is larger than 8. Now let us

see whether it satisfies the rest: square
√

2+ 1 makes 3+√8 and subtract it
from 6 2

3 , it remains 3 2
3 −

√
8 and this must be

the value of y. Routine computation shows that this choice of x and y satisfies
the second constraint.13

The next chapter deals with division, and includes the following example
(written as a quotient in today’s manner) [p. 145]:

10
3
√

2+ (
√−1)11

.

Bombelli’s solution consists in cubing both “parts,” numerator and denomi-
nator. Then

we multiply the denominator by 2−(
√−1)11, its residue, makes 125, which

divided into 1000 it becomes 8 and this is multiplied by 2− (
√−1)11 makes

16− (
√−1) 88,

13 It can be argued that Bombelli did not guess that x = √2+1, that he must have posited
this value and that of y and then obtained the original number from them. But this does not
invalidate his trial-and-error method if a sufficiently good approximation is wanted instead
of an exact root. To show this using decimal notation, not yet available in Bombelli’s time,
start by trying x = 2.5. Then x2 = 6.25, y = 0.416, and x3 − 3xy = 12.5 > 8. Since
the cube is dominant in the last equation, this suggests that 2.5 is too large a value for x,
and we try x = 2.4 next. This gives x2 = 5.76, y = 0.906, and x3 − 3xy = 7.296 < 8,
suggesting that 2.4 is too small a value for x; but it seems to be closer to the true value
than 2.5. Three additional attempts will produce the required approximation: x = 2.42
yields x3 − 3xy = 8.289952 > 8, x = 2.414 yields x3 − 3xy = 7.989335776 < 8, and
x = 2.4142 yields x3 − 3xy = 7.999322685 ≈ 8. Thus, x ≈ 2.4142 ≈ √2+ 1.
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and restoring the cube root, we have 3
√

16− (
√−1) 88. Disregarding once

again the intrusive cube root, this is a perfect example of the procedure: to
divide complex numbers, multiply both numerator and denominator by the
conjugate of the denominator to make the operation trivial.

The next four short chapters [pp. 147–150] are devoted to addition and
subtraction, and contain the unavoidable sprinkling of cube roots. It is not
necessary to give examples, since these operations have already been used in
the preceding ones. The remaining four chapters of Book I [pp. 151–154] do
not involve complex numbers.

Book II of L’Algebra is devoted to the study of algebraic polynomials and
to the solution of equations of the first to the fourth degree. It is here that,
as we have already seen, Bombelli named the variable il tanto and that he
introduced a half-circle 14 surmounted by an integer for the power to which
it is raised. A remarkable contribution by Bombelli is the complete treatment
of all possible 42 cases of fourth-degree equations, with which he concluded
Book II [pp. 268–314]. In this aim at complete generality, he can be considered
a precursor of Viète.

In this second book, Bombelli freely used complex numbers to solve equa-
tions, starting with second-order equations. In the Capitolo di potenze e nu-
mero equali a Tanti (Of the square and the number equal to the Unknowns),
he considered the equation x2+ 20 = 8x, solving it by stating that (the reader
should keep in mind the formula for solving a quadratic equation) [p. 201]

the square of half of the Unknowns is 16, which is smaller than 20 and this
equation cannot hold except in this sophistic manner. Subtract 20 from 16 it
remains −4, its root is + (

√−1) 2, and this is subtracted and added to one-
half of the Unknowns, which will be 4+(

√−1) 2 and the other 4−(
√−1) 2,

and any of these quantities by itself will be the value of the Unknown.

But Bombelli’s greatest achievement was the solution of the cubic in the
irreducible case.15 Once in possession of his method of cube root extraction,
he could easily solve the cubic x3 = 15x+4. He gave the details of Cardano’s
rule, but no longer had to explain how to find the cube roots, since that had
been done in Book I. The following translation is not from the manuscript
page shown above but from the printed edition, which was intended to be the
final version [p. 225].

14 For typographical reasons, it was rendered as � in the printed version of the book.
15 The study of all kinds of cubic equations is contained in pages 214 to 268 of Book II.
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Equate x3 to 15x + 4; take one-third of the Unknowns, which is 5, cubed it
makes 125 and this is subtracted from the square of half the number, which
is 4, it remains − 121 (which will be called più di meno) which taking the
square root of this it will be (

√−1)11, which added to half the number makes
2+ (

√−1)11, of which having taken the cube root and added to its residue
makes 2+ (

√−1)1 and 2− (
√−1)1, which joined together make 4, and 4

is the value of the Unknown.

Bombelli admitted that this solution may seem extravagant to many, and
that he himself was of the same opinion at one time, but that he had a demon-
stration of the existence of a real root. In fact, on page 298 of the 1572 edition
he gave the following geometric proof on a plane surface [pp. 228–229].

In Bombelli’s time, letters were not used as coefficients, and he used the
cubic x3 = 6x + 4 in his proof, but we shall reproduce his argument very
closely using x3 = px + q instead. He chose first a segment q (not the q in
the equation), shown in the next figure, of length one, for which we (and he)

will have no further use. Then draw the half-line me (he denoted it by .m.e.,
using dots around the letters in all his segment notations). On it, choose l

such that ml = 1, and then f such that lf = p (Bombelli used p to denote
one of the square rulers shown in the figure). Over this lf draw a rectangle
abf whose area is q. Now extend ab to a half-line ad and al to a half-line ar .
Then take two square rulers (just think of them as right angles), and place the
first so that its angle is at a point i on the half line ar and one of its arms goes
through m. Lower or raise it in such a way that if the segment if is extended
until it touches bd at c, and if the second square ruler is placed with its angle
at c and one arm on da, then the intersection of the remaining arms at g is on
me,

and this done I say that the segment from the point .l. to the angle of the
[first] square ruler is the value of the Unknown and prove it in this manner.
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Using fractions instead of narrative, the similarity of the triangles ilm and gli

yields
il

lm
= gl

li
,

and denoting il by x and with ml = 1, we obtain gl = x2. Then the area of the
rectangle ilg will be x3 and the area of the rectangle ilf will be px because
il = x and lf = p. The rectangle hfg has the same area as the rectangle
alf , which is q (because—but Bombelli did not explain this, thinking it was
obvious—the triangle iac has the same area as the other right triangle with
hypotenuse ic, the triangles ilf and ihf also have equal areas, and so do the
triangles f bc and fgc). Thus, the area of the rectangle ilg, which is x3, is
the sum of the area of the rectangle ilf , which is px, and the area of the
rectangle hfg, which is q. We conclude that x3 = px + q and that il = x is
the solution of the proposed cubic.

Bombelli found only one real solution in his examples of the form x3 =
px + q, but some of them have three real solutions. The remaining two are
easily found by factoring. For example, knowing the solution x = 4 of x3 =
15x+4, we find the other two by writing x3−15x−4 = (x−4)(x2+4x+1),
which Bombelli could do just as easily in his own notation, and then solving
the quadratic x2 + 4x + 1 = 0 to obtain the remaining roots: −2±√3.

The cubic was a hot topic, as has already been said, and the fact that a
real solution can be obtained from numbers with an imaginary part is what
motivated the mathematical community, albeit rather reluctantly, to start using
complex numbers.

However, a different solution of the cubic, which does not use square roots
of negative numbers, was provided in 1591 by François Viète on the basis of
his formula for cos 3θ . It is in his first treatise in De æqvationvm recognitione
et emendatione tractatvs dvo,16 as an alternative Theorem III. We reproduce
the part of Viète’s statement that is of interest to us [p. 174]:

Another,
Third Theorem.

If A cubed − B squared 3 in A is equal to B squared in D, while B is greater
than half of D [that is, if A3 − 3B2A = B2D and D/2 < B] . . .

16 Page references are to the English translation by Witmer in The analytic art by François
Viète, 1983.
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And there are two triangles of equal hypotenuse B, such that the acute
angle subtended by the perpendicular of the �rst is triple the angle subtended
by the perpendicular of the second; and twice the base of the �rst is D, and A

is twice the base of the second.

Admittedly, Viète seems to be talking in riddles. But this is only a tempo-
rary impression, since this result bears interpretation. In the given cubic A is
the unknown, so we can call it x. Then, if we write p = 3B2 and q = B2D,
the cubic becomes x3 = px + q. Next, the hypothesis D/2 < B becomes

q

2B2
= 3q

2p
<

√
p

3
,

which, squaring and simplifying, reduces to

q2

4
<

p3

27
.

In short, we are dealing with the irreducible depressed cubic.
Then, to obtain the apparently cryptic solution, start by dividing the original

cubic, A3 − 3B2A = B2D, by 2B3. The result can be written as

4
(

A

2B

)3

− 3
A

2B
= D

2B
.

But this brings to mind the equation

4 cos3 θ − 3 cos θ = cos 3θ,

which is just a rearrangement of cos 3θ = cos3 θ−3 cos θ sin2 θ after replacing
sin2 θ with 1−cos2 θ . This was easy forViète, who had already discovered this
identity, as we saw in Chapter 1. Now a comparison of the stated trigonometric
identity and the cubic equation of the theorem becomes inescapable. The two
equations are one and the same if

cos θ = A

2B
and cos 3θ = D

2B
.

This is what Viète expressed by means of his two triangles, which will be of
more help if they are actually drawn, as shown below.

The solution of the cubic is now very clear. The condition D/2 < B

means that D/2B is a valid cosine, and then 3θ can be obtained from a table
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of cosines. Once θ is known, the solution is A = 2B cos θ . Or, if we prefer to
write the cubic as x3 = px + q and if we note that

D

2B
= q

2B3
= q/2

(p/3)3/2
,

then the solution is

x = 2

√
p

3
cos

(
1

3
arccos

q/2√
p3/27

)
.

The last quotient is a valid cosine because q2/4 < p3/27, that is, precisely
because the cubic is irreducible.

Using an electronic device rather than a table of cosines, we can re-obtain
Bombelli’s solution of x3 = 15x + 4 as follows:

x = 2
√

5 cos
(

1

3
arccos

2√
3375/27

)
= 2

√
5 cos

(
79.69515353◦

3

)
= 4.

Note that the angles 360◦ ± 79.69515353◦ have the same cosine, and can be
used in place of 79.69515353◦ in the stated formula to obtain the remaining
real roots: −3.732050808 = −2−√3 and −0.267949192 = −2+√3.

It is fortunate that Viète’s solution without imaginaries did not appear until
1615. Had this result been published in the sixteenth century, it might have
delayed any interest and investigation into the nature of complex numbers.

Bombelli’s notation, p. di m. and m. di m., was not subsequently adopted.
The notation that would survive,

√−a , was introduced by Albert Girard
(1595–1632), while giving the solutions of the quartic x4 = 4x − 3 as les
quatre solutions seront 1, 1, −1 + √−2, −1−√−2.17 This notation was
adopted by many mathematicians, including Newton, Wallis, and Euler. As

17 Invention nouvelle en l’algèbre (The new invention in algebra), 1629, ff. FA and FB.
See Cajori, A history of mathematical notations, II, 1929, p. 127.
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for the word, “imaginary” that we use to this day, it was originally introduced
by René Descartes (1596–1650) in La Géométrie of 1637 as follows [p. 380]:

Neither the true nor the false [negative] roots are always real; but sometimes
only imaginary.18

For a long time this would be the word to describe what we now call complex
numbers. Acceptance was one thing but understanding was slower in coming,
and mathematicians were puzzled by the meaning of imaginaries. Newton
referred to imaginary roots as radices impossibiles,19 and Leibniz, in a more
literary mood, expressed himself as follows:

Therefore, an elegant and admirable way out is found in that miracle of
Analysis, that portent of the ideal world, almost Amphibian between Being
and non-Being, that we call an imaginary root.20

3.4 HIGHER-ORDER ROOTS OF COMPLEX NUMBERS

More than a century and a half passed since the publication of Bombelli’s
l’Algebra until a method to compute the nth roots of complex numbers was
made available. It was developed by Abraham de Moivre (1667–1754), a
French mathematician who resided in England for religious reasons since the
revocation of the Edict of Nantes protecting Huguenots.

It appeared in a paper of 1739,21 in which he considered four problems.
The first does not refer to complex numbers, the second deals with the extrac-
tion of cube roots, and the third was “To extract the Root, whose Index is n,
of the impossible Binomial a+√−b.” Note that n must be a positive integer
and that b > 0 if the “impossible binomial” is what we now call a complex

18 “Au reste tant les vrayes racines que les fausses ne sont pas tousiours reelles; mais
quelquefois seulement imaginaires.” In The geometry of René Descartes, translated by
Smith and Latham, 1954, pp. 174–175. Also in Hawking, ed., God created the integers.
The mathematical breakthroughs that changed history, 2005, p. 345.

19 Arithmetica universalis, 1707, p. 242.
20 “Itaque elegans et mirabile effugium reperit in illo Analyseos miraculo, idealis mundi

monstro, pene inter Ens et non-Ens Amphibio, quod radicem imaginariam apellamus.” In
“Specimen novum analyseos pro scientia infiniti, circa summas & quadraturas,” 1702 =
Opera mathematica, p. 378 = Gerhardt, Leibnizens Mathematische Schriften, Sec. 2, I,
No. XXIV, p. 357.

21 “De reductione radicalium ad simpliciores terminos, seu de extrahenda radice qua-
qunque data ex binomio a +√+b, vel a +√−b , Epistola,” 1739.
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Abraham de Moivre in 1736
Portrait by Joseph Highmore, engraving by John Faber.

From Florence Nightingale David, Games, Gods and Gambling.
Charles Griffin, London and Hafner Publishing Co., New York, 1962.

number. Then he stated his solution, which needs more than interpretation, as
follows [p. 475]:

Let that Root [the nth root of a+√−b ] be x+√−y ; then making n
√

aa + b =
m; and also making

n− 1

n
= p, describe, or imagine describing, a circle,

whose Radius is
√

m , in which take some arc A, whose Cosine is
a

mp
; let

C be the whole circumference. Take to the same Radius, the Cosines of the
Arcs

A

n
,

C − A

n
,

C + A

n
,

2C − A

n
,

2C + A

n
,

3C − A

n
,

3C + A

n
, &c.

Until the number of them [the Cosines] equals the number n; this done,
thereupon; these Cosines will be so many values of the quantity x; as for the
quantity y, it will always be m− xx.
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Let us admit at the outset that this is just a statement without proof, possibly
because de Moivre had just presented a fully detailed discussion of the partic-
ular case n = 3 as his second problem, and felt entitled to omit the details in
the general case.

In any event, the equation defining p seems to contain a typo. If, instead,
we define p = (n− 1)/2, we can interpret the result in present-day notation.
If we write z = a + i

√
b and recall the definition of m, then

|z| =
√

a2 + b = √mn

and
arg z = arccos

a

|z| = arccos
a√
mn

.

For de Moivre, as for many of his predecessors and contemporaries, the Cosine
of an arc A was what we now denote by R cos A, where R is the radius of the
circle, in this case

√
m. Then, his choice of A is such that

√
m cos A = a

mp
,

and it follows that

A = arccos
a

mp
√

m
= arccos

a

mn/2
= arg z.

This clears up the nature of the arc A, and by C de Moivre must have meant
2π , not the whole circumference of the circle with radius

√
m.

There is a shortcoming and a flaw in de Moivre’s solution. Only complex
numbers in the upper half-plane are of the form a+√−b if b > 0, so that the
roots of a−√−b must be found by a similar method. This is the shortcoming,
and the flaw is to assume that all the roots of a number in the upper half-plane
are of the form x +√−y with y > 0. Actually, some of the roots are of the
form x−√−y, as shown by the simple case of a+√−b = 0+√−1. In this
case, A = 1

2 π , and n = 3, and the three arcs in de Moivre’s method are

1
2 π

3
= π

6
,

2π − 1
2 π

3
= 3π

6
, and

2π + 1
2 π

3
= 5π

6
,

The cosine of the second arc is zero, which yields x = 0 and y = 1− x2 = 1.
This gives the complex number 0+√−1, which is not a cube root of 0+√−1.
Instead, the desired cube root is 0 − √−1 (in our terms, −i is a cube root
of i). De Moivre could have easily avoided these problems with a change of
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notation; for instance, using a + b
√−1 instead of a +√−b and allowing b

to be negative.
The preceding explanation notwithstanding, it is a fact that de Moivre never

stated the nth roots of a complex number in a fully explicit form. Euler got
closer when ten years later, in 1749, he submitted a paper in which he posed
a more ambitious problem than that of de Moivre:22

Problem 1

79. An imaginary quantity [meaning complex] being raised to a power whose
exponent is any real quantity, �nd the imaginary value that results.

His method of solution is based on a formula that he had proved in his
Introductio,23 so we present this first. Once he was done with series expan-
sions for exponentials and logarithms in Chapter VII, he turned his attention to
“transcendental quantities derived from the circle” in the next chapter. In Arti-
cles 127 to 131, Euler introduced the notation that he would use—essentially
the modern notation—and then gave a number of trigonometric identities.
Next he evaluated the product [Art. 132]

(cos. y +√− 1. sin. y)(cos. z+√− 1. sin. z)

= cos. y cos. z− sin. y sin. z+√− 1.(sin. y cos. z+ cos. y sin. z)

= cos. (y + z)+√− 1. sin. (y + z),

which we have reproduced keeping his notation but abbreviating his writing,
and similarly,

(cos. y−√−1. sin. y)(cos. z−√−1. sin. z) = cos. (y+z)−√−1. sin. (y+z).

These give [Art. 133]

(cos. z±√− 1. sin. z)2 = cos.2z±√− 1. sin.2z,

and, in general, the formula

(cos. z±√− 1. sin. z)n = cos.nz±√− 1. sin.nz

22 “Recherches sur les racines imaginaires des équations,” 1749, pub. 1751. References
will be by article number so that any of the references listed in the bibliography can be used.
The stated problem and its solution are in Art. 79. In Art. 93 he considered the general
problem of raising a complex number to a complex power.

23 Introductio in analysin in�nitorum, 1748. We shall refer to the Introductio by article
number rather than by page, so that the reader can refer to any available edition.
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for any positive integer n.
If we are permitted a digression that will tie some loose ends in our ear-

lier discussion of trigonometry, Euler had stated the following in the second
paragraph of Chapter VIII [Art. 126]:

Let us therefore stipulate that the Radius of the Circle or total Sine be = 1,
. . . let π = the Semicircumference of the Circle whose Radius = 1, or
[equivalently] π will be the length of the Arc of 180 degrees.24

It was with these words that Euler’s imposing mathematical authority sealed
the value of the trigonometric sinus totus to be 1 from that point on.25 How-
ever, he was not being original in this selection, for it had already been made
byAbu’l Wafa and Joost Bürgi, but it is almost certain that Euler was not aware
of this. With this choice of the radius equal to 1, the trigonometric lengths
effectively became trigonometric ratios, and soon, in the rest of Euler’s work,
trigonometric functions. In this manner, trigonometry disappeared as an in-
dependent branch of mathematics to become, as in the rest of this section, a
part of mathematical analysis.

Before moving ahead, several comments are in order about the last equa-
tion. First, it should be pointed out that Euler was the first to consistently
write

√− 1 for the imaginary unit, and that later he introduced the current
symbol i for it.26 It will be convenient to use this new symbol from now on
even if Euler himself did not until much later, and, since the periods in the
abbreviations for sine and cosine are no longer in use, we shall omit them
from now on and rewrite the previous equation as

(cos z± i sin z)n = cos nz± i sin nz.

Finally, it turns out that this formula was known to de Moivre, although he
never wrote it explicitly like this. The closest he got is as follows (to be
explained below):27

24 “Ponamus ergo Radium Circuli seu Sinum totum esse = 1, . . . ita ut sit π = Semi-
circumferentiæ Circuli, cujus Radius = 1, seu π erit longitudo Arcus 180 graduum.”

25 A complete translation of Articles 126, 127, 132 and 133 is included in Calinger,
Classics of Mathematics, pp. 494–495.

26 With the words “formulam
√ − 1 littera i in posterum designabo” (in what follows I

denote the formula
√−1 by the letter i) in “De formulis differentialibus angularibus maxime

irrationalibus, quas tamen per logarithmos et arcus circulares integrare licet,” presented to
theAcademy of Saint Petersburg on May 5, 1777, but first published in his book Institvtionvm
calcvli integralis, 2nd. ed., IV, 1794, p. 184.

27 “De sectione anguli,” 1722, p. 229.
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Let x be the Versed Sine of any Arc whatever.
t the Versed Sine of another Arc.
1 the Radius of the Circle.

And let the formerArc be to the latter as 1 to n, Then, assume two Equations
which may be regarded as known,

1− 2zn + z2n = −2znt

1− 2z+ zz = −2zx.

Eliminate z, there will arise an Equation by which the Relation between
x & t will be determined.

Regardless of the possible meaning of z (it is not essential for our purposes),
recall that the versed sine of ϕ is 1 − cos ϕ. Then let x = 1 − cos ϕ and
t = 1− cos nϕ. Solving the quadratic equations

1− 2zn + z2n = −2zn(1− cos nϕ) and 1− 2z+ z2 = −2z(1− cos ϕ)

for zn and z gives

zn = cos nϕ ±
√

cos2 nϕ − 1 and z = cos ϕ ±
√

cos2 ϕ − 1.

It follows that
(cos ϕ ± i sin ϕ)n = cos nϕ ± i sin nϕ.

Because it was implicitly contained in de Moivre’s work, this equation has
been known as de Moivre’s formula since the nineteenth century.

But of course, Euler went further to generalize the validity of this equation.
After restating the fundamental equation as

(cos ϕ + i sin ϕ)m = cos mϕ + i sin mϕ

in his 1749 paper [Art. 85], he added:

But that the same formula is valid also, when m is any [real] number, differ-
entiation after having taken logarithms will show it beyond a doubt.

What this shows is that both sides of de Moivre’s formula have the same
derivative with respect to ϕ, and since they are equal for ϕ = 0 they must be
equal for all ϕ. Thus, de Moivre’s formula is valid for any real exponent, and,
what is more, Euler used it.



Section 3.4 Higher-Order Roots of Complex Numbers 179

He had begun the solution of Problem 1 in Art. 79 by writing (a+ bi)m =
M + Ni, and his goal was to find M and N . First he put√

(aa + bb) = c,

and then he stated: “let us look for an angle ϕ such that its sine is = b/c and
the cosine = a/c,” which if found would allow us to write

a + bi = c(cos ϕ + i sin ϕ).

Here ϕ can be replaced by ϕ+2kπ , k any integer (Euler did not write the k, he
just spelled out a few of these angles and then wrote “etc.”), because their sines
and cosines “are the same” as for ϕ. Then, using de Moivre’s formula (whose
general proof he postponed until Art. 85), the proposed power becomes

(a + bi)m = cm(cos ϕ + i sin ϕ)m = cm(cos mϕ + i sin mϕ).

From this he concluded that

M = cm cos mϕ and N = cm sin mϕ.

After finding this solution, Euler stated five corollaries. The first two are
useless today, and the third stated that if m is an integer then (a+bi)m has only
one value because all the angles involved (namely, ϕ + 2kπ) have the same
sine and cosine [Art. 82]. The fourth [Art. 83] is of interest to us, asserting
that if m is of the form μ/ν, where μ and ν are positive integers, then (a+bi)m

will have exactly ν values, which essentially solves the problem of finding the
roots of complex numbers. If m = 1/n, where n is a positive integer, and if
we combine all the possible values of M and N in a single formula (which
Euler did not do), we have

n
√

a + bi = n
√

c

(
cos

ϕ + 2kπ

n
+ i sin

ϕ + 2kπ

n

)
.

Equivalently, this formula can be written using ϕ − 2kπ instead of ϕ + 2kπ .
In either case, the only distinct values are for k = 0, 1, . . . , n− 1. Finally, the
fifth corollary [Art. 84] states that if m is irrational, (a + bi)m “will have an
infinite number of different values.”

Now we can return to Cardano’s formula, but choosing the cubic from
Bombelli’s proof for the Cubo equale a Tanti e numero, namely x3 = 6x + 4.
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This is easier for hand calculation than x3 = 15x + 4, and when solved by
Euler via Cardano’s rule yielded the solution 28

x = 3
√

2+ 2i + 3
√

2− 2i .

At this point, Euler added: “which cannot be expressed otherwise.” This is
surprising because it is easy to express it “otherwise” using the formula just
derived to find complex roots. If a+bi = 2+2i, it is clear that c = √4+ 4 =√

8 and cos ϕ = sin ϕ = 2/
√

8 = 1/
√

2, so that ϕ = π/4. Then

3
√

c = 3

√√
8 =

√
3
√

8 =
√

2 ,

and the three cube roots of a + bi are

√
2
(

cos
π

12
+ i sin

π

12

)
,

√
2
(

cos
π/4+ 2π

3
+ i sin

π/4+ 2π

3

)
=
√

2
(

cos
3π

4
+ i sin

3π

4

)
,

and
√

2
(

cos
π/4+ 4π

3
+ i sin

π/4+ 4π

3

)
=
√

2
(

cos
17π

12
+ i sin

17π

12

)
.

Similarly, but using ϕ = −π/4, ϕ − 2π , and ϕ − 4π , the three cube roots of
2− 2i are

√
2
[

cos
(
− π

12

)
+ i sin

(
− π

12

)]
=
√

2
(

cos
π

12
− i sin

π

12

)
,

√
2
[

cos
(
− 3π

4

)
+ i sin

(
− 3π

4

)]
=
√

2
(

cos
3π

4
− i sin

3π

4

)
,

and
√

2
[

cos
(
− 17π

12

)
+ i sin

(
− 17π

12

)]
=
√

2
(

cos
17π

12
− i sin

17π

12

)
.

Hence, the three solutions provided by Cardano’s formula are

√
2
(

cos
π

12
+ i sin

π

12

)
+
√

2
(

cos
π

12
− i sin

π

12

)
= 2

√
2 cos

π

12
,

28 Vollständige Anleitung zur Algebra, 1770, Second Part, First Section, Chapter 12, Ar-
ticle 188.
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√
2
(

cos
3π

4
+ i sin

3π

4

)
+
√

2
(

cos
3π

4
− i sin

3π

4

)
= 2

√
2 cos

3π

4
= −2,

and
√

2
(

cos
17π

12
+ i sin

17π

12

)
+
√

2
(

cos
17π

12
− i sin

17π

12

)
= 2

√
2 cos

17π

12
.

If we now use the formula cos(α ± β) = cos α cos β ∓ sin α sin β, we obtain

cos
π

12
= cos

(
π

3
− π

4

)
= 1

2

√
2

2
+
√

3

2

√
2

2
= 1+√3

4

√
2

and

cos
17π

12
= cos

(
π

4
+ 7π

6

)
=
√

2

2

(
−
√

3

2

)
−
√

2

2

(
− 1

2

)
= 1−√3

4

√
2 ,

and then the three solutions of x3 = 6x+ 4 become 1+√3,−2, and 1−√3.
All three are real, and this represents a triumph for imaginary numbers. From
this moment on they could not be denied.

3.5 THE LOGARITHMS OF COMPLEX NUMBERS

To lay the ground for obtaining the logarithms of complex numbers, we re-
turn to the Introductio. In Article 134 Euler deduced the following series
expansions for the sine and the cosine, using the letter v for the variable:

cos v = 1− v2

1 · 2 +
v4

1 · 2 · 3 · 4 −
v6

1 · 2 · 3 · 4 · 5 · 6 + &c., &

sin v = v − v3

1 · 2 · 3 +
v5

1 · 2 · 3 · 4 · 5 −
v7

1 · 2 · 3 · 4 · 5 · 6 · 7 + &c.29

A few paragraphs later, Euler gave formulas for cos v and sin v in terms of
exponentials, and from these he deduced his now famous formula [Art. 138]

eiv = cos v + i sin v, 30

29 This was unnecessary, since these series were obtained by Newton in 1665 and first
made public in 1669 in De analysi per æquationes numero terminorum in�nitas. The sine
and cosine series are on page 17 of Jones’ edition and on pages 236 and 237 of Whiteside’s
1968 edition. They appeared in De analysi for the first time in Europe, although they were
known in India since the fourteenth century (see Section 4.3).

30 Since it is famous, here it is in Euler’s original notation: e+v
√−1 = cos.v+√−1. sin.v.
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which is extremely useful in many practical applications. It is universally
known today as Euler’s formula or Euler’s identity. In proving this result
Euler was original because he was not aware of an equivalent result that was
obscurely embedded in the one and only paper published by the English math-
ematician Roger Cotes (1682–1716),31 the man of whom Newton said: “If He
[Cotes] had lived we might have known Something.” 32

The argument that Euler used to deduce this formula in the Introductio is
rather dirty. Perhaps no less dirty but definitely briefer is a third proof (his
second requires knowledge of integral calculus) that he gave in 1749.33 Here
he put an imaginary number iϕ in place of the real variable x in the series
previously obtained for the exponential function, taking it as an act of faith
that [p. 166; 219]

eiϕ = 1+ iϕ + (iϕ)2

1 · 2 +
(iϕ)3

1 · 2 · 3 +
(iϕ)4

1 · 2 · 3 · 4 +
(iϕ)5

1 · 2 · 3 · 4 · 5 + etc.

= 1+ iϕ − ϕ2

1 · 2 − i
ϕ3

1 · 2 · 3 +
ϕ4

1 · 2 · 3 · 4 + i
ϕ5

1 · 2 · 3 · 4 · 5 − etc.

Actually, Euler did not write eiϕ as we have done. Rather, in the vein of what

31 “Logometria,” 1714. The words “obscurely embedded” are explained by the form in
which the formula appears on page 32, as a small statement in the midst of a number of
geometric constructions: “Nam si quadrantis circuli quilibet arcus, radio CE descriptus,
sinun habeat CX sinumque complementi ad quadrantem XE; sumendo radium CE pro
Modulo, arcus erit rationis inter EX + XC

√−1 & CE mensura ducta in
√−1.” This

can be translated as follows: “For instance if any arc of a quadrant of a circle, described
with radius CE [with the center at E], has sinus CX and sinus of the complement to the
quadrant [cosinus] XE; taking the radius CE as modulus, the arc will be the measure of the
ratio between EX +XC

√−1 & CE multiplied by
√−1.” For Cotes, if A, B, and M are

positive numbers, “the measure of the ratio A over B modulo M” meant Ml(A/B), where l
denotes the natural logarithm. Thus, if R = CE and if the arc is denoted by Rθ , the ratio
(EX +XC

√−1)/CE equals cos θ + i sin θ , and Cotes’ statement becomes iR l(cos θ +
i sin θ) = Rθ . Except for the obvious sign error, this is Euler’s formula. This paper
is combined with other previously unpublished works in Cotes’ posthumous publication
Harmonia mensurarum, 1722, pp. 4–41. The stated quotation is on page 28 of Harmonia
mensurarum and page 170 of Gowing’s translation.

32 According to a handwritten note by Robert Smith, editor of Harmonia mensurarum, on
his own copy of this book.

33 “De la controverse entre Mrs. Leibnitz et Bernoulli sur les logarithmes négatifs et
imaginaires,” 1749, pub. 1751. Page references below are to the original paper first and,
after a semicolon, to the Opera omnia.
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he had written in Art. 115 of the Introductio (see page 139), he wrote(
1+ iϕ

n

)n

,

where n is infinitely large. Putting this little detail aside, not only did he dare
to replace the variable in the series for the exponential with an imaginary num-
ber, but he rearranged the infinitely many resulting terms at will. Implicitly
gathering all the real terms together and then all the imaginary ones, and in
view of the infinite series previously obtained for the sine and the cosine, he
obtained

eiϕ = cos ϕ + i sin ϕ.

We should say in passing that, besides its usefulness, Euler’s formula has an
interesting consequence that has always fascinated mathematicians. Putting
ϕ = π, we obtain eiπ = −1, which is usually rewritten as

eiπ + 1 = 0.

This is said to be the most beautiful formula of mathematics, relating the
five most important numbers, 0 and 1 from arithmetic, π from geometry, i

from algebra, and e from analysis, by three of the most important operations:
addition, multiplication, and exponentiation

As for the logarithms of complex numbers, Euler already knew that there
was an infinitude of them for any number, as mentioned at the end of Chapter 2,
and now posed the problem as follows [p. 165; 218]:

Problem III

Determine all the logarithms of any imaginary [complex] quantity.

His solution consisted in taking a nonzero complex number a+ bi, letting√
(aa + bb) = c, and choosing an angle ϕ whose sine is b/c and cosine a/c.

Then,
a + bi = c(cos ϕ + i sin ϕ),

“or, since c is a positive number, let C be its real logarithm, and we will have”

l(a + bi) = C + l(cos ϕ + i sin ϕ).

At this point we must depart from Euler’s own presentation, which has become
archaic in that it does not use the exponential function or his famous formula
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stated above, lacks rigor by using an “infinite number,” and is way too long. If
we use Euler’s formula instead, as written in the Introductio and as is written
today, and if p is any even integer, then

l(a + bi) = C + l[cos(ϕ + pπ)+ i sin(ϕ + pπ)]

= C + l
[
e(ϕ+pπ)i

]
= C + (ϕ + pπ)i.

This last line is the result as stated by Euler [p. 167; 220]. To rewrite it in
current terminology, put z = a + bi, in which case c = |z|, C = l(c), and
ϕ = arg z. Then we have

l(z) = l(|z|)+ (ϕ + pπ)i,

where p is any even integer, giving infinitely many values of the logarithm of
every complex number z.

If z is real and positive, only one value of its logarithm is real (the one for
p = 0, since ϕ = 0). But Euler easily concluded that “all the logarithms of an
imaginary [complex] quantity are also imaginary” [p. 167; 220]. In particular,

l(−1) = l(1)+ (π + pπ)i = (1+ p)πi,

or, as Euler wrote it (but without using the parentheses) [pp. 168; 221–222],

l(−1) = qπi,

where q is “any odd number.”
In June 1746 Euler wrote a letter to his friend Christian Goldbach, at the

very end of which he revealed an even more surprising find than the logarithms
of imaginaries:34

that the expression
(√− 1

)√−1
has a real value, which in decimal fraction

= 0,2078795763, which to me appears to be remarkable.

The problem of evaluating ii had a long history. The Italian Giulio Carlo
de’Toschi di Fagnano (1682–1766), Johann Bernoulli, and Euler himself be-
fore this time had made some preliminary progress. In 1746 he limited himself

34 In Fuss, Correspondence mathématique et physique de quelques célèbres géomètres
du XVIII ème siècle, tome 1, 1843, p. 383; and on p. 182 of the reprint by Johnson Reprint
Corporation.
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to state the one value given above, but in 1749 he gave the complete solution.
It is very simple to obtain it if we put a = 0 and b = 1 in Euler’s formula for
the logarithm, for this gives C = l(1) = 0 and ϕ = π/2, and then

l(i) =
(

1
2 π + pπ

)
i.

Therefore,
l(ii) = il(i) = −

(
1
2 π + pπ

)
,

so that
ii = e−

1
2 π−pπ ,

“what is all the more remarkable because it is real and includes an infinitude
of different real values.”35

But in spite of Euler’s enormous success with complex numbers, their ac-
ceptance was slow, very slow. Solving the cubic was no longer fashionable,
several other trigonometric series had been obtained without the help of com-
plex numbers and—more importantly—what were these numbers and what
could their infinitely many logarithms mean?

3.6 CASPAR WESSEL’S BREAKTHROUGH

It may be said that complex numbers made their most important inroads
into mathematical thought through the back door; not through their algebraic
prowess but through their geometric representation. After all, if they can be
represented geometrically they must exist. The first to try his hand at such a
task was John Wallis (1616–1703), in Chapters LXVI through LXVIII of his
Algebra of 1685, but his efforts did not amount to much of any use.

35 The last formula and the quoted statement are from Art. 97 of “Recherches sur les
racines imaginaires des équations” (except that Euler wrote

√ − 1 instead of i and 2λ in
place of p), but we have not presented his own proof because the method of using logarithms
directly is much briefer and more relevant at this moment. His own proof begins by setting
[Art. 93]

(a + bi)m+ni = x + yi,

where a, b, m, and n are assumed to be given. Then taking logarithms, finding the total
differentials of both sides, and separating real and imaginary parts leads to two equations
in the unknowns x and y. Solving them gives

x = cme−nϕ cos(mϕ + nl(c)) and y = cme−nϕ sin(mϕ + nl(c)),

where c and ϕ are as above. The result follows by putting a = m = 0, b = n = c = 1, and
ϕ = 1

2 π + pπ .
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On March 10, 1797, Caspar Wessel (1745–1818), a land surveyor (born in
Vestby, in what today is Norway but was then part of Denmark), presented a pa-
per to the Royal Danish Academy of Sciences, On the analytic representation
of direction, which was published two years later, essentially containing the
idea of representing each complex number by a vector in the plane anchored at
the origin. On this basis, he then gave laws of addition and multiplication that
were geometric in nature. The first is just the familiar rule for vector addition
in the plane [§1]:36

Two right lines [vectors] are added if we write them in such a way that the
second line begins where the first one ends, and then pass a right line from
the first to the last point of the united lines; this line is the sum of the united
lines.

He thereby initiated the vector calculus. But the multiplication law, which we
shall explore next, was Wessel’s main contribution [§4]:

Firstly, the factors shall have such a direction that they both can be placed in
the same plane with the positive unit.

Secondly, as regards length, the product shall be to one factor as the other
factor is to the unit. And,

Finally, if we give the positive unit, the factors, and the product a common
origin, the product shall, as regards its direction, lie in the plane of the unit
and the factors and diverge from the one factor as many degrees, and on the
same side, as the other factor diverges from the unit, so that the direction
angle of the product, or its divergence from the positive unit, becomes equal
to the sum of the direction angles of the factors.

Since this write-up is beyond our modern endurance for verbosity (or perhaps
it is a shortage of modern patience with detailed description), we can rephrase
it as follows:

• We consider two vectors from the origin coplanar with the one from
(0, 0) to (0, 1).

• The length of their product is defined to be the product of their lengths,
and

36 The quotations from Wessel’s paper included here are from the translation by Martin A.
Nordgaard in Smith, A source book in mathematics, pp. 55–66. They are by section number
rather than by page. For the original paper and other translations, see the bibliography.
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• The angle of their product (counterclockwise from the positive x-axis)
is the sum of the angles of the factors.

So far this looks like the beginning of vector calculus—which it is—but
then Wessel stated the following [§5]:

Let+1 designate the positive rectilinear unit and+ε a certain other unit per-
pendicular to the positive unit and having the same origin; then the direction
angle of+1 will be equal to 0◦, that of−1 to 180◦, that of+ε to 90◦, and that
of −ε to −90◦ or 270◦. By the rule that the direction angle of the product
shall equal the sum of the angles of the factors, we have: (+1)(+1) = +1;
(+1)(−1) = −1; (−1)(−1) = +1; (+1)(+ε) = +ε; (+1)(−ε) = −ε;
(−1)(+ε) = −ε; (−1)(−ε) = +ε; (+ε)(+ε) = −1; (+ε)(−ε) = +1;
(−ε)(−ε) = −1.

From this it is seen that ε = √−1 ; and the divergence of the product is deter-
mined such that not any of the common rules of operation are contravened.

In this fashion, Wessel introduced what would eventually become known
as the complex plane, while using the letter ε instead of i, and he also proved
the formula

(a + εb)(c + εd) = ac − bd + ε(ad + bc)

from his multiplication rule [§10] and the usual rule for division [§12]:

a + εb

c + εd
= ac + bd + ε(bc − ad)

c2 + d2
.

We should observe that Wessel’s geometric multiplication rule has the
advantage over the usual formula (a + bi)(c + di) = ac − bd + (ad + bc)i,
reverting now to i instead of ε, from a computational point of view. For
instance, which rule would you choose to evaluate (0.6 + 0.5i)20, even if a
hand-held calculator were allowed? Using the latter formula nineteen times
seems rather forbidding, but noting that the length of 0.6+ 0.5i is√

0.62 + 0.52 = 0.781024968

and that its direction angle is

arccos
0.6

0.781024968
= arccos 0.76822128 = 39.8055711◦,

we have
0.78102496820 = 0.007133429
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and

20× 39.8055711◦ = 796.111422◦.
Then

(0.6+ 0.5i)20 = 0.007133429 (cos 796.111422◦ + i sin 796.111422◦)
= 0.001712269+ i0.006924879.

This illustrates dramatically the power of Wessel’s multiplication law.
In the same manner, Wessel discovered that the direction angle correspond-

ing to the mth root of a complex number is the original direction angle divided
by m, and gave the already known formula for the mth roots [§15]. In the
process, he rediscovered de Moivre’s formula once more, even for fractional
exponents [§13]. In his isolation, as a nonmathematician, he must have been
unaware of these known facts. The reader is invited to use this method to evalu-
ate the cube roots contained in the solution of Bombelli’s cubic, x3 = 15x+4.

Although his paper was published, in Danish, in the Academy’s memoirs
two years after Wessel’s oral presentation, it remained largely ignored until it
was rediscovered and its value recognized in 1895.

Meanwhile, a similar geometric representation of complex numbers was
privately printed, but not published, by an amateur mathematician residing
in Paris, Robert Argand (1768–1822), in a booklet that did not even include
the author’s name.37 It also remained ignored until, by a happy series of
circumstances, Argand’s work was rediscovered by Jacques Français (1775–
1883), a professor at Metz, who published a summary in 1813 together with a
plea for the unknown author to reveal his name.38 Argand answered the plea,
and his name was printed in the next issue.39

Argand posed the problem and the difficulty in solving it as follows [Art. 3]:
to find 40

37 Essai sur une manière de représenter les quantités imaginaires, dans les constructions
géométriques, privately printed in 1806 (according to Argand). The often repeated partic-
ulars about Argand’s name, biographical details, and occupation are now questionable. In
this regard see Schubring, “Argand and the early work on graphical representation: New
sources and interpretations,” 2001, pp. 130–134.

38 “Philosophie mathématique. Nouveaux principes de géométrie de position, et in-
terprétation géométrique des symboles imaginaires,” 1813, p. 71.

39 “Philosophie mathématique. Essay sur une manière de représenter les quantités imagi-
naires dans les constructions géométriques,” 1813, p. 133.

40 This translation is from Hoüel’s second edition, 1874, p. 6. There is another translation
in Hardy, Imaginary quantities: Their geometrical interpretation, 1881, p. 23.
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the quantity x that satisfies the proportion

+1 : +x : : +x : −1

[that is, +1/x = x/(−1)]. We stop here . . . because x cannot be made equal
to any number, either positive or negative . . .

He provided the solution [Art. 4] with the aid of the following figure (from
which we have eliminated twelve additional radii that are not necessary for our

purposes), in which the directed distance KA represents+1 and KI represents
−1. Then he stated that

the condition [the proportion mentioned above] to be satisfied will be met
by KE, perpendicular to the above and with the direction from K to E,
expressed in like manner by KE. For the direction of KA is to that of KE

as is the latter to that of KI . Moreover, we see that this same condition is
equally met by KN , as well as by KE, these two last quantities being related
to each other as+1 and−1. They are, therefore, what is ordinarily expressed
by +√−1, and −√−1.

In other words, it is possible to turn 1 into−1 if we rotate 1 counterclockwise
in the plane by 90◦ and then by another 90◦. The same is accomplished if we
multiply 1 by

√−1 and then multiply the result again by
√−1. In this way

we can think of
√−1 as a counterclockwise rotation of 1 by 90◦.

Argand’s ideas were ignored as much as Wessel’s by the mathematical
community of the times, but once complex numbers were accepted there was
frequent mention of le diagramme d’Argand in France.
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Two additional contributions of 1828, one French41 and one English,42

have remained largely ignored since their publication even to this day.

3.7 GAUSS AND HAMILTON HAVE THE FINAL WORD

Carl Wilhelm Friedrich Gauss (1777–1855) was a more influential exponent of
the geometric representation of complex numbers. In a letter of December 18,

Carl Friedrich Gauss in 1828
Portrait by Siegfried Detlev Bendixen.

41 Mourey, La vrai Théorie des quantités négatives et des quantités prétendues imagi-
naires, 1828, 1861.

42 Warren, A treatise on the geometrical representation of the square roots of negative
numbers, 1828.
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1811, to the German astronomer Friedrich Wilhelm Bessel (1784–1846), of
the Königsberg observatory, he stated that 43

we can get a feeling for the total Realm of both Quantities, real and imaginary
Quantities by means of an infinite Plane, wherein each Point, determined by
an Abscissa = a and an Ordinate = b, represents as it were the Quantity
a + bi.

But he published this view for the first time in a paper of 1832, stating that44

any complex quantity can be represented by some point in an infinite plane,
by which it is readily referred to real quantities, one may know the complex
quantity x + iy by the point, whose abscissa = x, ordinate . . . = y.

On both occasions he described a complex number as a point, not as a vector
as Wessel and Argand had done, and on the same page of the 1832 paper he
defined subtraction and multiplication in the expected way. He had already
defined division algebraically.45

It was at this time that Gauss started “by habit denoting by i the imaginary
quantity

√−1,” 46 and that, referring to numbers of the form a+bi, stated “such
numbers we call complex numbers,” 47 as opposed to imaginary numbers. The
name of Gauss carried sufficient authority to establish the geometric ideas on
complex numbers in mathematics, and, since then and with justifiable pride,
many German mathematicians have made reference to die Gaussische Ebene.
In the words of Einar Hille, the “Norwegians with becoming modesty avoid
claiming det Wesselske planet.” 48

The geometric approach to complex numbers was rejected by Sir William
Rowan Hamilton (1805–1865), of Dublin, who felt that algebra must be sepa-

43 Briefwechsel zwischen Gauss und Bessel, 1880, pp. 156–157=Werke, 8, 1900, pp. 90–
91 =Werke, 101, 1917, p. 367.

44 “Theoria residuorum biquadraticorum. Commentatio secunda,” 1832, Art. 38 =
Werke, 2, 1863, p. 109.

45 “Theoria residuorum biquadraticorum. Commentatio secunda,” Art. 32 = Werke, 2,
p. 104.

46 . . . denotantibus i, pro more quantitatem imaginariam
√−1, . . . “Theoria residuorum

biquadraticorum. Commentatio secunda,” Art. 30 = Werke, 2, p. 102. Possibly, the first
appearance of i in print since Euler introduced this symbol was in Gauss’ Disquisitiones
arithmeticæ, 1801, Art. 337= Werke, 1, 1863, p. 414, where he stated scribendo brevitatis
caussa i pro quantitate imaginaria

√−1 (for the sake of brevity writing i for the imaginary
quantity

√− 1).
47 Tales numeros vocabimus numeros integros complexos [integros meaning complete],

“Theoria residuorum biquadraticorum. Commentatio secunda,” Art. 30= Werke, 2, p. 102.
48 Hille, Analytic function theory, 1, 1959, p. 18.
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Sir William Rowan Hamilton
From Smith, Portraits of Eminent Mathematicians, II.

rate from geometry. In a paper written and read at the Irish Academy in 1833
and 1835, but published two years later,49 he differed from other authors

in not introducing the sign
√−1 until he has provided for it, by his Theory

of Couples, a possible and real meaning, as a symbol of the couple (0, 1).50

Hamilton preferred to think of a complex number as a couple of real numbers
(a, b).51 In the second part of his paper, “Theory of conjugate functions, or
algebraic couples” (the part written in 1833, which starts on page 393; 76; 87),

49 “Theory of conjugate functions or algebraic couples; with a preliminary and elementary
essay on algebra as a science of pure time,” 1837. Page references are to the three references
given in the bibliography in that order, separated by semicolons.

50 End of the last footnote in the “General introductory remarks.”
51 Actually, Hamilton worked with several kinds of couples: moment-couples, step-

couples, number couples, limit-couples, logarithmic function-couples, etc. We shall concern
ourselves with number couples only.
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he set down the following basic definitions [Art. 6, p. 403; 83; 95]:

(b1, b2)+ (a1, a2) = (b1 + a1, b2 + a2);
(b1, b2)− (a1, a2) = (b1 − a1, b2 − a2);

(b1, b2)(a1, a2) = (b1, b2)× (a1, a2) = (b1a1 − b2a2, b2a1 + b1a2);
(b1, b2)

(a1, a2)
=
(

b1a1 + b2a2

a2
1 + a2

2

,
b2a1 − b1a2)

a2
1 + a2

2

)
.

He added that these definitions “are really not arbitrarily chosen, and that
though others might have been assumed, no others would be equally proper.”
Of course, the definition of multiplication, for instance, must have been in-
spired by what we want to obtain through the traditional manipulations:

(b1 + b2i)(a1 + a2i) = b1a1 + b2a1i + b1a2i + b2a2i2

= b1a1 + (b2a1 + b1a2)i − b2a2

= b1a1 − b2a2 + (b2a1 + b1a2)i,

where we have used the fact that i2 = −1.
Then Hamilton showed that addition and multiplication are commutative

and that multiplication is distributive over addition. With these definitions and
laws, he may have started what would later be called modern algebra.

Clearly, the couples of the form (a, 0) can be put in a one-to-one cor-
respondence with the real numbers, and we may write, as Hamilton did,
a = (a, 0) [p. 404; 83; 95]. Then, with his definition of multiplication,
(0, 1)2 = (−1, 0) = −1, so that one can think of (0, 1) as representing the
dreaded

√−1 . Then we have

(a1, a2) = (a1, 0)+ (0, a2) = a1 + a2(0, 1) = a1 + a2
√−1 .

Or, to explain it in his own emphatic words [Art. 13, pp. 417–418; 93; 107],

. . . and then we shall have the particular equation√
(−1, 0) = (0, 1);

which may . . . be concisely denoted as follows,
√−1 = (0, 1).

In the THEORY OF SINGLE NUMBERS, the symbol
√−1 is absurd, and denotes

an IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the THE-

ORY OF COUPLES, the same symbol
√−1 is signi�cant, and denotes a POSSIBLE
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EXTRACTION, or a REAL COUPLE, namely (as we have just now seen) the prin-
cipal square-root of the couple (−1, 0). In the latter theory, therefore, though
not in the former, this sign

√−1 may be properly employed; and we may
write, if we choose, for any couple (a1, a2) whatever,

(a1, a2) = a1 + a2

√−1 ,

interpreting the symbols a1 and a2, in the expression a1+a2
√−1, as denoting

the pure primary couples (a1, 0) (a2, 0), . . .

This formulation as ordered couples really clears any metaphysical worries
posed by complex numbers. It places these numbers on a solid foundation
that the geometric interpretation could not provide.

In 1837, Wolfgang Bolyai, and old university friend of Gauss, wrote him a
letter chastising him for having propagated the geometric theory of complex
numbers, while their foundation should be the real numbers, whose arithmetic
was known. In his reply, Gauss agreed with Bolyai, and claimed that he had
had the same idea and had regarded complex numbers as ordered couples since
1831. While the world at large was readier to accept the geometric approach
than Hamilton’s algebraic one, Bolyai and Gauss knew something that few
others did at the time: that there are geometries other than Euclid’s.

Ten years after the publication of Hamilton’s work on algebraic couples,
Augustin-Louis Cauchy—the creator of complex function theory—stamped
the seal of approval on complex numbers with his adoption of the letter i for√−1 , approximately 300 years after these numbers originated. On the second
page of a paper on “a new theory of imaginaries”52 he stated:

There was no need to torture the spirit to seek to discover what the symbol√−1 , for which the German geometers substitute the letter i, could represent.
This symbol or this letter was, if I can so express myself, a tool, an instrument
of calculation whose introduction into formulas permitted us to arrive more
quickly at the very real solution of questions that had been posed.

