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Preface

This book is an entirely revised, in some parts considerably shortened, in other parts
enlarged, version of a study which was originally published in German with the ti-
tle “Die verschiedenen Formen und Funktionen des zentralen Grenzwertsatzes in
der Entwicklung von der klassischen zur modernen Wahrscheinlichkeitsrechnung”
at Shaker Verlag (Aachen, Germany) in 2000. I thank Shaker for giving me the per-
mission to republish large parts of that work in an English translation. This mainly
concerns chapters 1, 3, 4, and 5 of the present book. Most parts of this book have
been translated from German or directly written in English by the author himself,
except for chapters 1 and 8, as well as the first part of chapter 5 up to section 5.1.2
inclusively, section 6.1, and section 7.2, which were translated by Gavin Bruce from
the author’s German drafts. Brent Runyan and Andreas Ellwanger corrected those
portions of text which are less mathematical.

During the long time of preparing the original and thereafter the present version
of the book, many people gave me assistance and advice. As representative of all
the persons who considerably helped me with the 2000 book, I thank Ivo Schneider
in the first place for his comprehensive and continuous support. Ulrich Oppel kindly
gave many valuable hints about mathematical details. The idea to publish an English
version was primarily inspired by Reinhard Siegmund-Schultze, and I thank him
very much for his encouragement. Bo Isenberg drew my attention to the character-
ization of modernity through the notion of contingency and introduced me to this
subject. I am very grateful to Walter Purkert for discussing questions concerning
Hausdorff’s reception of Lyapunov’s work with me. Giinther Wirsching helped me
with his friendly and continued interest in the progress of this book, and with nu-
merous discussions on stochastic and historical issues. René Grothmann carefully
reworked the pictures and graphics enclosed in this book. Vladimir Andrievskii pro-
vided me with copies of sources that were very difficult to access. Without Fritz
Heberlein’s and Peter Zimmermann’s professional aid I would not have overcome
the frequent IATEX problems which occurred during the making of this book. Finally,
I thank Jesper Liitzen for accepting my book in the Springer series Sources and
Studies.



vi Preface

I am very grateful to “Maximilian-Bickhoff-Universitétsstiftung” (Eichstitt),
which granted financial support for the editing and correction process of a con-
siderable part of the text.

To the following persons and institutions I am indebted for providing me with de-
tails on documents, copies of unpublished material, or allowing me to publish texts
and pictures: Professor Menso Folkerts (Universitidt Miinchen), Archive of Eid-
genossische Technische Hochschule Ziirich, Archive of Berlin-Brandenburgische
Akademie der Wissenschaften, Picture Library of The Royal Society (London),
General Collections of MIT Museum, Archive of University of Minnesota,
Archive of New York University, Archive of Mathematisches Forschungsinstitut
Oberwolfach, Library of University of Bonn, Library of University of Greifswald,
and Oldenbourg-Verlag Miinchen.

I consider it a favorable coincidence that this book appears 200 years after the
first publication of Laplace’s approximation of the distributions of sums of large
numbers of independent random variables by normal distributions, which can be in-
terpreted as a first fairly general central limit theorem. This achievement decisively
influenced the course of history of probability theory up to modern times. Therefore,
this book is also intended to serve as a modest contribution to the 200th anniversary
of one of Laplace’s most outstanding findings.

Eichstitt, April 2010 Hans Fischer
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Chapter 1
Introduction

The term “central limit theorem” most likely traces back to Georg Pélya. As he
recapitulated at the beginning of a paper published in 1920, it was “generally known
that the appearance of the Gaussian probability density’ e"ina great many situ-
ations “can be explained by one and the same limit theorem,” which plays “a central
role in probability theory” [Pdlya 1920, 171]. Laplace had discovered the essentials
of this fundamental theorem in 1810, and with the designation “central limit theo-
rem of probability theory,” which was even emphasized in the paper’s title, P6lya
gave it the name that has been in general use ever since.

These days the term “central limit theorem” is associated with a multitude of
statements having to do with the convergence of probability distributions of func-
tions of an increasing number of one- or multi-dimensional random variables® or
even more general random elements (with values in Banach spaces or more general
spaces) to a normal distribution® (or related distributions). In an effort to reduce
ambiguity—and in view of historic developments—the denotation “central limit
theorem” in the present examination will usually refer only to the “classical” case,
which deals with the asymptotic equality of distributions of sums of independent
or weakly dependent random variables and of a normal distribution. Yet even by
this definition, which accords with Pélya’s view, “central limit theorem” actually
amounts to a collective term for the entire group of theorems about the conver-
gence of distribution functions, densities or discrete probabilities of sums of random

! Pélya was a bit careless with his phraseology here. Naturally he knew that e isnot a proba-
bility density (the norming factor \/LE is missing).

2 Whenever the term “random variable” is used in this book with no additional information, it
always refers to one-dimensional real-valued random variables.

3 A one-dimensional normal distribution with expected value p and variance o is characterized

—?
by the distribution function @, ;2(x) := #ﬁ [ioo e = dt. In the case where ©=0and o =1,
one speaks of the “standard normal distribution.” By definition, a random vector (Xi,..., X,)
is normally distributed if and only if, for all vectors (¢1,...,7,) € R", the random variable

Z=1 t;. X follows a one-dimensional normal distribution. The term the normal distribution serves

to designate the class of all normal distributions.

H. Fischer, A History of the Central Limit Theorem, Sources and Studies 1
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-0-387-87857-7_1,
(© Springer Science+Business Media, LLC 2011



2 1 Introduction

variables. One theorem from this group—which was admittedly only a very specific
case—had already been derived by de Moivre in 1733.

Strictly speaking, therefore, one should not really refer to the central limit theo-
rem in connection with sums of independent random variables, but rather to a central
limit theorem on a case-by-case basis. Nevertheless, after ca. 1810 when Laplace
utilized normal distributions to present approximations that were valid in decidedly
general situations, the statement regarding the universal existence of a “law of fre-
quency” similar to e=* for sums of large numbers of independent random variables
took on the status of a natural law in the eyes of almost all 19th-century probabilists.
This law would serve as a leitmotif for the theory of errors and the field of distri-
bution statistics, which began with Quetelet. Thus it is no wonder that Pélya, who
in a sense was rooted in this 19th-century tradition, would talk about the central
limit theorem. The development of this theorem from a basic idea in the natural
and social sciences (see Fig. 1.1 for an example) into an autonomous mathematical
theorem—or more correctly into an entire group of such theorems—is the subject
matter of this book.

T : =
¥="9" ) Adfpaime
ol N2 | Serie
|2 |4
ols |4
-
o|6|¥4
al7|
o= A |8a| ¥
. x [e6] 4
= ®|7]5
slz|s
909~
LEEER]
o
008}
Fig. 1.1 Empirical frequency P
curve of the deflections of w-
a torsion balance according o
to its Brownian movement !
[Kappler 1931]; the deflec- 05 2
tion at a certain time can ’
be considered as caused by o
a large number of molecu-
lgr 1mpacts dqrmg a certain sl ]
time interval just before;
the normal distribution may 00|
therefore be interpreted as a
consequence of the central g0}
limit theorem; for an ex- 4005
ic di i o001 il
act stochastic discussion see 4 T T T T T
210 -8 -6 -4 -2 z 4 6 6 W

[von Mises 1931, 512-518] -z <— — tz



1.1 Different Versions of Central Limit Theorems 3

1.1 Different Versions of Central Limit Theorems

From approximately 1810 to 1935, the period primarily examined in this work,
limit theorems for sums of (finite-dimensional) random vectors were also discussed
sporadically, but the focus of interest lay on central limit theorems for sums of
independent and—in the 20th century—weakly dependent one-dimensional random
variables. A differentiation is made today between central limit theorems for normed
sums and for triangular arrays on the one hand, and between integral and local limit
theorems on the other.

The most historically important version of the central limit theorem (hereafter
abbreviated “CLT”) is the one pertaining to an integral limit theorem for normed
sums: Let (Xi) be a sequence of independent (or weakly dependent) random vari-
ables on a common probability space. Under particular conditions on Xy, there exist
sequences (a, > 0) and (bg) such that

> k=1 (X — br) <

VI‘ERIP(
an

) - ®(r) (n - o0). (1.1

@ stands for the distribution function of the standard normal distribution. In the case

of a% = Var ZZ=1 X and b, = EXy, one speaks of “classical norming.”**
Corresponding local limit theorems emerge from a representation

P (M - x) _ / Fo(O)d pn(0)
an 1<x

with a suitable sequence of o-finite measures (i), which are defined on the system
of real Borel sets, and with a sequence of nonnegative functions ( f;,). This is to
determine the conditions under which pointwise or uniform convergence of ( f) to
the density function’® of the standard normal distribution occurs. Important special
cases include:

— The X are continuous random variables, u, is the Lebesgue measure for

every n, and f; is the density function associated with LZEW;
— the X} take on only the values a + ih (i = 0;%1,42,...).°

fu@) == PO Xy = na + zh)%"

k=1
na+(z —0,5h—>"%_ bx na+(z+0,5h—->%_.b
for x € :| ( V=3 k=1 k. ( Vh=2 =1 bk z ).
ay ay
4 The terms M are referred to as “normed sums.” Often both the a, and the b; are

called “norming constants” or something similar (see, e.g., [Feller 1945, 818; Le Cam 1986, 79]),
although, technically, only the constants a,, merit this name.

3> The term “density function” is used in the present book only for densities with respect to the
Lebesgue measure. A random variable with a density function is designated “continuous.”

¢ Random variables of this kind are designated “lattice distributed.”



4 1 Introduction

and p, is a discrete measure that respectively assigns the weight % to the point
na+zh—Y 7 _ bk
— ==

In the case of the CLT for a triangular array, a double sequence of random

variables
Y11

Y21, Y22
Y31,Y32,7Y33
Ya1,Ya2,Y43, Y44
etc.

is considered, or more generally

Yit, oo, Yim,

Yo1, e ,Y2m2

Y31, oo ,Y3m3
Yar, oo, ,Y4m4
etc.

with m, — oo. Within each row, the random variables are assumed to be indepen-
dent or weakly dependent. The integral form of the CLT examines the convergence
of distributions of the row sums to a normal distribution, i.e., it determines under
what conditions the following is true:

mMn
VreR:P (Y Yy <r|—>@r) - o0). (1.2)
k=1

As with the procedure for normed sums, local versions of the CLT can also be
considered for triangular arrays.” Apparently, by the definition Y,; = X"a—_bk the
CLT for normed sums (1.1) becomes a special case of the CLT for triangularn arrays
(1.2) if the norming constants a, and by are considered given. However, the problem
of normed sums also brings the question of how to find suitable a;, and b.

With certain modifications, the problems in question can also be transferred to
CLTs for random vectors.

Chebyshev [1887/90] was the first to formulate a statement involving the CLT
(1.1) for a sequence of independent random variables using classical norming, and
he attempted to prove his assertion under certain conditions. In the late 19th and
early 20th centuries, mathematicians were mostly considering relations that were
equivalent to (1.1):

7 The phrase “triangular array” apparently did not gain prevalence in literature before the Second
World War. Feller [1971] mentions “triangular arrays” at several points in his popular textbook
(Ist edition, 1966). Beginning with papers by Bernshtein and Lindeberg in the year 1922, row
sums related to double sequences of random variables (Y,x)nen,1<k<m, Were studied well before
the war in exactly the way described, and so it seems appropriate to generally employ the “modern”
term “triangular array” in this book in order to simplify the discussion.



1.2 Objectives and Focus of the Present Examination 5

VafbeR:P(agw5b)->q>(b)—q>(a) (n — 00)

An

or

<M<

Va<beR:P(a
(7

b) — ®(bh)— D) (n— o0).’

The formulation of integral limit theorems in exactly the form (1.1) is likely
attributable to von Mises [1919a]. Local limit theorems explicitly appear in
Nekrasov’s work [1898]. The treatment of nonclassical normings began in earnest
in the 1920s with [Bernshtein 1922; 1926] and with [Lévy 1925b]. The idea of con-
sidering triangular arrays is found in [Bernshtein 1922] and [Lindeberg 1922b;c],
but was really intensively pursued in the 1930s only. The contemplation of CLTs for
sums of dependent random variables started with Markov [1907/10]. From the pub-
lication of Chebyshev’s paper until the mid-1930s, the CLT (1.1) for independent
random variables was constantly in the foreground of interest.

Before Chebyshev, people were not actually studying limit theorems but approx-
imations of probability densities, individual probabilities or probabilities that a sum
of random variables lay “between” predetermined limits, in an absolute or relative
sense. The corresponding statements can be interpreted from the standpoint of both
normed sums in classical norming and triangular arrays. One always presupposed—
often tacitly—the independence of the summands in question. Approximations for
densities (in the case of continuous random variables) or discrete probabilities (in
the case of lattice distributed random variables), and approximations for integral
probabilities were considered equivalent. For this reason, it is fairly pointless to
differentiate between integral forms and local forms of the CLT in the era before
Chebyshev.

1.2 Objectives and Focus of the Present Examination

The history of the CLT as a universal law begins with Laplace; all relevant stud-
ies in the 18th century, starting with [de Moivre 1733], essentially contained
only approximations of the binominal distribution and their scope of applica-
tion remained narrow. Laplace’s finding of 1810, according to which the additive
coaction of a large number of independent random variables generally leads to
probabilities that can, at least approximately, be calculated according to the nor-
mal distribution, substantially expanded the numerical possibilities of probability
theory, especially in the discussion of mass phenomena. Laplace’s CLT was trend-
setting for the development of stochastics in the 19th century as a discipline that was

8 Tt is not clear at all from the wording of almost all of the 19th-century authors, including
Chebyshev, whether the version with “<” or with “<” was meant (or perhaps both of them to-
gether). Where there is doubt, statements such as “the sum lies between the limits ...” are inter-
preted to mean “<.”



6 1 Introduction

defined foremost by its applications. A number of the mathematical methods used in
connection with the problem of approximating probabilities for sums of independent
random variables were so important to analysis that, starting in the mid-19th cen-
tury, the central “limit” theorem occasionally also served to illustrate these methods
from a primarily mathematical standpoint. The CLT became a mathematically dis-
crete object which was examined for its own sake around the turn of the century as a
result of the papers by Lyapunov. During the period between the world wars, “the”
CLT fulfilled an important integrative role in the process of developing the discipline
of modern probability theory. Around 1935 this process reached a first conclusion,
which also corresponded with the “definitive” solution of limit theorems (1.1) and
(1.2), at least for independent summands, in the sense of establishing necessary
and sufficient conditions. By 1940, the scope of analysis of the CLT for indepen-
dent summands was expanded to nonnormal—stable, and more general infinitely
divisible—Ilimit laws. The monograph Limit Distributions for Sums of Independent
Random Variables by Gnedenko and Kolmogorov, originally published in Russian
in 1949, was dedicated to this complex of problems and represented one of the most
important works of probability theory in the 20th century. In order to contrast this
development, which in a sense corresponds to a “direct” line of evolution of the
CLT since Laplace, the present book also addresses other CLT-related topics which
occurred only shortly before and after World War II: generalizations in the direction
of martingales, and in the direction of stochastic processes and random elements in
metric spaces.

In accordance with the largely auxiliary role the CLT played in the 19th cen-
tury, space is also given in this book to the applications of approximate normal
distributions, e.g., in the theory of errors and in distribution statistics. Reducing the
presentation to the analytical content of the individual papers would not have done
justice to the significance of the CLT in classical probability theory and the ensuing
era. In this respect, the present disquisition also encompasses various aspects of the
history of the theory of errors and of statistics in general.

Particular attention is paid to analytical methods. Above all, this pertains to
the method of characteristic functions established by Laplace and the method of
moments which Chebyshev and Markov preferred. If possible, the analytical proce-
dures are presented and discussed in accordance with the respective contemporary
standards. In particular, the treatment of infinitely large and small numbers in the
19th century, which arises in conjunction with sums of “infinitely many” random
variables, shall be depicted as authentically as possible.

Extensive reconstruction is also necessary in the case of some modern articles,
especially those by Lévy, in order to be able to elaborate upon the original ideas.
Commencing with [Gnedenko & Kolmogorov 1949], the textbook literature that was
established after the Second World War provided proofs for many of the theorems
proposed in the 1920s and 1930s, which did not fully align with the original
accounts.

When we look for coherent concepts in the history of the CLT, we first encounter
the basic idea that would determine thinking from Laplace until modern times,
namely, that the accumulation of many (small) random variables results in a normal
distribution. This, though, seems to be the only main thread running through the
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entire history of CLTs. All the other ways people viewed CLTs at various points in
time were just too different. Yet a number of “local” leitmotifs can be detected in
certain periods. For instance, questions surrounding the theory of errors dominated
dealings with CLTs from Laplace until the 1920s. In the early 1920s, the view of
probability theory as a subfield of analysis, which began with Laplace, and which
was thereafter promoted by Dirichlet and particularly stressed by Chebyshev and
Markov, had a bearing on young analysts like von Mises, Lévy, and Lindeberg and
their activities involving limit theorems of probability theory.

“Local” continuity and “global” fissures are likewise evident in the analytical
methods associated with the CLT. Even the method of characteristic functions,
which seems to have persisted unchanged at its core since Laplace, and which
remains one of the most vital tools associated with sums of independent random
variables, enjoys a consistent track record only when examined superficially. If it
was Laplace’s method of approximation to “functions of large numbers” that ulti-
mately allowed Lyapunov to devise proofs that were increasingly sophisticated and
adapted to the analytical standards of the day, then it was Lévy’s theorem of the
“continuous correspondence” between distributions and associated characteristic
functions that determined the use of characteristic functions since the early 1920s.
In addition, several other at least intermittent threads can be traced: Chebyshev’s
method of moments, the method first employed by Crofton to add a further “auxil-
iary random variable” to the sum of random variables considered, or the method of
truncated random variables that is attributed to Markov.

The transition undergone by the CLT between 1810 and the outbreak of the
Second World War, from a “natural law,” whose universality was scarcely chal-
lenged, to an entity whose scope of application could be precisely explored using
purely mathematical methods, corresponds to the development of probability theory
from its “classical” genesis to its “modern” shape.

I would like to employ Lorraine Daston’s interpretation of the term “classical
probability theory” as it is explained in detail in her Classical Probability in the
Enlightenment [1988]. According to Daston [1988, xi—xii], “classical probability
theory” was just a discipline of mathematics in a wider sense, that built upon a con-
sensus of what was “reasonable,” and that should assist “common sense” by provid-
ing the resource of calculation during decision-making. Daston places the phase of
classical probability theory in the period stretching from about 1650 (although there
was as yet no discussion of “probabilities” at that time) up until the time of Laplace
and his successors, such as Poisson. However, in specifically stressing the analytical
relevance of those problems that were linked to his approximation through normal
distribution, Laplace had already begun to abandon the standpoint of classical prob-
ability theory characterized by Daston, that of viewing stochastic problems almost
exclusively in terms of practical applicability.

When I use the adjective “modern,” it is oriented primarily to Herbert Mehrtens’s
description as it emerges from his book Moderne—Sprache—Mathematik [1990].
According to Mehrtens, modern mathematics equates to working on a language
that establishes relationships between abstract concepts without making reference
to physical or even ideally existing objects. It is not concerns about “imaginative-
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ness,” “usefulness,” or even “beauty” that determine the value of results within
modern mathematics, but rather their consistency within freely and autonomously
selected rules. Mathematical truth is determined entirely by the rules of this lan-
guage. In contrast to the natural sciences, mathematics does not point to anything;
it always invariably leads back to itself. Yet, in his examination Mehrtens con-
centrates on the positions taken by various mathematicians toward fundamental
questions and speaks less about their attitudes with respect to problem areas out-
side of this field. For instance, he mentions at various points (e.g., [1990, 187
f; 270 f.]) that articles by avowed “counter-modernists” such as Henri Poincaré
or Luitzen Brouwer could be “extremely modern,” but he scarcely analyzes this
contradiction between basic attitude and pragmatic work. Practically all propo-
nents of “modern” probability theory between the world wars also exhibit a dis-
crepancy between their “counter-modern” attitudes regarding fundamentals, as evi-
denced in their speeches about mathematics, and their “modern” work on the further
development of stochastic problems, where a successive departure from external
performance criteria was occurring particularly with regard to outer-mathematical
applicability.

Mehrtens’s approach can be supplemented by attempts from the field of soci-
ology to characterize “modernity” as an epoch with an “unusual degree of contin-
gency” [Luhmann 1992, 93]. If we follow Luhmann’s definition [1992, 96], then:

Anything is contingent that is neither necessary nor impossible.

According to Luhmann [1992, 47], however, contingency is not a reservoir of arbi-
trary possibilities, but rather possesses an “order with bound alternatives.” Luhmann
(e.g., [1992, 100-103]) describes mechanisms which, in social systems (including
scientific systems, art systems, state systems, legal systems), lead to contingency as
well as to a self-reference that permits the “self-limitation” of the contingency of
each system. When applied to Mehrtens’s “language of mathematics,” this would
mean that rather than speaking about things lying outside the realm of mathematics,
an internally mathematical consideration of language forms appears and continu-
ously seeks new limits for mathematics in the area of its contingency, limits which
are determined only by the inner consistency of the language rules.

With his theory of the contingency of (social) systems, Luhmann is attempting to
nullify the difference between the modern and the postmodern. Obviously drawing
directly upon the “founder” of the postmodern perspective, Jean-Frangois Lyotard
[1979/84], and his observation of the “grand narratives”—the ideologies that shaped
the modern period—Luhmann [1992, 42] writes:

If we understand “postmodern” to mean the lack of a unified cosmography, a universally
applicable rationality, or even just a collective attitude toward the world and society, then
this results from the structural conditions to which contemporary society delivers itself.

By contrast, though with a certain amount of caution, Mehrtens [1990, 318-
326] recognizes a delineation in mathematics between the modern—he sees

® Can also be found in [Blumenberg 1987, 57] or [Makropoulos 1997, 34] in a form similar to
Luhmann. My thanks to Bo Isenberg (Malmd) for drawing my attention to this aspect of modernity.
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Bourbakism and its ideology of “mathematical structures” as both the apex and
end of this period—and the postmodern, which is concerned with “heterogeneous
individual problems.”

In the 20th-century history of the CLT, patterns actually can be discerned which
conform to both Mehrtens’s and Luhmann’s approaches. The principle of autonomy
and of self-limitation that is independent of external criteria is voiced in connection
with the CLT beginning with the papers by Lyapunov (1900/1901). The contingency
of the CLT manifests itself in the establishment of ever more general conditions and
in generalizations to nonnormal limit distributions and to the weakening of inde-
pendence. The results achieved before World War II involving limit distributions
of independent random variables were condensed by Gnedenko and Kolmogorov
[1949] using consistent analytical methods in such a way that, in a certain sense,
one may speak of a “grand narrative” in the history of the CLT. The consistency
shown here was superseded after the war by a variety of other problems, and so
one may actually speak of a “postmodern” development. On the other hand, though,
this development can also be regarded as an extrapolation of approaches introduced
before the Second World War and conforming to the contingency of the CLT.

1.3 The Development of Analysis in the 19th Century

One main focus of this study consists in illuminating the history of the CLT be-
fore the backdrop of changes in analysis. In fact, during the final third of the 19th
century the disparate analytical concepts and procedures that might possibly exist
side by side in works by the very same author earlier in the century were gradually
replaced entirely by “Weierstrassian rigor,” and that implies “epsilonic” analysis in
the modern sense. Significant to the history of the CLT during the transition from
classical to modern probability theory are essentially three ways of analytical pro-
cedure in the 19th century: algebraic analysis, calculation with infinitely small and
large “quantities,” and finally the aforementioned “epsilonic” concept, which can
already be found in connection with individual problems before Weierstrass, e.g., in
the work of Dirichlet or Cauchy.'”

Algebraic analysis was based on algebraic manipulations of series expansions
and sought to completely exclude examinations of limits or considerations of in-
finite quantities. Faith in the analytical sense of each series expansion and in the
unlimited scope of formulae thus formed the basis of this concept, which Euler and
Lagrange in particular promoted. The algorithmic-formal approaches in algebraic
analysis were not without a certain elegance, the attractiveness of which inspired
Laplace in particular to undertake similar research, especially in light of his theory
of generating functions.'' In many cases, however, it remained at least open to inter-
pretation what value—in the truest sense of the word—the results achieved by this
calculus actually had.

10" An excellent overview of the various concepts of analysis in the 19th century is provided by
[Laugwitz 1999, 46-63] in which a total of five approaches are presented.

! See the general explanations in [Laplace 1814/20/86, XXXVII-XL].
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Arguing on the basis of infinitesimal considerations was quite popular in the
first half of the 19th century, for example with Fourier, Poisson, and Cauchy.'? Of
course, these authors also pragmatically applied other analytical ways of thinking
from case to case—for Cauchy, this included a nascent epsilonics. Even if some pas-
sages initially suggest an epsilontic interpretation, the discussion of those sources
from the standpoint of infinitesimal analysis may be insightful and inspiring.'*> One
has to take care, however, not to confuse 19th-century reasoning with concepts and
proofs of modern nonstandard analysis. Therefore, there is still a quite controversial
discussion on the interpretation of sources in analysis, especially those by Cauchy.'*
The infinitesimal approach in connection with the CLT can be found in the work of
Poisson (Sect. 2.2.4), Hagen (Sect. 3.2.1), or Bessel (Sect. 3.2.2). What was es-
pecially attractive about infinitesimal considerations was likely the possibility of
intuitively grasping problems relating to “limit formulae.” However, this intuitive-
ness also left something of a gap in proof, which did not go unnoticed in the course
of rigorous evaluation at the time. Aside from this, it was also probably a lack of
clarity in the basic principles' that ultimately led to infinitesimal considerations
being displaced by epsilonics.

In his Berlin lectures in the 1860s, Weierstrass advocated the complete reduction
of analytical considerations to those involving the properties of real numbers with-
out including infinitely small or large quantities. A construct such as this required
a clear concept of real numbers (Weierstrass also attempted one, see [Dugac 1978,
364-366]) and pushed work with inequalities to the fore. A particularly important
aid for advanced investigations was the mean value theorem of differential calculus,
which in many cases was able to replace the series expansions of algebraic analysis.
Weierstrassian analysis did retain some vocabulary of infinitesimal analysis at first,
but it was founded—at least ostensibly—upon purely finitistic views.'¢

Most authors in the 19th century dealt with the concepts presented in a fairly
pragmatic way and differently from case to case. This also applied to the CLT.
In Chebyshev’s work, for example, one recognizes aspects of algebraic analysis (in
his dealings with continued fractions), the use of infinitely small numbers, and the
“modern” perception of limits. Overall, though, the transition to modern analysis
exerted a substantial influence on the history of the CLT through the first decades
of the 20th century. We have this analytical reorientation to thank not only for the
formulation as a limit theorem that more precisely defined the statement about an
approximation that becomes “exact” when there are “infinitely many” summands.

12 See, e.g., [Laugwitz 1990].

13 This applies, for example, to Cauchy’s well-known “error”—the assertion that a convergent
series of functions in a neighborhood of x results in a function that is continuous in x if only each
summand is continuous in x. Actually, Cauchy’s concept of convergence “everywhere” (in other
words, also for numbers that are “infinitely close” to x) includes what today is called uniform
convergence in a neighborhood of x; see [Laugwitz 1986, 78 f.].

14 See [Schubring 2005, 431-433] for a survey.
15 There is also a case example of this in connection with the CLT; see Sect. 3.2.1.

16 Of course, it is open to discussion whether statements such as “for all n > ny” reintroduce the
(potentially) infinite through the back door.
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Rather, the working methods of modern analysis were gradually carried over to
work on the CLT. This process was deeply involved in the transition from classical
to modern probability theory.

1.4 Literature on the History of the Central Limit Theorem

In accordance with its paramount importance in the evolution of probability theory,
the CLT has already garnered some historical attention, as is shown by the following
overview of works devoted to this subject.

Adams’s book The Life and Times of the Central Limit Theorem (2nd edn.)
[2009] gives in its first part—which is intended for more of a general audience and
which is essentially identical to the first edition from 1974—insight into develop-
ments from de Moivre to Lyapunov. The second part contains additional material
by other authors related to the period from 1900 to ca. 1935 (English translations
of Lyapunov’s 1900 and 1901 papers as well as reprints of [Feller 1945] and [Le
Cam 1986]). A thorough account of analytical-technical aspects, especially for the
period from Laplace to Cauchy, is provided by [Hald 1998, 303-350] in the chapter
“Early History of the Central Limit Theorem” of his monumental History of Math-
ematical Statistics from 1750 to 1930. Hald [2002] likewise dealt exhaustively with
the history of series expansions as they can be associated with the CLT. Additional
information on this topic is found in his presentation of the History of Parametric
Statistical Inference [2007]. Schneider [1987b] primarily illuminated the “intellec-
tual background” of stochastic limit theorems in the 18th and 19th centuries. The
Russian contributions to the CLT in the 19th and early 20th centuries are high-
lighted, for example, by Maistrov [1974, 188-224] and Gnedenko & Sheynin [1992,
247-268]. A multitude of details surrounding the history of the CLT up to the time
of Markov can be found in many of the articles Sheynin has written—mainly in the
Archive for History of Exact Sciences—on the achievements of important probabil-
ity theorists and statisticians of the 18th, 19th, and 20th centuries. The two mono-
graphs by Sheynin [1996a; 2005b] about the history of stochastics have a sum-
marizing character. Of particular value for the present study were the volumes of
Russian sources [Sheynin 2004a;b; 2005a; Nekrasov 2004] that Sheynin translated
into English and published.'’

The years following the turn of the century have heretofore been accorded with
distinctly less regard than the preceding period as far as the CLT was concerned.
At least, two major phases have already been examined at some detail: Firstly,
and just recently [Siegmund-Schultze 2006], the time around 1920 with the eminent
and groundbreaking papers by Pélya and von Mises'® and, secondly, the develop-
ment in the 1930s by Le Cam’s article “The Central Limit Theorem around 1935~
[1986] (reprinted in [Adams 2009], see above), which gives an excellent survey, in

17 All these sources are also available at http: //www.sheynin.de.

18 Siegmund-Schulze at some places refers to the German edition [Fischer 2000] of the present
book.
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particular of the works by Feller and Lévy. Volume V of the Collected Works of
Hausdorff [2006] also contains plenty of material relating to the history of the CLT,
above all in the 1920s.

Despite the wealth of historical information about the CLT, a coherent overview,
in particular one covering the years after 1900, still seems desirable. Moreover,
the extant literature on the history of probability theory and statistics concentrates
mainly on purely stochastic and—in the 20th century—measure-theoretical aspects.
By contrast, the CLT was closely linked to specific methods of classical analysis
until well into the first decades of the 20th century and was therefore part of a prob-
ability theory that could be perceived as a subfield of analysis.

1.5 Terminology and Notation

One particular difficulty in completing studies on the history of probability theory
and statistics consists in the fact that, for the sake of succinctness and clarity, some
18th and 19th century contributions must be presented in the modern terminology
to which the reader is accustomed. In particular, this relates to the use of stochastic
terms like “random variable,” “variance,” or “estimated values,” and to the shortened
notation of linear equation systems in matrix form.

The notion of “random variable” as it is employed in modern probability the-
ory was introduced by Kolmogorov in the 1930s, but this term can still be used
largely intuitively. Laplace [1781] himself devised a formula for those probabilities
that a sum of “quantités variables” can assume. In 1829, Poisson developed approx-
imations to probabilities that the sum of the “values” (“valeurs”) that a (!) “thing”
(“‘chose”) receives in various independent experiments remains between certain lim-
its. Hauber [1830], likely motivated by Poisson, emphasized the difference between
“undetermined quantities” (“unbestimmte Gréen”) themselves and the “values”
that they each can receive with a particular probability. Chebyshev [1867; 1887/90]
clearly differentiated between “quantités” and the different “values” they can take,
but in his notation he usually made no distinction between these “random variables”
themselves and their concrete values. Nekrasov [1898] examined limit theorems
for probabilities that a sum of “random magnitudes”'® (“sluchainye velichiny”)
will take a given value. In his papers on the CLT around the turn of the century,
Lyapunov proceeded in a way very similar to Chebyshev. In error theory, however,
the prevalent practice in the 19th century was not to make a difference between
errors in the sense of random variables and their concrete values, neither in nota-
tion nor in the way of speaking. Before the backdrop of a parlance with origins in
the 18th century, it is therefore appropriate to speak of “random variables” when
discussing contributions of classical probability theory already, and not always to
explicitly distinguish between random variables and their values. This is likewise

19 Sheynin’s translation, see [Nekrasov 2004, 12].
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true for the use of terms like “estimated value” or “compensation value” in the
historical discussion of the method of least squares.

The term “‘variance,” which was presumably coined by Ronald Alymer Fisher
(see [Hald 1998, 461]), did not become widespread until after the Second World
War. The associated concept essentially traces back to the approximation of distri-
butions of sums of independent random variables in the tradition of Laplace, where
the variance appears as a coefficient of the first nontrivial term in series expansions,
and to the discussion by Laplace and Gauss regarding possible measures for quan-
tifying the mean variation of errors. If I were to use only the various names that
cropped up in the 19th century to account for variance or for particular fractions of
it, such as simply “factor” (Laplace), square of the “mean error” (Gauss) or “mean
of the squares of the differences of the errors from their mean” (“moyenne des car-
rés des différences des erreurs & leur moyenne,” Bienaymé), it would lead to an
inconsistent and complicated text. When it comes to establishing the mathematical
essence, the denotation “variance” will always be used. The same holds for the use
of “expectation.”

The modern short form Ax = d with A € R*", x € R™,d € R” is the simpli-
fied notation for systems of equations that are written as follows:

ax + by + cz +etc.=d
a'x + by + c'z +etc. = d’
a’x + b//y L'z +etc.=d"
etc.

This does not refer to the treatment of linear systems of equations in the sense of a
matrix calculus as became common in the 20th century only.?’

Having said that, my writing does very often include historical denotations which
are no longer conventional, mainly in instances when they represent consistent us-
age. This applies, for example, to the terms “error law” or “frequency law” for the
densities of observation errors or other consistent random variables. In accordance
with Gauss [1809, 241], a function ¢ was called an error or frequency law in the
19th century when ¢(x)dx signified the probability of an error lying between x and
x + dx.

The phrase “distribution function” is—even today—managed differently by dif-
ferent authors. In the years before World War II, we see the distribution function
V of a random variable in the sense of V(x) = P(X < x) (von Mises, Pdlya,
Lindeberg, Feller), V(x) = P(X<x) + %P(X =x) (Lévy)or V(x) = P(X <x)
(Kolmogorov). However, in practically all cases it is irrelevant which definition
was intended.?' Unless otherwise stipulated, I will be using von Mises’s interpreta-
tion of “distribution function.”

20 Farebrother [1999] provides a history of the theory of errors that gives special consideration to
the problems of linear algebra in the original notation.

21 One exception is the inversion formula for characteristic functions; see Sect. 5.2.3.4. Further-

“w_»

more, in some estimates it is necessary to consider whether a “<” or a “<” is correct.
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A chart of frequently used mathematical notations is located in the index of
acronyms at the beginning of this book. Many terms and abbreviations which are
not assumed to be generally known or whose usage is inconsistent are explained
when they make their first substantial appearance in the main text. References to
these explanations are contained in the “Subject Index” (in boldface).

The transliteration of Russian words is according to the Library of Congress
system (except that hard and soft signs are omitted).

1.6 The Prehistory: De Moivre’s Theorem

As has already been mentioned, de Moivre’s approximations to binomial distribu-
tions did not do justice to the universality that characterizes the CLT. For the sake
of completeness, but also to demonstrate what tremendous progress Laplace’s ap-
proximations of 1810 represented, de Moivre’s 1733 paper should be recognized as
a sort of “Oth chapter,” as it were, in the history of the CLT.

Abraham de Moivre (1667-1754) set himself the task of refining the main
theorem of ars conjectandi [1713] by Jakob Bernoulli, known today as “Bernoulli’s
Law of Large Numbers.” Specifically, Bernoulli had shown—in a derivation that is
still rigorous by today’s standards—that

lim P(lh, —p|<e)=1 Ve>0,
n—oo

if h,, represents the relative frequency of a particular event occurring with the prob-
ability p = £ (a,b € N) in a series of n identical and independent trials (see, e.g.,
[Stigler 1986, 67-69]). Bernoulli gave an estimate of n such that, for any assigned
O<n<land e = %—where b can be chosen to be arbitrarily large and thus ¢
to be arbitrarily small—the inequality P(|h, — p| < &) > n holds. Although this
estimate was better than those one infers today within the framework of a popular
elementary exercise involving the Bienaymé-Chebyshev inequality,” it resulted in
such considerable values for n, even if ¢ was relatively large, that an improvement
had to seem worth pursuing. Conversely, to answer the question of the value of
¢ for a predetermined n such that P(|h, — p| < e) is still sufficiently close to 1,
Bernoulli’s estimate could only deliver unrealistically large values for e. De Moivre,
who was interested in precisely this question, thus had to develop a far more precise
approximation to the binomial distribution than Bernoulli had achieved.

22 See the very illustrative examples in [Barth & Haller 1994, 71/70; 273/82] in which the minimum
values of n according to Bernoulli and Bienaymé—Chebyshev for p = % and various 7 and ¢ are
compared to each other.
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In a seven-page offprint>’ entitled Approximatio ad summam terminorum
binomii (a + b)" in seriem expansi, which was circulated among close friends
and students, and of which just three copies survive today (see [Schneider 1968,
295]), de Moivre concisely described his method for the special case of p = %: To
approximate the probability

v go-(1 )

that exactly [ ] + i “successes” Z will be achieved for a large number 7 of trials,
de Moivre first provided the approximations

(1) 2 (1372 i
B and log L1 —2= 13
2" W 21n BTy ( %] ( )

Tools to assist in making the approximations included the power series for log(1+x)
as well as the approximation to n! that today is named after James Stirling but was
actually developed jointly by him and de Moivre in friendly competition around
1730. From (1.3) follows

2 2
_217

e
V21n

If you like, this statement can be “translated” into the modern “local” limit theorem

Pz =53]+~

B(n; 2,k)«/2n7t "
2(k— ")2 -1,
2e” " =n

but we must not forget that de Moivre’s objective was not a hmlt theorem, and
certainly not a local one, but rather an approximationto P (|h,— | <e¢)and P(|Z—
[%] | < t). Furthermore, he did not have a concept at his dlsposal to adequately
match the idea of the exponential function. De Moivre approximated the probability
P(lZ-[5]1<n= i P(Z= [4] + i) according to

n 2 i2
PZ—[—] <) ~2 e 2
(1z-|5]1=0 Tm;
4 [tVn N
%\/—z_n e_zyzdyz\/% e 2ndx. (1.4)
0

23 An English translation of the offprint was later included, with minor amendments, in the second
edition of de Moivre’s textbook The Doctrine of Chances (1738). A reprint of the relevant passage
from the third edition (1756) of the Doctrine can be found in [Schneider 1988, 125-134]. For
in-depth discussions of de Moivre’s method, see [Schneider 1968, 292-300; 1995], [Stigler 1986,
70-77], and [Hald 1998, 17-21].

% In general, B(n; p;k) := (}) p*(1 — py"~*.



16 1 Introduction

In contrast to this modern representation and fully in the tradition of the Newtonian
form of the infinitesimal calculus, de Moivre indicated the exponential function
and the associated integrals only by series expansions. Partly by summation of the
first members of his series and partly with the help of approximative integration,
de Moivre on the basis of the integral “limit theorem” (1.4) arrived at values for
P(|h, — %l <eg)whene = ﬁﬁ, J%T’ and ﬁﬁ In this last case, a value of approxi-
mately 0.99874 resulted for the probability that was sought. Therefore, the question
of the required order of magnitude for ¢ with a predetermined probability of ~ 1
was answered by explicitly indicating numerical values at least for p = %

The fact that de Moivre’s approach was very cumbersome compared to the use of
Leibniz’s integral notation does not mean that his solution to the derivation which
Laplace [1812/20/86, 280-284] later provided using basically the same analytical
methods and which comes very close to the modern version, was inferior. More-
over, de Moivre made observations about the procedure for a general probability of
success p # % that, though incomplete, was basically viable.”

Probabilities for sums of independent random variables played a not insubstantial
role in the probability theory of the 18th century, as in problems involving games
of chance (e.g., with regard to sums of dice rolls) and in the field of the theory of
errors, which began to emerge around 1750. Using the method of generating func-
tions, a rudimentary form of which can already be found in the ars conjectandi and
which de Moivre substantially expanded around 1730 [Seal 1949, 209-211], it was
possible to establish formulae for probabilities and density functions of sums of
independent identically distributed random variables if the distribution of the indi-
vidual summands could be expressed by simple algebraic terms.”® However, even
with a number of random variables that was still fairly small it became impossible
to numerically and analytically evaluate the results obtained in this way. Although
Daniel Bernoulli succeeded in 1780 in introducing an approximation method that
was completely different from the de Moivrian approach (see Sect. 3.2.1), its scope
of application remained limited to binomial distributions and thus to distributions of
sums of two-valued random variables. In the 18th century, it was impossible to get
significantly beyond de Moivre’s “limit” theorems.”’

25 Schneider [1995] was able to reconstruct how de Moivre must have recognized that the
approximation for P(|h, — %| < ¢) (h, is the relative frequency of success in a Bernoulli process

with a success probability of % ) was equal to the approximation for P(|h, — p| < 2e «/p(1 — p))
(), is the relative frequency of success in a Bernoulli process with a success probability p). How-
ever, likely due to contemporary publication practices, de Moivre did not explicitly publish this
finding.

26 A detailed survey of the respective works from the 18th century can be found in [Sheynin 1973];
see also [Hald 1998, Chapt. 2].

27 This observation also applies to Lagrange’s approximation of the multinomial distribution

(ca. 1775), which was derived analogously to de Moivre’s approximation of the binomial, see
Sect. 3.3.2.4.



Chapter 2

The Central Limit Theorem from Laplace
to Cauchy: Changes in Stochastic Objectives
and in Analytical Methods

In 1812, Pierre-Simon de Laplace (1749-1827) published the first edition of his
Théorie analytique des probabilités (henceforth simply abbreviated by TAP).! With
its typical problems, stochastic models, and analytic methods this book would con-
siderably influence probability theory and mathematical statistics right until the be-
ginning of the 20th century.

Until Laplace and his successors, classical probability consisted mainly in the
sum of its applications to physical, social, and moral problems. However, as Laplace
already pointed out in the concise preface to the first edition of his TAP, probability
was also important for mathematics in a narrower sense. In many problems referring
to stochastic models depending on a large number of trials, probabilities could only
be expressed by formulae too complicated for direct numerical evaluation. Thus,
for a reasonable application of many of the results of probability calculus, partic-
ular considerations were needed to obtain useful approximations of the ‘“formulae
of large numbers.” In the aforementioned preface, Laplace called these problems
“the most delicate, the most difficult, and the most useful” of the entire theory.
He expressed his hope that discussion of these problems would catch the attention of
other “geometers.” Therefore, in addition to the qualitative feature of applicability,
which was characteristic for classical probability theory, a new, purely mathematical
aspect emerged: the relevance of specific analytical methods of probability theory.

Laplace had been intensely dealing with the “delicate problems” of probability
just described from the very beginning of his scientific career. In his 1781 “Mémoire
sur les probabilités,” one can already find “in nuce” almost all of the problems of
TAP, which can be roughly divided into two categories: “sums of random variables”

! For a description of the origin and the major contents of this book, see [Stigler 2005; Sheynin
2005b, 99-110]. An English translation by Richard Pulskamp of the second, probabilistic, part of
the TAP is available at
http://www.cs.xu.edu/math/Sources/Laplace/index.html.

H. Fischer, A History of the Central Limit Theorem, Sources and Studies 17
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-0-387-87857-7_2,
(© Springer Science+Business Media, LLC 2011
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and “inverse probabilities.”” The first category includes, for example, the a priori
probabilities of profit and loss in certain games of chance, or of the arithmetic mean
of observations being subject to random errors; the latter for instance deals with the
a posteriori probabilities that the ratio of the chances of a boy’s and a girl’s birth
is within a given interval centered around the ratio of the corresponding observed
values. By 1774, Laplace had already developed useful approximation methods for
those a posteriori probabilities depending on a large number of observations. He did
not succeed in adapting this method to a priori probabilities until 1810, however.
Only then, with a “tricky” modification of the method of generating functions, did
he achieve any usable results on approximations of probabilities of sums of indepen-
dent random variables, which, from the modern point of view, are subsumed under
the rubric of the “central limit theorem.” It was the CLT which considerably shaped
the contents and methods of the TAP and significantly influenced the development
of probability and error theory during the 19th century.

As we have already seen (Sect. 1.4), the history of the CLT, as far as the con-
tributions of Laplace and his successors are concerned, has already been studied in
fair detail. Therefore, a main focus in the present section will be on those questions
which still seem to be open: Which changes in the probabilistic and analytical con-
text of the CLT occurred between ca. 1810 and 1850; how did these changes come
about, and how have these changes influenced analytical style and methods in the
treatment of this theorem?

2.1 Laplace’s Central “Limit”” Theorem

As already noticed, Laplace’s CLT was the result of an almost forty years’ effort.
In the following, we will describe the historical development of Laplace’s treatment
of sums of independent random variables, his methods for finding appropriate ap-
proximation formulae, and the major applications of his finally achieved CLT.

2 Inverse probabilities are conditional probabilities P(H|B) for certain “hypothetic” causes H
which may have entailed the observed results B. (P(H | B) is considered as “inverse” to P(B|H).)
The probabilities P(H |B) can be interpreted as if they quantify conclusions from an observation
B to its causation H “a posteriori.” If there are n possible causes H; (j = 1,...,n), and if the
P(H;) are known, then, by virtue of Bayes’s formula:

P(B|Hy)P(Hy)
Y= P(BIH;)P(H,)’

P(Hi|B) = k=1,...,n.

Since the probabilities P(H;) are unknown in most cases, one is often forced to the “subjective”
assumption of the H; being equiprobable. If, conversely, a certain probability distribution is—
more or less arbitrarily—presupposed, then any probabilities derived therefrom can be interpreted
as “a priori probabilities.”
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2.1.1 Sums of Independent Random Variables

Sums of independent random variables had played an important role in Laplace’s
probabilistic work from the very beginning.® In this context, the problem of calcu-
lating the probability distribution of the sum of angles of inclination, which were
assumed to be determined randomly, as well as the related problem of calculating
the probabilities of the deviations between the arithmetic mean of data which were
afflicted by observational errors and the underlying “true value,” became especially
important. In one of his first published papers, Laplace [1776] had already set out to
determine the probability that the sum of the angles of inclination of comet orbits (or
the arithmetic mean of these angles respectively) is within given limits. He assumed
that all angles, which had to be measured against the ecliptic, were distributed ran-
domly according to a uniform distribution between 0° and 90° (and also tacitly
presupposed that all angles were stochastically independent). Laplace succeeded in
calculating these probabilities for an arbitrary number of comets via induction (with
a minor mistake which was subsequently corrected in [Laplace 1781]). In this 1781
paper, Laplace even introduced a general—however very intricate—method, based
on convolutions of density functions, in order to exactly determine the probability
that a sum of independent random variables (“quantités variables,” as Laplace put it)
was within given limits.* In the most simple case, each of the n variables had the
same rectangular distribution between 0 and /. For the probability P that the sum
of those variables was between a and b with 0 < a < b < nh, Laplace obtained (in
modern notation)

1 iy i - M ; .
P=o— |\ 2|, |V o=y =3 | D @i | @)

i=0 i=0

where N = min(n, [%]) and M = min(n, [;]). Formulae of this kind were too
complicated for a direct numerical evaluation if the number of random variables
exceeded a relatively small value. The arithmetic mean of the actual observed an-
gles of inclination of the then known 63 comets was 46°16’. Through the use of
(2.1) alone, Laplace was unable to address the hypothesis that the comets’ planes
of motion resulted at “random.” At this stage of his mathematical work, however,
Laplace could not develop usable approximations.

3 For a comprehensive biography also dealing with Laplace’s probabilistic work, see [Gillispie
1997]. Detailed discussions of Laplace’s contributions to probability and statistics can be found
in [Sheynin 1976; 1977; 2005b; Stigler 1986; Hald 1998]. The web site already referred to in
footnote 1 contains English translations of most works in probability theory by Laplace.

4 See [Sheynin 1973, 219 f.] and [Hald 1998, 56-60] for descriptions of this method.
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2.1.2 Laplace’s Method of Approximating Integrals,
and “Algebraic Analysis”

Beginning with his “Mémoire sur la probabilité des causes” [1774], Laplace devel-
oped techniques for approximating integrals depending on a “great number,” such
as, for example, the Gamma function I'(s+1) = fooo e *x%dx with the “great num-
ber” s. The basic idea of this “Laplacian method of approximation” is as follows:
Let the integrand f(x) depend on a very large parameter such that the function f
has a single, very sharp peak, with the consequence that appreciable contributions
to the entire integral result only from a small interval around this maximum. Then it
can be expected that the function f is asymptotically equal to a function of the form
f (a)e_“(x“‘)zk + (@ > 0) if f attains its maximum at x = . Based on this idea,
the Laplacian method consists of appropriate series expansions around the abscissa
of the maximum. In the case of the Gamma function, Laplace started with

o0 o0
's+1)= / e *x’dx = / e (7 4 5)%dz.
0 —s
The maximum M = e °s® of the integrand is attained at x = s, or equivalently
z = 0. Laplace [1785, 258 f.; 1812/20/86, 128—131] set
e e (z+s) = Me @

and expanded 12 = —log(e *(1+42z/s)*) into a series of powers of z. Conversely, he
also expanded z into a series of powers of ¢, and obtained the following expansion
after transforming the variable of integration from z to ¢:

® 41 12
's+1)=M e A2 1+ + — 4 )dt
—oo s

3/2s 6
1 1
=125 o (1 + — ) @2
S n(+12s+288s2+ ) @2)

For many probabilistic formulae, Laplace’s method of approximation worked ex-
tremely well. For the problem of sums of (independent) random variables, however,
it was only at a rather late stage of his mathematical work that Laplace developed
techniques based on which suitable approximations could be deduced.

In the above-mentioned article of 1774, Laplace treated approximation problems
in an analytical style closely related to that of Euler. Laplace discussed the behavior
of the peak with an “infinitely large” parameter, carefully considering “infinitely”
large or small quantities. In his later work, however, he abandoned the “Eulerian”
style of calculating with infinite quantities of different gradations and, influenced
by Lagrange’s algebraic analysis, developed a special algebraic-algorithmic style
dealing primarily with formal series expansions, as we have just seen in connection
with the Gamma function. Laplace’s deduction of the CLT was likewise written in
this style.
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2.1.3 The Emergence of Characteristic Functions
and the Deduction of Approximating Normal Distributions

Laplace for the first time exemplified his approach to the CLT in the “Mémoire
sur les approximations des formules qui sont fonctions des trés grands nombres
et sur leur application aux probabilités” [1810a]. Crucial for this success in
approximating distributions of sums of independent random variables by normal
distributions was his modification of generating functions. Let me demonstrate the
essentials of his approach to the CLT’ in the special case of identically distributed
random variables X, ..., X,, which have zero means and which take the val-
ues % (m a given natural number, k = —m,—m + 1,...,m — 1,m) with the
respective probabilities pg.° For the calculation of the probability P; that Y ;_; X;
has the value # (—nm < j < nm), Laplace made use of the generating func-
tion T(t) = Y p__,, prt®. Due to the mutual independence of the X;’s—which
was usually only tacitly presupposed by Laplace—P; is equal to the coefficient
of t/ in [T(¢)]" after carrying out the multiplication. The direct execution of this
method—its general principle going back to de Moivre, see [Seal 1949]—Ieads at
best to very complicated algebraic terms for P;. Laplace, however, introduced the
trick of substituting the variable # by e (i = +/—1). Thus, he introduced the (now
so-called) characteristic functions in a special case.
From
1 T

— | e e dx =6, (t,s€7Z) (2.3)
2n J

it follows that "

| L e
P(j)=— e ¥ e’ dx.
) =5 /_ ) > &
k=—m

The last integral above was at least formally accessible to Laplace’s method of

approximation. There was, however, a certain modification necessary, as Laplace

did not consider an expansion of the whole integrand around its maximum at

x = 0, but only of the power with exponent n (equal to the characteristic function).
By expanding e** into powers of x one gets

3> The most important sources for Laplace’s treatment of the CLT are [Laplace 1810a; 1811], and
the fourth chapter of the TAP.

6 The following explanation differs, as far as terminology and further details are concerned,
from Laplace’s exposition. Unlike Laplace, we only consider, for the sake of simplicity, ran-
dom variables with values within the interval [—1; 1]. For paraphrases in Laplace’s original style
see [Sheynin 1977, 10-16] and [Fischer 2000, 29-33]. Hald [1998, 303-317] gives a thorough
account on Laplace’s analytical approach to the CLT.
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P(j) = : / _Ux|: Z pkelkx:| dx

k=—m

L k2 2 ix? !
=5 JX[Z pr(l + ikx — 6 +:| dx.

k=—m
Taking into consideration that )¢, pek = 0, and with the substitution m>0” =
> h—_m Pkk?, we obtain

1 " 2,.2.2 n

P(j) = _/ [ Mo s a

21 J_n 2

where A is a constant depending on Yy _,, pxk?>. The formal expansion of
2.2.2

n
log[l_g_mu..} —logz

into a series of powers of x leads to

2.2 .2
mo-nx .
logz = T A4
2
and therefrom to
_W12L72nx2 s 3. mzazn‘c
z=¢e 2 Anc e — o~ (1 —iAnx® +---).

After transforming the variable of integration according to x = % the result is

1 (W i w2022 idy?
P(j) = e /VieTT 2 (1— +~~-)dy.
2n/n ) —nyn Jn

For an approximation with a “very large” n we ignore, like Laplace, all series terms
with a power of /s in the denominator, and at the same time, set the limits of
integration equal to +oo. In this way we get

00 —iiL m202y2
e “Vrne 2 dy,

1
P(j) ~
() i )

where the last integral is, as Laplace showed in different ways, equal to

1 L
e 2m202n. (2.4)
2mn
Summing up (2.4) for # € [r1+/n; r2+/n], which can be approximated by integra-
tion (dx ~ ﬁ), leads to the result
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1 __J%_
P(mﬁiZXz < rp/n) & Z Y o
j€lmry/msmra./n] moN.nn

w2 o] a2
o / ——¢ 2m202(dx = / e 202 dx,
mry MO 21 rr o« 21

which corresponds to the integral form of the CLT. With only one exception (see
Sect. 2.1.5.3) Laplace dealt with independent identically distributed and bounded
random variables with densities.” To this aim he at first considered the range of
values of those random variables discrete (as described above), and then he assumed
m “infinitely large.”

Nowhere in his work did Laplace state a general theorem which would have
corresponded to the CLT in today’s sense. He only treated particular problems con-
cerning the approximation of probabilities of sums or linear combinations of a great
number of random variables (in many cases errors of observation, see Sect. 2.1.5.2)
by methods which in principle corresponded to the procedure described above.
In modern notation, Laplace’s most general version of the CLT [Laplace
1812/20/86, 335-338] was as follows: Let €1,...,€, be a large number of in-
dependent errors of observation, each having the same density with mean p and
variance 02. If A1, ..., A, are constant multipliers and @ > 0, then

n
24
j=1

The special case of a CLT for the binomial distribution Laplace [1812/20/86,
280-284] on the basis of Stirling’s formula treated in a particular section of his TAP
by methods which are in principle due to de Moivre and still employed in modern
textbooks.

n
P ij(ej—u) <a

2 [ a2
~ / e 20%dx.  (2.5)
j=1 0

- oA/2T

2.1.4 The “Rigor” of Laplace’s Analysis

From Laplace’s point of view, approximating an analytical expression depending on
a great number n meant transforming it into a series expansion with terms whose
order of magnitude decreased sufficiently fast with increasing n. The greater the
number of calculated terms and the faster these terms decrease, the better the ap-
proximation. Laplace did not determine absolute or relative errors of approxima-
tions, but instead put his trust, according to the leitmotif of algebraic analysis, in the
power of series expansions.

In the case of Laplace’s CLT, the series terms seem to decrease with ascending
powers of JLE (or even of % if the individual random variables have a symmetric

distribution). Apparently, it was Laplace’s point of view to trust in the quality

7 Laplace [1810a, 326 f.; 1812/20/86, 313 f.] hinted, though in a quite vague manner only, also at
the possibility of analogous considerations concerning unbounded random variables.
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of his approximations already because of those decreasing series terms. In the
Essai philosophique sur les probabilités, whose first edition appeared in 1814 and
served as a “popular” introduction to the Théorie analytique, Laplace [1814/20/86,
XXXIX] wrote of his approximations:

(...) the series converges the faster the more complicated the formula is, such that the
procedure is more precise the more it becomes necessary.

However, some authors did, if rather rarely, object to Laplace’s specific approach
to approximations. A first hint came from Adrien Marie Legendre as early as 1811.
In his Exercises du calcul intégral [1811, 290 f.] he discussed the approximation
formula

\/ﬁnn+1/2 Zm:

exp(E(n)), E@m)= (2.6)
exp(n)

— 2k(2k 1)n2k 1
which can (with slight modifications) be traced back to de Moivre and Stirling
around 1730 (see [Schneider 1968, 266-276]). The B, are the (Jakob) Bernoullian
numbers; Leonhard Euler had already shown in 1739 that, from a certain index,
these numbers grow faster than any geometric sequence [Schneider 1968, 276]. But
only Legendre clearly addressed the divergence of the series E(s) and the result-
ing difficulties for its analytical treatment. Laplace’s series (2.2) was, as apparent
from its first terms, equivalent to (2.6). (An exact proof for the equality of both se-
ries expansions, however, was not given during the 19th century.) From Legendre’s
description [1811, 343-348] of Laplace’s account it became therefore plausible
that the Laplacian method of approximation could lead in the general case to (in
Legendre’s own words) “semi-convergent expansions” only. Thus, for critical math-
ematicians, Laplace’s treatment of the CLT became suspicious as well. How could
it be justified neglecting series terms of “higher order,” if the series was possibly
divergent?

In 1844, Robert Leslie Ellis tried to discuss Laplace’s reasoning regarding the
CLT in a modified form (see [Hald 1998, 333-335]). He also explicitly analyzed
the example of mutually independent random variables with the common density
function f(x) = %e_‘x‘. Referring to his—only quite formal-—manipulations with
series expansions in treating this particular case, he wrote at the end of his explana-
tions [1844, 215]:

But some doubt may perhaps remain, whether such an approximation to the form of the

function P [the probability to be approximated], if such an expression may be used, is also
an approximation to its numerical value (...)

A similar assessment of Laplace’s series expansions was given by Cauchy in
[1853g’] (see Sect. 2.5.6).

In 1856 Anton Meyer® submitted a proof of the CLT in the special case of two-
valued random variables to the Academy in Brussels. Meyer’s proof was not based

8 Meyer was the author of a rather influential treatise of probability and error theory [Meyer 18741,
which was also translated into German [Meyer 1874/79] and constitutes an important source for
the state of the art at the beginning of the last quarter of the 19th century.
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on the usual procedure which can be traced back to de Moivre, and which had also
been elaborated in Laplace’s Théorie analytique. He instead used Laplace’s modifi-
cation of generating functions. There exists a brief report by Jean Baptiste Brasseur
on Meyer’s article (which itself seems to have been lost). Brasseur [1856] hoped
that Meyer’s method would lead to a more exact discussion of the neglect of the
“terms of higher order of smallness.” Meyer’s paper was accepted for publication,
however on condition that a better examination of the “convergence of the series”
be made. The publication failed, Meyer died the following year.

2.1.5 The Central Limit Theorem as a Tool of Good Sense

The examples of Ellis, Cauchy, and Meyer show that, in the middle of the 19th cen-
tury, Laplace’s methods of deducing approximative normal distributions for sums
of random variables were considered to be unrigorous by some authors. Such crit-
icism was quite rare, but this was in part due to the status of probability theory
within mathematics during the 19th century. As Lorraine Daston [1988] explained,
probability theory, at least until the middle of the 19th century, was not a disci-
pline of mathematics in a narrower sense, but rather part of a “mathesis mixta.” The
value of probabilistic research was determined less by internal mathematical cri-
teria, but rather by the quality of its application to “real” situations. Laplace’s CLT
met the latter point in an excellent manner. The results of all applications of this the-
orem matched with “good sense” and thus confirmed Laplace’s well-known saying
[1814/20/86, CLIII] that

Basically, probability is only good sense reduced to a calculus.

We shall test this claim with three prominent applications of CLT: the comet prob-
lem (already mentioned above), the problem of foundation of the method of least
squares, and the problem of risk in games of chance.

2.1.5.1 The Comet Problem

In 1810, Laplace could base his examinations of the “randomness” of the orbits of
comets on the observation of 97 comets. Under the hypothesis of a uniform dis-
tribution for the angles of inclination between 0 G and 100 G (centesimal degrees,
corresponding to 0° and 90°) and with aid of the CLT, he calculated the probability
that the arithmetic mean of all angles falls within a certain interval around “50 G.”
The mean of the observed values was 51.87663 G, and thus Laplace considered the
interval [50 G — 1.87663 G; 50 G + 1.87663 GJ. The probability of this interval was
only around 0.5. Therefore, there was a considerable probability that, presupposing
a uniform distribution, the mean of all angles deviated from 50 G even more than the
observed mean. Laplace [1810a, 316] followed that there did not exist any “primi-
tive cause” which affected the specific positions of comet orbits. Thus, Laplace, by
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using probabilistic methods, succeeded in confirming the prior assertion of Achille
Pierre de Séjour (stated in Essai sur les cométes 1775) which he had already referred
to in his first pertinent contribution [Laplace 1776, 280].

In contrast, an analogous calculation regarding the 10 planets (and planetoids)
known at that time, which could be carried out with the “exact” formula (2.1) of
1776/1781, showed that the position of their orbits depended on a common “cause”
[Laplace 1810a, 307 f.]. Such considerations were important regarding the currently
so-called Kant-Laplace nebular-hypothesis. Stigler [1986, 137 f.] and Hald [1998,
303-306], both referring to the first, although very specific and purely algebraic, ap-
plications of the tricky substitution t* = e* V=T in generating functions discussed
by Laplace in [1785, 267-270], maintain that Laplace had already discovered “his”
CLT by the 1780s. However, the relevance of this theorem for astronomical issues,
intensively studied by Laplace between 1785 and 1810, was likely to have led to the
publication of pertinent results as soon as possible. Thus, Laplace presumably did
not develop his method for deriving approximate normal distributions for sums of
independent random variables much earlier than around 1810.

The problem whether orbits of comets and planets depended on “primitive
causes” was only one of several opportunities when Laplace searched for “regu-
lar causes” in nature. Other examples, treated similarly as the comets and planets
issue, such as the daily changes of air pressure between mornings and evenings, or
the slight deviations to the east during the free fall of bodies, can be found in the
fifth chapter of Laplace’s TAP.”

2.1.5.2 The Foundation of the Method of Least Squares

The most prominent application of the method of least squares'” during the 19th
century was as follows:

Letd; (i=1,...,s) be observed values, a;; (j =1,...,t, t <s) given coefficients,
and §; “elements” to be determined such that

t
di+e,-=Zaij§j (iZl,...,S), 2.7
j=1

where the ¢ are unknown, mutually independent errors of observation. Laplace
named the equations (2.7) “equations of condition” (“equations de condition”).
The problem was to estimate the &; as precisely as possible after observing the d;.
According to the method of least squares, first published by Legendre in 1805, esti-
mators x; for the §; can be obtained by virtue of the principle

° For a survey of the pertinent work of Laplace see [Hald 1998, 431-443].

10 There exists a good deal of historical literature on the method of least squares. For detailed
discussions of the error theoretic development during the 18th and 19th centuries see [Stigler
1986; Hald 1998; Farebrother 1999]. The most important original sources can be found (mainly in
German translation) in [Schneider 1988].
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N

t
Z di — Z ajjXj = min, (2.8)
j=1

i=1

from which the ¢ equations

K t K
Zzaikaijxj = Zaikdi (k=1,...,1)

i=1j=1 i=1

follow. Thus, the method of least squares belongs to those methods which combine
the equations of condition after setting ¢; = 0 linearly to a new system of ¢ equa-
tions in ¢ unknowns. In modern matrix-notation, this means: Given the system of
equations of condition

d+e= At

for the vector of unknown elements § = (&, ..., S,)T with
A= (a;) eRY (s>1),d =(d,....d)T, e = (e1,...,¢)7,

the goal is to find a system of “multipliers” B € R** such that the vector of solutions
x of the equation system
Bd = BAx

is in a certain sense “optimal” with regard to the “true” &. Choosing B = AT, one
gets exactly the same values for the coordinates of x which result from the condition
(2.8), that is, from the method of least squares.

In the special case of “direct observations” of one single element &, that means,
in the case where the equations of condition have the particular form

di+e¢=¢ (=1,...,5),

the method of least squares yields the arithmetic mean x = ) ;_, d;/s as an esti-
mator for £. This property rather frequently played an important role in foundational
discussions on least squares during the 19th century.

Legendre [1805] had only given an intuitive justification of least squares, which
did not use any probabilistic arguments. In 1809 Carl Friedrich Gauss succeeded
in showing that the least squares estimators x; according to (2.8) are equal to the
estimators meeting the condition of being “most probable,” a condition which is now
called the “maximum-likelihood-principle” (see Sect. 3.1). For this justification of
giving preference to the method of least squares, Gauss presupposed that the errors
of observation were identically normally distributed (with expectation 0).

The joint occurrence of normal distributions in Gauss’s argument and in
Laplace’s CLT possibly motivated the latter to give a new foundation of least
squares in the case of a large number of equations of condition (see [Stigler 1986,
143] for a discussion of this “Gauss—Laplace Synthesis”). Laplace [1811] showed
that the method of least squares was “optimal” according to certain criteria, which
suggested to him calling this method later, in the TAP, the “most advantageous.”
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If one takes the recapitulating description in the Essai philosophique (the
introduction to the TAP) as a standard, the “most advantageous” method was,
according to Laplace [1814/20/86, LXII], the method in which “one and the same
error of the results is less probable than with any other procedure.” A sensible
translation of this sentence into modern mathematical language is: the estimator x’
for a true value £ according to the “most advantageous” method has, in comparison
with all estimators x” obtained by competing methods, the following property:

P(§—x'| >a) < P(|E—x"| > a)foralla > 0. (2.9)

Laplace (e.g., [1812/20/86, 348]) claimed to have proven that the method of least
squares would be, in this sense, the “most advantageous,” at least among those meth-
ods which combine a large number of observational equations linearly into a set of
equations with (if possible) a uniquely determined system of solutions.

In his foundation of the method of least squares, Laplace [1811, 387-398;
1812/20/86, 318-327] treated first the simplest case of equations of condition with
a single element &:

aé=di+ea,...,a56 =ds+ ¢

(a; given coefficients, d; observations, ¢; mutually independent errors with zero
means). Laplace estimated £ in the form

_ iz bidi
i1 biai’

bi,...,bs being indeterminate constants at first. The difference between the true
value £ and the estimator x became therefore

Yi=1bici
Yi=1biai

In order to determine the “most advantageous” multipliers b;, Laplace tried to cal-
culate the probability law for linear forms ) ;_; b;€;, s being a great number. For
each error he assumed the same symmetric density function which vanished beyond
a bounded interval. In his work of 1810 Laplace had already deduced an approxi-
mating normal distribution for the sum of a large number of identically distributed
errors, a result which at first served only for a rather theoretical discussion of arith-
metic means. Now, Laplace used an analogous analytical approach to the linear
combination, with the following result (represented in modern notation):

o@/

E—x = (2.10)

UZZbZ

P(—r/s <) bie <ris) ~



2.1 Laplace’s Central “Limit” Theorem 29

o2 being the variance common to all errors. Setting /s = co,/2 bl.z, Laplace

for £ — x according to (2.10) deduced:"!

co,/23 b?
< Lo

[ > aibi]

co /2> b?

[ > aib;]

2 ¢ 2
T Jo

Laplace now proceeded, without giving any explanations, as if the approximation
(2.11) was, presupposing a large number s, even exact. This was one of the crucial
points of his foundation of least squares. As we will see below, Cauchy’s criticism
of exactly this point would later become a major motivation for his own “rigorous
proof” of the CLT. Also Gauss, at several places of his work, critically pointed out
that, strictly speaking, Laplace’s argumentation was only valid for the unrealistic
situation of an “infinitely large” number of observations. >

On the basis of the assumption of an exact normal distribution, Laplace required
that one choose the multipliers b; according to the condition that for any probability

V2 b?
level (depending only on ¢) the “limits of error” + CC\IZTZbIl should be minimal. Be-

> biei
> a;ib;

P ‘ | — x| <

cause the modulus of these limits is minimal if and only if b; = ka;, with constant
k # 0, this condition in fact leads to the least squares estimator x = % The

criterion of “minimal limits” is equivalent to condition (2.9), which was di’scussed
only in Laplace’s Essai philosophique.

Laplace [1811, 401-409; 1812/20/86, 327-332] also tried to apply his reasoning
to the simultaneous treatment of more than one element. To achieve this, he devel-
oped a rudimentary form of the multidimensional CLT, from which he, however,
passed on to a one-dimensional consideration. A truly complete multidimensional
solution of this problem, by an explicit consideration of confidence ellipsoids, was
only reached by Bienaymé [1852]. Presupposing mutually independent errors of
observation €1, ..., €,, each having the same density f with mean 0, Bienaymé
by further developing Laplace’s techniques derived a series expansion for the den-
sity p(t) of the multi-dimensional linear combination A := Y ;_, a;¢; with fixed
a; € R! (¢ <n). His result was equivalent to

t
Y apyw | (1-R(1)),

Jik=1

® 1 1
pr)=——F——exp| =
(2m) 20! N 202

' Tn order to deduce the following approximation, Laplace in his TAP would have been able to
apply equation (2.5), which was even derived for errors with an asymmetrical density, if he had set
w=0,a=co~2 andA; = b;/ Y a;b; there. As the TAP was largely a compilation of earlier
work, he simply copied the argumentation from his 1811 paper, which was based on symmetric
errors. And only in the subsequent section of the TAP did he establish the relation (2.5), however
without any comment on its possible use for discussing least squares.

12 See, for example, [Gauss 1821, 99; 1823, 18].
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where o2 denotes the variance common to all errors, (a jk) the inverse matrix of
(Aig) € R with A;y = Y7 _, ariayg,'> N? the determinant of the matrix (A;y),
and R(7) an infinite series of terms, each depending on moments of f'* and tending
to 0 asn — oo (see [Heyde & Seneta 1977, 66-71; Hald 1998, 501-504]).

By around 1810, several methods of dealing with observational data were avail-
able, but the method of least squares was apparently the most useful in the general
case. Thus, it was reasonable to champion least squares even without a probabilis-
tic discussion. Yet the CLT “proved” that, at least under “natural” assumptions, this
method was superior to other procedures. From Laplace’s point of view, his asymp-
totic discussion of least squares completely confirmed the established opinion of
astronomers and geodesists. Thus, on the one hand, his CLT was a tool of good
sense, and its rigor was not to be scrutinized. On the other hand, it became plausible
that, in the time after Laplace, critical discussions of the superiority of least squares
also questioned the validity of the applied normal approximations, and thus of the
CLT itself.

2.1.5.3 Benefits from Games of Chance

As a general rule, Laplace considered independent identically distributed random
variables with densities. A rare exception from this rule can be found in his dis-
cussion of the “benefits depending on the probability of future events” (chapter IX
of TAP). Laplace [1812/20/86, 428—432] dealt with a particular sequence of games
with only two outcomes for each single game: “gain” and “loss.” He assumed that
the respective probabilities of gain and loss were possibly different from game to
game. According to these assumptions, Laplace based his analysis on a large number
s of single games (tacitly considered as being independent) with results X1, ..., X,
where each X; could take the values v; (gain) and —u; (loss) with probabilities g;
and 1 — g;, respectively. Proceeding in a way analogous to his treatment of sums of
observational errors, he achieved the result that

P (‘Z X; — Z(t]ivi - _CIi),ui)) < r\/22q,~(1 —qi)(vi + ,ui)z)

2 /r 4t
~— | e :
vr Jo

Laplace argued that Y (g;v; — (1 — ¢;);) was of the order of magnitude s if each
summand was “a little” greater than 0, whereas r\/2 > qi(1 —qi)(vi + ui)? was
of the order /s only. Therefore, for arbitrarily large » > 0 and sufficiently large s,
even

Z(t]ivi — (1 =gi)ui) — 7‘\/2 Z%’(l —qi)(vi + wi)?

B, designating the i-th coordinate of the vector «; .

14 Bienaymé explicitly calculated those terms which depend on moments up to the 4th order.
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became greater than 0."> Laplace followed that an “infinitely large and certain” total
gain would be accumulated if only g¢;v; — (1 —¢;)p; > Oforall 1 <i < s. By
this application of the CLT, Laplace provided the basis for a theory of risk, which in
turn would even play an important role in the history of the CLT during the 1920s
(see Sect. 5.2.8.1).

2.2 Poisson’s Modifications

Among all contributions of the 19th century in connection with Laplace’s CLT aim-
ing at a more comprehensible presentation or at modifications of the Laplacian
methods according to contemporary analytical standards, the two approaches [1824;
1829] by Siméon Denis Poisson (1781-1840) had a special influence on the contri-
butions of later authors. Poisson shared Laplace’s view on the status of probability
theory in the classical sense.'® Concerning moral problems, however, Poisson gen-
eralized Laplace’s stochastic models to a considerable extent, and he did not share
Laplace’s cautious attitude toward these issues. Poisson’s idea of all processes in
the physical and moral world being governed by distinct mathematical laws is in
line with his attempts toward a more exact mathematical analysis. Accordingly, the
consequences for CLT were twofold: Firstly, Poisson formulated and proved this
theorem generally for “choses,” thus creating an early concept of random variables,
and secondly, he tried to discuss the validity of this theorem, mainly through coun-
terexamples.

2.2.1 Poisson’s Concept of Random Variable

In the first [1824] of the above-mentioned articles, Poisson treated sums and linear
combinations of observational errors with different (not necessarily symmetrical)
distributions, followed by a discussion of the Laplacian foundation of least squares.
In the second article of 1829, he took up the issue from a far more general point of
view. There, Poisson investigated asymptotic behavior of the distribution of a sum
of functions (!) of the values of a “thing” (“chose”), where in several independent
experiments these values were obtained with possibly different probabilities. The
additional complication of considering a “function” essentially served to cover both
sums of random values and of powers of these values within the same theorem. From
today’s point of view, all these quantities would plainly be described as random
variables. Thus, Poisson’s concept of the values of a “thing” was directed primarily

15 Apparently, Laplace tacitly assumed the existence of positive constants a, b such that g;v; —
(1 —gi)p; > aand (v; + p;)> < b foralli.

16 Poisson’s work in probability is well described in [Sheynin 1978; Bru 1981; Hald 1998; Sheynin
2005b].
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toward the most important applications, and was still far away from the modern
conception of abstract “random variable,” as explained by Kolmogorov [1933a].!”

2.2.2 Poisson’s Representation of the Probabilities of Sums

In his discussion of sums of independent random variables, Poisson normally as-
sumed that each variable X, took values within the interval [a; b] (—a and b could
be even infinitely large) and had a density function f;, which was introduced by
fa(x) = F,(x), where F,(x) = P(X, < x).In a manner similar to Laplace’s ap-
proach, Poisson started his analysis with discrete random variables. Unlike Laplace,
however, he did not consider probabilities of single discrete values but immediately
calculated, partly through combinatorial considerations, the probability that the sum
Ss = X1 + --- + X would be within certain limits. Through the strict use of in-
finitesimal quantities in the transition from discrete to continuous random variables,
he [1829, 5; 1824, 275; 286] established the formula

Plc—e<S;<c+ye)

1 o0
IR /_oo
The justification of this formula was incomplete, even from a contemporary point

of view. But Poisson [1824, 276] examined the validity of (2.12) in the special case
s = 1. By interchanging the order of integration he concluded from (2.12) that

s b
/ Jn (x)e‘”ﬁdx> eocv=1 sin(ea) afx—a. (2.12)
1 a

n=

1 b [ d

Plc—e<X;  <c+e)=— / / (e<x—c)w 1 sin(soz)—a) fi(x)dx. (2.13)
TJe Jooo o

By virtue of the addition theorems for sine and cosine, and the well-known for-

mula'® —
/ k) 2T k0,
0 X 2

he showed that

Oforx €c—e;c+e¢]

—0o0

o0 N
/ e(x_c)“ﬁsin(ea)d—a - % mfor xele —eic+ e (2.14)
o

17 Poisson’s approach to random variables was taken up and further developed soon afterwards by
Carl Friedrich Hauber [1830], in his “Theorie der mittleren Werthe” (“Theory of Mean Values”), in
an interesting attempt to develop a concept of far-reaching generality for random variables, which
were named “unbestimmte Grofen” (“indetermined quantities”). Many properties of expectations
and variances of sums or products of independent random variables which today belong to the
standards of each elementary theory of random variables, were explicitly stated and proven for the
first time by Hauber.

18 For a history of this formula, which can be essentially traced back to Euler and still plays an
important role in several branches of analysis, see [Fischer 2007].
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The required result

c+e
P(c—e§X15c+8)=/ £ ()
c—¢&

followed immediately from (2.13) and (2.14). In turn, it must have been within
Poisson’s scope to establish (2.12) by means of (2.14), even in the general case
of arbitrary s. But only Dirichlet and Cauchy, as we will see below, directly used
the jump function in (2.14) for elegant derivations of formulae equivalent to (2.12)
for the probabilities of sums. Dirichlet at least was most probably motivated by
Poisson’s discussion of (2.13) and (2.14).

Dealing with the general case, Poisson set

b b
/ Jn(x) cos(ax)dx =: pp cos @y, / Jn(x) sin(ax)dx =: p, sing,, (2.15)

and
R:=p1-ps, Y:i=¢1+ -+ ¢s. (2.16)

Using R(—a) = R(«) and ¥ (—«) = —y(«), he concluded from (2.12):
Plc—e<S;<c+¢)= %/ Rcos(l//—ca)sin(soc)c%. (2.17)
0

In his article of 1824, Poisson dealt with the case of an “infinitely large” s by cal-
culating with infinitely small and infinitely large quantities. In his article of 1829,
however, series expansions constituted the analytical background for an approxi-
mation with “large” (but not infinite) s. Afterwards, Poisson apparently preferred
the second version (described in detail by Hald [1998, 317-327]), which was also
adopted into his major probabilistic work, the Recherches sur la probabilité des
jugements en matiere criminelle et en matiére civile [1837].

2.2.3 The Role of the Central Limit Theorem in Poisson’s Work

As we will see in the following, Poisson’s work on the CLT was based on Laplace’s
ideas on the one hand; on the other hand, however, Poisson’s discussion of new
analytical aspects paved the way toward a more rigorous treatment of the CLT.

2.2.3.1 Poisson’s Version of the Central Limit Theorem

Poisson’s results concerning the CLT can be summarized in modern terminology
essentially as follows:

Let X;,..., X, be a great number of independent random variables with density
functions which decrease sufficiently fast (Poisson did not specify exactly how fast)
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as their arguments tend to £ oo. It is supposed that for the absolute values p, («) of
the characteristic functions of X, (see (2.15)) there exists a function r () indepen-
dent of n with 0 < r(«) < 1 for all @ # 0 such that

pn(a) < r(a). (2.18)
Then, for arbitrary y, y’,

’

s _ Y
Ply=< Yn=1(Xn —EXy) <y |~ L/ e du.,
V25— VarX, v

Vr
where the approximation becomes all the better the larger s is, and the difference be-
tween the left and the right side becomes “infinitely small” with “infinite” s. Strictly
speaking, Poisson’s analysis could be used for arbitrary y, y’, though he explicitly
expressed end results in the sense of (2.19) only for the special case y = —y’ < 0.
Poisson was convinced that this CLT was also valid for discrete random vari-
ables. In this case one could, according to Poisson [1837, 274 f.], assume that the

(2.19)

values cq, ..., c, of a random variable of this kind were subject to the respective
probabilities yq, ..., y, which were represented by y; = cc,i:ss f(z)dz with an
1

“infinitely small” quantity § and a “discontinuous” density function f.'

As with Laplace, the CLT for Poisson was an important tool of classical probabil-
ity, but not an autonomous mathematical theorem. Unlike Laplace, however, Pois-
son pointed out essential presuppositions “en passant,” such as the above-mentioned
condition (2.18) for characteristic functions, and he discussed counterexamples to
an overall validity of asymptotic normal distributions for sums. The most promi-
nent of these counterexamples [Poisson 1824, 278] concerns the sum of identically
distributed random variables with the probability density

1

SO = wivay

for which the direct evaluation of (2.12) shows that

1 2es
P(C—Ef ZXn §C+5) = Earctan(sz_i_c—z_sz).

Therefore in this case, even for large s, an approximate normal distribution can
not be reached. Poisson [1824, 280] pointed out, however, that such cases of very
slowly decreasing densities would not occur in practice, because all errors of obser-
vation were uniformly bounded in reality. Random variables with the density func-
tion f would later play an important role in Cauchy’s critical discussion of least
squares (see Sect. 2.5.2). In fact, such random variables are now called “Cauchy-
distributed.”

19 Poisson at this place used the adjective “discontinuous” in the traditional sense, as being inac-
cessible to a representation through a uniform algebraic term.
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The significance of his condition for characteristic functions (2.18) Poisson
[1824, 289-291] illustrated by two similar examples, where neither the assertion
of the CLT was true nor this condition was met: He considered linear combinations
> 1 Yn€n Of identically distributed errors obeying the law

fx) =e2H.
Using the formula (2.12) he showed that, for an “infinitely large” s,

1= e—ZC

. 1
P(—CSZVnGnSC)=W i yn=-.

and
1
2n—1

4
P(—c < Z Yn€n <c¢)=1— - arctan(e2¢) if y, =

According to Poisson, in the first example we have

1 o
p1(a)---ps(a) = 1 T
I+ % (1 + 44) (1 + 4S2) eZ”‘" —e 2™

whereas in the second

1 2
pr(e)---ps(a) = 3 3 -
1+ )0+ 351+ 4(2s 1)2)

o _m
€4 +e 4

2.2.3.2 Poisson’s Law of Large Numbers

Regarding error theory, Poisson hardly made any modifications to the Laplacian
discussion of least squares based on the CLT. Yet the discussion of (in modern terms)
stochastic convergence of mean values and relative frequencies, respectively, which
did not play a too dominant role in Laplace’s work, became vital for Poisson and
his major probabilistic work, the Recherches. Like Laplace, Poisson based such
considerations on the CLT.

The approximate stability of arithmetic means or relative frequencies, quite often
observed within different sequences of random experiments of the same kind, was
so important for Poisson’s probabilistic approach that he coined the term “law of
large numbers” for this fact. In the introduction of his Recherches, he characterized
this law as follows:

The phenomena of any kind are subject to a general law, which one can call the Law of

Large Numbers. It consists in the fact, that, if one observes very large numbers of phenom-

ena of the same kind depending on constant or irregularly changeable causes, however not

progressively changeable, but one moment in the one sense, the other moment in the other
sense; one finds ratios of these numbers which are almost constant [Poisson 1837, 7].

It must be emphasized that Poisson’s interpretation of “law of large numbers” is
different from the modern definition of this term.
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For a “proof” of his law of large numbers, Poisson [1837, 139-143, 277 {.]
introduced a special two-stage model of causation for the occurrence of an event
(or, more generally, for the occurrence of a special value of a “chose”), and he es-
tablished two auxiliary theorems on stochastic convergence: the first concerning the
arithmetic means of non-identically distributed random variables, the second con-
cerning the relative frequencies of an event which generally does not occur with con-
stant probability. He based these theorems, which are equivalent to the now so-called
“laws of large numbers,” on his general CLT (for comprehensive historical accounts
see [Bru 1981, 69-75] and [Hald 1998, 577-580]). A distinct deviation of the rel-
ative frequencies with which a certain event had occurred in different sequences of
observations respectively, possibly gave rise to the assumption that these sequences
originated from different systems of causation. In the third part of his Recherches,
Poisson gave a probabilistic discussion of the significance of such hypotheses in
the context of conviction rates, and he essentially used the CLT for calculating the
respective probabilities (see [Stigler 1986, 186—194] for a detailed discussion).

Poisson’s law of large numbers (in its original form) was heavily criticized dur-
ing the 19th century. Among these discussions, two crucial points became subject of
debates: the practical meaning of Poisson’s causation system was scrutinized
(mainly by Bienaymé, see [Stigler 1986, 185; Heyde & Seneta 1977, 46-49]),
and the analytical rigor of the deduction of the “auxiliary” CLT was questioned.
Chebyshev [1846, 17] criticized that Poisson’s analysis was only “approximative,’
and did not provide exact “error limits.” In this way he showed a—still rather
vague—unease with Poisson’s analytical approach. One can, however, interpret
Chebyshev’s criticism as an indication of the shift from “classical” probability,
chiefly determined by its applications, toward a “new mathematical” probability.
Perhaps, Chebyshev’s objections resulted from Poisson’s (as well as Laplace’s)
procedure of neglecting “higher” series terms without giving any justification for
that. Yet, if this was the case, Chebyshev did possibly not realize that Poisson had
given an—at least indirect—justification of this procedure with his first, infinitistic
approach.

2.2.4 Poisson’s Infinitistic Approach

Poisson’s discussions of 1824 and 1829 on the CLT were essentially equivalent.
The first account, however, clarified the fundamentals of Laplace’s method of
approximations as applied to the CLT much more directly, and, as we will see be-
low, paved the way for a more “rigorous” treatment of asymptotic normal distribu-
tions for sums of independent random variables. For a discussion of the essentials
of Poisson’s “first” approach it is sufficient to confine the description to the special
case of identically distributed random variables with a density f vanishing beyond
the finite interval [a; b].
From (2.15), (2.16), (2.17) one gets with
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b 2 b 2
pi=p1 = (/ fi(x) cos(ocx)dx) + (/ fi(x) sin(ax)dx) ,

and ¢ 1= ¢1:

(o]

2 d
Plc—e<S<c+¢)= E/ 0’ cos(sp — car) sin(ea)—a. (2.20)
0 o

IA

Poisson [1824, 279-281] carefully justified that 0 < p < 1 if & # 0. The following

excerpt illustrates his notion of “infinite” quantities and his handling of these quan-

tities in connection with an asymptotic representation of P(¢c —e < S5 < ¢ + ¢):
We want to consider the number s infinitely large, such that the following formulae
are rigorously true at this limit, and the more approximated, the larger s is. Now, from
the quantity p being less than 1 if the variable « is not = 0 it follows that at the limit

s = oo the power p® attains finite values only for infinitely small values of this variable,
and becomes infinitely small if « has a finite value [Poisson 1824, 280].

Poisson expressed in this text the contemporary view of the meaning of “ap-
proximation”: Approximation formulae had to be “rigorously true” at the “limit.”
Moreover, he considered, as can be inferred from his phrasing “limit,” an “infinite”
quantity not as actually infinite. On the other hand, he treated infinitely small quan-
tities as belonging to the common system of numbers.”’ This ambivalence in the
attitude toward the infinite is typical for the “infinitesimal” period in the first half of

the 19th century, which led away from the priority of algebraic analysis.

. . 2,2
On the basis of the above-cited comment and on account of cos(ax) ~ 1 — 5~

and sin(ax) ~ ax for “infinitely small” «, Poisson could deduce—at least for a
finite interval [a; b]:
s - h?a?)* for an “infinitely small” o
P 0 otherwise,

b b 2
where h? := % / x2 fi(x)dx — (/ xfi (x)dx)

The sign ~ (not explicitly used by Poisson) is used here to indicate an “infinitely
close” position of one value to another. Poisson [1824,281] seta =: y/4/s, “where
the new variable y can attain finite values.” Taking into account that p ~ 1 and
fab Jf1(x) sin(ax)dx ~ fab f1(x)axdx for @ ~ 0, he concluded that sin ¢ ~ ko« for
o & 0, where k is the expectation of the random variables. As a result of sing ~ ¢
for sin ¢ = 0 it followed that ¢ ~ ko for o = 0.

In this way Poisson obtained for “infinitely large” s on account of (1 — hzs—yz)s
~ e h?y2.
2 [ 202 y dy
Plc—e<S;<c+e)=~ —/ ey cos[(ks—c)—]sm— .(221)
’ T Jo \/— \/_

20 For Poisson’s general preference to infinitesimals see [Schubring 2005, 455 f.].
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For Poisson’s inference from (2.20) to (2.21) further explanations would have been
necessary. The only comment which Poisson gave in this context was in relation to
(2.21):

Strictly speaking, one is allowed to attribute to the variable y only finite values; because

of the exponential factor e*7* however, one can expand the respective integral into the
infinite, without a considerable error [Poisson 1824, 282].

From a rigorous point of view, one can deduce from (2.20) only that, for an arbitrar-
ily large but finite Y,

2 (Y d
Plc—e<S;<c+e)~ E/ ey cos[(ks —C)L] sinﬂ—y—i-
s

0 NG sy

2 [ d
+ - / 0° cos(sp — ca) sin(sa)—a.
Ty o

75
Apparently, for Poisson it was a matter of course, which did not need any special

justification, that

NG

for an “infinitely large” s.
From (2.21) one could infer, with the aid of the relation

o0
d
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Setting ¢ = ks and € = 2hr /s in (2.22), Poisson finally obtained the result:

Plc—e<S;<c+e)~

2 r
P(ks —2hr/s < S5 < ks + 2hr+/s) ~ 7/ e dr.
T Jo

Poisson’s discussion of sums of non-identically distributed random variables
followed the model just described for identically distributed random variables. For
the validity of his deductions in the general case, Poisson made a further condition
explicit which was equivalent to (2.18).
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2.2.5 Approximation by Series Expansions

The essential goal of Poisson’s paper from 1829 on the CLT was to approximate the
probabilities of a sum of a large number of random variables X,, whose densities
Jn vanish beyond a finite interval [a; b], by a series expansion rather than to derive
a “limiting formula.” By the argument that the product p; () - - - ps(c), where

b 2 b 2
On = (/ fn(x)cos(ax)dx) + (/ Jn(X) sin(ax)dx) )

attained values significantly different from zero for very small « only, Poisson jus-
tified that it was possible to cut off that series expansion after its first terms.

With the abbreviations f: Xfn(X)dx =: ky, fab x? fu(x)dx =: kj,, ..., and the
designations (2.15), Poisson [1829, 8 f.] derived the series expansions

o? at
On COS @y = 1—7k,/, + Ek,/{/—---,

E
on Sing, = ak, —?k;’—i—m .

Because of |k,| < |b| + |al,|k,| < (|b| + |a])?,... these series are conver-
gent. Poisson [1829, 8] expressed the opinion that this convergence guaranteed the
respective left sides being actually represented by the series expansions on the right.
In this way, Laplace’s formal calculations according to his method of approxima-
tion, which in many cases led to divergent series, were substituted by an explicit
discussion of convergence.

By use of the series expansions for p, cos ¢, and p, sin ¢,, series expansions for
R, ¥ (see (2.16)), and for cos(yy —car) in powers of o were accomplished such that,
because of (2.17),

2 o0
P(c—sszfc—i-e):E/ e_“zhs(l—l—a“ls—i—---)x
0

x (cos[(ks — c)a] + o> gs sin[(ks — c)a] + ) sin(eoz)%x.

In this formula &, /1, g, [ denote quantities depending on the moments of the single
random variables; the absolute values of these quantities have upper bounds inde-
pendent of s, as Poisson proved. In particular, k = % and h = % ensued.
On the basis of these considerations Poisson apparently believed to have given an
additional justification for the neglect of those terms which are, after having carried
out the substitution @ =: B/./s, divided by a power of s larger than s'/2. In this
way, the approximation
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was reached [Poisson 1829, 9].

In his 1929 paper, Poisson’s further proceeding was rather complicated. A con-
siderably simplified approach was given in his book [1837,270 f.]: Poisson in (2.23)
setc = ks and ¢ =2y Vs, with the result

B2dp (2.23)

P(ks —2y~vhs < Sy < ks + 2y~hs) ~ %/w e Bh sin(2,3yx/ﬁ)%3. (2.24)

0

Essentially making use of

© 2 a2
/ e ™ cos(ax)dx = /me” 7,

o

Poisson showed that the integral in (2.24) was equal to

2 / ’ e du.
VvrJo
Poisson’s preference for the just-described approach to the CLT by means of

explicit series expansions might have been mainly caused by the fact that this
method gave additional correction terms of the order s~!/2 and less for “large”
(but not infinite) s, and therefore was considered to be more general than the “sim-
ple” approximation by the normal distribution only. For the subsequent development
of the CLT, Poisson’s “infinitistic”” approach seems to have been more influential,
however.

2.3 The Central Limit Theorem After Poisson

During the time after Poisson, two crucial changes occurred in the development of
probability theory. Firstly, probability eventually lost one of its major branches, the
application to moral sciences. Secondly, the movement toward a purely mathemat-
ical view of stochastics, which in a certain sense had already begun with Laplace,
gained momentum. The development of the CLT was connected with both fields, as
we will see in the cases of Cauchy’s and Dirichlet’s contributions.

2.3.1 Toward a New Conception of Mathematics

Both Cauchy and Dirichlet are seen as representatives of a new mathematical
conception emerging after 1800 which was generally accepted during the last third
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of the 19th century. The essentials of this new point of view can be summarized
as follows: A separation of mathematics from its ontological relation to the phys-
ical and moral world was beginning to form, as stated by Kline [1972, 619 f.]. In
[Laugwitz 1999, 187-191] this development is described as a transition from the
consideration of the “contents” to the discussion of the “scope” of “concepts.” The
role of counterexamples in this context changed from irrelevant “curiosities” toward
boundary posts indicating the limits of the specific concepts. Poisson, for example,
still understood his examples of nonconvergence to the normal distribution in the
sense of singular exceptions, which do not occur “in practice.” Without external
criteria, such as applicability, however, mathematics experienced an increased need
to reflect on its internal logical consistency, as pointed out by Mehrtens [1990]. In
this sense, Poisson’s main counterexample would become especially important for
Cauchy’s critique of the method of least squares.

The framework of the growing abstraction of mathematics during the 19th cen-
tury can only be roughly described in this exposition. An excellent survey is given
by Schneider [1981a]. There were changes in the employment of mathematicians
(from 18th-century academies to universities), which helped to promote pure math-
ematics.”! The computational potentialities of analysis seemed to become gradually
exhausted, so a turn to the discussion of analytical fundamentals or even to other,
temporarily neglected disciplines, such as synthetic geometry, became plausible.
The intellectual background was perhaps even more decisive. After the political
upheavals due to the French Revolution, the confidence of the Enlightenment in a
common standard of rationality began to vanish. The commonly accepted unity of
mathematics and good sense began to drift apart (this process is exactly described
by Daston [1988, 370-386], for the field of probability theory). The growing re-
examination of basic definitions after 1800 can be considered as a reaction to the
decline of the idea of self-evident “natural” standards.

The resulting changes toward “mathematical rigor” are not to be confused with
changes in analytical style and methods. As several authors have pointed out since
Lakatos [1966] and Spalt [1981], analytic reasoning during the first half of the 19th
century using the language of infinitesimals was not fundamentally less rigorous
than the application of epsilontic methods.?” The decline of algebraic analysis, how-
ever, was closely connected to the new standards of mathematical rigor. This was
also an essential point in the history of the CLT.

Certainly, the changes described above did not happen overnight. Cauchy and
Dirichlet still worked a good deal in the tradition of problem solving of the 18th
century. In the case of the CLT, however, the “new mathematics” can clearly be
seen in the contributions of both authors.

2l For more material on this topic see [Mehrtens, Bos, & Schneider 1981; Schubring 2005,
Chapt. VII].

22 Especially regarding Cauchy’s work, the discussion is still quite controversial, see Sect. 1.3.
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2.3.2 Changes in the Status of Probability Theory

Several subjects of classical probability were heavily attacked after Laplace’s death.
His personal authority, however, remained unharmed. This criticism was mainly
directed toward applications of probability to human decisions, for example at court
trials. Especially Poisson’s work in this field caused a broad disapproval of the claim
of classical probability for universal applicability, at least in France.?® Daston [1988,
384] has pointed out that, as a consequence, a shift from the focus on the individ-
ual man toward the probability of mass phenomena occurred. Naturally, the CLT
was also an excellent tool for the latter field. A further consequence was that a
more critical awareness replaced the “natural” and often only tacit presuppositions
of classical probability also in “unsuspicious” applications, such as error theory.
In this way, error theory became the discipline of probability being subject to the
most far-reaching mathematization. Some sources showed a rather abstract view of
error theory and gave rise to demanding analytical discussions. This development
was responsible for Cauchy’s “rigorous” proof of the CLT during his dispute with
Bienaymé over the priority of the method of least squares, as we will see below.

At several occasions during his work, Laplace had already pointed out the
extreme relevance of his analytic methods of probability theory, especially his meth-
ods for approximating integrals depending on large numbers. Thus, from the ana-
lytical point of view, statements now interpreted as probabilistic limit theorems be-
came appendages of the theory of definite integrals. Based on this idea, Dirichlet
rather frequently gave courses on probability theory during the 1830s and 1840s, in
which he directly referred to Laplacian methods, however with considerable mod-
ifications toward a “new” analytical rigor, from which his “rigorous” proof of the
CLT (discussed in detail below) resulted. In this context, the CLT reached a quality
different from the framework of classical probability theory. It was no longer only
a tool for applications beyond mathematics, but also became a subject within (pure)
mathematics, albeit with a mainly auxiliary character (serving as an illustration of
the theory of definite integrals).

2.3.3 The Rigorization of Laplace’s Idea of Approximation

As we have seen in the discussion of Poisson’s deduction of an approximate normal
distribution for sums of independent random variables, the following basic idea (for
the sake of simplicity described only for identically distributed random variables
with symmetric density function f on [—a;a]) was pursued: The probability P
that a sum of s random variables of this kind has values within [b — ¢;b + ¢] is
(cf. formula (2.12)):

23 There is also a German example: Jakob Fries’s Versuch einer Kritik der Prinzipien der
Wahrscheinlichkeitsrechnung [1842], which was based on Kant’s philosophy, and met with Gauss’s
approval; see [Fischer 2004].
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P = z /oo ( ’ f(x) cos(ax)dx)s cos(bar) sin(coz)d—a.
0 —a o

As expressed in the infinitesimal style of the first half of the 19th century, the power

—a

( ’ f(x) cos(ocx)dx)s

with the “infinitely large” exponent s attains values which differ essentially from
0 only for “infinitely small” «. The whole integrand is, as a function of o, similar
to a bell-shaped function, whose maximum peak becomes sharper and sharper as s
increases. This circumstance gives rise to the conjecture that for “infinitely large”
s the whole range | — co; oo[ of the integral with respect to o can, with only an
“infinitely small” error, be reduced to an “infinitely small” neighborhood of o = 0.
It was exactly the latter point which was used by Poisson (and many of his imitators)
without any detailed justification. But, why should it be impossible for the value of
the integral of an “infinitely” small function to be considerably large if the domain
of integration itself is unbounded? This unsolved problem corresponded, in the end,
to the unjustified neglect of higher terms in the approach via series expansions, and
was most probably responsible for the already described unease (see Sect. 2.1.4)
associated with Laplace’s deduction of the CLT.

A more exact analysis of the CLT, which explicitly referred to the basic idea of
the Laplacian method of approximation, had to show that for r in a specified range
of “infinite smallness” the integral

©re y da

/ ( f(x) cos(ocx)dx) cos(ba) sin(cw) "
r —a

would in fact become “infinitely small” for “infinitely large” values of s. As we

have seen, Poisson’s analysis had already shown that r had to be of an order around

1/./s. Corresponding considerations were to be applied in the general case of non-

identically and non-symmetrically distributed random variables.

Similar ideas led to Cauchy’s sketch of the rigorous proof of a (if still rather spe-
cific) CLT in 1853, and also to Lyapunov’s epochal proof of a very general form of
the theorem in 1900/01. Cauchy had already begun in the 1820s to discuss “func-
tions of great numbers,” such that his work of 1853 was not only connected with
error theory but was also produced in the broader context of his analytical studies.
Dirichlet had, independent of Cauchy and actually even before him, also advanced
similar ideas. He did not, however, publish his results, but only presented them in
his lecture course of 1846.
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2.4 Dirichlet’s Proof of the Central Limit Theorem

Peter Gustav Lejeune Dirichlet (1805-1859) is renowned for his pioneering
contributions to mathematical physics and number theory. In the field of proba-
bility theory, however, one can find only a few brief notices in Dirichlet’s collected
Werke. Actually, during his Berlin period (1828-1855), he quite frequently gave
courses on probability and error theory presenting new and original ideas, as we can
see from unpublished lecture notes (see [Fischer 1994]). In these lecture courses,
Dirichlet’s main concern was not the treatment of probabilistic fundamentals or ap-
plications, but rather the discussion of demanding analytical problems. He consid-
ered these problems as applications of the theory of definite integrals, and therefore
plainly named several of the pertinent courses “Anwendungen der Integralrechnung”
(“applications of integral calculus”). In one of these “Anwendungen”—dedicated
to foundational issues of least squares that served as a 1-hr appendage to a 4-hr
course on definite integrals in 1846°*—one can find a very notable and innovative
approach to a proof of the CLT.

Dirichlet’s analytical style varied between an almost “epsilontic” presentation,
as used in his publications, and a rather intuitive handling of problems, quite often
connected with infinitistic methods. Evidence of this can be found in his lectures or
unpublished drafts (see [Fischer 1994]). The style of Dirichlet’s contribution to the
CLT [1846] seems mainly of the second kind; yet, as we will see, all essential steps
(only sketched out in the original source) can be taken using finitistic considerations
which were within Dirichlet’s scope.

2.4.1 Dirichlet’s Modification of the Laplacian Method
of Approximation

Dirichlet’s main probabilistic interests lay in problems of approximating “functions
of large numbers.” Thus, he actually satisfied Laplace’s hope that such questions
would interest the “geometers” (see the introductional part of the present chapter).
At the same time, one can see in Dirichlet’s activities a shift from the typical objects
of classical probability, concentrating on practical applicability, toward the discus-
sion of the respective analytical methods.

In the 1830s, Dirichlet presented (e.g., [ 1838, 67 f.]) Laplace’s original deduction
of Stirling’s formula in his lectures. He succeeded at least in deducing the law of
Laplace’s series (2.2), which Cauchy [1844, 68] would still consider to be unknown.
As we have seen in Sect. 2.1.2, Laplace had set

o

Ts+ ) =M [ e3(1+z/s)dz = M/ e
—o0o

—

_2dz

dt,
dt

24 The corresponding lecture notes, written by an unknown author, are undated. From all we know
about Dirichlet’s teaching activities in probability theory, it seems evident, however, that the lecture
notes pertain to Dirichlet’s course in summer semester 1846 [Fischer 1994, 56, 60].
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where 7 is a power series in ¢ and M = e~ *s®. Dirichlet differentiated the equality
e (1 +z/s) =

by ¢ to obtain

dz
Z— = 2t(s + 2).

7 (s +2)
By employing the formula z = kit + kt? + --- with unknown coefficients k;
(z = 0if and only if 7 = 0) in the latter equation and by comparing the coefficients
of powers of ¢, Dirichlet determined the first terms of anl k,t'. In essence, he
developed the recursion formula

n—1

2kn—1 1
ki=+2s, kn=——""-"———"-) kiknt1-i > 2).
1 =2s Gt Dl 2k & +1-i (n=2)

From this, the series expansion

1:3-5---(2n + 1
[(s+ 1) =sTV2e752n 1+Z (’Z+ )a2n+1 ’
s

n>1

where

ai =271 (V25)' " 2k;

follows. (Dirichlet, however, made explicit only the first terms of the latter series
expansion, which can also be deduced by different “modern” methods, see [Copson
1965, 53-57; Fischer 2006].)

In the 1840s, Dirichlet’s interest in Stirling’s formula no longer aimed at for-
mal series expansions, but at a modification of the basic procedure concerning the
Laplacian method of approximation, in exactly the sense which was described in
Sect. 2.3.3 for the case of the CLT. Dirichlet [1841/42,56—61] split the entire integral

/ e ¢ (1 + %)n dz = / ydz =T+ De"n™"

n —n

into the sum

m

—n" n 00
/ ydz—l—/ ydz—l—/ vdz = Iy + I, + I,
—n —nm n

m

where % <m< % Heset y(z) = e_’z(Z), and considering the convergent (!) series
expansion of log y(z) around z = 0 (the abscissa of the maximum of y) he showed

that /1 and /5 tend to O as n increases indefinitely, whereas

I
v 2n

Thus, he obtained the expected result for I'(n + 1) for “infinitely large” n (for more
details see [Fischer 1994, 49 f.]).

—>/ e du = JT.
—00
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2.4.2 The Application of the Discontinuity Factor

In order to adopt his reasoning from the case of Stirling’s formula to the CLT,
Dirichlet first needed an appropriate representation of the exact probabilities for
sums or linear combinations of random variables. As one can see from the devel-
opment of Dirichlet’s ideas, as represented in his lectures of 1838 compared to his
lectures of 1846, Poisson’s discussion of the jump function (2.14) apparently led to
Dirichlet’s general method of calculating integrals over complicated domains with
the aid of “discontinuity factors.”

In his courses on Laplacian error theory as of 1838 and 1846, Dirichlet pro-
posed the central problem of finding an approximate term for the probability P that
the value of the linear combination oy x7 + a2Xx3 + +-- + @, X, was within —A’
and +1/, where A’ = A4/n and A was a given positive constant. More precisely,

X1,X2,...,Xp stood for independent observation errors (n being a large number),
with expectations 0 and with (in general different) symmetric probability densities
f1, f2, ..., fu, vanishing beyond the finite interval [—a; a].

Initially, Dirichlet [1838, 142—-144] repeated Poisson’s “combinatorial” proce-
dure for the deduction of a formula for the probability that a linear combination of
errors is within a given interval (see Sect. 2.2.2). But then, he presented—unlike
Poisson also for the general case of arbitrary 7 and arbitrary A—the application of
“his” discontinuity factor

2 [ si
_/ sin ¢ cos(k@)dg = { 0 for |k] > 1 (2.25)
0 %

T 1 for—1<k<1,

which he deduced from

/ kD =T k> 0)
. 1 2

using trigonometric addition theorems. To this aim he calculated the probability

PZ/ﬁ@&NMMWde
G

where
G={xeR"'N—-X <aix; 4+ - +ax, <A},

by use of the jump function (2.25), with the result
2 > sin ¢
P=2f [ A fae) T cos @+
T Ji—a;al” Jo @

R anxn)%] dodxy---dx,. (2.26)

Dirichlet [1839a;b;c] published three papers in which the jump function (2.25)
was used for the calculation of specific multiple integrals that were important for
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the determination of space volumes and for potential theory, but he did not men-
tion any applications in probability theory. In his 1846 course, he totally ignored
Poisson’s combinatorial approach, and by applying his discontinuity function he
deduced (2.26) through a consideration of the analogies between probabilities and
space volumes.” From (2.26) Dirichlet [1846, 27] deduced

2 [ sin(\ a .
P:E/ sm((’fgo) fl(.Xl)eal)Cl(l’«/jldxl... fﬂ(xn)ea”x”wﬁdxnd(p
0 —a 5
2  sin(A a
_2 / SVIG) [ costanxio)dy, -
T Jo P »

a

e Jn(xn) cos(anxn@)dxpde. (2.27)
—a

The interchange of the order of integration was not discussed. In his paper [1839c],
however, Dirichlet—without referring to probabilistic applications—pointed out the
need for a proof of such interchanges. He suggested multiplying the integrands
with factors such as e™"%. For r > 0 the absolute “convergence” of the modi-
fied integrals would be guaranteed (and, thus, the interchangeability of the order
of integration). For both multiple integrals, the one before and the other after the
interchange, one had finally to examine the limit r — 0. Actually, this method is
practical in the case of the probabilities of linear combinations of mutually indepen-
dent random variables if one assumes for the densities of these variables certain—
not very drastic—conditions, from which the absolute integrability of the function
= % f[_a;a] f1(x1) -+ fu(xn) cos[(c1x1 ++ -+ cnxn)@ldxy - - - dxy, over [0; oo[
follows for fixed cy, .. ., ¢,. The hypotheses regarding the density functions, which
Dirichlet supposed more or less tacitly, are in fact sufficient for this condition.?®

2.4.3 Dirichlet’s Proof

Dirichlet’s discussion of the asymptotic distribution of linear combinations of
observational errors can be reconstructed in the sense of a rigorous proof of the
CLT, even from today’s point of view.

2 Glaisher [1872a, 195; 1872b, 98] was perhaps the first—of course without being directly influ-
enced by Dirichlet—to publish the use of Dirichlet’s factor in exactly the same way as Dirichlet
had presented it in his 1846 lecture course. [Cauchy 1853d], as it seems without knowledge of
Dirichlet’s prior contributions, had already given a very similar consideration, see Sect. 2.5.2.

26 For an account of post-Weierstrassian era on the problem of interchanging the order of integra-
tion in applying Dirichlet’s factor, see [David 1909].
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2.4.3.1 Tacit Assumptions and Proposition

As described above, Dirichlet discussed linear combinations a1 x; + -« -+ + o, X, of
random errors. The densities of these errors were not only considered to be symmet-
ric and concentrated on a fixed interval, but also to be smooth (in the sense of the
existence of continuous derivatives) and unimodal, as it appears from a picture in the
lecture notes [1846, 21]. The latter assumption was, however, not absolutely neces-
sary for Dirichlet’s deductions. As we will see, Dirichlet tacitly presupposed that
the sequence of the oy, had a positive lower bound (named « by me) and a positive
upper bound (A), and that all variances of the random errors should be uniformly
bounded away from 0 (by a positive lower bound to which I refer as k). Such tacit as-
sumptions were natural within error theory. For a rigorous completion of Dirichlet’s
line of proof in the case of non-identically distributed observation errors, one has to
additionally assume a certain uniformity in the shape of all the density functions,
such as, for example, the existence of an upper bound C such that | f,/ (x)| < C for
all x € [—a;a] and all v. (From this condition one can already deduce the existence
of the above-mentioned constant k.)

Expressed as a “modern” limit assertion, the main result of Dirichlet’s lecture
course on error theory in 1846 was

Alr

" 2 2
P|=Avn < Xy < AVn | — — e " ds

-0 (n— 00),

where

Even if the transcriber of the lecture notes did apparently not render all arguments
entirely correctly, the basic ideas for a rigorous proof of this limit can be clearly
discerned. At least in the special case of identically distributed errors a complete
argumentation can be reached with such methods that Dirichlet himself used.”’

2.4.3.2 Dirichlet’s Discussion of the Limit

Analogous to his derivation of Stirling’s formula, Dirichlet split the integral (2.27)
with respect to ¢ into three parts

2 [ 2 (4 2 [
—/ ...dgo—i——/ ...d(p—i——/ ...de = p+q1+qa,
T Jo T Js TJa

where § and A depend on # in such a way that
§yn—0, 8Jn—o00 (n— 00) (2.28)

27 For an edition of the original source see Appendix.
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and
A o n?  with an arbitrary, but fixed y > 0. (2.29)

Dirichlet represented the product T1(¢) of the integrals

a

gv(p) = Sv(xy) cos(atyxy@)dx,

—a
by

a
M(p) = e~ Zhede’eR@ g, = %/ 22 f,(2)dz. (2.30)

—a
It was not explained in the lecture notes [Dirichlet 1846] that for general densities
fy this representation with real R(¢) is only valid for sufficiently small ¢, and
therefore only in the first of the three integrals for small 8. Since g, (¢) > 0 for
0 < ¢ < 547, R(p) exists for at least all ¢ € [0; 57—]. Dirichlet perhaps supposed
unimodal densities f which diminish sufficiently fast with growing absolute values
of the argument; then the term ff 2 J(x) cos(agpx)dx is positive for all o and all ¢.
As we will see below, however, it actually suffices that (2.30) holds for a small

interval of ¢-values.
In order to justify the asymptotic disappearance of

n

R(p) = Z (log( ’ Jo(xy) cos(avxvgo)dxv) + kvaﬁqoz)

v=1 —a

in the first integral, Dirichlet expanded each logarithmic term into a power series of
@ (in each case he explicitly took into account only the first nontrivial power of ¢),
and thus obtained for 0 < ¢ < § an estimate equivalent to the form

|R(¢)| < nL8* + nM8® + - - . (2.31)

L, M, ... designate the absolute values of the largest coefficients of ¢4, ¢°, ...
among all expansions of the individual logarithmic terms, and are therefore con-
stants depending only on the functions f, and the multipliers «, . Dirichlet did not
discuss the exact form of these constants. On the basis of (2.31) and (2.28) Dirichlet
concluded that R(¢) could be neglected in the first integral

§ o § .
2/ MH(@)&M) = Z/ Me—zmwemmd@
T Jo [ T Jo %

as n — oo. For a complete justification (see [Fischer 2000, sect. 2.3.1]) of Dirich-
let’s hints, one can show, with the aid of the elementary inequalities

2
cosz >1——,
2

22 z*

cosz <1——+ —,

2 24
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log(z) < z,
1
log(1—-z)>-z-2z2 (0<z< 5),

and by considering the above-mentioned “tacit presuppositions,” that
a*
[R()| <nLé* (L =—-4%). (2.32)

In the integral p, Dirichlet now made the substitution of variables ¥ = +/ng. The
upper bound 8 4/n of the domain of integration of the new integral became equal to
oo as n — oo because of (2.28). Thus, for a “large” number of observations the
relation

2 i A, > kv a%

~ / A gyt gy
T Jo v

followed. This relation can be rigorously deduced from the inequalities (which were

not explicitly stated by Dirichlet):

/3ﬁ Sin(Ay) _y2 Shved - /5ﬁ SN g2 Zhvad gy i "
0 ¥ 0 4

o
< max(e"w4 - 1;1- e_"L84))L/O e_k"‘z‘l’zdw =: AC1(n)

(based on (2.32)) and
/°° sin(Ayr) e Zk;ag J
syn Y

‘”‘ = %/ome_"’z"“zdv/ — Con).

From (2.28) one sees that the right sides of these inequalities tend to 0 as n — ococ.
Finally, Dirichlet [1846, 30] concluded by use of well-known integral formulae

that
2 Alr $2
N — e’ ds.
P ﬁ/o

The justification that g; and g, tend to O as n increases, is only hinted at in
the lecture notes [Dirichlet 1846, 30 f.], and seems to go as follows: g,(¢) =
ff 2 Jv(x) cos(ay@x)dx is strictly monotonic decreasing in the interval—dependent
on v (1)—I0; &,], and thus g, (po) > |gv ()| for all gy € [0;&,] and all ¢ > @o.?
From this, Dirichlet concluded (loosely translated) that there must exist a , > 0
such that for all ¢y € [0; 8,] and all ¢ > @g also [1(gp) > |I1(¢)| holds. Apparently,
the possible dependence of the &, on v, and thus of the §, on n, was not taken into
consideration, and it was supposed that, for a sufficiently large n, the § according to
(2.28) would be smaller than §,, and therefore

2 We have g/(¢) < 0 in a neighborhood of ¢ = 0 and |g,(¢)| < 1 for ¢ > 0. Moreover,
gv(p) — 0 for ¢ — o0, as one can deduce after partial integration, see below. Finally, the
asserted behavior of g, follows from its continuity with respect to all ¢ > 0.
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ITI(p)| < TI(§) Yo >§ (2.33)

would apply. However, because 6, might tend to O even faster than § as n — oo,
(2.33) only holds if a certain uniformity in the shape of the factors g, (¢) of I1(p)
as functions of ¢ is presupposed. (Actually, this can be deduced from the “tacit as-
sumptions,” though, as it seems, only by methods which were not known to Dirich-
let, see [Fischer 2000, Sect. 2.3.1].) From (2.33) one gets for sufficiently large n

] < / #|sin@ne)
8 %

By definition [1(§) = e~ Lhkve3s?eR0) gpg therefore, using the “tacit assumptions™:

(¢)de| < AVnATI(S).

g1| < A/nAeke*8RE) —. ) Cy(n).

If one sets § = n_%, as suggested by Dirichlet [1846, 29] as an example of a possible
8 in accordance with (2.28), the right side tends to 0 as n increases.
In order to justify that

g2 = (p)de

TJa

2 [ sin( /)
o5

can also be neglected for “infinite” n, Dirichlet used the relation

4 2 sin 4 sin

/ cos(ay@x) fo (x)dx = M _/ va/(x)dx,
—a oy @ —a ¢

which can be derived by partial integration. (For the existence of continuous deriva-

tives of the densities see the “tacit assumptions.”) From that, Dirichlet concluded

n
that |IT(¢)| must be smaller than (%) with a constant ¢ independent of 7, which is
only true under the “tacit assumptions.” Dirichlet’s reasoning can be completed as

(4

n
follows: From the estimate |I1(¢)| < (5) one gets

1 (c)" cy\n 1
lg2| < / - (_) do = (—) — =: Cq(n).
a ¢ \g AV n
From the hypothesis (2.29) on the growth of A, the latter term tends to 0 as n — oo.

On the basis of the inequalities stated above, we can reconstruct Dirichlet’s result
by the inequality

" 2 Alr 2
P|-Avn < Xy <An | — —= e ds

< ACy(n) + C2(n) + AC5(n) + Ca(n),

which is valid for sufficiently large . Presupposing
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—1/24¢ 1
d=n , O<ex< T

the bounds C;, C,, C3, C4 have the respective asymptotic orders
Ci(n) = O(n™ '), Ca(n) = O(n™®), C3(n) = o(n™"), Ca(n) = o(n™"),

where p is an arbitrary positive constant. From this, we can see that Dirichlet’s
method gives an estimate for the error of approximation that is far from the optimal
one as developed by modern methods. It was, however, not Dirichlet’s intention at
all to find a “very good” approximation error for the normal distribution. Appar-
ently, he wanted to show that his modification of the Laplacian method of approxi-
mation could also be applied to the problem of probabilities of linear combinations
of random errors. In this sense, the central CLT for Dirichlet served chiefly as an
illustration of special analytical techniques and was less a problem which he treated
in its own right.

2.5 Cauchy’s Bound for the Error of Approximation

Augustin Louis Cauchy (1789-1857) provided fundamental contributions to a great
number of mathematical subjects and essentially determined the development of
mathematics during the 19th century. On probability theory in the narrow sense,
Cauchy only published a few papers, in 1853, printed in the Comptes rendus, which
referred to his dispute with Irénée Jules Bienaymé (1796-1878) over the Lapla-
cian foundation of the method of least squares. In this scientific controversy, which
occurred during the months of June, July, and August in the summer of 1853 at
the Paris Academy, Bienaymé defended the Laplacian error theory, whose basic
ideas were repeatedly criticized by Cauchy.?’ Cauchy’s last article in a total of eight
papers contains an interesting discussion of the approximate normal distribution of
linear combinations of random errors. Basically, his line of analytical argumentation
is similar to Dirichlet’s and employs methods which are still being used in the mod-
ern treatment of the CLT. His (rather narrow) conditions are in essence the same as
Dirichlet’s.

2.5.1 The Cauchy-Bienaymé Dispute

From a historian’s point of view, Cauchy’s and Bienaymé’s interest in treating
stochastic problems in an almost purely mathematical manner, indicating a shift
from classical toward mathematical probability, is especially important. However,

2 For more details on this dispute see [Heyde & Seneta 1977] and [Fischer 2000, 76-97].
Bienaymé’s contributions are, as listed in the Bibliography, [Bienaymé 1853a] to [Bienaymé
1853e], Cauchy’s contributions are [Cauchy 1853a] to [Cauchy 1853h].
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Cauchy’s position of only accepting arguments within mathematics for a discussion
of the error theoretic foundations (which became more and more adamant during
the controversy), met with Bienaymé’s opposition, who still demanded the critical
“good sense” assessment of those problems.

The political and private connections of both opponents might have been espe-
cially important for the background of their scientific quarrel. As a consequence of
the revolution of July 1830, which brought Louis-Philippe, the “king of the people,”
to power, Cauchy, being a supporter of the overthrown Charles X Bourbon, had to
give up his positions in higher education and go into exile.>* From 1833 to 1838 he
was in charge of the education of Charles’s eldest son in Prague. After the comple-
tion of his duties there, he went back to Paris and resumed work at the Academy.
After the revolution of February 1848, which, for a brief period, reestablished the re-
public, he was able to return to teaching at the university. With the seizure of power
by Napoleon III in 1851, Cauchy’s official position remained unchanged. As a sup-
porter of the house of Bourbon, however, he did not look on this political change
especially enthusiasted.

In 1820 Bienaymé®! set out on a brilliant career in government finance which re-
mained entirely unscathed by the 1830 revolution. Whereas the revolution of 1848
had brought some advantages to Cauchy, Bienaymé had to resign from his posi-
tions. Consequently he delved into more scientific endeavors. Bienaymé, in contrast
to Cauchy, sympathized with Napoleon III, and after his seizure of power regained
a certain influence on the country’s financial politics.

Apart from differences in their political views, Cauchy and Bienaymé seem to
have had personal misgivings as well. As suggested by [Heyde & Seneta 1977,
13], these could have originated for one thing from different religious beliefs—
Cauchy was a fanatic Catholic, and Bienaymé tended toward agnosticism. Furtherly,
Bienaymé cultivated a close friendship with Antoine Auguste Cournot,*> who was
very influential in science back then, while Cournot and Cauchy were bitter enemies.

Bienaymé presented his essay on foundational problems of least squares (see
Sect. 2.1.5.2) in 1852 at the Paris Academy. His good reception there contributed
significantly to his election as an ordinary member of the Academy soon thereafter.
It is only natural that Bienaymé would have been very interested in contributing
to discussions on “his field,” error calculus, at Academy conventions. He found a
suitable opportunity when Cauchy once again presented his method of interpolation
(introduced already in 1835); Cauchy suggested that this method be applied instead
of least squares even in those cases which had not yet been taken into consideration
when his procedure of interpolation was introduced.

In presenting his method in 1835, Cauchy began with the following problem: He
assumed that a function y (x) could be expanded into a convergent series of the form

30 For biographical details on Cauchy see [Belhoste 1991].

31 For biographical details see [Heyde & Seneta 1977].

32 Regarding probability theory, Cournot became especially prominent by his elementary treatise
[Cournot 1843], in which a clear distinction was made between the subjective and the objective
notion of probability.
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y(x) = au(x) + bv(x) + cw(x) +---

with given functions u(x), v(x), w(x), ..., but unknown coefficients a, b, c,....
Assigned to the given abscissae xi,xz,...,X, were observed function val-
ues yi,¥2,..., ¥Yn, which were, however, subject to the observation errors
€1,€2,...,€,. Cauchy searched for a method of “interpolation” with which one
could jointly 1) assess, with regard to the order of magnitude of the observational
errors, how many series terms had to be calculated to obtain a sufficiently exact
approximation of the true function value for each arbitrary x, and 2) calculate those
series terms in an easy way. Cauchy [1835/37, 8-16] presented a procedure by
which the coefficients a, b, c, ... could be approximated by a method that allowed
one to calculate the coefficients with a simple correction from the ones already
determined, if the number of the coefficients was increased by 1. From the error
theoretic point of view, Cauchy’s reasoning was based on the idea of minimizing
the maximal possible error in each single stage of his procedure.

Cauchy’s method of interpolation can be considered as a procedure for determin-
ing compromise solutions @1, az, ... of the overdetermined system

yi =aup +axup +---+auy +-- (@ =1,...,n)

with the given u;;, (according to the function values u(x;), v(x;),...) and y; (the
observations afflicted by errors), where, however, the number r < n of the @; needed
is not known at the beginning. Yet it was obvious that Cauchy’s procedure could
also be applied to the case of overdetermined systems of linear equations with a
fixed number r of variables.

Around 1840, Cauchy began to show increased interest in astronomy and es-
pecially in perturbation theory. Belhoste [1991, 205 f.] sees a connection with
Cauchy’s election to the “Bureau des Longitudes” in 1839, which had to be revoked
because, being a royalist, Cauchy had refused to show any kind of allegiance to
the “king of the people” Louis-Philippe. The works of astronomers Hervé Faye,
Urbain Jean Joseph Leverrier (whose investigations in perturbation theory led to the
discovery of Neptune in 1846), and Antoine Francois Yvon-Villarceau were influ-
enced by Cauchy, and in turn stimulated some contributions by him. The problem
of comparing observations and results obtained by perturbation theory kept Cauchy
busy for most of the second half of 1847, when he issued a series of papers, and
led him back to his own method of interpolation. Now, he [1847a] wanted to see
this method also applied to overdetermined systems of linear equations with an
a priori fixed number of unknowns. One can assume that this problem was being
repeatedly discussed by the astronomy-prone members of the Academy. Cauchy
[1847b] referred to a paper published by Villarceau in 1845 (this paper was not
further specified) because approximation methods had apparently been used in it,
analogous to his method of interpolation. Around 1849, Villarceau used Cauchy’s
method in extensive calculations of approximations of various orbit parameters
[Heyde & Seneta 1977, 74]. Cauchy [1853a, 36] quoted a remark made by Faye
on the usefulness of his interpolation procedure (the corresponding paper of Faye’s
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cannot be bibliographically determined). So, when declaring himself to be partial to
the method of least squares and against the method of interpolation, Bienaymé met
not only with opposition from Cauchy, but from a whole group of astronomers.

2.5.2 Cauchy’s Exceptional Laws of Error

Cauchy’s initial line of argument was to minimize the maximum possible errors
of approximation. Thus, he used a typical interpolation justification, which practi-
cally did not touch probability at all. Bienaymé [1853a, 5; 10], on the other hand,
criticized this lack of probabilistic argumentation: Errors of observation are subject
to chance. Thus, in order to fit the parameters to the observations, those methods
should be preferred that can be analyzed and justified by stochastic considerations.
In this way, Bienaymé emphasized the universal claim of classical probability being
responsible for all fields in which complete knowledge of causes and laws could not
be obtained. In response to this criticism, Cauchy began his probabilistic research.
According to Schneider [1987a,200 f.], Cauchy did not disapprove probability com-
pletely, but was only willing to accept probabilistic results which could be justified
within mathematics. For Cauchy, the usual reasoning of classical probability, based
on the unity of good sense and mathematics, had become obsolete. In the case of
error theory, Laplace had claimed that the method of least squares should be pre-
ferred “in any case.” Now, Cauchy set out to ridicule this claim by using Laplace’s
(and Bienaymé’s) own probabilistic methods, although from a strictly mathematical
point of view.
Like Laplace, Cauchy considered the system of n “approximative” equations

ax +bjyy+---+gv+hw==~k (j=1,....n)

with m “unknowns” x, y,...,v,w and n observed values k1, k>, ..., k,. Cauchy
approximated the “unknown” x by 7227’: 1 Ajkj, where the multipliers A1, ..., A,
had the additional property
n n n
D oXjaj=1.) Ajbj=0.....) Ajh; =0. (2.34)
j=1 j=1 j=1

From the “exact” equations
ajx—i—bjy—i—————i—gjv—i—hjw ij — € (j = 1,...,1’!),

where the €; represent the observational errors, it followed that

n n n n n n
Z/Xjajx—i—ZAjbjy—i-————i-Z)ngjv—i-Z)ujhjw: Z/\jkj—Z)tjéj.
j=1 j=1 j=1 j=1 j=1 j=1
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On account of (2.34) the estimate X was distorted by the “error” x —x = Z;’= 1 AjEj .
Cauchy restricted his discussion to the determination of X as being representative of
all of the other variables. For the errors €; he presupposed a common symmetrical
density f(x), concentrated on the interval [—«; k] with ¥k < oo. For those densities
Cauchy coined the term “indice de probabilité.” Taking up the Laplacian character-
ization of the “most advantageous value,” he demanded that

n
p=P(x—-X|<v)="P |Z)Ljej|§v = max (2.35)
Jj=1

forall v > 0.

In his discussion of this condition, Cauchy made systematic use of the (now so-
called) characteristic function, which he named “fonction auxiliaire.” If g(x) was
the “indice de probabilité” of an error with values within [k1; «3], then the “fonction
auxiliaire” related to it was defined by

p(x) = / 2e_izxg(z)dz (i=v-1).

Repeating arguments of his proof [1818; 1827, note VI] of the Fourier inversion
formula,* he [1853d; 1853¢] showed that for symmetrical densities f, defined as
above, and their characteristic functions

o(x) = Z/OK f(z) cos(xz)dz

33 The designation “indice de probabilité” is used, for example, in [Cauchy 1853f, 106], the des-
ignation “fonction auxiliaire” in [Cauchy 1853h, 125]. In a slightly different form compared with
Cauchy’s use, in modern probability theory the characteristic function of a random variable X is
defined by Eet'*? instead of Ee™X?. For symmetrically distributed random variables with zero
means (which case was predominantly considered by Cauchy) both terms coincide.

3* Fourier, Poisson, and Cauchy around 1820 (more or less independently) published very sim-
ilar versions of the inversion formula [Laugwitz 1990, 30-34]. An early form, which remained,
however, unpublished, had been presented by Fourier already in 1807 [Grattan-Guinness & Ravetz
1972]. The complex version of the formula

s 1 ¢ e iu(t—x)
f(x) —61_1)120%/_6 /_Oo f(t)e dtdu

for functions f(x) continuous in x (precise properties of those functions were not explained for the
time being) is essentially due to Cauchy. In the collection of Gauss’s private papers (“Nachlass”)
an unpublished note (written presumably before 1813) on a complex version, with title “Schones
Theorem der Wahrscheinlichkeitsrechnung” (“beautiful theorem of probability calculus”) [Gauss
1900, 88 f.] was found as well. From Gauss’s remarks one can see that he derived his formulae on
the basis of orthogonality relations like (2.3), by considering Fourier series with periods tending to
infinity. One may suppose that Gauss was inspired to these observations by reading Laplace’s TAP.
For surveys of the history of the Fourier inversion formula during the 19th century, see [Burckhardt
1914, 1085-1097] (up to ca. 1850) and [Pringsheim 1907] (for the time 1850-1900). An outline of
the entire development up to ca. 1940 is given by Cooke [2005].
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the equation

1 o0
fx) = p / ¢(z) cos(xz)dz (2.36)
0
holds. For the characteristic function @ of the linear combination A1€1 +- -+ A, €5,
where each of the mutually independent errors €1, . . . , €, obeys the law f, Cauchy
derived:
D(x) = p(A1x) - @(Ap). (2.37)

From a modern point of view, Cauchy’s proof [1853d, 86] for the latter identity
was unnecessarily complicated, as it was not based on the now common conception
of characteristic function as expectation. Instead, Cauchy used, in a rather intricate
way, the jump function, very similar to Dirichlet’s,

1 [ r? 0 (r—sx)i 1 for x€la;b|
1 ()i _ ;
o /_Oo/ ent drds %o for x ¢ [a: b],

which he derived by a (rather formal) use of the Fourier inversion formula.*® Hinting
at this jump function, Cauchy [1853e, 96] also stated

2 /‘X’ sin(fv)
pP=_ )
0

®(0)do, (2.38)

where @(0) was defined as above (see (2.37)).
Cauchy [1853e, 98-101] gave a plausible justification that condition (2.35) is
met if and only if k = oo and

o(x) = eH" (2.39)

with positive constants ¢ and N (see [Heyde & Seneta 1977, 82-85]). Cauchy’s
arguments for the “only if”” were not sound.
From (2.37) to (2.39) it followed that

b z /oo e_ceN S AN sin(@v)de

T Jo 0
[Cauchy 1853e, 102]. Independent of v, p is maximized if Zj’:l |4,V under the
constraint (2.34), is minimized. This implies, as Cauchy [1853e, 102 f.] showed, in
the case for which a single element x is to be determined (b; = --- = g; = h; =0),
that the condition

-1
n
)&j = sign(aj)|aj|ﬁ (Z |ar|N}!1)

r=1

335 Jump functions played an important role in Cauchy’s analytical work. As a means for integration
he used this device not until 1853, however. See [Burckhardt 1914, 963; 1320-1324] for a general
account on the use of jump functions during the first half of the 19th century.
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holds for p being maximal. Only for the case N = 2 are the A; the least square
multipliers. Cauchy did not observe that only for exponents N with N < 2 the
function ¢(x) in (2.39) was the characteristic function of a probability distribution.
On the contrary, he assigned to the case N = oo an essential importance. As Cauchy
[1853e, 103 f.] argued, this case corresponded to his own method of interpolation
with multipliers A; = +1.

With the aid of the inversion formula (2.36) Cauchy was able to determine the
specific law of error corresponding to the constants ¢ and N in two special cases:
For N = 2 one gets the Gaussian law of error, and for N = 1 one gets the density

k 1 1
1=t (=a):

Poisson (see Sect. 2.2.3.1) had already shown that the sum of independent identi-
cally distributed random variables with this density does not satisfy the CLT.

The main result of the article [Cauchy 1853e] was the fact that laws of error
which are different from the Gaussian error law can lead to systems of multipliers
entirely different from the least squares multipliers if Laplace’s criterion for the
“most advantageous value” is taken as a basis. Thus, from a purely mathematical
point of view such as Cauchy’s, the method of least squares was not distinguished
from other fitting methods, but was in principle only one possible method among
many equivalent methods.

Naturally, Cauchy knew that observation errors are bounded. Laplace had shown
that linear combinations of identically distributed bounded errors were normally
distributed in the asymptotic sense, and, on this basis, one could expect that the
method of least squares would produce fitting values rather close to the “optimal”
possible fitting values (assuming a large number of observations). But, what asser-
tion concerning the method of least squares had been actually proven by Laplace?
As Schneider [1998] has pointed out, it was Laplace’s style to avoid formulations
that permitted a refutation of his arguments. Phrases like “Preference should (!)
thus be given [to the method of least squares],” or, “if we have a very great num-
ber of observations,” without a closer specification of “how great,” could hardly
be disproved. For a mathematical refutation of Laplace’s assertions, Cauchy had
to transform Laplace’s application-oriented propositions into mathematical claims.
But this thrusted Cauchy into the dilemma that the presentation of some imprac-
tical counterexamples could hardly compromise Laplace’s position, as Bienaymé
immediately pointed out. Yet there was still Laplace’s deduction of the approximate
normal distribution, which no longer met the analytical standards of the mid-19th
century, and did not produce an adequate and exact estimate of the deviation of the
approximative distribution from the actual one. As we have seen (Sect. 2.1.5.2), the
sore point in Laplace’s argument was the assumption of a very substantial proximity
(strictly speaking even of equality) of both distributions. Making precisely this point
to the subject of discussion, Cauchy could argue that Laplace had not examined his
approximations with sufficient scrutiny.
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Cauchy [1853f] indeed gave a first discussion on the approximate normal dis-
tribution for linear combinations of errors, however without exactly discussing the
quality of approximation. His account essentially endorsed Laplace’s foundation of
least squares. Still, Cauchy announced further critical examinations.

In [1853¢] he actually presented several “candidates” for the failure of a suffi-
ciently close proximity between approximate and exact distribution. One example
referred to bounded errors, however with a density close to the above-mentioned
“Cauchy-density” fr. Another referred to cases in which large deviations concern-
ing the order of magnitude among the least square multipliers A; occurred. From the
point of view of common practice of observation and measurement, however, both
examples seemed to be far-fetched, as Bienaymé would shortly point out.

2.5.3 Bienaymé’s Arguments

Bienaymés reply to Cauchy’s arguments is mainly contained in the “Considérations
a I’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des
moindres carrés” [Bienaymé 1853e]. This article consists of four parts: In the first,
one can find a general defense of the principles of Laplacian probability theory. The
second part contains a discussion of the importance of the “mean of the squares of
the differences of the errors and their mean value” which, in modern terminology,
is simply the variance of observational errors. Through this discussion, Bienaymé
confirmed his preference for least squares. In the third part, Bienaymé deduced the
inequality which is now named after him and Chebyshev, however not aiming at
the (now common) discussion of a weak law of large numbers, but for the sake
of giving an additional intuitive argument for the superiority of least squares in the
case of a large number of observations. Finally, the practical irrelevance of Cauchy’s
exceptional laws was discussed by Bienaymé in the fourth part.

The first part of Bienaymés considerations is well described by Heyde & Seneta
[1977, 87 f.] and by Schneider [1987a, 208-210]. Here, Bienaymé pointed out the
statistical importance of large samples, and, in the same context, the importance of
Laplace’s CLT. This exposition was connected with the refusal of small samples
because of their insignificance, at least implicitly.

This refusal was discussed in more detail in the second part. Bienyaymé gave a
plausibility consideration in order to show that for linear combinations Z’;:l hje;
of independent identically distributed observational errors (each with only a finite
number of possible values) the asymptotic relation

2
W\'/E (Z(thj —Ehjej)) " ~ COHSt.ZE(hjej —E/’ljej)z (2.40)

is valid for each natural m (the constant “const.” depending on m). In this context,
Bienaymé criticized Gauss’s remark [Gauss 1823, 6 f.] that the variance was not
distinguished as a precision measure from other central moments of even order.
Gauss had made this statement in the context of an arbitrary number of observational
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errors. Bienaymé, however, was apparently convinced that only the case of “large
numbers” was worthy of consideration. Because in this case all central moments of
even order of the deviation ) _ hje; between the true and the estimated value could be
reduced to the variance Vare; h? by virtue of (2.40), he maintained that “nothing
is simpler, than to recognize that one has to render the sum of the squares of the
factors h; a minimum” [Bienaymé 1853e, 319].

Bienaymé’s arguments in the second part were complemented by a discussion of
Laplace’s criterion (2.9) for the “most advantageous value.” Bienaymé, applying a
rather simple procedure (equivalent to the modern textbook proof of the Bienaymé—
Chebyshev inequality), calculated the “form™ of the probability of the deviation
between the true and the estimated value in the case of identically distributed obser-

vational errors with zero means and the common variance o2:

P()Zhjej‘ <t 202) =1—%Zh2,

where 0 and f are positive “constants” less than 1, depending on the error law and
the factors /;. From this estimation, Bienaymé plausibly argued that Laplace’s cri-
terion is met if h2 becomes a minimum, which condition leads to the method
of least squares. For a more exact discussion, however, Bienaymé, somewhat ma-
liciously, referred to the article [Cauchy 1853f], in which a first reexamination of
Laplace’s normal approximation was given (still without suitable limits for the
approximation error).

For a discussion of Cauchy’s exceptional laws, Bienaymé confined himself to the
examination of the now so-called “Cauchy distribution” with the density

1

Jile) = 1+ k2e2

This restriction was probably due to the fact that this density was the only one which
could be given explicitly by an algebraic formula. However, it also seems that Bien-
aymé treated this density as representative of all exceptional laws. He argued first,
with the aid of a table of [ “ , J1(x)dx for several values a, that, presupposing this er-
ror law, the probabilities of very large values were so high that no reasonable person
would use a corresponding observation instrument. Second, Bienaymé advanced the
argument that in the case of direct observations the probability of a certain deviation
between the true value and the arithmetic mean would not depend on the number
of observations, in contrast to all experiences of observational practice.*® Bienaymé

36 Bienaymé [1853e, 323] only noticed that it would be “very easy” to show this. The probably
easiest way is the following: Let y; = x +¢; (j = 1,...,n), and let p(x) = ¢~ be the char-
acteristic function of each single error e/ Then the characteristic function @(z) of the difference

Z

value x is

o= (o (3)) = () = o0
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did not fail to remark that Poisson had already realized—in contrast to Cauchy, as it
seemed—the practical irrelevance of the error laws f.

Bienaymé [1853e, 324] also discussed Cauchy’s example of multipliers which
considerably deviate in their respective orders of magnitude. He emphasized that
such cases were far from any “well-planned and careful” application of the method
of least squares.

Bienaymé’s comments constitute a mix of purely mathematical arguments and
reflection upon these arguments within the framework of the practice of observation.
If Cauchy tried to transpose Laplace’s statements into purely mathematical claims,
then Bienaymé conversely tried to transform Cauchy’s mathematical considerations
into concrete situations of observation. In doing this, both mathematicians executed
a separation of mathematics and its applications which had remained foreign to
Laplace’s classical probability. Bienaymé, however, did not share Cauchy’s attitude
of attributing the same value to any stochastic model which could be mathematically
derived, but instead insisted on an assessment of any implication by “good sense.”

2.5.4 Cauchy’s Version of the Central Limit Theorem

In his last contribution to the scientific discussion with Bienaymé on least squares,
Cauchy [1853h] established explicit upper bounds for the error of a normal approx-
imation to the distribution of a linear combination Z'}=1 Aje; of identically dis-
tributed independent errors €; with a symmetric density f vanishing for arguments
beyond the compact interval [—«;«]. He additionally required that the A; should
have “the order of magnitude” of % or less, and that ) /\3 =: A should be of the

order % For a precise formulation of the first requirement, we have to assume that
there exist positive constants « and § independent of n, such that forall j =1,...,n
thereis a y(j) > 1 with

a<n"D)x;] < B. (2.41)

Cauchy [1853h] only gave a sketch of proof (some details are discussed in the
next section) that, for v > 0 with the notation ¢ := f(f x2 f(x)dx,

n v
2 2/ cA _92
Pl-v< Aiei <v | —— e " do
jZ=:1 JsJ ﬁ o
< Ci(n) + Ca(n,v) + C3(n), (2.42)

but at least he made the formulae for the bounds C;, C5, and C3 explicit, which are
valid for sufficiently large » and which tend to O as n increases.

In his doctoral thesis, Ivan Vladislavovich Sleshinskii [1892] gave detailed
deductions for the constants Cy, C,, and C3, and he corrected apparent misprints
in Cauchy’s formulae (see [Heyde & Seneta 1977, 94-96] and [Seneta 1984, 48—

50]), with the following result: Let @ = n%” 0<é< %); then
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1 1 rA®?
Ci=—e " withif = -—— 2.43
1E oy oM 21+ rA202 (243)
2h/3 Ov [OXIVES

Cy(n,v) = ——1 — 14+ —1, 2.44

»(n, V) - Og(ﬁ+ + 3 ) (2.44)
where

2 A2
A:=max(|A],...,|Ax]); h:= max (<e‘ltc‘M2@4’c2 —1,1—¢ i—eaZo? ) ,
and
e—cA@2

There are minor differences with regard to C, and C3 between Cauchy’s original
formulae and Sleshinskii’s.

The quantity C, has the minor flaw that it is not independent of v; it grows
for fixed n together with v. However, presupposing (2.41), and considering that
|€j| <k, one can deduce

P(IY hel<v) =1 ifv= B (2.46)
Since C, is monotonically increasing as a function of v, one gets

n 2 %
Plv=Yhg <v|- —/2” e db| < C1(n) + Ca(n, Bic) + C3(n)
Z i Jy

for v < Bk. On the other hand, for v > Bk, (2.46) yields

n v
2 [3/a 2 [
PlvsY dg<v|—=["eas 5—/ﬂ e d0=:Cy(n).
j=1 Vo VRl

Now, because A must be of the order of magnitude %, C4(n) tends to 0 independent
of v. Altogether, it follows that for any v € R,

n v
2 NG
P —vak,-ejfv - = Ae_92d9
= v Jo

= Ci(n) + Ca(n, Px) + C3(n) + Ca(n),
where the right side tends to 0 independent of v.
Apparently, the convergence of C; to 0 as n — oo (v fixed) is the slowest among

all of the “constants,” because C, = O <n1f§ ZS). Thus, the order of magnitude of

Cauchy’s upper bounds was rather close to the optimal asymptotic order, which is,
in the case at hand, and according to Harald Cramér [1928], equal to O(%).
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From today’s point of view Cauchy’s account can be interpreted as the more or
less rigorous proof of the finite version of a CLT for linear combinations of inde-
pendent identically distributed random variables. In fact, a “modern” CLT can be
inferred from Cauchy’s version by considering a sequence of independent random
variables X, distributed like Cauchy’s observational errors, and by setting A; = %,
v = JLE (a>0),c= %Vaer. Then, by virtue of (2.42),

2 (37
VT Jo

< Ci(n) + Ca(n,

n

Pl-avn=<> X;<an|- e dx
j=1

a

Jn

Though Sleshinskii gave more precise explanations in comparison to Cauchy, he did
not substantially go beyond the latter’s ideas, and, in particular, he did not succeed
in weakening Cauchy’s still rather restrictive assumptions. Like Cauchy, Sleshinskii
was primarily interested in solving an—although quite abstract—problem of error
theory. Therefore, we may actually follow Freudenthal [1970-76, 142] in champi-
oning Cauchy for the “first rigorous proof” of the CLT, we must not forget, however,
that his goals were quite different from those of modern probability theory.

)+ C3(n) >0 (n — o).

2.5.5 Cauchy’s Idea of Proof

There was a rule that only brief articles were accepted for publication in the Comptes
rendus, and thus, Cauchy [1853h] had to restrict his presentation to a description of
the major steps of his reasoning. The basic ideas, however, can be clearly discerned
from his account. In particular, the deduction of (2.42) was based on Cauchy’s use
of characteristic functions and his modification of the Laplacian method of approx-
imation, which he had already dealt with in several articles published in the 1840s
[Cauchy 1844; 1845; 1849]. In [1849, 138-140], for example, Cauchy discussed the
asymptotic behavior (as n — o0) of the integral
S = L " (Z(roe(l’o*‘(")ﬁ))n do,
21 J_¢

where Z(z) is an analytic function whose derivative has the property Z’(roe?0 V-1 )
=0, and whose modulus |Z (roe(p0+‘/’)ﬁ)| attains its maximum at ¢ = 0. Cauchy
split the entire integral S into a “major” part with a domain of integration close to the
maximum and, in comparison with this part, very small remaining parts which van-
ish as n — oco. Thus, he developed asymptotic methods similar to those of Dirichlet,
who, on the other hand, had not published his contributions.

Proving his version of the CLT, Cauchy [1853h, 125 f.] first summarized the
most important properties of the “fonction auxiliaire” p(6) = 2 f(;c f(e) cos(Oe)de
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for the error law f(¢), and in this context he repeated the fundamental relation

“ 2 sm(@v)
—v <Y g v = E/ @(0) do, (2.47)
; 0

D(0) = ¢(A10) - - 9(An0).

Basically resuming his approach of [1853f], Cauchy from ¢(0) = 1 and |¢(0)| < 1

for & > 0 concluded that |

2
[p(&)]° = m

(p(8) > 0 for 6 > 0). He briefly justified that p(8) has a positive lower bound r,
such that

[p(0)]* < (2.48)

T 14r6?

2
For this justification he needed the estimate “p(co) > [%] ,” which was, as

we can see from a similar consideration in [1853f, 107], most likely obtained by
partial integration under the tacit presupposition that f possessed a continuous
derivative.”’

Finally, he [1853h, 126] referred to a consideration in [Cauchy 1853f, 107 f.]
(based on the mean value theorem of differential calculus as applied to sin(z) and
log(1 — z)) that for sufficiently small 6 > 0:

0(0) = 1—/0K (ZSIHG—) f(e)de = e~ 02

0c\> o 1 «
1—(7) <Z<1—c92 (c:/0 x2 f(x)dx).

By virtue of these estimates, Cauchy’s further proceeding [1853h, 127-129]
corresponded to his above-mentioned modification of the Laplacian method of
approximation as applied to the integral (2.47). The integrand @ (0) =5~ “i“(ve) of this in-
tegral attains 1ts absolute max1mum at @ = 0. For ® of an “order greater than /7 but
smaller than n3” (e.g.,® =n2 3+ ,0<8< 4) and for sufficiently large n, Cauchy es-
tablished the following 1nequaht1es for the grade of accuracy regarding the approx-
imation of the integrand by a bell-shaped function in the neighborhood of 6 = 0:

z/@q)(@)sin(ev)de_z/@e_mezsin(ev)d
T Jo 0 T Jo 0

with

0| < Ca(n,v),

37 By partial integration one gets ¢() =
= | [y f/(x)sin(0x)dx]| the inequality p(f) >

. If we set n(0)
- 01—2 ensues. By taking into ac-

5 (i) sin(0k)— f(); 7 (x) sin(0.x)dx

P S
4(f () +n)°
count the relation limy— oo () = 0 (which for Cauchy most probably was a matter of course)
the asserted estimate can be followed.
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and

2 (3Vea 2 (¢ in(®
E/Ozn e_gzde_E/o e—c“‘?leIl(o#d@ < C3(n).

In order to estimate the “tail,” Cauchy derived

2 sm(QU)
'n /@ o) 220

The constants Cy, C,, C3 are already quoted in (2.43), (2.44), (2.45), respectively.

< Cy (n)

2.5.6 The End of the Controversy

Cauchy [1853h, 130] wrote that for “very large values” of n (the total number of
errors) there would be “une grande approximation” between exact and approximate
probability. He stated:

The various formulae that we have just written down also permit us to assess, by reducing

them to their true significance, the advantages of the employment of the one or the other
system of factors, and consequently of the one or the other method.

Cauchy’s “formulae,” in particular those concerning the upper bounds C;, C,, Cs,
were indeed appropriate, at least in cases of “large numbers” of observations, for
confirming the closeness of the actual distribution of a linear combination of errors
to the corresponding normal distribution, and therefore for confirming the superior-
ity of the method of least squares. One could rarely use them for a rejection of least
squares, however.

At the end of his article, Cauchy announced that he would return to the issue,
but he did never resume his probabilistic studies. There does not exist any explicit
evidence as to why he did not continue his discussion of the method of least squares.
Beginning with Sleshinskii [1892], the common opinion has been established that
Cauchy had come so close to Laplace’s (and Bienaymé’s) position with his asymp-
totic result that a continuation of the dispute did not appear advisible (see [Heyde &
Seneta 1977, 96; Stigler 1974/1999]).

A closer examination, however, shows that Cauchy’s result was not even properly
suited—at least from the practical point of view of error theory—for a really sound
justification of the Laplacian approach. As we have seen above, Cauchy’s bounds
for the difference of the actual and the normal probability distribution were quite
appropriate in an asymptotic sense. In many cases of practical importance, however,
his bounds were scarcely usable.

In the case of direct observations, for example, the equations of condition are

)C:kj—éj (j=1,...,n).

The least square multipliers are identical with % If the errors obey a uniform density
within the interval [—1; 1], then for @ > ,/n the constant r in (2.48) (which is only
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important for x > @) can be assumed to be r = 0.9 if n > 10.38 According to
[Sleshinskii 1892, 255], Cauchy’s estimates can be applied if

482 8k2B2
n > max S;i;i
a?’ ra?
and
24/2n n
<0< —,

ar P

where [—«; «] is the support of the error density f, and «, B are according to (2.41).
In our case we can choose « = B = 1, and the first of the latter conditions is sat-
isfied foralln > 9. Forn = 10, v = 0.1, and r = 0.9 the sum C; + C, + C3
(dependent on a ® which has still to meet Sleshinskii’s second condition) is at its
minimum (for ® ~ 9.43) approximately equal to 0.288. In the case at hand, the
probability P(—v < Y Aje; < v) with A; = % can be directly calculated by use
of the formula (2.1), which was already derived by Laplace in the 1770s. The exact
value of this probability is (for n = 10, v = 0.1) equal to 0.41096, whereas the
approximation by the normal distribution gives the value 0.4161. Similar calcula-
tions for other v show that, already for n = 10, the difference between the exact and
the approximate value is less than 1/100. If n > 10, for a comparison with the case of
10 observations we have to use values of v which decrease in the ratio /10/#n. For
n=20,v = 0.1-4/0.5, and r = 0.9 the minimum sum C; 4+ C5 + C3 is roughly 0.16
(® =~ 13.4); forn = 100, v = 0.1 - m, and r = 0.9 the minimum sum is still
about 6/100 (® = 33.2). A critical numerical discussion of this kind was certainly
within Cauchy’s reach, and his above-quoted reference to the “true significance” of
his “formulae” might point in this direction.

Thus, within the framework of observational practice, by applying Cauchy’s
bounds one was able to confirm Laplace’s point of view only if a really large num-
ber of observations appeared. Certainly, a great many observations were occasion-
ally available in the context of astronomical problems. Bessel [1818, 18-21], in his
comparison of the frequency distributions of the residuals of direct observations on
the one hand, and normal distributions on the other, had used two series with 300
observations each, and one with 470.% Alexis Bouvard had considered approxi-
mately 130 equations of condition for Jupiter and another 130 for Saturn in his deter-
mination of the orbit elements of these planets. This work was described by Laplace
[1812/20/86, 516] as an “immense travail.*** In most cases, however, the number
of observations was far below 100. Gauss [1811], for example, determined his “im-
provements” of elliptical elements of Pallas from only 11 equations of condition.

38 Tn our special case the “fonction auxiliaire” is ¢(z) = L‘:'* For z2 > 10 the estimate w >
Z%, and thus, [p(2)]* < m is valid.

3 See [Stigler 1986, 204; Hald 1998, 361-363].
40 For a summary of Bouvard’s work see [Bouvard 1821].
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There exists a brief report [Cauchy 1853¢’] in the Comptes rendus referring to
Cauchy’s remarks on Bienaymé’s defense [1853e] (see Sect. 2.5.3) of Laplace’s
approach to least squares. Concerning Laplace’s analytical methods, we read:

The analysis by which he [Laplace] has established the properties of the method of least
squares uses series expansions whose convergence is not proven. M. Cauchy has replaced
this analysis by exact and rigorous formulae.

Thus, we can see that Cauchy clearly stressed his “new” analytical rigor as an
exceptional merit as opposed to Laplace’s style of reasoning. But, from the prac-
tical point of view of error theory, he neither succeeded in improving Laplace’s
analysis by establishing sufficiently close bounds for the error of approximation,
nor did he succeed in giving convincing counterexamples concerning the method
of least squares. We should not forget that Cauchy’s main interest was originally
to give an effective procedure for astronomical calculations (see Sect. 2.5.1). Thus,
his turn toward an “abstract” point of view which scarcely considered questions like
general applicability or computational simplicity was—in a certain sense—contrary
to his original aims. From a purely mathematical point of view, however, Cauchy’s
contribution even enforced the Laplacian preference to least squares in the case of
bounded errors. Naturally, Cauchy could not exclude the possibility of bounds more
appropriate than his own (which in fact can be derived by modern methods). Bien-
aymé, however, whose analytical abilities were likewise at a respectable level, was
unable to give an exact mathematical argument in favor of Laplace’s position. On
the contrary, by showing that (in modern terminology) the estimator obtained from
any system of multipliers (if these are of an order of magnitude inversely propor-
tional to the number of observations) converges stochastically to the true value, he
showed at the same time, that the method of least squares could be, presupposing a
“very large” number of observations, only slightly superior (according to Laplace’s
criterion) to other methods. Thus, the end of the scientific controversy was not so
much determined by Cauchy’s hypothetic fear of coming too close to Bienaymé’s
position, but rather by a situation in which neither of the two scientists was able to
make further substantial contributions. In this sense, the dispute ended in a tie.

2.5.7 Conclusion: Steps Toward Modern Probability

Laplace’s version of the CLT served mainly as a tool of “good sense” and therefore
its importance was primarily determined by a field beyond mathematics. Around
the mid-19th century, due to the contributions of Dirichlet and Cauchy, the CLT
became part of mathematics in the narrow sense. In Dirichlet’s work, it served
as an illustration of special analytical techniques, whereas Cauchy used it for his
approach to an error theory which was mainly determined by purely mathemati-
cal goals. In adjusting Laplacian approximation techniques to an analytical style
different from algebraic analysis, they contributed to the development of new
standards within analysis. Poisson, with his contributions to the CLT, however
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still according to the principles of classical probability, considerably influenced
Dirichlet’s and Cauchy’s work through his innovative analytical techniques and
through his discussion of the validity of normal approximations.

On the one hand, in Dirichlet’s and Cauchy’s contributions the CLT obtained a
substantial intramathematical role. In Cauchy’s work, it was connected with a rather
abstract and therefore almost “modern” perspective of error theory. On the other
hand, it had not yet reached an entirely independent status within mathematics.
In particular, general statements independent of the original context of applications
were still lacking. Full autonomy, according to Mehrtens [1990] an essential char-
acteristic of the modernization of mathematics, was not reached for the CLT until
Lyapunov published his epochal work on the “Theorem of Laplace” in 1900/1901.
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Appendix: Original Text of Dirichlet’s Proof of the Central
Limit Theorem According to Lecture Notes from 1846

The following text is a transcription*' of pages 25 to 31 of the lecture notes
[Dirichlet 1846] (for closer bibliographic details see References and [Fischer
1994]). To the greatest extent possible, the original wording is reproduced to
the letter, and the original punctuation is kept as well. As a rule, “mistakes” are
therefore not due to misprints. The original page numbers are also referred to.

Seite 25

...,,Es moge sich bei einer bestimmten Gattung von Beob. das Fehlergesetz von
Beob. zur Beob. beliebig dndern, dabei aber doch, was ja immer erreicht wer-
den kann, indem man nur das grofite als Norm nimmt, sdmtliche Fehlergesetze
f1(x1), f2(x2), f3(x3) ... fu(xn) zw. festen Grenzen +a enthalten sein, man
soll bestimmen wie gro3 die Wahrscheinlichk. ist, dal wenn man die Fehler
der einzelnen Beobachtungen xi,x»,x3... mit den respectiven Constanten
a1,02, a3 ... multiplizirt, die Productsumme zw. gegebenen Grinzen g und h
liege; dafl man also habe:*

g <oyxp 40Xy 44 opxy <h

Zur Losung dieser Aufgabe bemerken wir, daB in Folge des Vorhergegangenen die
Probabilititen, daf der erste Fehler zwischen

Seite 26
den Grenzen x1 u. x1 + 0x1, der zweite zw. den Grenzen x, u. x» + dx,, der n't®
zw. den Grenzen x, u. x, + dx, liege, ausgedriickt sind durch

J1(x1)0x1, f2(x2)0x2 ... fu(xn)0xp

fiir die GroBe der Probabilitit, dal diese Fehler zw. den Grenzen g und /A enthalten
sind, hat man die Ausdriicke:

h h h
oxy, 0xs ... 0 (X)) 05
/g J1(x1)0x; /g J2(x2)0x2 /g Jn(xn)0x

und die zusammengesetzte Wahrscheinlichk., dafl diese Grenzen bei allen
gleichzeitig Statt finden, ist gleich dem Vielfachen Integrale:

I[-]] gh Fr000) fax2) -+ fCon) 10 -+~ Dy

Zur Discussion dieses Integrals, wollen wir fiirs erste den Anfangsp. von dem aus
man die Grenzen g und % zehlt in den P. # verlegen. Es wird dann wenn man

41 Courtesy of Institut fiir Geschichte der Naturwissenschaften, Universitiat Miinchen, Professor
M. Folkerts.
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g = —A setzt offenbar 4 = +A, und unsere Ungleichung geht tiber in

—A <oa1x1 +axxy + o apx, < A

1
oder —1< X(alxl +azxy 4+ -+ apx,) < +1

Wir wenden nun das bekannte Verfahren eines Multiplicators an. Man hat nemlich

/‘X’Sin(p v
dp = —
o ¢ 2

oder wenn man /¢ st ¢ schreibt:

2 (% sinl/
_/ sin <pa¢:i1
Tt Jo %

je nachdem [ eine positive oder negative Constante vorstellt. Mittelst dieses Inte-
grals kann man nun leicht sich den gewiinschten Multiplicator verschaffen. Es ist
nemlich:

2 [ si 2 (1 *sin(1+k 1 [*°sin(l1 —k
_/ sin g coskpip = 2 %_/ sin(1 + k)g 9o+ _/ sin( )1 o
o ¢ n(2Jo @ 2 Jo @

woraus man mit Hilfe des vorhergehenden Integrales erhilt:

Seite 27

2 / * sin g { 0 fiir k > 1 absolut genommen
coskpdp =
0

p 1”7 —1<k<]l.

In Folge unserer Ungleichheitsbedingung —1 < %(alxl 4+ aaxy + o apxy) < 1
kann man mit diesem Integral das zu untersuchende durch Multiplication verbinden,
wodurch man erhalt:

%/////_Z /Ooofl(xl)fz(xz)'“fn(xn)Si;(p X

x cos(opx1 + apx2 + ---anxn)§8<p8x18x28m e

Nun ist bekanntlich: +/—1 ffu sin W(p&p = 0 und hieraus und dem
obigen Ausdrucke wird durch Addition:

%//// /—Z /Ooofl(xl)fz(xz)“'fn(xn)Sir(;(p X

xe@ X1 Feax2tanxm) $V=1g . gy g dg
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Setzt man A¢’ = ¢, und liBt man nach geschehener Subst die Accente wieder weg,
so erhilt man:

%/////_Z /0°° fl(xl)fz(xz)"'fn(xn)Sin:(p X

Xe(ﬂtlxl+¢¥1X1~"aan)(p«/—laxl

0X3 -+ 0x, 0@

was man offenbar auch in folgender Form schreiben kann:

z/ slnl(p % f(x)ealxl(pﬁax) ( fz(XZ)eazxszjlaxz)
T Jo (4 —a —a

( afn(xn)eanxn(ﬂx/?laxn)§ 8§0 (1)

Wir miissen uns nun fiirs erste mit der Discussion des Integrales

/a f(x)e‘mpﬁax = /a f(x)cos(axp)ix + V-1 ’ f(x) sin(axp)dx

a

= f(x)cos(axp)idx = ’ f(x)cos Bxox ap =f

beschiftigen. Dasselbe erreicht fiir 8 = 0 sein Max, wo es dann, da f(x) als
Ausdruck einer Wahrscheinlichk., nie negativ werden kann, aus lauter positiven
Elementen besteht. Die Reihe

2.2

/wf@M%&&: aﬂm&-“; /ﬁﬁﬂmm+”.

—a —a

Seite 28

in der « eine gegebene endliche Constante bezeichnet, convergirt fiir sehr kleine
Werthe von ¢, so schnell, daf} fast der ganze Werth des Integrales in den beiden
ersten Gliedern der Reihe enthalten ist, wodurch bewirkt wird, dafl der ganze Werth
unseres Integralproduktes sich im Anfange concentrirt. Setzt man zur Abkiirzung

1 a
—/ X2 f(xy)0x, = ky
2 )

wo k,, eine Constante bezeichnet, die sich nur fiir die betreffenden Beobachtungen,
von deren Fehlergesetz es abhéngt, veridndert, so erhilt man wegen der Relation

" fpax =1

fiir einen Factor obigen Doppelintegrales den Ausdruck:
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1 —kyaZp? + -

Nimmt man den Neper’schen Logarithmus, so bekommt man, wenn man dieselben
in Reihen auflost:

log nat(1 — kya2@? +---) = —k,a2¢? + - --

wo man fiir v die Zahlen 1,2,3,...n zu setzen hat, und die so erhaltenen Aus-
driicke sodann alle zu addiren. Geht man dann von den Logarithmen wieder zu den
Zahlen tiber, so erhilt man einen Ausdruck fiir das oben behandelte Produkt aus
Integralfactoren. Man hat aber hiebei auch dafiir zu sorgen, daf} die weggelassenen
Glieder der Reihe absolut klein seien, nicht blos klein im VerhéltniBe zum ersten
Gliede. Denn in einer Exponentialgrofe e*t# = e“ef, wie sie hier auftritt, darf
man offenbar nur dann den zweiten Theil 8 des Exponenten vernachlissigen, wenn
es eine absolut verschwindende GroBe ist.
Wenn man nun unsere n Gleichungen

log nat(1 — kya2@2 + ---) = —kya2e? + lp* 4 ---

Seite 29

summirt, so wird die Summe der Glieder der vierten Ordnung immer < nl<p4 sein,
wenn man nemlich mit / den groBten vorhandenen Entwicklungscoeff bezeich-
net, und also eine gewisse Constante sein wird in Beziehung auf ¢, und » als der
Index der einzelnen Beobachtungen als eine immer wachsende Grof3e gedacht wer-
den muf3. Nach dem oben Gesagten muf3 nun unser Bestreben immer dahin gehen,
dal die Summe der hoheren Entwicklungskoeff immer eine absolut kleine Zahl
bleibt, und die3 bewerkstelligen wir dadurch dal wir in dem willkiirlich einge-
fiihrten Integrale mit der Variablen ¢ diese letztere blos soweit wachsen lassen, dafl
das Produkt 782, wo § einen Zustand von @ bezeichnet, immer wie grof3 auch n wer-
den moge, sich der Grenze Null nédhert. Dann reduzirt sich in vorstehender Formel
das Product der Co... auf die Summe ihrer ersten Entwicklungsglieder, und man
erhilt statt unserer Formel (1) sogleich:

¢+ - dp=p+q

v=n v=n
2 /5 —0? ¥ kvai sin)u,oa 2 /°° —¢? X kvai sin Ay
€ v= e v=
0 TJs

n

wo also § durch die Bedingung bestimmt wird, daB § ¥/n fiir ein zunehmendes
n immer kleiner und kleiner wird. Beschiftigen wir uns zuerst mit dem ersten
Integrale
S .
p= %/ e_szkvaEMa(p
T Jo %

so wir fiir ¢ = % sogleich:
A
2 [V o vaer SNy
= [T e Ay
T Jo 14
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Nach unserer Bedingung soll nun § ¥/n bestindig abnehmen, womit aber durchaus
nicht gesagt ist, daB dies auch mit § /5 der Fall sein miisse, welches im Gegentheil
sogar immer grofler werden kann, wie dief3 z.B. fiir die Annahme § = % statt
findet. Bestimmen wir nun

Seite 30
das § so, daB fiir ein zunehmendes n das Product § ¥/n immer abnimmt, §./n aber
wichst, so erhalten wir fiir eine sehr gro8e Anzahl von Beobachtungen offenbar:

2 /°° _szkva% sin Ay
p = — c n
0 4

T
wobei noch zu bemerken ist, daB man hier, wie auch geschehen ist, auch das A
mit wachsendem n zunehmen muf}, indem offenbar die Wahrscheinlichkeit, daf} bei
unendlich vielen Beobachtungen der Fehler zw. gegebenen festen Grenzen liege,
Null ist. Wir setzen deshalb A./n statt A. Nun ist aber zur Vereinfachung dieses
Resultates bekanntlich:

oy

00 22
/ ec’e cos)uparp—ﬁe 4c2
0 2c
A 00 00 :
A
/ EM/ ec?¢? cos A@dg :/ A ('0890 = \/_ e 4128s
0 0 0 %

2¢
der /ooe 202 s1n)L<p \/_/
0

und hiemit wird: N
B %/2 R g,
T Jo

v=n

als Ausdruck der Wahrscheinlichk. da die GroBe > o, x), zw. den Gréiinzen 21 Jn
v=1

enthalten sei, oder daf} sei

—An < Zavxv < An
v=1

wenn n immer grofer wird. Es ist hiedurch allein schon diese Wahrscheinlichkeit
ausgedriickt, weil das zweite Integral
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sich unaufhorlich der Null nédhert. Diese Behauptung erweist man folgender mafien.
Wir haben bei der Form (1) bemerkt, daf} 2 an f(x) cos(apx)dx fir ax =c ein
absolutes Maximum und = 1 sei
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und niemals mehr unter den spiter eintreten Maximis ein diesen an Grofle gleich
kommendes sich befinde. Man kann sich nun das Intervall so klein denken, daf3
die Funktion innerhalb deBselben nicht allein bestindig abnimmt, sondern auch
noch grofler bleibt, als sie spiter irgendwo noch werden kann, a fortiori also das
Product aller dieser analog gebildeten Functionen, und man kann diesen Zustand
der Ungleichheit durch Verkleinerung des Intervalles von O bis § soweit treiben,
als verlangt wird, woraus unsere Behauptung folgt. Strenger 148t sie sich aber auf
folgende Weise rechtfertigen. Man zerlege das Integral [ 800 in die Summe zweier

andren || 3A + [ Aoo, so wird immer im ersteren die Function am Anfange grofer sein,
als irgendwo spiter. Es wird also das Integral kleiner sein, als die Differenz der
Grenzen A — §, also um so mehr kleiner als der Anfangswerth der Function, und es
nihert sich deswegen, wenn man das A einer positiven Potenz von n proportional
nimmt, der Werth des Productes der Grenze Null. Was nun noch das zweite Integral
betrifft, so hat man durch partielle Integration:

/ cos(apx) fxdx = S0@PD) Ly / SIn@9X) 1119

agp

ap
/ " cos(ap) f(x)ix = 200 Ly / ©sin@ex) oo
—a %1% —a (4%

wo wir also jetzt auch noch annehmen miilen, daf f(x) innerhalb der Integral-
grinzen endlich bleibt, welche Annahme durch die Natur der Fehlercurve vollkom-
men gerechtfertigt ist. Die Zihler beider Ausdriicke schwanken immer zw. gewissen

Grenzen hin und her, und der Werth des Integrales wird daher kleiner als (%, und

folglich der Werth des Productes n solcher Integrale < wL" welcher sich also mit

wachsendem ¢ der Null nihert.



Chapter 3
The Hypothesis of Elementary Errors

In the framework of classical probability theory, the primary objective was to
calculate probabilities of certain events, with the aim of making “rational” deci-
sions based on these probabilities. Error or frequency functions' only played the
role of auxiliary subjects. This paradigm, however, would change fundamentally
during the course of the 19th century. In the field of biological statistics, for exam-
ple, probability distributions became an independent object of research. In this con-
text, it was the prevailing opinion for a long time that almost all quantities in nature
obeyed normal distributions. For a justification of the apparently privileged role of
normal distribution, a model was used in most cases which had originally arisen
from error theory: the hypothesis of elementary errors. A random quantity obeying
this hypothesis was assumed to be additively composed of a very large number of
independent elements, each of them being insignificant compared with the total sum.
In this case, the CLT guaranteed an approximate normal distribution of the random
quantity under consideration.

The hypothesis of elementary errors was first stated by Hagen in 1837, and one
year later considerably generalized by Bessel, who aimed at a deduction of normal
distributions for errors of observation as indisputable as possible. The assumption
of normally distributed errors of observation was originally needed for a simplified
treatment of Gauss’s “first” justification of the method of least squares. The use of
error theoretic considerations for the examination of statistical quantities in biology,
economy, and social sciences, particularly propagated by Quetelet, led to the appli-
cation of the hypothesis of elementary errors even beyond errors of observation.

At the beginning, statistics of distributions was very closely related to error the-
ory regarding its methods and concepts. However, growing awareness of the fact
that the notion of biological “frequency laws” was entirely different from that of
error laws was an important milestone in the development of statistical thinking.
While errors of observation are deviations from a single real value, deviations from

! During the 19th century, “frequency function” was a term especially used to designate densities
of random variables in biology, economy, and social sciences.

H. Fischer, A History of the Central Limit Theorem, Sources and Studies 75
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-0-387-87857-7_3,
(© Springer Science+Business Media, LLC 2011



76 3 The Hypothesis of Elementary Errors

a certain mean within biological samples have an entirely different quality, because
that mean has a purely mathematical character.

At the beginning of the 20th century, statistics became more and more inde-
pendent from error theoretic concepts, as there was a shift of its main objectives
from the examination of empirical distributions toward hypothesis testing. Accord-
ingly, elementary errors became more and more unimportant in statistics. Still in the
1920s, however, elementary errors were rather frequently discussed in connection
with the CLT.

3.1 Gauss and ‘“His”’ Error Law

The foundation of least squares according to Laplace was based on a CLT for linear
combinations of errors of observation. This foundation competed against the two
foundations presented by Gauss, of which in particular the first—including vari-
ous modifications by later authors—was very popular during the 19th century, de-
spite being based on the very special assumption of exclusively normally distributed
errors.> Originally, Gauss [1809, 240-245] had deduced the error law, which would
later be named after him, by virtue of the principle of the arithmetic mean being
the “most probable” estimation for the true value in the case of direct observations
M, M>, ..., M, where each obeyed the same law of error ¢(A), which was as-
sumed to be symmetric and unimodal.> Gauss’s arguments relied on inverse proba-
bilities (see footnote 2, Chap. 2), and can be summarized, in a somewhat modern-
ized form, as follows: If dP(x|M,..., M,) designates the (infinitesimal) proba-
bility that x is the true value underlying the direct observations My, ..., M, and
dP(M;,..., M, |x) the respective inverse probability, then, if one a priori presup-
poses all possible true values x uniformly distributed, both probabilities are propor-
tional to each other. Therefore, the “most probable” estimation p for the true value
is characterized by the condition that dP (M, ..., M, |x) and therefore also

oMy —x)p(Mp —x)--- (M, — x) (3.1

is maximized for x = p. From this, under the assumption of the arithmetic mean
being the “most probable” value, Gauss [1809, 244] derived the following condition
for the error curve p(A):*

¢Mi—p) ¢Ma—p) ¢ Mu—p) _
o(Mi—p)  ¢(My—p) ¢(My, — p)

0 (3.2)

2 Comprehensive accounts on Gauss’s “first” foundation of the method of least squares can be
found in [Sheynin 1979] and [Hald 1998, 351-357].

3 Strictly speaking, however, the latter properties are not required for Gauss’s proofs if one only
assumes—as Gauss naturally did—¢(A) being sufficiently smooth.

4 The reader who compares the following equations with those in the original source should not be
bewildered by different notations. Whereas Gauss used the abbreviation ¢’ (A) for ﬁ log(¢(4)),
in the present book ¢’ simply stands for the derivative of ¢.
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for all natural p if

p_M1+M2+"'+MM
o .

In the special case My = My — uN (k = 2,...,u, N an arbitrary constant)
condition (3.2) yielded

¢l=DNT_ M)W(—N)
¢l(n = 1)N] ¢(=N)
From the latter equality, it could—in Gauss’s own words—*easily” be deduced that
AC) = const
p(A)A

This differential equation finally led, on account of the constraints that (3.1) had to
attain a “true” maximum and that ffzo o(A)dA = 1, to the “Gaussian” law of error

o(A) = %e—hzﬂz (h > 0). (3.3)

Presupposing in the linear model for the observations d; and the unknown true
values x;

m
di=Y ayx;+y (=1...n) (3.4)

j=1
that all (mutually independent) errors y; were identically distributed according to
(3.3), the (infinitesimal) probability dP(d;,...,ds|x1,...,Xm) (the conditional

probability that the observations d; are made under the presupposition of the true
values x ;) could be expressed by

dP(dl,...,dn|x1,...,xm)

n
= (i) e—h2z§’=1(dl-—Z§”=1a,—_,-x_,-)zdyl__‘dyn' (3.5)

JT
dP(dy,....ds|X1,. .., Xp) attains its maximum value if x; = x;. (G=1,...,m),
where n m
Z(di — Z a,-jx})z = min. (3.6)
i=1 j=1

The least squares condition therefore corresponded to the “most probable value sys-
tem” x;. [Gauss 1809, 245].

As already mentioned, justifications of least squares following the basic ideas of
Gauss’s “first” foundation remained very popular.’ Gauss’s arguments, however,
were plagued by some serious conceptual problems.® Gauss himself no longer

3> Merriman [1877c, 165] reports that the majority of books on error theory published up until that
time preferred this method (occasionally modified) of introducing least squares.

6 Knobloch [1992, 62-64] summarizes the contemporary criticism on Gauss’s “first” foundation.
Because in the case of direct observations (only one unknown x|, d; = x| + ¢;) the method of
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granted his justification too great a value in later times.” Primarily, he was bothered
by the fact that the probabilities under consideration (see (3.5)) were only infinites-
imal. What was the use if one could show that an infinitely small probability attains
a maximum? Another problem was that Gauss’s line of argument relied heavily on
inverse probabilities, and was therefore quite intricate. Gauss designated the values
of the least square estimators x;- according to (3.6) as “the most probable.” This
notion, however, made perfect sense only if one had in mind that, in accord with
the principles of inverse probabilities, dP (X1, ..., Xm|d1, . . ., dn) Was proportional
to dP(di,...,dn|x1,...,xm), and therefore the most probable values for the x;
corresponded to the most probable observations d; and errors y;, respectively. In
contrast to these rather complicated and in part—regarding the a priori equiprob-
ability hypothesis for the true values—questionable considerations, many authors
after Gauss simply equated the errors y; = d; — Z';’:l aijx; with the residu-
als y; = d; — Z?’Zl ajjx'; (x'; being the estimators for the x;). The probability
(3.5) was then conceived as a probability regarding residuals, and the most proba-
ble values of the residuals corresponded, naturally, to the most probable estimations
[Czuber 1891, 48-52; Hald 2007, 106—109]. One of the most problematic aspects,
however, was that, on the one hand, Gauss had hypothetically deduced “his” error
law from the principle of the arithmetic mean as the “most probable” estimation (in
[1809, 244] he called this principle “axiom’), and on the other hand, in so doing had
also arrived at a statement of physical fact. The question which immediately arose
from this apparent contrast was whether errors of observation actually obeyed an
(approximate) Gaussian distribution or this kind of distribution was only a conve-
nient hypothesis, possibly far from reality.

Apparently dissatisfied with his “first” foundation of least squares, Gauss [1823]
showed that least squares conditions analogous to (3.6), for obtaining estimators
x; for x; in (3.4) of the form x; = }7/_, k;id;, were equivalent to the require-
ment that

n
Var(x} —xj) = Vaerﬂy,- = min
i=1
under the constraint Y/, kj;a;; = &;;, presupposing independent errors of ob-

servation with zero expectations.® Regarding the problem of a favored existence of
special error functions he stated in the first part of his 1823 paper:

Probably, in practice it will be as good as impossible to indicate this function a priori [Gauss
1823, 5].

From this quotation we can see that Gauss did not adhere to the idea of a “natural”
predominance of normally distributed errors.

least squares leads, in turn, to the arithmetic mean (x| = ﬁ Z;’:l d;), Stigler [1986, 141] criticizes
a logical circle from the principle of arithmetic mean to Gaussian error law and least squares, and,
finally, back to arithmetic mean. This aspect, however, apparently did not play a decisive role in
the 19th-century discussions on Gauss’s arguments.

7 See [Gauss 1880, 523], letter to Bessel, 28 February 1839.

8 For a detailed analysis of Gauss’s arguments, which also included the more general case of
possibly different error laws for different observations, see [Hald 1998, 472 f.].
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So why did Gauss’s “first” justification of least squares remain so favored until
the beginning of the 20th century, despite its hypothetical character, its concep-
tual complexity, and the fundamental criticism of its originator? One reason may
be that Gauss’s arguments were already valid for a small number of observations
in contrast to Laplace’s CLT considerations, and that they were altogether easier
to expound with respect to the analytical methods used. These advantages, how-
ever, applied even more to Gauss’s “second” justification. The decisive advantage
of Gauss’s first justification was apparently that it was closely related to an explicit
law of error. Knowledge of specific laws of errors was needed when the “best”
among different competing estimators for a certain parameter was to be found.
A typical example was given by Laplace [1812/20/86, 571-577]° in his discus-
sion of the accuracy of the arithmetic mean versus the median. Without the explicit
knowledge of the law of error it is impossible to determine which of the two es-
timators has the larger probability for a certain maximum deviation from the true
value.'” A further example was the evaluation of different estimators for the “mean
error” (the former name for the modern “standard deviation”), as can basically be
traced back to Gauss [1816].!! Slightly exaggerated (and un-historically expressed),
the preference of Gauss’s “first” justification—in many cases simplified by consid-
ering residuals instead of real errors, as seen above—was based on the advantages
of parametric statistics in comparison to nonparametric statistics in the framework
of error theory.

Therefore, Gauss’s “first” justification in fact broached the “nature” of the law
of error. Did this actually obey a Gaussian distribution in particular experimental
settings, which still had to be described more exactly? This question could only be
answered by comparing the relative frequencies of errors observed on the one hand,
and Gaussian distributions on the other. This comparison had to be accompanied by
discussing plausible models for the formation of errors of observation. In connection
with such considerations, the hypothesis of elementary errors became particularly
popular.

3.2 Hagen, Bessel, and ‘‘elementiire Fehler”

The entire work of the astronomer Friedrich Wilhelm Bessel (1784—1846) is distin-
guished by a comprehensive and detailed discussion of random as well as systematic
errors of observation.'? Concerning random errors depending on special instruments

° In the second supplement of the 3rd edn. of TAP, dated “February 1818.” For a description of
this supplement see [Hald 1998, 444-452].

19 Dirichlet [1836; 1897b] later used this example for a general criticism of the method of least
squares [Fischer 1994, 44-47].

1 For comments on [Gauss 1816] and related work see [Czuber 1891, 128-145; 174-182; Hald
1998, 456-458; Sheynin 2005b, 144 f.].

12 See [Lavrynovich 1995, 136-150] for a detailed account, however neglecting mathematical
aspects.
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of observation, he was particularly interested in the interplay between models of the
emergence of errors, and actual error laws. His error theoretic work exhibits a see-
saw between considering the Gaussian error law as merely plausible and useful for
certain investigations on the one hand, and attributing a real character to it on the
other (notwithstanding certain deviations from the mathematical model which oc-
cur in practice).'? In 1818, in the framework of observations of right ascensions and
declinations of stars, Bessel had already drawn a comparison between the relative
frequencies of residuals of direct observations which fell into certain intervals and
the corresponding probabilities calculated on the basis of Gaussian error laws. He
found a good correspondence between the two sets of values [Bessel 1818, 18-21].'4
In his hitherto unpublished exchange of letters with Carl Gustav Jacobi'® one can
find an attempt dated from 1830 to prove the arithmetic mean being the most prob-
able estimate (in Gauss’s sense) of direct observations under very weak conditions
and independent of a special law of error [Bessel 1830]. Jacobi [1830], however,
immediately found serious errors in Bessel’s arguments, which could not be elimi-
nated. One can be quite sure that error theory played a significant role in the courses
on astronomy given by Bessel at the University of Konigsberg.

3.2.1 The Rediscovery of the Hypothesis of Elementary Errors
by Gotthilf Hagen

With his courses, Bessel paved the way for the “invention” of the hypothesis of
elementary errors by one of his favorite disciples, Gotthilf Hagen (1797-1884,
Fig.3.1). Indeed, as we can see from the unpublished exchange of letters between
Bessel and Hagen (for closer details see below), the sole credit of an explicit formu-
lation and justification of the hypothesis of elementary errors has to be assigned to
the latter.

From a purely formal point of view, Hagen only "re-discovered" elementary er-
rors. Daniel Bernoulli [1778] had already hinted at the idea of any observational
error being the sum of a large number of very small errors. In his 1778 paper, he
was still elaborating this idea in a rather qualitative manner, while in a subsequent
article [1780] he thoroughly discussed the aberrations of pendulum clocks by means
of a simple, yet quantitative binomial model. He assumed that the accumulation of
equiprobable deviations which are equal in modulus, though not necessarily in sign,
caused the accidental procedure or pursuing of the clock in each period [Sheynin
1972, 289-292; Hald 1990, 506].

13 Already Gauss [1809, 244] had hinted at the property of normal distributions to allow arbitrarily
large errors, at least in principle. On the other hand, he noticed that this “flaw” was unimportant in
practice due to the rapid decrease of normal error laws.

14 Bessel’s tables are reprinted in [Schneider 1988, 278; Stigler 1986, 204; Hald 1998, 362].

15 These are actually mathematical notes, which the two colleagues at Kénigsberg University ex-
changed between 1826 and 1846. They are now kept in the archive of the Academy of Sciences of
Berlin.
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Thomas Young [1819, 72—77] attempted to show by induction that the “proba-
ble error”'® r is related to the expectation of the modulus of an observational error
(which he called the “mean error” e) with r ~ 0.85e. Without any knowledge of
Bernoulli’s work, Young assumed the observational error to be the sum of a very
large number n of partial errors, each taking the values \/LZ and —\/Lﬁ with prob-

ability % Sums of this kind are approximately normally distributed, and therefore
Young, apparently without a clear insight into the error theoretic details, derived his
result as being general although being only valid for normally distributed errors.!'”

Certain statements by Gauss suggest that he, too, had ideas which at least come
close to elementary errors.'® In §3 of his Theoria Combinationis [Gauss 1823, 4 f.]
he distinguished between “partial errors” and “total errors,” the latter being com-
posed of “several simple errors” and having values which resulted “in infinitely
many ways from the composition of the partial errors, which themselves are more or
less probable.” Gauss, however, did not explicitly state a hypothesis on the coaction
of these “partial errors.” Apparently, Gauss’s remarks were not noticed by mathe-
maticians who later worked on the hypothesis of elementary errors.'” But due to the
strong influence of his contributions to the development of error theory in general,
one cannot exclude the possibility that his statements produced a certain impetus
toward the idea of elementary errors. Gauss’s distinction between “accidental” and
“constant” errors was based on a discussion of error sources in the specific use
of measuring instruments. Similar ideas can be found in the works of almost all
proponents of elementary errors. D. Bernoulli [1780] had already made a distinc-
tion between “aberrationes chronicae” (systematic errors) and “aberrationes mo-
mentaneae” (random errors) in his work on pendulum clocks. However, Bernoulli’s
work remained unnoticed during the 19th century and was only appreciated by re-
cent authors.?’

It was left to Gotthilf Hagen—who apparently did not know of D. Bernoulli’s
contributions—to base error theory in a general way on a clearly formulated
hypothesis about elementary errors, resorting to the principles of the use of measur-
ing instruments. Hagen [1837, 34] made the following assumption:

... the error in the result of any measurement is the algebraic sum of an infinitely large num-
ber of elementary errors [“elementdre Fehler”], which are all equally large, and of which
each single one can be just as positive as negative.

19 For a probability density f(x) which is symmetric with respect to x = 0 the probable error r is
defined by the condition f:r f(x)dx = %
17 Young [1819, 78] boasts in a quite exaggerated way stating: “In other respects the results here
obtained do not materially differ from those of LEGENDRE, BESSEL, GAUSS and LAPLACE: but
the mode of investigation appears to be more simple and intelligible.”

18 1 thank Ivo Schneider for drawing my attention to this fact.

19 Neither in the exchange of letters between Bessel and Hagen (see footnote 22), nor in the discus-
sion of elementary errors by the Gauss-adept Encke [1850, 334-352], nor in the surveys on error
theory by Czuber [1891; 1899] or Pizzetti [1892] can one find any allusions to Gauss’s remarks.

20 See [Sheynin 1970; 1972, 286; Hald 1990, 500-504].
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Fig. 3.1 Gotthilf Hagen

This hypothesis was related to a model of error causation, which was according to a
very large number of drawings with replacements from an urn containing black and
white balls corresponding to the positive and negative values of elementary errors.

After first studying mathematics and astronomy at Konigsberg University (1816—
1818), Hagen changed to civil engineering (“Baukunst”), because he felt more af-
filiated to the “practical side.””! Mainly during his studies in Konigsberg he had
acquired his mathematical and astronomical skills, among them error theory. Those
skills remained very useful in his new activities. He always kept close contact with
Bessel.”” From 1831, Hagen worked at the “Oberbaudeputation” in Berlin (the lead-
ing institution for civil engineering in Prussia at this time), and also became a teacher
at the Berlin “Bauakademie” (the Prussian college for civil engineering). In his
teaching as well as his scientific activities (primarily focusing on hydraulic engi-
neering), he stressed in a quite unusual way compared to contemporary customs
theoretical and mathematical aspects. He was particularly interested in applications
of probability calculus to land survey (“lower geodesy”) and was a quite isolated
innovator in this respect [Hagen 1831].%

Despite resistance of his colleagues, Hagen’s interest in probability calculus
remained undiminished. In a letter dated 2 August 1836 Hagen [1836a] sent a draft
of a little essay to Bessel, in which he presented and justified “his” hypothesis of

2! For Hagen’s professional and scientific career see [Ottmann 1934]. This biography is based on
Hagen’s extensive collection of private papers, which has been missing since the end of the Second
World War. In Ottmann’s book, one can also find many passages from letters and from Hagen’s
unpublished autobiography (which has also disappeared ever since).

22 Parts of the unpublished exchange of letters between Bessel and Hagen can be found in the
manuscript division of the Staatsbibliothek Preussischer Kulturbesitz in Berlin and the archive of
the Academy of Sciences at Berlin.

23 Quite frequently, there were controversial discussions in 19th-century Germany about the
importance of mathematics for engineering. Hensel [1989] has given an account on the role of
mathematics for engineering education during the second half of the 19th century in Germany.
However, the corresponding development until about 1850 has been largely neglected by histori-
ans until now.
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elementary errors and deduced a Gaussian distribution (Fig. 3.2) for observational
errors. Hagen referred to the motivation for his research with the following words:

I wanted to explain my conductors, who always speak about absolute precision in levelling,
which consequences are caused by the accumulation of errors .. .

In his reply, Bessel [1836] showed his above-mentioned ambivalent attitude of being
willing to use appropriate models of error causation on the one hand, while on the
other hand criticizing the lack of reality regarding hypotheses and particular laws of
error. He expressed his doubts about the universal validity of Hagen’s very simple
assumptions and of the Gaussian distribution for errors deduced therefrom. At the
same time, Bessel hinted at Young’s 1819 contribution which had previously gone
unnoticed by Hagen.

In another letter to Bessel (28 July 1836), Hagen [1836b] announced the
publication of a book already planned a long time ago, titled Grundziige der
Wahrscheinlichkeitsrechnung mit besonderer Anwendung auf die Operationen der
FeldmeBkunst (“Essential Features of Probability Calculus with Special Applica-
tion to the Operations of Land Survey”). The book was published in 1837, a second
edition in 1867, and a third in 1882. The contents of the book went far beyond the
problems of surveying. Especially covered were further applications of probability
to the examination of the strength of various materials or to the fitting of parameters
in empirically determined formulae. The essential part of the book, however, was
on the discussion of Hagen’s hypothesis of elementary errors and on an analysis of
least squares derived therefrom.?* In its theoretical intentions, Hagen’s book was
entirely different from Christian Gerling’s exposition on the method of least squares
which was directed toward the same audience, appearing a little later in 1843. It
was not Hagen’s intention to give a collection of recipes; instead he aimed at the
education of independently thinking technicians.

In the first edition, Hagen thoroughly discussed his hypothesis of elementary
errors, whose value was not purely didactical from his point of view. In fact, in this
hypothesis he saw substantial scientific progress regarding the foundations of the
method of least squares. In the second and third edition, Hagen was considerably
more reserved in this respect, perhaps because he had meanwhile realized the un-
tenability of some aspects of the model, in particular the confinement to two-valued
elementary errors.

In his book, Hagen chose exactly the same analytical method for his deriva-
tion of normal distributions by elementary errors that he had already communi-
cated to Bessel in his letter [1836a]. This method was very similar to D. Bernoulli’s
procedure for approximating binomial distributions with success probabilities close
to % via differential equations. From this fact alone, however, we cannot conclude
that Hagen had plagiarized Bernoulli’s work, which remained (as mentioned above)
virtually unknown during the 19th century.

Hagen [1837, 41-49] assumed that each of the 2n (for the sake of symmetry he
only considered an even number) coacting elementary errors could only take one

24 For a characterization of the book, in particular of Hagen’s conception of “precision,” see
[Olesko 1995, 108 f.; 113-115].
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negative and one positive value, each with the same modulus de, and each with
probability % If y(m) (im = —n, ..., +n) designates the probability that the sum
of these 2n elementary errors is equal to mdx (or n + m of these elementary errors
are positive and n — m are negative), then, as a result of the properties of binomial
distributions one gets®

2m —1

n+m’

y(m)—y(m—1)=—y(m—1) (3.7)
Now, the number of elementary errors was assumed to be “infinitely large” and their
unity de to be “infinitely small.” According to Hagen, for the probability y(x) that
the sum of these elementary errors is x = mdx, an equation analogous to (3.7)
could be obtained by substituting 1 by dx and m by x in (3.7). In this way, he
concluded under the assumption of “infinitely large” n:

y(x) — fl(x —dx) _ - dx)2_x7
X n

wherefrom he inferred the differential equation

2x
Vi) ==y (3.8)
(3.8) has the solution

() = y(O)e .

Because of the properties of the binomial distribution, and by use of Wallis’s prod-
uct,”® Hagen was able to infer that, for “infinitely large” n,

y(0) = =2
N
where the summation is with respect to all possible values of x = — ndx,

(—n 4+ 1)dx, ..., +ndx. Finally, since >_ y(x) = I:

2

e . (3.9)

1
y(x) = N

Hagen’s method of handling infinitely large and small quantities, as just described,
was not only difficult to understand, it was even flawed since the quantities x and dx
were applied in a rather inconsistent manner.”’ Probably, the reader was even more

puzzled by Hagen’s further line of argument [ 1837, 49-51], in which the term JLE in

25 Hagen [1837, 43] gave a slightly erroneous version of this formula, %‘;7 instead of %f’fk—*ml
This mistake did, however, not influence his following arguments.
26

%7 In a logically consistent way, (3.7) has to be replaced by
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(3.9) was substituted, by means of a nebulous “rescaling,” by the “precision” & (the
reciprocal value of the standard deviation of the total error times ﬁ)_zx The ob-
vious difficulties for Hagen’s readers are highlighted by a controversial discussion
between Charles Kummell and Mansfield Merriman, in the 1877 edition of the Jour-
nal of the Franklin Institute, in which contemporary problems using the “infinite”
are exemplified.”

After the publication of Hagen’s book, several articles appeared with the inten-
tion of eliminating the flaws of the original deduction.’® Hagen himself, however,
kept his version of the proof without any substantial modifications in the second
and third editions of his book. The basic idea common to all of the “improved”
deductions—even if each single author claimed to have derived an entirely different
approach—was to complement the hypothesis of elementary errors by the (in fact
unjustified) assumption that the two values of each elementary error were + % with

A= ﬁﬁ’ where /& was a positive constant. For n “infinitely large,” the equation

for the (infinitely small) probability y(x) that the sum of the 2n elementary errors
is equal to x was:

2x — Ax 2x — Ax
Sy AX) =~y — AN Y = - A 2T
y(x) = y(x — Ax) = —y(x X At x 0 x)n(Ax)2+xAx *
2h%x — h?>Ax
—_ — - A T 1A . bl
y(x x) 1+ h2xAx

from which, since Ax is “infinitely small,” the differential equation
y' = —2h%xy

could be deduced. The solution of this differential equation is y(x) = y(O)e_hz"z.

With
Yoy =1,

2x —dx
y(x) —y(x —dx) = —y(x —dx)———.
ndx + x
From this equation, however, it is not possible to obtain (3.8). Incidentally, similar “inaccuracies”
can be found in D. Bernoulli’s contributions mentioned above.

28 Hald [1998, 367] has given an exposition of Hagen’s procedure from the perspective of modern
analysis, in which the inconsistencies just described are not discussed.

29 The discussion, which comprises [Merriman 1877a], [Kummell 1877], and [Merriman 1877b] in
temporal order, started with critical remarks by Merriman on Kummell’s [1876] modified version
of Hagen’s “proof.”

30 Merriman [1877b, 330; 1877c, 182] cites Quetelet [1846, 384-387] (an exposition substantially
following Hagen’s original version), Wittstein [1849, 348-354], Encke [1850, 330-350] (rather
incorrectly, because Encke relied on Stirling’s formula without making any use of the differential
equation (3.8), see also [Czuber 1891, 81-83]), [Dienger 1852, 149-155], Price [1865, 376-379],
Tait [1865] (with a method similar to [Encke 1850]), Natani [1866, 16-33], Faa-di-Bruno [1869,
44-45], Meyer [1874, 215], and Kummell [1876, 133-135].
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it followed>'

0) — 1 _ Ax _ Ax
y(0) = Ze_hzxz = Ze—hzszx - j'fo X2 gy

00

and therefore i
—h2x2
y(x) = Ax ﬁe .
This result corresponded to the Gaussian error law.

One of the main goals of Hagen’s book, as expressed in the preface [1837, v f.],
was to present the basic ideas of probability theory in a simple and clear manner. In
his particular deduction of the error law he did not base his arguments on inverse
probabilities, in contrast to Gauss. As a consequence, Hagen [1837, 66-70] gave a
justification of least squares which did not rely on inverse probabilities either: he
simply equated errors of observation with residuals (see Sect. 3.1), and he was ap-
parently one of the first authors to do so. Hagen did not comment on this—actually
rather obscure—puzzling of two different mathematical subjects.’> Later in the text,
discussing the problem of estimating the probability of a given deviation between
the actual and estimated value, Hagen [1837, 76-84] carefully differentiated be-
tween “real” errors and residuals, which latter he designated “difference between
the result of the observation and that of the calculation.”

3.2.2 Bessel’s Generalization of the Hypothesis of Elementary
Errors

As mentioned above, Bessel was rather reserved regarding the overall validity of
Hagen’s hypothesis of elementary errors. He [1836] also questioned the universality
of the Gaussian error law:

Laplace, and after him Gauss®* have stated the probability law of an error v to be arbitrary,
in general. I think Laplace is right there.

On the other hand, in his 1838 article “Untersuchungen tiber die Wahrscheinlichkeit
der Beobachtungsfehler” (“Analyses of the Probability of Observational Errors”),
where he considerably generalized the hypothesis of elementary errors compared to
Hagen’s, Bessel took a rather positive attitude toward the possible predominance of

31 Dienger and Natani (footnote 30), for example, chose this way. Instead of this method it was
also possible to follow Hagen’s original arguments, and to infer, by use of Wallis’s product, that
y(0) = ﬁ, and then to substitute #n in the latter term by hAx, with an “infinitely small” Ax
(see [Kummell 1876, 135] for a particularly clear exposition).

32 Hald [2007, 107 f.] interprets these considerations in the sense of early maximum likelihood
arguments, however.

33 Apparently, Bessel was alluding to Gauss’s remark in the context of the latter’s “second” justifi-
cation of least squares, as quoted in Sect. 3.1.
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Gauss’s error law. This article was certainly motivated by the intention to demon-
strate his disciple who the true master was. Bessel’s mathematical ambitions and
skills are shown by the quality of his purely mathematical contributions, and, in
various cases, by his exchange of letters with Gauss [1880] and Jacobi (see foot-
note 15). However, the greater motivation for Bessel might have been his constant
interest in specific properties of error laws as an independent subject of research.
Hagen’s model did not fit reality in Bessel’s opinion. Therefore, he tried to establish
a model corresponding better to the practice of measurement than Hagen’s.

Bessel [1838a] (Fig. 3.3) communicated the success of his effort to his mathe-
matical “advisor” Jacobi with the words:

You can henceforth take for granted, dearest!, that many coacting causes of error always
yield a probability of the entire error which is close to the exponential law.

In the very next sentence, however, Bessel expressed his skeptical attitude:

Whether the “always” is carrying things too far has to be investigated though; therefore
rather “in general.”

Bessel assumed that an observational error was additively composed of a very
large number of independent elementary errors x, y, z, ..., with ranges of values
[—a;al, [-b;b], [—c; c], respectively, and densities ¢, @1, @2, ..., each symmetric
with respect to 0.>* At the beginning of his paper, Bessel [1838¢c, 377-390] tried
to give an exact formula for the density function of a sum of elementary errors
of this kind using convolutions of the single densities. This procedure, however,
led to formidable difficulties, so that Bessel had to restrict his considerations to a
maximum total number of 4.

In the course of these explanations, Bessel also developed a general formula by
use of a trigonometric jump function. He [1838c, 377 f.] discretized the errors by
subdividing the number line in pieces of length ll, where i was an “infinitely large”
natural number; he only considered those values x, y, z,... of elementary errors
which could be represented by x = X - ll, y =75y ll, z=72- ll, ..., where x,
¥, Z, ... were—in general “infinitely large”—integers. Bessel [1838c, 377] noticed
that the probability for the value x was %(p(x), where ¢ was the density of the
associated elementary error. Apparently, it was a matter of course for Bessel, which
did not need any further explanation, that after the discretization one had to imagine
the entire probability mass of the interval between x and x + ll concentrated in x.
The probability that the sum of i + 1 elementary errors x + y + z 4 --- was equal
to n,% Bessel initially represented by

1 1
=0 ) e (e (3.10)

X+y+z+-=n

3% As usual for the 19th century, Bessel did not make any terminological difference between errors
(in the sense of random variables), and the respective values of errors. In accordance with the
contemporary usage, too, he [1838c, 374] noticed that ¢ (x)dx was the probability that an error
with density ¢ (x) “falls between x and x + dx.”