52 “Mémoire sur une nouvelle théorie des imaginaires, et sur les racines symboliques des
équations et des équivalences,” 1847 p. 1121 =Œuvres, Ser. 1, X, p. 313.
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INFINITE SERIES

4.1 THE ORIGINS

In the preceding chapters we have seen Newton, Gregory, Euler, and others
freely using infinite series. This terminology, as applied to the object of our
study, was introduced in the last third of the seventeenth century. It probably
appeared in print for the first time in the second of Gregory’s Exercitationes
geometricæ, published in London in 1668. Here, on pages 10 to 12, we
read “infinitæ seriei” twice and “series infinita” four times, but Gregory had
already used “series in infinitum” the year before.1 Newton already used
In�nitam terminorum Seriem (infinite series of terms) in 1669,2 and Jakob
Bernoulli later wrote a Tractatus de seriebus in�nitis that became a classic on
the subject.

But medieval mathematicians, writing in Latin, used the word progressio.
Among the progressions studied at that time, but whose origins go back to
antiquity, there are three that have come to us with names that are still in
use. In current notation, if a and r are constants, these are the arithmetic
progression

a, a + r, a + 2r, a + 3r, . . . ,

the geometric progression
a, ar, ar2, ar3, . . . ,

1 In Vera circvli et hyperbolæ qvadratvra, in propria sua proportionis specìe, inuenta &
demonstrata, 1667, pp. 34–39.

2 On the first page of De analysi per æquationes numero terminorum in�nitas, 1669.

,
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and the harmonic progression

1

1
,

1

2
,

1

3
,

1

4
, · · · .

The name of the last one is due to the interest that the Pythagoreans showed
in music and to their realization that the pitch of a vibrating string doubles,
triples, etc., as the length of the string is shortened to one half, one third, etc.,
of its original length.

We have written these progressions as sequences (using the modern word),
but of course there was an early interest in adding their terms and finding their
sum. Already in an Egyptian papyrus, transcribed from an older work by the
scribe Ahmoses c. 1650 BCE, there is a collection of 84 problems, of which
the 79th simply states

From Robins and Shute, The Rhind mathematical papyrus,
an ancient Egyptian text, 1987, 1998.

which can be translated as 3

The one scale Houses 7
1 2801 Cats 49
2 5602 Mice 343
4 11204 Spelt 2301

Together 19607 Hekat 16807
Together 19607

On the right (left in the papyrus) we have a finite geometric progression, with
a = r = 7 (Ahmoses wrote 2301 ( ) erroneously since 74 = 2401), and its

3 The first line ends with a 7 ( ), both in the translation and in the original, because the
Egyptians wrote from right to left. Spelt is a hard-grain variety of wheat, and a hekat is a
measure of grain just short of 5 liters.
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sum:

7+ 72 + 73 + 74 + 75 = 19607.

The words written to the left of the terms of the progression have no interest
for us and can be disregarded (but originally they may have been intended as
part of a cute riddle, such as “each of seven houses has seven cats, each cat
caught seven mice . . . ,” and so on). The most interesting part of this problem
is the sum of multiples of 2801 in the left part of this problem. Where did the
number 2801 come from, so conveniently chosen that seven (1+ 2+ 4) times
this number is the sum of the progression? If we look at the previous sum,

7+ 72 + 73 + 74 = 2800,

it shows that the original author of this problem knew that 19607 = 7(1 +
2800), and suggests that he obtained the terms of the progression in this
manner:

7 = 7
7+ 72 = 7(1+ 7) = 56

7+ 72 + 73 = 7(1+ 56) = 399
7+ 72 + 73 + 74 = 7(1+ 399) = 2800

7+ 72 + 73 + 74 + 75 = 7(1+ 2800) = 19607.

To us, who can use notation developed over millennia, this shows that if sn

denotes the sum of the first n terms of the progression, then sn+1 = 7(1+ sn).
That is, sn + 7n+1 = 7+ 7sn, from which

sn = 7
7n − 1

7− 1
.

A general formula, containing this as a particular case, was actually demon-
strated in Egypt, and has come to us from the pen of Eucleides of Alexandria
(c. 325 BCE–c. 265 BCE), usually known as Euclid in an English-language
context. Euclid, the great compiler of all Hellenic mathematical knowledge up
to his time, flourished in the pampering conditions at the Museum of Alexan-
dria and wrote at least ten scientific works, most of which have been lost. His
most famous work was The Elements, a work in thirteen books, of which the
first six served as the standard text in geometry for the next two millennia.
Books VII to IX are devoted to arithmetic, and it is in this last book that we
find the following statement:
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Proposition 35.

If as many numbers as we please be in continued proportion, and there be
subtracted from the second and the last numbers equal to the �rst, then, as the
excess of the second is to the �rst, so will the excess of the last be to all those
before it.

It is not difficult to translate Euclid’s verbal description into a form that
is familiar to us and would have been so foreign to him. What Euclid says is
that, if a, ar, ar2, ar3, . . . , arn+1 is a finite geometric progression, then

ar − a

a
= arn+1 − a

a + ar + ar2 + ar3 + · · · + arn
,

which, if we denote the denominator on the right by sn+1, is equivalent to

sn+1 = a
rn+1 − 1

r − 1
.

But we are more interested in infinite sums. The first infinite series ever
summed was

1+ 1

4
+
(

1

4

)2

+ · · · +
(

1

4

)n

+ · · · ,

a feat accomplished by Archimedes of Syracuse (c. 287 BCE–212 BCE) in
the process of performing the quadrature of the parabola, that is, of finding the
area of a parabolic segment such as QP q in the next figure. Archimedes, who
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There is no existing portrait that beyond a doubt represents Archimedes.

had spent quite some time at Alexandria and can be considered a member
of this school, was one of the greatest mathematicians of all times if not the
greatest. His life, on return to Syracuse, was entirely devoted to mathematical
research and to the development of some mechanical inventions. He summed
the series stated above in a series of propositions that he included in a letter to
Dositheos of Pelusium, probably atAlexandria. We shall follow the translation
by Heath.4

By the segment QPq in the previous figure we mean the area between the
arc of parabola QPq and the chord Qq. Archimedes chose a point P so that the
tangent to the parabola at P is parallel to Qq and then considered two points,
R and r in Heath’s notation, located on the parabola at the points where its
tangents (not drawn) are parallel to the chords PQ and Pq, respectively. Then
he proved, in Proposition 21 [p. 248], that the sum of the areas of the smaller
triangles PRQ and P rq is one quarter of the area of the triangle QP q.

4 In The works of Archimedes with The method of Archimedes; reprinted by Dover, 1953,
pp. 233–252. Page references are to this reprint.
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Next he drew, in each smaller parabolic segment left over (such as the
one subtended by the arc from P to R) another triangle whose base is the
chord joining the endpoints of the arc (for instance, the segment PR) and with
a vertex located on the subtending arc at the point where the tangent to the
parabola is parallel to the chosen base (for instance, at the point where the
tangent to the parabola is parallel to PR). As before, the sum of the areas of
these smaller triangles with bases PR and RQ is one quarter of the area of the
triangle PRQ. Continuing in this way, he “exhausted” the original parabolic
segment.5 In our terms, if A denotes the area of the triangle QP q, then the
area of the parabolic segment QP q is the sum

A+ 1

4
A+

(
1

4

)2

A+ · · · +
(

1

4

)n

A+ · · · .

But of course, Archimedes did not express himself in this way. Instead, he
evaluated first a partial sum of this series as follows [p. 249]:

Proposition 23.

Given a series of areas A, B, C, D, . . . , Z, of which A is the greatest, and
each is equal to four times the next in order, then

A+ B + C +D + · · · + Z + 1
3 Z = 4

3 A.

Translated into our notation, this means that for any n,

A+ 1

4
A+

(
1

4

)2

A+ · · · +
(

1

4

)n

A+ 1

3

(
1

4

)n

A = 4

3
A,

so that

1+ 1

4
+
(

1

4

)2

+ · · · +
(

1

4

)n

=
4−

(
1
4

)n

3
.

It is clear, from our present point of view, that as n grows indefinitely,

1+ 1

4
+
(

1

4

)2

+ · · · +
(

1

4

)n

+ · · · = 4

3
,

5 This method of exhaustion to find areas, whichArchimedes perfected and used countless
times, was introduced by Eudoxos of Cnidos (408–355 BCE).



Section 4.1 The Origins 201

which yields the sum of the geometric series for r = 1
4 . Without disregarding

the first area A of the triangle QP q, Archimedes phrased his conclusion as
follows [p. 251]:

Proposition 24.

Every segment bounded by a parabola and a chord Qq is equal to four-thirds
of the triangle which has the same base as the segment and equal height.

But a long time would pass before the general formula for the sum of the
geometric series was obtained, and this was accomplished first in India by
Nilakantha Somayaji (1444–1545). A native of Sri-Kundapura (Trkkantiyur
in the local Malayalam language) in Kerala, on the southern coast of India,
he is chiefly known for his astronomical work Tantrasangraha (A digest of
scientific knowledge), c. 1500, but his masterpiece is the Aryabhatiyabhasya,
a commentary on the Aryabhatiya of Aryabhata.6 Here [1930, p. 106] he
stated and proved the sum of an infinite geometric progression:

Thus the sum of an infinite series, whose later terms (after the first) are got
by diminishing the preceding one by the same divisor, is always equal to the
first term divided by one less than the common mutual divisor.7

In other words,

a + a

r
+ a

r2
+ · · · + a

rn
+ · · · = a

r − 1
.

European scholars were unaware of these developments in India, and
François Viète rediscovered this formula in 1593.8 First he stated a theo-
rem about the sum of a finite number of terms, but without any notation. Next
he gave an explanation using notation, as follows:

Let there be magnitudes [numbers] in continued proportion, of which D is
the largest, X the smallest, & the composition [sum] of all of them is F , and
let the ratio of a larger to the next smaller term be as D is to B. I say that D

is to B, as F minus X is to F minus D.

6 Sastri, Aryabhatiya with the bhashya of Nilakantha, 1930, 1931.
7 Quoted from Sharma, Hindu Astronomy, 2004, p. 222.
8 In Chapter XVII, entitled Progressio Geometrica, of Variorvm de rebvs mathemati-

cis responsorvm, liber VIII, 1593 = Schooten, Francisci Vietæ opera mathematica, 1646,
pp. 397–398. The theorem and equations discussed here are from page 397.
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With these words Viète referred to the progression

D + B + · · · + X = F

(notice that this is the proper order of its terms, since they must decrease from
left to right for it to have a finite sum), and then concluded that

D

B
= F − X

F −D
. 9

Then Viète drew four additional conclusions, of which the first was

This equation has been reproduced photographically to be true to the original,
but it contains a typo. The fraction’s numerator should start with D2, not B2,
and then the equation on the right should be

D2 − BX

D − B
= F,

as is easy to deduce from the previous equation.
Next, Viète considered the case in which the number of terms goes to

infinity:

In truth when the magnitudes are in continued proportion to infinity, X goes
away to nothing.

This means that the term BX can be considered zero when the number of terms
is infinite, and we obtain

D2

D − B
= F, 10

where F is now the sum of the series. If we write D = a and B = ar , in the
notation established above, we obtain the sum of the geometric series as

a

1− r
.

9 He gave no proof of this, and none is necessary because it follows immediately from
Euclid’s formula (in its present-day equivalent, just replace a with D, r with B/D, arn

with X, and the sum in the second denominator with F ).
10 Viète stated this equation in the form (D−B)/D = D/F with the following words: “Vt

differentia terminorum rationis at terminum rationis majorem, ita maxima ad compositam
ex omnibus.”
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The harmonic series did not fare as well. Using the modern word, it is
divergent. The first to give a written proof of this fact was Nicole Oresme
(c. 1323–1382), a professor at the Collège de Navarre in Paris who would
later become dean of the Rouen Cathedral and Bishop of Lisieux in Normandy.
About 1360, he gave the following argument, which we write first in modern
symbols, in Quæstiones super geometriam Euclidis:

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8

+1

9
+ 1

10
+ 1

11
+ 1

12
+ 1

13
+ 1

14
+ 1

15
+ 1

16
+ · · ·

> 1+ 1

2
+ 1

4
+ 1

4
+ 1

8
+ 1

8
+ 1

8
+ 1

8

+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ · · ·

= 1+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ · · · .

Clearly, the sum on the right is not finite. Oresme’s original argument was:11

Add to a magnitude of 1 foot: 1
2
, 1

3
, 1

4 foot, etc.; the sum of which is infinite.
In fact, it is possible to form an infinite number of groups of terms with sum
greater than 1

2 . Thus, 1
3 + 1

4 is greater than 1
2 [quia 4a et 3a sunt plus quam

una medietas], similarly 1
5+ 1

6+ 1
7+ 1

8 is greater than 1
2
, 1

9+ 1
10+ 1

11+· · ·+ 1
16

is greater than 1
2
, and so in in�nitum.

4.2 THE SUMMATION OF SERIES

Gottfried Wilhelm Leibniz (1646–1716), a lawyer turned diplomat, arrived
in Paris in 1672 on a (failed) diplomatic mission on behalf of the elector
of Mainz. When in Paris, where he stayed until 1676, he met the Dutch
scientist Christiaan Huygens (1629–1695) and developed an interest in math-
ematics. Huygens was Leibniz’s mentor in Paris and, possibly wanting to test

11 Quoted from Struik, A source book in mathematics, 1200–1800, 1969, p. 320. Note
also that Oresme did not write fractions as we do. The inset in Latin illustrates his original
writing.
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the ability of the young man, proposed to him the following problem in 1672
[pp. 14; 404; 49; 16]:12

To find the sum of a decreasing series of fractions, of which the numerators
are all unity and the denominators are the triangular numbers; of which he
[Huygens] said that he had found the sum among the contributions of Hudde
on the estimation of probability.

Triangular numbers are so called because you can form a triangle with as
many dots as each number, as shown in the next figure. Thus, the triangular

numbers are 1, 3, 6, 10, 15, 21, . . . or, as we would express this today, those
of the form n(n+ 1)/2 for each positive integer n.

Leibniz found the answer to this problem very quickly, and it was in agree-
ment with the one that Huygens already had. He wrote the result in a 1674
manuscript never published during his life, entitled Theorema arithmeticæ
in�nitorum,13 first in narrative form and then as follows:

Series � 1
1 + 1

3 + 1
6 + 1

10 + 1
15 + 1

21 etc. in infinitum � 2.

Two of these symbols need an explanation. Leibniz used � as an equal
sign, but the symbol � is just a marker that he used instead of numbering
the equation, and has no mathematical meaning. Thus, Leibniz’ statement is
that the sum of the series � is 2. Of this fact he included a demonstration,
which begins by considering two more series. First the one that we have called
harmonic:

12 This is as Leibniz himself recalled the problem in his manuscript “Historia et origo
calculi differentialis.” This quotation is from the printed references given in the bibliography,
in this order.

13 This extract is from f. 1r of the manuscript.
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Series � 1
1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 etc. in infinitum.

Then another whose terms are half the terms of �:

Series � 1
2 + 1

6 + 1
12 + 1

20 + 1
30 + 1

42 etc. in infinitum.

This series, he asserted, has sum 1. He began his proof by subtracting � from�
to obtain 1

2+ 4
12+ 9

36+ 16
80+ 25

150+ 36
252 etc., which, after simplifying, becomes

series � 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 etc. in infinitum.

That is, Leibniz had shown that � − � = �, and then he pointed out that� = � − 1. It follows that � = 1 and therefore twice the series �, or the
series �, equals two. In his own words:

Ergo dupla series � sive series � erit æqualis binario.

Today’s readers may be shocked by Leibniz’ use of divergent series with
such flagrant disregard for the appropriate mathematical etiquette. He thought
nothing of it, and neither did most of his contemporaries. They were used to
rigor in geometry, where it belonged, but what many other mathematical fields
wanted was exploration. Obtaining results was what counted, and the niceties
of mathematical rigor would have to wait for a better time. In this particular
case, what counted is that the sum of the series in question is actually 2.
However, modern presentations of Leibniz’ result are usually “sanitized” in
the following manner:

1+ 1

3
+ 1

6
+ 1

10
+ 1

15
· · · = 2

[
1

2
+ 1

6
+ 1

12
+ 1

20
+ 1

30
+ · · ·

]

= 2
[(

1− 1

2

)
+
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
+
(

1

5
− 1

6

)
· · ·

]
,

which, after all the obvious cancellations, equals 2.
After this result and the invention of a calculating machine that could

perform addition, subtraction, multiplication, division, and the extraction of
roots, Leibniz went on to achieve immortal fame in mathematics with his
development of the calculus.
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However, he failed to solve a problem in infinite series that had originally
been posed to him by Henry Oldenburg, in a letter of April 1673:14 to sum the
reciprocals of the squares of all the natural numbers, a task at which Pietro
Mengoli had already failed. A little over one month later, Leibniz confessed
that he had not yet found the sum.15 He never found it.

Next to succeed at summing infinite series was Jakob Bernoulli (1655–
1705), of Basel, who included some known results—such as the sum of the
geometric series, the divergence of the harmonic series, and the preceding
series summed by Leibniz—in his Tractatus de seriebus in�nitis, which was a
collection of five papers, written between 1689 and 1704, published as an ap-
pendix to his Ars conjectandi,16 all put together by his nephew Niklaus. In this
appendix, Bernoulli also set out to sum some new series with a considerable
degree of success, but the procedure was essentially the one already worked
out by Leibniz and illustrated in the preceding equation: the decomposition
of each term into a difference and the cancellation of most of the terms. Then
he attempted to sum the reciprocals of the squares of the natural numbers.
Bernoulli made some progress, for he realized that each term of this series is
smaller than the corresponding term of the series that Leibniz had summed,
and therefore this series must also have a sum. But as for finding it, Bernoulli
had to admit that [p. 254]

when [the denominators] are purely Quadratic, as in the series

1+ 1

4
+ 1

9
+ 1

16
+ 1

25
&c.

it is difficult, more than one would have expected, to search for its sum, . . .

So he could not find the sum, concluding the paragraph with the following
plea [p. 254]:

If someone discovers and communicates to us what has eluded our efforts
thus far, he will earn our deep gratitude.

Much later, Euler started with some numerical approximations and found
the approximate value 1.644934 for the sum of the series [Art. 22],17 but this

14 Gerhardt, Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern, 1899,
p. 86.

15 “summan nondum fateor reperi,” Gerhardt, Der Briefwechsel von Gottfried Wilhelm
Leibniz mit Mathematikern, p. 95.

16 Page references are to the 1713 edition.
17 “De summatione innumerabilum progressionum,” 1730/31, pub. 1738. References to

this and the next paper by Euler are by article number.
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Jakob Bernoulli in 1687
Portrait by his brother Nikolaus.

figure was not sufficient to make him guess the exact answer. However, in
1735, he was able to report his success in obtaining the exact value as follows
[Art. 2]:18

Recently, however, and altogether unexpectedly I have found an elegant ex-
pression for the sum of this series

1+ 1

4
+ 1

9
+ 1

16
+ etc.,

which depends on the quadrature of the circle . . . In fact, I have found that
six times the sum of this series is equal to the square of the circumference of
a circle whose diameter is 1, . . .

In current terminology, this means that the sum of the series is π2/6. If we
wonder about the strange description of Euler’s result in words, note that at

18 “De svmmis seriervm reciprocarvm,” 1734/35, pub. 1740.
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that time there was no universally accepted symbol for π .19 In 1735, Euler
used p instead of π , and, because of the lack of a standard symbol, he must
have thought it appropriate to state the result in unequivocal words. However,
it was Euler’s use of the letter π , starting in 1736,20 that made this symbol
popular.

Euler began with the series for y = sin s (see Section 4.3),

y = s − s3

1 · 2 · 3 +
s5

1 · 2 · 3 · 4 · 5 −
s7

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

[Art. 3], and then found the sum of the stated series [Art. 11] by a long method
that we shall not present here. Fortunately, he then did it again by a shorter
method that starts by putting y = 0 and dividing by s if s �= 0 [Art. 16]:

0 = 1− s2

1 · 2 · 3 +
s4

1 · 2 · 3 · 4 · 5 −
s6

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

The sine of s, and therefore this series, vanishes for s = ±kπ (we shall use π

while Euler still used p). Therefore, the right-hand side can be written as the
product of the factors

1− s

π
, 1+ s

π
, 1− s

2π
, 1+ s

2π
, etc.,

and combining them two by two we have

1− s2

1 · 2 · 3 +
s4

1 · 2 · 3 · 4 · 5 −
s6

1 · 2 · 3 · 4 · 5 · 6 · 7 + etc.

=
(

1− s2

π2

)(
1− s2

4π2

)(
1− s2

9π2

)(
1− s2

16π2

)
etc.

From this Euler concluded [Art. 17]:

It is now clear from the nature of this equation, that the coefficient of ss or
1

1·2·3 is equal to
1

π2
+ 1

4π2
+ 1

9π2
+ 1

16π2
+ etc.

19 The symbol π for 3.14159 . . . was introduced by Sir William Jones in his Synopsis
palmariorum matheseos, 1706, p. 236, but had not yet become popular.

20 Starting in Mechanica sive motvs scientia analytice exposita, 1736, vol. 1, p. 119, with
the statement “denotante 1:π rationem diametri ad peripheriam” = Opera omnia, Ser. 2, 1,
1912, p. 97.
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In short,

1+ 1

4
+ 1

9
+ 1

16
+ etc. = π2

6
.

Upon learning of this result, Johann Bernoulli (1667–1748) wrote: “if only
my brother were alive.” 21 In the same paper [p. 133] Euler found the sum of
the p-series for p = 4, 6, 8, 10, and 12 [Art. 18], and later, in 1740, he found
many more sums by similar methods.22

Euler was 23–24 years of age when he obtained his first results on the
summation of series, but he would be from this moment forever to be known
in the field of mathematics. However, in a letter to Euler of April 2, 1737,
Johann Bernoulli pointed out some defects in the preceding method, which
Euler admitted in his reply of August 27, 1737. Also, Niklaus Bernoulli
(1687–1759), a nephew of both Jakob and Johann, wrote him a letter in 1743
to point out that in expanding an infinite series into a product using its roots,
he was treating the series as if it were a polynomial, a criticism that was well
founded. But Euler was not to be distracted from his path, for he believed in
the validity of his result even in the absence of proof. He devoted Chapter X of
the Introductio to the sum of infinite series, including once more the p-series
previously obtained, on the basis of the following statement [Art. 165]:

If we have 1 + Az + Bz2 + Cz3 + Dz4 + &c. = (1 + αz)(1 + βz)(1 +
γ z)(1+ δz) &c., these Factors, whether they are finite or infinite in number,
if they are actually multiplied by each other, must produce that expression
1+Az+Bz2+Cz3+Dz4+&c.. Therefore, the coefficient A will be equal
to the sum of all the quantities α + β + γ + δ + ε + &c.. The coefficient
B will be equal to the sum of their products two at a time, and it will be
B = αβ + αγ + αδ + βγ + βδ + γ δ + &c.. Then the coefficient C

will be equal to the sum of the products three at a time, namely it will
be C = αβγ + αβδ + βγ δ + αγ δ +&c. And so on . . . .23

21 The original statement, “utinam frater superstes esset”, is in Johannis Bernoulli opera
omnia, 1742, vol. 4, p. 22.

22 “De seriebus quibusdam considerationes,” 1740, pub. 1750.
23 A similar result for the roots of a polynomial had already been given by Newton in his

Arithmetica universalis, sive de compositione et resolutione arithmetica liber, 1707. This
was written as a text for Newton’s lectures from 1673 to 1683. The statement in question is
on page 20 of the English translation by Raphson as Universal arithmetick, London, 1720,
which can also be seen in Struik, A source book in mathematics, 1200–1800, p. 94. Also in
Whiteside, The mathematical papers of Isaac Newton, V, p. 359. Newton did not provide
a proof, and, in fact, no proof was yet available at the time that Euler’s Introductio was
published.
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Then he defined [Art. 166]

P = α + β + γ + δ + ε +&c.

Q = α2 + β2 + γ 2 + δ2 + ε2 +&c.

R = α3 + β3 + γ 3 + δ3 + ε3 +&c.

S = α4 + β4 + γ 4 + δ4 + ε4 +&c.

&c.

and asserted that

P = A

Q = AP − 2B

R = AQ− BP + 3C

S = AR − BQ+ CP − 4D

&c.

“the truth of which formula is easy to know by simple inspection: until it is
proved with maximum rigor in the differential calculus.” Dispensing then
with a proof, as Euler did, we shall be content with a simple inspection of the
second equation in the last quartet. If we change Euler’s notation α, β, γ , . . .

to α1, α2, α3, . . . , so that we can indulge in the use of friendly subscripts, and
if we write

A = P =
∑

αi, B =
∑
i<j

αiαj and Q =
∑

α2
i ,

it is possible to believe that

AP =
(∑

αi

)(∑
αi

)
=
∑

α2
i + 2

∑
i<j

αiαj = Q+ 2B,

so that Q = AP − 2B.
Accepting Euler’s equations on this narrow basis, we now return to the

basic identity 24

1− s2

1 · 2 · 3 +
s4

1 · 2 · 3 · 5 −
s6

1 · 2 · 3 · 5 · 7 + &c.

=
(

1− s2

π2

)(
1− s2

4π2

)(
1− s2

9π2

)(
1− s2

16π2

)
&c.

24 Euler did not do this, but began Art. 167 with another identity that he had proved in
Art. 156. We shall stay with his older expansion to avoid proving the new one, but otherwise
will proceed exactly as he did.
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and make the substitution s2 = π2z to obtain

1− π2

1 · 2 · 3z2 + π4

1 · 2 · 3 · 5z4 − π6

1 · 2 · 3 · 5 · 7z6 + &c.

= (1− z)

(
1− 1

4
z

)(
1− 1

9
z

)(
1− 1

16
z

)
&c.

“Therefore, applying the rules found above to this case, it will be”

A = −π2

6
, B = π4

120
, C = − π6

5040
, D = π8

362880
&c..

Therefore if we put

P = −1− 1

4
− 1

9
− 1

16
− &c.

Q = 1+ 1

42
+ 1

92
+ 1

162
+ &c.

R = −1− 1

43
− 1

93
− 1

163
− &c.

S = 1+ 1

44
+ 1

94
+ 1

164
+ &c.

we obtain

1+ 1

24
+ 1

34
+&c. = Q = AP − 2B = A2 − 2B = π4

36
− π4

60
= π4

90
,

1+ 1

26
+ 1

36
+&c. = −R = −AQ+BP −3C = π6

540
− π6

720
+ 3π6

5040
= π6

945
,

and

1+ 1

28
+ 1

38
+&c. = S = AR − BQ+ CP − 4D

= π8

5670
− π8

10800
+ π8

30240
− π8

90720
= π8

9450
.

Euler concluded [Art. 168]:

It is thus clear that all the infinite Series contained in this general form

1+ 1

2n
+ 1

3n
+ 1

4n
+&c.,
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every time that n is an even number, can be produced by means of the Pe-
riphery of the Circle π ; and in fact the sum of the Series will always have a
rational ratio to πn.

After this he gave the sum of the p-series for all even values of p up to p = 26.
However, while he was able to give approximations to the sum for some

odd values of p in his 1740 paper [Art. 29], Euler was unable to sum a p-series
for p odd. Nobody has ever been able to sum such a series.

4.3 THE EXPANSION OF FUNCTIONS

Obtaining the sums of particular series of numbers is of relatively little interest
in comparison with expanding a function in a series whose terms depend on
the variable x. Such series can be used to compute values of the expanded
functions, such as in the case of the binomial theorem and the expansion of
the logarithm, both already covered in Chapter 2, and obtained by various
ingenious methods in the 1660s.

As for the series for the sine function, which we saw Euler using in the
preceding section, it was first obtained by Madhava of Sangamagrama—the
present-day Irinjalakuda, in Kerala—who lived from about 1340 to 1425. His
writings on this and other infinite series have not survived, but they are quoted
in two works. One is the Yuktibhasa (An exposition of the rationale), c. 1550,
of Jyesthadeva (c. 1500–1575) and the other is the anonymous Tantrasan-
grahavyakhya, a commentary on Nilakantha’s Tantrasangraha written by a
student of Jyesthadeva, probably while his teacher was still alive. Both works
contain statements for the series for the sine, cosine, and arctangent, but only
the Yuktibhasa shows the demonstrations.

However, the statements in the Tantrasangrahavyakhya are important be-
cause they contain a second version of the sine series, which was quoted
in Nilakantha’s Aryabhatiyabhasya and attributed to Madhava.25 It can be
assumed, then, that the versions in the Yuktibhasa and the Tantrasangra-
havyakhya are also by Madhava. The statement of the sine series in this
last work, both in Sanskrit and in English translation, is as follows.26

25 See Sastri, Aryabhatiya with the bhashya of Nilakantha, No. 101, 1930, p. 113.
26 These are taken from Rajagopal & Rangachari, “On an untapped source of medieval

Keralese mathematics,” 1978, 95–96. The authors based their translation on an original
manuscript in the Government Oriental Manuscript Library at Madras. This article also
contains Nilakantha’s version in the Aryabhatiyabhasya, p. 97.
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The arc is to be repeatedly multiplied by the square of itself and is to be
divided [in order] by the square of each even number increased by itself and
multiplied by the square of the radius. The arc and the terms obtained by
these repeated operations are to be placed in sequence in a column, and any
last term is to be subtracted from the next above, the remainder from the term
then next above, and so on, to obtain the jyva of the arc. It was this procedure
which was briefly mentioned in the verse starting with vidvan.

Since we are temporarily back to sixteenth-century mathematics, we must
explain a statement made in narrative form. If s denotes the arc corresponding
to a central angle θ and R is the radius, the first sentence refers to the terms

s, s · s2

(22 + 2)R2
, s · s2

(22 + 2)R2
· s2

(42 + 4)R2
,

and so on. The rest of the statement means that we have to alternately add and
subtract these terms to obtain the jyva of θ . That is,

jya θ = s − s3

6R2
+ s5

6R2 · 20R2
− s7

6R2 · 20R2 · 42R2
+ · · · ,

and replacing jya θ with R sin θ , dividing by R, and writing s = Rθ , this
equation becomes

sin θ = θ − θ3

3!
+ θ5

5!
− θ7

7!
+ · · · ,

which is the familiar infinite series for sin θ .
These discoveries could have reached Europe through many Portuguese

explorers and mathematically savvy Jesuit missionaries that were in Kerala in
the sixteenth century. But if Indian mathematics was imported into Europe at
that time it made no significant impact. European mathematicians carried on
as if they knew nothing about it, which is probably the case. They rediscovered
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Madhava’s series more than 250 years after they were originally proved, and
then they found new series expansions.

Newton found the following expansion for arcsin, among others, “in winter
between the years 1664 & 1665,” which he did via integration and the binomial
theorem as in the case of the logarithm.27 If z denotes what we call arcsin x,
then

z = x + x3

6
+ 3x5

40
+ 5x7

112
&c.

Newton restated this result, exactly in this way, in De analysi, along with
the series for the sine and cosine, which were new to him [pp. 17; 236–
237].28 John Collins, librarian of the Royal Society, received a copy of this
work through Barrow, Newton’s colleague at Cambridge, and communicated
these results to James Gregory (1638–1675), of the universities of Padua
(1664–1668), Saint Andrews (1668–1674), and Edinburgh (1674–1675), on
24 December 1670 [p. 155; 54].29

In his response of 15 February 1671,30 Gregory said: “I thank you for the
serieses you sent me, & send ye these following in requital” [p. 170; 62]. Two
of these are, in current notation (they will later be seen in Gregory’s),

tan θ = θ + θ3

3
+ 2θ5

15
+ 17θ7

315
+ · · ·

and

sec θ = 1+ θ2

2
+ 5θ4

24
+ 61θ6

720
+ · · · .

27 Reproduced in Whiteside, The mathematical papers of Isaac Newton, I, 1967, pp. 108–
109. The result is not explicitly written in the original as it is here. Columns 1 and 3 of the
table on page 109 must be multiplied to obtain it. Note Newton’s trivial error on page 108,
as explained in Whiteside’s footnote.

28 The first page refers to Jones’ edition, and those after the semicolon to Whiteside’s
translation.

29 Any double reference to Gregory’s work or correspondence in this chapter is to the works
by Turnbull, James Gregory tercentenary memorial volume, 1939 and The Correspondence
of Isaac Newton, I, 1959, in this order. If only one page reference is given, it is to the
memorial volume. Most of Gregory’s papers were lost or put away and ignored soon after
his death, and thus the man who was second only to Newton in the early 1670s was almost
forgotten, and his very important contributions to mathematics were not rediscovered until
the publication of Turnbull’s memorial volume. It contains reproductions and translations
of Gregory’s manuscripts, a summary of the contents of his books, and Turnbull’s extensive
researches and interpretation. In this and the next section, I rely heavily on Turnbull’s
interpretations.

30 For the sake of authenticity, dates of letters and manuscripts mentioned in the rest of
this book are given in the style in which they were originally written by their authors: small
unit (day), middle unit (month), and large unit (year).
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James Gregory
His only known portrait, at Marischal College.

University of Aberdeen.

Gregory did not explain how he obtained the expansions. But finding out is
important because it will turn out that while previous series expansions by
others had been found by disparate methods, these were obtained by a general
procedure that has been in use ever since. This method can be obtained on
the basis of a very valuable interpolation formula first found by Gregory and
communicated to Collins in a letter of 23 November 1670. The same kind
of work was carried out by Newton, independently, in his 1676 manuscript
Regula differentiarum. It was published in 1711 with the title Methodus differ-
entialis (Method of differences), but a modified version had already appeared
in Lemma V of Book III in the Principia.31

The function concept and the now usual notation for functions did not exist
at the time of this discovery, but it will add clarity if we present it in modern

31 Philosophiæ naturalis principia mathematica, 1686, pp. 481–483=Motte’s translation
The mathematical principles of natural philosophy, 1729, pp. 333–336
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notation and terminology in addition to the original notation by Gregory. This
will allow an easy comparison of the main result of the next section with
its usual statement at present. Assume then that c is a positive constant and
that y = f (x) is a function whose values are known at the points of an evenly
spaced collection of points xi = ci, i = 0, . . . , n. Our problem is to determine
the values of f at every other point x or, as Newton put it, Given any number of
points, to describe a curve which shall pass through all of them.32 To present
the solution, we define the first- and higher-order increments

�f (xi) = f (xi + c)− f (xi)

�2f (xi) = �f (xi + c)−�f (xi)

�3f (xi) = �2f (xi + c)−�2f (xi)

�4f (xi) = �3f (xi + c)−�3f (xi)

· · ·
But instead of using these, Gregory, in his letter to Collins, and in reference
to a figure like the next one,33 said [p. 119; 46]:

In the end of my Geometrical exercitations I fail exceedinglie . . . and hence
in place of any thing I have described there; putting AP = P O = c,
P B = d, . . .

Thus, with the origin at A and the direction of the positive x-axis to the left,
d = �f (0) = f (c) − f (0). Then he defined the higher-order increments in

32 “Datis quotcunque punctis Curvan describere quæ per omnia transibit,” in Whiteside,
The mathematical papers of Isaac Newton, IV, pp. 60–61.

33 Fig. 8.va, Exercitationes geometricæ, 1668. I have omitted some inscribed rectangles
that are irrelevant in this context.



Section 4.3 The Expansion of Functions 217

verbal form, denoting them by f (“primam ex differentiis primis”), h, i, and
so on, which in our notation can be expressed as

f = �2f (0) = �f (c)−�f (0)

h = �3f (0) = �2f (c)−�2f (0)

i = �4f (0) = �3f (c)−�3f (0)

. . .

With all this, he was able to state his result as follows [pp. 119–120; p. 46].

In the eighth figure of my exercitationes imagine any straight line [segment]
Aα in the straight line AI to which αγ is perpendicular, with γ on the curve
ABH [the segment αγ has been added above to the original figure], which
remains as before, consider the infinite series

a

c
,

a − c

2c
,

a − 2c

3c
,

a − 3c

4c
, etc.,

let the product of the first two terms of the series be b/c, that of the first three
k/c, that of the first four l/c, that of the first five m/c, etc., to infinity; then
the straight line [segment]

αγ = ad

c
+ bf

c
+ kh

c
+ li

c
+ etc.

to infinity.

To interpret the last equation replace the quotients b/c, k/c, l/c, . . . with
the products that they stand for and then replace d, f , h, i, . . . with the
expressions given above. Then, since αγ = f (a) in current notation, where a

is the variable, we have

f (a) = a

c
�f (0)+ a(a − c)

c · 2c
�2f (0)+ a(a − c)(a − 2c)

c · 2c · 3c
�3f (0)

+ a(a − c)(a − 2c)(a − 3c)

c · 2c · 3c · 4c
�4f (0)+ etc.

This is Gregory’s formula,34 and it can be considered only an approxima-
tion if a is arbitrary. Of course, if f (0) �= 0 then we can add f (0) to the
beginning of the right-hand side.

34 Newton did not originally state a formula. In 1676—in what may be considered a memo
to himself rather than a paper—he just gave a table of divided differences (our increments
divided by Gregory’s c), hoping perhaps that the rest would be obvious. But his notation
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We can further generalize the formula by replacing 0 with a; a with a + h

in the left-hand side; and any a in the numerators of the right-hand side, where
it has the meaning a − 0, with h. If we also replace c with �x, it becomes

f (a + h) = f (a)+ h
�f (a)

�x
+ h(h−�x)

1 · 2
�2f (a)

�x2
+ · · · .

It must be pointed out that this formula can be used to obtain the binomial
theorem by considering the special case

f (x) =
(

1+ d

b

)x

,

a function whose values are known at x = 0, 1, 2, . . . In this case, f (0) = 1,

�f (0) = f (1)− f (0) = 1+ d

b
− 1 = d

b
,

�2f (0) = �f (0+ 1)−�f (0) = f (0+ 2)− f (0+ 1)−�f (0)

=
(

1+ d

b

)2

−
(

1+ d

b

)
− d

b
= d2

b2
,

and so on. In this manner, putting a = 0, h = a/c, and �x = 1,

(
1+ d

b

)a/c

= 1+ a

c

d

b
+

a

c

(
a

c
− 1

)
1 · 2

d2

b2
+

a

c

(
a

c
− 1

)(
a

c
− 2

)
1 · 2 · 3

d3

b3
+ · · · .

This is the binomial theorem, but we have worked it out in current notation.
In an enclosure sent with his letter to Collins of 23 November 1670, Gre-

gory posed a problem and then gave its solution by what is essentially rec-
ognized as the last equation, but did not explain how he arrived at it. It is a

is very foreign to modern tastes. Suffice it to say that he denoted his x-values by A + p,
A+ q, A+ r . . . , the function values at these points by α, β, γ . . . , the first-order divided
differences by ζ , η, θ . . . , the second-order divided differences by λ, μ . . . , the third-order
divided differences by ξ . . . , and so on. Pity he had not discovered the use of subscripts.
In 1711 Newton included some explanations from which the formula can be reconstructed.
This was done—in Newton’s own notation—by Whiteside in The mathematical papers of
Isaac Newton, IV, pp. 63–64 and VIII, p. 248. However, the curious reader is warned
that a certain amount of work would still be required to transform Whiteside’s formula
into the one stated here. There is a formula in the Principia’s version: “RS will be =
a + bp + cq + dr + es + f t,+ &c,” but it also requires careful interpretation.
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permissible conjecture that he may have obtained this result from his interpo-
lation formula as shown above, but in his own notation. Here is a translation
of Gregory’s Latin passage [pp. 131–133]:

To find the number of a logarithm.

Given two numbers, the first b, the second b+ d, let the logarithm of b be e

and the logarithm of b + d be e + c, it is desired to find the number whose
logarithm is e + a.

Consider a series of continued proportions,

b, d,
d2

b
,

d3

b2
, &c.;

and another series

a

c
,

a − c

2c
,

a − 2c

3c
,

a − 3c

4c
, &c.;

let the product of the first two terms of this series be f/c, that of the first three
g/c, that of the first four h/c, that of the [first] five i/c, & c.; the number
whose logarithm is e + a will be

= b + ad

c
+ f d2

cb
+ gd3

cb2
+ hd4

cb3
+ id5

cb4
+ kd6

cb5
+ &c.35

Hence with some work but no trouble any pure equation whatever may be
solved.

If the last equation does not look like the binomial formula stated above, it is
a matter of moments to recognize it as such. Just replace f/c to k/c with their
definitions, divide throughout by b, and the last series becomes

1+ a

c

d

b
+ a(a − c)

c · 2c

d2

b2
+ a(a − c)(a − 2c)

c · 2c · 3c

d3

b3
+&c,

which, as we have seen above, is the binomial series of

(
1+ d

b

)a/c

.

35 Actually, Gregory omitted the factor d/b in several of the terms, but corrected the
mistake in a new letter of 19 December [p. 148; 50].
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Thus, the last series in the quotation from Gregory corresponds to the product
of this expression by b. The logarithm of this product is, using Euler’s notation,

l(b)+ a

c
[l(b + d)− l(b)] = e + a

c
(e + c − e) = e + a,

as stated by Gregory. Thus, we see that Gregory essentially discovered the
binomial series in 1670 independently of Newton. He knew what he had in
his hands, for he gave an example to find the daily compound interest rate
equivalent to 6% per annum [pp. 131–133], that is, what we now express as

100
(

1+ 6

100

) 1
365

.

Then in a letter to Collins of 19 December he used the binomial theorem to
perform several term-by-term integrations, giving the area under a circle, the
expansion of the arcsine, and the length of the curve y = r log x [pp. 148–149;
50–51]. Of course, Newton put the binomial theorem to greater use, not only
in the case of the quadrature of the hyperbola, but also making it an essential
tool in his development of the calculus, as we shall see in the next chapter.

4.4 THE TAYLOR AND MACLAURIN SERIES

Returning now to Gregory’s interpolation formula, essentially the same result
was obtained by Brook Taylor (1685–1731), who had been secretary of the
Royal Society from 1714 to 1718, and is contained in a letter dated 26 July
1712, to John Machin (1680–1751),36 professor of astronomy at Gresham
College. Then he published it in 1715,37 giving proper credit to Newton’s
work in the Principia, and including a “demonstration” and two corollaries. It
was in the second corollary, after the proposal: “If we substitute for evanescent
increments the fluxions proportional to them,” that he obtained the famous
Taylor series, as it was called by Colin Maclaurin (1698–1746) and as it
has been known ever since. What Taylor meant by substituting “evanescent
increments” is better expressed now as “letting �x → 0” in the modernized
Gregory formula, which gives, in today’s notation,

f (a + h) = f (a)+ f ′(a)h+ f ′′(a)

2!
h2 + f ′′′(a)

3!
h3 + · · · .

36 Reproduced by Bateman in “The correspondence of Brook Taylor,” 1906–1907.
37 Methodus incrementorum directa & inversa (Direct and reverse methods of incremen-

tation), 1715, p. 21.
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Brook Taylor in 1714 and his series
Portrait by an unknown artist.

Taylor’s series appears in Corollary II.

If we put a = 0 in the Taylor series and replace h with x, we obtain

f (x) = f (0)+ f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + · · · ,

which is called the Maclaurin series because it was frequently used by Maclau-
rin in his Treatise on �uxions, published in Edinburgh in 1742. Maclaurin, of
course, made it clear that the result was “given by Dr. Taylor.”

Taylor, who credited Newton, did not mention Johann Bernoulli, who
claimed to have published an equivalent result eleven years before. This
prompted one of the many disputes in which Johann Bernoulli used to find
himself embroiled.38

However, the whole story must be told, and to do that we must return to
Gregory’s series expansions for the tangent and the secant. Gregory did not

38 In “Additamentum effectionis omnium quadraturarum & rectificationum curvarum per
seriem quandam generalissimam,” 1694, p. 438 = Opera omnia, I, p. 126, Bernoulli had
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give them in our notation, but, instead, wrote the following (translated from
the Latin) in his letter to Collins of 15 February 1671 [p. 170; 62]:

Let radius = r , arc = a, tangent = t , secant = s, it will be

a = t − t3

3r2
+ t5

5r4
− t7

7r6
+ t9

9r8

and it will be

t = a + a3

3r2
+ 2a5

15r4
+ 17a7

315r6
+ 3233a9

181440r8
,

and

s = r + a2

2r
+ 5a4

24r3
+ 61a6

720r5
+ 277a8

8064r7
:

The last two series are the same as the ones previously quoted at the beginning
of Section 4.3. To see this in the case of the tangent, note that a = rθ and that
Gregory still used trigonometric lengths rather than trigonometric functions.
For example, his t means r tan θ , and then, replacing t and a with the values
given here, the second series in the quoted paragraph becomes

tan θ = θ + θ3

3
+ 2θ5

15
+ 17θ7

315
+ 3233θ9

181440
+ · · · ,

as given in Section 4.3.
The concept of factorial did not exist in the seventeenth century, but to

write this series as we might expect it today, note that

3 = 3!

2
, 15 = 5!

8
, 315 = 7!

16
, and 181440 = 9!

2
,

used successive integrations by parts to show that if n is a function of the variable z, then

Integr. n dz

[∫ z

0
n dz

]
= +nz− zzdn

1 · 2 · dz
+ z3ddn

1 · 2 · 3 · dz2
− z4dddn

1 · 2 · 3 · 4 · dz3
&c.

It is easy to obtain the Maclaurin series from Bernoulli’s formula, but not immediately.
Indeed, if f is an infinitely differentiable function, apply Bernoulli’s formula with n = f ′,
n = f ′′, n = f ′′′, n = f (4), and so on to infinity, performing the integrations on the left
in each case. Then multiply the resulting equations by 1, z, z2/2!, z3/3!, and so on, and
add the results. Canceling all terms containing f ′(z), f ′′(z), f ′′′(z), . . . will yield the
Maclaurin series for f . The details are left to the reader, as well as passing judgment on
Bernoulli’s claim.
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and then Gregory’s series for the tangent becomes

tan θ = θ + 2

3!
θ3 + 16

5!
θ5 + 272

7!
θ7 + 6466

9!
θ9 + · · · .

Those who own the appropriate electronic means of computation or have some
free time on their hands will have no trouble verifying that this is the Maclaurin
expansion of tan θ (except for a numerical error in the last coefficient, which
we shall discuss later).

But in 1670 neither Taylor nor Maclaurin had been born, and it is clear that
Gregory could not have used their work. So, how did he find his expansions?
The answer lies (and lay dormant until 1938) on some manuscript notes that
he wrote about a fortnight before his letter to Collins giving these series.
They fill some of the blank space of a letter that he had received from his
bookseller, Gideon Shaw, dated 29 January 1671 (paper was expensive in
those times and Gregory was in the habit of writing on the blank spaces of
received correspondence). Gregory’s notes start as follows [p. 350]:

(i) arc= a 1st 2nd 3rd

sine= s

radius= r m = q m = r3

c2
m = 2r4q

vc3

secant= v

sine com.= c t = r2q

v2
t = vc

2q
t =

tang.= q

They are not particularly intelligible from a current point of view, but they
can be interpreted, and what follows is an elaboration of Turnbull’s interpre-
tation. It is clear that the left column just establishes the notation for several
trigonometric items, “sine com.” being the sine complement ,or cosine, and
since we are dealing with lengths, c = r cos θ . Note that the tangent (meaning
r tan θ) is now q, and not t as before, and we are interested in the values
of m given on the third line. These are the values of the ordinate of the curve
q = r tan θ in the 1st column, what we now call its first derivative with respect
to θ in the 2nd column, and its second derivative in the 3rd column. We are not
concerned with the values of t , which now stands for the subtangent.

To verify the statements about the derivatives of q, note that (in current
notation)

dq

dθ
= r

cos2 θ
= r3

(r cos θ)2
= r3

c2
,
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and then, from the first of these equations and using the quotient rule,

d2q

dθ2
= − r[2 cos θ(− sin θ)]

cos4 θ
= 2r sin θ

cos3 θ
= 2r4(r tan θ)

(r sec θ)(r3 cos3 θ)
= 2r4q

vc3
.

Gregory may have thought that computing “higher derivatives” in this way
was time-consuming. In any event, he modified his approach and then wrote

m = q m = r + q2

r
m = 2q + 2q3

r2
,

which is another way to write q and its first two derivatives. Indeed, this form
of the first derivative is obtained as follows:

dq

dθ
= r

cos2 θ
= r(1+ tan2 θ) = r + r2 tan2 θ

r
= r + q2

r
,

and the second can be found using the chain rule

d2q

dθ2
= d

dq

(
r + q2

r

)
dq

dθ
= 2q

r

(
r + q2

r

)
= 2q + 2q3

r2
.

But did Gregory know the chain rule? Before we venture an opinion, consider
the first seven derivatives of q = r tan θ , which he gave later in the manuscript
under discussion in the following form [p. 352]:

(xiii) 1st 2nd 3rd 4th

m = q m = r + q2

r
m = 2q + 2q3

r2
m = 2r + 8q2

r
+ 6q4

r2

5th 6th

m = 16q + 40q3

r2
+ 24q5

r4
m = 16r + 136q2

r
+ 240q4

r3
+ 120q6

r5

7th

m = 272q + 987
q3

r2
+ 1680

q5

r4
+ 720

q7

r6

8th

m = 272r + 3233
q2

r
+ 11361

q4

r3
+ 13440

q6

r5
+ 5040

q8

r7

Now, if Gregory did not know the chain rule he must have needed a lot of
additional scrap paper before he wrote these derivatives down on the scrap
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paper that contains them. Be that as it may, the derivatives—for that is what
they are called now—are correct, except for the coefficient 978 in the sixth,
which should be 1232. The error carries on to the last line, in which the second
and third coefficients should be 3968 and 12096 instead of 3233 and 11361.
It seems to be the consequence of a trivial mistake, which is, for our purposes,
very significant. Computing the sixth derivative from the fifth using the chain
rule requires the addition of the terms

2(136)q

r

q2

r
and

4(240)q3

r3
r

among others. Thus, the coefficient of q3/r2 in the seventh derivative should
be 272+960 = 1232, but, in an obvious slip, Gregory added 27+960 = 987.

Putting this mistake aside, but only for a moment, the rest of Gregory’s
manuscript contains the same type of successive differentiations for six other
functions, one of them being q = r sec θ . And six of these seven are functions
whose power series expansions he gave in the subsequent letter to Collins.
Thus, we have the following partial answer to the question that we posed
before: yes, Gregory knew how to compute, and in fact did compute, the
derivatives necessary for a Maclaurin expansion of those six functions. Still,
he could have obtained the expansions in some other manner. But besides
the obvious fact that the repeated differentiations evaluated on Shaw’s letter
would then have been pointless, there is a clincher. The error that Gregory
made in computing the last two derivatives of r tan θ appears again, two weeks
later, in the second series that he sent to Collins: the numerator 3233 on the
fifth term of the series for t (page 222). The evidence is pretty conclusive, and
then the conclusion inescapable. Gregory used the successive differentiations
on Shaw’s letter to obtain six of the series expansions that he sent to Collins.
In other words, Gregory discovered the Maclaurin series expansion before
Taylor and Maclaurin were born, 41 years before Taylor discovered it.

Why did Gregory not publish his results? His intention to publish was
clearly expressed in his letter to Collins of 23 November 1670 [p. 118; 45]:

I have almost readie for the presse another edition of my quadratura circuli
& hyperbolæ, wherein (if I be not much mistaken) I demonstrat my intent
many & several ways; I purpose also to add to it several universal methods,
as I imagine, as yet unheard of in Mathematicks, both in geometrie and
analyticks: I am afrayed I can have it but naughtilie don here; and therfor I
humblie desire your concurrence to try how I can have it don in London, and
advertise me with the first occasion.
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Those “unheard of universal methods” must have been the interpolation the-
orem, the binomial theorem, and the Taylor–Maclaurin series, already in his
mind. It may be doubted that this quotation refers to the Maclaurin series,
which was first given later in the Shaw letter the following January, but Gre-
gory had actually announced it in November 1670 [p. 120; p. 47]:

I have a methode also whereby I turn ageometrick problems (at least al I have
yet considered) into an infinit series; and amonge others Keplers probleme
. . . I resolve with great ease.