33 The use of “n” for the sum of elementary errors by Bessel was slightly unfavorable, because, in
general, n was not a natural number.
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where 1y was the density function of the sum.
For the further evaluation of this formula, Bessel used—apparently inspired by
his colleague Jacobi**—the jump function

it 0 else,

1 lﬂe(x+y+z+...—n)uﬁdu: 1if x+y+z+_n=0
2iT —in

which is valid for such x, y, z, ..., n for which (x + y +z +---—n)i is a (possibly
“infinitely large”) integer. By use of this jump function, Bessel derived from (3.10):

ym = m Z 2115/ (x+y+z+m_n)uﬁd”¢(x)‘/’l(y)fﬂz(Z)"‘

—iT

1 in

“m ) (Z —p(x)e"sVT ) (Z —p1(y)e VT ) ey,

y

The summations are with respect to all x € [—a;a], y € [-b; b], ...for which xi,
yi, ... are integers. Taking into account that i was “infinitely large,” and under
the assumption that all density functions were symmetric with respect to 0, Bessel
concluded

00 a b
Y(n) = %/_ /_ o(x) cos(ux)dx /—b @1(x) cos(uy)dy ---cos(un)du.

Following the basic ideas of the Laplacian method of approximation, Bessel set

a b
/ @(x) cos(ux)dx /—b ©1(y) cos(uy)dyx

—a

X/ @2(z) cos(uz)dz -~ = e VW (3.11)

Cc

where U(u) was a power series which had still to be determined. By expanding the
left side of (3.11) into a power series in u, Bessel was able to calculate the first terms
of U(u), with the result

U0 = exp (_%uz (13 — [pal e 30[#3]—15[M2M4]+[M6]u6_ . )

24 720
21 _ 31 _ 1
= exp _Muz 1_3[l/~2] (4] uh 30[p5] — 15[papa] + [:u6]u6 )
2 24 720
where?’

36 This can be inferred from a letter (24 August 1838), which Bessel [1838b] wrote to Jacobi; see
[Fischer 2000, 107] for closer details.

37 The present notation is slightly deviating from Bessel’s, it preserves the “Gaussian brackets,”
however, which most authors of 19th-century error theory used for designating sums.
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[ ] = (/_ <P(X)xjdX) (/_ (p(x)xkdx) +
b r b K
+ (/ <p1(x)x<"dx) (/ p1(x)x*dx] +
b b
+(/C wz(X)xfdx) (/C qoz(X)x"dx) o

By use of the formula

T d¥ 2
;/——d 57¢ 4 (j €No.a,r>0), (3.12)
a ar=

o
. 2.2 .
/ x% cosrxe™ @ dx = (—1)’
0

which had been already established by Laplace [1812/20/86, 98], the first terms of
a series expansion for ¥ (n) resulted in the form

__n%_
e 2[#2]

(1_3[u§1—[u41( ot )_

VIa]2n 24[uz)? (2] [p2]?

_30[p3] = 15[p2pta] + [16] ( _4sn* 15t n® ) _ )
72012 ST ETE G139

¥ (n)

__n%_
e 2[#2]

—(1 — — — ).
\/m( ap —az )

With this series expansion, Bessel achieved a remarkable result, which was signif-
icantly beyond Laplace’s and Poisson’s corrections of the normal density function
by additional terms. It would have been within Bessel’s reach (see formula (3.12))
to represent his result by

(3.14)

2 a2l db 2
v(n) = . (e_2[M2] I e e
VIun2]2n 4! dn*
+15[M2M4]—30[Hg]—[,u6] ie—% L)
6! dn®

This is the Charlier A series (see Sect. 3.4.2.2) of a sum of random variables in
the special case of symmetric densities.*® Priorists may therefore conceive Bessel’s
result as an anticipation of those series expansions. However, Bessel was not inter-
ested in a discussion of any systematics which concerned expansions in—Ilater so
called—Hermite polynomials. Only around the last third of the 19th century, moti-
vated by problems different from the CLT, a growing interest emerged in series of
this kind. Only then, in turn, was there a beginning of systematic research on series
expansions for densities or distribution functions of sums of independent random

38 See [Hald 1998, 327-329] for a more detailed discussion of Bessel’s result in the light of Charlier
expansions.
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variables. First results in the latter context are due to Chebyshev [1887/90], who,
however, did not refer to Bessel (see Sect. 3.4.1).

Under the assumption that among all densities the v-th moments are of the same
“order of magnitude” k¥ (k a “fixed” quantity), Bessel [1838c, 388] inferred that
the term a; in the expansion (3.14) was “of the order of ﬁ,” and the subsequent
terms a,, ...were “of the order of m, etc.” The “etc.” gives reason for the
suspicion that Bessel supposed a; in (3.14) being of the order (u + 1)~/ generally.
This conjecture, however, would have been wrong. a3 (corresponding to a Hermite
polynomial of degree 8) is of the same order of magnitude as a,.* From the “etc.”

Bessel followed:

The expression [the density of the normal distribution] can be conceived as an approxima-
tion to 1 (n) with the greater right, the larger the number of the coacting causes of error is.

He was convinced, however, that the series expansion (3.13) was divergent. The
reason he stated for this assertion was that, in the case of a finite number u + 1
of elementary errors, the expression ¥ (n) was “discontinuous,” and “discontinu-
ous” expressions could not be represented by convergent series in Bessel’s opinion.
Moreover, the Laplacian method of approximation, which Bessel had used for the
derivation of his series, led, in his own words, “in general” to divergent series expan-
sions. These arguments show that Bessel in 1838, despite his mathematical talents
and skills, was no longer acquainted with the contemporary state of the art of anal-
ysis. In the first part of his article he had shown that, in the case of a finite number
of elementary errors, explicit algebraic formulae for ¥ (n) could in general only be
given by case differentiations. Therefore, in 18th century mathematical language,
which was different from the terminology that was established during the 19th cen-
tury and is in common use now, ¥ was “discontinuous.” Moreover, from the point of
view of 18th century analysis, algebraic formulae had a “general” validity [Jahnke
2003b, 131; Liitzen 2003, 161 f.]. As it seems, in the special case of (3.13) the con-
sequence of this perception for Bessel was that the left side v (n) had to possess the
same algebraic properties as the right side. Thus, it had to be possible to represent
¥ (n) by the same algebraic expression for all n € R. Bessel tried to resolve this
apparent inconsistency by assuming the series expansion to be divergent.

The full significance of his series expansion, even for a minor number of ele-
mentary errors, was not recognized by Bessel. He was interested in the deduction
of an—at least approximate—Gaussian distribution for observational errors, and he
did not discuss possible deviations from this particular distribution. Bessel summa-
rized the preconditions for the validity of a normal distribution with the following
hypotheses:

The first of these assumptions is that many causes coact in the generation of the observa-

tional errors; the second that, among the mean errors generated from the single causes,*’ no
one considerably surpasses the others [Bessel 1838c, 389].

3 For a determination of the order of magnitude of the respective terms in Charlier A series, see,
e.g., [Cramér 1946, 226].

40 With “mean errors” Bessel probably designated the standard deviations of the single elementary
errors.
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Bessel did not comment on the consequence that, presupposed a large number of
elementary errors, the respective variance of each elementary error had to be very
small.

As he deplored in a letter to Gauss (edited in [Gauss 1880, 522]), Bessel was
unsatisfied with his analytic methods, because in his opinion they led to divergent
series expansions. As he mentioned in the letter to Jacobi [Bessel 1838a] (depicted
above), he was also angry about having realized too late the affinity of his arguments
to “Poisson’s previous analyses of similar problems.” Therefore, from Bessel’s point
of view, the concluding part of his article where he again tried to propagate his basic
idea of a general hypothesis of elementary errors was especially important. In the
special case of Reichenbach’s meridian circle, he altogether specified 13 sources of
elementary errors showing that they met his two basic assumptions.*' With these
considerations, Bessel apparently wanted to convince his readers that his hypothesis
of elementary errors was not only suitable for a computational model, but was even
close to reality, at least in certain cases.

3.3 The Reception of Hagen’s and Bessel’s Ideas

After the publication of Hagen’s and Bessel’s contributions it took some time until
the concept of elementary errors was accepted and further developed within error
theory. This quite tepid reception was presumably due to the very limited number
of scientists interested in theoretical questions of error theory. The first edition of
Hagen’s book did not sell very well. In fact, the further development of elementary
errors was also strongly motivated by problems beyond error theory.

3.3.1 Normal Distributions in Statistics of Biological
and Social Phenomena

From about 1840, statistical distributions became, in particular through Adolphe
Quetelet’s research program (see [Stigler 1986, 203-214]), more and more impor-
tant. The longlasting dogma about the primacy of normal distributions in the statis-
tics of biological and social phenomena (Fig.3.4), from the point of view of the
20th century designated as “Queteletism,” was usually justified by hypotheses sim-
ilar to Hagen’s. Quetelet, in his discussion of additively coacting “random causes,”
from which a Gaussian distribution could be assumed to be generated, referred to a
simple “black-and-white” urn model: The probability of a certain value of a (suit-
ably discretized) statistical quantity was identified with the probability that, out of
a large number of drawings with replacement from an urn, a certain number of
black (or white) balls was obtained. Whether Quetelet, who developed these ideas

41 For closer details see [Lavrynovich 1995, 149 f.].
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Fig. 3.4 A modern example of Queteletism? Frequency distribution of body heights of German
recruits [Barth & Haller 1994, 276]. May it be possible to explain the normal distribution by an
appropriate model related to the CLT?

between 1835 and 1844, was decisively inspired by reading Hagen’s book, cannot
be decided. However, as we see from quotations in some of his works ([Quetelet
1846, 385-387], for example), he was familiar with Hagen’s book; moreover, his
methods for fitting normal distributions to empirically obtained frequency curves
were closely related to Hagen’s. Quetelet’s analyses were straightforward based on
the urn model, whereas Hagen, for whom the concept of elementary errors was
preeminent, used the urn model only as an illustration. Until ca. 1880, concern-
ing statistical issues beyond error theory neither Quetelet nor any of his successors
made the attempt to take Bessel’s more generalized hypothesis of elementary errors
as a basis for research. One reason for this might have been the rather poor mathe-
matical knowledge of many 19th-century biological or social statisticians. Perhaps
it was more decisive that any hypothesis on the causation of deviations could only
be a very rough model due to the complexity of biological and social issues. Con-
venience therefore suggested resorting to the most simple model. Whereas Bessel
analyzed 13 distinct types of elementary errors in the context of a particular mea-
suring instrument, a similarly precise approach was impossible in the biological or
social context, because there was insufficient knowledge of the microstructure of
the phenomena considered. Moreover, the “black-and-white urn model” yielded a
concrete and easily comprehensible mechanism for the emergence of random devi-
ations, which more complicated models, as Bessel’s, could not provide.
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The adoption of only the simplest model to general statistics, however, did not
obstruct its advancement, as can be seen by the example of Francis Galton. In
accordance with his rather poor mathematical skills and apparently without any
knowledge of more general concepts, Galton in his 1875 article “Statistics by In-
tercomparison with Remarks on the Law of Frequency of Error” expressed his
amazement that in nature one could find so many normally distributed quantities,
in spite of the fact that their existence allegedly depended on the very restrictive
conditions of Hagen’s hypothesis. However, this misunderstanding concerning the
universality of the binomial scheme motivated him to a discussion of fundamen-
tally different models which did not resort to error theoretic analogies. According
to Stigler [1986, 272-281], Galton with these ideas achieved a “breakthrough,” in
abolishing the paradigm of the conceptual identity between statistical variation and
errors of observation, despite his adherence to the primacy of the normal distribu-
tion.*? It was precisely this insight of the fundamental difference between deviations
within a population and deviations caused by errors, which, by the end of the 19th
century, paved the way for an increasing research on nonnormal distributions. In
turn, only in connection with this research can one find considerably generalized
hypotheses of elementary “errors” in biological and social statistics, in Edgeworth’s
work (see Sect. 3.4.2.3), and, especially in the so-called “Scandinavian school” of
Gram, Thiele, Charlier, and others (see Sects. 3.4.2.2, 3.4.3.2). Hald [1981, 6] has
argued that the discussion of Bessel’s version of elementary errors in the monograph
of the Danish geodesist Karl Christian Zachariae [1871] prepared the ground for the
formation of this “school.”

3.3.2 Advancement Within Error Theory

Many authors, who contributed to error theory, contented themselves with Hagen’s
simple hypothesis. This might have been motivated by a didactic intention in some
cases, as Czuber [1891, 80] has observed. The circumstance, however, that the vari-
ances of all elementary errors had to be very small in Bessel’s model suggested a
reduction to Hagen’s model as well, and that in particular if one adopted an “atom-
istic” interpretation of elementary errors, as Johann Franz Encke [1850, 334-352]
did. He compared elementary errors with “elements,” “oscillating” in a certain sense
and defended the apparently exaggerated simplicity of Hagen’s model arguing that
quantitative differences could be neglected because of the “subtlety” (“Feinheit”)
of those oscillations [Encke 1850, 350].*> From Encke’s point of view, however,
Hagen’s hypothesis had only the character of an illustration, without a direct rela-

tion to reality.

42 For a comprehensive discussion of Galton’s ideas in this context, see also [Porter 1986, 128—
146].

43 Encke’s support of Hagen’s hypothesis, and his simultaneous neglect of Bessel’s, may have
also been caused by Encke’s temporary aversion toward Bessel (see [Bruhns 1869, 267-287;
Wattenberg 1976, 13; 31-39; Lavrynovich 1995, 82 f.]).
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Yet several authors felt uneasy with the apparent discrepancy between hypothesis
and reality in Hagen’s model. Bessel was not the only one who wanted to “prove”
the “real” existence of the Gaussian law of error, at least under certain conditions, by
generalizing Hagen’s version. Some authors were satisfied with only a slight gener-
alization toward rectangularly distributed elementary errors. On the other hand, even
Bessel’s model was further generalized by William Crofton and Paolo Pizzetti.**

3.3.2.1 Rectangularly Distributed Elementary Errors

George Biddell Airy [1861, 7] proposed the hypothesis that each error of
observation had to be conceived as “produced by the algebraic combination [i.e.,
summation] of a great many independent causes of error” in his textbook on er-
ror theory. Without citing Hagen and Bessel, he referred to Laplace for this basic
idea. However, he admitted that—strictly speaking—elementary errors did not exist
“in the language of Laplace.” With certainty, Laplace’s and Poisson’s “causation
systems” (see Sects. 2.1.5.1 and 2.2.3.2) have advanced the later hypothesis of
elementary errors in a conceptual sense; the hypothesis itself, however, is explicitly
stated neither in Laplace’s nor in Poisson’s work, even if some authors express
a contrary opinion.*> Airy [1861, 8—15] precisely described Laplace’s method of
approximating the distribution of a sum of independent random variables with
identical rectangular distributions, as it can be found in the latter’s discussion of
the comet problem (see Sect. 2.1.5.1). He [1861, 15] stated that one could hardly
question “the accordance of the result with our general ideas on the frequency of
errors.” In the third edition of his book, however, Airy replaced the—as he called it
[1879, iv]—“Laplacian” derivation by that of “Thomson and Tait™*® without stating
any reason for this change.

Charles H. Kummell [1882, 177], in his attempt to obtain an exact formula for
the density of a linear combination

a1 Ay +ax Ay + -+ ay Ay,

A; being independent errors, each rectangularly distributed within the interval
[—ai;ai] 0 = 1,...,n), directly referred to Bessel’s [1838c] article. He was able
to establish the formula sought for by use of Dirichlet’s discontinuity factor. The
asymptotic treatment of this formula led to a result analogous to Bessel’s.

Arnold Sommerfeld, who now is chiefly known for his work on quantum
mechanics, has also contributed to the summation of independent elementary errors

4 Surveys of the different hypotheses of elementary errors during the 19th century can be found
in [Czuber 1891, 61-99], and, based on Czuber’s account, in [Eisenhart 1983, 554-557].

4 Stigler [1986, 202] as well as Hald [1990, 507] have erroneously stated that the hypothesis of
elementary errors played an important role in Laplace’s treatment of the CLT.

46 Peter Guthrie Tait and William Thomson (Lord Kelvin) had essentially described the deduction
of the Gaussian error law by John Herschel [1850] (see [Merriman 1877c, 211]) in the third chapter
of their Treatise of Natural Philosophy, Vol. 1 [1867]. For Herschel’s account see also [Czuber
1891, 103-108].
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with identical rectangular distributions. Sommerfeld [1904] gave a very intuitive
“geometrical” derivation of the (already well known) exact formula (2.1) for the
density of the sum, and thereby he anticipated some elementary ideas concerning
central B-splines [Butzer, Schmidt, & Stark 1988, 143—-147]. Regarding the limit
case of “infinitely many” elementary errors, Sommerfeld referred to an article of
Ludwig Maurer [1896] on repeated arithmetic means: If f denotes a bounded
function such that f_hh f(x + £)dE exists for some & > 0 and all x € R, the n-fold
arithmetic mean of f* with respect to the interval [x — h; x + k] is defined by

= (o) [ sttt g

Maurer [1896, 265-270] represented the latter integral by use of Dirichlet’s factor,
and he showed that

nh

fn(x) = L f(x +u)Pu)du, (3.15)
h

wh J_,

u2
P(u) = %ﬁe_ﬁ +0 (n\l/ﬁ)’ k= h,/%n.

Without referring in this respect to other authors, Maurer used techniques similar
to those applied by Dirichlet or Cauchy in connection with the CLT. However, the
situation which Maurer had to master was considerably simpler than that of a CLT
under reasonably general assumptions. As Sommerfeld briefly noticed, Maurer’s
result comprised (if only implicity) a local CLT for independent random variables, if
each of them had the same rectangular distribution. In fact, Sommerfeld’s assertion
can be verified by setting

where

fey=4*" "~

and by taking into account that in this case f,(x) is equal to the n + 1-fold con-
volution of f(x) with itself. By representing f; according to (3.15), one can show

that 5
€202 (0'2 = ?)

Vi fu(x/n) —

As it seems, Maurer’s work was not influenced by, and in turn did not have any
influence on the development of the CLT. Maurer’s contribution shows, however,
that around the end of 19th century the development of analytic methods had ad-
vanced so far that greater success also in the realm of the CLT became possible.

o+/2m
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3.3.2.2 Crofton’s Hypothesis

Contributions based on rather simple assumptions on the distributions of elemen-
tary errors were contrasted by others, in which Bessel’s hypothesis was even more
generalized. In 1870, a very general hypothesis on additively coacting independent
elementary errors was presented by Morgan William Crofton (1826-1915, Fig. 3.5),
who, additionally, expounded an analytical method entirely different from that of
Laplace and Poisson. One of his tricks anticipated an essential idea, which played
an important role in the modern proofs of the CLT by Lyapunov, Lévy, and Linde-
berg. In Lyapunov’s case, a direct reference to Crofton’s artifice is even probable
(see Sect. 5.1.3).

Fig. 3.5 Morgan William
Crofton

Crofton [1870, 175] described his main objective with the words:

(...) to give the mathematical proof, in its most general form, of the law of single errors of
observation [i.e., the Gaussian], on the hypothesis that an error in practice arises from the
joint operation of a large number of independent sources of error, each of which, did it exist
alone, would produce errors of extremely small amount as compared generally with those
arising from all the other sources combined.

For the elementary errors he allowed laws*’ of “utmost generality” [1870, 179].
He supposed [1870, 183 f.], however, that all moments of each of them should be
“infinitesimal,” such that the moments of an order greater than the second could
be “neglected” in calculations regarding the “compound” error. More precisely, he
assumed each “component error” to be the “diminutive” of some error “of finite
importance,” such that, for an infinitesimal 7, the “mean value” E;, “mean square”

47 Strictly speaking, Crofton did not represent laws of error by densities of probability distribu-
tions, but he used idealized absolute frequencies, which corresponded to discrete or continuous
distributions; also a mixture of both types was possible. In his deductions, Crofton referred only
to the second case. He stated, however, that his results were valid for all types of distributions.
A deeper reason for Crofton’s preference to absolute frequencies does not appear in his exposition.
For simplicity and consistency of presentation, in the following Crofton’s arguments are described
in the language of probabilities.
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E5, “mean cube” E3, etc. of the latter yielded the expectations nEq, 772 E,, 773 Es,
respectively, of the former. Crofton [1870, 177 f.] conceded that a proof for the
“truth of this hypothesis” seemed impossible to him, he tried, however, to show the
“reasonableness” of the hypothesis by a recourse to the practice of measuring “in
the case of refined and delicate observations.”

The essence of Crofton’s mathematical analysis (including an introductory plau-
sibility consideration [1870, 184 £.]) involved the relation

y(x) =2 @D f(x ), (3.16)

which should be valid for the law of error y of any error consisting of an “infinitely
large” number of elementary errors, if f was the density of an arbitrary, not neces-
sarily bounded, elementary error. In this formula, D denoted the derivative operator
%, and m, h, i the sum of the expectations, of the mean squares, and of the squares
of the expectations of the elementary errors. As it appears, Crofton tacitly assumed
m, h, i to be finite quantities.*® Crofton’s deduction of (3.16) rested upon an itera-
tion of convolutions. If the compound error was made up of two elementary errors
only, with the respective laws f (as above) and ¢ (positive only within the interval
[—b:a]*), then, according to Crofton, for the law y(£) of the sum the following
formula had to valid:

y(E) = /_ &= 0,

Crofton expanded f(§ — x) into a power series in x, and thus obtained

A
YO = fO —af @+ 51O = 551"+

where

oz=/ xp(x)dx, )L=/ x2p(x)dx, a=/ x3p(x)dx.
—b —b

Because of the assumption that the mean powers of orders greater than two could
be neglected, the equation

A
y(€) =(1—-aD+ EDZ)f(%‘)

followed. After the addition of another elementary error, it ensued

A
¥ = (1= D+ £D?)(1 —aD + 5D £(6),

48 This assumption actually damaged the “utmost generality” of Crofton’s model of elementary
errors as “diminutives” of finite errors. If, for example, the elementary errors of an “infinitely
large” number n are identically distributed just like the random variable nX, where EX 7 0, then
we have m = nnEX and h = n?nEX?2. It is impossible, however, that 1 and ,? are of the same

order of magnitude ~ nl

49 The cases @ = 00 or b = 00 not excluded.
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and so on, such that, finally, in the case of a composition of “all” elementary errors:

y(®) = (1 —aD + 5D2)(1— D + 2021 —yp 1 207)- 60,

a, A, B, 1y, v, etc. had to be considered as “infinitely small,” and therefore Crofton
was able to convert the latter equation into the form

y(§) = e~ @By +-ID+3 (- +u—B2+-)D? £(g)

from which he inferred that
y(x) = e2BID%emmD £y = &3 r(y ),

Crofton now generally showed that, for ¢ and k being positive

R L S = (3.17)

1+ dak

For the proof he derived a partial differential equation of first order in the variables
a and k for the left side in (3.17), and then he determined the general solution of this
differential equation. Now Crofton assumed—and this was his decisive trick—that

_x2
e 02,

1
X) =
fx) =3 NG
By use of this particular auxiliary density, and on account of (3.16) and (3.17),
the law of the error summed up from all elementary errors including the one with
density f resulted in

1 _ (x=m)2
y(x) = e 2(n—i)+62
VIR —i) + 62)

As Crofton noticed, the influence of the particular f could be abandoned after set-
ting & = 0, and therefore the law of the compound error, which was composed of
the elementary errors with arbitrary densities, could be deduced as being

1 _(xfm)2
- e 26—,

V2n(h —1)

In his article “Probability” in the 1885 edition of the Encyclopadia Brittanica,
Crofton [1885, 781] presented a modification of the just-described procedure for
deducing the Gaussian law of error from the hypothesis of elementary errors. He
now assumed that f(x) was the law of an error which was already composed of
a very large number of elementary errors. If one further elementary error with an
infinitesimal expectation ¢ and an infinitesimal mean square A was added, then the
new compound error obeyed the error law
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A 2
y(x) =1 —aD + ED ) f(x). (3.18)

From this equation, Crofton concluded that each elementary error contributed to the
law of the compound error only through its expectation and its mean square. If still
another elementary error was superposed, then a law of the compound error resulted
according to

)L+)Ll—a2—af+(a+oz1)2D2
2

y(x)=31—(¢+a1)D+ f(x).
From this, Crofton inferred that the totality of all elementary errors contributed to
the law f of the compound error only by algebraic terms in x — m and & — i, and

therefore the relation
z=f(x)=F(x—-—m,h—1i) (3.19)

was valid. On account of (3.18) Crofton concluded that each single elementary error
with expectation O and variance 6/ influenced the law of error z of the rest of the
elementary errors with the increment

_Sh &

8z = Z.

2 dx2”

From this consideration the differential equation

9z 0z
ax2 T oh
resulted, and therefrom R
0°z 0z
— =2, 3.20

where
E=x—mandn=h—i.

A second differential equation

Sas+2nan+z—0 (3.21)
was obtained by Crofton through a consideration of the change of (3.19) if all
elementary errors were substituted by their (1 4+ w)-fold values, w being an in-
finitesimal quantity. The integration of the differential equations (3.20) and (3.21)
led to a Gaussian error law z. Edgeworth later adopted this method for his deduc-
tion of asymptotic series expansions for densities of sums of elementary errors (see
Sect.3.4.2.3).

The procedure as described in the Encyclopadia Brittanica was also propagated
by Czuber in the first volume of his very popular textbook Wahrscheinlichkeitsrech-
nung, which appeared in many editions between 1901 and 1938. However, Crofton’s
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deduction, which did not include any precise discussions of the conditions needed
for its single steps, could lead the reader to the impression that in the case of sums
of a great number of independent random variables an approximating Gaussian law
of error was a matter of course. Crofton’s “proof,” therefore, has to be connected
with a point of view, very common up to the first decades of the 20th century, which
associated probability calculus with “natural science” rather than with mathematics
proper. Some fifty years after Crofton, however, a similar approach via differential
equations was rigorously established in the context of random walks, through con-
tributions by Kolmogorov [1931b; 1933c¢], Khinchin [1933], and Petrovskii [1934].

3.3.2.3 Pizzetti’s Account on the Hypothesis of Elementary Errors

In 1892, Paolo Pizzetti (1860-1918) published a survey of error theory, which
regarding its fundamental goals, if not entirely its extent, can be compared with
Czuber’s already frequently cited monograph [1891]. Whereas Czuber preferred an
impartial description rather close to the original sources of 19th-century error the-
ory, Pizzetti assessed the individual contributions and modified them if this seemed
appropriate. Right at the beginning of Pizzetti’s account one can find a discussion of
Crofton’s version of the hypothesis of elementary errors. Later in his work, however,
Pizzetti [1892, 224] designated the analytical method of Crofton’s (first) account as
not rigorous. Consequently, he derived his own analytic approach, which basically
followed Poisson’s contributions to the CLT (see Sects. 2.2.4, 2.2.5), and substan-
tially employed infinitesimal considerations. In this framework Pizzetti rather care-
fully observed whether the single asymptotic arguments he used could actually be
justified, and he tried to give a clear description of the assumptions needed.

Pizzetti [1892, 123-133] assumed an “infinitely large” number s of independent
elementary errors with values within [—ag ; by ], and for them he considered arbitrary
discrete or continuous laws, or even distributions mixed from the two types. He fur-
ther supposed s = s’ +s”, where s” was a finite number, such that, for s’ elementary
errors, the absolute values of the error bounds —ay and b, were of the common in-
finitesimal order 5, and for the remaining s” elementary errors these error bounds
were of an infinitesimal order as well, although of an order greater than % From
this condition, Pizzetti inferred that, except for a finite number of elementary errors,
the respective i -th moments were of the order of magnitude S% This property, how-
ever, necessarily led to an infinitely small variance of the sum of elementary errors,
and therefore to an absurd condition, not noticed by Pizzetti. A more appropriate
assumption would have been that the error bounds of the s” elementary errors were
of an order JL;, and, simultaneously, the sum of the expectations of all elementary

errors was not “infinitely large.”
By aid of the discontinuity factor

p “)O0foro <0Ooro > 2t

1/00 e("_’)uﬁsmmdu— 1for0 <o <2t
T J_

00 u
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Pizzetti calculated the probability P,; that the sum of elementary errors was be-
tween 0 and 2¢ in the form

b *© D=1 sin ut
el Y X X [tz
—0o0

Z1=_al Z2=—az Zs=—as

In this formula, Z; denoted the (possibly “infinitely small”’) probability for a single
value zj of the elementary error with index k, and 0 = z1 + 22 + -+ + z5. By
interchanging the summation and integration (not explicitly discussed by Pizzetti,
compare the similar approach of Dirichlet, Sect. 2.4.2) it followed

1 [ inut
P, = _/ AIAZ...ASe—tu«/—lmdu,
mJ_

00 u

where
bi
Z Z el Vol

Zk=—ak

In the same way as Poisson (see Sect. 2.2.2) had already done, Pizzetti used the
abbreviations

Ak:pkeﬁkx/jl’ R=p1---ps. ¥ =01+~ 0

and obtained
sin ut

2 o0
Py =— / R cos(y — ut) (3.22)
T Jo
Along the lines of Poisson, Pizzetti expanded log R and v in series of powers of
u. The coefficients depended on the moments of the elementary errors in increasing
order, and, thus, Pizzetti was able to make use of his assumption about the smallness
of these moments. He split the integral in (3.22) into a sum of two integrals from 0
to v and from v to oo, where v = Hs’ % with a positive H.>° From a discussion
of the order of smallness of the single series terms of log R he concluded that, for s

“infinitely large,” in the first integral:

Rcos(y —ut) = e *%% cos (M(Z gr — l)) + M,

where M between 0 and v was an evanescent quantity. In this equation g, designates
the expectation of the r-th elementary error, and @? the sum of the variances of
the single elementary errors divided by 2. Pizzetti was rather vague about why the
second integral was evanescent with s = 0o, whereas the first became equal to

%/Ooo 420? og (”(Z g — [)) sir;uld

30 Regarding the assumptions modified with respect to Pizzetti’s original (see above), we would
have to set v = Hs'7.
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1
20

After the substitutions 2t = x, Y g, = a,and h =
known integral formulae, he was able to show

h T2 2
Pr=— | e @Dy
* ﬁ/o

where P, was the probability that the sum of “infinitely many” elementary errors
was between 0 and x.

Pizzetti’s contribution exemplifies a growing tendency toward analytical rigor in
deducing approximating normal distributions by Poisson’s method at the end of the
19th century. The splitting of the integral representing the probability of the sum into
one “main-" and several “lateral-” integrals, an idea which could already be found
in the works of Dirichlet and Cauchy, was analogously used by Czuber [1891, 267—
270], in his account on asymptotic probabilities of linear combinations of errors,
albeit with manifest gaps in the line of arguments. Czuber as well as Pizzetti might
have been brought to the idea of splitting by reading of [Poisson 1824], in which
this device occurs at least implicitly (see Sect. 2.2.4).>! Only Lyapunov succeeded
in a proof of the CLT under very general conditions, in which the “idea of splitting”
was used strictly according to the analytic standards of the post-Weierstrassian era.

and by use of some well-

3.3.2.4 Schols, and Elementary Errors in Plane and Space

There was a growing interest in planar and spatial errors beginning in the middle of
the 19th century, although, in most cases, this field was still perceived as marginal
compared with problems of “linear” error theory. The discussions on errors in sev-
eral dimensions had two essential starting points: firstly, the idea already indicated
by Laplace and further examined by Bienaymé that a joint consideration of all el-
ements was necessary (see Sect. 2.1.5.2) in applications of least squares to the es-
timation of more than one element; secondly, research on shooting errors, a field
which directly led to problems in two-dimensional errors and which was treated
rather frequently [Stigler 1986, 317]. By the end of the 19th century, a third aspect
of multidimensional errors came along: Their coordinates served as a paradigm of
correlated quantities. The theory of errors in a plane and space thus became a start-
ing point of correlation theory within mathematical statistics.””

The early history of the CLT for sums of independent random vectors was con-
nected in a natural way with multidimensional error theory. Priorists, however, may
let this history begin with Lagrange’s approximation of the multinomial distribution,

3! Neither Pizzetti [1892] nor Czuber [1891] gave a reference to Cauchy’s work on the CLT; there-
fore, it is improbable that they were influenced by Cauchy’s modifications of the Laplace—Poisson
method. The possibility that Czuber’s exposition may have influenced Pizzetti’s can be excluded,
too, because the latter scarcely had any knowledge of Czuber’s survey (published in 1891) when
writing his own, rather extensive, article. In fact, Pizzetti does not cite [Czuber 1891] in his very
comprehensive bibliography.

32 For Edgeworth’s contributions to these problems see [Stigler 1986, 315-325], on K. Pearson’s
see [Lancaster 1971].
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based on a method analogous to de Moivre’s approximation of the binomial distribu-
tion [Lagrange 1777, 204-209].7 It is more than questionable, however, whether the
respective numbers of successes in the case of several disjoint events were conceived
as sums of the coordinates with possible values 0 and 1 of random vectors. It is also
questionable whether the probabilities for the joint occurrence of linear combina-
tions w€1+0z€x+- -+, Bre1+Prex+- - -, etc. (€ being one-dimensional errors), as
discussed in context with Laplace’s and Bienaymé’s accounts on the method of least
squares in the case of several elements (see Sect. 2.1.5.2), were actually conceived
as probabilities of sums of random vectors. Such an interpretation was certainly
used in those applications in which the parameters to be estimated were coordinates
of points [Czuber 1899, 189]. The history of the CLT for random vectors in a stricter
sense did therefore not start before sums of palpably multidimensional entities were
considered.

As it seems, the Dutch geodesist Christian Schols (1849-1897) was the first™
to derive approximations of densities of sums of two- and three-dimensional errors,
which can, from the point of view of priority, be interpreted as “archetypes” of local
CLTs. Schols [1875/86] tried, apparently motivated by work on shooting statistics
and least squares applied to planar surveying, to give a “theory” of errors in plane
and space.

Schols [1875/86, 125-132] started his article with an extension of Gauss’s
inequalities for one-dimensional densities’® to probability laws F (p), associated
with two- and tree-dimensional errors, which are “independent of the direction.”
In the case of three dimensions, for example, F(p) is connected with an ordinary
probability density F(x, y, z) by the equation

. 2n  pm/2
F(p) = / / F(pcosgcos D, psingcosd, psin ) p? cos ¥d dd .
0 —n/2

For an interpretation of planar and spatial probabilities Schols quite frequently used
mechanical notions. The range of values of an error, endorsed with the law of er-
ror as the “mass density,” he named “probability solid.”>’ Justifying his inequal-
ities, Schols imagined that the “polar moment of inertia” M? := fooo 0> F(p)dp
could be “minimized” by assuming the partial masses of the probability solid as
only existent at discrete points. Similar ideas were used by Winckler [1866] for his

33 For closer details see [K. Pearson 1978, 598-603; Dale 1991, 81-86; Hald 1998, 44 £.].

% At least according to Czuber [1891, 363; 1899, 221]. For a biographical sketch on Schols see
[Ramaer 1924].

55 Schols’s 1875 article, written in Dutch, was translated in 1886 without any modifications into
French.

% Let f(x) be a unimodal and smooth density which attains its maximum at x = 0, and let

m = ffooo x2f(x)dx and p := fi’;m f(x)dx for A > 0. In 1823 Gauss proved that A < M\/g

ifu<2andd < 3\/%—” if > % See Sect. 4.1 for closer details.
37 In general, Schols assumed the probability solids to be bounded. In all integrations, however,

he used the limits —oo and oo, presupposing that the considered error functions vanished beyond
finite domains.
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generalizations of Gauss’s inequalities, and later also by Markov [1884a;b; 1886]
and Stieltjes [1884d] in connection with further moment problems (see Sect. 4.3).
Apparently without any knowledge of Winckler’s work, Schols [1875/86, 127]

showed that, for
M
w= /0 F(p)dp,

the estimate—which corresponds to the Bienaymé—Chebyshev inequality’s—

1
u=1- bol
was valid. In the three-dimensional case, Schols’s version [1875/86, 130 f.] of the
“Gauss inequality” was as follows:
If F(x,y,z) > F(x',y".2/) for x2 4+ y2 + z2 < x’?> + y"?> + 7%, then

5 < \/gﬁ/ﬁ for u <
f/gﬁforu>

The main focus of Schols’s article [1875/86, 136—152] was on sums of indepen-
dent planar and spatial errors. Schols determined the moments of the error sum as
depending on the respective moments of the individual errors. He further derived
exact formulae for the density of the sum by use of convolutions of the individ-
ual densities, and to this aim he developed some remarkable tricks, which he dis-
cussed in more detail in an additional paper [1887a], and which were also used by
Czuber [1891, 67-76] in his account on sums of independent “linear” (i.e., one-
dimensional) errors.

By a rather simple argument Schols [1875/86, 147-149] reduced the discussion
of the “limit law” of a sum of independent planar and spatial errors to the discussion
of sums of linear errors. He referred to Laplace’s TAP and to Bessel’s [1838c] for

the assertion that the density of an error composed of linear elementary errors “con-
2
__u .
verges” to a function of the form 7 j/ﬁe 2M2 | presupposing all elementary errors

wmin v

having zero means and none of them having a variance (denoted quite confusingly
“valeur moyenne” by Schols) which is “considerably larger than any of the others.”
Based on an analogous condition for planar and spatial elementary errors, Schols
argued that the projection of the compound error onto an arbitrary straight line, en-
closing the angles «, 8, y with the coordinate axes, was equal to the sum of the
projections of the respective elementary errors, and, therefore, followed a Gaussian
“limit law.” Schols assumed the chosen axes to be the principal axes of the proba-
bility solid related to the multidimensional law of the compound error. Under this
assumption he had already shown at a previous place in his article the following
equation for the variance M jﬂ y of the projection onto the line:

38 Schols, however, did not mention the contributions of Bienaymé [1853¢] and Chebyshev [1867].
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M‘fﬁy = Mf cos? a + Mf cos? B + Mz2 cos? y,

M)f:/ / / x2F(x,y,z)dxdydz etc.
—00 ¥ —00 J—00

By use of this relation he concluded that the law of the projection of the compound
error onto the line was asymptotically equal to

where

2
_ u
e 2(M)% 0052a+MJ2, c052ﬂ+M% cos2 )

\/2n(M3 cos?a + M} cos? B+ M7 cos? y)

This law, however, could be conceived, as Schols had shown previously in his pa-
per, as the density of the sum of three independent normally distributed errors with
variances M2 cos® o, M yz cos? B8, and MZ2 cos? y, respectively. Therefore, the pro-
jection of the compound error onto an arbitrary straight line containing the origin
of the coordinate system which coincides with the system of principal axes had to
obey the same probability law as the sum of the projections of three independent lin-
ear errors, placed on the x,y, and z-coordinate axis, and normally distributed with
variance M f, M )%, and M Zz’ respectively. Schols [1875/86, 149] inferred from this
fact that the sum of a very large number of elementary errors “obeys the same law
as the resultant of its three projections onto the principal axes, if these [projections]
are assumed independent.” Thus, the law of error of a sum of a very large number
of elementary errors was, with respect to a coordinate system which was identical
with the system of the principal axes of the compound error, approximately equal to

My ~21M /27 M /210

In a subsequently published article, Schols [1887b] attempted a “direct proof”
of the “limit law” for sums of planar and spatial elementary errors. He used the
(multidimensional) Fourier integral for representing the density of the sum, and then
adapted Bessel’s procedure to the case of two and three dimensions. However, also
with this method, Schols considered only one particular coordinate system, which
coincided with the principal axes of the compound error.

3.4 Nonnormal Distributions, Series Expansions,
and Modifications of the Hypothesis of Elementary Errors

From Quetelet on, one of the predominant problems of 19th-century statistics was
the search for distribution laws in biological and social populations. Whereas the
priority of the normal distribution had been propagated and justified by assuming
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the coaction of many insignificant “causes” in the works following Quetelet, non-
normal distributions became more and more prominent at the end of the century.
There was a growing tendency to regard such distributions not as accidental devia-
tions from a regular case but to grant them the same right as normal distributions.
It seems that conceptual differences between observational errors and other sta-
tistical quantities were only taken seriously from the last third of the 19th century
on. In error calculus, the main object was to give an “optimal” estimate of the true
value of a physical quantity and to minimize random deviations from this value as
far as possible. In biological and social statistics, however, the variations among
the single sample elements were the main objects of investigation. Whereas nor-
mal, or at least unimodal and symmetric distributions, and (connected with them)
characteristic least square estimators such as the arithmetic mean were especially
important within error theory, additional tools were needed for more general statis-
tical investigations. Gustav Fechner [1897, 16] wrote in his posthumously published
KollektivmaBlehre (something like “doctrine of measurement of collectives™):

For KollektivmaBlehre the aspect [the Gaussian law of error] which implies the privilege
of arithmetic mean in the theory of physical and astronomical measurement is without any
importance. All exemplars from one Kollektivgegenstand [collective object], even if they
deviate in any order from the arithmetic mean or from any other principal value, are equally
real and true, and a privileged consideration of the one before the other ...does not really
make any sense.

In fact, some important methods of general statistics could be adapted from fields
less prominent within error theory. This especially concerned a nascent discussion
of observational outliers, and, in this context, of so-called “robust” estimators, such
as the median [Stigler 1973; Harter 1988].

As it was characteristic of 19th-century science, mechanistic ideas also influ-
enced biological and social statistics, with the result that universal laws for the
distributions of important characteristics and fundamental stochastic mechanisms
producing these laws were sought. Regarding such problems, error theory was able
to provide useful ideas for general statistics well into the first decades of the 20th
century even if there was a decline in the paradigm of the normal distribution. There
was actually a certain success in generalizing the “exponential” or “Gaussian” law
toward distributions which could be interpreted as generated according to modifi-
cations of the hypothesis of elementary errors, and, thus, appeared to be especially
“natural.” In particular, this concerned methods of expanding density or distribution
functions by series of derivatives of a normal density or distribution, respectively. If
an expansion of this kind provided a sufficiently good approximation with a minor
number of terms, it appeared reasonable to assume that the distribution considered
was caused by a certain—possibly moderate—number of elementary errors.
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3.4.1 Approximations of “Arbitrary” Probability Functions
by Series in Hermite Polynomials

While discussing the probability density of a sum of elementary errors, Bessel care-
fully observed, in addition to the normal density, correction terms corresponding to a
series expansion (see Sect. 3.2.2). He only used this expansion, however, to demon-
strate the asymptotic character of the Gaussian error law. Bessel’s result can be
summarized in modern form by the following expansion for the density ¥ of a sum
of independent random variables with zero expectations and symmetric densities:

2

1 _xZ
=c 207 [L+ asHa(x) + agHe(x) +---].
TC

Y(x) =

o

where
2 gk 2

2. _ . — a35Z >
0° = ZVaer and Hy(x) = e20? Tk

e 202,

After Bessel, some other authors, like Bienaymé [1852] (see Sect. 2.1.5.2), gave
similar series expansions related to the CLT. Chebyshev [1887/90] eventually de-
rived a result for the probability that a sum of random variables was within a given
interval, which was analogous to Bessel’s, but explicitly used derivatives of the nor-
mal density and specifically aimed at an already small number of summands.

Only recently has the history of series expansions in statistics been thoroughly
examined. The following survey owes very much to Anders Hald’s contributions in
this field, in particular to his monograph [2002], which the reader may consult for
further details.

According to Czuber [1899, 201], the first person to tackle the problem of ap-
proximating arbitrary functions y by linear combinations Y ;_, Ax Xj of normed
polynomials Xj of degree k via the method of least squares was Gustave Plarr
[1857]. Plarr showed that the condition

1 m
/ (y = Y AxXp)*dx = min
-1 k=0

led to what are now known as “Legendre polynomials” Xj.>

A little later, Chebyshev [1859], based on his earlier work [Chebyshev 1855/58]
on discrete least squares approximation, treated problems of this kind from a far
more general point of view. Given the function F(x) (not further specified) and any
weight function @2 (x), he looked for a polynomial g(x) of maximum degree r such
that

b b
/ (F(x) — g(x)? @2 (x)dx < / (F(x) - f(0)? @ @)dx Vf € P

39 For closer historical details on these polynomials see Sect. 4.2.1.
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For certain particular weight functions ®2(x) and limits of integration a,b
Chebyshev represented the solution g(x) by linear combinations of orthogonal
polynomials, acquired from the partial denominators of certain continued frac-
tions (see Sect.4.2.3 for details). In his discussion of the approximation problem

a =—b =o0and k
@Z(X) — \/je—kxz’
T

he dealt with (what are now known as) “Hermite polynomials” w](.k) (x) in particular
detail,®” including the fundamental relations

® v 2 Vg2
v; (x)=e¢ _dxfe
and
%) oy ) o —kex? o
[ vPewPmetar =0 (£ (3.23)

In the article [Chebyshev 1887/90], already mentioned above, Hermite polynomials
were finally used in a series expansion of the form

Pl:< L <t
= /2> Var;
t/
:%/ [1+A3w§”(x)+A4w§”(x)+---]e—x2dx, (3.24)
t

where X; were independent, not necessarily symmetrically distributed random vari-
ables with zero expectations. Chebyshev did not refer, however, to the problem of
the convergence (or divergence) of the series.

Priorists may champion Laplace for the discovery of Hermite polynomials,
however. In [1811, 375-387; 1812/20/86, 294-300], he discussed a parabolic dif-
ferential equation which modeled the mixing of black and white balls when alter-
nating drawings were made from one urn to another. The solution of the differential
equation Laplace represented by means of a series of polynomials proportional to
Hermite polynomials, and he calculated the unknown coefficients by use of orthog-
onality relations analogous to (3.23) (see [Molina 1930, 384 f.; Hald 1998, 337-
343]). In contrast to Chebyshev, however, Laplace’s chief concern was not a prob-
lem of approximating arbitrary functions by linear combinations of polynomials,
but of finding the general solution of a specific differential equation. Consequently,

0 ITn modern statistics, Hermite polynomials /, are usually defined as connected with the density
¢ of the standard normal distribution by

¢V (x)
p(x)

Hermite was always a little later than Chebyshev in publishing important results regarding “his”
polynomials, see [Hald 2000, 239 f.].

hy(x) = (=1)"
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the significance of Laplace’s contribution regarding series expansions for arbitrary
functions was not observed during the 19th century.

Apparently with a poor knowledge of prior work on approximation theory, Jgr-
gen Gram (1850-1916) in his 1879 doctoral dissertation®' gave a comprehensive
discussion on the least squares approximation of a given function, with respect to
an arbitrary weight function, by linear combinations of orthogonal functions (not
necessarily polynomials). The systems of orthogonal functions considered were rep-
resented by Gram via determinants which now bear his name. In contrast to Cheby-
shev, Gram also tackled the problem of the pointwise convergence of his series, if
extended to an infinite number of terms, to the given function. Among other topics,
Gram posed the problem of finding for a given function f(x) the function

8ayg,....ar (x) = e_x2 (ap +a1x + -+ arxr)

for which

o0 x2 2 o0 x2 2
/ e (gao,,,,,ar(x)—f(x)) dx 5/ e (gbo,...,b,(x)_f(x)) dx Vbg,...,br €R.
—0o0 —00

Regarding this particular problem, Gram was apparently influenced by the earlier
work of his teacher Ludvig Oppermann, which remained, however, unpublished.®
Gram’s solution was:

~ r ffzoexz(p(f)(x)f(x)dx
ag,....ar (X) ; 0 e [pD(x)] dx

. . d/
qo(/)(x), (p(])(x) — (ﬁe_)ﬂ.
X

At first glance, the strongly increasing weight function exz, used by Gram,
seems to have been introduced mainly for algebraic reasons, because the approx-
imation by the transcendent function gg,....q, (x) could then be reduced to an
approximation by a polynomial, as one can immediately see from the equation

(o]

[e )
/ exz(gao,,,,,a, (x) — f(x))zdx:/ e_xz((ao—i—alx +-darx”) — exz/zf(x))zdx.
—00 —00

Weight functions of this kind, however, might have been also introduced by virtue
of manifest statistical reasons. Let us assume that a frequency function f(x) is de-
termined by a large number s of independent random experiments, counting the
respective numbers of cases in which a certain numerical characteristic falls within
the intervals [a;a + h[, [a + h;a + 2h[,....[a + (m — 1)h; b] (Where h is very
small). If f(x) can already be roughly approximated by a normal distribution—for
the sake of simplicity with zero expectation and variance %, which can always can
be achieved by an appropriate scaling—then representing f(x) by

61 The essential parts of his dissertation are summarized in the article [Gram 1883], see [Hoem
1983, 217; Hald 1998, 540-550].

62 See [Charlier 1905¢, 12; Hald 1981, 6].
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1
f(x) ~ \/;e_"2 (a0 +a1x +axx® + -+ + a,x") (3.25)

suggests itself. The absolute frequency of the hits within the j-th interval obeys a
binomial distribution with a probability of success

1 2
A hy e,
Pj -

where x; is the center of the interval. Because / is very small, the variance of the
relative frequency of hits within the j-th interval is approximately equal to

lh\/ze_x? . (1 —h\/ze_ f) ~ lh\/Ie_x?.
s Vm T s Vm

If one attempts a least squares fitting of f(x) by (3.25), the approximative weight
-1
( %h \/%e_x-% ) of the relative frequency r; of hits within the j-th interval has to

be considered.® In this way, one obtains the least squares condition:

m 2

1 _.2 r; 2 .
E (—e Yi(ao + ai1x;j + axxy + -+ a,x}) — i) hs+/me*/ = min.
Jj=1 \/E ‘ ‘ ‘ h

In the case of “infinitely small” & and @ = —b = oo, from the latter relation the
condition

o0
/ e* (e‘xz(co +e1x x4t opx") — f(x))2 dx = min,
—00

used by Gram, follows.

Thorvald Nicolai Thiele (1838-1910), who had dealt, already in [1873], with
estimations of the coefficients in the series expansions of the type (3.25) by
moment methods, and had also introduced an equivalent form for those series
by employing derivatives of normal densities [Hald 2000, 243; 2002, 14], took up
and developed further Gram’s methods in a comprehensive account published in
1889. Instead of resorting to least squares, Thiele [1889/2002, 74 f.] motivated the
use of series expansions in Hermite polynomials by a plausibility consideration on

approximating both densities f(x) and definite integrals || xjp;;//zz f()dz (p > 0)

X
by the same series type: Because the application of Taylor’s theorem to f(z) (with

the abbreviation D for the derivative) yielded the representation

63 The reciprocal variance as a weight for fitting by means of least squares in case of observations of
different accuracy was introduced by Gauss. In the context of approximation of empiric frequency
functions via least squares, Seth Carlo Chandler [1872]—in the framework of an approach entirely

different from (3.25)—had already used weights analogous to ﬁ see [Seal 1979, 238].
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el D? f(x) D* f(x) D° f(x)
dz = 3 5 7
/x_,,/z J@dz=pf)+ P == e P e
Thiele proposed to expand f(x) in a series
k
f(x) =) (1) =D"&(x) (3.26)
= r!

of derivatives of any function £. Consequently, | ;c_+pp//22 f(z)dz had the “same form
[as (3.26)], just with other constants in the series expansion.” Thiele recommended
using the “simple exponential error function § = e~/ 2 and finally [1889/2002,

92; 178 £.] arrived at a representation analogous to

k k
S @) = kodyuo2(¥) = Kidy, j2() + 2y 2 () = 1) 2 (@) o (3.27)

The emergence of Thiele’s new device of “half-invariants” was apparently mo-
tivated by the problem of determining the coefficients of these or analogous series
expansions as simply as possible. In order to calculate the coefficients k ; by means
of the orthogonality relations (3.23) one has to perform the integrations

0o ) _ dj
/_ S(x)H;(x)dx, where H;(x)=(—1)/ (¢M,Uz(x)) ! @qﬁu,az(x).

This procedure virtually consists of determining the central moments of f up to the
order j.** Thiele [1889/2002, 84 f.] saw the drawback that, especially regarding the
effort in calculating empirical moments, the numerical values of moments of even
order were considerably increasing with their order. Hald [2000, 242] suggests that
this circumstance may have led to Thiele’s definition of what he called the “half-
invariants” ;,% by the recursion formula

.
-
Mp1 = Z (i)mr—iKi+1 (r=0.1,...),

i=0

m, denoting the empirical or theoretical moments of the order r of the distribution
under consideration. This recursion formula is similar to another recursion formula
of Thiele [1889/2002, 81] which relates ordinary moments and central moments
to each other. Thiele [1899/2002, 227] introduced only in a subsequent paper the

% In the general case, the derivatives qb;j {)’2 satisfy the orthogonality relations

< 1 . ) 1 N
/ P () o (8] () 578 UsJ' € No).
oo Yo —

The Hermite polynomials H; related to ¢, ,2 are connected to the Hermite polynomials # ; related
to the standard normal distribution by H; (x) = ULjh J (%)
% The modern designations are “cumulants” or “semi-invariants,” see [Hald 2000, 241].
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now common definition of half-invariants (see Sect. 3.4.2.1). Yet another aspect
was very decisive for the introduction of half-invariants by Thiele: In the case where
f is the density of a sum of independent random variables—important in numerous
applications, such as, for example, the discussion of the distribution of the arithmetic
mean [Thiele 1889/2002, 129 f.]—the moments of an order greater than 1 cannot be
obtained from the sums of the respective moments of the single variables. Even for
the central moments this is only possible up to the third order. As Thiele [1889/2002,
103] showed, for the half-invariants « ; (X) of order j (associated with the random
variable X)) the following property (in modern notation) is valid:

;O arXy) =Y ajk;(X,), (3.28)

if X, are independent random variables, and the a, are arbitrary real numbers. Alto-
gether, there was a good deal of advantages in determining, on the basis of orthog-
onality relations, the coefficients k; of (3.27) in terms of half-invariants instead of
moments, and Thiele [1889/2002, 91 f.] gave a list of formulae for the coefficients
up to kg in terms of the half-invariants k1, . .. , ks.

Compared with Gram’s and Thiele’s approaches, Ernst Heinrich Bruns [1897]
gave a very different derivation of the integral version

b
/ f@dx =Y (=1)7k; (@Xlz(b) —oY), (a)) (3.29)

Jj=0

of the series (3.27). His basic idea was to represent H(a, b) := f: f(x)dx by

H(a.b) = /_ FE).

where E(x) was a step function defined by
2E(x) = sign(b — x) — sign(a — x).

By means of an approximate representation of the function E(x) via Fourier inte-
grals (the error of approximation could be made arbitrarily small) and subsequent
expansions of the (to some extent arbitrary) integrands in power series, Bruns finally
derived (3.29) as a special case. In contrast to Thiele, Bruns tried to justify his ar-
guments from the point of view of contemporary analytical rigor, in particular with
regard to the problem of whether or not H(a, b) could actually be represented by
the respective series. Concerning his final step toward (3.29), however, he was only
able to give plausibility arguments in support of the use of the series in practice,
where its calculation could be restricted to a small number of terms.

Friedrich Lipps [1897; 1901, 171-175], whom we will come across again in
context with further generalizations of elementary errors (see Sect. 3.4.3.1), gave
additional derivations for “Bruns’s series.” The second [1901, 174 f.] of them re-
minds one to a certain extent of Thiele’s plausibility consideration on the joint
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representation of integrals and integrands described above. The impact of Lipps’s
contributions on statistical development was apparently almost nil, however. Among
prominent statisticians, who used series analogous to (3.27) or (3.29) around the turn
of the 19th and 20th centuries, only Czuber [1902, 357]—in a footnote—referred to
his work.

For Thiele, as well as for Bruns and Lipps, the primary motivation for discussing
series such as (3.27) or (3.29), respectively, was the fitting of frequency functions
to sampling data as advantageously as possible regarding the calculating effort. The
coefficients of the series were to be determined by empirical moments. Thiele and
Bruns, however, also used “their” series for “theoretical” considerations, in partic-
ular in the context of sums of independent random variables. Thiele [1889/2002,
129 f.] represented the density of the arithmetic mean of observations by means of
(3.27), presupposing the same distribution for each of the observations. He showed
that all coefficients except the first of the series tended to 0O, and therefore he
“proved” a CLT for the arithmetic mean of independent identically distributed ran-
dom variables. Bruns [1897, 339 f.] discussed the series (3.29) in the case of sums
of independent but not necessarily identically or symmetrically distributed “errors”
up to the 6th term, and thereby derived a result which generalized that of Bessel
(who had only considered symmetrically distributed elementary errors). However,
from the point of view of contemporary analytical rigor, neither Thiele nor Bruns
was willing or able to give sound arguments for the fact that the distributions of
the considered sums were actually represented by the series employed, or that there
was actually a convergence to the normal distribution. Moreover, there was scarcely
any hint at similar “classical” methods established by Laplace or Poisson. At best
Chebyshev’s reference to the series (3.24) in connection with his “proof” of the CLT
might have related to this theme.%

3.4.2 The “Natural” Role of the Normal Distribution
and Its Derivatives

Thiele as well as Bruns and Lipps had stressed the fact that their series could be
made up in derivatives of any arbitrary function, at least in principle. The use of the
normal distribution had only a more or less conventional character. Therefore, the
reason for the exceptional role of the Gaussian error law in connection with sums
of independent random variables was not clarified by the principles that were made
explicit in connection with those derivations of the series expansions.

% There are controversial speculations on Chebyshev’s presumable analytical basis for setting up
the series (3.24), see [Hald 2002, 10-12].
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3.4.2.1 Hausdorff’s “Kanonische Parameter”

Apparently, Felix Hausdorff [1901, 169-178] was the first to give a thoroughly clear
explanation of the connections between deductions of the CLT in succession of
Laplace on the one hand, and series expansions in derivatives of the normal distri-
bution on the other. In a survey of problems of probability theory, Hausdorff [1901,
169] introduced generating functions associated with a random variable with density
¢ by the equation

o
®(u) = / p(x)e™dx = De** (“D” from the German “Durchschnitt™),

o

corresponding to the modern notation ® (1) = Ee*X, X being a random variable.
For representing ¢(x) through @(u), Hausdorff used Fourier’s inversion formula

o0
2np(x) = / ®(iu)e ™ “du, (3.30)
—0o0
which he ascribed to Gauss, who had already written down the formula around 1813
in a posthumously published note [Gauss 1900, 88 f.] (see footnote 34, Chap. 2). In
this context, however, Hausdorff explicitly stated that he did not aim at a closer
examination of the validity of the formulae employed. He expanded log @ (u) into a
(formal) power series
M, M

log & (u) =M1u+2—'2u2+3—'3u N (3.31)
and named the coefficients M, “kanonische Parameter” (“‘canonical parameters™)
of the error law ¢(x). Hausdorff gave an easy proof for

Eet(X1+X2) — geuXigeuXa  (x, x, independent)

by referring to the basic property of expectations E(Y1Y,) = EY;EY, (Y1,Y>
independent random variables). Using this fundamental property of generating func-
tions he showed that for the “kanonische Parameter” a relation analogous to (3.28)
is valid, thus rediscovering Thiele’s half-invariants. In terms of the “kanonische
Parameter” Hausdorff [1901, 173 f.] also derived a sufficient condition for the CLT:
By P, he designated the arithmetic means of the cumulants of order « of the inde-
pendent random variables X1, ..., X,, each of which he assumed to be continuously
distributed with a zero expectation. His condition for the convergence of the den-
X1+ + Xy
A/ 2nP 2
Py 1 \/n*"2 P vanished as n — oo. In fact, taking into account the property
(3.28), this condition allows each series term of (3.31) to vanish asymptotically, ex-
cept for the second, which is equal to ‘1—‘. The function ®(u) = exp(%uz) is the
generating function of a normal distribution with zero expectation and variance %
In this “proof” of the CLT two substantial gaps existed: Firstly, the convergence of

sity of to the normal density ¢, L was that, for « > 3, the terms
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the generating function @ (1) could not be rigorously inferred alone from the asymp-
totic properties of each single term within the series expansion (3.31). Secondly, it
was not clear whether the convergence of the generating function of the normed sum
to the generating function of the normal density actually implied the convergence
of the density of the sum to the normal density. Apparently, it was not Hausdorff’s
intention to give a rigorous proof of the CLT, but he at least presented an example
of a sequence of elementary errors, in which the order of magnitude of the single
elements was decreasing with the index, such that the limiting law

p(x)=1: (e%x + e_%")

of the sum of these errors was different from the normal distribution.®” This coun-
terexample would play an important role about 30 years later (see Sect. 6.1.1). De-
spite the lack of an exact proof, Hausdorff [1901, 173] concluded his considerations
with the remark:

On exactly the same two causes, the additive character and the vanishing of the canonical
parameters in the case of the Gaussian law, also the approximate validity of the Gaussian
law for a total error that results from the numerous partial errors of slightly different orders
of magnitude is based.

From (3.30) and (3.31) Hausdorff [1901, 174 f.] formally inferred that

0o 2 X 1\ (5,,\Y
2np(x) = / du exp(—uT + ixu) exp (Z MM,J) .
—%° a=3

o!

He expanded the “second exponential function” into the series

Mg + 10M?

M3 . \3 M4 . \4 MS PIN1 3 :.\6
I—K(IL{) —|—4—!(1u) — (iu)> + ol (i) +---.

En

By integrating term by term and using the relations

00 uz do e8] uZ
/_oo du(iu)® exp (_T + ixu) = e /_oo du exp (_T + ixu)

d* 2 2
= Zﬁd —e¥ =12/me ™ s,
X

he obtained the following series:

67 Hausdorff’s counterexample was “dual” to the one of Poisson (see Sect. 2.2.3.1) in which the
. e . . oy g — I
characteristic function of the limiting law was 2 : (e** 4 e~ 4%).
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—x2

(]
p(x) = N

M M M
[1 - 3—'35‘3 (x) + 4—'4.5‘4()() — —Sss(x)+

Me + 10M2
44— 3

s - } . (3.32)

Regarding the application of this series, Hausdorff [1901, 174] only hinted at the
condition of M, for @ > 3 being “small compared with M, = %.” He did not con-
sider the order of magnitude of the coefficients of the series in the case of a sum of
elementary errors explicitly, but he only discussed the possible “semi-convergence”
of the series [1901, 177] in a rather vague manner.

Already in 1899, Thiele had deduced series expansions in derivatives of the nor-
mal density by considering the generating function of a given probability law. Com-
pared with his first derivation of 1889, Thiele [1899/2002] employed an alternative
way, basing himself on a new and “direct” definition of half-invariants kj, which
was equivalentto (3.31) for kx = M. Instead of Fourier’s inversion formula, Thiele
used symbolic calculations associated with the operator

exp | (- 1)"”"D o=

dx
k>1

thus arriving at the relation between two error densities ¢! (x) and ¢ (x) with half-
invariants /c,i and Ky, respectively:

1
K3—K3 3 kg
- 3p3—

$'(x) = e A ), (333)
In the special case of
1 7(267/;1)2
x) = e 2K2
¢ (x) N

a series analogous to (3.32) could be achieved.®® In contrast to Hausdorff, Thiele
did not explain any connections between his derivations and proof methods for the
CLT, and, in his account, the prominent role of the normal density was primarily
due to the fact that in the case of this error law the calculating effort in connection
with (3.33) was significantly reduced, because all cumulants of order greater than 2
vanished.

Neither Thiele’s 1899 article nor Hausdorff’s 1901 paper had a significant impact
on other authors. Only by contributions of Charlier and Edgeworth in 1905 and
later years, in which the derivation of series expansions » ;- ¢; ¢[(Z )02 was based
on hypotheses of elementary errors, was the connection between analgztic devices in
the realm of the CLT on the one hand, and series expansions on the other, perceived
by a broader audience.

%8 For closer details see [Hald 1998, 345-347; 2002, 20 f.].
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3.4.2.2 Charlier’s A Series

Carl Vilhelm Ludvig Charlier (1862-1934)® was in a more substantial manner
occupied with probability and statistics only in a relatively late period of his work.
Initially, his scientific activities were in perturbation theory, photometry, and scien-
tific photography. It may be that he became interested in the problem of approxi-
mating empirical frequency curves by linear combinations of special functions in
context with his research on stellar statistics. This conjecture is supported by the
content of a letter he wrote to Chebyshev. In this letter Charlier [1888], referring to
the latter’s work on series in Hermite polynomials (including [Chebyshev 1855/58;
1859; 1887/90]), asked for an assessment of the applicability of series in orthogonal
polynomials (especially Hermite polynomials) for representing arbitrary frequency
functions.

In 1905, Charlier published the article “Uber das Fehlergesetz” (“On the Law
of Error”), in which he tried to demonstrate that the representation of “arbitrary
frequency curves” by series expansions in derivatives of a normal density func-
tion “could be followed from the Laplacian theory of errors in an un-coerced way”’
[Charlier 1905a, 9]. The phrasing “the law of error”” shows that Charlier intended to
derive a general representation for a large class of different frequency functions. His
aim was to enforce the universal validity of this representation by its deduction from
a fundamental stochastic concept, the hypothesis of elementary errors. In so doing,
Charlier tried to advance the methods of Laplace and Poisson for calculating prob-
abilities of sums of independent random variables. Apparently, however, Charlier
was not familiar with more recent work on the CLT (by Cauchy, Sleshinskii, or
Lyapunov, for example) in which the original methods were further advanced in
accordance with the contemporary standards of analytical rigor. He was unable to
do justice to his own demand [1905a, 2] for a rigorous performance of the “neces-
sary considerations on convergence.”

Charlier assumed a number s of (tacitly independent) elementary errors, and, like
Laplace, started by discretizing the single error values, aiming at a representation of
the density f(z) of the sum by means of characteristic functions. Unlike Laplace,
however, he performed the transition from discrete to continuous variables already
in the exact representation of f. In this context, Charlier [1905a, 4] erroneously
assumed the orthogonality relation

1 " emx VeVl g
2% J g

mm’
to be true even for noninteger m, m’. Consequently he arrived at
1 T
0= 5 [ PP P@)e = o,
—T

where

% For biographical details see [Malmquist 1960].
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Pi(w) = /_oo fi(x)e*eV=ldx,

instead of the correct version

f@) = %/; Py (w)P2(w)“‘Ps(a))e_zw“/jldw,

oo

Essentially following Poisson’s line of argument, for the characteristic function
ps(@) = P1(0) P2(w) -+ Ps(w)

he derived a series expansion corresponding to

ps(w) = e‘“"“ﬁl_gzéu2 1+ Z Vn (—a)\/—_l)” (3.34)

n>3

(where u and o2 designate the expectation and the variance of the sum, respec-
tively). Charlier [1905a, 4 f.] maintained—this was a second mistake—that his de-
duction of (3.34) was only valid in the case where |¢s(w)| attains “considerable
values” in a small neighborhood of @ = 0 exclusively. He did, however, need this
assumption for the conclusion

T o0
/ (ps(a))e_z“’ﬁda)w/ (ps(a))e_z“’ﬁda)

-n —00

:/ e 2 1+Zyn(—a)v—1)" e—ov=1g,,

n>3

Via term-by-term integration he finally deduced the series expansion correspond-
ing to

o0
£(2) = Guo2(@) + D (11", (), (3.35)
n=3
Charlier explicitly calculated the coefficients y3 and y4 as dependent on the
moments of the individual elementary errors up to the third and fourth order,
respectively. In a further paper he [1905c] gave a plausibility consideration on the
determination of the coefficients of general series in derivatives of a given function,
which in the particular case of the series (3.35) amounted to Gram’s and Thiele’s
methods. Charlier, however, failed to estimate the respective orders of magnitude of
the coefficients in (3.35) as depending on the number of elementary errors.
According to Charlier’s arguments with regard to |ps(w)|, the validity of the
series expansion (3.35) was indisputable only for a very large number of elemen-
tary errors. In this case, however, the deviation between the exact distribution of
the compound error and a Gaussian error law could only be small. In the case of
“arbitrary” laws of error f(z), Charlier, in contrast to his claim, did not succeed in
establishing the equation (3.35) from the “Laplacian theory of errors.”
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A further article “Die zweite Form des Fehlergesetzes” (“The Second Form of
the Law of Error”), which appeared soon after, might have been motivated by the
insight of its author in the inconsistencies of the former paper. Certainly, the fact
that the series (3.35) could not be cut off after a small number of terms if it was to
be used for approximating considerably asymmetric laws caused a new search for
alternative series expansions. At first only dealing with lattice distributions, Charlier
[1905b, 2] discussed a model of elementary errors, each of which had the values 0
and o exclusively, with probabilities p; ~ 1 and ¢; = 1 — p;, respectively. In a
slightly erroneous and rather obscure manner Charlier [1905b, 4-7] deduced the
representation for the probability A, of the value ra (r € Ny) of the compound
error

Ar =) um A" (). (3.36)

m=0

where A = Y7, qi, A" (z) = A™Ya(z) — A™Y(z — 1), and

—A b
e
Yi(z) = — gheose cos[Asinw — zw]dw.
T Jo

In the particular case z € Ny the identity ¥ (z) = A® e;—,l holds, and that is why
[Charlier 1905b, 7] considered the expansion (3.36) as an improvement of the Pois-
son approximation to the binomial distribution.

Charlier named (3.35) “form A,” and (3.36) “form B” of the law of error, thus
coining designations which are still in use. From the purely mathematical point of
view, the discovery of the B-series was his greater achievement. However, others had
anticipated him also in this respect. Thiele in 1889, and especially Lipps in 1897 had
already discussed the use of the B-series for approximating empirical distributions.
In contrast to other authors, however, Charlier, who dedicated a good deal of his
papers to the discussion of series expansions and related topics’’—a third type,
the C-series, was adjoined in 1928—reached a broader audience. The influence of
Charlier’s work is also witnessed by Sérndal, who [1971, 375] even sees Charlier as
the real founder of the “Scandinavian School.”

In Sdrndal’s interpretation, this “Scandinavian School” was a rival of Karl
Pearson’s “school.” Aiming at approximating probability functions of hypergeo-
metric distributions by differentiable functions y (x), Karl Pearson had deduced the
differential equation

dy _ X —a
dx ybo + b1x + byx2

in 1895. The solutions of this differential equation, which coincides in the particular
case by = by = 0 with Hagen’s (see Sect. 3.2.1), yield the four-parameter “Pearson
system of curves.” This system, however, in contrast to Charlier series, could not
be deduced “genetically” through a plausible stochastic model, like the hypothesis
of elementary errors [Sirndal 1971, 379].7! Members of the Scandinavian school

70 See Hald [2002, 49-62] for a comprehensive survey.

! The genesis of Pearson’s system of curves between 1893 and 1895 was originally motivated, if
in a more general respect, by the hypothesis of elementary errors. Already around 1895, however,
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were convinced that models of elementary errors—which had to be generalized
even further if necessary—could provide helpful ideas regarding the preselection
of hypothetical probability distributions, not only in the context of fitting them to
empirical frequencies, but also in a variety of testing and estimating problems.

3.4.2.3 Edgeworth and “The’”” Law of Error

Francis Ysidro Edgeworth (1845-1926)7> was perhaps the statistician with the
greatest mathematical abilities at the end of the 19th century. Later on, however,
he became prominent due to his work on economics rather than his statistical con-
tributions. Bowley [1928, 2] explains this circumstance by stating the relatively
low practical application of Edgeworth’s statistical work, which in most cases was
dedicated to questions of predominantly theoretical interest. Edgeworth, who had
originally studied ancient languages and law, acquired his mathematical skills as an
autodidact mainly by reading the works of “classical” authors like Laplace, Pois-
son, and Fourier [Stigler 1978, 290]. He did not become familiar with the analytical
development of the beginning modern era. Regarding his stochastic concepts and
analytic methods, Edgeworth was especially influenced by apparently very carefully
reading Laplace’s TAP. The latter’s remarks on possible alternatives to the method
of least squares for parameter estimation were adopted by Edgeworth and further
advanced, in particular in context with his frequent discussions of nonnormal dis-
tributions. As a consequence of his autodidactic education, Edgeworth cultivated an
analytic style which reminds of the 18th rather than the early 20th century. His pre-
sentation of mathematical issues was often sketchy and not always straightforward.
Altogether, these circumstances make his statistical work quite difficult to read.
On the other hand, his permanent readiness to advance the discussion of statistical
models far beyond their momentary practical applicability give his contributions a
very modern touch.

Within Edgeworth’s statistical work, the problem of the characteristic proper-
ties of The “Law of Error” was especially prominent. The designation “Law of
Error” was mainly used by Edgeworth for “frequency laws” which expressed the
probability distribution of a random variable resulting from the coaction of sev-
eral “elements.” Those “elements” were essentially independent elementary errors
whose sum obeyed an approximate normal distribution, at least roughly. According
to Edgeworth [1917, 412], an error law of this kind had “the advantage of being
based on a vera causa, perhaps the most universal law of nature.” And therefore, as
Edgeworth pointed out again and again (see [1898, 672 f.], for example), these error
laws could be assessed regarding their use for representing empirical frequencies

Pearson took the standpoint that reality was too complex to be explained by a particular stochas-
tic model [Stigler 1986, 335 f.; 339 f.]. The term “genetic” was coined by Wicksell [1917], see
[Sarndal 1971, 378].

72 Comprehensive accounts on Edgeworth’s life and work on mathematical statistics can be found
in [Bowley 1928], [Stigler 1978; 1999, sect. 1.5], and [Stigler 1986, 300-325]. For details on
Edgeworth expansions see also [Hald 2002, 42—48].
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in two ways: Firstly by an “a priori consideration” of the plausibility of a possible
mechanism based on elementary errors, by which the statistical quantity considered
could be produced; secondly by testing whether the law of error (after an appropriate
fitting of its parameters) could actually provide a sufficiently exact representation of
the distribution of the sampling data. The applicability of a frequency curve of the
“Pearson family,” however, could only be checked by the second procedure.

What was the nature of the most general error law that could be based on the
hypothesis of essentially independent and additively coacting “elements”? In the
case of an “infinite” number of elementary errors one could expect a Gaussian dis-
tribution, apart from “pathological” exceptions. Edgeworth, however, intended to
substantiate the frequent occurrences of moderate deviations from normal distribu-
tions by an appropriate hypothesis of elementary errors as well. The assumption
of only a modest number of elementary errors yielded modifications of the Gaus-
sian distribution through series, which could represent “The Law of Error” quite
accurately. In the context of strongly asymmetric empirical distributions, the usual
model of elementary errors could no longer be used. But even in such cases, Edge-
worth tried to maintain the “natural” character of his approximations to probability
curves by means of his “method of translation” (explained in more detail in the
subsequent section).

In his first statistical paper, Edgeworth [1883] had already thoroughly discussed
the use of correctional terms in addition to a normal density for representing general
“facility-curves.” In 1894 he submitted an article, in which he further elaborated the
idea of modifying normal densities by series expansions, including a discussion on
the adjustment of these expansions to statistical material [Stigler 1986, 338]. With
the exception of a summary [Edgeworth 1894], this article remained unpublished,
probably due to the rather clumsy presentation of the contents in the paper [Stigler
1986, 341]. A revised version was only printed in 1905. The core of this essay,
which had apparently been written without knowledge about similar contributions
by other authors, was the expansion of “frequency-loci”—Edgeworth’s general des-
ignation for graphic representations of probability functions—assigned to sums of
independent random variables by the now so-called “Edgeworth series.” Edgeworth
explicitly considered only lattice distributed random variables with a common lattice
distance Ax, without giving reasons for this restriction. As “frequency functions”
for variables X of this kind he perceived functions f with the property

P(X =x) = f(xr)Ax  (xx = —mAx,(—m + 1)Ax,...,(n —1)Ax,nAx),

m and n being natural numbers. In most cases Edgeworth—more or less tacitly—
also carried over his results to continuous random variables and their densities.

Let us consider a sum of—for the sake of simplicity—identically distributed in-
dependent random variables X;, each having the same density with zero expectation,
variance 1, and cumulants «,; then the Charlier A series for the density of the
(normed) sum is given by

X+ 4 X,

ful) = %P( =

< x) = ()1~ D)+ G —-0)
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where the h; designate the Hermite polynomials associated with the standard normal
density ¢. The coefficients ¢; depend on the cumulants k, and the number 7 of the
random variables by

K3 Ka K5 K¢ 10/{%
3 = ——— Cq4g = —, C5 = —— Ce = — Ty e e .

s

. . _1 . _ .
c3 is therefore of the order of magnitude n™2, c4 is of the order n L and cs is of the

n2 n

order n~3. The illusive law of the coefficients ¢ ; being of order n=’7" is violated
from j = 6 on. ¢ is of the same order as c4, and similar “irregularities” are found
with higher coefficients. This flaw can be removed, however, by reordering the series
according to

Jn(x) = ¢ (0)(1 + qi/(;) + qz}gx) + ), (3.37)
where
q1(x) = %}B(X), q2(x) = %lm(x) + % (%)th(x), etc.

In 1905, Edgeworth, apparently without knowledge of prior work on Charlier A
series, showed that a series expansion (3.37) in terms of the order of magnitude
(v/n)~",r =1,2,..., could be generally established up to an arbitrary number of
terms. In so doing he also made it plausible that the difference between f, (x) and
the series cut off after a certain number of terms vanishes as n — oo.

The 1905 article “The Law of Error” crowns Edgeworth’s two-decade-long ef-
forts concerning sums of elementary errors and simultaneously summarizes his pre-
viously achieved results on this and related topics. This voluminous paper is quite
difficult to read, though by no means long-winded, and full of interesting details.
“Edgeworth expansions” are introduced and derived by three different methods.
There is also a discussion of—in Edgeworth’s own words—‘“reproductive” distri-
butions (stable distributions in modern terminology), and their significance as limit
laws for sums of identically distributed random variables is demonstrated.”® Edge-
worth illustrated his series expansions by discussing particular cases, such as sums
of two-valued or rectangularly distributed random variables. He also tried to gener-
alize his results toward multidimensional errors, certain functions (not only sums)
of elementary errors, or weakly dependent elementary errors. Edgeworth explicitly
stated and discussed his assumptions on the properties of the elementary errors, even
if in a verbose and not always entirely precise form. In his analytic methods, he fol-
lowed Laplace and Poisson regarding the use of Fourier analysis, he was influenced
by Crofton’s idea of partial differential equations, and he applied Karl Pearson’s
method of moments. Apparently, Edgeworth neither knew modern contributions to
the CLT or the analytic theory of moments, nor was he familiar with the analytic
style of post-Weierstrassian era. His 1905 article, of which only a few aspects can
be discussed here, nevertheless is impressive because of the analytic and stochastic
intuition of its author, as well as due to its quest for far-reaching generalizations.

73 The complete systematics, however, was reconsidered only by Lévy, see Sect. 5.2.6.
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The first # + 1 (# € N) terms of “his” series in the case of the density of a sum of
m “elements,” each with zero expectation, Edgeworth represented in the form

’ 3k 2
b= e HE HRE e e e (L 3G (339

\/2nk0

Edgeworth [1905, 36] named this expression the “(f 4 1)st approximation” to the
“actual locus.” As the “first” approximation he designated the Gaussian error law

2
— 1 3 - . i
Yo = me , where ko was the sum of the variances of the single elemen

tary errors (see Fig. 3.6 for a practical example). The exponential expression of the
differential operators in (3.38) has to be conceived as this part of the series

x| (L & d r+2\ !
ZE(ZH) (r +2)! (a) )

i=0 r=1

which, after expanding and rearranging the multinomials (...)" in groups with the
same value v + u for k%', contains multiples of k4 with v + u <t + 1. The coef-
ficients k, in (3.38) are, as Edgeworth [1905, 44] explained, equal to the difference
between the moment of the order r 4 2 of the actual error law y of the sum of ele-

mentary errors and the moment of the same order of y,_; (y—; := 0). In this way
Edgeworth obtained
y=Yo+1—=yo)+ 2—y)+--. (3.39)
where
1 2
= e 2kO,
Yo Vznko
_ kid?yo
Y=o ==3743"
ka d*yo ki d®yo
Y2—= = etc.

41 dx4 213131 dx6

A first justification for the approximative and asymptotic character of his se-
ries expansion was given by Edgeworth [1905, 40-45] by means of the method of
moments.”* It was shown that in the case of a large number of elementary errors the
central moments of the sum of the elementary errors up to a certain order were only
slightly different from those of the approximating law y;. Regarding this criterion on
moments, Edgeworth [1905, 41] did not refer to the results of the analytic theory of
moments, as produced by Chebyshev, Markov, or Stieltjes (see Sects. 4.3, 4.4), but
cited Karl Pearson, who himself apparently did not possess any knowledge of the
recent analytic development of moments. Estimating parameters of error laws from
empirical moments, however, had become a commonly used device in error theory

74 Closer details are discussed in [Bowley 1928, 39-45].
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and statistics since Gauss (see Sect. 4.1). As Edgeworth [1905, 41] noticed, Pear-
son had discussed some practical examples, in which—in modern terminology—the
L'-norm between empirical histograms and approximating curves became smaller
the greater the order was up to which identical moments within both systems existed
(see [Stigler 1986, 334 f.]).

Edgeworth [1905, 39] assumed independent elementary errors &1, ..., &y, each
with zero expectation, however having different densities, which vanish beyond
given finite intervals. For each # from # = 1 up to a “considerable” ¢ he assumed
the moments of order ¢ to attain approximately the same magnitude among all el-
ementary errors. For a closer discussion of the moments of the sum X = ) &,
Edgeworth [1905, 41 f.] started with the equation

Ee@X — E69($1+-'~+§’m) — Eeefl .. .Eeesm_

From this, with the designation x¥) = EX’ and analogous notations for the mo-
ments of the &, he inferred

§ :i_'ezx(l) — 2 :i_'ezlgfll)___ 2 : '_|91mér(rllm)
. . . 1 . Im-
i=0 i1=0 im=0

10%(211—0,1 9!1§<:1))+...+1og( % ok 'glms(lm))

m @ 03 .3 paf 87 _ 1 @0
| SrEP + e +o “ar 53 )T |+

=e
Altogether he derived
EefX — 6%92+%93+%94+-~+(,_’;fz)!ef+2+-~, (3.40)
where
m m A1
Zs@, =2 k= Y (8- ).
g=1 g=1

On the basis of his conditions on the magnitude of the moments and the bound-
edness of the single elementary errors, Edgeworth showed that, after redefining
x@ as a “unity,” the quantities k,, as well as the products kg, - ks, -+ - ks, with
S1 + -+ s, =r, had an order of magnitude ( f)' . Because of the fact that

x©) /5! was equal to the coefficient of 8° in the expansion of (3.40) as a power series
of 6, and using his considerations on the orders of magnitude of the k,, Edgeworth
was able to prove that

75 This means, in modern terminology, that these orders of magnitude are valid for the standardized
sum of the elementary errors.
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x(2P)

) e = ,2,, + rpp(m), where rp,(m) is a finite sum of terms of order of
magnitude 1 -~ and below,
x@p+D @2p+1)! / r ki
2) T 3‘(1, 1)'2p—1k + Rypy1(m), where k| = 3 is of the order

of magnitude —L T and R;,41(m) is a finite sum of terms of order of magnitude

_; and below.

m2
From these two relations one could immediately see that, presupposing a consider-
able m, the difference between the moments of the sum X of the elementary errors
and those of the corresponding normal distribution y, was “small,” relative to the
respective power of vx®. From

[ee} dt
[ s [

Edgeworth [1905, 44] also deduced that the partial sums with terms of a common
order of magnitude in r,, (m) and R ,41(m) are successively equal to the quotients
of the moments of order 2p and 2p + 1, respectively, of y; — yo, Y2 — ¥1, etc., and
the corresponding power of +/x®, if the approximations y1, y», etc. are according
to (3.39). Thus, there was a good accordance between the moments of the sum of the
elementary errors X and the moments of the higher approximations up to a certain
order, if the number m of the elementary errors was considerable. Edgeworth [1905,
44 £., 132 f.], however, also hinted at the possibility of an increasing discrepancy
between the corresponding moments, if they were of an order too high, because
then the number of the terms in 7, (m) and Rz p41(m), respectively, which were of
the same order of magnitude corresponding to a power of —= f was growing together

with p.

It is not surprising that, at a subsequent place in his article, Edgeworth [1905,
51-54], discussing Laplace’s methods of deriving approximations to probabilities
of sums, achieved a result for Ee?X V-1 analogous to (3.40), by use of which he
could show that for the density y(x) of the sum of the elementary errors:

o0
y(x) = %/ EeXV-Te—axv=1y,

— 1 Zz 2(x/7)’akt =2 —axfda (3.41)

T o

This relation yielded, by cutting off the series at # = s, substituting the exponen-

tial term eXi=2(v=D' Lﬁ'd by a power series, reordering the series according to
such k% with common v + p, and finally integrating term by term, approximations
ys—2 corresponding to Edgeworth expansions. Edgeworth’s arguments concerned
the algebraic form only; he did not derive upper bounds for |y(x) — y,(x)| or dis-
cuss the asymptotic behavior of this difference as m — oo. Expressions equivalent
to (3.41) had also been deduced by Hausdorff and Charlier, who, however, had not
systematically considered the order of magnitude of the respective series terms.
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Edgeworth presented a further method for establishing his series, in adapting
Crofton’s idea of describing the coaction of elementary errors by partial differential
equations. Whereas Crofton had only considered the contributions of the expec-
tations and the mean squares of the single errors to the compound law, Edgeworth,
aiming at more precise approximations, tried to advance this procedure by including
mean powers of higher order. It is probable that Edgeworth originally reached his
higher approximations y1, y2, . .. by Crofton’s method, because, in his first paper on
elementary errors, he [1883, 304] had already indicated how a “second approxima-
tion” (i.e., y1) could be obtained by aid of the “theorem given by Mr. Crofton.” The
general discussion in [Edgeworth 1905, 45-51] is, however, difficult to comprehend
at several places, and rather gives the impression of a plausibility consideration.

If another elementary error with expectation 0, variance dkg, and a (no more
negligible) mean third power dk; is added to a sum of elementary errors with the
law y, then in analogy to Crofton’s (3.18) for the new law y 4+ §y we have

ok ok
y+8y~ (1+ 7"D2 - 3—‘1D3)y. (3.42)

Edgeworth [1905, 47] considered k¢ and k; as independent variables, and therefore
he concluded

dy 193y
ki 31ox3
If one also takes into account the dependence of the error law y on k1, then y; with
Iy 1y
= 3.43
dkq 3! ox3 (343)

can be conceived as a more precise approximation to the law of error than the normal
density yg, for which “Crofton’s differential equation”

oy _ 12y
dko T2 9x2

is valid. Egeworth now assumed that y; could be represented by

3y11|
1=yo+ki |:— +--
y Y okt 1o
Apparently, he interpreted yo as (y1)x,—o, because with reference to (3.43) he
inferred s
10 Yo
= k —_—— — .
Y1=Yyo + 1[ 3!8x3}

A further continuation of this procedure with consideration of even higher mo-
ments led to certain difficulties, because, as Edgeworth explained, the correspond-
ing moments of the additional elementary error could no longer be conceived as
differentials of variables which are independent of k¢ and k. The moment of
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4th order k, of the compound error, for example, also depends on the moments
of 2nd order of the single elementary errors. Nevertheless, Edgeworth made it plau-
sible that, in his approach, kg, k1, k2, ... could be treated as if being independent,
and he generalized (3.42)—even if in a somewhat obscure manner—toward a rep-
resentation of §y by a linear combination of (also higher) differentials of kg, k1,
ko, .... Taking into account the different orders of magnitude of the k;, he finally
reached, in a manner similar to his derivation of yj, the verification of his general
approximation yy;.

Edgeworth’s comprehensive account also comprised the discussion of a further,
in his own words [1905, 54] “fresh,” condition on the “sought” law of error, to
be “reproductive” (i.e., “stable” in modern terminology). According to Edgeworth,
these probability densities are called “reproductive” which belong to a certain “fam-
ily” of functions with the following property:

(...) if two or more independently fluctuating quantities [i.e., random variables] 4, B, ...
assume different values with a frequency designated by a member of the family represented
by the sought function, then Q a quantity formed by adding together each pair (triplet,
etc.) of concurrent values presented by A, B, ... will also assume different values with a
frequency designated by a member of the sought family.

This portion of text, which is characteristic of Edgeworth’s idiosyncratic style, was
far from being a precise definition of “reproductive.” Only by the following analyt-
ical explanations was it clarified that a “family” consisted of all “frequency func-
tions” of the form % f (f), where ¢ was any positive number and f a given density
function.

Edgeworth [1905, 54 £.] also hinted at the fact that “frequency-curves” of random
variables which are composed of a “great number” of independent identically dis-
tributed elementary errors are necessarily reproductive: If A and B are independent
random variables, and both variables may be assumed to be additively composed
of “great numbers” m; and m, of elementary errors of the “typical sort,” then the
densities of A and B belong to the same family. A 4+ B is a fortiori composed of a
“great number” m; + m, of independent identically distributed elementary errors
of the “typical sort,” and therefore has a frequency function from the family under
consideration as well.

Edgeworth now assumed that random variables A, B, ...of the number m had
the same reproductive frequency function f(x) with the property f(x) = f(—x).
Consequently Q = A+ B +--- had a frequency function y = % f(%), where ¢ was
a constant depending on m. Using “Laplace’s analysis,” that is, using characteristic
functions Ee?4v~1 , which he represented without any justification by e¥®) | Edge-
worth expressed the latter condition through v (cf) = my (). The solution of this
functional equation could be determined from well-known—though not rigorously
proven—rules. For 8 € R:{ this solution is of the general form ¥ (8) = B - a,
wherefrom Edgeworth inferred that

|
f(x) = E/ e cosaxda.
0
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He did not discuss the nontrivial question of whether such an f(x) (as depending
on a and 7) was actually a probability density.

Edgeworth [1905, 56 f.] even broached the problem of asymmetric “reproduc-
tive” laws. He showed that reproductive laws were symmetric (with respect to 0) if
they possessed a finite variance. Symmetric and reproductive laws y with a finite
variance and zero expectation, however, could be assumed as being made up of a
very large number of elementary errors, and therefore conformed to Crofton’s equa-
tion y(x) = F(x, ko) (see (3.19)). On the basis of this equation Edgeworth deduced

2k
y(x) = me o . He called this deduction of the Gaussian error law a “variant”

of Crofton’s method. This variant, however, served only as a first approximation,
and could not be used for the derivation of a series expansion.

In a first publication on error laws which meet certain conditions, such as the
hypothesis of elementary errors or the property of being reproductive, Edgeworth
[1883,305-307] had already discussed densities like

1 o0 t
f(x) = %/ e cosaxda,
—00

where ¢ was not further specified. He was only able to give explicit algebraic ex-
pressions in the case ¢ = 1 by the function f(x) = = + oD “noticed by Poisson,”
and for ¢t = 2 by the Gaussian law. He judged the existence of frequency func-
tions which were reproductive, but different from the Gaussian density, as a piece
of evidence

... that the “ancient solitary reign” of the exponential law of error should come to an end ...
[Edgeworth 1883, 306].

Against possible objections that “common sense” would already eliminate the pos-
sibility of such error laws, Edgeworth [1883, 308] objected:

But in Chance, as in other provinces of speculation which have been invaded by mathemat-
ics, common sense must yield to symbol.

Even if Edgeworth later won more practical experience in dealing with statistical
data, and therefore did no longer assign any arbitrary hypothesis on errors the same
right, still his opinion on the priority of mathematics remained basically unchanged.
He always did his best to discuss statistical problems with regard to all aspects,
not only the practical ones. This attitude reminds one of Cauchy’s approach in his
dispute over the method of least squares with Bienaymé, in which stable laws like-
wise played an important role. Most probably Edgeworth, who usually carefully
referred to the results of other authors, was without any knowledge on this work
by Cauchy. We may therefore ascribe to Edgeworth the merit of a “rediscovery”
of stable distributions—at least the symmetric ones—and especially the discovery
of their importance as limiting laws for sums of independent identically distributed
random variables.

In his 1905 article Edgeworth also considered several generalizations of the
results described above. Edgeworth [1905, 115 f.] established, for example, his
series expansion for sums of two-dimensional elementary errors, using the method
of moments. Concerning his assumption of bounded elementary errors he mentioned
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that for the existence of a normal limiting distribution it would only be important
that the moments of the single errors were finite and approximate among each other.
Edgeworth recommended to substitute in the proofs unbounded elementary errors
by bounded ones, such that the latter had almost the same moments as the first.
With these—rather qualitative and only verbal remarks—he came close to the idea
of truncated random variables as it was developed by Markov at exactly the same
time (see Sect. 5.1.5).

Very noteworthy, but quite difficult to understand due to their rather sketchy pre-
sentation, are Edgeworth’s ideas [1905, 121-126, 139-141] on generalizing addi-
tivity of elementary errors. To this aim the compound error was assumed to be a
polynomial in elementary errors of a certain degree, where it was presupposed that
in this polynomial the coefficients of higher order were small compared with the
first ones. In modern terminology, Edgeworth probably meant the following: Let
(X ;) be a sequence of independent elementary errors, which meet the usual condi-
tions (regarding zero expectations, orders of magnitude of the single moments, etc.).
Additionally, let k be a fixed natural number and

he Y axrex

{aeNg|1<|a|<k}

where the coefficients 2" have the order of magnitude /7" *!.76 Then the approx-
imation of the density of Y, /+/VarY, by the corresponding Edgeworth expansion,
cut off after a few terms, becomes more and more exact the greater the number of
elementary errors n is. The characteristic feature of Edgeworth’s polynomial was
that a sum of independent random variables (corresponding to the linear part of the
polynomial) was augmented by additional quantities depending on these random
variables, whose influence, however, was small compared with the elements of the
linear part. In turn, Edgeworth [1905, 126 f.] tried to cover possible stochastic de-
pendencies among elementary errors by polynomial models of this kind. In fact,
von Mises [1935; 1936], without any reference to Edgeworth, proved a CLT for
sample statistics, which concerned a similar situation (see also [Cramér 1946, 218
f., 352-367]).

3.4.3 The Method of Translation

Both Edgeworth and Charlier A expansions (in practice cut off after a few terms)
could only serve for fitting such frequency curves to empirical material that did not
deviate too much from a Gaussian bell-shaped curve. The practical application of

76 More exactly:

Ir,s>0Vn eNVeeNj:1<|e|<k=>r=< |ag')|\/ﬁlalil <s.



3.4 Nonnormal Distributions, Series Expansions 133

Charlier B-series was restricted to those cases in which the frequency had a rela-
tively sharp maximum near the upper or lower bound of the statistical quantity un-
der consideration. In all other cases one had to resort to Pearson’s system of curves
(see Sect. 3.4.2.2) or to apply the method of translation, where the latter—at least
from the point of view of its propagators—could preserve, in contrast to Pearson’s
approach, a certain “genetic” character.

The basic idea of the method of translation is to discuss the random variable
f(X) rather than the random variable X, where f is an appropriate function.”’
Sdrndal [1971, 382] ascribes this principle to Galton [1879] in the particular case
f(x) = log(x), and in its general version to Edgeworth [1898]. Jacobus Cornelius
Kapteyn [1903] discussed translations f(x) = (x + k)7 (x > —k, k,q € R), and
he tried to justify this special choice of f. Finally, Sven Dag Wicksell [1917], who
relied on Kapteyn’s ideas, presented a very general model of elementary errors, by
which the choice of a favorable translation function could be facilitated.

3.4.3.1 The Log-Normal Distribution

Johann Heinrich Lambert in his 1760 Photometria had discussed, in context with
photometric measuring, the geometric mean as a possible alternative to the arith-
metic mean. In 1863 Philipp Ludwig Seidel argued that it would not make sense to
consider, in the error theoretic analysis of photometric data, the deviations of the
light intensities measured from their true value; it was rather appropriate to take
the differences between the logarithms of the values observed and the logarithm of
the true value.’® In 1834, Ernst Heinrich Weber had already stated the later so-called
Weber—Fechner law (proportionality between sensation and logarithm of stimulus),
which became the main topic of Gustav Fechner’s 1860 Psychophysik.”

Galton directly referred in the first part of the 1879 article “The Geometric
Mean”—the second, mathematical, part was due to Donald McAlister—to Fechner.
Galton discussed a photometric test arrangement, in which the geometric mean ap-
parently had to be preferred as opposed to the arithmetic mean. Galton [1879, 367]
alluded to Gauss’s deduction of the normal law from the principle of the arithmetic
mean being the most probable value, and he pointed out that the assumption of the
geometric mean being the most probable value would lead to another type of error
law. Moreover, Galton made it plausible that in numerous cases the frequency func-
tion of a statistical characteristic was inevitably asymmetric, and therefore deviated
from the “usual” Gaussian error law.

McAlister, in his part of the article, considered the situation of observations
X1,...,Xn (each tacitly assumed to be positive), from which the true value a was

7T 1f, for example, the range of values of X is equal to the interval Ja; oo[, if f :]a;oo[— R
is onto and strictly monotonic increasing, and if f(X) obeys a normal distribution @, ;2, then
P(X <x)=®,,(f(x)) forx >a,and P(X <x)=0forx <a.

78 For closer details concerning Lambert’s and Seidel’s contributions see [Knobloch 1992, 273—
275].

7 For Fechner’s work referring to this matter see [Stigler 1986, 243-254].
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to be estimated. He imposed the condition that the geometric mean {/xq--- X,
was the “most probable value” for a, and, accordingly, the arithmetic mean
%[log(xl) + --- 4+ log(x,)] was the “most probable value” for loga. In anal-
ogy to Gauss’s line of arguments (see Sect. 3.1), for the logarithm y = logx of a
measurement x the frequency law

h e—hz(y—log a)?

N

resulted, and from that, because dy = %dx, the frequency law

h e—hz(log %)2
T

for the quantity x was deduced. Distributions with densities of this type are
now called “log-normal distributions.” Under the heading “Quetelet’s Method”
McAlister [1879, 372 f.] discussed how the new frequency law could be deduced
from a hypothesis of elementary errors which was along the lines of Hagen’s.
McAlister assumed the ratio of an observation x and the true value a as being equal
to the product of 2n elementary errors, each with the equiprobable values o ~ 1
and @~!. The exponents —2n, . . ., 2n of the possible values 2", a?>72", ..., a2,
1, o2, ..., a?"2 2" of x/a were given according to a binomial distribution,
and therefrom, for a large number n, an approximate normal distribution of the
exponents, and a log-normal distribution of the observations x, resulted. As already
noticed above (see Sect. 3.3.1), around the mid-1870s Galton had abandoned the be-
lief that each normal distribution was a result of the existence of elementary errors.
As a consequence, McAlister’s discussion of elementary errors was rather brief.
The comprehensive discussion of the log-normal distribution as an alternative to
the Gaussian law, however, did not imply that Galton abandoned his fundamen-
tal preference for normal distributions [Porter 1986, 139]. On the contrary, log-
normal distributions could in most cases be accurately fitted to asymmetric empiric
distributions, and since log-normal distributions could be considered as descen-
dants of normal distributions, Galton’s positive attitude toward normal laws was
confirmed. In turn, he criticized Karl Pearson’s approach as not being capable of a
“rational” justification [Stigler 1986, 336], although only in private letters.
Fechner’s ideas inspired Galton to present his account on the log-normal distri-
bution, but Fechner did not publish anything on this issue during his lifetime. In his
posthumous book KollektivmaBlehre [1897], which had been extensively reworked
and supplemented by Friedrich Lipps, an entire chapter was dedicated to this distri-
bution, the concept of which was at least in principle due to Fechner. In the book,
possible asymmetries of frequency distributions of biological or social data were
discussed at considerable length. Apparently, for Fechner the quite universal appli-
cability of the log-normal distribution for representing empirical data was an indi-
cator for the failure of the normal distribution in general. Lipps, who at the time of
the publication of Fechner’s book was an ardent worshiper of the hypothesis of el-
ementary errors, also gave a derivation, based on elementary considerations, of the
log-normal distribution, which was similar to McAlister’s. Later on, Lipps [1901,
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163-166] fundamentally changed his attitude. Now, he spoke up for a thorough
rejection of any hypotheses on elementary errors, because the assumption of mutual
independence of elementary errors became untenable in his opinion.

3.4.3.2 Wicksell’s General Model of Elementary Errors

Edgeworth [1898, 674 f.] presented a general “method of translations,” but he only
vaguely discussed the advantages of this new idea. Corresponding to the “preva-
lence” of the hypothesis of elementary errors, those “formulae” should be preferred
which were related to the normal distribution to some extent. According to Edge-
worth it was “probable” that modifications of the usual conditions on elementary
errors (independence, additivity, relative smallness, large number) would lead to
certain deviations from normal frequency laws. A precise explanation of specific
relations between modified models of elementary errors and particular translation
functions cannot be found in Edgeworth’s contribution, however.

Wicksell expounded a general concept of elementary errors in 1917, from which
the method of translation could be deduced and in which specific assumptions on
elementary errors were connected with particular types of translation functions. He
referred to ideas, developed by Kapteyn [1903], concerning the stochastic depen-
dence of different increments on the current value of the compound error to whose
accumulation they are contributing. Wicksell’s theory, however, was far more gen-
eral than Kapteyn’s.

[Wicksell 1917, 7] assumed “sources” Q1, Q», ..., Qs of elementary errors act-
ing in succession and thus producing a compound error z. The respective “error im-
pulses” x1, x2, ..., X5 (presupposed as being independent) had probability densities
with the property that the frequency function of Y ;_, x; could be approximated
as precisely as necessary by the first terms of a Charlier A or B series. Wicksell
assumed that z had already reached the size z;_;, directly before the action of Q;;
the increment of z caused by the action of Q; should be x; - ®(z;—1), where &
was a function, whose properties were still unspecified. Expressed by formulae, the
equation

Zi = Zi—1 + X O(Zi-1), (3.44)

and therefore also

S
Z=20+ in@(Zi—l)

i=1

should be valid. [Wicksell 1917, 8 f.] now introduced the transformation function

A(z) by gy
4@) :/ 56

Assuming each of the differences z; — z;—1 to be very small, he followed by virtue

of (3.44) that s -z xX;O(zi—1)
A2 ~ Z o Z o)
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and therefore
A(z) ~ x1 + x2 + - + X5. (3.45)

On account of (3.45), the frequency function of the random variable A(z) could
be represented by the Charlier series related to the sum of independent random
variables x1, ..., X;.

Wicksel’s hypothesis of elementary errors had the advantage of providing a plau-
sible stochastic model which not only implied the principle of transformation func-
tion, but also led to the specific form of this function, if substantiated assumptions
could be made on the particular shape of the function ®. A prominent role among
all the special functions ® Wicksell [1917, 16-18] discussed played ®(u) = u and,

consequently, A(z) = log (%) Presupposing a great number of—approximately
equally small—error impulses, the result was a log-normal distribution.

3.4.3.3 The Further Fate of the Hypothesis of Elementary Errors

A controversy arose between the defenders of the hypothesis of elementary errors
on the one hand, and of Pearson’s system of curves on the other. However, it was
never disputed in a particularly sharp manner. The main issues of the controversial
discussion were computational and statistical advantages and disadvantages of the
procedures applied. However, the search for an appropriate method of represent-
ing empirically obtained frequency distributions which could be connected with the
inner nature of the considered characteristics was even more important. Regarding
universal applicability, Pearson’s system, which also covered strongly asymmetric
probability laws, had the advantage. But it was based on an arbitrary stochastic
model, for which a connection to natural processes could hardly be established.
The hypothesis of elementary errors was questionable—even in Wicksell’s general
model—since it required independence of the single errors (or error impulses), a
condition which was hardly in line with reality, especially in the biological realm.
Edgeworth’s poorly presented model of 1905 for weakening independence (see
Sect. 3.4.2.3) remained unnoticed, even though it was taken up again in an addi-
tional paper [Edgeworth 1906]. Studies in which sums of chained random variables
were discussed, following the work of Markov, remained without any influence
on the hypothesis of elementary errors, because of their predominantly theoretical
orientation.

In statistics, elementary errors became ever more unimportant after ca. 1920
since this issue remained only of secondary interest in the “new” field of hypothesis
testing. On the other hand, mathematicians, like Lévy, Lindeberg, or Cramér, took
up the hypothesis of elementary errors as an “applied” motivation for their research
on the CLT. Whereas in Lévy’s and Lindeberg’s accounts elementary errors were
treated as examples (and counterexamples) for the occurrence of the CLT in the
physical world, Cramér’s direct concern was an important “practical” question: How
exactly could the profit of an insurance company, resulting from all single con-
tracts (which played the role of elementary errors), be approximated by a Charlier
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or Edgeworth series cut off after its first terms? Around the turn of the century,
this problem was behind several relevant works on insurance risk, for example by
Hausdorff [1897] or Bohlmann [1901]. Yet it would only finally be solved on the
basis of fresh results in analytic probability theory, mainly due to Lyapunov (whom
Bohlmann already had referred to), and von Mises (see Sects. 5.1.3 and 5.2.2).
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Appendix: Letter from Bessel to Jacobi, 14 August 1834

German Transcription

Sie konnen, von Dato an, als erwiesen annehmen, Verehrtester! daf3 viele zusam-
menwirkende Fehlerursachen immer eine Wahrscheinlichkeit des ganzen Fehlers
liefern, welche nahe dem exponentiellen Gesetze folgt. Ob das “immer” nicht zu
viel gesagt ist, muB} ich jedoch noch untersuchen; also lieber “im Allgemeinen”.
Meine Ableitung dieses eifrig gesuchten Satzes ist kurz und klar. Sie streift aber,
in wesentlichen Punkten, stark an Poissons frithere Analysen verwandter Aufgaben.
Eigentlich muf ich mich, wie gewohnlich, drgern, dieses so spit zu bemerken. Aber,
wenn mein eigenes Verdienst auch klein, in Thren Augen und vielleicht auch in den
meinigen, moglicherweise sehr klein wird, so da} es als eine zu vernachldssigende
Grole anzusehen sei, so habe ich doch Freude iiber das Gelingen meiner Bemiihun-
gen, weil es meiner Arbeit den SchluBlstein gibt. — Da ich Sie, in Geburtsnothen,
mit Wehklagen zu plagen pflege, so sollen Sie doch gleich erfahren, dal geboren ist
— eine Maus!
d. L
FWB
14 Aug 38.

English Translation

You can henceforth take for granted, dearest!, that many coacting causes of error
always yield a probability of the entire error which is close to the exponential law.
Whether the “always” is carrying things too far has to be investigated though; there-
fore rather “in general.” The derivation of this theorem, which I was eagerly seeking
for, is clear and concise. Yet there is an essential relation to Poisson’s previous anal-
yses of similar problems. As usual, I actually get angry about realizing this so late.
Although the credit I deserve is small, maybe very small in your eyes and possibly
in mine as well, not more than a negligible quantity in the end, I’'m still happy about
my successful efforts which put the capstone on my work. Usually bothering you
about my laments when suffering from birth pain, I shall come right to the point—a
mouse is born!



Chapter 4
Chebyshev’s and Markov’s Contributions

From an historical point of view, the treatment of the CLT by the method of moments
is strongly connected with the contributions of Chebyshev and Markov. According
to the standard historical interpretation, both mathematicians with their contribu-
tions began to apply that mathematical rigor to probability theory which would be-
come the norm during the first decades of the 20th century.

As far as the mathematical merits of Pafnutii Lvovich Chebyshev (1821-1894)are
concerned, beginning with the accounts of Lyapunov [1895] and Vasilev [ 1898/ 1900]
a hagiographic valuation of his work was established and has remained basically
unchanged. A really exultant esteem of Chebyshev’s contributions was maintained
during the Soviet regime, as many essential features of his work could be inter-
preted in complete accordance with the official materialistic point of view, apparently
without any problems.! The main characteristics of the “standard” perception
of Chebyshev’s life and (stochastic) work can briefly be summarized as follows:

— Chebysheyv, the founder of “St. Petersburg school,” with Markov and Lyapunov
being his most prominent disciples, was an excellent and highly motivating teacher.
— Chebyshev was especially interested in mathematical problems which could be
applied to practical issues, according to his “realistic” (in the interpretation of Soviet
historians “materialistic”’) perception of mathematics.

— The characteristics of Chebyshev’s mathematical methods are: Reduction of so-
lutions of problems to elementary procedures and operations, approximations with a
precise description of the errors committed, and, as a consequence of this approach,
analytic rigor in a finitary sense, despite an apparent lack of interest in the founda-
tions of analysis.

With regard to Chebyshev’s probabilistic activities, these statements seem to be
particularly appropriate. His favored methods were decisive especially for limit

! For Chebyshev’s contributions to probability theory see [Bernshtein 1945/2004a; Maistrov 1974,
188-208; Gnedenko & Sheynin 1992, 251-262; Sheynin 1994; Sheynin 2005b, 214-226]. The latter
two sources by Sheynin take a more balanced position. For Chebyshev’s life and life’s work see
[Prudnikov 1964; Yushkevich 1970-76a; Bernshtein 1947/2001]. For an interesting collection of
quotations from different authors (including Chebyshev himself ) on Chebyshev’s “realistic” attitude
toward mathematics, see [Steffens 2006, 69-75].

H. Fischer, A History of the Central Limit Theorem, Sources and Studies 139
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theorems, due to his demand for explicit estimates of the deviations between the
exact formula in the case of a finite number of trials and the respective limit term.
Only with knowledge of those estimates was a complete and rigorous discussion of
a limit problem possible, according to Chebyshev (see Sect. 4.6.1). This principle
suggested a research program which not only entailed analytic rigor but also focused
on practical applicability. As far as the CLT is concerned, Chebyshev’s demand was
only fully satisfied by the work of Berry and Esseen during the 1940s (see Sect.
5.2.8.2).2

Chebyshev’s disciples Lyapunov and Markov played a decisive role in the de-
velopment of early modern probability theory after 1900, in pursuing Chebyshev’s
research program, at least in part. Concerning Chebyshev’s influence on mod-
ern probability, Khinchin [1937/2005, 41] presumed to claim that the process of
“Russian theory of probability” reaching its “exceptional standing” (see also
[Maistrov 1974, 208]) was “completely” thanks to Chebyshev. In a similar way,
Gnedenko and Sheynin [1992, 281] have observed that “the theory of probability
was shaped as a general mathematical discipline” by Chebyshev.

After a closer examination of Chebyshev’s work on moments and on probabil-
ity, certain distinctions arise in each of the flat observations just described. There
are indications that the cooperation between teacher and disciples in Chebyshev’s
“St. Petersburg school” did not have the quality commonly associated with the
framework of a scientific school (see Sect. 4.3.1). Chebyshev’s proof of the CLT
did not meet any of the criteria regarding limit theorems that Chebyshev himself
had established. It even turns out that Chebyshev’s work on probability cannot be
seen in the light of an independent discipline. His discussion of the CLT served
mainly as an illustration of certain analytic methods, in particular his method of
moments. One does not observe a really substantial effort to deal with the CLT in its
own right, neither within mathematics, by seeking conditions as weak as possible
for the CLT, nor beyond pure analysis, with respect to stochastic applications.

In the first articles by Andrei Andreevich Markov (1856-1922)° on the CLT,
moment theoretic intentions were clearly prominent as well. Contrary to these arti-
cles, in his courses Markov’s exposition of probability theory and especially of the
CLT focused mainly on applications. There, he quite frequently settled for intuitive
considerations or proofs which were not entirely rigorous. From about 1905 on,
Markov considerably intensified his research in probability, now apparently mainly
motivated by the specifically stochastic character of its problems. This was possi-
bly due to his rivalry with Lyapunov, who, on the basis of Poisson’s methods, had
presented rigorous proofs of the CLT under very weak assumptions around 1900.

2 Kolmogorov [1947/2005, 72] has expressed the opinion that Chebyshev’s main contribution in
connection with the CLT was the explicit formulation of the problem of finding error bounds in the
case of approximating the exact formula for a finite number of summands by the normal distribu-
tion (see also [Maistrov 1974, 207]).

3 For scientific biographies see [Yushkevich 1970-76b] and [Grodzenskii 1987].
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4.1 Chebyshev’s Moment Problem

The method of moments for proving the (integral version) of the CLT plays a
marginal role in modern expositions of probability theory (for example, in connec-
tion with particular cases concerning Markov chains). The reason may be that rather
“technical” and complicated considerations are needed, which effort seems hardly
worthwhile for the goal of proving the CLT alone. In fact, in Chebyshev’s work as
well as in Markov’s early contributions, the CLT served primarily as an illustration
of general theorems on moments and continued fractions.

Roughly speaking, the theory of moments deals with the problem of finding out
about as many properties as possible of a monotonically increasing function & > 0,
defined on the interval [a; b], from the knowledge of its moments

My :=/ du(x), M, :=/ xdu(x),..., My = / x"du(x)
€la;b] x€la;b] x€la;b]

up to a certain order n. If one additionally assumes that the function u is continu-
ous from the right, then p(x) can be interpreted as the mass of the segment [a; x]
of arod.

In their most general form, moment problems for mass distributions p(x) are
due to Stieltjes [1894/95], who in this context also developed the notion of the
(now so-called) “Stieltjes integral.” In contrast to Stieltjes’s approach, Chebyshev
and Markov considered functions u(x) = fax f(t)dt, where f was nonnegative.
In order to be able to cope with the situation of discrete mass points as well, they
allowed case-specific functions £, which today would be designated as §-like.* Less
frequently they also considered, instead of integrals, sums over a continuous in-
dex range, where the summands could attain nonnegative finite values as well as
“infinitely small” ones.

In the summary of a lecture held at a congress of the “Association frangaise pour
I’avancement des Sciences” in Lyon, Chebyshev [1874a, 157] maintained that he
had encountered those specifically new problems on moments by his reading of the
article [Bienaymé 1853e]. In this article, which was written during the Cauchy—
Bienaymé controversy (see Sect. 2.5.3), Bienaymé dealt specifically with (central)
moments of second order as measures of precision for laws of error. Bienaymé’s
paper also contained the derivation (with a silly mistake) of what is now known
as the Bienaymé—Chebyshev inequality in the special case of linear combinations
Z?=1 hie; of identically distributed observational errors ¢€;, each having a finite
number of discrete values. “His” (amended) inequality was equivalent to the fol-
lowing relation:

P (| Zhiei —ZhiEel} < IV202) =1- %Zh?, 4.1

i=1 i=1 i=1

4 Chebyshev considered discontinuous (!) integral functions with §-like integrands [Chebyshev
1887/89, 300 f., 315], for example. (For a closer inspection of the second reference see below,
Sect. 4.4.)
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where 6 and f designate positive values less than 1 (depending on the specific prop-
erties of the errors under consideration), and 02 is the abbreviation for the variance
of each error of observation.

In 1867, Bienaymé’s 1853 article was reprinted in the Journal de Liouville in
immediate proximity to the French version of Chebyshev’s paper “Des valeurs
moyennes.” In that contribution, Chebyshev had proved the weak law of large num-
bers for arithmetic means using the following inequality for sums of discrete and
(tacitly assumed) independent random variables X;:

P (ZEXi —cx\/ZEXiZ — Y EX)2 <> X
<) EX; +a\/ZEXi2—Z(EX,-)2) 1oL 4.2)

o2

This inequality is analogous to (4.1).> Bienaymé’s and Chebyshev’s proofs for (4.1)
and (4.2), respectively, were based on the same idea, which is still used for the
common textbook proof of the Chebyshev—Bienaymé inequality. The crux of the
proof rests on the inequalities

/ x"dV(x) > r"/ dv(x) (r,n>0) ifV({F)<l,
X>r X>r
where V is the distribution function of a random variable.

If Chebyshev’s reference to Bienaymé in his 1874 paper is to be taken seri-
ously, then Chebyshev must already have studied the article [Bienaymé 1853e]
thoroughly before completing his 1867 paper. In an article published even later,
Chebyshev [1887/89, 305] maintained that his 1867 paper had been written in the
framework of more extensive research on moments (which assertion, however, can
hardly be approved by the content of his publications during that time). It may be
that Chebyshev, when reading Bienaymé’s article, realized that Bienymé’s method
could also be applied to individual errors with probability density f, with the result

EXtr © 2 dx — 00 d 2
/EX—r Fx)dx > 1— f—oox f(x)dx rz(f_oo xf(x) x)

I

in accordance with (4.1). It was an obvious step from inequalities of this kind to
the more general moment problem of seeking accurate upper and lower bounds for

integrals f: f(x)dx if a < b are arbitrarily chosen from the domain of definition
[A4; B] of the nonnegative function f and if the moments

B B B
o o e 2
M, ._/A f(x)dx, M, ._/A xf(x)dx, M, .—/A x“ f(x)dx, ...

3> No one exactly knows why Bienaymé’s and Chebyshev’s articles were printed so close together
[Heyde & Seneta 1977, 13-15, 122 f.]. The proximity of the articles to each other may indicate
that the editors were aware of their common core.
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B
oMy, :=/A x™ f(x)dx

are given up to a certain order m.

In contrast to these conjectures, one can also reasonably assume that Chebyshev’s
reference to the “authorship” of Bienaymé was primarily intended as a gesture of
homage to a French colleague in a lecture before a predominantly French audience.
Gauss [1823, 10—12] had already—as also noted by Pizzetti [1892, 183] and Czuber
[1899, 153]—contributed to inequalities for integrals |, ab f(x)dx (f being a proba-
bility density). Aiming at the discussion of common features among unimodal laws
of error f(x) with the peak at x = 0, Gauss proved the following inequality® for

m =/ [%° x2 f(x)dxand p := _A;"m f(x)dx (A > 0):
u3 ifp <
—wf_ﬁ if >

In 1866, Anton Winckler succeeded in generalizing Gauss’s result. Winckler as-
sumed a probability density f(x), where f(x)= f(—x), and f(x)=0 for x be-
yond the compact interval [—a;a]. He further presupposed f(x) monotonically
decreasing for positive x, continuous over the interval [—a;a], and f(x) posi-
tive for xe | — a; a[. According to Winckler [1866, 19-21], with the abbreviations

kn = /2[5 |t]" f(t)dtand y :=2 [ f(t)dt we have

A<

(4.3)

WIN WIN

—

X = nky :
(n+1)%/1—y 1fy>

{yk,“”/n+1ify§n_’fr
n

—

n+1-

The idea that a law of error was—at least within certain limits—determined by
its moments up to a certain order, may also have been suggested by the usual treat-
ment of the asymptotic behavior of sums of independent random variables accord-
ing to Laplace and Poisson. The product of integrals ff 2t (x)ex“’ﬁ dx (f; being
the density of the jth random variable with values in [—a;a]), which occurred in
pertinent formulae, like (2.12)), was expanded into a series of powers of ¢. The co-
efficients of this series are proportional to the moments of the sum, which in turn
are decisive for the distribution of the sum.

In 1816 already, Gauss introduced a method of estimating the parameters of a
law of error from sample moments, and he also used moments of an order higher
than the second. He comprehensively discussed the precision of the estimations of

% For proof details see [Hald 1998, 462-464]. Both expressions on the right side of (4.3) are less

than ﬁ The inequality A < \/117—“ implies © > 1 — )3—2, and therefore, in the case of zero

expectations, the Bienaymé inequality. At the same time, this consideration shows how rough the
Bienaymé inequality is compared with Gauss’s, the latter, however, valid only under additional
conditions.
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. _p2x2 . N
the parameter / in the error law Jiﬁe h”x” assuming these estimations were based

on the arithmetic mean of powers of absolute values of known errors or residuals.’

Around the middle of the 19th century, error theory provided several techniques
for estimating parameters of probability laws from observed frequencies, and the
method of moments became the most commonly used among them. Therefore, it is
rather improbable that Chebyshev in his moment theoretic research was solely mo-
tivated by Bienaymé with respect to probabilistic sources. The obvious conjecture
that Chebyshev came upon working on moments by his activities in mechanics can-
not be confirmed by the reading of his contributions to this field [Chebyshev 1948b].
In mechanics even moments of third and fourth order occur, if as auxiliary variables
only. Such moments emerge from spatial moments of inertia, that is, moments of
second order, in the computational transition to systems of a lower dimension.® At
least for Markov and Stieltjes, the mechanical interpretation of moment problems
was very productive.

As we will see below, numerical integration was a further strand of develop-
ment, which was very important, perhaps even decisive, for the emergence of
moment theory.

In his first paper on moments, Chebyshev [1874a, 158 f.] only gave the solution
of the moment problem for specific limits of integration a, b, and without proof: Let
f be a positive function and % one of the partial fractions (strictly speaking the
mth partial fraction) of the continued fraction

1
1 9
alz‘+ﬁl+azz+ﬁ2+m
assigned to the integral
B
fo
A Z—X
Ifzi <z < - <z7 <+ < Zy < -+ < zZpy are the roots of the equation
¥(z) = 0, we have
" L 9z) 9(zi)
1 l
f(x)dx < 4.4)
1+1 V(i) / Zw( i)

In this inequality moments do not occur explicitly. As we will see, however, the

mth partial fraction, obtained by cutting off the continued fraction after ey et N

7 Gauss’s 1816 paper has already been referred to in Sect. 3.1.

8 For example, let the mass distribution of a disk with radius R be given by a two-dimensional
density depending only on the distance from the center. Then there exists a nonnegative function
f such that the moment of inertia M of the disk with respect to a perpendicular axis through the
center is given by

R
M = |x|?dm = 2n/ r3 f(r)dr.
[x|<R 0

The moment of inertia of the disk therefore corresponds to the third-order moment of a rod with
length R and a linear mass density 27 f(r).
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uniquely determined by the moments My to M»,,—» of f. Chebyshev [1874a] did
not mention that the z; are always simple roots and lie within |4; B[. He only made
this fact explicit and proved it in a later article [Chebyshev 1887/89, 294, 299].°

Chebyshev also described a second moment problem: Consider a rod of which
the length, mass, position of the center of gravity, and the moment of inertia with
respect to an axis through the center of gravity and perpendicular to the rod are
given; find estimates for the mass of any part of this rod. Chebyshev [1874a, 159 {.]
presented a solution of this problem without any discussion of its derivation. If one
assumes that the left endpoint of the rod of length / is the origin of a one-dimensional
coordinate system, and if one designates by f the linear mass density along the rod
under the condition that its total mass is equal to 1, then the center of gravity has the
coordinate

1
d :/0 xf(x)dx.

The moment of inertia with respect to an axis perpendicular to the rod and going
through the center of gravity is

1
k= /0 (x —d)? f(x)dx.

Chebyshev gave the following case distinction:

Casel:0§x<d—%;thenitis
* k
B —
OE/Of(Z)dZ_(d—x)Z—i—k'
Case 2: d — % <x<d+ 5;10 then it is
—-d)(l - k x / —-x)( —d)—k
x—d)(l—-d)+ 5/ f(z)dz§(+d x)( —d) '
Ix 0 Il —x)

Case3:d+§<x§l;thenitis

° To avoid confusion, possibly emerging from the fact that partial fractions of a continued fraction

may exist in different equivalent forms, in the present study “mth partial fraction of the continued

fraction #%2 ” means only the algebraic term %L which is generated by cutting off the contin-
by+.. mn

ued fraction after b,, and by converting the cut-off term to a fraction with only one slash, without
any further simplification. This procedure corresponds to the recursion formula

Ap = bpAp—1 + anAn—, Ao=0, 4 =a

and
Bm = memfl +amBm72~, BO = 19 Bl = bl~

The term A,, (B,,) resulting from the procedure just described designates the mth partial numerator
(denominator) of the continued fraction. Two continued fractions are called “equivalent” if there
exists a real sequence (c,) (¢,, 7 0), such that for any m € N for the mth partial numerator
(denominator) A,, (By,) of the one, and A4/, (B,,) of the other, the following equations are valid:
Al = cyAy and B, = ¢,y Byy.

10 Tn [Chebyshev 1874a, 160] the right limit for x is misprinted.
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d — 2 x
ﬁf/; f(z)dz < 1.

Dealing with his moment problem, Chebyshev had apparently seen a connec-
tion to some of his articles on continued fractions. This concerns in particular the
articles [Chebyshev 1854; 1855/58; 1859]."" The original motivation for these pa-
pers was the problem of approximating a function by polynomials according to the
method of least squares. In the discrete case one looks for a polynomial f with
maximum degree m, such that for given real numbers x1,...,x, and y1,..., Y,
(n > m + 1) the expression Y r_,[yi — f(xi)]?©?(x;), where ©? is a given
weight function, attains its minimum. In the continuous case one has to find, for
a function y(x), x € [a;b], a polynomial f of a certain maximum degree, such
that [ ab ©2(x) (y(x) — f(x))? dx attains its minimum. Chebyshev succeeded in ex-
pressing the approximating polynomials by linear combinations of the partial de-
nominators of continued fractions representing

nooaoc b 52
ZO x) / CalCpN (4.5)

X — Xj — X
i=1 ! <

Expansions of definite integrals by continued fractions had been applied at least
since Euler’s work “De fractionibus continuis observationes,” which had already
been read before the St. Petersburg Academy in 1739, but was not published until
1750. In this article, Euler had given, for example, a continued fraction represent-
ing the integral fol 1”_%(. Except for the sign, this corresponds to the particular case
O(x)=1andz = —1.

A common procedure for obtaining a continued fraction representing the sum
or the integral (4.5), which in principle can be found in Euler’s work as well, is as
follows: If one expands Z+x into powers of x and then integrates this series term by
term—which is allowed for sufficiently large Izl if [a, b] is finite—then one gets

b 2 b © i S b
O°(x) / > X 1 / > ;
dx = () E —dx = E —_— () "dx. 4.6
/a T x X g (X)izo Zit1 X P Zitl J, (x)x"dx (4.6)

By successively equating the partial sums and the—initially unknown—partial frac-
tions of the continued fraction

o

ﬂ ,
b+ e+t

a series of powers of % can be converted into a continued fraction, which is—

according to modern terminology—*‘equivalent” to the series.'” This had already
been demonstrated by Euler [1748, 362—-390] in the 18th chapter of the first volume

""" A summary description of these papers can be found in [Vasilev 1898/1900, 17-24] and
[Akhiezer 1998, 38—49].

12 Following the standard monograph on analytic continued fractions [Perron 1913, 205], a series
and a continued fraction are called “equivalent” if the nth partial sum and the nth partial fraction

are identical, respectively. According to Perron, the designation “equivalent” is due to Ludwig
Seidel [1855].
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of his textbook Introductio in analysin infinitorum and illustrated by numerous
examples.
Continued fractions of the form

1

l 9
a1z + P+ :
(122+/32+W

.7

which correspond, in Oskar Perron’s terminology [1913, 376], to a continued frac-
tion “associated” with (4.6), do not exist in Euler’s work. Chebyshev [1855/58;
1859], however, chose exactly this type of continued fraction,'? and he found or-
thogonality relations for its partial denominators (see Sect. 4.2.3), from which the
coefficients ; and B; could be determined. In the case of a continued fraction (4.7)
associated with the integral in (4.5) the nth partial denominators ¥, (x) (n € Ny,
Yo (x) = 1) have the following property:

’ n
/ Yn (X)Ym (X)O* (x)dx = (a—l)

Snm (n,m € Np). 4.8)

n+1

By means of this orthogonality relation and the recursion formula

Yo(x) =1, ¥1(x) = a1x + B1, ¥n(x) = (taX + Bu)¥n—1(x) + ¥n_2(x)

the coefficients oy and Bx can be determined. Regarding the latter coefficients one
can additionally show that

b
R R A T 49)

Since v, is a polynomial of degree n, it follows from the formulae (4.8) and (4.9)

that o, and B, depend on the moments M; = [ ab ©®2(x)x! dx up to the order 2n — 1.
Those formulae allow a comfortable treatment of the continued fraction (4.7), which
can be determined (independent of the convergence or divergence of the related
series (4.6)) if only the moments M; of an arbitrarily high order exist.

From (4.8) and (4.9) a close relationship between continued fractions, systems of
orthogonal polynomials, and moment problems becomes evident. The first and the
second field were, since the fundamental work by Gauss [1814] and Jacobi [1826],

13 Perron [1913, 376] termed “associated” only those continued fractions which have the particular
form
ki
z+1hL - —kzk—3 .
2th— =

Due to the different forms used by different authors it is advisable to also consider continued frac-
tions equivalent to the latter, in particular those of the form (4.7) with the property o; # 0, as
associated with the series (4.6), if they coincide up to the term of the power ZIT with the expansion
of the nth partial fraction in powers of 1. In exactly this sense Heine [1878, 291] expressed the re-
lation between the continued fraction (1.7) and the power series (4.6), a relation which had already
been hinted at, if less clearly, by [Chebyshev 1855/58].
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closely connected with numerical integration. It may be the case that Chebyshev
found the inequality (4.4) within this framework of related topics.

4.2 Quadrature Formulae, Continued Fractions, Orthogonal
Polynomials, Moments

An explicit and rigorous proof of the inequality (4.4) was published by Chebyshev
himself only in 1891 in connection with a more general problem (see [Vasilev
1898/1900, 35 f.; Akhiezer 1998, 57 £.]).!* Yet by this time, mainly owing to the ac-
tivities of Markov and Stieltjes, who in 1884 had almost simultaneously published
their first articles containing proofs of Chebyshev’s inequality, the development of
moment theory had passed by Chebyshev.

Whereas Markov [1884a] directly focused on the need for a proof of Chebyshev’s
inequality, Stieltjes [1884a] focused on a discussion of the generalized Gaussian
method of quadrature, in which he also delivered a proof of Chebyshev’s inequal-
ity practically identical to Markov’s. At the insistence of Markov, Stieltjes [1885b]
published a notice in which the priority of the former was appreciated. Markov’s
paper had in fact appeared shortly before Stieltjes’s. However, the latter made credi-
ble that it was impossible for him to have had any knowledge about Markov’s article
when submitting his own [1884a], and admitted that he had overlooked Chebyshev’s
original paper [1874a].

Chebyshev’s inequality established a relationship between integrals and contin-
ued fractions. In the remarkably similar papers by Markov and Stieltjes of 1884,
mathematical disciplines which seemed heretofore far away from each other, such
as numerical integration, continued fractions, or systems of orthogonal polynomials,
were combined. In fact, extensive results concerning the interconnectivity among
the above-mentioned fields were achieved around 1880, as shown by the pertinent
passages in the two volumes of the second edition of Eduard Heine’s Handbuch der
Kugelfunctionen [1878, 286-297; 1881, 1-31].

4.2.1 The Gaussian Procedure of Quadrature

Let us start with the Gaussian method of numerical integration. It was Gauss’s main
objective to find, for any given n € N, pairwise different nodes x;, such that the
general approximation formula

14 As in his earlier work, Chebyshev [1891/1907] argued within a network consisting of continued
fractions, orthogonal polynomials, and moments. He did not directly refer to numerical integration.
In his discussion of equation systems, however, he applied methods based on continued fractions,
which were analogous to those used in the determination of nodes and weights for numerical
integration (see Sect. 4.2.3). Whether Chebyshev’s (rather complicated) considerations correspond
to his original method of finding the inequality (4.4) cannot be said.
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/ F(x)dx ~ ZA f(xi), (4.10)

i=1

_ U(t)dt o o
A U(xl)/ U= —x)—) @D

was exact for all f € Pp,_;.

Gauss [1814, 165] referred to work by Isaac Newton (1642-1727) and Roger
Cotes (1652—-1716), in which the idea of an approximate quadrature by integration
of an interpolating polynomial was hinted at. Gauss [1814, 168] noted in partic-
ular the selection Harmonia Mensurarum of Cotes’s posthumous writings [1722],
whose chapter “De Methode Differentiali Newtoniana” contains quadrature formu-
lae for up to 10 equidistant nodes [Cotes 1722, 25]. Cotes [1722, 24] in turn cited
Newton’s “Methodus Differentialis” [Newton 1711, 11],'° in which the latter had
given, in addition to interpolation formulae, an approximation formula with four
nodes equivalent to

fl@) + fb) +3(fla+ 1252 + fla+2559)
- .

Neither Newton nor Cotes discussed numerical integration by means of interpola-
tion from a more general point of view, and they did not consider the attainable
precision. They apparently gained their formulae by the rather cumbersome integra-
tion of Newtonian interpolation polynomials. Gauss, in contrast, aimed at a theory as
general as possible; he used the Lagrangian representation of interpolation polyno-
mials, however without referring to the latter. Lagrange [1795, 286] had established
a polynomial f(x) of maximum degree n — 1 interpolating the n points (x1; f(x1)),
(x2; f(x2)), ..., (xn; f(xn)), which had the form

b
/ f(x)dx ~ (b —a)

(x —x2)(x —x3) -+ (x — Xp)

f)=r(x1) = +f(xa) (x —x)(x —x3) -+ (x — xp)

—x2)(x1 —x3) - (x1 — Xp) (x2 = x1)(x2 —x3) -+ (x2 — xp)
(x —x1)(x —x2) -+ (x — Xp—1)
LA P T v ———

This formula was also used by Gauss. The equivalent notation

f G U)
f()—Z(x S Uey U =) )

was, strictly speaking, only applied by Jacobi [1826, 5]. By setting f ab f(x)dx ~
/ ab f (x)dx one immediately obtains the relations (4.10) and (4.11). Gauss

15 Newton’s activities in interpolation can be traced back to the year 1676 [Goldstine 1977, 71].
Also in his main work, the 1687 Philosophiae Naturalis Principia Mathematica, Newton gave a
concise survey of numerical integration (third book, lemma v, annotated German translation of this
passage in [Kowalewski 1917, 79-83]).
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assumed that the integrand f(x) could be represented by the power series
fx) = Zc;°=0 K;x/, and that the nodes xi,...,x, lie within the domain of
integration. The difference

b n
Ro= [ flodx= 3 A fix)

i=1

between the integral and the approximation formula, where A4; is as in (4.11), has

the form

o0

Rn = Z kl Kl ’

1=0

where
b n
h:/#a—Zmﬁ
a i=1

Independent of the particular choice of x; we have kg = k1 = -+ = k,—1 = 0, due
to the fact that the approximation formula (4.10) is exact for all polynomials with
a maximum degree of n — 1, especially for all monomials x! (/ = 0,1,...,n—1)
[Gauss 1814, 169].' If one additionally demands that k, = --- = ko,—; = 0, then

one gains n equations

b n b n
/ x"dx = ZA,-x;’,...,/ X2 gy = Z:A,-xiz"_1 (4.12)
a a

i=1 i=1

for the unknowns x1, ..., x,. As Gauss [1814, 183] argued, it was “easy to infer”
that nodes x1,...,x, € [a;b] could “always” be found such that (4.12) was valid,
and therefore the approximation formula (4.10) was exact for all polynomials f
with deg(f) <2n—1.

In his discussion of the procedure of determining the nodes x1i, ..., x,, Gauss
[1814] restricted himself to the special case [a;b] = [—1;1]. By rather indirect
arguments'’ he showed that, for this particular domain of integration, the nodes
could be obtained as the roots of the nth partial denominator W,, of the continued
fraction associated with

1 1 1 (! dx
=t o3 ...:_/ .
v() T3 s ot 2] =<

He also proved that
1 1 1
Wa(t) = 1"F(=5(n = 1), =50, —(n = 3), 172,

where F was “his” hypergeometric function.'®

16 If £ is a polynomial of degree < n — 1, then f = f.
17 For descriptions of Gauss’s 1814 paper see [Fuchs 1973; Goldstine 1977, 224-232].
'8 The hypergeometric function (see [Gauss 1813)) is defined by
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Gauss in his 1814 paper did not comment on the fact that the partial denominators
W, were identical with the Legendre polynomials of degree n related to the interval
[—1; 1]. The strong connection between the nodes in Gauss’s procedure of numerical
integration and Legendre functions was explained by Carl Gustav Jacobi [1826;
1827] only later."

In [1826], Jacobi considered polynomials f* of degree n + p and the associated
interpolation polynomial f of degree n — 1, such that, for the given interpolation
points x1,...,x, € [0;1]:

U as above.

S(xi)U(x)
Z U’(xi)(x _-xl)’

We have fol Fo)dxe = S0 Ai f(xi) = 70—, Ai f(xi), where A; is determined
according to (4.11). Basing himself on Gauss’s fundamental ideas, Jacobi sought
the maximal number p such that, presupposing an optimal choice of the nodes
% [

1 1
/ f(x)dx—/ fx)dx=0 V[ eP,y,.
0 0

Jacobi showed that this condition was met if and only if for

1
U(x) = (x—x1) - (x — xp) : /Oka(x)dsz (k=0,1,...,p). (4.13)

The maximum number p which is according to this condition for an appropriate
U="Uis p = n—1.Jacobi [1826, 8] succeeded in showing, on the basis of (4.13),
that . dix 1y
U(x) = X =" (4.14)
2n2n—1)2n—=2)---(n+1) dxn

From this result one could, as Jacobi [1826, 8] noticed, infer “by the doctrine of
equations” that U had n real roots between 0 and 1 (and that these roots were dif-
ferent from each other, which fact, however, was not made explicit by Jacobi).

In the subsequent volume of Crelle’s Journal, Jacobi [1827] published a note on
Legendre polynomials X ;) belonging to the interval [—1; 1]. These polynomials had
been introduced by Legendre in 1784 as “coefficients” in the expansion

1 —_—
V1—2xz + 22
Legendre had subsequently proven several properties of these polynomials, which
he summarized in the second volume of his Exercises du calcul intégral [1817]. In
particular, he succeeded in showing that all roots of the polynomials named after
him are single roots and lie within the interval | — 1; 1[. He further showed that these
polynomials are orthogonal to each other, in the sense of

1+ Xa)(x)z + X (x)z% + -+

ale +1 + 1

ap 4+ ( BB+ 1) .

Y L-2y(y +1)

19 For Jacobi’s respective work see [Goldstme 1977, 261-264], [Gautschi 1981, 78 f.], and [Heine
1881, 13 f.].

F(a, B, v, 2) —1+
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1
2
Xy X (mydx = ———8un.
/_1 (m) & (n)dx 1

From this latter relation (which is analogous to (4.13)) Jacobi [1827] deduced the
formula

1 1 d"(x2 = 1)" ,,
271.2.3-n  dxn
which is analogous to (4.14). Thus, Jacobi had shown that Gauss’s polynomials W,
were identical to the Legendre polynomials.

Xmy(x) =

4.2.2 Generalizations of Gauss’s Quadrature Formula, Systems
of Orthogonal Polynomials

Jacobi died in 1851. An extensive article was found among his private papers, ap-
parently ready for press. This article was published under the title “Untersuchun-
gen iiber die Differentialgleichung der hypergeometrischen Reihe” (“Studies on the
Differential Equation of the Hypergeometric Series”) in 1859. Jacobi generalized re-
sults obtained through his studies of Gauss’s procedure of numerical integration. In
particular, Jacobi aimed at the characterization of finite hypergeometric series (see
footnote 18), Legendre polynomials being special cases of them, by their derivatives,
and at a representation of these series by partial denominators of certain continued
fractions. For X, := F(—n,a + n,y,x), wheren € No, y > 0,and @ > y — 1,
Jacobi [1859, 194 {.] established the orthogonality relation

1
/ XpXnx? 11 =x)*Vdx =0 (m # n).
0

His main result [1859, 196 f.] was that the 2nth and (27 + 1)th denominators of the
continued fraction

(4.15)

representing the integral
1 -1 o—
24 1—1t Y
[T gy
0 r—x

are proportional to F(—n,« +n, y, x) and xF(—n,a +n+1, y 4+ 1, x), respectively.

20 As Heine [1878, 20 f.] pointed out, a certain Rodrigues (most likely Olinde Rodrigues) has to
be credited for this formula, in an article from 1816 (not further specified by Heine, probably the
article which in the bibliography is cited as [Rodrigues 1816]).

2l The continued fraction (4.15) is connected with the integral in the sense that the series

Z?i() X%@_T (representing the integral) coincides with the expansion of the nth partial fraction up

to the term M;’n_ L. In Perron’s terminology [1913, 375], continued fractions of this type are called

“regular” and “corresponding” to the integral.
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Jacobi [1859] did not make it explicit that, because of the perfect analogy
between the more general situation considered by himself, and the special situa-
tion « = y = 1 studied by Gauss [1814], the zeros of X, could serve as nodes for
the quadrature formulae

1 n
| srr a0 = Y g Vg € Pa.
0

i=1

This fact, however, was noted shortly after, and thus Jacobi’s 1859 paper became a
starting point for the discussion of generalized “Gaussian” quadrature formulae

b n
| gt~ 3 g, (4.16)

i=1

where f was an arbitrary nonnegative “weight function.” This discussion also in-
cluded continued fractions which were associated with, or regular and correspond-

ing to, the integrals f: %dt.22 Chebyshev [1859] was likewise an initiator of the
general discussion of continued fractions of this type, but he never broached the sub-
ject of their relationship to Gaussian quadrature (see Sect. 4.2.3). This relationship
was a theme of Ferdinand Gustav Mehler [1864], who, in a manner similar to Jacobi,
considered integrals of the form f_ll F(x)g(x)dx, where f(x) = (1 —x)*(1 + x)H
(A, u > —1), but, unlike Jacobi, also discussed specific problems of numerical in-
tegration, such as the determination of the weights A; or the approximation error
connected with the use of (4.16).

A variety of further works followed, among which [Heine 1866], [Possé 1875],
and [Christoffel 1877] were particularly important and influential.”®> The major re-
sults of these works, which were also summarized in the two volumes of Heine’s
Handbuch der Kugelfunctionen (Compendium of Spherical Functions) [Heine 1878,
286-297; 1881, 1-31] are:

—1If V‘[/,’; ((fc)) designates the nth partial fraction of a continued fraction associated with

/: ab %dt, where f is nonnegative and || : Jf(x)dx is positive, then for all polynomi-

als s with deg(s) < 2n — 1 the following generalized Gaussian quadrature formula
is valid:

n

b
[ reseode =Y st

i=1

b
where A; = / Sy Wal) e @i

x = xi)W, (x;)

22 The 2nth partial fraction of a continued fraction which is regular and corresponding to an integral
of this type is equal to the nth partial fraction of that continued fraction which is associated with
this integral.

23 The present author follows [Gautschi 1981, 79-84] and [Brezinski 1991, 214-217] in this as-
sessment.
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— W, 1is proportional to that polynomial of degree n which corresponds
to the orthonormal system of polynomials with respect to the inner product
/: ab(-)(-) f(x)dx,”* and the nodes x; are the zeros of W, all real and different
from each other, and located within ]a; b|.
— V, can be expressed in terms of W, by

b
W, — W(t

Va(x) = / Wa ) = Wa (@) f(t)dt. (4.18)

. x—t

Because W, (x;) = 0, one can directly infer from (4.17) and (4.18):
4 = Jnlxi) (4.19)
i = . .
W, (xi)

On account of the (in cases only formal) relation

brindt K M;
=2

x—t1 - xi—i—l’
a i=0

the moments M; = f ab f(x)x!dx play the role of auxiliary quantities, from which
the coefficients of the continued fractions associated with f ab % and (due to
(4.19)) the weights A; in the (generalized) Gaussian quadrature formula can be de-
rived. It was Chebyshev’s merit to formulate a research program in which moments
should play a leading part in the discussion of properties of the function f. As it
seems, Chebyshev’s motivation for this research at least partly arose from proba-
bility theory; it is not surprising, however, that in his discussion of moment prob-
lems analytic devices were adopted from the theory of continued fractions, to which
he had significantly contributed. In these contributions he had anticipated—but not
completely justified—some of the results just described, in particular with regard
to systems of orthogonal polynomials. Chebyshev’s work on continued fractions
was motivated by least squares approximation rather than by numerical integration,

however.

4.2.3 Chebyshev’s Contributions

Chebyshev is commonly considered one of the most important contributors to 19th-
century approximation theory (see, for example, [Steffens 2006, Chapt. 2]). One of
his most influential works in this field appeared in 1855, and it was also published
in a French translation (which had been made by Bienaymé) in 1858 under the
title “Sur les fractions continues.” This article was especially distinguished by its
innovative combination of approximation problems and continued fractions, and by
the significance of its results regarding orthogonal polynomials.

24 These polynomials can be considered as generalized Legendre polynomials with respect to the
interval [a; b] and the weight function f.
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Chebyshev considered the values yg,...,y, of a polynomial F(x) =
Yo apx* as being obtained by observation such that, for given arguments
X0, ..., Xy, one has

vi=Fxi)+e (=1,...,n),

where ¢; are the observation errors. He posed the problem to find, for any natural
m < n, a polynomial F(X) of a degree less than or equal to m such that

n n
D (F(xi) = yi)?0%(xi) < Y _(F(xi) = y)*@*(xi) YF €Pp.  (4.20)
i=0 i=0
where ©2 was an arbitrary weight function. This latter function Chebyshev inter-
preted in the sense that kl.2 = was the variance of the error ¢;. He showed
that?

_1
O2(x;)

FOX) =) (—DF A1 ¥ (X) Y ¥ (x) 2 (x1) i @21
k=0 i=0

In this formula ¥ (o = 1) designates the kth partial denominator of the continued
fraction |

1
q1 + g+

) ) O (x; . .
associated with Z?:o ( l), where ¢1, ¢2, ...are linear functions of the form
X — Xj

qr = Agx + Bg. Setting yz ‘= Ym(x;) (0 = 1,...,n)—in this case we have
F(X) = ¥m(X)—Chebyshev [1855/58, 222] from (4.21) deduced the orthogo-
nality relations
- 2 =D~
2 U (x) O () =

i=0

0mi (U,m=0,1,...,n). (4.22)

m+1

The basic ideas of Chebyshev’s proof were as follows:?® F(X) was represented
by the general ansatz

F(X) = o(X)yo + A1 (X)y1 + -+ An(X) yn
with ;
Do hX)xf=Xx* (k=0.....m). (4.23)
i=0

The least squares condition (4.20) implied
k2Ao(X)? + k341 (X)? + -+ + k24, (X)? = min. (4.24)

Chebyshev [1855/58, 207] succeeded in expressing the conditions (4.23) and (4.24)
on A; by a system of equations

25 Chebyshev had already communicated this result for the special case @2 = 1 in a note [1854].
26 For details of the proof see [Hald 1998, 528-531; Akhiezer 1998, 38-45; Steffens 2006, 52-54].
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n
Xk =3"0%(x)ex(x)xf. k=0.....m, (4.25)
i=0

where ¢x (x) denoted a polynomial of degree m, such that
1i(X) = O (xi)px (xi).

With respect to the form, the equation system (4.25) was analogous to the system

b n
/ )clcl)CZZ:Aixlg (l=0,1,...,2n—1)
a

i=1

connecting the nodes x; and weights A; in Gauss’s method of numerical integra-
tion. Actually, in discussing equation systems of this type by means of continued
fractions, Chebyshev chose an approach similar to that of Gauss’s. The basic idea
[Chebyshev 1855/58, 208] was that ¢ x solves the system (4.25) if and only if in the
expansion of

Xn: O*(x)ex(xi) 1

4 X — X; x—X
i=0

1

into a series of powers of % the terms +,..., x”’ﬁ do not occur. This latter con-

dition in turn implied further conditions on the continued fraction associated with
S O2(i) 1 this way, Chebyshev reduced the approximation problem (4.20)

i=0 x—x;
to an al);;eglraic problem which also referred to continued fractions. That mode of
reasoning was characteristic of a considerable part of Chebyshev’s work.

Around 1859 Chebyshev extended the discussion of partial denominators of
continued fractions from those associated with sums to those associated with
integrals, in particular with regard to orthogonality. In his publication “Sur le
développement des fonctions a une seule variable,” Chebyshev [1859], in a manner

characteristic of his methods for solving problems of this kind, simply used the

analogies between the properties of “discrete” sums » 7_, (i—_(;‘{h)—as treated in
1

his 1855/58 paper—and integrals | ab f:(TZz)dz without giving any specific argu-
ments. According to Chebysheyv, all results which had been derived for continued

. . . n ©2(x;) . . Ly . .
fractions associated with Zi=1 ==L had likewise to be valid in connection
1
. 2 . .
with fab QXT(?dZ, even for a = — oo or b = co. In this way, Chebyshev discussed
~ 2 frd 1 = — frd 1 1 -
the cases ©=(z) T3 ¢ b =1 (the partial denominators are propor:

tional to polynomials cos n arccos x, the now so-called “Chebyshev polynomials”),
©2(z) = 1, a = —b = 1 (the partial denominators are proportional to the Legen-
dre polynomials).”” He comprehensively discussed ©@%(x) = ke ™, a = 0, b = oo
(the partial denominators are proportional to the now so-called “Laguerre polynomi-
als” [Laguerre 1879]), and, especially important for later probabilistic applications,

2 . . .
O?%(x) = \/ge_kx ,a = —b = oo (the partial denominators are proportional to

27 Chebyshev [1854, 702] had already hinted at this fact.
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the now so-called “Hermite polynomials” [Hermite 1864]). As Chebyshev [1859,
504] argued, it was ‘“easy to assure oneself” that in the latter case the continued
fraction was equivalent to one whose partial denominators were given by

In analogy to the discrete case (in particular with respect to (4.21) and (4.22)),
Chebyshev [1859, 503] also inferred that

L b @@ [ et nmFmas
12 fre g [ et g

provided a polynomial approximation to the given function F(x) such that the “error
to be expected” would become minimal if the abscissae x obeyed the error law

glx) = - (4.26)

n(x) = \/%e_kxz. This somewhat obscure statement is likely to be interpreted (in
modern terminology) as follows: Let X be a normally distributed random variable,
F a sufficiently smooth function defined in R. Then we have for a polynomial g €
P, defined in accordance with (4.26):

E(g(X) - F(X))? <E(f(X) — F(X))* Vf €P,.

In contrast to other authors who worked on orthogonal polynomials, Chebyshev
did not start with Gaussian quadrature but with least squares approximation in its
probabilistic interpretation. However, with his analytic methods, chiefly regarding
the use of continued fractions, he also came close to numerical integration, the more
so as he [1874b] also published on that topic.

4.3 Moment Problems Around 1884: Markov and Stieltjes

4.3.1 Markov’s Early Work on Moments

The first published proof of Chebyshev’s inequality (4.4) is due to Markov, who in
1884 derived the two inequalities form,n,l e N, 2 <[ <m,1 <n < m:

"z < Z j(f’ ) 4.27)
and
5 — 9(zi)
fdz < Y =25 (4.28)

Zn+1 i=n+1 W (Zi)
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under the assumptions which have already been specified in Sect. 4.1.® As Markov
[1884a, 174] showed, from these relations Chebyshev’s inequality can be easily
derived. To prove the inequality (4.27), Markov [1884a, 175-177] on the basis of
well-known properties of the partial fractions of the continued fraction associated

with ff S dx, constructed a polynomial @ of degree 2m — 2, such that

/ “b(0) £ () = i@(zi) o) (4.29)
A = v'(zi)
P(z1) = P(z2) = = P(z5-1) = 1

D(z1) = P(z141) =+ = P(zm) =0, (4.30)

Vz<z;-1:D(k)>1; Vz € [A; B] : ®(z) > 0. 4.31)

From (4.31) it follows that

Z7—1

Z7—1 B
f(x)dx < /A f(x)D(x)dx < /A f(x)D(x)dx.

Taking into account (4.29) and (4.30), (4.27) can be derived from the latter
relation. The second inequality (4.28) was analogously proven by Markov [1884a,
177 £.], through the use of an appropriate auxiliary polynomial.?’

According to the principles of Gaussian quadrature, in particular (4.19), the frac-

tions %’% are equal to the weights A4; in ff p(x) f(x)dx = >"I | p(z;i)A;. This
equation is exact for all polynomials p of degree < 2m — 1. Thus, (4.29) is “auto-
matically” valid because @(x) is a polynomial of degree 2m — 2. @(x) interpolates
the function

lifx €[A4;z2;-1]

0 else

g(x) = %
inx = z1,...,Zm. Therefore the (approximate) equalities

-1

Z71—1 B B
[ s = [ eorwan~ [(oswa= Y 4

i=1

suggest themselves. From this consideration the idea of estimating the partial inte-
gral [;"~" f(x)dx by a partial sum of the weights arises. Therefore, most probably,
Markov’s idea of proof was based on a consequent interpretation of Chebyshev’s
inequality in the sense of Gaussian quadrature.

Markov [1884a, 179 f.] also proved Chebyshev’s estimates concerning the prob-
lem of mass distribution along a rod. Basically, he used the idea of obtaining an

28 f is assumed to be positive on |A4; BJ, ;‘,‘% designates the mth partial fraction of the continued

fraction (4.7) associated with the integral | f %dx, and the z; designate the roots of the equation
¥(z) = 0.
2 For further details of the proof see [Akhiezer 1998, 55 f.].
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upper and lower bound, respectively, for the “partial mass” f(f f(s)ds by sums of
discrete masses concentrated at certain points on the rod, such that the moments of
zeroth, first, and second order of this discrete mass distribution coincide with the
corresponding moments related to the density f.

In 1884, Markov held an instructor position at St. Petersburg University as sub-
ordinate to Chebyshev. Therefore, it seems somewhat strange that Markov [1884a,
178] explicitly thanked Konstantin Aleksandrovich Possé (a former disciple of
Chebyshev) for suggestions, but did not consider Chebyshev in his acknowledg-
ment. Actually, one would assume that Chebyshev, who at least had developed basic
ideas for a proof of his inequality, would have discussed this issue with his disci-
ples. As a fragmentary manuscript written by Markov in 1921 and recently edited
by Sheynin [2004a, 111-122] reveals, the cooperation between Chebyshev and his
disciples of the “St. Petersburg school” apparently did not correspond to today’s un-
derstanding of this term. Markov reports on Chebyshev’s 1874 note, in which the
inequality (4.4) had been presented:

This note had gone unnoticed until the beginning of the 1880s when it caused a lively ex-
change of opinions among Petersburg scientists, and mostly between me and my respected
teacher, K.A. Possé (.. .) Professor Korkin even doubted that the Chebyshev inequality was
valid. Finally, in 1883, I was able not only to prove it, but to solve his problem [the problem
of estimating the mass distribution of a rod from its moments up to the second order].

Markov’s words clearly indicate that Chebyshev did not maintain any significant
scientific contact with his disciples at least after 1882, when he had retired from
lecturing. As an apparent consequence, Markov designates Possé his teacher, not
Chebyshev.*” He also mentions Aleksandr Nikolaevich Korkin, who lectured on par-
tial differential equations and variational calculus at St. Petersburg University and
organized the so-called “Korkin Saturdays,” when members of the St. Petersburg
school would meet at his home and discuss current mathematical questions [Steffens
2006, 83]. So, we can assume that the members of the school actually had an active
scientific exchange; Chebysheyv, as the master, however lived in his own world being
quite isolated from the rest of his school.

Markov remained very interested in the theory of moments during the last
decades of the 19th century, especially in regards to further generalizations of in-
equalities like Chebyshev’s (4.4). In his doctoral thesis [1884b] (of which the paper
[1884a] just described represented only a small part) Markov had already succeeded
in deriving formulae—again by means of continued fractions—for the “maximum
and minimum value” of integrals [; f(y)$2(y)dy,*" if f : [0;/] — R was a non-

negative function with positive moments f(f x* f(x)dx (from k = 0 up to a certain
order k = n), and 2 was in C"*1([0;]), such that

Rx)>0,2'(x)>082"(x)=0,....20"x) >0 Vxe[0:]].

30 Chebyshev is commonly considered as Markov’s doctoral advisor, see Mathematics Genealogy
Project http://www.genealogy.math.ndsu.nodak.edu/, for example.

31 For further details see (aside from the Russian original of Markov’s thesis): [Markov 1886; Possé
1886, 90-136; Akhiezer 1998, 64—69].
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Markov even considerably generalized these problems, by introducing an extension
of the notion of moment.*”

4.3.2 Stieltjes’s Early Work on Moments

Thomas Jan Stieltjes (1856-1894)*3 was a versatile mathematician, who contributed
to almost all branches of analysis. He became best known through his work on the
analytic theory of continued fractions, and, in this context, on moment problems. He
started exploring these topics with a discussion of Gaussian quadrature by means of
continued fractions.

In 1883 he had already shown that, given an arbitrary positive weight function
f, the Gaussian quadrature formula for a certain class of functions g converges to

the integral [ ab g(x) f(x)dx if the number of nodes grows [Stieltjes 1883, 314-316].
The particular functions g Stieltjes considered were uniformly convergent series in
Legendre polynomials assigned to the finite interval [, ].** In close connection to
this proof was the analysis of the properties of the coefficients o; and Ax of the

continued fraction
M,

Al
X — Qg — x5
)C—Otl—i)t
AT x—az—

associated with

b
z M M M.
f@) 4, Mo My Mo
. X—2 x x2 x3

Under the assumption that f(x) > O for all x€ ]a; b[, Stieltjes proved that A > 0
forall k € Nand «; € ]a; b[ foralli € Ny.

After a short break, Stieltjes resumed his studies on “mechanical quadrature” in
1884. Regarding the main results of numerical integration, he [1884a, 378] referred
to Heine’s [1878; 1881] monograph, and, by means of the same auxiliary polyno-
mial that Markov had used, he proved inequalities which were—as reclaimed by
Markov shortly after—equivalent to (4.27) and (4.28).%> Let P, be the generalized
Legendre polynomial of degree n related to the weight function f and to the interval
[a; b], let x1, ..., x, be the zeros of this polynomial, and let A4, ..., A, be weights

such that 4; = [* f(x)%dx. Then, as Stieltjes [1884a, 384—388] proved,
the inequalities

32 See [Krein 1951/59] for a concise survey of this work by Markov.

33 For biographical details see [Bernkopf 1970-76].

34 Legendre polynomials Y(m) assigned to an interval [a; b] are connected with the “usual” Legen-
dre polynomials X, assigned to the interval [—1; 1] by the formula Y(m)(x) = Xm) (2"‘,:’;}’).
35 Stieltjes assumed a nonnegative weight function f being above a certain positive lower bound
on an arbitrarily small interval. Thus, his condition on the weight function was more general than
Chebyshev’s and Markov’s.
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k Xk
>4 > / f(x)ydx (1<k<n) (4.32)
i=1 a
and
k Xk+1
> A< Ffx)dx (1<k<n-—1) (4.33)
i=1 a
Vi (x;) Vi (x)

hold. If one takes into consideration that A; = where W) is the nth par-

Wi (xi)’
tial fraction of a continued fraction associated with fab %dz, then the equivalence
of Stieltjes’s inequalities (4.32) and (4.33) to the Chebyshev—Markov inequalities
(4.27) and (4.28) is an immediate consequence. This equivalence would have cer-
tainly been a matter of course for Stieltjes if he had known the respective works by
Chebyshev and Markov.

Stieltjes [1884a, 392-394] used “his” inequalities for proving that the (general-
ized) Gaussian quadrature formula approximating the integral | ab S F(x)dx (f
being the weight function) actually converges to this integral as n — 00,%® if F is
bounded and integrable, and f additionally meets the condition

B
Va,B €la;b],a < B: /f(x)dx>0.

In the proof, Stieltjes [1884a, 389-392] made essential use of the following prop-
erty of generalized Legendre polynomials Py related to the interval [a; b] and to the
weight function f: If [«; 8] is an arbitrarily small partial interval of [a; b], such that
/: f f(x)dx > 0, then, for all sufficiently large natural n, the polynomials P, have
at least one zero within [o; B]. An analogous property of the zeros of Hermite poly-
nomials (with range of integration | — co; co[ and weight function ﬁe‘xz) would,
together with the Chebyshev—Markov inequalities, form the basis for Markov’s rig-
orous proof of the CLT by means of moment methods in [1898].

As we have already seen, Stieltjes was interested from the beginning of his work
in relations between numerical integration and continued fractions. In his article
[1884a], such relations were not made explicit. In a subsequent note, however,
Stieltjes [1884b] removed this deficit. In his proof that a continued fraction asso-

ciated with fab %dx (f as in [1884a], [a; b] finite) converges to this integral for
all z € C\ [a; b], he applied his inequalities (4.32), (4.33) for discussing the position
of the zeros of the partial denominators.

Up to this point, Stieltjes had not explicitly dealt with moment problems. In
his subsequent papers, however, he steered attention toward this topic. In the note

[1884d] he communicated (without proof) inequalities like

1
Ar+--+ 4y < /f(x)dx,
0

36 The question of convergence of the Gaussian quadrature formula to the integral had already
been treated by Heine [1881, 16-19]. He only dealt with the particular case that f(x) = 1 and F
is represented by a power series.
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f being a nonnegative function, where the Ay are solutions—together with x;—of
systems

1 n
/ XM f(yde= Y Agxpt (i =0.....2n - 1), (4.34)
0 k=1

A; designating different nonnegative (integer?) numbers. In the particular case A;=i
this equation system is, as Stieltjes hinted at, identical with the 2n equations for
determining nodes and weights for Gauss’s method of numerical integration. He
also interpreted the system (4.34) in the sense that the moments |, 01 x*i f(x)dx of the

density f are equal to the moments Y ; _, Ag x,’:i of that discrete mass distribution,
for which the masses Ay are placed at the points x;. The same interpretation was
employed by Markov [1886] (see Sect. 4.3.1) in an only slightly different context.
Nobody, it seems, used this manifestly physical interpretation before Markov and
Stieltjes, not even in the case of Gaussian quadrature (A; = i). The designation
“weight” for Ay became commonly used only around the end of the 19th century,
and was apparently due to a conception of the integral as the weighted sum of certain
single values of the integrand. The phrase “mechanical integration” for numerical
integration, which was very familiar during the 18th and 19th centuries, did not refer
to an interpretation in terms of moments. In fact, according to a tradition which can
be traced back at least to the late Renaissance,’’” all methods of approximation were
considered as “mechanical.”

According to his moment-theoretic interpretation of the equation system (4.34),
Stieltjes, seemingly without any knowledge of either Chebyshev’s or Markov’s
works, advanced problems on moments of density functions which were similar to
those of Chebyshev and Markov. This conclusion also applies to the content of the
papers [Stieltjes 1884c; 1885a], in which a practical problem of geophysics (prop-
erties of the mass density of the earth) was solved by moment methods.

4.4 Chebyshev’s Further Work on Moments

By the end of the year 1884, which can be designated as an “annus mirabilis” of
moment theory, numerous results were achieved, which surpassed by far the orig-
inal version of Chebyshev’s inequality. Chebyshev in his own papers of the time
after 1884 did not hint at Markov’s and Stieltjes’s contributions. He even presented
several results due to these mathematicians without giving any reference.

37 Apparently, a shift occurs in the conception of “mechanical” between the times of ancient Greeks
and early modern times. In Greek geometry, “mechanical constructions” were characterized by
the use of certain instruments in addition to compass and straightedge. These constructions were
not considered as being imprecise, however (see [Hoppe 1920; Steele 1936]). On the other hand,
Albrecht Diirer [1525], in his book on practical geometry, designated approximate constructions
as “mechanical.” As it seems, Diirer was one of the first among the authors of early modern times
who, dealing with practical problems, differentiated between approximate and exact constructions.
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This case also applies to a paper by Chebyshev, whose Russian version appeared
in 1885 in the communications of St. Petersburg Academy, and which was published
in French in 1887 under the title “Sur la représentation des valeurs limites des in-
tégrales par des résidus intégraux.” In this article, Chebyshev communicated, again
without proof,*® generalizations of his inequality (4.4), as they had also been treated
in a similar form in Markov’s dissertation. Possé [1886] even showed the equiva-
lence of Chebyshev’s and Markov’s version of these general inequalities. Chebyshev
in his assertions used Cauchy’s concept of residues, and this circumstance explains
the particular phrasing of his paper’s title.

Let ¢ be a rational function, which—considered as a function of a complex
variable—has poles only on the real axis. Together with Chebyshev we use the sym-
bol (basically due to Cauchy [1826], see [Smithies 1997, 113-146])

3ab(p(z)dz,

where a < b are real numbers, for the sum of residues within the rectangle with
the lower left vertex @ — n+/—1 and the upper right vertex b 4+ n+/—1, 1 being
an arbitrary positive number. If a pole coincides with one side of the rectangle, the
corresponding residue contributes to the sum with its half. Cauchy’s residue theorem
[1825, 54] yields

b
3ab<p(z)dz = ][rp(x —nv/—1Ddx + V-1 <Z(b + yv=1)dy—
a -n
b
- ][<p(x + nv/=1ydx — V=1 (,Z(a + yv—=1)dy,
a -n

if the principal values—denoted by  at this place—of all integrals exist. Let w’" (z)

Ym(@)
be the mth partial fraction of a continued fraction associated with f A Z(x)d (f
being “positive”) and let ¥, (z;) = 0 (@ = 1,.. .,m).> Then for natural o, B,

1 <a < B < m we have, for example

/ f(x)dx < Z ;,Zm(éz zzof;+ww 1(:Zm((Z))d

where @ is an—in Chebyshev’s own words—“infinitely small” quantity.

Generalizing such relations, Chebyshev [1885/87, 39] even derived the follow-
ing inequalities for all v € [A; B] (the interval was not necessarily assumed to be
finite*0):

EFTCF(z)dz < /U f(x)dx < EYTCF(z)dz, (4.35)
A

38 For the case of discrete distributions this proof is contained in [Chebyshev 1891/1907], see also
footnote 14.

39 Note that all roots of ¥, = 0 are simple and real.

40 Chebyshev did not explicitly discuss the cases A = —o00 or v = oo. In these cases, however,
the following inequalities remain valid if one sets —0o0 — w = —00 and 00 + w = 00.
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where
1
F(z) = I :
a1z + B — 1
@z + B2 — N
B 1
and o is “infinitely small.” The continued fraction
1
(4.36)
1
o1z + ,31 - 1
Wz +py— —————
S a3z + Pz —--

was considered to be associated with the integral ff f E);) dx. With regard to the
function Z one has to differentiate the two cases of an even or an odd number
of given moments My, ..., Mam,—1 or My, ..., My, of the function f. If 91((4)
denotes the ith partial fraction of (4.36), then, according to Chebyshev [1885/87,
41 f.], in the case of an even number 2m of given moments, the function Z can be
expressed by

Ym—1(v)

Z=y(z-v)+ @)

where

)/:Zmax( ! [wm—l(A)_wm_l(v)} 1 [wm_l(B)_wm_l(v)D'
Um(A) Y (V) Un(B)  Ym(V)

In the case of an odd number of given moments, Z is even more complicated
[Chebyshev 1885/87, 41 f.].

The awkwardness of Chebyshev’s estimates is also documented by the follow-
ing lengthy section, which was dedicated to an application to the problem of mass
distribution along a rod [Chebyshev 1885/87, 45-55].

In 1887, Chebyshev published an article, which appeared two years later in
French under the title “Sur les résidus intégraux qui donnent des valeurs approchées
des intégrales,” and in which the already obtained estimates (4.35) were consider-
ably simplified for the case of an even number of given moments.*! Chebyshev’s
main result [1887/89, 308] was the inequality

‘ / Fedv— &0 F(zydz| < L w3
2 Zm—l 1/’,‘ ()]

=0 1B y2(0 f(x)ax

41 For a description of the chief arguments and results of this article, see [Vasilev 1898/1900,
31-34].
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where w is “infinitely small” again, and the i; are the partial denominators of the
continued fraction (4.36).

The right-hand side of (4.37) is dependent only on the moments of the “positive”
function f up to the order 2m — 1. Thus, Chebyshev [1887/89, 309 f.] was able to
conclude that for two “positive” functions f and f; with the properties

B B
/ xif(x)dx:/ x' fi(x)dx foralli =0,...,2m—1
A A

the following inequality is valid for —oo < A < B < oo:

' / " fdx - / " A0
1

< . T forall v € [4; B]. (4.38)
S b

=0 1B y2(x) f(x)dx

In principle, it would have been possible to base the discussion of moment prob-
lems even with an infinite number of given moments on this inequality. It is not
true*” that questions of this kind were beyond Chebyshev’s scope. There is a remark
in [Chebyshev 1887/89, 310] that the right-hand side of (4.38) decreases as m in-
creases, and tends to 0 if the series in the denominator is divergent. Chebyshev and
other members of the St. Petersburg school did not succeed in a general discussion
of the divergence of this series, however.

This lack of success becomes plausible, if one considers the difficulties which

Chebyshev [1887/89, 311-322] had to overcome in obtaining an estimate of the
2
right-hand side of (4.38) for the special case 4 = —o0, B = 00, f(x) = J%e_%xz.

Resorting to his 1859 article “Sur le développement des fonctions a une seule vari-
able,” Chebyshev followed that in this particular case the polynomials v; were Her-
mite polynomials with the following properties:

2
2dieTx
vi(z) =e?2 ;

dx

Vi(z) = —q*zvi—1(2) — (i — Dg*Yi—2(z) (i >2),

’

and =~
/ V2 () f(x)dx = i1g?

In order to determine the asymptotic properties of the right-hand side of (4.38),
Chebyshev examined the sum

= ¥2w)
“\v
E T;, whereT; := l;q—z,

i=0

42 The author’s opinion differs from Kjeldsen’s [1993, 21] in this respect.
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He considered the function ®(¢) = Z?io T;t*, for which, due to the recursion
formula of Hermite polynomials, a certain first-order differential equation was valid.
Taking into consideration that ©(0) = y2(v) = 1, he obtained

The subsequent arguments show Chebyshev’s pragmatic use of infinitely large
and small quantities. He introduced a nonnegative function Y which attained posi-
tive values only in a one-sided “infinitely small neighborhood” of the integers O, 1,
2,3, ..., “such that the integrals

] 1 2
/ de,/ de,/ Ydx,...
0 1—w 2—w

tend to the quantities Ty, 71, T3, ... if @ tends to 0” [Chebyshev 1887/89, 315].
According to Chebysheyv, for such a §-like function the equation

o0 o0
Yt¥de =Y Tit' = O(t)
J rra=x

was valid. To the “mass density” Y¢* he now applied the results of the rod problem
with given moments

o o0 o0
/ Yt¥dx = @(z),/ xYt¥dx = z@/(z),/ X2Yt¥dx = tO'(t) + 120" (¢).
0 0 0

For a certain t € ]0; 1] (depending on m) satisfying the condition

10"(1)
®'(z)

+l=m+1 (4.39)

(the issue of existence of T was not broached) Chebyshev concluded that

m—1 m—1 / 2
. (©'(0))
Yt¥dx = T.t' >0(t) - —————.
/ =2 T 200 - G o

Because of 7 < 1 the inequality

S «©' ()
; T; > O(1) — O ToD (4.40)

was an immediate consequence. Finally Chebyshev [1887/89, 317-320], taking into
account the particular form of ®, the relation (4.39), and the fact that 7€ ]0; 1],
derived from (4.40) the inequality

m—1
2(m —3)>Vm —1
T > (m ) v m

iz 3/3(m? —2m + 3)%((]21)2 + 1)3'
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By substituting this latter relation into the right side of (4.38), he achieved the result:
If a “positive” function f;, defined in R, has, up to the order 2m — 1, the same

2
. qa- .2
moments as the normal density n(x) = %e_ T , then

2n

v 1 (5 . 34/3(m2 — 2m + 3)2 (q2v? + 1)3
dx — — *“d 4.41
/_oofl(x)x ﬁ/_we x| < YR (4.41)

for all real v. With this inequality Chebyshev solved the now so-called “Hamburger
moment problem”*? in a particular case. As he [1887/89, 311] noted, this case was
very important for probability theory. Because the right-hand side of (4.41)* tends
to 0 as m — oo, the immediate consequence is: If a “positive” function, defined
in R, coincides in all of its moments with those of a normal density n, then this
function is identical with n.

4.5 The Stieltjes Moment Problem

From today’s point of view one connects the relationship between moments and
continued fractions, and the notion of “moment problem,” chiefly with Stieltjes’s
name.* As we have already seen, Stieltjes had in the 1880s started research on
the relations between moments and continued fractions. He had given first esti-
mates for the mass distribution, if the moments were known up to a certain order.
Discussing continued fractions which correspond to fooo ;’J(r”u) du (f nonnegative),
Stieltjes around 1892 encountered the problem that there might exist nonnegative

“functions” f and f1*® with the property

/oo K(f(x) = fi(x))dx =0 Vk € Ny,
0

despite these functions being different from each other. This seemingly paradoxical
result’ motivated Stieltjes to examine the dependence of mass distributions on their
moments anew. He considered moments of indefinitely high order, and he posed the
following problem:

43 Hans Ludwig Hamburger [1920-21] solved the problem of existence and uniqueness of a mass
distribution defined in R if its moments are given in each order [Kjeldsen 1993, 37-40].

4 In 1892, Nikolai Yakovlevich Sonin succeeded in simplifying the right-hand side of (4.41) con-

siderably, replacing it by 2mn—1 (see [Vasilev 1898/1900, 33]).

4 The following survey of Stieltjes’s major contributions partially relies on [Kjeldsen 1993] and
Bernkopf [1970-76].

46 These “functions” had, as Stieltjes only intuitively conceived, a §-like character, corresponding
to the densities of discrete mass distributions.

47 Kjeldsen [1993, 26, 33] erroneously argued that only this surprising case caused Stieltjes’s
activities in moment problems.
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Given a sequence of positive numbers (cg ), then, for each positive x find the mass
F(x) assigned to the segment [0; x], such that fooo xKdF(x) = ¢y forall k € Ny!

Stieltjes [1894/95] succeeded in finding necessary and sufficient conditions
which have to be imposed on a moment sequence (cg ), such that for x € R:{ a mass
distribution F'(x) associated with this sequence exists and is uniquely determined.

In order to simultaneously treat discrete and continuous mass distributions,
Stieltjes used “his” integral, which, however, had not emerged in the direct con-
text of moment problems. Originally, in a 1892 letter to Hermite, he had used this
device for jointly representing the limiting functions of partial fractions of odd and
even order [Kjeldsen 1993, 32].

Whereas Chebyshev’s moment problem, which had been discussed to a cer-
tain extent also by Stieltjes and Markov during the 1880s, was on estimates of
the distribution function in the case of a finite number of given moments, Stieltjes
since 1892 put the center of his activities on other questions. Now, he was chiefly
interested in questions on the convergence of analytic continued fractions. His mo-
ment problem mainly served to contribute to the solution of these convergence ques-
tions, and was basically less general than Chebyshev’s. Chebyshev, on the other
hand, was only able to solve a problem on infinite moment sequences in the partic-
ular case of normal distributions.

4.6 Moment Theory and Central Limit Theorem

4.6.1 Chebyshev’s Probabilistic Work

Chebyshev only published four works of essentially probabilistic content. The main
object of his master thesis, which appeared in printed form in 1845 but remained
without greater influence, was to treat important problems of classical probability
by methods more elementary than those of Laplace’s TAP. In this work he already
discussed the quality of approximations by estimates. In the case of Stirling’s for-
mula he [1845, 40-43] found

1 x! VIR B
ety > 70 S ¥t

V2mx s

This quest for explicit estimates of approximation errors was certainly in part mo-
tivated by numerical necessities. But it also seems that Chebyshev for the sake of
rigor regarded it as imperative to discuss explicit error bounds if approximations
to “functions of large numbers” were employed. This program comprised finitary
aspects and constructive ideas, in the sense that the deviation between an exact and
a limiting function had to be precisely specified regarding its dependence on the
essential parameters.

In an 1846 paper, Chebyshev in the context of Poisson’s law of large numbers
clearly expressed the fundamental ideas of his program. In modern notation the law
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of large numbers is equivalent to

Ju—

e .
Ye>0: P( m
w

< 8) -1 (u— 0), (4.42)

fu being the relative frequency of the number of successes in a sequence of p
Bernoulli trials with—possibly different—success probabilities p;. Poisson in his
1837 Recherches had deduced (4.42) as a corollary of the approximation (again
in modern notation, H,, designates the number of successes among p trials, u a
positive real number):

P (Zl’i —uy[2Y pi(l=p) S Hy <Y pi+uyf2) pil —Pi))

|
e (4.43)
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Starting with a representation of P(H,, = m) =: U according to
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Poisson [1837, 246-252] first expanded the logarithm of the characteristic function

w
H(Piexﬁ +gie V)

i=1

into a series of powers of x. After substituting x = Jiﬁ he stated for the case of
“very large” p that all series terms except for the first and the second could be
neglected if the existence of a lower bound for all products p;g; independent of i
was presupposed. By use of some well-known integration formulae, Poisson [1837,
252 £.] obtained an (approximate!) expression for U. (4.43) was finally derived by
use of Euler’s summation formula, where, again, terms of an order of magnitude
less than \/Lﬁ were neglected. Taking additionally into account that the limit relation

U2y pigi
w

-0 (u— o0)

was valid for any arbitrarily large (but fixed) positive u, Poisson [1837, 254] from
(4.43) inferred a statement, only expressed in words by him, which corresponds in
modern mathematical notation to (4.42).

Chebyshev heavily criticized Poisson’s deduction of (4.42) with the following
words:

This fundamental theorem of probability calculus, which covers the law of Jacob Bernoulli
as a particular case, is deduced by Mr. Poisson by means of a formula [i.e., (4.43)], which
he obtains by approximately calculating the value of a definite, however too complicated
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integral (see the Recherches sur les probabilités des jugements, chapter IV). Even if the
method applied by the famous geometer is very skillful, it still does not provide the bound
of the error which yields his approximate analysis, and, due to this uncertainty about the
value of the error, the proof of the theorem lacks rigor [Chebyshev 1846, 17].

In the main part of his 1846 paper, Chebyshev for s = Zf‘ —, pi and natural m,n
(n <s—1,m > s+ 1) deduced the inequality

1 m(p—m) ;s\m [ u—s "
P(n<HM<m)>1—2(m_S) i <;) (m) -
1 n(p—n) gs\ntl (n—s\*"
S 2(s—n) W (;) (p, —n) , (44D

which Poisson’s weak law of large numbers was a consequence of. As we have al-
ready seen in Sect. 2.1.4, around 1850 a still rather vague feeling had emerged that
the method of deriving CLTs according to Laplace and Poisson by cutting off series
expansions was not rigorous. Chebyshev’s demand for explicit error bounds of the
respective approximations guaranteed analytic rigor, but, for the sake of rigorous
proofs of limit theorems alone, this demand was overstated. There exists a good
deal of bequeathed sayings of Chebyshev, in which he pointed out that, in his opin-
ion, mathematical research was only reasonable if the results could be applied for
practical purposes. In this respect, in the case of a finite number of trials, one had to
give advantage to numerically usable and sufficiently sharp estimates opposite mere
limit theorems. Markov, Chebyshev’s disciple, repeated this request in the preface
of his popular book on probability (see Sect. 4.7.3). But again, this aspect does not
touch the real question of analytical rigor either. The inequality (4.44) gives a rather
sharp lower bound for P(n< H,,<m),* but the use of this inequality for numerical
considerations was not discussed in Chebyshev’s article.

In an 1867 article, Chebyshev established “his” (and Bienaymé’s) famous
inequality, and thus continued his research on weak laws of large numbers, but
again without discussing applications. Chebyshev’s somewhat longwinded style
was consistent with his intention of using methods as elementary as possible.
In a way similar to many of his contributions to continued fractions, Chebyshev
[1867] only considered discrete distributions with finite numbers of mass points; the
transition to more general distributions was seen as a matter of course, apparently.

In contrast to the small number of published articles, Chebyshev quite frequently
gave courses on probability calculus between 1860 and 1882 [Sheynin 1994, 322].
As we can see from lecture notes written by Lyapunov in 1879/80, Chebyshev

“ If we take a Bernoulli process as a test case with p =10000 trials and the suc-
cess probability %, then we obtain P (4950 < H,, <5050) > 0.41 according to Chebyshev’s
(4.44), P(4950<H, <5050)>0(!) according to the Bienaymé-Chebyshev inequality, and
P (4950 < H, <5050) > 0.012(!) according to Jakob Bernoulli’s estimates (see Sect. 1.6). The
exact value of the probability under consideration is 0.683. The inequality (4.44) has the dis-
advantage, however, that for given a >0 and p (0 < p < 1) the minimum number p, such that
P(|H,, —s| < pa) > p, can be found by a rather tedious numerical procedure only.
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[1936/2004] conceived probability theory as imbedded into the theories of definite
integrals and of finite differences. In this way he pointed out the analytic relevance
of probabilistic contents and especially of limit theorems, at least implicitly.

With regard to the CLT, Chebyshev in the just-mentioned lectures recapitulated
Laplace’s method of establishing an approximate normal distribution without
any significant modifications, and he did not formulate a proper limit theorem
[Chebyshev 1936/2004, 198-202]. At least he noticed [1936/2004, 202] that the
presented line of proof was not rigorous. He maintained that for the time being
(around 1880) analysis was not capable of deriving error bounds for the devia-
tion of the exact probabilities from the corresponding limit expressions (see also
[Sheynin 1994, 334]). However, this assessment did not entirely apply. Cauchy
[1853h] had already given adequate estimates, although under rather restrictive
assumptions during his dispute with Bienaymé. Due to the fact that Chebyshev did
not care too much about the work of others (see [Steffens 2006, 71]), it appears
plausible that he did not know Cauchy’s contribution.

4.6.2 Chebyshev’s Uncomplete Proof of the Central
Limit Theorem from 1887

The original Russian version of Chebyshev’s article “Sur deux théoremes relatifs
aux probabilités” was published in 1887 in Zapiski akademii nauk; the French trans-
lation was issued in 1890 in Acta mathematica. In this work, Chebyshev used a
method somewhat different from that applied by Laplace, Poisson, and also Cauchy
for proving the CLT. Instead of representing the considered probabilities through
Fourier transforms like those authors, he used Laplace transforms instead, initiating
by this modification an approach by means of moments.

At the beginning of the article, Chebyshev recapitulated the result of his 1867
paper “Des valeurs moyennes.” He argued that this had already been obtained within
the framework of his research program on moments. He then repeated the inequality
(4.41) and announced his intention to show

how this theorem on integrals leads to a theorem on probabilities, by which the most pre-
cise determination of the unknowns can be reduced to the method of least squares, if one
has a large number of equations with more or less considerable random errors [Chebyshev
1887/90, 307].

Chebysheyv therefore tried to imbed both the weak law of large numbers and the CLT
into moment theory, and with the remark on the application of the CLT he primarily
referred to the foundation of least squares according to Laplace.

Chebyshev [1887/90, 307] introduced the CLT in the following version:
He considered a sequence of (implicitly assumed) independent random variables
(“quantités”) u;, each with zero expectation. For these random variables Chebyshev
presupposed nonnegative densities ¢; with moments of arbitrarily high order.

He assumed that, for each order, an upper and lower bound of the moments existed,
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uniformly for all random variables. These bounds depended possibly on the order,
however.*” Under these assumptions, Chebyshev stated that for any ¢ < t’ € R:

n
fim P < i1

1 7
< ==t </ =— / e dx. (4.45)
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The beginning of the history of the CLT in the strict sense of limit theorem is
connected to [Chebyshev 1887/90]. Even if, in the context of approximate nor-
mal distributions for sums of independent random variables, some authors before
Chebysheyv, such as Poisson [1824], hinted at the fact that the difference between
exact and approximating probability gets “infinitely small” with an “infinitely large”
number of summands, such an assertion did not clearly express the convergence of
a sequence of probabilities as it was demanded by the common analytic standards at
the end of the 19th century. In order to translate Poisson’s statements on the approx-
imation of probabilities of sums of a “very large number” of random variables into
the assertion of a limit theorem, Chebyshev chose the most simple way in formulat-
ing a limit theorem for normed partial sums assigned to a given sequence of random
variables. Only during the 1920s, beginning with Bernshtein (see Sect. 5.2.7.1), was
the more general situation of row sums in triangular arrays taken into consideration.

In his proof of the CLT, Chebyshev focused on the (today so-called) Laplace

n

transform f_ozo e f(x)dx of the the density f of the normed sum ;‘Eﬂ, “s a

Jn

given constant.”>’ By elementary considerations he derived the following formula:

/Oo e f(x)dx = 1_[ /00 e%fpi(ui)dui- (4.46)

i=1Y"®

Chebyshev now expanded the natural logarithm of the right-hand side of (4.46)
into a series of powers of s. To this aim he [1887/90, 310] used the “approximate
expression which is exact up to the term of order s2™~! inclusively,” obtained by a
term-by-term integration:

49 Chebyshev’s phrasing is a little obscure concerning this issue. It remains unclear whether there
exists a common upper and a common lower bound, respectively, for all moments of all random
variables or these bounds are possibly different for each order. An interpretation in the former sense
would imply, however, that Chebyshev’s theorem would not even apply to normally distributed
random variables.

30 Chebyshev did not use a special name for the Laplace transform, and he did not discuss any
properties of this entity. In particular, he did not consider the fact that the existence of the Laplace
transform for a real s is secured only if certain conditions in addition to the mere existence of
moments of arbitrary order are valid.
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By this procedure Chebyshev reached an expansion of the form

00 s2 M3 3 M2m=D) 2,1
/ ¥ f(x)dx = e2a2 TV ST Gz (4.47)
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In this latter formula qiz designated the arithmetic mean of the second-order

moments. For n — oo each single fraction tended to 0 on account of

(f )" -2
the common boundedness of the moments of each order.
Without any further discussions Chebyshev [1887/90, 312] concluded that “in

the special case n = 00” equation (4.47) is simplified toward

o0 s2
/ e f(x)dx = 307 (4.48)

o

L now designates the limit of the arithmetic mean of the second-order moments

as n — oo. Apparently, Chebyshev tacitly assumed, besides the—by no means
guaranteed—existence of this limit, the existence of a density f such that

(Z—<x) - f(x) (n— 00).

The latter circumstance shows that he basically did not differentiate between local
and integral versions of the CLT.

Chebyshev’s line of argument as a matter of course presupposed that — q > remains
positive as n — 00, an assumption which was, however, not explicitly stated among
the assumptions at the beginning of the paper. By expanding both sides of (4.48)
into a series of powers of s, and by equating terms of common order, he obtained the

2
.« . . . qa-,2
result that the limit function f and the function %e_ T** have the same moments

in each order. Chebyshev finally resorted to his estimate (4.41), which implied the
limit theorem (4.45).

By these considerations Chebyshev had “proven,” as he [1887/90, 315] also ob-
served, a limit theorem “merely.” He did not reach the main goal he had put for
himself, to obtain inequalities for the deviation of the exact probability from the
limit expression in the case of a finite number of random variables. At least, he
hinted at the fact, without discussing any details, that, corresponding to the results
of his article [Chebyshev 1859], the exact probability for a finite number of random
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variables could be expressed by a series expansion in polynomials e
Sect. 3.4.1).

Chebysheyv basically pursued a program which committed to avoiding “approx-
imate” arguments, in particular those employing cut-off series expansions (Sect.
4.6.1). Yet, when proving the CLT, he used exactly arguments of this kind. In this
respect there was no considerable difference between his and Laplace’s or Poisson’s
approach. In contrast to the latter authors, he passed over from the limit of the gen-
erating functions to the limit distribution itself not by means of Fourier methods
(which procedure would have been easier), but by a quite complicated consider-
ation on moments. Using this device, however, his mode of reasoning was again
no way more rigorous in comparison with Laplace’s and Poisson’s accounts. Alto-
gether, the reader reaches the impression that, in Chebyshev’s article, the “proof”
of the CLT was chiefly to serve for demonstrating important methods and results
of moment theory. Apparently, the rigorous deduction of a mathematical theorem
which should be studied in its own right came second.

(see

4.6.3 Poincaré: Moments and Hypothesis of Elementary Errors

Even before Markov succeeded in giving rigorous proofs of the CLT by means
of moments, Poincaré in his Calcul des probabilités [1896] had already taken
on Chebyshev’s idea of deriving the CLT by moment methods. Henri Poincaré
(1854-1912) was one of the leading figures of mathematics and physics of the late
19th and early 20th centuries. With regard to probability theory, which discipline
was not in the center of his scientific activities, he is still well known today by
his discussion of the notion of “random,”' and by establishing the later so-called
“method of arbitrary functions.”>? Poincaré’s Calcul des probabilités (the first edi-
tion appeared in 1896, the second, somewhat modified edition in 1912) was one of
the most influential textbooks in the period of transition from classical to modern
probability outside of Russia.’® The style of this book was not in accord, however,
with that of contemporary textbooks on analysis. There is, in many places, a lack of
precise conditions and entirely rigorous deductions. This circumstance may be taken
as evidence that Poincaré did not conceive of probability theory as a discipline of
mathematics proper.

With regard to the hypothesis of elementary errors, Poincaré [1896, 169-187;
1912, 189-206] tried to prove that the sum of a large number of independent errors
with (in general) different but symmetric densities approximately obeys a Gaussian
law. Somewhat vaguely, Poincaré presupposed the elementary errors to have “ap-
proximately the same order of magnitude” and to contribute only a “small part”
to the total error. As already noted, Poincaré based his proof on moment methods.

51 See, in particular, the chapter Le Hasard of his Science et Méthode [1908].
32 See [von Plato 1983].
33 For a résumé of Poincaré’s work on probability see [Sheynin 1990].
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He did not cite work by Chebyshev, Markov, or Stieltjes. Taking into consideration
Poincaré’s interest in analysis it is improbable that he was not acquainted with the
contemporary development of moment theory, however.

Poincaré gave an amazingly simple, albeit erroneous,’ proof that a density is
equal to the Gaussian error function if it coincides in all of its moments with the lat-
L’i”, y; being identically
distributed errors with symmetric densities and moments of arbitrarily high order,
tend to the corresponding moments of a normal distribution with zero expectation
and with variance Var(y;). He also sketched, under not completely clear condi-
tions, the proof for the analogous property in the case of non-identically distributed
symmetric errors. Poincaré in this way anticipated, if in a not entirely general and
rigorous way, Markov’s proof of the convergence of the moments of normed sums
of random variables to the moments of a Gaussian distribution. That proof was pub-
lished two years later.

From the approximate equality of the respective moments of a sum of numer-
ous elementary errors and a normal distribution, Poincaré [1896, 187; 1912, 206]
concluded without any further explanations:

ter. Then he proved that the moments of the expression

In this case the resulting error very precisely obeys Gauss’s law. This is, as it seems to me,
the best reasoning which can be given in favor of Gauss’s law.

4.6.4 Markov’s Rigorous Proof

After Chebyshev had retired from giving lecture courses in 1882, Markov became
his successor in teaching probability theory [Maistrov 1974, 218]. For the time be-
ing, Markov scarcely did any active research in this field, however. Only around
1898 did he develop an intensified interest in the moment theoretic proof of the CLT,
as we can see from his exchange of letters with Vasilev.? Markov [1899/2004, 130]
clearly expressed the flaws of Chebyshev’s proof with the words

... Chebyshev’s demonstration is very involved since it is based on preliminary investiga-
tions.* ... However, Chebyshev’s derivation is expounded in such a way that its rigor may
be doubted. A question therefore arises, whether Chebyshev’s proof is distinguished from
the previous one [by Laplace and Poisson] not in essence, but only by needless complexity,
or can it be made rigorous.

As Markov (same place) stated, there had already been a “long-standing desire to
simplify, and, at the same time, to make his [Chebyshev’s] analysis quite rigorous”
for him. His motivation for dealing with this problem had even been “strengthened”
by his reading of the summarizing description of Chebyshev’s deduction of the CLT
in Vasilev’s biography on Chebyshev, whose Russian version appeared in 1898.

% For an analysis of Poincaré’s mistake see [Fischer 2000, 166].

33 These letters from September/October 1898 were in part published as [Markov 1899] (English
translation [Markov 1899/2004]). See also [Maistrov 1974, 209 f; Yushkevich 1970-76b, 127 f.].

36 Markov most probably refers to Chebyshev’s estimate (4.41).
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An important reason why Markov began serious studies on the CLT with a certain
delay only, might be that Markov, as we have already seen (Sect. 4.6.1), did not re-
gard probabilistic limit theorems as essentially important. He rather gave preference
to approximate formulae, for which he demanded estimates of the precision, how-
ever. As a possible consequence, Markov’s 1898 article primarily focused on results
on moments and continued fractions, which the CLT could be followed from as a
corollary.

In Sect. 4.3.2 we have already briefly described Stieltjes’s proof [1884a] for the
assertion that, in any arbitrarily given subinterval of [a; b], the partial denominators
of the continued fraction associated with fab % have at least one zero from a
certain order on. By virtue of this fact Stieltjes showed that the Gaussian quadrature
formula assigned to the weight function f converges under very general condi-
tions to the corresponding integral. Stieltjes had restricted his consideration to finite
ranges of integration [a; b].

Markov now extended Stieltjes’s basic ideas’’ to the domain of integration
] — 00; 0o[ and the particular weight function f(x) = e=*”. Whereas the formulae
(4.17), (4.18), and (4.19), which are essential for the Gaussian procedure of integra-
tion, were more or less tacitly applied also for infinite domains of integration, if the
weight function had appropriate properties,’® a zero point property analogous to that
of Stieltjes could not be asserted with the same self-evidence. Markov [1898/1912,
259-264] therefore had to show first that the partial denominators of a continued

fraction associated with [°0 <—
to the Hermite polynomials) from a certain order on possess at least one zero in any
given interval.

The next step in Markov’s proof was to show, by aid of this zero point prop-
erty and “his” inequalities (4.27) and (4.28), that for each finite real interval [c; ]
the following assertion is valid: Let v, (x) and ¢, (x) be the denominators and
numerators, respectively, of the mth partial fraction of a continued fraction asso-

ciated with f 0 l-(m) be the roots of ¥, in ascending order (i.e.,

xgm) < xé’”) P i ;:{’”) < a, gg’”’ > a, ngm) < B, and n(m) > f designate

those zeros of ¥, which are next to & and S, respectively, then one obtains (for
m — o0)

(m)
3 om") _>/ Car (k=1,2). (4.49)
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57 Markov’s esteem for Stieltjes and his knowledge of Stieltjes’s work on continued fractions up
to [1894/95] is evidenced by quotations in Difference Calculus [Markov 1896, 97], a textbook,
in which—the title considerably differs from the content—mainly problems concerning Gaussian
quadrature and continued fractions were discussed.

38 Radau [1883] and Gourier [1883] explicitly discussed the validity of the Gaussian procedure
with weight functions decreasing exponentially for infinite arguments (see [Gautschi 1981, 83]).
The usual deductions of (4.17) and (4.18) are actually not dependent on the circumstance whether
the range of integration is finite or not, if the weight function has moments of arbitrarily high order.
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This means, in the language of Gaussian quadrature, that, for the weight function
e~** and the constant integrand identical to 1, the quadrature formula converges to
the corresponding integral even with regard to arbitrary subintervals.

Markov was now ready to prove a theorem, which differed, according to his
own words [Markov 1898/1912, 266], “only in minor details from a theorem of
Chebyshev”:

If all functions £, (X) of the sequence
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obey the inequality
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and if the sums
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one after another approach the limits
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as soon as n grows indefinitely, then the sum

B
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taken for all values of X which lie within a given interval («, ), approaches the limit
/ ’ e dx
(3

With these words Markov articulated a theorem which Chebyshev had neither stated
nor justified in any way. The reference to Chebyshev might have been an act of
courtesy toward Markov’s correspondent and Chebyshev’s hagiographer Vasilev.
The mode of using sums in Markov’s theorem is noticeable. Markov apparently
tried to treat discrete and continuous distributions jointly. He did not use the device
of Stieltjes integral, which was certainly known to him but did not correspond to St.
Petersburg customs.

From (4.49) Markov, with the denotations used in this relation, was able to infer
that for a given ¢ > 0

if n grows beyond all limits.

(m))

Z Pm (x,-
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(m)—/e—’dr<5 k =1,2), (4.50)
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if m was sufficiently large.

Markov considered next the partial fraction of mth order %”—((xx)) of a continued

—(m)

 [1@ He proved that the roots x; " and x
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fraction associated with ) ;
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the equations ¥,,(x) = 0 and ¥,,(x) = 0, which correspond to each other in
ascending order, for sufficiently large n differ only by arbitrarily small amounts

from each other. This is true because the roots Yl(m) are continuously dependent on
the coefficients of the polynomial v,,, and these coefficients continuously on

+00 +o00 +00 +00
Y@ XS @, ) Sa @ Y BT ),

which expressions converge, according to the presuppositions, to

o0 2 o0 2 o0 2 o0 2
/ e ” dx,/ xe * dx,/ x2e ¥ dx, .. .,/ X2 e gy,
—00 —00 —00 —00

The roots x( ™ are dependent on the latter quantities in an analogous way. Since,

by the reasons just mentioned, not only the coefficients of Wm and V,, but also

of ¢, and ¢, get arbitrarily close to each other for a sufficiently large n, Markov
[1898/1912, 268] was able to conclude that

‘Pm (x Pm (x
V@) (™)

-0 (n—00)

—(m

for pairs of roots X; ) and x(m) which correspond to each other.

For those roots E & and _(m) of 1/fm (x) = 0 (k = 1,2) which are analogous to

the already defined roots & lgm) and n(m) of ¥, (x) = 0, respectively, one obtains, for
sufficiently large n and k = 1,2:

(m)
Z (pm(xi ) _ Z (pm(x < g 4.51)

1 (M) —(m)
£ < () < O Y (X;77) g}(m)sy;m)sﬁém) me(xi )

By virtue of Chebyshev’s inequalities, applied to the function f;,, the inequalities

B —(m)
Om(X;)
PRI DR TN
* B <xm <y Vim0
and
B —(m)
Om(X;)
Z Ja(x) < Z —m)
* B <x <0 V@™
hold.

Altogether, Markov showed that, for an arbitrarily small ¢ > 0, one can always
find a natural number m(g) such that (4.50) is valid. Moreover, for all natural n
above a certain bound N (m(¢e)), (4.51) had to be valid. Taking into consideration the
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inequalities just quoted for Zz Jfn(x), it could be inferred that for all n > N(m(e))

B2 e ¢ b B e €
X — -~ _Z 2 A+ - + =,
/ae ) 2<afn(x)</ae T2

which was the chief assertion of his article.

Markov [1898/1912, 269 f.] argued that “almost immediately, as Chebyshev has
noticed,” the CLT could be followed:
Letu;,uz,... be “independent quantities,” obeying the following conditions:

1) Eup =0

2) For all natural m > 2 there exists a constant Cp, such that [Eu}'| < Cp, for all
keN

3) Eu,zc “does not get infinitely small, if k£ grows indefinitely.

Then

9959

n n n
1 B
Pla 22Eui§2uk§ﬁ ZZEui —>—/ e dx (1 — o0)
k=1 k=1 k=1 v Ja

holds for any o < B.

Indeed, in his 1898 paper Markov did not prove that the moments of each order
of the suitably normed sum of random variables converge to those of the normal
distribution respectively, as it would have been essential for the application of his
main theorem to the case of the CLT. He gave that proof, however, in his already
mentioned exchange of letters with Vasilev, which was eventually published in 1899,
and also, under somewhat weaker conditions, in his Textbook on Probability from
its second edition in connection with a “theorem on mathematical expectations.”®

The content of this theorem was as follows: Let X;, X5,... be a sequence of
independent random variables, each with expectation EXj and variance 0,? > 0,
respectively, where

> k=1 El(Xx —EXp)"|
k=1 ‘713)%

9 Tt does not become clear from this phrasing whether Markov assumed that the sequence (Eui)
was not allowed to converge to 0 or whether he focused on the even stronger assumption that,
from a certain k, the quantity Eui always lies above a certain positive lower bound. As we will
see below, Markov ought to have specified the mode of nonconvergence more precisely if he had
aimed at the weaker assumption. In his exchange of letters with Vasilev, Markov [1899/2004, 135]
instead of 3) used the condition that

-0 (n— ) (4.52)

E(u1+u2+"'+un)z
n

“cannot be arbitrarily small” (see also [Sheynin 1989, 361]).
0 The proof of this theorem was also separately published in 1907, see [Sheynin 1989, 362]).
Essential differences between the original proof in the exchange of letters with Vasilev and the
more elaborate versions, which appeared later, do not exist.
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and " S
k=100
k= op) !

for all natural r > 3. Then, for n — oo the expectation of the power

-0 (n— o) (4.53)

m

ZZ=1 (Xk - EXk)

\/2ZZ=1 o,f

1 R 2
— / Me™""dr
N
for each natural m.

In order to simplify the exposition, it is supposed in the following discussion of

Markov’s proof (according to [Markov 1912, 77-81]) that EX}; = 0, and Markov’s
notations c,({l) = E|X ,ﬁ| and B, = Y ;_, EX? are used. Quantities depending on
multiple indices are expressed in a modern multi-index notation.