So he was enthusiastic about his discoveries and ready to publish. What hap-
pened that deprived him of so much deserved credit? In November, Gregory
had received only one of Newton’s series from Collins, but then Collins wrote
on 24 December 1670, expressing himself as follows [p. 154; 54]:

I have since had some few Series more out of Newtons generall method . . .

the method is universall and performes all Quadratures . . . in this method,
the curved lines of all figures that have a common property, are streightened,
their tangents and Centers of Gravitie discovered . . . the length of the Curved
line being given an Ordinate is found and the Converse.

In short, Newton was ready to unveil the universal panacea. As a sample,
Collins included four of those series that he got out of Newton, including
those for the sine, cosine, and arcsine [p. 155; 54]. To this, Gregory replied
on 15 February 1671 [p. 170; 62]:

As for Mr Newton his universal method, I imagine I have some knowledge
of it . . . 39

And it was at this point that he included the seven series already discussed.
But it is possible to read an undercurrent of disappointment in this statement.
Gregory might have assumed that Newton already knew everything that he
had recently discovered himself and thought it was pointless to publish. The
fact is that he changed his mind about publishing, expressing his decision as
follows in the same letter of 15 February 1671 [p 171; 63]:

39 As we shall see in Chapter 5, Gregory had already published how to find “the length of
the Curved line being given an Ordinate” in his Geometriæ pars vniversalis of 1668.
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I thank you werie hertilie for your good advice, as to the publication of my
notions, & for your civil profer; I would be werie sorrie to put you to so much
trouble. I have no inclination to publish any thing, safe only to reprint my
quadrature of the circle, and to add some little trifles to it.

Was this loss of interest in publishing compounded by Collins’warnings about
the dire publishing situation in London? In the same letter of 24 December,
Collins said [pp. 156; 55–56]:

There is not any Printer now in London accustomed to Mathematicall
worke, or indeed fitted with all convenient Characters, and those hand-
some fractions but Mr Godbid where your Exercitationes were printed,
and at present he is full of this kind of worke to wit . . .

And here he proceeded to give a long, exhaustive list of all those works in the
queue to be printed. Was this the trouble that Gregory hesitated to put Collins
through? Whatever the reasons, the three most important pieces of Gregory’s
lifetime work remained unpublished.

Newton was not in possession of such methods. Of the new results that
Gregory had obtained and could have published, Newton had discovered only,
at that time, the binomial series, as shown in Section 2.5. But Newton was a
giant, and five years later he carried out, and eventually even published, his
work on interpolation as mentioned in Section 4.3. The next step took him
a little longer, but he discovered the Taylor series twenty years after Gregory
but still twenty years before Taylor. This, however, he never published. The
Maclaurin and Taylor expansions are the most important achievement in New-
ton’s manuscript De quadratura curvarum.40 At some point Newton stated
the following result [p. 93].

Proposition XII.

Out of an equation involving two �uent quantities, either alone or together with
their �uxions,41 to extract one or other quantity in an unterminated converging
series.

40 This is the original manuscript of November–December 1691. Page references are to
its printing in Whiteside, The mathematical papers of Isaac Newton, VII, 1976, pp. 48–129.
For the many versions of this work, see the bibliography.

41 We are getting ahead of the story here. Fluent quantities (that is, quantities that vary
with time) and their fluxions (or the rates at which they vary) will take center stage in the
next chapter.
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Then, after considering three cases, he gave four corollaries, of which
we reproduce here the third and fourth, and then a translation of the third,
admittedly out of context. Let us just say, for the benefit of today’s reader,
that a dot on top of a variable denotes its derivative with respect to time, two
dots the second derivative, and so on. But it is neither possible nor necessary
to fully understand Newton’s corollaries at this point [pp. 97–99].

Newton’s discovery of the Taylor series.
From Whiteside, The mathematical papers of Isaac Newton, VII, Facing page 98.

Corol. 3. Hence, indeed, if the series proves to be of this form

y = az+ bz2 + cz3 + dz4 + ez5 + &c

(where any of the terms a[z], b[z2], c[z3], d[z4], . . . can either be lacking or

be negative), the fluxions of y, when z vanishes, are had by setting
ẏ

ż
= a,

ÿ

ż2
= 2b,

y
...

ż3
= 6c,

¨̈y
ż4
= 24d,

ÿ
...

ż5
= 120e.
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That is,

y = ẏ

ż
z+ ÿ

2ż2
z2 + y

...

6ż3
z3 +

¨̈y
24ż4

z4 + ÿ
...

120ż5
z5 + &c,

which, if we set z = t , so that ż = 1, and insert the omitted term y0 = y(0),
gives the Maclaurin series

y = y0 + ẏz+ ÿ

2!
z2 + y

...

3!
z3 +

¨̈y
4!

z4 + ÿ
...

5!
z5 + · · · .

Corollary 4 is similar but gives the full Taylor series, as shown in the photo-
graphic reproduction of Newton’s manuscript.

There has been too much talk about derivatives and integrals in this section.
It is clear that the calculus had already been discovered when these general
expansions were obtained, but we have not talked about it. We must, therefore,
interrupt the story on infinite series to present the development of the calculus
before we embark on the thorny question of convergence.



5

THE CALCULUS

5.1 THE ORIGINS

We have seen some of the roots of the integral calculus in the method of
exhaustion to perform quadratures, at least as exemplified by Archimedes’
quadrature of the parabola. These ideas were to be resurrected and perfected
in the seventeenth century.

An ancestor of future ideas about what we now call the differential calculus
can be found in the fourteenth-century study of the latitude of forms. To put it
in very simple terms, a form—a concept of Aristotle—was what we now call a
function, for it was thought of as a quality subject to variability, such as veloc-
ity, temperature, or density. John Duns Scotus (1266–1308) was one of the first
to consider the increase and decrease (intensio and remissio) of the intensity
of forms. For the intensity of a form must be distinguished from its exten-
sion: velocity, temperature, and density are intensities, while distance traveled,
heat, and mass are extensions. But fourteenth-century Scholastic scholars, es-
pecially at Merton College, Oxford—in particular, William Heytesbury and
Richard Suiseth (or Swineshead)—also studied such fine points as the rate of
change and the rate of change of the rate of change of a form, of course in a
verbal manner and not always separate from philosophy or mysticism.

In a manuscript entitled De motu (On motion), attributed to Suiseth, he
classified all motions into two kinds: uniform [pp. 243; 245]1

1 The quotations in this section are from Clagett, The science of mechanics in the Middle
Ages, 1959. This work contains the Latin texts of the manuscripts by the Merton College

,
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in which in every equal part of the time an equal distance is described.

and difform:

Difform motion [difformis motus] is that in which more space is acquired in
one part of the time and less in another equal part of the time.

In turn, difformis motion was classified into uniformiter difformis and dif-
formiter difformis, according to whether the instantaneous rate of change of
the rate of change was constant or not, and further subdivisions were con-
sidered. For instance, in 1335 Heytesbury gave the following definition in
Regule solvendi sophismata (Rules for solving sophisms), Part VI: Local Mo-
tion [pp. 237; 241]:

For any motion whatever is uniformly accelerated [uniformiter intenditur]
if, in each of any equal parts of the time whatsoever, it acquires an equal
increment [latitudinem] of velocity.

The scholars at Merton College arrived at a theorem for the mean intensity
of a uniformiter difformis form. It was stated first by Heytesbury [pp. 270;
277], and then by Suiseth in De motu as follows [pp. 244; 245–246]:

Wherever there is uniform increase [intensio] of local motion, the local mo-
tion is uniformly difform motion. Since local motion uniformly difform cor-
responds to its mean degree [of velocity] in regard to effect, so it is evident
that in the same time so much is traversed by means of [a uniform movement]
at the mean degree as by means of the uniformly difform movement.

More precisely, if an object travels a distance d in time t , starting with initial
velocity vi, moving with constant acceleration, and reaches a final velocity vf ,
then “in the same time [t] so much [d] is traversed” as if the object moved “at
the mean” constant velocity

vi + vf

2
.

In short, the average velocity of a body moving with constant acceleration is
the mean of its initial and final velocities.

scholars and translations of large passages from them. Page references given here are to
this edition; the page on the left of the semicolon refers to the English translation, and the
one on the right to the original in Latin.
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Several proofs were provided, some based on manipulations with infinite
series. The leading fourteenth-century treatise on the latitude of forms was the
Liber calculationum (probably composed in the second quarter of the century)
of Richard Suiseth, who became known as Calculator. It contains the Regule
de motu locali (Rules of local motion), in which Suiseth gave four proofs, of
which the third is the most interesting of all the Merton College proofs.2

When this subject reached the Continent, Nicole Oresme clarified the pic-
ture by introducing graphs to distinguish the different types of variation in
the latitude of a form.3 He made this approach an integral part of his work
De con�gurationibus qualitatum, which was probably written before 1361.
His geometric representation is proposed in the following way in Chapter 1
[pp. 347; 368].

Hence every intension which can be acquired successively is to be imagined
by means of a straight line erected perpendicularly on some point or points
of the [extensible] space or subject of the intensible thing.4

In short, we have a system of coordinates. On the horizontal axis (the longitudo
axis in geographic terms) we represent the extension of the form and on the
vertical axis the latitudo or intensity of the form.

Later, opening Chapter 11, Oresme added [pp. 352; 372]:5

Thus every uniform quality is imagined by a [rectangular] quadrangle [that is,
a horizontal line at a constant height], and every quality uniformly difform
terminated at no degree [ending at zero] is imaginable by a right triangle.
Every quality uniformly difform terminated at both ends at some degree is
to be imagined as a quadrangle having right angles on the base and the other
angles unequal. Moreover, every other linear quality is called “difformly
difform” and is to be imagined by figures disposed in other and considerable
varying ways.

2 It is reconstructed in modern notation by Clagett, The science of mechanics in the
Middle Ages, pp. 295–297.

3 If it comes to questions of priority, Giovanni di Casali had used graphs for the same
purpose before Oresme, but not to the same extent or with the same influence. In this
connection see Clagett, The science of mechanics in the Middle Ages, pp. 332–333.

4 “Omnis igitur intensio successive acquisibilis ymaginanda est per lineam rectam per-
pendiculariter erectam super aliquod punctum aut aliquot puncta spacii vel subiecti illius
rei intensibilis.”

5 A slightly different translation can be found in Clagett, Nicole Oresme and the medieval
geometry of qualities and motions, 1968; reprinted in Calinger, Classics of Mathematics,
1995, p. 255.
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The preceding discussion notwithstanding, the first work that we can rec-
ognize as properly belonging to the subject now called the calculus is Kepler’s
book on the solid geometry of wine casks.6 In spite of its title, this is a book on
mathematics, largely devoted to evaluating the volumes of solids of revolution.
For example, a chord in a circle that is not a diameter divides the circle into
two parts of unequal areas. If the largest is rotated about the chord, it produces
a solid “which is of the form of the fruit of the apple tree”; if the smallest is
rotated it produces “what can be called the figure of a lemon” [Supplement
to Part I, p. 576]. All in all, Kepler considered the volumes of 96 solids of
revolution.7 Later he turned to the problem of finding the best dimensions for
wine casks and was able to determine that the largest right parallelepiped with
a square base that can be inscribed in a sphere is the cube [Part II, Theorem IV,
pp. 607–609], and that of all right circular cylinders with equal diagonals the
largest is the one that has a ratio of diameter to altitude of

√
2 to 1 [Part II,

Theorem V and Corollary II, pp. 610–612].
After Kepler, many seventeenth-century mathematicians worked on prob-

lems of finding tangents and quadratures. The list includes, but is not limited

6 Nova stereometria doliorum vinariorum, 1615 = Opera omnia, IV, 1863. Page refer-
ences are to the Latin text in the Opera.

7 The volume of an apple is obtained in the Corollary to Theorem XIX of Part II, which
can be seen in English translation in Struik, A source book in mathematics, 1200–1800,
1969, pp. 192–197; reprinted in Calinger, Classics of Mathematics, pp. 356–360.
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to, Galileo Galilei, Bonaventura Cavalieri, and Evangelista Torricelli in Italy;
Blaise Pascal, René Descartes, and Gilles Personne de Roberval in France;
Frans van Schooten, René François de Sluse, Johann Hudde, and Christiaan
Huygens in the Low Countries; and John Wallis in England. No history of
the calculus would be complete without an account of their contributions,
but it would be impossible to do that here without turning this chapter into a
book,8 so we shall restrict our attention to the work of five men in the 1600s,
each of which has been called the true inventor of the calculus by someone
at some time: Pierre de Fermat, James Gregory, Isaac Barrow, Isaac Newton,
and Gottfried Wilhelm Leibniz.9

5.2 FERMAT’S METHOD OF MAXIMA AND MINIMA

Pierre de Fermat (1601–1665), a lawyer working in the parlement of the city
of Toulouse, found some spare time to work on mathematics. The fact that
he was an amateur mathematician notwithstanding, he is considered to be the
best French mathematician of the seventeenth century.

About 1629 Fermat produced an algorithm to find maxima and minima,
which is contained in a copy of his original manuscript sent in 1637 by Rober-
val to Marin Mersenne under the double title “A method to investigate maxima
and minima” and “About the tangents to curved lines.” 10 It was widely circu-
lated in mathematical circles in Paris—Mersenne himself sent a copy to René
Descartes—but it was not well received. It simply gives an algorithm to find
maxima and minima but includes no supporting explanations whatsoever.

If Fermat’s method was found unclear by his contemporaries, used as they

8 There are, in fact, some comprehensive works on the history of the calculus. For
instance, Baron, The origins of the in�nitesimal calculus, 1969 (Dover Publications, 1987);
Boyer, The concepts of the calculus. A critical and historical discussion of the derivative
and the integral, 2nd. ed., 1949 (reprinted by Dover Publications as The history of the
calculus and its conceptual development, 1959); and Edwards, The historical development
of the calculus, 1979.

9 I’ll exhibit my own prejudice on this matter at the outset. The calculus was not
invented—not in the sense that many gadgets have been invented—but whatever word one
wants to apply to its development, it came about as the cumulative result of work by many
people—much as in the case of geometry and algebra—some more insightful, some more
extensive. Some represented a breakthrough but some did not. Moreover, the calculus as
taught today is a product of the nineteenth century, owing much to the rigorization efforts
of da Cunha, Cauchy, Riemann, Weierstrass, and others.

10 “Methodus ad disquirendam maximam et minimam” and “De tangentibus linearum
curvarum.”
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Pierre de Fermat
From D. E. Smith, Portraits of Eminent Mathematicians,

Portfolio II, Scripta Mathematica, New York, 1938.

were to the terminology of the times, it is to be expected that today’s readers
would fare no better. Thus, we shall adopt the following course of action:
first we include a translation of the first part of this manuscript—a printed
copy of which can be seen in the next photograph—up to and including the
example; then we attempt to clarify Fermat’s steps and interpret them in today’s
terminology; and finally, we shall include a summary of his own explanations
as to how he got the idea for the method.

The translation (from the printed copy reproduced on the next page) is as
follows, but we have inserted roman numerals, which are not in the original,
to number the steps in the algorithm so that we can refer to these steps later.

The whole science of the discovery of maxima & minima, rests on the po-
sition of two unknown [expressions], & this unique rule; (i) let A be any
unknown of the problem, whether plane, or a solid, or a length, according
to the proposition to be satisfied, & (ii) express the maximum or minimum
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First page of the printed copy of Fermat’s Methodus
in his Varia opera mathematica, 1679.

in terms of A, using terms that can be of any degree whatever; (iii) Posit in
turn that the same term as before is A+E, and express again the maximum
or minimum in terms of A & E, using terms of any degree. (iv) Adequate,
as Diophantos would say.11 the two homogeneous [expressions] giving the
maximum or minimum & (v) remove the common terms (when done all terms
in the homogeneous [expressions] on either side will contain E, or powers
of it) (vi) divide all terms by E, or by a higher power of it, until any of the
homogeneous [expressions], on one side or the other, is completely free of E.

11 Fermat was borrowing here a word and a meaning from a translation of Diophantos’
Arithmetica by Holtzman, 1575. He owned a copy of its republication with added commen-
tary by Claude-Gaspard Bachet de Méziriac, 1621.
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(vii) Remove then from both sides all the terms involving E or a power
of it in any manner, and (viii) adequate the rest. Or, if nothing remains on
one of the sides reasonably adequate, which amounts to the same thing, the
negative terms to the positive. The solution of this last equation will give
the value of A, which once known, the maximum or minimum will become
known by repeating the steps of the preceding solution.12

Now, with the aid of the inserted roman numerals, we can simplify and
rewrite Fermat’s algorithm in our own terms as follows:

(i ) Let A be the variable in the problem, for which we shall write x.

(ii ) Express the quantity to be maximized or minimized as a function of the
variable. We shall denote it by f (x).

(iii ) Increment the variable as A + E, for which we shall write x + h, and
evaluate f (x + h).

(iv ) “Adequate” (in the sense of setting approximately equal) the two pre-
ceding expressions:

f (x + h) ≈ f (x).

(v ) Simplify by removing terms that appear in both f (x + h) and f (x).

(vi ) Cancel any power of h higher than the first that is a common factor of
both f (x + h) and f (x) and then divide by h, which is equivalent to
setting

f (x + h)− f (x)

h
≈ 0.

(vii ) Disregard or strike out any terms that still contain h or a power of h.

(viii ) “Adequate” the rest (to 0 since we had moved f (x) to the left-hand
side).

With this interpretation, part of Fermat’s algorithm is what we do today, at
least to the evaluation of what we call the difference quotient, but then we take
the limit as h → 0 and actually equate it to 0. However, the concept of limit
was not available to Fermat and he did not create it. Thus, he had to make do
with disregarding higher powers of h and working with an approximation. Of

12 The Latin version of this quotation, as well as Fermat’s example given below, can
also be seen in Œuvres de Fermat, I, 1891, pp. 133–136. There are two somewhat different
English translations of the preceding paragraphs that the reader can consult, and the detailed
references are given in the bibliography. The one by Struik includes the translation of
Fermat’s complete manuscript.
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course this is valid only if h is very small, a claim that he did not make at any
stage of this procedure, but seems to have had in mind.

An example would be welcome at this point, so we consider the problem of
splitting a straight line segment AC of length B into two portions by a point E,

and the problem is to find E such that the product AE×EC is a maximum.
Here are the problem and its solution as stated by Fermat.

We exhibit an example.
Divide the straight line [segment] AC at E, so that the rectang. AEC

[meaning the area AE×EC] is a maximum; Denote the segment AC by B.
Let A be one part [segment] of B, so that the rest will be B − A,13 & the
rectang. [product] of the segments will be BA − A2 which must become a
maximum. Let in turn A+E be one part of B, so that the rest will be B−A−E,
& the rectang. [product] of the segments will be BA−A2+BE−2EA−E2,
which must be adequated to the rectang. given above BA− A2, remove the
common terms [to obtain] BE, adequal to 2AE +E2, & divide all by E [to
obtain] B, adequal to 2A+E, remove E, therefore adequate 2A to B, [and]
divide by 2, to [obtain] the proposed solution, it is not possible to give a more
general method.

And here it is restated in our own terms.

(i ) Let x = AE.

(ii ) f (x) = x(B − x) = Bx − x2.

(iii ) f (x + h) = (x + h)(B − x − h) = Bx − x2 + Bh− 2hx − h2.

(iv ) “Adequate”: Bx − x2 + Bh− 2hx − h2 ≈ Bx − x2.

(v ) Simplify: Bh ≈ 2xh+ h2.

(vi ) No power of h other than the first is a common factor of all the terms,
so just divide by h: B ≈ 2x + h.

(vii ) Disregard the term that still contains h: B ≈ 2x.

(viii ) The rest is already “adequated,” and the solution is x = B/2 .

13 Here Fermat is being naughty in denoting by A one of the segments in which AC is
divided by E. Also, notice from the photograph that we have changed the notation B,−A
to B −A and we shall also write BA for the product of B and A rather than B, in A.
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Today we would obtain the same answer by setting f (x) = Bx − x2 and
then

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

Bh− 2hx − h2

h
= B − 2x = 0,

and it is clear to us that Fermat had the seed of the present method.
To his contemporaries, in particular to Descartes, he was at best obscure

and at worst accused of having found the algorithm by trial and error (à
tâtons and par hasard ). Fermat was stung, and reacted by producing several
explanations of his algorithm. The most important for our purposes is in
a manuscript that begins with the words “Dum syncriseos et anastrophes
Vietæ methodum expenderem,”14 probably written about 1639 or 1640 15 to
directly refute Descartes’ allegations. This paper, which we shall simply call
Syncriseos, begins with an acknowledgment of Fermat’s source of inspiration:

When considering Viète’s method of syncrisis and anastrophe, . . . a new
method derived from it came to my mind for finding maxima and minima
. . .

Viète was fond of creating Greek neologisms, and “syncrisis” was one of them.
The key element in the method of syncrisis is the assumption that a polynomial
of order n has up to n roots and the relation between those roots and the order
of the polynomial.16

In the second paragraph of this paper Fermat revealed his second source
of inspiration to be a result of Pappos of Alexandria, which he later identified
more precisely [p. 151] as Proposition 61 from Book VII of the Synagoge or
Mathematical collection.17 The opening statement of this lemma is this:

Given three straight lines [segments] AB, BC, CD if one makes the rectangle
ABD to the rectangle ACD, as the square on BE to the square on EC, the

14 It appears in Fermat, Œuvres, I, p. 147, with the title “Methodus de maxima et minima,”
chosen by the editors. Page references are to this work.

15 For the reasons for this dating see Mahoney, The mathematical career of Pierre de
Fermat 1601–1665, 1994, p. 145.

16 Syncrisis is explained in Chapter XVI of De recognitione æquationum = Francisci
Vietæ opera mathematica, in unum volumen congesta, ac recognita, 1646, pp. 104ff; English
translation in Witmer, The analytic art by François Viète, 1983, pp. 207ff.

17 This is a work on classic Alexandrian geometry, with some new proofs and additions,
written in the late 200s. This proposition can be found in Commandino’s translation:
Mathematicæ collectiones, 1588, f. 196r .
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ratio is unique, & smallest of rectangle AED to rectangle BEC.18

This statement is to be interpreted with reference to the following figure, which

is a small part of Pappos’ figure. Although Commandino, the translator, con-
fessed to not understanding the end of this statement—which he had just ren-
dered as “singularis proportio, & minima est rectanguli AED ad rectangulum
BEC”—Fermat did understand. Unfortunately, he changed Commandino’s
notation in his explanation. Using the original notation to avoid unnecessary
confusion, the problem that the proposition poses is [p. 151]:

Let ABCD be a straight line, in which the points A, B, C, D are given.
Choose a point E between the points B and C, such that the rectangle AED

to the rectangle BEC has minimum ratio.

The solution given by Pappos in Proposition 61 is to choose E such that

AB×BD

AC×CD
= BE2

EC2
.

Fermat had solved this problem in a manuscript written before Syncriseos,
and this led him to a quadratic equation.19 Such an equation normally has two

18 Recall that “the rectangle ABD” means the area AB×BD, and similarly for the other
rectangles.

19 In publication, the title of the manuscript is “Ad eamdem methodum.” It is possible
to obtain both the quadratic equation and Pappos’ solution rather quickly using today’s
differentiation. Write (as Fermat wrote in Syncriseos, except that we must use lowercase
letters, while he used uppercase ones) BC = b, BD = z, AB = d , and BE = a.
As is frequently the case in Fermat’s writing, a is the variable. Then, according to his
interpretation, we have to minimize

AE×ED

BE×EC
= (d + a)(z− a)

a(b − a)
= dz− da + za − a2

ba − a2
.

Then equating the derivative of the right-hand side with respect to a to zero and simplifying
gives

(b + d − z)a2 − 2dza + bdz = 0

[“Ad eamdem methodum,” in Varia opera, p. 67 = Œuvres, I, p. 144; Syncriseos, p. 152].
This is the quadratic equation, which Fermat obtained by syncrisis (to be explained shortly)
rather than by differentiation. Multiplying it by b, and then adding and subtracting dza2 to
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solutions. But then he focused attention on the words that Commandino did
not understand and realized that at the minimum there is only one solution.
What happened to the other solution?

To find out, Fermat started by considering a simpler problem, and found
it in Euclid’s Proposition 27 from Book VI of The Elements. It is the one he
presented in the Methodus: split a segment of length B into two parts A and E

so that the product of A and E is largest. He knew the solution because it was
given by Euclid as “that parallelogram is greatest which is applied to half of
the straight line” 20 and its area is B2/4.

But in Syncriseos Fermat was in search of the two solutions of a quadratic,
and modified the problem by asking how the original segment should be split
so that the product of the resulting segments is a constant Z < B2/4. In his
own words [p. 148]:

But, if it is proposed that the same straight line B is to be cut under the
condition that the rectangle [product] of the segments is equal to an area Z

(which is supposed to be smaller than one fourth of B square), then two points
satisfy the proposition, and the point of maximum rectangle is between them.

He meant that there are two solutions of the quadratic that we would write
now as A(B − A) = Z (but he wrote in Viète’s style as “B in A − A quad.
æquale Z plano”), and denoted these solutions by A and E. Here is Fermat’s
view of what happens to these solutions as Z approaches its maximum value
B2/4 [pp. 148–149]:

If, in place of the area Z, we take another that is larger than the area Z, but
smaller than one-fourth of B square, then the straight lines [segments] A

and E will differ from each other by less than the ones above, as the points
of division more nearly approach the point constitutive of the maximum
rectangle,21 always, as the rectangles of the divisions increase, the difference

the left-hand side, we obtain

(b2 + db − bz− dz)a2 − 2dza + b2dz+ dza2 = 0,

which, after factoring and rearranging, can be written as

dz

(d + b)(z− b)
= a2

(b − a)2
.

This is Pappos’ solution if the lowercase letters are replaced by the segments they represent.
20 Quoted from the Dover Publications edition of The Elements, vol. 2, 1956, p. 257.
21 This is Fermat’s intuition, for he offered no proof of this or of the fact the “the point of

maximum rectangle lies between” A and B.
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of these A and E will decrease, until with the last division of the maximum
rectangle it vanishes, in which case a lomavòy [Pappos’ word] or unique
solution will be produced, since the two quantities [become] equal, that is,
A will equal E.

Now, if
A(B − A) = Z and E(B − E) = Z,

then, by the method of Viète (“syncrisis”),

A(B − A) = E(B − E)

or, rearranging,
B(A− E) = A2 − E2.

Dividing by A−E, we obtain B = A+E (which in this very simple example
is geometrically obvious). Fermat drew the following conclusion [p. 149]:

Since, therefore, in the two correlate equations above, by the method ofViète,
B will equal A+E, if E is equal to this A (which appears to hold always at
the point constitutive of a maximum or a minimum), then, in the proposed
case, B will equal 2A: that is, if the straight line B is cut in half, the rectangle
[product] of its segments will be a maximum.

This is the essence of Fermat’s method to find maxima and minima, which he
then applied to another example [p. 149]:

To cut the straight line B, in such a manner that the square of one of its
segments [call it A again] times the other is a maximum.

In this case we have to maximize A2(B − A). Then consider the equation
BA2 −A3 = Z, where Z is a constant smaller than the maximum value. If E

is another solution of this equation, then, by syncrisis,

BA2 − A3 = BE2 − E3,

or
B(A2 − E2) = A3 − E3,

and dividing by A− E,

B(A+ E) = A2 + AE + E2.
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At the maximum, A = E, and then

2BA = 3A2,

so that A = 2B/3.
But Fermat noted at this point that division by binomials was exceedingly

laborious and generally troublesome (“operosa nimis et plerumque intricata”)
[p. 149], and put forth the following idea [p. 150]:

However, since E (as well as A) is an uncertain quantity, nothing prevents
us from calling it A+ E.

Then the difference of the two solutions is just E, a much easier quantity to
divide by. While Fermat showed his new approach by a new example—and
went on to crown the Syncriseos with the solution of Pappos VII, 61—we shall
not do that. Instead, to make a long story a little shorter, we shall apply it to
his first example. Then, by syncrisis,

A(B − A) = (A+ E)[B − (A+ E)],

or, simplifying and rearranging,

BE = 2AE + E2,

just as in the example included in the Methodus. Dividing by E and recalling
that at the maximum “E will give nothing” [Syncriseos, p. 150], we obtain
B = 2A. The solution is, as before, A = B/2. However, since he was hiding
any explanation of his methods in the Methodus, he needed an explanatory
gimmick, and he found it in Diophantos’ adequality.

The Methodus also included a procedure to find tangents, and posing the
problem is quite simple:22

Let there be given, for example, a Parabola BDN , whose vertex is D, the
diameter DC, & a point B given on it, to extend a straight line BE, tangent
to the parabola, & meeting the diameter at a point E.

To solve the problem, Fermat took a point O on BE located over the segment
CD and drew OI parallel to the ordinate BC. In Fermat’s time there was no
equation of a parabola as we know it today, but if we think of a rectangular

22 Varia opera, p. 64; Œuvres, I, p. 135. English translation in Stedall, Mathematics
emerging, 2008, pp. 73–74.
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coordinate system with the origin at D, the positive x-axis in the direction
DC, and the positive y-axis horizontally to the left, it is clear from what he
wrote next that he was dealing with the parabola x = y2. Then, if the ordinate
at x = DI is denoted by yI , we see that yI < OI , and then

CD

DI
= BC2

y2
I

>
BC2

OI 2
.

But from similar triangles,

BC2

OI 2
= CE2

IE2
,

and therefore
CD

DI
>

CE2

IE2
.

At this point Fermat managed to be naughty again by using some of the
old letters with new meanings as follows:

But since the point B is given, the applied line BC is given, hence the point C;
is given as well as CD; therefore let CD be equal to a given D. Let CE be
A; let CI be E.

Why not? After all, the alphabet is limited. In the new notation the last
inequality becomes (translating once more from Fermat’s narrative form to
present-day usage)

D

D − E
>

A2

A2 + E2 − 2AE
,
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or
DA2 +DE2 − 2DAE > DA2 − A2E.

And now we shall let Fermat have the last word to avoid the blame for any
unclarity in his statement.

Adequate therefore according to the method above: with common terms re-
moved, DE2 − 2DAE ≈ −A2E [≈meaning “will be adequal to”], or what
is the same, DE2 + A2E ≈ 2DAE. Let everything be divided by E, hence
DE + A2 ≈ 2DA, remove DE, hence A2 = 2DA, and thus, A = 2D,
therefore we have proved that CE is twice CD, which indeed holds true.

In this manner, almost in one breath, an inequality turned first into an adequal-
ity and then into an equality. Fermat never gave any subsequent explanations.

But today’s readers deserve some interpretation in current terminology,
and to provide it we turn to the equation that Fermat obtained from similarity
of triangles, which can be rewritten as follows:

OI

BC
= IE

CE
.

Referring now to the rectangular coordinate system with origin at D that was
mentioned above, define x = DC, h = x − DI and write the arc

�
BD of the

parabola as y = √x. Then BC = √x, IE = CE− h, and DI = x− h. If we
use the adequality OI ≈ √x − h, the equation of similarity can be replaced
with √

x − h√
x

≈ CE − h

CE
.

Subtracting 1 from each side and simplifying,
√

x − h−√x√
x

≈ − h

CE
,

or √
x − h−√x

−h
≈
√

x

CE
.

Now multiply numerator and denominator of the fraction on the left-hand side
by
√

x − h+√x and then simplify to obtain

1√
x − h+√x

≈
√

x

CE
.
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At this point, we would be happy to let h → 0, but the last step in Fermat’s
procedure was to discard h (his E) and to turn the adequality into an equality:

1

2
√

x
=
√

x

CE
,

and it follows that the subtangent is CE = 2x, the same result that in his
notation was A = 2D.

Descartes had quite a number of objections to Fermat’s method, and it is
quite clear that some of them are as justified as being impossible to address
with the mathematical knowledge available at that time. Nevertheless, in
response to these criticisms Fermat elaborated and improved on the method.
But Descartes also thought that this method was applicable only to functions
given in what we call explicit form and challenged Fermat to find the tangent
to the curve that we now write as x3+ y3 = P xy,23 then known as la galande
and now as the folium of Descartes. Rising to this challenge, Fermat promptly
found the tangent that Descartes demanded, sending it to him (via Mersenne)
in a manuscript entitled “Méthode de maximis et minimis expliquée et envoyée
par M. Fermat a M. Descartes.” 24 He considered a curve through the origin

like the one shown in the figure, in which the origin is at C, DO is the x-axis,
and DA is tangent to the curve at A. Fermat started [p. 154] by renaming

23 Descartes, who gave no graph for this curve, expressed its equation as follows: “les deux
cubes des deux lignes BC [our y] et CD [our x] soient ensemble égaux au parallélépipède
des deux lignes BC, CD et de la ligne donnée P ,” Fermat, Œuvres, II, 1894, p. 130.

24 Fermat, Œuvres, II, pp. 154–176.
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some segments as follows (again reusing some letters as before): BA = B,
BC = D, BD = A, and, for any point E on the tangent, BF = E. Then the
coordinates of the point E on the tangent are [p. 155] CF = D−E, and, from
the similarity of the triangles DFE and DBA,

FE = B(A− E)

A
= BA− BE

A
.

Next Fermat considered F I adequal to FE if E is close to A, and proceeded
as if E were on the curve. Thus, replacing Descartes’ P with N , the property
of la galande is CF 3 + FE3 = N · CF · FE. With the expressions obtained
above for CF and FE in terms of single letters, the sum of the cubes is [p. 156]

D3 − E3 − 3D2E + 3DE2 + B3A3 − B3E3 − 3B3A2E + 3B3AE2

A3
,

while N · CF · FE is [p. 157]

N(D − E)
BA− BE

A
= NDBA− NDBE − NBAE + NBE2

A
.

Multiplying both expressions by A3, we must compare by adequality

D3A3−E3A3− 3D2EA3+ 3DE2A3+B3A3−B3E3− 3B3A2E+ 3B3AE2

with
NDBA3 − NDBEA2 − NBEA3 + NBE2A2.

Since the equation for la galande is D3+B3 = NDB, the terms D3A3+B3A3

and NDBA3 can be dropped after adequation. Fermat completed this example
as follows:

Divide the rest by E and then drop all the terms that still contain E; it will
remain [after division by −A2]

3D2A+ 3B3 = NDB +NBA

and we will have
NDB − 3B3

3D2 −NB
= A,

which is what we had to find.

That is, Fermat had found the subtangent. If we recall that the origin is at C

and if we write D = CB = x and B = BA = y, then A = y/y ′, and the
reader should easily verify the correctness of Fermat’s result using today’s
implicit differentiation.
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5.3 FERMAT’S TREATISE ON QUADRATURES

Fermat developed an interest in the problem of the quadrature of the higher
parabolas and hyperbolas, and eventually found a solution, but he did not
publish anything on this subject during his lifetime, which makes it difficult to
date his work. From indirect evidence, it appears that he may have obtained
some results by the 1640s and even by the 1630s.25 Much later, in 1658 or
1659, he was motivated to write a treatise on quadratures by the appearance
in 1655 of the Arithmetica in�nitorum by John Wallis (1616–1703). Fermat
claimed to have obtained the same results long ago and showed some criticisms
of Wallis’ methods.26

In his treatise “On the transformation and amendment of local equations
for the manifold comparisons of curvilinear figures among themselves or to
rectilinear figures, to which is annexed the use of geometric progressions for
the quadrature of an infinite number of parabolas and hyperbolas,” 27 Fermat
started with the following assertion [p. 44; 255]:

Archimedes used geometric progressions only for the quadrature of the para-
bola . . . I have recognized and proved this sort of progression to be very
useful for quadratures, and I willingly communicate to modern geometers
my invention, which performs the quadratures of parabolas and hyperbolas
by an altogether similar method.

He worked out the quadrature of the hyperbola x2y = 1 first (he chose the
right-hand side to be an arbitrary constant, but there is no loss of generality
in taking it to be 1), then that of the parabola y2 = x, and finally generalized

25 For a discussion of these dates, see Boyer, The history of the calculus and its concep-
tual development, 1959, p. 127; Bortolotti, “La scoperta e le successive generalizzazioni
di un teorema fondamentale di calcolo integrale,” 1924, p. 215; Walker, A study of the
Traité des Indivisibles of Gilles Persone de Roberval, 1932, pp. 142–164; or Mahoney, The
mathematical career of Pierre de Fermat, 1601–1665, p. 244.

26 Wallis found the area under an arc of y = xp/q , where p/q is any rational number
other than−1, using a method that he called investigatio per modum inductionis [Proposition
XIX], which essentially means guessing what we would call some limits. His descriptions
are purely verbal, without any variable or function notation [Propositions LV to LVII and
CII]. The stated propositions can be seen in his Opera mathematica, 1, 1695, pp. 373,
390–391 and 408.

27 De æquationum localium transmutatione, & emendatione, ad multimodam curvilineo-
rum inter se, vel cum rectilineis comparationem. Cvi annectitvr proportionis geometricæ in
quadrandis in�nitis parabolis & hyperbolis usus. Page references are to Varia opera and,
after a semicolon, to Œuvres, I. See the bibliography for available English translations.
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his method to all curves of the form xmyn = 1, m and n nonzero integers,
with the exception of xy = 1. To give an idea of the method it will suffice to
present some simple examples. Fermat considered first the hyperbola DSEF

shown in the figure (the dashed lines were not printed in Varia opera but added
in Œuvres to help visualize some rectangles), and since he did not have our
equation for it, began the procedure as follows [pp. 44; 256–257]:

Consider, if you please, the hyperbola defined by the property

AH 2

AG2
= EG

HI
and

AO2

AH 2
= HI

NO
, etc.

[that is, x2 = 1/y]. I say that the infinite space whose base is EG, and one of
its sides is the curve ES, and the other the infinite asymptote GOR, is equal
to a given rectilinear area.

We shall show this and find the “given rectilinear area” in two ways. First,
using present-day notation, to give a quick idea of what is going on, and then in
Fermat’s terminology, so that we know what he actually did. In the preceding
figure, let the origin be at A and define a = AG. Now choose a real number
r > 1 and then points G, H , O, M , . . . with abscissas

a, ar, ar2, ar3, . . . .

Then the segments GH , HO, OM , MR, . . . have lengths

a(r − 1), ar(r − 1), ar2(r − 1), ar3(r − 1), . . . ,

and the heights EG, HI , ON , P M , . . . have lengths

1

a2
,

1

a2r2
,

1

a2r4
,

1

a2r6
, · · · ,
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so that the rectangles with diagonals EH , IO, NM , P R, . . . have areas

1

a
(r − 1),

1

ar
(r − 1),

1

ar2
(r − 1),

1

ar3
(r − 1), . . . .

These form a geometric progression with ratio 1/r , whose sum, according to
Viète’s formula, is

1

a
(r − 1)

1− 1

r

= r

a
.

It approaches 1/a as r → 1, which is, then, the area of the region DNEGR.
Fermat, to whom all this notation was unavailable, chose the segments

AG, AH , AO, AM , . . . so that they formed a geometric progression, which
he expressed as [p. 45; 257]

AG

AH
= AH

AO
= AO

AM
= · · · , 28

and this is equivalent to

AG

AH
= GH

HO
= HO

OM
= · · · .

He did not give any reasons, but those who prefer an explanation should note
that

AG

AH
= AH

AO
= AG+GH

AH + HO
,

which, after dismissal of the middle fraction, cross multiplication of the re-
maining fractions and simplification, leads to

AG

AH
= GH

HO
.

Similarly for the other fractions.
Then Fermat used this to examine the ratio of rectangular areas. For

example [p. 45; 257],

EG×GH

HI×HO
= GE

HI
· GH

HO
= GE

HI
· AG

AH
.

28 In quoting or describing Fermat’s work I use modern fractions and dots as a convenience.
Fermat did not use either, expressing himself in verbal form. For example, he gave this line
as follows: “as AG, is to AH , so is AH , [to] AO, & so is AO to AM . . . ”
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On the other hand, by the defining property of the hyperbola (see the preceding
quotation) and the fact that the proportionality of abscissas gives AH 2 =
AG · AO, we have [p. 45; 258]

GE

HI
= HA2

GA2
= AO

GA
. 29

Therefore,
EG×GH

HI×HO
= AO

GA
· AG

AH
= AO

AH
= AH

AG
.

Then he arrived at the following conclusion [pp. 45–46; 258]:

Similarly we can prove that

HI×HO

ON×OM
= AO

HA
.

But the segments AO, HA, GA that make up the parallelogram ratios
are proportional by construction [that is, GA/HA = HA/AO, so that
AO/HA = HA/AG]; hence the [areas of the] parallelograms GE×GH ,
HI×HO, ON×OM , etc., assumed to be infinitely many, will form a con-
tinued geometric progression, the ratio of which will be HA/AG.

Fermat had already remarked that the terms of the original progression (the
abscissas) can be chosen close enough to each other that one can “adequate the
rectilinear parallelogram GE×GH and the mixed [curvilinear] quadrilateral
GHE” [p. 45; 257]. Thus the sum of the areas of all the rectangles can be
adequated to the area under the hyperbola to the right of EG. To sum the
progression of rectangular areas Fermat could have used Viète’s formula, with
which he must have been familiar. However, he chose to state this main tool
in the following manner, which is equivalent to Viète’s, at the start of his paper
[pp. 44; 255–256]:

Given any geometric progression, whose terms decrease indefinitely, the
difference of two consecutive terms of this progression is to the smaller of
the two as the largest of all the terms of the progression is to the sum of all
the others to infinity.

29 Fermat frequently changed the order of the letters in a segment as he wrote.
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If S denotes the sum of the entire progression of rectangular areas, the appli-
cation of this rule in this particular case gives [p. 46; 258]

EG×GH − IH×HO

IH×HO
= EG×GH

S − EG×GH
.

If we recall that

IH×HO = GA

HA
EG×GH,

then the left-hand side in the previous equation simplifies to and then equals

HA

GA
− 1 = GH

GA
= GE×GH

GE×GA
.

On the other hand, if the progression ratio is close enough to 1, the denominator
S−EG×GH is adequal to the area of the figure DNIHR under the hyperbola,
which is in turn adequal to the area DNEGR because the segment GH is very
small. Thus, Fermat obtained the adequation

GE×GH

GE×GA
≈ EG×GH

area DNEGR
.

Since the numerators are equal, adequating the denominators, Fermat ex-
pressed this result as follows [p. 46; 259]:

. . . the parallelogram AE, in this kind of hyperbola, is equal to the area of
the figure contained by the base EG, the asymptote GR and the curve ED

infinitely extended.

Since the parallelogram AE has area

AG×GE = a
1

a2
= 1

a
,

this is the result already obtained above in current notation.
Now we can understand Fermat’s emphasis on the geometric progression

in the opening statements of this treatise on quadratures, for it is precisely the
fact that the areas of his rectangles form such a progression that allowed him
to find the sum. He found a way to subdivide the axis so that this happens, but
had he tried a subdivision by segments of equal length he would have been
unable to succeed.
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Then Fermat stated [p. 46; 259]: “It is not laborious to extend this discovery
to all the hyperbolas of this sort, except the one that we mentioned [xy = 1].”
He gave a brief proof that in the next case, x3y = 1 [pp. 46; 259–260],

AG×GE = 2DNEGR,

or, if a = AG and GE = 1/a3,

DNEGR = 1

2a2
.

After this, he claimed that the method would be the same in the remaining
cases.

However, Fermat may have faced a technical difficulty while trying to
use the same method to perform the quadrature of the first parabola, which
we denote by y2 = x, shown below,30 over the finite interval CB. We shall

perform this quadrature in current notation first, and this will show the nature
of the conjectured difficulty. The points B, E, N , M , . . . were originally
chosen such that

BC

EC
= EC

NC
= NC

MC
= · · · ,

and then we can denote them by a, ar , ar2, ar3, . . . , where r < 1 is very close
to 1. Then the vertical sides of the circumscribed rectangles with diagonals
AB, IN , OM , GH , . . . are

a(1− r), ar(1− r), ar2(1− r), ar3(1− r), . . . ,

30 It was not uncommon at that time to draw the x-axis vertically with the positive direction
downward. The letters Y and V were not printed in this figure in Varia opera.
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and their horizontal sides BA, EI , NO, MG, . . . have lengths

a1/2, (ar)1/2, (ar2)1/2, (ar3)1/2, . . . ,

so that the rectangles have areas

a3/2(1− r), (ar)3/2(1− r), (ar2)3/2(1− r), (ar3)3/2(1− r), . . . .

These form a geometric progression with ratio r3/2, whose sum, according to
Viète’s formula, is

a3/2(1− r)

1− r3/2
.

It may not be immediately clear what results from adequating r to 1, other
than 0/0, and this may have prompted Fermat to alter his method, for he did
introduce a modification, as we shall see below. However, a little algebra
shows that

1− r

1− r3/2
= 1

r1/2 + 1

1+ r1/2

.

Then, either letting r → 1 or adequating r to 1 in the denominator yields 3/2.
Therefore, the area under the parabola y = √x from 0 to a is

ARCB = a3/2

3/2
.

Since the area of the rectangle ABCD is a
√

a = a3/2, putting b = a1/2, we
also obtain the formula

ARCD = a3/2 − a3/2

3/2
= a3/2

3
= b3

3
.

Fermat, if he had any difficulty at all, was able to deal with it by an ingenious
second subdivision of the horizontal axis [p. 47; 261]:

. . . if we take the mean proportional CV between BC and CE, and between
EC and NC the mean proportional YC, . . .

This means that the points V , Y , . . . are chosen so that

BC

CV
= CV

CE
= CE

Y C
= Y C

NC
= · · ·
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and, in particular,
BC

EC
= BC2

BC×CE
= BC2

V C2
.

Since the defining property of the parabola gives

AB2

IE2 =
BC

CE
,

it follows that
AB

IE
= BC

V C
= CE

Y C
.

This is one of the factors in the rectangle ratio

AE

IN
= AB

IE
· BE

EN
,

and Fermat asserted that the remaining factor equals, “as has been shown
above, BC/CE.” It had not been shown above, but he may have had in mind
subtracting 1 from each side of the original identity

BC

EC
= EC

NC

and simplifying, which leads to

BE

EC
= EN

NC
.

Then
BE

EN
= EC

NC
= BC

CE
,

and the rectangle ratio becomes

AE

IN
= CE

Y C
· BC

CE
= BC

Y C
.

Taking it as clear that this is also the ratio of the remaining rectangles, he
proceeded to add up their areas [p. 47; 262]:

. . . and consequently from the theorem that substantiates our method,
the parallelogram AE, is to the figure IRCHE, as the segment BY, is to the
segment YC,31 therefore the same parallelogram AE, is to the total figure
AIGRCB, as the segment BY, is to the total diameter BC . . .

31 This segment appears as BC in Varia opera but was changed to YC in Œuvres
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But this is going a bit too fast, so we should add some explanation. The
“substantiating” theorem, stated here on page 251, gives

AE − IN

IN
= AE

area IRCHE
,

and then using the rectangle ratio, the left-hand side simplifies to

BC

Y C
− 1 = BC − Y C

Y C
= BY

Y C
.

When the rectangle ratio is very close to 1, then Y C ≈ BC and the areas of the
figures IRCHE and AIGRCB are approximately the same. Thus, the result of
Fermat’s addition can be written as

AE

area AIGRCB
≈ BY

BC
= AB×BY

AB×BC
= AB×BY

BD
,

and then
BD

ARCB
≈ AB×BY

AE
= BY

BE
. 32

But because of the fine subdivision of BC, the segments BV, VE, EY are
adequal, and then the right-hand side above is approximately equal to 3/2.
Fermat concluded [p. 48; 263]:

therefore the parallelogram BD, is to the figure as 3 is to 2.

That is,

ARCB = BD

3/2
,

and the quadrature has been completed.
Fermat stated that his method applies to all the other parabolas without

exception, and to leave no room for doubt [p. 48; 263], he showed in full
the case of the parabola y3 = x2. Now he needed two auxiliary subdivisions
rather than one and was able to prove that [p. 49; 265]

in this case the parallelogram BD, is to the figure as 5 is to 3.

32 In Fermat’s own words [p. 47; 262]: “ut BY, ad BE, ita parallelogrammum BD, ad
figuram ARCB;” but an error in Varia opera has this figure as AROB.
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That is,

ARCB = BD

5/3
.

This allowed him to deduce and state the following general rule:

It is certainly clear that the parallelogram BD is always to the figure AICB,
as the sum of the exponents of the powers of the ordinate & the abscissa is
to the exponent of the power of the ordinate . . .

Thus, in the general case of yn = xm,

AICB = BD

m+ n

n

.

If we denote the abscissa of B by a and define q = m/n, then the area of the
rectangle BD is a · am/n = aq+1, and the preceding formula can be rewritten
in current terminology as∫ a

0
xq dx = aq+1

q + 1
, q �= −1,

a general formula that Fermat found before Newton. Particular cases for a
few integral values of q were known to others before Fermat.

Having stated a general rule for the quadrature of the parabolas must have
inspired him to give one for hyperbolas, which he did next as follows [p. 49;
266]:

In fact in any hyperbola it is always [the case], if you go back to the first
figure [our page 249], that the parallelogram BG, is to the infinitely prolonged
figure, RGED, as the difference of the exponents of the powers of the ordinate
& the abscissa is to the exponent of the power of the ordinate.

This means that for the general hyperbola xmyn = 1 (reversing the order in
Fermat’s “the ordinate & the abscissa”),

RGED = BG

m− n

n

.

Thus, if we define a = AG and write q = m/n, then the area of BG is
a · a−(m/n) = a1−q . Then, the preceding formula can be rewritten in current
terminology as ∫ ∞

a

x−q dx = a1−q

q − 1
, q �= 1.
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5.4 GREGORY’S CONTRIBUTIONS

Gregory’s expertise in differentiation has already been shown in Chapter 4,
where it was made clear that he was in possession of the chain rule and that
he discovered Taylor’s theorem. A few years before, Gregory had visited
Italy, and at the end of his stay there, in 1668, he published a book entitled
Geometriæ pars vniversalis (The universal part of geometry),33 a work that

has been described as “the first attempt to write a systematic text-book on
what we should call the calculus.” 34 It is written in a geometrical style, as the
title makes clear, and mostly in narrative form as was common at that time.
It contains both original material and well-known results, and Gregory, in the

33 Geometriæ pars vniversalis, inserviens quantitatum curvarum transmutationi & men-
suræ, 1668. My discussion of this text here is based on and large portions taken from my
paper “James Gregory’s calculus in the Geometriæ pars universalis,” 2007.

34 By Adolf Prag in “On James Gregory’s Geometriæ pars universalis,” 1939. Prag also
describes the contents of the book as follows: Propositions 1 to 11 are on arc length, area
and tangent; Propositions 12 to 18 on involution and evolution; Propositions 19 to 45 on
solids of revolution; and the rest applies to special figures.
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second page of the introduction, left it to the reader to judge which was which
(quæ mea sunt & quæ aliena iudicet lector).

There is very little on how to find tangents in this book, just one example
given as Proposition 7 [pp. 20–22], to find the tangent to a curve that he first
described in words, with reference to the next figure, as follows:

Let the curve BHC be a hyperbola, whose diameter is the straight line AK

& the ordinates EH, KC, are of such nature that the solid from the square of
BE times AE is to the solid from the square of BK times AK as the cube of
EH is to the cube of KC.

In other words, if A and B are fixed, if B is the origin of coordinates, and if
BE is an arbitrary abscissa with corresponding ordinate EH, then BE2×AE

is a constant times EH 3 regardless of the position of the point H on the curve.
Then Gregory set AB = a and BE = b, so that AE = a + b, and denoted the
constant that we just mentioned by a3/c3, where c is another constant. This
allowed him to give the equation of the curve as

EH =
3
√

ab2c3 + b3c3

a
. 35

The problem is to find the subtangent FE, which Gregory denoted by z, for
the tangent FH at H . To do this, he drew a new ordinate DG at a vanishingly

35 Gregory, who omitted the equal sign, wrote
√

C for cube root. But notice that he
wrote b2 instead of bb. In this respect, he was way ahead of his time.
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small distance o from EH (“DE nihil seu serum o”), and then the product

DF×EH = (z− o)

3
√

ab2c3 + b3c3

a

is approximately equal to the area of the rectangle with sides EF = z and
DG. The length of DG is obtained from the equation of the curve after replac-
ing b, which is the variable, with b − o, and then DF×EH ≈ EF×DG, an
approximation whose right-hand side is equal to
3
√

c3ab2z3 − 2c3abz3o+ c3az3o2 + c3b3z3 − 3c3b2z3o+ 3c3bz3o2 − c3z3o3

a
.

Gregory then continued:

& removing the denominators because they are equal, also & cubing both
terms [sides] of the equation & removing from both the equal [terms] this
equation results

3b2c3azo2 − 3b2c3az2o− b2c3ao3 − 3b3c3z2o+ 3b3c3zo2 − b3c3o3

= c3az3o2 − 2c3abz3o− 3c3b2z3o+ 3c3bz3o2 − c3z3o3,

& dividing all by o

3b2c3azo− 3b2c3az2 − b2c3ao2 − 3b3c3z2 + 3b3c3zo− b3c3o2

= c3az3o− 2c3abz3 − 3c3b2z3 + 3c3bz3o− c3z3o2,

& rejecting any quantities [terms] in which we find o or its powers [which is
permissible as an approximation if o is very small], it remains

− 3b2c3az2 − 3b3c3z2 = − 2c3abz3 − 3c3b2z3,

& whereby adding the defect [multiplying by −1] & dividing all by c3bz2

the equation is 3ba + 3b2 = 2az+ 3bz, & therefore

z = 3ba + 3b2

a2+ 3b
,

namely the straight line [segment] EF, which was to be found.36

36 Since he invited the reader to judge on his originality, we must say that this is strongly
reminiscent of Fermat’s method. Jean de Beaugrand, a friend of Fermat and admirer of his
work, made it his own business to disseminate Fermat’s method of tangents, so maligned
by Descartes. But he introduced some variations, one of which was the replacement of
Fermat’s E with o. This can be seen in his quadrature of the ellipse in the 1638 manuscript
“De la manière de trouver les tangentes des lignes courbes par l’algèbre et des imperfections
de celle du S. des C[artes].” In Fermat, Œuvres, V, Supplément, 1922, pp. 102–113. The
letter o is introduced in page 102. Surprisingly, for an admirer, Beaugrand did not say that
the method of tangents he applied in this manuscript was due to Fermat. In any event, it
was widely distributed, and, since Beaugrand traveled extensively in Italy, it is quite likely
that Gregory saw a copy and adopted the symbol o, along with Fermat’s method.
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It is easy to verify this result using current methods.37

There is no more on tangents per se in Gregory’s Geometriæ, but about
two years later he gave the rules for finding subtangents of composite curves.
They are in manuscript form on a piece of scrap paper. He gave six rules, of
which we reproduce three.38

Let Ch, AK be two curves [see the next figure], and MB be a straight line,
and let GI be a curve with the property that GB is always equal to [the sum
of] AB, CB; let the straight lines CD, AF touch the curves Ch, AK; put
CB = a, DB = b, AB = c, FB = d; let

BH = adb + cdb

da + bc

and then join GH, which will touch the curve GI.

This finds the subtangent BH at an arbitrary point G of a curve GI , which is
the sum of Ch and AK , in terms of the subtangents b = DB and d = FB. In
the seventeenth century mathematicians were keener on subtangents than on
slopes, as we have already seen, but this result is not particularly appealing or
easy to remember.

37 It may be simpler to write x instead of b and y instead of EH, then find y ′, plug in
x = b, and note that z = y/y ′.

38 The complete set in Latin, translated into English by Turnbull and with an explanatory
note, can be seen in James Gregory tercentenary memorial volume, 1939, pp. 347–349.
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Today we are interested in slopes—there is a very good reason for it to be
discovered presently—and we can find that of GH from those of CD and AF

using Gregory’s formula. To do this denote GB, which Gregory did not name,
by y, and then y = GB = CB + AB = a + c. The point B represents an
arbitrary abscissa, and slopes and subtangents are related for our three curves
by the equations (if none of the tangents are vertical)

y ′ = GB

BH
= y

BH
, b = DB = CB

a ′
= a

a ′
, and d = FB = AB

c ′
= c

c ′
.

When the values of BH , b, and d obtained from these equations are substituted
into Gregory’s formula (for which he did not provide a proof in this note to
himself), it becomes

y

y ′
=

a
c

c ′
a

a ′
+ c

c

c ′
a

a ′
c

c ′
a + a

a ′
c

=
a + c

c ′a ′
1

c ′
+ 1

a ′

= a + c

a ′ + c ′
= y

a ′ + c ′
,

and then y ′ = a ′ + c ′. This is the derivative of a sum. It is the sum of the
derivatives, while, for subtangents, BH �= b+ d. This is why slopes are more
convenient than subtangents in calculation.

The next quotation will show that he dealt with products and quotients.

But if GB/AB = CB/OB,39 and if BH = a, BF = b, BD = c, it will be

BN = acb

ab + ac − cb
.

It may be annoying, but Gregory did change the notation, so that a, b, and c

have new meanings now. If the four functions represented in the preceding
figure are now denoted (from bottom to top) by y, u, v, and w, the relationship
between slopes and subtangents is as follows:

y ′ = y

BN
, u ′ = u

c
, v ′ = v

b
, and w ′ = w

a
.

Then Gregory’s formula for the subtangent becomes

y

y ′
=

w

w ′
u

u ′
v

v ′
w

w ′
v

v ′
+ w

w ′
u

u ′
− u

u ′
v

v ′
= wuv

u ′wv + v ′wu− w ′uv
,

39 Actually, Gregory wrote this as a proportion, that is, as GB : AB : : CB : OB.
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and then, since GB ·OB = CB · AB can be written as wy = uv,

y ′ = w(u ′v + v ′u)− uvw ′

w
uv

y

= w(u ′v + v ′u)− uvw ′

w2
.

This is exactly the result that we would obtain today using the quotient and
product rules to differentiate y = uv/w. But of course, this is a modern
interpretation.

After setting FB = d and HB = e, the last of Gregory’s statements, which
needs interpretation, is this:

Truly generally, if the ratio GB to CB is the ratio AB to CB multiplied [by
itself] in the ratio m to n, in every case it will be

DB = mde − nde

me − dn
.

Here m and n are just positive integers, and the stated hypothesis means that

GB

CB
=
(

AB

CB

)m/n

,

which, if we use u, v, and w as in the preceding case, becomes w/u = (v/u)m/n.
Since

DB = u

u ′
, d = FB = v

v ′
, and e = HB = w

w ′ ,

Gregory’s formula for the subtangent DB becomes

u

u ′
=

m
v

v ′
w

w ′ − n
v

v ′
w

w ′

m
w

w ′ −
v

v ′
n

= (m− n)vw

mwv ′ − vw ′n
.

It is easy to verify that this is the result obtained using today’s rules to dif-
ferentiate w/u = (v/u)m/n (or, rather, wnum−n = vm), so that Gregory could
have differentiated a power with an arbitrary rational exponent if he had not
been thinking of subtangents.40

40 At the end of the explanatory note to this manuscript, Turnbull, who had dated it to
November 1670 at the earliest, states that this date “suggests that it was inspired by reading
Barrows’s book on Geometry [see Section 5.5], which reached Gregory during August
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Returning to the Geometriæ, we find at the outset some work on arc length.
The first proposition is just preparatory, but in Proposition 2 [pp. 3–8] Gregory
arrived at the result that we know today. Given an arbitrary curve 79CD,
which he assumed to be simplex, seu non sinuosa (monotonic, and in this case
increasing) or else that it must be split into pieces, Gregory started by selecting
an arbitrary constant X, which he viewed as the length of a segment. Now
let the segment 96 in the next figure 41 be normal to the curve 79CD at an
arbitrary abscissa 3, and construct another curve PNLH such that its ordinate
at 3 is the product of X and the quotient of the length 96 over the length 93.
Then he stated a theorem, proved it, and concluded as follows [p. 8]:

It is also clear that the [area of the] mixtilinear figure PNLHδ2 is to the
[area of the] rectangle X times 2δ, as the [length of the] curve 79CD is to
the straight line [segment] 2δ.

Gregory’s X is there for reasons of geometric homogeneity, an important
concept in his time, but if we take X = 1, his statement reduces to

length of
�
7D = area PH δ2.

We do not present the proof, which is long, involved, and heavily multi-
notational, but just interpret it in more familiar terms as follows. Let the
arbitrary abscissa at 3 be denoted by x, let the arc 79CD be the graph of a
differentiable function f , and let the segment 9B be tangent to the curve at 9.
Then, keeping in mind that the numbers here are just labels for points and

1670, and which contained a systematic account of such processes of differentiation in a
geometrical form.” He did not give any supporting reasons. But Gregory himself shed
some light on this issue when, in a letter of 5 September 1670, he wrote: “I have read over
both Mr Barrows bookes of Lectures, with much pleasure and attention, wherein I find
him to have infinitely transcended all that ever writt before him, I have discovered from
his method of drawing Tangents, togeather with some of my owne, a generall Geometricall
method without Calculation of drawing tangents to all Curves, comprehending not only
Mr Barrows particular methods but also his generall Analyticall method in the end of the
10th Lecture, my method contains not above 12 Propositions.” So Gregory learned from
Barrow but had additional methods of his own. The differentiation of rational powers in
Gregory precedes the Barrow book, a book that does not contain the differentiation of a sum
or difference, in spite of some exaggerated twentieth-century claims on this issue. More on
this in the next section.

41 This is just an extract from Gregory’s own figure. The same is true of all but the next of
the figures from the Geometriæ reproduced here. Only those features are reproduced that
are necessary to illustrate the statements made in this presentation. Additional lines, points,
and letters used in omitted proofs have not been included.
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using the similarity of triangles 936 and 9OB, we see that with X = 1 the
ordinate of PNLH at x is

96

93
=
√

932 + 362

93
=
√

1+
(

36

93

)2

=
√

1+
(

BO

9O

)2
.

The last quotient on the right is what we now call f ′(x), and then, using our
definite integration for area, Gregory’s discovery can be expressed in today’s
familiar form as

length of
�
7D =

∫ δ

2

√
1+ (f ′)2 .

The most notable result involving area and arc length in the Geometriæ is
Proposition 6 [pp. 17–19]. It is in the form of a problem to be solved, and
it can be interpreted, rather than purely translated, with reference to the next
figure, in which angles that appear right are indeed right angles. The problem
is this: for any given curve BNS, find a curve AKQ such that, for any point I

on its “axis” AO, the length of the arc AK is to that of the segment AI as the
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area ABNI bound by BNS and the axis is to the inscribed rectangle ABMI.42

To solve the problem, Gregory assumed that the curve BNS is simplex seu
non sinuosa, and then constructed two curves in the following manner:

Henceforth let the curve AFLP be of such nature, that, if any straight line
[segment] IN is drawn perpendicular to the straight line AO, the curve AFLP

cutting it at L, the square of the straight line [segment] IN is equal to those of
IL, IM both; then draw the curve AEKQ of such nature, that, if any straight
line [segment] IM is drawn perpendicular to the straight line AO, & cutting
the curve AEKQ at K & AFLP at L, the rectangle MIK 43 [that is, the area
MI×IK] is equal to that of the mixtilinear [figure] IAFL.

It would be convenient to interpret this in present-day notation before going
ahead. Choose A as the origin of coordinates; let the x-axis contain the segment
AO with its positive direction downward; let the y-axis contain the segment
AB with the positive direction to the right; let the curves BNS, AFLP, and
AEKQ be the graphs of functions that we denote by f , g, and h; and denote
the length of AB by a. We assume, as in Gregory’s figure, that f is a positive
increasing function with a negative second derivative. Then Gregory’s curves

42 The Latin original is this: “Invenire curvam [AKQ], quæ ad suam axem [AIO] eandem
habeat rationem, quam figura quælibet exhibita [ABNSO] ad rectangulum sibi inscriptum
[ABRO].”

43 The original says MIL, but this is just a typo that is not repeated in the rest of the proof.
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are constructed so that

IN2 = IL2 + IM2, or f 2 = g2 + a2,

and, if the abscissa of I is x,

MI×IK = area IAF L, or ah(x) =
∫ x

0
g.

Once these curves were constructed, Gregory stated the solution to the
problem in the following terms:

I say that [the area of] the figure ABSO is to [that of] the rectangle ABRO

as [the length of] the curve AEKQ is to [that of] the straight line [segment]
AO.

With today’s terminology this can be proved rather quickly, and not just from
A to O but also from A to an arbitrary point I in AO. Indeed, the area of the
figure ABNI is ∫ x

0
f,

while the length of the arc AEK is

∫ x

0

√
1+ (h′)2 =

∫ x

0

√
1+ g2

a2
=
∫ x

0

√
1+ f 2 − a2

a2
= 1

a

∫ x

0
f.

Dividing both sides by AI and putting I = O proves Gregory’s assertion. But
this proof is short and simple only because we have used the full machinery of
the calculus as it is known today, including the formula for arc length and the
fundamental theorem of the integral calculus to differentiate h. However, this
machinery was not available to Gregory, who had to create his own results as
he went. As we have seen, he had already obtained the formula for arc length
in Proposition 2, and the fundamental theorem of calculus is precisely what
the proof of Proposition 6 contains in disguise.

By the use of today’s fractions and mathematical symbols, Gregory’s proof
[pp. 17–19] can be both transcribed and interpreted as follows. Assuming the
curve AEKQ to have been constructed, choose a point C in the segment AO,
whose abscissa we denote by x0, such that

IL

IM
= IK

IC
, or

g(x)

a
= h(x)

x − x0

,
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and draw the segment KC. The heart of the proof lies in showing that this
segment is tangent to the curve AEKQ at K , or, since this curve is the graph
of the function h, that

h′(x) = h(x)

x − x0

.

In view of the previous equation, this is equivalent to h′(x) = g(x)/a. Re-
calling the definition of h, we observe that this is the fundamental theorem of
calculus.

To prove it, Gregory showed first that KC cannot intersect DH at a point α

to the right of E, as shown in the figure. To see this, we start by drawing the
rectangle ILZC, which intersects DH at X. The equation defining C above
can be rewritten as

MI×IK = IL×IC, or ah(x) = g(x)(x − x0).

If we denote the abscissa of D by x1 and note that the construction of the curve
AEKQ also gives

GD×DE = area DAF , or ah(x1) =
∫ x1

0
g,

then we have

IK

DE
= GD×IK

GD×DE
= MI×IK

area DAF
= area IAF L

area DAF
.

Since DE < Dα, using similarity of triangles and the integral representations
of ah(x) and ah(x1) already stated, we can write

area IAF L

area DAF
>

IK

Dα
= IC

DC
= area IZ

area DZ
, or

∫ x

0
g∫ x1

0
g

>
(x − x0)g(x)

(x1 − x0)g(x)
,

which after inverting the fractions gives

area DAF

area IAF L
<

area DZ

area IZ
, or

∫ x1

0
g∫ x

0
g

<
(x1 − x0)g(x)

(x − x0)g(x)
.
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Next, multiplying this inequality by−1, adding 1 to both sides, and simplifying
yields

area IDF L

area IAF L
>

area IX

area IZ
, or

∫ x

x1

g∫ x

0
g

>
(x − x1)g(x)

(x − x0)g(x)
.

The denominators of the two fractions in each of these inequalities are the
same (once more, by the construction of the curve AEKQ and the definition
of C, or by the definition of h and the stated equation ah(x) = g(x)(x − x0)),
so we conclude that

area IDF L > area IX, or
∫ x

x1

g > (x − x1)g(x),

which is absurd.44

Similarly, Gregory showed that KC cannot intersect the curve AEKQ on
the arc KQ. Therefore, KC is tangent to AEKQ. As we have remarked above,
this is a proof of the fundamental theorem of calculus, although it is more than
likely that Gregory was not aware of this general relationship between what
we now call differentiation and integration.

44 To the best of my knowledge, the Geometriæ has not been either reprinted or translated
since 1668, so here is a direct translation of the part of the proof transcribed above: “Let K be
any point whatever on the curve AFLP, through which draw a straight line IN perpendicular
to the straight line AO & cutting the curves AFLP, BR, BHNS, at points L, M , N ; so that
as IL is to IM so is IK to IC & draw KC: the straight line KC cuts or is tangent to the
curve AQ at the point K; if it happens that it cuts in K & therefore falls inside the curve
and actually inside the point E towards the vertex A: draw through the point E the straight
line DH parallel to the straight line IN, cutting the curves AQ, AP, BR, BS at the points
E, F , G, H , & the straight line LC [this is a typo; he means KC] in α, also complete the
rectangle ILZC, whose side LZ cuts the straight line DH at X. Seeing that IL is to IM
as IK is to IC, it will be that the rectangle MIK or the mixtilinear figure [just mixtilineum
in Gregory, and henceforth just ‘figure’ here] IAFL is equal to the rectangle IZ; & because
the rectangle GDE is equal to the figure DAF, it will be that as IK is to DE so is the
figure IAFL to the figure DAF, but IK has a larger ratio to DE than to Dα; & therefore
the figure IAFL has a larger ratio to the figure DAF than IK has to Dα or IC to DC;
& consequently the figure IAFL has a larger ratio to the figure DAF than the rectangle
IZ to the rectangle DZ, & by conversion the ratio of the figure IAFL to the figure IDFL
is smaller than the ratio of the rectangle IZ to the rectangle IX, & exchanging, the figure
IAFL has a smaller ratio to the rectangle IZ than the figure IDFL to the rectangle IX,
whereas the rectangle IZ is equal to the figure IAFL, it will follow that the rectangle IX is
smaller than the figure IDFL, but it is larger, which is absurd.”
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Once this was established, he drew KT perpendicular to KC, and, by
similarity of triangles,

CK

CI
= KT

IK
.

The segments IN, IM, and IL also make up a right triangle (since IN2 =
IL2 + IM2), which is similar to the triangle CIK because of the equation
IL/IM = IK/IC used to define C. It follows that

IN

IM
= CK

CI
= KT

IK
. 45

Without further explanations, Gregory concluded by saying that

since this can be done in the same manner at any point of the curve AQ, it is
clear from the above [Proposition] 2 that the straight line AO is to the curve
AQ as the rectangle OB is to the figure ABSO, which was to be proved.

But a word of explanation is preferable. The conclusion of Proposition 2 on
arc length, after replacing PNLHδ2 with BNIA, X with IM , 2δ with AI , and
the curve 79CD with the curve AEK, shows that

area BNIA

IM×AI
= length of AEK

AI
,

whence
AI

length of AEK
= IM×AI

area ABNI
= area IB

area ABNI
.

Gregory’s conclusion follows by taking I = O, K = Q, and N = S.
Gregory did not have what we now call the fundamental theorem of calculus

when he started his proof of Proposition 6, but he got it and he used it when
he needed it, and he was the first to do so.

Proposition 11 may be another first, because, when generously interpreted
in today’s terms, it happens to be the first use of the method of substitution to
evaluate an integral. Gregory’s statement is as follows [p. 27]:

PROP. 11. THEOREM.

Consider any mixtilinear space ABKI comprised between a curve BK, a
straight line AI & two parallel straight lines BA, KI ; and let the curve MY

45 For the reason stated before, here is a direct translation of what Gregory actually wrote:
“Let the perpendicular KT to the straight line CK meet the straight line AO at T ; it is clear
that CI is to CK as IK is to KT ; but on the other hand CI is to CK as MI is to NI, because
the straight lines IN, IM, IL, make a right triangle similar to the triangle CIK, whose sides
IM, IN, are homologous to the sides CI, CK; & hence as IK is to KT so is IM to IN ;”
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be of such nature that (having taken any point C on the curve BK & from

this drawn a straight line CE parallel to the straight line AB, and the straight
line CZ tangent to the curve BK and ending on the straight line AI, if ex-
tended to Z) the segment EZ is always equal to the segment CS parallel to
the straight line AZ & ending on the curve YM. I say that the �gure BKMY,
comprised between the curves BK, MY, & the straight lines BY, KM, parallel
to the straight line AZ, is equal to the mixtilinear �gure BAIK.

Gregory gave a geometric proof, based on the use of Proposition 10, that
we do not reproduce. What Proposition 11 does is to reduce the computation
of the area between the curve BCK and the segment AEI to the computation
of the area between the curves BCK and MSY. To express this in present-day
notation, consider the particular case in which the segments BA, CE, and KI

are perpendicular to AZ. Then choose coordinate axes with origin at I , the
positive x-axis along IA and the positive y-axis along IK. Let the curve BCK

be the graph of a differentiable and increasing function f whose inverse is
denoted by g, denote the abscissa of A by a, and let the coordinates of an
arbitrary point C on the curve be (x, y). Then

area ABKI =
∫ a

0
f (x) dx.
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Now, the area between the curves BCK and MSY is the same as the area under
a curve whose ordinate at each arbitrary point y from f (0) to f (a) is CS. Since

g ′(y) = CS

f (x)
= CS

f (g(y))
,

it follows that, under appropriate hypotheses,

area BKMY =
∫ f (a)

f (0)

CS dy =
∫ f (a)

f (0)

f (g(y))g ′(y) dy.

Thus Gregory’s proposition, that area ABKI = area BKMY, can be rewritten
as ∫ a

0
f (x) dx =

∫ f (a)

f (0)

f (g(y))g ′(y) dy.

This is integration by a change of variable.
Propositions 7 and 11 were not to remain dead ends. Gregory used both in

proving the following important result [pp. 102–103], which we shall interpret
after the proof:

PROP. 54. THEOREM.

Consider the parallelogram ABIK, and let the curve ACI be of such nature,
that (having drawn any straight line [segment] DE parallel & equal to the
straight line [segment] AB cutting the curve at C) the ratio AB to EC is the
product of the ratio AK to AE [by itself ] in the ratio of P to Q. I say that [the
area of ] the parallelogram ABIK is to [that of ] the �gure ACIK as P +Q is
to Q.

The statement about the ratio AB to EC means that

AB

EC
=
(

AK

AE

)P/Q

,

where P and Q are just positive integers.
To prove the proposition, Gregory drew the tangent to ACI at C until it

intersected the extension of AE at F . Then he drew the segment CH parallel
and equal in length to EF. If this is done for every arbitrary point C on ACI, a
new curve AHG results. Then Gregory wrote: “it is clear from [Proposition] 7
above that the straight line [segment] AE is to FE, or LC is to HC as P is
to Q,” which we shall accept with the meaning that he had figured this out,
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in one of his famous pieces of scrap paper, by the same method used in the
example of Proposition 7. But if this ratio is valid for an arbitrary C on ACI,
then

it is evident that the figure ACIB is to the figure ACIGH as P is to Q;
but from [Proposition] 11 above the figure ACIGH is equal to the figure
ACIK & therefore the figure ACIB is to the figure ACIK as P is to Q, &
componendo the parallelogram ABIK is to the figure ACIK as P + Q is
to Q quod demonstrandum erat.

The following is a transcription of this statement into more modern language:

area ACIB

area ACIGH
= P

Q
,

from which it follows by Proposition 11 (with ACI in the role of BCK and the
points F and H in place of Z and S) that area ACIGH = area ACIK, with
the result that

area ACIB

area ACIK
= P

Q
.

Adding 1 to both sides and simplifying, we arrive at

area ABIK

area ACIK
= P +Q

Q
,

which was to be proved.



274 The Calculus Chapter 5

To interpret this proposition in current terminology, assume that the par-
allelogram ABIK is a rectangle (it is shown as such in Gregory’s own figure),
and choose coordinate axes with origin at A, the positive x-axis along AK and
the positive y-axis along AB. Let ACI be the graph of a differentiable func-
tion f , and let AE = x, EC = y = f (x), AK = a, and KI = AB = b. Then,
if we use lowercase letters for the integers P and Q, Gregory’s hypothesis on
the ratio AB/EC becomes

b

f (x)
=
(

a

x

)p/q

,

so the equation of the curve ACI is

f (x) = b

(
x

a

)p/q

.

Then

area ACIK =
∫ a

0
f = b

ap/q

∫ a

0
xp/q dx,

while area ABIK = ab. Gregory’s proposition, rewritten as

area ACIK = q

p + q
area ABIK,

then translates to ∫ a

0
xp/q dx = a

p
q
+1

p

q
+ 1

after some obvious simplification. Thus, what Gregory effectively did was to
integrate a rational power of x.

However, Fermat had already shown this. What was new with Gregory is
the statement he made in his proof about the use of Proposition 7, enclosed in
quotation marks above. It can be restated as

x

FE
= LC

HC
= p

q
,

so that FE = qx/p. But f ′(x) = CE/FE = f (x)/FE, and then

f ′(x) = p

qx
f (x) = p

qx
b

(
x

a

)p/q

= p

q
b

(
x

a

) p
q
−1 1

a
,
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which amounts to differentiating a rational power of x.
It may be a matter of wonder to us, a painful experience too, that these

familiar results were obtained by the painstaking application of classical geo-
metry. But in the absence of the now familiar concept of limit, at a time when
what we know now had yet to be discovered, how else could anyone deal with
problems about tangents and areas but by resorting to the well-founded Eu-
clidean geometry? There will be an answer to this question, but not quite yet.

Without some necessary algebrization, Gregory’s published results lack
the agility and the power to be called a calculus. But we should remember
those higher-order “derivatives” that he computed to obtain the infinite series
expansions described in Chapter 4. They suggest that he may have created
such a calculus, but, if so, it never saw the light through timely publication.

5.5 BARROW’S GEOMETRIC CALCULUS

In 1669 Isaac Barrow (1630–1677), the first Lucasian Professor of Mathema-
tics at Trinity College, Cambridge, resigned his position and recommended one
of his former students, the 27-year-old Isaac Newton, as his successor. With
Newton’s assistance, Barrow had prepared the publication of his mathematical
swan song, the Lectiones geometricæ, which appeared the following year.46

To anyone perusing this volume for the first time it might appear as a
collection of theorems on geometry, perhaps not a particularly interesting
one at that.47 But a closer examination reveals that quite a number of the
propositions are about tangents, quadratures, and related topics. Cloaked in
very thick geometric garb, practically unrecognizable, these are well-known
results of the calculus. The first of these in the Lectiones that is significant is
the following proposition from Lecture VIII [p. 64; 91]:

V. Let VEI be a straight line,48 and let two curves YFN, ZGO be related
to one another, so that if any straight line EFG is parallel to a straight line

46 Lectiones geometricæ; in quibus (præsertim) generalia curvarum linearum symptomata
declarantur, 1670; 2nd. ed. 1674. Abridged translation by Child as The geometrical lectures
of Isaac Barrow, 1916. Page references are to the 1674 edition and to Child’s translation, in
this order and separated by a semicolon. The translations included here are modifications
of those by Child, except for the one of Examp. III, which is my own.

47 Child, the translator, in conveying his own first impression on page 28 of the Introduc-
tion, stated that the results presented by Barrow “seemed to be more or less a haphazard
grouping, in which one proposition did occasionally lead to another; but certain of the more
difficult constructions were apparently without any hint from the preceding propositions.”

48 Child’s translation has TEI and V is not shown in his figure.



276 The Calculus Chapter 5

Isaac Barrow
Portrait by Isaac Whood

Engraving by Benjamin Holl

AB [not shown] given in position, the intercepts EG, EF are always in the
same ratio to one another; while the straight line TG touches one curve ZGO

in G (and comes together with the straight line VE at T ) then TF, extended,
will also touch the other curve YFN.

In short, if the quotient EG/EF is constant regardless of the position of the
line EFG, as long as it is parallel to AB, and if TG is tangent to ZGO at G,
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then TF is tangent to YFN at F . Barrow gave a simple geometric proof of this
fact, but it is not the proof that is of interest to us.49

What matters is what this means, so rotate the figure so that the line VEI

is horizontal and take it to be the x-axis with the positive direction to the left.
Now consider the particular case in which the line AB is vertical and take it
to be the y-axis with the positive direction upward. If the curves ZOG and
Y F N are denoted, in function notation, by y = f (x) and y = g(x), then the
hypothesis that EG/EF equals some constant k means that f = kg, and then

f ′(x) = EG

T E
= k

EF

T E
= kg′(x)

for any x. Thus, in our language, Barrow has shown that if f = kg then
f ′ = kg′, which is one of the theorems of the calculus.50

49 Since it depends on a previous proposition it would take a little too much space to
reproduce here. But those readers who would check with the original sources should be
aware of the fact that both Barrow’s original and Child’s translation contain typos (not the
same), but they are easy to identify and correct.

50 This is one of the “processes of differentiation in a geometrical form” that Turnbull
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Here is another theorem from Lecture VIII that has the distinction of being
both nontrivial and easy to explain [pp. 65; 93–94]:

IX. Let VD be a straight line, and XEM, YFN two curves so related that,
if any straight line EDF is freely drawn parallel to a line given in position,
the rectangle from DE, DF is always equal to any the same space [area];

also the straight line ET touches the curve XEM at E, and concurs with VD

in T ; then, if we take DS = DT ; & F S is joined; [FS] will touch the curve
YFN at F .

The hypothesis is that the curves are related in such a manner that the product
DE×DF is constant regardless of the location of the line EDF. In other words,
if IN is any line drawn parallel to EF and if it intersects the curves at M and N ,
then DE×DF = PM×PN . The complete proof is as follows [pp. 65–66; 94]:

thought might have inspired Gregory. This is quite possible, but Child’s assertion on
page 31 of the Introduction to his translation of Barrow’s Lectiones, to the effect that
this proposition gives the derivative of a sum, seems to be an exaggeration. At the end of
the translation of Lecture VIII there is a note by Child in which he admitted that Barrow
omitted a theorem, then Child himself stated and proved that theorem in the style of Barrow
[p. 99], and this is the equivalent of the differentiation of a sum. Then he expressed his
belief that [p. 100] “the omission of the theorem was intentional;” stating that “Barrow may
have thought it evident, . . . but I prefer to think that he considered it as a corollary of the
theorem of §V;” that is, the one just presented. Then Child showed how such a corollary can
be obtained, but since there is no figure and it is not clear what points are represented by his
letters a and b, I have been unable to understand it. In any event, it is clear that Child was
passionate about Barrow’s work, and eager to justify the opening assertion of his preface,
that [p. xiii] “Isaac Barrow was the first inventor of the Infinitesimal Calculus.”

However, after the work of Viète, Descartes, and others, mathematics had already de-
veloped as a fertile soil for the ideas of the calculus. It is not surprising that they were
developed by several men of genius almost simultaneously. It is neither fair nor necessary
to attempt to give all the credit to a single individual.
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For [let] any [straight line] IN be drawn parallel to EF ; cutting the given
lines as shown. Then 51

TP

PM
>

(
TP

PI
=
)

TD

DE
and also

SP

PK
= SD

DF
.

Therefore
TP×SP

PM×PK
>

TD×SD

DE×DF
= TD×SD

PM×PN
.

But TD×SD > TP×SP [by the Euclidean proposition quoted here on
page 241, since D is the midpoint of T S]; hence all the more,

TD×SD

PM×PK
>

TD×SD

PM×PN
.

Therefore,

PM×PK < PM×PN; or PK < PN.

Thus the whole line FS lies outside the curve Y F N .

In other words, what Barrow is trying to say is that if the curves are related as
stated before the proof, and if ET is tangent to XEM at E, then FS is tangent
to Y F N at F .

What does this really mean? Is it a result that we should be excited about?
To better explain it, we start by reconstructing the figure with some rectangular
axes, as is the custom now, and then we shall use coordinate and function
notation again. Take the line V D to be the x-axis with the positive direction to
the right and let the line given in position be a vertical y-axis with the positive
direction upward. Let the negative part of the y-axis represent a positive
z-axis. If the curves Y F N and XEM are then denoted by y = f (x) and
z = g(x), respectively, then the fact that they are related by DE×DF = k,
where k is a positive constant, means that (referring to the figure) y = k/z.
The slopes of the tangents to the graphs of g and f at E and at F are, in the
arrangement shown in the figure and using the hypothesis that TD = DS and
current notation,

z ′ = DE

TD
and y ′ = −DF

DS
= −DF

TD
.

51 I am using modern fractions and symbols. Barrow wrote T P.P M �—— (T P .P I ::)
T D.DE and so on.
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Then
y ′

z ′
= −DF

DE
= −DE×DF

DE2
= − k

z2
,

so that

y ′ = − k

z2
z ′.

Thus, what Barrow essentially did is to find the derivative of y = k/z geo-
metrically, a task for which we use the chain rule today.

Immediately after the proof he considered the particular case in which the
curve XEM is a straight line [p. 66; 94]:

Note. If the line XEM were a straight line (and so coincident with TEI )
Y F N would be the ordinary hyperbola, whose centre is T , one asymptote
T S, and the other T Z parallel to EF .

This statement may not be a model of clarity (in particular, T Z is not parallel to
EF in Barrow’s own figure), but here is what it means in today’s terminology.
Since no mention has been made about the location of the vertical axis, we
can place it at will, as we did in the last figure, and assume that the equation
of the line XEM is z = mx, and then y = k/(mx), the equation of an ordinary
hyperbola. In this case, z ′ = m and

y ′ = − k

z2
z ′ = − k

m2x2
m = − k

mx2
.

Using similar techniques, Barrow established many results in what we now
call differentiation in Lectures VIII and IX.52 However, his heavy geometric

52 For the complete list see Child, The geometrical lectures of Isaac Barrow, pp. 30–31,
but take it with a grain of salt.
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approach almost hides this fact and has left many people wondering whether
he really knew what he was doing. Barrow himself stated at the start of Lecture
VI that the last six lectures would be partly [p. 45; 66]

about an investigation of tangents, without the trouble or annoyance of cal-
culation . . . partly about the ready determination of the dimensions of many
magnitudes, with the help of designated tangents . . .

Since that is what the last six lectures actually delivered, Barrow must have
known what he was doing.

But then Barrow diverged from his self-imposed method of strict geomet-
ric constructions when, at the end of Lecture X [pp. 80–81; 119–120], he
presented an alternative, and more algebraic

method for finding tangents by Calculation commonly used by us. Although
I hardly know, after so many well-known and well-worn methods of the kind
above, whether there is any advantage in doing so. Yet I do so on the advice of
a Friend;53 and all the more willingly, because it seems to me more profitable
and general than those which I have discussed. Accordingly, I proceed as
follows.

Let AP , PM be two straight lines given in position (of which PM cuts a
given curve in M) & let MT be supposed to touch the curve at M , and to cut

the straight line at T ; in order to find the quantity of the straight line P T ; I set
off an indefinitely small arc, MN , of the curve; then I draw straight lines NQ

parallel to MP & NR to AP ; I call MP = m; P T = t ; MR = a; NR = e;

53 In the draft of a letter found by Louis More in the Portsmouth collection, Newton stated:
“A paper of mine gave occasion to Dr. Barrow [who] showed me his method of tangents
before he inserted it into his 10th Geometrical Lecture. For I am that friend which he then
mentioned.” More, Isaac Newton. A biography, 1934; reprinted by Dover Publications,
1962, p. 185, n. 35.
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and the other straight lines, determined by the special nature of the curve,
useful for the matter in hand, I also designate by name; also I compare MR,
NR (& through them MP , P T ) with one another by means of an equation
obtained by Calculation; meantime observing the following rules.

1. In the calculation, I omit all terms containing a power of a or e, or
products of these (for these terms have no value).

2. After the equation has been formed, I reject all terms consisting of let-
ters denoting known or determined quantities; or terms which do not contain
a or e (for these terms brought over to one side of the equation, will always
be equal to zero).

3. I substitute m (or MP ) for a, and t (or P T ) for e. Hence at length the
quantity of P T is found.

Rule 3 may profit from a bit of explanation. Since the “triangles” NMR and
TMP are (approximately) similar, we can write

m

a
= MP

MR
= TP

NR
= t

e
,

and then whatever equation there is at the start of Rule 3 can be multiplied by
m/a = t/e.

There is no geometric proof of this alternative method. This is an algorithm,
much in the manner of Fermat’s Methodus and not too dissimilar. Barrow
was, in all likelihood, not directly acquainted with Fermat’s work because his
name is not mentioned in the Lectiones. But he mentioned those of Gregory
[p. 89; 131] and Huygens [p. 94; 141], both of whom had used Fermat’s
method. So there is a distinct possibility of an indirect influence of Fermat
on Barrow. But Barrow’s method is an improvement over Fermat’s Methodus
because the use of two small quantities, a and e, instead of Fermat’s E, makes
Barrow’s procedure better suited for applications to implicit functions. Of this
alternative method Barrow gave five examples, of which we present the third,
which he labeled in the margin La Galande, that is, the folium of Descartes. It
is possible to quote it in its entirety, with some explanatory notes in brackets
[pp. 82–83; not in Child]:

Examp. III.

Let AZ be a straight line given in position, & AX a magnitude [a given
constant]; and also let AMO be a curve such that, when any straight line
MP whatever is drawn normal to AZ, it will be AP cub. + P M cub. =
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AX×AP×P M [that is, x3 + y3 = bxy, where b is a constant].
Set AX = b; & AP = f ; then AQ = f − e; & AQ cub. = f 3 − 3ff e

[omitting terms that contain powers of e, according to Rule 1]; & QN cub.
[= P R3 = (m− a)3] = m3 − 3mma [Rule 1]. & AQ×QN = f m− f a −
me+ ae = f m− f a−me [Rule 1]; from which AX×AQ×QN = bf m−
bf a−bme; hence the equation f 3−3ff e+m3−3mma = bf m−bf a−bme;
or removing terms to be rejected [by Rule 2, since f 3 +m3 = bf m], bf a −
3mma = 3ff e−bme; substituting [Rule 3] bf m−3m3 = 3ff t −bmt ; or,

bf m− 3m3

3ff − bm
= t.

This solution can now be compared with the one given by Fermat.

5.6 FROM TANGENTS TO QUADRATURES

Barrow gave the following important result in Lecture X [pp. 78; 116–117],
which, with reference to the next figure,54 can be translated as follows:

XI. Let ZGE be any line [curve], whose axis is VD;55 to which ap-
ply first perpendiculars (V Z, P G, DE) starting with V Z and continually
increasing [in length]; also let V IF be a line such that, if any straight line
EDF is drawn perpendicular to VD (cutting the curves at the points E, F ,

54 I have omitted a portion of Barrow’s Figure 109. The curve ZGEG branches out, at
least in the 1674 edition, about midway between Z and G. One branch goes left to Z, as
shown, but the other goes to V . As much as is possible to judge from a reproduction, this
omitted branch looks like a later addition to the original drawing.

55 Child’s translation has A in place of V. Another translation can be found in Struik, A
source book in mathematics, 1200–1800, pp. 255–256.
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Theorem XI in the Geometrical lectures.

and V D in D) the rectangle formed by DF , & a certain designated [length] R

is always equal to the intercepted space VDEZ; also let DE/DF = R/DT

[DE.DF :: R.DT in Barrow’s own notation]; & join the straight line T F ;
then it will touch the curve V IF .
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As usual, this needs interpretation, which we provide in three ways. First,
we split the figure in two and flip the bottom curve vertically; second, we
eliminate some of the clutter in the figure and in the statement of the theorem;

and third, we introduce some current notation as shown in the new figures.
With the aid of these, in which we have taken the liberty to replace Barrow’s D

with x, we can restate the result as follows:

XI. Let the curve ZGE represent an increasing function f ; also let F be
a function with graph V IF such that, for some constant R and at any x, the
product RF (x) is equal to the area under the graph of f from V to x; and
select T on the V x axis such that

xE

xF
= R

xT
.

Then TF is tangent to y = F (x) at (x, F (x)).

Of course, some obvious conditions must be imposed on the curve. Omit-
ting the proof, which is not our concern at this point, this means that the slope
of the tangent to F at x is

F ′(x) = xF

xT
= xE

R
= f (x)

R
.

The conclusion to be drawn from this is that, if R = 1, Barrow’s Theorem XI
is the Fundamental Theorem of Calculus in the following version: if F is a
function such that

F (x) =
∫ x

V

f (t) dt,

then F ′(x) = f (x).
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Lecture XII includes several results on quadratures and rectification, in-
cluding one that is of particular interest because it may be the first of its kind
that can be expressed as integration by parts. It is a result that is part of a
collection of propositions in Appendix I, which Barrow included “to please
a friend who thinks them worth the trouble” [p. 110; 165].56 It begins with
a general foreword, from which—as well as from Barrow’s figure—we make
the following extract [pp. 110–111; 165–167]:

Let ACB be a Quadrant of a circle, and let AH , BG be tangents to it; & in
. . . AC produced take . . . CE . . . equal to the radius CA; . . . and let the
hyperbola LEO through E have asymptotes BC, BG. Also let an arbitrary
point M be taken in the arc AB, and through it draw CMS (meeting the
tangent AH in S) . . . and MP L parallel to AC.

After the general introduction, Barrow gave a collection of propositions,
the fifth of which begins as follows:

56 This friend was John Collins, as he revealed himself in a letter to Oldenburg of 30
September 1676.
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V. Take CQ = CP ; and draw QO parallel to CE (meeting the hyperbola
LEO in O) . . .

With this preparatory work, we are ready for the proposition that concerns us
[p. 112; 167].

VIII. Let the curve AY Y be such that F Y is equal to AS; draw next a
straight line Y I parallel to AC, the space ACIY YA (that is, the sum of the
Tangents belonging to the arc AM , & applied to the straight line AC, together
with the rectangle F CIY ) is equal to half the hyperbolic space P LOQ.

Literally, this says that the sum of the area under an arc of the graph of a
tangent function (the curve AY Y , whether it looks it or not) and the area of
a certain rectangle equals half the area under some arc of a hyperbola. This
literal interpretation may not inspire rave reviews at first reading, but a second
examination using today’s tools of the trade will reveal something that may
be considered curious and even interesting.

For convenience, we take the radius of the quadrant ACB to be 1, denote the
angle ACS by θ0, choose C as the origin of rectangular coordinates, assume
that CA is located on the positive x-axis (directed upward) and that CB is
located on the positive y-axis (directed to the left). Then we have

CF = cos θ0, CA = 1, and F Y = − tan θ0.

Now, if D is an arbitrary point on the segment AS, denote the angle ACD

by θ . Then the curve AY Y is the graph of y = − tan θ , and the area of the
space AF Y Y A is

∫ 1

cos θ0

[0− (− tan θ)] dx = −
∫ cos θ0

1
tan θ dx.

But we are mixing our variables here. It should be graphically clear that
x = cos θ , and then the last integral becomes

−
∫ θ0

0
tan θ d(cos θ).

Next, the area of the rectangle F CIY is

F Y×F C = tan θ0 cos θ0.
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Finally, since CP = sin θ0, then CQ = − sin θ0, and if we take the equation
of the hyperbola LEO to be

x = 1

y − 1
,

then the area of the space P LOQ is

∫ sin θ0

− sin θ0

(
0− 1

y − 1

)
dy =

∫ sin θ0

− sin θ0

1

1− y
dy.

But y = sin θ , and then the area of the space P LOQ can be expressed by the
integral

∫ θ0

−θ0

1

1− sin θ
cos θ dθ =

∫ θ0

−θ0

cos θ
1+ sin θ

1− sin2 θ
dθ

=
∫ θ0

−θ0

cos θ
1

cos2 θ
dθ +

∫ θ0

−θ0

sin θ

cos θ
dθ.

The second integrand is odd and the integral vanishes. The first integrand is
even and the integral equals

2
∫ θ0

0
cos θ d(tan θ).

Therefore, Barrow’s result can be written as

−
∫ θ0

0
tan θ d(cos θ)+ tan θ0 cos θ0 =

∫ θ0

0
cos θ d(tan θ),

and this is integration by parts.
Barrow’s results are about tangents and quadratures. But the subject that

he put together with such care and completeness was so heavily cloaked that
major doses of skill and will would have been necessary to penetrate the
geometric shields erected by the author. Barrow may have played the role
of a moth attracted by the brilliance and elegance of the prestigious synthetic
geometry of Euclid, only to get burned in the process.

At this time Barrow left mathematics for good to devote himself to the
study of theology, and it was as a Doctor of Divinity that he became Master
of Trinity College in 1672.
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5.7 NEWTON’S METHOD OF INFINITE SERIES

During the plague years Newton worked extensively on what would later be
called the calculus, summing up his discoveries in a manuscript that has been
called the October 1666 Tract, a 30-page manuscript that bears this date.57 It
was at this very early stage that he discovered the rules of differentiation and
some methods of quadrature, at least for some particular kinds of what we
now call functions.

For instance, in a manuscript written about 1665 he found the subnormal
at a point on a curve that we would express by the equation

x = p(y)

q(y)
,

where p and q are polynomials in y. Newton called the subnormal v, and
gave it in the form of a quotient whose numerator and denominator are to be
computed according to the following rule [p. 323]:58

Rule 2d. If y is in ye rationall denom: of x consisting of many termes
[our q(y)], for the ye Numerat: in ye valor [value] of v multiply y by ye

denom of x.squared. for ye denominatr mu[l]tiply ye Num: of x according to
its dimensions [see below for an explanation of these words] & ye product
by ye denom:. againe multipl ye Denom: according to its dim: & ye product
by ye numerr & substract ye less from ye greater & divide ye diff by y.

This says that the numerator of the expression giving v should be y[q(y)]2.
Next, the “Num: of x according to its dimensions” means that each term of
p(y) must be multiplied by the corresponding exponent of y. For instance, if
p(y) = 6y3 − 5y5, to write it “according to its dimensions” means to write
18y3− 25y5. In general, the “Num: of x according to its dimensions” is what
we would write as yp ′(y). Thus, Newton’s rule can be written in the form

v = y[q(y)]2

yp ′(y)q(y)− yq ′(y)p(y)

y

.

57 First published by Hall and Hall in Unpublished scienti�c papers of Sir Isaac Newton.
A selection from the Portsmouth Collection in the University Library, Cambridge, 1962,
pp. 15– 64=Whiteside, The mathematical papers of Isaac Newton, I, 1967, pp. 400–448.

58 The portion of the manuscript that contains the work quoted here is reproduced in
Whiteside, The mathematical papers of Isaac Newton, I, pp. 322–341. Page references are
to this edition.
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First edition of Newton’s De analysi.

Reproduced from the virtual exhibition El legado de las matemáticas:
de Euclides a Newton, los genios a través de sus libros, Sevilla, 2000.

It is not difficult to draw a figure of a curve, its normal at a point, and a right
triangle with legs v and y whose hypotenuse is an appropriate segment of the
stated normal. Then, using current notation, it is easy to see that v = y(dy/dx).
It follows from the previous equation that

dx

dy
= 1

dy

dx

= p ′(y)q(y)− q ′(y)p(y)

[q(y)]2
.

This makes it clear that Newton had discovered a quotient rule for the subnor-
mal in the case of polynomials at a very early stage in his work on what we
now call the calculus.

Later, after the appearance of Mercator’s Logarithmotechnia and the com-
mentaries with improvements by Wallis and Gregory, and fearing that others
“would find out the rest before I could reach a ripe age for writing” (letter
to Oldenburg of 24 October 1676) and would publish before him, Newton
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quickly put down in writing all his discoveries on this subject in a manuscript
entitled De analysi per æquationes numero terminorum in�nitas, probably his
most famous mathematical work. It was circulated to a restricted circle in
manuscript form in 1669, but remained unpublished until 1711. It may be
fair to state that working in the setting of strict Euclidean geometry was not
Newton’s cup of tea at this moment. He much preferred to obtain and express
his results through the use of infinite series—power series to be specific—one
term at a time. To deal with the general term, and referring to the figure on the
first page of the Latin edition, reproduced below (in which AB = x), Newton
established the following Rule I (Regula I):59

If ax
m
n = y, it shall be

an

m+ n
x

m+n
n = Area ABD.

He saved the demonstration for the end of the paper [pp.19–20; 243–245],60

giving it with the aid of the next figure, in which

the base AB = x, the perpendicular ordinate BD = y, & area ABD= z, as
before. Similarly let Bβ = o, BK = v, & the rectangle BβHK (ov) equal
to the space BβδD.

It is therefore Aβ = x + o, & Aδβ = z+ ov.

Then he made an assumption that would be crucial in his argument:

59 This is an elaboration of Proposition 8 of the October 1666 Tract. See Whiteside, The
mathematical papers of Isaac Newton, I, pp. 403– 404.

60 Page references given here are to Jones’ edition in Analysis per quantitatum series,
�uxiones, ac differentias: cum enumeratione linearum tertii ordinis, 1711, and, after a
semicolon, to Whiteside’s translation in The mathematical papers of Isaac Newton, II,
1968.
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If we now suppose Bβ to be infinitely small, or o to be zero, v & y will be
equal . . . 61

Then he gave a small example before starting the proof proper in reverse, by
taking as a hypothesis the conclusion in the statement of Rule I:

Or in general if
n

m+ n
ax

m+n
n = z;

or, putting
na

m+ n
= c & m + n = p, if cx

p
n = z, or cnxp = zn; then

substituting x + o for x & z+ ov (or, equivalently, z+ oy) for z produces

cn times xp + poxp−1, &c. = zn + noyzn−1, &c,

omitting of course the remaining terms which would ultimately vanish.

That is, if x is replaced by x + o, then the area under the curve increases
from z = ABD to z+ ov (see figure), which is approximately equal to z+ oy

since o is very small. Thus, Newton replaced x with x + o and z with z+ oy

in cnxp = zn, raised both sides to the nth power, expanded these powers, and
announced his intention to omit the terms represented by “&c” because they
contain negligible powers of o. Then he continued as follows:

Now removing the equal terms cnxp & zn, and dividing the rest by o, there
remains

cnpxp−1 = nyzn−1
(
= nyzn

z

)
= nycnxp

cx
p
n

.

Or, dividing by cnxp, it shall be

px−1 = ny

cx
p
n

. or pcx
p−n

n = ny;

or, restoring
na

m+ n
for c & m+ n for p, that is, m for p− n & na for pc, it

shall be ax
m
n = y. Conversely therefore, if ax

m
n = y, it will make

n

m+ n
ax

m+n
n = z.

Q.E.D.

61 In the manuscript this statement reads “Si jam supponamus Bβ esse infinite parvam,
sive o esse nihil, erunt v & y æquales, . . . ” in Whiteside, The mathematical papers of
Isaac Newton, II, p. 242, but it is slightly different in Jones’ edition, p. 20. It is not correct
to assume that Newton took over the o notation from Gregory, for he had already used it
in his October 1666 tract on fluxions. See Whiteside, The mathematical papers of Isaac
Newton, I, pp. 414–415. Note, in particular, his statement: “And those terms are infinitely
little in wch o is.”
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If we were to interpret this in modern terms, we would write f (x) =
cnxp = zn, which after incrementing becomes

f (x + o) = f (x)+ noyzn−1 &c.