Because of the generalized binomial formula we obtain

tends to the limit

S Xk )’" 1 m!
E( = = ZE[ D —Xx{xg

V2B, Z%an | =m o! n
In this equation « = (a1, ..., ;) denotes a multi-index from (Ng)”, where |a| =
Y h—i ok and ! = aq!---a,!. Because the random variables are independent, and
because EX; = O for all k, the latter sum equals

1 !
D> EXT - EXO

m
22 By la|=m;a; #1

We therefore reach the following estimate:

m
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For m > 3 we have

Ciﬂtl) Céﬂtz) C,(,a")
o 2
lal=m B2 o1! B2 an!  Bu® ay!

a;j=3va; =0

Sha e Yo o Yl o)

B Ba ﬂTr
B1+Ba+-+Br=m B2 B! B,? B! B !
BireN.Bi2ppz-2hr=3 b n B2 n Br

=

Because of (4.52), each of the product terms (whose number is independent of n)
tends to 0 as n — oo. Altogether it follows for m > 3 and n — oo:

E Y1 Xic)" : LExer . gxe 0 4.54
= — — nl— 0. .
( V2 Bj, ) 2% 5 Z o! 1 " ( )

" o 22‘?/,2, =0
In the particular case m = 2 the difference on the left side is identical to 0 already
for finite n, such that (4.54) is valid even for all m > 2.

Let m be an odd natural number. Then the joint validity of the conditions |«| = m
and o; = 2 or a; = 0 is impossible. Therefore, we have for m € N odd:

1

Y. —EX{-EXyr =0
o

la|=m

a;=2va;=0

Because of the assumption of vanishing expectations for the single random vari-
ables, (4.54) holds for m = 1 as well. Altogether, from (4.54) it follows that

ZZ=1Xk)m 1/°° 2
E|&=—=—=] -0=— t"e"dt (n — 00)
( V2B, N

for all odd natural numbers m.
Let m be an even number now. Then we have

m
n 2 m |
m =
2 _ 2 _ (2) 201 202 20
By _(E ak> = E 701 0y T 0
k=1 le|l=2
This implies
1 m (Z) 1 (Z)!
i« 2)° 21 200 20| _ 2)° 20y 20>  2ap
—% B, — E e o, 0, o = 7 E o o, 0, o, .
By, lo|=4 By lai=%
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The latter term has the upper bound

n 281 2B n 28
(T)l E Zk:l Ok Zk=1 ak . Zk:] O’k r
. B B2 B .
2 Bi1+Ba++Br="4 By B! B,? 5! BL" B!
Bj.reN.f1zpoz=phr=2

On account of the presupposition (4.53) this expression tends to 0 as n — oo, and
therefore, as n — oo

1 1
— Y ooy ot = — Y EXPUEXP > . (4.55)
an lo| =" an lal=m (7)

2

a;=1va;=0 o;=2va;=0

We have a! = 2% if the conditions m even, and |¢| = m,and o; = 2 or; = 0 are
jointly valid. Thus, for even m, (4.54) and (4.55) imply

noox\" ! 1-3-5... -1 1 0
E (Zk—l k) N mm - m(m ) = —/ tme_’zdt (n — 00).
V2B, 2m (2! 2% VLN

Toward the end of his exposition, Markov [1912, 80] noticed that condition (4.53)
was superfluous, because it could be deduced from the first condition (4.52) by
means of the inequality

(02) ' <E(Xx —EXp)>2 (r =3), (4.56)

“whose proof does not require great effort.” For an arbitrary distribution function F
the successive application of the Schwarz inequality actually yields

/_c:xzdF(x) =/_c:x2-1dF(x) < (/_c:)x“dF(x))é <...< (/_c:xzndF(x))rll

for n > 2. After the substitution n = r — 1 the inequality (4.56) follows. Markov
did not make explicit that condition (4.52) could be deduced from the conditions 2)
and 3) in his 1898 version of the CLT. Indeed, for natural r the following inequality
holds:

Elup| < K,

C,, if r even

K =114 Cpy.ifr odd.
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The constants C, are determined in accordance with Markov’s condition 2).°!
It follows
ZZ=1 Elulrcl nk;
= < 7
Ck=107)? (Xk=i0%)?
If we want for r > 3 the latter expression tending to 0 as n — oo, we have to
demand

— % 0 (1> o). 4.57)
(Xk=10%)"
Therefore, it is possible that a partial sequence of o,f tends to 0, if only the “addi-
tional condition” (4.57) is maintained.

Markov’s proof of the CLT was based on two main points. The one was an ele-
gant, but by no means elementary analytical theorem on the interrelation of moment
convergence and the convergence of linear partial masses. It was not absolutely
necessary for his line of argument that Markov restricted his investigations to a nor-
mal limit distribution. The other main point was a theorem on the convergence of
moments of normed sums of independent random variables to the corresponding
moments of the normal distribution. The proof of this latter theorem was elemen-
tary, though rather cumbersome. In his 1898 publication, which reached a broader
audience even outside Russia, Markov presented the CLT as a mere corollary of his
first theorem, which in its generality went far beyond probability theory. Already
the title “Sur les racines de 1’équation ...” hints at the fact that this publication
primarily dealt with nonstochastic contents. In this stage of Markov’s work, the
CLT scarcely had the character of an independent research subject. This attitude of
Markov would change during the first decade of the 19th century, mainly caused
by his competition with Nekrasov and Lyapunov. However, for the time being, the
CLT apparently served Markov in a way similar as it did to Chebyshev: mainly as
an illustration of methods and results on moments and continued fractions.

4.7 Chebyshev’s and Markov’s Central Limit Theorem: Starting
Point of a New Theory of Probability?

Survey articles on the development and current state of probability theory in
Russia written during the Stalinist era like those by Bernshtein [1940/2004a] or

UIf j is even, then it follows from condition 2):
Eluj|=|Eu]| < C;.

Let j be odd, and let Fj be the distribution function of u;. Then

. &S] . . .
Eluf | :/ |x|/ dFy(x) 5/ dFy(x) +/ YR <1 —}-Eu,f(-"_1 <1+Cj41.
o [x|=<1 [x|>1
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Kolmogorov [1947/2005], by nature had to praise the achievements of Soviet
Science. The arguments for the superiority of Russian contributions also included
the reference to a long tradition of probability theory in Russia, beginning already
before 1850 with courses on probability theory given at St. Petersburg University
by Ankudivich and Bunyakovskii [Bernshtein 1940/2004a, 102 f.; Kolmogorov
1947/2005, 72]. Chebyshev was considered the real founder of the “St. Petersburg
school,” however. Under Stalin’s leadership, mathematics, even pure mathematics,
remained relatively unoffended during most times. Still, mathematicians had to
take care not to conduct “science for science’s sake in an ivory tower” [Lorentz
2002, 195] and not to base their work on “idealistic” philosophy. In view of such
problems, Chebyshev, who seemed to have exemplarily reconciled mathematical
rigor and orientation toward significant and useful applications, could likewise
serve as an authority [Bernshtein 1940/2004a, 104; Kolmogorov 1947/2005, 72 f.,
75]. Also regarding Markov as the main successor of Chebyshev, the obligatory
affinity to problems of the “real world” was emphasized [Bernshtein 1940/2004a,
108-110; Kolmogorov 1947/2005, 74]. After surveying Chebyshev’s, Lyapunov’s,
and Markov’s work—in particular on the CLT—Bernshtein [1940/2004a, 110] even
expressed his patriotic feelings (maybe imposed upon him) with the words

For its transformation from mathematical amusement into a method of natural sciences the
theory of probability is mainly obliged to the Petersburg school, which accomplished this
fundamental progress leaving west European mathematicians far behind.

Pointing to “mathematical amusement” versus “method of science,” Bernshtein pos-
sibly wanted to allude to conflicts between mathematicians who contributed to the
stochastic theory of genetics, as Kolmogorov and himself, and Stalin’s chief ge-
neticist Lysenko, who opposed probabilistic models and stressed the significance of
planned exterior influence [Birkner 1996; Lorentz 2002, 216 f.; Roll-Hansen 2008;
Sheynin 2009, 113 f.].

Although Bernshtein’s and Kolmogorov’s expositions on Chebyshev’s and
Markov’s role seem to be (partially) exaggerated, they also repeat assessments
already expressed during pre-Soviet times®” or by non-Russians like von Mises. In
his very important paper [1919a] on probabilistic limit theorems (see introductional
part of Chapt. 5), von Mises deplored the lack of analytic rigor in most contributions
that had appeared up to that time—with the exception of “a small number of works
by Russian mathematicians.” With this remark, he mainly hinted at Chebyshev’s and
Markov’s contributions to the CLT. Altogether, the need for a (critical) discussion
of the role of Chebyshev’s and Markov’s work, especially on the CLT, seems to be
obvious. In this discussion, we shall mainly focus on stochastic concepts, analytic
methods, mathematical rigor, and applications.

62 By Vasilev and Lyapunov, for example, see introduction to the present chapter.
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4.7.1 Random Variables and Limit Theorems

As we have already seen, Chebyshev did not prove the CLT rigorously. His proof
can even be considered a failure, because he did not surmount the difficulties con-
nected with the “usual” device of cutting off series expansions. This fundamental
fact notwithstanding, Chebyshev’s theorem seems important for two reasons: First,
it was—in the same way as his weak law of large numbers of 1866—stated for
general “quantities.” Second, Chebyshev was the first to express the CLT as a limit
theorem proper, and to explicitly state conditions for the validity of the assertion.
So, he made the CLT independent from direct relations to specific applications.

Chebyshev clearly distinguished between the “quantities” themselves and their
values, as we can see for example in his 1866 paper concerning the Bienyamé-—
Chebyshev inequality and the weak law of large numbers. His conception of a ran-
dom variable was considerably more general than Poisson’s (see Sect. 2.2.1). In
contrast to Poisson, for Chebyshev [1936/2004, 210, 227] it was a matter of course
that a linear combination Y _; Ax€x of errors or a sum of squared errors Y ; _, ei
could be conceived as a sum of the random variables Agej or e]%, respectively, and
thus could be subjected to the CLT. Markov and Lyapunov took up Chebyshev’s no-
tion of random variable in their contributions on probability theory, and thus paved
the way for Kolmogorov’s development [1933a, 20] of an abstract random variable
as a measurable mapping from one sample space into another. We should, however,
not forget that Laplace [1781] had already used the designation “quantités variables”
as a general term representing different concrete cases, in which real numbers are
gained by random experiments.

Until Chebyshev, the CLT mainly had the character of an assertion on an approx-
imation of probabilities of sums by normal distributions, if the number of summands
was “large.” But it did not give an indication of “how large” this number should be
for a sufficiently precise approximation. At several occasions in his work,%> Markov
pointed out the need of estimating the imprecision of approximating formulae, in
particular with respect to applications such as those in error theory. Chebyshev’s
opinion had been very likely the same in this matter. Thus, Chebyshev with his ver-
sion of a proper limit theorem gave this topic a new, purely analytic quality beyond
classical probability.

4.7.2 Analytic Methods and Rigor

The main activities of the St. Petersburg school were in the theory of approximation,
of moments, and of probability. As we have seen, in Chebyshev’s work the theory
of probability was closely connected with the two other disciplines. The same is

63 [Markov 1899/2004, 139 f.; 1912, T], for example.
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true for Markov’s work until the turn of the century.®* The mathematical methods
Chebyshev applied were algebraic to a large extent (see Sect. 4.2.3 for a character-
istic example) and quite often resorted to continued fractions. Yet, he also cultivated
arich reservoir of analytic methods including those of complex analysis, as we have
seen in connection with his proof that a normal distribution is entirely determined
by its moments (see Sect. 4.4).

Chebyshev had a “pragmatic” attitude, shared by many of his disciples [Steffens
2006, x], toward the foundations of analysis, and he easily used infinitely small and
large quantities in a rather intuitive way. He often passed over from discrete cases
to continuous ones without any further explanations: If an assertion was proven in
connection with the continued fraction associated with Y JO%) then it was a

=1 xp—t
matter of course that the analogous assertion for the continued fraction associated

with f : i(_xt) dx was true as well. In this sense, at several occasions it seemed more
important for Chebyshev to derive and expound methods for problem solving than
to deliver complete proofs. Altogether, Chebyshev’s methods may be characterized
by the headword “algebraic analysis,” however with a main focus on continued frac-
tions rather than on power series.

Chebyshev, who had already started analytic research during the 1840s, remained
uninfluenced by “Weierstrassian” analytic standards. He refused “philosophizing”
on foundational aspects of mathematics, like “what an infinitely small quantity is,”
because this “does not lead to anything.”® Thus we should not be too surprised
about his frequent interchange of limit processes without giving any justifications in
his proof of the CLT.

The mathematical rigor in Chebyshev’s work originated from three sources:
seeking explicit upper and lower bounds, algebraic arguments at crucial points of
proofs, and the reduction of quantities with “infinite” or “continuous” ranges of
values to those with finite or discrete ones, where, however, Chebyshev did not
care about possible difficulties connected with the mutual transition between such
different cases. This program of research and these methods also established the
common ground of the St. Petersburg school. Chebyshev’s disciples, such as Possé
and Markov, went only cautiously beyond the limits of Chebyshev’s program and
gradually approached the “Weierstrassian” standards of modern analysis. A close
relationship to Chebyshev’s analytic approach and to his methods and typical prob-
lems was maintained in many cases. In contrast to Chebyshev, Markov made the
correspondence between the limits of moments and those of distribution functions
a central theme, and he advanced the use of such moment methods for dealing
with probabilistic limit problems. Lyapunov, Markov’s former fellow student, used

% For the activities of the St. Petersburg school in approximation theory see [Steffens 2006,
Chap. 3].

95 See Steffens [2006, 74 f.] for the English translation of two quotations from lecture notes of
Chebyshev’s 1876/77 course on probability theory (different from the course written down by
Lyapunov), which was discovered and concisely described by Ermaloeva [1987]. Steffens inter-
prets Chebyshev’s words in the sense of a complete disinterest in analytic basics.
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“transcendental” methods in his proofs of the CLT, like Fourier transforms, which
had been rather neglected by Chebyshev®® and by most scholars of the St. Petersburg
school.

4.7.3 The Role of the Central Limit Theorem in Chebyshev’s
and Markov’s Work

Applications of the CLT within and outside mathematics were rather rare in
Chebyshev’s work: By the time of issuing his papers in 1846 and 1866, Chebyshev
had already started his research on probabilistic limit theorems with the con-
sequence that the CLT was no longer needed for proving (weak) laws of large
numbers. He did not discuss at any place in his work stochastic models explaining
the occurrence of normal distributions, like the hypothesis of elementary errors. In
his 1887 article on the CLT he only touched upon the possibility of establishing the
method of least squares by means of the CLT en passant (see Sect. 4.6.2). In his lec-
ture course of 1879/80, Chebyshev [1936/2004,209-212] first justified the principle
of arithmetic mean showing that the “probable error” connected with the estimation
of a quantity from (a large number of) direct observations becomes minimal if the
arithmetic mean is taken as a compromise value; like Laplace, he tacitly assumed
that the CLT even provided an exact normal distribution for linear combinations of
numerous errors. He then advanced [1936/2004, 213-217] the Gaussian derivation
of the normal law and the therefrom deduced principle of least squares (see Sect.
3.1). Subsequently, he [1936/2004, 217-220] recapitulated Laplace’s method, again
based on the CLT, for establishing the method of least squares in the case of deter-
mining one element from (numerous) linear equations (see Sect. 2.1.5.2). There are
no indications that Chebyshev assigned the CLT a particularly important role for
stochastic applications beyond this quite restricted field of asymptotic error theory.
On the other hand, in his 1887 proof of the CLT, Chebyshev clearly violated the
principles of mathematical rigor which had been formulated by himself, and, in this
respect, there was scarcely an essential improvement compared with his probability
course. Thus, he did not succeed in establishing the CLT as one of the major math-
ematical theorems independent of its practical applicability. This circumstance has
caused considerable irritations among Chebyshev’s hagiographers.®” Yet Cheby-
shev’s lack of rigor can be explained if one supposes in connection with the CLT
as his main goal the demonstration of results and methods of moment theory rather

% Chebyshev [1936/2004, 62-86] in his already mentioned 1879/80 course on probability and
related topics discussed Fourier integrals and some implications rather carefully, however.

67 See, for example, [Maistrov 1974, 205 f.], [Bernshtein 1945/2004a, 82—84], [Kolmogorov 1948],
and the summarizing survey in [Sheynin 1989, 361]. Bernshtein (same place) even showed how
Chebyshev’s arguments could be supplemented under additional assumptions by rigorous consid-
erations on the convergence of the moments of the standardized sum to the corresponding mo-
ments of the standard normal distribution. In his deduction, Bernshtein clearly went far beyond
Chebyshev’s analytic scope, however.
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than an entirely rigorous proof. Then, Chebyshev’s CLT did not have a completely
autonomous status within mathematics, but was rather significant as an illustration
of certain aspects of the theory of moments.

Markov started probabilistic research in a stricter sense at a relatively late stage of
his career only, despite his quite active teaching of probability theory.®® Apparently,
at first he did not assign limit theorems a larger significance for stochastic applica-
tions, which in turn played a significant role in his courses. This is shown by the
first and second editions (1900, 1908) of his textbook based on his courses, whose
second edition also appeared in a German translation with the title “Wahrschein-
lichkeitsrechnung” [Markov 1912].% Regarding the CLT, Markov [1912, 69-76]
basically recapitulated Poisson’s derivation (see Sect. 2.2.5) of an approximate nor-
mal distribution. At the end of this section, he pointed out that an estimate for the
deviation between the real probability and the Gaussian law was out of reach on the
basis of the methods employed, and one could only “suppose” that JLE | f e~ dx
was the “limit” of the considered probability. For proofs of this “limit theorem” he
referred to a list of references, which also included his [1898] and the two articles
by Lyapunov [1900; 1901b] (see Sect. 5.1.3).”° In the next section, Markov [1912,
77-80] expounded his proof that the “mathematical expectation” of the power

m

ZX,‘ —ZEX,‘
V22X 0%,

for any natural m tends to

! /oo tme " dt
— c
N4

under certain conditions. However, this was only the more elementary part of his
complete proof of the CLT. A reason for this insufficient consideration of his own
proof of the CLT in the first and second editions of his textbook may have been that
Markov originally considered probability theory as a discipline of “applied math-
ematics.” Approximation formulae were needed for applications, which, however,
could only be reasonably used if there existed estimates on approximation errors.
Such estimates could not be obtained by Markov’s methods for proving the CLT.
Lyapunov [1900; 1901b], on the other hand, had achieved (quite narrow) bounds
for the deviation of the limit term from the exact probability under very weak con-
ditions, but his methods were unsuitable for the exposition in a textbook. Markov
could have at least communicated Lyapunov’s formula; except for citing the titles
of Lyapunov’s papers, he did not comment on the latter’s results, however. It may

%8 For general surveys of Markov’s work in probability and statistics see [Sheynin 1989; 2005b].
% To the third edition (1913) considerably new results, especially such regarding limit theorems,
were added. The fourth even further enlarged version (1924) was posthumously issued.

70 At least to the German edition [Markov 1912], a somewhat loose translation of [Markov 1898]
was added as a supplement.
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be that around the turn of the century Markov increasingly felt a rivalry toward
Lyapunov on probabilistic issues. In fact, after 1900 this rivalry inspired Markov
to a series of articles on stochastic limit theorems (in particular regarding weakly
dependent random variables), in which applications did not play any role (see Sect.
5.1.5). These new results were included in the third and fourth editions of his text-
book on probability theory.

As it seems, Markov considered the CLT rather as a corollary of more general
moment theoretic results in his first contributions. Like Chebyshev, Markov did not
emphasize the CLT as a mathematically autonomous subject within a self-contained
theory of probability. With Chebyshev and the younger Markov, the CLT was not yet
studied in its own right, neither was application a priority, as it had been in classi-
cal probability. The CLT was rather relevant because of the analytic methods which
were used in its proof. Chebyshev and Markov very clearly stated conditions and as-
sertions of the CLT, and in a way entirely unusual until their time, they differentiated
between “limit theorem” and “approximation.” So, they significantly influenced the
development toward the modern CLT, for which, however, the reconciliation of “Pe-
tersburg” and “transcendental” methods, like characteristic functions, was decisive.
Markov himself would continue to contribute to this development even after the turn
of the century.



Chapter 5
The Way Toward Modern Probability

Richard von Mises [1919a, 1] wrote in his pioneering paper “Fundamentalsitze der
Wabhrscheinlichkeitsrechnung”:

The analytical theorems of probability theory are lacking—except for a few works by Rus-
sian mathematicians—the precision of formulation and reasoning which has long been a
matter of course in other areas of analysis. And in spite of some valuable approaches, these
days there is still an almost complete lack of clarity about the foundations of probability
theory as a mathematical discipline.

Von Mises dealt with the problem of the axiomatic foundations of probability theory
by a frequentistic approach in another article [1919b], which has achieved greater
prominence today than the one that preceded it.! In his criticism of the inadequate
fundamentals of probability theory, von Mises alluded to the lecture David Hilbert
had delivered before the 2nd International Congress of Mathematicians, held in
Paris in 1900, in which Hilbert had presented “his” 23 problems. The sixth prob-
lem related to the “mathematical treatment of the axioms of physics.” Following the
model of his Grundlagen der Geometrie [1899], Hilbert [1900, 47] challenged his
colleagues:

...to treat in the same manner, by means of axioms, those physical sciences in which
mathematics plays an important part; in the first rank are the theory of probabilities and
mechanics.

Hilbert included probability theory in the study of physics likely because, as he
observed in the next passage, he found stochastic considerations in the kinetic theory
of gases to be particularly important. In classifying probability theory as a discipline
that did not belong to mathematics in a narrower sense, Hilbert was following the
prevailing contemporary view. In the tradition of the Laplacian concept, probability
theory was still largely regarded as a “universal discipline” at the turn of the century,

! Bernhardt [1984] gave a particularly detailed account of contributions surrounding von Mises’s
work on the foundations of probability theory to the point of demonstrating the consistency of his
(somewhat modified) axiom system in the 1960s. For a more philosophical view see [von Plato
1994, 183-189, 233-237]. Further historical material can be found in [Siegmund-Schultze 2006].
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even if people were no longer willing to share Laplace’s optimism regarding its
universal applicability.

Toward the end of the 19th century, a “new rigor” and a style that could be traced
back to Karl Weierstrass’s approach had established themselves in mathematical
analysis. Admittedly, most considered this rigor to be unnecessary in the applica-
tion of analysis in natural sciences and technology, and thus in probability theory as
well, since the value of an examination was determined less by a completely con-
sistent mathematical deduction than the closest possible agreement between calcu-
lation and experiment. Yet if, like Hilbert [1900, 48], mathematicians “took account
not only of those theories coming close to reality, but also of all logically possible
theories,” they were dependent above all upon absolute analytical rigor in addition
to axiomatics.

A willingness to plumb all conceivable possibilities, regardless of their practi-
cal usefulness, can be found in stochastics as far back as the mid-19th century in
Cauchy’s papers on error analysis (see Sect. 2.5). Yet while the disciplines of pure
mathematics had made significant progress around the turn of the century in disso-
ciating themselves from external criteria of value and truth, probability theory as an
applied discipline maintained resistance into the 1920s and 1930s against “mathe-
matical modernity.” This included Emile Borel’s camp, whose followers were once
again attempting to establish probability theory as a universal scientific discipline
appertaining to mathematics only in a wider sense.

The use of the adjective “modern” in this book essentially follows the model
of Mehrtens [1990] in characterizing an attitude toward mathematical work which
concentrates exclusively on creating structural references and thus pays no regard to
external criteria (see Sect. 1.2). However, whereas Mehrtens is primarily interested
in the attitudes of mathematicians with respect to fundamental issues, the present
examination deals with approaches to mathematical problems where the main fo-
cus is not on fundamental principles. It is not the way in which one speaks about
mathematics but rather the manner of work within mathematics that is of primary
importance here. Thus, there is no contradiction in the fact that many proponents
of modern probability theory, such as the aforementioned von Mises, dismissed an
exclusively formalistic and, in Mehrtens’s words, “modern” notion of mathemat-
ical fundamentals, while at the same time working in a very similar way on the
modernization of probability theory, with the papers they produced ultimately es-
tablishing relationships among largely abstract concepts which no longer required
any extra-mathematical reference. The transition to a modern probability theory was
not necessarily and exclusively bound to logically satisfying axiomatics and basic
concepts founded on measure theory, but instead began with a willingness to sound
out stochastic elements in their purely mathematical context to the greatest extent
possible and to permit them to have an autonomous inner-mathematical meaning.
In the language of sociology of scientific knowledge this means that the essential
characteristic of modern probability theory consists in sounding its contingency.
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A fragmentary essay by Hausdorff, parts of which have recently been published,’
shows that autonomy was perceived as substantial for modernity already around
1900. The “principal duty of modern mathematics” Hausdorff saw “in struggling
through one’s way from heteronomy to autonomy.” By “heteronomy’” he understood
the orientation at external criteria and the obligation to pursue objectives outside
mathematics.

If we take the above quote by von Mises seriously, then characteristic features
of modern probability theory could only be found in scattered works by Russian
mathematicians, if at all. A more precise study of the literature that von Mises ref-
erenced in [1919a; 1919b] demonstrates that his main focus was the three papers
by Markov, which had been included as an appendix to the German translation of
Probability Theory [Markov 1912]. The first of these articles [Markov 1898] deals
with a part of the proof of the CLT based on considerations relating to moment
theory. The other two articles [Markov 1908/12; 1911/12] are concerned with limit
theorems for chains of random variables. The first paper [Markov 1898] mainly
emphasizes the moment theory aspects and, though it is analytically rigorous, it
does not grant the CLT any autonomous mathematical relevance (see Sect. 4.7.3).
By contrast, [Markov 1908/12] and [Markov 1911/12] are dedicated to the general-
ization of a “classical” stochastic structure, namely, independence. Neither of these
papers arose as a result of any significant applied approach, but rather simply from
the author’s interest in generalizing the CLT [Antretter 1989, 9 f.]. There is a break
between [Markov 1898] and [Markov 1908/12; 1911/12] which is conspicuous in
that the reason why the problem of normal distribution as limit distribution is in-
teresting is no longer primarily because it serves to illustrate analytical theories that
are “actually” important, but rather because a particular mathematical autonomy has
been achieved.

Alongside other influences yet to be discussed, this break could have been trig-
gered by Lyapunov’s proofs [1900; 1901b] of the CLT, of which von Mises was
apparently unaware, and in which this fundamental theorem of probability theory
was actually handled in a “modern” way for the first time. The articles [Lyapunov
1900; 1901b] mark the advent of a modern probability theory, in which the CLT and
the problems associated with it established a link to classical probability theory. One
essential element in the development of modern probability theory during the first
decades of the century was certainly also the emergence of entirely new stochastic
problem complexes, such as stochastic processes and strong laws of large numbers,
in addition to the aforementioned axiomatics.*

2 See [Purkert 2006b, 570; Hausdorff 2002, 53-55].

3 Von Plato [1994] elaborated on the importance of these new problems before the backdrop of a
world view that was shifting to an indeterministic outlook. For more details on von Plato’s charac-
terization of “modern probability theory,” see Chap. 8.
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5.1 Russian Contributions Between the Turn of the Century
and the First World War

Lyapunov’s proofs of the CLT around the turn of the century triggered a develop-
ment toward modern probability theory in Russia which was mainly pursued by
Markov (with the first few contributions by Bernshtein, as well) before the First
World War. The paper by Markov [1898], which was discussed above, and one by
Nekrasov [1898] played an important stimulating role for the articles Lyapunov
would pen.

5.1.1 Lyapunov’s Way Toward the Central Limit Theorem

Aleksandr Mikhailovich Lyapunov (1857-1918)* studied mathematics and physics
in St. Petersburg from 1876 to 1880, and then began a university career, which
led in 1893 to a professorship in Kharkov. Lyapunov was strongly influenced by
Chebyshev but, in contrast to other prominent members of the “St. Petersburg
school,” did very little work on moment problems, concentrating instead primarily
on mathematical physics and particularly on questions of stability. Lyapunov’s du-
ties in Kharkov also included lectures on probability theory. It can be assumed that
his role model Chebyshev provided orientation in this regard, as well. The notes
Lyapunov prepared on a corresponding lecture by Chebyshev from the years 1879-
80 were published in 1936 (see also Sect. 4.6.1). Lyapunov himself published only
two major works on the subject of probability theory, both containing proofs of
the CLT; the already very weak conditions in the first paper were diminished even
further by the second.

Lyapunov’s motivation for working on the CLT may have been conditioned by
his activities as a lecturer [Grigorian 1970-76, 562]. The deduction of the approx-
imative normal distribution of a sum of independent random variables, as given in
Chebyshev’s lectures, was now far from adequate to deal with the analytical de-
mands of the time being. Markov’s proof on the basis of moment theory required
a thorough introduction to moment problems and, for this reason, was not con-
sidered suitable for lectures that were predominantly oriented toward probability
theory itself. Indeed, even Lyapunov’s “elementary” considerations in his proofs
of the CLT turned out to be so elaborate that it is scarcely possible to recognize
a predominant didactic objective in them. However, one significant motivation for
Lyapunov might have been the competitive situation within the St. Petersburg school
and its wider sphere of influence. As early as the 1890s, Russian mathematicians

4 Biographical information for Lyapunov can be found in [Grigorian 1970-76], for instance, and
above all in the newer biography [Tsykalo 1988], which unfortunately was only published in
Russian.
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had repeatedly addressed problems of asymptotic error analysis,” with the articles
by Sleshinskii [1892] (see Sect. 2.5.4) and Nekrasov [1898] being most prominent.
Nekrasov played the role of “catalyst” for most of the probabilistic papers Markov
produced after the turn of the century; this presumably also applies to Lyapunov’s
proofs of the CLT.

5.1.2 Nekrasov’s Role in the Development of Probability Theory
Around 1900

Pavel Alekseevich Nekrasov (1853—1924),° who himself was not a member of the
St. Petersburg school, had worked as a professor at Moscow University since 1890.
From 1883, he was a member of the Moscow Mathematical Society, whose founders
had also included Chebyshev. He began to play an important role in this society
around 1887, serving at times at vice-president and president of this association,
which also published the journal Matematicheskii Sbornik. A storm was brew-
ing in 1915 between Nekrasov, who in the meantime had become a chief officer
in the Ministry for “Public Enlightenment” (i.e., the Ministry of Education), and
several members of the Petersburg Academy, foremost among them Markov and
Lyapunov. Their argument had to do with the introduction of subject matter into the
high school mathematics curriculum which the members of the academy deemed an
abuse of mathematics in its apparent goal “of transforming pure science into a tool
bringing religious and political pressure to bear on the rising generation” [Nekrasov
2004, 135]. Soviet historiography portrays Nekrasov’s character in a very negative
light; he is not mentioned at all in the Great Soviet Encyclopedia. Maistrov [1974,
240] characterizes Nekrasov’s contributions to probability theory as “completely
unfounded applications of this theory,” and he [1974, 242] argues that Nekrasov
only “masked his pseudo-scientific deductions with references to probability the-
ory.” In fact, Nekrasov’s political stance appears to have been formed by bigotry
and extreme nationalism.” On top of that, he was considered downright cantanker-
ous [Seneta 1984, 70]. The tension between Nekrasov and Markov went back at
least as far as 1898 and likely started with a mathematical rather than a political or
ideological dispute. The rivalry between the mathematical centers of St. Petersburg
and up-and-coming Moscow may have also played a part [Seneta 1984, 70].

To date only one of Nekrasov’s mathematical achievements has attracted par-
ticular attention and recognition from posterity, namely, his discussion of conver-
gence in the Gauss—Seidel method (1885, 1892) (see [Seneta 1984, 45 £.]). However,

3 A survey of the contributions on asymptotic error analysis by Russian mathematicians who stood
in Markov’s and Lyapunov’s shadow can be found in [Seneta 1984].

6 Biographical information on Nekrasov is found in [Seneta 1984, 68—71] and [Sheynin 2003]; see
also [Sheynin 2005b, 238-241].

7 This is especially apparent in Nekrasov’s correspondence with P.A. Florenskii (see [Sheynin
1989, 342; 2003, 343]); further material on this subject can be found in [Nekrasov 2004, 109-140].
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Nekrasov’s mathematical potency is also demonstrated by the fact that he was
awarded the “Bunyakovskii Prize” by the Petersburg Academy early in his scien-
tific career. From 1884 on, Nekrasov’s main mathematical interest was aimed at
complex analysis and the application and generalization of the Laplacian approxi-
mation method with regard to complex-valued terms. In his papers on this subject,
Nekrasov anticipated the development of the saddle point method, which is usually
attributed to Peter Debeye [1909] [Solovev 1997, 9 f.]. Nekrasov’s article [1898], in
which the author disclosed local and integral limit theorems for sums of indepen-
dent random variables without providing any proofs, should also be viewed in this
methodical context. These were essentially attempts to specify and generalize the
Laplacian concept of the discretization of random variables while proving the CLT.
Nekrasov paid the most attention to lattice distributed random variables and, in so
doing, took into account the possibility that the lattice distance could shrink as a
particular function of the number 7 of random variables, and that the limits consid-
ered for their sum could possibly increase as a function of 7, in the sense of “large
deviations” in today’s terminology. Nekrasov anticipated results here that would not
be rediscovered until a good half-century later [Seneta 1984, 55-60; Solovev 1997]
and that include local and integral CLTs for independent, lattice distributed random
variables as a special case. Meanwhile, for his theorems he established highly com-
plicated conditions that were difficult to apply in concrete situations. The subsequent
papers from the years 1900—1902, which covered a detailed discussion of the results
that had been published in 1898, are over 1000 pages in scope and, owing to their
“rambling and unclear presentation” [Seneta 1984, 62], make it practically impossi-
ble for the reader to adequately evaluate the work. One of Nekrasov’s conditions was
the requirement of analyticity of the generating functions ¢(z) = Xp;z* of each
of the discrete random variables with values x; in a domain of the complex plane
1 —¢e <|z| <1+ e (e > 0). This condition was considerably more restrictive than
requiring the existence of moments of arbitrary order for these random variables.
For the CLT, Lyapunov was able to significantly weaken the latter requirement in
particular.

Shortly after the publication of Markov’s two articles [1898; 1899] on the CLT,
Nekrasov began arguing with him about priority. Nekrasov’s remonstrances and
Markov’s responses occasionally appeared in the mathematical memoranda pub-
lished by Kazan University, and some were also published in Sbornik between
1899 and 1900. They have been recently translated into English [Nekrasov 2004,
22-58]. Moreover, detailed depictions of the battle between Nekrasov on the one
hand, and Markov, and, somewhat later, Lyapunov on the other hand are available
in [Seneta 1984, 60-65, 75] and [Sheynin 1989, 363 f.; 374], and so a summary
of the most salient points is all that is necessary here. Nekrasov attacked Markov
because the two papers [Markov 1898; 1899] ostensibly had some very close simi-
larities to his own article [Nekrasov 1898], which had been published first. Markov,
he claimed, had gleaned crucial information on the CLT without so much as a word
to acknowledge the suggestions and efforts of his colleague. When one considers
the completely different objectives and analytical methods employed by Nekrasov
and Markov in their work on the CLT, Nekrasov’s claim of priority seems rather
far-fetched. Interesting, though, is Nekrasov’s allusion to having sent Markov and



5.1 Russian Contributions Between the Turn of the Century and the First World War 197

several other mathematicians a very early offprint of his 1898 article. This remark
suggests that Markov had not only been stimulated to closer exploring the CLT
through Vasilev’s biography on Chebyshev, as stated by himself (see Sect. 4.6.4).
In fact, in the waning years of the 19th century, the CLT had become a subject
which many in Russian mathematics were attempting to approach from different
directions.

As Seneta [1984, 61] reports, Nekrasov used another attack on Markov to uni-
versally criticize the inexpediency of the “Petersburg methods,” i.e., the application
of moment theory, to probabilistic limit theorems. Nekrasov identified his actual
concern as that of refining the results achieved by Chebyshev and exploring them in
greater detail. In expressing this intent, but also in airing his criticism, he astound-
ingly allied himself with Lyapunov [1900, 359], who had characterized Chebyshev’s
and Markov’s treatment of the CLT as “convoluted and complicated,” and who had
set himself the task of seeking “more general conditions” for the CLT.

It appears that Nekrasov’s work exerted a certain influence on Lyapunov. Even
though he wrote that [Nekrasov 1898] did not include any proofs and deviated
entirely from his own investigations in terms of the conditions he established,
Lyapunov [1900, 361] himself acknowledged that Nekrasov had indicated his an-
alytical method, namely, elementary treatment of generating functions and, in this
context, considerations in conjunction with the “Lagrange series” for the series
expansions of inverse functions; this in turn pointed to the use of the Laplacian
approximation method and the saddle point method. These analytical methods in
particular, if in an absolutely different form, played a decisive role in Lyapunov’s
proof of the CLT.

It was the desire of both Nekrasov and Lyapunov to take the CLT seriously as a
distinct mathematical object and not simply regard it as an instance in which spe-
cific analytical methods could be applied. Nevertheless, Nekrasov’s rendering was
not according to the demands of the 20th century. So it remained an easy task for
Markov, and later for Lyapunov, to parry the attacks from their rival Nekrasov using
suitable counterexamples without ever having to delve into the actual mathematical
content of his papers. It is not only due to his political views that Nekrasov was
mocked or silenced in post-revolutionary Russia; with the very poor presentation
of his own work, he had also made it almost impossible for ensuing generations to
conduct any serious study of his achievements in probability theory.

Thus Nekrasov remains relegated to the role of a driving force on the path to
the modern state of probabilistic limit theorems, a role he continued to play after
the turn of the century. Although Markov and Lyapunov enjoyed a good personal
relationship [Grodzenskii 1987, 72 f.], the atmosphere of competition that prevailed
after Lyapunov’s success with the CLT gave Markov an important motivation to
immerse himself more deeply and even more intensively in probability theory. Yet
also Nekrasov was responsible for a sizable share of Markov’s growing interest
in probability theory. As emerges from the correspondence between Markov and
Aleksandr Chuprov [Ondar 1981 1® and from Markov’s response [1912/2004, 74 f.]

8 See also [Seneta 1984, 65-68] and, for additional letters and corrections, [Sheynin 1996b, 61-84].
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to a new allegation leveled by Nekrasov (see [Nekrasov 2004, 59-72]), Markov was
inspired to examine the weak law of large numbers for chains of random variables as
a result of comments made by Nekrasov [1902]. Markov [1906/2004] also wanted
to use his paper on this subject to disprove Nekrasov’s presumption of the necessity
of pairwise independence of the random variables under consideration for the weak
law of large numbers.

5.1.3 Lyapunov Conditions and Lyapunov Inequality

Lyapunov [1900] proved the following theorem:
Let x;, x2, x3, ... be an infinite sequence of independent random variables (“‘vari-
ables indépendantes”), for which the expectations Ex; =: «o;, E(x; — a;)? =: a;,

noo
and E|x}| =: [; exist, respectively. Furthermore, let A, := % and L3 :=
maxi<; <n /;. Under the condition
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has an upper bound £2, independent of z;, z, such that
2, >0 (n— 00).

The condition (5.1) is met, for example, if the absolute moments of third order /; of
each single random variable have a uniform upper bound C3, and all variances a;
have a uniform lower bound c. Then we have

L2 .1 C?
—n 3<—n3->0
Ay c

Lyapunov did not give any closer specification of the character of the probability
distributions under consideration. In the proof he restricted himself to the discussion
of random variables which respectively take a finite number of values only. He made
plausible, however, that all results were valid even for random variables with an
infinite number of possible values, if these random variables could be considered as
being generated by means of a limit process from the former ones.

Lyapunov [1901a;b;c]® was even able to further weaken the conditions for his
theorem, by presupposing the existence of the respective expectations «;, a;, and

9 [Lyapunov 1901a;c] only contained the results; these were thoroughly discussed and proved in
[Lyapunov 1901b].
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d; := E|x;—a;|**% (8 > 0 arbitrarily small), and by requiring that, instead of (5.1),"°

(di +dp+ -+ dn)?
(a1 +az + -+ an)?*?

- 0. (5.2)

The now so-called “Lyapunov inequality” played an important role in its origi-
nator’s works. The inequality had been applied in the 1900 article (on pp. 372 f.)
without proof, in [1901b, 2 f.] Lyapunov gave an explicit formulation, and he also
hinted, if in a very concise and somewhat obscure manner, at ideas of proof for the
inequality.'! His “lemma” concerning the inequality was as follows:

Let
7 " i
xx" X"

be a sequence of positive numbers, and let f(x) be any function whose values
SO ST fET),
are all positive. If one generally sets
SO+ O+ f67) =0 f (),
and by |, m, n understands any numbers which are according to the inequalities
I >m>n=>0,

then one has'?
O reoxm) ™ < (30 £ (0 fox)" " (5.3)

For random variables X, which can be considered, in the general case, as “limits”
of such variables with a finite number of values, an immediate consequence (not
explicitly stated by Lyapunov) of the lemma above is'?

10 The condition in [Lyapunov 1901a] was, as Lyapunov [1901b, 4] explained, considerably weaker
than (5.1), however still somewhat stronger than the “ultimate” version (5.2), which was introduced
in Lyapunov [1901b;c].

! For a complete proof, which tries to follow Lyapunov hints, see [Uspensky 1937, 265 f.].

12 In a strict sense, the following inequality has to obey a “<” rather.

13 Strictly speaking, the “Lyapunov inequality” (5.3) is a particular case of the “Holder inequality,”
which was stated and proved by Otto Holder in [1889] (in a more specialized form by Leonhard
James Rogers in [1888] already), and which is as follows: Let ay, ..., a,,; by, ..., b, be nonnegative
numbers and let f + % = 1, where r, s are positive; then we have

Yoaib = (QoanT Qb

Lyapunov’s inequality can be derived from Holder’s, by setting
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for positive z;. In the standard monograph on inequalities [Hardy, Littlewood, & Pdlya 1934,
24-27], both Holder’s and Lyapunov’s inequality are proved by means of a more general inequality.
The most general version of the Holder and the Lyapunov inequality, respectively, for Stieltjes



200 5 The Way Toward Modern Probability

(ElX|™)' ™" < (BIX ") " (BIX]))" " (5.4)

By arepeated and partially tricky application of his inequality, Lyapunov [1901b,
4 £.] showed that condition (5.2) holds for any § such that 0 < § < 1, if absolute
third-order moments exist for all random variables and if (5.1) is met. This consider-
ation also implied that (5.2) is a weaker condition than (5.1), because in the former
condition the existence of moments E|x; |3 is not required.

In principle, Lyapunov’s proofs of the CLT used the basics of Poisson’s deriva-
tion of an approximate normal distribution for sums of independent random vari-
ables. His analytic rigor, however, followed the practices of the post-Weierstrassian
era to a large extent. On the other hand, Lyapunov was still influenced by conven-
tional St. Petersburg school methods. So he gave an “elementary” exposition on
the basis of discrete random variables each of which had finitely many values only,
and in all possible cases he used sums rather than integrals. Altogether, these fea-
tures were connected with a rather long-winded and intricate exposition. Lyapunov
[1900, 360 f., 362-364] quite comprehensively discussed preliminary work of other
authors and the main difficulties he had to overcome. He particularly emphazised
trigonometric methods, especially the application of Dirichlet’s discontinuity factor
for representing the probability of a sum. Following [Czuber 1891, 254], Lyapunov
gave credit to Glaisher [1872a;b] for being the first to use this method when dealing
with sums of random variables. At the same time, Lyapunov called the contribution
of Cauchy/Sleshinskii to the CLT for linear combinations of errors (see Sect. 2.5.4)
“too restrictive” and did not consider this approach to be applicable for more gen-
eral situations. Nonetheless, after analyzing Lyapunov’s proofs, one may conclude
that he was strongly influenced by Cauchy’s methods. Lyapunov’s discussion of
possible problems arising from the use of the Dirichlet factor comprised difficulties
with the interchange of the order of integration, and—yprobably clinging to Czuber’s
[1891, 253-257] description—the by no means evident negligibility of the “tail”
when applying the Laplacian method of peaks to the expression obtained by use of
the Dirichlet factor (cf. Sect. 2.2.4). In order to overcome this difficulty, Lyapunov
introduced, in addition to the considered n random variables, a normally distributed
auxiliary variable with zero mean and with a variance vanishing as n — co. Pos-
sibly, Lyapunov came across this idea when reading Czuber’s monograph on er-
ror theory, where Crofton’s contribution (see Sect. 3.3.2.2) was discussed in detail
[Czuber 1891, 91-97]. Lyapunov evaded said problems with interchanging the or-
der of integration by assuming that his random variables could only take finitely
many values, except for the auxiliary variable. He [1900, 379] argued that his re-
sults would also be valid for random variables that “take infinitely many possible
values.” Lyapunov justified this by merely stating that one could consider arbitrary

integrals can be derived by suitable limit processes from the original inequalities. It deserves some
interest that Feller [1971], in his popular monograph on probability theory, exclusively refers to
Holder’s inequality. Loeve, in his well-known 1955 book (I refer to the second edition from 1960)
on p. 156 proves Holder’s inequality, and on p. 172 poses Lyapunov’s as a problem to solve. There
exists, as it seems, a “western” tradition of giving priority to Holder rather than to Lyapunov in
context with those inequalities.
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random variables as limits of discrete random variables with finitely many values.
Thanks to the particular probability density of the auxiliary variable, the representa-
tion of the probability for the sum of n» random variables plus the auxiliary variable
by convolution made certain algebraic-analytic manipulations possible such that ex-
plicit application of the Dirichlet factor became superfluous, as Lyapunov [1900,
369] underlined. The general statement that his proof was based on using charac-
teristic functions,'* apparently goes back to Lyapunov’s discussion of the Dirichlet

factor and his prevalent consideration of trigonometric terms like Y f(z;)e% V-1
(f designating a probability function of a random variable with finitely many values
z;). In fact, it is possible to reconstruct Lyapunov’s proofs from the point of view
of the theory of characteristic functions, as shown in [Uspensky 1937, 289-292].
This argumentation, probably going back to [Cramér 1923] and [Bernshtein 1926,
8—12], has common features with Lyapunov’s approach, but in a mere abstract way.
Lyapunov never used general concepts such as inversion formula or correspondence
between convolution of distributions and products of characteristic functions, not to
mention the correspondence between limits of distributions and limits of character-
istic functions as they were later elaborated, most notably by Lévy.

A particular characteristic of both proofs of Lyapunov are explicit, though very
complicated, expressions for an upper bound £2, [Lyapunov 1900, 385; 1901b,
16 f.]. Lyapunov [1900; 1901b] in both papers showed that his bounds are asymp-
totically of an order of magnitude k’%.” Doing so he realized Chebyshev’s demand

for giving explicit error bounds regarding the approximation of the distribution of a
(suitably normed) sum by the normal distribution, and he solved an important prob-
lem of the “Petersburg” research program, even though he [1900, 386] appeared to
be unhappy about the “roughness” of his estimates.

Lyapunov’s work on the CLT appears modern insofar as it brought full mathe-
matical autonomy to this important probabilistic problem. To Lyapunov, the CLT
was neither of priority for error calculus or distribution statistics nor did it serve
to illustrate “really interesting” analytical problems. This is also shown by the
fact that it was Lyapunov’s [1900, 360] goal to find a “direct” proof with such
analytic methods which corresponded to the “true nature” of this theorem rather
than moment methods. On the other hand, in his speaking about mathematics,
he was still removed from a “modern” point of view ("modern" as defined by
Mebhrtens). In his obituary for Chebyshev, Lyapunov [1895], maintaining that only
such mathematical investigations were valuable which were based on “scientific

14 See, for example, [Sheynin 1989, 362]. Logve [1978, 295] even wrongly claims that Lyapunov

introduced the designation “characteristic function.”

15 Simplifying the original version to some extent, Uspensky [1937, 296] estimated $2,,, under the
S EIXI? 1
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An especially simple upper bound £2,, of the same order of magnitude was found by Cramér [1923]
(see Sect. 5.2.8.1).
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or practical applications,”!® presented himself as a sheer “counter-modernist.”

Furthermore, to the modern reader, Lyapunov’s analytic style appears old-fashioned.
On the one hand, this is due to his long-winded presentation, because he does not
explicitly use characteristic functions. On the other hand, Lyapunov did not always
meet the demands of analytical rigor, as shown by his only vague arguments in
favor of the validity of his results for generally distributed random variables.

5.1.4 Sketch of Lyapunov’s Proof for the Central Limit Theorem

Let (X) be a sequence of independent random variables, each taking a finite num-
ber of values only. The main goal of both the first [1900] and second [1901b] articles
is to prove, under suitable “Lyapunov conditions,” that

n n n
ZZVaer < Z(Xk —EXy) <22 ZZVaer
k=1 k=1 k=1

1 [
N

where A — 0, uniformly for all z1, z,, if # — co. Lyapunov in the second article
extensively uses results of the first. The main “trick” of both articles is the introduc-
tion of a random variable &, independent of X1, ..., X,, which has a zero mean and
a variance Varf = 2«2, k being initially an arbitrary positive constant. The core of
both works consists in an estimate of the term |R(g, /)|, where

e dz + A, (5.5)

n (g+h)/ ZZZ,=1 VarXy 5

R(g.h) := P(—h <3 (X)—EXp) +E-g < h)_\/iﬁf( e dz.

k=1 g—h)/\/2 X} — VarXx

In this expression, g is defined by

_Z1t+22

and / is any positive number.
If f denotes the probability function of the random variable Xy, then we have

P(—h<Sn+§—g<h)

1 h—sn+g x2

=5 Z fl(Ul)"'fn(Un)/ e a2dx (5.6)

2K _h_
ﬁmeW(Xl) ..... UneW(X,) h=sn+g

16 An English translation of the respective text passage is in [Maistrov 1974, 190].
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[Lyapunov 1900, 368], where S, := Y 7_,(Xx — EXy), and s, :=
Y i—1(ue — EXg); W(Xg) denotes the range of all possible values of Xp.
By means of

o0 . 2 t a
/ Sml W=t = Jn / e dx, (5.7)
0 0

from (5.6) it can be deduced that

P(~h<Sy+&—g<h)

zz/ sin ht Z fl(Ul)"'fn(Un)COS(Sn_g)te_KZtZdt (5.8)
0

T t
v EW(X1),...,un €W (Xy)

[Lyapunov 1900, 369]. In the same way as already Poisson in his approach to the
CLT (see Sect. 2.2.2), Lyapunov sets

> S1(W1) -+ fu(Vn) cOS(s, — @)1

v1 GW(X]),...,Uy, eW(X,)
—:Red; - Ape ¥V=1 (5.9)

where

A= Y fiu)eWe EXO= (5.10)

v €W (Xy)

From a modern point of view the quantities A; may be interpreted as the char-
acteristic functions of X — EX}. Lyapunov does not discuss any rules regarding
these quantities, however, and he does not explain how to apply them generally
in the context of sums of independent random variables. With the abbreviations
pke"kﬁ = Ax and 0 := 01 + -+ - + 0, from (5.8), under consideration of (5.9)
and (5.10), ensues:

2 [ sinht
P(-h<S,+&—g<h)= E/ smt p1 -+ Ppp cos(o —gt)e_"ztzdt (5.11)
0

[Lyapunov 1900, 368 f.; 1901b, 6]. On account of (5.11) and (5.7) it follows that

2 [ sinht
R(g.h) = = / SO
T Jo t

where L, .
T :=py--pacos(o —gr)e™ " —cos gre™" Th=1Vaki/2,

By use of elementary inequalities, Lyapunov [1900, 370-376, 384 £.; 1901b, 9 {.]
for0 < t < 11 < oo infers
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2 dt 1
R(g. ) <—/ k /|T| —/ e pudi + Ty
T K2t

1

2
+ 2”—
nt2 ) o, VarXy

2 [T n . n . dt
+ E/ <|P1 P — e 1> Tk=1 VarXe /2| 4 |0|e_t2 Yk=1 Verk/Z)T' (5.12)
0

n K
e~ Li=t VaXc /2 T/ tp1 -+ - pndt+
0

With respect to the hitherto described arguments, the first and second arti-
cles are almost identical. With regard to the estimates of the terms pj --- pp,
lo1---pn —e! 2 Tk=r Varkic/ 2|, and |o| occur major differences, because of the dif-
ferent conditions in both papers. In the following, only the chief steps of proof in
the second article [1901b] (which automatically also covers the results of the first)
are analyzed. Furthermore, Lyapunov’s abbreviations

n n
A= ZVaIXk and D := ZEle —EXk|2+8
k=1 k=1

are used.
For 7 and 7; Lyapunov assumes

D
4er <1, <1, D2t < k2_8, (5.13)

where 0 < § < 1 is an arbitrary number initially, and k is the positive solution of
the equation k273 = 8(1 — k?2). Under these assumptions the following estimates
hold:

lp1--pn— e_At2/2| < 2D e (A=4DTNI%/2 g4y €]0; 7],
p1 - pu < e ATADTIR/2 g0y 10: 7]
o1 P < e~ (A—4DTDI?/2 oy €]0; 1],
lo| < D227 for 1 €]0; 7. (5.14)

In his derivation of these estimates Lyapunov makes essential use of a particular
case of “his” inequality (5.4), namely,

(VarX)**® < (E|X —EX|*1%)2.

If one substitutes the inequalities (5.14) in (5.12), and augments the right side of
(5.12) by enlarging the upper limits of integration to oo, then it follows

1 4
IR(g. M| < —5=5e™ + e AT/2 4
K

2 ng, At?
w2 32\ D
& —(—) 2 = L. (5.15)
g A  A2+8
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where the abbreviations ¢ (= 1 — 4%r8 andg; (= 1— 4%1’18 are used, and the
conditions (5.13) are presupposed. Because the right side of (5.15) does neither
depend on g nor on £, it can be considered as a uniform upper bound of |R(g, )|
[Lyapunov 1901b, 11-16].

At this place the validity of the second “Lyapunov condition”

2
0<6<1:

257 -0 (n— o) (5.16)

becomes essential.!” Taking (5.16) into account, the parameters 7, 71, and « in (5.15)
can be chosen, under the constraint (5.13), in such a manner that L tends to 0 as
n — oo [Lyapunov 1901b, 16—18]. The probability (5.5) can be expressed by a linear

combination of several probabilities of the form P (—h <Sp+é&—g< h) (h being

suitably chosen) and a further probability, which depends on the auxiliary variable,
and which vanishes for n — oo. In this way it can be finally justified that the quantity
A, defined in (5.5), tends to 0, uniformly for all z;, z [Lyapunov 1900, 364-366,
378-381;1901b, 7 f.].

5.1.5 Markov’s Reaction

Lyapunov’s proofs were written in French and published in journals which were
also available in Western Europe, at least in greater libraries. Also, abstracts of
Lyapunov’s most important results had appeared in the Comptes rendus, and there
was a review of [Lyapunov 1900] in the Jahrbuch iiber die Fortschritte der Mathe-
matik (JFM 31.0228.02). However, there was hardly any attention drawn to his work
outside Russia. A significant exception was Georg Bohlmann [1901, 913], who, in
his survey of life insurance mathematics in the Encyklopéidie der Mathematischen
Wissenschaften, hinted at the contributions of Chebyshev, Markov, and Lyapunov
to the CLT.'® This bibliographical reference in a primarily application-oriented arti-
cle might have missed the proper audience, though. Except for marginal exceptions,
ambitious analysts outside Russia did not consider probability theory a promising
field of activity until the end of World War 1. Only then did Lyapunov’s contribu-
tions receive increasing attention, as can be seen with [P6lya 1920] and [Lindeberg
1922b;c], for example.

Inside Russia, Lyapunovs proofs had especially impact on Markov, as it seems.
Only after the turn of the century, in particular between 1906 and 1913, when he
was able to do significantly more research after his retirement from teaching—at the
age of 49 (!)—was Markov increasingly engaged in probability theory. Nekrasov’s
influence on this development has already been described above. In a similar way,
however, also Lyapunov’s—at least indirect—influence on Markov’s probabilistic

I71f (5.2) holds for § > 1, then this condition is also met for all § < 1.

'8 There is also some evidence that Hausdorff became interested in Lyapunov’s work before 1915.
Concrete results of this interest, however, cannot be found before 1923 (see Sect. 5.2.5).
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work can be observed. One may assume that Markov, despite his friendship with
Lyapunov, felt challenged by him [Schneider 1988, 443]. This challenge seems to
have consisted in Lyapunov’s criticism of Markov’s application of moment meth-
ods in probability theory, where the former used almost the same arguments as
Nekrasov.

Markov [1908/13/2004] actually succeeded in proving the CLT under the
Lyapunov condition (5.2) by moment methods. This success was based on the
newly introduced device of truncated random variables. If (Xj) is a sequence of
random variables, each of which has a zero mean and an infinite range of values,
and if (V) is a sequence of real numbers tending to oo, then the random variables
X ..» Where
P { X}, for |Xk| <N,
nk =10 for|Xg| > Ny,

are called “truncated.”"”

Markov [1908/13/2004, 145-148] showed that, given a sequence of independent
random variables (X} ) with zero expectations which obey the Lyapunov condition
(5.2), a sequence (N, ) can be found such that

n
Z P(X., # Xz) =0 (5.17)
k=1
and
N2 EX2 "
B—: -0, Dk 113,, — 1, where By, := I;Vaer. (5.18)

(Here and in the following all limit assertions are to the condition n — o0.) The
truncated random variables have moments of arbitrary order, and, by virtue of (5.18),
Markov in a way analogous to his method in [1899] proved that, for all m € N,

AP (PR N Y
E|=—/—/—7——F¢) — —/ xMe ™ dx. (5.19)
V2B, N
On the other hand, Markov [1908/13/2004, 144] from (5.17) inferred that
k=1 Xoi ( k=1 Xk )
Pla<==2_1k - p|-P|a< 1 X <b
( V2B, «/ZB,,

Markov’s general theorem on the correspondence between limits of moments and
distributions [Markov 1898] (see Sect. 4.6.4) implied

n_ X/ 1 b
P a<M<b —>—/ e dx.
2B, VT Ja

19 In a strict sense, for each n € N, different truncated variables are assigned to the X} in de-
pendence on the respective value of N,. Therefore, contrary to Markov’s original notation, the
truncated variables are specified by a double index.

(5.20)
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Taking into account (5.20), finally the CLT

D k=1 Xk 1 /b—2
P(a<—<b — — exdx
V2B, VT Ja

followed.?”

A closer examination of Markov’s proof yields—if from the present point of view
only—a surprising consequence. The existence of a sequence (N, ) and a sequence
B, > 0 (no longer necessarily related to variances) such that (5.17) and (5.18) hold,
is the weakest possible condition which implies that the distributions of suitably
normed sums Yy _, Xx/+/Bn of independent random variables which are suffi-
ciently centered around the point of origin (by the condition EXy = 0, for example)
tend to the standard normal distribution. In exactly this form, Lévy in 1931 estab-
lished a sufficient condition for the convergence to the Gaussian law, which, under
the restraint of summands that are asymptotically negligible with respect to the total
sum, was even necessary, as he proved in 1935. In the case EX; = 0 this conver-
gence actually follows from Markov’s considerations, in particular from (5.19) and
(5.20). Discussing CLTs for random variables without second-order moments, and
considering sums of random variables with a general norming—different from the
standard deviation—was still beyond Markov’s point of view, however.

Bernshtein [1922; 1926] (see Sect. 5.2.7), without any doubt influenced by
Markov’s approach, was the first to draw such considerations which would later
play an important role in the history of the CLT. More explicitly than Bernshtein,
and independently of him, Lévy [1925b] (see, for example, Sect. 5.2.6.7) stressed
the possibility of a general, “non-classical” norming. However, when the method
of truncation was adopted by Lévy around 1931, he apparently had not con-
crete knowledge of Markov’s and Bernshtein’s contributions. In this context, he
[1931, 132] rather referred to the work of Kolmogorov and Khinchin, who signifi-
cantly advanced Markov’s methods. Thus, Lévy was at least indirectly affected by
the ongoing impact of Markov’s idea of truncation.

Presumably, Markov’s numerous works on chained random variables were moti-
vated by the author’s intention to reduce requirements and extend validity of the
weak law of large numbers and the CLT as far as possible. Markov used “his”
method of moments also in this field. By modifying the idea of generating func-
tions he showed that the moments of arbitrary order of the normed sum converge
to the corresponding moments of the standard normal distribution. Three important
contributions to the CLT for homogeneous simple and also complex Markov chains
were translated shortly after their appearance from the Russian [Markov 1907/10;
1908/12; 1911/12].%!

Markov’s quest for general conditions is also witnessed by the “Markov condi-
tion” for the validity of the weak law of large numbers

20' A comprehensive discussion of Markov’s proof is given by Uspensky [1937, 383-395].

21 Surveys of pertinent work by Markov can be found in [Maistrov 1974, 215-217; Sheynin 1989,
364-370; Yushkevich 1970-76b, 128 f.; Basharin, Langville, & Naumov 2004; Seneta 2006].
English translations of [Markov 1906/2004; 1908; 1910] are in [Sheynin 2004a].
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p (‘ Yro(Xi —EX))

n

>5)—>O Ve >0,

(X;) being a sequence of independent random variables. By means of truncated
variables Markov proved in the third edition of his book on probability theory (1913)
that this law is obeyed if there exists § > 0 such that E|X;|' ™% has a finite upper
bound independent of i.?> With this result Markov already came rather close to
those conditions, found by Kolmogorov in 1926, which were also necessary for the
weak law of large numbers under the general assumption of independent random
variables with expectations [Maistrov 1974, 261 f.].

5.2 The Central Limit Theorem in the Twenties

Following the interruption caused by the First World War, probability theory began
to be discovered as a field for ambitious analysts, even outside Russia. The CLT con-
sequently ceased to be an issue merely for “users,” such as astronomers, geodetics
specialists, insurance specialists, or economists—who had actually produced quite
impressive results in the second half of the 19th century, particularly in the field of
error theory, although their work was little noted by mathematicians—and became
an object of study within mathematics itself. The impetus gradually developed to
move toward a far-reaching generalization of the classic limit theorems. In 1922
the development of the CLT reached one of its first peaks when Bernshtein and
Lindeberg established similar sufficient conditions for the theorem, which later also
proved to be essentially necessary.

5.2.1 A New Generation

The study of limit theorems for probability distributions was the only aspect of the
emerging modern form of probability theory that was linked in any significant way
to the results produced in the 19th century. Important figures in promoting this field
in the 1920s included Bernshtein, Cramér, Lévy, Lindeberg, von Mises, and Pélya.

Richard von Mises (1883—1953)%% studied at the “Technische Hochschule” in
Vienna from 1901 to 1905, majoring in engineering. Emanuel Czuber, the lead-
ing figure in premodern probability theory and statistics in the German-speaking
countries, was a professor there. In 1908 von Mises received his doctorate from
the “Technische Hochschule” in Vienna, and in the same year he completed
his “Habilitation” degree at the ‘“Technische Hochschule” in Briinn, qualify-
ing him to teach as a university lecturer. In 1909 he was appointed associate
professor (“auBerordentlicher Professor”) in applied mathematics at the University

22 For a discussion of Markov’s proof see [Uspensky 1937, 191-195].

23 For von Mises see [Bernhardt 1984; 1985; Siegmund-Schultze 2004]. I thank Reinhard
Siegmund-Schultze for informing me about biographical details.
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of Strassburg. During the First World War he served in the Austrian air force. Von
Mises’s academic publications before the First World War were mainly concerned
with theoretical and mathematical issues involved in mechanical engineering and
hydrodynamics; some degree of interest in statistical questions is also evident in his
article on “KollektivmaBlehre” [1912], however. After the war, following brief peri-
ods working at the University of Frankfurt/Main and the “Technische Hochschule”
in Dresden, von Mises moved to the University of Berlin in 1920 to become the
director of the newly formed institute of applied mathematics. Until the Nazis’
seizure of power in 1933 he was engaged in extremely lively and varied activities in
the fields of research and teaching.?* The start of his more detailed studies of prob-
ability theory, dating from around 1919, probably also owed something to the fact
that this was an area that was relatively poorly researched from the mathematical
point of view, so that he saw it as offering opportunities to distinguish himself—
as he was afraid of losing his professorship in Strassburg toward the end of the
First World War.?> His study on probabilistic limit theorems [von Mises 1919a]
had a substantial influence on developments leading toward modern probability
theory in Western Europe, where researchers—including von Mises—were initially
largely uninformed about more recent studies by Russian mathematicians (with the
exception of Pélya to some extent.)

Georg Pélya (1887-1985)%° was an exceptionally versatile mathematician,
whose main focus was in pure analysis and the theory of numbers. He taught
at the “Eidgendssische Technische Hochschule” in Ziirich from 1914 to 1940. From
1919 he published, partly in friendly competition with Lévy, some articles on (the
later so-called) stable probability laws and the moment theoretic background of the
“central limit theorem,” which term he coined in 1920. The purely analytical aspect
was obviously in the foreground of his work. Pdlya had discovered probability
calculus as a treasure trove of interesting analytical problems already in his doc-
toral thesis (1912). He had a remarkably good knowledge of Markov’s work which
appeared after the turn of the century and by which he was presumably stimulated
to a more intensive preoccupation with probability theory, particularly since its
analytical background was closely connected to his own interests. In the following
period, Pdlya dealt with stochastic problems time and again, although he did not
really focus on probability theory.

At the beginning of his career Jarl Waldemar Lindeberg (1876-1932)%’ devoted
himself to variational calculus and potential theoretical problems as an “adjoint pro-
fessor” for mathematics at the University of Helsinki, where he had also studied.
In 1920 he published his first work on probability calculus, the results of which
he fundamentally generalized once again in his famous proof of the CLT under the
“Lindeberg condition” (1922). Thereafter, Lindeberg dealt mainly with questions

24 See [Antretter 1989, 3248, 77 f.] for von Mises’s activities in probability and statistics during
that period.

23 The article [von Mises 1919a] was submitted to the Mathematische Zeitschrift on 31 August
1918.

26 For Pélya see [Alexanderson & Lange 1987].
27 For Lindeberg see [Lindelof 1934; Elfving 1981].
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of correlation theory. He could not use the broad recognition of his probabilistic
achievements, which began with a certain temporal delay only, for an improvement
of his professional situation, however.”®

Paul Lévy (1886—1971) had started mathematical work with integral equations,
potential theory, and functional analysis.”” In 1919, as a professor at the “Ecole
Polytechnique,” Lévy had to give three lectures on error theory, specifically on the
role of the Gaussian error law. This was the beginning of his thorough preoccu-
pation with probability theory.’” Lévy only knew the rather elementary books of
Bertrand, Poincaré, and Borel on probability calculus and had no knowledge of
Cauchy’s, Chebyshev’s, Lyapunov’s, or Markov’s results. Without any wider pre-
vious knowledge and without consideration of von Mises’ contributions, Lévy de-
veloped a theory of characteristic functions and used this for a proof of the CLT
under very general conditions. Lévy’s article on this proof, however, was published
only shortly after Lindeberg’s proof, which was done under even weaker conditions.
Focusing on the analytical aspects of probabilistic problems, Lévy encountered re-
sistance from Borel, the leading mathematician in France, who wanted to develop
probability calculus rather interdisciplinarily, according to the classical point of
view. Lévy’s self-confidence as a mathematician was so strong that he continued
the examination of “his” problems. Perhaps as a consequence of Borel’s criticism,
he developed the style and methodology of his contributions toward a stronger em-
phasis on “intuitive” stochastic concepts during the thirties (see Sect. 6.2.2). No
mathematician has contributed to limit distributions of sums of independent random
variables in such a density as Lévy between 1920 and 1935.

Sergei Natanovich Bernshtein (1880—-1968) reconciled the tradition of the St.
Petersburg school with Western European mathematical methods.?' He studied in
Paris and Gottingen (1898—1903) and then returned to Russia, where he worked at
Kharkov University from 1907. At first he dealt with partial differential equations
and approximation theory.’” Influenced by Markov’s contributions, particularly to
sums of nonindependent random variables, around 1910 Bernshtein started his work
on probabilistic limit theorems. He was particularly interested in sufficient and also
necessary conditions for the convergence of suitably normed sums of (not necessar-
ily independent) random variables to the Gaussian distribution. During the twenties
he succeeded in publishing fundamental contributions to this field, based on the
method of characteristic functions. Although highly esteemed in the Russian math-
ematical community, with his probabilistic work Bernshtein was later in the shadow
of the younger mathematicians Kolmogorov and Khinchin.

28 Cramér [1976, 514] also describes Lindeberg as a master in the art of living, for whom the
professional career was not too important.

2 See the autobiographical notes [Lévy 1970; 1976, 1-6].

30 Notes on these lectures have recently been published, see [Lévy 1919/2008] and [Barbut &
Mazliak 2008].

31 See [Yushkevich 1970-76a] for biographical details. Seneta [1982] concentrates on Bernshtein’s
probabilistic work. In these two contributions references can be found to secondary literature,
which is more detailed, but published exclusively in Russian.

32 Especially with regard to this field see [Akhiezer 2000].
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Harald Cramér (1893-1985)* had first dealt with problems of analytical number
theory, from which he acquired the analytical capacity, particularly regarding
Fourier methods, for his later work in stochastics. He also worked as an insurance
mathematician from 1918 since he did not earn enough as an assistant professor
at the University of Stockholm. In connection with these professional activities he
developed an interest in probability theory of which particularly the work of Pélya,
Lindeberg, and Lévy impressed him. The first material probabilistic contribution of
Cramér—an improvement of the upper bound given by Lyapunov for the deviation
between the actual distribution of a normed sum of independent random variables
and the approximating normal distribution—appeared in 1923. This problem was
also important in the estimation of insurance risks in practice. Cramér devoted
himself to the problem of improving Lyapunov’s upper bound in detail during the
following years, apparently not used very much in his insurance activities. For this
aim he examined, in the tradition of the hypothesis of elementary errors of Scandi-
navian statistics, the asymptotic behavior of Charlier and Edgeworth series. Due to
the status which Cramér had achieved in the field of stochastics, he was appointed
to the newly created chair of actuarial science and mathematical statistics at the
University of Stockholm in 1929, where he stayed until his retirement in 1958.
The “Stockholm group” organized by Cramér was an important center of stochastic
research.

One characteristic that all of these persons had in common was that they were
not trained with the main emphasis in probability theory, but brought in their, partly
already longstanding, analytical research to the “newfound” area. The analytical
methods of differential and integral equations, Fourier analysis, analytical theory of
numbers, as well as measure and integration theory proved to be particularly useful
for probabilistic problems. On the other hand, this analytical orientation of the early
“modern” probabilists also influenced the style and methods of their discussion of
stochastic problems.

5.2.2 Von Mises: Laplacian Method of Approximation, Complex
and Real Adjunct

Von Mises’s “Fundamental Limit Theorems of Probability Theory” (“Fundamental-
sitze der Wahrscheinlichkeitsrechnung”) on the one hand consisted of limit theo-
rems for distributions of linear combinations of independent random variables, or in
von Mises’s [1919a, 76 f.] own words “linearen Faltungen von Kollektivs.” On the
other hand, among these “fundamental theorems” were also limit theorems accord-
ing to Bayes and Laplace, for the a posteriori probabilities of distribution parameters
which were to be determined from the results of a test series.>* Von Mises’s chief

33 See the autobiographic sketches [Cramér 1976] and [Cramér & Wegman 1986].

34 The simplest case of a limit theorem of this kind had been introduced by [Laplace 1774] (see
[Stigler 1986, 131-135; Hald 1998, 167—170]). The problem was to calculate the a posteriori prob-
ability that the success probability p in a Bernoulli process consisting of a large number of tri-
als is within a certain interval around the observed relative frequency of success. Based on the
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methods were the advancement of the Laplacian approximation principle from the
point of view of “modern” analysis and the discussion of distributions by their real
or complex “adjuncts,” that is, in modern terminology, by their Laplace or Fourier
transforms, respectively. Von Mises chiefly made explicit references to the contri-
butions of Laplace, the work of Chebyshev (as described by the Chebyshev biog-
rapher Vasilev [1900]), and to Markov’s papers (as contained in the appendix of
the German translation of the latter’s “Probability Theory” [1912]). However, von
Mises’s knowledge of the work of Chebyshev and Markov was merely superficial, as
evidenced by the fact that he cited it only partially and in a thematically completely
wrong connection (cf. [von Mises 1919a, 51], for example).

Von Mises’s [1919a, 20 f.] newly conceived notion of “distribution”
(“Verteilung”) as a monotonically increasing function, being right continuous
and having limit 0 as x — — oo and limit 1 as x — oo, was important for generality
as well as precision of analytic exposition. Apparently one of the first to do so, von
Mises represented probabilities, as well as higher moments, by Stieltjes integrals
referring to those distributions.*> The use of Stieltjes integrals, as well as the ana-
Iytic skill employed in dealing with moments, proves that von Mises was informed
about the current development of moment theory, at least in its main features.

Based on Stieltjes integrals, von Mises formulated and proved his local and
integral CLTs for real- and vector-valued random variables as statements about con-
volutions of discrete probability functions, densities, and distribution functions, res-
pectively. So, his exposition was purely analytic and did not resort to probabilistic
interpretations and concepts (to which he dedicated the second, substantially shorter
section of his work).

Concerning the Laplacian principle of approximation von Mises [1919a, 7-15]
established the following theorem:

Let (fx)xen be a sequence of integrable functions R — C with the following
properties (which, as von Mises indicated at several places in his article, could be
generalized even more):

(i) foreach index k, real numbers a; and si can be found such that £} (ax ) exists,

filag) =1, f'(ax) = 0,and f'(ax) = =253

(ii) for all & # O within a neighborhood of zero independent of k,
|w| exists and has an upper bound independent of k;

(iii) each function f; has the following property: for each yo >0 there exists

8% > 0 such that for all y (with the exception of a Lebesgue null set)

assumption of an a priori equiprobability of all hypothetical success probabilities between 0 and 1,
Laplace was able to prove that for € (n) of an order less than n~% and greater than nr

P (b, —€(n) < p < hy +emlh) =1 (n—> o00).

In 1764/65 Thomas Bayes and Richard Price had already published works on this problem; they
had only found, however, rather intricate approximations in the case of a very large n [Stigler 1986,
122-131; Dale 1991, 16-51; Hald 1998, 133-154].

35 Von Mises’s “distribution” is identical with “distribution function,” which is more common now.
However, even today distribution functions are simply called “distributions” when the context is
clear.
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[ fi(ak + y)| <1 =38 if |y| > yo;
(iv) for each function f; there exist positive numbers o and Xj such that
[x* fr(x)| < 1 forall |x| > Xg;
(v) the sequences (Jak|) and (s,%) are bounded, and there exists a real number
s # 0 such that s? > s for all k.

Furthermore, let ¢ : R — C be a function, integrable on bounded intervals, whose
modulus has a finite upper bound. Then, for

" u
pa) = ] filax + ) =

k=1

the following assertion is valid:

Pn(u) converges for almost all ¥ € R uniformly to e *? and
b b )
lim / Pn ()Y (u)du = / e Y(u)du (5.21)
n—>00 a a

for arbitrary a, b with the property —oo < a < b < oco.

For the proof of this theorem the Laplacian idea of expanding log fi (ax + h) in
powers of i was essential. Including the residual, von Mises considered the terms
of this expansion up to the power /2.

Von Mises [1919a, 17 f.] also sketched the generalization of his approximation
principle to functions fj:R? — C of several variables x1, ..., x;. Instead of num-
bers aj and s,%, now ¢-dimensional vectors @y and matrices 5 € R"! were con-

sidered, where fi(ay) = 1, Bix’_fk(c_zk) = 0, and %ijfk(c_zk) = —2s](€l”) for
i,j =1,...,¢, and Zf,j=1s,({l’j)yiyj > 0 for all vectors y € R’. By adjust-
ing conditions (i) to (v) regarding the functions f;, von Mises found an analog to
(5.21), which, however, was only stated for the particular case ¢ = 1:

lim
n—->oo

z 1 i
/Z [1 i@+ N /Z e Xii=imiluz gz =0, (5.22)
k=1

where Z designated a “finite or infinite part of space” (that is, R’) and hg’j )
Z%:l S(j’j) 36

= n .
The most prominent probabilistic innovations von Mises delivered with his
applications of characteristic functions, which he himself called “complex ad-

juncts,” were to local and integral limit theorems for sums of lattice distributed or

36 The original version [von Mises 1919a, 18] of (5.22) is somewhat confusing (and not entirely
correct):

z 1 : @i.)
li —7d7 = Zi,jzlhn iz g7
nlmLkl |lﬂ(ak+ﬁZ)Z—Le Z
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continuously distributed random variables. In the case of random variables with
densities he succeeded in proving the following theorem:

Let (vi)ren be a sequence of probability densities (each defined for all real num-
bers) of uniformly bounded variation.’” Let ax := [°o xvi(x)dx and 0} :=

20, X2vi(x)dx — a?. Moreover, let by := Y 3 _ ak, rn := /2 j—; 07,

o0 o0
wn () 1= / / O (b —1— - —Xn—1 Yot (1) -+ V1 (1) X1 -~ dx1,
—00 —00

and W, (u) = %[wn(u + 0) + wy(u — 0)]. If the values of |ag|, cr,f, and
| f_ozo(x — ag)3vi(x)dx| are each always bounded by a constant, independent
of k, then:

— . 2
1) wy,(u) converges in each compact set of real numbers u to ¢(u) := ﬁe u

2) [*. wn(x)dx converges in R uniformly to /% ¢(x)dx.

For the proof von Mises [1919a, 31-33] used the basic properties of the complex
adjunct

fx) = /_ " GV Ty ()

(o 9)
of a distribution V' with expectation a, which he [1919a, 26 f.] explained generally.
These properties included the correspondence between convolutions of distributions
and products of complex adjuncts, as well as connections between derivatives of
complex adjuncts and moments. In the special cases of the densities v; and wp,
described above, he was able to prove by Fourier’s integral theorem:

1 o0
Wy (z) = ﬁ/ Re pn(u)e_zuﬁdu,

where u u u
pn(u) = fi(ar + r—)fz(az + r_)"'fn(an + r_) (5.23)

and

o0
felx) = / e(x—ak)(z—ak)ﬁvk(z)dz‘

—0o0

37 A real-valued function f has the property of bounded variation if and only if there is a positive
constant C such that for all # € N and for all arguments x; < x, < --- < x,, of f the expression

[£G) = fO)l 4+ 1/ (x2) = fOa)| -+ [ f Crnmt) — f (x|

remains less than C. The least upper bound of all these expressions is denoted by “total variation”
S of f. Any density function of bounded variation can be represented, according to [von Mises
1919a, 31], as the difference of two monotonically increasing functions whose values are > 0 and
< % A sequence of functions (f;) is of uniformly bounded variation if and only if all f; are of
bounded variation and their total variations Sy possess an upper bound. The condition of bounded
variation played an important role, for example as a prerequisite for the validity of Fourier’s integral

theorem [Pringsheim 1907].
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Now, von Mises applied his theorem on the Laplacian approximation principle

in connection with the particular case ¥ (1) = e~V (0 the product (5.23).
Condition (i) of this theorem was met because 0,? = 2S]%. The validity of (ii) could
be justified by the assumption that | £, (ax)| = |ff§o(x — ag)3vg (x)dx| is uni-

formly bounded. The evidence for (iii) and (iv) was essentially based on the fact
that the functions vy were supposed to be of uniformly bounded variation. This
property also led to a positive lower bound for all variances o,f from which, because
of the boundedness of the sequences |ag | and 0,3, the validity of (v) could be shown.
Altogether, taking into account that 0,? = 2s,§, von Mises proved that, for all real z,

o0

00 2
21w, (2) = / Re pp (u)e_zuﬁdu — / Ree 4 e aV=lgy = 2./me%".
o0 —00

An explicit proof of the uniformity of this convergence in all compact sets of
z-values was not given by von Mises.*® However, he used this property in prov-
ing the second part of his assertion.

Already prior to his discussion of sums of continuous random variables, von
Mises [1919a, 28-31] had treated the case of lattice distributed random variables
in an entirely analogous way. The transfer of this proceeding to the case of general
distributions, however, was not possible for him. By use of the Laplacian approxi-
mation principle he was able to show that the complex adjuncts of the convolutions

Wn(z)=/ / Va(rnz + by — 31 — = 5n1)d Vet (int) -+ d Vi (x1)
—00 —00

(rn, by as above) tend to the complex adjunct of the Gaussian distribution with ex-
pectation 0 and variance % For this proof he essentially needed the mere existence
of the third absolute moments of the single distributions. Concerning the conver-
gence of distributions, however, a complete argumentation, which was analogous to
his proofs in cases of continuous or lattice distributed random variables, could not
be given in the general case, as von Mises [1919a, 33-35] explained.

In order to treat this general case completely, von Mises [1919a, 35] introduced
the “real adjunct” of a distribution V' with expectation a and variance o2, that means
the function

quz o
glu) =e 2~ / e UGy (x),
—0o0

defined in R. If ¢, denotes the real adjunct of W, then

gn(u) = &1 (1) &2 (l) - &n (1) .
'n 'n 'n

Dealing with the general case, von Mises [1919a, 22 f.] presupposed that

(a) for each distribution Vj there exists a positive number c,% such that

3 A closer examination of von Mises’s line of argument in connection with his advancement

of Laplace’s approximation principle in the particular case ¥ (x) := e~ ¥V ~! shows uniform
convergence for all real z.
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*® 62 X2
e d Vi (x) < 00
—00

(as a consequence, the V. have finite moments of arbitrary order);
(b) the variance olf of each distribution is positive;
(c) forall C > 0 there exists a positive number ¢ (independent of k) such that

00 02()«:—ak)2

2
/ e %k dVi(x) <C;
—00

(d) |ag| and 0,? are both bounded sequences, and there exists a positive function
€(n), tending to 0 as n — oo, such that

W

= < €n).

>k O

As von Mises made explicit, the significance of condition (c) essentially lies in the
fact that it implies the moduli of the “moments”

o0 m
M ;:/ (x_a") dVi(x

having an upper bound independent of k for each order.

N3
=1

From these assumptions it followed that gx (ak'iﬁ) =Yoo c,(cm)u’” for all

u € R, where

=1, M= =0, (5.24)
and |c](€m)| has an upper bound independent of k for each m > 3 [von Mises 1919a,

36-38]. In the subsequent text, von Mises mainly discussed the problem of whether
from the convergence of the coefficients k,(,m) in the power series of the real adjunct
qn of the convolution W, to the corresponding coefficients of the real adjunct of
CIJO; 1 one could conclude that W, also tends to this distribution. Because the real

adjunct of the normal distribution with expectation 0 and variance o2 is equal to

1 0'21,42 o0 2

_ X
e 2 e e 202dx =1,
o/2T —00

von Mises had to show first how, in consideration of (5.24), it could be justified
that k,(lm) — 0 for m > 3. In particular, condition (d) was important in this con-
text [von Mises 1919a, 44-46]. Von Mises [1919a, 39] proved that the moments
m
e (%) d W, (x) depend linearly on the coefficients k) to k™. Thus, the
following discussion focused mainly on nestimates of the absolute values of the dif-
ferences between the normal distribution and such distributions whose moments
are close to the corresponding moments of the normal distribution. Von Mises
[1919a,40-43,46-50] treated this problem in a way which was in general analogous
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to Markov’s reasoning (see Sect. 4.6.4). Quite frequently, however, he used step
functions which possess, up to a certain order, the same moments as the distributions
considered. This method is similar to that of Stieltjes [1918a] in his posthumous
variant of the proof of the Chebyshev—Markov inequalities. It cannot be known
whether von Mises was influenced by Stieltjes’s contribution. As an improvement
of Markov’s result, he even succeeded in proving that W, tends uniformly to @, 1

Von Mises [1919a, 54-58] also sketched a generalization of his local and in-
tegral limit theorems toward multidimensional random variables. He showed that
the difference between the complex adjunct of the convolution of multidimensional
distributions, normed as in (5.22), and the complex adjunct of the corresponding
normal distribution tends to 0 as the number of summands increases. He did not
give any proof, however, that from this convergence of characteristic functions the
CLT itself could be deduced.

The article [von Mises 1919a] shows a good deal of truly “new” results, partic-
ularly regarding local limit theorems for sums of lattice distributed and continuous
random variables, presupposing quite weak conditions. Although von Mises’s re-
sults on the integral CLT for general distributions had already become obsolete in
the one-dimensional case through the work of Lyapunov and (concerning moment
methods) Markov, his account had an influence—not to be underestimated—on later
contributions to the CLT (particularly by Pélya, Lindeberg, and Cramér) due to the
variety of analytical methods he employed, and due to his rigorous and general pre-
sentation of the analytic aspects of basic probabilistic principles. It was the first
work in which the tool of characteristic functions was used in a comprehensive and
systematic manner. However, its author did not succeed in proving a theorem on the
correspondence of the convergence of distributions and their accompanying charac-
teristic functions in the general case.

For a balanced historical assessment, however, one has to observe that von
Mises’s [1919a] aim was not solely a purely analytical exposition. He also wanted to
connect the most important applications of probability theory with his “theoretical”
explanations. To this end he [1919a, 78, 93] formulated two “fundamental theorems”
(“Fundamentalsitze”). The first of these two theorems consisted of a renewed enu-
meration of his local and integral CLTs, but now in the language of “Kollektivs,” and
focused on the most prominent applications. Similarly, the second summarized von
Mises’s results on inverse probabilities. With his fundamental theorems von Mises
repeated a mode of exposition, which could already be found in the work of Laplace
and Poisson, to differentiate between analytical theorems and “real” stochastic con-
tents, whose application-oriented relevance had to be clarified independently of
purely mathematical considerations. Siegmund-Schultze [2006] stresses the corre-
spondence of this point of view to von Mises’s attitude as an “applied mathemati-
cian.” However, this “applied” position was not free of inner conflicts. Von Mises,
on the one hand, apparently felt obliged, due to the general conditions of research
in the the post-Weierstrassian era, to strive for the utmost analytic rigor and gen-
erality without considering any aspects outside of mathematics. On the other hand,
he wanted the problem of the generality of assumptions to be judged by the ne-
cessities of possible applications, as one can see from his controversial discussion
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with Pdlya (see below); thus he stressed also external criteria for the assessment of
mathematical work.>

5.2.3 Polya and Lévy: Laws of Error, Moments
and Characteristic Functions

After the First World War, Pdlya published several brief articles on a peculiarity
of the Gaussian law (which had already been sporadically mentioned by some au-
thors*’), namely, the fact that it corresponds—in modern terminology—to a stable
distribution. Besides that work, he became well-known through an article on dif-
ferent aspects of the convergence of distributions, in which the CLT also received
its name. Lévy started a little later than P6lya with publications of similar content.
However, he advanced his examinations much further and more comprehensively.
Lévy’s book Calcul des probabilités (from 1925) presents a collection of the results
of its author from 1922 to 1924 and already touches on a large part of those prob-
lems concerning sums of independent random variables which did not receive their
general setting and solution until about 1940.

Lévy’s first probabilistic publication [1922a] already discussed the main concept
of the theory of those distributions which he himself called “stable” (“lois stables”).
In this article he focused only on symmetric laws. Stable distributions with charac-
teristic function z > e~ 9%l* (0 < & < 2, a > 0) were possible limit distributions
for suitably normed sums of independent identically distributed random variables
Xy with E|Xg|? < oo for p < «, and E|Xg|? = oo for p > «. Thus, stable
distributions with & < 2 played the same role for sums of independent identically
distributed random variables without finite moments of second order as the Gaussian
law with the characteristic function z + e~/ did for sums of independent iden-
tically distributed random variables with finite moments of second order. Stable
distributions were also considered as limit distributions for suitably normed sums
of independent, but not identically distributed random variables. Thus, already from
Lévy’s first contributions it became clear that the classical theorem on the Gaussian
law as a limit distribution was only one among many “with equal rights.”

5.2.3.1 Poélya’s First Contributions

Pélya had a remarkable knowledge of Russian sources on probability theory.
Markov’s proof of the CLT [1908/13/2004], whose French translation Pélya
[1914/15] had reviewed, especially stimulated the latter for a closer discussion
of probabilistic problems which referred to moment theory. Pélya started with the

3 For a general discussion of von Mises’s attitude toward those “fractures of modernity,” see
[Siegmund-Schultze 2004].

40 Especially by Edgeworth [1883; 1905], see Sect. 3.4.2.3, and by Forster [1915], see below.
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well-known property of the Gaussian error law that the sum of independent nor-
mally distributed errors again has a Gaussian distribution. This property had already
motivated Edgeworth to a general, though scarcely noticed, discussion of special
error laws, which he called “reproductive” (see Sect. 3.4.2.3). P6lya [1919a] posed
the problem of finding a nonnegative function ¢ # 0 together with positive numbers
a, b, ¢, such that for all real x

ORI G S

—00

(Later, Lévy called such densities “semistable.”) On the function ¢ Pélya imposed
the additional condition that it be bounded on each finite interval, and have moments

o0
K, :/ x"p(x)dx

—0o0

of arbitrary order n € Ny (all integrals had to be understood in the improper
Riemannian sense). As a consequence of (5.25) Pélya showed that Ky = 1 and
K; = 0. For m > 3 he was able to establish a relation among the moments K,
(n < m), from which he successively deduced that for solutions ¢;, ¢, of (5.25)
with identical moments of second order:

/ xlﬁﬂl(x)dXZ/ xlgoz(x)dx VI € Nop.

—0o0 —0o0

Pélya now used moment theoretic results achieved by Borel [1901] and Godfrey
Harold Hardy [1917] for the proof that the function ¢(x) = %e_hzxz was the only

solution of (5.25) with K = .
In principle, Pélya’s problem, as well as his reasoning, had a certain similarity
with a contribution of Gustav Forster. Forster [1915] discussed the problem of find-
ing an error function ¢ with the following property: If the independent errors €; and
€5 have the respective density functions A1¢(A1x) and A,¢(A,x), A1, A, being pos-
itive constants, then for all positive numbers a, b there exists a (necessarily unique)
positive parameter A3 such that €3 = a€; + be; has the density A3¢(A3x). Forster
likewise deduced a recursive relation for the moments of higher order and thus jus-
tified, if not always in a rigorous manner, that only error laws of the Gaussian type
obeyed his condition, which was stronger than Pdlya’s. Moreover, Forster treated in
his work a problem of lesser generality, assuming the analyticity of ¢. According to
a statement in his [1919b], Pélya initially was not aware of Forster’s contribution.
Apparently motivated by [von Mises 1919a], Pélya [1920] devoted himself to
analytic aspects, in particular related to moments, of the theorem which he called
“zentraler Grenzwertsatz.” The theorem itself, however, was only briefly referred to
at two places in his article [1920, 171 f., 177]. The problem seemed rather in the
foreground under which conditions it was possible to infer the convergence of dis-
tribution functions from the convergence of moments of arbitrary order. Concerning
the convergence to the normal distribution this problem had already been solved by
Markov [1898]. In a general setting, Pélya [1920, 178] maintained that by methods
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expounded in Hamburger’s work [1919] on the unique determinacy of a distribution
function over R by its moments, the convergence problem could likewise be solved.
However, Pdlya aimed at a brief and direct proof for the “continuity theorem of the
moment problem.” This theorem states the following:

If for the moments ¢, = ff;o x™df(x) (m € N) of a continuous distribution func-
tion*! f the condition

2m /tzm

lim sup —— < 00 (5.26)

m—00 m

is valid, and if ( f;)nren is a sequence of distribution functions such that

o0
lim / xtdfy(x) =t, forall u €N,
n—oo J_ o

then f,(x) tends to f(x) uniformly for all x € R.
The condition (5.26) is equivalent to Hamburger’s [1919] uniqueness condition

tm < p™(2m)!  (m € No)

with an appropriate p>0. Pélya based his theorem on three auxiliary theorems deal-
ing with 1) the relation between pointwise and uniform convergence of distribution
functions, ii) the relation between the convergence of the antiderivatives of distri-
bution functions and the distributions themselves, and iii) a method of inferring the
convergence of distributions from the convergence of generating functions. The first
of these theorems is especially important even today: If a sequence of distribution
functions converges to an everywhere continuous distribution function pointwise in
a set dense in IR, then even the uniform convergence of the sequence in R follows.*?

From recent historical research we know, however, that P6lya himself valued the
third auxiliary theorem particularly highly. As Siegmund-Schultze [2006] reports,
there was a controversy—expressed in an exchange of letters—between Pdlya and
von Mises in 1919/1920 on von Mises’s contributions to the CLT. Pélya’s chief
criticism was that von Mises’s treatment of the integral CLT was inferior to the ear-
lier contributions of Lyapunov and Markov in the general case. Von Mises, on the
contrary, emphasized the low application relevance of theorems on random vari-
ables with general distributions. On the other hand, however, he stressed the impor-
tance of his analytic innovations, especially the application of the complex adjunct
to local limit theorems for densities or lattice distributions. As one can see from
Siegmund-Schultze’s account, Pdlya’s article of 1920 should be understood as a
public response by Pdlya to von Mises. Still, it can hardly be inferred from the
wording of the article alone that the two mathematicians actually had a scientific
quarrel. Among all his arguments which were expounded in letters to von Mises,
Pdlya repeated only the following in his paper: He criticized, if in a rather implicit
and restrained way, that von Mises’s reasoning in connection with the real adjunct

41 Pélya defined distribution functions f as monotonically increasing functions, continuous on the
right, with lim, —, _ o f(x) = 0 and lim, , ¢ f(x) = 1.
42 Pélya’s proof is described in [Uspensky 1937, 386 f.], for example.
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was too complicated. Instead of von Mises’s moment theoretic considerations, he
proposed the application of the third auxiliary theorem of his article:

Theorem III. I consider the sequence of improper Stieltjes integrals

/Ze“’dfl(t),ﬁiel"dﬁ(t),...,/O; edf, (), ...,

where f1(t), f2(t), ..., fu(t), ...denote distribution functions, and where there exists a
positive quantity a such that each integral converges for —a < u < a. It is assumed that
for the same values of u

dim [ et = [ enar,

where f(¢) denotes a continuous distribution function. Then

Tim_ f,(¥) = /()

uniformly for all values of x.

Apparently, Pélya attached great expectations to this theorem. Actually, through
its application, the proof of the integral CLT under von Mises’ conditions can be
made easier and shortened considerably, as Pélya [1920, 171] hinted at.** Pélya at
the same place asserted that Lyapunov’s version of the CLT could also be reached
by his method. This was only correct in a very benevolent interpretation, however.
Pélya’s generating functions were defined on the vertical strip —a < u < a. For
this condition, the existence of moments of arbitrarily large order for all given ran-
dom variables was necessary. Lyapunov’s theorem only presupposed the existence
of absolute moments of order 2 + §. Therefore, only by the use of certain tricks
(the introduction of truncated variables, for example) can one prove Lyapunov’s
theorem by means of Pélya’s generating functions. A direct use of these generat-
ing functions, however, is not possible. There may be a second reason why Pélya’s
hopes connected with his Theorem III were not realized. Around the beginning of
the twenties the discussion of stable distributions became an increasingly important
topic of probability theory. Stable distributions, however, with the exception of the
Gaussian distribution, do not have moments of arbitrarily large order and therefore
cannot be treated by means of generating functions. In 1922, when Lévy succeeded
in proving a theorem on the convergence of characteristic functions even for general
distributions, P6lya’s generating functions became definitely inferior to characteris-
tic functions (see below).

Pélya’s work on error laws and the convergence of distributions remained
connected to particular analytical problems rather than being dedicated to a more
comprehensive theory. The plan of the publication of a monograph on probability
theory, hinted at in [1920, 172], was never realized. Lévy, who around 1922 started
publishing on problems similar to Pélya’s, discussed the asymptotic behavior of
distributions of sums of independent random variables in a far more comprehensive
and systematic way.

43 As far as I know, there does not exist any printed version of a proof modified by use of Pélya’s
lemma. By a line of argument, however, which is very close to the typical textbook proof of the CLT
which uses characteristic functions, one can see that Theorem III actually provides a considerable
simplification of von Mises’s proof of the CLT.
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5.2.3.2 The Hypothesis of Elementary Errors as a Motivation
for Lévy’s First Articles

According to Lévy’s own statements [1970, 71; 74], at the beginning of his involve-
ment with probability theory he did not possess any knowledge of classic works,
such as the TAP of Laplace, or the analytical tools used in these works. He knew
just as little about the contributions of Russian authors. Lévy obtained his basic
knowledge of probability primarily from the second edition of Poincaré’s Calcul des
probabilités [1912]. The hypothesis of elementary errors, as discussed by Poincaré
(see Sect. 4.6.3), formed the original motivation for Lévy’s work on sums of inde-
pendent random variables. In this early period Lévy [1924, 14—17, 37-44; 1925b,
278-294] discussed in detail the error theoretic aspects of his stochastic contribu-
tions. In the thirties, however, after the development of probability theory toward a
mainly inner mathematical orientation, he no longer considered these problems very
important (cf. [Le Cam 1986, 80]), although he never completely gave up employing
arguments beyond mathematics (see Sect. 6.2.2).

Unlike Poincaré who had, entirely in accordance with the tradition of the 19th
century, treated the hypothesis of elementary errors as an “approximative” assertion
on the distribution of a sum consisting of many small components, Lévy [1924, 25]
(by way of a hint already [1922b]) specified this hypothesis through a limit theorem.
He only considered total errors with variance 1 and expectation 0, although a more
general setting could easily be reached. According to Lévy, the elementary errors
had the form —L X;, where the X; were to be considered independent random vari-
ables, each W1th variance 1 and expectation 0, and where for the positive numbers

mi, M,, == ,/Zi=1 mi the additional condition hm,,_)oomaxlfifn M_n = 0 had
to be valid. In this way, he connected the hypothesis of elementary errors with a CLT
of Laplace—Chebyshev type for linear combinations Y m; X; of random variables.
This CLT, for which Lévy [1922a;b] found especially weak sufficient conditions
(see Sect. 5.2.6.5), played the role of a “théoreme fondamental” within his error
theory.

Lévy’s early discussions of the hypothesis of elementary errors, the Gaussian
error law, and the method of least squares deduced from this law, were influ-
enced by the tensions between formalism and intuition, between pure mathematics
and practice. In his general explanations Lévy advocated Poincaré’s point of view
on the foundations of mathematics, which stressed ideas like “experience,” “intu-
ition,” “harmony,” “economy of thinking,” and “good sense” (see [Mehrtens 1990,
223-256]). In regard to attempts to discuss the method of least squares axiomati-
cally, particularly by Felix Bernstein and Werner Siegbert Baer [1915], Lévy [1924,
42—44] rejected Hilbert’s program of basing all mathematical disciplines on axioms.
Rather he aimed to base a theory, in his case error theory, on simple principles in
harmony with good sense.

He admitted that error theory as a practical discipline was feasible without
great mathematical effort and without complete analytical rigor. For the mathemati-
cian, however, this attitude could not be accepted, as Lévy [1924, 17] pointed out.
Despite his declared opposition to purely formalistic considerations, Lévy had to
see himself, due to his emphasis on mathematical rigor concerning the probabilistic
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foundation of error theory, in contradiction to Borel, who had become the lead-
ing figure of French mathematics since Poincaré’s death. Borel held the opinion
that considerable mathematical effort would not be worthwhile for establishing the
Gaussian error law and for discussing alternative error laws [Le Cam 1986, 82]. He
hoped that probability calculus, due to its specific problems, would become a par-
ticular discipline within natural and social sciences, but not within mathematics in
a narrower sense [Knobloch 1987, 217]. In this respect Lévy had, as one can see
from the preface of his book [1925b], to justify his approach to error theory which
emphasized purely mathematical aspects. He was convinced of the mathematical
relevance of his probabilistic work, due to his self-confidence as an analyst, and
therefore took the liberty of not ignoring the opinion of an important authority, but
altogether considering it only secondary.