Subtracting f (x) from both sides and dividing by o, we obtain

f (x + o)− f (x)

o
= nyzn−1 &c,

and omitting the terms represented by “&c” because they would ultimately
vanish is equivalent to taking the limit as o → 0. In short,

y = z

nzn
lim
o→0

f (x + o)− f (x)

o
= cx

p
n

ncnxp
cnpxp−1 = c

n
px

p
n
−1 = ax

m
n .

Newton gave six examples of Rule I before stating Rule II [p. 2; 209], to
the effect that if y is the sum of terms of the kind stated in Rule I, even if they
are infinite in number, then the area is the sum of the areas corresponding to
the individual terms. At that time, Newton must have thought that this was
evident and in no need of proof. After several examples, he stated the third and
last Rule [pp. 5; 211–213], basically asserting that if y “be more compounded
than the foregoing [more than the sum of terms of the given kind], it is to be
reduced to simpler terms.” He considered several possibilities and dealt with
them by example. In this way, he found the area under y = aa/(b+x) by long
division, obtaining an infinite series for the right-hand side and performing the
quadrature term by term; for the curve y = √aa + xx the binomial theorem
gives a series expansion for the right-hand side; and in the more complex
example

y =
√

1+ ax2
√

1− bx2

both the binomial theorem and long division would bring home the bacon (the
division is simpler if both numerator and denominator are multiplied first by
the denominator) [pp. 5–8; 213–219].

To pinpoint Newton’s contribution to the subject at this stage, it is clear
that the method of using an infinitely small quantity o to perform what we
recognize today as a differentiation was not new with Newton. In fact, we
have seen the work of Fermat, which is quite similar. The sequence of steps
by each of these two authors is as follows: Fermat—who used the letter E for
the increment of the variable—adequates, removes common terms, removes
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higher powers of E, divides by E, and gets the solution; Newton equates,
removes higher powers of o, removes equal terms, divides by o, and gets the
solution. Gregory did much the same thing, other than adding the twist of
introducing rectangles in his procedure. This priority was acknowledged by
Newton, who admitted having obtained the idea for the method from Fermat
and also mentioned the work of Gregory and Barrow.62

Newton’s originality at this point consists in transforming a procedure
known to work in isolated cases into a calculus of greater generality. While
previous authors limited themselves to finding the tangent to one particular
curve at a time, Newton was interested in a general method. And because of
his use of infinite series, his method applies to functions with radicals, and
that was new. Furthermore, a most important aspect of Newton’s originality
consists in the interplay between what we now call differentiation and integra-
tion, as we have seen in his proof of Rule I. Note how he found the function
by differentiating the area under its graph from the origin to a variable point.
That is, Newton was using what eventually became the fundamental theorem
of calculus “and by applying it to abstract equations, directly and invertedly,”
he made it widely applicable. Gregory’s and Barrow’s books also contain
many results that, if properly interpreted, turn out to be theorems of analy-
sis, including the fundamental theorem in both works (which Gregory applied
“directly and invertedly” in the proof of his Proposition 54). But the heavy
geometric flavor of their presentation—almost incomprehensible today in Bar-
row’s case—greatly limited the usefulness and applicability of their results.
In Newton’s hands, this new subject became a practical calculus.

5.8 NEWTON’S METHOD OF FLUXIONS

Newton would reelaborate and amplify his view of the calculus in subsequent
works, reinterpreting it first as the fluxional calculus, in a manuscript possibly
entitled (the first folium of the autograph is missing) Tractatus de methodis

62 In the draft of a letter, now in the University Library, Cambridge (Add. 3968.30, 441r ),
Newton stated: “I had the hint of this method from Fermat’s way of drawing tangents and
by applying it to abstract equations, directly and invertedly, I made it general. Mr. Gregory
and Dr. Barrow used and improved the same method in drawing tangents.” See More, Isaac
Newton. A biography, p. 185, n. 35. However, Whiteside, in The mathematical papers of
Isaac Newton, I, p. 149, argues with good reason that “Newton had no direct knowledge of
Fermat’s work but knew [only] the outlines of his tangent-method.” It is difficult to say,
today, what Newton knew or did not know, but he claimed only to have had the hint of the
method from Fermat and, as the French say, à bon entendeur, demi mot.
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serierum et �uxionum (Treatise on the method of fluxions and infinite series).
Newton tried to publish it beginning in 1671, but was unsuccessful. After a
number of pages of preliminaries, in which Newton elaborated on such topics
as long division of polynomials, he got around to considering equations in
which some quantities are constant “to be looked on as known and determined
and are designated by the initial letters a, b, c and so on,” [p. 73] 63 and others
are variable:

I will hereafter call them fluents and designate them by the final letters v, x,
y and z. And the speeds with which they each flow and are increased by their
generating motion (which I might readily call fluxions or simply speeds) I
will designate by the letters l, m, n and r . Namely, for the speed of the
quantity v I shall put l, and so for the speeds of the other quantities I shall
put m, n and r respectively.64

It would be difficult to remember that the speeds (fluxions) at which v, x, y,
and z flow are designated by the letters l, m, n, and r . Newton would change
the notation twenty years later when, in December 1691, he denoted those
fluxions by v̇, ẋ, ẏ, and ż.65 This is particularly appealing if we think of the
fluents as varying with time and of the dot as indicating derivative with respect
to time, and we shall use this notation in our presentation even if it was 20
years before its time in 1671.

Then Newton posed the first of twelve problems to be discussed in this
new tract:66 Given the relation of the �owing quantities to one another, to
determine the relation of the �uxions. Keep in mind while reading his method
that it refers to an equation of the form now written as F (x, y) = 0 or a
higher-dimensional equivalent [p. 75]:

Arrange the equation by which the given relation is expressed according to
the dimensions of some flowing quantity, say x [that is, rearrange F (x, y) in

63 Page references are to and translations from Whiteside, The mathematical papers of
Isaac Newton, III, 1969, pp. 32–353.

64 Three centuries before, Richard Suiseth had already used the words �uxus and �uens
in this connection in his Liber calculationum, f. 9r , col. 2 and f. 75v , col. 1.

65 This notation appeared first in print in the portion of a new tract, De quadratura cur-
varum, that was included as an appendix to Wallis’ De algebra tractatus; historicus &
practicus of 1693 (see below, pages 312 and 315, for details). Jones adopted these “dotted”
fluxions in his 1711 printing of De quadratura curvarum, as did Colson in his translation of
the fluxonian tract, so the practice of replacing Newton’s original fluxions with their dotted
equivalents dates back to the early eighteenth century.

66 Its notable length is due to the presentation of many examples, the subdivision of some
of the problems into a number of subcases, and the consideration of related questions.
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order of decreasing powers of x], and multiply its terms by any arithmetical
progression [not any; he multiplied the terms by 0, 1, 2, 3, . . . from right
to left; that is, he multiplied each by the exponent of x] and then by ẋ/x.
Carry out this operation separately for each of the fluent quantities and then
put the sum of all the products equal to nothing, and you have the desired
equation.67

To show how this is done he provided five examples, of which we select two.
The first and simplest is as follows:

If the relation of the quantities x and y be x3−ax2+axy−y3 = 0, I multiply
the terms arranged first according to x and then to y in this way.

Multiply x3 − ax2 + axy − y3 Mult. −y3 + axy − ax2 + x3

by
3ẋ

x
.

2ẋ

x
.

ẋ

x
. 0 by

3ẏ

y
.

ẏ

y
. 0

there comes 3ẋx2 − 2ẋax + ẋay ∗. comes −3ẏy2 + aẏx ∗.

And the sum of the products is 3ẋx2 − 2aẋx + aẋy − 3ẏy2 + aẏx = 0, an
equation which gives the relation between the fluxions ẋ and ẏ. Precisely,
should you assume x arbitrarily the equation x3 − ax2 + axy − y3 = 0
will give y [not necessarily; it may not be solvable for y], and with these
determined it will be

ẋ

ẏ
= 3y2 − ax

3x2 − 2ax + ay
.

This procedure resembles what we now call implicit differentiation. More
complicated cases involving products, quotients, and roots can be solved by
additionally using substitutions [p. 77]:

Example 4. If x3−ay2+ by3

a + y
−x2

√
ay + x2 expresses the relation between

x and y, I put z for by3/(a+ y) and v for x2
√

ay + x2 and thence obtain the
three equations

x3 − ay2 + z− v = 0, az+ yz− by3 = 0, & ax4y + x6 − v2 = 0.

67 This is an elaboration of Proposition 7 of the October 1666 Tract. See Whiteside, The
mathematical papers of Isaac Newton, I, p. 402.
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The first gives 3ẋx2 − 2aẏy + ż − v̇ = 0,68 the second aż + ży + ẏz

− 3bẏy2 = 0 and the third 4aẋx3y + 6ẋx5 + aẏx4 − 2v̇v = 0 for the
relations of the speeds v̇, ẋ, ẏ and ż.

After this, all he had to do was to solve the last equation for v̇, the preceding
one for ż, and take the results to 3ẋx2−2aẏy+ ż− v̇ = 0. Then, if the values
of z and v are restored,

there comes the equation sought

3ẋx2 − 2aẏy + 3abẏy2 + 2bẏy3

a2 + 2ay + y2
− 4aẋxy + 6ẋx3 + aẏx2

2
√

ay + x2
= 0

by which the relation of the speeds ẋ and ẏ is designated.

Newton took this example and the idea of substitution from the October 1666
Tract.69 This combination of the original method and substitution, which in
this context is equivalent to an application of the chain rule, is quite power-
ful, and permits what we now call implicit differentiation of very involved
equations.

After his five examples Newton provided a demonstration of his method.
He chose the letter o to denote an infinitely small amount of time, in which x

increases by ẋo and y increases by ẏo (Newton called these increments “mo-
ments”), and then he reasoned as follows [p. 80]:

Given therefore any equation x3−ax2+axy−y3 = 0, and substitute x+ ẋo

for x and y + ẏo for y, and there will emerge

x3 + 3ẋox2 + 3ẋ2o2x + ẋ3o3

− ax2 − 2aẋox − aẋ2o2

+ axy + aẋoy + aẏox + aẋẏo2

− y3 − 3ẏoy2 − 3ẏ2o2y − ẏ3o3

⎫⎪⎪⎬
⎪⎪⎭ = 0.

68 As in the first example; that is,

x3 − ay2 + z− v −ay2 + x3 + z− v −v + x3 − ay2 + z z+ x3 − ay2 − v

3ẋ

x
. 0

2ẏ

y
. 0

v̇

v
. 0

ż

z
. 0

3ẋx2 ∗. −2aẏy2 ∗. −v̇ ∗. ż ∗.

and so on for the others.
69 Whiteside, The mathematical papers of Isaac Newton, I, pp. 411– 412.
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Now by hypothesis x3 − ax2 + axy − y3 = 0, and when these terms are
deleted and the rest divided by o there will remain

3ẋx2 + 3ẋ2ox + ẋ3o2 − 2aẋx − aẋ2o+ aẋy

+ aẏx + aẋẏo− 3ẏy2 − 3ẏ2oy − ẏ3o2 = 0.

And since above o is supposed to be infinitely small, so that it may express
the moments of quantities, the terms that are multiplied by it will be worth
nothing in respect to the others. I therefore reject them and there remains
3ẋx2 − 2aẋx + aẋy + aẏx − 3ẏy2 = 0, as in Example 1 above.70

With this already settled (although present-day readers may have trou-
ble accepting this as a demonstration), Newton was ready for Problem 3: To
determine maxima and minima, which he solved as follows [p. 117]:

When a quantity is greatest or least, at that moment its flow neither increases
nor decreases. For if it increases, that proves that it was less and will at once
be greater than it now is, and conversely so if it decreases. Therefore seek
its fluxion by Problem 1 and set it equal to nothing.

Example 1. If the greatest value of x in the equation

x3 − ax2 + axy − y3 = 0

be desired, seek the fluxions of the quantities x and y and there will come
3ẋx2 − 2aẋx + aẋy − 3ẏy2 + aẏx = 0. Then when ẋ is set equal to zero,
there will remain −3ẏy2 + aẏx = 0 or 3y2 = ax. With the help of this you
might eliminate one or the other of x and y in the primary equation, and by
the resulting equation determine the other, and then both by−3y2+ax = 0.

Problem 4: To draw tangents to curves. This is more complicated because
there was no single way of describing curves in Newton’s times. Or, as he
put it, “Tangents are drawn in various ways according to the various relation-
ships of curves to straight lines” [p. 121]. Thus, he considered nine modes
and gave various examples of each. Mode 1 is presented by means of the
following figure, in which AB = x and the ordinate BD = y moves “through
an indefinitely small space to the position bd . . . ” [p. 123].

70 This is the same method already used in the October 1666 Tract to prove Proposition 7
using the example x3 − abx + a3 − dyy = 0. See Whiteside, The mathematical papers of
Isaac Newton, I, p. 414. Thus, we see that this tract contained the germ of Newton’s future
work on the calculus.
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Now let Dd be extended till it meets AB in T : this will then touch the curve
in D or d and the triangles dcD, DBT will be similar, so that

TB

BD
= Dc

cd
.

BD is known from the equation of the curve, and the fraction on the right is
the ratio of the moment ẋo of x over the moment ẏo of y, which is equal to
the ratio of their fluxions. Then the preceding equation is solved for TB. As
a first example Newton returned to the curve x3 − ax2 + axy − y3 = 0, for
which he had already computed the fluxional ratio

ẋ

ẏ
= 3y2 − ax

3x2 − 2ax + ay
,

and then

BT = 3y3 − axy

3x2 − 2ax + ay
.

Problems 5 and 6 of this tract on fluxions are devoted to curvature ques-
tions, Problems 7 to 9 are on quadratures, and Problems 10 to 12 refer to
rectification. From all these we select two examples on quadratures. Newton
began his discussion by referring to a figure like the one below, in which the
perpendicular AC is 1, and denoted AB by x and the area ADB under the
curve by z [pp. 195–197]. If the segment BED moves a little to the right while
remaining perpendicular to AB, the increments in the areas AB×BE = x and
ABD = z are a narrow rectangle and a narrow quasi-rectangle with heights BE

and BD. Therefore, these increments are (approximately) in the ratio BE/BD.
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Since the increments in x and z in a small amount of time are ẋo and żo, we
obtain the basic formula

ẋ

ż
= BE

BD
= 1

BD
,

“so that when we set ẋ equal to unity, BD = ż.” Thus, if BD is given by the
equation of the curve we have ż, and then it is possible, at least in principle,
to find z from ż.

Newton found an interesting use for this formula in Problem 8, where the
following task is posed. Consider two curves FDH and GEI , as shown in
the next figure, and establish the following notation: AB = x, BD = v, area

AFDB = s, AC = z, CE = y, and area AGEC = t . If the curve FDH is
given and a relationship between z and x is also given, find a second curve
GEI such that the areas s and t are equal.

To solve the problem we use the previous equation, which in the notation
for the two new curves becomes

ẋ

ṡ
= 1

v
and

ż

ṫ
= 1

y
.

Newton said [p. 199]:

Hence if, as above, we assume ẋ = 1, and v = ṡ, it will be ży = ṫ and thence
ṫ

ż
= y.
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A little while later he continued:

By hypothesis therefore s = t and thence ṡ = ṫ = v, and

y =
(

ṫ

ż
=
)

v

ż
.

His first example was the curve ax − xx = vv (from now on we write
squares in the current fashion) and the relationship between the variables was
given by ax = z2. From Problem 1, a = 2żz, and then

y = v

ż
= 2vz

a
.

Since substituting x = z2/a in ax − x2 = v2 and simplifying gives

v = z

a

√
a2 − z2,

we obtain
2z2

a2

√
a2 − z2 = y.

This is the “equation of the curve whose area equals the area of the circle.”
It looks like the solution to a beautiful game, but there is a bit more to it

than that. If those two curves enclose the same area, if A is the origin, and if
we select b > 0, what we have in today’s notation is

∫ b

0

√
ax − x2 dx =

∫ √
ab

0

2z2

a2

√
a2 − z2 dz.

More generally, if we write f (x) = √ax − x2 and x = g(z) = z2/a, then,
under appropriate hypotheses on g,

∫ b

0
f (x) dx =

∫ g−1(b)

0
f (g(z))g′(z) dz.

This is integration by substitution.
As a first example of Problem 9, To determine the area of any proposed

curve, Newton considered the case of the hyperbola BD = x2/a, where a is a
constant [p. 211]. Then, from the basic formula obtained before Problem 8,

ż = BDẋ = ẋx2

a
,
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“and there will (by Prob 2) emerge x3/3a = z.” For us this is just integration.
For Newton, since Problem 2, From the relation of the �uxions determine the
relation of the �uents, is the converse of Problem 1, “it ought to be resolved the
contrary way” [p. 83], so let the following serve as an example of his contrary
way:

I divide
ẋx2

a
[+ 0ẋx + 0ẋ] I divide ż

by
ẋ

x
making

x3

a
by

ż

z
making z

Then I divide by 3. 2. 1. Then by 1.

making
x3

3a
making z.

The total x3/3a − z = 0 will be the desired relationship of x and z.
This procedure requires what we now call indefinite integration, which is

easy for polynomials. But Newton was well aware, way before we were, of
the fact that this problem “cannot always be resolved by this practice” [p. 85].

After this, Newton assumed the validity of Rules 1 and 2 already presented
in De analysi and relied on the method of infinite series to perform what we
would call term-by-term integration in numerous examples.

It should be said that our selections from the tract on series and fluxions do
not do justice to the power of Newton’s methods. Newton’s paper contains a
wealth of modes, cases, and examples that show the full range of his methods,
plus an extensive table of areas (table of integrals) [pp. 236–241 and 244–255]
in the part of the Tractatus devoted to quadratures.

It is clear now that Newton’s work represents an essential change, having
replaced the geometric approach of his predecessors with an algebraic one.
This represents a totally new general approach and supersedes the considera-
tion of particular cases.

5.9 WAS NEWTON’S TANGENT METHOD ORIGINAL?

When Newton provided his demonstration of the rule for “implicit differen-
tiation” as applied to the equation x3 − ax2 + axy − y3 = 0 (page 297) he
did not give any credit to Barrow, but this is exactly the method of tangents
that Barrow showed Newton “before he inserted it into his 10th Geometrical
Lecture.” Referring back to this method and to the figure on page 281, if the
coordinates of N are x and y, then the coordinates of M are x + e and y + a.
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Since the point M is also on the given curve, substituting x+ e for x and y+a

for y, “there will emerge” the same equation that Newton obtained but with e

in place of ẋo and a in place of ẏo. By Barrow’s Rule 1, all terms containing
powers of a or e are to be omitted, which is equivalent to rejecting the terms
that still contain o after division by o. By Barrow’s Rule 2, terms that do not
contain a or e are to be rejected, which is equivalent to deleting the terms
x3 − ax2 + axy − y3. Thus Barrow’s method and Newton’s basic method are
one and the same.

On this, Newton had the following comment in a letter to Collins of 10
December 1672:71

I remember I once occasionally told Dr. Barrow when he was about to pub-
lish his Lectures that I had such a method of drawing Tangents but some
divertisement or other hindered me from describing it to him.

But we don’t have to take this statement as proof that Newton already “had such
a method of drawing Tangents” when he assisted Barrow in the publication of
the Lectiones. In a manuscript written in September 1664,72 after moving all
the terms of an equation “to one side soe yt it be= 0,” he wrote the following
explanation of his method:

Multiply each terme of ye equat: by so many units as x hath dimensions in yt

terme [that is, multiply by the exponent of x], divide it by x & multiply it by y

for a Numerator. Againe multiply each terme of ye equation by soe many
units as y hath dimensions in each terme & divide it by −y for a denom: in
the valor of v.73

He gave three examples of this method, the third of which is this:

And if x4 − yyxx + aayx − y4 = 0. then
4yx3 − 2y3x + aayy

4y3 − aax + 2yxx
= v.

It is easy to carry out his instructions to obtain this result and to verify it using
today’s implicit differentiation.

71 Turnbull, The correspondence of Isaac Newton, I, 1959, p. 248.
72 Whiteside, The mathematical papers of Isaac Newton, I, pp. 236–238.
73 By v, which Newton defined via a figure that is unnecessary to us, he meant what we

now would write as yy ′. Thus, the last statement in the quotation means that the quotient
so constructed equals yy ′.
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The idea of the method of tangents for what we call “implicit functions”
had come to the mind of many in the second half of the seventeenth century.
Barrow and Newton were not the first nor would they be the last. The Dutch
mathematician Johann Hudde had already described such a “General Rule” to
Frans van Schooten, in a letter in Dutch of 21 November 1659:74

Arrange all the terms of the equation that expresses the nature of the curve,
in such a manner that they are = 0 and remove from this equation all the
fractions that have x or y in their denominators. Multiply the terms of the
highest order in y by an arbitrarily chosen number, or even by 0, and multiply
the term of the next highest order in y, by the same number minus one unit, and
continue in the same manner with all other terms of the equation. Similarly
multiply by an arbitrarily chosen number or by 0 the term of the highest order
in x: the term of the next highest order in x, must be multiplied by the same
number minus one unit, and the same with the others. When the first of these
products is divided by the second, the quotient multiplied by −x is AC.75

Hudde’s only example was this (the asterisk is just a place holder for a nonex-
istent term in y):

Let the equation that expresses the nature of the curve be

ay3 + xy3 + b2y2 − x2y2 − x3

2a
y2 ∗ + 2x4 − 4ab3 = 0

1. Multip. by 1. + 1. 0. 0. 0. −1. − 2. −2.

2. Multip. by 0. + 1. 0. +2. +3. + 4. 0.

1. Yields ay3 + xy3 − 4x4 + 8ab3

2. Yields + xy3 − 2x2y2 − 3x2

2a
y2 + 8x4

consequently, AC = ay3 + xy3 − 4x4 + 8ab3

xy3 − 2x2y2 − 3x2

2a
y2 + 8x4

times − x.76

74 It was later translated into French as “Extrait d’une lettre du feu M. Hudde à M. van
Schooten, Professeur en Mathématiques à Leyde. Du 21. Novembre 1659,” 1713. My
English translations are from Gerhardt’s reprint.

75 As in Newton’s case, Hudde included a figure, and the segment AC is what we would
recognize today as y/y ′.

76 This is the result as given by Hudde, but the industrious reader who wants to use
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It is easy to observe, and Hudde was quite clear on this point and naturally
proud of it, that the progression of multipliers used in his method is completely
general in the selection of the starting number (on the right of the steps labeled
“Multip.” above he wrote “or by any other Arith. progr.”). This makes the
method simple to use because one can arrange matters so that the multiplier
of the power with the largest number of terms is zero:

Which has been seen in the preceding example, in which 0 has been placed
first under y2 and, second, under the terms that do not contain x.

But it was René François Walther de Sluse (1622–1685), from Liège, who
developed this method first, according to the following statement by John
Collins in a letter to Newton of 18 June 1673:77

As to Slusius Method of Tangents consider this: it was well understood by
him when he published his book de Mesolabio.78 But he did not want to
make it public then because he was unwilling to prevent his Friend Angelo
Riccio.79

By 1671 Sluse had been advised that Ricci was otherwise occupied and no
further mathematical output was to be expected from him. Moreover, Sluse
himself had “fallen upon a very easy method of proving things” regarding the
method of tangents. Both of these statements are contained in a letter from
Sluse to Oldenburg of 17 December 1671. He announced then his intention
to publish it the next year, and in another letter of 17 January 1673 he sent it

Newton’s method or today’s implicit differentiation to verify that they lead to the same
conclusion may get in a spot of trouble. To avoid it, it must be observed that the equation
of the curve gives

8ab3 − 4x4 = 2ay3 + 2xy3 + 2b2y2 − 2x2y2 − x3

a
y3,

so that the last numerator becomes

3ay3 + 3xy3 + 2b2y2 − 2x2y2 − x3

a
y3.

Then the three methods lead to the same result.
77 Turnbull, The correspondence of Isaac Newton, I, p. 288.
78 Mesolabum et problemata solida, 1659.
79 Michelangelo Ricci was a friend and pupil of Torricelli, who published 19 pages of

mathematics on maxima and minima as Michaelis Angeli Riccii geometrica exercitatio,
1666.
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to Oldenburg for submission to the Royal Society. In this letter Sluse, who
wrote y for x and v for y, gave the following general rule:

1. Drop from the equation those parts [terms], which do not contain either y

or v, placing on one side all the terms containing y, & on the other those that
contain v, with their signs + or −. For the sake of simplicity, we call this
the right-, and that the left-hand side.

2. On the right-hand side, set in front of each term the exponent to which v

is raised, or, what is the same, extend the terms in that way.

3. Do the same on the left-hand side, but preceding each term with the
Exponent of the power of y. But & this is done throughout: One of the y’s
in each term is changed into an a [the notation he used for the subtangent, or
v/v′].

On the next page Sluse gave several examples of the application of this
rule, from which we select that of the curve y5+ by4 = 2qqv3− yyv3, which
fully shows the procedure. Step 1 leads to the equation y5 + by4 + v3yy =
2qqv3−yyv3. Note that the term yyv3 must be included in both sides because
it contains both y and v. Multiplying each term by the exponent of y on the left-
hand side and by the exponent of v on the right-hand side, the equation becomes
5y5 + 4by4 + 2v3yy = 6qqv3 − 3yyv3. Finally, changing one y in each term
on the left-hand side into a we obtain 5y4a+4by3a+2v3ya = 6qqv3−3yyv3,
and

a = 6qqv3 − 3yyv3

5y4 + 4by3 + 2v3y
.

Sluse got this far, but if we remember that a = v/v′ we can write

v′ = 5y4 + 4by3 + 2v3y

6q2v2 − 3y2v2
.

The same result is obtained by any of the other methods.
In conclusion, Barrow, Newton, Hudde, and Sluse independently devel-

oped what is essentially the same method of tangents. But Newton’s method
was the most powerful because, by his use of substitutions, he could deal with
radicals.

5.10 NEWTON’S FIRST AND LAST RATIOS

Newton’s creativity with respect to the calculus had probably reached its peak
with the preceding works, but he had published nothing. Then his attention
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turned to matters of natural philosophy (which we call physics today), and in
1687 he published his immortal book, the one that made Newton the figure
that he is: Philosophiæ naturalis principia mathematica.80

Reproduced from the virtual exhibition El legado de las matemáticas:
de Euclides a Newton, los genios a través de sus libros, Sevilla, 2000.

While the main thrust of this book is about physical matters, it touches
upon some of the concepts of the calculus, but in a very different language
from the one he had used before. The first publication of Newton’s calculus
may have been a disappointment to those who already knew his work, if they
understood at all that he was talking about that subject. There are, in his new
presentation, no maxima and minima, no implicit differentiation, no infinite
series, no rectification, little of what his close colleagues had come to expect
and admire.

80 Translated into English by Andrew Motte as The Mathematical principles of natural
philosophy, 1729. Page references are to this translation, of which there are recent reprints.
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The new approach hits the reader with the force of unexplained language,
for the title of Book I, Section I is [p. 41] Of the method of �rst and last ratio’s
of quantities, by the help whereof we demonstrate the propositions that follow.
Of these we present a selection. The first one is preliminary and quite general
[pp. 41–42]:

Lemma I.

Quantities, and the ratio’s of quantities, which in any �nite time converge
continually to equality, and before the end of that time approach nearer the
one to the other than by any given difference, become ultimately equal.

The second proposition is about quadratures and we include the proof
[pp. 42–43]:

Lemma II.

If in any �gure AacE terminated by the right lines Aa, AE, and the curve acE,

there be inscrib’d any number of parallelograms Ab, Bc, Cd, &c. compre-
hended under equal bases AB, BC, CD, &c. and the sides Bb, Cc, Dd, &c.
parallel to one side Aa of the �gure; and the parallelograms aKbl, bLcm,

cMdn, &c. are completed. Then if the breadth of those parallelograms be
suppos’d to be diminished, and their number to be augmented in infinitum:
I say that the ultimate ratio’s which the inscrib’d �gure AKbLcMdD, the
circumscrib’d �gure AalbmcndoE, and curvilinear �gure AabcdE, will have
to one another, are ratio’s of equality.

For the difference of the inscrib’d and circumscrib’d figures is the sum
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of the parallelograms Kl, Lm, Mn, Do, that is, (from the equality of all
their bases) the rectangle under one of their bases Kb and the sum of their
altitudes Aa, that is, the rectangle ABla. But this rectangle, because its
breadth AB is suppos’d diminished in in�nitum, becomes less than any given
space. And therefore (by Lem. I) the figures inscribed and circumscribed be-
come ultimately equal one to the other; and much more will the intermediate
curvilinear figure be ultimately equal to either. Q.E.D.

The rectangles in Lemma II are assumed to be “comprehended under equal
bases,” but this restriction was lifted in the following [p. 43]:

Lemma III.

The same ultimate ratio’s are also ratio’s of equality, when the breadths AB,

BC, CD, &c. of the parallelograms are unequal, and all are diminished, in
infinitum.

For suppose AF equal to the greatest breadth, and compleat the par-
allelogram FAaf . This parallelogram will be greater than the difference
of the inscrib’d and circumscribed figures; but, because its breadth AF is
diminished in in�nitum, it will become less than any given rectangle. Q.E.D.

From this result, Newton was able to obtain four corollaries.

Cor. I. Hence the ultimate sum of those evanescent parallelograms will
in all parts coincide with the curvilinear figure.

Cor. 2. Much more will the rectilinear figure, comprehended under the
chords of the evanescent arcs ab, bc, cd , &c. ultimately coincide with the
curvilinear figure.

Cor. 3. And also the circumscrib’d curvilinear figure comprehended un-
der the tangents of the same arcs.

Cor. 4. And therefore these ultimate figures (as to their perimeters acE,)
are not rectilinear, but curvilinear limits of rectilinear figures.

The remaining selections are on tangents [pp. 45–47] and use the following
figure.81

81 Newton’s own figure contains additional letters, segments, and one arc that are of
interest in the proof of Lemma VIII, a result not discussed here.
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Lemma VI.

If any arc ACB given in position is subtended by its chord AB, and in any
point A in the middle of the continued curvature, is touch’d by a right line AD,

produced both ways; then if the points A and B approach one another and
meet,82 I say the angle BAD, contained between the chord and the tangent,
will be diminished in infinitum, and ultimately will vanish.

Lemma VII.

The same things being supposed; I say, that the ultimate ratio of the arc, chord,
and tangent [the segment AD], any one to any other, is the ratio of equality.

We could think of a rectangular coordinate system in which the coordinates
of A are (x, y) and those of B are (x + �x, y + �y). The slope of the chord
AB is �y/�x and, since the ultimate ratio of the segments AB and AD is the
ratio of equality, the slope of the tangent AD is the last ratio of the quantities
�y and �x.

At the end of Section I there is a Scholium in which Newton states why he
chose to give geometric proofs, which was basically to conform to tradition
and avoid criticism, although he did not put it that way. Then he anticipated
an objection that undoubtedly would arise, as it did [pp. 54–55]:

Perhaps it may be objected, that there is no ultimate proportion of evanescent
quantities; because the proportion, before the quantities have vanished, is not
the ultimate, and when they are vanished, is none.

and explained that [p. 55]

82 Imagine the segment RBD decreasing in length and approaching RA as R is kept fixed
and B and D approach A. In this approach, B remains on the fixed arc AC.
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by the ultimate ratio of evanescent quantities is to be understood the ratio of
the quantities, not before they vanish, nor afterwards, but with which they
vanish.

To clinch it, near the end of the Scholium he added [p. 56]

For those ultimate ratio’s with which quantities vanish, are not truly the
ratio’s of ultimate quantities, but limits towards which the ratio’s of quantities,
decreasing without limit, do always converge; . . .

No, he did not have a definition of limit, but he clearly had the idea and his
language in this statement is the one we use today. In this respect he was
closer than his predecessors and contemporaries, and closer than most of his
successors for over a century, to the modern definition of derivative in terms
of limits.

Then in Section II of Book II, On the motion of bodies, he inserted the
following [vol. II, p. 17]:

Lemma II.

The moment of any Genitum is equal to the moments of each of the generat-
ing sides drawn into the indices of the powers of those sides, and into their
coef�cients continually.

This is far from clear. What is a Genitum, to start with? Newton explained
[pp. 17–18]:

Quantities of this kind are products, quotients, roots, rectangles, squares,
cubes, square and cubic sides, and the like.

Indeed, that is what the lemma proper does, to evaluate what we call the
derivatives [moments] of products, powers, roots, quotients, and the like.

Wherefore the sense of the Lemma is, that if the moments of any quantities
A, B, C; &c. increasing or decreasing by a perpetual flux, or the velocities
of the mutations which are proportional to them, be called a, b, c, &c. the
moment or mutation of the generated rectangle AB will be aB + BA; . . .

in general, that the moment of any power A
n
m will be n

m
aA

n−m
m .
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5.11 NEWTON’S LAST VERSION OF THE CALCULUS

In 1691, about to turn 49, Newton was ready to collect his thoughts on the
calculus and give the world a mature presentation of his work on this subject.
In November he started writing a tract entitled De quadratura curvarum that he
left unfinished. In December he wrote and finished a revised and augmented
version, which he left untitled but is usually known by the same name as the
unfinished tract.83 It begins by recalling the 1676 letter to Leibniz about the
binomial theorem, and just before stating his first theorem he wrote [p. 51]:

On this basis I have tried also to render the method of squaring curves simpler,
and have attained certain general theorems.

The first of these is to perform the quadrature of the curve whose general
ordinate is dzθ (e + f zη)λ [p. 51], where z is the variable, d, e, and f are
constants, and θ , η, and λ are just exponents. The general ordinate is first
expanded using the binomial theorem and then integrated term by term as in
De analysi. In general, we should say that there is not much in the treatise
that conceptually advances the calculus per se. In Proposition IV, Problem I,
“Given an equation involving any number of quantities, to find the fluxions;
and vice versa” he repeated the method already used in the Tractatus �uxionum,
but there is a novelty: the use of “pricked” letters for the fluxions [p. 65]:

Let a, b, c, d, e be determinate, unalterable quantities; v, x, y, z fluent
quantities, that is indeterminate ones increasing or decreasing by a perpet-
ual motion; v̇, ẋ, ẏ, ż, their fluxions, namely, their speeds of increasing or
decreasing . . . 84

It is Newton’s proficiency in performing quadratures that shows brilliantly
in this tract. This is shown by the following imposing result, which will need

83 Both of these versions, with English translations, were first published by Whiteside in
The mathematical papers of Isaac Newton, VII, 1976, pp. 24–48 and 48–129. Quotations
are from and page references to this work.

84 In some preparatory drafts for De quadratura, Newton played around with some con-
densed notation for higher-order fluxions. For instance, he wrote

−2bz
7
z
1 − 1

6
2
2 − 3

5
0
3 − 2

4
0
4
,

where z with an integer n on top means the nth fluxion of z, and the last three terms are just

short (excessively short) for−12bz
6
z
2 − 30bz

5
z
3 − 20bz

4
z
4
. See Whiteside, The mathematical

papers of Isaac Newton, VII, pp. 162–163.
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some explanation.85

PROP. V. THEOR. III

If the Curve’s abscissa AB be z, & for e+f zη+gz2η+hz3η+&c. write R: also

let the Ordinate be zθ−1Rλ−1 × a + bzη + cz2η + dz3η +&c. & put
θ

η
= r ,

r + λ = s, s + λ = t , t + λ = v, &c.

The Area will be = zθ Rλ times +
1
η
a

re

+
1
η
b − sf A

r + 1× e
zη

+
1
η
c − s + 1× f B − tgA

r + 2× e
z2η

+
1
η
d − s + 2× f C − t + 1× gB − vhA

r + 3× e
z3η

+ [ ]− s + 3× f D − t + 2× gC − v + 1× hB

r + 4× e
z4η

+ &c.86

Here A, B, C, D, &c. denote all the given coef�cients of the separate terms
in the series with their + & − signs, namely

A the coef�cient
1
η
a

re
of the �rst term

B the coef�cient
1
η
b − sf A

r + 1× e
of the second term

C the coef�cient
1
η
c − s + 1× f B − tgA

r + 2× e
of the third term

And so on hereafter.

85 I have reproduced this proposition and the example following it from pages 49 to 51 of
Jones’ edition of De quadratura of 1711. See the bibliography for the full reference.

86 There is a missing term in the coefficient of z4η—replaced here with [ ]—in the 1711
statement of the theorem. The reason is that Newton had originally stated this term to be
1
η
e but then realized that the letter e, which is naturally expected after d , had already been

used in the expression for R. For some reason, he deleted the originally written term rather
than correct it, and it went to the printer in this manner.
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We skip the demonstration that Newton provided. The explanation consists
in defining first the expressions

R = e + f zη + gz2η + hz3η +&c.

and
S = a + bzη + cz2η + dz3η +&c.

(Newton had used the letter S for a similar purpose in the previous proposition,
so we use it here), where η is just a constant used to construct the exponents.
So are θ and λ, which in Newton’s examples were either integers or rational
numbers. Then define new numbers

r = θ

η
, s = r + λ, t = s + λ, v = t + λ, &c.

With the notation so established, the proposition states that

∫
zθ−1Rλ−1S dz = zθ Rλ

[ 1
η
a

re
+

1
η
b − sf A

(r + 1)× e
zη +

1
η
c − (s + 1)f B − tgA

(r + 2)e
z2η

+
1
η
d − (s + 2)f C − (t + 1)gB − vhA

(r + 3)e
z3η +&c.

]
,

and this is an integration formula (not included in today’s calculus textbooks).
Newton’s first example, which is necessary for a full understanding of what

is going on, was to perform the quadrature of

3k − lzz

zz
√

kz− lz3 +mz4
,

where k, l, and m are constants. Using present-day notation, this can be
rewritten as

z−2(kz− lz3 +mz4)−
1
2 (3k − lz2) = z−

3
2−1(k − lz2 +mz3)

1
2−1(3k − lz2).

Then, in the notation of the proposition,

a = 3k, b = 0, c = −l, e = k, f = 0, g = −l, h = m, λ = 1
2 , η = 1,

θ − 1 = − 5
2 , θ = − 3

2 = r , s = −1, t = − 1
2 , v = 0.

Then A = −2, B = 0 because b = f = 0, C = 0 because c − tgA =
−l + 1

2 (−l)(−2) = 0, and, in the same manner,
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all the terms after the first vanish to infinity & the area of the Curve comes
forth

−2

√
k − lz2 +mz3

z3
.

After a few more equally impressive results on quadratures, Proposition XI
is about recovering the fluents from their fluxions, involving quite a number of
cases and examples. Proposition XII and its corollaries give the Taylor series
expansion, as already discussed in Chapter 4, and then Newton went on to
solve problems on motion and centers of gravity.

Although Newton took the almost completed manuscript of the quadratura
on a three-week visit to London in the winter of 1691/1692, and there he
expressed an interest in publishing it soon, the fact is that he lost interest in
this matter, and the manuscript remained unpublished in this form until 1976,
three centuries after he wrote the letter to Leibniz with which he began the
tract. However, Newton sent two extracts from it (now lost) to Wallis in the
summer of 1692, and Wallis published them in his very extended Latin version
of his Treatise of algebra, both historical and practical of 1685.87 This was
the first printed appearance of Newton’s pricked letters, a notation rapidly
adopted by large sections of the mathematics world.

But Wallis could not, during his lifetime, persuade Newton to publish the
entire De quadratura tract. Instead, he wrote a severely truncated version
of it in 1693 (without the Taylor or Maclaurin expansions), which, retitled
The rational quadrature of curves, became Book 2 of his projected, but never
published, treatise on Geometry. But this manuscript was not destined, as so
many others, for oblivion. In 1703, Newton took it out of whatever drawer
or shelf in which it was gathering dust, wrote an Introduction and a Scholium
for it, and set out to publish it. Why? What was Newton’s motivation for
such zeal in publishing one of his mathematical works while allowing others
to remain dormant? Very simply, he had been stung by a plagiarist. Newton
was about to publish his Opticks when the incident took place, and decided to
append to it the abridged De quadratura as the second of Two treatises of the
species and magnitude of curvilinear �gures. The following is a part of what
he had to say at the end of the “Advertisement” to the volume:88

And some Years ago I lent out a Manuscript containing such Theorems,
and having since met with some Things copied out of it, I have on this

87 The extracts can be seen in Wallis, Opera mathematica, 2, 1693, pp. 390–396, and the
pricked letters appear on page 392. See the bibliography for reprints.

88 From Whiteside, The mathematical papers of Isaac Newton, VIII, 1981, p. 92.
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Occasion made it publick, prefixing to it an Introduction and subjoyning a
Scholium concerning the Method.89 And I have joined with it another small
Tract concerning the Curvilinear Figures of the Second Kind, which was also
written many Years ago . . .

It is in the new Introduction that we find Newton’s newest point of view
on the calculus, starting with the assertion [p. 41; 123]:

Mathematical Quantities I here consider not as consisting of least possible
parts [“indivisibles” in an earlier draft], but as described by a continuous
motion.

Then he made a statement that may be viewed as a glimpse into the concept
of limit [pp. 42; 123–125]:

Fluxions are very closely near as the augments [increments] of their Fluents
begotten in the very smallest equal particles of time, &, to speak accurately,
they are in the first ratio of the nascent augments . . .

which, if the fluents are denoted by x and y, we could explain by writing

lim
�x→0

�y

�x
.

Newton explained it as follows, referring to the next figure (we have inserted
arc symbols in the text for clarity) [p. 42; 125]:

Let the ordinate BC advance from its place BC into a new place bc. Complete
the parallelogram BCEb, and draw the tangent line V TH to touch the Curve
at C and meet bc & BA extended in T & V : & the augments of the Abscissa
AB, Ordinate BC & Curved Line ACc now begotten will be Bb, Ec &

�
Cc ;

& in the first ratio of these nascent augments are the sides of the triangle
CET , consequently the fluxions of AB, BC &

�
AC are as the sides CE, ET

& CT of that triangle CET , & can be expressed by means of the same sides,
or what is the same by the sides of the triangle VBC similar to it.

It comes to the same if the fluxions be taken in the last ratio of the vanishing
parts. Draw the straight line Cc & produce it to K . Let the Ordinate bc

89 The new introduction and scholium can be seen in Whiteside The mathematical papers
of Isaac Newton, VIII, pp. 123–159, while the revisions to the text proper are in pp. 92–105.
Double page references in the rest of this section are to Jones’Latin edition first, from which
the quotations are taken, and then to Whiteside’s translation.
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go back into its former place BC, & as the points C & c come together,
the straight line CK will coincide with the tangent CH , & so the vanishing
triangle CEc will as it attains its last form end up akin to the triangle CET ,
& its vanishing sides CE, Ec &

�
Cc will ultimately be to one another as are

the sides CE, ET & CT of the other triangle CET , & in this proportion in
consequence are the fluxions of the lines AB, BC &

�
AC. If the points C &

c are at any small distance apart from each other the straight line CK will be
a small distance away from the tangent CH . In order that the line CK shall
coincide with the tangent CH & so the last ratios of the lines CE, Ec &

�
Cc

be discovered, the points C & c must come together & entirely coincide. The
most minute errors are not in Mathematical matters to be scorned.

In this we can see the evolution of Newton’s thought regarding the problem
of tangents. In De analysi, at the age of 26, he did not hesitate to accept
infinitely small quantities, while in the published version of De quadratura,
at 61, he had come to realize that they are not acceptable. Since the writing of
the Principia he used the notion of first and last ratios instead of infinitesimals.
This new concept is not properly defined, and, of course, the finite ratios (for
instance, Ec/CE) do not approach an ultimate ratio, but just a number. He
knew that, as we have seen above.

It will be interesting to show how he dealt in De quadratura with a case
already presented long ago in De analysi, that of a simple power [pp. 43–44;
127–129]:

Let the quantity x �ow uniformly & the �uxion of the quantity xn need to
be found. In the time that the quantity x comes in its flux to be x + o, the
quantity xn will come to be (x+ o)n, that is [when expanded] by the method

of infinite series, xn+noxn−1+ nn− n

2
ooxn−2+ &c. And so the augments o
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&
noxn−1 + nn− n

2
ooxn−2 + &c.

are one to the other as 1 & nxn−1 + nn− n

2
oxn−2 + &c. Now let those

augments come to vanish, & their last ratio will be 1 to nxn−1 : consequently
the fluxion of the quantity x is to the fluxion of the quantity xn as 1 to nxn−1.

In the next paragraph he added [p. 44; 129]:

By similar arguments there can by means of the method of first & last ratios
be gathered the fluxions of lines whether straight or curved in any cases
whatever, . . . & to investigate the first and last ratios of nascent or vanishing
finites, is in harmony with the Geometry of the Ancients : & I wanted to show
that in the Method of Fluxions there should be no need to introduce infinitely
small figures [quantities] into Geometry.

5.12 LEIBNIZ’ CALCULUS: 1673–1675

Starting in 1673, Leibniz investigated problems on tangents and quadratures in
some manuscript papers that remained unpublished for almost two centuries.
They are in the nature of notes for his own use, possibly made as he read the
works of Descartes, Sluse, St. Vincent, Barrow, and James Gregory among
others. In this way he developed his own ideas, discovered some interesting
formulas, and introduced his very famous notations d and

∫
. These appeared

first in a manuscript of 29 October 1675, which is part of a collection of three
manuscripts under the common title Analysis tetragonistica ex centrobarycis
(Analysis of quadratures by means of centers of gravity).90 These manuscripts

90 Copies of Leibniz’ mathematical manuscripts are available from the Gottfried Wilhelm
Leibniz Bibliothek / Niedersächsische Landesbibliothek (Lower Saxony State Library), Han-
nover. A complete catalog (not completely up to date) can be found in Bodemann, Die
Leibniz-Handschriften der Königlichen Öffentlichen Bibliothek zu Hannover, 1895, and
the bibliography contains references to this catalog for Leibniz’ manuscripts. Many of
these manuscripts have been subsequently printed in Die Entdeckung der differentialrech-
nung durch Leibniz, 1848; Die Geschichte der höheren Analysis, erste Abtheilung, Die
Entdeckung der höheren Analysis, 1855; Der Briefwechsel von Gottfried Wilhelm Leibniz
mit Mathematikern, 1899 (all edited by Gerhardt); and in Sämtliche Schriften und Briefe,
Ser. VII, 5 (edited by Probst, Mayer and Sefrin-Weis). English translations of many of these
manuscripts can be found in Child, The early mathematical manuscripts of Leibniz; trans-
lated from the Latin texts published by Carl Immanuel Gerhardt with critical and historical
notes, 1920. References given in the text for Leibniz’ manuscripts are to the manuscript
folio first, and then by page to the printed versions listed in the bibliography, in the order
listed there.
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Gottfried Wilhelm Leibniz
Stipple engraving by Benjamin Holl, 1834.

Lithograph from the author’s personal collection.

were not meant for publication, and exposing their contents to the public view
may fall under the heading of indiscretion, to say the least. Nevertheless,
curiosity killed the cat.

The first of these manuscripts is dated October 25 and 26, and in the second
part we find a significant result. Before presenting it, it is convenient to explain
some of Leibniz’ notation at that time. First, he used the symbol � as an equal
sign and then he chose the abbreviation omn. of the Latin word omnia [omnes
in Leibniz’usage] to mean “all,” although we may prefer to read it as “the sum
of all.” Thus, if ω is a variable that assumes several values in a certain context,
he denoted the sum of all the values of ω’s by omn. ω. When summing terms
that consist of more than one letter, he found it convenient to cover them with
an overline to denote the extent of the terms to be added, as in omn. xω to sum
the products xω. Finally, he used the abbreviation ult., from the Latin ultima,
to mean “last.”

It must be said, before quoting from his work, that Leibniz managed to
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construct a practical calculus that could solve real problems, but was never
a model of clarity. Even his contemporaries, more used to the language of
his time than we could ever be, found it heavy going to read and understand
Leibniz. Nevertheless, at the risk of doing injustice to the author, we must
plunge in. The reader has been forewarned.

At a certain point in the manuscript of October 26 he changed the topic he
was discussing and inserted the following [f. 1v; pp. 120–121; 150–151; 268;
70–71]:

Another [thing]: The moments of the differences about a [straight line] per-
pendicular to the axis, are equal to the complement of the sum of the terms

or: The Moments of the Terms are equal to the complement of the sum of
the sums.

Or
omn xω � ult. x, omn. ω,,− omn. omn. ω

Let xω � az. becomes: ω � az

x
. it makes

omn. az � ult. x omn
az

x
− omn. omn

az

x

Therefore,
. . .

And

omn a � ult x · omn
a

x
− omn. omn.

a

x

Which last theorem exhibits the sum of logarithms in terms of the given
quadrature of the Hyperbola.91

91 I am trying to reproduce the manuscript formulas as closely as possible, including
Leibniz’ punctuation (some of his commas look like periods) or lack thereof and his switch
from omn. to omn without a period. However, the copies that I have used are not totally
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To explain this result we can start by drawing a more detailed figure, repre-
senting the series of ordinates y (located horizontally) of a curve OC, and

Leibniz assumed that the distance between any two consecutive abscissas is
an infinitesimally small unit, which we shall denote by z. The reader who
wonders how this distance can be a unit and at the same time infinitesimally
small is not alone. Referring then to the figure, in which the difference of
any two successive ordinates has been labeled ω, if x denotes the abscissa
corresponding to an arbitrary ordinate y, then the area of the curvilinear figure
OCD is the sum of all the products xω (which Leibniz called moments by
analogy with physics, in which a moment is the product of a weight times
the distance to the axis; the roles played here by ω and x), that is, omn. xω,
giving the left-hand side of his first equation. But this area is that of the
rectangle OBCD minus that of the curvilinear figure OCB. The area of the

clear (see the sample reproduced on page 326) and I cannot make impossible claims about
my readings. The reader should be aware of the fact that the previously printed versions of
Leibniz’ formulas do not always coincide with the manuscript forms. For example, the last
equation appears as

omn. a � ult. x omn.
a

x
− omn. omn.

a

x

in Die Geschichte, as

omn. a � ult. x. omn.
a

x
− omn. omn.

a

x

in Der Briefwechsel, and as

omn. a � ult. x omn.
a

x
− omn. omn.

a

x

in Child’s translation. The differences shown here may not be very significant, but it gets
worse, and there are instances in which Leibniz’ meaning has been completely altered.
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rectangle is the product of the last x and the segment BC, that is, the product
ult. x omn. ω. The area of the curvilinear figure OBC is the sum of the areas
of the rectangles formed by the unit and the ordinates, and each ordinate is
the sum of all the ω’s up to that particular spot, or omn. ω, and then the area
of OBC is omn. z omn. ω. In conclusion,

omn. xω � ult. x omn. ω − omn. z omn. ω, 92

where we have eliminated the unnecessary commas of the original.93 Leibniz
did not write the unnecessary unit z. This result will be interpreted below in
today’s terminology.94

Since the curve in this discussion is completely general, we can consider
particular cases. For instance, if xω = az, where a is a constant and z = 1,95

we obtain

omn. az � ult. x omn.
az

x
− omn. omn.

az

x
.

Of course, x should not come near zero in this equation, and we can assume
that the abscissa of the ordinate OD is x = 1 in this case. Note then that
omn. az/x is the sum of the areas of the rectangles formed by the unit z and
the ordinates a/x, and therefore equals the area under the hyperbola y = a/x

starting at x = 1, which is a logarithm. Then

omn. omn.
az

x

is a sum of logarithms. Thus, Leibniz has obtained “a sum of logarithms in
terms of the known quadrature of the hyperbola.”

On 29 October 1675, in Analyseos tetragonisticæ pars 2da. (Second part
of analytical quadrature), Leibniz considered a problem in inverse tangents
that shows the use of the so-called characteristic triangle, shown in the next
figure as GWL (perhaps Leibniz was so proud of this feature that he labeled

92 Leibniz has used omn. ω with two meanings on this line. First it means the last y, to be
multiplied by ult. x, and then it denotes an arbitrary y to be multiplied by z and added up.

93 They had a meaning for Leibniz: ult. x was to be multiplied by everything between
the next two commas, then everything after the third comma was to be subtracted from this
product.

94 For those who are impatient or prefer to figure it out by themselves, this is a formula
for integration by parts.

95 Now Leibniz wrote the unnecessary unit z. Since the left-hand side of the equation is
an area, the right-hand side must also be an area, and, to preserve dimensionality in those
geometry-dominated times, Leibniz inserted a length z = 1. It is surprising that he did not
do so in his first result, where it would have served the same purpose.
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the triangle with his own initials). Here TL is the tangent to the curve AL

at L, PL is the normal at L, l takes the place of ω in the previous figure and
represents the difference of consecutive ordinates, while a replaces z as the
infinitesimally small unit that separates these ordinates, so we shall be able to
take a = 1. Leibniz did not place any of these lowercase letters in his figure
(while he drew some additional segments that are not shown here because they
are not needed in our presentation), but established the notation in this manner
[f. 2r ; p. 123; 153; 290; 79]:

BL � y. WL � l. BP � p. T B � t . AB � x. GW � a. y � omn. l.

Then he continued as follows (except that we display equations on their own
lines as is the habit today) [ff. 2r–2v; p. 124; 154; 291–292; 80]:

Furthermore
l

a
� p

omn. l � y
.

Therefore

p � omn l

a
l.

. . .

Therefore

omn p � omn,
omn l

a
, l



324 The Calculus Chapter 5

but I have elsewhere proved that

omn. p �.
y2

2
, or � omn l�2

2
. 96

Therefore we have a theorem that I regard as admirable, and [that will be]
of great service to this new calculus in the future (Ergo habemus theorema
quod mihi videtur admirabile, et novo huic calculo magni adjumenti loco
futurum), namely

omn l�2

2
� omn omn l

l

a
,

whatever l may be. That is if all the l, are multiplied by the last one, and
another [set of ] all l, in turn by their last, and so on as often as it can be done[,]
the sum of all these [products] will be equal to half the sums of the squares,
whose sides are the sums of the l, or all the l.97 this is a very beautiful and
not at all obvious theorem. Likewise so is the Theorem:

omn xl � x omn l − omn omn l.98

putting . . .

at which point he explained the notation in the last equation.
We shall interpret the meaning of these results shortly. But first we shall

establish the left-hand side in the admirable theorem by evaluating

omn. p = omn.
yl

a
= 1

a
omn. yl.

Leibniz would provide a geometric explanation later in his life, when he wrote
a recollection of his discoveries on this subject as Historia et origo calculi
differentialis in 1714 [pp. 9; 400; 40–41; 11]. Referring to a figure sharing
many common elements with the previous one, he stated:

96 The boxed 2 in this equation is an exponent, and the infinitesimal unit a need not be
written explicitly. I do not know whether Leibniz actually proved this formula in a previous
manuscript, although he made the statement several times, for instance, in the manuscript
De triangulo curvarum characteristico of January 1675. On the basis of a figure like the
one included here, but writing D instead of B and M instead of P , Leibniz obtained the
first equation in this quotation and then simply stated [f. 1r ; p. 184] “Ergo summa omnium
reductarum ipsius DL semiquadrato;” that is, that the sum of all the p’s is 1

2 y2.
97 Leibniz’ use of plurals is confusing. This means “equal to half the square whose side

is the sum of the l’s, or all the l’s.”
98 This is his first theorem in the previous quotation, but replacing ω with l according to

the new notation. Notice that Leibniz has deleted the abbreviation ult., thereby adding to
the confusion of using omn l with two different meanings.
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But straight Lines which increase from nothing [the y’s of an increasing
function that passes through the origin] each multiplied by its corresponding
Element [the l for each y] make a triangle.

This triangle is shown in the following figure. On the vertical axis we have
placed the successive increments l, and on the horizontal each ordinate y is

the sum of all the preceding l’s: y = omn. l. The sum of the infinitesimal
rectangles yl is approximately equal to that of the triangle, which, if we are
given a “last” y, is y2/2. That is,

omn. yl = y2

2
= (omn. l)2

2
.

In Leibniz’ notation, and in view of the fact that p � yl/a,

omn. p � omn. l�2

2a
,

and we see that Leibniz had simply dropped the unit a to write the left-hand
side of his admirable theorem.

At this point in the Analysis tetragonistica Leibniz decided to improve his
notation, stating: “It will be useful to write

∫
. for omn. so that

∫
l [stands] for

omn. l. that is the sum of all the l” [f. 2v; p. 125; 154; 292; 80]. He chose the
symbol

∫
as an elongated s that was used at that time, and it was meant as

the initial of the Latin word “summa” for sum. With this new symbol
∫

, the
admirable theorem becomes

∫
l

2

2a
� ∫∫ l

l

a
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The portion of folio 2v of the “Analysis Tetragonistica” manuscript containing Leibniz’
famous

∫
and d notations (upper left on the second line from the top,
and lower right on the third line from the bottom).

Courtesy of the Gottfried Wilhelm Leibniz Bibliothek, Hanover.

(note that Leibniz reinserted the unit a), and the equation

omn xl � x omn l − omn omn l

becomes ∫
xl � x

∫
l − ∫∫

l .

They appear in the manuscript in the following form, and these are not the

,

same as some of the formulas made available later in printed form.99

These equations are still foreign-looking today, but then Leibniz introduced
the letter d to help rewrite each difference l of y’s in a more palatable way.

99 These equations have been electronically cleaned from a scan of the image at the top
of this page in order to make them more readable, at the risk of throwing away the baby
with the bath water. There is an old spill on this page which makes it difficult to read the
equation on the right. The printed versions appear in Gerhardt’s Die Geschichte as [p. 125]∫

l2

2
�
∫ ∫

l
l

a
et

∫
xl � x

∫
l −

∫ ∫
l ,
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However, his first attempt may be shocking. In his own words, he introduced
this d operator as follows [f. 2v; pp. 126; 155; 293–294; 82] (once again, most
of his commas look like periods):

Given l. [its] relation to x. search for
∫

l. Which is done now from the

contrary calculus namely if
∫

l � ya, we put l � ya

d
. Then as

∫
. will increase

so d. will diminish the dimensions. But
∫

. means a sum, d. a difference:

From the given y we can find
ya

d
, or l. or the difference of the y.

Not very clear and not what we might have expected. Even accepting that a is
the infinitesimal unit, what is it doing here, what is this talk about dimensions,
and why is d in the denominator? The equation

∫
l = ya and the statement

“
∫

will increase the dimensions” suggest that Leibniz was thinking of
∫

l as
an area,100 and then it cannot equal the length y. It is necessary to multiply y

by some other length a (which we must take to be unity) to make the equation
homogeneous. The same kind of argument justifies that ya/d is a length.

However, homogeneity cannot be a sufficient explanation for Leibniz’ de-
cision to put d in the denominator, especially in conjunction with his statement
that d means a difference. What difference? What does it mean to say that
ya/d is l, the difference of the y’s? The differences between consecutive y’s
could very well be all different, so which is the one that d produces from
their sum

∫
l ? A simpler explanation, which comes with a clarification, can

be sought in the figure on page 323. The similarity of the triangles TBL and

in Der Briefwechsel as [p. 154]∫
l

2

2
�
∫ ∫

l
l

a
et

∫
xl � x

∫
l −

∫ ∫
l ,

and in Child’s translation in the form [p. 80]∫
l2

2
=
∫ ∫

l
l

a
, and

∫
xl = x

∫
l −

∫ ∫
l.

The first left-hand side is now meaningless: a sum of squares has replaced what previously
was the square of a sum. Whether the changes from manuscript to printed form to translation
are due to transcriber and translator or to problems at the printer’s, this sample should give
an idea of some of the difficulties faced by a modern reader trying to understand Leibniz
from Child’s translation. However, Child pointed out on several occasions that he had been
unable to see the original manuscripts, and could only translate from Die Geschichte.
100 Recall that in the first quotation in this section Leibniz had used the notation omn. ω

with two meanings, and one of them was as a sum of rectangular areas.
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GWL immediately gives

l = ya

t
.

This is what Leibniz might have had in mind, and this is a real quotient. And
now we know which l is produced by this process: the one corresponding to
the particular subtangent t at a given y. But l is a difference of y’s and Leibniz
may have wanted to emphasize this point by the use of the letter d instead of t .

However, this is reading Leibniz’ mind in retrospect. If we just read his
words, he did not even make it easy for us to learn by example, for this is what
he had to say in that respect [f. 2v; p. 126; 155; 294; 82]:

Hence one equation may be transformed into the other, just as from the
equation: ∫

c
∫

l
2 � c

∫
l 3

3a3

we can obtain:

c
∫

l
2 � c

∫
l

3

3a3d
. 101

What we get from this, if we are not too inquisitive, is that
∫

and d are inverse
operators. What

∫
does, d (in the denominator) undoes. If we also want to

know what the equations mean, note that
∫

l = y, and then, discarding the
common constant c, recalling that a = 1, and assuming that

∫
l

3
means (

∫
l)3,

the second equation reads

y2 = y3

3d
.

Thus, 1/d does here what the derivative does today. The first equation is a
little more problematic and needs interpretation. If Leibniz meant

∫
c
∫

l
2 � c

∫
l

3

3a3
,

then, discarding the c and recalling that a = 1, this is equivalent to

∫
y2 = y3

3
,

101 This is my reading of the equations in the manuscript. Both Gerhardt and Child have∫
l2 on their left-hand sides. Child also has

∫
l3 on both right-hand sides, as Gerhardt has

in Die Geschichte.
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which we regard as correct. Of course Leibniz’ notation at this point is hor-
rendous and inconvenient, and we are all happy that it did not last long. On
November 11, in a new manuscript entitled Methodi tangentium inversæ ex-
empla (Examples of the inverse method of tangents), he carried on with the d

in the denominator for a while and then, without explanation or transition he
wrote (this is out of context and its precise meaning is not in question now)
[f. 1r ; p. 34; 134; 162; 323–324; 95]

x2

2
+ y2

2
=
∫

a2

y
or d x2 + y2 = 2a2

y
.

From this moment on, after a little wavering, the d is always upstairs. Accept-
ing this new position of d, as we must, we are now ready to rewrite some of
his previous equations in this new notation. From

∫
l = y we obtain l = dy.

Then Leibniz’ admirable result, which previously interpreted with the sym-
bol

∫
(page 325) and putting a = 1 was

∫
l

2

2
� ∫∫ l l,

now becomes
y2

2
=
∫

y dy.

Not much to write home about, since much more than this had already been
obtained by Fermat and Gregory. Also, the equation

∫
xl � x

∫
l −∫∫ l becomes∫

x dy = xy −
∫

y dx,

but where did the dx come from? It is just the infinitesimal unit separating
ordinates, so inserting it does no harm.

Eventually, Leibniz would go on to develop the rules of the operator d, but
on November 11, 1675, he just toyed with the idea that d(xy) and d(x/y) might
be equal to dx dy and dx/dy [f. 2r , p. 38; 137; 165; 328; 100], respectively,
but discarded it. Keep in mind, before passing judgment, that Leibniz never
meant any of these musings to be published. He was just making up his own
mind about these matters.

5.13 LEIBNIZ’ CALCULUS: 1676–1680

Very little happened in Leibniz’ work that was of any consequence to the
calculus for one year, except that he kept using his new notation and getting
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enough consistency in writing the necessary differentials in all his “integrals.”
But then, already on his way back to Germany, he stopped in London for about
a week in October 1676. He probably wanted to check on what the English
had been up to, either because he had heard something about it or out of simple
curiosity.

He did find something and put it to good use. Collins was very open with
him and showed him a copy of Newton’s De analysi, of which Leibniz made
an ample extract.102 But it is clear from what he copied and what he did not
that this did not advance his own research in any manner. He also made an
extract of a letter of 10 December 1672 from Newton to Collins. The extract
is as follows:103

Letter of Newton, 1672: ABC is any angle, AB � x, BC � y. Take for

example, the equation

0 1 0 0 2 3

x3 − 2x2y + bx2 − b2x − by2 − y3 � 0.

3 2 2 1 0 0

Multiply the equation by an arithmetical progression, both for the second
dimension y and for x; the first product will be the numerator, and the other
divided by x will be the denominator of a fraction which will express BD,
thus,

BD � −2x2y + 2by2 − 3y3

3x2 − 4xy + 2bx − b2
.

Moreover, that this is only a corollary or a case of a general method for both
mechanical and geometrical lines, whether the curve is referred to a single
straight line, or to another curve, without the trouble of calculation, and other
abstruse problems about curves, etc. This method differs from that of Hudde
and also from that of Sluse, in that it is not necessary to eliminate irrationals.

102 It can be seen in its entirety, in Latin only, in Whiteside, The mathematical papers of
Isaac Newton, II, pp. 248–259.
103 It appears in Gerhardt, “Leibniz in London” (1891) 257–176. English translation in

Child, The early mathematical manuscripts of Leibniz. This quotation is from page 194 of
the translation.
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Or, as Newton himself put it,104

Suppose CB applyed to AB in any given angle be terminated at any Curve line
AC, and calling AB x & BC y let the relation between x & y be expressed
by any æquation as

x3 − 2x2y + bx2 − b2x − by2 − y3 = 0

whereby the curve is determined. To draw the tangent CD the Rule is this.

Here he repeated the procedure already outlined in Section 5.8 to solve Prob-
lem 4 and obtained BD as copied by Leibniz. He also stated that his method
is not “limited to equations wch are free from surd [irrational] quantities.”

In short, what Leibniz got out of this is that Newton had a method (the
one shown in Example 4 on page 296) to find tangents that was similar to
that of Sluse but in which it was not necessary to eliminate irrationals. Leib-
niz must have worked quickly to justify this rule using his new differentials
because he included such a justification in a manuscript entitled Calculus tan-
gentium differentialis, adjecta sub �nem machina construendi æquationes per
logarithmicam of November 1676. Here we find first some rules for finding
differences and sums [f. 3r ; pp. 56; 140; 229–230; 614–615; 124]:

dx � 1 dx2 � 2x dx3 � 3x2 &c

d
1

x
� − 1

x2
d

1

x2
� − 2

x3
& d

1

x3
� − 3

x2
&c105

d
√

x � 1√
x

&c106

From these the following general rules may be derived for the differences
and sums of simple powers

dxe � e, xe−1 and conversely
∫

xe � xe+1

e + 1
.

104 Turnbull, The correspondence of Isaac Newton, I, pp 247–248.
105 Gerhardt corrected the last power of x to x4 in Der Briefwechsel, as did the Sämtliche

(except for full disclosure in a footnote), but that is not what Leibniz wrote, and both
Gerhardt, in Die Entdeckung and in Die Geschichte, and Child wrote the right-hand side in
the second equation on this line as −2/x2. The manuscript has in which the exponent
of x looks like a broken 3. I have read it as a 3, as did Gerhardt in Der Briefwechsel and the
Sämtliche.
106 Gerhardt, in Der Briefwechsel, corrected the right-hand side of this equation to 1/2

√
x.
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Needless to say, the e used here stands for an arbitrary exponent and not for
Euler’s number e. This gives the derivative and integral of a power of x, but
there is no explanation about how these rules were obtained beyond following
the pattern shown by a few particular cases. As for these, Leibniz had already
obtained dx3 = 3x2 as his first example after the introduction of d, and
dx2 = 2x follows by the application of d to his admirable theorem. Then,
from the first of these general rules he obtained again some of the preceding
particular cases:

Hence d
1

x2
or d, x−2 will be −2x−3 or − 2

x3
and d

√
x or d, x1/2 will

be ��
��

1
2−1 − 1

2 x−1/2 or −1

2

√
1

x
.

Note that in all of Leibniz’ work to this point dx is just the infinitesimal
unit between successive values of x. But at this point he generalized this as
follows [f. 3r ; pp. 56–57; 140–141; 230; 615; 124–125]:

Let y � x2. and it will be dy � 2x dx 107 therefore
dy

dx
� 2x. Such reasoning

is general, and it does not depend on what the progression for the x may be.
In the same manner this general rule therefore holds:

dxe

dx
� e, xe−1 and in turn

∫
xe dx � xe+1

e + 1
.

From now on the infinitesimal distances between consecutive ordinates can
be anything besides the unit.

Next Leibniz showed us how to deal with arbitrary equations, even in
implicit form [f. 3r ; p. 57; 141; 230; 615–616; 125]:

Let there be any equation whatever, for instance

ay2 + byx + cx2 + f 2x + g2y + h3 � 0

and writing y + dy for y, and similarly x + dx for x, we have by omitting
[terms] which should be omitted another equation:

ay2 + byx + cx2 + f 2x + g2y + h3 � 0

a2dyy + bydx + 2cxdx + f 2dx + g2dy

+ bxdy

ady2 + bdxdy + cdx2 � 0

}
� 0

107 In the previous quoted line the circled difference 1
2−1 is for Leibniz’ own reckoning

and clearly to be discarded from the final statement. This equation also contains several
circled terms, and I have discarded them in compliance with Leibniz’ intention.
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This is the origin of the rule published by Sluse.108

Before moving ahead we must interpret the last equation. All the terms to the
left of the brace are those that result from replacing x and y by x + dx and
y + dy and then expanding. The terms in a half box on the top line add up
to zero because of the original equation, which is the equivalent of Fermat’s
“remove the common terms,” Barrow’s “reject all . . . terms which do not
contain a or e,” or Newton’s “removing equal terms.” The terms in another
half box on the bottom line add up to approximately zero because they are too
small compared to the rest. From those that remain, the central group, dy/dx,
can be found.

Accompanying Leibniz on his discovery trip up to this point may lead some
readers to think that his main contribution to the calculus was notation, nota-
tion, notation.109 However, in this paper of November 1676 we find the fol-
lowing important contribution to the calculus [f. 3v; p. 58; 142; 231; 616; 126]:

Furthermore it will be worthwhile to adjust this kind of work to irrationals
and compound fractions.

d
2
√

a + bz+ cz2, put a + bz+ cz2 � x

108 Leibniz used dx and dy (except that he forgot to overline the y in one instance) where
Newton had used ẋo and ẏo and Barrow before him—in a similar Example 1 in Lec-
ture X—had used a and e. Child thought [p. 125] that the similarity of Leibniz’ words
omissis omittendis for “omitting which should be omitted” to Barrow’s rejectis rejiciendis
is indicative of Leibniz’ debt to Barrow. In the letter to Collins of 10 December 1672, from
which Leibniz made an extract while in London, Newton stated: “I am heartily glad at the
acceptance wch our Reverend friend Dr Barrow’s Lectures finds with forreign Mathemati-
cians, and it pleased me not a little to understand that they are falln into the same method of
drawing Tangents with me.” Then, he proceeded to quote an example of what these foreign
mathematicians had done. It is not inconceivable that, on reading Newton’s letter, Leibniz
rushed to his copy of the Lectiones geometricæ and used Barrow’s method after replacing e
with dx and a with dy. But he had already considerable practice with his differentials, so
he may have produced this proof on his own and then checked with Barrow and picked up
some similar language in his explanation. Or this similarity may be coincidental.
109 Such readers would not be alone, for Newton himself once said: “But certainly no man

would call this Notation a new method of Analysis . . . ” Quoted from “Counter observations
on Leibniz’ review [of W. Jones, Analysis per quantitatum series, �uxiones, ac differentias:
cum enumeratione linearum tertii ordinis],” in Whiteside, The mathematical papers of Isaac
Newton, II, 1968, p. 273. Ironically, Leibniz himself seems to have contributed to this view
when, referring to himself in the third person, he wrote:

Furthermore it is now to be explained how Our [friend] arrived gradually to a new
Notation, that he called the differential calculus.

In Historia et origo calculi differentialis [pp. 13–14; 404; 49; 16].
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and
d 2
√

x

dx
� − 1

2
√

x
, now

dx

dz
� b + 2cz

therefore

d
2
√

a + bz+ cz2 � − b + 2cz

2dz,
√

a + bz+ cz2
. 110

What we have here is an example of the chain rule in its present form, although
a similar device had already been used by Gregory and Newton.

It was at this time, in an untitled letter of 21 June 1677, that Leibniz sent to
Oldenburg, to be forwarded to Newton, that he first made “public” his recent
discoveries on the calculus. It was a reply to Newton’s of 24 October 1676,
containing a lengthy explanation of his discovery of the binomial theorem but
very little on his new calculus, that Leibniz had just received with a great delay
due to his moving from Paris to Hanover. Leibniz’ reply was full of praise for
Newton and included all of his knowledge about the calculus at that point.

He started with a definition of his differentials [pp. 154; 241; 168; 213;
219–220], calling

dy . . . the difference of two close [values of] y . . . and dx . . . the differ-
ence of two close [values of] x . . .

and continued with an example of “implicit differentiation,” very similar to
the one described above, stating that this method “is useful at a time, when
irrational [quantities] intervene” [p. 155; 242; 170; 214; 220]. Next he in-
cluded the evaluation of the differential of 3

√
a + by + cy2 by the method of

the chain rule [pp. 155–156; 243; 170–171; 214; 221], defined a differential
equation as one in which x is to be obtained from dx and provided an example
[p. 156; 243; 172; 215; 221], and described the method of inverse tangents
[pp. 158–159; 244–246; 175–178; 216–217; 223–224], claiming that it was
generally more powerful than the method of infinite series. In one of the in-
cluded figures he used subscripts in labeling all its points [Fig. 29 at the end
of the volume; p. 244; 174; 216; 219].

But it was not until July 11, 1677, in a manuscript on a “General method
to obtain the tangents to curves without calculation, and without reducing

110 Gerhardt’s version in Die Entdeckung and in Die Geschichte, Child’s translation, and
the Sämtliche follow the original manuscript, which contains two wrong signs and the dz
in the denominator. However, Gerhardt’s version in Der Briefwechsel has corrected these
errors and introduced two new ones: dz/dx instead of dx/dz and no dz in the last quotient.
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irrational or fractional quantities,” written in French instead of Latin,111 that
he gave the complete set of rules of his differential calculus. By that time
Leibniz could “differentiate” sums, differences, products, quotients, powers,
and roots. After giving a long example on “implicit differentiation,” much as
he had given in the previous paper, he stated [f. 3v; p. 61; 144; 130]:

Now let the formula or equation, or magnitude ω, be equal to
λ

μ
, I say that

dω will be equal to
μ dλ− λ dμ

μ2
.

This will be sufficient to deal with fractions.
Finally let ω be equal to [replaced by] z

√
ω. I say that dω will be equal to

dω

z
z−1

z√
ω

112

which will suffice for the proper treatment of irrational magnitudes.113

It can be said, and it has been said, that Leibniz offered these and similar
formulas without proof. This may be technically correct, but proofs are not
necessary because they can be easily supplied by the reader using the same
procedure that Leibniz had used to justify the tangent method. To wit, in the
case of a quotient, if ω = λ/μ, then μω = λ and we would have (μ+dμ)(ω+
dω) = λ + dλ. Now, omitting what can be omitted, as Leibniz would have
put it, or removing common terms and rejecting products of differentials, this
boils down to μ dω + ω dμ = dλ, which is the product rule,114 and then

dω = dλ− ω dμ

μ
= μ dλ− λ dμ

μ2
,

111 Méthode générale pour mener les touchantes des Lignes Courbes sans calcul, et sans
réduction des quantités irrationelles et rompues.
112 This differential is in error. The root in the denominator should be

z
z−1√

ω.
113 The overlines in Child’s translation are different throughout this quotation. In Die

Entdeckung and in Die Geschichte the letter ω in the square roots is not overlined, but it is
in the manuscript.
114 Newton had already given a form of the product rule in an Addendum to the fluxional

treatise, probably written in the winter of 1671–1672. After stating it in verbal form as
Theorem 1 of the Addendum, he stated: “Let there be A : B = C : D [where A to D are
fluents], and then A × fl(D) + D × fl(A) = B × fl(C) + C × fl(B) [where fl denotes
fluxion]. This can be demonstrated in the same manner as the solution of Problem 1, or,
alternatively, this way.” At which point he gave a geometric demonstration. See Whiteside,
The mathematical papers of Isaac Newton, III, pp. 330–333.
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which is the quotient rule. The rule for the root can be easily obtained from
his newly developed chain rule.

In this manuscript Leibniz went on to give an “Algorithm of the new
analysis for maxima and minima, and for tangents” in which, surprisingly, no
mention is made of either maxima or minima. Then he revised the first draft of
this manuscript, possibly with a view to publication or to be included in some
correspondence. In the revision, retitled Methode nouvelle des Tangentes, ou
de Maximis et Minimis. ita ut non sit opus tollere irrationalitates, he gave
credit to Fermat, Descartes, Hudde, and Sluse, but did not refer to Barrow at
all [f. 1v; p. 62; 145; 131].

There is another manuscript written before Leibniz’ first publication that
never made it to print in his time. One remarkable thing about it is the manner in
which he expressed himself on these matters, using subscripts for successive
points on a curve or axis, providing proofs of some of the formulas of the
differential calculus, and feeling sure of himself and of his new calculus at
that time (the manuscript is undated but it may have been written about 1680).
This shows in the grandiloquent title of the manuscript: “The elements of
the new calculus for differences and sums, tangents and quadratures, maxima
and minima, dimensions of lines [rectification], surfaces, solids, and for other
things that transcend common means of calculation.”115 Some excerpts will
show the polish of his ideas at this time. Leibniz was getting ready to publish.

On tangents he had the following to say [f. 1r ; pp. 149–150; 137]:

Let CC be a [curved] line whose axis is AB, let BC be ordinates normal
to this axis, to be called y, the abscissæ on the axis AB to be called x. now
the Differences CD of the abscissæ will be called dx such are 1C1D, 2C2D,
3C3D etc.116 On the other hand the straight lines 1D2C, 2D3C, 3D4C (the
differences of the ordinates BD) will be called dy. If now these dx and
dy are taken to be infinitely small, . . . then it is clear that the straight line
joining these two points, such as 2C1C, . . . when produced to meet the axis
at 1T , will be tangent to the curve, and 1T1B . . . will be to the ordinate
1B1C, as 1C1D is to 1D2C or if 1T1B, or 2T2B, etc. in general called t

115 Elementa calculi novi pro differentiis et summis, tangentibus et quadraturis, maximis et
minimis, dimensionibus linearum, super�cierum, solidorum, aliisque communem calculum
transcendentibus.
116 I am using subscripts for convenience, but Leibniz just wrote (mostly) smaller numbers

with the same baseline as the letters, as in 1C1d , 2C2d , 3C3d , actually using here a lower-
case d . The manuscript figure also shows an additional curve from A to the line 4B4C,
which serves no purpose. It was not shown in Die Geschichte and it is not shown here.
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then t : y :: [=] dx : dy. And thus to find the differences of series is to find
tangents.

In other words, to find the slope of the tangent at a point, y/t , one must find
the quotient dy/dx, so that it is imperative to learn how to find dy at a given
point of what we now call a function of x.

Turning to quadratures, he wrote (if I interpret Leibniz’ punctuation cor-
rectly) [f. 1r ; p. 150; 138]:

Furthermore differences are the opposites of sums. therefore the ordinates are
the sums of their differences, so 4B4C 117 is the sum of all the differences,
such as 3D4C, 2D3C, etc. up to A. even if they are infinite in number, which
I describe as

∫
dy equ. to y. Also the [area] of a figure, I describe by the sum

of all the rectangles [obtained] from the ordinates times the differences of the
abscissæ, such as 1B1D + 2B2D + 3B3D. etc. On the other hand the small
triangles 1C1D2C, 2C2D3C, etc. since they are infinitely small compared
with the said rectangles, may be omitted with impunity, thus I denote in my
calculus the area of the figure by

∫
y dx. or the sum of the rectangles, formed

by each y, times the corresponding dx.

Then, “soaring high” (altius assurgentes), he obtained the area between a
positive curve and the x-axis as follows [f. 1r ; pp. 150–151; 138]:

. . . let the given curve of the figure to be squared be EE,118 of which the
ordinates are EB 119 which we call e. They are proportional to the differences

117 The manuscript has 4B4B.
118 No figure was provided by Leibniz, but the one included here is drawn in his own style,

with the origin at A and the direction of the positive x-axis down. For clarity, there are two
implied positive y-axes, one directed to the left for the curve EE and one to the right for
the curve CC.
119 The manuscript has ED.
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of the ordinates BC, or to dy, or let .1B1E : 2B2E :: [=] 1D2C : 2D3C, and
so on, or let as A1B is to 1B1C, or, as 1C1D is to 1D2C, or as dx is to dy be
as a constant or always permanent straight line [segment] a is to 1B1E or e.
then we have dx : dy :: a : e or e dx equ. a dy Therefore

∫
e dx equ

∫
a dy

To interpret this result, we split the figure in two and rearrange the parts
as shown next, eliminating some of the clutter. We have also taken the liberty
to replace Leibniz’ B with x. Then we can restate the result in present-day

terms as follows. Let the curve EE represent a positive function, which we
shall denote by e = f (x), and let y = F (x) be a function with graph AC such
that for some constant a and any x,

dy

dx
= e

a
.

Then the area under the graph of e from A to x is∫ x

A

e dx = ay = aF (x).
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If we take a = 1 and note that F (A) = 0, which Leibniz did not state explicitly,
the result is that if F ′(x) = f (x) then

∫ x

A

f (x) dx = F (x)− F (A),

the fundamental theorem of calculus. Of course, this is nothing new at this
time. This result had been frequently used by Newton, who had not published
anything on the calculus yet, but it had been proved in print by both Gregory
and Barrow. In fact, Leibniz’ presentation is quite similar to Barrow’s except
for the differential and integral notation. Perhaps this is precisely what Leibniz
intended: to show how a known geometric result can be expressed in his new
calculus.

Further ahead in the same manuscript, he discussed some of the other
topics promised in the title [f. 1v; pp. 151; 139–140]:

. . . for 1C2C is equ. to
√

dx · dx + dy · dy. From this we have at once
a method for finding the length of the curve by means of some quadrature,
. . .

and then [ff. 1v–2r ; p. 152; 141]:

On the other hand if it is required to find the centers of lines, and the surfaces
generated by their rotation, ex. gr. the surface [generated] by the rotation of
the line AC. about AB., we must only find∫

y
√

dx dx + dy dy . . .

Therefore the [whole] thing is at once reduced to the quadrature of some
plane figure, if we substitute for y and dy the values [obtained] from the
nature of the ordinates and the tangents to the curve.

As for the differential calculus, he mostly repeated what he had already
written in the July 1677 manuscript, but this time he included proofs. For
instance, he found that [f. 2v; p. 154; 143]

dxy equ x + dx times y + dy − xy or x dy + y dx + dx dy and the
omission of the quantity dx dy, which is infinitely small with respect to the
rest, given that dx and dy are infinitely small, will produce x dy+y dx . . .

For the quotient rule he computed
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d
y

x
equ

y + dy

x + dx
− y

x
or

x dy − y dx

xx + x dx
120

whereby writing xx for xx+x dx since x dx can be omitted as being infinitely
small with respect to xx makes:

x dy − y dx

xx
. . .

Then he found the differentials of xyv (what is known today as Leibniz’ rule)
and y/(vz), and concluded with the differentials of powers and roots.

5.14 THE ARITHMETICAL QUADRATURE

The longest mathematical manuscript of Leibniz, containing 51 propositions,
did not even mention the calculus or differentials. But at the core of the
manuscript, he proved rigorously that the area under a curve can be approx-
imated as closely as desired by what we now call “Riemann sums.” It was
written in 1675–1676, shortly after a time in which he thought of dx as an
infinitesimal unit. However, in De quadratura arithmetica circuli ellipseos
et hyperbolæ cujus corollarium est trigonometria sine tabulis (The arithmeti-
cal quadrature of the circle, the ellipse, and the hyperbola whose corollary is
trigonometry without tables) he showed tremendous maturity and progress,
and for this reason it seems that its placement in this overview of his work
should follow that of the 1680 work discussed in the previous section. Leibniz
left the manuscript in Paris before his departure for Germany in October, hop-
ing that its publication could be used to secure him a position at the Academy
of Sciences. He left the manuscript, together with some drafts for corrections
and extensions, in the hands of his friend Soudry, who would be in charge of
preparing the final copy.

Soudry, unfortunately, died suddenly in 1678, and the manuscript remained
in possession of Friedrich Adolf Hansen, who had discussed its publication
with Soudry. He then put it in the hands of Christoph Brousseau, from Hanover
but a resident of Paris. Brousseau, in turn, passed it to Isaac Arontz, who was
planning to travel to Hanover, for delivery to Leibniz. This happened in 1680,
while Soudry’s copy became and remains lost.121

120 The word “or” and the numerator of the last fraction are crossed out in the manuscript.
121 These facts about the whereabouts of the De quadratura arithmetica manuscript are

from Knobloch, “Leibniz et son manuscrit inédite sur la quadrature des sections coniques,”
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After unsuccessfully attempting to publish the original manuscript, Leib-
niz gave up, and later he refused to publish it because it had become anti-
quated. Instead, he wrote an abbreviated version, Compendium quadraturæ
arithmeticæ, using differential and integral notation, but it contains only a few
sketches of proofs.

Before stating Proposition VI, which is at the heart of the manuscript,
Leibniz set the scene with some necessary preliminaries based on a very de-
tailed figure. The most interesting part of this figure for us includes the corner
near the origin at A, which is too small a portion of Leibniz’ larger figure to
comfortably distinguish points, letters, and segments. For this reason, we have
taken the liberty to greatly enlarge and somewhat distort a portion of the figure
containing this corner, as shown on the next page, and we have kept only those
elements that are relevant in the following discussion. The positive x-axis is
located vertically down from A and the positive y-axis horizontally to the right
of A. As we well know by now, Leibniz placed his subscripts on the left of their
letters. However, the propositions and proofs that we are about to present are
somewhat lengthy, and such an arrangement may be tiring for the present-day
reader. Thus, in the enclosed figure and in the quotations and explanations
that follow, we write the subscripts on the right, as is today’s fashion. Then,
if “C1C2 etc. C4” is a given curve (we would talk about a continuous function
that has a tangent at each point), he constructed the tangents CT to the curve,
and, from each T , the perpendicular to the corresponding ordinate BC gen-
erates the point D. These points form a new curve “D1D2 etc. D4.”122 Next,
the chords “C1C2 etc. up to C3C4” (here and in what follows, “up to” means
to the end of the curve, however many C’s are placed on it, and it was just
convenience for Leibniz to end at C3C4) cut the right angle TAB at [f. 8v;
p. 28; 49; 8]123

points M . that fall between the points T , as M1 is between T1 and T2, and
M3 is between T3 and T4. and similarly from these points of intersection M

drop other perpendiculars M1N1P1, up to M3N3P3 . . .

1986. This paper also contains proofs of all these assertions. Knobloch’s analysis can also
be seen in the introduction to his 1993 edition of De quadratura arithmetica.
122 Leibniz used a great deal of underlining in the De quadratura arithmetica and, in

particular, in his presentation of Propositions VI and VII, of which this is an example. I
have decided to omit it from this point on, but the interested reader can see it in Knobloch’s
edition.
123 Page references are to manuscript folio, to Knobloch’s edition of the De quadratura

arithmetica, 1993; to Parmentier’s French translation Quadrature arithmétique, 2004; and
to Hamborg’s German translation Über die arithmetische Quadratur, 2007.
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to the ordinates B1N1, up to B4N4.
Then the text of Leibniz’ Proposition VI is as follows [f. 8v; p. 29; 51;

8–9]:

Thus these rules and preparations [concluded], I say that we can consider in
the [two] curves points C between C1 and C4 and points D between D1 and D4

in such number and so close to each other, that the rectilinear gradiform space
N1B1B4P3N3P2N2P1N1 composed of the rectangles N1B1B2P1, and others up
to N3B3B4P3 which are comprised between the ordinates N1B1 or if needed
their prolongations, and others up to N3B3, and by the intervals B1B2, and
others, up to B3B4.; differs by a quantity smaller than any given [quantity]
whatever from the quadrilinear space D1B1B4D4D3 etc. D1 (delimited by the
axis B1B4, the outside ordinates B1D1, B4D4 and the new curve D1D2 etc. D4).
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And the same demonstration holds for any other mixtilinear and gradiform
space formed by the continuous application of straight lines on a certain axis.
One can take it as proved that the areas of �gures can be obtained from the
sum of straight lines, as addressed by the method of indivisibles. It is required
that the curves or at least the parts in which they are split, have their concavity
on the same side, and lack reversion points.

Reversion points (Puncta reversionum) were immediately defined by Leib-
niz as those at which the ordinate is tangent to the curve. After this, he provided
a proof in eight stages, which he numbered in parentheses and later referred
to as articles.

In (1), the fact that the arc D1D2 has no reversion points allowed Leibniz
to construct the point F1 as the intersection of the segment N1P1, parallel to
T1D1, with the arc D1D2. Then he added [f. 9r ; p. 30; 53; 10]: “In the same
manner the other portion D2D3 will cut the straight line N2P2 at F2. etc.”

In (2) he extended each segment T D until it intersects the next ordinate at E.
He called each rectangle N1B1B2P1, N2B2B3P2, . . . an Elementary Rectangle,
each rectangle D1E1D2, D2E2D3, . . . the complementary rectangle (he left
it to the reader to imagine the remaining vertex of each of these rectangles).
Leibniz asserted that the [absolute value of the] difference between the partial
Quadrilinear D1B1B2D2D1 and its elementary rectangle is smaller than the
corresponding complementary rectangle, which in current notation we write
as

|D1B1B2D2D1 − N1B1B2P1| < D1E1D2.

He proved this by noting that the partial quadrilinear and the elementary rect-
angle have in common the Quintilinear space D1B1B2P1F1D1. Subtracting it
from each leaves the trilinear spaces D2P1F1D2 and D1N1F1D1, respectively.
Thus, in today’s notation,

|D1B1B2D2D1 − N1B1B2P1| < |D2P1F1D2 −D1N1F1D1|.
In (3) [f. 9r ; p. 31; 55; 11] Leibniz stated:

Then it will suffice to show that the difference between these two trilinears
is smaller than the complementary rectangle D1E1D2, which is clear . . .

and then explained how this is clear.
In (4) [f. 9; p. 31; 57; 11–12] he stated that the same is true for the difference

between the next partial Quadrilinear D2B2B3D3D2 and the corresponding
elementary rectangle N2B2B3[P2], and for the others. Then the difference
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between the total Quadrilinear D1B1B4D4D3 etc. and the rectilinear gradiform
space (spatio rectilineo gradiformi) N1B1B4P3N3P2N2P1N1 is smaller than
the sum of all the complementary rectangles. In current notation, and if there
are n quadrilinears, this means that 124

∣∣∣∣
n∑

i=1

[
DiBiBi+1Di+1Di − NiBiBi+1Pi

]∣∣∣∣ <

n∑
i=1

DiEiDi+1.

In (5) Leibniz observed that the rectangles in the last sum have bases
D4E3 = D4L3, D3E2 = L3L2, up to D2E1 = L2L1, and heights D1E1 =
B1B2, D2E2 = B2B3, . . . If the heights B1B2, B2B3, . . . are all equal, then
the sum of the areas of these rectangles equals the product of the sum of the
bases, D4L1, and B3B4. Otherwise, the sum of these areas is smaller than the
product of the sum of the bases and the largest of the heights. If we assume
that the largest height is the last, B3B4 = ψD4, then the sum of the areas of
all the complementary rectangles is less than or equal to that of the rectangle
ψD4L1.

In (6) Leibniz simply stated that it follows from articles 4 and 5 that the
difference between the total Quadrilinear [D1B1B4D4D3D2D1] and the grad-
iform space [N1B1B4P3N3P2N2P1N1] is smaller than the sum of the comple-
mentary rectangles, and therefore smaller than the rectangle ψD4L1.

In (7) [f. 9v; pp. 31–32; 59; 12–13] he noted that the height of the rectangle
ψD4L1 can be assumed to be smaller than any given quantity, since the D

points can be taken arbitrarily close to each other, and in any number whatever.
Thus, the area of the rectangle ψD4L1 can be made arbitrarily small.

Finally, in (8), Leibniz concluded that it follows from articles 6 and 7
that the difference between the total Quadrilinear [D1B1B4D4D3D2D1] and
the gradiform space [N1B1B4P3N3P2N2P1N1] can be made smaller than any
given quantity.

This is the modernity of Leibniz’ thought and methods. The “infinitesimal
unit” of his earlier tentative manuscripts is nowhere present in this treatment.
Instead, this is a modern proof by reductio ad absurdum of the integrability
of a large class of functions, and Leibniz was justifiably proud when he stated
that [f. 10v; p. 35; 71; 18]

I believe none is simpler and more natural, and closer to the direct demon-
stration, than that which not only simply shows, that there is no difference

124 This makes implicit use of the triangle inequality. Leibniz had already established a
result that amounts to the triangle inequality as Proposition V of this tract.
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between two quantities, so that they are equal, (which elsewhere is usually
proved [by showing] that neither is greater nor smaller than the other by a
double reasoning) but one that [uses] only one middle term, namely either
inscribed or circumscribed, not both simultaneously[.]

We could not have deflated Leibniz’ joy by pointing out that there is some
unfinished business in this work, because he had already anticipated us and
finished that business when he wrote this assessment. The apparently unfin-
ished business is this: we wanted to approximate the area “under” C1C2 etc.
C4, but we have only approximated the area “under” D1D2 etc. D4. Leibniz
took care of this in Proposition VII.125 If we agree to call C1C2 etc. C4 the first
curve and D1D2 etc. D4 the second curve, the conclusion of this proposition
reads [f. 10r ; p. 33; 65; 15]:

. . . the space comprised between the axis (on which the ordinates are
drawn,) the two outside ordinates, and the second comprising curve, is double
the space comprised between the �rst curve and the two straight lines whose
ends are joined to the given right angle.

Leibniz explained that these two right lines are the segments AC1 and
AC3 [f. 10r ; p. 34; 67; 15]. Thus, the proposition states that the area of
the quadrilinear figure D1B1B3D3D2D1 is twice that of the trilinear figure
C1AC3C2C1 (in either case, D3D2D1 and C3C2C1 are arcs of curve). The
proof, which could have used any number of ordinates rather than just three,
was done in five stages.

In (1) Leibniz assumed that the conclusion does not hold, and denoted by Z

the difference between twice the Trilinear area and the Quadrilinear one. Then
constructed the polygons AC1C2A, AC1C2C3A, and so on, reminded us of the
construction of the points M on the Y -axis and of the perpendiculars MN , and
then denoted their intersections with the ordinates B2C2, B3C3, etc. by S1, S2,
etc. These were previously called P , so a new figure is not necessary.

In (2) [f. 10v; p. 34; 67; 15] he assumed that the construction of the inscribed
polygons is such that

the difference between the polygon AC1C2C3A and theTrilinear C1AC3C2C1

[recall that C3C2C1 is an arc of curve here], as well as the difference be-
tween the rectilinear Gradiform space B1N1S1N2S2B3B1, and the Quadrilin-
ear D1B1B3D3D2D1 [same for D3D2D1], each one separately, is smaller,

125 Leibniz had already found this proposition in May 1673. See Sämtliche Schriften und
Briefe, Ser. III, 1, p. 115.
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than the fourth part of Z. We can in fact continue the very same [process]
until [each] is smaller than any given quantity.

In (3) Leibniz used Proposition 1 of this tract to show that [f. 10v; p. 35;
69; 17]

twice the triangle AC1C2 is the rectangle [N1B1B2] and twice the triangle
AC2C3 is the rectangle [N2B2B3], and so of the others . . . 126

Therefore, the sum of all the rectangles of this type, which is the Gradiform
space, will be twice the sum of all the corresponding triangles, or the inscribed
polygon.

In (4) he denoted the Quadrilinear [D1B1B3D3D2D1] by Q, the inscribed
polygon [AC1C2C3A] by P , and the Trilinear [C1AC3C2C1, where C3C2C1 is
an arc of curve] by T . The difference between Q and the gradiform space,
whose area equals 2P by Article 3, is smaller than Z/4 by article 2. Also by
article 2, the difference between P and T is smaller than Z/4. Leibniz did not
use absolute values, but if we do, all this means that

|Q− 2T | ≤ |Q− 2P | + |2P − 2T | < 1
4 Z + 2

4 Z = 3
4 Z.

Finally, Leibniz remarked in (5) that comparing this inequality with the
definition of Z in article 1 shows that |Q− 2T | is smaller than itself, which is
absurd. Thus, the original assumption cannot hold, and Q = 2T .

What this result does is allow us to compute the area AB3C3C2C1A, be-
tween the C curve and the x-axis, as the sum of T = 1

2 Q and that of the triangle
AB3C3A, and the method is applicable if Q is easier to compute than the orig-
inal area. Appropriately, in his Historia et origo calculi differentialis, Leibniz
referred to this procedure as the transmutation method (Methodo transmuta-
tionum) [p. 11; 402; 44; 13].

This method and much additional work allowed Leibniz to perform the
general quadrature of ellipses and hyperbolas in Proposition XLIII of De

126 We can use his argument while keeping the notation now in use as follows. Prolong
C2C1M1 in this direction and drop a perpendicular AH to this prolongation (the reader is in
charge of drawing the figure). Now prolong B1N1C1 to the right and drop a perpendicular
C2G to this prolongation. The triangles AM1H and C2C1G are similar because � AM1H =
� C2C1G. Then,

AH

AM1
= C2G

C1C2
or

AH

B1N1
= B1B2

C1C2

,

so that B1N1 ×B1B2 = AH ×C1C2. The right-hand side is twice the area of the triangle
AC1C2 that has base C1C2 and height AH .
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quadratura. We have neither the space nor the desire to embark on such a
long trek. Instead, to give an example of the method of transmutation in the
particular case of the circle, we follow a shorter route, as Leibniz himself did
at the end of 1675, in an untitled and unsent letter in French to Jean-Paul de
La Roque, editor of the Journal des sçavans.127 Leibniz provided essentially
the same figure as in De quadratura but different notation, but it is simpler if
we use the same notation as above. He assumed that the curve AC1C2C3 is
an arc of the circle of radius a centered at x = a whose length is no larger
than that of a quadrant, and stated that (recall that we are replacing his new
notation with the present one) [p. 91; 349]

Since the curve AC1C2C3 is an arc of circle, the curve of intercepts, namely
AD1D2D3, can be related to the right angle BAT , by this equation

2az2

a2 + z2
� x,

where z represents the ordinate BD. Leibniz did not explain how he obtained
this equation, but some explanation is preferable. Note that we would write
the equation of the circle as (x − a)2 + y2 = a2, which gives y2 = 2ax − x2.
Then, according to Leibniz’own rules of the calculus, 2y dy = 2a dx−2x dx,
or

dy

dx
= a − x

y
.

If we now imagine a small characteristic triangle at C3, with legs dy and dx,
it is clearly similar to the triangle C3D3T3, and then

dy

dx
= y − z

x
.

Therefore, solving for z, using the quotient previously obtained for dy/dx,
and the expression given above for y2 yields

z = y − x
dy

dx
= y − x

a − x

y
= y2 − ax + x2

y
= ax

y
=
√

a2x

2a − x
.

Squaring and solving for x provides the equation given by Leibniz.

127 Leibniz had first communicated the quadrature of the circle, but without proof, to Henry
Oldenburg in the summer of 1674. It also appears as Proposition X in a communication to
Huygens of October 1674. See Sämtliche Schriften und Briefe, Ser. III, 1, pp. 117 and 165.
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Direct use of the transmutation theorem calls for the evaluation of the area
Q = AB3D3D2D1A, but Leibniz did this indirectly, computing first the area

AT3D3D2D1A =
∫

x dz =
∫

2az2

a2 + z2
dz

(these equations are for our convenience, because Leibniz did not use the
integral sign in this letter or in De quadratura). To do this he employed
[pp. 91–92; 349–350]

the beautiful method of Nicolaus Mercator [long division] according to which

since a is unity, and
x

2
equal to

z2

1+ z2
the same x[/2] will be equal, to

z2 − z4 + z6 − z8 etc to infinity. And the sum of all the x[/2], equal to the
sum of all the z2−z4, etc. now . . . the sum of all the z2 [from z = 0 to z = b]

will be
b2

3
and the sum of all the z4 will be

b5

5
etc. (by the quadrature of

parabolas) hence the sum of all the x, or the space AT3D3[D2D1]A, or the
difference between the rectangle T3AB3[D3], and twice the segment of the

circle, A[C1C2]C3A, will be
b3

3
− b5

5
+ b7

7
− b9

9
etc.

Accepting that the radius of the circle is a = 1 and writing z instead of
Leibniz’ b for an arbitrary ordinate BD, these statements can be rendered in
current notation as follows. First, the “sum” of all the quotients x/2 is∫

x

2
dz =

∫
z2

1+ z2
dz = z3

3
− z5

5
+ z7

7
− z9

9
+ · · · ,

and then, noting that the area of the rectangle T3AB3D3 is xz and that the
circular segment AC1C2C3A was denoted by T , Leibniz observed that∫

x dz = xz− 2T .

It follows from Lemma VII of De quadratura, a result included as the main
theorem in Leibniz’ letter, that

1
2 Q = T = xz

2
−
∫

x

2
dz = xz

2
− z3

3
− z5

5
+ z7

7
− z9

9
+ · · · ,

and adding to this the area of the triangle AB3C3A = 1
2 xy gives the desired

quadrature ∫
y dx = xz+ xy

2
− z3

3
+ z5

5
− z7

7
+ · · · .
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Although it is possible to rewrite the first fraction in terms of z only, it would
not add to the meaning of the result. Just observe that at the point (1, 1) of this
circle its tangent is vertical, so that the corresponding value of z is 1. Putting
x = y = z = 1 in the preceding equation gives the area of a quadrant of the
circle, which is π/4; that is,

π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · .

Leibniz obtained this identity in De quadratura in the following form [f. 24r ;
p. 79; 219; 82]:

Proposition XXXII

The Circle is to the circumscribed Square, or the arc of the Quadrant is to the
Diameter, as

1

1
− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
etc.

is to unity.

Clearly, Leibniz meant the areas of the circle and the square and the lengths
of the quadrant and the diameter. This expansion is known as the Leibniz
formula, and also sometimes as the Gregory–Leibniz formula.128

5.15 LEIBNIZ’ PUBLICATIONS

Leibniz may have been ready to publish by 1680, but he also seemed somewhat
reluctant, at least judging by the amount of time he let pass before he finally did
so, perhaps fearing that his infinitesimal quantities may not be well received.

128 In a letter of 15 February 1671 to John Collins, Gregory wrote: “Sit radius = r , arcus
= a, tangens = t , secans = s, erit

a = t − t3

3r2
+ t5

5r4
− t7

7r6
+ t9

9r8
”

(quoted from Turnbull, James Gregory tercentenary memorial volume, p. 170 and The
Correspondence of Isaac Newton, I, 1959, p. 62). Putting r = 1 and t = 1 for a = π/4
gives the Leibniz formula, but Gregory never wrote it.