Lévy apparently had to bear certain disadvantages due to the attitude just de-
scribed. He was not invited to contribute to the Traité du calcul des probabilités et
des ses applications, a collection of several monographs, which appeared from 1925
and was edited by Borel, according to whom it should prove the “unity and impor-
tance” [Borel 1925, vi] of probability as an independent field of science. Only to-
ward the end of the thirties were Lévy’s successes in the theory of probability, which
had not turned out the way Borel originally intended, rewarded by the latter. For ex-
ample, Borel included Lévy’s Théorie de I’addition des variables aléatoires [1937a]
in his series Collection de monographes sur la théorie des probabilités (supplement-
ing the Traité) as the first volume. Lévy’s influence on probabilistic activities in the
“Institute Henri Poincaré,” directed by Borel, which was the leading institution of
mathematical research in France from the end of the twenties, advanced significantly
during the thirties.**

Lévy’s first probabilistic investigations concerned the role of Gauss’s law and
other stable laws in the framework of the hypothesis of elementary errors [Lévy
1922a;b], the generalization of Fourier’s integral formula to the case of Fourier
transforms expressed by Stieltjes integrals, the “continuity of the correspondence”
between distributions and its characteristic functions [Lévy 1922c], and the prop-
erties of characteristic functions of certain types of distributions [Lévy 1923a;b;c].
These contributions were merely written in a roughly sketched form, while their er-
ror theoretic aspects were explained thoroughly in [Lévy 1924]. A more detailed, if
still uncomplete, discussion of these topics is contained in Lévy’s book Calcul des
probabilités [1925b]. In particular, the central chapter 6 of this book on “exceptional
laws” presents at several places only rather vague hints, and sometimes even mere
assumptions.

The poor reception of his book, later deplored by Lévy [1970, 81], was at least
somewhat grounded in its densely written style. Nonetheless, as Cramér [1976, 516]
reports, it offered many suggestions for the still small community of mathemati-
cians involved in the development of modern probability theory, and thus played a
pioneering role for research in the field of sums of independent random variables

4 For Lévys own opinion on his relation to Borel, see [Lévy 1970, 82-84]. For an outline of
stochastic research in the “Institute Henri Poincaré,” see [Siegmund-Schultze 2001, 169—-175].
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well into the middle of the thirties. This is especially true for Lévy’s theory of
characteristic functions.

5.2.3.3 Poincaré and the Concept of Characteristic Functions

In the early stage of his probabilistic work, Lévy made consistent use of charac-
teristic functions R 3 z + Ee'?X for the investigation of distributions of random
variables X. Lévy [1976, 1] claimed to have been motivated toward this method by
a short passage in the second edition of Poincaré’s Calcul des probabilités [1912,
206-208]. In addition to his moment theoretic treatment of sums of random vari-
ables, which was already contained in the first edition (see Sect. 4.6.3), in the sec-
ond edition Poincaré also discussed “fonctions caractéristiques.” With this name he
designated the term

fl@) =" p(x)e™™

in the case of discrete “quantities,” whose values x occur with probability p(x), and

f@=[¢mwm

in the case of “continuous” quantities with density ¢. Poincaré did not specify the
number set to which the numbers o belonged. Apart from f(«), however, he also
considered the function term f(i) (i = ~/—1). Using the latter he deduced on the
basis of Fourier’s integral theorem (for which he did not discuss any conditions) the
inversion formula 2mp(x) = f_ozo f(a)e **da. Altogether, from today’s point
of view, Poincaré treated generating functions rather than “modern” characteristic
functions.

With his “characteristic functions” Poincaré did not open a new chapter in the
analytic methods of probability theory, but in contrast to the authors of the 19th
century who had made use of Laplace or Fourier transforms in probability theory,
he connected with these terms an autonomous meaning,* and sketched out how the
convergence to the Gauss density could be reduced to the convergence of the ac-
companying characteristic functions. However, he did not explicitly treat the prob-
lem of whether from the convergence of “characteristic functions” the convergence
of probability distributions could be deduced in general.

The interpretation of generating (or characteristic) functions as expectations can
already be seen in Hausdorff’s 1901 paper (see Sect. 3.4.2.1), although the latter
gave the functions z +— Ee?X no special name [Hausdorff 1901, 169]. This in-
terpretation made it particularly easy to justify Cauchy’s multiplication theorem,
according to which the characteristic function of a sum of independent random vari-
ables equals the product of the accompanying characteristic functions.

Poincaré [1912, 211-218] also used characteristic functions for discussing “ex-
ceptions” to the Gaussian law. In this context he explained (among other topics)

4 Cauchy got relatively close to this “modern” conception of characteristic functions, see
Sect. 2.5.2.
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the significance of the error law with the characteristic function f(ia) = e~
corresponding to the “Cauchy distribution” which had already been considered by
Poisson (see Sect. 2.2.3.1). By his rather comprehensive treatment of “exceptional
laws,” in particular concerning the problem of how the precision of the arithmetic
mean of a larger number of observations depends on the precision of each single ob-
servation, Poincaré considerably influenced Lévy’s discussion of stable error laws.

5.2.3.4 Lévy’s Fundamental Theorems on Characteristic Functions

Particularly important within the theory of characteristic functions were, as Lévy
[1970, 75] stated retrospectively, the inversion formula for deducing distributions
from characteristic functions, and the “continuity theorem” on the correspondence
between the convergence of characteristic functions and distributions. Lévy [1922c]
gave sketches of proofs for both fundamental theorems. More elaborate versions can
be found in [Lévy 1925b, 163-169, 192-200].

Lévy used the concept of real random variables (‘“variable, quantité, erreur’’) only
intuitively, without giving a precise definition. “Probability law” (“loi de probabi-
lité”) of a variable X Lévy named the mapping S — P(X € S) for subsets S of R,
which were not further specified. Lévy [1925b, 136] designated the possibility of
those mappings “obvious.” The probability law of the random variable X was, ac-
cording to Lévy (e.g., [1925b, 137]), uniquely determined by the distribution func-
tion (“fonction des probabilités totales”) F(x), defined by

Fx):=PX <x)+ %P(X = X).

Indeed, Lévy was well aware about the difficulties of assigning a probability mea-
sure to any arbitrary subset of R, as we can see from his article on probability mea-
sures on “abstract sets” [Lévy 1925a], which he apparently considered so important
that he included a reprint in the appendix of his 1925 book. Lévy [1925a, 330] ex-
plained, though in a not entirely precise way, that a measure defined on all subsets
of the interval [0; 1] would be “necessarily very arbitrary.” A few lines below, Lévy
stated that it would “suffice in practice” to restrict all considerations to Borel sets.*®

Lévy’s inversion formula provided a means for determining distribution func-
tions F from given characteristic functions

0(z) = / e“*d F(x). (5.27)

oo

In his deduction of this formula Lévy represented the integral

c t
I, :=/ (p(z)/ e Tdvdz (5.28)
—c 0

46 Banach & Kuratowski [1929] proved that there does not exist any sigma-additive set function
m defined on all subsets of R such that m({x}) = 0 for all x€ R. This implies, for example, the
nonexistence of a probability measure defined on all subsets of R which has a density function.
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in two different ways. On the one hand, substituting (5.27) in (5.28) yielded the
“Dirichlet integral”

I =2 / T F&+ 1) — F) Sinxcx dx. (5.29)

Because of the definition of F', for all real x the equation
1
F(x) = E(F(x +0) + F(x —0))
was valid, and from this Lévy concluded that
lim I, = 2n[F(¢) — F(0)]
c—>00

for all real ¢. On the other hand, integrating (5.28) with respect to t resulted in

I = /C @o(z)sintz + (pzl(z)(l - COStZ‘)dz,
where ¢(2) = ¢o(2) +ig1(2). (530)

Altogether, Lévy obtained

FiE) - F(O) = Zl—n /_oo @o(z)sintz + (pzl(z)(l —costz) iz

or 1 T 1 — e—itz
F(t) — F(0) = lim —/ ———¢(2)dz.
T—oo 2T J_7T 1Z

With these considerations Lévy followed the path—very similar to the reasoning
of Dirichlet and Cauchy in the 19th century—of representing probabilities through
the use of appropriate jump functions. In the context of the inversion formula one
advantage of Lévy’s definition of distribution function—somewhat strange from to-
day’s point of view—becomes clear: possible discontinuities of this function must
not be considered separately.

For a closer investigation of the “continuous correspondence” between proba-
bility laws and characteristic functions, Lévy in [1925b, 192] (and in a less pre-
cise manner already in [1922c]) considered probability laws L, depending on
a parameter A which converge to a limit law .Z as A tends to the constant value
Ao. Lévy’s definition of convergence of probability laws corresponded to the (weak)
convergence of distributions which is now common: Let F) be the distribution func-
tion of L, and let G be the distribution function of .Z’; by definition L, converges
to £ as A — Ag if lim) _, 5, Fa(x) = G(x) in each point of continuity x of G. In
his book [1925b, 200] Lévy even hinted at a second criterion for the convergence
of L) to £ by introducing a “distance” between probability laws in the following
sense: Let A, and B, be the intersection points between the graphs (completed, if
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necessary, in jumps by vertical segments) of F and G, respectively, and the line
X + y = a. Then, this “distance” is equal to sup,cg Aq Bs (Aqa B, denoting the
Euclidean distance between the two points). Apparently, it was obvious for Lévy
that L, converges to . in accordance with the definition above if the “distance”
between these laws tends to 0.

Lévy [1925b, 195-200] made the relations between the convergence of distribu-
tions L and the accompanying characteristic functions ¢, explicit with the follow-
ing theorems:

Theorem 1: If for A — Ao the laws L) tend to the limit law . with characteristic
function w, then ¢, (z) also tends to w(z) uniformly in each compact interval of
z-values.

Theorem 2: If there exists a characteristic function @ such that limy _, 3, ¢a(z) =
(z) uniformly in each compact interval of z-values, then L, tends to the probabil-
ity law .# which belongs to w.*’

Theorem 2 is important especially for applications of characteristic functions to
limit theorems.*® For a proof of this theorem, Lévy used the following idea: The
convolution (“composition”) of an arbitrary distribution and the special distribution

o2 dr
By (x) = / e 2

—o0 a+/2m

yields an absolutely continuous distribution, whose density has the upper bound

ax}ﬁ' With a sufficiently small a one can ensure that the “distance” between the

convolution and the original distribution becomes arbitrarily small. The same ap-
plies for the absolute value of the differences of the accompanying characteristic
functions.*’

By this method the general case could be reduced to the case of a sequence of
absolutely continuous distributions whose densities were uniformly bounded above.
For such distributions Lévy showed that for a given & > 0 there exists C > 0 such
that for all A and forall ¢ > C:

o

2F3 (1) — F(0)] - 2 / [Falx +1) — Fy(x)]

o0 X

sincx

2
dx| < 5“8 (5.31)

and

47 The formulation and proof of an assertion equivalent to Theorem 2 can already be found in
[1922c], whereas Theorem 1 is only contained in the book of 1925.

48 1t has to be taken into account that Lévy demands that the characteristic functions converge
locally uniformly to a function of which it is already known that it is a characteristic function.
By use of Eduard Helly’s [1930] theorem of choice for a sequence of distribution functions, Cramér
[1937, 29-31, 121] was able to show (although with a mistake in the first version, which was
corrected in the later editions, see [Cramér 1976, 525]), that the pointwise convergence of the
characteristic functions to any limit function f is already sufficient for the convergence of the
respective distributions to a limit distribution if f(z) is continuous in z = 0.

4 Tn [1922c] Lévy had only written: “If a is sufficiently small, then the functions which occur
in the wording of the assertion, are changed arbitrarily little.” In his book of 1925, for a closer
specification Lévy introduced the “distance” between distributions described above.
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(o]

2n[G(t) — G(0)] — 2/ [G(x +1) — G(x)]

oo X

sincx

2
dx| < gne. (5.32)

On the other hand, with the abbreviations ¢ 9 = Reg, and @31 = Img,, it
resulted from the locally uniform convergence of ¢, that for A sufficiently close
to Ao,

z
_/c wo(z)sintz + w1(z)(1 — costz) dz
e z

'/” Pr,0(2)sintz + @31(2)(1 —COSZZ)dZ
—C

2
< Ene. (5.33)

On account of (5.29) and (5.30) it followed from (5.31), (5.32), and (5.33) by use of
the triangle inequality:

121[G (1) — G(0)] — 2r[Fy(t) — F2(0)]| < 2me,

and therefore
F@)— F;(0) > G@)—G@O0) (A — Ap) (5.34)

forallt € R.
From this last equation Lévy [1922c, 335] concluded”” that

Fa(t) — G(1). (5.35)

The reader might reach the impression that Lévy’s theorems on the “continu-
ous correspondence” between characteristic functions and distributions conform to
an historically continuous “story of success” of Fourier methods, which were in-
troduced in the context of probabilistic limit theorems by Laplace, and thereafter
remained—with respect to the basic ideas—unchanged. Following Laplace, how-
ever, it was his method of approximation to “functions of large numbers,” which
finally, by gradual refinement and adjustment to contemporary analytical standards,
enabled Lyapunov’s proofs of the integral CLT. Laplace’s method could be exclu-
sively applied in the framework of Gaussian limit distributions, whereas the theo-
rem of Lévy—a mathematician, who did not (!) have, according to his own words
[Lévy 1970, 71-75], any knowledge about the contributions of the 19th century
up to Lyapunov—made it possible to consider arbitrary limit distributions. Conse-
quently, the classic CLT with the normal distribution as a limit became one theorem
among many other “central limit theorems” with in principle equal rights. Therefore,
Lévy’s fundamental theorems do not represent the completion of a long-lasting de-
velopment, but rather mark a new start, which was scarcely influenced by previous
results.

30 A justification (which in today’s courses on probability may be a nice problem for homework)
for the conclusion from (5.34) to (5.35) was not given by Lévy.
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5.2.3.5 Poélya’s Reaction to Lévy’s First Articles

Lévy [1922a], in the context of a brief discussion of counterexamples to the CLT,
had considered functions

)= (1>0,0<a<?2) (5.36)

which he referred to as characteristic functions of—as he wrote—"stable laws.”
At this place, Lévy did not prove that functions of the type (5.36) are actually char-
acteristic functions of probability distributions. In his first characterization of stable
laws [1922a, 10], stated only in words, it is required that a sum of mutually inde-
pendent errors, each obeying the same type of stable law, again obeys this type of
stable law. In Lévy’s own words, two errors obey the same type of a stable law if
one can be reduced to the other by a “change of the unit.”

Due to the features in common between Lévy’s problems and his own “deduc-
tion” of the Gaussian law, Pélya was prompted to a renewed and more general dis-
cussion of the integral equation (5.25). There was an exchange of letters on these
issues between Polya and Lévy in 1922 and in 1923. However, it seems that only
Lévy’s letters, which are kept in the archives of the ETH Ziirich,”' have survived.
In these letters Lévy informed Pdlya chiefly about his contributions which had ap-
peared in the Comptes rendus. In the first two letters (9 April 1922; 23 April 1922)
Lévy emphasized the advantages of characteristic functions over generating func-
tions. Especially important for Lévy was the property of characteristic functions
to be “always well defined” (first letter), “without any restrictions on the probabil-
ity law” (second letter), in particular regarding the existence of moments. Already
shortly after Lévy had published his article [1922a], PSlya, as Lévy hinted at in the
letter from 23 April 1922 and also reported in his autobiography [1970, 78], drew
the latter’s attention to the work of Cauchy (see Sect. 2.5.2), in which characteris-
tic functions of the type (5.36) had already been discussed. Apparently, P6lya, who
in his previous articles had not mentioned Cauchy’s account at all, felt motivated
to look for earlier work on stable distributions. In fact, one can find, in Czuber’s
very popular report on the development of probability theory [1899, 183 f.], a hint
at characteristic functions of type (5.36) with Cauchy. It seems possible that Pélya
learned about Cauchy’s contributions from this report. Pélya, however, must also
have known Edgeworth’s discussion of stable distributions (see Sect. 3.4.2.3), as a
letter from Edgeworth to Pélya reveals.

At this point it may be useful to clarify the substantial differences between
Cauchy, Lévy, and Pélya in their discussion of stable laws.

Cauchy looked for error laws such that, presupposing a finite number of iden-
tically, mutually independent errors of observation, the moduli of the differences
between estimated and real values in a linear model meet a special condition of
minimality. In this way he came across error densities with characteristic functions

5! ETH-Bibliothek, Archive, Hs 89: 320-326.

52 ETH -Bibliothek, Archive, Hs 89: 132. The letter is undated, possibly written in the early 1920s.
Edgeworth informs Pdlya mainly about his article [Edgeworth 1905].
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(5.36). He did not realize, however, that « < 2 was necessary for ¢ to be actually the
characteristic function of a probability distribution. Instead, he considered the case
a = oo especially important (see Sect. 2.5.2). The property of stability according
to Lévy’s characterization only played a minor role in Cauchy’s contributions.

Lévy searched for counterexamples to the CLT. A (suitably normed) sum of ar-
bitrarily many random variables, each obeying the same distribution according to
(5.36) with @ < 2, can never be normally distributed. In [1923b] Lévy defined, in
a slightly more formal manner than described above, stable laws in the following
way: A probability law .Z is called “stable” if it does not correspond to a degener-
ate distribution (i.e., a distribution concentrated in one point), and if for independent
random variables X1, X, each with probability law .#, this condition is valid: For
all ai, ap > O there exists a > 0 such that é(ale + a X>) likewise obeys the
law .Z.>3 As we will see below (footnote 71), the quantity a is necessarily uniquely
determined. Lévy [1923b] expressed this fact, without giving any justification, by
the words that a was “a function” of a; and a,. When Lévy’s attention, according to
his own statement [1970, 77], was drawn by a question of one of his students to the
problem of distributions with the property just described, he immediately perceived
that, in the same way as the Gaussian distribution, any other stable distribution was
a candidate for being a limit distribution of sums of independent random variables.
This observation had also been the major motivation for Edgeworth’s discussion of
“reproductive” laws. Lévy, however, was apparently not aware of Edgeworth’s ideas.
Besides this limit property, stable error laws for Lévy were important because the
precision of the arithmetic mean of several observations could be uniquely related to
the precision of each single observation if each observation could be characterized
by a stable error law of the same type.* Even though stable distributions different
from the Gaussian distribution could be likewise generated by an additive accumu-
lation of many small elementary errors, Lévy [1924, 41] was convinced that a good
arrangement of measurement would only lead to such elementary errors whose ac-
cumulation, on the basis of the “théoréme fondamental” (that means the classic
CLT), would produce a normal distribution.

Pélya searched for distribution functions V' with the following property (ex-
pressed in Lévy’s style for better comparison): There exist (in Lévy’s definition
we read “for all”) positive numbers a;, a, such that, for all independent random
variables X1, X, with distribution function V', the normed sum %(alX 1+ axX»)
(a a suitable positive number) is also distributed according to V. In his first arti-
cles Pélya additionally required the existence of all moments of the distribution V
(which he also assumed to be absolutely continuous). Under these conditions he
found the Gaussian distribution as the only solution of his problem.

33 It must be emphasized here that this definition makes a more restrictive demand on stable dis-
tributions than is common today. Probability laws obeying this condition are now called “strictly
stable.” Only in the 1930s (see Sect. 7.2.2), in the definition of stable laws were possible transla-
tions of the origin additionally considered.

34 For closer details on Lévy’s discussion of precision on the basis of stable error laws, see [Sheynin
19964, 182-188].
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In his first papers Pélya employed mainly moment methods for his discussion of
the integral equation (5.25), and in a far-reaching accordance with these methods,
generating functions (in [1919b]). Apparently stimulated by Lévy’s treatment of
characteristic functions, P6lya was later able to handle his problem under far more
general conditions by using the “new” tool. Now, he aimed at a characterization of
all nonnegative functions ¢ defined in R with 0 < ffzo ¢(x)dx < oo such that

1) [ x2¢(x)dx 1= 0? < o0,
2) @¢(x) is bounded in each finite interval,

3)
da,b,c > 0: %w(i—f)z%/(w(p(g)(p(x;u)du.

—0o0

The consideration of the moments up to second order [1923, 99 f.] yielded the
equation a? +b? = ¢2, as already explained in [1919a]. Yet, Pélya [1923, 100-103]
now used characteristic functions. With the abbreviation @(x) := ffzo e o(t)dt
condition 3) could be written in the form

®(x) = O(ax)P(Bx), (5.37)

where ¢ = % and B = l;’. By an idea hinted at already at the end of his [1919a],
Pélya applied (5.37) to @(ax) and @ (Bx) respectively, and in this way obtained:

d(x) = P(a?’x)P(Bax)P(afx)P(B>x).

Repeating this procedure n-times ((5.37) corresponds to n = 1) finally resulted in

o?x?

2

2
log @(x) = 745"(0) =—

2
PR chully ..
It could be concluded from this equation that ¢(x) = 5 L_e7 202 meets conditions

1), 2), and 3). PSlya [1923, 103; 105 f.] proved by mair;{?resorting to condition 2)
that ¢(x) is the only function with these properties.

Pélya [1923, 104 f.] also discussed solutions of his problem which do not meet
condition 1), that is, solutions which do not possess finite moments of second order.
He succeeded in characterizing solutions of 3) by their Fourier transform @(x) in
the following way: Let o, 8 €]0; 1[ and N > 0 such that «®¥ + BV = 1. If there
exist @ > 0 and natural numbers m, n such that —loga = wm, —log f = wn, and
if ¢ (x) denotes “any periodic function” with the period w, then

B(x) = e~ xIV vlloglx)

is a solution of (5.37).% That

p(x) = %/Ooo @(t) cos(xt)dt

35 Pélya did not explicitly state whether all solutions of (5.37) were given by this formula.
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is a probability density, Pélya proved for the case 0 < N < land ¥ € C?ina
tricky way using a general theorem on functions, which he had already published
in [1918, 378]. From Pdlya’s consideration it could be concluded, in particular, that
the functions ®(x) = e~14* v, already discussed by Cauchy, Edgeworth, and Lévy,
were actually characteristic functions of error densities for 0 < N < 1.

Pdlya apparently felt very challenged by Lévy’s probabilistic work. This fact
is also highlighted by Polya’s “new proof” for Lévy’s theorem on the correspon-
dence between the convergence of characteristic functions and distributions. Once
again, Pélya [1923, 106 f.] quoted his “Theorem III” on generating functions (Sect.
5.2.3.1) and stated that his new proof of Lévy’s theorem was “closely related” to
the proof of “Theorem III.” Like Lévy, he [1923, 107 f.] considered a sequence of
characteristic functions (&, ) accompanying the sequence of distributions ( f;), and
a characteristic function @ accompanying the distribution f. He claimed that from
the uniform convergence of @, (¢) to @(¢) in all compact intervals of ¢-values the
convergence f,(x) — f(x) would follow if f is continuous in x. For a proof Pélya
constructed the “rooflike” function D, where D(y) = D(—y) and

1 for 0<y<h
D(y)= 1=t for h<y<h+2
0 for y>h+2n

for arbitrary i, n > 0. He represented D(y) by a Fourier integral, and he showed
that

/_ D(t—s)dfn(t)—>/_ D(t —s5)df(t) (n — o0).

Because of the particular form of the function D, Pélya was able to conclude that,
forall s € R and & > 0 with the property that f(x) is continuous in x = s + &, the
relation

Ju(s +h) = fuls —h) = f(s +h) = f(s = h),
and therefore

nll)n;o(fn(xl) — fu(x2)) = f(x1) — f(x2)

for “arbitrary points of continuity x1, x» of f(x)” was valid.’® In a letter to Pélya
(13 May 1923, ETH-Bibliothek, see above), Lévy praised this new proof as “easier
than mine.” In his book on probability, however, Lévy [1925b, 197-199] elaborated
his own method of proof and did not use Pdlya’s.

Lévy in his later work readily appreciated Pélya’s results on characteristic func-
tions of stable and semistable distributions. To claim that P6lya had been the first to
discuss stable distributions in a systematic manner, as did Feller [1945, 821], is mis-
leading, however. On the contrary, Lévy’s first articles apparently aroused Pélya’s
interest in a more general discussion of the integral equation (5.25) and its solutions.

36 Pélya did not prove that from this latter limit relation the assertion f, (x) —> f(x) followed. In
this context, he only hinted in a very general manner on the fact that the functions considered were
distribution functions.
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Pélya thereafter tended to other probabilistic problems, particularly in the field of
random walks (see [Antretter 1989, 11 f.]). Lévy, however, began a truly compre-
hensive examination of stable and semistable distributions, which continued until
1937 when his second book on probability theory appeared.

5.2.4 Lindeberg: An Entirely New Method

The complete mathematical work of Lindeberg contains only one truly outstanding,
virtually epochal performance: the proof of the CLT under a very weak condition,
which under certain “natural” assumptions even proved to be necessary. Lindeberg’s
arguments were based on an entirely new analytic method, which would later be
applied to far more general problems. In [1920] Lindeberg, still without any knowl-
edge of Lyapunov’s works, had already proven the CLT for normed sums X% _, Xr’f
of mutually independent random variables X, each with distribution Uy, with zero
expectation, variance o,?, and finite absolute moment of third order, presupposing
that

raZ/ IXPdUr(x) >0 (n—>00), ry=

n k=1

After certain modifications of his arguments, he was able, in 1922, to publish his
famous proof of the CLT under even weaker conditions. He expressed this theorem
in several versions. The version which comes closest to Lindeberg’s concepts is
probably his “Theorem IIT”: Let Uy, U,, ..., U, be the distribution functions of n
mutually independent “probability quantities” u1, Uz, . . ., U, , €ach with expectation
0 and with variance 67, where ) ;_, 07 = 1. Let

U(x) :=/ / / Un (x—t1—t2 =+ —ty—1)d Up—1(tn_1) ---d Uy (11). (5.38)

Then U is the distribution of the sum of all random variables. Let

|x]3 if [x] < 1
x2 else.

s(x) = %

Even if the positive number ¢ is taken arbitrarily small, a positive number 7 can be chosen

such that 2
U(x)—/ sz <e (5.39)
if .
> / s(x)d Uk (x) < 1 (5.40)
k=177"°

[Lindeberg 1922b, 219 f.].57

57 Quotation with slight changes within the mathematical formulae. There are no equation numbers
in the original text.
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So, Lindeberg proved a theorem which can be applied both to normed partial sums
related to simple sequences of random variables and to sums of elements within
different rows of a triangular array of random variables.

5.2.4.1 The Proof

Lindeberg considered the convolution of the function U and an auxiliary function f
with derivatives up to a certain order. In [1922¢, 213] he assumed that | /" (x)| < k
for all x € R with a suitable positive constant k. In his first paper, Lindeberg [1920]
had still taken a normal distribution function for f. Although this trick is strongly
reminiscent of Lyapunov’s procedure (see Sect. 5.1.4), Lindeberg, who according
to his own statement [1922b, 226; 1922c¢, 211], had initially no knowledge of Lya-
punov’s works, had developed the idea of an auxiliary distribution independently.
However, it is quite possible that Lindeberg was influenced by the account on
Crofton’s method (see Sect. 3.3.2.2) in the standard monograph on error theory
[Czuber 1891, 97-99], in which the use of an auxiliary distribution was described.

Under the general assumptions of “Theorem III,” Lindeberg in the first part of his
[1922c¢] discussed distributions with finite third-order moments. He [1922c¢, 213 f.]
started his considerations with a general estimate for arbitrary distributions V' with
zero expectation and variance 2. Let

F(x):= /_ fx—=0)dV(t),

2
PR il
and, with the abbreviation ¢(x,0) := —L_ 67257 et

a+/21n
PD(x) = /_ f(x —t)e(t,o)dt.

Using the Taylor expansion of f up to the third power (there is a certain similarity
with Crofton’s procedure again) Lindeberg showed that

|F(x) — ®(x)| < k/_oo [x[2d V(x). (5.41)

By repeated application of (5.41) to

o

Fi(x) IZ/_ fx—=0)dUi(t), F(x) IZ/ Fi(x —t)dU(¢),...,

—00

Fu(x) = /;oo Fu1(x —1)dUn(1)

oo
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and

@1(x) :=/ f(x =t o1)dt, Dy(x) :=/ D1(x —t)p(t,02)dt, ...,

o

Dp(x) = /Oo Dp—1(x — 1)p(t,0p)dt,

—00

respectively, Lindeberg [1922c, 214-216] obtained

'/_ fx—1)dU(t) - /_ fx —t)e(x, Ddt

<kzn:/

i=1""

o

|x|2dU;i(x). (5.42)

With the aid of special, piecewise defined functions f, Lindeberg [1922c, 216 f.]
deduced inequalities from (5.42), whose combination yielded the estimate

n

<k > |xPdUi(x) +

'U(x) —/ (¢, 1) ﬁ
o0 i=1

By choosing k such that

i (Z [ |x|3du,-(x>) ,

i=1
1
n 00 4
<3( / |x|3dUl~(x)) (5.43)
i=1v7®°

followed. Lindeberg [1920] had already reached an analogous inequality, but with a
far more complicated right-hand side.

In that 1920 paper, as mentioned above, he had used the auxiliary distribution
fx) = f_xoo @(t,0)dt with a suitable 0. Now, the consideration of less special
auxiliary functions made a more flexible argumentation possible, a substantial sim-
plification of the proof, and an even more general treatment of the CLT in the second
part of [1922c¢], in which the existence of absolute moments of third order no longer
had to be presupposed.

Lindeberg [1922¢, 220 f.] now assumed that f meets the conditions | /"' (x)| < k
and | f(x)|, | f/(x)], |@| < 2"—4 for all x € R. By modification of the deduction
of (5.41) it followed with the abbreviations used there (s(x) as in “Theorem III”):

the inequality

‘U(x) — /_x o(t, 1)dt

oo

|F(x) — @(x)| < ck/ s(x)dV(x), wherec < % if /% x2dV(x) < 1.

In the same way as earlier, it was possible to justify an inequality analogous to
(5.42)if
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/ U )

was substituted now by the term
3 o0
5 / s(x)dU;(x),
2 )

and if it was assumed that

> [ swavic

i=1

was sufficiently small. The inequality corresponding to (5.43) (not explicitly stated

by Lindeberg) is
3 (. oo i
<3 V; (; /_ oos(x)dU,- (x)) . (5.44)

From this inequality, Lindeberg’s “Theorem III”” follows immediately, or, in other
words, (5.40) actually implies (5.39).

'U(x) - /X o(t, 1)d

—0o0

5.2.4.2 Different Theorems, Different Conditions

On the basis of (5.43), Lindeberg [1922c, 219] stated, as he had already done in
[1920, 21], the “classic assertion” that “the sum of a large number of mutually in-
dependent small errors obeys the Gaussian law.” Lindeberg presupposed the 7 ele-
mentary errors uq, ..., U,, each with zero expectation, to have only values whose
moduli remain below a finite upper bound d,. If U; denotes the distribution of the
ith elementary error, then

Z/ XPdUi(rax) =1 (rp =/ Varu;).

i=1
Because of
Z/ |x| dU;i(ryx) < Z / X dUl(rnx)
i=1 i=1

from (5.43) for all & > 0O the relation (U as in (5.38))

12

U(rnx) /x Tdt <é

follows, provided that
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Lindeberg [1922c¢, 219] now supposed that the “quantities u,, vary with respect to
their number and the form of their distribution functions such that at the same time
dp tends to zero and r,, approaches closer and closer a nonzero value r.” If U denotes
the distribution of the sum of n quantities of this kind, then the equation

2

w=[ =

lim U(x) = / dt

n—00 —oo '\/2T

has to be valid uniformly for all x. In this way Lindeberg rather loosely explained a
fact which in another paper [1922b] was stated more formally by a limit theorem for

the distributions of sums ZZ:I Uny, related to a triangular array uy,, 1 < u < n,

of elementary errors.”®

Lindeberg [1922b] comprehensively discussed possible specifications of the hy-
pothesis of elementary errors in the framework of different versions of the CLT. One
can learn from the paper [1922b] how important the problem of a precise stochas-
tic analysis of the accumulation of small elementary errors was for Lindeberg.
At this place, he explicitly favored a triangular array of elementary errors and a
limit assertion referring to it. It was quite useless, however, to compare the con-
tributions of the 19th century with limit theorems of the modern fashion. Hagen,
Bessel, and all the other mathematicians, astronomers, or geodesists considered a
“very large” or an “indefinitely large,” but quasi-fixed number n of elementary er-
rors; the Gaussian distribution resulted from neglecting the higher terms in a series
expansion for large n. In modern reconstruction this enables an interpretation as a
limit theorem for row sums of a triangular array as well as an interpretation in the
sense of a limit theorem for normed partial sums assigned to a simple sequence
of random variables. The latter interpretation, which Lindeberg—if only by rather
vague arguments—criticized as not being general enough, was used by Lévy (see
Sect. 5.2.3.2).

From (5.44), as Lindeberg [1922c¢, 225] pointed out at the end of his article, the
CLT follows in its usual form. Let (X;) be a sequence of independent random vari-
ables with distributions V;. For simplicity it is assumed that EX; = 0. Then, for
all natural n and for all i/ < n, the random variables u; := f—rf (rn = /. VarX;)
with distribution functions U;(x) = V;(r,x) are of the type required for Linde-
berg’s “Theorem III” (equation numbers (5.39) and (5.40)). From (5.44), under the

condition
n [es)
> s
o0

i=1

nX; X e 2
im P(ng):/ ¢ "
n—00 Tn —c0 V2T

(1) dVi(x) =0 (n — 0), (5.45)

I'n

it follows that

38 The elementary errors were assumed to have zero expectation, to be independent within each

row, and meeting the additional condition ZZ= , Varuy,, — r2.
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Lindeberg [1922c, 222-224] also established the following condition, equivalent

to (5.45):
1 n
1— / > lz / x2dV;(x) | dr — 0. (5.46)
0 \;= "n Jixlstra

Lévy [1924, 32], in his discussion of Lindeberg’s proof, introduced—without any
justification, as happened quite frequently in his papers—the condition

1 n

= / x2dVi(x) >0 Vi >0. (5.47)

Tn i=1 |x|>trn
This condition was adopted by Khinchin [1933, 7] in his survey Asymptoti-
sche Gesetze der Wahrscheinlichkeitsrechnung and is now commonly called the
“Lindeberg condition,” despite the fact that it cannot be found in any paper writ-
ten by Lindeberg himself. It may be a nice (nontrivial) problem for the reader to
show the equivalence between (5.45) and (5.47). Some suggestions for a proof can
be found in Lindeberg’s discussion [1922c, 222-224] of the equivalence between
(5.45) and (5.46).

5.2.5 Hausdorff’s Reception of Lyapunov’s, von Mises’s,
and Lindeberg’s Work

Besides his 1901 article already broached in Sections 3.4.2.1 and 5.2.3.3, Felix
Hausdorff only wrote a second larger article [1897] with essentially probabilis-
tic content, which would play an important role in the history of risk theory
(see Sect. 5.2.8.1). However, even after the turn of the century, he remained
very interested in probability theory, especially in its set- and measure the-
oretic background and in probabilistic limit theorems, as we can see from a
passage of his book on set theory [1914], several private notes, and letters
[Girlich 1996; Purkert 2006a;b; Siegmund-Schultze 2010]. Hausdorff’s activities in
moment problems were directly linked with the CLT, as explicitly shown by lecture
notes written by himself [1923/2006]. He apparently had good knowledge of current
literature which is why he is an important contemporary witness of the reception of
probabilistic novelties, in particular during the first quarter of the 20th century.
Concerning Hausdorff’s acquaintance with Lyapunov’s work on the CLT, a state-
ment by Cramér [1976, 1355] is frequently quoted® where he reports that “notes”
on Lyapunov’s work provided by Hausdorff “had a great influence on my subsequent

work.”® There actually exist, in Hausdorff’s “Nachlass,”®' notes on conditions

% See, for example, [Girlich 1996, 50; Chatterji 2006, 740].
%0 In this context, this would be especially true of [Cramér 1923], see Sect. 5.2.8.1.
61 Universitits- und Landesbibliothek Bonn, NL Hausdorff, Kapsel 51, Faszikel 1128, BI. 1.



5.2 The Central Limit Theorem in the Twenties 239

and assertions of [Lyapunov 1900; 1901a;c] (written before 1915),%? that are di-
rectly taken from the respective reviews JFM 32.0230.02, JFM 31.0228.02, JFM
32.0230.01 in Jahrbuch iiber die Fortschritte der Mathematik, as is made clear by
the organization of Hausdorff’s notes and wrong bibliographic data, which Haus-
dorff apparently adopted from the Jahrbuch without any modifications.%® In the
Jahrbuch, the comprehensive article [Lyapunov 1901b] was only referred to by a
bibliographic note (JEM 33.0248.07), but without any review and under specifi-
cation of a wrong article language (Russian instead of French). Notes by Hausdorff
with a deeper examination of Lyapunov’s methods are not extant. On the other hand,
it seems rather probable that he actually studied Lyapunov’s chief papers [1900;
1901b] in their original versions. The respective journals should have been easily
available for Hausdorff, both at the University of Bonn (where he taught until 1913
and again from 1921) and the University of Greifswald (1913—-1921).5* On the ba-
sis of the at present accessible sources one cannot decide with certainty, however,
whether Hausdorff’s knowledge about Lyapunov’s contributions actually went be-
yond the reviews in Jahrbuch, or whether his knowledge was as comprehensive as
suggested by Cramér. As we will see below, Hausdorff, in his above-mentioned
1923 course on probability theory, would give a detailed discussion of Lyapunov’s
conditions, although without using Lyapunov’s methods.

Hausdorff had, in his article of 1901, mainly focused on generating functions.
In a certain sense he had also broached characteristic functions, however without
using their decisive advantage, existence independent of the one of any moments
(see Sect. 3.4.2.1). For this reason, the naive reader might come to the opinion that
Hausdorff should have—at least in parts—esteemed von Mises’s 1919 account, in
which, as we have seen, generating and characteristic functions played a significant
role. A letter (6 January 1920)% from Hausdorff to Pélya reveals that the contrary
was true. Hausdorff wrote about von Mises:

M. gives very complicated and unnecessarily narrow conditions for the convergence of dis-
tributions to the Gaussian exponential law, whereas from works of Chebyshev, Stieltjes, and
others by far more general and simpler ones can be obtained; an especially beautiful and
little demanding [condition] we owe Lyapunov (1901!).

62 “Before 1915” according to the catalog of Hausdorff’s “Nachlass” (Universitits- und Landes-
bibliothek Bonn). The last entry on the sheet with the notices on Lyapunov also contains a brief
description of a 1913 paper by Perron “Math. Ann. 74.” Therefore it seems probable that Haus-
dorff’s notices were written around 1913/14/15.

93 In the Jahrbuch, the year “1900” (instead of 1901) for the volume 132 of the Comptes rendus
was incorrectly stated. Hausdortf, in the same erroneous manner, repeated the bibliographic data
referring to [Lyapunov 1900; 1901a;c] in a letter to von Mises from 2 November 1919 (see [Haus-
dorff 2006, 826]) and in his notes on a course in probability theory he gave in summer semester of
1923 [1923/2006, 674] (see below).

%% As both libraries communicated to me, the pertinent volumes of the Petersburg Memoirs and
the Bulletin were available for loan at the time in question. In a letter to Pélya (6 January 1920,
ETH-Bibliothek, Archive, Nachlass Pélya, 89: 237), Hausdorff referred to “Liapunoff (1901!)” for
a particularly weak condition of the CLT, now with the correct year.

65 Already mentioned in the preceding footnote.
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This quotation shows—besides revealing an apparently malicious attitude toward
von Mises—that Hausdorff was mainly interested in the integral version of the
CLT and its treatment by moment methods. As we have seen, von Mises’s con-
ditions for the integral version of the CLT were, if in a somewhat complex way,
expressed through generating functions, but they were basically not more restric-
tive than those needed for a direct inference (without using the truncation trick)
from the convergence of moments (or generating functions) to the convergence
of distributions. Hausdorff seems to have neglected that Lyapunov owed his suc-
cess, to a large extent, to the fact that a method alternative to that of moments had
been applied, and Hausdorff apparently did not see the full potential of characteris-
tic functions as discussed by von Mises, not to mention their implicit occurrence in
Lyapunov’s work.

Hausdorff’s interest in moment methods is also exemplified by his course on
probability theory in summer semester 1923 (Bonn). His own lecture notes, re-
cently edited (see [Hausdorff 1923/2006]), provide a rich collection of very in-
novative ideas and approaches from the point of view of the early 1920s. In par-
ticular, Hausdorff in this course took on, at a very early moment of time already,
Lindeberg’s methods for proving the CLT. He [1923/2006, 674—-678] presupposed
“variables” (without explaining this notion) Xy, ..., X,, with zero means, second-
order moments a?, ..., a2, and absolute third-order moments c3,...,c3. He ex-
pounded Lindeberg’s line of arguments, with certain modifications, up to this point
where the inequality (5.43) was established. From (5.43) Hausdorff [1923/2006,
679] deduced a finitary version of the CLT, which he named “Grenzwerthsatz
von Liapunoff” (“Lyapunov’s limit theorem”), and which can be summarized as
follows: If @, denotes the distribution function® of ZZ:l %, where b,% =

a? + -+ a2, and d, is defined by d, = (¢3 + -+~ + cg)%, then, with the de-
: 1 X —12 6
notation ®(x) := %f_oo e " d,®

A\ 1
(B (x) — ()| < 1 (b—) ,

n

where p is a “numerical constant.” Hausdorff additionally noticed that the condition

Z—n -0 (n — o0) (5.48)

was sufficient for the (uniform) convergence of @, (x) to ®(x).
Hausdorff [1923/2006, 680 f.] also discussed Lyapunov’s more general condition

(5.2), which he strangely enough designated as the hitherto most general—leaving
out Lindeberg’s even weaker condition (5.45). On the one hand, he did not include

% For comments on Hausdorff’s modifications see [Chatterji 2006, 752 f.]. Chatterji [2007] also
elaborated a modified proof of Lindeberg’s theorem on the basis of Hausdorft’s ideas.

7 The distribution function F(x) of a random variable X Hausdorff defined by F(x) :=
P(X < x).

8 Hausdorff contrary to Lindeberg still used the traditional norming of 19th-century error theory
which referred to the normal distribution ®,,. 1 rather than to the standard normal distribution.
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any details on Lyapunov’s approach to the CLT. On the other hand, however, he
showed by means of the Lyapunov inequality, which he proved very elegantly® via
the concavity of log(p1u$ +- - -+ pauy) (px and ug being positive), that Lyapunov’s
condition (5.2) implied the condition (5.48) that served as a basis for his own proof.

Without further speculations one can only state that Hausdorff, in his 1923
course, was apparently more interested in Lindeberg’s method than in the nowa-
days celebrated Lindeberg condition. We must not forget that the significance of this
condition was established in its full dimension only after Feller had proven in 1935
that it was even necessary for the convergence to the Gaussian law. Hausdorff’s
wrong assessment on the superiority of Lyapunov’s condition may have been based
on a misunderstanding, perhaps caused by Lindeberg himself, who, in his 1922
paper, particularly emphasized the “classic assertion” (see Sect. 5.2.4.2), which
could be derived from (5.43). Finally, even if Hausdorff had been still interested
in characteristic functions, Lindeberg’s rather elementary and quite easily conceiv-
able method would have been, at least with respect to the primarily didactic goals of
a lecture course, more appealing than Lyapunov’s rather cumbersome arguments.

Besides his proof of the CLT via Lindeberg’s method, Hausdorff [1923/2006,
684-693] in his lecture notes also gave a comprehensive account on the prob-
lem of the correspondence between convergence of moments and convergence of
distributions. By elementary, however rather intricate methods, Hausdorff proved
that for a sequence of monotonically increasing functions (¢,) and for a further
monotonically increasing function ¢, where ¢, and ¢ are defined in R such that
@n(—00) = @(—o00) = 0 and all these general distributions possess moments of
arbitrarily high order, the convergence of the moments

o0 o0
/ xKdpn(x) > / Kdep(x) (n — )
—00 —00
for all k € Ny implies the convergence of the distributions

on(x) = @(x) (n — 00)

for all points of continuity x of ¢, if ¢ is uniquely determined by its moments.
For this latter property Hausdorff established a necessary and sufficient condition,
and he proved that this general theorem could be applied to the particular case of
the normal distribution being the limit distribution. This latter assertion was named
by Hausdorff both “Grenzwerthsatz von Tschebyscheff” (“Chebyshev’s limit theo-
rem”) and “zweiter Grenzwerthsatz” (“second limit theorem”), probably because in
Chebyshev’s 1887 paper (see Sect. 4.6.2) an analogous theorem had been formu-
lated as a second after the weak law of large numbers as the first [Chatterji 2006,
731].7% “Chebyshev’s theorem” Hausdorff [1923/2006, 693] designated “in a cer-
tain respect more general” than Lyapunov’s, because (if in his own version only) the
former could be basically applied to nonindependent variables also.

% Hausdorff’s proof was essentially based on the same idea which Holder had used for proving
“his” inequality (see footnote 13).

70 For closer details on this part of Hausdorft’s 1923 course, see [Girlich 1996, 48-52; Chatterji
2006, 730-734].
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In an attitude similar to that of Pélya, Hausdorff apparently attributed mo-
ment methods as compared with characteristic functions the greater significance
for probabilistic limit theorems. Lévy’s proof of the correspondence of conver-
gence of characteristic functions and of distributions ([1922c], see Sect. 5.2.3.4)
remained generally unnoticed for the time being, as can be seen by an inade-
quate review in the Jahrbuch (JEM 48.0600.03). It was a major merit of Haus-
dorff to realize the significance of Lindeberg’s method, but the problem of utmost
generality of the conditions for the CLT was apparently not the focus of his
probabilistic research. Notwithstanding Lindeberg’s achievement, in the early twen-
ties the quest for conditions as weak as possible was the concern of mainly one
mathematician: Paul Lévy. This scientist immediately realized the significance of
both Lindeberg’s methods and Lindeberg’s condition.

5.2.6 Lévy’s Discussion of Stable Laws in His Calcul des
probabilités

Regarding his life achievements, Lévy [1970, 81 f.] stated retrospectively:

Nobody doubts that my works from 1922 to 1925 showed the importance of characteristic
function and established the fundamental theorems of its theory. Nobody can contest any
more my decisive role for the discussion of stable laws.

In fact, the power of Lévy’s characteristic functions becomes especially clear in the
context of his discussion of stable distributions, into which he also integrated the
CLT. Lévy’s early results in this field were comprehensively presented in the 6th
chapter “Les lois exceptionelles” of his Calcul des probabilités, which appeared in
1925.

Levy’s book consists of a mixture—for today’s reader a little strange—of tradi-
tional stochastic contents and latest results on limit theorems and stable laws. Philo-
sophical questions on the notion of probability are taken into consideration as well
as the elements of error theory and the kinetic theory of gases. So, regarding the
contents, the conception of the book also highlights the transition of an application-
oriented classic probability calculus to a purely mathematical theory. Apparently,
Lévy himself was far more interested in the latter aspect, and it was the discussions
connected with this aspect which were substantially responsible for the impact of
his book.

5.2.6.1 Stable Laws as Limit Laws

A comprehensive discussion of Lévy’s notion of stable laws is already contained
in Sect. 5.2.3.5. Lévy’s definition directly implies the following property of stable
laws, as it appears the most important from his own point of view: If there exists
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a sequence of identically distributed independent random variables (X;);en, and a
sequence of positive numbers (N, ),en, and a distribution function V' such that

P (_Z,-;; i x) P (Z;—IX _ x) V() (1 o0)

in all points of continuity x of V, then V is the distribution function of a stable
law. Lévy made this property explicit, but still without proof, in [1924, 33], whereas
in his book it obtained a prominent role within the chapter on stable laws. The
proof given by Lévy [1925b, 252 f.] was based on the same idea which Edgeworth
[1905] (see Sect. 3.4.2.3) had already used for the deduction of the characteristic
property of those limit distributions to be “reproductive.” Lévy considered stable
distributions “natural” generalizations of the classic Gaussian law. Therefore, with
regard to Lévy, the history of the CLT is closely connected with his more general
discussion of stable limit distributions.

5.2.6.2 The Functional Equation of the Characteristic Function
of a Stable Law

Lévy’s definition of stable law (see Sect. 5.2.3.5) is equivalent to the following prop-
erty of its characteristic function ¢ = 1:

aq ars
Vay,a, >03a >0Vx eR: ¢ (—x) 10 (—x) = ¢(x),
a a

or with the abbreviation z := :7!

VYay,ar > 03a > 0Vz € R: ¢p(a1z2)¢(azz) = ¢(az). (5.49)

Despite the fact that stable laws were in the foreground of Lévy’s work from the
very beginning of his probabilistic activities, only in [1925b, 254 f.] did he discuss
in a more comprehensive, though still incomplete manner, the set of solutions of
(5.49) (presupposing ¢ to be a characteristic function).

Passing from the characteristic function to its logarithm v (z) = log ¢(z) (this is
possible since ¢(z) # 0 is always valid for stable distributions, although Lévy did
not make this property explicit), one obtains

Yaj,az > 03a > 0Vz € R: Y(a12) + ¥(axz) = ¥(az).

Through successive application of this relation it can be concluded that there exists
a uniquely determined sequence (N (1)),en of positive numbers such that

Vn e NVt € R:ny(t) = ¢ (N(n)t). (5.50)

71 By use of the following property it can be shown that a is uniquely determined by a; and a.
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Lévy [1925b, 254] claimed it would be “almost obvious, and by the way easy to
prove” (this was one of his quite frequent standard remarks substituting proofs) that
N(n) — oo and % — 1 as n — 00.”” From this Lévy concluded without any
further explanation that for all A > 0 one could find sequences of real numbers

(nx) and (n} ) such that ny, nj — oo and Neu) _, 3 73 Because of (5.50), the quo-

N(ny)
Nog) .,
¢ LN “(Fots) is
¥ (N@))t) (')

independent of ¢’. v is a continuous function, therefore even in the “limit case”
the quotient '1’()%) is independent of ¢’. This statement is valid for arbitrary A > 0.
Without any detailed discussion Lévy [1925b, 255] finally wrote: “This is only pos-
sible if ¥ (¢) is of the form ¥ (z) = —c|¢|*, where the [complex] coefficient ¢ may
depend on the sign of 7.”’* From the general properties of characteristic functions,
which had to be valid also for ¢(x) = e¥® (in particular |p(x)| < 1, ¢(0) = 1,
@(—x) = ¢(x), continuity), it followed

tien is independent of 7. With t = ﬁ—) it follows that
k

Y (1) = —(co + sgn(r)cri)|z|*, (5.51)

where @ > 0, ¢co > 0, ¢c; € R. Because degenerate distributions were not under
consideration, even the fact ¢p > 0 was guaranteed. Lévy [1924, 34; 1925b, 255]

justified @ < 2 by the property that, for a normed sum Y ;_, % of mutually
independent and identically distributed random variables X; with positive moments

72 The first assertion can be justified by the fact that characteristic functions of stable distributions
do not have zeros (see [Lévy 1937a, 94 £.]). For a proof of an assertion analogous to the second,
see [Rossberg, Jesiak, & Siegel 1985, 170].

73 This can be proven in a way similar to the line of argument used for the proof of Riemann’s
theorem on the interchange of order within a series (1868). Let A > 0 be an arbitrary number.
Because N(n) — oo there exist sequences (px) and (i) of natural numbers, where py, gx —> 00,

N(pk) N(pk=1) N(pk) N(pk)
such that Yo > A and Mo = A, as well as Vg < A and N1 =D > A. Then

’N(Pk) _ ‘ Ne»  Npe—D _
N(qx) ~ N(gx) N(qr)

=( N(px) _I)N(Pk_1)<( N(pr) —I)A—>0
N(pe — 1) N(gr) — \N(pr—1 ’

The idea of this proof I owe to Giinther Wirsching.

74 A complete proof of this assertion can be reached by use of the theorem (essentially due to
Cauchy (1821), see [Aczél 1961, 47]) that the solutions u € C'(R) of the functional equation

e+ = 1O

(k a complex number) are given by u(£) = ke, where p € R. In the present case one has to apply
this theorem to u(z) = v (e%) and to observe that (due to a fundamental property of characteristic

functions) ¥ (—x) = ¥ (x).
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my < oo of second order, nondegenerate normal distributions are the only possible
limit laws different from distributions concentrated in one point.”>

5.2.6.3 The Laws of Type L g

For a closer specification of the constants cg and ¢, Lévy designated certain proba-
bility laws as “laws of type L, g” if their characteristic function had the form eV,
where ¥ (¢) was a function according to (5.51), ¢o > 0, and

c1 _ | Btan Ja fora €]0; 1[U]1; 2]
o | B fora € {1;2}. (552)

Those laws of type L, g for which coI' (e + 1) = 1, Lévy called “reduced laws of
type Ly g.” He [1925b, 256] claimed that laws of type L g different from degener-
ate distributions exist if and only if 0 < o < 2 and

—1< B <1 fora €0;1[U]1;2[,
peRfora =1,
B =0 fora =2.

In modern textbooks this assertion—apart from the fact that today the notion of “sta-
ble” is used in a slightly more general manner—is proven by aid of the “canonic”
representation of the characteristic functions of infinitely divisible distributions.
This approach can already be found in Lévy’s second book on probability theory
[1937a, 198-203].

In 1925 Lévy had to use different arguments because, at this time, there was no
idea about infinitely divisible laws.”® The necessity of 0 < & < 2 had already been
shown in his discussion of the functional equation (5.49). Only in the particular
cases @ = 1 and @ = 2 could the probability laws (Cauchy’s and Gauss’s law, re-
spectively) be specified by an explicit formula.”” For 0 < a < 1 it already followed

> m, = oo implies, as Lévy [1925b, 174] had shown at a previous place in his book,

. 1—Regp(t)
lim; o —7—
76 The concept of infinitely divisible distributions is due to de Finetti (1929, see Sect. 7.2.1).

7T Lévy [1939, 53-57] later also found the density function (vanishing for nonpositive arguments u)

= o0. This is only possible if ¢ < 2.

3 1
u 2¢ 2 (u>0),

1
(w) =

f /2n

belonging to
1 .
V() = —lt]2[1 —isgn(?)],

in connection with his examination of the distribution of the maximum value of the random func-
tion X(s) within an s-interval [0; 7] if X(s) follows a Brownian motion. As Lévy [1939, 47]
noticed, already from a result of Gustav Dotsch [1935, 622], which had been achieved in a non-
probabilistic context, it could be inferred that e¥ was the Fourier transform of f. Sometimes also

Nikolai Vasilevich Smirnov is credited with the formula for ', who independent of Lévy discov-
ered it in the 1950s; see [Gnedenko & Kolmogorov 1949/68, 171].
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from Pélya’s discussions that e¥*) was the characteristic function of a probability
distribution. However, P6lya’s method could only be applied for o« < 1, and, thus,
Lévy [1925b, 258-262] had to find new arguments.

He showed that, for all values of 8 and @ # 1, 2 under consideration, there exists
a probability density f* with a characteristic function ¢ such that

(go (Ll)) S e, (5.53)
no

Y according to (5.51) and (5.52). Lévy succeeded in proving that the convergence
in (5.53) was uniform in each finite interval of ¢-values, ¥ (¢) meeting the condi-
tions (5.51) and (5.52). His proof, however, remained incomplete for the time being.
Only from Cramér’s version of the convergence theorem for characteristic functions
(1937, see footnote 48) could it be concluded that the limit e¥ was actually a char-
acteristic function.

Lévy’s proof [1925b, 262] of the assertion that || < 1 in the case & # 1,2 was
not correct either. This problem was finally solved only in an article that he wrote
together with Khinchin [1936].

5.2.6.4 A Generalization of the Central Limit Theorem

Lévy [1924, 35; 1925b, 257 f.] presented a general theorem on the convergence of
the distributions of suitably normed sums of independent, but not necessarily identi-
cally distributed, random variables to a stable distribution. By the term “law %, g”
he denoted any law with the property that the logarithm ¥ (¢) of its characteristic
function in a neighborhood of # = 0 meets the condition

Y (1) = —(co + cisgn(@®)D[1|*[1 + w(@)],

where lim; _, o @(¢) = 0 and cy, c¢; are according to (5.52). Any law of this kind was
called “reduced” if coI'( + 1) = 1. Given « and B, by “famille normale des lois
Za,p réduites” Lévy designated the set of reduced laws %, g for which there exists
a nonnegative function A (¢) (—t <t < t) such that, for all functions w belonging
to elements of this set, the following property is valid:

|w(t)| < h(t) Yt € [-7; 7] and lim h(t) = 0.

Without any loss of generality one can assume that / is an even function, growing
with increasing |¢|.

Lévy’s major theorem was as follows: Let &;,..., &, be independent random
variables, each belonging to the same “famille normale de lois .%, g réduites.”’®
Let ay,...,a, be positive numbers such that, for A* := ZZ=1 al‘: and a “very

small” number 7,
max) <k <n Ak

A

78 In the text [Lévy 1925b, 257 £.], the word “réduite” was omitted erroneously.

<.
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Then “the sum
X _aibi+axb + -+ anda

A A

obeys a probability law that deviates” from the law L g all the less the smaller the
number 7 is.” By “the law L, g~ Lévy at this place apparently meant the reduced
law of type Lq g.

For the proof Lévy considered the logarithm ¥ of the characteristic function ¢ re-
lated to the variable %. If Y designates the logarithm of the characteristic function
of &, then

v = Y v (%) =~ + csienpll” [1 +Y o (%)] |
k=1 k=t

With the abbreviation C := ,/C% + c% it follows that

n

aa
W (1) + (o + crsign@De]*] = Cle|* Y A_i;
k=1

agt
o | — -
4
Let T be an arbitrary positive number. Then we have n7T < t for a sufficiently
small 7. Therefore, for allt € [-T; T],

|¥(t) + (co + crsign()i)|t|*| < CT*h(nT).

From this inequality the uniform convergence of ¢ (¢) to e~ (cotcisen@ItI® for 5 0
(and thus n — 00) in each finite interval follows. The assertion ensues immediately
from this fact.

5.2.6.5 The “Classic” Central Limit Theorem as a Special Case

The classic CLT, called “theoreme fondamental” by Lévy, was especially important
in his exposition of error calculus, on the one hand. In the framework of his purely
mathematical discussions, however, it was, if tacitly, “only” a particular case of the
limit theorem explained in Sect. 5.2.6.4.

In retrospect, Lévy [1970, 108] wrote on his work on the convergence of distri-
butions of sums of independent random variables to the Gaussian distribution:

I never had luck with the law of Gauss.

In saying this, he characterized the fact that, in regard to the classic CLT, other
authors had always beaten him to the publication of similar or even the same results,
and could thus take exclusive credit for the achievement.

79 With “deviation” of two probability laws Lévy apparently alluded to his notion of “distance”
between distributions, which he had introduced in his discussion of the mutual correspondence be-
tween convergence of characteristic functions and convergence of distributions (see Sect. 5.2.3.4).
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In 1922 Lévy experienced the first case of such a priority conflict with his
previously unequaled weak conditions for convergence to the normal distribution
[1922a]. Due to a misspelling, his conditions were misrepresented in a note pub-
lished in the Comptes rendus (27 March 1922). Lévy’s statement, corrected and
slightly specified compared with the wording of the first publications, was as fol-
lows: For a sequence of distribution functions ( F)zen of independent random vari-
ables X}, each with zero expectation and variance 1, let

Ve > 03a > OVk e N : / E2dF(§) > 1 —e. (5.54)

|€]<a

Let (my)ren be a sequence of positive numbers with

maxk=1mnm]%

ST 2 -0 (n— 00). (5.55)
k=1""k

Then

lim p [ k=X

1 /x
x| =—=
n—o00 /ZZ=1mi - /27T —o0

Lévy [1924, 30 f.; 1925b, 207 f.] showed that (5.54) is sufficient for Fj being a
“famille normale des lois . o réduites.” Thus, the CLT in the version above was
“only” a special case of Lévy’s theorem on the convergence to distributions of type
Log.

On 29 May 1922 Borel, who, at this time, was not too well-intentioned toward
Lévy, presented a note written by Lindeberg [1922a] to the Paris Academy. In this
note, which also appeared in the Comptes rendus, Lindeberg pointed out Lévy’s
mistake, presented his own condition (5.46) for the CLT, and rightly designated it
more general than Lyapunov’s (5.2). He also announced a comprehensive article
[Lindeberg 1922c] on these issues. This article, which had already been submitted
on 20 November 1921 to the Mathematische Zeitschrift, appeared shortly after the
note. Lévy’s revised publication [1922b] on his own conditions was communicated
on 26 June 1922; it also contained the proof of the convergence of the characteristic
functions related to the normed sums to the characteristic function of the normal dis-
tribution under his conditions.®! This article was superseded by Lindeberg’s work,
at least concerning the pure results. As Lévy himself admitted [1922b, 13], he had
not reached a proof for the continuous correspondence of characteristic functions
and distributions at that time. This latter proof ([Lévy 1922c], see Sect. 5.2.3.4) was
published in the Comptes rendus after having been communicated on 13 November
1922, and finally completed Lévy’s discussion of the CLT.

t2
e 2 dr.%0

80 In this sense the statement can be found in [Lévy 1924, 25; 1925b, 234]. Lévy [1924, 27,
1925b, 240] also gave an equivalent “g-n-formulation” in the style of the theorem described in
Sect. 5.2.6.4.

81 The notion of “famille normale” Lévy introduced only in [1924, 24]. In his autobiography [1970,
78 £.] he, however, reported that the article [1924] had already been submitted in fall 1922.
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Lévy [1924, 18] stressed the independence of his and Lindeberg’s work. He
proved [1924, 32 f.; 1925b, 244-246] the CLT by use of the method of charac-
teristic functions under the modified “Lindeberg condition” (5.47), which was espe-
cially appropriate to characteristic functions (see Sect. 5.2.4.2). This proof largely
corresponded to the now common standard proof as contained in many textbooks
on probability theory.

For a comparison of Lévy’s conditions with the modified Lindeberg condition
one has to refer to random variables X with zero expectations and variances o,f. In
this case Lévy’s conditions are obtained after the substitution of (5.54) by

1
Ve>03a > 0¥k eN: — E2dF(§) > 1 —¢, (5.56)

Ok JlE|<aoy

and after writing olf instead of m,zc in (5.55). The Lindeberg condition, with the
abbreviation r 1= Y _, 07, is

1 n
Vit > 0¥y > 03ng¥n > no : — Z/ x2dF(x) > 1—n. (5.57)
Tn k=1 |x|<rnt

Whereas Lévy’s first condition (5.56) aims at a certain uniformity among the single
distribution functions, his second condition (5.55) requires each single variance to
be small compared with the variance of the entire sum. Lindeberg’s condition (5.57)
stresses both aspects at the same time, the uniformity required, however, is weaker
than in Lévy’s condition. In fact, as Lévy [1925b, 244] proved, from both Lévy
conditions together the Lindeberg condition can be deduced.

Lévy admired the “ingenious and simple” method of Lindeberg, which—in con-
trast to the method of characteristic functions—was appropriate for more general
problems than just sums of independent random variables. He described this method
comprehensively, if in a modified form, in his book [1925b, 246-249].

There were, however, more differences between Lévy and Lindeberg than just
those regarding conditions and analytic methods. In his first article [1922a] Lévy had
already put the classic CLT in the context of limit theorems on the convergence to
stable distributions, and, even more generally, to convolutions of these distributions.
This point of view, which was entirely different from Lindeberg’s, opened a whole
new field of modern probability theory.

5.2.6.6 More Limit Laws

Lévy [1922a] in an example had already hinted at the fact that stable distributions
are not the only possible limit distributions of normed sums of independent, but not
necessarily identically distributed random variables. In [1925b, 269 £.] he discussed
this problem in a more general way. Let n” and n” be “large numbers” of independent
“errors” Xy and Yy, respectively, where the X obey the reduced law Ly o, and the
Yi obey the reduced law Lo» o with o' < «”. Letn := n’ + n”. If n” is of a
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1
“higher order of magnitude” than n’ such that with the abbreviations N’ = n'e’

1
and N” = n"a” the fraction %—/,/ has a “certain limit” as n — oo, Lévy claimed
’ "
that, after an appropriate norming, Yy _; Xx + Y r—; Yx would have a limit law
characterized by
4 4

Y(t) = —cit]* —caft|*,

where any c1,c2 > 0 were possible. Lévy did not justify this somewhat murky

C//

assertion. Indeed, the sequences (n”) and (n’) can be chosen such that 11\(,—/,/ -5,
where ¢’ and ¢” are arbitrary positive numbers. The logarithm of the characteristic
function of

D Xk + 2k Ve

N/
ra
tends to
e ’ o 7"
l, - o - o
v F(a’+1)| | F(oz”+1)| |
o’ e’ P .
as n — o0o. If one sets ¢; = INCES) and ¢, = T D) then Lévy’s assertion

follows. Lévy also indicated how, by a generalization of this situation, even dis-
tributions with characteristic functions e> Y% could be limit distributions if Yk
were the logarithms of characteristic functions of indefinitely many different stable
distributions. It seems that, at this stage of his work, Lévy still was convinced of
a certain “dominance” of stable laws even regarding limit distributions of sums of
non-identically distributed random variables.

5.2.6.7 Domains of Attraction of Stable Distributions

Lévy’s “origins” in functional analysis could also be seen by his use of particular
expressions in his discussion of the domains of attraction of stable distributions. He
assigned all probability laws which could be reduced to each other by a “change of
unit” the same point of an “ideal space” [Lévy 1924, 25; 1925b, 238 £.].%? In this
way, to all laws of the type Ly g with fixed o and 8, but possibly different co (cf.
formulae (5.51) and (5.52)), there corresponds exactly one point of space, which
Lévy likewise designated by L, g. In Lévy’s conception the domain of attraction
of Ly g consists of a certain set of points of the “ideal space,” each point corre-
sponding to a whole class of similar laws. For each distribution function V' which
characterizes a point of the domain of attraction of L g there exists a sequence of
norming constants (N (n)) and a distribution function V, g of type Ly g such that

nll)ngo VP (N(n)x) = Vg p(x).

82 Two distribution functions ¥} and V; can “be reduced to each other” if there exists a positive
constant a such that Vj(x) = V,(ax). According to Pélya [1923, 97] two distribution functions
which are related to each other by the latter equation are called “similar.”
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Later, in the thirties, this definition of domain of attraction was generalized by the
somewhat weaker condition that

lim V™ (N(n)x + an) = Vg p(x)
n—oo

with suitable translation constants a,. From Lévy’s generalization of the CLT (see
Sect. 5.2.6.4) it follows that “points” to which probability laws of the type .2}, g
belong are elements of the domain of attraction of L g. Lévy (for example [1925b,
151, 267, 277]) expressed this fact® briefly in the following way: “The laws Zu.B
belong to the domain of attraction of Ly g.”

The portion of text [Lévy 1925b, 266-277] gives information about the author’s
attempts to determine the domains of attraction of stable laws, a problem which
was completely solved only by the end of the thirties. In this context, semistable
distributions (originally introduced by Pélya) played an important role.

Lévy [1925b, 266 f.] explained that the “set of points” ., g is only a proper
subset of the domain of attraction of Ly g by the following example: Let (Xx) be
a sequence of identically distributed independent random variables, each with char-
acteristic function e¥ such that, for 0 < o < 2,

1 Y
(o) = — i (1og—) 1+ w(0)]

It

where lim; o () = 0, y > 0. Then, the sum Y ;_, % (N(n) > O arbitrary at
first) has the characteristic function e¥”, where

* N@n)\” t

(k’g ] ) [1 e (N(n))} |
If forn — oo also N(n) — oo with the additional condition (N (n))* (log N(n))™7 ~
n, we have ¥, (t) — —|t|*. In particular, from this example it follows that the do-
main of attraction of the Gaussian law also consists of distributions with infinite
moments of second order.

Lévy was especially interested in a possible characterization of the domain of

attraction of L, g through the existence of moments E| X |, where o’ € [0; «[. To
this end he considered random variables X obeying the law . such that

Yn(t) = —n NG

E|X|* < oo for o <«

/ 5.58
E|X|¥ = oo for o’ > a. (5-58)

He designated it “very probable” [1925b, 267 f.] that .Z belongs to the domain of
attraction of a “point” L, g if there exists a sequence (Xj) of independent random

83 In the case @ = 2, B = 0 this assertion in modern textbooks (probably since [Cramér 1937/70,
53]) is often called the “Lindeberg—Lévy theorem.” Lindeberg himself, however, did not explicitly
treat the case of identically distributed random variables.
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variables, each obeying ., and a sequence N (n) of positive numbers such that the

sequence of distributions of % tends to a limit distribution. He was not able,
however, to give a proof for this assertion.

It was necessary to assume—in addition to (5.58)—the existence of such a limit
distribution, as Lévy showed in his discussion of semistable laws. By “semistable”
he denoted probability laws with the characteristic function e¥, v having the
property

day,a,A>0:v(a1z2) + ¥(azz) = v (Az). (5.59)

Lévy only made explicit the particular case a; = a». As Pélya (see Sect. 5.2.3.5)
had already explained, (5.59) in this particular case has solutions of the form

V(2) = Ya,p(2) P (logz]), (5.60)

where P is a periodic function with the period 10(%2, and e¥«-# is the characteristic

function of a law of type Ly g. For the case 0 < o < 1 Pélya had already proven the
existence of distributions with such . For the whole range 0 < o < 2 and —1 <
B < 1,Lévy [1925b,270-276] proved the existence of semistable distributions with
Y according to (5.60). He constructed—in a way similar to his proof of the existence
of stable distributions—random variables X obeying (5.58) for whose characteristic
functions f the limit relation

2h
(f (ih)) — V@ (heN, h— o)
24

is valid, although in general for n € N the limit

(1 ()
n—>oo n&

does not exist. By this argument Lévy showed at the same time that the limit de-
scribed above generally does not exist. From his considerations it also followed that
in the case « = 2 only the Gaussian distribution obeys the relation (5.59). Lévy
[1925b, 277] erroneously maintained that the domain of attraction of the normal
distribution consists of all laws with E|X|* < oo, for o’ < 2. Ten years later he
[1935b, 369 f.] found a counterexample, and thus he proved his original assumption
wrong.

In his book of 1925, Lévy’s discussion of the domains of attraction of stable
laws was incomplete and partly speculative. However, it was exactly these problems
which would continue to play an important role in the development of probability
theory during the thirties.
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5.2.7 Bernshtein and His “lemme fondamental”

In the “annus mirabilis” 1922, in which Lindeberg’s and Lévy’s fundamental and
influential contributions to the CLT appeared, also a little note on this topic was
issued by Bernshtein in Mathematische Annalen. This note had already been sub-
mitted on 2 August 1921, and thus was certainly independent from Lévy’s and
Lindeberg’s articles. Bernshtein [1922, 237] even maintained that his results on the
convergence of distributions of sums of not necessarily independent random vari-
ables to the Gaussian distribution, published without any proof, had already been
achieved by 1917/18. The central role within Bernshtein’s theorems is played by a
“lemme fondamental,” which generalizes the assertion of the CLT toward “almost
independent random variables,” and can also be applied to sums of random variables
which form Markov chains.®* The wording of this lemma, which in the special case
of independent random variables generalized even Lindeberg’s assertion, was not
entirely clear. Bernshtein’s little article went practically unnoticed. A comprehen-
sive account including all proofs appeared only in 1926.

5.2.7.1 The Statement

Compared with the original version of [1922], in [Bernshtein 1926, 21] the “lemme
fondamental” received a slightly different wording:

Let S, = uy +uy + -+ uy,, //Z(S,f) = B,, [by .# Bernshtein always denoted an
expectation] .4 (u?) + .4 (u3) + - -+ + 4 (u2) = B!, (it is always supposed for simplicity
of notation that .# (u;) = 0). If, for each arbitrary set of already known values u;, us,
..., Uu;—1, the absolute values of the mathematical expectations of u; and u? do not exceed
«; and B; respectively, and at the same time the mathematical expectation of |u?| remains
below c;, then the probability of the inequality

2oV ZB,, < S,, <Z1v ZB,,

will tend to the limit

1 /Zl _2
— e “dz,
NN

presupposing that

n n n
Z o Z Bi Z Ci
1 [ [
v Bn ' Bn ’ ;/2

tend to 0 together with * .33

Its full generality the “lemme fondamental” received from the following additional
remark [Bernshtein 1926, 23], which was already contained analogously in the orig-
inal wording of [1922, 238].

84 With a little hindsight, Bernshtein’s “lemme fondamental” can be included in the history of
martingale limit theorems, see [Crépel 1984] and Sect. 7.1.3 of the present book.

85 The quantity B], is of considerable importance for the proof. From the details of the proof one
can see that the “expectation of |u;|>” is a conditional expectation without any doubt.
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The conclusion of the lemma equally subsists even if its conditions are not met in those cases

in which the quantities u attain certain values which have the probabilities &, such that
n

>~ & tends to 0 together with % In this context, all mathematical expectations, which occur
1

in the wording, have to be calculated under the hypothesis that none of these exceptional
values are realized.

I shall try now to integrate my interpretation of the additional remark into the formu-
lation of the “lemme fondamental.” For simplicity I take the slightly more special-
ized, but nonetheless sufficiently general point of view that the “exceptional values”
lie beyond certain symmetric intervals. Already in [1922, 237] Bernshtein had men-
tioned that his results were even valid for sums S, = u{™ + 1 + ... + u{™. For
simplicity, however, he always neglected the upper index. In my reconstruction I will
also make explicit these double sequences of random variables which Bernshtein
actually had in mind.

In modern terminology the “lemme fondamental” might be expressed in the
following way:

Let (Upi)n,ien,1<i<n be a double sequence of random variables with distributions
F,; and ranges of values W,;. Forn,i e N, 1 <i <n,andu; € Wp; let

Fn1(x) i=1

Fui(x|uy,...,uj—q1) = .
(¥l i-1) P(Up;i < x|Up1 = u1 AUp2=uz A+ AUpj—1=u;_1) i=2.

Bernshtein did not comment on possible problems concerning existence, unique-
ness, or construction of such conditional distributions and expectations.86 Let (L)
denote a double sequence with oo > L,; > 0 such that

n
lim / dF,(x) =0. (5.61)
n_)oo; ‘x‘>Lni
Let
Wo(x1,...,xn) := P(Upy <x1 A~ AUpny < Xp)
and
B, = / (X1 4+ x)2d W, (x1,....%n).

[x1|=Lpi AAlxXnl<Lnn

If there exist double sequences (i), (Bni), (cni) of positive numbers such that for
all natural » and all natural i, 1 <i < n, and for all

86 A theory of conditional distributions and expectations with respect to a finite set of random vari-
ables, which would have been necessary for a rigorous treatment of Bernshtein’s considerations,
was only developed by Kolmogorov [1933/50, 51-56] using the “theorem of Nikodym” [1930].
Bernshtein, however, tacitly as it seems, assumed the unique existence of conditional distributions
and expectations of the random variables U,; with respect to all relevant values of the random
variables U,;, ..., U,i—;. Therefore, it is not the aim here to discuss Bernshtein’s contribution with
the full generality of Kolmogorov’s concepts.
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ur € [=Ln1; Ln1]|NWai,uz € [=Ln2; Ln2]NWha, ... uj—1 € [=Lpi—1; Lpi—11NWyi—1
the following conditions are valid:

Z?:l Qi

< oy, where lim =——— =0, (5.62)

xdFui(x|uy, ..., uj—
‘/X<Lni nt( | 1 i 1) He 00 \/B_n

/ x2d Fpi(x|u1, ... ui—1) —/ x%dFyi(x)| < Bui,
|x|<Ly; |x|<Ly;

i1 Bui

where nll)ngo =0, (5.63)
n
and
/X<Lm |x3|d Fpi (x|u1, ... ui—1) < cni, where nlingo% =0; (5.64)
then®’

21

lim P (zO\/zB ZU,,, < 21v/2By ) T e dz.  (5.65)
i=1 20

Gnedenko and Kolmogorov [1949/68, 130] have hinted at the fact that Bern-
shtein’s lemma together with the additional remark in the particular case of inde-
pendent variables yields very general sufficient conditions for the convergence of
the distributions of normed sums to the normal distribution. These conditions were
equivalent to the ones of Feller in 1935 (Lévy is not referred to), as Gnedenko and
Kolmogorov maintain. Feller (and Lévy), however, had also proved the necessity
of their conditions. I still have to discuss this claim of priority by Gnedenko and
Kolmogorov in favor of their older colleague (see Sect. 6.3.2).

As we can see from a footnote in the introduction (p. 12) of his 1926 paper,
Bernshtein actually aimed at an application of his lemma (including the additional
remark) to independent random variables. In this part of his article Bernshtein ex-
plicitly used characteristic functions for a reconstruction of Lyapunov’s proof of
the CLT. In the footnote he gave an example of identically distributed random vari-
ables which do not possess any finite moments of second order, but do, however,
meet conditions which are in accord with (5.61) to (5.64). A similar example for
the convergence of normed sums to the normal distribution without the existence of
moments of second order had already been discussed by Lévy (see Sect. 5.2.6.7),
who, however, had not put this example in the context of a general limit theorem.

87 In the exact wording of Bernshtein’s conditions the relations “< c¢,;” instead of “< ¢,;” occur.
In Bernshtein’s proof, however, only the somewhat weaker version with “ <” is used.
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5.2.7.2 The Proof

Bernshtein [1926, 21-23] initially proved his lemma without consideration of the
additional remark, or, in other words, only for the case L,; = oo. In a first step he

deduced that
. By
lim — = 1. (5.66)

n—oo B’/t
The main part of his proof® dealt with the discussion of

e U,
Gu(§) = Eelf Zk=1Yu \where Yo = ok

2B),
form < n and £ € R. On the basis of (5.62) to (5.64) Bernshtein was able to show
that for all values y; of Y;,; (j = 1,...,k — 1) and for all |§] < N (an arbitrarily
large number)
U2

nk EZ + Snk,

E (eism
4B},

Yoo =y1... o Yok—1 = yk—l) =1-
where

ﬁnk Cnk
S| < A + — + —= | = M-
(8 k| (\/B_n B, Bs/z Nk

A designated a positive constant depending only on N. By use of this estimate
Bernshtein concluded:

Gun(§) = Gum—1(§) (1 ”’"%‘ ) + Yum>  Where | V| < Num-

4B!

It followed:
Vnk

“ Eu(§)

U? EU2
Eu® = (1-52) - (1-22¢).

For || < N and sufficiently large n the inequalities ) %;’;’((g)) ) <1(k <m <n)were

Gnm(%-) nm(é) + EI’LWI(E)

where

valid, and therefore also

|Gun(€) = Enn(®)] < Y |yl

k=1
Bernshtein referred to conditions (5.62) to (5.64) to show that the right-hand side
of this last inequality tends to O for all m < n if n — co. Because, for n — oo,

2 . o 2 .
E,n(§) — e~ # uniformly in each finite interval, also G, (§) — e~ # uniformly in
each finite interval ensued. Under consideration of condition (5.66) and on account

8 In the following I refer to the reconstruction of the lemma in modern terminology.
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of the theorem of the continuous correspondence between characteristic functions
and distributions, the assertion of the lemma without the additional remark was fi-
nally proven.

A justification of the additional remark was only indicated by Bernshtein [1926,
23 f.] in a rather vague manner. The complete proof might—according to Markov’s
treatment of truncated random variables (see Sect. 5.1.5)—run as follows: Let

Pn = P (lUn1| > Ly VvV |Un2| > Ly VeV |Uml| > er) .

Because of (5.61) we have
lim p, = 0. (5.67)
n—o0o

Now we define Unk if |Unk| < Lnk

ro_
U = % 0 else,

and introduce the abbreviation S, = Y ;_; U/,. Then

P (zo\/m< Sy < zl@)
—P ([ZOJE< Sp < zl\/E] AVI <k <n:|Ugl < L,,k]) +
+P ([zo\/E< Sy < zl\/E] ABL <k <n:|Ugl> L,,k])
< P(20V2B, < S; < 21V2B,) + pa. (568)

On the other hand, the event “o0 < S, < fB” consists of those cases for which
a < S, < B or for which |Uy| > Ly for at least one 1 < k < n. Therefore we
have

P(a<S,<B)<P(ax<Sy<pB)+ pn.

and thus
P (zm/ZB,, <8, < z“/ZB,,) > P (ZO\/an <S <z \/23,,) — D (5.69)

From Bernshtein’s proof of the lemma without the additional remark

(ZO\/ZBn <S <21 ZB,, /
20

follows. Therefore, because of (5.67) to (5.69), the assertion of the CLT (5.65) can
be proven under the more general assumptions of the additional remark as well.

Bernshtein’s “lemme fondamental” is a natural extension of the CLT in its most
general setting to “almost independent” random variables. Therefore [Bernshtein
1922; 1926] has to be considered as equal to Lindeberg’s and Lévy’s contributions
in 1922, particularly since in Bernshtein’s note of 1922 the idea of a CLT for random
variables without finite moments is already present.
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For the time being, the universal notion of the “lemme fondamental” was not
fully appreciated, probably because the major part of the article [Bernshtein 1926]
was dedicated to the application of the lemma to random variables which form
Markov chains. This application was based on the following principle, explained
already in [Bernshtein 1922, 238]. Given a sum

Sp =Un+Upr+ -+ Uy,

of any random variables with zero expectations, try to find 2/ new random variables
X,k and Yy, respectively, such that [ — oo as n — oo, and

Sn = Ynl +an + Yn2 +Xn2 + e Ynl +ans
where Y,; with EY,; = 0 are almost independent, and the “order of growth”
2
of E(Zle Xni) is for n— oo less than that of E (> 7_, U,,i)2 =:B,. If a

2
representation of S, is possible in this way, then one can show that E (Zle Ya i) ~

By, and by aid of the “lemme fondamental” the relation (5.65) can be deduced.

It is remarkable that Bernshtein [1926, 43-59] also extended his statements
toward two-dimensional random variables. This included the proof of a CLT for
independent random vectors by use of characteristic functions under conditions
analogous to Lyapunov’s (5.1), presupposing the existence of absolute moments of
third order. Bernshtein also succeeded in proving a two-dimensional analog to the
“lemme fondamental” and in applying it to two-dimensional random vectors which
form Markov chains.

5.2.8 Cramér: Lyapunov Bounds and Asymptotic Behavior
of “Exponential Series”

5.2.8.1 Risk Theory as a Starting Point

In chapter 9 of his TAP on “advantages which depend on the probability of future
events,” Laplace had considered the situation of n independent games, each hav-
ing only the possible results “win” and “loss.” Win, loss (considered as negative
“win”) and the respective probabilities were not necessarily the same in each game.
By use of the CLT, Laplace for large n calculated the approximate probability
that the overall gain (which can also be negative) exceeds certain values (see Sect.
2.1.5.3). This application of the CLT was the point of departure for a renewed risk
theory during the second half of the 19th century,*” which mainly focused on insur-
ance problems, using concepts and notions related to error theory.”

89 The problem of risk regarding games of chance and insurance was part of the history of proba-
bility calculus from its earliest beginnings. For the development of risk “theory” until Laplace, see
[Daston 1988]. Purkert [2006a] gives a survey of the development of risk theory from about 1850.

%0 This relationship is especially made explicit in [Hausdorff 1897].
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Assuming n independent contracts, for which the insurance company has the
expenses e; and takes the premia p; (i = 1,...,n) within a certain time period,
gi = pi — e; is the—possibly negative—gain of the insurance company from the
contract i. According to the CLT, for example in Poisson’s version, under the as-
sumption of a large number of contracts the total gain »_ g; of the insurance com-
pany within the time period considered approximately obeys a normal distribution
with expectation Y Eg; and variance ) Varg;. Estimating the quantities ) Eg;
and Y Varg; (square of “main risk™) as well as the calculation and the assessment
of the probability that the overall gain of the insurance company exceeds certain
(positive) bounds were fundamental problems of risk theory. The latter problem
was linked with the “stability” of an insurance company. In this context, the ques-
tion about the quality of approximation of exact probabilities by normal distribu-
tions played an increasingly important role. At the beginning of the 20th century,
Bohlmann [1901, 903] stated that all investigations of risk theory so far did not
have any practical relevance. He noticed [1901, 913] that the CLT “in many cases,
however always in a purely formal manner without any consideration of the qual-
ity of convergence” had been applied in the mathematical insurance theory since
Carl Bremiker [1859].

Risk theory paved the way for a more thorough consideration of the CLT and, in
general, of stochastic processes during the first decades of the 20th century. Cramér
reported being strongly influenced by the work of Filip Lundberg after the turn of
the century; it stimulated an embedding of risk theory into the theory of stochas-
tic processes [Cramér & Wegman 1986, 530]. Lundberg is now regarded as the
founder of “collective risk theory” which can be characterized by one main fea-
ture: Development of the overall gain of an insurance company is—without con-
sidering properties or numbers of the underlying individual contracts—modeled by
stochastic processes. In his original approach, Lundberg assumed the total gain of
an insurance company being subjected to a stochastic process with independent in-
crements, choosing the company’s accumulated risk premium as the independent
variable rather than time.”! By about 1950, the collective approach became the pre-
dominant approach to risk theory [Purkert 2006a, 520]. This success was essen-
tially due to Cramér, who had been propagating and refining Lundberg’s work since
about 1930.

During the 1920s, however, Cramér still took the position of traditional “indi-
vidual risk theory,” which, as described above, was based on sums of random gains
in single contracts. In his first papers on risk theory, Cramér thoroughly discussed
the quality of the approximation of distributions of sums of independent random
variables by normal distributions, a problem to which his attention was drawn—at
least in part, if not exclusively—due to his professional activities as an insurance
mathematician. He criticized the “naive” approach to use the Gaussian error law for
the probability distribution of the overall gain within a certain division of an insur-
ance company without precisely examining the deviation from the exact distribution,

91 See [Cramér 1930, 66-84] for a summarizing account.
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even in cases where gain comes from an only moderate number of contracts [Cramér
1923, 210]. Up to this time, Lyapunov’s upper bounds for the error of approxima-
tion were the most exact in the general case. In his first contribution, Cramér [1923]
aimed at continuing with Lyapunov’s method and improving his results. To this end,
he explicitly used characteristic functions.

His major result in [1923] was as follows: Let X (k = 1,...,n) be indepen-
dent random variables with zero expectations, distribution functions Vj (being right
continuous), variances p, moments o of third order, and absolute moments ok
of third order. Moreover, let V' be the distribution function of X; + --- + X,
P =Yk 1Pk»O = > p_ 0k and @ := Y ;_, 0. Then, with the abbrevia-
tions S(x) = V(x4/2p) and ®(x) = JLE [ e~ dr, for all x € R:

,03/2 T
[S(x) — O(x)| < 6max | 1;log — =7 (5.70)
o Jp

With this result, Cramér significantly improved Lyapunov’s bound and he further

clarified the latter’s assertion that this bound was of the order k’%. He [1923, 215]
also showed that in the general case “the degree of approximation presupposing a
sufficiently large number of n cannot be of a ‘better’ order than x/_ﬁ.”

For a proof of (5.70), Cramér, who in 1923 apparently did not know of Lévy’s

work,”? used von Mises’s (complex) “adjunct functions,” and with the abbreviation

2 . e . .
fx) = ﬁ J”. e~ 7 dt he discussed the distribution functions

S(x) = /_00 f(x—1)dS(t) and (x) = /_oo fx —1)do(r).

S(x) — @(x) could be represented by an absolutely convergent integral in the fol-
lowing way:

— — 1 0 gitx 12 _ A2
Skx)—@(x) = Elm/o - (v(t) —e 4) e 4 dr, (5.71)

where v(r) = [% e ¥ dS(x).
The assertion (5.70) was proven on the one hand by estimates of |v(¢)| and
|argv(?)|, and on the other hand by splitting the domain of integration of the
integral in (5.71) and estimating each single integral generated by this procedure
(that was the continued influence of Laplace’s method of approximation).

92 Cramér [1923, 212] cites the related articles [Lyapunov 1900; 1901b], [von Mises 1919a], [Pélya
1920], and [Lindeberg 1922b;c].
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5.2.8.2 Cramér’s Discussion of the Asymptotics of Edgeworth
and Charlier A Expansions

In his subsequent papers on Charlier A and Edgeworth series, Cramér used simi-
lar methods. He repeatedly expressed (for the first time in [1925, 411]) the opin-
ion, which was not shared by all proponents of these series expansions to the same
extent,”’ that from the point of view of the hypothesis of elementary errors the re-
ally interesting problem was not the convergence of these series, but the asymptotic
properties of the respective expansions cut off after a few terms, if the number of
elementary errors tended to infinity. In statistical practice only a few series terms
could be taken into account, anyway.

According to Cramér [1925, 412], the asymptotic behavior was especially im-
portant for bringing the theory in “connection with the real causal structure of the
phenomena to be examined.” One would be “inclined to assume” that a statistical
quantity was generated by elementary errors if the frequency distribution observed
could be properly approximated by the sum of the first terms of an “exponential
series.” Cramér regarded the hypothesis of elementary errors as an “ideal scheme,”
which one could assume “rightly or also wrongly.”

Cramér considered his discussion of the asymptotic behavior of Charlier and
Edgeworth expansions a contribution to the mathematical foundation of the hypoth-
esis of elementary errors. It is remarkable, however, that, from the point of view
of natural sciences, Cramér justified the hypothesis of elementary errors in a rather
vague way only. In the second part of his major paper [1928] on the asymptotics of
“exponential series” he delivered a comprehensive comparison between empirical
frequency distributions from different fields and distributions calculated by means
of Edgeworth series. He did not, however, give an assessment that referred to con-
siderations beyond mathematics proper. The reader has the impression that Cramér
considered the hypothesis of elementary errors a “comfortable” assumption, which
was appropriate for a certain preselection of statistical methods for the adjustment
of frequency curves, but nothing more.

Cramér [1928, 158] considered the distribution function of a random variable
especially useful as a means for comparing relative frequencies observed and the-
oretically assumed. Primarily this function, and not the probability density, could
be derived from statistical observations. Thus, Cramér granted series expansions for

93 Toyojird Kameda published large articles [1915; 1925], which were also mentioned by Cramér
[1928, 64], on distributions of sums of independent (continuous or lattice distributed) random
variables, in which the convergence of series expansions in derivatives of the Gaussian distribution
function was discussed. Kameda made extensive use of generating functions f(a) = Ee®X of
random variables X, where o was an element of a certain subset of C. In the case @ = it (t € R)
this also implied a discussion of characteristic functions. Kameda, who apparently did not know
modern contributions on probability theory (the most recent source he cited was [Markov 1912]),
considered the problem of the distribution of a sum of independent random variables completely
solved if it could be represented by a convergent “Hermitian” series expansion [Kameda 1925,
49f]. Kameda was not interested at all in the asymptotic behavior of these expansions if they were
cut off after a few terms.
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distribution functions the predominant statistical importance in contrast to series for
densities or discrete lattice probabilities.

Cramér’s efforts to extend the CLT toward the consideration of series terms in
addition to the normal distribution lasted from about 1923 to 1927. This work also
comprised, though not as a matter of priority, the problem of the convergence of
the respective series. Cramér published some results on the convergence of Charlier
A series for densities [1925, 405] and general distributions [1928, 64 f.]. His the-
orem in the latter setting was as follows: Let F; be the distribution function of
the normed sum of identically distributed independent random variables of a fixed
number 7, each with distribution V' (Cramér used Lévy’s definition of distribution
function in this work). If

2

/oo elm dV(x) <oo (ap = /Oo 2dV (1)),

(o) —00

then, for all x € R,

_ S =1 [ 2 )
Fu(x) ¢(X)+;§”’q) (x) (@(x). Jﬁ/—me dt

with uniform convergence in all finite intervals of continuity of F,,°* (the coefficients
¢k are determined according to the identities (5.72) below).

In [1925] Cramér had already comprehensively discussed the asymptotic behav-
ior of an expansion according to the first terms of a Charlier A series for distribution
and density functions of sums of independent random variables. However, he also
pointed out the deficiency of this type of expansion: Higher series terms have not
always a smaller order of magnitude, a fact which had already been observed by
Edgeworth (see Sect. 3.4.2.3). In his later work and also in his survey article [1972],
Cramér gave preference to Edgeworth series. These expansions provide, in contrast
to A series, the optimal precision depending on the order up to which the absolute
moments of the elementary errors exist. Cramér completed his investigation on this
topic by the fall of 1927 and first communicated his result to the London Mathemat-
ical Society in a short note [Cramér 1927].

Cramér’s main paper from 1928 is exemplary for its clarity and comprehensibil-
ity, despite the opinion, expressed by Feller [1971, 531], that the field of Charlier
and Edgeworth expansions was “proverbial for its messiness.” This paper at the
same time conveys a tremendous impression of the single steps involved which are
necessary for the required estimates in the discussion of the considered series. For
simplicity and clarity of presentation I confine myself in the following to a recapit-
ulation of Cramér’s treatment of the asymptotic behavior of Edgeworth expansions
for distribution functions of normed sums of independent identically distributed ran-
dom variables.

% An interval of continuity of a distribution is any open interval in which the distribution function
is continuous at the two boundary points.
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In accordance with [Cramér 1928, 34-38] we start with the most important no-
tations. Let us consider n independent identically distributed random variables with
zero expectation, each with the distribution function V' (defined according to Lévy).
It is assumed that, for natural v < k (k > 2), there exists

ay = /_oo t’dVv(e), By:= /Oo [t|Vd V().

(o) —00

‘We use the abbreviations v
e v
Pv = 172’
2

o0
WA 1= VO, W)= [ Waae=0d Ve
—00
Then the distribution function F}, of the normed sum is
Fy(x) = Wy(ox) (0 := /nay).

In this case there exist for v < k the moments

oy :=/ xVd Wy (x)

—0o0

and the coefficients of the A expansion

2 v 2

ey = (=1)” / H, (x)dFy(x), where (—1)"H,(x)e”™ 2 = d‘;ve—%. (5.72)

Let v, wy, f, be the “adjuncts” of V', W, F,, respectively, where, for example,

v(t) = /_oo e X dV(x).

The semi-invariants y, of V' are defined by the following relation, valid for suffi-
ciently small |z|,

k k
oy _ YWy k+1
log (I—i-vg_z—vlz ) —VE_Z—V!Z +Lz" +

The semi-invariants of W, (replace «, by p,) are denoted, according to Cramér,
by A,. ® designating the standard normal distribution, the “symbolic polynomial”
P,(®) is defined forv = 1,...,k —2 by

k—2 A’v+2(_q>)v+2 k—2 -
v = v —
exp Zmz‘ —1+ZP,,(<D)Z + NzF 4.,

v=1 v=1
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where after the calculation of the polynomial each power ®/ has to be replaced by
the derivative @), On the other hand, the polynomial P, (it), where

2 (it 2 - -
exp Zmz” =1+ P(inz" + N2+ (573)

v=1 v=1

is a “true” polynomial in iz. Then we have, and this relation is especially important
for Cramér’s argumentation:

1 00 eiZX 2

Py(®) = —/ — P, (it)e” 2 dt.
21 J oo it

Similar to Landau symbols, Cramér denoted by ®& any number whose modulus is

smaller than a constant dependent only on &, and by A any number whose modulus

is smaller than a constant dependent only on k and V.

With several lemmata Cramér [1928, 42—-50] established estimates for the semi-
invariants y, and A, as well as for f;(¢) in a certain neighborhood of t = 0. These
lemmata are as follows:

Lemma 1: B; < B2 < 3/° <... < gI/k s

Lemma 2: For 2 < v < k we have y, = 08,

Lemma 3: For 2 < v < k we have A, = ny,.%

Lemma 4: P, (®) is of the form Z;zl H,; ®W+2) andfor1 < v < k —2 we have
the estimate H,; = @p,‘é“’n_%.
Lemma 5 is only important for the A series, and therefore passed over here.
On the basis of (5.73), and by use of Lemmata 1-3 Cramér proved

Lemma 6: For |7| < i o/ is

k-3
c . _k=2 _
e fut) = 14 Y Po(in + On~" T (putl* + loxt P42).

v=1

Lemma 7: For |t| < #ﬁwe have
k

ful)] <& 5.

In [1923] Cramér had already treated the problem of estimating the difference
between F, (x) and the normal distribution ®(x) in terms of characteristic functions
by application of a “mollifier” (see Sect. 5.2.8.1). For an estimate of

k-3

Ry(x) = Fu(x) = D(x) = ) Py(®),

v=1

93 These inequalities immediately follow from the Lyapunov or the Holder inequality, which fact,
however, Cramér apparently did not observe.

% According to the “usual” additivity of semi-invariants.
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given by the (not absolutely convergent) representation

1 T eit)c
R,(x) = hm S rn(t)dt,
where
o0 ) k-3 2
ra(t) = / e "dR,(x) = fn(t) —e” 2 - Z P, (it)e” 7,
—00

Cramér [1928, 51-56] had to take a similar path. Now, however, he did not mollify
by a convolution with the normal distribution, but by use of so-called “generalized
Riemann-Liouville integrals,” that means, he considered, for 0 < w <k — 1:

I@R,(x) = ﬁ /_x (x — )" R, (t)dt.

In Lemma 8, Cramér proved that

©) 1 [o] ellX
w
I' Ry (x) = o / NGE ———rn(t)dt, (5.74)
where the integral in (5.74) is absolutely convergent.

Even if the proof of Lemma 8 had been already complicated enough, the proof
of the next auxiliary theorem turned out to be particularly cumbersome.
Lemma 9: Let

1 [e9) eiZX
Z = ERC /ﬂ ([)w+l fn(t)dt
3

4pk

Then we have
[@R,(x) = Z + Op2* 205,

For the proof Cramér split the range of integration of the integral in (5.74) into four
parts, and using Lemmata 1-4 he estimated each single integral obtained by this
procedure.

Finally, Cramér [1928, 56-58] began the proof of his main theorem. First he
proved
Theorem 1: Let B be finite for any k > 3 (the case k = 3 had already been
discussed by Cramér [1923] in the context of his improvement of the Lyapunov
bound). Then for n > 1 and all real x we have

k-3
103 [Fn @) - D) -y Pv(cb)} = 0p;*? (logn)*n~ "7

v=1
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For the proof Cramér showed first that for = k — 3 the estimate

3
|Z|<@pgwn—%/wmin 1, —P Y ar.(y)
—00 |x_y|\/ﬁ

is valid. Then he split the integral on the right-hand side into five single integrals
3 3
with domains of integration between —oo and x — 1, x — 1 and x — p—ﬁ, X — f/—’% and
3 3
x + p—’;, x + p—’; and x + 1, and, finally, between x + 1 and 00.”” For an estimate
of the integrals 2, 3, and 4 Cramér used the already established relation (5.70) (now

analogously applied to the standard normal distribution); for the sum of the two tail

integrals he easily found the upper bound p—’i.

For a deduction of the main theorem from his Theorem 1, Cramér [1928, 59-62]
had to use substantially recent work by Friedrich Riesz and Godfrey Hardy on
Fourier analysis. In this way, he obtained the main theorem, “Theorem 2” in his
own numbering:

If there exists By for any k > 3, and if

sup [v(?)] < 1 (5.75)

in each closed interval not containing 0, then we have

k=3
k—2
Fa(x) = @) + ) Po(®) + An™ 2
v=1
Parallel to the proof of this statement and under the same assumptions, Cramér
proved the corresponding asymptotic for the A series:

k=l Cc K k +2
Fo(x) = ®(x) + Y =@ (x) + An™ %,  where k = [—} .
= v! 3
It is remarkable that for k > 3 the condition (5.75) is indispensable for the valid-
ity of Theorem 2. This condition is not met if V' is a lattice distribution. For a sum
of bivalent random variables (W, can be reduced to a binomial distribution in this
case) the existence of asymptotic expansions according to Theorem 2 is impossible
if £ > 3, as Cramér [1928, 66 f.] explained. In this case, F; shows jumps of the
asymptotic magnitude JLE
Cramér [1928, 69—72] also hinted at a generalization of his theorems to non-
identically distributed random variables. A closer specification can be found in his
book [1937/70, 83-85]. Roughly speaking, a certain uniformity among the moments

3
7 Cramér did not discuss the case where ﬁ; > 1, which can only happen for small 7. In his book

[1937/70, 77] he pointed out that for this case only “trivial” considerations were necessary, and it
was therefore not “really interesting.”
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of the single random variables and among the upper bounds of their characteristic
functions in closed intervals not containing zero had to be assumed.