However, the Leibniz and Gregory series had already appeared in Jyesthadeva’s Yuk-
tibhasa and in the anonymous Tantrasangrahavyakhya, and are very likely the work of
Madhava. For details see Rajagopal and Rangachari, “On an untapped source of medieval
Keralese mathematics,” 1978, pp. 91–96.
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But he had essentially completed his investigations and he may have been
concerned that his friend and colleague Ehrenfried Walter von Tschirnhaus
(1651–1708) might get ahead of him and publish his own thoughts on the
subject. When Leibniz helped some friends found the journal Acta Eruditorum

The first page of Leibniz’ publication on the differential calculus

From Struik, A source book in mathematics, 1200–1800.

in 1682, he was invited to submit a paper, and Leibniz chose to write on the
quadrature of the circle, giving the formula stated above but without a proof.129

Finally, two years later he unveiled his differential calculus, in the October

129 “De vera proportione circuli ad quadratum circumscriptum in numeris rationalibus, à
G. G. Leibnitio expressa,” 1682.
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issue of the same journal, with a paper entitled “A new method for maxima
and minima, as well as tangents, not hampered by fractional nor irrational
quantities, and a singular calculus created for them, by G. W. L.”130 It begins
as follows [p. 467; 168: 220]:131

Let an axis AX, and several curves, such as V V , WW , Y Y , ZZ, whose

ordinates, normal to the axis, V X, WX, Y X, ZX, are called respectively,
v, w, y, z; & this [portion] AX cut off from the axis, is called x. Let the
tangents VB,132 WC, YD, ZE intersect the axis respectively at points B,
C, D, E. Now some arbitrarily selected straight line is called dx, & the line
that is to dx, as v (or w, or y, or z) is to XB (or XC, or XD, or XE) 133 is

130 “Nova methodvs pro maximis et minimis, itemque tengentibus, quæ nec fractas, nec
irrationales quantitates moratur, & singulare pro illis calculi genus, per G. G. L.”
131 Page references are to the Acta, to Opera mathematica and to Leibnizens Mathematische

Schriften in this order. I follow the Acta’s text except for obvious errors.
132 Two possible arrangements are shown in the figure, labeled 1V1B and 2V2B.
133 The last four segments are incorrectly given in the Acta and in the Opera as V B, WC,

Y D, and ZE, but the mistake was corrected in the Schriften. The mistake can be attributed to
Leibniz himself, since the printed version is, on this point, identical to a manuscript draft that
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called dv (or dw, or dy or dz) or the difference of these v (or these w, or y,
or z) This posed the rules of calculus are such:

If a constant quantity a is given, then da equals 0, & d ax will be equ. a dx:
if y is equ. v (or if any ordinate whatever of a curve Y Y , is equal to the
any ordinate whatever of a corresponding curve V V ) then dy will be equ.
dv. Now Addition & Subtraction: if z − y + w + x, is equ. v, it shall be
d z− y + w + x 134 or dv, equ. dz− dy + dw+ dx. Multiplication, d xv

equ. x dv+v dx, or given that y equ. xv, dy becomes equ. x dv+v dx. In fact
it is a matter of choice whether we employ a formula, such as xv, or shorten
it to a letter, such as y. Note that & x & dx are treated in this calculus, in the
same manner, as y & dy, or any other indeterminate letter with its difference.
Note also that it is not always possible to go back from a differential Equation,
except with some caution, of which [we will talk] elsewhere. On to Division,

d
v

y
or

(
given that z equ. to

v

y

)
dz equ.

±v dy ∓ y dv

yy
.

It is not necessary to continue in detail. In the next paragraph he remarked
that [p. 468; 168; 221]

at the very moment when v neither increases nor decreases, but is flat, dv is
exactly equ. 0, . . . at this very same place v, namely the ordinate LM, is
maximum (or . . . Minimum), . . .

A few lines below he defined point of inflection (punctum �exus contrarii),
characterized it in terms of changing concavity, and (carelessly) stated the
following:

Therefore a point of inflection takes place, when neither v nor dv are 0, and
yet d dv is 0.

After dealing (not as clearly as one might wish) with the matter of the
ambiguous signs that have just shown up in the case of division, Leibniz went
on to deal with powers and roots, very much as in the unpublished manuscript

is still extant (probably not the one used by the printer, since there are significant differences
between the draft and the printed version) with the same title as the paper (Bodemann XXXV,
vol. V / 25, f. 3r ). In this translation I use the corrected version.
134 The overbar is too long in the Acta and it covers the d . This was corrected in the Opera

and in the Schriften. The same for the product rule below. There are no such overbars in
the manuscript draft mentioned in the previous footnote.
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discussed in Section 5.13 [p. 469; 169; 222], specifically stating the equations
“dxa,= a.xa−1 dx” and

d
b
√

xa = a

b
dx

b
√

xa−b.135

Then he named this calculus the “differential” calculus, which is the name that
we still use today, and then he tooted his own horn for a little while, asserting,
in particular, that [p. 470; 170; 223]

it is also clear that our method extends to transcendental curves, which cannot
be reduced by Algebraic calculation, or do not have a fixed degree, . . .

But he did not include such an extension in this paper. Leibniz gave next (after
defining tangent as a line passing through two points of a curve at an infinitely
small distance) three examples of the differential calculus. He stated the first
example after denoting division by [pp. 470; 170; 223–224]

x : y which is the same as x divid. by y or
x

y
. Let the �rst or given equation be,

x : y + a + bx c − xx : squar. ex + f xx

+ ax
√

gg + yy + yy :
√

hh+ lx +mxx equ. 0.136

expressing the relation between x & y, . . . , assuming that a, b, c, e, g, h, l,
m are given [constants]; it is desired

to find the quotient dx : dy, to make a long story shorter.
The stated equation is somewhat complicated and, after solving the prob-

lem, Leibniz explained that this was done on purpose to show the power of
the calculus rules. But since we are already familiar with that power, we deal

135 The Acta used capital X in these equations, except for dx instead of dX. The Opera
used X throughout, but the Schriften used only x.
136 The Acta and the Opera reproduced this equation as in the manuscript draft, except for

using the abbreviation “quadrat.” (translated here as “squar.”) instead of “quadr.” However,
The Schriften did not place a bar over ex + f xx but placed one over a + bx c −xx. We
would prefer to write this equation as

x

y
+ (a + bx)(c − x2)

(ex + f x2)2
+ ax

√
g2 + y2 + y2

√
h2 + lx +mx2

= 0.

In one of a large number of (disorganized) enclosures that accompany the manuscript draft
(on a page numbered 32 in a more recent hand), Leibniz himself wrote this equation using
fraction bars but no parentheses.
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with the third term only as an example, thereby avoiding the use of the quo-
tient rule. After denoting g2 + y2 by r , Leibniz found that [p. 471; 170; 224]
“d, ax

√
r is + ax dr : 2

√
r + a dx

√
r ,” 137 which we would prefer to read

as
d(ax

√
r) = ax

2
√

r
dr + a

√
r dx.

A few lines below he noticed that “dr is 2y dy” and, therefore,

d(ax
√

r) = axy√
r

dy + a
√

r dx

(an equation that Leibniz did not write explicitly). This is an example of the
chain rule, although not as involved as the one in his November 1676 paper.

By the new calculus rules and the use of substitutions, Leibniz found the
differentials of the remaining three terms, expressed them in terms of dx and
dy only, added the results to the one already found here, equated the sum to
zero, and solved for dx : dy.

In the second example Leibniz obtained the refraction law [pp. 471–472;
171–172; 224–225], and the third, which is the crowning point of this paper,
is the solution of a difficult, long-standing problem, introducing something
new in what we now call mathematical analysis. The problem had been posed
by Florimond de Beaune (1601–1652) to Descartes, who could not solve
it. This is the problem in Leibniz’ words and with reference to his figure
[p. 473; 172; 226]:

To find a curve WW of such a nature that, its tangent WC extended to the
axis, XC is always equal to the same constant straight line, a.

Leibniz had first attempted the solution in a manuscript of July 1676, Methodus
tangentium inversa, but was not completely successful. Since the slope of the
tangent is XW/XC = w/a, we have to solve the equation

dw

dx
= w

a
,

which, having set dx equal to a constant b, Leibniz wrote as “w æqu.
a

b
dw.”

However it is expressed, what we have here is a differential equation, possibly
the first one ever in print.138

137 This is the Schriften’s corrected formula. The Acta and the Opera have d, ax
√

r is

− ax dr : 2r
√+ a dx

√
r . The manuscript draft has d, xa

√
r is− xa dr : 2

√
r+ dx a

√
r .

138 Leibniz had already defined differential equation (æquationem differentialem) in his
letter to Oldenburg of 21 June 1677 [p. 156; 243; 172; 215; 221].



Section 5.15 Leibniz’ Publications 355

From a present-day course in differential equations we know that the so-
lutions are

w = Cex/a, or x = a l

(
w

C

)
,

where C is an arbitrary constant and l denotes the natural logarithm, but there
was no such course when Leibniz wrote this equation, so he improvised. To
write his solution, first in current terminology, consider an arithmetic progres-
sion of abscissas: x, x+dx, x+2dx, . . . , and if w is the ordinate corresponding
to x, the one corresponding to x + dx is

w + dw = w + w

a
dx = w + b

a
w = w

(
1+ b

a

)
.

This is how each ordinate is obtained from the previous one, so that they form
a geometric progression with ratio 1 + b/a. Recalling now our discussions
in Chapter 2 on geometric and arithmetic progressions, we conclude that the
relationship between the given abscissas and their corresponding ordinates is
logarithmic, which is more simply expressed by the equation x = a l(w/C).

Leibniz’ own solution is much briefer, for, without writing a single ad-
ditional equation, he simply expressed himself, and concluded his paper, as
follows:

. . . if the x are in arithmetic progression, the w will be in Geometric
progression, or if the w are numbers, the x will be logarithms: therefore the
curve WW is logarithmic.

In this manner, the solution of the de Beaune problem was a feather in the cap
of the new differential calculus.

Now let us backtrack to the start of this paper. Let us use our imagination
and try to place ourselves in the position of one of its readers who was a
contemporary of Leibniz. Such a reader would not have studied the calculus
that we have studied and would not have read the manuscripts that we have
previously discussed at length. What would such a reader make of all this?
The description of the curves and their tangents seems to be clear, but what is
all that about dx and dv and the rules of the calculus? The calculus of what? In
fact, an eminent reader who was a contemporary of Leibniz, Johann Bernoulli,
a younger brother of Jakob who would become professor of mathematics first
at Groningen and then at Basel, wrote down his opinion for the record in
his autobiography: this calculus of Leibniz was “an enigma rather than an
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explication . . . ”139

But let us not pursue this line of thought at this moment. Since Newton
had not published a line on this subject yet, this is how the differential calculus
was presented to the world. Two years later, Leibniz gave us a little glimpse
at his integral calculus, but at that time without its present name,140 although
he called it “summatorium, aut tetragonisticum” [p. 193; 233].

There is too much talk in this paper, but eventually Leibniz got around to
proving that the quadratures of the circle and the hyperbola, that is, what we
now call the integrals ∫ √

a2 ± x2 dx,

are transcendental, because if they were algebraic [pp. 190; 228–229]

it would follow with their help that the angle, or proportion or logarithm can
be cut in a given proportion from straight line to straight line . . .

(nobody ever said that he was a model of clarity).
It was in this paper that the integral sign appeared in print for the first time.

There is a grand total of six integral formulas in it, of which the first three are
variants of 1

2 xx = ∫
x dx, and the fourth is given as follows [p. 192; 231]:

Let a be an arc, x its versed sine [that is, x = 1 − cos a], it will be a =∫
dx :

√
2x − xx . 141

The next one is about the cycloid, a curve about which we are not as emotional
today as they used to be back then. The last one, a repeat of the fourth but
with a misprint [p. 193; 233], is there just to exhort the reader not to forget to
write the dx.

Leibniz continued working, writing, and publishing on his new calculus,
including a proof of the fundamental theorem of calculus that is strongly

139 Fragments from Bernoulli’s autobiography are contained in Wolf, “Erinnerungen an
Johann I Bernoulli aus Basel,” in Grunert, ed., Archiv der Mathematik und Physik, 1849.
This purposely incomplete quotation (to be continued) is from page 693.
140 “De geometria recondita et analysi indivisibilium atque infinitorum” (Of abstruse ge-

ometry and the analysis of indivisibles and infinites), 1686. Page references are to Opera
Mathematica and Leibnizens Mathematische Schriften, in this order.
141 The overbar covers the integral sign in the Opera but appears correctly in the Schriften.
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reminiscent of Barrow’s.142 Two years later he finally incorporated some
transcendental functions in his version of the calculus. Specifically, he differ-
entiated the general exponential function, following a suggestion by Johann
Bernoulli, as follows [p. 314; 330; 324]:143

Let xv = y then v log x = log y; now

log x =
∫

dx

x
and log y =

∫
dy

y
.

Therefore,

v

∫
dx

x
= dy

y
:

which differentiating, becomes

v
dx

x
+ dv log x = dy

y
. 144

From this equation Leibniz should have concluded (and possibly did) that

dy = d(xv) = vxv−1dx + xvdv log x,

but, instead, his published equation contains a misprint. However, Leibniz’
paper contains the correct formula for the particular case in which v is a
constant e, which is d(xe) = exe−1 dx [p. 314; 331; 325].

In the same paper Leibniz showed some insight into the nature of second-
order differentials [p. 314; 331; 325]. Although without a reference to the de
Beaune problem that he had solved in 1684, he considered the same differential
equation, which, replacing w with x and x with y, is

dx

dy
= x

a
.

142 This is, essentially, the proof in the manuscript discussed at the end of Section 5.13.
It appeared in “Supplementum geometriæ dimensoriæ, seu generalissima omnium tetrago-
nismorum effectio per motum: similiterque multiplex constructio lineæ ex data tangentium
conditione” (Supplement on the geometry of measurement; or most generally on all quadra-
tures effected by motion: similarly, multiple constructions of curves from data on the tangent
condition), 1693.
143 “Responsio ad nonnullas difficultates, a Dn. Bernardo Niewentiit circa methodum dif-

ferentialem seu infinitesimalem motas” (Response to several difficulties of Dn. Bernardo
Niewentiit about the differential method or motivated by infinitesimals), 1695. Page refer-
ences are to the three works mentioned in the bibliography.
144 I have modernized Leibniz’ notation. Here is his statement in the Opera: “Nempe sit

x.v = y fiet v. log . x = log .y; jam log . x = ∫
, dx : x & log . y = ∫

, dy : y. Ergo
v.
∫

, dx : x = ∫
, dy : y : quam differentiando, fit v dx : x + dv. log . x = dy : y.”
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Or dx = xdy : a. Therefore ddx = dxdy : a. Whence taking dy : a from
the prior equation becomes xddx = dxdx: whence it is clear that x is to dx,
as dx is to ddx.

Today we would write Leibniz’ proportion as

x

dx
= dx

ddx
,

which shows in this example that dx is the mean proportional between x and
ddx.145

5.16 THE AFTERMATH

For reasons that may seem incomprehensible today, a dispute flared up between
the partisans of Newton’s calculus and the partisans of Leibniz’calculus. There
were even allegations of plagiarism raised against Leibniz, for he had been to
London, where he might have seen a copy of De analysi and stolen Newton’s
ideas. Such allegations are pure nonsense, because Newton’s calculus is as
similar to Leibniz’ calculus as an egg is to a chestnut, and the latter’s efforts to
arrive at an understanding through notation are palpable.146 However, Leibniz
had purchased a copy of Barrow’s Lectiones geometricæ while in London, and,
doubtlessly, he had studied it and may have found inspiration from it to view
quadratures and differentiation as inverse processes. There is also a similarity
between Barrow’s geometric constructions and those of Leibniz, but also a
very profound difference. For, whereas Barrow seemed to be content in that
geometric milieu, Leibniz felt the need to leave it through the choice of a
notation that would allow him to turn such procedures into an algorithmic
calculus. Thus, his work represents a leap into the future from where Barrow
stood.147

There is also a substantial difference in approach between Newton and
Leibniz. Newton was basically a practical man, interested in differentiating

145 For additional information on Leibniz’development of the calculus consult Parmentier’s
La naissance du calcul différentiel, 2000. This is a collection of 26 papers by Leibniz,
originally published in the Acta Eruditorum, translated into French, with notes and an
introduction.
146 For a full account of the dispute see Hall, Philosophers at war: The quarrel between

Newton and Leibniz, 1980. A popular account can be found in Bardi, The calculus wars.
Newton, Leibniz, and the greatest mathematical clash of all time, 2006.
147 For a possible influence of the work of Barrow, Newton, and Leibniz on each other see

Feingold, “Newton, Leibniz, and Barrow too. An attempt at a reinterpretation,” 1993.
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and integrating everything in sight, with applications to practical problems,
and from the very beginning provided us with what we now call tables of
integrals. Leibniz was basically interested in finding the working algorithms
of the calculus, but did not neglect applications in his early work. We have
seen how he provided the answer to the de Beaune problem via the solution of
the first ever differential equation, and this was a triumph for Leibniz’calculus.

And then the inevitable happened. Newton and Leibniz had given to the
world a calculus that worked but whose foundations were shaky and insuffi-
ciently understood. Someone was bound to pick on this, and someone did. The
first was the Dutch physician and mathematician Bernard Nieuwentijt (1654–
1718).148 He could not understand a number of points from either Barrow,
or Newton, or Leibniz, from quantities that now are positive but then are zero
to how infinitesimals could add up to something finite. Leibniz printed a
reply,149 but the fact is that Leibniz, or anyone at that time, did not understand
these fine points either.

This meant that the problem could not go away until it was resolved. The
leading critic in the British Isles was George Berkeley (1685–1753), one of the
most prominent empiricist philosophers, a prolific writer and critic of science,
philosophy, mathematics, and politics. In 1734, the same year he became the
Anglican bishop of Cloyne (County Cork, Ireland), he published The analyst;
or a discourse addressed to an in�del mathematician,150 his only work written
in England. Berkeley found this infidel guilty of [I]

the misleading of unwary Persons in matters of the highest Concernment [re-
ligion], and whereof your mathematical Knowledge can by no means qualify
you to be a competent Judge.

Then, it was only fair for Berkeley to [II]

take the Liberty to inquire into the Object, Principles, and Method of Demon-
stration admitted by the Mathematicians of the present Age, . . .

148 Considerationes circa analyseos ad quantitates in�nite parvas applicatæ principia, &
calculi differentialis usum in resolvendis problematibus geometricis, 1694; and Analysis
in�nitorum, seu curvilineorum proprietates ex polygonorum natura deductæ, 1695.
149 “Responsio ad nonnullas difficultates a Dn. Bernardo Niewentiit circa methodum dif-

ferentialem seu infinitesimalen motas.”
150 Since this booklet is divided into fifty sections, references will be given by section

numbers in roman numerals. It is generally believed that the infidel mathematician of the
title was the Astronomer Royal Edmund Halley (see the Editor’s Introduction to vol. 4 of
The works of George Berkeley Bishop of Cloyne, pp. 56–57). The relevant portions of The
analyst are reproduced in Smith, A source book in mathematics, 1929, pp. 627–634.
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In sections III to VIII Berkeley criticized the method of fluxions but just in
verbal form, remarking on how difficult it is for the imagination to comprehend
“those Increments of the flowing Quantities in statu nascenti” [IV], or to
“digest a second or third Fluxion . . . ” [VII]. But then he became more serious
in criticizing some statements made by Newton after that of Lemma II in
Book II of the Principia [Motte’s translation, p. 18]. Newton had designated
the “momentary increments or decrements [of flowing quantities] by the name
of Moments;” and then stated that if the sides of a rectangle, A and B, are
“increasing or decreasing by a continual flux” with velocities a and b, then
“the moment or mutation of the generated rectangle AB will be aB + Ba;”
and then provided a very dubious proof of this fact [p. 19]. In Berkeley’s
view, however, if you subtract AB from the product of A+ a and B + b what
remains is aB + Ba + ab, and this gave him occasion to turn Newton’s own
words against him [IX]:

And this holds universally be the Quantities a and b what they will, big or
little, Finite or Infinitesimal, Increments, Moments, or Velocities. Nor will
it avail to say that ab is a Quantity exceedingly small: Since we are told that
in rebus mathematicis errores quàm minimi non sunt contemnendi.151

As for Newton’s way of finding the fluxion of xn, reproduced on page 317, he
had the following to say [XIII]:

For when it is said, let the Increments vanish,152 i. e. let the Increments
be nothing, or let there be no Increments, the former Supposition that the
Increments were something, or that there were Increments, is destroyed, and
yet the Consequence of that Supposition, i. e. an Expression got by virtue
thereof, is retained.

This is enough to get the idea of Berkeley’s objections, which he extended
to Leibniz’ calculus too. His problem was not with the results, which he
accepted as valid, but rather with the faulty logic used to arrive at them. He
concluded section XXXV with some questions that are frequently quoted (it
is irresistible):

And what are these fluxions? The Velocities of evanescent Increments? And
what are these same evanescent Increments? They are neither finite Quan-
tities nor Quantities infinitely small, nor yet nothing. May we not call them
the Ghosts of departed Quantities?

151 Whiteside’s translation of these Latin words can be found in the last sentence of the
quotation from Newton’s De quadratura on page 317.
152 They are called “augments” in Whiteside’s translation.
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The calculus was in trouble and mathematicians knew it. They rose to
its defense and provided counterarguments to Berkeley’s own, but the bishop
held his own because he was on the right side. Explanations were neces-
sary. They ware attempted in a big way by Colin Maclaurin (1698–1746), a
professor first at Aberdeen and later at Edinburgh. In response to Berkeley’s
criticisms he wrote a lengthy treatise, seeking to justify the calculus by means
of Euclidean and Archimedean geometry.153 This impossible task may have
been instrumental in turning mathematicians in the British Isles away from
infinitesimals.

The continental mathematicians were not so squeamish, and they plunged
right in. We are in debt to Jakob and Johann Bernoulli, who were the first to
make sense of Leibniz’ calculus. Johann had called this calculus an enigma,
as we saw above, but that was an incomplete quotation. Leinbiz’ calculus
was 154

an enigma rather than an explication; but that was enough for us, to master
all its secrets in a few days, as witnessed by the quantity of papers that we
published next on the subject of infinitesimals.

The result was that Leibniz and the Bernoulli brothers created most of the
elementary differential calculus before the end of the seventeenth century.

Johann Bernoulli was the first to write a differential calculus textbook, the
Lectiones de calculo differentialium, from lectures of 1691 and 1692, but it
was not published until 1922. The reason is that Bernoulli had sold the rights to
his work to Guillaume François Antoine de l’Hospital (1661–1701), marquis
de Saint-Mesme, count of Autremont, Lord of Oucques, etc.155 L’Hospital, a
mathematician himself, had been tutored by Bernoulli on the new differential
calculus during the latter’s stay in Paris (1691–1692) and had acquired the
exclusive rights to those teachings. In 1696 l’Hospital published the first
differential calculus book to appear in print: Analyse des ini�niment petits

153 Treatise on �uxions, 1742. In Articles 858 to 861 of Book II (based on Articles 255
and 261 of Book I), Maclaurin gave, proved, and illustrated by example what we now call
the second derivative test for maxima and minima [Art. 858]: “When the first fluxion of the
ordinate vanishes, if at the same time its second fluxion is positive, the ordinate is then a
minimum, but it is a maximum if its second fluxion is negative . . . ” A portion of the Treatise
containing this topic is reproduced in Struik, A source book in mathematics, 1200–1800,
pp. 338–341; reprinted in Calinger, Classics of Mathematics, pp. 476–478.
154 Translated from Wolf, “Erinnerungen an Johann I Bernoulli aus Basel,” p. 693.
155 But usually referred to as the Marquis de l’Hôpital (using the modern French spelling),

today as well as then, at least in writings that I have seen by Berkeley, Johann Bernoulli,
and Leibniz.
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Reproduced from the virtual exhibition El legado de las matemáticas:

de Euclides a Newton, los genios a través de sus libros, Sevilla, 2000.

pour l’intelligence des lignes courbes, and acknowledged that he had made
free use of the discoveries of Leibniz and the Bernoullis. Besides marking the
first appearance in print of a complete presentation of the new calculus, this
book is distinguished by the use of the word intégrale to replace summatorium,
as proposed by the Bernoulli brothers,156 and a new theorem known and used
today as l’Hôpital’s rule. It appeared in Part I, Section IX, page 145.

Mixing current terminology with l’Hospital’s notation, the function repre-
sented by the curve AMD is the quotient of the function represented by ANB

over that represented by COB (the ordinates AC and PO are positive, but they
are drawn below the x-axis to avoid clutter). These last two functions vanish at
the point x = a, represented by the letter B. L’Hospital stated his proposition

156 This word was introduced by Jakob Bernoulli in “Analysis problematis antehac
propositi,” 1690, p. 218 = Jacobi Bernoulli, Basileensis, Opera, Tomus primus, 1744,
p. 423.
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as follows:

Proposition 1.

Problem.

163. Let AMD be a curve (AP = x, P M = y, AB = a) such that the value
of the ordinate y is expressed by a fraction, the numerator & denominator of
which, each of them becomes zero when x = a, that is when the point P falls
over [coincides with] the given point B. It is asked what must then be the
value of the ordinate BD.

Then l’Hospital gave a procedure for this task (which we would be very
happy to revise today) using “an ordinate bd infinitely close to BD,” in which
he revealed what to do:

to find the ratio of bg to bf . . . . & therefore if we take the differential of
the numerator, & divide it by that of the denominator, after having made
x = a = Ab or AB, we’ll have the value that is sought of the ordinate bd or
BD.

However, shortly after l’Hospital’s death, Bernoulli felt free to claim this rule
as his own discovery.157 This claim was validated much later when his corre-

157 In “Perfectio regulæ suæ edita in libro Gall. Analyse des infiniment petits art. 163. pro
determinando valore fractionis, cujus Numerator & Denominator certo casu evanescunt,”
1704, p. 376 = Johannis Bernoulli, Opera Omnia, 1742, vol. I, N°. LXXI, p. 401.
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spondence was published, for in a letter of 22 July 1694, Bernoulli had indeed
communicated it to l’Hospital along with the first example in the Analyse.158

Bernoulli (not Leibniz) had also developed the integral calculus, which he
wrote under the title Lectiones mathematicæ de methodo integralium, aliisque
conscriptæ in usum Ill. Marchionis Hospitali cum auctor Parisii agaret an-
nis 1691 et 1692 (Mathematical lectures on the method of integrals, and on
other topics written for the use of the Marquis de l’Hospital as the author
gave them in Paris in the years 1691 and 1692).159 Here Bernoulli developed
what would eventually be known as the method of substitution; and taught it
correctly, which is unusual in today’s calculus textbooks.

L’Hospital’s book became very popular and went through multiple edi-
tions. It was not until the mid eighteenth century that the competition caught
up. In Italy, Maria Gaetana Agnesi (1718–1799) published the Instituzioni
analitiche ad uso della gioventù italiana in 1748, two years before she was

158 Der Briefwechsel von Johann Bernoulli, vol. I, 1955 pp. 235–236.
159 They appeared first in Johannis Bernoulli, Opera omnia. The integral calculus is

in volume III, pp. 385–558. Some selections, containing the method of substitution, are
translated into English in Struik, A source book in mathematics, 1200–1800, pp. 324–328.
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appointed a professor at the University of Bologna. However, Agnesi, without
refusing the appointment, never took the position. Book 2 is devoted to the
Calcolo differenziale (including maxima and minima and the study of curves),
Book 3 to the Calcolo integrale, and Book 4 to Equazioni differenziali. Here
is an example of differentiation from page 465:

Let
√

ax + xx + 4
√

a4 − x4, that is ax + xx + 4
√

a4 − x4
1
2
, the difference

[differential] will be

a dx + 2x dx − x3 dx

a4 − x4
3
4

2
√

ax + xx + 4
√

a4 − x4
,

that is

a dx + 2x dx × a4 − x4
3
4 − x3 dx

2× a4 − x4
3
4
√

ax + xx + 4
√

a4 − x4

.

This textbook contains no original mathematics, but it is a lucid exposition of
the subject, which is mainly taught by example. Agnesi became well known
for this book, which was translated into French and English, but chose to
remain at home for the rest of her life. Born into a wealthy family, which
made her education possible, she died in poverty after spending her fortune
on works of charity.

And then Euler entered the picture, with the publication of Institutiones
calculi differentialis in 1755. Euler shows us in this text that he could differ-
entiate anything in sight, and we can too if only we follow his lead. Let the
differentiation of the logarithm, on page 143, serve as an example of his style.
Together with his four-volume Institvtionvm calcvli integralis, published from
1768 to 1770, these books formed a comprehensive treatise of everything that
was known up to then about the calculus, including many new results.

However, none of the authors mentioned so far understood the founda-
tions of the calculus. Nobody really knew what those differentials, those
infinitesimals, those nascent and ultimate ratios, really were. As an example
of late-in-the-game misconceptions we shall pick on Euler. Such was the cal-
iber of his genius, second to none in mathematics, that he could have accepted
a little picking in good humor.

In the preface to the 1755 book, Euler started by defining [pp. VIII; vii]:160

160 For this and the next quotation, this page reference is to the original first and, after a
semicolon, to Blanton’s translation.
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The Differential Calculus, which is a method for determining the ratio of the
vanishing increments, that any functions take on when the variable quantity,
of which they are functions, is given a vanishing increment . . .

Note the use of the word function in our present sense. It is the first time that it
was used that way by any of the authors whose work has been discussed so far.
The given definition is correct but leaves much to be explained, in particular
the vanishing increments. This is what Euler had to say:

Accordingly they are called differentials, which seeing that they are without
quantity, they are also said to be infinitely small; therefore by their nature
they are interpreted, as nothing at all or they are to be thought of as equal to
nothing.

Euler was very insistent throughout his book that differentials are equal to
zero, which doesn’t sit well with taking their quotients. But he explained this,
already in the text proper, in Chapter III: On the in�nite and the in�nitely small
[Art. 85], by stating that

when zero is multiplied by any number it gives zero, so that n · 0 = 0, and
thus n : 1 = 0 : 0. Hence it is clear that any two zeros can be in a geometric
ratio [quotient], although, from an arithmetical point of view, that ratio is
always of equals.

Then he added [Art. 86]:

If therefore, we accept the notation used in the Analysis of the infinite, dx

denotes an infinitely small quantity, so that dx = 0, as well as a dx = 0,
where a denotes any finite quantity. In spite of this, the geometric ratio
a dx : dx is finite, namely as a : 1; . . . In a similar manner, if we must deal
with separate infinitely small quantities dx & dy, although these are both
= 0, still their ratio is not apparent.

However, the quotient dy : dx is not considered in the rest of Chapter III. It
appears again in Chapter IV, but the next quotation is so out of context that it
is difficult to understand the appearance of the function P that is used below
[Art. 120]:

Whatever function y is of x, its differential dy is expressed by a certain
function of x, for which we write P , multiplied by the differential of x, that
is by dx. Thus although the differentials of x & y are in fact infinitely small,
and therefore equal to zero; still there is a finite ratio between them: namely
dy : dx = P : 1.
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This is enough to realize that Euler could not bring home the bacon with all
these gyrations. From our point of view, he was trying to explain what he did
not fully understand. Without realizing it, he was trying to avoid something
that is a must: the concept of limit.



6

CONVERGENCE

6.1 TO THE LIMIT

In our days the definition of limit is well known and used appropriately. In the
past even a genius of the first water like Newton could only intuit the concept.
And that in itself was a giant leap, even though such a leap is insufficient to
bridge the infinite gap toward the ultimate ratio that he sought. The need for a
definition was soon felt, and Jean le Rond d’Alembert, of Paris, tried to provide
it but without success. As coeditor of the famous Encyclopédie he contributed
the Discours préliminaire and numerous articles, including the following as-
sessment of Newton’s view of the calculus in the article DIFFÉRENTIEL of
volume 4 (CON – DIZ) [p. 985]:

He never regarded the differential calculus as the calculus of infinitely small
quantities, but as the method of first & last ratios, that is the method of finding
the limits of the ratios.

Hence, it is imperative to define limit, and d’Alembert did so in volume 9 of
the Encyclopédie (JU – MAM) [p. 542]:

LIMITE, s. f. (Mathémat.) It is said that a magnitude is the limit of
another magnitude, when the second may approach the first closer than a given
magnitude, as small as it can be imagined, and yet without the approaching
magnitude, ever being able to surpass the magnitude that it approaches; . . .

Then to make sure that his position on the essence of the calculus was prop-
erly explained and understood, he took on the metaphysics of the differential
calculus in DIFFÉRENTIEL and expressed himself as follows [p. 987]:

,
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The differential calculus is not about infinitely small quantities, as it is still
ordinarily said; it is concerned only with the limits of finite quantities. . . .

We shall not say, along with many mathematicians, that a quantity is infinitely
small, not before it vanishes, not after it vanishes, but at the very same instant
at which it vanishes;1 . . . We shall say that there are no infinitely small
quantities in the differential calculus.

We get the message, but from our present point of view, d’Alembert’s definition
imposes the excessive requirement that the approaching magnitude should
not surpass the target magnitude. Actually, it is not a proper mathematical
definition but just a play with words. What does it mean to “approach”?
Is time involved? How does one measure this approach? Mathematicians
were not used to absolute precision at that time, nor did they appreciate its
fruitfulness outside the realms of synthetic geometry or number theory.

But then the need for a deeper understanding of the idea of convergence
was made evident by the attempts to figure out the solutions of new applied
problems involving infinite series, and it was in this context that it was defined
first.

6.2 THE VIBRATING STRING MAKES WAVES

When a taut piece of string, tied down at both ends, is either plucked or hit, it
emits audible vibrations. Their frequency, that is, the number of vibrations per
second, was first determined by Brook Taylor in his 1713 paper “De motu nervi
tensi,” but he believed that the shape of the string at any given instant of its
motion was a sine wave. There is, however, more than one audible frequency
of vibration when such a string is in motion. The one found by Taylor is called
fundamental because it is the lowest frequency, and the other vibrations that
make up the motion of the string are called harmonics. Intuitively, then, we
expect the shape of the string to be a sum of sine waves; perhaps an infinite
series of sine waves.

D’Alembert was the first to determine the shape of a vibrating string at
a given time, and his success was based on the fact that in 1747 he derived
a partial differential equation that accurately describes the phenomenon in
question and then solved it.2 Neither d’Alembert’s notation nor his derivations

1 This is almost exactly what Newton had stated in the Principia, as quoted on page 311.
2 “Recherches sur la courbe que forme une corde tenduë mise en vibration,” and “Suite

des recherches,” both of 1747.
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Jean le Rond d’Alembert
Portrait by Maurice-Quentin de La Tour.

Engraving by William Hopwood.
Lithograph from the author’s personal collection.

can be considered appealing to modern tastes, so we shall limit ourselves to
stating his equation and the solution. He considered a string, initially stretched
between two fixed points along the axis of abscissas. Then, if the vertical
displacement of a point of the string at time t at a point of abscissa s is denoted
by y = ϕ(t, s) [p. 215], and if α and β denote what we now call the second
partial derivatives of y with respect to t and s, respectively, the differential
equation is [p. 216]

α = β
2aml

θ2
.

The fraction on the right contains several physical constants that are of no
interest to us. Today we would write this equation, which is now called the
wave equation, as

∂2y

∂t2
= b

∂2y

∂s2
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and simply say that b is a positive constant. The unit of time can be chosen so
that b = 1, and doing so, d’Alembert then found the general solution of this
equation to be [p. 217]

y = �(t + s)+ �(t − s),

where � and � are “as yet unknown functions” that must be determined from
the facts that the string is tied down at its endpoints, that it is given no initial
velocity, and that its initial displacement is known.3

D’Alembert found these functions [pp. 228–230], but the problem with
his solution is that it shows none of the vibrations in time that we expected, the
fundamental and the harmonics. It was Euler who, two years later, in his paper
“De vibratione chordarum exercitatio,” brought up the fact that the motion of
the string is periodic in time and made up of many individual vibrations. He
started by rederiving the differential equation and its general solution by his
own method, and then, if y = f (x) represents the initial displacement of the
string, he obtained the following equation for its displacement at a point of
abscissa x (his choice of variable instead of d’Alembert’s s) and at time t > 0
[Art. XXII]:

y = 1
2 f
(
x + t

√
b
)+ 1

2 f
(
x − t

√
b
)
.4

As an example, if the initial displacement of a string of length a is given by
[Art. XXXI]

y = α sin
πx

a
+ β sin

2πx

a
+ γ sin

3πx

a
+&c, 5

and if we use this right-hand side as f (x) in the preceding general solution,
then, simplifying the result and writing v for t

√
b, the displacement of the

string at a point x and at time t > 0 is given by

y = α sin
πx

a
cos

πv

a
+ β sin

2πx

a
cos

2πv

a
+ γ sin

3πx

a
cos

3πv

a
+&c.

3 An English translation of the relevant parts of d’Alembert’s paper containing these
derivations can be seen in Struik, A source book in mathematics, 1200–1800, 1969, pp. 352–
357.

4 Euler wrote f :(x + t
√

b ) [p. 521] instead of f (x + t
√

b ). Note, in any event, that
x − t

√
b < 0 for t large, so that it is necessary to extend the function f to the negative

x-axis. Furthermore, if we assume that the left endpoint of the string is at x = 0, the fact
that this point is tied down implies that f (t

√
b ) + f (−t

√
b ) = 0 for all t > 0, which

implies that the extension of f must be odd. Then, if the length of the string is a, this
extension is an odd periodic function of period 2a.

5 As before, I have suppressed the period in Euler’s abbreviation sin. for the sine.
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Since v is a constant times t , we now have vibrations, but in order to produce
them Euler had to choose what looks like a highly artificial initial displacement
as an infinite sum of sines. The obvious question is: how representative is this
of an arbitrary generating curve (courbe génératrice), as d’Alembert called
the initial displacement [p. 220]?

With the preceding statements, Euler had opened a big can of worms, one
that we cannot ignore, for it is at the very center of mathematical analysis.
Here is how the situation looks before careful examination: if a tight string is
given an arbitrary initial displacement and then let go, there is little doubt that
there will be vibrations. Is this reason enough to conjecture that an arbitrary
function can be represented by the sum of an infinite series of sines?

The first to pronounce himself on this subject was Daniel Bernoulli (1700 –
1782), son of Johann. Upon reading d’Alembert’s and Euler’s papers, he

Daniel Bernoulli circa 1750
Portrait by Johann Niklaus Grooth.

From Die Werke von Daniel Bernoulli, Band 2: Analysis Wahrscheinlichkeitsrechnung.
in Die Gesammelten Werke der Mathematiker und Physiker der Familie Bernoulli,

ed. by David Speiser, Birkhäuser -Verlag, Basel, 1982.
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published his own ideas on the subject in 1753.6 Elaborating on a previously
published belief that the shape of the string at a given instant is the superpo-
sition of individual vibrations, now he stated [Art. XII] that its displacement
at any given time 7

shall have in the general case the following equation for the same abscissa x:

y = α sin
πx

a
+ β sin

2πx

a
+ γ sin

3πx

a
+ δ sin

5πx

a
+ etc.,

in which the quantities α, β, γ , δ, etc. are positive [af�rmatives] or negative
quantities.

Bernoulli, who did not write the dependence on time, based his solu-
tion on physical considerations alone and provided no mathematical reasons
whatsoever to back it up. Euler pounced on it immediately, the very same
year, refusing to accept that it could represent the general case [Art. VII].8

D’Alembert was of the same opinion as Euler on this point: an arbitrary curve
cannot be represented by the sum of an infinite series of sines, an opinion that
he published in the article FONDAMENTAL in volume 7 of the Encyclopédie
(FOA–GYT). But Bernoulli did not surrender his position, for, he said 9

the last resulting curve [the one represented by the preceding infinite series]
will include an infinitude of arbitrary quantities [the coefficients], which can
be used to make the final curve pass through as many points given in position
as one wishes, & to identify through them this curve with the proposed curve,
with any degree of precision that one wishes.

6.3 FOURIER PUTS ON THE HEAT

Not too long after these times, great events took place in France that, indirectly,
would come to settle the argument after the death of its principals. On July 12,
1789, the people of Paris—then a walled, dirty, unhealthy town of 550,000
with dusty, narrow streets—rioted after the dismissal of the prime minister
Necker. What started as a riot, fueled by discontent about food shortages

6 “Réflexions et éclaircissements sur les nouvelles vibrations des cordes exposées dans
les mémoires de l’Académie de 1747 et 1748,” 1753.

7 From the translation in Struik, A source book in mathematics, 1200–1800, p. 364.
8 “Remarques sur les mémoires précédens de M. Bernoulli,” 1753.
9 On page 165 of “Lettre de Monsieur Daniel Bernoulli, . . . à M. Clairaut . . . sur la

vibrations des cordes tendues,” 1758.
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and low incomes, soon turned into a full-fledged revolution. A revolutionary
council was formed that night, and then the Bastille was attacked and destroyed
on July 14.

The monarchy was abolished in 1792, and the French republic proclaimed
on September 22. A new revolutionary calendar, beginning with 1 Vendémi-
aire, Year I, had been established to mark time from that day; and on 7 Ger-
minal Year VI—March 27, 1798—a young professor at the newly founded
École Polytechnique, Jean Joseph Fourier (1768–1830), was made a member

Joseph Fourier
Portrait by Julien Léopold Boilly.

Engraving by Amédée Félix Barthélémy Geille.
From Œuvres de Fourier, Tome Second, 1890.

of the Commission of Arts and Sciences of General Bonaparte’s expedition to
Egypt.

Upon his return to France in November 1801, after a British victory in
Egypt, Fourier resumed his post at the École Polytechnique but only briefly.
In February 1802, Bonaparte appointed him Préfet of the Department of Isère
in the FrenchAlps, and it was here, in the city of Grenoble, that Fourier returned
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to his physical and mathematical research. But Fourier’s stay in Egypt had left
a permanent mark on his health, which was to influence, perhaps, the direction
of his research. He claimed to have contracted chronic rheumatic pains during
the siege of Alexandria and that the change of climate from that of Egypt to
that of the Alps was too distressful for him. He lived in overheated rooms,
wore an excessive amount of clothing even in the heat of summer, and it was
on the subject of heat that he concentrated his research efforts.

Fourier had a complete manuscript in 1807, in which he found the general
equation for the diffusion of heat in a three-dimensional solid.10 If v is the
temperature, this equation is [Art. 28, p. 126]

dv

dt
= K

CD

[
d2v

dx2
+ d2v

dy2
+ d2v

dz2

]
, 11

where “v is a function of the three coordinates x, y, z and of time t ,” and K ,
C, and D are physical constants with which we need not be concerned. It is
now called the heat equation. Then he posed the following problem [Art. 32,
p. 134]:

We assume that a lamina or a rectangular surface, of infinite length, is heated
at its end 1, and is kept at a constant temperature at all points of this edge, and
that each of the other edges 0 and 0 12 are also kept at a constant temperature
0 at all their points. It is a question of determining what the stationary
temperatures at each point of the lamina must be.

To be precise, a lamina of negligible thickness in the z direction is located
in the plane strip 0 ≤ x < ∞, −1 ≤ y ≤ 1. The edge at x = 0 is kept at
a constant temperature 1 while the edges at y = ±1 are kept at a constant
temperature 0 for all t ≥ 0. It is desired to find the temperature at each point
of the lamina after a sufficient amount of time has passed.

It is assumed that after some time the temperatures have reached a steady
state and are no longer dependent on time. Thus, the left-hand side of the heat

10 Mémoire sur la propagation de la chaleur = Grattan-Guinness and Ravetz, Joseph
Fourier 1768–1830, 1972, pp. 30–440. Page references are to this edition.

11 All these are partial derivatives, but there was no special notation for them in Fourier’s
time. The copyist who wrote this passage (the page shown in the photograph is mostly in
the hand of a professional copyist but finished in Fourier’s own hand), appears to have used
partial derivatives, but such is not the case. It is simply that all his d’s look like ∂’s.

12 Fourier had a rather confusing way to refer to the edges of the lamina. Later in his
paper it became clear what those edges are, and it is explained below this quotation.
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A portion of page 60 of Fourier’s 1807 manuscript.

Reproduced from Grattan-Guinness and Ravetz, Joseph Fourier 1768–1830.

equation vanishes. Also, the negligible thickness of the lamina means that
there is no appreciable variation in temperature in the z direction, and then
the last derivative also vanishes. Since the letter z can then be reused, Fourier
switched his notation for the temperature from v to z, and all this reduces the
heat equation to [p. 135]

d2z

dx2
+ d2z

dy2
= 0.

Now this equation must be solved, and Fourier resorted to a method that
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was rare in his time, a method previously used by d’Alembert in 1750 for the
vibrating string,13 but after a few lines [p. 356] d’Alembert made nothing out
of it. It was Fourier who put this method on the map, and as used by him it
consists in assuming that there is a solution of the form z = φ(x)ψ(y), where
φ and ψ are unknown functions to be determined [Art. 33, p. 137]. Taking
this proposed solution to the equation for z, he obtained

φ′′(x)ψ(y)+ φ(x)ψ ′′(y) = 0,

and then, dividing by the product φ′′ψ ′′ (implicitly assuming that this can be
done),14

φ(x)

φ′′(x)
+ ψ(y)

ψ ′′(y)
= 0.

Essentially, this means that a function of x is equal to a function of y, and the
only way this can be is for each of them to be constant. That is,

φ(x)

φ′′(x)
= A and

ψ(y)

ψ ′′(y)
= −A,

where A is a constant. This simplifies the problem by transforming a partial
differential equation in two variables into two ordinary differential equations,
each in one variable. Then Fourier made the following statement:

One sees by this that we can take for φ(x) any quantity of this form emx and for
ψ(y) the quantity cos(ny). Therefore we shall assume that z = aemx·cos(ny),

and substituting in the proposed [simplified heat equation] we shall have the
condition equation m2 = n2.

This means that we have found solutions of our particular heat equation of the
form z = aenx cos(ny) and z = ae−nx cos(ny). Fourier’s carelessness in di-
viding by ψ ′′(y), which is shown now to have zeros, becomes inconsequential
because it is easily verified by differentiation that, for each n, any of the two
functions stated here is indeed a solution of the given equation.

13 “Addition au mémoire sur la courbe que forme une corde tenduë, mise en vibration,”
1750, pub. 1752.

14 This manuscript is in the hand of a professional copyist, who did not use parentheses
around the variable of a function. For whatever reason, the rest of page 60 was finished in
Fourier’s own hand, and he used parentheses. I have used them throughout for consistency.
However, I write cos and sin instead of Fourier’s cos. and sin.
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If we take n > 0, which does not make any difference in the cosine factor,
the first of the two solutions above must be rejected because it grows without
bound as x grows. This is impossible with the edges of the lamina kept at
temperatures 1 and 0. Fourier continued as follows [p. 138]:

Therefore the preceding solution is reduced to z = ae−nx cos ny, n being any
positive number and a an undetermined constant. Now the general solution
will be formed by writing

z = a1e−n1x cos n1y + a2e−n2x cos n2y + a3e−n3x cos n3y + · · · &c.

The last assertion is a leap to say the least. It is easy to see by direct substitution
that the sum of a finite numbers of solutions of the heat equation is also a
solution. But is it clear that this holds for an infinite number of terms? If we
humor Fourier and accept his claim, the constants n1, n2, n3, . . . can then be
determined from the fact that z = 0 for y = ±1. Then these constants must
be odd integral multiples of π/2, so that the cosine factors vanish. Then, the
fact that the temperature at x = 0 is 1 requires that [Art. 34, p. 139]

1 = a1 cos 1
2 πy + a2 cos 3

2 πy + a3 cos 5
2 πy + a4 cos 7

2 πy + · · · &c.

Fourier concluded with the statement [p. 140]: “It remains to find the values
that we must give the coefficients a1 . . . a2 . . . a3 . . . to satisfy the equation.”
He did find them, but their values are not relevant to us at this moment. Later
[Art. 50, p. 194] he stated that this was just a particular case

of a more general problem that consists in finding out whether an entirely
arbitrary function can always be expanded in a series of terms that contain
sines and cosines of multiple arcs.

Fourier began [Art. 51, p. 194] with the particular case in which the expansion
has only sines,

φ(x) = a sin x + b sin 2x + c sin 3s + d sin 4x +&c.

He found the coefficients, first by some tedious and laborious method [Art. 61,
pp. 211–213], and then by a much simpler one [Art. 63, p. 216] that is included
in today’s texts on the subject.

Fourier’s belief that an arbitrary function can be represented by an infinite
trigonometric series was rejected by Lagrange much as Bernoulli’s had been
rejected by Euler. The main obstacle in accepting that an infinite series could
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add up to an arbitrary function was the fact that mathematicians were accus-
tomed to thinking of functions as being given by analytical expressions such
as polynomials, roots, logarithms, and so on. It is clear that such aperiodic
functions cannot be represented by an infinite series of periodic functions over
the whole real line, but somehow they failed to realize that they could be equal
over a finite interval.

Fourier gave numerous examples of the expansions of functions in series
of sines or of cosines [Arts. 64–74, pp. 218–236], and, in particular, he gave
three different expansions for 1

2 x. Here is one [Art. 65, p. 221]:

1
2 x = sin x − 1

2 sin 2x + 1
3 sin 3x − 1

4 sin 4x + 1
5 sin 5x − · · · &c.

Fourier explained as follows:

The true sense in which one must take this result consists in the fact that the
sine-like line [curve] that has the equation:

y = sin x − 1
2 sin 2x + 1

3 sin 3x + · · · ,
and the straight line whose equation is y = 1

2 x, coincide in that part of their
course that is placed above the axis, from 0 to π . Beyond this point, the first
line departs from the second and moves down to cut the axis perpendicularly.

Thus the equation

y = sin x − 1
2 sin 2x + 1

3 sin 3x − 1
4 sin 4x + · · ·

belongs effectively to the line 01π1013π1 . . . , which is made up of inclined
lines and vertical lines.

Eventually, in the study of heat diffusion in an annulus, Fourier needed a more
general expansion in terms of both sines and cosines [Art. 79, pp. 259–260]
and was able to find the corresponding coefficients.
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The propagation of heat was the subject chosen by the Institut de France
for a prize essay in 1811, and on January 6, 1812, the prize was awarded
to Fourier’s Théorie du mouvement de la chaleur dans les corps solides, an
expanded version of his 1807 memoir, which was finally printed in 1824 and
1826. This work was incorporated into Fourier’s monumental work Théorie
analytique de la chaleur of 1822.15

6.4 THE CONVERGENCE OF SERIES

The work on applied topics described in the preceding two sections presented
mathematicians with the task of seriously studying the convergence of series.

This was first accomplished by José Anastácio da Cunha (1744–1787), of
the University of Coimbra and the College of Saint Luke in Portugal. He was
well acquainted with the works of d’Alembert and Euler, and his Principios
mathematicos of 1790 was the first book containing the principles of analysis
written in the modern fashion, using the now classic sequence Definition–
Theorem–Proof–Corollary. Conciseness and rigor were da Cunha’s trade-
marks.

15 It is in this book that we find frequent use of two notations that gained favor rapidly.
The first is the use of the symbol � for infinite series. It had been originally introduced by
Euler, stating “summan indicabimus signum �” in his Institutiones calculi differentialis,
1755, Chapter 1, Art. 26. Fourier initiated the systematic use of � in the Théorie analytique,
in Art. 235, with the statement: “Donc, en désignant par � cos. ix − α la somme de la série
précédente” (Thus, denoting by � cos. ix − α the sum of the preceding series). Note the
use of an overline rather than parentheses. Soon thereafter, he started writing the sum limits
above and below the letter sigma. By the time he wrote the table of contents he was using
the almost modern notation, as in

π

2
ψx =

i=−∞∑
i=∞

cos. ix
∫ π

0 dα cos. iα ψ.

Notice the definite integral on the right-hand side. This way of denoting the limits of integra-
tion was also introduced by Fourier. In Art. 222 we encounter “L’intégrale

∫ π

0 x sin. ix dx”

and in Art. 231 he stated: “Nous désignons en général par le signe
∫ b

a
l’intégrale qui com-

mence lorsque la variable équivaut à a, et qui est complète lorsque la variable équivaut à b”

(In general we denote by
∫ b

a
the integral that starts when the variable equals a and ends

when the variable equals b); however, Fourier had already used the definite integral sign in
his 1811 prize essay, but it was first published in the Théorie analytique.

The work of Fourier presented in this section is essentially contained in the Théorie
analytique in Arts. 166–169 for separation of variables and the cosine series, Art. 190 for
the special solution for the lamina, Arts. 219–223 for the sine series, and Arts. 240–241 for
the full series. See the bibliography for English translations of these articles.
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Book VIIII starts with the definition of convergent series [p. 106; 117]:16

Definition I.

Mathematicians call a convergent series that whose terms are similarly deter-
mined, each one by the number of the preceding terms, in a way that the series
can always be continued, and �nally it comes to be indifferent to continue it or
not, because however many terms one wants to join to those already written or
indicated their sum can be neglected without noticeable error: and the latter
are indicated by writing &c. after the �rst two, or three, or however many one
wants: it is therefore necessary that the written terms show how the series
could be continued, or that this be known in some other manner.

Note the modesty shown by this statement. Mathematicians would even-
tually call such a series convergent, but da Cunha was the first to give this def-
inition, more than 30 years before anyone else rediscovered it. However, the
clarity of the statement (from which we have omitted an impossible comma)

16 Page references are to the Portuguese edition first and then to the French translation.
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is impaired by the fact that it begins and ends by emphasizing at length that the
law of continuation of the series must be clearly stated or possible to deduce
from the observation of a few terms. For us that goes without saying. The
heart of the definition is in the following words:

finally it comes to be indifferent to continue it or not, because however many
terms one wants to join to those already written or indicated their sum can
be neglected without noticeable error.

What this means, using current notation, is that a series

u1 + u2 + u3 + · · · + un + · · ·

converges if for some n we can neglect without noticeable error the sum

un+1 + un+2 + un+3 + · · · + un+m

for every positive integer m. This is, except for some precision added in
its present-day statement, the modern definition in mathematical analysis,
although not the one included in calculus textbooks.

Da Cunha then illustrated the use of his definition in the proof of his first
proposition [pp. 106–107; 117–119]:

Proposition I.

A series of continued proportions is convergent, if the �rst is larger than the
second.

He explained that this means a series of the form

A+ B + B
B

A
+ B

B

A
×B

A
+ B

B

A
×B

A
×B

A
+ &c.,

in which A > B. He also assumed, but did not state, that B > 0.17 Then he
began the proof by writing c = B/A, so that his series becomes

A(1+ c + cc + ccc + cccc +&c.),

17 In spite of his modernity in other respects, Da Cunha seems to be working with positive
numbers only. He made similar assumptions in the corollary and the definitions quoted in
this section. Proposition I is valid if B < 0 provided that A > |B|.
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and chose a number O < A as small as desired, “so that it can be neglected
without noticeable error.”

Note that the assumptions on A and B imply that 0 < c < 1. Then the
terms of the series

1+ 1

c
+ 1

cc
+ 1

ccc
+ 1

cccc
+ &c.,

which Da Cunha wrote next, are well defined and grow without bound. There-
fore, there is a term, which he denoted by d, such that

d >
A

O − cO

(he used an argument based on an axiom from Book III [p. 21; 24], but to us this
is clear). The term that corresponds to d in the series 1+c+cc+ccc+cccc+&c.

is 1/d, so that the continuation of this series from this term on is

1

d
+ c

d
+ cc

d
+ ccc

d
+ &c.,

and this sum can never equal
1

d − dc

no matter how far it is continued. Indeed, if it is continued to the term cm/d,
where m is a positive integer, then we have(

1

d
+ c

d
+ cc

d
+ · · · + cm

d

)
(d − dc) = 1− cm+1 < 1.

But the choice of d gives dO − cdO > A, and then

O

A
>

1

d − dc
.

Thus,
O

A
>

1

d
+ c

d
+ cc

d
+ &c.

(the sum on the right is finite in spite of the symbol &c.), and

O >
A

d
+ cA

d
+ ccA

d
+ &c.

But the right-hand side is the continuation of the original series. Since O is
arbitrarily small, it follows from Definition I that the given series is convergent.
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Then da Cunha turned to the defining series for ea and stated the following
corollary [pp. 107–108; 119]:

Corol. I.

Let a represent any [positive] number. I say that the series

1+ a + aa

2
+ aaa

2×3
+ aaaa

2×3×4
+ aaaaa

2×3×4×5
+ &c.

is convergent.

For the proof he let b be an integer larger than a, denoted the bth term in
this series by c, and wrote the continuation from c:

c + ac

b + 1
+ aac

(b + 1)(b + 2)
+ aaac

(b + 1)(b + 2)(b + 3)
+ &c.

Then he observed that each term in this continuation does not exceed the
corresponding term of the series

c + ac

b + 1
+ aac

(b + 1)(b + 1)
+ aaac

(b + 1)(b + 1)(b + 1)
+ &c.,

which converges by Proposition I. Therefore, the preceding two series also
converge by comparison.

Then, on this basis, da Cunha was able to define the general exponential
function [pp. 108–109; 120].

Definition II.

Let a [> 0] and b represent any two numbers, and let c be the number that
makes

1+ c + cc

2
+ ccc

2×3
+ cccc

2×3×4
+ &c. = a:

the expression ab will mean a number

= 1+ bc + bc

2
+ bbcc

2×3
+ bbbccc

2×3×4
+ &c.;

and it will be called the number ab the power of a indicated by the exponent b:

Using Euler’s number e, which da Cunha did not use in this chapter, the
sums of these two series are ec and ebc = (ec)b, and it is clear that ab = ebc.
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The remarkable thing is that while Euler was originally content with such
vagueness as “a

√
7 will be a certain value comprised between the limits a2

and a3,” da Cunha was able to give a correct, rigorous, and general definition.
From it he developed, in the rest of Book VIIII, a correct and rigorous theory
of powers and logarithms. As an example we quote the following property of
the exponential function [p. 113; 123]:

V. Let a, b, c represent any three numbers: it will be (ab)c = abc.

With arbitrary powers on a solid foundation, da Cunha went on to define
logarithms [p. 119; 128]:

Definitions.

III. Considering all numbers as powers of a given number, this is called
base; and the exponents are called logarithms of the numbers to which they
belong.

IIII. The logarithms are called hyperbolic, and also natural, when the base
is

1+ 1+ 1

2
+ 1

2×3
+ 1

2×3×4
+ &c.

Then, using Euler’s l to denote any logarithm, he concluded this chapter
as follows [p. 120; 128]:

VIIII. lan = nla.

Let b represent the base, it will be a = bla [9. def. 3], and then an = bnla

[9. 5], and then lan = nla [9. def. 3].

When Fourier presented his prize essay to the Institut in 1811, he was not
aware of da Cunha’s work on series. He could not have been because the
French translation of the Principios that appeared in Bordeaux in that year,
although largely an excellent translation, erroneously misstated the definition
by pronouncing a series convergent

provided that on arriving at a given number of first terms, it is possible to
neglect the others without considerable error. In such a case, and after having
written enough terms to indicate the law of continuation, we denote the sum
of those that are neglected, by an etc. after the sequence of first terms.
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What this essentially says is that a series is convergent if it is still convergent
after removing a finite number of first terms, and this is reinforced by the
explanation of the meaning of the abbreviation etc. Thus, this definition is
useless. It could not have been used by Fourier, and da Cunha’s work was
largely ignored by the mathematical establishment.18

One of the first definitions of convergence in France was given by Fourier
himself in his prize paper of 1811, later incorporated into his book. Near the
end of Article 228, he made the following statement about how to establish
the convergence of a series:

It is necessary that the values at which we arrive, on increasing continually
the number of terms, should approach more and more a fixed limit, and
should differ from it only by a quantity which becomes less than any given
magnitude: this limit is the value of the series.

This definition is along the lines of the one usually included in calculus texts,
but it has two main disadvantages over da Cuhna’s. It is necessary to guess
the limit before attempting to show that it is indeed the limit, and it must be
possible to sum an arbitrary number of terms of the series in order to compare
this sum with the guessed limit.

Working in relative isolation in Bohemia, Bernardus Placidus Johann Nepo-
muk Bolzano (1781–1848), a priest and professor of theology at Karl Ferdi-
nand University in Prague (suspended in 1819 due to his liberal views on social
issues and pacifist beliefs, put under house arrest, and forbidden to publish)
discovered the better definition of convergence independently of da Cunha.
It appeared at the start of Article 7 in a pamphlet proving what we now call
the intermediate value theorem.19 In Article 6 he established the notation by

letting F
n
x, F

n+1
x, F

n+2
x, . . . , F

n+r
x be “the values of the sums of the first n, n+1,

n+ 2, . . . , n+ r terms of a series” of given functions of x. However, for the

18 Although the sharp eye of Gauss took notice, and in a letter to Bessel of 21 November
1811, he stated: “Likewise, all the Paradoxes that some Mathematicians have found about
Logarithms just disappear, when one does not start with the usual Definition baselogar. =
Number, which is really satisfied only, when the Exponent is a whole Number, and does
not make any Sense, when the Exponent is imaginary—but each Quantity that substituted
for x in the Series 1+ x + 1

2 xx + 1
6 x3+ etc. · · · gives the Value A, is called the Logarithm

of A; as I see with Pleasure, the Portuguese Acunha had actually selected this Definition”
(Definitions II to IIII in BookVIIII of the Principios [p. 119; 128]), in Briefwechsel zwischen
Gauss und Bessel, 1880, p. 153 =Werke, 101, p. 364.

19 “Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein
entgegengesetztes Resultat gewähren, wenigstens eine reele Wurzel der Gleichung liege,”
1817. The theorem quoted below is on pp. 266–267 of Russ’ English translation of 2004.
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Bernard Bolzano in 1839
Portrait by Áron Pulzer.

purposes of this article and the next, the value of x is supposed to be fixed,
so that we are actually dealing with a series of numbers rather than functions.
Then Bolzano stated his result as follows:

Theorem. If a series [sequence] of quantities

F
1
x, F

2
x, F

3
x, . . . , F

n
x, . . . , F

n+r
x, . . . ,

has the property that the difference between its nth term F
n
x and every later

one F
n+r

x, however far this latter term may be from the former, remains smaller
than any given quantity if n has been taken large enough, then there is always
a certain constant quantity, and indeed only one, which the terms of the series
approach and to which they can come as near as we please, if the series is
continued far enough.

If the nth term of Bolzano’s sequence is the nth partial sum

F
n
x = u1 + u2 + u3 + · · · + un
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of an infinite series, then

F
n+r

x − F
n
x = un+1 + un+2 + un+3 + · · · + un+r

for every positive integer r , which shows that Bolzano’s result is equivalent
to da Cunha’s definition.

The rigorous approach adopted by Bolzano in his paper might have helped
solidify the foundations of the calculus if his work had reached the mathemat-
ical centers of the time. As it is, it went largely ignored. Thus it was left to
Augustin-Louis Cauchy (1789–1857), who had just been appointed professor

Augustin-Louis Cauchy in 1821
Portrait by Julien Léopold Boilly.

From Smith, Portraits of Eminent Mathematicians, II, 1938.

of analysis and mechanics at the École Polytechnique in Paris, to rediscover
the condition for the convergence of a series and to place the calculus on a
solid foundation. His work on infinite series is contained in Chapter VI of
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his first analysis textbook, published in 1821,20 in which he announced his
intention to endow analysis with “all the rigor that is demanded in geometry”
[p. ij].

Cauchy began by giving the following definition of limit in the Préli-
minaires [p. 4; 19]:

When the values successively attributed to the same variable indefinitely
approach a fixed value, so that they finally differ from it by as little as one
wishes, this latter [value] is called the limit of all the others.

This definition may be disappointing to those who regard Cauchy as the father
of modern analysis and the initiator of the ε-δ proof. But this was early in
Cauchy’s work; his use of ε was yet to come, and we shall report on it in
due course. For the time being, he relied on this notion of limit to state the
following definition of the convergence of a series [p. 123; 114]:

20 Cours d’analyse de l’École Royale Polytechnique. 1repartie, Analyse algébrique, 1821.
Page references are to this edition and, after a semicolon, to the Œuvres. Quotations are
from the Cours d’analyse. For English translations see the bibliography.
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Let
sn = u0 + u1 + u2 + · · · + un−1

be the sum of the first n terms, n denoting any whole number. If, for ever
increasing values of n, the sum sn approaches indefinitely a certain limit s, the
series will be said to be convergent, and the limit in question will be called the
sum of the series. If, on the contrary, while n increases indefinitely, the sum
sn does not approach any fixed limit, the series will be said to be divergent,
and will have no sum.

These two definitions put together accomplish as much as Fourier’s one
definition, in which sn is to differ from the limit of the series by “less than any
given magnitude” on increasing n continually. Again, it is still necessary to
guess the limit of a series before this definition can be used. But a couple of
pages later Cauchy stated that it is necessary that [pp. 125–126; 115–116]

for increasing values of n, the different sums

un + un+1,

un + un+1 + un+2,

&c. . . .

that is, the sums of the quantities

un, un+1, un+2, &c. . . .

taken, from the first, in any number that one wishes, end up by constantly
obtaining numerical [absolute] values smaller than any assignable limit. Con-
versely, when these several conditions are satisfied, the convergence of the
series is ensured.

This is what da Cunha and Bolzano had already stated. Cauchy, who gave
a definition of convergence requiring knowledge of the sum, made this into a
necessary and sufficient condition that does not require it (but he did not prove
the sufficiency). Then he used this result, which has become known as the
Cauchy criterion, to examine the convergence of several series [pp. 126–129;
116–118]: the geometric series, the harmonic series, and the series for the
exponential (which he dealt with in the same manner as da Cunha).

But what is truly remarkable about Cauchy’s contribution is that he did not
limit himself to stating the definition of convergence, but immediately started
proving theorems giving tests for convergence: the root test [p. 132; 121],
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the ratio test [pp. 134–135; 123],21 the condensation test [p. 135; 123], the
logarithmic test [pp. 137–138; 125], and the alternating series test [p. 144;
130].22 Later, in a separate publication and after he had already defined the

21 Edward Waring (1734–1798), Lucasian professor of mathematics at Cambridge, had
already stated a ratio test in his Meditationes analyticae of 1776. In PROB. III. he made the
following obscure statement [pp. 298–299; PROB. II., pp. 349–350 of the 1785 edition, in
which there are minor variations and one error]:

Let z be the distance from an arbitrary term to the first term of the series, and also T
& T ′ two successive terms of the given series, & let there be given an equation of the

relation between T & T ′, viz. T=T ′×(azr+ b

zs
+ c

zt
+&c.) where azr+ b

zs
+ c

zt
+&c.

is a series following the descending dimensions [powers] of the quantity z, then if

1 : −z+ azr+1 + b

zs−1
+ c

zt−1
+&c. where z is assumed to be an infinite quantity,

does not have a ratio [that is] positive & smaller than the ratio of equality by a finite
[quantity], then the sum of the preceding series will be an infinite quantity, but if the
opposite is true finite.

Waring was, of course, thinking of a series of positive numbers and by “the ratio of
equality” he must have meant 1. Then his inequality is 1 : −z+ z(T/T ′) �< r , where r > 0
is smaller than 1 by a finite quantity, in which case, he claimed, the series has an infinite
sum. If, however, 1 : −z + z(T/T ′) < r < 1 then the series has a finite sum. If we think
that z means our n, if we write un instead of T and un+1 instead of T ′, and if we define
ε = (1/r)− 1, then Waring’s statement may be interpreted as saying that if

−n+ n
un

un+1
> 1+ ε > 1

for all sufficiently large n, then the series
∞∑

n=1
un converges, and otherwise it diverges.

Waring paid a price for his lack of clarity, since it was apparently not widely known that
this test was his when it was essentially rediscovered by Joseph Ludwig Raabe (1801–1859),
a German mathematician working in Zurich, and it is now known as Raabe’s test.

In the 1785 edition [p. 350] Waring showed how to use this test to prove the convergence
of what we now call a p-series for p > 1 (using the binomial theorem to expand (n+ 1)p),
thus showing that this test is more powerful than Cauchy’s root or ratio tests. Then he
gave a simpler ratio test for convergence [p. 351]: “If at an infinite distance T : T ′ have a
ratio larger than equality by a finite [quantity], then the series is finite . . . ” and then gave
three examples. Even this test is more general than Cauchy’s in that it does not require the
quotient un/un+1 to have a limit as n →∞, which makes it applicable to series such as

1+ 1

2
+ 1

2 · 3 +
1

22 · 3 +
1

22 · 32
+ 1

23 · 32
+ · · · .

22 First fully given by Leibniz as Proposition XLIX of De quadratura arithmetica [f. 33v;
p. 115; 323; 125]. Later, in a letter to Johann Bernoulli of 25 October 1713, he stated that a
series converges whose terms “decrease endlessly and are alternately positive and negative.”
In Gerhardt, Leibnizens Mathematische Schriften, Sec. 1, III, vol. 2, 1856, p. 923.
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integral, he gave the integral test.23

Next we reproduce the alternating series test and Cauchy’s “proof by ex-
ample,” which uses the so-called Cauchy criterion [pp. 144–145; 139–131].

3.rd Theorem. If in the series (1) [u0+u1+u2+· · ·+un+&c. . . .] the
absolute value of the general term un decreases continually and inde�nitely,
for increasing values of n, if in addition the different terms are alternately
positive and negative, the series will be convergent.

Consider, for example, the series

1, − 1

2
, + 1

3
, − 1

4
, +&c.. ± 1

n
, ∓ 1

n+ 1
, +&c.

The sum of terms whose order exceeds n, if taken in number equal to m, will
be

±
(

1

n+ 1
− 1

n+ 2
+ 1

n+ 3
− 1

n+ 4
+&c. . .± 1

n+m

)
.

Now the absolute value of this sum, namely,

1

n+ 1
− 1

n+ 2
+ 1

n+ 3
− 1

n+ 4
+&c. . . .± 1

n+m

= 1

n+ 1
−
(

1

n+ 2
− 1

n+ 3

)
−
(

1

n+ 4
− 1

n+ 5

)
−&c. . . . .

= 1

n+ 1
− 1

n+ 2
+
(

1

n+ 3
− 1

n+ 4

)
+
(

1

n+ 5
− 1

n+ 6

)
+&c. . . ,

being evidently between

1

n+ 1
and

1

n+ 1
− 1

n+ 2
,

will decrease indefinitely for increasing values of n, whatever m may be,
which suffices to establish the convergence of the proposed series. The same
reasoning can evidently be applied to all the series of this kind.

A proof of the convergence of Fourier’s trigonometric series was attempted
by several mathematicians, including Fourier himself throughout his life. He
was never able to give a rigorous proof, but one of his sketches 24 would be

23 Theorem 2 in “Sur la convergence des séries,” 1827, p. 226=Œuvres, Ser. II, vol. VII,
pp. 272–273.

24 Théorie analytique de la chaleur, Art. 423.
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useful to the man who finally did. In 1822 a young Prussian, Johann Peter
Gustav Lejeune Dirichlet (1805 –1859), came as a student to Paris, then the
mathematical center of the world. He attended a scientific salon hosted by

J. P. G. L. Dirichlet in 1853
Portrait by Julius Schrader.

From Dirichlet’s Mathematische Werke of 1889.

Fourier, and became acquainted with trigonometric series and Fourier’s sketch
of the convergence proof. It was not until 1829, however, that Dirichlet could
complete a valid proof.25 After replacing a certain trigonometric identity in
Fourier’s sketch of proof with one of his own, he was able to give sufficient
conditions for the convergence of a Fourier series: that the function to be
expanded have a finite number of jump discontinuities and a finite number of
maxima and minima.

25 “Sur la convergence des séries trigonométriques qui servent a représenter une fonction
arbitraire entre des limites données,” 1829.
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6.5 THE DIFFERENCE QUOTIENT

With the matter of the convergence of series already settled and the concept
of limit on the table, the time was ripe for a clarification of Newton’s ultimate
ratios. This could be done in two ways: by putting the concept of infinitesimal
on a firm ground and then using it correctly, or by properly defining the limit
of a ratio of vanishing quantities.

Da Cunha adopted the first approach in Book XV of the Principios, which
starts as follows [p. 193; 196]:

Definitions.

I. If an expression admits more than one value, when another expression
admits only one, this one is called constant, and that one, variable.

II. . . . and a variable that can always admit a value smaller than any
proposed quantity, is called in�nitesimal.

This is all he needed to address the problem of ultimate ratios, although he
did it in a notation and language that may well appear archaic and confusing
to us. To soften the blow he explained that he would denote a function of
a root 26 x by a Greek capital letter, such as �. Then, �x denotes the value
of � at x, with no parentheses enclosing the variable. This takes care of the
notation, but we keep his confusing language in the translation of the next two
definitions, and then explain below [p. 194; 197].

Definitions.

IIII. Having chosen any quantity, homogeneous to a root x, to be called
the �uxion of this root, and denoted thus dx; we call the �uxion of �x, and
will be denoted thus d�x, the quantity that would make

d�x

dx

constant, and
�(x + dx)− �x

dx
− d�x

dx

26 As we saw in the preceding section, da Cunha referred to the independent variable as
the “root” of a function.
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in�nitesimal or cipher [zero], if dx were in�nitesimal, and constant all that
does not depend on dx.

V. Every quantity is called �uent of its �uxion, and it is denoted by writing
this sign

∫
immediately before the �uxion.

What IIII means is that dx is just a new variable, expressible in the same
units as x; that d�x is the product of a function of x times dx (and thus the first
quotient in the definition is “constant” in the sense that it “does not depend
on dx”), and that the last expression is, for each fixed x, infinitesimal as a
function of dx.

To show that he knew what he was talking about, he immediately stated
and proved the following propositions [pp. 194–195; 197–198]:

Propositions.

I. x in�nitesimal will make Ax + Bx2 + Cx3 + Dx4 + &c. in�nitesimal,
if the coef�cients A, B, C, D, &c. were constants.

Let n be the number of coefficients A, B, C, D, &c., and P any quantity
larger than each of them:27 let Q be any proposed quantity: take x < Q/nP ,
and < 1: it will be

1

n
Q > P x,

1

n
Q > P x2,

1

n
Q > P x3,

and so on; and then

n× 1

n
Q,

that is
Q > Ax + Bx2 + Cx3 +Dx4 +&c.

This may be the first ε-δ argument in history. That is, what we now call an
ε-δ proof. Just write ε instead of Q and choose δ = ε/nP . Da Cunha showed
that if x < min{δ, 1} then Ax+Bx2+Cx3+Dx4+&c. < ε. This is modern
analysis and shows that his definition of infinitesimal works. He used this
proposition and the binomial theorem to prove the next, finding the fluxion of
�x = xn.

II. d(xn) = nxn−1 dx.

27 Da Cunha continued to assume that all his numbers are positive, but the modern reader
can easily generalize his argument.
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For dx infinitesimal, and what does not depend on dx, constant, make

nxn−1 dx

dx
[ = nxn−1]

constant and

(x + dx)n − xn

dx
− nxn−1 dx

dx[
= n

n− 1

2
xn−2 dx + n

n− 1

2
× n− 2

3
xn−3 dx2 +&c.

]
infinitesimal.

In a similar manner, da Cunha then proved the following propositions
[pp. 195–196; 198–200]:

III. d(x + �x) = dx + d�x.

IIII. d(a + bx) = bdx.

V. d((a + x)n) · · · = n(a + x)n−1 dx. 28

VI. dx infinitesimal, and what does not depend on dx constant, make
�(x + dx)− �x infinitesimal.

VII. d(x�x) = dx�x + xd�x.

VIII. Let x represent any [positive] number, and let l indicate hyperbolic
logarithms: it will be dx = x dlx.

Using the fact that x = elx and the series for the exponential, da Cunha
proved this proposition as follows:

For it is

dx = d

(
1+ lx + 1

2
(lx)2 + 1

6
(lx)3 + 1

24
(lx)4 + 1

120
(lx)5 +&c.

)

= dlx + 2

2
(lx)dlx + 3

6
(lx)2dlx + 4

24
(lx)3dlx + 5

120
(lx)4dlx +&c.

=
(

1+ lx + 1

2
(lx)2 + 1

6
(lx)3 + 1

24
(lx)4 +&c.

)
dlx

= x dlx.

28 In the original, the last exponent is n− 2, but this is an obvious typo that was corrected
in the French translation.
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After stating two corollaries, he turned his attention to higher-order dif-
ferentials, stated his version of Taylor’s theorem, and proved some equalities
for what we now call mixed partial derivatives [pp. 197–200; 200–203]. With
one exception, the rest of Book XV is about arcs, areas, and volumes. The
one exception is on indefinite integration [p. 202; 205]:

XVI. Between two fluents of equal fluxions there can be no difference
that depends on the root [independent variable].

Let d�x = d�x, and if it is possible, let �x − �x = �x: it will be
d�x = d�x − d�x = 0: which shows that �x cannot be a function of the
root.

To sum up, da Cunha gave us the so-called difference quotient

�(x + dx)− �x

dx

for the first time in print, and built on it what can be viewed as a quasi-
rigorous but incomplete differential theory. However, it is still quite different
from today’s presentations in calculus textbooks.

The difference quotient was independently introduced as the fundamental
notion of the differential calculus by Simon Antoine Jean L’Huilier (1750–
1840), of Geneva. In 1786, his essay Exposition élémentaire des principes
des calculs supérieurs won the prize offered by the Berlin Academy for “a
clear and precise theory of what is called In�nity in mathematics.” 29 In §XIV
[p. 31] of this text, L’Huilier expressed himself as follows:

To abbreviate & to facilitate the calculus with a more convenient notation,

it has been agreed to otherwise denote lim.
�P

�x
, the limit of the quotient of

the simultaneous changes of P and x, namely by
dP

dx
; so that lim.

�P

�x
and

dP

dx
denote the same thing.

Adding a few lines below [p. 32]:

. . . one must not think of this symbol as composed of two terms dP , &
dx; but as a unique & unbreakable expression giving the limit quotient of
�P over �x.

29 Page references are to the Berlin edition of 1787.
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While these statements are valuable and the notation “lim” is used to this
day, the fact is that l’Huilier’s work contains very little of real value beyond
some elementary examples. It is also based on an antiquated definition of
limit, with which he began §I of Chapter 1 [p. 7]:

1st De�nition. Let a variable quantity, always smaller or always larger than
a proposed constant quantity; but that can differ from the latter less than any
given quantity no matter how small: this constant quantity is called the limit
in largeness or in smallness of the variable quantity.

This is a regression to the d’Alembertian idea that a variable quantity cannot
“surpass the magnitude that it approaches.” 30

Eventually, l’Huilier would reach some wrong conclusions, such as the
following [§LXVIII, p. 167]:

If a variable quantity, susceptible of a limit, enjoys constantly a certain
property, its limit enjoys the same property.

Not so. We know, for example, about an irrational number as the limit of a
sequence of rational numbers.

Another contestant for the 1786 Berlin prize was the Frenchman Lazare
Nicolas Marguérite Carnot (1753–1823). Since his 1785 essay Dissertation
sur la théorie de l’in�ni mathématique did not win the prize, it was not pub-
lished until much later. A revised and expanded version was published in
Carnot’s own time, but it did not really advance the calculus as we know it.

As president of the BerlinAcademy, Joseph-Louis Lagrange (1736–1813),
born in Turin as Giuseppe Lodovico LaGrangia, knew that the entries in the
1786 competition were weak, and decided to revise an earlier attempt of his
own to make the calculus rigorous in an algebraic manner.31 This revision
was published in 1797 after he moved to France, already a member of the
Academy of Sciences in Paris, with a title that clearly expressed his intention:
Theory of analytic functions, containing the principles of the differential cal-
culus, free of any consideration of in�nitesimals or vanishing [quantities], of
limits or �uxions, and reduced to the algebraic analysis of �nite quantities.32

30 l’Huilier would relax this requirement in the 1795 edition [pp. 17–18], but only for
alternating series. His general definition [p. 1] was one-sided.

31 “Sur une nouvelle espèce de calcul relatif a la différentiation et a l’intégration des
quantités variables,”1772.

32 Théorie des fonctions analytiques, 1797, 1813. Quotations are from the second edition
of 1813, except for enclosing the variable x in parentheses. Page references are to this
edition and to its reproduction in Œuvres de Lagrange, vol. 9, 1881.
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For obvious reasons, Lagrange did not like infinitesimals, and he thought that
fluxions, defined in terms of motion in time, were not admissible in mathe-
matics. He also refused to accept Euler’s zero over zero quotients, but found
something very promising in the use that Euler had made of infinite series in
the Introductio.

Lagrange based his study on his belief that a function can always be ex-
panded in a power series in the following manner [pp. 2; 15–16]:

When the variable of a function is given any increment whatever, by adding
to this variable an undetermined quantity, we can by the ordinary rules of
algebra, if the function is algebraic, expand it according to the powers of
this undetermined [quantity]. The first term in the expansion will be the
proposed function, which will be called the primitive function; the following
terms will be formed from functions of the same variable, multiplied by the
successive powers of the undetermined [quantity]. These new functions will
depend only on the primitive function from which they are derived, and can
be called derived functions. In general, whatever the primitive function may
be, algebraic or not, it can always be expanded or supposed to be expanded
in the same manner, and thus originate the derived functions.

This statement is reproduced in full because it contains terminology that
is in use to this day, although Lagrange’s derived functions are now called
derivatives.33 However, it is best to give the expansion in the following no-
tation. If f represents the primitive function and i is the increment of the
variable x, Lagrange expanded f (x + i) [pp. 8; 21–22]

in a series of this form

f (x)+ pi + qi2 + ri3 + etc.,

in which the quantities p, q, r , etc., coefficients of the powers of i, will be
new functions of x, derived from the primitive function of x, and independent
of the undetermined i [for indéterminée].

In this formulation, it is possible to consider the difference quotient and
show that there is no problem in putting i = 0 [p. 24]:

33 As for these terms, John Collins’use of the words “derived” and “Derivative Æquation”
in the present technical sense, in a letter to James Gregory of 8 November 1672, p. 244, is
perhaps the earliest in the English language.
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Thus we shall have
f (x + i) = f (x)+ iP ;

and therefore f (x + i)− f (x) = iP , and consequently divisible by i; once
the division is performed, we shall have

P = f (x + i)− f (x)

i
.

Here P = p + qi + ri2 + · · · , so that P = p for i = 0. Thus, there is no
need for limits, and no differentials or fluxions have been used. Eventually,
Lagrange introduced a new notation for the derived functions [p. 32]:

p = f ′(x), q = f ′′(x)

2
, r = f ′′′(x)

2 · 3 , . . . , 34

so that his general expansion is a Taylor series, and carried on with his program
of making calculus rigorous.

Unfortunately, there is a hole in the bucket, and it is precisely his basic
belief that every function can be expanded in the stated manner. We know
that this is not the case, as was plainly demonstrated by Cauchy in a paper of
1822.35 Here he showed that if

f (x) = e−1/x2

(completed with the value f (0) = 0), then f ′(0) = 0, f ′′(0) = 0, . . . , so that
this nontrivial function cannot equal its Maclaurin series [pp. 49–50; 277–
278]. The same is true of

f (x) = e−1/ sin2 x and f (x) = e−1/x2(a+bx+cx2+ ··· ),

where a is a positive constant and a+ bx+ cx2+ · · · an entire function of x.
As a consequence, the functions

e−x2
and e−x2 + e−1/x2

have the same Maclaurin series, but its sum can equal only one of them [p. 278].
Thus Lagrange’s approach is also unsatisfactory, and the answer to the

problem of providing rigor to the calculus must lie elsewhere.

34 In the original 1797 edition Lagrange did not use parentheses about the variable x
[p. 14].

35 “Sur le développement des fonctions en séries et sur l’intégration des équations
différentielles ou aux differences partielles,” 1822=Œuvres, Ser. II, II, Page references are
to the original paper first and then to the Œuvres.
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6.6 THE DERIVATIVE

Cauchy took a different path and established his calculus on the concept of
limit, adopting l’Huilier’s notation for it. He presented the differential part
in the first twenty lessons of his second book: Résumé des leçons donnés à
l’École Royale Polytechnique sur le calcul in�nitésimal of 1823.

As da Cunha had done before him, Cauchy began by defining variable
and constant, and then limit [p. 1; 13],36 using word for word, in each case,
the definitions previously given in the Cours d’Analyse. Then he defined
infinitesimal as a variable whose numeric values [p. 4; 16]

decrease indefinitely in such a manner as to become smaller than any given
number.

This is a less precise version of what da Cunha had said, but Cauchy added:
“A variable of this kind has zero for a limit.” As examples, Cauchy evaluated
the limits of

sin α

α
and (1+ α)

1
α

as α → 0, which he would need later.37

In the second lesson he introduced the terms independent variable and
function [p. 5; 17], and later defined continuous function much as Bolzano
had already done, all of these with the meanings in use today. And then, in
the third lesson [p. 9; 22], we find a breakthrough. Referring to a continuous
function y = f (x) and denoting an increment in x values by �x = i, he
considered the difference quotient (his italics)

�y

�x
= f (x + i)− f (x)

i

in the case in which i is infinitesimal, so that both numerator and denomina-
tor are infinitesimal.38 Here is the complete quotation containing Cauchy’s
discovery of the derivative, in which he adopted some of Lagrange’s notation
and terminology [pp. 9; 22–23]:

36 Page references are to the Résumé first and, after a semicolon, to Œuvres, Ser. II, IV.
Quotations are from the Résumé.

37 He had already found the latter in the Cours d’Analyse [pp. 166–167; 147–148].
38 Cauchy had already considered this difference quotient in his Cours d’analyse and

evaluated its limit in some examples [pp. 62–64; 65–67].
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But, while these two terms indefinitely and simultaneously approach the limit
zero, the quotient itself could converge to another limit, either positive, or
negative. This limit, when it exists, has a specific value, for each particular
value of x; but it varies with x. Thus, for example, if we take f (x) = xm,
m denoting a whole number, the quotient of the infinitely small differences
will be

(x + i)m − xm

i
= mxm−1 + m(m− 1)

1 · 2 xm−2i + · · · + im−1

and it will have the quantity mxm−1 as a limit, that is, a new function of the
variable x. It will be the same in general; only, the form of the new function

that will serve as the limit of the quotient
f (x + i)− f (x)

i
will depend on

the form of the proposed function y = f (x). To indicate this dependence,
the new function is given the name derived function, and it is denoted, with
the aid of an accent, by the notation

y ′ or f ′(x).

In typical fashion, Cauchy then proceeded to compute the derivatives (de-
rived functions) of “the simple functions that produce the operations of algebra
and trigonometry” [p. 10; 23], that is, a + x, a − x, ax, a/x, xa , Ax , Lx (the
logarithm to base A in this context), sin x, cos x, arcsin x, and arccos x. To
deal with some of these he used the limits found in lesson one, but for the
last two he needed a new result on composite functions, and he produced it as
follows [p. 11; 25]:

Now let z be a second function of x, related to the first y = f (x) by the
formula

z = F (y).

z or F (f x) will be what one calls a function of a function of the variable x;
and, if we denote by �x, �y, �z, the infinitely small and simultaneous
increments of the three variables x, y, z, we shall find

�z

�x
= F (x +�y)− F (x)

�x
= F (x +�y)− F (x)

�y
· �y

�x
,

and then, passing to the limit,

z ′ = y ′.F ′(y) = f ′(x).F ′(f x).

In this way the chain rule appeared for the first time in print, and then Cauchy
used it to compute the remaining derivatives of simple functions. For example
[pp. 12; 25–26],
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for y = arcsin x,

sin y = x, y ′ cos y = 1, y ′ = 1

cos y
= 1√

1− x2
;

for y = arccos x,

cos y = x, y ′ × − sin y = 1, y ′ = −1

sin y
= 1√

1− x2
.

After this, Cauchy took flight, and we can only feel like the cameraman at
Kitty Hawk watching Orville Wright getting farther and farther away. In the
fourth lesson he defined differential and differentiation, in the fifth he differen-
tiated sums, differences, products, and quotients and introduced logarithmic
differentiation, in the sixth he dealt with maxima and minima, the seventh
contains a treatment of undetermined limits (∞/∞ and the like) and the mean
value theorem,39 the eighth deals with partial derivatives, in the ninth he gave
us the chain rule for functions of several variables and differentiated implicit
functions, in the tenth he explored maxima and minima of functions of several
variables, in the twelfth he told us about higher-order derivatives for functions
of one variable and in the thirteenth for functions of several variables, the
fourteenth dealt with total differentials, and in the fifteenth and the sixteenth
he returned to maxima and minima. He finished at the twentieth with partial
fraction decomposition. Thus, almost the entire differential calculus sequence
was covered in the first 121 pages of this book.

Cauchy used the ε-δ notation and this type of proof, but not quite as often or
as precisely as we would like to think. The following example from Lesson 7
is probably his clearest use of this method [pp. 27–28; 44–45]:

Theorem. If, the function f (x) being continuous between the limits x = x0,
x = X, we denote by A the smallest, and by B the largest of the values that the
derived function f ′(x) attains in this interval, the ratio of the �nite differences

f (X)− f (x0)

X − x0
(4)

will be necessarily between A and B.

39 First obtained by Lagrange in the form “If a prime function of z, such that f ′z is always
positive for all the values of z, from z = a to z = b, b being > a, the difference of primitive
functions corresponding to these two values of z, namely, f b − f a, will necessarily be a
positive quantity,” Théorie des fonctions analytiques, 1797, Art. 48, p. 45 = 1813, Art. 38,
p. 63 =Œuvres de Lagrange, vol. 9, Art. 38, p. 78.
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Demonstration. Let δ, ε, denote two very small numbers, the first chosen in
such manner that, for numeric [absolute] values of i smaller than δ, and for
any value of x between the bounds x0, X, the ratio

f (x + i)− f (x)

i

will always remain larger than f ′(x)−ε,40 and smaller than f ′(x)+ε. If we
insert n− 1 new values of the variable x between the bounds x0, X, namely,

x1, x2, . . . , xn−1,

so as to divide the difference X − x0 into elements

x1 − x0, x2 − x1, . . . , X − xn−1,

which, all of them having the same sign, have numeric [absolute] values
smaller than δ; then the fractions

f (x1)− f (x0)

x1 − x0

,
f (x2)− f (x1)

x2 − x1

, · · · f (X)− f (xn−1)

X − xn−1

,(5)

are bound, the first between the limits f ′(x0)−ε, f ′(x0)+ε, the second
between the limits f ′(x1)− ε, f ′(x1)+ ε, &c. . . . will all be larger than
the quantity A − ε, and smaller than the quantity B + ε. Moreover,
since the fractions (5) have denominators of the same sign, if we divide
the sum of their numerators by the sum of their denominators, we
shall obtain a mean fraction, that is, bound between the smallest and
the largest of those considered [see l’Analyse algébrique, note II, 12.e

theorem]. The expression (4), with which this mean coincides, will
thus itself be bound between the limits A − ε, B + ε; and, since this
conclusion holds, no matter how small the number ε, it can be asserted
that the expression (4) will be between A and B.

In 1829, with the Résumé out of print, Cauchy published a modified edition
of the differential calculus separately.41

40 There is an obvious typo in the Œuvres, where the last expression appears as f (x)− ε.
41 Leçons sur le calcul différentiel, 1829.
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6.7 CAUCHY’S INTEGRAL CALCULUS

The second half of the Résumé des leçons donnés à l’École Royale Polytech-
nique sur le calcul in�nitésimal is devoted to the integral calculus, which
Cauchy developed as extensively as the differential calculus.

Mathematicians of the early nineteenth century had abandoned the Leib-
nizian concept of integral as a sum, perhaps having some difficulty accepting it
as the sum of infinitely many infinitely small quantities, in favor of the integral
as a primitive or prederivative. Cauchy reversed that approach in the twenty-
first lesson of the Résumé. He considered a continuous function y = f (x) and
n− 1 increasing (or decreasing) values of the variable x between the bounds
x0, X, namely [p. 81; 122]

x1, x2, . . . , xn−1.

Then he formed the sum

S = (x1 − x0)f (x0)+ (x2 − x1)f (x1)+ · · · + (X − xn−1)f (xn−1).

Assuming that f was what we now call uniformly continuous, Cauchy proved
that [p. 83; 125]

if we make the numeric values of these elements [the lengths xi − xi−1] de-
crease indefinitely, while increasing their number, the value of S will become
practically [sensiblement] constant, or, in other words, will ultimately attain
a certain limit that depends uniquely on the form of the function f (x), and
on the extreme values x0, X of the variable x. This limit is what we call a
de�nite integral.

For this definite integral he proposed three notations [p. 84; 126], the first of
which, ∫ X

x0

f (x) dx,

for which he credited Fourier, he considered the simplest.
In the next two lessons Cauchy proved some of the elementary theorems for

definite integrals that are familiar to us from calculus textbooks and evaluated
some examples. In the twenty-fourth and twenty-fifth lessons he discussed
improper integrals and defined the principal value. Then, in the twenty-sixth
lesson, he defined a new function [p. 101; 151]

F (x) =
∫ x

x0

f (x) dx
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of the variable upper limit of integration, but without thinking of using what
we call a dummy variable in the integrand. From the mean value theorem for
definite integrals, which he had established in the twenty-third lesson, Cauchy
obtained

F (x) = (x − x0)f [x0 + θ(x − x0)], F (x0) = 0,

“θ being a number smaller than unity” (and not smaller than zero). From one
of the elementary theorems previously proved,

∫ x+α

x0

f (x) dx −
∫ x

x0

f (x) dx =
∫ x+α

x

f (x) dx = αf (x + θα),

or
F (x + α)− F (x) = αf (x + θα).

Thus, if f is continuous, dividing by α [p. 101; 152],

we shall conclude, passing to the limit, that

F ′(x) = f (x).

Therefore the [stated] integral, considered as a function of x, has as its deriva-
tive the function f (x) under the sign

∫
in this integral.

This is Cauchy’s version of the fundamental theorem of calculus. Later in the
same lesson he gave the formula [p. 104; 155]

∫ x

x0

f (x) dx = F (x)− F (x0),

where F is a function such that F ′(x) = f (x).
In the twenty-seventh lesson Cauchy turned to indefinite integration, promi-

nently displaying what he termed the arbitrary constant [p. 105; 157] of inte-
gration, and gave a method that he called integration by substitution as follows
[pp. 107; 159–160]: if y = f (x) and if instead of x we substitute another vari-
able z related to the first by x = χ(z), then∫

f (x) dx =
∫

f (z) dz,

where f (z) = f [χ(z)]χ ′(z).
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Then integration by parts was given in the form that has become standard
[p. 108; 162]: ∫

u dv = uv −
∫

v du.

It is not necessary to fully describe the contents of the rest of this work. In
general terms, it can be said that, with the notable exception of vector analysis
(gradient, divergence, curl), the entire calculus sequence as taught today is
contained in the Résumé. The converse is not necessarily true, as shown by
formulas such as [p. 119; 179]∫ [

l
(
x +

√
x2 + 1

)]n
dx

= [
l
(
x +√x2 + 1

)]n{
x − n

√
x2 + 1

l
(
x +√x2 + 1

) + n(n− 1)x[
l
(
x +√x2 + 1

)]2

− n(n− 1)(n− 2)
√

x2 + 1[
l
(
x +√x2 + 1

)]3 + · · ·
}
+ C .

6.8 UNIFORM CONVERGENCE

It may have come as an unwelcome surprise to Cauchy, once the conver-
gence of series was established on a firm ground, that the Norwegian mathe-
matician Niels Henrik Abel (1802–1829) noticed an incorrect theorem in the
Cours d’analyse: the sum of a convergent series of continuous functions is
continuous.42 Abel wrote:43

But it seems to me that this theorem has exceptions. For example the [sum
of the] series

sin x − 1
2 sin 2x + 1

3 sin 3x − · · ·
is discontinuous for every value (2m+ 1)π of x, where m is an integer.

Indeed, this is Fourier’s series expansion of y = x/2 valid for −π < x < π

(see the example on page 379), and its convergence is guaranteed by Dirichlet’s

42 Cours d’analyse de l’École Royale Polytechnique, Chapter VI, 1.st Theorem, [pp. 131–
132; 120].

43 “Untersuchungen über die Reihe 1+ (m/1). x + (m · (m− 1)/1 · 2). x2 + (m · (m−
1) · (m− 2)/1 · 2 · 3). x3 + · · · u.s.w,” 1826. French translation in Œuvres complètes. The
stated quotation is in the footnote on page 225.
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Niels Henrik Abel in 1826
Portrait by Johan Görbitz.

1829 theorem. But Cauchy did not take Abel’s objection to heart at that time,
for he restated the incorrect theorem in his Résumés analytiques, published in
Turin in 1833.44

We shall then seek additional conditions for the sum of a convergent series
of continuous (alternatively, differentiable or integrable) functions

u1 + u2 + · · · + un + · · ·
to be continuous (or, respectively, differentiable or integrable). Now let s

denote the sum of the series and let sn denote the sum of the first n terms.
Using Cauchy’s letter ε, to be fashionable, the definition of convergence of
the stated series can be rephrased as follows. Imitating Cauchy’s style in
proving the theorem of Section 6.6, the convergence of the series

u1(x)+ u2(x)+ · · · + un(x)+ · · ·
44 7.th Theorem, p. 46 =Œuvres, Ser. II, X, 1895, p. 56.
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to a sum s(x) for a given x can be expressed as follows. Given any small
positive number ε, there is a positive integer N such that for n > N the partial
sum

sn(x) = u1(x)+ u2(x)+ · · · + un(x)

will always remain larger than s(x) − ε and smaller than s(x) + ε. Since
this definition does not guarantee the validity of Cauchy’s theorem on the
continuity of s, a natural question is whether it can be modified so as to render
Cauchy’s theorem valid.

The fact that a convergent series of continuous functions can have a discon-
tinuous sum was examined, about 1848, by Phillip Ludwig von Seidel (1821–
1896) 45 and, independently, by Sir George Gabriel Stokes (1819–1903).46

They noticed that, for a given ε, no N can be chosen so that the inequalities
in the preceding definition of convergence are satisfied for all x near a point
of discontinuity of s. That is, while for each such x there is an N such that
the stated inequalities hold, the same N does not work for all x. We could
then conjecture that if we replace the definition of convergence with one that
requires N to be valid for all x, then this more demanding kind of convergence
should make it impossible for the sum of the series to be discontinuous.

It turns out that in 1838, Christof Gudermann (1798–1852) had already
introduced a kind of convergence at the same rate (einem im Ganzen gleichen
Grad der Convergenz), which is the precursor of the one that we seek,47

but the importance of the concept was realized by Karl Theodor Wilhelm
Weierstrass (1815–1897), who would later become one of the main forces
in making analysis rigorous. Weierstrass was a student at the University of
Bonn, who in 1839 transferred to Münster to attend Gudermann’s lectures (it
was then the custom in Germany for students to switch universities at some
time). It is quite likely that Gudermann and Weierstrass discussed the new
concept of convergence. Weierstrass never earned his doctorate, and became
a Gymnasium (high school) teacher in 1841. Such was the amount of first-
rate research that he produced from this moment on that it eventually earned
him a position at the University of Berlin in 1856. This research remained
unpublished for a long time, but the fact that he referred to a power series
that converges uniformly—gleichmässig convergirt—in an 1841 manuscript,
Zur Theorie der Potenzreihen, supports the idea that he may have learned
about it from Gudermann. This manuscript contains a definition of uniform

45 “Note über eine Eigenschaft der Reihen, welche discontinuirliche Functionen dar-
stellen,” 1847–49.

46 “On the critical values of the sums of periodic series,” 1848.
47 “Theorie der Modular-Functionen und der Modular-Integrale,” 1838, pp. 251–252.
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Karl Weierstrass
From Weierstrass’ Mathematische Werke of 1894.

convergence for a series of functions of several variables, which Weierstrass
restated in a more polished form in “Zur Functionenlehre,” a paper of 1880.48

An infinite series
∞∑

ν=n
fν,

whose members are functions of arbitrarily many variables, converges uni-
formly in a given part (B) of its region of convergence, if after the assumption
of an arbitrarily small positive quantity δ a whole number m can always be
determined, such that the absolute value of the sum

∞∑
ν=n

fν,

48 With very minor modifications, this translation is from Grattan-Guinness, “The emer-
gence of mathematical analysis and its foundational progress, 1780–1880,” in Grattan-
Guinness, From the calculus to set theory, 1630–1910. An introductory history, 1980, 2000,
p. 134.
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is smaller than δ for each value of n, which is ≥ m, and for each collection
of values of the variable belonging to the region B.

Cauchy was unaware of these facts and, quite independently, when he
finally saw the light on this point, introduced the concept of uniform conver-
gence (but not this name) in 1853.49 Then he proved the corrected version of
his earlier theorem that motivated the preceding discussion. In current termi-
nology, the sum of a uniformly convergent series of continuous functions is
continuous.50

As in Cauchy’s case regarding ordinary convergence, the importance of
Weierstrass’ contribution stems from the fact that he realized the usefulness
of uniform convergence and incorporated it in theorems on the integrability
and differentiability of series of functions term by term.

49 “Note sur les séries convergentes dont les divers terms sont des fonctions continues
d’une variable réelle ou imaginaire entre des limites données,” 1853 =Œuvres, Ser. I, XII,
1900.

50 Cauchy’s own statement of this result (Theorem II) is not very clear. He required the
sum un + un+1 + · · · + un′−1 to become “always infinitely small for infinitely large values
of the integers n and n′ > n” [pp. 456–457; 34–35], but did not mention any values of x
for which this should be true. Did he rely on the word “always” to mean “for all x in the
domain of the stated functions”?
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Niewentiit, Bernardo 357, 359, 436
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Pascal, Blaise 123, 234
Pascal’s triangle 122, 124, 132
Pataliputra 25
Patna 25
Pavia 150
Pell, John 116
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Pitiscus, Bartholomäus 65, 76, 443
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quadrature 118, 121, 129, 173, 195, 207,
221, 225–227, 230, 233, 248, 252, 253,
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Sarma, K. Venkateswara 27, 30, 414, 432
Sasanians 36
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Scotland 78, 80
secant 39, 54, 67, 75, 77, 222, 223, 349, see

also trigonometric functions
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lengths

Sefardı́, Moshé 56
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— of the rest 67, see also trigonometric

lengths
product of —s 80
relation of chord to 17, 19, 20
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substitution 270, 297, 301, 306, 354, 364,

406
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Tartaglia, Nicolo 150–153, 160, 426
Taylor, Brook 220, 221, 223, 225, 227, 369,

414, 447
Taylor series 220, 221, 226–229, 315, 400,

439, 447
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— recta 57
— versa 57, 62

Unfinden 57
uniform

— convergence 407–411
— motion or quality 230–233, 420, 441

uniformly continuous 405
universe 2, 3
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251, 254, 278, 447, 448, 450
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