For applications within risk theory this case was particularly important where
the single distribution functions are not identical, but nonetheless similar. For this
special case Cramér [1930] showed the validity of an analog to Theorem 2 under
assumptions close to real practice. In particular, Cramér [1930] discussed the use of
asymptotic expansions according to Theorem 2, especially Edgeworth expansions
with &k = 4 and k = 5, for calculating the approximate probabilities of insurance
gains.

For a set of short time policies, however, it was not possible, as Cramér [1930,
64 £.] explained, to approach the corresponding probabilities in the latter way. Win
or loss y, with such insurance contracts happen with probabilities p and 1 — p,
respectively, at the end of a short period and do not vary continuously in dependence
on time like life insurances. In the following, the discussion is confined to net gains,
that is, to gains which result from the rules of a “fair game.” Then we have, if s,
denotes the single amount which has to be paid by the insurance company in the
event of loss,

+s,q with probability p =1 —g¢q

¥» =\ —s, p with probability g.

The quantities y, therefore are lattice distributed random variables, to which
Cramér, in accordance with the current methods available around 1930, could
only apply the estimation (5.70). If S, denotes the arithmetic mean of the sum
of all s}, then on account of (5.70) (applied analogously to the standard normal
distribution ® and to the distribution function F; of the normed sum),

logn S3
Vipq 3%

L
21

[Fn(x) — ®(x)| < 3(1 -2pq)

Thus, in case of the realistic situation » = 20000 and ¢ =
able to give the estimate

, Cramér was only

S3
§3/2

|Fp(x) — ®(x)| < 0.898

which was useless for an assessment of the approximation error because of the gen-
eral relation S—f}j > 1. So, around 1930, no satisfactory statement could be made as

to whether thezdistribution of the complete gain of an insurance with short time poli-
cies could always be approximated sufficiently exactly by the normal distribution. In
his discussion of contracts with continuously varying “gains” Cramér [1930, 60-63]
found in some cases relatively large deviations between the “real” distributions rep-
resented by Edgeworth expansions and the corresponding normal distributions.

As Cramér [1935, 5 £.] pointed out, from Theorem 2 the inequality

|F(x) — ®(x)] < %
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(A an appropriate constant) follows if there just exist moments of a sufficiently high
order and if the condition (5.75) (or any stronger condition) is valid.”® That an esti-
mate of this kind could also be reached without the condition (5.75) was only shown
by the works of Andrew C. Berry [1941] and Carl Gustav Esseen [1942].%° If F,
denotes the distribution function of the normed sum of the independent random vari-
ables X1, ..., Xp, each with zero expectation and finite absolute moments of third
order, then according to the results of both mathematicians the following inequality
holds:
C Y E[Xk?

Vi (S EX2)3?

Thereafter, the constant C could be reduced to values less than 1.'% According to
the very sharp value C = 0.7915, found by L.S. Shiganov [1982], in the case of
short time policies above we would obtain

| Fn(x) — @(x)| < (5.76)

S
| Fa(x) = ®(x)] < 0.024—.
s3/?

2

Esseen and Berry used different procedures of mollification, which, compared
with Cramér’s methods, were easier to apply. Among his numerous refinements
of Cramér’s results, Esseen [1945] also improved Cramér’s Theorem 2, insofar as,
under the assumption of absolute moments up to the order k > 3 inclusively, one
more series term could be taken into account.'”! According to Esseen we have,
under Cramér’s assumptions,

k—2
Fy(x) = o(x) + Z P,(®) +o0 (n_k2;2) .
v=1

Cramér’s work represents the first completion of an exceptionally successful de-
velopment of the CLT within a short period. During the twenties the classic CLT in

%8 In the particular case of the binomial distribution, however, de la Vallée Poussin [1906] had
already proven an equivalent inequality.

% In most cases we find the reference to [Esseen 1945], which article has the same content as
Esseen’s doctoral thesis, completed in 1944 at Uppsala University (see [Cramér 1976, 530]), and
which also comprises the results from [Esseen 1942] and [Esseen 1943] (the latter work dealt with
the error of approximation in the case of lattice distributions). Esseen [1945, 6] declared that he
had already completed his proof of (5.76) by the fall of 1940, and that, due to World War II, he had
only had the opportunity to learn about Berry’s article [1941] by a summary in the Mathematical
Reviews.

100 Note that these estimates hold independently of the particular definition of distribution function
(continuous on the right; left; Lévy’s definition).

101 Esseen used the distribution with density H(x) = & (sin f)4 (f)_4 as a mollifier for R, (x).
Berry had mollified by the distribution with density vy (x) = %% and then considered the
limit 7 — oo. Esseen’s major results and his methods are discussed in [Gnedenko & Kolmogorov
1949/68, 196-219]. From [Feller 1971, 536-548] we can learn the way (probably due to Hsu
[1945]) how Esseen’s improvement of Cramér’s Theorem 2 can be deduced by Berry’s method,
which, on the whole, seems to be more advantageous.
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its integral version was proven under very weak conditions by a considerable vari-
ety of methods (Lévy, Lindeberg), and was generalized toward weakly dependent
random variables (Bernshtein). Chebyshev’s demand for appropriate estimates of
the error of approximation by the normal distribution was fulfilled in a satisfactory,
though not optimal, manner (Cramér). In 1919 von Mises had already treated quite
general versions of local CLTs for densities and lattice distributions. Lévy, in his
book [1925b], presented several ways for a generalized view of the CLT including
nonclassic norming as it was also introduced by Bernshtein. Toward the end of the
twenties until approximately the midthirties, however, the increasingly numerous
group of probability specialists chiefly dedicated themselves to different problems,
in particular to stochastic processes.



Chapter 6

Lévy and Feller on Normal Limit
Distributions around 1935

Lévy [1924, 17] had already stated that Lindeberg’s condition for the CLT accorded
particularly well with “la nature des choses.” Was he trying to say that, in a certain
way, this condition was also necessary for convergence to the normal distribution? In
fact, more than 10 years would pass before Lévy and Feller almost simultaneously
proved that certain conditions are both sufficient and necessary for the convergence
of distributions of suitably normed sums of independent random variables to the
normal distribution. These examinations foresaw general normings that no longer
assumed the existence of the variance, and it emerged within this framework that, in
the classical case, the Lindeberg condition is necessary for the CLT if the influence
of the individual random variables on their sum can be asymptotically neglected in
a particular sense. The possibility of nonclassical norming, which Bernshtein and
Lévy had already addressed in the 1920s, out of a desire to exhaust all analytical
possibilities, became all the more interesting the further mathematical probability
theory departed from its original areas of application.

6.1 The Prehistory

The considerable gap in time between Lévy’s conjecture in 1924 and its proof can
be explained by two factors. By 1925, a degree of saturation had been reached in
the area of limit distributions of sums of independent random variables. In return,
the fields of stochastic processes and strong laws of large numbers (e.g., the law
of iterated logarithm, theorems concerning the probability of convergence of series
of independent random variables) underwent a feverish period of development in
the years after 1925.! As Le Cam [1986, 83-85] points out, this development had
also always several points in common with the CLT, and it thus prepared the way
for a wider discussion of the theorem in the 1930s. Around 1935, mathematicians

! Lévy contributed to this development with a certain temporal delay only, see [Bru & Salah 2009,
11-17].
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could for a first time take stock in the various branches of modern probability the-
ory that had evolved up to this point and—once Kolmogorov [1933a] had clarified
the most important principles—could dedicate their attention to a more precise ex-
amination of specific problems within the work they had already accomplished. At
this point—in contrast to the situation in the early 1920s—they no longer needed to
find ways to legitimate any perceived irrelevance regarding the extra-mathematical
application of the results they achieved. Evidence that a certain consolidation of the
purely mathematical probability theory was taking place around 1935 is also pro-
vided in the form of the first monographs, such as [Cramér 1937], [Lévy 1937a],
or [Fréchet 1936/38], which appeared in the second half of the decade and retained
their significance for many years in further editions printed after the Second World
War. Moreover, it is possible, at least where Lévy is concerned, to reconstruct the
purely intrinsic problems that accounted for the long delay leading up to his results
on necessary conditions for the CLT. The difficulties in which Lévy found himself
may have similarly hampered other mathematicians who were also interested in the
solution to these problems.

6.1.1 Lévy and the Problem of Un-negligible Summands

In the field of strong laws of large numbers, a significant part was played by nec-
essary and sufficient conditions for the almost sure convergence of a series of in-
dependent random variables. Particularly important in this context was Khinchin’s
concept of "equivalent” sequences of random variables, which in turn was closely
linked to Markov’s idea of truncated random variables, which had arisen in con-
junction with his activities with the CLT.> Lévy [1931] took up the relevant work
by Khinchin and Kolmogorov [1925] and Kolmogorov [1928]° again and produced
a modified representation and derivation of the convergence criterion. Lévy’s own
version was as follows:

Let (X;) be a sequence of independent random variables. For the existence of a sequence
of real numbers a; such that Z;?i] (Xx — ay) almost surely converges, it is necessary and
sufficient that there exists a sequence (Y ) being equivalent to the sequence (X} ), for which
352, VarYy converges [Lévy 1931, 133].

Lévy [1931, 139-142] applied the ideas associated with almost sure convergence—
which with regard to Markov’s truncation trick had emerged from work on the
CLT—to the CLT again: The mutually analogous references, on the one hand be-
tween the divergence of the sums of all variances and the almost sure divergence
of the series of the random variables, on the other hand between the divergence of
the sums of all variances and the validity of the assertion of the CLT, apparently led
Lévy to consider equivalent random variables in conjunction with the CLT as well.

2 Two sequences (X;) and (Y}), each consisting of mutually independent random variables, are
designated “equivalent” if the series Z,?ozl P(Xy # Yy) converges.

3 In this article, Kolmogorov had also presented his famous inequality.
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In this way, he arrived at the following theorem ((X) again represents a sequence
of independent random variables):

If there exists a sequence (Y%) of bounded random variables being equivalent to
(Xk) such that maxj<k<n |Yk| < dy and d?/ Y ; _, VarYyx — 0, then one can find
constants 4, and B, > 0 such that the distribution of ZZ=1 Xy /By — Ay, tends to
the standard normal distribution.*

This result was more general than Lindeberg’s “Theorem III” (see Sect. 5.2.4), as
Lévy [1931, 140] underlined. With these considerations he again took up the idea
of general norming that he had previously developed in his book [1925b].° Lévy
[1931, 141] speculated that it was possible to find even necessary conditions for the
convergence to the normal distribution by further refining the basic ideas which had
led to the just-stated theorem. In this context he considered normed sums of ran-
dom variables, each of them additively composed of one part being “very small in
relation to the total sum,” and one possibly sizable but normally distributed part.

In order to be able to compare the size of an individual random variable to the
overall sum, Lévy utilized his newly created term of “dispersion,” which along with
its “inversion,” called “concentration,” proved to be especially useful in discussing
the convergence of series of random variables. Lévy defined the concentration fx (/)
of the random variable X assigned to the interval length / > 0 as follows:®

fx():= sup Pla<X<a+l).

—oo<a<oo

“Dispersion of a random variable X Lévy called a function ¢x : [0; [~ R(')" with

ox(y) :=inf{x € Ry | fx (x) = }.

Roughly speaking, the dispersion is the minimum interval length related to a par-
ticular probability, and the concentration is the maximum probability related to a
particular interval length.

In his discussion of the above-described problem of random variables composed
of one relatively small and one normally distributed part, Lévy [1931, 141] consid-
ered sequences of random variables (X ) and (1), where all variables within each
sequence were assumed to be independent. He presupposed that

Xk = ak + bk + nx + 1},

where ay and by were constants, & obeyed a Gaussian law, and 17;c met the condition
that )22, P(n), # 0) was convergent. L, denoting the dispersion of ) y_; X

4 Without loss of generality, the random variables Y} can be assumed to be defined by Y, = X, if
|Xk| < di and Y, = O else, under the restraint >y _; P(|X¢| > di) — 0.

3 Bernshtein’s approach (see Sect. 5.2.7), which ultimately also resulted in a nonclassical norming,
was apparently unknown to Lévy at this point. Not until [Lévy 1935a, 201] does one find any men-
tion of [Bernshtein 1926], if only with regard to his generalization of the CLT to nonindependent
random variables.

6 Concentration and dispersion first appear in [Lévy 1931, 128 f.]. A precise definition of dispersion
can be found in [Lévy 1935b, 351]. Lévy always wrote “max” rather than “sup” in his definitions.
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assigned to y = %, the variables 1 were assumed to be bounded such that

Maxj<k<pn |Nk|/Ln tends to 0. Under the additional assumption L, — oo, Lévy
claimed that the distribution of the suitably normed sum of the X would tend to a
Gaussian law. He stated that one could prove this “without any difficulties.” Lévy
(same place) expressed his opinion that a necessary condition for the convergence
to the normal distribution might be found by similar ideas.

It emerges from Lévy’s text that he had fairly clear ideas about how he could
reach such necessary conditions if one conveniently assumed the smallness of all of
the random variables X (not only the 7 and the n;c) that contribute to the sum. In
principle, his just-described assumptions for the part n + 1’ were equivalent to the
later stated condition

1<k<n

P(max | Xk | >5Ln) -0 Ve>0,

which turned out to be even sufficient for convergence to the normal distribution if
all random variables X}, could be considered small in the sense

max P(|Xg|>eL,)—0 Ve>O0.
1<k<n

Lévy did not wish to adopt this restrictive position of generic smallness in 1931,
however. The reason why Lévy was so interested in random variables with a possi-
ble large influence on the total sum, aside from the purely mathematical importance
of this matter, could also be linked to the considerable interest he maintained still
around 1930 in the hypothesis of elementary errors. This lasting interest is conspic-
uous in the papers he drafted while embroiled in a minor dispute about error theory
with Maurice Fréchet toward the end of the 1920s. For a time (the years 1925 to
1928), Lévy’s letters to Fréchet dealt largely with this issue [Barbut, Locker, &
Mazliak 2004, 4650, 122—149]. Not only had Fréchet [1928] faulted the assump-
tion of the additivity of elementary errors, he had also picked up an example by
Hausdorff [1901, 152] (see Sect. 3.4.2.1). In Hausdorff’s example, the elementary
errors have finite variances 01.2, such that Z;oi1 01.2 < 00, and the distribution of the
elementary error sum converges to an error law that differs from normal distribution.
Fréchet had concluded that if one were to reason that the normal distribution was
the error law of the total error, the assumptions about the distributions of elementary
errors could certainly not be as general as it initially had appeared. Lévy [1929, 61]
pointed out that Fréchet’s example was irrelevant to a discussion of the hypothesis
of elementary errors insofar as it did not satisfy the usual basic assumption that all
elementary errors turned out to be uniformly small.’

Is this basic assumption necessary, though? Could it perhaps be possible that (a
few) independent elementary errors of significant size could add up to a normally
distributed or nearly normally distributed sum though they themselves might deviate
considerably from normal distribution? Or do such elementary errors always nec-
essarily have to be at least approximately normally distributed, in which case they

7 For more details see [Purkert 2006b, 579-583].
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can be considered to be sums of a large number of small “sub-elementary errors”?
Lévy [1970, 111 f.] reports how acutely these questions affected him: Without the
answers, he did not believe it possible to solve the problem of necessary conditions
for the convergence of distributions of sums of independent random variables to
a normal distribution. This circumstance led him, while preparing the chief paper
[1935b] he wrote on this complex of problems, to open the chapter entitled “Etude
des sommes de variables aléatoires non enchainées dépendant de lois variant d’une
maniere quelconque” with the following “lemme hypothétique”:

If the sum z = x + y of two independent random variables is of the Gaussian type, then
this likewise applies to each of the terms [Lévy 1935b, 381].

Cramér [1936] eventually succeeded in proving this lemma; a simplified exposition
is found in Lévy’s book [1937a, 97 f.].

6.1.2 Feller and the Case Which “does not belong to probability
theory at all”

Willy Feller (1906-1971)% did not come to probability theory until 1934. Born in
Zagreb, he had earned his doctorate in 1926 after studying partial differential equa-
tions under Richard Courant in Gottingen. He then taught applied mathematics at
the University of Kiel from 1928 to 1933. After the National Socialists seized power,
Feller left Germany and, in 1934, joined Cramér’s Stockholm group. Based on his
mathematical training, Feller was extremely well equipped to deal with characteris-
tic functions, and so—apparently motivated by Cramér and after only a fairly cur-
sory reading of Lévy’s Calcul des Probabilités [1925b]—he was able to wade into
the realm of limit distributions of sums of independent random variables in rela-
tively short order. As is the case with many other pioneers of modern probability
theory, the influence of analytical methods of mathematical physics is also evident
in Feller’s work.

In his study of sufficient and necessary conditions for the CLT, Feller [1935,
523], unlike Lévy, excluded all of those cases in which the influence of the “indi-
vidual components” on the total sum does not asymptotically disappear as the num-
ber of random variables increases. He wrote that these cases did “not belong to the
problem area of the limit theorem” although he did not provide any further expla-
nation (Feller’s concept of the influence or negligibility of the individual summands
was equivalent to Lévy’s). Feller wrote apodictically [1935, 531] about cases such
as the one according to Hausdorff, stating that they did “not belong to probability
theory at all.” Such a pronouncement may have seemed strange at first, but it does
make sense when one considers that the character of his discussion of un-negligible
random variables [1935, 531 f.] demonstrates that he, too, had had a conjecture that
corresponded to the “lemme hypothétique.” According to Feller’s comments, the

8 Biographical information for Feller can be found, e.g., in [Doob 1990].
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convergence of the distribution of a suitably normed sum to the normal distribution
in the case of un-negligible summands can occur only if the summands have very
specific distributions. It is thus not primarily caused by the stochastic behavior of
generally distributed random variables. Feller also showed that for a sequence (X%)
of independent random variables which are not all negligible, the convergence of
the distribution of ZX" to the standard normal distribution, under the additional
condition B, — oo can occur only if the un-negligible summands (they form a
subsequence (X}) of (X)) have distributions V}/ such that V//(c; x) — ®(x) with
appropriate c;,.

It is worth noting that Alan Turing, working totally independently of Lévy and
Feller, drafted an unpublished paper about the CLT in 1934 as part of his discus-
sion of the influence of un-negligible summands. In it, he also came to conclusions
that are particularly reminiscent of Feller’s, albeit only in the case of random vari-
ables with existing mean and variance. As Zabell [1995] reported, Turing referred to
his conditions for negligibility, which were equivalent to those of Feller and Lévy
within the framework of “classical” conditions, as “quasi-necessary conditions.” He
wrote: “They are not actually necessary, but if they are not fulfilled, U, [the distri-
bution of %] can only tend to ®(x) by a kind of accident” (quoted in Zabell

VarX,

[1995, 487]). Turi];lg’s work can be considered evidence of a latent interest, starting
no later than the early 1930s, in a “conclusive” formulation of the CLT with re-
gard to sufficient and necessary conditions, an interest that had likely been aroused
first and foremost by Lindeberg’s papers in 1922 and Lévy’s book in 1925. At the
same time, also in Turing’s case the specific difficulties become apparent that were
associated with the general solution to this problem, namely, when un-negligible
summands were included.

6.2 Lévy’s and Feller’s Results and Methods

Lévy’s and Feller’s 1935 contributions to the CLT differed to a large extent regard-
ing methods and presentation. Whereas Lévy employed his newly devised, rather
idiosyncratic, analytical tools of concentration and dispersion, Feller based his con-
siderations on the “well-known” device of characteristic functions.

6.2.1 Lévy’s Main Theorems

As we have already seen (Sect. 6.1.1), Lévy quantified the “smallness” of the sum-
mands Xy, in terms of the dispersion of the total sum S, = ZZ:l Xk. A single
X was called “individually negligible” (“individuellement négligeable”) by Lévy
[1935b, 351] “if it can be neglected except for cases of arbitrarily small probabil-
ity in relation to the dispersion of S,.” He gave a little more precise definition in
[1937a,104]: Let 0 < ¥y < 1 be an arbitrary, however fixed, probability, and L, the
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dispersion of S, assigned to this probability. X (1 < k < n) is called “individually
negligible” if for an “arbitrarily small” positive ¢ the probability P(|Xg| > eLy)
is “small” as well. Lévy’s expression “there are individually negligible terms only”
r “all terms are individually negligible” means that for all ¢ > 0 the maximum
probability lmlglx P(|Xx| > eL,) tends to 0 as n tends to c0.”
<k<n

In order to also cover such cases where the main part of the probability mass of
a random variable Xy lies so far away from zero that “negligibility” does not hold
even though the spread of this variable is very small, [Lévy 1937a, 104] (in his book
only) introduced the general assumption of zero medians (which can be achieved
by addition of an appropriate constant in each case) for all random variables under
consideration. This means that P(Xz > 0) > % and P(Xx < 0) > %.‘0 Lévy
did not give any further comments on this assumption. In fact, in his proofs this
additional condition is not needed, as it appears. However, if the summands Xy + ay
with appropriate ay are (uniformly) negligible with respect to the dispersion of S,
then the variables X} are themselves (uniformly) negligible under the condition of
zero medians (see Sect. 6.3.1, footnote 25). It may be that Lévy was inspired by
Feller’s very careful discussions on possible problems with shifting constants (Sect.
6.2.5) to include the requirement of zero medians in his book.

The idiosyncratic term “la loi des grands nombres s’ applique” (“the law of large
numbers applies”) Lévy [1935b, 348] introduced for the fact that

lim P ( max | Xg| > SLn) =0

n—oo 1§k§n

forall & > 0. Lévy always tacitly assumed L, # 0 from a certain number 7 on. This
basic assumption, however, is almost evident, because it is necessary for S, being
asymptotically normally distributed."!

Those cases in which random variables X are not negligible, and have to be
(approximately) normally distributed due to the “lemme hypothétique” if —ZB;A"
((A,) and (B, > 0) being suitable number sequences) is normally distributed for
n — oo, Lévy [1935b, 381-385] quite comprehensively discussed. For the time be-
ing, however, he was only able to give rigorous proofs in cases of negligible random
variables. His chief result (Theorem VI, [1935b, 386]) in this context was:

° According to a terminology which has been introduced by Logve (e.g., [1950, 328]), and is

quite common now, this means that the random variables X /L, are uniformly asymptotically

negligible, or, briefly, that they obey the “UAN condition.”

10 One has to observe that in general the median m of a random variable X is not uniquely de-

termined by the condition P(X > m) > % and P(X < m) > % In practically all cases this

ambiguity does not cause any problems. Nevertheless, if uniqueness is required, one can choose

the minimum value of all medians, for example.

1" As it will be shown below (Sect. 6.2.3.1, Lemma 4), from the convergence of the dlstrlbutlons
of s,, A1 1o the standard normal distribution (A, and B, > O being suitable constants)

3% (y) follows, ¢y (y) denoting the dispersion of the standard normal distribution, ass1gned to the

probability level y €]0; 1[. The assumption of L,, = 0 for infinitely many 7, is inconsistent with

this assertion.
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If there are individually negligible terms only, constant convergence [convergence constant]
to Gauss’s law can be obtained only in those cases where the law of large numbers applies.

Lévy emphasized “constant convergence,” which means convergence of the distribu-
tion of %ZL ((A,) and (B, > 0) being suitable number sequences) to the standard
normal distribution, in contrast to “intermittent convergence” [“convergence inter-
mittente”’], where the only demand is that the distributions of a partial sequence of

(S”E—A”) tend to Gauss’s law.
n

In his book [1937a, 117-119] Lévy was able to state and justify, on the basis
of the “lemme hypothétique,” which had been proven in the meantime, the general
solution of the problem of approximate normal distribution for sums of random
variables for those cases also in which nonnegligible random variables exist:

For that the law on which S, depends is of a generalized type being different from the
Gaussian to a small amount only, a necessary and sufficient condition, after having reduced
the median of each term to zero, is:

1° Each not individually negligible term is of a generalized type which is only little different
from that of Gauss;

2° The largest of the individually negligible terms is negligible for itself.

Condition 2° means that for the individually negligible random variables
Xk, X, (with 1 < ky < --- < kg < n) the probability P(lmax | X%| > eLy)
<m<s

has to be small for small ¢. In the text preceding the formulation of this main theo-
rem, Lévy briefly explained how his intuitive expressions could be translated into a
more convenient “e-§ language.”

Particular attention Lévy [1935b, 359-381] paid to sums of independent random
variables X with an identical distribution function F'. In this case he both discussed
convergence under conditions of classical norming and the general case of random
variables with an infinite variance. For the classical case his “Theorem I’ [1935b,
359] was as follows:

The necessary and sufficient condition for that s, [= ﬁ ZZ= | Xk depends on a law

tending for infinite n to the Gaussian is £{x?} = 1.

One has to observe that Lévy at this place assumed EX; = 0, and with “Gaussian
law” meant the standard normal distribution. For the general case of identically
distributed independent random variables Lévy put the following theorems:

Theorem II. — The necessary and sufficient condition for applicability of the law of large
numbers is that expression (10) tends to O for infinite X [Lévy 1935b, 366].

Expression “(10)” was given by
X2 fm>x dF(t)
fmsx 12dF(t)
“Theorem V” [Lévy 1935b, 370 f.] complemented Theorem II :

Convergence to the Gaussian type is only possible if the law of large numbers can be
applied.
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Theorems II and V provide a complete solution of characterizing the range of
attraction of the Gaussian law, a problem which had been already discussed in [Lévy
1925b] (see Sect. 5.2.6.7).

6.2.2 Lévy’s “Intuitive” Methods

Lévy’s article [1935b] has to be seen in the context of the intentions of its author
to master all instances concerning Gaussian limit distributions of normed sums by
a uniform method. Characteristic functions, which had been championed by Lévy
during the 1920s, were primarily tailored to sums of independent random vari-
ables. Lévy [1935a] therefore used Lindeberg’s method, which he admired, for
proving central limit theorems for sums of weakly dependent random variables
(see Sect. 7.1.3). Yet, even in his contributions to sums of independent random
variables during the 1930s Lévy scarcely made use of characteristic functions any
more. Growingly important tools became the already introduced stochastic devices
“dispersion” and “concentration.” The following properties were of particular use
for Lévy’s discussion of distributions of sums of independent random variables: If
X and Y are independent, then we have

ex+y (y) = max(ex (y), oy (v)),

and, inversely,

Sx+y () < min(fx (1), fr (1)).

With concentration and dispersion, Lévy created especially “intuitive” devices,
which, in contrast to characteristic functions, focused on “probability” as funda-
mental notion. Stressing the “essence,” Lévy cultivated a mode of exposition which
was intended to appeal to the reader’s “intuition” in the 1930s. In the preface of his
book [1937a], he comprehensively demonstrated that “intuition” and “rigor” were
by no means in conflict. At the same time, the adjective “intuitive” became an im-
portant attribute of quality of probabilistic research to Lévy. In the first period of
his stochastic work, he had stressed “common sense” and use within error theory
as external quality criterions, and nonetheless had been criticized by Borel, because
he considered the analytic effort of Lévy’s work inadequate. Now, Lévy referred to
the intuition of his notions, and he used a style of writing which, according to his
own opinion, suited perfectly for representing the specific peculiarities of probabil-
ity. This was strongly embraced by Borel. Lévy’s book [1937a] was included as the
first volume into a book series edited by Borel, and Lévy received several awards on
Borel’s recommendation [Lévy 1970, 119].

Stressing external criteria for assessing the quality of mathematical work, Lévy
remained a representative of “counter-modernity” (in Mehrten’s sense), even after
having changed style and methods. Already from his early work on, his explanations
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were arranged in a strongly verbose manner, and gave sketchy ideas rather than
complete proofs. During the twenties, he at least used the common language of
analysis. Lévy’s new “intuitive” style of the thirties, however, was seen by the aver-
age mathematician as rather obscure and vague [Doob 1986]. Retrospectively, Lévy
[1970, 119] called his book [1937a], where he had given a survey of his contribu-
tions to sums of random variables, a considerable success. This self-assessment is,
however, contradicted by the apparently little influence of Lévy’s new style on later
published standard monographs, such as [Gnedenko & Kolmogorov 1949], [Doob
1953], or [Logéve 1955], which retained analytical orientation, although considering
recent results of measure theory.

6.2.3 Lévy’s Proofs

6.2.3.1 Lévy’s Unproven Lemmata on Properties of Dispersion

Lévy often used assertions in his discussion of necessary and sufficient conditions
for the CLT which remained unproven, as it was characteristic of his "telegraphic"
style. As opposed to characteristic functions, there did not exist an elaborated the-
ory of concentration and dispersion, and, naturally, Lévy’s main goal was to pro-
ceed to the newest results of the CLT (and associated limit theorems) rather than
giving a well-organized theory of auxiliary tools. As Lévy’s dispersion (in contrast
to concentration) is scarcely subject of modern monographs on probability theory,
it may be of further help to the reader listing some auxiliary theorems (tacitly used
by Lévy) concerning this notion, and referring to them in the discussion of Lévy’s
work below. In the following, ¢z (y) denotes the dispersion of the random variable
Z with respect to the probability level y €]0; 1].

Lemma 1. Let / be a positive real number and let y €]0; 1[. Then for any random
variable X:

y=rfx)=1=9x(y), [=9x(y)= fx()=v.
x>y =0x(y)<l, ox(y)>1= fx(1) <y,

Sx() <y=>ex(y) =1, ox(y)<l= fxU)>y.

These relations between concentration and dispersion are essential for the proofs
of the following properties.

Lemma 2. If Z has a variance, then

(pz(y) < ﬂ
= m

This property is a consequence of the Bienaymé—Chebyshev inequality.

6.1)
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Lemma 3. If X and X’ are arbitrary random variables (on a common probability
space), if P(X # X’) < n, and if there exists 0 < y < 1 such that y + n < 1, then

ex(y) < ox/(y +1n). (6.2)

Moreover, if VarX’ exists, then

¢x(y) = zl_v—jf)f/n (6.3)

(6.2) is a consequence of (/ designating a real interval)
PX' el )=PX' €eIrXeD)+P(X €eINX gD<P(X e )+P(X #X)

and the definition of dispersion. (6.3) is an immediate corollary of (6.1) and (6.2).

Lemma 4. Let (Z,) be a sequence of random variables with distributions Fy,, and Z
be a random variable with a continuous distribution function F, such that F, (x) —
F(x) for all real x. If ¢z (y) is continuous in a certain y €]0; 1], then

9z, (y) = 9z(y) (n — 00). (6.4)

This lemma follows from the uniform convergence of F, to F.!”

Lemma 5. Let (X%) be a sequence of independent random variables, and S, =
> %—1 Xk such that, with appropriate real numbers a,, b, > 0 the distribution of
(Sy — an)/by tends to the normal distribution. If L, denotes the dispersion of S,
assigned to a certain probability y €]0; 1], then

Ly ~bupn(y) (n— 00), (6.5)

where N is a random variable obeying the standard normal distribution.

(6.5) is a direct consequence of (6.4).

6.2.3.2 The “Classical Case”

A relatively elementary application of concentration and dispersion, which, how-
ever, was characteristic of more complicated cases, Lévy [1935b, 359-361] dis-
cussed in his proof of the above-quoted “classical”

Theorem II: Let (X ) be a sequence of independent, identically distributed random
variables. The distribution of s, = ;%ﬁ for n — oo tends to the standard

normal distribution @ if and only if EX? = 1 and EX; = 0.

12 In the case of Z, being sums of independent random variables, more general assertions might be
established by virtue of corresponding limit theorems on concentrations [Hengartner & Theodor-
escu 1973, 84-87]. At this place, however, the goal is to reconstruct Lévy’s ideas by considerations
as simple as possible.
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Taking into account well-known properties of the CLT, Lévy had to show only
that, under the given assumptions,

"X
P(%fx)—)d)(x):EX12<oo.
n

For arbitrarily large positive X he considered sequences of random variables (X} )
and (X/), where X; = X; + X}/ and

x o= ) Xeif | Xe| = X
k=710 else.

Furthermore, Lévy introduced the denotations ¢ := P(|X;| > X), S, = > X,
Sy =3 X/, m:= /VarX{. He [1935b, 360] made plausible that S, for suf-
ficiently large n could be represented with an arbitrarily small error by a sum of
(1 —¢)n (or rather the integer part of this number) “nonzero” terms, each distributed
in the same way as X (and, accordingly, S}/ by a sum of en “nonzero” terms, each
distributed in the same way as X{). The “possible variations” of the number of
“nonzero” terms of S, had a standard deviation of \/&(1 — &)n and could therefore
be neglected in relation to 1, according to Lévy. Because each “nonzero” term of S,
could be determined by a probability law defined in [—X; X], and each “nonzero”
term of S, by a law defined in the complement of this interval, for n — oo the sums

(the factor /1 — & was needless, in principle)

S /
S,/l = T'M/TT)H, ands . T
could be interpreted as independent random variables, as Lévy argued.'?

Lévy’s further arguments [1935b, 359-361] on the basis of the just-explained
“almost-independence” of s;, and s, can be described as follows: Since the con-
centration of a sum of independent random variables is less than or equal to the
concentration of each single random variable, it follows for sufficiently large n:

P(sp| < hmv1—¢) < f o (2h) Ssp 45y 2h) < fs;l(2h)—|—8/,

where |&’| can be considered arbitrarily small for sufficiently large X and n. As a
consequence of the CLT, for positive / the relation

lim fi (2h) = 20(h1—6) - 1

is true. According to the presupposition, the probability P(|s,| < hm~/1 — ¢) tends
to 2®(hm~/1 — €) — 1. Therefore

20(hmv1—¢e)—1 <20hvVT—e)— 1+ ¢,

where ¢” > 0 can be considered arbitrarily small as dependent on X . Because ®(x)
is strictly monotonic increasing for positive x, we finally obtain

13 For more details regarding this idea of asymptotic independence, see Sect. 6.2.3.4.
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VarX; = lim m? <1< o0,
X—o0

from which the assertion follows.

6.2.3.3 The ““loi des grands nombres” as a Sufficient Condition
for the Central Limit Theorem

Referring to ideas which he had already expounded in his article [1931], Lévy
[1935b, 348] asserted that one knew that the applicability of the “loi des grands
nombres” implied (after a suitable norming) the convergence of the distribution of
the sum S, to the Gaussian law. By use of some hints in [Lévy 1931, 139 f.] this
assertion could actually be proven. An explicit proof can be found in Lévy’s book
[1937a, 105 {.] only.

Let X} be mutually independent random variables, and let L, be the dispersion
of S, = Y j_; Xk assigned to a fixed probability y€]0; 1[. It is assumed that L,
remains positive from a certain n on. Let us further assume that

m(e):= P ( max |Xg| > EL,,) -0
1<k<n

foralle > 0asn — oo. Let

x' = VX if [X| < eLn
nk 0 else,

and let S, := Yy _; X/,. Then we have P(S, # S;) < nn(¢). Thus, if the distri-

’_
bution of Sn—an

with appropriate a,, b, is close to the standard normal distribution,

then this has to be true also for &bL“”- if 17, (&) is small. Exactly this argument had
been used by Bernshtein [1926] in'the proof of his “lemme fondamental” (which
circumstance Lévy did not hint at).

On account of Lemma 3 (Sect. 6.2.3.1), for y + n,(g) < 1 the inequality

2g,/VarS§), 6.6)
V1= —n(e) '

holds. Because L, is positive for sufficiently large n, the same is true for VarS,.
Let Y,x := X, —EX) . Then Var Y %y Yuk = VarS), and |Y,/| is bounded
above by 2¢L,. On account of (6.6), for sufficiently large n the expression

«/VZS—% can be assumed arbitrarily small as dependent on &. By use of one
ar nk

eLn < epg; (v + mn(e)) <

of Lindeberg’s theorems (which Lévy did not hint at explicitly, see Sect. 5.2.4.2
on Lindeberg’s discussion of bounded elementary errors), finally Lévy’s assertion

that for large n the distribution of 55”_;‘/ is very close to the standard normal
arSy,

distribution can be followed.
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6.2.3.4 Lévy’s Decomposition Principle

In the “classical case” Lévy had already used an idea which would be also applied
in more general situations: The sums S, (consisting of variables with values below
the bound X only) and S,/ (consisting of variables with values above X only) can
be considered stochastically independent in an asymptotic sense. In his 1935 paper
Lévy only gave a few—rather vague—hints; a relatively complete discussion of this
idea (even for the general case of not identically distributed random variables) can
be found in [Lévy 1937a, 108 f.].

A situation analogous to the following was considered there: Let X1,..., X, be
independent random variables, and L > 0 be a constant, possibly depending on 7.
Let o; denote the probability P(|X;| > L). Because only probability distributions
are relevant, one can, without loss of generality, suppose an appropriate probability
space on which all random variables that are considered in the following are defined.
Then, for 1 < i < n the random variable X; can be assumed to be generated
according to a random experiment of three independent steps:

First, determine Y/, where |Y/| < L, and

P(—L < X; <x)
1—06,'

P(Y/ <x) = (Ix| = L).

Second, determine Y, where |Y/| > L, and

P(—oo<X;<x)
PO <x)=1, & =b
i = - .
PLX=D (x> 1),

Third, determine u; which only takes the values 0 and 1 with the respective proba-
bilities 1 — o; and «;.

Let X/ := (1 —w;)Y/ and X/ := w; Y. Then X; = X/ + X
Sn =Y X; can be expressed according to

Su=D X[+ DV =Y wY], (6.7)

where )" X/ and )" Y/ are independent random variables. This representation of
S, is sometimes called “Lévy decomposition” now [Araujo & Giné 1980, 51 £.].
In turn, if we define the truncated random variables X/ and X/’ according to

/. and the sum

| Xiif|X;| < L
Xi = %O else,

"o.__ Xi ileil > L
Xi = {0 else,

then X/ and X" can be assumed to be generated by the above-described procedure.
Roughly, on the basis of (6.7) the “classical case” in Sect. 6.2.3.2 might be
treated as follows: L = X is considered fixed but arbitrarily large, whereas
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& = P(]X1]|>L) can be considered arbitrarily small. On account of the Bienaymé—
Chebyshev inequality we have for r>0:

P(}Zui—en}>r n)f— (Zul—sn|<rf)>1——2. (6.8)

i=1 i=1

If Y7 ,u; = en, then because of the independence of all random variables
Y{,....Y;: Y/,....Y,, and because Y/ and Y, respectively have identical dis-
tributions, it follows that S, can be represented by

(1—&)n

= > v +ZY”: S+ 8.

i=1 i=1

We recall that it is presupposed that the distribution of s, = %ﬁSn tends to the

standard normal distribution. If "/, u; = en + p+/n with |p| < r, then one can
show that, for sufficiently large n and X, the (conditional) distribution of

1 (1—e)n—p/n en+p/n

/
7 Z Y/ e Z Y/

i=1 i=1

is, except for an arbitrarily small error (depending on n, &, and r), identical to the
distribution of S,/ /. On account of (6.8), cases with | >7_, u; —en| > r/n only
occur with an arbitrarily small probability depending on ¢ and r. Altogether, with
respect to its limit distribution and with the exception of an arbitrarily small error,
Sy can be treated as composed of two independent partial sums S, (consisting of
mutually independent variables with values only within [—L; L]) and S,/ (consisting
of mutually independent variables with values only beyond [—L; L]).

The case where L was assumed to indefinitely grow together with n was even
more important for Lévy’s discussion of necessary conditions for the convergence
to the normal distribution. Lévy [1935b, 364] gave some hints also regarding this
case, which he treated in a way different from the case of a constant L. A more
elaborated discussion, based on (6.7) can be found in his book [1937a, 109]. There,
under the general assumption that;; < 1 forall i, Lévy for arbitrary &’ > 0 with the

2
denotations  := Y _«; and &’ := maxj<j<, P(|X;| > &' L) obtained the estimate

P ()Zu,-Y,/) > nLJF) <2 + Ve 6.9)
Deriving this inequality he first noticed that (for 1 <i < n)
P(X;| > €L
Pu;|Y!| > &'L) = a; P(|Y/] > L) <« % 20/,
p— al

and therefore

P (max u;|Y/| > ¢ L) < 2na’. (6.10)

1<i<n
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The event ) [u;Y/| > nL+/¢’ is in any case a subset of the unification of the two
events

1) maxi<i<pu;|Y/| > €L,

2) Zu,- > j;/.m

The probability of the second event is bounded above by +/¢’.'> Therefore, by
observing (6.10) and

P[] nLve) = P (S i > oL ve).

one obtains (6.9). The significance of this relation lies in the fact that for &’ and o’
being small the distribution of ST” for sufficiently large n differs only little from the

N X/ Y/
distribution of %

bounded.

if L grows together with 7 in such a way that n remains

6.2.3.5 The “loi des grands nombres” as a Necessary Condition
in the Case of Identically Distributed Variables

Lévy’s line of argument in the case of arbitrarily distributed random variables was
based on the same idea as in the case of identically distributed random variables;
therefore, and also because the method still might be of some interest, we will dis-
cuss this particular case in detail. Let us assume, as Lévy [1935b, 371 f.] did, that for
independent random variables X; with the common distribution function F' the dis-
tribution of ZL‘B—):'_A" (Ay, B, > 0 being appropriate norming constants) tends to
the standard normal distribution. Generally presupposing that f_ozo x2dF(x) = oo,
Lévy did not consider the “classical case” in this context. He had to show now
that under the assumption of the convergence to the normal distribution the random
variables X; obey the “loi des grands nombres,” which is, as Lévy [1935b, 367] (see
Sect. 6.2.1) had proven, in the case under consideration equivalent to the condition'®

. X2P(X41| > X)
Iim —— =

= 6.11
X—o00 Ix|<X deF(x) ( )

Lévy’s proof starts with the assumption that this condition is not true. Therefore
there exist “indefinitely growing” values X and a constant @ # 0 such that:

14 This can be easily seen by the fact that the intersection of the events max|<; <, u;|Y/| < €L

and Y u; < \/L;/ is a subset of the event Y u;|Y/| < nLA/e .

15 This is an immediate consequence of the general relation f oy XdV(x) = 1 f >y dV(x) for all
probability distributions V' and all r > 0, which Lévy (of course) did not hint at.

16 The case of finite moments of second order, which Lévy did not discuss at this place, can be
quite easily treated, and also leads to the following condition as a necessary condition for the
convergence to the normal distribution, see [Lévy 1937a, 113; Gnedenko & Kolmogorov 1949/68,
172].
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P(X1] > X)X? > a®Zy,

where Zy = f‘ x x2dF(x). Instead of this statement, however, Lévy wrote

xl<
nP(|X1| > X)X? > a’o)’x. o)y :=nVarX{y.

where
, I Xiif|X =X
X 710 else.

The latter statement is equivalent to the former, however, because—as Lévy [1935b,
365 f.] had shown—VaIX ~ Zx as X — oo.

To give the reader an 1mpressmn of Lévy’s idiosyncratic style, the proof [Lévy
1935b, 371 f.] is quoted in Lévy’s own words (commentaries are included in square
brackets):

For each of these values [X] we define n such that = nY [Y = P(]X;| > X)] obtains
(accurately to Y) a fixed and very small value. According to the law of small numbers, S,/
[= >/_, X/, where X/ = X; if |X;| > X and X/’ = 0 else] contains no or exactly
one term different from O in such cases whose probabilities tend to e~7 and ne™", both
numbers being, for example, above %T". Because in the first case S;” = 0, and in the second
[S)’] > X, the probability that S, is within a given interval of length X (the concentration
assigned to the length X)) is below 1 — 3;7.

Lévy now claimed that, as a consequence of his “Lemma II”” [1935b, 364], the sum

S, could be considered as independent of S,/ with an error asymptotically negligible
in relation to X . Lemma II was as follows:

If n and X are indefinitely growing, and if nY = 7 remains finite, S, and S, in the limit
case can be considered as independent random variables.

There were only a few (quite vague) hints regarding the proof of this lemma in
Lévy’s 1935 paper. As we will see below, all considerations in connection with the
lemma can be substantiated on the basis of the estimate (6.9).

After his remark on “Lemma II,” Lévy proceeded:

Except for the fact that X has to be substituted by a smaller number, by % for example,
the principle of the augmentation of the dispersion for the transition from S, to S, can be
applied. Therefore, for each interval of length

2X
—_— = 210,:

3
[0, = o;,.y] the probability that S, is beyond this interval is at minimum equal to

2,72 2
3n _ 3a’0,” _ a

4~ axr T

Now, if S, is of a type very little different from that of Gauss, almost the same is true for
the sum S, which differs from S, in cases of probability ;) only. Therefore, the coefficient
of reduction [= B,] is < o,, accurately to a relative error tending almost to zero with 7

(values with a very small probability may, if they are large, increase but not diminish the
prearranged value [valeur prévue] for o{S,}). The random variable i” therefore has the

n
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form k&, where £ obeys a law which is very little different from that of Gauss, and k stays
below a function of 1 which tends to one for n = 0.
We are able now to choose 7 as small as we want, therefore / > #ﬁ gets as large as

we wish. The obtained result is thus contradictory to the preceding, according to which
the probability that values of %} are beyond any interval of the length 2/ tends by far less

quickly to zero than the law of Gauss implicates it.

It is actually possible to complement Lévy’s very concise and at some places not
entirely clear arguments to a correct proof with only a few minor (rather technical)
modifications, as we will see in the following.

The presupposition of the theorem is that for a sequence of independent random
variables X;, all with the same distribution F', and for suitable sequences of numbers
(B, > 0) and (A4),

"X —A
P (% < x) — ®(x) (n — 00). (6.12)
n
The assertion is that 5
P(X
lim 22X >2) ;' >2) _ (6.13)
2200 [l X dF(x)

The proof starts with the hypothesis that the latter limit relation is wrong. Then there
exist a sequence (zx) of positive real numbers with z;z — oo and a number a # 0
such that

P(IX1| > zx)z} > a2/ x2dF(x). (6.14)

[x|<zk

For an (arbitrarily chosen) 0 < g1 < i and for ) := P(|X1| > zx) we define the

natural number n; according to ny := [;—}] + 1. Then we have n(n;) := nm}{ > &1,
k
as well as n(ny) — &1 and ny — oo for k — oo. For x = 0,1,... one gets the
limits
: , ] e
khm B(ng;n:x) = e 1
—00 X!

Now, in accord with “Lemma II,” the sums S;, and S, such that Sp, = S;, +

" /I e / [/ ny " / n o __ X
Sy where S, =375 X, Sy =305 Xy, X + X, = X, and
p_ VX if X < 2k
il 0 else,

are introduced. Then, the probability that for a certain number 74 the sum S,/ . con-
sists exclusively of zero terms tends to e°1, and the probability that this sum con-
sists of exactly one nonzero term tends to £;e~°!, according to the just-described
arguments. These two probabilities are above %81 in any case. In order to estab-
lish Lévy’s following estimate of the concentration of S, in a precise manner, it
seems useful to introduce § := (g;e7%! — %5 1)/2. Then for sufficiently large ny

both probabilities lie above %n(n k) + 6.



6.2 Lévy’s and Feller’s Results and Methods 289

Lévy’s estimate for the concentration of S,’l’k can be justified (with a slight mod-
ification arising from the introduction of §) as follows: We either have S,/ . = 0or
ISy, | > zk- Two cases have to be considered for r € R:

1) 0 e]r;r + zx[. Then we have

P(r < S, <r+z) = P(S,, #0)=1-P(S,, =0).

k

2) 0 €]r;r + zx[. Then we have

P(r<S, <r+zi) = P(S, | =z) = 1= P(IS,, | > zx).

k k

It follows that

/) /A 3
fs;;k (zx) < max (1 - P(Sn’k =0)1—P(|S, | > zk)) <1- Zn(nk) —34.

k

In order to use “Lemma II” as specified by (6.9), we must only substitute n by
ng, and L by 7, with the result

ng
P (} ZuiY,-’| > «/Ean(nk)) <2 P(1X1| > €z1) + Ve (£ > 0)

i=1

(u; and Y/ are now determined with respect to X, ; and X, .). Lévy’s assertion
Kkl nit

on the independence of S;, and S, with a “negligible error” probably refers to an
estimate of this kind. We are able now to choose &’ such that, for sufficiently large
k (or ng, respectively),

ng
P (| > wY/| > J?zkn(nk)) <38,

i=1

where § is defined as above.
Taking into consideration the (elementarily provable) inequality

Sx+y(x) < fx(x +2v) + P(|Y] > v),

which is valid for any (even dependent) random variables X, Y, and for any v > 0,
and using

fS;/k + K, v/ () = fS’/’/k (x).

which results from the independence of S,/ . and Z:’il Y/, one obtains

Ssue @) = for (6 + 2V zgn(ng) + 8.

Lévy in this context rather refers to the dispersions of Sy, and S,/l’ i it seems, how-
ever, more convenient to keep considering concentrations.
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Because )
2k — 2V zin(ng) > 3%k

for sufficiently small &', we are able to infer, for sufficiently large &,

2 3
SSu, (gzk) = fsy @) 46 < 1= (),

and therefore

Sp, — A 1z 3
o i T (P ) [ 6.15)
loph 3o/ 4
Nk ng
where 0,2 = ngVarX, ;.
a2q’2
Because of n(ng) > 12"" (see (6.14)), for [ := 324~ the inequality
k ng
3 2
) 2 (6.16)
ERRVTE:
is valid. From (6.15) it follows that, for sufficiently large &,
Sn, — A 2
P2t s g ) > 2o (6.17)
o, 121}

A rigorous justification of Lévy’s assertion that “the coefficient of reduction is
< o}, accurately to a relative error tending almost to zero with 1 seems hardly
possible without some additional effort. By use of characteristic functions (which
Lévy avoided in his 1935 paper, however) one can show [Fischer 2000, 235], for

example, that
2

Onk - 1 —4
g2 = 1+ elu) —4n(ne),

nk
where e(ny) — 0 for ny — oo. Yet, for proceeding the proof in accord with Lévy’s
basic ideas, a weaker statement suffices: On account of Lemmata 3 and 5 (Sect.
6.2.3.1), for arbitrarily small ¢ > 0 and sufficiently large nj; we obtain

On > o ()1 — )T =y — 1R/ 2.

By,

where N denotes a random variable with a standard normal distribution, and y €
]0; 1] is a fixed probability such that y +n(ng) < 1. Therefore, there exists a constant
B > 0 such that

k> B (6.18)

for sufficiently large ny . Because of
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1—d(x) ~ e 2 (x> o00)

there exists /o > O such that

2
a
2(1 = ®(Bly)) < —5- 6.19
( (Blo)) < 5 202 (6.19)
(6.16) yields I > 3 \/Z(Tk) If €, is chosen sufficiently small, then on account of
n(ng) — €1 the inequality
Ik =1y (6.20)

is valid for sufficiently large k. From (6.12) follows that

(

Therefore, because of (6.19), the inequality

(
holds for sufficiently large k. Altogether, for sufficiently large k, and under consid-
eration of (6.18) and (6.20), we obtain
/
> G"—"lk) <P (
Bn,,

P( zlk)=P<

which contradicts (6.17). The assertion (6.13) is therefore true.

Snx — Ang

> /310) 21— D(Blo)).

nk

2

Sny — Any
1212

ng

> ﬁlo) <

Snk _Ank 2

/
nk

Sng — Any
Bny

Sng — Any

a
> Blo) <.
e |27 0) 122

6.2.3.6 The “loi des grands nombres” as a Necessary Condition
in the General Case of Negligible Variables

In the general case of not identically distributed random variables, which were as-
sumed to be negligible with respect to the total sum, Lévy tried to maintain the
basic ideas of his proof for identically distributed variables. A far-reaching analogy
to the latter case was not possible any more, however, due to the fact that a condition
equivalent to the validity of the “loi des grands nombres,” which was usable as easily
as (6.11), was not possible, and it was not certain in the general case that for indefi-
nitely growing X always natural numbers n existed such that Y ;_, P(|Xk| > X)
could be considered arbitrarily small. The equivalent for the “loi des grands nom-
bres” which Lévy [1935b, 385 f.] used in the general case, was as follows:

For each pair of positive numbers ¢, ¢’ and for all sufficiently large natural numbers
n one can find a positive X (n) such that, with the denotations
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n
. ) X if [ Xg| = X(n)
o, = |Var E X Xopo= {0 else.
k=1

the inequalities

1)

X(f” <& and 2)n(n):= Y P(Xil>X(m)<e (621
n k=1

are valid.
Lévy did not prove the equivalence of (6.21) and his original condition

m(e) =P ( max | Xg| > sLn) -0 Ve>0 (6.22)
1<k<n

(L, being the dispersion of S, assigned to the fixed probability y€]0; 1[). By use
of Lemmata 3 and 5 (Sect. 6.2.3.1), and by observing that (6.21) is sufficient for
LT‘EX"" having a normal limit distribution, it can be shown rather easily [Fis-
cher 2000, 237] that (6.21) is equivalent to

n
lim Y P(|Xg| > 8L,) =0 V&> 0. (6.23)

This condition is in turn (for the very elementary proof see [Lévy 1937a, 104 f.])
equivalent to (6.22).

Lévy based his considerations on the assumption that for a sequence of indepen-
dent random variables (X;), S, := Y '_, X;, and L, := ¢g, (y) with an arbitrary
however fixed y €]0; 1]:

S, — A
P (u < x) — ®(x)and max P(|X;| >eL,) =0 VYe>0 (6.24)
B, 1<i<n

for n — oo with suitable 4, and B, > 0. He [1935b, 386-388] gave a sketch of
proof that these conditions imply the “loi des grands nombres” in the version (6.21),
again in a very “intuitive” style. Again it is possible to establish a rigorous proof
on the basis of Lévy’s arguments—with slight modifications concerning technical
details at some places [Fischer 2000, 238-244]. Lévy [1935b, 388] supplemented
his exposition by the following footnote:

One observes that we have by no means applied Lemma III [= lemme hypothétique, see
Sect. 6.1.1]; but, if it is true, it allows to simplify the reasoning (...)

Two years later, Lévy [1937a, 107-109] was actually able, by use of the “lemme
hypothétique,” which had been proven in the meantime by Cramér, to give a consid-
erably shortened and simplified proof. Therefore, we will only describe the major
steps of the 1935 proof (including modifications which seem indispensable), and,
for the convenience of the reader, use a more formal mathematical language than
Lévy did.
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Presupposing (6.24), Lévy started with the hypothesis that (6.21) is not true. Then
it can be shown that there even exist sequences (my) C N (strictly monotonic) and
(zx) € R*, and positive constants ¢ < 3, &', 8 such that simultaneously

my

2k > €0, , n(my) = ZP(|X1'| > Zk) > &,

i=1

1
n(mi) < 7 k> SoLm, >0, (6.25)

where

mp
2 . / I
o2 =Y VarX/, X]:=

i=1

Xi if [ X;]| < 2k
0 else.

Let
my
"o ” "o.__
Sme = X/, X[ =

i=1

Xi if [ X >z
% 0 else,

and let po(my) be the probability that S, . consists exclusively of zero terms, and
p1(my) the corresponding probability of exactly one nonzero term. Then, by an
elementary consideration, one can show that both probabilities are above £. In anal-
ogy to the case of identically distributed random variables it can be proven that, for

sufficiently large my,

e
Fsp @) < 1= 2. (6.26)
and by use of the decomposition principle,
fo (R <18 0 <6 (6.27)
Smy, 3 5 1 . .

Lévy in this context used dispersions rather than concentrations, and, in contrast to
the case of identically distributed random variables, he disregarded the problem of a
necessary reduction of the interval length with respect to the concentration of S, .

As a consequence of (6.27), one is able to show that both anf; and L—z'f; have

an upper bound independent of & (Lemma 5!). The same has to be true, by virtue
of Lemma 3, for UZ/—" Lévy did not make explicit this step, which, however, is the

basis for the subsequent.
Because O—Z,A— is bounded above, one obtains
my

VarX’/
max # -0 (mp - ). (6.28)
1<v<my cr,’nk

Lévy in this context only wrote:“g], varies in an almost continuous mode with v.”
(6.28) implies the possibility of partitioning the random variables X1, ..., X, ,
without any change of order, into p groups such that the variance of the sum of those
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. . . . . 0-/2
random variables within each group is approx1mately equal to %, where the error

of approximation vanishes relatively to ;>
group (from X, +1 to X, ) for which

. as mi grows. There exists at least one

Sk

Yo P(Xil >z =

i=ri+1

W(Mk)
b4

“wlm

For this group in analogy to (6.27), with %}L instead of €1, it can be shown (if my is
sufficiently large)

27k &1
B Il | —— 6.29
fzi];rk+1Xi ( 3 ) < 2 ( )
and, under consideration of the first part of (6.25),
f (2e’f) <14 (6.30)
f Zl e X \3 p T3 .

Let ((rg, sx)) be the sequence of pairs of natural numbers which correspond to
the group X, +1,..., Xy, as above, and let ((rx/, sx/)) be any subsequence. Presup-
posing a sufficiently large however fixed p one can show, on the basis of (6.30) and
by use of arguments similar to those employed in the case of identically distributed
random variables, that the standard normal distribution as a limit distribution of

# ka/rk/+1 Xi — ak/) (ag’, by any norming constants) is impossible.

From (6.25) it follows that these r; and s; which are different from zero grow
indefinitely with k. If there are infinitely many r; with ry = 0, then there exists a
subsequence (Ss,,) C (Ss;) which is not normally distributed in the limit, and this
contradicts the assumption (6.24). If ry > 0 from a certain k, then (6.29) and (6.25)
imply that S5, — S,, “cannot be neglected,” as Lévy writes, “in the investigation”

of Ss,. This means, in more precise terms, that the sequence of the distributions
Of Ssk _Srk;(ASk _Ark)
Sk
bution. Because at least for a subsequence (Sy,,) of (Sy,) the limit distribution of
Srk/ _Ark/
B.

or any subsequence of it cannot tend to a degenerate distri-

is a (possibly degenerate) normal distribution (with a variance between
zero and one), and because

Ssk/ - Ask/ _ Srk/ - Ark/ + Ssk/ - Srk/ - (Ask/ - Ark/)
B B B '

Sk’ Sy’ Sp/

the two members of the right side being stochastically independent, we finally reach
a contradiction to (6.24): The right side, in contrast to the left, cannot obey a stan-
dard normal distribution in the limit, because the distribution of its second member
does not tend to a normal or to a degenerate distribution.

In the last part of his 1935 proof Lévy tacitly used a weakened version of the
“lemme hypothétique,” which can be easily proven by use of characteristic func-
tions: If the random variable Z is the sum of the independent random variables
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X and Y, and Z is Gaussian, and X is a (possibly degenerate) Gaussian variable,
then Y is a (possibly degenerate) Gaussian variable. As already mentioned, Lévy at
the end of his 1935 proof argued that the full version of the “lemme hypothétique”
would have allowed a simplified argumentation.

Strictly speaking, an extension of the “lemme hypothétique” would have been
needed, as stated and proven by Lévy [1935b, 382 f.; 1937a, 100 f.]: If X, + Y, =
Z,, X, and Y, being independent, and if the distribution of Z,, tends for n — oo
to the standard normal distribution, then the distribution of X, + a,, where a,, € R
is chosen such that a median of X,, + a, is zero, tends to a (possibly degenerate)
normal distribution.

Now, starting with the hypothesis that (6.21) is not true, we could proceed in the
same way as Lévy originally did in 1935, up to the discussion of po(mg), p1(mg),
and fS’/'/Tk (zk)- Since 0 < ¢ < n(myg) < %, it follows by Lévy’s decomposition
principle that S, . and Sy . are virtually independent for sufficiently large my. By

: : “« 400 ” S;'/l _Amk
the generalized version of the “lemme hypothétique,” s/ g = ’;}T has to obey
. L S Sy —A
alaw close to a (possibly degenerate) Gaussian if the distribution of =“4—=£ tends
k

to the standard normal distribution. From

, &
P8y, =0) = polmi) >

it follows that the distribution of s, .18 close!” to a degenerate distribution for large
mp. Then, for sufficiently large mj and for any positive x, the concentration of
S . (x) is arbitrarily close to 1. This contradicts, however, the estimate of f, Sin (zx)

given by (6.26) (note that, due to the fourth part of (6.25), Bz—" is always greater
my

than a positive constant).

In his 1937 book, Lévy [1937a, 107-109] based his considerations on the variant
(6.23) of the “loi des grands nombres” (he did not use this designation any more),
and on the hypothesis that this condition was not true despite the validity of (6.24).
Then there existed § > 0 and ¢ > 0 such that for an indefinitely growing sequence
ny of natural numbers

ni
n(n) =Y P(Xi| > eLy,) = 6. (631)

i=1

Lévy used his decomposition principle, and in accord with (6.7) (L being substituted
by ¢L,, ) he represented the sum S, by

nk

g Ny
Swe =Y X+ ¥/ = Y.

i=1 i=1 i=1

17 “Close” with respect to the Lévy distance, for example.



296 6 Lévy and Feller around 1935

By an estimate analogous to (6.9) he showed that the third term on the right side
could be neglected for ny — oo if n,, was bounded above. For the case that 7,
was growing indefinitely with ng, Lévy [1937a, 109] recommended to choose n’
such that 7(n") was “between 1 and 2, for example,” and represent S,, by

n'

v
Sp = ZX” ZY—i— Z Xi | => wy/.

i=1 i=1 i=n'+1 i=1

This was again a representation of S, by three summands, where the first and the
second were independent, and the third could be neglected for ny — oo.

In the case of n(ny) being bounded above, Lévy on the basis of (6.31) showed
that the probabilities po(nx) and p1(ny) (see above) had a positive lower bound, §1,
say. Due to the extension of the “lemme hypothétique” and because of pg(ng) > 81,
for large ny the distribution of Y%, X/"/B,, had to be close to a Gaussian law
with a “small parameter,” as Lévy wrote. This behavior, however, contradicted the

property

n

P (| > x> eLnk> > p1(ng) = §i.
i=1

The case of an indefinitely growing 1(ny) was analogously treated by considering

Y., X! instead of Y75 X/,

If one considers the total effort for proving the necessity of the “loi des grands
nombres,” on the one hand in the original 1935 version (whose exposition was only
sketchy), on the other hand by use of the (generalized) “lemme hypothétique” in
Lévy’s 1937 book, then both ways of reasoning seem to be equally laborious. The
“lemme hypothétique” for itself, now named “Cramér’s theorem,” as expounded in
[Lévy 1937a, 97-101], required some intricate arguments regarding complex func-
tions, and its extension to a limit process, which relied on compactness criteria for
distributions, was by no means trivial. However, also Feller’s solution of the central
limit problem was, despite its use of more common probabilistic notions and tools,
and despite its more elaborate exposition, far from being easy.

6.2.4 Feller’s Theorems

In contrast to Lévy, Feller was rather reserved in his use of specialized probabilistic
notions, and his ideas could be basically understood even by readers who were not
familiar with probability theory. Unlike Lévy he also explicitly presented methods
for determining the required norming constants. The fact that Feller chose charac-
teristic functions as his main tool had the advantage that his arguments were familiar
to a broader audience, but several estimates could be only reached by rather cum-
bersome considerations.
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Feller generally based his considerations on a sequence of distribution functions
(Vy), all continuous on the right, and the respective convolution functions W, =
VixVox---xV,. He [1935, 522] characterized the chief subject of his investigation
by the following question:

Do there exist, for a given sequence of distribution functions {V,(x)}, two number se-
quences {a,} and {c,}'® such that W, (a,x + c¢,) — ®(x) [the standard normal distribu-
tion], and, if this is the case, how can such number sequences be determined?

Feller, too, presupposed the negligibility of the single “components” Vj with
respect to the total convolution W),: Basically, what he demanded was that there
exist suitable by such that, for each x # 0,

max |Vi(anx + bx) — E(x)] > 0 (n — 00), (6.32)
1<k<n
where
0forx <0
E(x) = 1 else.

This demand, which was, however, expressed by Feller [1935, 523] in a less explicit
way only, is equivalent to the condition that for the random variables X3 obeying
the distributions Vj:

max P(| Xy —bg| > ¢ean) >0 Ve>D0.

1<k<n
Feller used the words “the sequence {Vi(x + bg)} together with the norming fac-
tors {a,} belongs to ®(x)” if the limit relation W, (anx + ¢n) — P(x) (cn =
% ZZ=1 by) and the condition (6.32) are simultaneously met.

The solution of the problem above—designated as “criterion” by Feller [1935,

526 f.]—was as follows: Let (V) be a sequence of distributions, all with a zero
median. For each § > 0 let

pn(8) :=minsr € RS’

Z/|x|>r dVy(x) < 5}.

v=1

Then the presupposition'’

n
V>0 lim L / x2dV,(x) = oo (6.33)
=00 pi(8) =1 Jix|<pn(s)
is necessary and sufficient for the existence of sequences (a, > 0), (bg) such that
the sequence (Vi (x + by)) together with the norming factors a, belongs to ®(x).
The constants a, and b can be obtained in this way: Because of (6.33) a sequence
(8») tending to O exists for which

18 Note that Feller’s sequences {a, } and {c,} correspond to Lévy’s sequences B, and 4,, respec-
tively.

19 Feller wrote “|x| < p,(8)” in (6.33) instead of “|x| < p,(8).” His proof [1935, 552 f.] for the
“criterion” is only valid, however, in case of “<”.
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n

. 1 / 2
lim ——— x“dVy,(x) = oo.
n—00 p2(8n) ; 1x1<Pn (8n) ’

One sets?’
n

2
2 = 2dv,(x) — ( av, )
¢ Z { /xfpn ©Gn) * (x) /xfpn ©n) * (x) }

v=1

and determines by according to
/ (x —br)dVi(x) = 0. (6.34)
|x|<ag

At first, however, Feller [1935, 533-551] proved a theorem—designated as “main

theorem” in the following—which is based on the special assumption that the a,, are
already given, and all by are equal to 0.
Main Theorem: Let (V%) be a sequence of distribution functions (not necessarily
with zero medians). (Vi (x)) together with the positive norming factors a, belongs
to ®(x) if and only if for each n > 0 the following three conditions are simultane-
ously met:

M im Y [ dVy(x) =0

—
T v=1|x|>na,

2
In i in / xdev(x)—( / dev(x)) =1

— a
e v=1 ||x|<nan |x|<nay

(IID) lim L f [ xdV,(x)=0.

—o00 9n
o0 v=1|x|<na,

Feller’s article became especially prominent by its discussion of the Lindeberg
condition. Feller [1935, 541-543] for independent random variables X, each with
zero expectation, distribution Vg, and variance a]f, explicitly showed that

n
lim 12 > / x2dVi(x)=1 Vp>0 (6.35)
OO Sy =y Y IxI<nsy

is necessary for the assertion that (Vx(x)) together with the norming factors s, > 0
(s2 = Iy cr,?) belongs to ®(x). One can actually deduce this assertion from
the “main theorem” [Fischer 2000, 246] as well, as Feller [1935, 542] only briefly
noticed.

Like Lévy, also Feller [1935, 554 f.] was concerned with the particular case of
independent identically distributed random variables with a nondegenerate distribu-

tion V. From the “criterion” he deduced a theorem which was as follows:
Letfor{ >0

20 Also in the following formula Feller wrote “<” instead of a correct “<”.



6.2 Lévy’s and Feller’s Results and Methods 299

/x>z aveo = % '

Necessary and sufficient for the existence of sequences (a, > 0) and (c,) such that
V**(anx + ¢y) — ®(x), is the validity of the condition

Z(¢) := min %z eRY

1
§Z2(8) Jixi<z()

é1im x2dV(x) = . (6.36)
—0

6.2.5 Feller’s Proofs

6.2.5.1 Auxiliary Theorems

Feller based his proofs on some auxiliary theorems, which he proved in the first part
of his article. The following numbering of these theorems does not refer, however,
to a corresponding numbering in Feller’s paper.

Auxiliary Theorem 1 [Feller 1935, 532 f.]: Both the sequences of distribution func-
tions (Vi (x)) and (Vi (x + bg)) belong, together with the same positive norming
factors a,, to ®(x) if

.
lim E,;bk =0. (6.37)

Auxiliary Theorem 2 [Feller 1935, 533-536]: Let (a,, > 0), (b,) be sequences of
real numbers such that
lim b—n =0. (6.38)
n—00 d,
The conditions (I) and (I) of the “main theorem” are valid for the sequence of
distribution functions (Vg (x)) if and only if (I) and (II) are valid for the sequence of
distribution functions (Vi (x + bg)).
Auxiliary Theorem 3 [Feller 1935, 537]: Let by be in accord with (6.34), and let
Vi (x) be distribution functions meeting the conditions (I) and (II). Let V;*(x) :=
Vi (x + bg). Then for any n > 0:

n

) im Y fioopa, Vi (xX) =0

n—oo v=1
n

@) Jim 2 5 oy, V0 = 1
v=

n
9 s L
i

f|x|<nan xdVy(x)| =0.

As Feller showed in the main part of his paper, conditions (I’), (II’), (IIT") with
V& replaced by Vj are sufficient for
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VixVyx--oxV,(apx) = ®(x) and max / dVi(x) = 0 Ve > 0. (6.39)
|x|>ean

1<k<n

If these conditions are true for Vi (x) (instead of V}*), they must also be true for the
“symmetric” distributions 1 — Vi (—x), and the convergence to the normal distribu-
tion still holds if a subsequence (Vi/(x)) of (Vi (x)) is substituted by 1 — Vj/(—x).
Apparently, this circumstance motivated Feller [1935, 525] to introduce the desig-
nation “a sequence of distributions (V¢ (x)) belongs to ®(x) in a narrower sense” if
(6.39) remains valid for the case that any subsequence (Vi/(x)) of (Vi (x)) is sub-
stituted by (1 — Vs (—x)) (the sequence (a,) remaining unchanged). On the other
hand, if the convergence to the normal distribution is “in a narrower sense,” then
(IIT) can be replaced by (III’) (with Vk* replaced by V%), because in case of neg-
ative summands it is possible to switch from Vi (x) to 1 — Vi (—x).?! Then, as a
consequence, also (II) can be substituted by (II").

Auxiliary Theorem 4 [Feller 1935, 537 f.]: Let (V) be a sequence of distributions,
and let by be defined according to (6.34). Then

n

1
lim — br =0
—
n Ooan‘kl

(this is (6.37)!) if and only if for all positive 7 the relation

1 n
lim — / xdVi(x) =0

n—oo
n k=1 \X\<7Ian

(this is condition (III)!) holds.

6.2.5.2 Main Theorem

By virtue of Lévy’s theorem on the continuous correspondence between character-
istic functions and distributions, Feller expressed the “main theorem” in the form
that the joint validity of (I), (IT), and (III) is equivalent to

n

Mo (5)- (wo= [ emanm)  cao

v=1 %

together with

max
1<v<n

Uy (L) - 1‘ -0 (n— 00), (6.41)

An

uniformly in each bounded ¢-interval, respectively.

21 Note that (6.39) also implies a,, — 0o. For fixed 1 and fixed v the summands f|X|>,7 an xdV,(x)
therefore have the same sign from a certain number 7 on.
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In the first part of the proof for the “main theorem,” Feller [1935, 538-540] pre-
supposed (I), (IT), and (IIT), and he showed (6.40) and (6.41). To this aim he es-
sentially used Lévy’s method for proving the CLT under the Lindeberg condition
by means of characteristic functions, however in a modified form, because in the
series expansion of log v, derivatives of v,, could not be used since the existence of
moments was not assumed any longer.

The problem of the first-order moments of the truncated random variables which
occurred in (I) and complicated the situation, Feller solved in the following way:
Instead of the sequence (V) he considered the sequence (V") defined by V;* (x) :=
Vi (x + bg), where by was determined according to (6.34). By virtue of auxiliary
theorem 3 the sequence (V;*(x)) meets the conditions (I’), (I’), and (IIT"). Auxiliary
theorems 4 and 1 imply that (V% (x)) together with the norming factors a, belongs to
®(x) if and only if (V,*(x)) together with the norming factors a, belongs to ®(x).
In proving that (I), (IT), (IIT) are sufficient for the assertion of the “main theorem,”
Feller without loss of generality could therefore assume that (V) even possessed
the properties (I'), (IT"), and (IIT").

The essential steps in Feller’s further argumentation were as follows: First, (6.41)
was an immediate consequence of (I’) [Feller 1935, 538 f.]. Aiming at the subse-

quent discussion of the series expansion of log v, (i), Feller showed (basically

on account of (6.41)) that ZZ=1 ‘1 — Uy (#)‘ has in each bounded ¢-interval an
upper bound independent of n. For n — oo this property yielded, because of

s (2) (- () (- (1))

the limit relation

S (2) - (2]

v=1

uniformly in each bounded ¢-interval. Therefore, presupposing (I’), (I), and (II"),
one had to prove only that

" o ixt [2
> a-ehanem -5
p=1"Y"X

uniformly in each bounded ¢-interval. Feller [1935, 540] showed this by an estimate

=0 (6.42)

of the left side of (6.42), which was reached by means of expanding ean up to the
third power in x7.

For his proof of the necessity of (I), (II), and (IIT), Feller [1935, 543-551] pre-
supposed (6.40) and (6.41), and he based his considerations on the expansion
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o0 ixs 1 o0 ixs 2
log vy (ai) - —/_00(1 —efav,(0 - 3 (/_Ooa —ean)dV,,(x)) +

00 ) 2
+o(/ (1 — edn)dV,(x) ) (6.43)

For a reasonable application of this representation it was necessary to reduce the
general case to the case of zero medians, because only then an upper bound of

n

2

v=1

0o . 2
/ (1 —ean)dVy(x)| | (6.44)

o

independent of n, could be established. To this aim, Feller first defined the sequence
(bx) according to the demand of a zero median of V,*(x) := Vi (x + by). Then, on
the basis of the presupposed condition (6.41), he [1935, 543] also proved that, for
eachn > 0,
lim dVy(x) = 0. (6.45)
=00 JIx|>nan
Without any further explanations, Feller from this equation followed that (6.38)
was true.”” As a consequence of auxiliary theorem 2, (Vi (x)) obeyed the con-
ditions (I) and (II) if and only if (V;*(x)) obeyed these conditions. Feller [1935,
544] proved that (6.38) implies the validity of (6.41) even for the characteris-
tic functions v¥(t) = v, (¢)e ¥ of the distributions V,\, whereas (6.40) yields

2
]_[Z=1 vy (i)) — e~'7. In order to conclude that () and (II) are necessary for the
assertion that (1}, (x)) belongs to ®(x), it therefore sufficed to prove that (I) and (1)
are true for each sequence of distribution functions V, with zero medians, if for the
characteristic functions of these distributions

n

t _12
[T v (—)' e 2 (6.46)
v=1 n
and
t
max |uv, (—) — 1‘ —0 (6.47)
1<v<n dap

are true, uniformly in each bounded -interval, respectively.
Generally presupposing in the sequel zero medians for the single distributions,
Feller from (6.46) and (6.47) inferred that

22 This conclusion is not a trivial one, however. Let us assume that there exists ¢ > 0 and a
by, . .

subsequence (a—"L) such that for all ny above a certain number ng: |b,, | > ea,,. Then, since
g

(X, — by) has a zero median, we have for all ny > ny,

P(|Xny |>€an; ) = P(|Xny |=|bny )= min (P(Xn; — bpy >0), P(Xn) — bny <0)) >

| =

The latter statement contradicts (6.45).
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t2

n
t
ZRe log v, (—) — —— (6.48)
v=1 n 2

uniformly in each bounded 7-interval. By elementary estimates for the summands
in (6.44) (using in particular the zero median property of all distributions), and tak-
ing into account (6.43), (6.46), and (6.47), Feller concluded that this sum in each
bounded 7-interval has an upper bound independent of 7, and therefore by virtue of
(6.43),

Zlog Uy (QL) +
v=1 n
" o0 ixt 1 o0 ixt 2
+ (1 —ean)dVy(x) + = ( (1- ean)dVv(x)) }
> (L

uniformly in each bounded ¢-interval. Using his estimates, Feller further inferred

from (6.47) that
n 00 2
t
Ej(/ (l—cosx—)dVv(x)) 0.
=1 —00 Anp

Altogether, by combining (6.48), (6.49), and the latter limit relation, Feller showed
that

n oo oo 2 2
) {/ (1 —cos “Lyavi, (x) — - (/ sin x—thv(x)) } -2 650
el QS an 2 an 2

—0o0

0 (6.49)

uniformly in each bounded ¢-interval.

Feller [1935, 547] designated (6.50) “the fundamental relation from which the
necessity of (I) and (II) can be derived.” In fact, several intricate, if elementary,
estimates were still needed. Feller in particular derived the inequalities

n

> / dVy(x) < M’
[x|>nan

v=1

and
n

> / x2dV,(x) < K,
1 |x|<nan

1
a2
ag =

where the upper bounds M’ and K are dependent on 7 but independent of n. By use
of these estimates and the relation (6.45), from (6.50) the less complex relation

" % xt 12 2 12
> / (1= cos —)dVy(x) — — ( / xdV, (x)) - —  (6.51)
=1 (/=0 An 2a |x|<nan 2

n
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could be followed. For &, 7 > 0 Feller assumed the number t = 7(g, ) so small
that for |¢| < 7 and |x| < na, the inequality

x2t?

Xt
1- —>(1-
cos — (1—¢) 2a2
holds. Using this inequality he showed that for sufficiently small |¢]| the left side of
(6.51) is at least equal to

2 & ) 2 2
33 Z /Mqan x2dVy(x) — (/M% dev(x)) - 5Ke.

ny=1

From this latter estimate, since ¢ could be considered as arbitrarily small, the
inequality

n

2
1imsupai22§ /| | x2dV,(x) — ( /| | dev(x)) } <1 (652
n—o00 xX|<napn x|<napn

ny=1

ensued. By estimating the left side of (6.51) from above, Feller in a similar way
obtained

1 & /
1 —liminf — x2dV,(x) —
( n=o0 G%Z% xl<nan )

v=1
2 12
_ (/ dev(x)) — <2M'. (6.53)
Ix|<nan 2

Because, due to (6.52), the left side of (6.53) cannot get negative, and because (6.53)
holds even for arbitrarily large 7,

n

1 2
lim inf — / x2dV,(x) — (/ xdVy(x ) =1
n—oo az Z{ lx|<nan v lx|<nan )

v=1

ensued. Finally, condition (II) was an immediate consequence of this equation to-
gether with (6.52).

Feller’s discussion of the necessity of (I) and (IIT) was based on the already shown
necessity of (II) (the assumption of zero medians was not needed any longer). (I)
was an almost direct consequence of (II) [Feller 1935, 550]. By auxiliary theorem
3, from (I) and (II) the validity of (I), (II"), and (IIT") for V;*(x) = Vi(x + by)
could be followed, if b was according to (6.34). As a consequence of (I"), (II’), and
(IIT’) (V;*(x)) belonged to ®(x), and therefore Feller was able to follow, through
auxiliary theorem 1, the relation (6.37), and from this, by auxiliary theorem 4, the
validity of (IIT).
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6.2.5.3 Criterion

For a proof of the “criterion,” Feller generally presupposed zero medians, and he
first showed that (6.33) is a necessary consequence of

Vi(anx + by) * -+« x Vy(anx + by) — ®(x) (6.54)
together with
Vx #0: max |Vi(agx + by) — E(x)| = 0, (6.55)
1<k<n

an and b, being suitable constants. On the basis of (6.54) and (6.55), by virtue
of the “main theorem,” conditions (I) and (II) for Vi (x + by) could be verified.
Since all distributions had zero medians, (6.55) yielded relation (6.38). By means of
auxiliary theorem 2, from the validity of (I) and (IT) for Vi (x + by ) the validity of
both conditions for Vi (x) ensued. Almost directly from the latter fact, Feller [1935,
552] eventually followed the assertion (6.33).

In order to show that (6.33) is sufficient for (6.54) together with (6.55), Feller
proved the following, even more general theorem:
Let (¢») be a sequence of positive numbers and (V},) a sequence of distributions (not
necessarily with a zero medians) such that

n

1
lim —2§ / x2dV,(x) =00 and lim § / dV,(x) = 0. (6.56)
lx|<gn [x|>qn

n—o00 g n—>00
ny=1

Then (V) together with (a, ), where

n

2
2 _ 2 —
A= 2 ([ 0~ ([ 00) )

v=1

is in accord with the conditions (I) and (II).

For the proof of this theorem, Feller [1935, 553] established, as a consequence of
(6.56), the relation q” — 0, which immediately implied (I). Furthermore, from this
limit relation, for each n > 0 and for sufficiently large n, the inequality ¢, < nan
ensued. By elementary estimates Feller showed that

n

1 2 _ _
2 V; (/KM x2dVy(x) (/\x\«;an de,,(x)) ) 1

wherefrom, due to the second part of (6.56), property (II) followed. Feller finally
referred to auxiliary theorem 3 concerning the property that Vi (x + by ) even meets
the conditions (I’), (II), and (IIT") if b is defined according to (6.34). The condi-
tion (6.56) therefore actually implied the assertions (6.54) and (6.55), even in the
“narrower sense” of convergence.

<32 Z/ dvy (),

[x[>gn
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6.2.5.4 Necessity of Lindeberg Condition

Feller’s 1935 work became especially prominent by its separate discussion of the
Lindeberg condition. Feller showed that this condition (6.35) in the particular case
a,zl = s = ) VarXy and EX; = 0 was a consequence of (6.40) together with
(6.41): At first one concludes from (6.40) and (6.4 1) that, uniformly in each bounded

t-interval,
2

> ixt t
(1—esn)dVy(x) = —,
oo 2
wherefrom

lim
n—oo

(6.57)

——Z/ (l—cos—)dVv(x)

ensues. By virtue of the Bienaymé—Chebyshev inequality we have for each posi-

tive n
n

1
S anws
|x|=nsn n

v=1

Taking into account this inequality one infers from (6.57):

2, (73)
—— 1 —cos L dV,(x)
2 2 e l<nsn Sn

v=1

2
< . (6.58)

lim sup
n?

n—00

If one combines (6.58) with the estimate

n n

12
Z/|x|<nsn (1 — cos s_) dVy(x) < T,% Z:l

v=1 v=

l2
/ x2dV, (x) < —,
Ix|<nsn 2

then one obtains

12 2
0 < —limsup 1——2/ xdev(x) <.
2 |x|<nsn

n—00 ”v 1 n

Because the expression within the braces is > 0, and because the latter inequality
holds for all real ¢, the assertion (6.35) follows.

With this proof Feller definitely brought the classical central limit problem, as
it could be essentially led back to Laplace, to a completion. His discussion of the
Lindeberg condition could be comprehended quite easily, and this was probably
one of the main reasons why Feller’s results for the CLT were always given more
attention than Lévy’s.
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6.3 A Question of Priority?

“I never had luck with the law of Gauss.” This statement by Lévy, already quoted
elsewhere in this text (see Sect. 5.2.6.5), seems particularly applicable to his work
[1935b] in view of its competitive relationship with that of Feller [1935]. Lévy
claimed that the reason why Feller was generally championed for the definitive solu-
tion of the CLT, at least where it concerned sequences of independent and uniformly
negligible random variables with respect to the total sum, was because the latter’s
work had been published a bit earlier than his own. As we have already seen (Sect.
6.2.3), there were no significant errors in Lévy’s very tersely outlined and not en-
tirely precise proofs that could be held responsible for this disregard of his work.

Le Cam [1986, 85] carefully traced the chronology surrounding the publication
of the two articles by Lévy and Feller. According to these findings, Lévy submitted
his work significantly earlier than Feller. Moreover, Lévy had already distributed
private drafts to a few colleagues, including Hadamard, Borel, and Khinchin (see
[Lévy 1970, 108]) in June of 1935. Therefore, strictly speaking, Lévy is entitled to
the priority because he had made his paper available to a “public,” however small,
in the form of a “preprint” considerably earlier than Feller. The issue of the Jour-
nal des Mathématiques containing Lévy’s essay was delivered in December 1935.
The corresponding issue of Mathematische Zeitschrift with Feller’s article should
have appeared at about the same time, but the exact delivery date can no longer be
determined. For this reason, it is not at all certain that Feller’s work actually was
published before Lévy’s. Thus the relatively modest interest in Lévy’s article com-
pared to Feller’s can hardly be explained by a later publication date.

In his book on sums of random variables [1937a, 107 (footnote)], Lévy expressly
referred to the fact that he had already submitted his paper on necessary conditions
for the CLT in the fall of 1934, and suggested that Feller had merely “rediscovered”
the theorem. However, in the only monograph on limit theorems besides Lévy’s
book to be published between 1935 and the outbreak of World War 1II, and to be
observed by a broader audience,” Cramér [1937/70, 63] mentions only Feller’s
name when discussing this subject. Even though Feller’s article developed during
his residence with Cramér’s “Stockholm group” and though Cramér also had a close
personal relationship with his colleague Feller (see [Cramér 1976]), Cramér never-
theless usually had high praise for Lévy’s work, as is evident from his frequent
positive citations of Lévy’s achievements. Finally, in their work on limit distribu-
tions of sums of independent random variables, which has remained a definitive
standard reference practically to this day, Gnedenko and Kolmogorov [1949/68,
130] mention only Feller in connection with necessary conditions. So Lévy was
evidently unable to substantiate his claims of priority even from the—usually more
generous—retrospective point of view.

Yet is it even possible to speak meaningfully of “priority” when dealing with
two works that differ so acutely in style and methods, but also in several particular

23 Khinchin’s survey of sums of independent random variables [1938] remained unnoticed outside
Russia.
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results? Even Lévy [1970, 108 (footnote)] acknowledges this, along with the eas-
ier “applicability” of Feller’s results. He stresses, though: ... but basically, we are
talking about almost exactly the same theorem.” For this latter statement—already
expressed in his 1937 book—Lé&vy never provided any further arguments.

6.3.1 Lévy’s and Feller’s Results: A Comparison

When the “criterion” of Feller (6.33) and LeVy’s version (6.21) are brought into the
same form, then a striking similarity occurs between both assertions.

Let (X%) be a sequence of independent random variables whose distributions V
all have a median 0.>* The main assertion of Feller corresponds to:
There exist sequences (a, > 0) and (bx) of real numbers such that

1 n
P (— D> Xk —bi) < x) — ®(x)
n k=
and max P(|Xy —bi| > €ay,) >0 Ve>0 (6.59)
1<k<n
as n — oo if and only if

P2 (8)
L=t Jixizpuy) ¥4 Ve(¥)

where  p,(8) = min{r € R{ [P(|Xk| >r) <§}.

V8§ > 0Vn > 03n(s,n)Vn >n(s,n) : <n, (6.60)

Lévy’s main assertion can be expressed as follows:

Let L, be the dispersion of > _; X assigned to an arbitrary, however fixed, prob-
ability y€]0; 1. There exist sequences (a, > 0) and (bg) of real numbers such
that

P (al D Xk —by) < x) — ®(x)

" k=1
and max P(|Xg|>¢eL,)—>0 Ve>0 (6.61)
1<k<n

as n — oo if and only if

V8 > 0Vn > 03In(s,n)Vn = n(§,n)3X(mn) > 0:
X?(n)

2
k=t (.[fo(n) x2d Vi (x) — (flxlsX(n) Xde(x)) )

<n (6.62)

24 With respect to the zero median property in connection with Lévy’s account, see Sect. 6.2.1.
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and

n
> P (1Xk| > X(n) <6
k=1
Despite the far-reaching formal conformity of (6.60) and (6.62), a direct proof

for the equivalence of these two conditions seems to be rather difficult. Still, the
equivalence of the respective assertions of Feller and Lévy concerning the conver-
gence to the normal distribution can be quite readily seen as follows:
From Feller’s constraint

max P(| Xy — bx| > ean) — 0,
1<k<n

due to the zero median property of all distributions under consideration, the relation

max P(|Xg| > eay) — 0

1<k<n
follows.” Because the orders of magnitude of a, and L, are asymptotically equal,
Levy’s constraint follows.

In turn, Lévy’s (6.61) implies the validity of the “loi des grands nombres”; we
use it in the version

n
> P(Xk| > eLy) >0 Ve > 0.
k=1

L, = O(ay) yields

n
> P(Xk| > ean) > 0 Ve >0. (6.63)
k=1

The latter relation is Feller’s condition (I), exactly. Since in Lévy’s proof of the CLT
under the condition P(max; <<y, | Xx| > €L,) — 0 (which is equivalent to (6.63)),
the norming constants which correspond to a, are determined according to

3 2
2 ~ > ~
g ([, ema-(], on))

(¢ > 0 being arbitrarily small), and because a, and L, are of the same order of
magnitude for n — oo, Feller’s condition (IT) ensues. As Feller [1935, 533-537] has
shown, from (I) and (II) the validity of conditions (I"), (I’), and (II") for V}* (x) =

23 By an argument very similar to that in footnote 22 one shows that

by
lim max — =0,
n—>00 1<k=<n a,

wherefrom the assertion follows.
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Vi (x + by ) follows, if, as usual for him, by is defined in accord with (6.34). Finally,
(T), (Il’), and (III’) together imply the assertion (6.59), as we have seen in Sect.
6.2.5.2.

Thus, Lévy and Feller actually discussed equivalent problems concerning the
convergence of the distribution of suitably normed sums to the Gaussian law. Basi-
cally, the contemporary reader was able to find out this fact, but only if he studied
the proof details very carefully and comprehensively, a task which might have been,
due to Lévy’s idiosyncratic style and his sketchy exposition, rather tedious.

6.3.2 Another Question of Priority

Gnedenko [1997, 468] claimed that Bernshtein [1926] was the first posing the prob-
lem “when can such constants B, > 0 and A4, be found that the distribution function
of sums (S, — A,)/ B, converges to the normal distribution?”, and that he also gave
sufficient conditions for the convergence to the normal distribution in this setting.
Gnedenko continued: “Some eight years later Feller showed that the same condi-
tions are not only sufficient but also necessary under the condition that all terms
in the sum are uniformly small.” With these words, Gnedenko renewed and even
expanded a claim that Bernshtein [1945/2004a, 89, 94] himself had laid.

As we have seen, Bernshtein had indicated the possibility of a general norming
for sums of random variables in his papers of 1922 and 1926. By using Feller’s
methods, it can be shown that, under the additional assumption of smallness of the
single summands (second part of (6.59)), Bernshtein’s general conditions (those re-
ferring to suitably truncated random variables) for his lemme fondamental are also
necessary for the convergence to the normal distribution if convergence is conceived
in the “narrower sense” of Feller. Bernshtein’s “lemme fondamental” can be formu-
lated for a sequence (X ) of independent random variables in the following way:
Let (K,) be a sequence of positive numbers, and let

n

Py = Z/ x2d Fy.(x).
k=1 ‘X‘SKVl

Under the condition that for n — oo
n
> / dFi(x) = 0, (6.64)
k=1 |x|> Ky,

n

Z /|<K xd Fy(x)

k=1

1

n

=0, (6.65)
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and )
1
=> / Ix|?d F(x) — 0, (6.66)
n k=1 |x|<Kn

Fi x Fy % -+ x F,(rpx) converges to ®(x) asn — oo.
If we presuppose in turn that there exists a positive sequence (a,) such that

Fix Fy x---x Fy(apx) = D(x)
and max P(|Xi|>ea,) >0 Ve>0, (6.67)
1<k<n

and if we suppose the convergence to the normal distribution in (6.67) being “in a
narrower sense” in Feller’s terminology, then (see Sect. 6.2.5.1) the conditions

1 n
Z / xdFy(x)
|x|<ean

k=1

dn

—0 Ve>0,

n
Z/ dFi(x) >0 Ve>0,
k=1 |x|>ean

and
n

iz Z/ x2dFe(x) — 1

<
n = lxl<ean

-0 Ve>0

follow. One can easily show now that there even exists a null sequence (e;,) such

that )
> / dF(x) = 0,
k=1 |x|>enan
1 n
— xdF(x)| — 0,
an kz=:1 /xlfsnan
and
1 n
—ZZ/ x2dFy(x) — 1.
n =17 IxI<enan
If one sets

Ky = epan,

then immediately r, ~ a, and Bernshtein’s conditions (6.64) and (6.65) follow. We
also have

1 a> 1
— |x|3dFy(x) < —'318"—2/ x2dFr(x) - 1-0-1=0.
T'n |x|<Kpn Ty ay |x|<enan

Therefore, Bernshtein’s condition (6.66) holds as well.
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Although Bernshtein’s conditions are necessary in a quite general sense for the
convergence to the normal distribution, a comparison between Feller’s and Lévy’s
1935 work on the one hand and the brief remarks in his 1922 and 1926 documents
on the other do not seem to be appropriate. A general problem on sums of indepen-
dent random variables, linked with a corresponding research program as described
by Gnedenko, cannot be found in Bernshtein’s contributions. On the contrary, only
Feller expressed the central limit problem so clearly as indicated by Gnedenko, and
there is no evidence that he was in any way influenced by Bernshtein. We should
rather see Bernshtein’s retrospective claim and its affirmation by Gnedenko as an ex-
ample of typical statements which were to confirm the superiority of Soviet science.

6.3.3 A Question of Methods and Style

The fact, deplored by Lévy, that Feller’s 1935 article had gained much greater ac-
claim than his own [1935b] can surely be traced back in part to Feller’s extensive
discussion of the Lindeberg condition and his resultant success in bringing to a cer-
tain conclusion the long-lasting mathematical development of the classical CLT in
its integral version, i.e., for distribution functions. Feller’s work made the reader
aware that an important question had been answered once and for all, while at the
same time a fresh start was being made by considering sums of independent random
variables which reach a particular limit distribution by means of suitable norming re-
gardless of whether any moments exist. Thereafter, Feller himself eagerly cultivated
the myth that the idea of a general “nonclassical” norming was essentially his alone
(e.g., [Feller 1945, 818]) and he acknowledged Lévy’s contributions to the general
CLT only in the case of identically distributed random variables [Feller 1937a, 304;
1945, 820]. In a paper that supplemented his 1935 article with further necessary and
sufficient conditions, Feller [1937a, 306-309] provided a “criterion” that was prac-
tically identical to the one proposed by Lévy (6.62) without ever mentioning this
fact.

However, one other circumstance may have played an even greater role in the
fact that almost all involved granted Feller priority for the “definitive” solution to
the problem of convergence to the normal distribution: Using arguments that occa-
sionally were cumbersome but fairly complete and not just vaguely indicated, the
strictly analytical orientation of his article made it possible, even for someone who
knew nothing about probability theory, to understand problems and solution strate-
gies that were far from elementary, even by today’s standards. Though Feller may
have largely avoided stochastic concepts, his style corresponded extensively to the
manner of representation favored by other major proponents of probability theory in
the 1930s, such as Cramér, Khinchin, and Kolmogorov. It was this common, analyti-
cally shaped style that would also shape the momentous Gnedenko and Kolmogorov
monograph on sums of independent random variables, which was published in
Russian in 1949 and was followed by numerous translations.
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By contrast, Lévy the former analyst—atypical in his avoidance of epsilontics—
had forsworn the traditional analytical methodology and now preferred “intuitive”
methods of representation and conclusion, ones that were consistent with the “true
essence” of probability theory. Though Lévy’s and Feller’s articles may exhibit sim-
ilarities in terms of basic ideas, they were obeying very different concepts regarding
their methods.

Whereas Feller was principally interested in the suitable manipulation and es-
timation of integrals for the study of characteristic functions, Lévy’s main goal
was calculating the probabilities in question himself and doing so by methods that
were also important in other branches of probability theory which relied much more
heavily on concepts of measure theory, such as in connection with strong laws of
large numbers. This concerns Lévy’s concept of concentration and dispersion, for
instance. Here Lévy used elementary but—unlike the characteristic functions—Iless
elaborated concepts with which mathematicians were usually not familiar. His em-
phasis on “intuitive” phrasing and notions corresponded to a representation in which
many explanations were merely sketched out; this feature of Lévy’s work did not
change significantly in his 1937 book.

How much Lévy’s main result regarding sufficient and necessary conditions
for convergence of distributions of normed sums to the normal distribution was
disregarded by the mathematical community, is also evidenced by the history of
the reception of a criterion by Khinchin [1938], very similar to Lévy’s “loi des
grands nombres,” which had been derived in context with Khinchin’s research on
infinitely divisible limit distributions for sums of negligible random variables (see
[Gnedenko & Kolmogorov 1949/68, 126]). Carried over to the case of normed sums

Sn =Y peq §KB;:& of independent random variables & with

sup P(|& —ag| > eB,) >0 Ve>0,

1<k<n
Khinchin’s criterion, as reproduced by Gnedenko [1959/2004, 171], is as follows:

If a limiting distribution for the normed sums s, exists, then for it to be normal, it is neces-
sary and sufficient that the terms satisfy one single condition, viz., that, as n — oo

P(sup |§ —ax| = €B,) =0, 1<k=<n (6.68)
[for all ¢ > 0].

Gnedenko (same place) at least conceded that “a similar, and even a somewhat more
general formulation” could be found in Lévy’s book [1937a]; he did not specify,
however, this reference by giving page numbers. As we can see from the portion
of text in [Gnedenko & Kolmogorov 1949/68, 127 f.] discussing the same topic,
Gnedenko with his hint at “a more general formulation” referred to a result from the
theory of stochastic processes [Lévy 1937a, 166—172], which is actually related to
Khinchin’s criterion. Anyway though, Gnedenko did not give any comment on the
striking analogy between Lévy’s “loi des grands nombres,” which under the above-
described assumptions could be formulated according to
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P( sup |&x —ar|>¢eLy,) >0 (n — 00),

1<k<n

and Khinchin’s (6.68). Gnedenko’s neglect of Lévy’s achievement (which is also
apparent in the monograph [Gnedenko & Kolmogorov 1949]) may be taken as an
indication that—with regard to the CLT and related problems—Lévy’s approach
via concentration and dispersion was not very attractive to him. The essential part
of Gnedenko and Kolmogorov’s 1949 book was constituted by a thorough discus-
sion of infinitely divisible limit distributions for sums of asymptotically negligible
random variables, which arose from Gnedenko’s contributions around the last years
of the 1930s. It is only natural that Gnedenko, who had made almost exclusive
use of characteristic functions in this work, should not have been too interested in
expounding different methods. On the other hand, Wolfgang Doeblin [1939], who
closely collaborated with Lévy, actually succeeded in obtaining results very similar
to those of Gnedenko by employing methods related to concentration and disper-
sion. Doeblin died in 1940 already, and his approach was not followed up for the
time being (see Sect. 7.2.1).

Altogether, the relatively poor reception of Lévy’s contributions surrounding the
problem of necessary and sufficient criteria for the CLT was certainly due to the
fact that almost all other contributors to this field preferred the “analytical” method
of characteristic functions, on the one hand. On the other hand, however, one may
also presume that Lévy’s idiosyncratic presentation and style, which also shaped his
1937 book and its second—almost unmodified—edition of 1954, impeded a greater
impact of his innovative methods.



Chapter 7
Generalizations

Lévy’s and Feller’s theorems of 1935 served as a paradigm for further work on sums
of independent one- or multidimensional random variables, on the one hand. This
strand of development largely preserved the “traditional” analytic orientation. On
the other hand, generalizations toward martingales and random elements in metric
spaces triggered a growing influence of measure theory even on the “classical” limit
problems of probability.

7.1 Lévy on Sums of Nonindependent Random Variables

Around 1935, Lévy also showed a growing interest in sums of nonindependent ran-
dom variables.! In connection with the CLT his main goals were, on the one hand,
to further weaken the conditions of Bernshtein’s “lemme fondamental,” and, on the
other, to adapt the treatment of problems on chained variables as far as possible to
the treatment of corresponding problems on independent random variables.

7.1.1 Measure-Theoretic Background

Whereas problems dealing with the distributions of sums of independent ran-
dom variables could be tackled on the basis of rather elementary concepts of
real analysis, such as monotonically increasing functions (distribution functions)
and convolutions of these functions, nonindependent variables required the use of
more sophisticated measure-theoretic concepts. In his booklet Grundbegriffe der
Wahrscheinlichkeitsrechnung, Andrei Nikolaevich Kolmogorov (1903—-1987) intro-
duced the standard which we are used to now, of basing probability theory—at least

! For lots of details on Lévy’s pertinent work and his relations to other mathematicians in this
respect, like Ville and Jessen, see Electronic Journal for History of Probability and Statistics 5,
June 2009.

H. Fischer, A History of the Central Limit Theorem, Sources and Studies 315
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-0-387-87857-7_7,
(© Springer Science+Business Media, LLC 2011
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with respect to its “purely mathematical development” [Kolmogorov 1933/50, 3, fn
4]—on a field of abstract sets and a probability measure defined on it.> As we can
see from some passing comments (e.g., [Lévy 1937a, 17]), Lévy credited himself
for essential contributions (in particular [Lévy 1925a], see Sect. 5.2.3.4) to measure-
theoretic aspects of probability theory.? On the other hand, he did not, at least during
the 1930s, use the theory of probability spaces in its full generality, even if one can
find a concise survey of measure theory on abstract sets in the second chapter of his
1937 book. Instead, Lévy tried to base his discussions, at least in the case of sums
of random variables, on Borel subsets of [0; 1], where n was a (possibly infinite)
natural number. For the construction of probability measures on [0; 1] he [Lévy
1935a, 203; 1937a, 21 f.] referred to Daniell [1919], Jessen [1929], and Steinhaus
[1930], but not to Kolmogorov. Altogether, Lévy’s exposition of measure-theoretic
issues was rather sketchy and not very well-organized. He did not define the notion
of random variable, instead he used this designation in a purely intuitive way in
context with (well-defined) one- or multidimensional distribution functions.

Lévy’s standpoint regarding fundamental concepts of probability was formalistic
insofar as

The calculus of probability, the number of variables being finite or infinite, is in principle,
from an abstract point of view, nothing else than a comfortable language for presenting
certain results of measure theory in the sense of M. Lebesgue [Lévy 1935a, 203].

Even if the phrasing was apparently exaggerated, it shows Lévy’s intention to put
his probabilistic work within the framework of concepts and problems of Lebesgue’s
integration theory, and thus within the scope of real analysis. This provides a plau-
sible explanation as to why Lévy did not take on Kolmogorov’s theory in its full
generality. Moreover, as one of the leading probabilists of the time, Lévy certainly
wanted to give his readers an exposition in his own, idiosyncratic style.

If we consider other influential expositions (besides Kolmogorov’s 1933 booklet)
of “modern” probability for an assessment of Lévy’s attitude toward measure the-
ory in the framework of contemporary probability theory, namely, Cramér’s Ran-
dom Variables and Probability Distributions [1937] and Fréchet’s Géneralités sur
les Probabilités [1936/38, T. 1], Lévy’s position with respect to axiomatics and
“abstract” measure theory is situated, as regards content, rather close to Cramér,
and somewhere between Kolmogorov and Fréchet. Despite seminal contributions
to a theory of integration over abstract sets [1915] and to several types of con-
vergence of sequences of random variables [1930], Fréchet, in his explanations of
the fundamentals of probability theory, used the conventional language of random
experiments (“épreuves”), even if, with a little hindsight, his principles, notions,
and definitions can be translated into a set- (and measure-) theoretic language a
la Kolmogorov [Hochkirchen 1999, 260-262]. Although Cramér (mainly in the first
part of his book) directly referred to Kolmogorov and his axioms, he did not develop

2 For comprehensive discussions of Kolmogorov’s account and its measure-theoretic context, see
[von Plato 1994, Chapt. 7; 2005; Hochkirchen 1999; Shafer & Vovk 2005; 2006].

3 For more details on Lévy’s self-assessment concerning his own achievements compared with
Kolmogorov’s, see [Shafer & Vovk 2005, 55].
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the concept of random variable in its full generality, but restricted his considerations
to the sample space RF and the sigma-algebra of its Borel subsets.* Due to his
exclusive focus on independent variables, he did not discuss conditional distribu-
tions or expectations. Lévy likewise saw probability as a sigma-additive nonnega-
tive measure, and similar to Cramér, he mainly focused on subsets of R”. Regarding
conditional distributions and expectations, however, he went substantially beyond
Cramér’s (and also Fréchet’s) exposition.

7.1.2 Conditional Distribution and Expectation

Lévy’s perception of basic notions in the case of nonindependent random vari-
ables, in particular regarding the conditional expectation of a random variable de-
pendent on others, can primarily be seen from his 1937 book, especially § 12 and
§23.° Instead of dealing with a random variable X with a distribution function
F(x) = P(X < x).% he frequently used the trick to consider a random variable £,
uniformly distributed in ]0; 1[, and to represent X by & through X = F~!(£), where
F~(y) := inf{x|F(x) > y}.” In this way, probabilities and expectations related
to X could be expressed by probabilities and expectations related to the uniformly
distributed variable &. In other words, integrals ff;o ¢(x)dF (x) could be reduced to

Lebesgue integrals fol @(F~1(t))dt. This procedure followed a basic idea of mea-
sure and integration theory, which had been applied in several ways during the first
decades of the 20th century ([Riesz 1910] is an early example, see [Hawkins 1975,
191]).

Aiming at a general definition of conditional distribution, Lévy in § 23 started
with the remark that, for any event B and any random variable X, the probability
P(B A X < x) (x areal number) could be expressed as P(B A X < x) = Fi(x),
where Fj is a distribution function. Because of the fundamental properties of con-
ditional probability, Lévy was able to state that, for arbitrary real numbers a < b,

Fi1(b) — Fi(a) = P (Bla = X <b) (F(b) — F(a)), (7.1)

where F is the distribution of X. From this equation Lévy [1937a, 68] inferred
that F;(x) could be “considered as a function of £ = F(x),” with a “well-defined
derivative except for a set of measure zero.” Conceived as a function of xR, Lévy
named this derivative g(x), and he stated that g(x) was well-defined for all real

4 This approach remained quite common for a relatively long time, see Sect. 7.3.2, in particular
footnote 46.

5Tn [Lévy 1935a, 206; 1935b, 389 f.] one can only find a few rather vague hints.

% In his 1937 book, Lévy tried to deal with distribution functions independent of their special
definition regarding the behavior at jumps (right continuous, left continuous, intermediate value,
see [Lévy 1937a, 28 f.]). In his explanations surrounding conditional probabilities he showed a
certain preference for the definition according to P(X < x), however.

7 This formula is an interpretation of what Lévy [1937a, 30] expressed in words only.
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x “except for a set of probability zero.”® He designated g(x) as the “conditional

probability of B under the hypothesis X = x.” And finally he argued that

P(BAX <x)= / g()dF(t) (7.2)

t€l—oo;x[

“immediately results from this definition.”

Lévy did not explicitly refer to the theorem of Radon—Nikodym, as Kolmogorov
[1933/50, 48] had done in this context. Already on the basis of Radon’s version
[1913] of this theorem, which concerned (generalized) Stieltjes integrals (the now
so-called Lebesgue—Stieltjes integrals) over subsets of R”,% the existence of g(x)
with the property (7.2) was a direct consequence of (7.1), because this equation im-
mediately implies absolute continuity of F; with respect to F'. Most probably, how-
ever, only an expert of integration theory should have been able to understand Lévy’s
specific arguments. In the second edition of his Lecons sur I’intégration [1928], on
page 297, Lebesgue had introduced a generalized notion of the derivative f of a
monotonic left continuous function F' with respect to a monotonic left continuous
function « by defining

. F(x+h)— F(x)
S = T ) =)

Earlier in his book Lebesgue [1928, 286-288] had already proven the one-
dimensional version of Radon’s theorem, which with the just introduced notation
asserts that

b
F(b)— F(a) = / F0)da(x)

if F is absolutely continuous with respect to «. Apparently, Lévy alluded to these
portions of Lebesgue’s book, but he did not make this known to the reader. Previ-
ously in his own book [1937a, 34], Lévy had only given a concise account of the
“classic” Riemann—Stieltjes integral.

In a note, Levy [1936b] (see also [1937a, 69 f.]) even showed that, in turn, for
any given g : R — [0; 1] which is measurable with respect to a distribution F (in
the sense that for any B € [0; 1] the set {x|g(x) < B} has a well-defined probability
with regard to F'), the integral

o0
/ g(x)dF(x) (7.3)
—00
represents the probability P(B) of an event B, such that g(x) can be interpreted
as g(x) = P(B|X = x), where X is distributed according to F. Again, the in-
tegral (7.3) cannot be understood, for a general g, on the basis of the elementary
Riemann-Stieltjes theory, but only on the basis of more general concepts. Lévy’s

8 Probability zero with respect to F.

® For Radon’s work and his “unification” of Lebesgue and Stieltjes integrals, see [Hawkins 1975,
186-194].



7.1 Lévy on Sums of Nonindependent Random Variables 319

note shows his concern regarding the construction of multidimensional distributions
via transition probabilities, and in this respect, a clear orientation toward probabilis-
tic applications beyond a purely formalistic point of view.

Lévy [1937a, 71-73] introduced conditional expectations in the following way:
Let X, Y be real-valued random variables, F (x, y) := P(X <xAY < y) thejoint
distribution function, and ¢(x, ) a function defined on R? such that

Mo(X.Y) = A; o )dF(x. )

exists. Let G(x,y) := P(Y < y|X = x) and F(x) := P(X < x), then (by (7.2))
one obtains

Fry) = / Gt )dF(0).
te]—oo;x|

Instead of the pair of random variables (X, Y), Lévy now considered the pair of
random variables (£, n7), uniformly distributed within the square 0 < £ < 1,0 <
n < 1, and he represented (X, Y) through X = F~!(§) (for the definition of F~!
see above) and Y = G~ 1(F~1(£),7) (defined analogously to F~!, however with
respect to 7 for fixed £). By this transformation of random variables, and by setting
o(X,Y) = @(§, 1), Lévy was able to infer that

1l
Mp(X,Y) = / / D(s,t)dsdt. (7.4)
o Jo

On account of Fubini’s theorem, the right-hand side of the latter formula could be

expressed by
1 1 1 1
//(D(s,t)dsdt:/ [/ (D(s,t)dt}ds. (7.5)
o Jo o LJo

Finally, Lévy connected the left-hand side of (7.4) and the right-hand side of (7.5)
in the form
Me(X.Y) = MA{Mx{p(X.Y)}},

thus giving an (indirect) definition of the conditional expectation .#x {¢(X,Y)} of
¢(X,Y) if “X is known.”

7.1.3 Lévy’s Central Limit Theorem for Martingales

As we have seen in Sect. 5.2.7, Bernshtein’s conditions in his work on the CLT from
1922/26 already had a far-reaching generality, as in the special case of independent
and uniformly small summands these conditions were also necessary. On the other
hand, the need for a relative closeness of conditional and total mean squares in
Bernshtein’s conditions challenged the search for weaker assumptions, at least in
particular cases. As Lévy showed, Bernshtein’s presupposition on the mean squares
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could actually be generalized at a far-reaching level, but only by an “extension” of
the assertion of the CLT.

Lévy considered a sequence (X,) of random variables with the fundamental
property that

EX; =0, EXy|X1,....Xs_1)=0 (v=2,3,...). (7.6)

Compared with Bernshtein’s condition of a relative closeness of the conditional
expectation of each single random variable to zero, Lévy’s assumption was not sub-
stantially more restrictive. At several places ([1937a, 242], for example), Lévy il-
lustrated property (7.6) by means of a fair game, consisting of a succession of trials,
where the rules are amended after each trial depending on the results of the preced-
ing trials. This game is sometimes called a “martingale” in French; Lévy did not,
however, explicitly use this designation in connection with sequences of random
variables obeying (7.6).

His essential idea was not to consider “classical” sums 2’5:1 X, (n € N) of these
random variables, but sums Zivzl Xy, where the upper index limit N itself was a
random variable, depending in a certain sense on the conditional mean squares of
the sequence (X, ). For any positive ¢ (which Lévy interpreted as the time needed for
a certain number of trials), the random number N (¢) was defined by the condition

N(t) = min{n € N|o? + 07 +--- + 02 > t}, (1.7)

where
02 :=E(X2|X1,..., Xv_1).

To make sure that for any positive ¢ the random variable (7.7) was well-defined,

Lévy demanded that
[e )
P (Z 02 = oo) =1. (7.8)
v=1

Strictly put, Lévy based his considerations on random sums built up in the form

N@)—1
S =Y Xy+c)Xne. (7.9)

v=1
where the random variable ¢(¢) (0 < ¢(¢) < 1) was defined by the condition
0F + 4 01 O 0% ) = 1. (7.10)
Presupposing (7.6) and (7.8) Lévy succeeded in establishing that

lim P(S(1) < xv/7) = @o,1 (x), (7.11)

on the basis of additional conditions which were substantially weaker than
Bernshtein’s. From a modern point of view, S(¢) can be considered as a martingale,
and thus Lévy’s accounts are often—and rightly—subsumed under the early history
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of martingales. A self-contained theory of martingales is due to Doob, who in his
first contribution [1940, 458] to this field referred to Jean Ville [1939]. This mathe-
matician, apparently inspired by Lévy’s work on nonindependent random variables
(see [Ville 1939, 2, 83]), had introduced the notion and designation “martingale” in
his doctoral thesis, which was dedicated to the discussion of von Mises’s theory of
collectives (see [von Plato 1994, 195-197; Mazliak 2009]).

Lévy [1934b;c] had already announced two sets of conditions (each including
(7.6) and (7.8), of course) for (7.11); proofs were given in [Lévy 1935a]. Further
generalizations were discussed in [Lévy 1935b]. A summarizing exposition, which
does not cover Lévy’s results in their full generality, can be found in [Lévy 1937a].
As in his treatment of sums of independent random variables, Lévy also for non-
independent random variables tried to reduce more general situations by truncation
arguments to the case of bounded random variables, in which the existence of a
positive constant U was assumed, such that

IX,| <U VveN. (7.12)

In this latter case, the idea of proof was inspired by Lindeberg’s method. Besides
the given sequence of random variables X,,, Lévy also considered auxiliary random
variables &, and an additional random variable Z, each of them being mutually
independent, and also independent of X,,. All random variables &, were assumed to
obey a standard normal distribution, and the distribution function F of Z should be
smooth, with bounded derivatives up to the third order [Lévy 1935a, 219; 1937a,
239]. For simplifying the rather complicated situation resulting from (7.10), Lévy
[1937a, 243] suggested renaming c(t) X () by Xn(). Therefore, without loss of
generality, it could be assumed in the proof that ¢(#) = 1 and

Of + -+ Oy =1 (7.13)

Compared with the classical situation, it was an entirely new aspect that the num-
ber of terms within the respective partial sums of the X, depended in a certain way
on the random variables themselves. To master this problem, Lévy considered, if in
a rather informal way, random variables X, defined by

& 1 <
X! = ﬁlfl)_N(t)
0 else.
As a consequence of this definition, X| only depends on X1,..., Xy, because the
condition v < N(¢) is—assuming the simplification (7.13)—equivalent to 012 +
cee 03 < t. Moreover, the conditional mean squares o{,z = E(X]/,2|X1, LX)

are given by

g

0'2 .
2 _ ) Fifv < N(@)
v 0 else.
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In his proof, Lévy’s main goal was to obtain estimates for the distributions of the
sums

Zxk+ Z ol +Z=:S,+R,+Z (neN).
j=n+1

Taking into account the assumptions just described on the independence between the
X, and the auxiliary variables, he represented the relevant (conditional) distribution
functions by convolutions, in which the part P(R), + Z < x) was expanded up to
the third order; using (7.6), he finally obtained the estimate

KU
|P(X, + R, +Z <x|X1,....Xp—1) — P(R,_; + Z < x)| < —=0}7, (1.14)

NG

K being a constant depending on the upper bound of | F”’|, and U being the constant
corresponding to (7.12). In (7.14) he substituted x by x — S/, and, using the
equation

n—1°
PSS, +R,+Z<x)—P(Sp—1+R,_, +Z <x)
=E(P(S, + R, + Z <x|Xi..... Xn—1) — P(Sp—1+R,_, + Z < x|X1,..., Xn-1)).

he arrived at

KU
|P(S, + R, +Z <x)—P(S,_,+R,_,+Z <x)| < 7Ea,?.

< TUE<Xn: ;2) .

v=1

A telescope procedure yielded

P(ZX’+Z<x) P(Za £+ Z < x)

v=1 v=1

Because of the limit relations

nli)ngoP(;X,/,+Z< )—P(%-FZ x),
N(Z)UE
lim P(Za§v+Z<x)—P(Z 1}/;1}+Z<x),

o0 N(t)
(S o) = e Yot ).
v=1
the estimate

N(@)

P(%_)Jrz )—P(Z

UE N()
””+Z<x) —E Zo =
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had to be valid. From this, it followed that

lim P(£+Z< x)=PE+Z < x),

t—00 f

¢ designating any random variable with a standard normal distribution. Because
Z could be chosen in such a way that its influence on the probabilities under
consideration was arbitrarily small,'’ the CLT (7.11) under the basic assumption
(7.12) could finally be concluded. For similar reasons, the CLT was not only valid
for the “rounded” sums S(¢) according to (7.9), but also for the “complete” sums
M@ x,, which fact, however, Lévy only hinted at in his [1935b, 391].

Lévy discussed several extensions and modifications of the version of the martin-
gale CLT for bounded random variables just described. In [Lévy 1934c; 1935a, 221]
he established a condition which reminds one to a certain extent of Lindeberg’s:

n
Ve>0:P| lim [ZP(|XV|>aa|X1,...,Xv_1)] =0]=1
n—>o0
o=b,

v=1 "

(bp =07+ +07). (1.15)

Further conditions were needed, however, for proving (7.11) by a truncation proce-

dure: Let

X, = X} + X!, where X}, := | v i 1Xo[ < &b
0 else.

Lévy demanded that, for all ¢ > 0,

—_— 4 = =
P(nlgrgo ZE(X 1X1,.... Xo_1) o)

v=1

P( lim —ZE(X’/2|X1,...,XV_1) = 0) =1,

n

P( lim biz EX!|X1,.... X)) = 0) =1. (7.16)
v=1

He [1935a, 222-224] proved that the martingale CLT remained true under the con-

ditions (7.6), (7.8), (7.15), and (7.16).

The idea of also providing a general norming for sums of nonindependent
random variables without (conditional) mean squares (as already discussed by
Bernshtein) was treated by Lévy in the last section of his [1935b]. For X > 0
“sufficiently large” he [1935b, 391] introduced the truncated random variables X,
(equal to X, or 0, depending on whether or not | X,,| < X), and

10 For a detailed discussion see [Lévy 1937a, 241].
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n
2
b, =Y E(X,—BX[|X1..... X, D|X1..... X,1)",

v=1

M= P(Xo| > X|X1,..., Xy_1).
The random number

N'(t) = min{n € N|b;, > 1}

was defined analogous to (7.7), and for any positive ¢ > 0, the existence of an
arbitrarily small y > O such that

Py >¢) <y (7.17)

was essential to ensure that “the examination of S(t) =S, [= Sn/()] is reduced
to the one of S, [= S;V,(t)]” [Lévy 1935b, 392]. If ¢ was growing, a contin-
ual readjustment of X as dependent on ¢ was necessary for (7.17). In order
to apply his martingale CLT for bounded variables to the present situation, the
condition

E(X/|X1.....Xy_1) =0 (7.18)

(or a slightly weaker condition) was important. Lévy [1935b, 393 £.] discussed sev-
eral assumptions by which (7.18) could be substituted in such a way that the basic
ideas of the proof were maintained.

In his “Theorem VII” he assumed, for “simplifying the exposition,” that the
conditional law fv(z)l of each random variable X,,, depending on the preced-
ing Xq,..., Xy—1, was symmetric. The condition that N'(¢) tended to infinity as
t — oo, “except for cases of probability zero,” was, as Lévy [1935a, 211-217]
had shown, guaranteed by the condition that the probability of the convergence of
> o2, Xy was zero. Presupposing the symmetry of .Zv(i)l and the impossibility of
the convergence of ) o ; X,, Lévy [1935b, 393] finally stated:

... if, for all sufficiently large t, one can determine X such that, at the same time, &, n'[=
%], and y [see (7.17)] become arbitrarily small, then &\}[) depends on a law which tends,
for infinite t, to that of Gauss.

Lévy had obtained his far-reaching generalizations of Bernshtein’s version of
the CLT for chained random variables only by considering the number of vari-
ables within the partial sums as random. For a direct comparison between his re-
sults and Bernshtein’s, however, the discussion of “classical” sums was necessary.
Lévy [1935a, 230-232; 1935b, 396-401] actually provided a rather comprehensive
account on this issue. Roughly speaking, despite his effort to show that his condi-
tions “are simpler than those obtained by M. S. Bernstein” and even “surpass” them
“from certain points of view” [Lévy 1935a, 230], it finally became plausible from
his explanations that a further substantial weakening of Bernshtein’s conditions was
hardly possible in the case of the convergence of distributions of ordinary sums
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Sy = Z:’=1 X, to the normal distribution. In particular, Lévy [1935a, 232; 1935b,
397] showed that, for a sequence of random variables with finite mean squares obey-
ing (7.6) and the “loi des grands nombres,” the condition of a relative closeness of
conditional and total mean squares was sufficient and necessary for the distribution
of S, being in the limit of a “Gaussian type,” if the single conditional laws fv(z)l
were symmetrical and depended only on | X], ..., |Xy—1]."

Lévy [1935b, 394-396] also stated the converse of the main theorem described
above and sketched a proof. The assertion was that, assuming the “condition of
symmetry” of fv(i)l (and tacitly (7.6) as well as (7.8)), the assumption of ¢, 1/, and
y becoming arbitrarily small for sufficiently large X was also necessary for (7.11),
if all random variables were individually negligible. As Le Cam [1986, 89 f.] has
analyzed, Lévy’s arguments were partially erroneous. This circumstance might be
one of the reasons why the—in principle very important—article [Lévy 1935b] was
not included in the third volume of Lévy’s works (containing contributions to sums
of random variables), which was planned while Lévy was still alive.

7.2 Further Limit Problems

Feller [1945, 821] characterized “his” achievement in 1935 in the matter of the CLT
as a “starting point for many examinations.” This is true, for example, for results
regarding the weak law of large numbers

> s) —-0

(

with appropriate a, > 0 and ¢,, as achieved by Khinchin [1936] and more generally
by Feller [1937b]. Yet Feller’s remark, quoted above, suggested to the reader that his
(and possibly Lévy’s) work on the convergence of distributions of normed sums to
the Gaussian law had not only resolved a longstanding question once and for all, but
also that a paradigm shift toward “nonclassical” norming had been implemented,
with the result being that all other limit problems that were discussed in the second
half of the 1930s had been “natural” generalizations of the CLT for normed sums.
This is not entirely accurate, however. First of all, the idea of limit theorems for
random variables without variance or even expectation is already recognizable in the

Sn —Cn

dp

1 In the 1940s, Michel Loeve generalized Bernshtein’s theorem insofar as he substituted the as-
sumptions (5.62), (5.63), (5.64) concerning the uniform bounds o,;, B, ¢, by assumptions on
expectations and only considered the normed sums S, /B;,. (5.62) was, for example, replaced by

) 1 n
Jim —= ¥ EIE(X|U}...... U =0,

ni=1

where U/, ..., U/_, are the truncated variables (the designations are the same as in Sect. 5.2.7).
This work was the starting point for Log¢ve’s far-reaching investigations on limit distributions of

sums of dependent random variables, see [Loeve 1950, 331 f.] for an abstract.
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1920s in the work of Bernshtein and Lévy, and so the solution of the central limit
problem in 1935 constituted less a new beginning than a first conclusion, although
it certainly served as stimulus for even more generalized views. Secondly, and this
point is likely more important: A decisive impetus to study innovative and more
general limit theorems came from a direction that had only arisen during the modern
period of probability theory, namely, the theory of stochastic processes. Above all,
the study of stochastic processes with independent increments, which had grown in
stature since the early 1930s and had been undertaken independently of classical
subjects of probability theory, led to results which could incorporate all that had
thitherto been achieved with the CLT. This theorem could thus be examined from a
more general point of view.

7.2.1 Stochastic Processes with Independent Increments

Sums of an increasing number of independent random variables can be conceived as
stochastic processes with discrete time parameter. Beginning in the late 1920s, their
“natural” generalization—stochastic processes with continuous time parameter—
became a major area of research in probability theory.'? Bruno de Finetti (1906—
1985) [1929a;b;c] considered a family (Z(7)) e[, of random variables with the
property that, for every 71, 7, € [0; T[ with 7; < 1, there exists a random variable
Uz, +, that is independent of all Z(7) (v < 71), such that Z(12) = Z(t1) + Uz, o, -
Today stochastic processes of this type are called “processes with independent in-
crements” (or “i.i. processes”). De Finetti was particularly exhaustive in discussing
the special case of an increment Uy, ,, the distribution function of which depends
only on 1, — 71 but not on the specific position of this time interval on the time scale.
The associated processes are known today as “processes with stationary independent
increments” (or “s.i.i. processes”). The “modern” notation including the abbrevia-
tions given here had already appeared in Cramér’s book Random Variables in 1937.
In the 1930s, though, most people used the adjective “homogeneous” rather than the
adjective “stationary.” Lévy [1937a, 158] referred to the i.i. processes as “Intégrales
a élements aléatoires indépendantes” because the form

Z(t) = Z(0) + /OTdZ(t)

recommends itself for Z (7).
In the course of his search for general solutions for these processes, de Finetti had
begun to examine “infinitely divisible distributions” [von Plato 1994, 261-264]. In

12 Special cases had already been discussed by Louis Bachelier [1900], Albert Einstein [1905],
Norbert Wiener [1921], and others. De Finetti [1929a;b;c] started with a general theory;
Kolmogorov [1931a; 1933a] discussed measure-theoretic principles. A detailed discussion of the
historical development of stochastic processes with continuous time parameter is found in [von
Plato 1994].
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modern terminology, a distribution F is infinitely divisible if for every natural num-
ber n there exists a distribution F,, such that F = F,*. According to the original
usage of the 1930s, however, distributions V' were designated infinitely divisible if
for all n € N there exist distributions V1, ..., V,, such that

Vi="Varx-oox Vi,

with the additional condition that, in a particular sense, the influence of the individ-
ual components V,; on the overall distribution V' disappears asymptotically. Never-
theless, as we shall see, the original and the modern parlance both express the same
substance. When the phrase “infinitely divisible” appears hereafter, it is used in the
sense that has become conventional today.

If f; denotes the family of characteristic functions of Z(7), then, foreveryn € N,
in an s.i.i. process in which Z(0) = 0 the following must be true:

fr(l) = [fr/n(l)]n- (7-19)

Accordingly, the distribution function F; is infinitely divisible. De Finetti could
infer from (7.19) that, in s.i.i. processes, the distribution F; of Z(7) is continuously
dependent on 7.3

Kolmogorov [1932] provided a general formula for the characteristic functions of
the distributions F7 in an s.i.i. process under the condition that all distributions have
finite variance. Because each infinitely divisible distribution can be considered as
a distribution of one of the random variables Z(t) in an s.i.i. process, Kolmogorov
had therefore also found a general representation for infinitely divisible distributions
with finite variance. Lévy [1934a] even managed to derive a general representation
of the characteristic functions of the distributions F; in an i.i. process in which
these distributions are continuously dependent on 7, without making any assump-
tions about the existence of moments, and he was able to establish a formula for the
family of distributions in a general i.i. process by means of this continuous special
case. Lévy’s approach was to break the random variables Z(7) down into individual
independent components which—when regarded as random functions of the argu-
ment 7—each have a particular continuity or discontinuity behavior.

Based on Lévy’s formula for the characteristic functions of the distributions F;
that were continuously dependent on the time parameter in i.i. processes, it followed
that these distributions also had to be infinitely divisible (in the modern sense) or,
as Lévy [1937a, 186] put it, that they “can always be obtained by a homogeneous
process.” For i.i. processes Z(t) with Z(0) = 0 we have Z(t) = Y ;_,; Uy for all
n € N, where Uy, = Z (%1’) -7 (’%lt). If the distributions F; are continuously
dependent on the time parameter, then the elements U,; become asymptotically in-
finitesimal in the sense of

lim max P(|Uy| >¢)=0 Ve>0. (7.20)

n—00 1<k<n

13 The “continuity” can be established, for instance, by the condition lim,—,; F;(x) = F;(x) in
every point of continuity x of F;.
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The latter relation played an important role in Lévy’s derivation of the characteristic
functions of those distributions F7 in i.i. processes that are continuous in 7.

Unlike Lévy, Khinchin [1937] based his examination of the t-continuous distri-
butions F; of i.i. processes directly upon the study of arbitrary triangular arrays of
row-wise independent random variables U,x, n € N, 1 < k < n. He showed that
under the condition (7.20) the class of limit distributions of the sums ZZ=1 Uy 1s
identical to the class of infinitely divisible distributions (in the modern sense). At
Kolmogorov’s suggestion, G.M. Bavli [1936] had previously derived a correspond-
ing statement for random variables with finite variance. Thanks to this property of
infinite divisibility, Khinchin could offer an alternative to Lévy’s results in his rep-
resentation of the characteristic functions of the distributions F; of i.i. processes
that are continuous in 7. From today’s point of view, it is also clear from Khinchin’s
results that distributions are “infinitely divisible” in the original sense of the 1930s
if and only if they possess this property in the modern conventional sense.

The study of i.i. processes could thus largely be reduced to the examination of
triangular arrays with row-wise independent elements. Then again, normed partial
sums of sequences of independent random variables could be regarded as row sums
of triangular arrays. Accordingly, triangular arrays constituted the interface between
the “Laplacian” summation problem on the one hand and “modern” stochastic pro-
cesses on the other. Although double sequence of random variables had already been
examined on a case-by-case basis— by Lindeberg and Bernshtein, for instance—for
the purpose of generalizing or specifying classical problems regarding limit distri-
butions of sums of independent random variables, it was the stochastic processes
with continuous time parameter that yielded the decisive incentive to take a closer
look at triangular arrays. Once Boris Vladimirovich Gnedenko (1912-1995) [1939a]
had discovered necessary and sufficient conditions for the convergence of distribu-
tions of row sums of triangular arrays with linearly independent and asymptotically
infinitesimal elements to a given infinitely divisible distribution, the Lévy—Feller
limit problem of 1935 and its logical expansion toward nonnormal limit distribu-
tions could in large part be mastered as an application of a more general theory
concerning triangular arrays. So beginning with [Gnedenko & Kolmogorov 1949],
a treatment of the Lévy—Feller limit problem for normed sums that considerably
differs from the arguments of the original papers has established itself.

As we have already seen (Sect. 6.3.3), Gnedenko worked within the framework of
characteristic functions. On the other hand, Wolfgang Doeblin (1915-1940) [1939]
was able to adapt Lévy’s ideas concerning concentration and dispersion to establish
necessary and sufficient conditions for the convergence of distributions of sums with
independent and asymptotically negligible summands to infinitely divisible distri-
butions. An important role played an inequality that Doeblin and Lévy [1936] had
jointly proven: Let Xy, ..., X, be independent random variables, and let the dis-
persion assigned to the probability 0 < o < 1 of each of these random variables
be above 2/, [ a positive number. Let 8 be another positive probability. Then for
n > N, where N depends on « and 8 only, the dispersion ¢s,, (8) of the sum S, of
these random variables assigned to the probability B obeys the inequality

s, (B) > kI/n,
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where k is a constant only depending on o and . Already in 1940, Doeblin was
killed as a soldier in World War II. Only with a considerable time interval in be-
tween, work on a similar basis was resumed, in particular by Kolmogorov [1956;
1958; 1963], who directly referred to Doeblin, and Lucien Le Cam [1965; 1970].
From today’s point of view, this approach is by no means inferior to the one by
characteristic functions, and this all the more as it allows to derive bounds for the
deviations between distributions of sums of independent random variables and ap-
proximating infinitely divisible laws, and it can be analogously carried over to prob-
lems concerning sums of independent random elements in Banach spaces.'*

7.2.2 Limit Laws of Normed Sums

The essential questions surrounding limit distributions of sums of independent ran-
dom variables were solved during the period between 1935 and the start of the Sec-
ond World War. This phase is characterized both by the coalescence of problems and
methods gained through generalization of classical problems and by new problems
and solution ideas in the field of stochastic processes.

Beyond the standard problem of limit distributions in triangular arrays, the sub-
ject of “limit distributions of normed sums of independent random variables” in-
cludes an additional matter: One must find not only the possible limit distributions
and the sufficient and necessary conditions for the convergence to them, but also
suitable sequences of norming constants so that said convergence can actually occur.

Between about 1935 and 1937—despite the many merits of the other authors
mentioned here, such as Feller or Kolmogorov—L¢évy and Khinchin were the most
important actors in this field.

Following his academic studies in Moscow, Aleksandr Yakovletivich Khinchin
(1894-1959),' like so many probability theorists early in the modern period, had
started his mathematical career with analysis as the main focus of his research. Since
the late 1920s, Khinchin had been increasingly interested in limit theorems of prob-
ability theory. His outstanding result regarding infinitely divisible distributions as
limit distributions of row sums of triangular arrays [Khinchin 1937] was described
in the preceding section. Especially notable within the framework of convergence
to the normal distribution is Khinchin’s characterization of the domain of attraction
of the Gaussian law [Khinchin 1935], which appeared at the same time as, but in-
dependently of, the articles by Feller and Lévy, and established exactly the same
criterion as Lévy for the associated distributions F', namely,

. Xzflz\>X dF(l)
lim YT =
X—>oo [l <x! dF(t)

14 For a comprehensive survey of this approach to limit distributions of sums of independent real-
and Banach-valued random variables, see [Araujo & Giné 1980].

15 Biographical information for Khinchin and a complete list of his works (which is unfortunately
erroneous) is included in [Cramér 1962].
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(Feller’s characterization (6.36) differs slightly from this one). Despite the
competition between Lévy and Khinchin, the two men shared an intense and almost
friendly exchange of scientific findings, although this was hampered by Khinchin’s
apparent difficulties with the Stalinist regime (see [Lévy 1970, 109; Sheynin 2009,
111 £.]).

The few remaining open questions regarding the representation of stable laws
were answered by Lévy and Khinchin, who collaborated in this field, and now were
able to carry out their examinations in the light of the new theory of infinitely divis-
ible distributions, of which the stable laws formed a special case. It was in this con-
text that they also considered the issue of the influence of shifting constants, which
Lévy had rated as insignificant in his book in 1925. They called “quasi-stable” those
distributions ¥V —being different from degenerate distributions—for which the fol-
lowing condition is true:

_ /
Ver.cp > 03¢ > 03¢’ V(i)*v(i)zv(x c).
C1 (&) c

As Lévy and Khinchin discovered simultaneously,'® the characteristic functions ¢ of
quasi-stable distribution functions V' can be represented by ¢(z) = ¥ @, wherein

¥(z) = —clz|*® (1 + iBsign(z) tan(ga)) + miz
(c>0,|8] <1,m e R,« €]0; 1[U]1;2])

or
T
Y(z) = —c (5|z| +ipzlog|z|) +miz (¢ > 0,18 < 1,m €R).

For o # 1, V(x 4+ m) is simply the distribution function of a law of the type Ly g
(see Sect. 5.2.6.3). Modern usage generalizes the terminology of the 1920s and
1930s, and likewise refers to the formerly “quasi-stable” distributions as “stable”
distributions.

The cooperation between Khinchin and Lévy is particularly well-documented in
the discovery of the class of “lois limites” (known as “class L’ today) for normed
sums of independent and, in a particular sense, asymptotically negligible random
variables. Specifically, Lévy and Khinchin conceived of “lois limites” as all of the
limit laws of sums in the form Y 7 _, Xx /¢y, where the sequence of positive norm-
ing constants increases infinitely, such that lim, o c’;% = 1."7 As Levy [1936a,
265] acknowledged, Khinchin had written him a letter in June 1936 in which he

16 This result was apparently first published and proven in [Lévy 1937a, 208-211]. In a footnote,
however, Lévy expressly recognized Khinchin’s efforts.

17" As Feller [1935, 530-532] proved, the latter condition is equivalent to the condition
lim,— 0o Max <k <x P(|Xk| > €c,) = 0 Ve > 0, assuming a limit law exists. According to
Levy [1936a, 265], Khinchin preferred the likewise equivalent condition (for the proof of equiv-
alence see [Lévy 1937b, 270-275]) lim,— o0 maxi<k<s P (| Xe| > &|>5—; Xa|) = 0 Ve > 0.
The condition of uniform asymptotic negligibility of all single random variables with respect to
the total sum clearly emerges from these two conditions.
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presented the problem of “lois limites” and reported that he had proven that these
laws were all “infinitely divisible” (in the original 1930s-era meaning).

Levy [1936a] proposed the following theorem; he published his proof in [1937a,
192-197], admittedly with the explicit use of several more of Khinchin’s epistolary
suggestions:

The necessary and sufficient condition for the fact that £ represents a “loi limite” is: 1° ¥
is an infinitely divisible law (discovered by Mr. Khinchin to be a necessary condition); 2°
the variable S, which obeys the law £, can for any A between 0 and 1 be brought to the
form A(X + Y), where X and Y are independent, X is dependent on the law .Z, and Y is
dependent upon an infinitely divisible law [Levy 1936a, 265].

For the characteristic function f of the law .Z, this condition means that for all
A €]0; 1] there exists a characteristic function g, of a distribution that is “infinitely
divisible” in the 1930s sense, with

£(3) = a@ s
With the aid of his general representation for distributions of i.i. processes, Levy
[1936a] was successful in providing a “canonical representation” for the character-
istic functions of class L.

Remaining unanswered for the time being was the question of which necessary
and sufficient conditions the random variables (negligible with respect to the total
sum) and norming constants must satisfy for convergence to a class L law. This set
of problems included the special case of characterizing the domains of attraction
of stable laws, which so far, since the pioneering work that appeared in Lévy’s
book in 1925, had met with complete success only for the Gaussian distribution.
Gnedenko and Doeblin, on the basis of their methods and their results regarding the
convergence of distributions of row-sums in triangular arrays to infinitely divisible
distributions, solved these latter problems in a very short time just before the Second
World War (particularly in the papers [Gnedenko 1939b] and [Doeblin 1940]).

The history of the CLT and its generalizations certainly did not end with the out-
break of World War II, not even in the classical case of independent summands and
the normal distribution as a limit law. The demand for error bounds that were as
precise as possible in order to estimate the quality of the approximation through the
normal distribution was met very quickly, as has been described (see Sect. 5.2.8.2).
Howeyver, the extension of results obtained for distributions to densities and discrete
probabilities in the sense of local limit theorems had not been intensively pursued
for the time being. The same held true in the case of limit theorems for “large de-
viations,”'® despite individual achievements like the ones by Khinchin [1929] and
Cramér [1938]. What was lacking even more were solutions to all of these problems
for nonnormal limit laws.

18 This includes statements about the asymptotic behavior of the distribution functions of (normed)
sums of random variables for arguments that tend to infinity themselves along with the number of
random variables. For example, if (X} ) is a sequence of independent random variables with means
0 and variances (7,?, and if (x,) is a sequence of numbers with x,, — oo, then we are interested in
the behavior of



332 7 Generalizations

The requirement that summands be independent had been already eased, a
movement that had been driven—after the pioneering work of Markov—primarily
by Bernshtein and Lévy in the 1920s and 1930s. Alongside this, new motivations
emerged after the war for a generalized view of the CLT, based on the one hand
on using the findings that had already been obtained and generalizing them to ran-
dom variables with values in metric spaces, and, on the other hand, on application-
oriented matters such as those connected with so-called “invariance principles.”

7.3 Extensions of the Central Limit Theorem to Stochastic
Processes and Random Elements in Metric Spaces

After the Second World War, probabilistic work was continued on a broad scale,
and in this context the CLT was further extended and generalized. Two important
instances are explained in the following: the application of the CLT to limit theo-
rems for Brownian movement, and the generalization of the CLT toward random
variables with values in Hilbert spaces. Both examples clearly show fields of inter-
est already occasionally discussed in the 1930s, which became especially important
in the 1950s: the approach to stochastic processes in the sense of random elements
in function spaces, further generalizations of basic notions, such as expectation
or convergence, and in this context the growing impact of functional analysis on
probability theory.

7.3.1 Invariance Principles and Donsker’s Theorem

As we have already seen, the CLT was ever more connected with the theory of
stochastic processes from the beginning of the 1930s. Initially, most of the results
were achieved in the framework of the traditional theory of finite-dimensional ran-
dom variables. This situation definitely changed toward the end of the 1940s, es-
pecially with Donsker’s proof of a theorem on the convergence of the distributions
of certain random functions depending on a sequence of independent random vari-
ables to the Wiener measure. In the setting which is considered in the following, the
Wiener measure is a probability measure on the function space

¢ = {f € C°([0: 1)) f(0) = 0}

ZZ:]Xk )
1-P| === <x,
(«/ZZ:NE B

11— ¢(x)l)
as n —> 00. Under certain conditions, these fractions converge to 1.
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together with the sigma algebra generated by the L°° topology, where the marginal
distributions of this measure are given in accord with Brownian motion'® by

P(aj < f(tj) fbj,j = 1,...,7’!) =n_”/2(t1(tz—t1)...(tn—tn_l))_l/zx

bn b n
x/ / exp (-sf/n = Gk — &)/t — k1) | dEr . dE,. (T21)
an a k=2

if0 <t <thb <---<t, <1 If € is endowed with the Wiener measure as a
“standard” measure, then (at least since the early 1940s) the designation “Wiener
Space” is used.

7.3.1.1 Wiener Measure and Wiener Integral

Donsker’s theorem dealt with distributions in a space of continuous functions, and
therefore a space of infinite dimension. Existence and construction of distributions
on a space of type RM, where M is an arbitrary index set,”’ was guaranteed—at
least in principle—by Kolmogorov’s “Fundamental Theorem” [1933/50, 29], which
stated the unique existence of a probability distribution on the sigma algebra gener-
ated by “Borel cylinder sets”?! if finite-dimensional distributions are given in such
a way that they correspond to marginal distributions. For spaces RM , where M is a
nondenumerable index set, such as the space of all real functions defined on [0; 1],
the drawback of Kolmogorov’s approach was, as he himself [1933/50, 28] admit-
ted, that typical (sub-) sets of continuous or bounded functions did not belong to
the sigma algebra generated by the just-described Borel cylinder sets. Therefore,
in the important case of Brownian motion, for example, a probabilistic discussion
of boundedness, continuity, or other properties of random functions could not be
achieved by the direct application of Kolmogorov’s theorem. Not even the possibil-
ity of a unique representation of a continuous function f € C°([0; 1]) by a denu-
merable sequence of real “coordinates” (the most simple way is to use the sequence
{£(@0), f(1), f(%), f(%), f(%), f(%), f(%), ... }) provides an immediate approach
to the Wiener measure on ¢’ by Kolmogorov’s device.??

Wiener had given several more or less methodically different accounts of Brow-
nian motion and random functions—his chief papers are [Wiener 1923; 1924; 1930,

19 For the early history of the probabilistic treatment of Brownian motion, which was mainly
connected with the names of Bachelier, Einstein, and von Smoluchowski, see [Courtault 2002] and
[Brush 1968]. For a survey of the mathematical development until ca. 1950, see [Kahane 1998].

20 RM designates the set of all mappings f : M — R.

21 A Borel cylinder set is the preimage (in the space under consideration R¥) of an orthogonal
projection whose image is a Borel set in R®, s an arbitrary natural number.

22 Tn the case of the just-mentioned “dyadic” representation of functions the difficulties are based
on the fact that sets {(x;) € RN | |x;| < a} for positive & always contain sequences of coordinates
which do not correspond to uniformly bounded continuous functions.
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esp. 217-226; Paley & Wiener 1934, Chapt. IX]**—and in this context had, if in a
rather implicit and incomplete way, discussed the existence of a probability measure
on %, which was in accordance with (7.21). Apparently, the third (1930) of these
accounts became especially influential upon integration in function spaces during
the 1940s.

In his first works on Brownian motion, Wiener for integration in the function
space ¢ had used Daniell’s notion of integral, the theory of which, however, was
still incomplete. Wiener [1930, 218] wrote that it had “seemed” to him “more desir-
able” now to employ a method for establishing integration in function space which
resorted to the well-known theory of the Lebesgue integral, for which “the literature
contains a much greater wealth of proved theorems . .. than of theorems concerning
the Daniell integral.” To this aim he established a correspondence between functions
in ¥ and points in the interval [0; 1], and thus reduced the problem of measure in
function space to Lebesgue measure on [0; 1], a quite common idea, whose princi-
ple can be traced back to Radon’s work [1913, 48-57].>* For arbitrary (not only for
continuous) real-valued functions f(¢) on the unit interval 0 < ¢ < 1 and vanishing
at t = 0, Wiener [1930, 219] for each n € N defined (2")2" “quasi-intervals” as
follows: For

(mi,ma,....mp) € {=2""4 —on=1 41 . on1_}?

let the quasi-interval Q(n;my,...,man) be the set of all the functions f just-
defined, for which the following inequalities are valid:

tan (257) < f (2%,) < tan (O"’z#) ifm; >—2""1

_ _ _ (j=1,..2"7%
tan( 2‘2“) <f (2%) < tan (—(m";l)n> ifm; =211

I

The quasi-intervals of order n form a partition of the set of all those functions f.
To each quasi-interval Wiener assigned a measure ((Q(n;my,...,man)), which
was given by the right-hand side of (7.21) with n substituted by 2", t; = 2’—,,,

aj = tan (”;’,,n), and b; = tan (O"’z#) Each of those functions f can be closed

up by an infinite sequence (Q,) of quasi-intervals successively contained within
one another and with a respective measure p tending to zero. The quasi-intervals
are mapped to (half-open) subintervals of [0; 1] in such a way that all subintervals
assigned to the quasi-intervals of order n form a partition of [0; 1], and subsequent
quasi-intervals Q,+1 C Q, correspond to subsequent subintervals Sy, 4+ C S, with
lengths w(Qy+1) and u(Q,), respectively. On the basis of these “nested intervals,”

23 For a discussion of [Wiener 1923] see [Chatterji 1993, 157-163; Bourbaki 1994, 240-242]. A
somewhat more elaborate exposition of Wiener’s 1930 and 1934 contributions can be found in
[Wiener, Siegel, Ranking, & Martin 1966].

24 The following description is close to the exposition in [Wiener, Siegel, Ranking, & Martin 1966,
17-20, 37-45], which differs from the original one only regarding (a more convenient) notation
and some additional explanations.

% tan(—%) has to be interpreted as —o0, and tan(%) as +-o0.
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Wiener succeeded in showing that, except for a set of points of Lebesgue measure
zero, to any given point in the interval [0; 1] belongs one and only one continuous
function f € ¥ with

|f(") = £ < hlt' =1 |M* (7.22)

for some & > 0 and all t',¢” € [0; 1]. He also proved that, except for a set of func-
tions which can be enclosed in a denumerable union of quasi-intervals of arbitrarily
small total probability, all functions defined in [0; 1] (and a fortiori all functions
in €) satisfy the condition (7.22) and belong to one of the just-described points
in [0; 1]. Because of this correspondence between almost all points in [0; 1] and
almost all functions in € (which are even Holder continuous), any “functional 20
g : ¥ — R determines a function g : [0; 1] — R (uniquely except for a set of
arguments of Lebesgue measure zero), which may be Lebesgue summable. If the
latter condition is satisfied, then the “Wiener integral” fbﬂ g(x)dw(x)?" is defined
by fol g(x)dx. The extension of Wiener measure and Wiener integral to the space
of continuous functions defined on Rg‘ or R is possible, as Wiener [1930, 226]
indicated, by a further, essentially bijective, mapping from % to the space under
consideration.

Wiener restricted his own discussion of “his” integral to cases where g was con-
tinuous (with respect to the L topology, in [1923] and [1924]), or g( /) depended

only on a finite number of function values f(¢1),..., f(¢,). In his contributions
Wiener neither—explicitly—treated the problem of determining the probability
measure of nontrivial subsets of %, suchas {f € € : || f|loo < @} =: My, nor

did he establish the Wiener measure as a measure on a sigma algebra of €. At least
he hinted, in his [1923, 167], at the possibility of determining the measure of a set
by integrating the characteristic function of this set over ¥, but without discussing
any specific applications of this principle. Taking into account the construction of
the Wiener integral as sketched above, the Wiener measure of M,, can actually be
established as follows: First, show that

M, o) = fe%:—aff(zj;n)fa,jzl,...,zn (n € N)

corresponds to a Lebesgue measurable subset 7'(n; ) of [0; 1] with a Lebesgue
measure given by (7.21) with n substituted by 2", a; = —a, b; = a,t; = 2’—,,
Then approximate the characteristic function of the image M, C [0; 1] of M, by
the characteristic functions of 7T'(n; ). The theorem of dominated convergence for
Lebesgue integrals implies the existence of a Lebesgue measure of M and there-
fore a (positive) “Wiener measure” of My, such that

Jlim P(M(n; @) = P(Mo).

26 Originally, the designation “functional” was not restricted to linear mappings.
27 During the 1940s, the period which will be focused at in the following, the commonly used
notation for Wiener integral was CW f(x)dyx”
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On the basis of this limit relation one could apply well-known techniques using
parabolic differential equations (see [Khinchin 1933, Chapt. III]), for obtaining the
formula

Hm —(2 1)2n2
L e

which in principle had already been achieved, based on an intuitive physical idea,
by Reinhold Fiirth in his work on Brownian motion [1917, 182 f.]. Another way
to gain formula (7.23) was found by Erdos and Kac in their work on the so-called
“invariance principle” [1946] (see Sect. 7.3.1.3).

7.3.1.2 Cameron and Martin

Wiener’s approach from 1930 was taken up by Robert Cameron (1908-1989,
Fig.7.1)*® and William “Ted” Martin (1911-2004, Fig.7.2)*° in a series of papers
published during the 1940s. Cameron, after having received his Ph.D. from Cornell
University in 1932, obtained a National Research Council Fellowship, which en-
abled him to do further research at Brown University and at the Princeton Institute
for Advanced Studies until 1935. Martin, who received his Ph.D. in 1934 at the Uni-
versity of Illinois, also came to Princeton in 1935 as a National Research Council
Fellow. As it seems, however, both mathematicians became acquainted with each
other only at MIT, where, Cameron in 1935, and one year later Martin, obtained po-
sitions, first as instructors, then as professors. Naturally, both Cameron and Martin
were influenced by Norbert Wiener at MIT, especially as far as complex analysis,
Fourier analysis, and integration in function spaces were concerned. A first jointly

Fig. 7.1 Robert Cameron
(left) together with John
Olmsted (1957)

28 For biographic details see [Aspray 1985; Loud 2005].
2 For biographic details see [MIT 2004].
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Fig. 7.2 William “Ted”
Martin

written article (on complex analysis) dates from 1938 [Cameron & Martin 1938].
Whereas Martin remained at the Institute (except for a stint at Syracuse Univer-
sity 1943—1946) until his retirement in 1976—for a long time he had been head of
the math department—Cameron moved to the University of Minnesota (U of M) in
1945. At U of M, Cameron unfolded a very active research, and he was advisor to
a large number of doctoral candidates, among whom a considerable part worked on
problems concerning Wiener space and Wiener measure.*

In their work on Wiener measure, Cameron and Martin did not aim at a general
theory (which did not exist in published form at that time). Rather, they focused on
particular properties, such as the existence and characterization of a positive Wiener
measure of { f € %] fol (f(x))%dx < a} (a > 0) [Cameron & Martin 1944a; 1945a],
or, for each function f(A) defined for all positive A and satisfying 0 < f(1) < 1, the
existence of a set E C % such that the Wiener measure of AE := {A-g|g € E}is
equal to f(4) forall A > 0[1947]. Cameron’s and Martin’s work on the behavior of
the Wiener measure under translations would later experience far-reaching general-
izations: In its original setting the now so-called Cameron—Martin formula [1944b]
referred to the following situation: For any xo € % having a derivative x; of
bounded variation the translation TI" of a Wiener measurable set I" C € was
defined by

T:I'sy—y—xo=:xeTI.

The main theorem was that for each function F : € — R for which either term

1
/ F(»)dw(y), / F(x + xo) exp (—2/ xf,(t)dx(t)) dw(x)
r r 0

30 With respect to Cameron, the Mathematics Genealogy Project currently lists 53 Ph.D. students
and 166 descendants, the latter mainly being disciples of Donsker
(http://genealogy.math.ndsu.nodak.edu).
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exists,>! the other term exists as well, and the following formula is valid:

/ F()dw(y)
r

= exp (— /Ol[x6 (Z)]Zdt) /TF F(x + xo) exp (—2/01 xé)(l)dx(t)) dw(x).

For the basic properties of the Wiener measure and the Wiener integral the
two authors in each of their papers referred to [Wiener 1930, 214-234], which
source, as already mentioned, was far from representing a reasonably complete the-
ory. As a side note: the correct page numbers would have been 216-236. It is an
interesting detail that Donsker in his works on the functional CLT [1949, 9; 1951,
1] still referred to the wrong page numbers. One may therefore conclude that knowl-
edge of the Wiener measure and the Wiener integral was mainly transferred through
communication in seminars and lecture courses.’”> At several places Cameron and
Martin used theorems on Wiener integrals which apparently were part of a mathe-
matical folklore within a little group of experts, such as an analog to the monotone
convergence theorem [Cameron & Martin 1944b, 391].

7.3.1.3 The Invariance Principle

Mark Kac (1914-1984) is one of the most prominent mathematicians of the 20th
century, therefore biographic details seem unnecessary here. Around 1945—Kac
worked at Cornell University—he published a few papers, partly in collaboration
with Paul Erdos (1913-1996), on the now so-called “invariance principle.” To cite
Donsker [1949, iii; 1951, 1], whom that designation seems to be due to, this prin-
ciple holds if, in context with a probabilistic limit problem, a limiting distribution
exists and is independent of the particular distributions of the random variables in-
volved. Kac [1946] discovered the invariance principle while dealing with a proba-
bilistic limit theorem in close connection with Cameron and Martin’s work [1944a]
on the determination of the Wiener measure of { f € ¥| fol (f(x))%dx < a}. As
he relates in his autobiography [1985, 113], Kac had been stimulated to pursue this
investigation by Martin, who was the chairman of the mathematics department at

31 As Cameron & Martin [1944b, 390] hinted at, the integral fol f(t)dx(t) exists for any function
f 105 1] = R of bounded variation and any function x € % in a Riemann-Stieltjes sense, chiefly
due to the fact that for any system 0 =ty <t} <t, <--- <t, = I:

n—1

Do) (x(t) = x(tj-1) = FWx(1) = Y x() (ftr1) = £ @) -

j=1 k=1

32 This conjecture is endorsed by a remark of Donsker [1949, v], who, for “a detailed examination
of the properties of Wiener measure and the Wiener integral” refers to “unpublished class notes of
Professor R. H. Cameron.”
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Syracuse University at this time, and whom Kac saw “regularly.” Together with
Erdds (who also occasionally worked at Syracuse University) he proved by use of
the invariance principle some more theorems on the asymptotic behavior of func-
tions of partial sums of independent random variables, by first showing that the
invariance principle was valid, and thereafter by choosing convenient distributions
for the single random variables such that the determination of the specific limiting
distribution was possible. In all cases the one- or multidimensional version of the
CLT was the basis for showing the validity of the invariance principle.

For example, Erdos and Kac in their first jointly published paper [1946] presented
simple and elementary proofs of four limit theorems concerning the asymptotic be-
havior of the partial sums sz = X; + --- + X of independent random variables
X1, Xa, ..., each with zero expectation and variance 1 such that the CLT was appli-
cable. The two first of them dealt with the limits (as n — 00) of

P (max(sl,sz, ce8p) < anl/z) and P (max(|sl|, [s2], ... |sn]) < anl/z) 3

In this context, Erdos and Kac [1946, 293] referred to previous work of Louis Bache-
lier (covering particular cases), which they, however, designated as “un-rigorous.”**
At the same place they also hinted at the possibility of proving those limit theorems
by use of parabolic equations, as expounded by Khinchin [1933],% but they charac-
terized their own method as more elementary. Erdos and Kac’s third limit theorem
dealt with the limit of

P(s3+s34-+s2<an?).

The fourth theorem had already been treated in Kac’s first paper on the matter (see
above), and concerned the limit of

P (lsll + |s2| + -+ |8sa] <om3/2>.

In a further paper Erdos and Kac [1947] proved that the average number of positive
sk (1 <k < n) follows the arcsine law in the limit.

Retrospectively, Kac [1985, 115] pointed out that he and Erdos only proved “a
number of special cases.” He placed greater value on a 1949 paper, in which he
characterized the Laplace transform of the distribution function

o(a;t) :=P (/t V(x(r))dr < a) ,
0

33 Assuming for the X; a normal distribution, from the second limit theorem the formula (7.23) for
the Wiener measure of uniformly bounded subsets of €’ could be derived.

34 As Bachelier [1937, 6 f., 17 f.] recapitulated in a summarizing account, which was also cited by
Erdos and Kac, he had derived the limiting values for both probabilities in the particular case of
two-valued random variables already between 1901 and 1908.

35 Kolmogorov [1931b] had applied Green functions related to the heat equation in order to deter-
mine asymptotic formulae for the probability that all partial sums s, remain within certain intervals
possibly varying with k; this approach was modified and generalized by Khinchin [1933, 54-59].
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x () designating the elements of the Wiener space of all continuous functions with
0<t<ooand x(0) = 0, and V a piecewise continuous, nonnegative function on
R, by a differential equation quite similar to Schrddinger’s equation in quantum me-
chanics. As Kac [1985, 116] reports, he was decisively stimulated to do this work
by Richard Feynman’s idea of using path integrals for the construction of propaga-
tors in quantum mechanics. Kac [1949b, 3] clearly indicated the connection of his
present work to his investigations on the invariance principle: One could suspect
that, for partial sums si as above,

lim P |1 v (s—") <a| =o@1). (7.24)

n—o00 n n
k <nt \/—

In their papers on the invariance principle Kac and Erdos had actually proven®® the
validity of (7.24) in particular cases, such as V(x) = x2 or V(x) = |x|. Still, a
sufficiently general discussion of the asymptotic relation between partial sums of
random variables and random paths in Wiener spaces had not been carried out. This
was essentially Donsker’s merit.

7.3.1.4 Donsker’s General Invariance Principle

Monroe David Donsker (1925-1991, Fig. 7.3) graduated from U of M in 1944, and
at the same university received his master’s degree with a thesis on “A Set of Equiv-
alent Axiomatic Systems for Topology” in 1946. In 1949 he completed his doctoral
dissertation, supervised by Cameron, with the title “The Invariance Principle for

Fig. 7.3 Monroe Donsker
(left) together with Henry
McKean (1971)

36 This follows from the fact that, if the invariance principle holds, one can take as a special
distribution for each random variable the standard normal distribution.
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Wiener Functionals.”*” Donsker’s work on the invariance principle had a consider-
able impact on the career of its originator (as well as on far-reaching generalizations,
naturally). Among all of the disciples of Cameron, Donsker became the most promi-
nent. From 1962 until his death he had a professorship at the Courant Institute of
New York University, with a main focus on probability theory.*

In its original version of the doctoral dissertation of 1949, “Donsker’s theorem”
[1949, 93] was as follows:>°
Let X1, X5, X3,... be a sequence of independent identically distributed random
variables, each of them having the distribution ¢ with mean 0 and variance 1. For
natural numbers 1 < j < n and vectors (uy,...,u,) € R” the normed sums
Sj’f, = \/;27 Zi/:l X; and S;l = ﬁ Zi/:l u; are defined.*® For 0 < ¢ < 1 and for
w; € R(@{@ =1,...,n) the polygon x,, which connects the points (0|0), (%|w1), .
(1|wy,) is defined by

w1+ mt—j+1)(w; —w;_) for ’n;l <t < ﬁ

Xp(t; w1, wa, ..., wy) 3=%0 fort = 0.

Let F : ¥ — R be a bounded function uniformly continuous with respect to the
L®° topology. Then

lim/ / F(xn(+18T0 S3n-s0))dp(ur) -+ - dp (uy)

n—>oo

= / F(x)dw(x). (7.25)
%

When writing his thesis, Donsker could not be familiar with the newly developed
concept of “weak convergence” of distributions, which later during the 1950s turned
out to be especially well suited for investigating convergence of distributions in
“abstract spaces.” According to Aleksandr Danilovich Aleksandrov [1943, 169,
172] (whom this notion seems to be due to), a sequence of “additive set functions”
Wn defined on a sigma algebra generated by the topology of a topological space X
weakly converges to a set function p defined on the same algebra if and only if

/ FO)dpn (x) / Fdux) (1 — 00) (7.26)
X X

for all continuous and bounded functions f : X — R. This notion of conver-
gence was, as it seems, adapted to probability theory and further propagated by
Russian mathematicians since the end of the 1940s.*! The modern theory of weak

37 See the library catalogue of U of M for Donsker’s master’s and Ph.D. theses.
38 For biographic details see [NYT 1991].
3 In the following, the somewhat more convenient notation of Donsker’s 1951 article is used.

40 Donsker did not specify the normed sums by double indices; this seems, however, more conve-
nient for a better understanding.

41 An early description of this concept can be found in [Gnedenko & Kolmogorov 1949, Chapt. 2].
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convergence actually shows that (7.25) is equivalent to this version of Donsker’s
theorem which states the weak convergence of random polygons arising from par-
tial sums to a Wiener process,*” and which is usually ascribed to Prokhorov [1953]
(who also weakened the presupposition in the sense of a Lindeberg condition, which
proceeding would, however, have been in Donsker’s reach as well). After stating
(7.25), Donsker abruptly ended his dissertation without giving any further com-
ments or applications. In the introduction to the thesis he [1949, iii, v] had hinted
at the “invariance principle” as explained above, and set the goal to reach an “in-
variance property” for a “large class of Wiener functionals.” Indeed, by a rather
obvious argument involving characteristic functions it would have been possible to
show how closely his result and the limit theorems of Kac and Erdos were related
to each other. This connection was only established in Donsker’s 1951 paper, where
the chief ideas of his dissertation were expounded in a somewhat modified form.

Donsker’s article of 1951 was written at Cornell, where he worked in a postdoc
position with Kac (see [Kac 1985, 115]). During this time, Donsker not only suc-
ceeded in giving more streamlined arguments at several places, but also achieved
more generalized and extended results. “Donsker’s Theorem,” as it was later re-
ferred to and occurred explicitly in the 1951 paper only, was as follows: Let the
random variables X; and the partial sums S; and s;, be as above. For 0 < 7 < 1
and forw; e R (i = 1,...,n) the step functions

w; for%<t§

i
x(n)(t;wl,wz,...,wn) = wy fort =0 "

are introduced. Let R be the space of all functions defined on [0; 1] which are con-
tinuous except possibly for a finite number of finite jumps, andlet F : R — Rbea
function which is continuous with respect to the L°° topology at almost all (Wiener
measure) points of €. Then for every « € R at which

o(a) := P({xe C|F(x) < Ol})
is continuous we have

lim P (F(xny (587832 8p)) <) = 0().

As we see, Donsker did not consider polygons in 1951 any more, but restricted his
account to step functions, which had already played the decisive role in the proofs
of his dissertation. In this way, a considerably shortened exposition was possible.

The common core of both Donsker’s thesis and his 1951 paper was as follows:
Donsker [1949, 1-57; 1951, 2-5] first proved a “simple” version of his theorem.
Let k be a fixed natural number, and leto; < B, (j = 1,...,k) be real numbers.
By R, denote the event that, forall j = 1,... k,

421f X is a metric space, then it is sufficient for weak convergence that (7.26) is true for all bounded
and uniformly (!) continuous f.
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- |
@) < X STy Sp) < By it = <r =2,

and by E denote the subset of all x € € such that

oo J—1 J
F<x()<p; if — <t <.
a] — x( ) = ﬁ] 1 k — k
Then we have
lim P(R,) = P(E). (7.27)
n—o0o

The proof was based on the multidimensional CLT, but several elementary, if quite
intricate, considerations were additionally needed. The large difference between 57
pages in the thesis and only 5 in the 1951 paper was partly due to the fact that
Donsker had modified some arguments in the meantime. Of course, too, a doctoral
dissertation is usually more detailed than an article. Furthermore, in his 1951 ac-
count Donsker skipped some “technical” details, for example regarding properties
of Wiener measure, which he had discussed in his thesis at considerable length. For
example, on pages 39-46 of the thesis Donsker proved that the set Q of functions
x(t) in € with

- .
A;<x(t) <y; for jT<z5% G=1,....k)

has the same Wiener measure as the set Q of functions x(¢) in € with

Aj<x(t)<vy; for J=1 <t < S (G =1,...,k).
If a thoroughly elaborated theory of Wiener measure had existed at that time,
Donsker’s laborious considerations would have been needless.

In his thesis, Donsker [1949, 57-79] also proved an analog to (7.27) for random
polygons x,(¢; ST, ..., Sy,). Corresponding considerations are missing in the 1951
paper.

The final parts of both the doctoral dissertation and the 1951 article were based on
very similar ideas. The most significant difference between the two works was that
the polygons x;, in the thesis were substituted by step functions x(,) in the 1951 pa-
per. Therefore, the following description, which refers to the latter, yields a descrip-
tion of the former if polygons are inserted instead of step functions. Donsker [1951,
Sf]forj=1,....,kandm = 1,...,n introduced the abbreviations (x designates
a bounded function defined on [0; 1]):

pj(x) = Sup%<z§%x(l), qj(x) = infj%qﬁ%x(l),
sk = JLZ? Y oui ((Ur,....up) €RY),
(m). _ _ ‘ . (m)._: ¢ , .
pj ._Sup%qS%X(n)(t,S’fn,...,S:n), q; -_mf%qs%x(ﬂ)(hsrn’”"S:n)’

and he stated that with B designating the 2k-dimensional “interval”
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B:={(t1,.... )| —00 <7 < Pi.ai Stpqi <00 (i =1,....k)},

the limit relation (7.27) could be rewritten in the form

o0 o0
nm/ / xp (P pPaa) dd ) - d )
—00 —00

n—o0

- /g 2B(P1C). e ) @1 (). () (). (7.28)

where y p denoted the characteristic function of B and ¢ was the distribution func-
tion common to the random variables X ;.

On the basis of (7.28) a more general situation could be treated (substantial re-
marks concerning the proof can only be found in Donsker’s dissertation, in the first
chapter [Donsker 1949, 3-8] already): If f : R2* 5 Ris bounded, Borel measur-
able, and Riemann integrable on every finite 2k-dimensional interval, then

tim [ [ (0 ) ) dp )
—00 —00

- /@ﬂ FPr)e e ) @1 () o)) (). (7.29)

The next step of proof was to show that sufficiently general “functionals” F
defined on R (or % in the thesis, for the definition of R see the formulation of
Donsker’s 1951 theorem above) could be approximated (in a certain sense with
respect to Wiener measure) by particular “functionals”

f(pl()v LR pk(')v ql(')s v sqk())

defined on R (or on %). The set of such “functionals” with f* meeting the conditions
for (7.29) he named Q. His central assertion [Donsker 1951, 6 f.] was as follows (an
analogous theorem can be found in the dissertation [Donsker 1949, 84)):*

Let F(g) be bounded and uniformly continuous in the uniform topology on R. Then, there
exists a pair of sequences of functionals {F;"(g)} and {F*(g)} all belonging to Q such
that for each k and all g in R

F™(g) < F(g) < F'(g) (7.30)
and such that

nl_l)n;o L(Fk*(x) — F (x))dw(x) = 0. (7.31)

For the proof Donsker [1951, 7-9] (analogously [Donsker 1949, 84-92]) set for
geR:

IA

IA
o~ A~

gr(t) = SUP =1y d g(u) for jk;l <t

g () ::infj%<u§%g(u) forjk;1<t (G =1,...,k),

4 Quotation with different equation numbers and with a different notation of Wiener integral
compared with Donsker’s text.
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and with M, denoting the set of functions 7 € R such that g;*(¢) < h(t) < g/ (t)
he defined
Fi(g) == sup F(h) F*(g) :== inf F(h).
heMg heMg

The validity of (7.30) followed directly from the definition of F*(g) and F; *(g).
Because of the assumptions on the continuity of F and x € % it could easily be
shown that the integrand in (7.31) tends to O for each fixed x € €. The boundedness
of F* and F'* as a consequence of the boundedness of F' finally yielded (7.31)
(an analog of Lebesgue’s theorem on dominated convergence for Wiener integrals
was tacitly assumed). To prove that F}* and F;** had the required properties with
respect to measurability and integrability, and therefore actually belonged to Q, was
an elementary, but quite cumbersome task.

As a direct consequence of (7.29), (7.30), and (7.31), Donsker [1951, 10 f.] was
able to follow that, for any “functional” F' : R — R that is bounded and uniformly
continuous in the L*° topology on R,

lim/_ /_ F (xpy(isTo.ooos0)) dp(ur) -+ dp(un)

_ / Fo)dw(x). (732)
¢

In the doctoral dissertation, the final assertion (7.25) followed in a similar way.

As already stated, further considerations can only be found in the 1951 article.
There [1951, 10 f.], by an approximation argument, the validity of (7.32) for “func-
tionals” F bounded on R and continuous in the L*° topology at almost all (with
respect to Wiener measure) points of 4" was justified. Now, because it was obvious
that the validity of (7.32) could be extended to complex-valued functions, the limit
relation

lim/_ /_ exp (izF (xn (387, ..50)) )dp(uy) - - dp (up)

= / exp (izF (x))dw(x)
%

for all real z and all (even unbounded) F defined on R and continuous in the L*°
topology at almost all points of € followed. Because F could be treated as a real-
valued random variable, the continuity theorem for characteristic functions imme-
diately yielded “Donsker’s theorem.”

With this theorem of 1951, Donsker had all at once given a universal approach
to several functional limit theorems, not only those of Kac and Erdds, but also those
of other mathematicians, such as Robert Fortet [1949] (F(x) = x?>™ and Abraham
Mark [1949] (a disciple of Kac, F(x) = ming</<1(x(¢) — x(a?)) (0 < o < 1)).
More important, however, was the fact that Donsker clearly highlighted relations
between the asymptotic behavior of discrete processes and Brownian motion, which
had been suspected for a rather long time, especially in connection with random
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walks. Already Khinchin’s 1933 monograph on asymptotic laws at many places
showed ideas referring to those relations.
Taking up an idea of Joseph Leo Doob [1949], Donsker [1952] published an

extension of his theorem to empirical processes. If X, X»,... are mutually inde-
pendent, identically distributed random variables with distribution function F (1),
and v, (1) is the number of the variables X1, ..., X, with outcomes < A, then, by a
result of Kolmogorov [1933b], the distribution of
sup (”” @ _ F(A)) (7.33)
A€R n

had to be independent of F (1) if F was assumed to be continuous on R. Therefore,
for the sake of convenience, Donsker could assume for F'(4) the special distribution
FA)=20<i<1).

Donsker now considered the space ¢ = {xe€ €|x(1) = 0} endowed with a
probability distribution (with respect to the sigma algebra generated by the L*°
topology) whose finite-dimensional marginal distributions are given by

Plaj <x(tj)<bj.j=1,....n)
—1/2

= (ZR)_"/Z(ll(l — ) (2 —1)(1 = (2 —11))...(tn —th—1)(1 = (tn —tn—l))) x

by pba £2 " (6 — &x—1)?
~ d§...d&, (134
/ / exp( 211(1 —11) ,;zz(fk — 1) (1 = (1 = 1g—1)) e don 0139

if0 <t <t <--- <ty < 1. The measure on & characterized by (7.34) is
identical to the conditional Wiener measure on % under the condition x(1) =
((7.21) being rescaled by substituting the limits of integrationa; and b; by a; / V2
and b / /2, respectively).**

At the beginning of his considerations, Donsker for

Xn (1) := \/E(U"n(t) —t) O<r=<1

was able to state that, in correspondence to the multidimensional CLT, for fixed j
and0 <ty <---<tf; <1t

lim POen(ti) <aiii=1,....j) =P ({xe Blx(t) < i i = 1,...,j}).
n—->oo

Using results by Kac [1949a] and Chung [1949] he [1952, 279 f.] succeeded in
showing that even

lim P ( sup x,(¢) < a) =P (max x(t) < a) (7.35)

n—>o0 o<t<l1 <t<l1

4 A random element with values in 7 is also called a “Brownian bridge” today.
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where the probability on the right was according to the conditional Wiener measure
on % . This result yielded, after applying Kolmogorov’s theorem that the distribution
of (7.33) was independent of F, a general limit theorem for the deviations
between theoretical and empirical distribution functions. More important, how-
ever, was Donskgr’s extension of (7.35) to a limit theorem for general “functionals”
of x, and x € €, respectively, which was in perfect analogy to his main theorem
above, and which could be proven by the same methods: Let the space R and the
“functional” F be as above in the context of Donsker’s main theorem (with the
exception that € is to be substituted by %). Then

lim P(F(xa) <a) = P({xe G|F(x) < a})

at all points of continuity of the distribution function on the right.

Did Donsker with his theorems open a new chapter in the history of the CLT?
On the one hand, his considerations were based on the classical (multidimensional)
CLT; on the other hand, however, his results represented a shift from the classi-
cal paradigm of finite-dimensional random variables and limit distributions toward
random variables with values in function spaces and distributions defined on these
spaces. In this latter respect Donsker’s work actually showed a first “unification”
of the “modern” theory of stochastic processes and the classical theory of sums of
(independent) random variables.

7.3.2 The Central Limit Theorem for Sums of Random Elements
in Hilbert Spaces

At almost the same time as Donsker, though independent of him, research on limit
theorems in abstract Banach and Hilbert spaces was started by Robert Fortet and his
disciple Edith Mourier (born 1920, Fig. 7.4). Just like Donsker, also Fortet [1949]
in one of his first pertinent papers referred to Erdos and Kac’s contributions to in-
variance principles. Fortet was especially interested in applications of stochastic
processes to physics, for example to signal processing, statistical optics, noise and
turbulence, as also highlighted in his book Théorie des fonctions aléatoires [1953],
written in collaboration with theoretical physicist André Blanc-Lapierre.*> Also
Wiener’s work on harmonic analysis referred to those applications [Masani 1990,
Chapts. 7, 9], as well as some contributions by Kac and his research group. Among
Fortet and Mourier’s most important contributions during the first half of the 1950s
were results concerning laws of large numbers for random elements with values in
Banach spaces [Fortet & Mourier 1952; 1953; 1954], and particularly, a version of
the CLT for random elements in separable Hilbert spaces, which Mourier [1953a;b]
derived in her doctoral thesis.

4 Material regarding the French stochastic community at that time, especially with respect to
Fortet and Fréchet, and persons they closely worked together with, is found in [Bru 2002].
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Fig. 7.4 Edith Mourier
(1971)

Concerning the fundamentals of probability in metric spaces, Mourier, who be-
gan to publish on those topics from about 1949, based herself on Fréchet’s approach
[1948]. A comprehensive account, which summarized Mourier’s results up to this
time, and which was essentially identical to her doctoral thesis, appeared in 1953
[Mourier 1953a]. Mourier generalized Fréchet’s notion of expectation of random
elements in (real or complex) Banach spaces 2 to the case when there was a
(probability-) measure defined on a certain sigma algebra .% of 2~ (not necessarily
generated by the open sets with respect to the norm of the Banach space) such that
each element of the dual space 2 * (the space of all linear and continuous—real or
complex—functionals of X') was measurable with respect to .% . Fréchet had consid-
ered less general sigma algebras only. If several random elements X1, ..., X, were
given, Mourier—in a way methodically characteristic of many contributions of that
time—considered the product space 2", endowed with the sigma algebra %" and
with an appropriate probability measure on it, as the common domain of definition
of these random elements.*® In turn, each of the random elements was conceived as
a projection from 2" onto Z~ (see [Mourier 1953a, 166], for example). Her notion
of expectation was as follows: For a given random element X in 2", the element
E(X) € 2 is called the “expectation” of X, if and only if, for all x* € 27*, the
“regular” expectation Ex* (X)) of the random variable x*(X) exists, and

x*(B(X)) = Ex*(X).

Mourier [1953a, 164-169] showed that this generalized notion of expectation has
the usual linearity properties, and she proved that for Banach spaces 2~ which
are reflexive and separable, the norm || X| of a random element X was a ran-
dom variable, and the existence of E|| X || implied the existence of E(X). Mourier

46 1t is an interesting detail that [Gnedenko & Kolmogorov 1949, § 1] designated such an approach
“too deficient,” even in cases of finite-dimensional random variables, and recommended to base all
investigations, as explained in [Kolmogorov 1933a], on an abstract probability space which was to
serve as a common domain of definition for all random variables considered.
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[1953a, 169—-172] also showed that her definition of expectation (which was, as she
explicitly explained, equivalent to Pettis’s notion of integral [Pettis 1938]) was con-
sistent with Frechet’s (which was based on Bochner integrals [Bochner 1933]).

A considerable part of Mourier’s 1953 article was on strong laws of large
numbers. These contributions became rather popular and are still connected with
her name (see [Génssler & Stute 1977, 337], for example). More important for our
subject, however, is her discussion of characteristic functions of random elements.
Basing herself on work by Le Cam [1947] (the conceptual idea of which, how-
ever, had been anticipated by Kolmogorov [1935]*") she introduced the character-
istic function ¢x of a random element X in a real Banach space 2" as a function
Z* — Chby

¢x (x*) := Eexp(ix* (X)).

Mourier’s main result [1953a, 226] in this context was a convergence theorem for
characteristic functions with the following content: Let 2" be a separable and re-
flexive real Banach space, and X, be a sequence of random elements in this space.
If the sequence of characteristic functions ¢y, : 2™ — C tends to a function
¢ : Z* — C uniformly for all x* € Z™* with ||[x*|| < A (for some positive
A), and if there exists an & > 0 such that E|| X, ||* is uniformly bounded, then the
function ¢ is the characteristic function of a certain random element in 2.

On the basis of this theorem, Mourier [1953a, 242] considered the characteristic
functions ¢z, of the normed sums

Zy: ! Y, Y,
pi= 0 T,

where Yy are identically distributed and independent random elements with values
in a separable real Hilbert space (endowed with the sigma algebra generated by its
metric) such that EY; = 0 and E[|Y;|?> = s? < oo. She showed that ¢z, tends
to the characteristic function of a “Laplacian” random element in this Hilbert space
as n — oo. Mourier used the adjective “Laplacian” to designate (with reference to
Fréchet [1951]) those random elements Z in a real Banach space with x*(Z) being
normally distributed for all x* of the dual space. Mourier first proved that Var|| Z, ||
exists and is equal to s2. Then she expanded ¢z, in the form

vy =[on ()] = (1= gEeror + ke (7))

where w(x*) — 0 if ||x*| tends to 0. By use of the just-described convergence
theorem the assertion could be followed.

47 Kolmogorov generalized the idea of “Laplace transform” (he rather meant Fourier transform)
toward “real and completely additive” functions defined in Banach spaces exactly in the same way
as later Mourier. He hinted at applications in probability theory, especially at a “generalization” of
the “theorem of Laplace,” but he did not give any detailed explanations. Le Cam apparently did not
know Kolmogorov’s contribution, and his implications were less general than Kolmogorov’s.
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Now Mourier [1953a, 243] claimed, without giving any further explanations, that
she had equally (“également”) proven the following theorem (her “Théoréme 57):

IfY),Ys,...,Y, are independent random elements of the same law with values in a separa-
ble Hilbert space, and if E||Y; ||> = 52, then

1

for n — oo tends to a Laplacian random element in the sense of Bernoulli.

Specifying the mode of convergence, she used a somewhat strange terminology,
which was, however, possibly influenced by a word choice of Lévy [1937a, 52], who
(for real-valued random variables) had designated convergence in law as “conver-
gence au point de vue de Bernoulli.” As we can see from the subsequent publication
[Fortet & Mourier 1954, 28 f.], Mourier actually meant convergence of the distri-
bution function of || Z},|*> (Z), = Z, — EZ,) to the distribution function of ||Y |2,
where Y was the Laplacian random element assigned to the limit of the characteris-
tic functions ¢z . This convergence can be shown by the following considerations:
Let (x%) be an orthonormal Schauder basis of the real Hilbert space, and

o0 o0 o0
Zn=) Auxk, Y =) Ak, Yi=) Bix.
k=1 k=1 k=1
Then also

o0
1Zall? = ZAnk, IYIZ=> 4 Inl*= ZBk
k=1

Without loss of generality one can assume that EY; = 0. The convergence of the
characteristic functions ¢z, (x*) — @y (x*) with x* =< f1x1 + -+ + lsXg,- >
(< -, - > designating the scalar product of the Hilbert space and 71, ...,?; € R) and
the theorem on the “continuous” correspondence between characteristic functions
and distributions in the case of finite-dimensional random variables imply that

n—00

s s
lim P(Y A% <a)=P(}_ 4; <a)
k=1 k=1

for all fixed s € N and all @ > 0. Because E||Y;|> < oo and by virtue of the
independence of Y1, Y, ... the equation

E) A% =) EB}
k>s k>s

follows,* the right-hand side tending to 0 as s — 0o. As an immediate consequence
we have

48 As Mourier [1953a, 242] showed, for independent random elements X;, X, in a Hilbert space
with zero expectations E|| X; + X||> = E|| X;||*> + E|| X, |? holds.
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P(ZA,%,( >g)—=>0 (s —>00)
k>s

uniformly in 7 for any positive &, which completes the argumentation.

Fortet and Mourier [1954, 29 f.] even showed that ¢z, (x*) — @y (x™*) implies
that the distribution of f(Z,) tends to f(Y) for all real functions f which are
defined on the Hilbert space under consideration and are uniformly continuous in
each bounded ball of that Hilbert space. These results were further generalized in
[Fortet & Mourier 1955] toward random elements in certain separable and reflexive
Banach spaces such as L(R) (@ > 2). By use of this kind of CLT in Banach
spaces, Fortet and Mourier [1955] succeeded in deriving limit relations like (7.24),
thus giving an alternative approach to invariance principles.

Activities starting at the end of the 1940s generalizing classical limit theorems
were very lively, and therefore it is not very astonishing that different mathemati-
cians came to similar results. In the preceding sections, a survey of only two decisive
trends could be given, which led to the theory of limit theorems for distributions on
metric or even more general topological spaces. As we have seen, motivation for
research could result from particular problems, partly related to practical applica-
tions, as well as from “structural” questions regarding “abstract” measure spaces.
In Donsker’s work as well as in Mourier and Fortet’s contributions, several com-
ponents of the theory of convergence of distributions of random elements in metric
spaces already occurred. The diffusion of Alexandrov’s comprehensive treatise on
convergence of measures from 1943, already referred to in Sect. 7.3.1.4, was ini-
tially impeded by World War II. Therefore, the various aspects of convergence of
distributions were only perceived by a broader audience outside Russia from the
beginning of the 1950s. In this context, the “Conference on Probability Theory and
Mathematical Statistics” in Berlin from 19 to 22 October 1954 played a significant
role, see [Kolmogorov & Prokhorov 1956]. Yuri Vasilevich Prokhorov’s celebrated
article [1956] on “Convergence of Random Processes and Limit Theorems in Prob-
ability Theory” inspired a great number of authors to further investigations in this
field. Until the mid-1960s, a rather complete theory of probabilistic limit theorems
in metric spaces was elaborated, as shown by the monographs of Kalyanapuram
Rangachari Parthasarathy [1967] and Patrick Billingsley [1968], for example.

Many notions, concepts, and results of the “classical” theory for sums of in-
dependent real-valued random variables can be transferred to random elements in
“abstract spaces.” This applies, for example, to infinitely divisible distributions, to
characteristic functions, or to versions of the Lindeberg condition. However, there
was a big shift between the contributions just described and the work of the early
contributors to the CLT in a twofold sense: Firstly, the classical applications of the
CLT, such as error theory, were hardly relevant any more for a science in which
nondeterministic considerations regarding the stochastic point of view prevailed.
Secondly, the analytic character and the typical devices of analytic probability
theory had to be, to a large extent, replaced by sophisticated measure-theoretic
considerations. This circumstance is exemplified by the fate of characteristic func-
tions: Despite far-reaching analogies between properties of characteristic functions
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defined on dual spaces and “classical” characteristic functions, the most important
property in the case of finite-dimensional random variables, the continuous corre-
spondence between characteristic functions and distributions, could not be extended
in sufficient generality to those cases where random variables have values in infinite-
dimensional spaces [Araujo & Giné 1980, 30].



Chapter 8

Conclusion: The Central Limit Theorem
as a Link Between Classical and Modern
Probability Theory

During the period between the two world wars, modern probability theory emerged
as a mathematical subdiscipline—with the typical formation of concepts, main the-
orems and methods—by integrating the subfields of axiomatics (including aspects
of measure theory), strong laws of large numbers, stochastic processes, and limit
theorems for distributions of sums of random variables, which at first were related
by little more than the shared generic term “probability.” Only this last field of limit
theorems could point to any significant contributions in the 18th and particularly
the 19th centuries, and it played an especially important role during the transition
from classical to modern probability theory. In the following summary of the most
important aspects of this book, that role will be examined more closely. In so doing,
it is particularly important to pursue the question of how the CLT can be understood
as “classical” content of probability theory and what types of changes it underwent
while crossing over to modern probability.

Extensive interest in probabilities of sums of independent random variables al-
ready existed in the 18th century. It began with problems relating to games of
chance, such as the throwing of several dice, and ranged to problems of the theory
of errors, which increasingly gained in visibility from 1750 on. Using methods of
generating functions, it was possible to establish exact formulae for the probabilities
of sums, at least for the algebraically simplest forms of probability functions of the
individual summands that were tacitly assumed to be independent. However, even
a moderate number of summed random variables made it impossible to perform a
numerical analysis of these very complicated result terms. It proved very difficult,
however, to move significantly past de Moivre’s approximation to the binomial dis-
tribution in the 18th century.

This is why it was such a major accomplishment when, around 1810, Laplace
was able to show that every sum of a considerable number of independent, identi-
cally distributed random variables, under conditions that, in practice, were always
fulfilled, had to be normally distributed in apparently very good approximation. This
result, which Poisson would later also generalize to include sums of non-identically
distributed random variables using modified Laplacian methods, abruptly expanded
the application spectrum for probability theory in an entirely remarkable way and
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shaped Laplace’s main work in stochastics, Théorie analytique des probabilités, the
first edition of which appeared in 1812. The universality of Laplace’s approxima-
tion, which in the 19th century generally had the status of an unchallenged natural
law, serves as justification for speaking not about a but rather the CLT, even if],
strictly speaking, the word “limit” did not quite apply to Laplace and Poisson.

In modern notation, Laplace established the following facts; they were not pre-
sented generally at any point in his work, but they were derived using the same
method in the specific application: Let X1, ..., X, be independent, identically dis-
tributed and bounded random variables, which are continuous or discrete. If 7 is a
large number, then, for y := EX; and 02 := E(X; — )2,

Pop+riv/n <Xy + -+ X, <nu+ra/n) ~ —e 262dt (8.1)

=l

In deriving this approximation, Laplace provided the “raw form” for the treatment
of CLTs based on the method of “characteristic functions.”

As emerges from Laplace’s TAP, three areas were of particular importance when
applying the approximation (8.1) or associated relations for linear combinations
of identically distributed observation errors: the probabilistic justification of the
method of least squares for fitting parameters to error-distorted observations, the
examination of apparent or hidden regularities in nature, and the discussion of “ad-
vantages that depend upon the probability of future events”—an early approach to
risk theory.

Laplace was the most prominent probabilist during the era that stretched from
the systematic evaluation of games of chance—which had its advent in the letters
between Pierre Fermat and Blaise Pascal in 1654—until the close of the 19th cen-
tury. Lorraine Daston [1988] has described the epoch encompassing Laplace and
his immediate successors as “classical probability theory.” The main goal of this
“theory” was to assist people in making “reasonable decisions,” and it existed first
and foremost on the basis of its applications; in other words, it was part of “mathesis
mixta” and thus represented a discipline of mathematics only in the broadest sense.

Daston’s use of the adjective “classical” is in partial correspondence to an un-
derstanding of probability theory as it was still widely practiced in the early 20th
century, and it also refers to the longstanding dominance of modeling and appli-
cation problems in this discipline. Still, her concept has to be contrasted with an
understanding of the word “classical” in the sense of “traditional” or “established”
but also in the sense of “exemplary” or “standard,” as it is often employed by the
modern “working mathematician.” These “pragmatic”” meanings correspond to Kol-
mogorov’s characterization [1933/50, 8 f.] of independence as a “classical” subject
of study. K. L. Chung, the translator of the second English edition of Gnedenko and
Kolmogorov’s Limit Distributions [1949/68], also expresses a similar view when he
writes of the “classical beauty of this definitive work™ in the preface (p. iii).

In fact, Laplace’s accomplishments in probability theory can specifically be
called “classical” in Daston’s sense insofar as he was working entirely within the
framework of classical probability theory to develop stochastics into a universal
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method to which all scientific fields could be made accessible. In this respect, the
CLT played a leading part as a “tool of common sense.” Yet Daston’s characteriza-
tion of classical probability theory as a theory which hardly possessed mathematical
structures that were specific or generally relevant, and which was thus little more
than a “sum of its applications,” proved to be no longer true for Laplace’s stochastic
work. His “analytical” probability theory already transcended the range of its appli-
cations due to the relevance of its mathematical methods. This trend along with the
polarization between analytical methods and applications was further bolstered by
his successor Poisson.

Following Laplace’s death, the research program surrounding classical probabil-
ity theory came under intense criticism. It was directed primarily at applications to
the field of human decisions, such as in legal proceedings. In reaction, though, peo-
ple in fields where probabilistic approaches had not been fundamentally rejected,
such as the theory of errors, began to discuss whether specific arguments had been
based on hypotheses that were arbitrary and thus subject to attack. The transition
phase after Laplace’s lifetime lasted until the first decade of the twentieth century.

Error theory was this subdiscipline of probability theory that underwent the most
extensive mathematization in the post-Laplace period. This field in particular pro-
voked repeated critical examinations during the 19th and early 20th centuries, at
least some of which involved demanding analytical considerations. Several papers
took substantial steps toward a rather abstract—some might even say nitpicky—
view of the theory of errors. This applies in large measure to the articles Cauchy
published during his dispute with Bienaymé about the fundamentals of the method
of least squares in 1853. The CLT was particularly important for the justification ac-
cording to Laplace of this method. It was here that Cauchy provided the outline for a
rigorous proof of a CLT for linear combinations of errors of observation, though un-
der rather restrictive conditions. For applications of least squares to a “considerable”
number of observations, Laplace had tacitly assumed that the distribution of the de-
viation between true value and estimator was by all means very close to a normal
distribution. Cauchy wished to conduct a critical examination of this assumption.
His efforts essentially failed, however.

Laplace’s reasons for claiming the superiority of least squares among all methods
for estimating unknown parameters from observed values were limited to a large
number of observations. However, the two justifications (1809, 1823) of the method
of least squares by Gauss were already valid for a small number of observations.
The first of these two different approaches was based on the assumption of a “Gaus-
sian” error law, meaning a normal distribution for errors of observation, and enjoyed
considerable popularity throughout the 19th century likely because it concentrated
on a specific probability distribution, without which several in-depth studies of error
theory would have been impossible to conduct. In a departure from Gauss’s original
line of argument, the first justification was modified by Hagen and Bessel (1837/38)
in such a way that the normal distribution of errors was derived from the “hypothesis
of elementary errors.” This hypothesis is understood to be the assumption that every
observational error consists of a sum of a very large number of small independent
“elementary errors.” Even if an elementary error hypothesis does not explicitly
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appear anywhere in Laplace’s work, his central “limit” theorem had laid the
intellectual groundwork for this idea, which others, especially Quetelet, soon car-
ried over to all mass phenomena in biology and social sciences. The widest effect
Laplace’s universal approximation of distributions of sums of independent random
variables had, manifested itself in so-called “Queteletism,” the school of thought
which presumed a normal distribution behind every statistical ensemble. The math-
ematical examination of the hypothesis of elementary errors was carried on into
the 1930s and was still playing a not insignificant role in motivating Lévy’s pre-
occupation with the central limit problem. Not only here can the reverberations of
Laplace’s stamp on classical probability theory be traced far into the 20th century;
the approach to risk theory that Laplace established was also vital in Cramér’s work
on extended versions of the CLT with asymptotic series expansions in the 1920s.

Laplace had consistently stressed the relevance of analytical methods of proba-
bility theory, primarily with regard to “approximations of formula functions of large
numbers.” This is evident in compressed form in the preface to the first edition of
his TAP, where he called examinations of this type the “most delicate, difficult and
useful” part of probability theory and expressed the hope that, owing in part to their
specific analytical aspects, his achievements might arouse “the attention of the ge-
ometers.” Laplace’s most important tool in deriving asymptotic probabilities was
his method for approximating integrals which depend on a very large number (pre-
sented for the first time in [Laplace 1774]). In this way, viewed from an analytical
perspective, statements that are today interpreted as limit theorems became an ap-
pendix to the theory of definite integrals and could serve for illustrating it. It was
in this sense that Dirichlet presented his lectures on probability theory in the 1830s
and 1840s. Dirichlet’s lectures thus represent an early example of a development in
which the CLT also acquired inner-mathematical significance.

Such a development is also apparent in articles by Chebyshev and Markov.
Chebysheyv is the starting point for the history of CLTs for sums of independent
random variables in their narrower meaning as limit theorems. Even if the occa-
sional author in the first half of the 19th century, in discussing an assertion related
to (8.1), happened to mention that the difference between the right and left side
equaled “exactly” zero for an “infinitely large” number of random variables, this
did not constitute a statement about the convergence of a clearly defined sequence of
distributions that are assigned to sums of random variables. To the practice-oriented
classical probability theory, a limit theorem such as this would not have been very
interesting, anyway. Chebyshev, for whom probabilistic applications were often of
secondary importance, considered partial sums Y ,_, X with respect to a given
sequence (X) of independent random variables, and he established sufficient con-
ditions for

n
2 Z Var Xy
k=1

N % /r :2e_x2dx (n — 00). (8.2)
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Scarcely any characteristics of classical probability theory as described by Daston
can be detected in Chebyshev’s work. Rather, the CLT seems to have served as an
example within his theory of moments. At the same time, Chebyshev formulated the
CLT in its “classical” form, and here the adjective “classical” is being employed in
its “pragmatic” usage, which was already described.

For Chebychev’s disciple Markov, the CLT (8.2) also initially served as a tool for
illustrating interesting relationships within the theory of moments. By contrast, the
two papers (1900/01) by Lyapunov on a CLT in the form (8.2) included a decisive
step toward abstraction and the incipient autonomy of this theorem. Lyapunov’s
proofs consisted of a particularly elementary but also rather intricate reconstruction
of the Poisson approach before the backdrop of criteria for analytical rigor, which
had become customary after Weierstrass. On the other hand, Lyapunov managed
to render the proposition more exact in a form already required by Chebyshev, by
explicitly indicating a uniform bound for the difference of the two sides of (8.2)
with a finite number n of random variables.

Lyapunov’s papers also set themselves apart from the work of his predecessors
by virtue of a new mathematical objective. Lyapunov [1900, 359-361] identified his
two main goals as those of providing a “direct” proof of the CLT that Chebyshev
and Markov had derived as one application of specific theories about moments, and
of weakening the conditions as much as possible. Lypunov’s interest in this theorem
thus sprang neither from inner-mathematical nor outer-mathematical applications.
Instead, he wanted to work on this theorem using “direct” and “elementary” methods
in order to better explain the internal relationships.

To some extent, then, Lyapunov’s aims correspond to the characterization of
“modern mathematics” given by Mehrtens [1990], and also to the more general
description of “modernity” as provided by the sociology of scientific knowledge,
e.g., [Luhmann 1992]. The most significant features of “modern mathematics,” as
explained in Sect. 1.2, are autonomy, self-reference, and contingency.

Despite the extensive internal orientation of his articles on the CLT, Lyapunov
continued to stress practical applicability as an important criterion of quality for
mathematical accomplishment. In this discrepancy between working within math-
ematics and talking about mathematics he was not different from most of the
authors in the modern period of probability theory. Practically all proponents of
modern probability theory, such as von Mises, Lévy, Cramér, Khinchin, and even
Kolmogorov who in 1933 had axiomatically placed probability theory on a mea-
sure theory basis, rejected an exclusively formalistic course for mathematics, and in
so doing indicated a mindset that Mehrtens has termed “counter-modern.” Despite
their different attitudes regarding fundamental questions, they were working in very
similar ways on a modern probability theory in the sense that they were establishing
relationships between largely abstract concepts that did not need to have an outer-
mathematical meaning. Even if one did not wish to depart entirely from external
criteria of meaning or truth when talking about one’s own mathematical activity, the
actual mathematical work could evolve essentially free of such restrictions.

It was primarily after the First World War that the aforementioned von Mises,
Lévy, and Cramér, and likewise Lindeberg and Bernshtein discovered the “classical”
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limit theorems of probability theory as a rewarding and promising field of activity.
Others taking part in the continued development of CLTs and related questions in
the 1930s included Feller, Khinchin, and Kolmogorov. All of these mathematicians
had originally shared a common focus on the domain of analysis, mostly applied
analysis, and had achieved some initial and occasionally remarkable results in this
field. How successful their activities were in the “new field” of modern probability
theory, and the rapid upsurge this discipline experienced as a result, is shown by
the fact that, with the exception of Bernshtein and Kolmogorov, none of the authors
discussed here returned to his original area of work to any larger extent. This circle
even produced its first students in the years before World War II, such as Doeblin
and Gnedenko, who from the very beginning of their mathematical careers worked
almost exclusively in a probabilistic milieu. The central role occupied by questions
of convergence to the normal distribution in the emergence of probability theory as a
subdiscipline of modern mathematics between 1920 and 1940 is also demonstrated
by the immediate and common adoption of the “central limit theorem” nomencla-
ture, after P6lya had introduced this designation in 1920.

Independent of Mehrtens’ ideas for a general description of modern mathemat-
ics, von Plato [1994] characterized the development of “modern probability,” as it
took place between the two world wars, from two points of view: Beginning with
Borel’s strong law of large numbers for relative frequencies [1909], new problems
about infinite sets appeared which could no longer be mastered by the simple con-
tinuation of finite considerations, e.g., the transition from discrete probabilities to
densities, as it had been the case with the “classical” theorems of probability theory.
The measure theory fundament of probability theory began to develop as a conse-
quence. Secondly, the basis of interpretation of probabilistic results in the natural
sciences migrated to an indeterministic worldview. Von Plato [1994] calls this jump
from classical to modern probability theory a “probabilistic revolution,” which he
sees as part of the overall metamorphosis from “classical” to “modern” science. The
further development of “classical” content, which was vital to the formation of the
discipline of modern probability theory before the Second World War, is mentioned
only in passing by von Plato. In fact, the classical problems were not simply in-
cluded in the theory; they exerted a significant influence on the development of the
modern components of the theory.

The effects of this complex of classical problems on the growth of modern prob-
ability theory can be seen in the history of the CLT as early as ca. 1925. The obliga-
tion to absolutely adhere to analytical rigor—which admittedly was not supported
by all “probabilists”—and to strive for the weakest possible conditions fostered the
eventual dissociation of probability theory from its applications and its emancipa-
tion to become a mathematically autonomous discipline. In his emphasis on mathe-
matical rigor in the area of the probabilistic foundation of error calculus, Lévy found
himself contradicting Borel, who had become France’s leading mathematician fol-
lowing the death of Poincaré, and was of the opinion that expending significant
mathematical effort in order to establish the Gaussian law of errors and to examine
exceptions to this law was not worthwhile. Yet due to his self-confidence as an an-
alyst, Lévy was convinced of the mathematical relevance of his work in probability
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theory. For this reason and despite a num